
iSeries

OS/400 PASE APIs

Version 5 Release 3

ERserver

���

iSeries

OS/400 PASE APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 91.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

OS/400 PASE APIs 1

APIs 1

OS/400 PASE Callable Program APIs 1

QP2SHELL() and QP2SHELL2()—Run an OS/400

PASE Shell Program 2

Parameters 2

Authorities 2

Return Value 3

Error Messages 3

Usage Notes 3

Related Information 4

QP2TERM()—Run an OS/400 PASE Terminal Session 5

Parameters 5

Authorities 5

Return Value 5

Error Messages 5

Usage Notes 6

Related Information 6

OS/400 PASE ILE Procedure APIs 6

Qp2dlclose()—Close a Dynamically Loaded OS/400

PASE Module 7

Parameters 7

Authorities 7

Return Value 7

Usage Notes 8

Related Information 8

Qp2CallPase()—Call an OS/400 PASE Procedure . . 8

Parameters 8

Authorities 10

Return Value 10

Usage Notes 10

Related Information 11

Qp2dlerror()—Retrieve OS/400 PASE Dynamic Load

Error Information 12

Parameters 12

Authorities 12

Return Value 12

Usage Notes 12

Related Information 12

Qp2dlopen()—Dynamically Load an OS/400 PASE

Module 13

Parameters 13

Authorities 14

Return Value 14

Usage Notes 14

Related Information 14

Qp2dlsym()—Find an Exported OS/400 PASE

Symbol 14

Parameters 15

Authorities 15

Return Value 15

Usage Notes 15

Related Information 15

Qp2EndPase()—End an OS/400 PASE Program . . 16

Parameters 16

Authorities 16

Return Value 16

Usage Notes 16

Related Information 16

Qp2errnop()—Retrieve OS/400 PASE errno Pointer 17

Parameters 17

Authorities 17

Return Value 17

Usage Notes 17

Related Information 17

Qp2free()—Free OS/400 PASE Heap Memory . . . 17

Parameters 18

Authorities 18

Return Value 18

Usage Notes 18

Related Information 18

Qp2jobCCSID()—Retrieve Job CCSID for OS/400

PASE 18

Parameters 19

Authorities 19

Return Value 19

Usage Notes 19

Related Information 19

Qp2malloc()—Allocate OS/400 PASE Heap Memory 19

Parameters 20

Authorities 20

Return Value 20

Usage Notes 20

Related Information 20

Qp2paseCCSID()—Retrieve OS/400 PASE CCSID . . 20

Parameters 21

Authorities 21

Return Value 21

Usage Notes 21

Related Information 21

Qp2ptrsize()—Retrieve OS/400 PASE Pointer Size 21

Parameters 21

Authorities 22

Return Value 22

Usage Notes 22

Related Information 22

Qp2RunPase()—Run an OS/400 PASE Program . . 22

Parameters 22

Authorities 23

Return Value 23

Error Messages 24

Usage Notes 24

Related Information 26

Qp2SignalPase()—Post an OS/400 PASE Signal . . 26

Parameters 27

Authorities 27

Return Value 27

Usage Notes 27

Related Information 27

Runtime Functions For Use by OS/400 PASE

Programs 27

© Copyright IBM Corp. 1998, 2005 iii

build_ILEarglist()—Build an ILE Argument List for

OS/400 PASE 30

Parameters 30

Authorities 31

Return Value 31

Usage Notes 31

Related Information 31

fork400()and f_fork400()—Create A New Process

with OS/400 PASE Options 32

Parameters 32

Authorities 32

Return Value 33

Error Conditions 33

Usage Notes 33

Related Information 33

QMHRCVM()—Receive Nonprogram Message for

OS/400 PASE 34

Parameters 34

Authorities 35

Return Value 35

Related Information 35

QMHRCVPM()—Receive Program Message for

OS/400 PASE 36

Parameters 37

Authorities 37

Return Value 37

Usage Notes 37

Related Information 37

QMHSNDM()—Send Nonprogram Message for

OS/400 PASE 38

Parameters 38

Authorities 39

Return Value 39

Related Information 39

QMHSNDPM()—Send Program Message for OS/400

PASE 40

Parameters 40

Authorities 41

Return Value 41

Usage Notes 41

Related Information 41

Qp2setenv_ile()—Set ILE environment variables for

OS/400 PASE 42

Parameters 42

Authorities 42

Return Value 42

Error Conditions 42

Usage Notes 43

Related Information 43

size_ILEarglist()—Compute ILE Argument List Size

for OS/400 PASE 43

Parameters 43

Authorities 44

Return Value 44

Related Information 44

SQLOverrideCCSID400()—Override SQL CLI CCSID

for OS/400 PASE 45

Parameters 45

Authorities 45

Return Value 45

Error Conditions 45

Usage Notes 45

systemCL()—Run a CL Command for OS/400 PASE 46

Parameters 46

Authorities 47

Return Value 47

Usage Notes 47

_CVTERRNO()—Convert ILE errno to OS/400 PASE

errno 48

Parameters 48

Authorities 48

Return Value 48

Usage Notes 48

Related Information 49

_CVTSPP()—Convert Space Pointer for OS/400

PASE 49

Parameters 49

Authorities 49

Return Value 49

Error Conditions 49

Usage Notes 49

Related Information 50

_CVTTS64()—Convert Teraspace Address for

OS/400 PASE 50

Parameters 50

Authorities 50

Return Value 50

Error Conditions 50

Usage Notes 50

Related Information 51

_GETTS64() and _GETTS64_SPP()—Get Teraspace

Address for OS/400 PASE 51

Parameters 51

Authorities 51

Return Value 51

Error Conditions 52

Usage Notes 52

Related Information 52

_GETTS64M()—Get Multiple Teraspace Pointers for

OS/400 PASE 52

Parameters 52

Authorities 53

Return Value 53

Error Conditions 53

Usage Notes 53

Related Information 53

_ILECALLX()—Call an ILE Procedure for OS/400

PASE 54

Parameters 54

Authorities 56

Return Value 56

Usage Notes 56

Related Information 57

_ILELOADX()—Load an ILE Bound Program for

OS/400 PASE 58

Parameters 58

Authorities 59

Return Value 59

Error Conditions 59

Related Information 59

_ILESYMX()—Find an Exported ILE Symbol for

OS/400 PASE 60

iv iSeries: OS/400 PASE APIs

Parameters 60

Authorities 60

Return Value 60

Error Conditions 61

Related Information 61

_MEMCPY_WT()—Copy Memory With Tags for

OS/400 PASE 61

Parameters 62

Authorities 62

Return Value 62

Error Conditions 62

Usage Notes 62

Related Information 62

_PGMCALL()—Call an OS/400 Program for OS/400

PASE 63

Parameters 63

Authorities 64

Return Value 64

Error Conditions 64

Usage Notes 64

Related Information 65

_RETURN()—Return Without Exiting OS/400 PASE 65

Parameters 65

Authorities 65

Return Value 65

Error Conditions 65

Usage Notes 66

Related Information 66

_RSLOBJ()—Resolve to an OS/400 Object for

OS/400 PASE 66

Parameters 66

Authorities 67

Return Value 67

Error Conditions 67

Usage Notes 68

Related Information 68

_SETCCSID()—Set OS/400 PASE CCSID 68

Parameters 68

Authorities 69

Return Value 69

Error Conditions 69

Usage Notes 69

Related Information 69

_SETSPP() and _SETSPP_TS64()—Set Space Pointer

for OS/400 PASE 70

Parameters 70

Authorities 70

Return Value 70

Error Conditions 70

Usage Notes 70

Related Information 71

_SETSPPM()—Set Multiple Space Pointers for

OS/400 PASE 71

Parameters 72

Authorities 72

Return Value 72

Error Conditions 72

Usage Notes 72

Related Information 72

_STRLEN_SPP()—Determine Character String

Length for OS/400 PASE 73

Parameters 73

Authorities 73

Return Value 73

Error Conditions 73

Usage Notes 73

Related Information 73

_STRNCPY_SPP()—Copy Character String for

OS/400 PASE 74

Parameters 74

Authorities 74

Error Conditions 74

Usage Notes 74

Related Information 74

Concepts 75

OS/400 PASE Runtime Libraries 75

OS/400 PASE Locales 76

OS/400 PASE Environment Variables 85

Overview 85

Special OS/400 PASE Environment Variables . . 86

OS/400 PASE Signal Handling 88

OS/400 PASE Signals and ILE Signals 88

OS/400 Messages and OS/400 PASE Programs 88

OS/400 Exceptions and OS/400 PASE Signals . . 88

Appendix. Notices 91

Trademarks 92

Terms and conditions for downloading and printing

publications 93

Code disclaimer information 94

Contents v

vi iSeries: OS/400 PASE APIs

OS/400 PASE APIs

Portable Application Solutions Environment (OS/400(R) PASE) is an integrated runtime environment for

AIX(R) applications. OS/400 PASE supports the same binary executable format as AIX for PowerPC(R) and

a large subset of AIX runtime that allows many AIX applications to run with little or no change.

OS/400 PASE supports direct hardware execution of PowerPC instructions (not an emulator), while

providing access to the same OS/400 support used by ILE applications for file systems, sockets, security,

and many other system services.

An OS/400 PASE program can be stored in any bytestream file in the OS/400 Integrated File System

because it is simply a binary file. OS/400 PASE programs can be created by any compiler and linker that

produce executables compatible with AIX for PowerPC.

You must call a system API to run an OS/400 PASE program. The system provides both callable program

APIs and ILE procedure APIs to run OS/400 PASE programs. The callable program APIs can be easier to

use, but do not offer all the controls available with the ILE procedure APIs.

The functions available to you through OS/400 PASE are:

v “OS/400 PASE Callable Program APIs”

v “OS/400 PASE ILE Procedure APIs” on page 6

v “Runtime Functions For Use by OS/400 PASE Programs” on page 27

See also:

v OS/400 PASE for information about creating OS/400 PASE programs.

v “OS/400 PASE Runtime Libraries” on page 75 for information about OS/400 PASE interfaces that are

also supported on AIX.

v “OS/400 PASE Locales” on page 76 for information about OS/400 PASE locales.

v “OS/400 PASE Environment Variables” on page 85 for information about OS/400 PASE environment

variables.

v “OS/400 PASE Signal Handling” on page 88 for information about OS/400 PASE signals and how they

relate to OS/400 exception messages.

 Top | APIs by category

APIs

These are the APIs for this category.

OS/400 PASE Callable Program APIs

The callable program APIs run an OS/400(R) PASE program. They are:

v “QP2SHELL() and QP2SHELL2()—Run an OS/400 PASE Shell Program” on page 2 (Run an OS/400

PASE Shell Program) runs an OS/400 PASE program in the job that calls the API.

v “QP2TERM()—Run an OS/400 PASE Terminal Session” on page 5 (Run an OS/400 PASE Terminal

Session) runs an interactive terminal session that communicates with an OS/400 PASE program

(defaulting to the Korn shell) running in a batch job.

 Top | “OS/400 PASE APIs” | APIs by category

© Copyright IBM Corp. 1998, 2005 1

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

QP2SHELL() and QP2SHELL2()—Run an OS/400 PASE Shell Program

 Syntax

 #include <qp2shell.h>

 void QP2SHELL(const char *pathName,

 ...);

 void QP2SHELL2(const char *pathName,

 ...);

 Default Public Authority: *USE

 Threadsafe: No

Programs QP2SHELL and QP2SHELL2 run an OS/400 Portable Application Solutions Environment

(OS/400 PASE) program in the job where the API is called. They load the OS/400 PASE program and any

necessary shared libraries and then transfer control to the program. QP2SHELL runs in a new ILE

activation group, while QP2SHELL2 runs in the caller’s activation group. Control returns to the caller

when the OS/400 PASE program either exits, terminates due to a signal, or returns without exiting.

Parameters

pathName

(Input) Pointer to a null-terminated character string that identifies the stream file in the

Integrated File System that contains the OS/400 PASE program to run. The pathName string may

include an absolute or relative path qualifier in addition to the stream file name. Relative path

names are resolved using the current working directory.

 If the base name part of the pathName value (excluding any prefix path qualifier) begins with a

hyphen (-), QP2SHELL and QP2SHELL2 strip the hyphen when locating the bytestream file, but

pass the full string (with the hyphen) to the OS/400 PASE program as the program name.

Standard OS/400 PASE shell programs (including sh and ksh) run as login shells when called

with a hyphen as the first character of the program name. Login shells look for a profile file and

run it automatically when the shell starts.

argument strings

(Input) Optional pointers to null-terminated character strings that are passed to the OS/400 PASE

program as arguments. The system copies argument strings into OS/400 PASE memory and

converts them from the job default CCSID to the CCSID specified by ILE environment variable

QIBM_PASE_CCSID.

 Note: When calling QP2SHELL or QP2SHELL2 from CL, be sure to quote any argument string

that could be interpreted as a numeric value. CL converts unquoted numeric arguments to

decimal or floating-point format, which does not match the assumption made by these APIs and

OS/400 PASE programs that all arguments are null-terminated character strings.

Authorities

Object Referred to

Authority
Required

Each directory in the path to the OS/400 PASE program and shared libraries *X

OS/400 PASE program (not a shell script) in a local file system *X

OS/400 PASE program in a remote file system or shell script *RX

2 iSeries: OS/400 PASE APIs

Object Referred to

Authority
Required

OS/400 PASE shared library *R

Return Value

QP2SHELL and QP2SHELL2 return no function result. Escape messages are sent to report errors.

Error Messages

Some of the more common error messages sent by QP2SHELL and QP2SHELL2 are:

 Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB9C0 E Error loading program &1. See previous messages.

CPFB9C1 E System support for OS/400 Portable Application Solutions Environment not available.

CPFB9C2 E Hardware support for OS/400 Portable Application Solutions Environment not

available.

CPFB9C3 E OS/400 PASE CCSID and job default CCSID are not compatible.

CPFB9C5 E OS/400 PASE program name required by QP2SHELL.

CPFB9C6 E OS/400 PASE ended for signal &1, error code &2.

CPFB9C7 E OS/400 PASE already running in this job.

CPFB9C8 E File descriptors 0, 1, and 2 must be open to run the OS/400 PASE program.

Usage Notes

1. QP2SHELL and QP2SHELL2 provide callable program interfaces to ILE procedure Qp2RunPase. See

“Qp2RunPase()—Run an OS/400 PASE Program” on page 22 for details about running an OS/400

PASE program.

2. QP2SHELL and QP2SHELL2 set the ILE pthread cancel state and cancel type to default values

(PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED) before running the OS/400

PASE program. This is done to avoid unexpected behavior for the OS/400 PASE program if the job

changed ILE pthread attributes before calling the API.

3. QP2SHELL and QP2SHELL2 set up handlers for all ILE signals (that call Qp2SignalPase to post an

equivalent OS/400 PASE signal) while the OS/400 PASE program runs. QP2SHELL always restores

original ILE signal handlers before returning to the caller. QP2SHELL2 restores original ILE signal

handlers before returning if the OS/400 PASE program exits, but if the OS/400 PASE program returns

without exiting, original ILE signal handlers are not restored until the system destroys the activation

group that called QP2SHELL2.

4. To avoid unpredictable results, do not not change ILE environment variables

QIBM_USE_DESCRIPTOR_STDIO or QIBM_PASE_DESCRIPTOR_STDIO in a job in which an OS/400

PASE program is running.

5. QP2SHELL and QP2SHELL2 initialize OS/400 PASE environment variables with a modified copy of

the entire ILE environment. An OS/400 PASE environment variable is initialized for every ILE

environment variable, but the initial value of any OS/400 PASE variable (except those whose name

begins with ″PASE_″) can be overridden by the value of an ILE environment variable with a name

that concatenates the prefix PASE_ with the original variable name. This processing avoids some

interference between OS/400 PASE runtime and ILE runtime when they require different values for

the same environment variable (for example, LANG).

6. For a login shell (only), QP2SHELL and QP2SHELL2 set ILE environment variable PASE_SHELL to

the path name of the OS/400 PASE shell program.

7. QP2SHELL and QP2SHELL2 initialize any of the following ILE environment variables that are not

already set, with default values as shown:

OS/400 PASE APIs 3

HOME If HOME is not already set, QP2SHELL and QP2SHELL2 set it to the home directory

path specified in the user profile identified by the LOGIN variable. If the job is not

currently authorized to the LOGIN user profile, the HOME environment variable is set

to a null string.

LOGIN If LOGIN is not already set, QP2SHELL and QP2SHELL set it to the middle qualifier

of the job name. For an interactive job, this is the name of the user who did a signon

to start the job.

PASE_PATH (Default:″/QOpenSys/usr/bin:/usr/ccs/bin:/QOpenSys/usr/bin/X11:/usr/sbin:.:/usr/bin″)

Initial value for the OS/400 PASE PATH environment variable.

PASE_LANG and

QIBM_PASE_CCSID

Initial value for the OS/400 PASE LANG environment variable and what coded

character set identifier (CCSID) the OS/400 PASE program will use. QP2SHELL and

QP2SHELL2 set both these ILE environment variables if either or both is absent. The

default values are function of the current LANGID and CNTRYID attributes of the job,

but the system will use PASE_LANG=POSIX and QIBM_PASE_CCSID=819 if it does

not recognize the LANGID and CNTRYID pair. The OS/400 PASE LANG environment

variable controls the default locale for an OS/400 PASE program. See “OS/400 PASE

Locales” on page 76 to determine what locales are supported by OS/400 PASE.

PASE_LOCPATH (Default: ″/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat″) Initial value for

the OS/400 PASE LOCPATH environment variable.

PASE_LC__FASTMSG (Default: ″true″) Initial value for the OS/400 PASE LC__FASTMSG environment

variable.

PASE_TZ

(Default: based on the OS/400 job TIMZON attribute)

Initial value for the OS/400 PASE TZ environment variable. If no timezone information

is provided in environment variable TZ, the OS/400 PASE program sees UTC

(Universal Standard Time) as local time. You can set ILE environment variable

PASE_TZ at the system level to provide a default timezone other than the one

determined from the job TIMZON attribute. For example, this CL command sets the

default timezone to US Central time:

 ADDENVVAR ENVVAR(PASE_TZ) VALUE(’CST6CDT’) LEVEL(*SYS)

QIBM_IFS_OPEN_MAX (Default:

″66000″

) Maximum number of Integrated File System open file

descriptors desired in the job. QP2SHELL and QP2SHELL call the DosSetRelMaxFH

API to set the maximum number of file descriptors to the value in this ILE

environment variable, and updates the environment variable to reflect the actual limit

(in case the requested limit is not currently allowed). Any change to the maximum

number of file descriptors persists after the API returns.

OS/400 PASE programs assume the ability to open 65 534 files and the system

requires an open file for each OS/400 PASE executable it loads, so the default of

66 000 files accomodates a maximally large OS/400 PASE program with a fairly large

number of loaded executables.

Related Information

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

v “Qp2SignalPase()—Post an OS/400 PASE Signal” on page 26

v “QP2TERM()—Run an OS/400 PASE Terminal Session” on page 5

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

4 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

QP2TERM()—Run an OS/400 PASE Terminal Session

 Syntax

 #include <qp2term.h>

 void QP2TERM(...);

 Default Public Authority: *USE

 Threadsafe: No

The QP2TERM() program runs an interactive terminal session that starts a batch job to run an OS/400

Portable Application Solutions Environment (OS/400 PASE) program. This program uses the workstation

display in the interactive to present output and accept input for files stdin, stdout, and stderr in the batch

job.

Parameters

argument strings

(Input) Optional pointers to null-terminated character strings that specify the path name of the

OS/400 PASE program to run and any argument strings to pass to the program. If no parameters

are specified, QP2TERM runs the default OS/400 PASE shell as an interactive login shell. The

default OS/400 PASE shell is an implementation of the Korn shell, with path name

/QOpenSys/usr/bin/sh.

 Note: When calling QP2TERM from CL, be sure to quote any argument string that could be

interpreted as a numeric value. CL converts unquoted numeric arguments to decimal or

floating-point format, which does not match the assumption made by QP2TERM and OS/400

PASE programs that all arguments are null-terminated character strings.

Authorities

Object Referred to

Authority
Required

Each directory in the path to the OS/400 PASE program and shared libraries *X

OS/400 PASE program (not a shell script) in a local file system *X

OS/400 PASE program in a remote file system or shell script *RX

OS/400 PASE shared library *R

Return Value

QP2TERM returns no function result. Escape messages are sent to report errors.

Error Messages

 Message ID Error Message Text

CPFB9C4 E Error running OS/400 PASE terminal session, reason code &1, errno &2.

CPFB9C9 E Terminal session already in use.

CPFB9CA E Batch job ended in error.

OS/400 PASE APIs 5

Usage Notes

1. QP2TERM uses the Qp0zStartTerminal API to manage the interactive display and start a batch job.

The batch job copies most attributes of the interactive job and calls program QP2SHELL to run the

OS/400 PASE program. See “QP2SHELL() and QP2SHELL2()—Run an OS/400 PASE Shell Program”

on page 2 for details about running an OS/400 PASE shell program.

2. QP2TERM copies all ILE environment variables from the interactive job to the batch job before

starting the batch job, except the following ILE environment variables, which are set or replaced in the

batch job. These changes affect the batch job only. They do not modify the environment in the job that

called QP2TERM.

 COLUMNS If COLUMNS is not already set, QP2TERM sets it to the number of

columns available for program output on the interactive display.

ROWS If ROWS is not already set, QP2TERM sets it to the number of rows

available for program output on the interactive display.

QIBM_USE_DESCRIPTOR_STDIO=I QP2TERM sets QIBM_USE_DESCRIPTOR_STDIO to ensure that files stdin,

stdout, and stderr use Integrated File System descriptors 0, 1, and 2. The

terminal session manager attaches open pipes to these file descriptors in

the batch job.

QIBM_PASE_DESCRIPTOR_STDIO=T QP2TERM sets QIBM_PASE_DESCRIPTOR_STDIO to ensure that OS/400

PASE runtime does ASCII/EBCDIC text conversion for data that the

OS/400 PASE program reads or writes to files stdin, stdout, and stderr.

Related Information

v Qp0zStartTerminal()—Start a Terminal Session

v “QP2SHELL() and QP2SHELL2()—Run an OS/400 PASE Shell Program” on page 2

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE ILE Procedure APIs

The ILE procedure APIs run an OS/400(R) PASE program and allow ILE programs to communicate with

an OS/400 PASE program that is already running in the same job.

The OS/400 PASE ILE Procedure APIs are:

v “Qp2dlclose()—Close a Dynamically Loaded OS/400 PASE Module” on page 7 (Close a Dynamically

Loaded OS/400 PASE Module) closes and unloads an OS/400 PASE module previously opened by the

Qp2dlopen API (or the OS/400 PASE dlopen function).

v “Qp2CallPase()—Call an OS/400 PASE Procedure” on page 8 (Call an OS/400 PASE Procedure) calls a

procedure in an OS/400 PASE program that is already running in the job that calls the API.

v “Qp2dlerror()—Retrieve OS/400 PASE Dynamic Load Error Information” on page 12 (Retrieve OS/400

PASE Dynamic Load Error Information) returns a pointer to a string that provides error information for

the most recent dynamic load function (Qp2dlopen, Qp2dlsym, or Qp2dlclose API).

v “Qp2dlopen()—Dynamically Load an OS/400 PASE Module” on page 13 (Dynamically Load an

OS/400 PASE Module) dynamically loads an OS/400 PASE module by calling the OS/400 PASE

dlopen() function.

v “Qp2dlsym()—Find an Exported OS/400 PASE Symbol” on page 14 (Find an Exported OS/400 PASE

Symbol) finds an exported OS/400 PASE symbol by calling the OS/400 PASE dlsym() function.

v “Qp2EndPase()—End an OS/400 PASE Program” on page 16 (End an OS/400 PASE Program) ends any

OS/400 PASE program currently running in the job.

6 iSeries: OS/400 PASE APIs

startrml.htm
#TOP_OF_PAGE
aplist.htm

v “Qp2errnop()—Retrieve OS/400 PASE errno Pointer” on page 17 (Retrieve OS/400 PASE errno Pointer)

returns a pointer to the OS/400 PASE errno variable for the current thread.

v “Qp2free()—Free OS/400 PASE Heap Memory” on page 17 (Free OS/400 PASE Heap Memory) frees an

OS/400 PASE heap memory allocation by calling the OS/400 PASE free() function.

v “Qp2jobCCSID()—Retrieve Job CCSID for OS/400 PASE” on page 18 (Retrieve Job CCSID for OS/400

PASE) returns the job default CCSID from the last time the OS/400 PASE CCSID was set.

v “Qp2malloc()—Allocate OS/400 PASE Heap Memory” on page 19 (Allocate OS/400 PASE Heap

Memory) allocates memory from the OS/400 PASE heap by calling the OS/400 PASE malloc() function.

v “Qp2paseCCSID()—Retrieve OS/400 PASE CCSID” on page 20 (Retrieve OS/400 PASE CCSID) returns

the OS/400 PASE CCSID from the last time the OS/400 PASE CCSID was set.

v “Qp2ptrsize()—Retrieve OS/400 PASE Pointer Size” on page 21 (Retrieve OS/400 PASE Pointer Size)

returns the pointer size, in bytes, for the OS/400 Application Solutions Environment (OS/400 PASE)

program currently running in the job.

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22 (Run an OS/400 PASE Program) runs an

OS/400 PASE program in the job that calls the API.

v “Qp2SignalPase()—Post an OS/400 PASE Signal” on page 26 (Post an OS/400 PASE Signal) posts an

OS/400 PASE signal to an OS/400 PASE program that is already running in the job that calls the API.

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Qp2dlclose()—Close a Dynamically Loaded OS/400 PASE Module

 Syntax

 #include <qp2user.h>

 int Qp2dlclose(QP2_ptr64_t id);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2dlclose() closes and unloads an OS/400 PASE module previously opened by API Qp2dlopen (or the

OS/400 PASE dlopen function).

Parameters

id (Input) Specifies a value returned by API Qp2dlopen (or the OS/400 PASE dlopen function) that

specifies what module is closed and unloaded.

Authorities

None.

Return Value

The function result is zero for normal completion, or -1 with an error indicated in ILE errno or OS/400

PASE errno (if ILE errno is zero). You can also call API Qp2dlerror for more information about any error.

OS/400 PASE APIs 7

#TOP_OF_PAGE
aplist.htm

Usage Notes

1. This API can only be used in the same activation group that started OS/400 PASE in the job. This is

either the activation group that called API Qp2RunPase, or the default activation group in a job

started by the OS/400 PASE runtime function fork.

Related Information

v OS/400 PASE dlclose()—See AIX documentation

v “Qp2dlerror()—Retrieve OS/400 PASE Dynamic Load Error Information” on page 12

v “Qp2errnop()—Retrieve OS/400 PASE errno Pointer” on page 17

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Qp2CallPase()—Call an OS/400 PASE Procedure

 Syntax

 #include <qp2user.h>

 int Qp2CallPase(const void *target,

 const void *arglist,

 const QP2_arg_type_t *signature,

 QP2_result_type_t result_type,

 void *buf);

 int Qp2CallPase2(const void *target,

 const void *arglist,

 const QP2_arg_type_t *signature,

 QP2_result_type_t result_type,

 void *buf,

 short bufLenIn);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp2CallPase() and Qp2CallPase2 functions call a procedure in an OS/400 Portable Application

Solutions Environment (OS/400 PASE) program in a job that is already running the OS/400 PASE

program.

Parameters

target (Input) Pointer to a function descriptor for the procedure (in the OS/400 PASE program) to call.

The format and contents of a function descriptor are specified by the PowerPC Application

Binary Interface (ABI) for AIX. A function descriptor contains three OS/400 PASE addresses (not

MI pointers) that point to the executable instructions, table of contents (TOC), and environment

for the target procedure.

8 iSeries: OS/400 PASE APIs

http://www.ibm.com/servers/aix/library/
#TOP_OF_PAGE
aplist.htm

arglist (Input) Pointer to the argument list for the OS/400 PASE procedure. The format and contents of a

PASE argument list generally are specified by the PowerPC ABI for AIX. The specific argument

list structure for the OS/400 PASE procedure identified by the target parameter is determined by

the list of argument data types specified by the signature parameter.

signature

(Input) Pointer to an array of values that specify the sequence and type of arguments passed to

the OS/400 PASE procedure. Each element in the array is either a special value defined in header

file qp2user.h or a positive number that is the length in bytes of a structure or union argument

passed by value. The last value in the array must be QP2_ARG_END. Header file qp2user.h

defines the following constants for the data types supported as arguments for an OS/400 PASE

procedure:

 QP2_ARG_END (0) The end of the list of argument type values.

QP2_ARG_WORD (-1) A 4-byte signed or unsigned integer, or a structure or union no longer than four bytes.

This value is allowed only when calling a procedure in a 32-bit OS/400 PASE

program.

QP2_ARG_DWORD (-2) An 8-byte signed or unsigned integer, or a structure or union no longer than eight

bytes. This value is allowed only when calling a procedure in a 64-bit OS/400 PASE

program.

QP2_ARG_FLOAT32 (-3) A 4-byte floating point number.

QP2_ARG_FLOAT64 (-4) An 8-byte floating point number.

QP2_ARG_PTR32 (-5) A 4-byte pointer. The value in the arglist buffer is passed unchanged unless its

high-order bits (excluding the lower 16 bits) match the corresponding part of constant

QP2_ARG_PTR_TOSTACK (0x0fff0000). In that case, the arglist value is changed to the

memory address used for a copy of the buf area plus an offset in the lower 16 bits of

the arglist value, and the updated value is passed to the OS/400 PASE procedure.

QP2_ARG_PTR32 is allowed only when calling a procedure in a 32-bit OS/400 PASE

program.

QP2_ARG_PTR64 (-6) An 8-byte pointer. The value in the arglist buffer is passed unchanged unless its

high-order bits (excluding the lower 16 bits) match the corresponding part of constant

QP2_ARG_PTR_TOSTACK (0x000000000fff0000). In that case, the arglist value is

changed to the memory address used for a copy of the buf area plus an offset in the

lower 16 bits of the arglist value, and the updated value is passed to the OS/400 PASE

procedure. QP2_ARG_PTR64 is allowed only when calling a procedure in a 64-bit

OS/400 PASE program.

result_type

(Input) The data type of the function result returned by the OS/400 PASE procedure. Result_type

is either a special value defined in header file qp2user.h or a positive number that is the length in

bytes of by-address result data copied from the OS/400 PASE stack to the buf area after the

OS/400 PASE procedure returns. Header file qp2user.h defines the following constants for

function result data types:

 QP2_RESULT_VOID (0) No function result returned.

QP2_RESULT_WORD (-1) A 4-byte signed or unsigned integer, or a structure or

union no longer than four bytes. This value is allowed

only when calling a procedure in a 32-bit OS/400 PASE

program.

QP2_RESULT_DWORD (-2) An 8-byte signed or unsigned integer, or a structure or

union no longer than eight bytes returned by a procedure

in a 64-bit OS/400 PASE program.

QP2_RESULT_FLOAT64 (-4) An 8-byte floating point number.

OS/400 PASE APIs 9

QP2_RESULT_PTR32 (-5) A 4-byte pointer. A pointer result from the OS/400 PASE

procedure is returned unchanged. This value is allowed

only when calling a procedure in a 32-bit OS/400 PASE

program.

QP2_RESULT_PTR64 (-6) An 8-byte pointer. A pointer result from the OS/400 PASE

procedure is returned unchanged. This value is allowed

only when calling a procedure in a 64-bit OS/400 PASE

program.

buf (Input/Output) Pointer to a buffer that contains by-address argument data and the function

result. buf is ignored if result_type is QP2_RESULT_VOID and bufLenIn is either zero or omitted

(for Qp2CallPase).

bufLenIn

(Input) Length of by-address argument input data. A positive number specifies the number of

bytes copied from the buf area to the OS/400 PASE stack before the OS/400 PASE procedure is

called.

Authorities

None.

Return Value

The function result is an integer that indicates whether the OS/400 PASE function was called successfully.

Header file qp2user.h defines the following constants for the return code from Qp2CallPase and

Qp2CallPase2:

 QP2CALLPASE_NORMAL (0) The OS/400 PASE procedure ran to completion and its function result (if

any) was stored in the location identified by the buf parameter.

QP2CALLPASE_RESULT_ERROR (1) The OS/400 PASE procedure ran to completion, but its function result

could not be stored at the location identified by the buf parameter. buf

may be a null pointer value, or the space addressed by buf may be

damaged or destroyed.

QP2CALLPASE_ENVIRON_ERROR (2) The operation is not allowed because no OS/400 PASE program is running

in the job, or the thread that called Qp2CallPase or Qp2CallPase2 was

neither the initial OS/400 PASE thread nor a thread created using OS/400

PASE pthread interfaces.

QP2CALLPASE_ARG_ERROR (4) One or more values in the signature array are not valid.

QP2CALLPASE_TERMINATING (6) The OS/400 PASE program is terminating. No function result was

returned. The OS/400 PASE program may have run the exit function, or a

signal might have caused the program to terminate.

QP2CALLPASE_RETURN_NOEXIT (7) The OS/400 PASE program returned without exiting by calling the OS/400

PASE _RETURN function. No function result was returned.

Usage Notes

 1. Qp2CallPase and Qp2CallPase2 are supported only when an OS/400 PASE program is currently

running in the job. This means that Qp2RunPase must be running actively in the job, or the job must

be a fork child process.

 2. You can run Qp2CallPase and Qp2CallPase2 only in the initial thread that started the OS/400 PASE

program or in a thread created using OS/400 PASE pthread interfaces, unless OS/400 PASE

environment variable PASE_THREAD_ATTACH was set to Y when a thread-enabled OS/400 PASE

program was started.

 3. Once an ILE thread has attached to OS/400 PASE (by calling an OS/400 PASE procedure), that

thread is subject to asynchronous interruption for OS/400 PASE functions such as signal handling

10 iSeries: OS/400 PASE APIs

and thread cancellation. In particular, the thread will be canceled as part of ending the OS/400 PASE

program (when exit runs or OS/400 PASE processing terminates for a signal).

 4. An OS/400 PASE procedure called by Qp2CallPase or Qp2CallPase2 must return to its caller.

Unpredictable results occur if the OS/400 PASE procedure attempts to longjmp to an older call or if

it performs an operation that terminates the thread or process (such as calling the exit function). If a

signal handler is on the OS/400 PASE stack when Qp2CallPase or Qp2CallPase2 is called, the called

OS/400 PASE procedure must also honor restrictions on runtime functions allowed in signal

handlers (see AIX signal handling documentation for details).

 5. A pointer to any function in an OS/400 PASE program is really a pointer to a function descriptor for

the procedure. An OS/400 PASE program can easily provide a function descriptor to ILE code by

passing an OS/400 PASE function pointer value converted to an ILE memory address. The

conversion can be done using the _SETSPP function or the ARG_MEMPTR argument type on the

_ILECALLX or _ILECALL function.

 6. Qp2CallPase and Qp2CallPase2 support arguments and results passed by-address through the use of

QP2_ARG_PTR32 or QP2_ARG_PTR64 values in the signature array and positive numbers for the

result_type and/or bufLenIn arguments.

 7. If the buf area is 16-byte aligned, any tagged ILE pointers are preserved in by-address (input)

argument data copied from the buf area to OS/400 PASE memory, and in by-address result data

copied from OS/400 PASE memory to the buf area.

 8. A structure or union function result returned by-value that is short enough to fit into a register must

be handled as QP2_RESULT_WORD for a 32-bit OS/400 PASE program or as

QP2_RESULT_DWORD for a 64-bit OS/400 PASE program. Longer structure or union function

results returned by-value are actually returned by-address through a buffer pointer passed as the

first (hidden) argument to the OS/400 PASE procedure.

 9. You may need to limit result_type and bufLenIn to avoid overrunning the end of the OS/400 PASE

stack. Arguments and results that are too large for the stack can be passed by-address using

argument pointers to OS/400 PASE heap storage.

10. The PowerPC ABI for AIX requires 4-byte alignment for each argument passed to a procedure in a

32-bit program, and 8-byte alignment for each argument passed to a procedure in a 64-bit program.

Qp2CallPase and Qp2CallPase2 assume the caller provides an arglist data structure that provides

this alignment, including any necessary pad bytes following a structure or union argument and

following a QP2_ARG_FLOAT32 argument passed to a 64-bit OS/400 PASE program. The arglist

structure also needs to store any 64-bit integer or floating point argument on a 4-byte boundary

when the target procedure is in a 32-bit OS/400 PASE program (rather than the 8-byte boundary

used as the default for these types in ILE C and C++ compilers).

Related Information

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22—Run an OS/400 PASE Program

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 11

#TOP_OF_PAGE
aplist.htm

Qp2dlerror()—Retrieve OS/400 PASE Dynamic Load Error Information

 Syntax

 #include <qp2user.h>

 char* Qp2dlerror(void);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: No

Qp2dlerror() returns a pointer to a string that provides error information for the most recent dynamic

load function (API Qp2dlopen, Qp2dlsym, or Qp2dlclose).

Parameters

None.

Authorities

None.

Return Value

The function result is a pointer to a null-terminated character string (in the job default CCSID). A null

pointer is returned if no error occurred during the most recent dynamic load operation. Once Qp2dlerror

is called, subsequent calls without an intervening dynamic load error also return a null pointer.

The ILE errno is set and a null pointer is returned for any internal processing error (such as an error

converting the string from the OS/400 PASE CCSID to the job default CCSID).

Usage Notes

1. This API can only be used in the same activation group that started OS/400 PASE in the job. This is

either the activation group that called API Qp2RunPase, or the default activation group in a job

started by the OS/400 PASE runtime function fork.

2. Qp2dlerror is not threadsafe because it may call an OS/400 PASE function that is not threadsafe

(dlerror) and uses a buffer in static storage for the error string that is also updated by other dynamic

load functions (APIs Qp2dlopen, Qp2dlsym, and Qp2dlclose). Applications may need to serialize use

of dynamic load functions and copy the error information string to preserve its contents.

Related Information

v OS/400 PASE dlerror()—See AIX documentation

v “Qp2errnop()—Retrieve OS/400 PASE errno Pointer” on page 17

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

12 iSeries: OS/400 PASE APIs

http://www.ibm.com/servers/aix/library/
#TOP_OF_PAGE
aplist.htm

Qp2dlopen()—Dynamically Load an OS/400 PASE Module

 Syntax

 #include <qp2user.h>

 QP2_ptr64_t Qp2dlopen(const char *path,

 int flags,

 int ccsid);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2dlopen() dynamically loads an OS/400 PASE module by calling the OS/400 PASE dlopen() function.

Parameters

path (Input) A pointer to a null-terminated string that identifies the stream file in the Integrated File

System that contains the OS/400 PASE module to load. This API copies the input path string and

converts the copy from the CCSID specified by the ccsid argument to the current OS/400 PASE

CCSID (required by the OS/400 PASE dlopen function).

 If the input path pointer is null, the function result is a value for the main application that lets

you find symbols in the OS/400 PASE process global name space, which includes all symbols

exported by the OS/400 PASE program and shared executables except those loaded by OS/400

PASE dlopen using option RTLD_LOCAL.

flags (Input) Flags passed to the OS/400 PASE dlopen function to control its behavior. These constants,

declared in qp2user.h, match constants in AIX header dlfcn.h (without the leading prefix, QP2_)

and can be ORed together for the flags argument:

 QP2_RTLD_NOW

(0x00000002)

Load all dependents of the module being loaded and resolve all symbols. Either

QP2_RTLD_NOW or QP2_RTLD_LAZY must be specified.

QP2_RTLD_LAZY

(0x00000004)

Allow the system to defer loading dependent modules. Either QP2_RTLD_NOW or

QP2_RTLD_LAZY must be specified.

QP2_RTLD_GLOBAL

(0x00010000)

Load the module into the global name space. Exported symbols in the module will be

visible in the main application and will be used when resolving symbols used by other

OS/400 PASE dlopen calls.

QP2_RTLD_LOCAL

(0x00080000)

Load the module into a local name space. This option is the default when neither

QP2_RTLD_GLOBAL nor QP2_RTLD_LOCAL is specified. It prevents symbols in the

module being loaded from being used when resolving symbols used by other dlopen

calls.

QP2_RTLD_MEMBER

(0x00040000)

Specifies that the path argument string may contain the name of a member in an

archive (shared library).

QP2_RTLD_NOAUTODEFER

(0x00020000)

Prevent deferred imports in the module being loaded from being automatically

resolved by subsequent loads.

ccsid (Input) Specifies the CCSID for the input path argument string. Zero means the path is in the

(EBCDIC) job default CCSID.

OS/400 PASE APIs 13

Authorities

Object Referred to

Authority
Required

Each directory in the path to the OS/400 PASE module *X

OS/400 PASE module *R

Return Value

Sucessful completion returns a non-zero function result that can be used to call APIs Qp2dlsym and

Qp2dlclose (and also OS/400 PASE functions dlsym and dlclose). Resources allocated for the function

result are not freed until the OS/400 PASE program ends or the value is passed to API Qp2dlclose (or

OS/400 PASE dlclose).

A zero function result indicates an error. The caller can check ILE errno or OS/400 PASE errno (if ILE

errno is zero), or call the Qp2dlerror API for more information about the error.

Usage Notes

1. This API can only be used in the same activation group that started OS/400 PASE in the job. This is

either the activation group that called API Qp2RunPase, or the default activation group in a job

started by the OS/400 PASE runtime function fork.

Related Information

v OS/400 PASE dlopen()—See AIX documentation

v “Qp2dlerror()—Retrieve OS/400 PASE Dynamic Load Error Information” on page 12

v “Qp2errnop()—Retrieve OS/400 PASE errno Pointer” on page 17

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Qp2dlsym()—Find an Exported OS/400 PASE Symbol

 Syntax

 #include <qp2user.h>

 void* Qp2dlsym(QP2_ptr64_t id

 const char *name,

 int ccsid,

 QP2_ptr64_t *sym_pase);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

14 iSeries: OS/400 PASE APIs

http://www.ibm.com/servers/aix/library/
#TOP_OF_PAGE
aplist.htm

Qp2dlsym() finds an exported OS/400 PASE symbol by calling the OS/400 PASE dlsym() function.

Parameters

id (Input) Specifies a value returned by API Qp2dlopen (or the OS/400 PASE dlopen function) that

controls what modules are searched for the exported symbol.

name (Input) A pointer to a null-terminated string that contains the symbol name. This API copies the

input name string and converts the copy from the CCSID specified by the ccsid argument to the

current OS/400 PASE CCSID (required by the OS/400 PASE dlsym function).

ccsid (Input) Specifies the CCSID for the input name argument string. Zero means the symbol name is

in the (EBCDIC) job default CCSID.

sym_pase

(Input) A pointer to a buffer, used to return the OS/400 PASE address of the exported symbol.

The return value is always 64-bits, even for a 32-bit OS/400 PASE program. sym_pase can be null

if the caller does not need the OS/400 PASE address of the symbol.

Authorities

None.

Return Value

The function result is a pointer to the specified symbol, or a null pointer if the symbol could not be

resolved. A buffer addressed by the sym_pase argument is unchanged if the symbol could not be

resolved. The caller can check ILE errno or OS/400 PASE errno (if ILE errno is zero), or call the

Qp2dlerror API for more information about any error.

Usage Notes

1. This API can only be used in the same activation group that started OS/400 PASE in the job. This is

either the activation group that called API Qp2RunPase, or the default activation group in a job

started by the OS/400 PASE runtime function fork.

Related Information

v OS/400 PASE dlsym()—See AIX documentation

v “Qp2dlerror()—Retrieve OS/400 PASE Dynamic Load Error Information” on page 12

v “Qp2errnop()—Retrieve OS/400 PASE errno Pointer” on page 17

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 15

http://www.ibm.com/servers/aix/library/
#TOP_OF_PAGE
aplist.htm

Qp2EndPase()—End an OS/400 PASE Program

 Syntax

 #include <qp2user.h>

 int Qp2EndPase(void);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: No

The Qp2EndPase() function ends any OS/400 PASE program currently running in the job.

Parameters

None.

Authorities

None.

Return Value

The function result is nonzero if an error is detected attempting to end the OS/400 PASE program.

Usage Notes

1. Qp2EndPase is normally used to end an OS/400 PASE program that ran the _RETURN OS/400 PASE

runtime function (to return without exiting). Such a program remains active (even if it exits or

terminates due to an OS/400 PASE signal) until either Qp2EndPase is called or the ILE activation

group that called the Qp2RunPase API exits. OS/400 PASE programs that do not use _RETURN are

ended automatically before control returns from the Qp2RunPase API.

2. Qp2EndPase returns without error when no OS/400 PASE program is running in the job.

3. Undefined behavior results if Qp2EndPase is called while the Qp2RunPase API is running (in the

same job), or if the activation group that ran the Qp2RunPase API attempts to use the OS/400 PASE

program (without restarting it) after Qp2EndPase is called from a different activation group.

Related Information

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

v “_RETURN()—Return Without Exiting OS/400 PASE” on page 65

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

16 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

Qp2errnop()—Retrieve OS/400 PASE errno Pointer

 Syntax

 #include <qp2user.h>

 int* Qp2errnop(void);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2errnop() returns a pointer to the OS/400 PASE errno variable for the current thread.

Parameters

None.

Authorities

None.

Return Value

The function result is a pointer to the OS/400 PASE errno variable for the current thread, or a null

pointer if errno location is not available (such as when no OS/400 PASE program is running in the job).

Usage Notes

1. This API can only be used in the same activation group that started OS/400 PASE in the job. This is

either the activation group that called API Qp2RunPase, or the default activation group in a job

started by the OS/400 PASE runtime function fork.

Related Information

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Qp2free()—Free OS/400 PASE Heap Memory

 Syntax

 #include <qp2user.h>

 int Qp2free(void *mem);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

OS/400 PASE APIs 17

#TOP_OF_PAGE
aplist.htm

Qp2free() frees an OS/400 PASE heap memory allocation by calling the OS/400 PASE free() function.

Parameters

mem (Input) A pointer to the start of the OS/400 PASE memory allocation to be freed.

Authorities

None.

Return Value

The function result is zero for normal completion, or -1 with an error indicated in ILE errno that is

ususally one of the following:

 EPERM An error occurred attempting to call an OS/400 PASE function.

ETERM OS/400 PASE is terminating.

Usage Notes

1. This API can only be used in the same activation group that started OS/400 PASE in the job. This is

either the activation group that called API Qp2RunPase, or the default activation group in a job

started by the OS/400 PASE runtime function fork.

Related Information

v OS/400 PASE free()—See AIX documentation

v “Qp2errnop()—Retrieve OS/400 PASE errno Pointer” on page 17

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Qp2jobCCSID()—Retrieve Job CCSID for OS/400 PASE

 Syntax

 #include <qp2user.h> /* for ILE programs */

 #include <as400_protos.h> /* for OS/400 PASE programs */

 int Qp2jobCCSID(void);

 Service Program Name: QP2USER (for ILE programs)

 OS/400 PASE Library: libc.a (for OS/400 PASE programs)

 Default Public Authority: *USE

 Threadsafe: Yes

18 iSeries: OS/400 PASE APIs

http://www.ibm.com/servers/aix/library/
#TOP_OF_PAGE
aplist.htm

Note: This function can be used in either an ILE program or an OS/400 PASE program. See OS/400 PASE

for more information about creating OS/400 PASE programs.

Qp2jobCCSID() returns the job default CCSID (coded character set identifier) from the last time the

OS/400 PASE CCSID was set. The OS/400 PASE CCSID is set when an OS/400 PASE program starts, and

can be changed by the OS/400 PASE runtime function _SETCCSID.

Parameters

None.

Authorities

None.

Return Value

The function result is a coded character set identifier (CCSID), or 0 if OS/400 PASE CCSID information is

not available (such as when no OS/400 PASE program is running in the job).

Usage Notes

1. This API can only be used in the same activation group that started OS/400 PASE in the job. This is

either the activation group that called API Qp2RunPase, or the default activation group in a job

started by the OS/400 PASE runtime function fork.

Related Information

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

v “Qp2paseCCSID()—Retrieve OS/400 PASE CCSID” on page 20

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Qp2malloc()—Allocate OS/400 PASE Heap Memory

 Syntax

 #include <qp2user.h>

 void* Qp2malloc(QP2_dword_t size,

 QP2_ptr64_t *mem_pase);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2malloc() allocates memory from the OS/400 PASE heap by calling the OS/400 PASE malloc()

function.

OS/400 PASE APIs 19

#TOP_OF_PAGE
aplist.htm

Parameters

size (Input) The size, in bytes, of the desired memory allocation.

mem_pase

(Input) A pointer to a buffer, used to return the OS/400 PASE address of the allocated memory.

The return value is always 64-bits, even for a 32-bit OS/400 PASE program. mem_pase can be

null if the caller does not need the OS/400 PASE address of the memory allocation.

Authorities

None.

Return Value

The function result is a pointer to the OS/400 PASE heap memory allocation, or a null pointer if no

memory was allocated. A buffer addressed by the mem_pase argument is unchanged if no memory was

allocated.

Usage Notes

1. This API can only be used in the same activation group that started OS/400 PASE in the job. This is

either the activation group that called API Qp2RunPase, or the default activation group in a job

started by the OS/400 PASE runtime function fork.

Related Information

v OS/400 PASE malloc()—See AIX documentation

v “Qp2errnop()—Retrieve OS/400 PASE errno Pointer” on page 17

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Qp2paseCCSID()—Retrieve OS/400 PASE CCSID

 Syntax

 #include <qp2user.h> /* for ILE programs */

 #include <as400_protos.h> /* for OS/400 PASE programs */

 int Qp2paseCCSID(void);

 Service Program Name: QP2USER (for ILE programs)

 OS/400 PASE Library: libc.a (for OS/400 PASE programs)

 Default Public Authority: *USE

 Threadsafe: Yes

20 iSeries: OS/400 PASE APIs

http://www.ibm.com/servers/aix/library/
#TOP_OF_PAGE
aplist.htm

Note: This function can be used in either an ILE program or an OS/400 PASE program. See OS/400 PASE

for more information about creating OS/400 PASE programs.

Qp2paseCCSID() returns the OS/400 PASE CCSID (coded character set identifier) from the last time the

OS/400 PASE CCSID was set. The OS/400 PASE CCSID is set when an OS/400 PASE program starts, and

can be changed by the OS/400 PASE runtime function _SETCCSID.

Parameters

None.

Authorities

None.

Return Value

The function result is a coded character set identifier (CCSID), or 0 if OS/400 PASE CCSID information is

not available (such as when no OS/400 PASE program is running in the job).

Usage Notes

1. This API can only be used in the same activation group that started OS/400 PASE in the job. This is

either the activation group that called API Qp2RunPase, or the default activation group in a job

started by the OS/400 PASE runtime function fork.

Related Information

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

v “Qp2jobCCSID()—Retrieve Job CCSID for OS/400 PASE” on page 18

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Qp2ptrsize()—Retrieve OS/400 PASE Pointer Size

 Syntax

 #include <qp2user.h>

 size_t Qp2ptrsize(void);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2ptrsize() returns the pointer size, in bytes, for the OS/400 Portable Application Solutions

Environment (OS/400 PASE) program currently running in the job.

Parameters

None.

OS/400 PASE APIs 21

#TOP_OF_PAGE
aplist.htm

Authorities

None.

Return Value

The function result is 4 for a 32-bit program, or 8 for a 64-bit program. The result is zero if OS/400 PASE

pointer size is not available (such as when no OS/400 PASE program is running in the job).

Usage Notes

1. This API can only be used in the same activation group that started OS/400 PASE in the job. This is

either the activation group that called API Qp2RunPase, or the default activation group in a job

started by the OS/400 PASE runtime function fork.

Related Information

v “Qp2RunPase()—Run an OS/400 PASE Program”

API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Qp2RunPase()—Run an OS/400 PASE Program

 Syntax

 #include <qp2user.h>

 int Qp2RunPase(const char *pathName,

 const char *symbolName,

 const void *symbolData,

 unsigned int symbolDataLen,

 int ccsid,

 const char *const *argv,

 const char *const *envp);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: No

The Qp2RunPase() function runs an OS/400 Portable Application Solutions Environment (OS/400 PASE)

program in the job where the API is called. It loads the OS/400 PASE program and any necessary shared

libraries and then transfers control to the program. Control returns to the caller when the OS/400 PASE

program exits, terminates due to a signal, or returns without exiting.

Parameters

pathName

(Input) Pointer to a null-terminated character string that identifies the stream file in the

Integrated File System that contains the OS/400 PASE program to run. The pathName string may

include an absolute or relative path qualifier in addition to the stream file name. Relative path

names are resolved using the current working directory.

22 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

symbolName

(Input)

This argument must be a null pointer.

symbolData

(Input) This argument is ignored.

symbolDataLen

(Input) This argument is ignored.

ccsid (Input) The coded character set identifier (CCSID) initially used by the OS/400 PASE program.

ccsid must specify a single-byte encoding (normally an ASCII CCSID) that OS/400 can convert to

and from the job default CCSID, or a value of 1208 to indicate that the OS/400 PASE program

uses UTF-8 encoding.

 The system uses ccsid to set the CCSID of any bytestream file created by the OS/400 PASE

program, and also to control character encoding conversions done for OS/400 PASE runtime

interfaces that use OS/400 services.

argv (Input) Pointer to an array of pointers to null-terminated character strings that are passed as

arguments to the OS/400 PASE program. The last element in the array must be a null pointer. An

error is reported if the argv parameter pointer is null.

 The system copies argument strings into OS/400 PASE memory and converts them from the job

default CCSID to the CCSID specified by the ccsid parameter. By convention, the first argument

string passed to an OS/400 PASE program should be the same as the pathName string.

envp (Input) Pointer to an array of pointers to null-terminated character strings that are passed as

environment variables to the OS/400 PASE program. The last element in the array must be a null

pointer. envp can be a null pointer if no environment variables need to be initialized for the

OS/400 PASE program.

 The system copies environment variable strings into OS/400 PASE memory and converts them

from the job default CCSID to the CCSID specified by the ccsid parameter. By convension,

environment variable strings take the form ″NAME=value″.

Authorities

Object Referred to

Authority
Required

Each directory in the path to the OS/400 PASE program and shared libraries *X

OS/400 PASE program (not a shell script) in a local file system *X

OS/400 PASE program in a remote file system or shell script *RX

OS/400 PASE shared library *R

Return Value

The function result may be one of these special values:

 QP2RUNPASE_ERROR (-1) An internal error occurred during Qp2RunPase processing.

QP2RUNPASE_RETURN_NOEXIT (-2) The OS/400 PASE program returned without exiting (by calling the

OS/400 PASE _RETURN function).

If the result is not one of the special values above, it is a value that contains status information about

how the OS/400 PASE program ended, in the same format as the stat_val parameter for the ILE waitpid

function. You can use these macros in file <sys/wait.h> to interpret such a result:

OS/400 PASE APIs 23

WIFEXITED(stat_val) Evaluates to a nonzero value if OS/400 PASE program ended normally.

WEXITSTATUS(stat_val) If the value of the WIFEXITED(stat_val) is nonzero, evaluates to the low-order 8 bits of

the value the OS/400 PASE program specified as the argument to exit or the function

result returned by main.

WIFSIGNALED(stat_val) Evaluates to a nonzero value if OS/400 PASE program ended because of the receipt of

a terminating signal that was not caught by the process.

WTERMSIG(stat_val) If the value of WIFSIGNALED(stat_val) is nonzero, evaluates to the number of the

OS/400 PASE signal that caused the program to end. OS/400 PASE programs use the

same signal numbers as AIX (which differ from ILE signal numbers).

Error Messages

 Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB9C0 E Error loading program &1. See previous messages.

CPFB9C1 E System support for OS/400 Portable Application Solutions Environment not available.

CPFB9C2 E Hardware support for OS/400 Portable Application Solutions Environment not

available.

CPFB9C3 E OS/400 PASE CCSID and job default CCSID are incompatible.

CPFB9C7 E OS/400 PASE already running in this job.

CPFB9C8 E File descriptors 0, 1, and 2 must be open to run the OS/400 PASE program.

CPFB9CB E Qp2RunPase second argument must be a null pointer.

Usage Notes

 1. Qp2RunPase works like the AIX execve function, including the ability to run shell scripts and the

rules for resolving shared libraries (which may include using OS/400 PASE environment variable

LIBPATH).

 2. If an absolute path (starting with ″/″) is specified for the pathName string or in the first line of a

shell script identified by pathName and that path cannot be opened or is not a regular bytestream

file, the system generally searches the /QOpenSys file system for the file. See environment variable

PASE_EXEC_QOPENSYS in “OS/400 PASE Environment Variables” on page 85 for more

information.

 3. Qp2RunPase cannot run an OS/400 PASE program or shared library stored in a file system that is

not threadsafe in a job that is multithread capable. Any job started by the OS/400 PASE fork

function is multi-thread capable.

 4. You can set these ILE environment variables before calling Qp2RunPase to control the OS/400 PASE

operation:

 QIBM_USE_DESCRIPTOR_STDIO When this ILE environment variable is set to Y or I, both OS/400 PASE

runtime and ILE C runtime use Integrated File System file descriptors 0, 1,

and 2 for stdin, stdout, and stderr. Otherwise, OS/400 PASE file descriptors

0, 1, and 2 are mapped to ILE C runtime files stdin, stdout, and stderr

(which may not use any Integrated File System file descriptors).

OS/400 PASE and ILE generally use different descriptor numbers for the

same open file, but when QIBM_USE_DESCRIPTOR_STDIO is set to Y or I,

any operation against OS/400 PASE file descriptors 0, 1, or 2 is also done

for the same Integrated File System file descriptor number so OS/400 PASE

and ILE C use the same files for stdin, stdout, and stderr.

24 iSeries: OS/400 PASE APIs

QIBM_PASE_DESCRIPTOR_STDIO This ILE environment variable controls ASCII/EBCDIC conversion for data

read or written through OS/400 PASE files stdin, stdout, and stderr to

Integrated File System file descriptors 0, 1, and 2. ASCII/EBCDIC

conversion is always done (and this variable is ignored) unless

QIBM_USE_DESCRIPTOR_STDIO is set to either Y or I. If

QIBM_PASE_DESCRIPTOR_STDIO is set to B, the PASE program processes

binary data (without ASCII/EBCDIC conversion). Otherwise,

ASCII/EBCDIC conversion is done for any data read from or written to

OS/400 PASE file descriptors 0, 1, or 2.

QIBM_PASE_FLUSH_STDIO This ILE environment variable controls whether OS/400 PASE runtime

flushes every write to a standard output stream attached to a Data

Management file (such as a spooled printer file) or to the Dynamic Screen

Manager in an interactive job. QIBM_PASE_FLUSH_STDIO must be set

before starting OS/400 PASE, and only applies when OS/400 PASE is NOT

using IFS descriptors for standard I/O (QIBM_USE_DESCRIPTOR_STDIO

is not set). It is usually only needed for interactive programs that require

immediate display of output that does not end with newline. These values

are supported:

Y flush both stdout and stderr

1 flush only stdout (OS/400 PASE descriptor 1)

2 flush only stderr (OS/400 PASE descriptor 2)

QIBM_PASE_USE_PRESTART_JOBS When this ILE environment variable is set to Y, OS/400 PASE runtime uses

prestarted jobs for child processes created by fork and for any job started

by the systemCL OS/400 PASE runtime function (to run a CL command).

You should add prestarted job entries (ADDPJE command) for programs

QP0ZSPWT (used by fork) and QP0ZSPWP (used by systemCL) to any

subsystem description that will run jobs that use this support.

 5. OS/400 PASE environment variables are independent of ILE environment variables. See “OS/400

PASE Environment Variables” on page 85 for more information, including OS/400 PASE

environment variables you can set to control runtime behaviors that differ from AIX.

 6. The ccsid parameter provides the initial OS/400 PASE CCSID value, but the OS/400 PASE program

can use the _SETCCSID function to change the OS/400 PASE CCSID or to rebind to a change in the

job default CCSID. The OS/400 PASE CCSID should generally be the CCSID equivalent of the code

set for the current locale. See “OS/400 PASE Locales” on page 76 to determine what locales are

supported by OS/400 PASE.

 7. You may want to increase the number of file descriptors in the job by calling DosSetRelMaxFH

before you call Qp2RunPase. By default, OS/400 jobs support only 200 open file descriptors, while

OS/400 PASE programs generally expect to be able to open 32 767 file descriptors, and the system

requires file descriptors to open bytestream files that contain the OS/400 PASE program and any

shared libraries it uses.

 8. You may want to establish Qp2SignalPase as the handler for any ILE signal that needs to be visible

to the OS/400 PASE program. For example, system support for Sockets (used by OS/400 PASE

runtime) only sends SIGIO and SIGURG as ILE signals, so ILE signal handling must be set up before

calling an OS/400 PASE program that relies on SIGIO or SIGURG as OS/400 PASE signals. OS/400

PASE runtime automatically establishes Qp2SignalPase as the handler for every ILE signal in a fork

child process.

 9. You may want to call ILE interfaces pthread_setcancelstate and pthread_setcanceltype to set pthread

cancel state and cancel type before calling Qp2RunPase in a process that did prior pthread work.

OS/400 PASE pthreads use ILE pthreads and Qp2RunPase assumes that ILE pthread cancel state and

cancel type are set to defaults (PTHREAD_CANCEL_ENABLE and

PTHREAD_CANCEL_DEFERRED). The state of these attributes when a program ends is whatever

value was last set by either ILE or OS/400 PASE code.

10.

Time-of-day information in an OS/400 PASE program depends on the value of OS/400 PASE

environment variable TZ, which provides information about timezone name and offset from UTC

OS/400 PASE APIs 25

(Universal Coorodinated Time). For example, the correct TZ setting for Central Time in the USA is

TZ=CST6CDT. See AIX documentation for more information about environment varble TZ.

11. Any credentials changes (user, group, or group list changes) made by an OS/400 PASE program are

generally persistent in the job. The job (thread) credentials before and after a call to Qp2RunPase

may not be the same if the OS/400 PASE program calls any of the setuid or setgid family of

interfaces. However, the system saves credentials before running any OS/400 PASE program with the

S_ISUID or S_ISGID attribute, and automatically restores the saved credentials before returning to

the caller of Qp2RunPase.

12. Character conversions controlled by the ccsid parameter only handle the single-byte component of

an EBCDIC-mixed CCSID (for the job default CCSID). This restricts the OS/400 PASE program name

specified by the pathName parameter, argument strings passed through the argv parameter, and

environment variables passed through the envp parameter to single-byte characters.

13. If an OS/400 PASE program needs to use DBCS characters for OS/400 PASE runtime functions such

as file system interfaces, it must run with the OS/400 PASE CCSID (ccsid parameter) set to 1208

because OS/400 PASE runtime provides complete support for DBCS characters using UTF-8

encoding only.

14.

Older versions of Qp2RunPase used symbolName, symbolData, and symbolDataLen to pass inputs

other than character string arguments and environment variables to the OS/400 PASE program. An

OS/400 PASE program can retrieve any inputs that cannot be expressed as null-terminated strings

(such as tagged pointers) by calling ILE or OPM code (using _ILECALL or _PGMCALL) with

by-address arguments.

Related Information

v The <sys/wait.h> file (see Header Files for UNIX-Type Functions)

v DosSetRelMaxFH()—Change Maximum Number of File Descriptors

v pthread_setcancelstate()—Set Cancel State

v pthread_setcanceltype()—Set Cancel Type

v “QP2SHELL() and QP2SHELL2()—Run an OS/400 PASE Shell Program” on page 2

v “QP2TERM()—Run an OS/400 PASE Terminal Session” on page 5

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Qp2SignalPase()—Post an OS/400 PASE Signal

 Syntax

 #include <qp2user.h>

 int Qp2SignalPase(int signo);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

26 iSeries: OS/400 PASE APIs

unix13.htm
dossrmfh.htm
users_44.htm
users_45.htm
#TOP_OF_PAGE
aplist.htm

The Qp2SignalPase() function posts an OS/400 Portable Application Solutions Environment (OS/400

PASE) signal to an OS/400 PASE program that is already running in the job.

Parameters

signo (Input) Signal number to post. A positive value is an ILE signal number, which causes the system

to post a corresponding OS/400 PASE signal. ILE and OS/400 PASE signals correspond if they

have the same name (for example, SIGTERM) in a system-provided header file. A negative value

is the negation of an OS/400 PASE (and AIX) signal number.

Authorities

None.

Return Value

The function result is an integer that indicates whether the OS/400 PASE signal was posted successfully.

Header file qp2user.h defines the following constants for the return code from Qp2SignalPase:

 QP2CALLPASE_NORMAL(0) An OS/400 PASE signal was posted successfully.

QP2CALLPASE_ENVIRON_ERROR(2) The operation is not allowed because no OS/400 PASE program is running

in the job, or the thread that called Qp2CallPase was neither the initial

OS/400 PASE thread nor a thread created using OS/400 PASE pthread

interfaces.

QP2CALLPASE_ARG_ERROR(4) The signo parameter value is invalid.

QP2CALLPASE_TERMINATING(6) The OS/400 PASE program is terminating. No function result was

returned. The OS/400 PASE program may have run the exit function, or a

signal might have caused the program to terminate.

Usage Notes

1. Qp2SignalPase is supported only when an OS/400 PASE program is currently running in the job. This

means that Qp2RunPase must be actively called in the job, or the job must be a fork child process.

2. Not all ILE signals have an OS/400 PASE equivalent and Qp2SignalPase never converts ILE

SIGCHLD to a corresponding PASE signal. This special handling for SIGCHLD avoids duplicate PASE

signals for the termination of a single child process (because the system may send both ILE and

OS/400 PASE signals to the parent of any fork child process that ends).

3. If there is only one OS/400 PASE thread running in the job, the signal remains pending until control

is transferred to the OS/400 PASE program. If other OS/400 PASE threads are running at the time

Qp2SignalPase is called, the system may chose one of the other threads to deliver the signal.

Related Information

v “Qp2CallPase()—Call an OS/400 PASE Procedure” on page 8

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Runtime Functions For Use by OS/400 PASE Programs

OS/400(R) PASE runtime includes interfaces supported on AIX(R) and interfaces unique to OS/400 PASE.

They are unique to OS/400 PASE

The runtime functions are:

OS/400 PASE APIs 27

#TOP_OF_PAGE
aplist.htm

v “build_ILEarglist()—Build an ILE Argument List for OS/400 PASE” on page 30 (Build an ILE

Argument List for OS/400 PASE) builds an ILE argument list using argument values copied from an

OS/400 PASE function with the same signature.

v

“fork400()and f_fork400()—Create A New Process with OS/400 PASE Options” on page 32 (Create a

New Process with OS/400 PASE Options) creates a new (child) process that is an almost exact copy of

the calling (parent) process.

v

“fork400()and f_fork400()—Create A New Process with OS/400 PASE Options” on page 32 (Create a

New Process with OS/400 PASE Options) creates a new (child) process that is an almost exact copy of

the calling (parent) process.

v “QMHRCVM()—Receive Nonprogram Message for OS/400 PASE” on page 34 (Receive Nonprogram

Message for OS/400 PASE) allows an OS/400 PASE program to receive a message from a nonprogram

message queue.

v “QMHRCVPM()—Receive Program Message for OS/400 PASE” on page 36 (Receive Program Message

for OS/400 PASE) allows an OS/400 PASE program to receive a message from a program call message

queue or from the job external message queue.

v “QMHSNDM()—Send Nonprogram Message for OS/400 PASE” on page 38 (Send Nonprogram

Message for OS/400 PASE) allows an OS/400 PASE program to send a message to a nonprogram

message queue so it can communicate with another job or user.

v “QMHSNDPM()—Send Program Message for OS/400 PASE” on page 40 (Send Program Message for

OS/400 PASE) allows an OS/400 PASE program to send a message to a program call message queue or

to the job external message queue.

v “Qp2jobCCSID()—Retrieve Job CCSID for OS/400 PASE” on page 18 (Retrieve Job CCSID for OS/400

PASE) returns the job default CCSID from the last time the OS/400 PASE CCSID was set.

v “Qp2paseCCSID()—Retrieve OS/400 PASE CCSID” on page 20 (Retrieve OS/400 PASE CCSID) returns

the OS/400 PASE CCSID from the last time the OS/400 PASE CCSID was set.

v

“Qp2setenv_ile()—Set ILE environment variables for OS/400 PASE” on page 42 (Set ILE

Environment Variables for OS/400 PASE) allows an OS/400 PASE program to set ILE environment

variables.

v “size_ILEarglist()—Compute ILE Argument List Size for OS/400 PASE” on page 43 (Compute ILE

Argument List Size for OS/400 PASE) computes the number of bytes of memory required to build an

ILE argument list.

v “SQLOverrideCCSID400()—Override SQL CLI CCSID for OS/400 PASE” on page 45 (Override SQL

CLI CCSID for OS/400 PASE) allows an OS/400 PASE program to specify a CCSID for character

arguments and results on SQL runtime functions.

v “systemCL()—Run a CL Command for OS/400 PASE” on page 46 (Run a CL Command for OS/400

PASE) allows an OS/400 PASE program to run a CL command.

v “_CVTERRNO()—Convert ILE errno to OS/400 PASE errno” on page 48 (Convert ILE errno to OS/400

PASE errno) converts an ILE errno value to a corresponding OS/400 PASE errno value.

v “_CVTSPP()—Convert Space Pointer for OS/400 PASE” on page 49 (Convert Space Pointer for OS/400

PASE) converts a tagged space pointer value to an equivalent OS/400 PASE memory address.

v

“_CVTTS64()—Convert Teraspace Address for OS/400 PASE” on page 50 (Convert Teraspace

Address for OS/400 PASE) converts a 64-bit teraspace address to an equivalent OS/400 PASE memory

address.

v

“_GETTS64() and _GETTS64_SPP()—Get Teraspace Address for OS/400 PASE” on page 51 (Get

Teraspace Address for OS/400 PASE) returns the 64-bit teraspace address equivalent of an OS/400

PASE memory address.

v

“_GETTS64M()—Get Multiple Teraspace Pointers for OS/400 PASE” on page 52 (Get Multiple

Teraspace Pointers for OS/400 PASE) retrieves teraspace address equivalents for a set of OS/400 PASE

memory addresses.

28 iSeries: OS/400 PASE APIs

v

“_GETTS64() and _GETTS64_SPP()—Get Teraspace Address for OS/400 PASE” on page 51 (Get

Teraspace Address (from Space Pointer) for OS/400 PASE) returns the 64-bit teraspace address stored

in a 16-byte space pointer.

v “_ILECALLX()—Call an ILE Procedure for OS/400 PASE” on page 54 (Call an ILE Procedure for

OS/400 PASE) allows an OS/400 PASE program to call an ILE procedure.

v “_ILELOADX()—Load an ILE Bound Program for OS/400 PASE” on page 58 (Load an ILE Bound

Program for OS/400 PASE) allows an OS/400 PASE program to load (activate) an ILE bound program.

v

“_ILELOADX()—Load an ILE Bound Program for OS/400 PASE” on page 58 (Load an ILE Bound

Program for OS/400 PASE) loads (activates) an ILE-bound program.

v “_ILESYMX()—Find an Exported ILE Symbol for OS/400 PASE” on page 60 (Find Exported ILE

Symbol for OS/400 PASE) allows an OS/400 PASE program to get a tagged pointer to the data or

procedure exported for a symbol exported by an ILE activation.

v

“_ILESYMX()—Find an Exported ILE Symbol for OS/400 PASE” on page 60 (Find an Exported ILE

Symbol for OS/400 PASE) finds an exported ILE symbol in the activation of an ILE-bound program.

v “_MEMCPY_WT()—Copy Memory With Tags for OS/400 PASE” on page 61 (Copy Memory With Tags

for OS/400 PASE) allows an OS/400 PASE program to copy memory with tagged pointers.

v “_PGMCALL()—Call an OS/400 Program for OS/400 PASE” on page 63 (Call an OS/400 Program for

OS/400 PASE) calls an OS/400 program (object type *PGM) from an OS/400 PASE program.

v “_RETURN()—Return Without Exiting OS/400 PASE” on page 65 (Return without Exiting OS/400

PASE) returns to the ILE called that called OS/400 PASE in this job, without exiting the OS/400 PASE

program.

v “_RSLOBJ()—Resolve to an OS/400 Object for OS/400 PASE” on page 66 (Resolve to an OS/400 Object

for OS/400 PASE) resolves to an OS/400 object.

v “_SETCCSID()—Set OS/400 PASE CCSID” on page 68 (Set OS/400 PASE CCSID) retrieves and sets the

OS/400 PASE Coded Character Set Identifier (CCSID) value.

v

“_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70 (Set Space

Pointer for OS/400 PASE) sets a tagged space pointer to the teraspace equivalent of an OS/400 PASE

memory address.

v “_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE” on page 71 (Set Multiple Space Pointers

for OS/400 PASE) Sets multiple space pointers for OS/400 PASE.

v

“_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70 (Set Space

Pointer for OS/400 PASE) sets a space pointer from teraspace address for OS/400 PASE.

v “_STRLEN_SPP()—Determine Character String Length for OS/400 PASE” on page 73 (Determine

Character String Length for OS/400 PASE) determines the length of a null-terminated character string.

v “_STRNCPY_SPP()—Copy Character String for OS/400 PASE” on page 74 (Copy Character String for

OS/400 PASE) copies a null-terminated character string.

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 29

#TOP_OF_PAGE
aplist.htm

build_ILEarglist()—Build an ILE Argument List for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 int build_ILEarglist(ILEarglist_base *ILEarglist,

 const void *PASEarglist,

 const arg_type_t *signature);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The build_ILEarglist() function builds an ILE argument list using argument values copied from an

OS/400 PASE function with the same signature.

Parameters

ILEarglist

(Output) Pointer to a 16-byte aligned buffer allocated by the caller for the ILE argument list.

ILEarglist must be long enough to contain all arguments specified in the signature list.

PASEarglist

(Input) Pointer to the first argument passed to an OS/400 PASE function that accepts arguments

equivalent to those specified by the signature list.

signature

(Input) Pointer to a list of arg_type_t values that specify the sequence and type of arguments

passed to the ILE procedure. ILE procedures can accept a maximum of 400 arguments. The actual

number of arguments processed by the build_ILEarglist function is determined by the number of

entries in the signature list, which is determined by the location of the first ARG_END value in

the list. The following values are supported in the signature list:

 ARG_END(0) Specifies the end of the signature list.

ARG_INT8 (-1) Signed 1-byte integer argument.

ARG_UINT8 (-2) Unsigned 1-byte integer argument.

ARG_INT16 (-3) Signed 2-byte integer argument.

ARG_UINT16 (-4) Unsigned 2-byte integer argument.

ARG_INT32 (-5) Signed 4-byte integer argument.

ARG_UINT32 (-6) Unsigned 4-byte integer argument.

ARG_INT64 (-7) Signed 8-byte integer argument.

ARG_UINT64 (-8) Unsigned 8-byte integer argument.

ARG_FLOAT32 (-9) 4-byte floating-point argument.

ARG_FLOAT64 (-10) 8-byte floating-point argument.

ARG_MEMPTR (-11) The argument is a memory address. The OS/400 PASE procedure argument is an

OS/400 PASE memory address that build_ILEarglist copies into the ILEpointer type

value in the ILE argument list. See “_ILECALLX()—Call an ILE Procedure for OS/400

PASE” on page 54 (_ILECALLX) for more information about how ARG_MEMPTR

arguments are handled.

30 iSeries: OS/400 PASE APIs

ARG_MEMTS64 (-14) The argument is a memory address. The OS/400 PASE procedure argument is an

OS/400 PASE memory address that build_ILEarglist copies into the ts64_t type value

in the ILE argument list. See “_ILECALLX()—Call an ILE Procedure for OS/400 PASE”

on page 54 (_ILECALLX) for more information about how ARG_MEMTS64 arguments

are handled.

ARG_TS64PTR (-15) The argument is a 64-bit teraspace pointer.

Any positive number
(1-32767)

The argument is an aggregate (structure or union). The value in the signature list is the

length, in bytes, of the aggregate.

Authorities

build_ILEarglist requires no authority.

Return Value

build_ILEarglist returns the number of bytes used to build the ILE argument list (including storage for

the ILEarglist_base type), or zero if an error was detected in the input arguments.

Usage Notes

1. build_ILEarglist does no character encoding conversions, so the OS/400 PASE program may need to

convert argument and result character strings between ASCII and EBCDIC. OS/400 PASE runtime

function iconv can be used for character conversions.

2. build_ILEarglist does not support argument types ARG_SPCPTR or ARG_OPENPTR (which are

supported by _ILECALLX) because the AIX Application Binary Interface for PowerPC provides no

way to ensure 16-byte alignment for arguments pushed onto the stack.

3. build_ILEarglist does not directly support aggregate function results. You need to set

result.r_aggregate.addr in the PASEarglist structure to the address of a buffer where the ILE procedure

will store the aggregate result.

4. Older versions of build_ILEarglist accepted additional arguments in an attempt to handle aggregate

function results, but those arguments were removed because they cannot be supported reliably. If you

need to compile source that passes the additional arguments, you must define macro

OLD_build_ILEarglist and include <as400_types.h> to access the old support.

Related Information

v “_ILECALLX()—Call an ILE Procedure for OS/400 PASE” on page 54

v “size_ILEarglist()—Compute ILE Argument List Size for OS/400 PASE” on page 43

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 31

#TOP_OF_PAGE
aplist.htm

fork400()and f_fork400()—Create A New Process with OS/400 PASE

Options

 Syntax

 #include <as400_protos.h>

 pid_t fork400(const char *jobname,

 unsigned int resourceID);

 pid_t f_fork400(const char *jobname,

 unsigned int resourceID);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The fork400() function creates a new process. The new process (the child process) is an almost exact copy

of the calling process (the parent process). fork400() is called once (by the parent process), but returns

twice (once in the parent process and once in the child process). fork400() is the same as the fork()

function plus it allows additional OS/400 PASE unique options to be specified.

f_fork400() function is a similarly enhanced version of the f_fork() function. When f_fork400() (or

f_fork()) is used, one of the exec functions must be called in the child process immediately after it is

created. f_fork400() does not call the fork handlers so the application data, mutexes and the locks are all

undefined in the child process.

Parameters

jobname

(Input) Pointer to a null-terminated string in the OS/400 PASE CCSID that specifies the OS/400

job name of the new process.

 The job name specified must begin with an alphabetic character [A-Z] or the characters [$#@].

The remaining characters must be alphanumeric [A-Z] or [0-9] or [$#@_.]. The string should not

be longer than 10 characters (not including the terminating null character). If the specified

jobname is invalid, the jobname parameter value is ignored.

resourceID

(Input) A positive integer value specifying the resources affinity identifier for the new process.

 Use the value of 0 to let the operating system select the resources affinity identifier value

automatically.

Authorities

fork400() and f_fork400() require no authority.

32 iSeries: OS/400 PASE APIs

Return Value

Upon successful completion, the fork400() or f_fork400() function returns a value of 0 to the child process

and the process ID of the child process to the parent process. Otherwise, a value of -1 is returned to the

parent process, no child process is created, and the errno global variable is set to indicate the error.

Error Conditions

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE

errno EAPAR):

 [EAGAIN] Exceeds the limit on the total number of processes running or the system does not

have the resources necessary to create another process.

[ENOMEM] Not enough space exists for this process.

[EINVAL] An invalid argument value was specified.

Usage Notes

1. Consult the AIX documentation for fork() and f_fork() for additional details regarding attributes of

the parent process inherited by the child process and differences between fork() and f_fork().

2. The OS/400 PASE environment specification QIBM_PASE_USE_PRESTART_JOBS=Y will be ignored

when the fork400() or f_fork400() functions are used with a non-null jobname or a non-zero

resourceID value.

Related Information

v See the “OS/400 PASE Environment Variables” on page 85 documentation for information about the

PASE_FORK_JOBNAME environment variable that can be used to specify the OS/400 job name for new

processes created using the fork() or f_fork() functions.

API introduced: V5R3

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 33

#TOP_OF_PAGE
aplist.htm

QMHRCVM()—Receive Nonprogram Message for OS/400 PASE

 Syntax

 #include <os400msg.h>

 int QMHRCVM(void *msginfo,

 int msginfoLen,

 const char *format,

 const void *msgq,

 const char *msgtype,

 int *msgkey,

 int wait,

 const char *action,

 void *errcode);

 int QMHRCVM1(void *msginfo,

 int msginfoLen,

 const char *format,

 const void *msgq,

 const char *msgtype,

 int *msgkey,

 int wait,

 const char *action,

 void *errcode,

 int ccsid);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The Receive Nonprogram Message (QMHRCVM and QMHRCVM1) OS/400 PASE runtime functions

allow an OS/400 PASE program to receive a message from a nonprogram message queue.

Parameters

These OS/400 PASE runtime functions accept the same arguments as the Receive Nonprogram Message

(QMHRCVM) OS/400 API, except that the OS/400 PASE functions use character string inputs that are

null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input

character strings to the job default CCSID and pads with blanks (as necessary) to match the fixed-length

inputs required by the system API.

No conversions are done by OS/400 PASE runtime for the msginfo and errcode (input/output)

arguments because they can contain a mixture of character and binary data. The ccsid argument specifies

the CCSID for character data returned by the system API in the msginfo argument, and users can request

CCSID information for the errcode argument by using ERRC0200 format. The QMHRCVM OS/400 PASE

runtime function uses a default for the ccsid value passed to the system API that does not do any CCSID

conversion for character data in the received message.

See QMHRCVM()—Receive Nonprogram Message for further description of the arguments for the

QMHRCVM and QMHRCVM1 OS/400 PASE runtime functions.

34 iSeries: OS/400 PASE APIs

Qmhrcvm.htm

Authorities

See QMHRCVM()—Receive Nonprogram Message for information about authorities required for the

QMHRCVM and QMHRCVM1 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string

could not be converted to the job default CCSID or was too long for the QMHRCVM API, or if the

QMHRCVM API returned error information in the errcode argument.

Related Information

v QMHRCVM()—Receive Nonprogram Message (system API)
v “QMHRCVM()—Receive Nonprogram Message for OS/400 PASE” on page 34
v “QMHSNDPM()—Send Program Message for OS/400 PASE” on page 40
v “QMHRCVPM()—Receive Program Message for OS/400 PASE” on page 36

 API introduced: V5R1

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 35

Qmhrcvm.htm
Qmhrcvm.htm
#TOP_OF_PAGE
aplist.htm

QMHRCVPM()—Receive Program Message for OS/400 PASE

 Syntax

 #include <os400msg.h>

 int QMHRCVPM(void *msginfo,

 int msginfoLen,

 const char *format,

 const char *pgmq,

 int pgmqDelta,

 const char *msgtype,

 int *msgkey,

 int wait,

 const char *action,

 void *errcode);

 int QMHRCVPM1(void *msginfo,

 int msginfoLen,

 const char *format,

 const char *pgmq,

 int pgmqDelta,

 const char *msgtype,

 int *msgkey,

 int wait,

 const char *action,

 void *errcode,

 int pgmqLen,

 const char *pgmqQual);

 int QMHRCVPM2(void *msginfo,

 int msginfoLen,

 const char *format,

 const void *pgmq,

 int pgmqDelta,

 const char *msgtype,

 int *msgkey,

 int wait,

 const char *action,

 void *errcode,

 int pgmqLen,

 const char *pgmqQual,

 const char *pgmqType,

 int ccsid);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The Receive Program Message (QMHRCVPM, QMHRCVPM1, and QMHRCVPM2) OS/400 PASE runtime

functions allow an OS/400 PASE program to receive a message from a program call message queue or

from the job external message queue.

36 iSeries: OS/400 PASE APIs

Parameters

These OS/400 PASE runtime functions accept the same arguments as the Receive Program Message

(QMHRCVPM) OS/400 API, except that the OS/400 PASE functions use character string inputs that are

null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input

character strings to the job default CCSID and pads with blanks (as necessary) to match the fixed-length

inputs required by the system API.

No conversions are done by OS/400 PASE runtime for the msginfo and errcode (input/output)

arguments because they can contain a mixture of character and binary data. The ccsid argument specifies

the CCSID for character data returned by the system API in the msginfo argument, and users can request

CCSID information for the errcode argument by using ERRC0200 format. The QMHRCVPM and

QMHRCVPM1 OS/400 PASE runtime functions use a default for the ccsid value passed to the system

API that does not do any CCSID conversion for character data in the received message.

See QMHRCVPM()—Receive Program Message for further description of the arguments for the

QMHRCVPM, QMHRCVPM1, and QMHRCVPM2 OS/400 PASE runtime functions.

Authorities

See QMHRCVPM()—Receive Program Message for information about authorities required for the

QMHRCVPM, QMHRCVPM1, and QMHRCVPM2 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string

could not be converted to the job default CCSID or was too long for the QMHRCVPM API, or if the

QMHRCVPM API returned error information in the errcode argument.

Usage Notes

1. The system only creates program call message queues ILE procedures and OMI programs, so you

cannot send to or receive from a program message queue for a specific function in an OS/400 PASE

program.

2. When ″*″ is specified for the pgmq argument, the system locates the program call message queue for

an (internal) ILE procedure in service program QP2USER that is the apparent caller of any ILE

procedure called by the OS/400 PASE program using OS/400 PASE runtime function _ILECALLX or

_ILECALL. This queue is the target for messages a called ILE procedure sends to its caller, and is also

used for machine exceptions caused by operations inside the OS/400 PASE program (such as message

MCH0601 a for storage reference error).

Related Information

v QMHRCVPM()—Receive Program Message (system API)

v “QMHRCVPM()—Receive Program Message for OS/400 PASE” on page 36

v “QMHSNDM()—Send Nonprogram Message for OS/400 PASE” on page 38

v “QMHRCVM()—Receive Nonprogram Message for OS/400 PASE” on page 34

 API introduced: V5R1

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 37

QMHRCVPM.htm
QMHRCVPM.htm
QMHRCVPM.htm
#TOP_OF_PAGE
aplist.htm

QMHSNDM()—Send Nonprogram Message for OS/400 PASE

 Syntax

 #include <os400msg.h>

 int QMHSNDM(const char *msgid,

 const char *msgf,

 const void *msgdata,

 int msgdataLen,

 const char *msgtype,

 const char *msgqList,

 int msgqCount,

 const char *rpyq,

 int *msgkey,

 void *errcode);

 int QMHSNDM1(const char *msgid,

 const char *msgf,

 const void *msgdata,

 int msgdataLen,

 const char *msgtype,

 const char *msgqList,

 int msgqCount,

 const char *rpyq,

 int *msgkey,

 void *errcode,

 int ccsid);

 Public Default Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The Send Nonprogram Message (QMHSNDM and QMHSNDM1) OS/400 PASE runtime functions allow

an OS/400 PASE program to send a message to a nonprogram message queue so it can communicate

with another job or user.

Parameters

These OS/400 PASE runtime functions accept the same arguments as the Send Nonprogram Message

(QMHSNDM) OS/400 API, except that the OS/400 PASE functions use character string inputs that are

null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input

character strings to the job default CCSID and pads with blanks (as necessary) to match the fixed-length

inputs required by the system API.

No conversions are done for the msgdata (input) argument and the errcode (input/output) argument

because they can contain a mixture of character and binary data. The ccsid argument specifies the CCSID

for character data in the msgdata argument, and users can request CCSID information for the errcode

argument by using ERRC0200 format. The QMHSNDM OS/400 PASE runtime function uses the current

OS/400 PASE CCSID as a default for the ccsid value passed to the system API.

See QMHSNDM()—Send Nonprogram Message for further description of the arguments for the

QMHSNDM and QMHSNDM1 OS/400 PASE runtime functions.

38 iSeries: OS/400 PASE APIs

QMHSNDM.htm

Authorities

See QMHSNDM()—Send Nonprogram Message for information about authorities required for the

QMHSNDM and QMHSNDM1 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string

could not be converted to the job default CCSID or was too long for the QMHSNDM API, or if the

QMHSNDM API returned error information in the errcode argument.

Related Information

v QMHSNDM()—Send Nonprogram Message (system API)

v “QMHRCVM()—Receive Nonprogram Message for OS/400 PASE” on page 34

v “QMHSNDPM()—Send Program Message for OS/400 PASE” on page 40

v “QMHRCVPM()—Receive Program Message for OS/400 PASE” on page 36

 API introduced: V5R1

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 39

QMHSNDM.htm
QMHSNDM.htm
#TOP_OF_PAGE
aplist.htm

QMHSNDPM()—Send Program Message for OS/400 PASE

 Syntax

 #include <os400msg.h>

 int QMHSNDPM(const char *msgid,

 const char *msgf,

 const void *msgdata,

 int msgdataLen,

 const char *msgtype,

 const char *pgmq,

 int pgmqDelta,

 int *msgkey,

 void *errcode);

 int QMHSNDPM1(const char *msgid,

 const char *msgf,

 const void *msgdata,

 int msgdataLen,

 const char *msgtype,

 const char *pgmq,

 int pgmqDelta,

 int *msgkey,

 void *errcode,

 int pgmqLen,

 const char *pgmqQual,

 int extWait);

 int QMHSNDPM2(const char *msgid,

 const char *msgf,

 const void *msgdata,

 int msgdataLen,

 const char *msgtype,

 const void *pgmq,

 int pgmqDelta,

 int *msgkey,

 void *errcode,

 int pgmqLen,

 const char *pgmqQual,

 int extWait,

 const char *pgmqType,

 int ccsid);

 Library: Standard C Library (libc.a)

 Default Public Authority: *USE

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The Send Program Message (QMHSNDPM, QMHSNDPM1, and QMHSNDPM2) OS/400 PASE runtime

functions allow an OS/400 PASE program to send a message to a program call message queue or to the

job external message queue.

Parameters

These OS/400 PASE runtime functions accept the same arguments as the Send Program Message

(QMHSNDPM) OS/400 API, except that the OS/400 PASE functions use character string inputs that are

40 iSeries: OS/400 PASE APIs

null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input

character strings to the job default CCSID and pads with blanks (as necessary) to match the fixed-length

inputs required by the system API.

No conversions are done for the msgdata (input) argument and the errcode (input/output) argument

because they can contain a mixture of character and binary data. The ccsid argument specifies the CCSID

for character data in the msgdata argument, and users can request CCSID information for the errcode

argument by using ERRC0200 format. The QMHSNDPM and QMHSNDPM1 OS/400 PASE runtime

functions use the current OS/400 PASE CCSID as a default for the ccsid value passed to the system API.

See QMHSNDPM()—Send Program Message for further description of the arguments for the

QMHSNDPM, QMHSNDPM1, and QMHSNDPM2 OS/400 PASE runtime functions.

Authorities

See QMHSNDPM()—Send Program Message for information about authorities required for the

QMHSNDPM, QMHSNDPM1, and QMHSNDPM2 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string

could not be converted to the job default CCSID or was too long for the QMHSNDPM API, or if the

QMHSNDPM API returned error information in the errcode argument.

Usage Notes

1. The system only creates program call message queues ILE procedures and OMI programs, so you

cannot send to or receive from a program message queue for a specific function in an OS/400 PASE

program.

2. When ″*″ is specified for the pgmq argument, the system locates the program call message queue for

an (internal) ILE procedure in service program QP2USER that is the apparent caller of any ILE

procedure called by the OS/400 PASE program using OS/400 PASE runtime function _ILECALLX or

_ILECALL. OS/400 PASE programs should generally use ″*PGMBDY″ or ″*CTLBDY″ instead of ″*″ to

send messages to their caller because a variable number of program call message queues can exist

between the queue identified by pgmq ″*″ and the queue for the ILE API that called the OS/400 PASE

program.

Related Information

v QMHSNDPM()—Send Program Message (system API)

v “QMHRCVPM()—Receive Program Message for OS/400 PASE” on page 36

v “QMHSNDM()—Send Nonprogram Message for OS/400 PASE” on page 38

v “QMHRCVM()—Receive Nonprogram Message for OS/400 PASE” on page 34

 API introduced: V5R1

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 41

QMHSNDPM.htm
QMHSNDPM.htm
QMHSNDPM.htm
#TOP_OF_PAGE
aplist.htm

Qp2setenv_ile()—Set ILE environment variables for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 int Qp2setenv_ile(const char *const *env,

 const char *conflict);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The Qp2setenv_ile() function sets one or more ILE environment variables, with special support to resolve

conflicts between ILE and OS/400 PASE variables that have the same name but require different values.

Parameters

env (Input) Address of a list of pointers to null-terminated character strings that specify ILE

environment variables to set. Each character string should have the form ″NAME=value″, where

NAME is the environment variable name. The first null pointer indicates the end of the list. ILE

environment variables are stored in EBCDIC, so the system converts the character strings from

the (ASCII) OS/400 PASE CCSID to the job default CCSID.

conflict

(Input) Pointer to a character string that specifies a colon-delimited list of environment variable

names that have conflicting use between OS/400 PASE and ILE. If conflict is a null pointer, the

system uses a default string of ″SHELL:PATH:LANG:NLSPATH″.

Authorities

None

Return Value

The function result is zero for normal completion. A result of -1 indicates an error that is further qualified

by an errno value.

Error Conditions

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE

errno EAPAR):

 [EINVAL] Input arguments were changed during processing in a way that does not allow the

function to complete normally.

[ENOMEM] Insufficient OS/400 PASE heap memory is available to complete the request.

42 iSeries: OS/400 PASE APIs

Usage Notes

1. Qp2setenv_ILE sets an ILE environment variable with the same name as the value specified in the

env string in most cases, but the system adds a prefix ″PASE_″ to the name of the ILE version of some

environment variables. The conflict argument controls what variables add the name prefix, which lets

you pass the current OS/400 PASE environment (runtime variable environ) to Qp2setenv_ile without

removing or changing variables that have conflicting use between OS/400 PASE and ILE. You can

specify the address of a null string for the conflict argument to avoid any conflict-resolution

processing.

2. Any OS/400 PASE environment variable name with a prefix ″ILE_″ is copied to the ILE environment

twice. The first copy uses the same variable name, and the second copy uses the name without the

prefix. For example, if the OS/400 PASE environment contains a variable named ILE_PATH, the value

of this variable is used to set both ILE_PATH and PATH in the ILE environment. This lets you store

ILE environment variable values in the OS/400 PASE environment without conflict.

Related Information

v “_PGMCALL()—Call an OS/400 Program for OS/400 PASE” on page 63

v “systemCL()—Run a CL Command for OS/400 PASE” on page 46

API introduced: V5R3

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

size_ILEarglist()—Compute ILE Argument List Size for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 size_t size_ILEarglist(const arg_type_t *signature);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The size_ILEarglist() function computes the number of bytes of memory required to build an ILE

argument list for a specific function signature.

Parameters

signature

(Input) Pointer to a list of arg_type_t values that specify the sequence and type of arguments

passed to the ILE procedure. ILE procedures can accept a maximum of 400 arguments. The actual

number of arguments processed by the size_ILEarglist function is determined by the number of

entries in the signature list, which is determined by the location of the first ARG_END value in

the list. The following values are supported in the signature list:

OS/400 PASE APIs 43

#TOP_OF_PAGE
aplist.htm

ARG_END (0) Specifies the end of the signature list.

ARG_INT8 (-1) Signed 1-byte integer argument.

ARG_UINT8 (-2) Unsigned 1-byte integer argument.

ARG_INT16 (-3) Signed 2-byte integer argument.

ARG_UINT16 (-4) Unsigned 2-byte integer argument.

ARG_INT32 (-5) Signed 4-byte integer argument.

ARG_UINT32 (-6) Unsigned 4-byte integer argument.

ARG_INT64 (-7) Signed 8-byte integer argument.

ARG_UINT64 (-8) Unsigned 8-byte integer argument.

ARG_FLOAT32 (-9) 4-byte floating-point argument.

ARG_FLOAT64 (-10) 8-byte floating-point argument.

ARG_MEMPTR (-11) The argument is a field of type ILEpointer.

ARG_SPCPTR (-12) The argument is a field of type ILEpointer.

ARG_OPENPTR (-13) The argument is a field of type ILEpointer.

ARG_MEMTS64 (-14) The argument is a field of type ts64_t.

ARG_TS64PTR (-15) The argument is a field of type ts64_t.

Any positive number
(1-32767)

The argument is an aggregate (structure or union). The value in the signature list is

the length, in bytes, of the aggregate.

Authorities

size_ILEarglist requires no authority.

Return Value

size_ILEarglist returns the number of bytes required to build the ILE argument list (including storage for

the ILEarglist_base type and any necessary bytes skipped for alignment between arguments), or zero if an

error was detected in the signature list.

Related Information

v “_ILECALLX()—Call an ILE Procedure for OS/400 PASE” on page 54

v “build_ILEarglist()—Build an ILE Argument List for OS/400 PASE” on page 30

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

44 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

SQLOverrideCCSID400()—Override SQL CLI CCSID for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 int SQLOverrideCCSID400(int newCCSID);

 Default Public Authority: *USE

 Library: OS/400 PASE SQL CLI Library (libdb400.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The SQLOverrideCCSID400() function allows an OS/400 PASE program to specify a Coded Character

Set Identifier (CCSID) used to convert character data arguments and results on OS/400 PASE SQL Call

Level Interface (CLI) functions.

Parameters

newCCSID

(Input) Specifies the CCSID used for OS/400 PASE SQL CLI functions.

Authorities

No special authorities required.

Return Value

The function result is zero for success, or -1 for an error that is further qualified by an errno value.

Error Conditions

At least these errno values can be returned:

 [EINVAL] The conversion between newCCSID and the OS/400 job default CCSID is not

supported.

[ENFILE] A converter could not be opened because the maximum number of files in the system

are already opened.

[EMFILE] A converter could not be opened because the maximum number of files are already

opened.

Usage Notes

1. The system automatically converts character arguments and results between the CCSID of the job or

database field and a CCSID used for OS/400 PASE SQL CLI functions that defaults to the OS/400

PASE CCSID value in effect when the first OS/400 PASE SQL CLI function is called. You must call

SQLOverrideCCSID400 before any other OS/400 PASE SQL CLI function, or it will have no effect on

CCSID conversions.

OS/400 PASE APIs 45

API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

systemCL()—Run a CL Command for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 int systemCL(const char *command,

 int flags);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Conditional. See “Usage Notes” on page 47.

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The systemCL() function runs a CL command.

Parameters

command

(Input) Pointer to a null-terminated string in the OS/400 PASE CCSID that specifies the CL

command with any parameters.

flags (Input) Specifies option flags that control how the CL command runs. flags is a bit-wise OR of

any of the following values:

 SYSTEMCL_MSG_STDOUT

(0x00000001)

Directs the system to receive OS/400 messages after normal command completion,

convert the text of each message from the job default CCSID to the OS/400 PASE

CCSID, and write converted text lines to Integrated File System descriptor 1 (stdout).

SYSTEMCL_MSG_STDERR

(0x00000002)

Directs the system to receive OS/400 messages after error command completion,

convert the text of each message from the job default CCSID to the OS/400 PASE

CCSID, and write converted text lines to Integrated File System descriptor 2 (stderr).

SYSTEMCL_MSG_NOMSGID

(0x00000004)

Suppresses message identifiers in text lines written to stdout or stderr for messages

processed on behalf of SYSTEMCL_MSG_STDOUT and SYSTEMCL_MSG_STDERR.

When this option is omitted, message text lines have the form ″XXX1234: message

text″, where ″XXX1234″ is the OS/400 message identifier.

SYSTEMCL_SPOOL_STDOUT

(0x00000008)

Directs the system to process any spooled output files created by the CL command by

reading each file, converting file data from the job default CCSID to the OS/400 PASE

CCSID, and writing converted text lines to Integrated File System descriptor 1 (stdout).

SYSTEMCL_SPOOL_KEEP

(0x00000010)

Directs the system to keep any spooled output files after they are processed for option

SYSTEMCL_SPOOL_STDOUT, instead of deleting the files after their contents is

written to stdout.

SYSTEMCL_FILTER_STDIN

(0x00000020)

Directs the system to setup a filter thread that converts from the OS/400 PASE CCSID

to the job default CCSID for any data the CL command reads from Integrated File

System descriptor 0 (stdin).

SYSTEMCL_FILTER_STDOUT

(0x00000040)

Directs the system to setup a filter thread that converts any data the CL command

writes to Integrated File System descriptor 1 (stdout) from the job default CCSID to the

OS/400 PASE CCSID.

46 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

SYSTEMCL_FILTER_STDERR

(0x00000080)

Directs the system to setup a filter thread that converts any data the CL command

writes to Integrated File System descriptor 2 (stderr) from the job default CCSID to the

OS/400 PASE CCSID.

SYSTEMCL_SPAWN

(0x00000100)

Directs the system to run the CL command in a separate process. If this option is

omitted, the CL command runs in the process that calls the systemCL function.

SYSTEMCL_SPAWN_JOBLOG

(0x00000200)

Forces the system to generate an OS/400 job log for the job submitted using option

SYSTEMCL_SPAWN.

SYSTEMCL_ENVIRON

(0x00000400)

Directs the system to copy OS/400 PASE environment variables to ILE environment

variables before running the CL command. This option sets ILE environment variables

in the process that calls the systemCL function, regardless of whether the command

runs in this process or a child process (created for option SYSTEMCL_SPAWN).

Authorities

No authority is needed to run the systemCL function, but the caller must be authorized to run the

specified CL command.

Return Value

If the command argument is a null pointer, the function result is zero if system support to call the

OS/400 Command Analyzer is available, or a nonzero value otherwise.

If option SYSTEMCL_SPAWN is specified, the function result is the exit code from the spawned job

(returned by the ILE waitpid function), which is non-zero if any error occurred.

Otherwise, the function result is zero for normal command completion, or -1 if an error occurred. No

errno value is set for CL command errors.

Usage Notes

1. systemCL is only threadsafe in these two cases:

v You use option SYSTEMCL_SPAWN and do not use SYSTEMCL_ENVIRON.

v You only run threadsafe CL commands and do not use SYSTEMCL_SPAWN,

SYSTEMCL_FILTER_STDIN, SYSTEMCL_FILTER_STDOUT, SYSTEMCL_FILTER_STDERR, or

SYSTEMCL_ENVIRON.
2. You must set ILE environment variable QIBM_USE_DESCRIPTOR_STDIO to Y or I before the CL

command does any file I/O to stdin, stdout, or stderr if you need CCSID conversion controlled by

options SYSTEMCL_FILTER_STDIN, SYSTEMCL_FILTER_STDOUT, and

SYSTEMCL_FILTER_STDERR.

3. Processing for options SYSTEMCL_FILTER_STDIN, SYSTEMCL_FILTER_STDOUT, and

SYSTEMCL_FILTER_STDERR creates ILE pthreads (not OS/400 PASE threads) for CCSID conversion

in the process that calls the systemCL function. Integrated File System descriptors 0, 1, and 2 are

replaced in whatever job runs the CL command with pipes handled by the filter threads. The original

file descriptors are restored and the filter threads are ended before the systemCL function returns.

4. Many CL commands are not supported in a job with multiple threads. Processing for

SYSTEMCL_SPAWN runs the CL command in a job that is not multithread-capable, so it can run

commands that do not work in a job that is multithread-capable.

5. Processing for option SYSTEMCL_SPAWN uses the ILE spawn API to run a batch job that inherits

ILE attributes such as Integrated File System descriptors and job CCSID, but the batch job does not

inherit any OS/400 PASE program (unlike a job created by the OS/400 PASE fork function).

6. Processing for SYSTEMCL_ENVIRON uses the same name for the ILE copy and the OS/400 PASE

environment variable for most variables, but the system adds a prefix ″PASE_″ to the name of the ILE

copy of some environment variables. You can control what variables names add the prefix by storing

a colon-delimited list of variable names in OS/400 PASE environment variable

OS/400 PASE APIs 47

PASE_ENVIRON_CONFLICT. If PASE_ENVIRON_CONFLICT is not defined, the system defaults to

adding the prefix when copying OS/400 PASE environment variables SHELL, PATH, NLSPATH, and

LANG.

7. Processing for SYSTEMCL_ENVIRON sets two ILE environment variables for each OS/400 PASE

environment variable with a name prefix of ″ILE_″. The OS/400 PASE environment variable value is

used to set both a variable with the same name and a variable with the name minus the prefix ″ILE_″

in the ILE environment. For example, if the OS/400 PASE environment contains a variable named

ILE_PATH, the value of this variable is used to set both ILE_PATH and PATH in the ILE

environment.

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

_CVTERRNO()—Convert ILE errno to OS/400 PASE errno

 Syntax

 #include <as400_protos.h>

 int _CVTERRNO(int errno_ile);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information.

The _CVTERRNO() function converts an ILE errno value to a corresponding OS/400 PASE errno value.

Parameters

errno_ile

(Input) Specifies the ILE errno value to convert to a corresponding OS/400 PASE errno value. ILE

and OS/400 PASE errno values correspond if they have the same name (for example, EFAULT) in

a system-provided header file.

Authorities

_CVTERRNO requires no authority.

Return Value

_CVTERRNO returns the OS/400 PASE equivalent of the input ILE errno value. If the input has no

OS/400 PASE errno equivalent (for example, EAPAR is an ILE errno value with no OS/400 PASE

equivalent), the input is returned unchanged.

Usage Notes

1. The errno value set by an ILE runtime function must be determined by code running in the same

thread and activation group that called the runtime function because ILE runtime sometimes

maintains a separate errno variable for each activation group.

48 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

Related Information

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22—Run an OS/400 PASE Program

 API introduced: V5R1

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

_CVTSPP()—Convert Space Pointer for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 void* _CVTSPP(const ILEpointer *source);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information.

The _CVTSPP() function converts the teraspace address in a tagged space pointer to an equivalent

OS/400 PASE memory address.

Parameters

source (Input) Pointer to a tagged space pointer or 16-byte null pointer. The source address must 16-byte

aligned.

Authorities

_CVTSPP requires no authority.

Return Value

_CVTSPP returns the OS/400 PASE memory address equivalent of the input tagged space pointer. The

result is zero (null) if the input is a 16-byte null pointer or a tagged space pointer that does not contain

the teraspace address equivalent of some valid OS/400 PASE memory address.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE

signal. See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400

exceptions.

Usage Notes

1. _CVTSPP returns an OS/400 PASE memory address regardless of whether there is currently any

memory at that address (as long as the input tagged pointer contains the teraspace address equivalent

of a valid OS/400 PASE memory address).

OS/400 PASE APIs 49

#TOP_OF_PAGE
aplist.htm

Related Information

v “_CVTTS64()—Convert Teraspace Address for OS/400 PASE”

v “_GETTS64() and _GETTS64_SPP()—Get Teraspace Address for OS/400 PASE” on page 51

v “_GETTS64M()—Get Multiple Teraspace Pointers for OS/400 PASE” on page 52

v “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70

v “_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE” on page 71

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

_CVTTS64()—Convert Teraspace Address for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 void* _CVTTS64(ts64_t source);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information.

The _CVTTS64() function converts a 64-bit teraspace address to an equivalent OS/400 PASE memory

address.

Parameters

source (Input) A 64-bit teraspace address.

Authorities

_CVTTS64 requires no authority.

Return Value

_CVTTS64 returns the OS/400 PASE memory address equivalent of the 64-bit teraspace address. The

result is zero (null) if the input is either zero or an address that cannot contain OS/400 PASE memory.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE

signal. See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400

exceptions.

Usage Notes

1. _CVTTS64 returns an OS/400 PASE memory address regardless of whether there is currently any

memory at that address.

50 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

Related Information

v “_CVTSPP()—Convert Space Pointer for OS/400 PASE” on page 49

v “_GETTS64() and _GETTS64_SPP()—Get Teraspace Address for OS/400 PASE”

v “_GETTS64M()—Get Multiple Teraspace Pointers for OS/400 PASE” on page 52

v “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70

v “_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE” on page 71

API introduced: V5R3

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

_GETTS64() and _GETTS64_SPP()—Get Teraspace Address for OS/400

PASE

 Syntax

 #include <as400_protos.h>

 ts64_t _GETTS64(const void *memory);

 ts64_t _GETTS64_SPP(const ILEpointer *source);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _GETTS64() function returns the 64-bit teraspace address equivalent of an OS/400 PASE memory

address. The _GETTS64_SPP() function returns the 64-bit teraspace address stored in a 16-byte space

pointer.

Parameters

memory

(Input) Pointer containing either an OS/400 PASE memory address, or a null pointer (zero).

source (Input) Pointer to a 16-byte tagged space pointer or 16-byte null pointer.

Authorities

_GETTS64 and _GETTS64_SPP require no authority.

Return Value

_GETTS64 and _GETTS64_SPP return a 64-bit teraspace address or zero.

OS/400 PASE APIs 51

#TOP_OF_PAGE
aplist.htm

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE

signal. See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400

exceptions.

Usage Notes

1. _GETTS64 returns zero if the input memory address is null (zero) or points to a location that cannot

contain OS/400 PASE memory.

2. _GETTS64_SPP returns zero if source is not a tagged space pointer or contains an address that is

outside teraspace.

3. _GETTS64 and _GETTS64_TS64 return a teraspace address regardless of whether there is currently

any memory at the result location.

Related Information

v “_CVTSPP()—Convert Space Pointer for OS/400 PASE” on page 49

v “_CVTTS64()—Convert Teraspace Address for OS/400 PASE” on page 50

v “_GETTS64M()—Get Multiple Teraspace Pointers for OS/400 PASE”

v “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70

v “_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE” on page 71

API introduced: V5R3

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

_GETTS64M()—Get Multiple Teraspace Pointers for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 void _GETTS64M(ts64_t *list,

 unsigned count);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _GETTS64M() function retrieves teraspace address equivalents for a set of OS/400 PASE memory

addresses.

Parameters

list (Input/Output) Pointer to an array of type ts64_t into which the caller has stored OS/400 PASE

memory addresses. _GETTS64M replaces each OS/400 PASE memory address with an equivalent

64-bit teraspace address.

count (Input) Specifies the number of entries in the list array.

52 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

Authorities

_GETTS64M requires no authority.

Return Value

_GETTS64M returns no function result.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE

signal. See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400

exceptions.

Usage Notes

1. _GETTS64M returns null (zero) for any input address that is either zero or cannot contain OS/400

PASE memory. OS/400 PASE memory is allocated from teraspace, but teraspace has a limited capacity

smaller than 64-bits, so OS/400 PASE can only provide addressability to a subset of a 64-bit address

space.

2. _GETTS64M returns (non-null) teraspace pointers regardless of whether there is currently any

memory at the OS/400 PASE addresses.

Related Information

v “_CVTSPP()—Convert Space Pointer for OS/400 PASE” on page 49

v “_CVTTS64()—Convert Teraspace Address for OS/400 PASE” on page 50

v “_GETTS64() and _GETTS64_SPP()—Get Teraspace Address for OS/400 PASE” on page 51

v “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70

v “_GETTS64M()—Get Multiple Teraspace Pointers for OS/400 PASE” on page 52

API introduced: V5R3

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 53

#TOP_OF_PAGE
aplist.htm

_ILECALLX()—Call an ILE Procedure for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 int _ILECALLX(const ILEpointer *target,

 ILEarglist_base *ILEarglist,

 const arg_type_t *signature,

 result_type_t result_type,

 int flags);

 int _ILECALL(const ILEpointer *target,

 ILEarglist_base *ILEarglist,

 const arg_type_t *signature,

 result_type_t result_type);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information.

The _ILECALLX() and _ILECALL() functions call an ILE procedure from an OS/400 PASE program. They

transfer control to an ILE procedure specified by a 16-byte tagged ILE procedure pointer, passing

arguments and returning the function result.

Parameters

target (Input) Pointer to a tagged procedure pointer that addresses the ILE procedure to call. target

must be a 16-byte aligned OS/400 PASE memory address.

ILEarglist

(Input/Output) Pointer to a 16-byte aligned ILE argument list structure. ILEarglist is the address

of the structure that contains any argument values to pass to the ILE procedure, as well as

memory for a function result returned by the ILE procedure. ILEarglist must be long enough to

contain all arguments required by the target ILE procedure to avoid unpredictable results.

 The base structure of an ILE argument list (including a function result area) is specified by type

ILEarglist_base. Any argument values for the ILE procedure are stored in memory immediately

following the ILEarglist_base type. The specific format of the argument list is determined by the

list of arg_type_t values addressed by the signature argument. The alignment requirements for

each argument value in the ILE argument list depends on its length:

 Argument Length Alignment

1 byte any

2 bytes 2 bytes

3-4 bytes 4 bytes

5-8 bytes 8 bytes

9 or more bytes 16 bytes

54 iSeries: OS/400 PASE APIs

signature

(Input) Pointer to a list of arg_type_t values that specify the sequence and type of arguments

passed to the ILE procedure. ILE procedures can accept a maximum of 400 arguments. The actual

number of arguments processed by the _ILECALLX or _ILECALL function is determined by the

number of entries in the signature list, which is determined by the location of the first ARG_END

value in the list. The following values are supported in the signature list:

 ARG_END (0) Specifies the end of the signature list.

ARG_INT8 (-1) Signed 1-byte integer argument.

ARG_UINT8 (-2) Unsigned 1-byte integer argument.

ARG_INT16 (-3) Signed 2-byte integer argument.

ARG_UINT16 (-4) Unsigned 2-byte integer argument.

ARG_INT32 (-5) Signed 4-byte integer argument.

ARG_UINT32 (-6) Unsigned 4-byte integer argument.

ARG_INT64 (-7) Signed 8-byte integer argument.

ARG_UINT64 (-8) Unsigned 8-byte integer argument.

ARG_FLOAT32 (-9) 4-byte floating-point argument.

ARG_FLOAT64 (-10) 8-byte floating-point argument.

ARG_MEMPTR (-11) The argument is a field of type ILEpointer into which the caller has stored an OS/400

PASE memory address (in member address). _ILECALLX and _ILECALL convert the

OS/400 PASE memory address to an equivalent teraspace address, except that address

zero is converted to a special value for a null pointer. The converted result is passed as

the argument value to the target ILE procedure. Both functions generally update the

ILEpointer argument value in memory so it contains a tagged space pointer, but the

memory may not be updated if the target ILE procedure uses ARGOPT linkage.

ARG_SPCPTR (-12) The argument is a field of type ILEpointer where the OS/400 PASE program has

stored a tagged space pointer (or an untagged or null pointer).

ARG_OPENPTR (-13) The argument is a field of type ILEpointer where the OS/400 PASE program has

stored a 16-byte pointer of any type (including possibly an untagged or null pointer).

ARG_MEMTS64 (-14) The argument is a field of type ts64_t into which the caller has stored an OS/400 PASE

memory address. _ILECALLX and _ILECALL convert the OS/400 PASE memory

address to an equivalent 64-bit teraspace pointer, except that null (address zero) is

unchanged. The converted result is passed as the argument value to the target ILE

procedure. The ts64_t argument value in memory may or may not be updated.

ARG_TS64PTR (-15) The argument is a field of type ts64_t where the OS/400 PASE program has stored a

64-bit teraspace address.

Any positive number
(1-32767)

The argument is an aggregate (structure or union). The value in the signature list is the

length, in bytes, of the aggregate.

result_type

(Input) Specifies the type of function result returned by the ILE procedure.

 The following values are supported:

 RESULT_VOID(0) No function result.

RESULT_INT8 (-1) Signed 1-byte integer result, returned in field result.s_int8.r_int8 in the ILEarglist

argument.

RESULT_UINT8 (-2) Unsigned 1-byte integer result, returned in field result.s_uint8.r_uint8 in the ILEarglist

argument.

RESULT_INT16 (-3) Signed 2-byte integer result, returned in field result.s_int16.r_int16 in the ILEarglist

argument.

RESULT_UINT16 (-4) Unsigned 2-byte integer result, returned in field result.s_uint16.r_uint16 in the

ILEarglist argument.

RESULT_INT32 (-5) Signed 4-byte integer result, returned in field result.s_int32.r_int32 in the ILEarglist

argument.

OS/400 PASE APIs 55

RESULT_UINT32 (-6) Unsigned 4-byte integer result, returned in field result.s_uint32.r_uint32 in the

ILEarglist argument.

RESULT_INT64 (-7) Signed 8-byte integer result, returned in field result.r_int64 in the ILEarglist argument.

RESULT_UINT64 (-8) Unsigned 8-byte integer result, returned in field result.r_uint64 in the ILEarglist

argument.

RESULT_FLOAT64 (-10) 8-byte floating-point result, returned in field result.r_float64 in the ILEarglist argument.

Any positive number
(1-32767)

The function result is an aggregate (structure or union). result_type is the length, in

bytes, of the aggregate. An aggregate function result is returned in a buffer allocated

by the caller and passed to the target ILE procedure using a special field in the

argument list. The caller must provide a buffer large enough for the result returned

by the target ILE procedure to avoid unpredictable results. An OS/400 PASE

program must set field result.r_aggregate.addr in type ILEarglist_base to the OS/400

PASE memory address of the result buffer before calling an ILE procedure that

returns an aggregate result. _ILECALLX and _ILECALL convert the OS/400 PASE

memory address to a teraspace address the same way they convert ARG_MEMPTR

arguments.

flags (Input) Specifies options to control how the ILE procedure program is called. The flags argument

is a bitwise logical-or of one or more of the following values:

 ILECALL_NOINTERRUPT
(0x00000004)

Specifies that OS/400 PASE signals will not interrupt the called ILE procedure. Some

system functions (such as select) can be interrupted by signals. Normally either an ILE

signal or an OS/400 PASE signal can interrupt such an operation, but

ILECALL_NOINTERRUPT delays OS/400 PASE signal processing until control returns

from the called ILE procedure. This option has no effect on ILE signal handling.

Authorities

_ILECALL and _ILECALLX require no authority.

Return Value

Most errors from _ILECALLX and _ILECALL are reported with OS/400 exception messages that are

converted to OS/400 PASE signals. See “OS/400 PASE Signal Handling” on page 88 for information

about handling OS/400 exceptions.

If no OS/400 PASE signal is sent, one of these values is returned:

 ILECALL_NOERROR(0) The target ILE procedure was called and returned normally.

ILECALL_INVALID_ARG (1) An invalid value was found in the signature list.

ILECALL_INVALID_RESULT

(2)

The result_type value is invalid.

ILECALL_INVALID_FLAGS

(3)

The flags value is invalid.

Usage Notes

1. _ILECALLX and _ILECALL can only call ILE procedures in an OS/400 bound program. If your

OS/400 PASE program needs to call an OS/400 program object (object type *PGM), you must use the

_PGMCALL function or use the systemCL function to run the CL CALL command.

2. Every module in a *PGM or *SRVPGM object containing a function directly called by PASE (using

_ILECALLX or _ILECALL) must be Teraspace-safe. If any module in the program was created as

TERASPACE(*NO), then OS/400 PASE will not be able to call any procedure in that program (even a

procedure in a module created as TERASPACE(*YES)).

56 iSeries: OS/400 PASE APIs

3. _ILECALLX and _ILECALL do no character encoding conversions, so the OS/400 PASE program may

need to convert argument and result character strings between ASCII and EBCDIC. OS/400 PASE

runtime function iconv can be used for character conversions.

4. An OS/400 PASE program can pass tagged space pointer arguments to an ILE procedure using either

ARG_SPCPTR or ARG_OPENPTR unless the target ILE procedure uses ARGOPT linkage, in which

case ARG_SPCPTR must be used. ARG_MEMPTR can be used for space pointer arguments regardless

of what linkage is used by the target ILE procedure.

5. ILE procedure pointers address resources inside an ILE activation group. The machine prohibits use of

activation group resources from a process other than the owner of the activation group. This means

that the child process of a fork cannot use ILE procedure pointers inherited from the parent process.

The child process can, however, use _ILELOADX to load the bound program (creating a new

activation in the child process) and then use _ILESYMX to obtain ILE procedure pointers into the

new activation.

6. See “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70 (_SETSPP) for

more information about tagged space pointers and sharing tagged pointers between processes.

7. _ILECALL is equivalent to _ILECALLX with the ILECALL_NOINTERRUPT flag.

Related Information

v “_PGMCALL()—Call an OS/400 Program for OS/400 PASE” on page 63

v “_ILESYMX()—Find an Exported ILE Symbol for OS/400 PASE” on page 60

v “_ILELOADX()—Load an ILE Bound Program for OS/400 PASE” on page 58

v “size_ILEarglist()—Compute ILE Argument List Size for OS/400 PASE” on page 43

v “build_ILEarglist()—Build an ILE Argument List for OS/400 PASE” on page 30

v “_CVTSPP()—Convert Space Pointer for OS/400 PASE” on page 49

v “_CVTTS64()—Convert Teraspace Address for OS/400 PASE” on page 50

v “_GETTS64() and _GETTS64_SPP()—Get Teraspace Address for OS/400 PASE” on page 51

v “_GETTS64M()—Get Multiple Teraspace Pointers for OS/400 PASE” on page 52

v “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70

v “_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE” on page 71

v “systemCL()—Run a CL Command for OS/400 PASE” on page 46

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 57

#TOP_OF_PAGE
aplist.htm

_ILELOADX()—Load an ILE Bound Program for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 unsigned long long _ILELOADX(const void *id,

 unsigned int flags);

 int _ILELOAD(const void *id,

 unsigned int flags);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _ILELOADX() and _ILELOAD() functions load a bound program into the ILE activation group

associated with the procedure that started OS/400 PASE (either the activation group that called the

Qp2RunPase API, or the default activation group for a job running program QP2FORK).

Parameters

id (Input) Pointer to the identification of the bound program.id is either the address of a

null-terminated character string in the OS/400 PASE CCSID that names the program, or the

address of a system pointer to the program, depending on the value of the flags argument.

flags (Input) Specifies options to control how the bound program is found and activated. The flags

argument is a bitwise logical-or of one or more of the following values:

 ILELOAD_PATH
(0x00000000)

Specifies that the id argument is the address of a string that contains an absolute or

relative path in the Integrated File System to a program or service program object.

Alphabetic case is either ignored or honored depending on the attributes of the File

System that contains the path. ILELOAD_PATH, ILELOAD_LIBOBJ, and

ILELOAD_PGMPTR are mutually exclusive.

ILELOAD_LIBOBJ
(0x00000001)

Specifies that the id argument is the address of a string that contains a qualified

library/object name of a service program (where omitting the library name implies

resolving to the object through the job library list). Alphabetic case is honored when

searching for a library/object name (so the string should be all uppercase).

ILELOAD_PATH, ILELOAD_LIBOBJ, and ILELOAD_PGMPTR are mutually exclusive.

ILELOAD_PGMPTR
(0x00000002)

Specifies that the id argument is the address of a system pointer to the bound program

(object type *SRVPGM or *PGM) to load. ILELOAD_PATH, ILELOAD_LIBOBJ, and

ILELOAD_PGMPTR are mutually exclusive.

58 iSeries: OS/400 PASE APIs

Authorities

_ILELOADX and _ILELOAD call the ILE QleActBndPgmLong API to activate the bound program. See

QleActBndPgmLong()—Activate Bound Program Long for information about authorities required to use

_ILELOADX and _ILELOAD.

Return Value

A function result of -1 indicates an error that is further qualified by an errno value. If the bound program

was successfully activated (including the case where it was already activated before _ILELOADX or

_ILELOAD ran), the function result is an activation mark that uniquely identifies the activation within

the process. 64-bit ILE activation mark values can only be returned using _ILELOADX.

Error Conditions

Memory errors and errors while activating the bound program may be reported with an OS/400

exception message that the system converts to an OS/400 PASE signal (not return code and errno values).

See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400 exceptions.

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE

errno EAPAR):

 [EACCES] Not authorized to a library or directory needed to resolve the id.

[EBUSY] A library or directory needed to resolve the specified id is currently in use (locked).

[EFAULT] A memory fault occurred attempting to reference the id.

[EINVAL] An invalid argument value was specified.

[EINTER] An signal interrupted the operation.

[ENAMETOOLONG] Some component of the specified id is too long, or the entire id exceeds the system

limit.

[ENOENT] No file/object was found for the specified id.

[ENOTDIR] A qualifier part of the id is not a directory.

[ELOOP] Too many levels of symbolic links.

Related Information

v “_ILECALLX()—Call an ILE Procedure for OS/400 PASE” on page 54

v “_ILESYMX()—Find an Exported ILE Symbol for OS/400 PASE” on page 60

v “_RSLOBJ()—Resolve to an OS/400 Object for OS/400 PASE” on page 66

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 59

qleactbpl.htm
#TOP_OF_PAGE
aplist.htm

_ILESYMX()—Find an Exported ILE Symbol for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 int _ILESYMX(ILEpointer *export,

 unsigned long long actmark,

 const char *symbol);

 int _ILESYM(ILEpointer *export,

 int actmark,

 const char *symbol);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _ILESYMX() and _ILESYM() functions find an exported symbol in the activation of an ILE bound

program and return a 16-byte tagged pointer to the data or procedure for the symbol.

Parameters

export (Output) Pointer to a 16-byte aligned buffer for the tagged pointer return value. The export buffer

used to store a tagged pointer to the data or procedure for the exported symbol.

actmark

(Input) Specifies an activation mark that identifies the activation (in the current OS/400 job) to

search for the symbol. A value of zero causes the system to search all activations in the activation

group that started OS/400 PASE (either the activation group that called the Qp2RunPase API, or

the default activation group for a job running program QP2FORK). The _ILELOADX and

_ILELOAD functions return an activation mark when they load a bound program. 64-bit

activation mark values can only be handled by _ILESYMX and _ILELOADX.

symbol

(Input) Pointer to the symbol name to find. symbol is the address of a null-terminated character

string in the OS/400 PASE CCSID that specifies the name of a symbol exported by the actmark

activation.

Authorities

_ILESYMX and _ILESYM call the ILE QleGetExpLong API to find the exported symbol. See

QleGetExpLong()—Get Export Long for information about authorities required to use _ILESYMX and

_ILESYM.

Return Value

A function result of -1 indicates an error that is further qualified by an errno value. If the symbol was

successfully found, the export pointer is set to the address of the function or data for the symbol, and the

function result is set to one of these values:

60 iSeries: OS/400 PASE APIs

qlegetexpl.htm

ILESYM_PROCEDURE (1) The export return value is a tagged pointer to an ILE procedure. An ILE procedure

pointer can be used with the _ILECALLX function to call the ILE procedure.

ILESYM_DATA(2) The export return value is a tagged space pointer to a data item in the ILE activation.

Error Conditions

Memory errors and errors during ILE symbol resolution processing may be reported with an OS/400

exception message that the system converts to an OS/400 PASE signal (not return code and errno values).

See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400 exceptions.

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE

errno EAPAR):

 [EACCES] Not authorized to the actmark activation.

[ENOENT] The symbol was not found in the actmark activation.

Related Information

v “_ILELOADX()—Load an ILE Bound Program for OS/400 PASE” on page 58

v “_ILECALLX()—Call an ILE Procedure for OS/400 PASE” on page 54

API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

_MEMCPY_WT()—Copy Memory With Tags for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 void* _MEMCPY_WT(void *target,

 const void *source,

 size_t length);

 void _MEMCPY_WT2(const ILEpointer *target,

 const ILEpointer *source,

 size_t length);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _MEMCPY_WT() and _MEMCPY_WT2() functions copy memory without destroying 16-byte tagged

pointers.

OS/400 PASE APIs 61

#TOP_OF_PAGE
aplist.htm

Standard memory copy functions such as memcpy never produce a usable tagged pointer in the target

memory. _MEMCPY_WT and _MEMCPY_WT2 copy memory in a way that preserves the integrity of any

complete (16-byte) tagged pointers copied, as long as the source and target have the same alignment with

respect to a 16-byte boundary.

Parameters

target (Output) Pointer to target memory. For _MEMCPY_WT, target is the OS/400 PASE address of the

target memory. For _MEMCPY_WT2, target is the 16-byte aligned address of a tagged space

pointer to the target memory.

source (Input) Pointer to source memory. For _MEMCPY_WT, source is the OS/400 PASE address of the

source memory. For _MEMCPY_WT2, source is the 16-byte aligned address of a tagged space

pointer to the source memory.

length (Input) Specifies the number of bytes to copy between the source and target.

Authorities

_MEMCPY_WT and _MEMCPY_WT2 require no authority.

Return Value

_MEMCPY_WT returns the target memory address. _MEMCPY_WT2 returns no function result.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE

signal. See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400

exceptions.

Usage Notes

1. _MEMCPY_WT only copies between memory areas in the OS/400 PASE address space.

_MEMCPY_WT2 can copy between any memory areas addressable through tagged space pointers,

which need not be in the OS/400 PASE address space.

2. Memory is copied without error if the source and target do not have the same alignment with respect

to a 16-byte boundary or if only part of a tagged pointer is copied, but the target will not contain a

usable tagged pointer.

3. _MEMCPY_WT and _MEMCPY_WT2 are implemented with kernel system calls, so they generally run

slower than memcpy.

Related Information

v “_CVTSPP()—Convert Space Pointer for OS/400 PASE” on page 49

v “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70

v “_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE” on page 71

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

62 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

_PGMCALL()—Call an OS/400 Program for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 int _PGMCALL(const ILEpointer *target,

 void **argv,

 unsigned flags);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _PGMCALL() function calls an OS/400 program (object type *PGM) from an OS/400 PASE program.

It transfers control to the *PGM object specified by a 16-byte tagged system pointer (passing any

necessary arguments) and resumes execution when control returns.

Parameters

target (Input) Pointer to a tagged system pointer that addresses the OS/400 program (object type *PGM)

to call. target must be a 16-byte aligned OS/400 PASE memory address.

argv (Input/Output) Array of pointers to arguments. argv is the address of an array of pointers to

argument variables that are (usually) passed by-address to the OS/400 program. argv can be zero

(null) if there are no arguments to pass. The last element in the array must be a null pointer. A

maximum of PGMCALL_MAXARGS (255) arguments can be passed to an OS/400 program

unless PGMCALL_NOMAXARGS is specified.

flags (Input) Specifies options to control how the OS/400 program is called. The flags argument is a

bitwise logical-or of one or more of the following values:

 PGMCALL_DIRECT_ARGS
(0x00000001)

Specifies that the addresses in the argv array are passed directly to the OS/400

program as formal arguments. If PGMCALL_DIRECT_ARGS is omitted, the system

builds tagged space pointers to the argument memory locations identified in the argv

array and passes the space pointers as formal arguments (standard OS/400 program

linkage).

PGMCALL_DROP_ADOPT
(0x00000002)

Specifies that authorizations adopted by OS/400 program invocations already in the

stack are dropped so the called program only benefits from authorizations available to

the user and group profiles for the thread.

PGMCALL_NOINTERRUPT
(0x00000004)

Specifies that OS/400 PASE signals will not interrupt the called OS/400 program.

Some system functions (such as select) can be interrupted by signals. Normally either

an ILE signal or an OS/400 PASE signal can interrupt such an operation, but

PGMCALL_NOINTERRUPT delays OS/400 PASE signal processing until control

returns from the called OS/400 program. This option has no effect on ILE signal

handling.

OS/400 PASE APIs 63

PGMCALL_NOMAXARGS
(0x00000008)

Specifies that more than 255 arguments may be passed to the OS/400 program.

Current system architecture limits the number of arguments to 16383 when this flag is

set. Specifying PGMCALL_NOMAXARGS slightly increases system resource

requirements even when no more than 255 arguments are provided.

PGMCALL_ASCII_STRINGS
(0x00000010)

Specifies that all arguments are null-terminated ASCII character strings. The system

converts argument strings from the OS/400 PASE CCSID to the job default CCSID and

passes the converted (EBCDIC) strings to the OS/400 program. The converted strings

are stored in an internal system buffer, so any changes made by the OS/400 program

are not returned to the caller (by-value argument behavior).

Authorities

Object Referred to

Authority
Required

OS/400 program to call *X

Return Value

Most errors from _PGMCALL are reported with OS/400 exception messages that are converted to

OS/400 PASE signals. See “OS/400 PASE Signal Handling” on page 88 for information about handling

OS/400 exceptions.

If no OS/400 PASE signal is sent, a function result of zero indicates the OS/400 program was called and

returned normally. A function result of -1 indicates an error that is further qualified by an errno value.

Error Conditions

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE

errno EAPAR):

 [EINVAL] An invalid flags value was specified, or too many arguments were provided.

Usage Notes

1. _PGMCALL can only call OS/400 program objects (object type *PGM). If your OS/400 PASE program

needs to call a particular ILE procedure inside a *PGM or *SRVPGM object, you must to use the

_ILECALL function.

2. You can use the _RSLOBJ or _RSLOBJ2 function to obtain a system pointer to an OS/400 program

(object type *PGM).

3. Any OS/400 program that accepts arguments must be Teraspace-safe (created using

TERASPACE(*YES)) to be called using _PGMCALL because the arguments are usually passed in

Teraspace storage.

4. Arguments (addressed by pointers in the argv array) can be of any data type. Arguments are passed

by-address, so the called OS/400 program can modify argument variables to return results to the

OS/400 PASE program

unless PGMCALL_ASCII_STRINGS is specified.

64 iSeries: OS/400 PASE APIs

5. _PGMCALL does no character encoding conversions

unless PGMCALL_ASCII_STRINGS is

specified,

so the OS/400 PASE program may need to convert argument and result character strings

between ASCII and EBCDIC. OS/400 PASE runtime function iconv can be used for character

conversions.

Related Information

v “_RSLOBJ()—Resolve to an OS/400 Object for OS/400 PASE” on page 66

v “_ILECALLX()—Call an ILE Procedure for OS/400 PASE” on page 54

v “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70

v “_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE” on page 71

v “Qp2setenv_ile()—Set ILE environment variables for OS/400 PASE” on page 42

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

_RETURN()—Return Without Exiting OS/400 PASE

 Syntax

 #include <as400_protos.h>

 int _RETURN(void);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: No

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _RETURN() function returns to the ILE caller that called OS/400 PASE in this job, without exiting the

OS/400 PASE program. OS/400 PASE remains active in the job, so APIs Qp2CallPase and Qp2CallPase2

can be used to call procedures in the OS/400 PASE program.

Parameters

None.

Authorities

None.

Return Value

_RETURN does not return to the OS/400 PASE program if it successfully returns to the ILE caller. A

function result of -1 with an errno is returned for any error.

Error Conditions

EPERM is set if _RETURN is used in a fork child process or in an OS/400 PASE program that is

currently running multiple threads.

OS/400 PASE APIs 65

#TOP_OF_PAGE
aplist.htm

Usage Notes

1. The system provides two OS/400 PASE programs, /usr/lib/start32 (for 32-bits) and /usr/lib/start64

(for 64-bits), that return without exiting immediately after initializing the standard C library (libc.a)

and pthreads library (libpthreads.a).

2. The system ends any OS/400 PASE program when it destroys the activation group that called API

Qp2RunPase. API program QP2SHELL always calls Qp2RunPase in a *NEW activation group that is

destroyed before return, so QP2SHELL is not useful for running an OS/400 PASE program that

returns without exiting.

3. You may need to call ILE API Qp2EndPase to end an OS/400 PASE program that uses _RETURN. See

“Qp2EndPase()—End an OS/400 PASE Program” on page 16 for more information.

Related Information

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22—Run an OS/400 PASE Program

v “Qp2EndPase()—End an OS/400 PASE Program” on page 16—End an OS/400 PASE Program

 API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

_RSLOBJ()—Resolve to an OS/400 Object for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 int _RSLOBJ(ILEpointer *sysptr,

 const char *path,

 char *objtype);

 int _RSLOBJ2(ILEpointer *sysptr,

 unsigned short type_subtype,

 const char *objname,

 const char *libname);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _RSLOBJ() and _RSLOBJ2() functions resolve to an OS/400 object. They accept symbolic information

that identifies the object and return a 16-byte tagged system pointer to the specified object.

Parameters

sysptr (Output) Pointer to the OS/400 object. sysptr is the address of a 16-byte aligned buffer allocated

by the caller and used to return a system pointer to the OS/400 object.

path (Input) Pointer to an Integrated File System path name that locates the OS/400 object. path is the

address of a null-terminated string in the OS/400 PASE CCSID that contains a path name for the

OS/400 object.

66 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

objtype

(Output) Pointer to the returned OS/400 object type. objtype is the address of a buffer allocated by

the caller and used to return a null-terminated string in the OS/400 PASE CCSID that identifies

the OS/400 object type. If objtype is a null pointer, no OS/400 object type is returned. When

objtype is not null, the caller must provide a buffer of length RSLOBJ_OBJTYPE_MAXLEN (11) to

avoid errors.

type_subtype

(Input) Object type and subtype. type_subtype specifies the MI object type and MI object subtype

of the OS/400 object. Header file <as400_types.h> declares these constants for type and subtype

values:

 RSLOBJ_TS_PGM
(0x0201)

Specifies the MI type and subtype for an OS/400 program (object type *PGM).

RSLOBJ_TS_SRVPGM
(0x0203)

Specifies the MI type and subtype for an OS/400 service program (object type

*SRVPGM).

objname

(Input) Pointer to the name of the OS/400 object. objname is the address of a null-terminated

string in the OS/400 PASE CCSID that contains the name of the OS/400 object.

libname

(Input) Pointer to the name of the OS/400 library that contains the object. libname is the address

of a null-terminated string in the OS/400 PASE CCSID that contains the name of an OS/400

library. Specifying a null pointer or a pointer to a null string is the same as specifying ″*LIBL″,

which searches the thread library list.

Authorities

Object Referred to

Authority
Required

Every directory in the Integrated File System path to the OS/400 object *X

OS/400 library that contains the object *X

Return Value

The function result is zero if the OS/400 object was found and a system pointer was returned in the

sysptr argument. A function result of -1 indicates an error that is further qualified by an errno value.

Error Conditions

Memory errors may be reported with an OS/400 exception message that the system converts to an

OS/400 PASE signal (not return code and errno values). See “OS/400 PASE Signal Handling” on page 88

for information about handling OS/400 exceptions.

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE

errno EAPAR):

 [EACCES] Not authorized to a library or directory needed to resolve to the OS/400 object.

[EBUSY] A library or directory needed to resolve to the OS/400 object is currently in use

(locked).

[EFAULT] A memory fault occurred attempting to reference an argument.

[EINVAL] An invalid argument value was specified.

OS/400 PASE APIs 67

[EINTER] An signal interrupted the operation.

[ENAMETOOLONG] Some component of the specified path is too long, or the entire path exceeds the system

limit, or the objname or libname string is longer than 30 characters.

[ENOENT] The specified OS/400 object was not found.

[ENOTDIR] A qualifier part of the path is not a directory.

[ELOOP] Too many levels of symbolic links.

Usage Notes

1. For _RSLOBJ, alphabetic case is either ignored or honored depending on the attributes of the file

system that contains the path. Alphabetic case is always honored by _RSLOBJ2, so the objname and

libname strings must be uppercase.

Related Information

v “_ILELOADX()—Load an ILE Bound Program for OS/400 PASE” on page 58

v “_PGMCALL()—Call an OS/400 Program for OS/400 PASE” on page 63

API introduced: V5R2

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

_SETCCSID()—Set OS/400 PASE CCSID

 Syntax

 #include <as400_protos.h>

 int _SETCCSID(int ccsid);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: No

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _SETCCSID() function returns the previous value of the OS/400 PASE Coded Character Set Identifier

(CCSID) and optionally sets a new OS/400 PASE CCSID.

Parameters

ccsid (Input) Specifies the new OS/400 PASE CCSID value, or -1 to retrieve the current OS/400 PASE

CCSID without changing it. An OS/400 PASE CCSID must be either a single-byte ASCII encoding

that the ILE version of iconv can convert to and from the job default CCSID, or 1208 for UTF-8

encoding.

68 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

Authorities

_SETCCSID requires no authority.

Return Value

_SETCCSID returns either the original OS/400 PASE CCSID (before it was changed), or -1 if an error

occurred and the OS/400 PASE CCSID was left unchanged.

Error Conditions

The only error condition that causes a function result of -1 is that the new ccsid cannot be converted to or

from the OS/400 job default CCSID.

Usage Notes

1. The initial OS/400 PASE CCSID value is specified as a parameter on the Qp2RunPase API. The

OS/400 PASE CCSID has two primary uses:

v It is used to set the the CCSID attribute of any bytestream file created in the Integrate File System

by an OS/400 PASE program.

v It is used by OS/400 PASE runtime functions to convert character arguments and results between

the OS/400 PASE CCSID and whatever encoding is required by the OS/400 service used to

implement the function.
2. The OS/400 PASE CCSID should generally be the CCSID equivalent of the code set for the current

locale. See “OS/400 PASE Locales” on page 76 to determine what locales are supported by OS/400

PASE.

3. Character arguments and results for OS/400 PASE runtime functions that use OS/400 services are

almost always automatically converted using the OS/400 PASE CCSID. For example, the name of a

bytestream file passed to the OS/400 PASE open function is converted from the OS/400 PASE CCSID

to the internal encoding required by the OS/400 Integrated File System.

4. Any data an OS/400 PASE program writes to or reads from a file descriptor for an open bytestream

file, socket, FIFO, or pipe is generally not converted. The only exception is for the initial file

descriptors 0, 1, and 2 provided when the Qp2RunPase API is called to start an OS/400 PASE

program, which default to converting file data between the OS/400 PASE CCSID and the job default

CCSID (see “Qp2RunPase()—Run an OS/400 PASE Program” on page 22 (Qp2RunPase) for more

information).

5. Other than special support for file descriptors 0, 1, and 2, OS/400 PASE runtime does no CCSID

conversion of file data. This differs from ILE runtime, which does CCSID conversion between the file

CCSID and job default CCSID for any file opened in text mode. OS/400 PASE runtime sets the CCSID

attribute of any file it creates to the OS/400 PASE CCSID, so an ILE program that uses text mode to

open an ASCII file created by an OS/400 PASE program can read and write EBCDIC data.

6. The OS/400 PASE runtime functions cstoccsid and ccsidtocs convert between AIX Character Set

names and CCSID values.

Related Information

v “Qp2RunPase()—Run an OS/400 PASE Program” on page 22—Run an OS/400 PASE Program

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 69

#TOP_OF_PAGE
aplist.htm

_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 void _SETSPP(ILEpointer *target,

 const void *memory);

 void _SETSPP_TS64(ILEpointer *target,

 ts64_t ts64);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _SETSPP() function sets a tagged space pointer to the teraspace equivalent of an OS/400 PASE

memory address.

The _SETSPP_TS64() function sets a tagged space pointer to the memory identified

by a 64-bit teraspace address.

Parameters

target (Output) Pointer to a 16-byte aligned buffer where the tagged space pointer (or null pointer) is

returned.

memory

(Input) Pointer containing either an OS/400 PASE memory address, or a null pointer (zero).

ts64 (Input) 64-bit teraspace address, or null (zero).

Authorities

_SETSPP and _SETSPP_TS64 require no authority.

Return Value

_SETSPP and _SETSPP_TS64 return no function result. A tagged space pointer or 16-byte null pointer is

returned in the target buffer.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE

signal. See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400

exceptions.

Usage Notes

1. _SETSPP returns a 16-byte null pointer if the input OS/400 PASE memory address is null (zero) or if a

64-bit memory value points to a location that cannot contain OS/400 PASE memory. OS/400 PASE

memory is allocated from teraspace, but teraspace has a limited capacity smaller than 64-bits, so

OS/400 PASE can only provide addressability to a subset of a 64-bit address space.

70 iSeries: OS/400 PASE APIs

2.

_SETSPP_TS64 returns a 16-byte null pointer if the input ts64 value is zero or outside the range of

teraspace.

3.

_SETSPP and _SETSPP_TS64 return target a space pointer regardless of whether there is currently

any memory at the target address.

4. A tagged space pointer to a teraspace location must only be used by the process that owns the

teraspace, although the current system implementation does not reliably enforce this restriction.

Applications must not assume that a process can reference memory in the teraspace of another

process because future system implementations may make this impossible. Tagged space pointers to

teraspace memory that were either inherited by the child process of a fork or stored in shared

memory by another process should be considered unusable.

5. Tagged (16-byte) pointers must not be stored in memory mapped from a bytestream file (by either

mmap or shmat) although the current system implementation does not reliably enforce this restriction.

Tagged pointers can be stored in shared memory objects (created by shmget and mapped by shmat),

but a tagged space pointer to teraspace memory cannot be reliably used by a process other than the

one that owns the teraspace.

Related Information

v “_CVTSPP()—Convert Space Pointer for OS/400 PASE” on page 49

v “_CVTTS64()—Convert Teraspace Address for OS/400 PASE” on page 50

v “_GETTS64() and _GETTS64_SPP()—Get Teraspace Address for OS/400 PASE” on page 51

v “_GETTS64M()—Get Multiple Teraspace Pointers for OS/400 PASE” on page 52

v “_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE”

 API introduced: V4R5 for _SETSPP, V5R3 for _SETSPP_TS64

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 void _SETSPPM(ILEpointer *const *target);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _SETSPPM() function sets multiple tagged space pointers to the teraspace equivalents of OS/400

PASE memory addresses.

OS/400 PASE APIs 71

#TOP_OF_PAGE
aplist.htm

Parameters

target (Input/Output) Pointer to a list of pointers (of type ILEpointer), with a null pointer marking the

end of the list. _SETSPPM updates each ILEpointer with a tagged space pointer to the teraspace

equivalent address of the OS/400 PASE memory address input through the addr field of the

ILEpointer.

Authorities

_SETSPPM requires no authority.

Return Value

_SETSPPM returns no function result.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE

signal. See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400

exceptions.

Usage Notes

1. _SETSPPM returns a 16-byte null ILEpointer if the OS/400 PASE memory address is null (zero) or

points to a location that cannot contain OS/400 PASE memory. OS/400 PASE memory is allocated

from teraspace, but teraspace has a limited capacity smaller than 64-bits, so OS/400 PASE can only

provide addressability to a subset of a 64-bit address space.

2. _SETSPPM returns space pointers regardless of whether there is currently any memory at the OS/400

PASE addresses.

3. A tagged space pointer to a teraspace location must only be used by the process that owns the

teraspace, although the current system implementation does not reliably enforce this restriction.

Applications must not assume that a process can reference memory in the teraspace of another

process because future system implementations may make this impossible. Tagged space pointers to

teraspace memory that were either inherited by the child process of a fork or stored in shared

memory by another process should be considered unusable.

4. Tagged (16-byte) pointers must not be stored in memory mapped from a bytestream file (by either

mmap or shmat) although the current system implementation does not reliably enforce this restriction.

Tagged pointers can be stored in shared memory objects (created by shmget and mapped by shmat),

but a tagged space pointer to teraspace memory cannot be reliably used by a process other than the

one that owns the teraspace.

Related Information

v “_CVTSPP()—Convert Space Pointer for OS/400 PASE” on page 49

v “_CVTTS64()—Convert Teraspace Address for OS/400 PASE” on page 50

v “_GETTS64() and _GETTS64_SPP()—Get Teraspace Address for OS/400 PASE” on page 51

v “_GETTS64M()—Get Multiple Teraspace Pointers for OS/400 PASE” on page 52

v “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70

API introduced: V5R3

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

72 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

_STRLEN_SPP()—Determine Character String Length for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 size_t _STRLEN_SPP(const ILEpointer *string);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _STRLEN_SPP() determines the length of a null-terminated character string. It performs the same

operation as the strlen function, but uses a 16-byte tagged space pointer to locate the string.

Parameters

string (Input) Pointer to character string. string is the 16-byte aligned address of a tagged space pointer

to the character string.

Authorities

_STRLEN_SPP requires no authority.

Return Value

_STRLEN_SPP returns length of the character string.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE

signal. See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400

exceptions.

Usage Notes

1. _STRLEN_SPP can reference any memory addressable through a tagged space pointer, which need not

be in the OS/400 PASE address space.

2. _STRLEN_SPP is implemented with a kernel system call, so it generally runs slower than strlen.

Related Information

v “_CVTSPP()—Convert Space Pointer for OS/400 PASE” on page 49

v “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70

v “_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE” on page 71

 API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 73

#TOP_OF_PAGE
aplist.htm

_STRNCPY_SPP()—Copy Character String for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 void _STRNCPY_SPP(const ILEpointer *target,

 const ILEpointer *source,

 size_t length);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more

information about creating OS/400 PASE programs.

The _STRNCPY_SPP() function copies a null-terminated character string. It performs the same operation

as the strncpy function, but uses 16-byte tagged space pointers to locate the source and target strings.

Parameters

target (Output) Pointer to target buffer. Target is the 16-byte aligned address of a tagged space pointer

to the target buffer.

source (Input) Pointer to source string. source is the 16-byte aligned address of a tagged space pointer to

the source character string.

length (Input) Specifies the maximum number of bytes to copy between the source and target. If the

source string is too long, then only the specified number of bytes are copied and the target string

is not terminated with a null. If the source string is too short, the copy is padded with nulls to fill

the target buffer.

Authorities

_STRNCPY_SPP requires no authority.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE

signal. See “OS/400 PASE Signal Handling” on page 88 for information about handling OS/400

exceptions.

Usage Notes

1. _STRNCPY_SPP can copy between any memory areas addressable through tagged space pointers,

which need not be in the OS/400 PASE address space.

2. _STRNCPY_SPP is implemented with a kernel system call, so it generally runs slower than strncpy.

Related Information

v “_CVTSPP()—Convert Space Pointer for OS/400 PASE” on page 49

v “_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE” on page 70

v “_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE” on page 71

74 iSeries: OS/400 PASE APIs

API introduced: V4R5

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

Concepts

These are the concepts for this category.

OS/400 PASE Runtime Libraries

OS/400 PASE runtime supports a large subset of the interfaces provided by AIX runtime. Most runtime

interfaces supported by OS/400 PASE provide the same options and behavior as AIX. The latest

information about what AIX runtime interfaces are supported by OS/400 PASE can found at the

PartnerWorld for Developers, iSeries

web site.

OS/400 PASE interfaces for Structured Query Language (SQL) Call Level Interface (CLI) are somewhat

different from any AIX database. OS/400 PASE library libdb400.a handles (ASCII/EBCDIC) character

encoding conversions, but supports only the options and behaviors provided by DB2 Universal Database

for iSeries. An OS/400 PASE program that uses SQL CLI must compile using OS/400 header file sqlcli.h.

See OS/400 PASE for more information.

OS/400 PASE runtime includes the following libraries, installed (as symbolic links) in /usr/lib. See AIX

documentation

for information about most of the interfaces exported by these libraries, DB2

Universal Database for iSeries documentation for information about SQL CLI interfaces, and “OS/400

PASE APIs,” on page 1 for information about interfaces that are unique to OS/400 PASE:

 Library Description

libbsd.a BSD UNIX(TM) equivalence runtime

libc.a C runtime

libC.a C++ runtime

libc128.a C 128-bit (type long double) runtime

libC128.a C++ 128-bit (type long double) runtime

libcrypt.a C runtime cryptographic interfaces

libcur.a AIX legacy Curses library

libdb400.a DB2 Universal Database SQL CLI runtime

libdbm.a New Database Manager (NDBM) interfaces

libdbx.a dbx (debugger) utility support

libdl.a Dynamic load runtime

libg.a Debug support

libgaimisc.a Internal X Windows support

libgair4.a Internal X Windows support

libi18n.a Internationalization runtime

libICE.a Inter-Client Exchange library

libiconv.a Character conversion runtime

libIM.a Input method library

libl.a lex support

libld.a Object File Access Routine library

OS/400 PASE APIs 75

#TOP_OF_PAGE
aplist.htm
http://www.ibm.com/iseries/developer/
http://www-1.ibm.com/servers/aix/library/
http://www-1.ibm.com/servers/aix/library/

Library Description

libm.a IEEE Math library

libMrm.a Motif Runtime library for UIL

libnsl.a Transport Independent Remote Procedure Call (TI-RPC)

libpthdebug.a Threads debug support

libpthreads.a Threads runtime

libpthreads_compat.a Old threads compatibility

libPW.a Programmers Workbench library

librtl.a Runtime linking runtime

libSM.a X Session Management library

libtli.a Transport Library Interface

libUil.a Motif User Interface Language library

libxcurses.a Curses library

libxti.a X/Open Transport Library Interface

libX11.a C interface for the X Window System protocol

libXaw.a Athena Widget Set

libXext.a Interfaces to X windows extensions

libXi.a X Windows input processing

libxlf90_r.a FORTRAN runtime

libxlfpthrds_compat.a Old FORTRAN threads compatibility

libxlomp_ser.a Open mp (multi-processing) support

libxlsmp.a Symmetric mp (multiprocessing) support

libXm.a Motif widget library

libXmu.a Miscellaneous X Windows utility functions

libXtst.a X Windows testing support

libXt.a X Toolkit Intrinsics

liby.a yacc support

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE Locales

OS/400 PASE includes a subset of the locales provided by AIX, supporting both 32-bit and 64-bit

applications. OS/400 PASE locales are installed as symbolic links in directory /usr/lib/nls/loc.

The full name of any OS/400 PASE locale includes a code set name, which equates to the Coded

Character Set Identifier (CCSID) shown in the table. Some locales also have a short name that exclude the

code set part of the name. Any locale with a name ending in “@euro” uses the Euro as the currency

symbol.

Any locale with a name ending in “@preeuro” uses the traditional currency symbol.

Most OS/400 PASE locales are shipped with OS/400 language feature codes. Only locales in the base

*CODE load and locales for installed language feature codes will exist on a particular OS/400 system.

76 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm

Feature

Locale Names

Language Region CCSID Short Name Full Name

*CODE be_BY be_BY.ISO8859-5 Byelorussian Byelorussian SSR 915

BE_BY BE_BY.UTF-8 Byelorussian Byelorussian SSR 1208

ET_EE ET_EE.UTF-8 Estonian Estonia 1208

UK_UA UK_UA.UTF-8 Ukrainian Ukraine 1208

id_ID id_ID.8859-15 Indonesian Indonesia 923

ID_ID ID_ID.UTF-8 Indonesian Indonesia 1208

ms_MY ms_MY.8859-15 Malay Malaysia 923

MS_MY MS_MY.UTF-8 Malay Malaysia 1208

2903 LT_LT LT_LT.UTF-8 Lithuanian Lithuania 1208

2904 LV_LV LV_LV.UTF-8 Latvian Latvia 1208

2905 VI_VN VI_VN.UTF-8 Vietnamese Vietnam 1208

2909 en_BE en_BE.8859-15 English Belgium 923

en_BE.8859-15@preeuro English Belgium 923

EN_BE EN_BE.UTF-8 English Belgium 1208

EN_BE.UTF-8@preeuro English Belgium 1208

2911 sl_SI sl_SI.ISO8859-2 Slovene Slovenia 912

SL_SI SL_SI.UTF-8 Slovene Slovenia 1208

2912 hr_HR hr_HR.ISO8859-2 Croatian Croatia 912

HR_HR HR_HR.UTF-8 Croatian Croatia 1208

2913 mk_MK mk_MK.ISO8859-5 Macedonian Macedonia 915

MK_MK MK_MK.UTF-8 Macedonian Macedonia 1208

2914 sh_SP sh_SP.ISO8859-2 Serbian Latin Yugoslavia 912

SH_SP SH_SP.UTF-8 Serbian Latin Yugoslavia 1208

sh_YU sh_YU.ISO8859-2 Serbian Latin Yugoslavia 912

SH_YU SH_YU.UTF-8 Serbian Latin Yugoslavia 1208

sr_SP sr_SP.ISO8859-5 Serbian Cyrillic Yugoslavia 915

SR_SP SR_SP.UTF-8 Serbian Cyrillic Yugoslavia 1208

sr_YU sr_YU.ISO8859-5 Serbian Cyrillic Yugoslavia 915

SR_YU SR_YU.UTF-8 Serbian Cyrillic Yugoslavia 1208

2922 pt_PT pt_PT.ISO8859-1 Portuguese Portugal 819

pt_PT.IBM-1252 Portuguese Portugal 1252

pt_PT.IBM-
1252@preeuro

Portuguese Portugal 1252

pt_PT.8859-15 Portuguese Portugal 923

pt_PT.8859-15@preeuro Portuguese Portugal 923

PT_PT PT_PT.UTF-8 Portuguese Portugal 1208

PT_PT.UTF-8@preeuro Portuguese Portugal 1208

OS/400 PASE APIs 77

Feature

Locale Names

Language Region CCSID Short Name Full Name

2923 nl_NL nl_NL.ISO8859-1 Dutch Netherlands 819

nl_NL.IBM-1252 Dutch Netherlands 1252

nl_NL.IBM-
1252@preeuro

Dutch Netherlands 1252

nl_NL.8859-15 Dutch Netherlands 923

nl_NL.8859-15@preeuro Dutch Netherlands 923

NL_NL NL_NL.UTF-8 Dutch Netherlands 1208

NL_NL.UTF-8@preeuro Dutch Netherlands 1208

2924 en_AU en_AU.8859-15 English Australia 923

EN_AU EN_AU.UTF-8 English Australia 1208

en_CA en_CA.8859-15 English Canada 923

EN_CA EN_CA.UTF-8 English Canada 1208

en_GB en_GB.ISO8859-1 English Great Britain 819

en_GB.IBM-1252 English Great Britain 1252

en_GB.IBM-1252@euro English Great Britain 1252

en_GB.8859-15 English Great Britain 923

en_GB.8859-15@euro English Great Britain 923

EN_GB EN_GB.UTF-8 English Great Britain 1208

en_HK en_HK.8859-15 English Hong Kong 923

EN_HK EN_HK.UTF-8 English Hong Kong 1208

en_IE en_IE.8859-15 English Ireland 923

en_IE.8859-15@preeuro English Ireland 923

EN_IE EN_IE.UTF-8 English Ireland 1208

EN_IE.UTF-8@preeuro English Ireland 1208

en_IN en_IN.8859-15 English India 923

EN_IN EN_IN.UTF-8 English India 1208

en_NZ en_NZ.8859-15 English New Zealand 923

EN_NZ EN_NZ.UTF-8 English New Zealand 1208

en_PH en_PH.8859-15 English Philippines 923

EN_PH EN_PH.UTF-8 English Philippines 1208

en_SG en_SG.8859-15 English Singapore 923

EN_SG EN_SG.UTF-8 English Singapore 1208

en_US en_US.ISO8859-1 English United States 819

en_US.8859-15 English United States 923

EN_US EN_US.UTF-8 English United States 1208

en_ZA en_ZA.8859-15 English South Africa 923

EN_ZA EN_ZA.UTF-8 English South Africa 1208

HI_IN HI_IN.UTF-8 Hindi India 1208

78 iSeries: OS/400 PASE APIs

Feature

Locale Names

Language Region CCSID Short Name Full Name

2925 fi_FI fi_FI.ISO8859-1 Finnish Finland 819

fi_FI.IBM-1252 Finnish Finland 1252

fi_FI.IBM-1252@preeuro Finnish Finland 1252

fi_FI.8859-15 Finnish Finland 923

fi_FI.8859-15@preeuro Finnish Finland 923

FI_FI FI_FI.UTF-8 Finnish Finland 1208

FI_FI.UTF-8@preeuro Finnish Finland 1208

2926 da_DK da_DK.ISO8859-1 Danish Denmark 819

da_DK.8859-15 Danish Denmark 923

DA_DK DA_DK.UTF-8 Danish Denmark 1208

2928 fr_FR fr_FR.ISO8859-1 French France 819

fr_FR.IBM-1252 French France 1252

fr_FR.IBM-
1252@preeuro

French France 1252

fr_FR.8859-15 French France 923

fr_FR.8859-15@preeuro French France 923

FR_FR FR_FR.UTF-8 French France 1208

FR_FR.UTF-8@preeuro French France 1208

2929 de_AT de_AT.8859-15 German Austria 923

de_AT.8859-15@preeuro German Austria 923

DE_AT DE_AT.UTF-8 German Austria 1208

DE_AT.UTF-8@preeuro German Austria 1208

de_DE de_DE.ISO8859-1 German Germany 819

de_DE.IBM-1252 German Germany 1252

de_DE.IBM-
1252@preeuro

German Germany 1252

de_DE.8859-15 German Germany 923

de_DE.8859-15@preeuro German Germany 923

DE_DE DE_DE.UTF-8 German Germany 1208

DE_DE.UTF-8@preeuro German Germany 1208

OS/400 PASE APIs 79

Feature

Locale Names

Language Region CCSID Short Name Full Name

2931 (part

1)

ca_ES ca_ES.ISO8859-1 Catalan Spain 819

ca_ES.IBM-1252 Catalan Spain 1252

ca_ES.IBM-
1252@preeuro

Catalan Spain 1252

ca_ES.8859-15 Catalan Spain 923

ca_ES.8859-15@preeuro Catalan Spain 923

CA_ES CA_ES.UTF-8 Catalan Spain 1208

CA_ES.UTF-8@preeuro Catalan Spain 1208

es_AR es_AR.8859-15 Spanish Argentina 923

ES_AR ES_AR.UTF-8 Spanish Argentina 1208

es_BO es_BO.8859-15 Spanish Bolivia 923

ES_BO ES_BO.UTF-8 Spanish Bolivia 1208

es_CL es_CL.8859-15 Spanish Chile 923

ES_CL ES_CL.UTF-8 Spanish Chile 1208

es_CO es_CO.8859-15 Spanish Columbia 923

ES_CO ES_CO.UTF-8 Spanish Columbia 1208

es_CR es_CR.8859-15 Spanish Costa Rica 923

ES_CR ES_CR.UTF-8 Spanish Costa Rica 1208

es_DO es_DO.8859-15 Spanish Dominican Republic 923

ES_DO ES_DO.UTF-8 Spanish Dominican Republic 1208

es_EC es_EC.8859-15 Spanish Ecuador 923

ES_EC ES_EC.UTF-8 Spanish Ecuador 1208

es_ES es_ES.ISO8859-1 Spanish Spain 819

es_ES.IBM-1252 Spanish Spain 1252

es_ES.IBM-
1252@preeuro

Spanish Spain 1252

es_ES.8859-15 Spanish Spain 923

es_ES.8859-15@preeuro Spanish Spain 923

80 iSeries: OS/400 PASE APIs

Feature

Locale Names

Language Region CCSID Short Name Full Name

2931 (part

2)

ES_ES ES_ES.UTF-8 Spanish Spain 1208

ES_ES.UTF-8@preeuro Spanish Spain 1208

es_GT es_GT.8859-15 Spanish Guatemala 923

ES_GT ES_GT.UTF-8 Spanish Guatemala 1208

es_HN es_HN.8859-15 Spanish Honduras 923

ES_HN ES_HN.UTF-8 Spanish Honduras 1208

es_MX es_MX.8859-15 Spanish Mexico 923

ES_MX ES_MX.UTF-8 Spanish Mexico 1208

es_NI es_NI.8859-15 Spanish Nicaragua 923

ES_NI ES_NI.UTF-8 Spanish Nicaragua 1208

es_PA es_PA.8859-15 Spanish Panama 923

ES_PA ES_PA.UTF-8 Spanish Panama 1208

es_PE es_PE.8859-15 Spanish Peru 923

ES_PE ES_PE.UTF-8 Spanish Peru 1208

es_PR es_PR.8859-15 Spanish Puerto Rico 923

ES_PR ES_PR.UTF-8 Spanish Puerto Rico 1208

es_PY es_PY.8859-15 Spanish Paraguay 923

ES_PY ES_PY.UTF-8 Spanish Paraguay 1208

es_SV es_SV.8859-15 Spanish El Salvador 923

ES_SV ES_SV.UTF-8 Spanish El Salvador 1208

es_US es_US.8859-15 Spanish United States 923

ES_US ES_US.UTF-8 Spanish United States 1208

es_UY es_UY.8859-15 Spanish Uruguay 923

ES_UY ES_UY.UTF-8 Spanish Uruguay 1208

es_VE es_VE.8859-15 Spanish Venezuela 923

ES_VE ES_VE.UTF-8 Spanish Venezuela 1208

2932 it_IT it_IT.ISO8859-1 Italian Italy 819

it_IT.IBM-1252 Italian Italy 1252

it_IT.IBM-1252@preeuro Italian Italy 1252

it_IT.8859-15 Italian Italy 923

it_IT.8859-15@preeuro Italian Italy 923

IT_IT IT_IT.UTF-8 Italian Italy 1208

IT_IT.UTF-8@preeuro Italian Italy 1208

2933 no_NO no_NO.ISO8859-1 Norwegian Norway 819

no_NO.8859-15 Norwegian Norway 923

NO_NO NO_NO.UTF-8 Norwegian Norway 1208

2937 sv_SE sv_SE.ISO8859-1 Swedish Sweden 819

sv_SE.8859-15 Swedish Sweden 923

SV_SE SV_SE.UTF-8 Swedish Sweden 1208

OS/400 PASE APIs 81

Feature

Locale Names

Language Region CCSID Short Name Full Name

2939 de_CH de_CH.ISO8859-1 German Switzerland 819

de_CH.8859-15 German Switzerland 923

DE_CH DE_CH.UTF-8 German Switzerland 1208

de_LU de_LU.8859-15 German Luxembourg 923

de_LU.8859-15@preeuro German Luxembourg 923

DE_LU DE_LU.UTF-8 German Luxembourg 1208

DE_LU.UTF-8@preeuro German Luxembourg 1208

2940 fr_CH fr_CH.ISO8859-1 French Switzerland 819

fr_CH.8859-15 French Switzerland 923

FR_CH FR_CH.UTF-8 French Switzerland 1208

2942 it_CH it_CH.8859-15 Italian Switzerland 923

IT_CH IT_CH.UTF-8 Italian Switzerland 1208

82 iSeries: OS/400 PASE APIs

Feature

Locale Names

Language Region CCSID Short Name Full Name

2954 ar_AA ar_AA.ISO8859-6 Arabic Arabic Countries 1089

AR_AA AR_AA.UTF-8 Arabic Arabic Countries 1208

ar_AE ar_AE.ISO8859-6 Arabic United Arab Emirates 1089

AR_AE AR_AE.UTF-8 Arabic United Arab Emirates 1208

ar_BH ar_BH.ISO8859-6 Arabic Bahrain 1089

AR_BH AR_BH.UTF-8 Arabic Bahrain 1208

ar_DZ ar_DZ.ISO8859-6 Arabic Algeria 1089

AR_DZ AR_DZ.UTF-8 Arabic Algeria 1208

ar_EG ar_EG.ISO8859-6 Arabic Egypt 1089

AR_EG AR_EG.UTF-8 Arabic Egypt 1208

ar_JO ar_JO.ISO8859-6 Arabic Jordan 1089

AR_JO AR_JO.UTF-8 Arabic Jordan 1208

ar_KW ar_KW.ISO8859-6 Arabic Kuwait 1089

AR_KW AR_KW.UTF-8 Arabic Kuwait 1208

ar_LB ar_LB.ISO8859-6 Arabic Lebanon 1089

AR_LB AR_LB.UTF-8 Arabic Lebanon 1208

ar_MA ar_MA.ISO8859-6 Arabic Morocco 1089

AR_MA AR_MA.UTF-8 Arabic Morocco 1208

ar_OM ar_OM.ISO8859-6 Arabic Oman 1089

AR_OM AR_OM.UTF-8 Arabic Oman 1208

ar_QA ar_QA.ISO8859-6 Arabic Qatar 1089

AR_QA AR_QA.UTF-8 Arabic Qatar 1208

ar_SA ar_SA.ISO8859-6 Arabic Saudi Arabia 1089

AR_SA AR_SA.UTF-8 Arabic Saudi Arabia 1208

ar_SY ar_SY.ISO8859-6 Arabic Syrian Arab Republic 1089

AR_SY AR_SY.UTF-8 Arabic Syrian Arab Republic 1208

ar_TN ar_TN.ISO8859-6 Arabic Tunisia 1089

AR_TN AR_TN.UTF-8 Arabic Tunisia 1208

ar_YE ar_YE.ISO8859-6 Arabic Yemen 1089

AR_YE AR_YE.UTF-8 Arabic Yemen 1208

2956 tr_TR tr_TR.ISO8859-9 Turkish Turkey 920

TR_TR TR_TR.UTF-8 Turkish Turkey 1208

2957 el_GR el_GR.ISO8859-7 Greek Greece 813

EL_GR EL_GR.UTF-8 Greek Greece 1208

2958 is_IS is_IS.ISO8859-1 Icelandic Iceland 819

is_IS.8859-15 Icelandic Iceland 923

IS_IS IS_IS.UTF-8 Icelandic Iceland 1208

2961 iw_IL iw_IL.ISO8859-8 Hebrew Israel 916

HE_IL HE_IL.UTF-8 Hebrew Israel 1208

OS/400 PASE APIs 83

Feature

Locale Names

Language Region CCSID Short Name Full Name

2962 ja_JP ja_JP.IBM-eucJP Japanese Japan 33722

Ja_JP ja_JP.IBM-943 Japanese Japan 943

JA_JP JA_JP.UTF-8 Japanese Japan 1208

2963 nl_BE nl_BE.ISO8859-1 Dutch Belgium 819

nl_BE.IBM-1252 Dutch Belgium 1252

nl_BE.IBM-
1252@preeuro

Dutch Belgium 1252

nl_BE.8859-15 Dutch Belgium 923

nl_BE.8859-15@preeuro Dutch Belgium 923

NL_BE NL_BE.UTF-8 Dutch Belgium 1208

NL_BE.UTF-8@preeuro Dutch Belgium 1208

2966 fr_BE fr_BE.ISO8859-1 French Belgium 819

fr_BE.IBM-1252 French Belgium 1252

fr_BE.IBM-
1252@preeuro

French Belgium 1252

fr_BE.8859-15 French Belgium 923

fr_BE.8859-15@preeuro French Belgium 923

FR_BE FR_BE.UTF-8 French Belgium 1208

FR_BE.UTF-8@preeuro French Belgium 1208

fr_LU fr_LU.8859-15 French Luxembourg 923

fr_LU.8859-15@preeuro French Luxembourg 923

FR_LU FR_LU.UTF-8 French Luxembourg 1208

FR_LU.UTF-8@preeuro French Luxembourg 1208

2972 th_TH TH_TH.TIS-620 Thai Thailand 874

TH_TH TH_TH.UTF-8 Thai Thailand 1208

2974 bg_BG bg_BG.ISO8859-5 Bulgarian Bulgaria 915

BG_BG BG_BG.UTF-8 Bulgarian Bulgaria 1208

2975 cs_CZ cs_CZ.ISO8859-2 Czech Czech Republic 912

CS_CZ CS_CZ.UTF-8 Czech Czech Republic 1208

2976 hu_HU hu_HU.ISO8859-2 Hungarian Hungary 912

HU_HU HU_HU.UTF-8 Hungarian Hungary 1208

2978 pl_PL pl_PL.ISO8859-2 Polish Poland 912

PL_PL PL_PL.UTF-8 Polish Poland 1208

2979 ru_RU ru_RU.ISO8859-5 Russian Russia 915

RU_RU RU_RU.UTF-8 Russian Russia 1208

2980 pt_BR pt_BR.ISO8859-1 Portuguese Brazil 819

pt_BR.8859-15 Portuguese Brazil 923

PT_BR PT_BR.UTF-8 Portuguese Brazil 1208

84 iSeries: OS/400 PASE APIs

Feature

Locale Names

Language Region CCSID Short Name Full Name

2981 fr_CA fr_CA.ISO8859-1 French Canada 819

fr_CA.8859-15 French Canada 923

FR_CA FR_CA.UTF-8 French Canada 1208

2986 ko_KR ko_KR.IBM-eucKR Korean Korea 970

KO_KR KO_KR.UTF-8 Korean Korea 1208

2987 zh_TW zh_TW.IBM-eucTW Traditional Chinese Taiwan 964

Zh_TW ZH_TW.big5 Traditional Chinese Taiwan 950

zh_TW ZH_TW.UTF-8 Traditional Chinese Taiwan 1208

2989 zh_CN zh_CN.IBM-eucCN Simplified Chinese People’s Republic of

China

1383

Zh_CN zh_CN.GB18030 Simplified Chinese People’s Republic of

China

1386

ZH_CN ZH_CN.UTF-8 Simplified Chinese People’s Republic of

China

1208

ZH_HK ZH_HK.UTF-8 Simplified Chinese Hong Kong 1208

ZH_SG ZH_SG.UTF-8 Simplified Chinese Singapore 1208

2992 ro_RO ro_RO.ISO8859-2 Romanian Romania 912

RO_RO RO_RO.UTF-8 Romanian Romania 1208

2994 sk_SK sk_SK.ISO8859-2 Slovak Slovakia 912

SK_SK SK_SK.UTF-8 Slovak Slovakia 1208

2995 sq_AL sq_AL.ISO8859-1 Serbian Cyrillic Yugoslavia 915

sq_AL.8859-15 Serbian Cyrillic Yugoslavia 923

SQ_AL SQ_AL.UTF-8 Serbian Cyrillic Yugoslavia 1208

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE Environment Variables

Overview

OS/400 PASE environment variables are independent of ILE environment variables. Setting a variable in

one environment has no effect on the other environment, but several system interfaces allow you to copy

variables between environments:

v The Qp2RunPase API lets you specify any list of environment variables you want to initialize for the

OS/400 PASE program. See “Qp2RunPase()—Run an OS/400 PASE Program” on page 22

(Qp2RunPase) documentation for more information.
v The QP2SHELL and QP2TERM APIs initialize the OS/400 PASE environment with a copy of nearly all

ILE environment variables. See “QP2SHELL() and QP2SHELL2()—Run an OS/400 PASE Shell

Program” on page 2 (QP2SHELL) documentation for more information.
v The systemCL OS/400 PASE runtime function copies nearly all OS/400 PASE environment variables to

the ILE environment for option SYSTEMCL_ENVIRON. See “systemCL()—Run a CL Command for

OS/400 PASE” on page 46 (systemCL) documentation for more information.

OS/400 PASE APIs 85

#TOP_OF_PAGE
aplist.htm

v The OS/400 PASE system utility copies nearly all OS/400 PASE environment variables to the ILE

environment for option -e. See Run a CL Command (OS/400 PASE system utility) documentation for

more information.

Special OS/400 PASE Environment Variables

Some OS/400 PASE runtime behaviors are different from AIX because of differences between the two

operating systems. You can use these OS/400 PASE environment variables to control some of the

differences:

PASE_EXEC_QOPENSYS

PASE_EXEC_QOPENSYS can be used to prevent the system from searching the /QOpenSys file

system for an absolute path (starting with ″/″) specified as an argument to exec or Qp2RunPase,

or in the first line of a shell script. The system normally searches the /QOpenSys file system if

the absolute path name for an OS/400 PASE program or script cannot be opened or is not a

regular bytestream file. OS/400 directory /usr/bin contains links to QShell utilities that cannot

run as OS/400 PASE programs, so searching /QOpenSys allows more AIX programs and shell

scripts to run unchanged (using OS/400 PASE utilities in directory /QOpenSys/usr/bin). The

system does not do an extended search in the /QOpenSys file system if the OS/400 PASE shell or

other program that calls exec or Qp2RunPase has changed credentials (setuid or setgid) or if the

OS/400 PASE environment specifies PASE_EXEC_QOPENSYS=N.

PASE_FORK_JOBNAME

PASE_FORK_JOBNAME specifies the OS/400 job name for a new process created with the

fork() or f_fork() function. Only the first 10 characters in the string are used, and lowercase

characters are converted to uppercase. The specified value is ignored and a default job name is

used if the string does not follow OS/400 simple name rules (first character alphabetic and

subsequent characters alphameric or underscore). Prestarted job are never used when a fork job

name is specified. See “fork400()and f_fork400()—Create A New Process with OS/400 PASE

Options” on page 32 (fork400 or f_fork400) for information about specifying the OS/400 job name

for specific fork operations.

 Some OS/400 PASE shells (including the default Korn shell) do not set environment variables for

exported variables in the shell process itself. Setting PASE_FORK_JOBNAME in such a shell

does not control job names for first-order utility processes created by that shell, but can control

job names for processes forked by a utility started by the shell.

PASE_MAXDATA64

PASE_MAXDATA64 specifies the maximum number of 256MB segments provided for brk (heap)

storage in a 64-bit OS/400 PASE program. If PASE_MAXDATA64 is omitted or contains an

invalid value (either non-numeric or less than one), a default of 256 segments (64GB) is used.

PASE_MAXDATA64 has no effect on 32-bit OS/400 PASE programs, and it must be set either in

the initial environment passed to Qp2RunPase or before running exec for a 64-bit OS/400 PASE

program.

PASE_MAXSHR64

PASE_MAXSHR64 specifies the maximum number of 256MB segments provided for shared

memory (shmat and mmap) in a 64-bit OS/400 PASE program. If PASE_MAXSHR64 is omitted

or contains an invalid value (either non-numeric or less than one), a default of 256 segments

(64GB) is used. PASE_MAXSHR64 has no effect on 32-bit OS/400 PASE programs, and it must be

set either in the initial environment passed to Qp2RunPase or before running exec for a 64-bit

OS/400 PASE program.

PASE_STDIO_ISATTY

The default behavior of the OS/400 PASE isatty runtime function returns true for file descriptors

0, 1, and 2 (stdin, stdout, and stderr), regardless of whether the open file is a tty device. Setting

OS/400 PASE environment variable PASE_STDIO_ISATTY to N, either in the initial environment

86 iSeries: OS/400 PASE APIs

passed to Qp2RunPase or before the first invocation of isatty, causes isatty to return an accurate

indication of whether the open file is a tty device.

PASE_SYSCALL_NOSIGILL

The OS/400 PASE kernel exports some system calls that are implemented by the AIX kernel but

are unsupported by OS/400 PASE. The default behavior for any unsupported syscall is to send

exception message MCH3204, which the system converts to OS/400 PASE signal SIGILL. The

unsupported syscall returns a function result of -1 with OS/400-unique errno EUNKNOWN

(3474) if the signal is ignored or the handler returns. Message MCH3204 appears in the OS/400

job log to provide the name of the unsupported system call and the OS/400 PASE instruction

address that caused the error. The message may also include the internal dump identifier for a

VLOG entry that contains this information:

 syscall number (GPR2 value)

 OS/400 PASE instruction address

 Link register value

 GPR3-10 values (if available, or zero otherwise)

 syscall name (if known, converted to uppercase)

OS/400 PASE programs can suppress the exception message and SIGILL signal for unsupported

system calls by setting environment variable PASE_SYSCALL_NOSIGILL either in the initial

environment passed to Qp2RunPase or before running exec. PASE_SYSCALL_NOSIGILL is

ignored if the OS/400 PASE program has the S_ISUID or S_ISGID attribute, but otherwise is

interpreted as a list of syscall function names with optional errno values, delimited by colons.

The colon-delimited values must take one of these forms:

 syscall_name

 syscall_name=errno_name (errno_name is EINVAL, EPERM, and so on)

 syscall_name=errno_number (errno_number is 0-127)

SIGILL is suppressed for any syscall_name in the list that is recognized as an OS/400 PASE

system call. The first or only entry in the list may use a special syscall_name of ″ALL″ to set a

default behavior for all unsupported syscalls. Any entry in the list that is not an OS/400 PASE

syscall name is ignored, and specifying the name of a syscall that is supported by the OS/400

PASE kernel has no effect on the operation of that syscall.

 Any syscall in the PASE_SYSCALL_NOSIGILL list that is unsupported by the OS/400 PASE

kernel returns a function result of -1 with the specified errno value (defaulting to ENOSYS)

except that specifying errno_number of 0 causes the unsupported syscall to return a function

result of zero (without setting errno). An invalid errno_name or errno_number defaults to

ENOSYS.

 For example, the following PASE_SYSCALL_NOSIGILL value suppresses SIGILL for all

unsupported syscalls. ″quotactl″ returns EPERM and ″audit″ returns function result of zero, while

all other unsupported syscalls return ENOSYS:

 export PASE_SYSCALL_NOSIGILL=ALL:quotactl=EPERM:audit=0

Note: PASE_SYSCALL_NOSIGILL is not intended for production programs. It is provided as a

convenience for feasibility testing using unchanged AIX binaries that need to be modified for

production.

PASE_THREAD_ATTACH

If OS/400 PASE environment variable PASE_THREAD_ATTACH is set to Y when an OS/400

PASE program runs libpthreads.a initialization (usually at program startup), an ILE thread that

was not started by OS/400 PASE will be attached to OS/400 PASE when it calls an OS/400 PASE

procedure (using Qp2CallPase or Qp2CallPase2). Once an ILE thread has attached to OS/400

PASE, that thread is subject to asynchronous interruption for OS/400 PASE functions such as

OS/400 PASE APIs 87

signal handling and thread cancellation. In particular, the thread will be canceled as part of

ending the OS/400 PASE program (when exit runs or OS/400 PASE processing terminates for a

signal).

PASE_UNLIMITED_PATH_MAX

The OS/400 Integrated File System supports longer path names than the value of PATH_MAX

(1023) in AIX header file <limits.h>. Setting OS/400 PASE environment variable

PASE_UNLIMITED_PATH_MAX to Y, either in the initial environment passed to Qp2RunPase

or before running exec, allows an OS/400 PASE program to access objects with long path names.

OS/400 PASE loader functions and some library runtime functions can fail with path names

longer than AIX PATH_MAX.

PASE_USRGRP_LOWERCASE

OS/400 user names and group names are case-insensitive, but the system stores and returns them

in uppercase. OS/400 PASE runtime functions that return user names and group names

(getpwnam, getpwuid, getgrnam, and getgrgid) default to converting them to lowercase unless

OS/400 PASE environment variable PASE_USRGRP_LOWERCASE is set to N.

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE Signal Handling

OS/400 PASE Signals and ILE Signals

OS/PASE signals and POSIX/ILE signals are independent, so it is not possible to directly call a handler

for one signal type by raising the other type of signal. However, the “Qp2SignalPase()—Post an OS/400

PASE Signal” on page 26 (Qp2SignalPase) API can be used as the handler for any ILE signal to post a

corresponding OS/400 PASE signal. An OS/400 PASE program can also define handlers for OS/400 PASE

signals that call ILE procedures to post equivalent ILE signals. Program QP2SHELL and the OS/400

PASE fork function always setup handlers to map every ILE signal to a corresponding OS/400 PASE

signal.

OS/400 Messages and OS/400 PASE Programs

Many OS/400 applications and system functions report errors with exception messages sent to program

call message queues. See Message Handling Terms and Concepts for information about exception

messages and program call message queues.

The system only creates program call message queues for ILE procedures and OMI programs. Any

machine exception caused by an operation inside an OS/400 PASE program (such as MCH0601 for a

storage reference error) is sent to the program call message queue for an (internal) ILE procedure in

service program QP2USER. This ILE procedure is also the apparent caller of any ILE procedure the

OS/400 PASE program calls directly (using _ILECALLX or _ILECALL), so any OS/400 message the called

procedure sends to its caller goes to the same message queue used for machine exceptions.

OS/400 Exceptions and OS/400 PASE Signals

The ILE procedure in service program QP2USER that runs OS/400 PASE programs handles any exception

and converts it to an OS/400 PASE signal, the same way POSIX/ILE C runtime converts exceptions to

ILE signals. The specific signal used depends on the OS/400 message identifier for the exception. OS/400

PASE and ILE use different signal numbers, but both map any specific message identifier to the same

signal name (such as SIGSEGV). See the WebSphere Development Studio: ILE C/C++ Programmer’s

Guide

for details.

An OS/400 PASE signal handler can determine whether a signal is associated with an exception message

by inspecting field msgkey in the ucontext_t_os400 structure (declared in header file as400_types.h) that is

88 iSeries: OS/400 PASE APIs

#TOP_OF_PAGE
aplist.htm
term.htm

passed as an argument to the handler. A non-zero value is the message reference key for the OS/400

message that caused the signal. Zero indicates the signal is not associated with an OS/400 message

(which is always true for asynchronous signals). The OS/400 PASE program can use the message

reference key to receive the exception message (see “QMHRCVPM()—Receive Program Message for

OS/400 PASE” on page 36) for more details about the error.

 Top | “OS/400 PASE APIs,” on page 1 | APIs by category

OS/400 PASE APIs 89

#TOP_OF_PAGE
aplist.htm

90 iSeries: OS/400 PASE APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 91

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

92 iSeries: OS/400 PASE APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 93

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

94 iSeries: OS/400 PASE APIs

����

Printed in USA

	Contents
	OS/400 PASE APIs
	APIs
	OS/400 PASE Callable Program APIs
	QP2SHELL() and QP2SHELL2()—Run an OS/400 PASE Shell Program
	Parameters
	Authorities
	Return Value
	Error Messages
	Usage Notes
	Related Information

	QP2TERM()—Run an OS/400 PASE Terminal Session
	Parameters
	Authorities
	Return Value
	Error Messages
	Usage Notes
	Related Information

	OS/400 PASE ILE Procedure APIs
	Qp2dlclose()—Close a Dynamically Loaded OS/400 PASE Module
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2CallPase()—Call an OS/400 PASE Procedure
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2dlerror()—Retrieve OS/400 PASE Dynamic Load Error Information
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2dlopen()—Dynamically Load an OS/400 PASE Module
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2dlsym()—Find an Exported OS/400 PASE Symbol
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2EndPase()—End an OS/400 PASE Program
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2errnop()—Retrieve OS/400 PASE errno Pointer
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2free()—Free OS/400 PASE Heap Memory
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2jobCCSID()—Retrieve Job CCSID for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2malloc()—Allocate OS/400 PASE Heap Memory
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2paseCCSID()—Retrieve OS/400 PASE CCSID
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2ptrsize()—Retrieve OS/400 PASE Pointer Size
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2RunPase()—Run an OS/400 PASE Program
	Parameters
	Authorities
	Return Value
	Error Messages
	Usage Notes
	Related Information

	Qp2SignalPase()—Post an OS/400 PASE Signal
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Runtime Functions For Use by OS/400 PASE Programs
	build_ILEarglist()—Build an ILE Argument List for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	fork400()and f_fork400()—Create A New Process with OS/400 PASE Options
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	QMHRCVM()—Receive Nonprogram Message for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Related Information

	QMHRCVPM()—Receive Program Message for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	QMHSNDM()—Send Nonprogram Message for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Related Information

	QMHSNDPM()—Send Program Message for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp2setenv_ile()—Set ILE environment variables for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	size_ILEarglist()—Compute ILE Argument List Size for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Related Information

	SQLOverrideCCSID400()—Override SQL CLI CCSID for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes

	systemCL()—Run a CL Command for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Usage Notes

	_CVTERRNO()—Convert ILE errno to OS/400 PASE errno
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	_CVTSPP()—Convert Space Pointer for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_CVTTS64()—Convert Teraspace Address for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_GETTS64() and _GETTS64_SPP()—Get Teraspace Address for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_GETTS64M()—Get Multiple Teraspace Pointers for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_ILECALLX()—Call an ILE Procedure for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	_ILELOADX()—Load an ILE Bound Program for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information

	_ILESYMX()—Find an Exported ILE Symbol for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information

	_MEMCPY_WT()—Copy Memory With Tags for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_PGMCALL()—Call an OS/400 Program for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_RETURN()—Return Without Exiting OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_RSLOBJ()—Resolve to an OS/400 Object for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_SETCCSID()—Set OS/400 PASE CCSID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_SETSPP() and _SETSPP_TS64()—Set Space Pointer for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_SETSPPM()—Set Multiple Space Pointers for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_STRLEN_SPP()—Determine Character String Length for OS/400 PASE
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_STRNCPY_SPP()—Copy Character String for OS/400 PASE
	Parameters
	Authorities
	Error Conditions
	Usage Notes
	Related Information

	Concepts
	OS/400 PASE Runtime Libraries
	OS/400 PASE Locales
	OS/400 PASE Environment Variables
	Overview
	Special OS/400 PASE Environment Variables

	OS/400 PASE Signal Handling
	OS/400 PASE Signals and ILE Signals
	OS/400 Messages and OS/400 PASE Programs
	OS/400 Exceptions and OS/400 PASE Signals

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

