
iSeries

Network Management APIs

Version 5 Release 3

���

iSeries

Network Management APIs

Version 5 Release 3

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 87.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Network Management APIs 1

APIs 1

APPN Topology Information APIs 1

Local and Network Topology Updates 2

APPM Network Topology Updates 2

APPN Local Topology Updates 2

Adjacent Subnetworks 3

Deregister APPN Topology Information

(QNMDRGTI) API 3

Required Parameter Group 3

Error Messages 4

Register APPN Topology Information (QNMRGTI)

API 4

Authorities and Locks 5

Required Parameter Group 5

Format of the Generated List 7

Field Descriptions 10

Format of Node Attributes Field 14

Format of Transmission Group Flags Field . . . 15

Format of Transmission Group Characteristics . . 16

Error Messages 17

SNA/Management Services Transport APIs 18

Using the SNA/Management Services Transport

APIs 19

Entry Format 19

Field Descriptions 19

Data 21

Routing 22

Change Mode Name (QNMCHGMN) API 23

Required Parameter Group 23

Error Messages 24

Deregister Application (QNMDRGAP) API 24

Required Parameter Group 25

Error Messages 25

End Application (QNMENDAP) API 25

Required Parameter Group 26

Error Messages 26

Receive Data (QNMRCVDT) API 27

Required Parameter Group 27

Error Messages 29

Receive Operation Completion (QNMRCVOC) API 29

Required Parameter Group 30

Error Messages 30

Register Application (QNMREGAP) API 31

Required Parameter Group 31

Error Messages 32

Retrieve Mode Name (QNMRTVMN) API 33

Required Parameter Group 33

Error Messages 33

Send Error (QNMSNDER) API 34

Required Parameter Group 34

Error Messages 35

Send Reply (QNMSNDRP) API 36

Required Parameter Group 36

Error Messages 37

Send Request (QNMSNDRQ) API 38

Required Parameter Group 39

Error Messages 40

Start Application (QNMSTRAP) API 40

Authorities and Locks 41

Required Parameter Group 41

Error Messages 41

Alert APIs 42

Generate Alert (QALGENA) API 43

Authorities and Locks 43

Required Parameter Group 43

Error Handling 44

Error Messages 45

Retrieve Alert (QALRTVA) API 45

Required Parameter Group 46

ALRT0100 Format 46

ALRT0200 Format 47

Alert Notification Record 47

Field Descriptions 48

Error Messages 49

Send Alert (QALSNDA) API 50

Required Parameter Group 50

Error Messages 51

Node List API 51

List Node List Entries (QFVLSTNL) API 52

Authorities and Locks 52

Required Parameter Group 52

Format of the Generated Lists 53

Input Parameter Section 53

Header Section 53

NODL0100 List Data Section 54

Field Descriptions 54

Error Messages 55

Registered Filter APIs 55

Deregister Filter Notifications (QNMDRGFN) API 56

Authorities and Locks 56

Required Parameter Group 57

Error Messages 57

Register Filter Notifications (QNMRGFN) API . . . 58

Authorities and Locks 58

Required Parameter Group 58

Format of Registered Filter Data Queue

Notification 59

Alert Filter 59

Problem Log Filter 59

Field Descriptions 60

Error Messages 61

Retrieve Registered Filters (QNMRRGF) API . . . 62

Required Parameter Group 62

RGFN0100 Format 63

Field Descriptions 63

Error Messages 64

Change Request Management APIs 64

Add Activity (QFVADDA) API 65

Authorities and Locks 66

Required Parameter Group 66

Error Messages 70

© Copyright IBM Corp. 1998, 2005 iii

List Activities (QFVLSTA) API 71

Authorities and Locks 71

Required Parameter Group 71

Format of the Generated List 72

Input Parameter Section 72

Header Section 73

CRDA0100 Format 73

CRDA0200 Format 73

CRDA0300 Format 73

Field Descriptions 74

Error Messages 77

Remove Activity (QFVRMVA) API 77

Authorities and Locks 78

Required Parameter Group 78

Error Messages 78

Retrieve Change Request Description (QFVRTVCD)

API 79

Authorities and Locks 79

Required Parameter Group 79

CRQD0100 Format 80

CRQD0200 Format 80

Field Descriptions 81

Error Messages 85

Appendix. Notices 87

Trademarks 88

Terms and conditions for downloading and printing

publications 89

Code disclaimer information 90

iv iSeries: Network Management APIs

Network Management APIs

Network management is the process of planning, organizing, and controlling a communications-oriented

system. It provides you with the capability to manage one or more nodes from another node. The

network management APIs handle alertable messages, work with problem logs, and the

SNA/Management Services Transport.

The network management APIs are grouped as follows:

v “APPN Topology Information APIs”

v “SNA/Management Services Transport APIs” on page 18

v “Alert APIs” on page 42

v “Node List API” on page 51

v “Registered Filter APIs” on page 55

v “Change Request Management APIs” on page 64

 APIs by category

APIs

These are the APIs for this category.

APPN Topology Information APIs

The APPN(R) topology information APIs are:

v “Deregister APPN Topology Information (QNMDRGTI) API” on page 3 (QNMDRGTI) causes the

queue associated with the specified queue handle to be deregistered for APPN topology information.

v “Register APPN Topology Information (QNMRGTI) API” on page 4 (QNMRGTI) causes the requested

APPN topology information to be reported.

APPN topology information APIs allow an application to obtain information about the current APPN

topology, and to register and deregister for information about ongoing updates to the topology. Current

topology information is an option provided by the Register for APPN Topology Information (QNMRGTI)

API. When this option is requested, the current APPN topology is reported to a user space specified by

the application running the API. This API also provides topology update options that allow the

application to register a queue to receive information about specific types of APPN topology updates.

Topology updates are reported asynchronously to the specified queue as they occur in the network.

A queue remains registered for topology updates until one of the following occurs:

v The queue is deregistered by the application using the Deregister APPN Topology Information

(QNMDRGTI) API.

v An error is encountered enqueuing topology updates, forcing automatic deregistration of the queue by

the system.

v The application’s job is ended causing registration to be cleaned up.

v An IPL is performed causing registration to be cleaned up.

One application in each job on the system may register one queue for topology updates. Multiple queues

may not be registered for topology updates within the same job.

The specific types of topology updates that an application may register to receive are:

© Copyright IBM Corp. 1998, 2005 1

aplist.htm

v Local end node (*EN) updates

v Local virtual node (*VN) updates

v Local network node (*NN) updates

v Network network node (*NN) updates

v Network virtual node (*VN) updates

The queue and user space objects specified on the APPN topology information APIs must be managed

entirely by the application; for example, the application must create, delete and maintain the objects itself,

using the APIs for those objects. The application is responsible for any error handling should these

objects become damaged or deleted.

If an error occurs while reporting the current topology to the specified user space, an error is returned

through the API. If an error occurs while enqueuing ongoing topology updates to a registered queue, the

resulting error messages are sent to the job log, followed by diagnostic message CPD91C9, and the queue

is automatically deregistered by the system. If automatic handling of this diagnostic error message is

necessary, an application could periodically scan the job log for this message using the List Job Log

(QMHLJOBL) API and take appropriate action.

After the current topology has been requested using the QNMRGTI API, the data returned in the user

space may be retrieved using the Retrieve User Space (QUSRTVUS) API. If a data queue is registered for

topology updates using the QNMRGTI API, topology update records may be retrieved out of a data

queue using the Receive Data Queue (QRCVDTAQ) API. If a user queue is registered (rather than a data

queue), the application must use the dequeue (DEQ) MI instruction to retrieve queue records. The first 10

characters of each queue entry contains the value *APPNtop so that the application can distinguish these

records from others on the queue. This allows a queue to be used for multiple purposes.

Local and Network Topology Updates

Topology updates can be separated into two classes:

v Network topology updates

v Local topology updates

Local topology updates can be reported on an end node or network node system, but network topology

updates can be reported only on a network node system.

APPM Network Topology Updates

An APPN subnetwork consists of nodes having a common network ID and the links connecting those

nodes. APPN network topology identifies the following in an APPN subnetwork:

v All network nodes and virtual nodes in the subnetwork

v Transmission groups interconnecting network nodes and virtual nodes in the subnetwork

v Transmission groups from network nodes in the subnetwork to network nodes in adjacent subnetworks

APPN network nodes exchange network topology updates in a subnetwork through topology database

updates (TDUs). Therefore, only network nodes can report network topology updates. See System Network

Architecture Formats for details about TDUs.

APPN Local Topology Updates

The local topology for an APPN node consists of the following:

v The local node

v Adjacent nodes (network nodes, end nodes, or virtual nodes to which the local node has a direct

connection)

v Transmission groups from the local node to adjacent nodes

2 iSeries: Network Management APIs

Both end nodes and network nodes can report local topology updates.

Adjacent Subnetworks

Network nodes in separate subnetworks may be connected by an intersubnetwork transmission group;

that is, a group of links between directly attached nodes of 2 or more subnetworks appearing as a single

logical link for routing messages. In this case, the network node at each end point of the transmission

group is present only in the partner network node’s local topology, not in its network topology. For

example, consider two network nodes with different network IDs in separate subnetworks:

v A network node with the following control point name and network ID: CPNAME=NN1, NETWORK

ID=A

v A network node with the following control point name and network ID: CPNAME=NN2, NETWORK

ID=B

When NN1 and NN2 are connected by an intersubnetwork transmission group, NN2 is present only in

the NN1 local topology; it is not present in the NN1 network topology or other nodes in network A. This

is because TDUs for NN2 are not exchanged in network A.

 Top | “Network Management APIs,” on page 1 | APIs by category

Deregister APPN Topology Information (QNMDRGTI) API

 Required Parameter Group:

1 Queue handle

Input Binary(4)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Deregister APPN Topology Information (QNMDRGTI) API causes the queue associated with the

specified queue handle to be deregistered for APPN topology information. When a queue is deregistered,

future topology updates are not reported to the queue.

The queue handle specified by this API must match the queue handle that was returned when the queue

was registered with the Register APPN Topology Information (QNMRGTI) API.

Required Parameter Group

Queue handle

INPUT; BINARY(4)

 A variable that represents a registered queue. This value was returned by the QNMRGTI API

when the queue was registered.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Network Management APIs 3

#TOP_OF_PAGE
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF91C3 E Internal processing error.

CPF91C6 E Queue handle &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

Register APPN Topology Information (QNMRGTI) API

 Required Parameter Group:

1 Queue handle

Output Binary(4)

2 Options

Input Array of Char(10)

3 Number of options

Input Binary(4)

4 Format

Input Char(8)

5 Qualified user space name

Input Char(20)

6 Qualified queue name

Input Char(20)

7 Queue type

Input Char(10)

8 Replace registration

Input Char(10)

9 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Register APPN Topology Information (QNMRGTI) API causes the requested APPN topology

information to be reported. The application calling this API may request the current copy of the entire

database (to be reported to the specified user space), or may register for information about particular

types of ongoing updates to the topology (to be reported to the registered queue), or both.

4 iSeries: Network Management APIs

#TOP_OF_PAGE
aplist.htm

A queue handle is returned by this program when a queue is successfully registered for topology

updates. The queue handle identifies a registered queue, and must be used when the Deregister APPN

Topology Information (QNMDRGTI) API is called. The queue handle is unique to a specific job.

When a queue is registered for ongoing topology updates, the specified types of updates for which the

queue is registered will be asynchronously enqueued on an ongoing basis. If current topology is also

requested on the application calling this API, the current topology is reported to the user space before

topology updates are reported to the registered queue.

The QNMRGTI API may be called to request the current topology only (without updates), updates only

(without current topology), or both current topology and updates. This is determined by the options

specified in the options parameter.

If an application program calling the API requests current topology, and the complete topology data

cannot be returned in the user space, an error is returned. In this situation, the user space header contains

a P in the information status field indicating partial but accurate data. Even if a user space error such as

this occurs, any queue registered on the API call will remain registered.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

Queue Authority

*CHANGE

Queue Library Authority

*USE

User Space Lock

*EXCLRD

Required Parameter Group

Queue handle

OUTPUT; BINARY(4)

 A variable that uniquely identifies the registered queue within the job. This value is returned

when a queue is registered. When the *CURRENT value is the only option specified in the

options parameter, 0 is returned.

Options

INPUT; Array OF CHAR(10)

 An array structure containing options specifying the topology information to be reported. These

options only apply to topology updates. All deletions are reported regardless of the type of

updating information you want.

 One or more of the following values must be specified:

 *CURRENT Report the current copy of the entire topology database.

*LOCALEN Register for local topology updates pertaining to adjacent

end nodes. Local topology consists of the local node,

adjacent nodes, and links to adjacent nodes. See Local

and Network Topology Updates for more details.

Network Management APIs 5

#HDRLCLUPD
#HDRLCLUPD

*LOCALNN Register for local topology updates pertaining to adjacent

network nodes. This option must be used if updates

pertaining to adjacent network nodes in a disconnected

subnetwork, such as network nodes having a different

network ID, are required.

*LOCALVN Register for local topology updates pertaining to adjacent

virtual nodes. An APPN virtual node represents a

connection network (for example, an attached token-ring

network). For more information, see the book Distributed

Data Management.

*NETNN Register for network topology updates pertaining to

network nodes.

*NETVN Register for network topology updates pertaining to

virtual nodes.

Number of options

INPUT; BINARY(4)

 The number of options specified in the options parameter. Valid values are 1 through 6.

Format

INPUT; CHAR(8)

 The content and format of the topology information reported. The valid values are:

 APPN0100 The basic APPN topology information format. See

APPN0100 Format (page 8) for a description of this

format.

APPN0200 The basic APPN topology information format. See

APPN0200 Format (page 9) for a description of this

format.

Qualified user space name

INPUT; CHAR(20)

 The user space that is to receive current topology information. This parameter is ignored when

the *CURRENT value is not specified on the options parameter. The first 10 characters specify the

user space name, and the last 10 characters specify the library name.

 The following special values are supported for the library name:

 *LIBL The library list.

*CURLIB The job’s current library.

Qualified queue name

INPUT; CHAR(20)

 The queue that is to receive requested topology information. This parameter is ignored when the

*CURRENT value is the only option specified on the options parameter. The first 10 characters

specify the queue object name, and the last 10 characters specify the library name.

 The following special values are supported for the library name:

 *LIBL The library list.

*CURLIB he job’s current library.

When special values are used for the library name, the actual name will be substituted when the

API is called. The actual name will be used in future references to the object when topology

updates are enqueued.

6 iSeries: Network Management APIs

The following considerations apply to the queue specified on the API call:

v The queue object must exist when this API is called.

v There is no restriction that prevents applications in separate jobs from registering the same

queue object. Therefore, each application should ensure it registers a unique queue to prevent

duplicate topology updates from being reported to the same queue. For example, specifying a

queue in library QTEMP ensures the queue is not being used by other jobs on the system.

v The maximum entry length of the queue must be at least 128 bytes.

v The sequence of the queue must be *FIFO.

v A data queue defined with FORCE(*YES) is allowed, but is discouraged due to degraded

performance.

v A data queue defined with SENDERID is allowed, but the application is responsible for

ensuring sufficient record length to handle the additional data on queue elements.

Queue type

INPUT; CHAR(10)

 The type of queue object. This parameter is ignored when *CURRENT is the only value specified

on the options parameter.

 Otherwise, one of the following values must be specified:

 *DTAQ Data queue

*USRQ User queue

Replace registration

Replacement Registration

INPUT; CHAR(10)

 Whether this registration should replace a previous registration that has the same qualified queue

name and type. This parameter is ignored when *CURRENT is the only value specified on the

options parameter.

 *YES This registration replaces any previous registration with

the same qualified queue name and type. The options

specified on this registration replace options from any

previous registration.

*NO This registration does not replace any existing registration

with the same qualified queue name and type. The

existing registration is not changed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Generated List

The user space is used to report current topology information and consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section

Network Management APIs 7

error.htm#HDRERRCOD
error.htm#HDRERRCOD

For details about the user area and generic header, see User Space Format for List APIs. For details about

the other items, see the following sections. For a detailed description of each field in the information

returned, see “Field Descriptions” on page 10.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name used

10 A CHAR(10) User space library name used

20 14 BINARY(4) Number of nodes reported

24 18 CHAR(8) Timestamp of list data

32 20 CHAR(8) Timestamp when local node initialized

40 28 BINARY(4) Number of end nodes reported

44 2C BINARY(4) Number of transmission groups reported for all end nodes

48 30 BINARY(4) Number of transmission groups reported for all network and

virtual nodes

52 34 CHAR(8) Local node network ID

60 3C CHAR(8) Local node control point name

68 44 BINARY(4) Local topology database flow reduction sequence number

72 48 CHAR(3) Local node type

75 4B CHAR(1) Reserved

76 4C BINARY(4) Local node type enumeration

80 50 BINARY(2) Length of local node network-qualified control point name

82 52 CHAR(17) Local node network-qualified control point name

99 63 CHAR(1) Reserved

100 64 BINARY(4) Number of nodes deleted since local node initialized

104 68 BINARY(4) Number of transmission groups deleted since local node initialized

APPN0100 Format

The format of topology entry data is the same for queue entries reported on the registered queue for

topology updates and deletions as for list entries reported to the user space for the current topology.

For topology entries reported to the user space, the entry ID field contains the value that indicates a

current topology entry.

For topology entries reported to the registered queue, the entry ID field contains a value that identifies

the type of notification reported:

8 iSeries: Network Management APIs

usf.htm

v Topology entry updated

v Topology entry deleted

v Topology database deleted

The format of the topology entry is described below. See “Field Descriptions” on page 10 for descriptions

of the fields in this format.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Entry type

10 A CHAR(2) Entry ID

12 C CHAR(8) Timestamp

20 14 CHAR(8) Node network ID

28 1C CHAR(8) Node control point name

36 24 BINARY(4) Number of associated transmission group entries

40 28 CHAR(1) Node data valid indicator

41 29 CHAR(3) Node type

44 2C CHAR(8) Node attributes

52 34 CHAR(8) Transmission group destination network ID

60 3C CHAR(8) Transmission group destination control point name

68 44 BINARY(4) Transmission group number

72 48 CHAR(20) Transmission group characteristics

92 5C BINARY(4) Length of DLC signaling information

96 60 CHAR(16) DLC signaling information

112 70 CHAR(10) Controller description object name

122 7A CHAR(1) Transmission group flags

123 7B CHAR(5) Reserved

APPN0200 Format

See “Field Descriptions” on page 10 for descriptions of the fields in this format.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Entry type

10 A CHAR(2) Entry ID

12 C BINARY(4) Node entry time left

16 10 BINARY(4) Node flow reduction sequence number

20 14 BINARY(2) Length of node network-qualified name

22 16 CHAR(17) Node network-qualified control point name

39 27 CHAR(1) Reserved

40 28 BINARY(4) Node type enumeration

44 2C CHAR(8) Node attributes

52 34 BINARY(4) Number of associated transmission group entries

Network Management APIs 9

Offset

Type Field Dec Hex

56 38 CHAR(4) Transmission group number

60 3C BINARY(2) Length of transmission group destination network-qualified name

62 3E CHAR(17) Transmission group destination network-qualified control point

name

79 4F CHAR(1) Transmission group flags

80 50 CHAR(20) Transmission group characteristics

100 64 BINARY(4) Transmission group entry time left

104 68 BINARY(4) Transmission group flow reduction sequence number

108 6C BINARY(2) Length of DLC signaling information

110 6E CHAR(8) DLC signaling information

118 76 CHAR(10) Controller description object name

Field Descriptions

Controller description object name. The name of the controller description object for the transmission

group. This field is valid only when the number of associated transmission group entries field is not zero.

The object name is only available for transmission group entries associated with the local node, and only

when the object currently exists on the local system. When the object name is not available, this field

contains blanks.

DLC signaling information. The data link control (DLC) signaling information related to the link

connection network. For token ring, the first 6 bytes is the MAC address, and the seventh byte is the link

layer service access point address. This field is valid only when the number of associated transmission

group entries field is not zero.

Entry ID. The type of topology information. The possible values are listed below. Value 00 is always used

in topology entries reported to only the user space.

The other three values are used for topology entries reported to the registered queue.

 00 The entry reported is present in the current APPN

topology database.

01 The entry reported was updated in the APPN topology

database.

02 The entry reported was deleted from the APPN topology

database. APPN performs cleanup of the APPN topology

database once every 24 hours. This cleanup may cause

multiple entries to be removed from the APPN topology

database.

03 The current APPN topology database was deleted and

reinitialized with the node entry for the local system. The

node entry for the local system is reported on the entry.

Any additions to the newly initialized topology database

will follow in subsequent queue entries. This indication

may be reported, for example, when the node type

parameter changes as a result of the Change Network

Attributes (CHGNETA) command, causing the APPN

topology database to be deleted.

10 iSeries: Network Management APIs

Entry type. The type of queue entry.

This field can contain the following special value:

 *APPNTOP The entry contains APPN topology information.

Format name specified. The format name specified to the API.

Length of DLC signaling information. The length of the data link control (DLC) signaling information.

This field is valid only when the number of associated transmission group entries field is not zero. The

value is 7 for token ring (only DLC currently allowed), or 0 when there is no DLC signaling information

available.

Length of local node network-qualified control point name. The length of the node network-qualified

control point name. Valid range is 3-17.

Length of node network-qualified name. The length of the node network-qualified name.

Length of transmission group destination network-qualified name. The length of the transmission

group destination network-qualified control point name. When the number of associated transmission

group entries is zero, this value is zero. When the number of associated transmission group entries is not

zero, valid values range from 3 through 17.

Local node control point name. The control point name for the local node.

Local node network ID. The network ID for the local node.

Local node network-qualified control point name. The network-qualified control point name for the

local node, in the format NETID.CPNAME.

Local node type. The APPN node type of the local node. The valid values are:

 *EN APPN end node

*NN APPN network node

*VN APPN virtual node

Local node type enumeration. A number representing the APPN node type of the node. The valid values

are:

 0 Node data not valid (this may occur when an entry only

contains transmission groups owned by this node).

1 APPN network node

2 APPN end node

3 APPN virtual node

Local topology database flow reduction sequence number. The flow reduction sequence number (FRSN)

incremented each time the local network node sends a topology database update. This field is valid only

when the local node type is a network node.

Node attributes. The attributes of the node. See “Format of Node Attributes Field” on page 14 for the

structure. For format APPN0100, the data in this field is valid only when the node data valid indicator

field is Y. For format APPN0200, the data in this field is valid only when the node type enumeration is

not 0.

Network Management APIs 11

Node control point name. The control point name for the node.

Node data valid indicator. Whether values contained in the format APPN0100 node type and attributes

fields are valid. The valid values are:

 Y The values contained in the node type and the node

attributes fields are valid.

N The values contained in the node type and the node

attributes fields are not valid. This may occur when an

entry only contains associated transmission groups

owned by this node.

Node entry time left. The number of days left before the node entry is deleted from the topology

database. This field in the APPN0200 format is valid only when the node type enumeration is not 0.

Node flow reduction sequence number. The flow reduction sequence number (FRSN) for the node. This

field in the APPN0200 format is valid only when the local node is a network node and the node type

enumeration is 1 or 3 (the node is a network node or virtual node).

Node and transmission group FRSN numbers are not broadcast on topology data updates (TDUs)

and not duplicated on every network node in the network. Each network node keeps its own node

and transmission group FRSN for each node and transmission group in the topology database.

FRSNs are used to minimize TDU exchanges with adjacent network nodes.

Node network ID. The network ID for the node.

Node network-qualified control point name. The network-qualified control point name for the node, in

the format NETID.CPNAME.

Node type. The APPN node type of the node. This field in the APPN0100 format contains blanks when

the node data valid indicator field is N. The valid values are:

 *EN APPN end node

*NN APPN network node

*VN APPN virtual node

There is no distinction made between APPN end nodes and low-entry networking (LEN) nodes. Any

node defined as a LEN node is reported as *EN.

Node type enumeration. A number representing the APPN node type of the node. This field is used only

for format APPN0200. The valid values are:

 0 Node Data not valid (this may occur when an entry only

contains transmission groups owned by this node).

1 APPN network node

2 APPN end node

3 APPN virtual node

Number of associated transmission group entries. The number of transmission group (TG) entries

reported for a node. When this value is not zero, the specified number of associated transmission groups

are reported for the node. The first associated transmission group entry is reported on the same entry as

the initial node entry, and any additional transmission groups are reported on subsequent entries.

Number of end nodes reported. The total number of end nodes returned in the list (end node entries

containing valid node data).

12 iSeries: Network Management APIs

Number of nodes deleted since local node initialized. The number of node entries deleted from the

topology database since the local node was initialized.

Number of nodes reported. The total number of node entries returned in the list (entries containing valid

node data).

Number of transmission groups deleted since local node initialized. The number of transmission group

entries deleted from the topology database since the local node was initialized.

Number of transmission groups reported for all end nodes. The total number of associated transmission

groups returned in the list owned by end nodes.

Number of transmission groups reported for all network and virtual nodes. The total number of

associated transmission groups returned in the list owned by network nodes and virtual nodes.

Reserved. An ignored field.

Transmission group characteristics. The transmission group (TG) characteristics. See “Format of

Transmission Group Characteristics” on page 16 for the structure. This field is valid only when the

number of associated transmission group entries field is not zero.

Transmission group destination control point name. The control point name for the transmission group

(TG) destination node. This field is blank when the number of associated transmission group entries field

is zero.

Transmission group destination network ID. The network ID for transmission group (TG) destination

node. This field is blank when the number of associated transmission group entries field is zero.

Transmission group destination network-qualified control point name. The network-qualified control

point name for the transmission group destination node, in the format NETID.CPNAME. This field is blank

when the number of associated transmission group entries field is zero.

Transmission group entry time left. The number of days left before the transmission group entry is

deleted from the topology database. This field in the APPN0200 format is valid only when the number of

associated transmission group entries field is not zero.

Transmission group flags. The format of the transmission group flags data is described in “Format of

Transmission Group Flags Field” on page 15. This field is valid only when the number of associated

transmission group entries field is not zero.

Transmission group flow reduction sequence number. The flow reduction sequence number (FRSN) for

the transmission group. This field in the APPN0200 format is valid only when the number of associated

transmission group entries field is not zero, the local node is a network node, and the transmission group

reported is owned by a network node or virtual node.

Node and transmission group FRSN numbers are not broadcast on topology data updates (TDUs)

and not duplicated on every network node in the network. Each network node keeps its own node

and transmission group FRSN for each node and transmission group in the topology database.

FRSNs are used to minimize TDU exchanges with adjacent network nodes.

Transmission group number. The transmission group (TG) number. This field is valid only when the

number of associated transmission group entries field is not zero.

Timestamp. The machine timestamp (time of day) when reported.

Timestamp of list data. The machine timestamp of the list data.

Network Management APIs 13

Timestamp when local node initialized. The machine timestamp when the local node was initialized.

The local node is initialized at initial program load (IPL) time and when the APPN node type changes.

User space library name specified. The user space library name specified to the API.

User space library name used. The actual user space library name used to report data.

User space name specified. The user space name specified to the API.

User space name used. The actual user space name used to report data.

Format of Node Attributes Field

The format of the node attributes field is described below.

 Offset

Bit Type Description Dec Hex

0 0 CHAR(4) Resource sequence number

4 4 CHAR(1) Route addition resistance

5 5 CHAR(1) Node status

5 5 0 BIT(1) Node congested

5 5 1 BIT(1) Intermediate routing resources depleted

5 5 2 BIT(1) End point routing resources depleted

5 5 3 BIT(2) Reserved

5 5 5 BIT(1) Quiescing

5 5 6 BIT(2) Reserved

6 6 CHAR(1) Node type and support

6 6 0 CHAR(1) Gateway services support

6 6 1 BIT(1) Central directory services support

6 6 2 BIT(1) Intermediate routing services support

6 6 3 BIT(1) Retired (always set to 1)

6 6 4 BIT(2) Reserved

6 6 6 BIT(2) Retired (always set to 1)

7 7 CHAR(1) Additional node support

7 7 0 BIT(1) Peripheral border node support:

0 The node lacks such support

1 The node has such support

7 7 1 BIT(1) Interchange node support:

0 The node lacks such support

1 The node has such support

14 iSeries: Network Management APIs

Offset

Bit Type Description Dec Hex

7 7 2 BIT(1) Extended border node support:

0 The node lacks such support

1 The node has such support

7 7 3 BIT(2) High performance routing support level:

00 Lacks high performance routing support

01 Supports high performance routing but not

the high performance routing transport tower

10 Supports high performance routing and the

high performance routing transport tower

11 Reserved

7 7 5 BIT(2) Reserved

Format of Transmission Group Flags Field

The format of the transmission group flags data is described below.

 Offset

Bit Type Description Dec Hex

0 0 CHAR(1) Transmission group flags

0 0 0 BIT(1) Link connection network indicator:

0 The transmission group-Partner Node’s

Network-Qualified CP/PU Name field does

not identify a link connection network (such

as a local area network)

1 The transmission group-Partner Node’s

Network-Qualified CP/PU Name field

identifies a link connection network

0 0 1 BIT(1) Reserved

0 0 2 BIT(1) This transmission group supports high performance

routing:

0 No

1 Yes

Network Management APIs 15

Offset

Bit Type Description Dec Hex

0 0 3 BIT(2) Transmission group type:

00 Boundary function based transmission group

or APPN transmission group

01 Interchange transmission group

10 Virtual route based transmission group

11 Reserved

0 0 5 BIT(1) Intersubnetwork link indicator:

0 This link is not an intersubnetwork link.

1 This link is an intersubnetwork link. It defines

a border between subnetworks.

0 0 6 BIT(1) Reserved

0 0 7 BIT(1) This transmission group goes to a node that supports

the high performance routing transport tower:

0 No

1 Yes

Format of Transmission Group Characteristics

The format of the transmission group (TG) characteristics data is described below.

 Offset

Bit Type Description Dec Hex

0 0 CHAR(4) Resource sequence number (reserved except in

topology database updates (TDUs)): a 32-bit binary

value that uniquely identifies a topology update.

4 4 CHAR(1) Status

4 4 0 BIT(1) Operational status:

0 The transmission group is not operational

1 The transmission group is operational

4 4 1 BIT(1) Reserved

16 iSeries: Network Management APIs

Offset

Bit Type Description Dec Hex

4 4 2 BIT(1) Quiescing:

0 The transmission group is not quiescing

1 The transmission group is quiescing

4 4 3 BIT(1) CP-CP session support status:

0 CP-CP sessions are supported on this

transmission group.

1 CP-CP sessions are not supported on this

transmission group.

4 4 4 BIT(4) Reserved

5 5 CHAR(1) Effective capacity

6 6 CHAR(5) Reserved

11 B CHAR(1) Cost per connect time

12 C CHAR(1) Cost per byte transmitted

13 D CHAR(1) Reserved

14 E CHAR(1) Security

15 F CHAR(1) Propagation delay of the transmission group

16 10 CHAR(1) Modem class

17 11 CHAR(1) User-defined parameter 1

18 12 CHAR(1) User-defined parameter 2

19 13 CHAR(1) User-defined parameter 3

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3CAA E List is too large for user space &1.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF91C2 E Queue type must be *DTAQ or *USRQ.

CPF91C3 E Internal processing error.

CPF91C4 E Queue &5/&4 with type &6 already registered.

CPF91C5 E Queue &2/&1 not valid.

CPF91C7 E Options list not valid.

CPF91C8 E Replace registration must be *YES or *NO.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

API introduced: V2R3

Network Management APIs 17

Top | “Network Management APIs,” on page 1 | APIs by category

SNA/Management Services Transport APIs

The SNA/Management services Transport APIs are:

v “Change Mode Name (QNMCHGMN) API” on page 23 (QNMCHGMN) sets the APPC mode name

used when sending requests.

v “Deregister Application (QNMDRGAP) API” on page 24 (QNMDRGAP) removes the registration of the

application name associated with a handle.

v “End Application (QNMENDAP) API” on page 25 (QNMENDAP) ends support for the application

associated with the handle.

v “Receive Data (QNMRCVDT) API” on page 27 (QNMRCVDT) receives a particular request, reply, or

error message.

v “Receive Operation Completion (QNMRCVOC) API” on page 29 (QNMRCVOC) receives an operation

completion, which allows an application to determine if a send operation completed successfully.

v “Register Application (QNMREGAP) API” on page 31 (QNMREGAP) registers the application name

specified in the previous start application operation so that it may receive unsolicited requests.

v “Retrieve Mode Name (QNMRTVMN) API” on page 33 (QNMRTVMN) retrieves the APPC mode

name currently being used for the purpose of sending requests.

v “Send Error (QNMSNDER) API” on page 34 (QNMSNDER) sends an SNA/Management Services error

message to the remote application.

v “Send Reply (QNMSNDRP) API” on page 36 (QNMSNDRP) sends a reply to a request that was

received from a source application.

v “Send Request (QNMSNDRQ) API” on page 38 (QNMSNDRQ) sends a request to a remote application.

v “Start Application (QNMSTRAP) API” on page 40 (QNMSTRAP) starts support for a network

management application.

Systems Network Architecture (SNA) Management Services Transport (SNA/MS Transport) functions are

used to support the sending and receiving of management services data between systems in an SNA

network. The network can include iSeries(TM) systems, Operating System/2(R) and NetView(R) licensed

programs, and other platforms that support the SNA/Management Services architecture.

The SNA/Management Services functions provided on the iSeries system include:

v The transport of network management data in APPN networks

v The maintenance of node relationships for network management

The APIs allow a network management application running on one system to send data to and receive

data from a network management application running on another system in an APPN network. The APIs

are a callable interface that allow the application to be notified about asynchronous events, such as

incoming data, by way of a notification placed on a data queue.

Some examples of IBM(R) applications that use SNA/Management Services Transport APIs are:

v Alerts

v Problem reporting

v Remote problem analysis

v Program temporary fix (PTF) ordering

In large networks, the number of sessions needed to support the various network management

applications could become burdensome without session concentration. SNA/Management Services

Transport APIs reduce the number of SNA LU 6.2 sessions that would normally be used to transmit data.

18 iSeries: Network Management APIs

#TOP_OF_PAGE
aplist.htm

This support multiplexes or transmits all of the network management data from all the applications in a

network node domain (network node and attached end nodes) on a single session to applications in

another domain.

This means that data transmitted from an end node is always sent to its network node server first. Then,

the SNA/Management Services Transport support on the network node server routes the data to its

proper destination.

Using the SNA/Management Services Transport APIs

SNA/Management Services is used by two types of applications: a source application and a target

application. A source application sends requests to and receives replies from a target application.

Similarly, a target application receives requests from and sends replies to a source application.

For a target application to receive requests from a source application, the target application must perform

the following operations:

1. Create a data queue, using the Create Data Queue (CRTDTAQ) command, to allow

SNA/Management Services Transport support to indicate incoming data (the MAXLEN parameter

must be 80 or greater and the SEQ parameter must be *FIFO).

2. Start an application specifying the data queue just created, using the Start Application (QNMSTRAP)

API. The application can then receive a handle, which will be used by the application on all following

API calls. The handle is an identifier that represents the application being worked on and is unique

within a job.

3. Register an application, using the Register Application (QNMREGAP) API. This notifies

SNA/Management Services Transport support that the application is able to receive requests from

source applications.

4. Wait for a request to arrive using the Receive Data Queue (QRCVDTAQ) API. See for more

information on the QRCVDTAQ API.

When the request arrives, the target application receives an entry from the data queue using the

QRCVDTAQ API. The target application then uses the request identifier in the entry to receive the data

(call the Receive Data (QNMRCVDT) API). The data queue entry has the following format.

Entry Format

 Offset

Type Value Field Dec Hex

0 0 CHAR(10) *SNAMST Entry type

10 A CHAR(2) 01 Incoming data

 02 Send complete

12 C BINARY(4) Handle

16 10 CHAR(53) Request identifier

69 45 CHAR(11) Reserved

Field Descriptions

This topic describes the fields returned in further detail. The fields are listed in alphabetical order.

Entry type. This entry was created by SNA/Management Services Transport.

Handle. This value specifies the handle of the application associated with the data queue.

Network Management APIs 19

Incoming data. The incoming data has arrived and that the Receive Data (QNMRCVDT) API should be

called.

Request identifier. Identifies incoming or transmitted data. This field is used when calling Receive Data

(QNMRCVDT) and Receive Operation Completion (QNMRCVOC).

Reserved. An ignored field.

Send complete. A previous send operation has completed and that the Receive Operation Completion

(QNMRCVOC) API should be called.

Then, depending on whether or not the request requires a reply, the target application may need to send

a reply to the source application. A reply is sent using the Send Reply (QNMSNDRP) API.

A single request may require more than one reply. If a request is not recognized, a single error message

may be sent instead of a reply using the Send Error (QNMSNDER) API.

Also, the source application must start the application (call the QNMSTRAP API), but the source does not

need to create a data queue or register itself with SNA/Management Services Transport support. The

source application can send a request to the target application, using the Send Request (QNMSNDRQ)

API. The QNMSNDRQ API returns a request identifier that is used to receive any associated replies.

The source application receives any expected replies (call the QNMRCVDT API) with the request

identifier parameter specified as the request identifier returned when the Send Request (QNMSNDRQ)

API was called.

Both the target and the source applications use the End Application (QNMENDAP) API to end the

management services transport support. The target application may optionally use the Deregister

Application (QNMDRGAP) API before ending. However, the QNMENDAP API automatically performs a

deregister operation.

The following example shows how these SNA/Management Services Transport APIs work together.

Applications Using SNA/Management Services Transport APIs

20 iSeries: Network Management APIs

Data

The types of data handled by SNA/Management Services may be:

1. A request with a single reply expected (for example, a request for current information.

2. A request without a reply (for example, an alert)

3. A request with multiple replies expected

4. An unrecognized request returning an error message

The list correlates to the numbers on the left in the following example, which shows the flow of data

requests and replies depending on the parameters specified.

Data Types Handled by SNA/Management Services Transport APIs

Network Management APIs 21

Notes:

1. Arrival of requests is not guaranteed unless a reply is requested. The reply acts as a form of

acknowledgment.

2. The maximum amount of application data in a single request or reply is 31 739 bytes.

Routing

SNA/Management Services Transport performs all routing based on the network ID, control point name

(or a logical unit name may be used), and application name. Applications must be registered with

SNA/Management Services to receive unsolicited requests.

Communications from a network node to an end node is normally performed through the end node’s

network node server. In the network node server, SNA/Management Services Transport provides

intermediate routing functions between the end node and the network node. This is separate from the

intermediate routing provided by APPN network node services.

22 iSeries: Network Management APIs

By default, data sent using the SNA/Management Services Transport APIs uses sessions associated with

system mode names CPSVCMG and SNASVCMG. CPSVCMG sessions are used between an end node

and its network node server. SNASVCMG sessions are used between network nodes.

When data is sent from an end node to a network node that is not its network node server, its network

node server performs intermediate routing between the CPSVCMG session and the SNASVCMG session.

Other sessions can be established by specifying a different mode name with the Change Mode Name

(QNMCHGMN) API. When you change the mode name, APPN network node services performs the

intermediate routing function rather than SNA/Management Services Transport. This is known as direct

routing to SNA/Management Services Transport.

 Top | “Network Management APIs,” on page 1 | APIs by category

Change Mode Name (QNMCHGMN) API

 Required Parameter Group:

1 Handle

Input Binary(4)

2 Mode name

Input Char(8)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Change Mode Name (QNMCHGMN) API, an SNA/Management Services Transport API, sets the

APPC mode name used when sending requests.

When a specific mode name is specified, direct routing is used. The result is a direct session from the

source system to the target system.

Data sent using the system mode name SNASVCMG is sent at network priority, which means that data

specifying this mode flows before any other data. Setting the mode to something other than SNASVCMG

can lessen the effect on network performance and allow bulk data transfer. If large amounts of data are to

be sent relative to the speed of the communications medium, then consider another mode. A mode object

specified by its name in the mode name parameter must exist at the time this API is called.

Required Parameter Group

Handle

INPUT; BINARY(4)

 The unique identifier for this application, which was returned by the Start Application

(QNMSTRAP) API.

Mode name

INPUT; CHAR(8)

Network Management APIs 23

#TOP_OF_PAGE
aplist.htm

The APPC mode name used on subsequent requests. Special values are:

 *NETATR The current default mode name specified in the network

attributes.

*DFTRTG A CPSVCMG session is used between end nodes and

network nodes, and an SNASVCMG session is used

between network nodes. CPSVCMG may not be specified.

*DFTRTG is the default value, and it may require

multiple APPN sessions to transport the data. In this case,

the network node server performs SNA/Management

Services routing for all end node traffic. This results in

fewer sessions in the network and a slower response

time.

Note: Some non-iSeries products only support *DFTRTG.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7AE2 E Handle &1 not found.

CPF7AE4 E Mode name &3 not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

Deregister Application (QNMDRGAP) API

 Required Parameter Group:

1 Handle

Input Binary(4)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Deregister Application (QNMDRGAP) API, an SNA/Management Services Transport API, removes

the registration of the application name associated with a handle. The QNMDRGAP API only deregisters

the application; the application can continue to send requests as long as replies are expected.

24 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Only registered applications can receive requests from remote systems. After an application is

deregistered, the remote applications are sent error messages notifying them that the application is not

available to receive requests. In addition, it can no longer receive error messages from requests that did

not request a reply. Therefore, the application should not send any request-only data.

The QNMDRGAP API is used by applications that do not want to continue receiving requests. The End

Application (QNMENDAP) API automatically removes registration before ending the application

instance. See the “End Application (QNMENDAP) API” for more information.

Required Parameter Group

Handle

INPUT; BINARY(4)

 The unique identifier for this application, which was returned by the Start Application

(QNMSTRAP) API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7ADC E Internal processing error.

CPF7AEE E Application &2 not registered.

CPF7AE2 E Handle &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

End Application (QNMENDAP) API

 Required Parameter Group:

1 Handle

Input Binary(4)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The End Application (QNMENDAP) API, an SNA/Management Services Transport API, ends support for

the application associated with the handle. If the local application name is currently registered, its

registration is automatically removed.

Network Management APIs 25

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Applications must ensure that this API is performed when a handle is no longer needed. If you do not

use QNMENDAP, the application automatically ends when the job is complete.

Required Parameter Group

Handle

INPUT; BINARY(4)

 The unique identifier for this application, which was returned by the Start Application

(QNMSTRAP) API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7AE2 E Handle &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Network Management APIs,” on page 1 | APIs by category

26 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Receive Data (QNMRCVDT) API

 Required Parameter Group:

1 Handle

Input Binary(4)

2 Receiver variable

Output CHAR(*)

3 Length of receiver variable

Input Binary(4)

4 Request identifier

Input CHAR(53)

5 Remote application name

Output CHAR(24)

6 Data type

Output CHAR(10)

7 Wait time

Input Binary(4)

8 Error code

I/O CHAR(*)
 Default Public Authority: *USE

 Threadsafe: No

The Receive Data (QNMRCVDT) API, an SNA/Management Services Transport API, receives a particular

request, reply, or error message.

The receiver variable data area is not changed unless it is large enough to hold all of the data received. If

the receiver variable is not large enough to hold the received data, then an error message is returned

indicating how much more space is needed. The application can allocate a new buffer size greater than or

equal to the bytes available and call the Receive Data (QNMRCVDT) API again. If the received data is

smaller than the receiver variable, any data in the unused portion of the variable is unchanged.

Required Parameter Group

Handle

INPUT; BINARY(4)

 The unique identifier for this application, which was returned by the Start Application

(QNMSTRAP) API.

Receiver variable

OUTPUT; CHAR(*)

 The variable in which this API returns the data. This structure includes the bytes returned and

bytes available in addition to the received data.

Network Management APIs 27

The format of the receiver variable is:

 Offset Type Field

0 BINARY(4) Bytes returned

4 BINARY(4) Bytes available

8 CHAR(*) Received data

The bytes returned field specifies the length of the bytes actually returned. The bytes available

field specifies the total length of data available to be returned.

Length of receiver variable

INPUT; BINARY(4)

 The size of the receiver variable parameter, which is the maximum amount of data that can be

returned in the receiver variable.

Request identifier

INPUT; CHAR(53)

 The request identifier of the data being received.

 *PRV The last request identifier used (for example, the one

returned on the Send Request (QNMSNDRQ) API).

Remote application name

OUTPUT; CHAR(24)

 The name of the remote application that sent the data. The first 8 characters contain the network

ID, the second 8 characters contain the control point name (or the logical unit name may be

used), and the third 8 characters contain the application name of the remote application.

Data type

OUTPUT; CHAR(10)

 The type of data returned.

 *RQS A request was received. No reply is expected.

*RQSRPY A request was received. A reply is expected.

*RPYCPL A complete reply was received. This is either the last or

only reply.

*RPYINCPL An incomplete reply was received. Additional Receive

Data (QNMRCVDT) operations should be performed.

*NODATA No data was received. Either an error occurred or the

wait time elapsed.

Wait time

INPUT; BINARY(4)

 The amount of time the application waits for the data to be received.

 -1 Waits for data to be received (no matter how long it

takes) or for a condition such that the reply cannot be

received (for example, a communications failure).

0-99999 The number of seconds the application waits.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

28 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7AC0 E &3.&4 cannot receive data at this time.

CPF7AC4 E Control point &3.&4 rejected data.

CPF7ADC E Internal processing error.

CPF7ADD E Operation did not complete.

CPF7ADF E Session failure. Cannot send data at this time.

CPF7AEA E Application on control point &3.&4 failed.

CPF7AEC E Wait time &3 not between -1 and 99999.

CPF7AE0 E Function requested not supported by remote system.

CPF7AE2 E Handle &1 not found.

CPF7AE3 E Management Services transport operation not permitted.

CPF7AE6 E Communication with control point &3.&4 failed.

CPF7AE7 E Remote application program &5 not found.

CPF7AE8 E Receiver variable too small.

CPF7AE9 E Request identifier not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

Receive Operation Completion (QNMRCVOC) API

 Required Parameter Group:

1 Handle

Input Binary(4)

2 Request identifier

Input Char(53)

3 Remote application name

Output Char(24)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Receive Operation Completion (QNMRCVOC) API, an SNA/Management Services Transport API,

receives an operation completion, which allows an application to determine if a send operation completed

successfully. This is only used by applications that do not wait for a send operation to complete (wait

time parameter equals 0). This API must be used after an application receives an entry on the data queue

confirming the completion of an operation.

Network Management APIs 29

#TOP_OF_PAGE
aplist.htm

If the operation did not complete successfully, an error code is returned or an exception is signaled based

on OS/400 error-handling rules.

Required Parameter Group

Handle

INPUT; BINARY(4)

 The unique identifier for this application, which was returned by the Start Application

(QNMSTRAP) API.

Request identifier

INPUT; CHAR(53)

 The request identifier of the operation completion reply that is to be received.

 *PRV The last request identifier used (for example, the one

returned on the Send Request (QNMSNDRQ) API).

Remote application name

OUTPUT; CHAR(24)

 The name of the remote application that received the data. The first 8 characters contain the

network ID, the second 8 characters contain the control point name (or the logical unit name may

be used), and the third 8 characters contain the application name of the remote application.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7AC0 E &3.&4 cannot receive data at this time.

CPF7AC2 E Previous send operation not complete.

CPF7ADC E Internal processing error.

CPF7ADF E Session failure. Cannot send data at this time.

CPF7AE0 E Function requested not supported by remote system.

CPF7AE2 E Handle &1 not found.

CPF7AE5 E Control point &3.&4 not found.

CPF7AE6 E Communication with control point &3.&4 failed.

CPF7AE7 E Remote application program &5 not found.

CPF7AE9 E Request identifier not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

30 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Register Application (QNMREGAP) API

 Required Parameter Group:

1 Handle

Input Binary(4)

2 Category

Input Char(8)

3 Application type

Input Char(10)

4 Replace Registration

Input Char(10)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Register Application (QNMREGAP) API, an SNA/Management Services Transport API, registers the

application name specified in the previous start application operation so that it may receive unsolicited

requests. A given application name may only be registered once on the system.

Applications must be registered to receive requests and error messages when a reply is not expected. The

application name used is specified on the Start Application (QNMSTRAP) API. See the “Start Application

(QNMSTRAP) API” on page 40 for more information.

The only applications that do not need to register are those issuing requests and expecting replies.

If the value of the replace registration parameter is *YES, a previously registered application with the

same name can no longer receive requests.

Required Parameter Group

Handle

INPUT; BINARY(4)

 The unique identifier for this application, which was returned by the Start Application

(QNMSTRAP) API.

Category

INPUT; CHAR(8)

 The SNA/Management Services function set group with which the application is associated. The

only allowed value is:

 *NONE Not associated with any category.

Application type

INPUT; CHAR(10)

Network Management APIs 31

The role the application is performing:

 *EPAPP An entry point application.

*FPAPP A focal point application.

Replace registration

INPUT; CHAR(10)

 Whether or not this registration should replace a previous registration that has the same local

application name.

 *YES This registration should replace any previous registration

with the same local application name. Any other

SNA/Management Services program that previously

registered with the same local application name can no

longer receive incoming requests.

*NO Do not replace previous registrations. If another

SNA/Management Services program in the same or

different job is already registered for this local application

name, then it continues to receive incoming requests.

Error message CPF7AED is issued if that application is

already registered.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7ADB E Replace registration value &3 not valid.

CPF7ADC E Internal processing error.

CPF7AEB E Category value &3 not valid.

CPF7AED E Application &2 already registered.

CPF7AEF E Application type &3 not valid.

CPF7AE2 E Handle &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

32 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Retrieve Mode Name (QNMRTVMN) API

 Required Parameter Group:

1 Handle

Input Binary(4)

2 Mode name

Output Char(8)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Mode Name (QNMRTVMN) API, an SNA/Management Services Transport API, retrieves

the APPC mode name currently being used for the purpose of sending requests. The mode name

retrieved is the one currently associated with the application identified by the handle.

Required Parameter Group

Handle

INPUT; BINARY(4)

 The unique identifier for this application, which was returned by the Start Application

(QNMSTRAP) API.

Mode name

OUTPUT; CHAR(8)

 The APPC mode name that is used when a request is sent. The special value is:

 *DFTRTG A CPSVCMG session is used between end nodes and

network nodes, and a SNASVCMG session is used

between network nodes. *DFTRTG is the default

parameter, and it may require multiple APPN sessions to

transport the data. In this case, the network node server

performs SNA/Management Services routing for all end

node traffic. This results in fewer total sessions in the

network and a slower response time.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7AE2 E Handle &1 not found.

Network Management APIs 33

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

Send Error (QNMSNDER) API

 Required Parameter Group:

1 Handle

Input Binary(4)

2 Request identifier

Input Char(53)

3 Application error code

Input Char(10)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Send Error (QNMSNDER) API, an SNA/Management Services Transport API, sends an

SNA/Management Services error message to the remote application. This is used by the target

application if the remote system is unable to process a request because the request data is not recognized.

If the application receiving the error message is on an iSeries server, it will receive the error message

using the Receive Data (QNMRCVDT) API. This operation results in a CPF7AC4 error message being

sent, and no data is returned.

Required Parameter Group

Handle

INPUT; BINARY(4)

 The unique identifier for this application, which was returned by the Start Application

(QNMSTRAP) API.

Request identifier

INPUT; CHAR(53)

 The identifier for the request that contained an error.

 *PRV The last request identifier used (for example, the one

specified on the Receive Data (QNMRCVDT) API).

Application error code

INPUT; CHAR(10)

34 iSeries: Network Management APIs

#TOP_OF_PAGE
aplist.htm

The type of failure specified:

 *BADDATA The application is unable to interpret the data received.

*CANCEL The application has canceled the processing of the this request.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7AC0 E &3.&4 cannot receive data at this time.

CPF7ADC E Internal processing error.

CPF7ADD E Operation did not complete.

CPF7ADF E Session failure. Cannot send data at this time.

CPF7AD1 E Application error code value &3 not valid.

CPF7AE2 E Handle &1 not found.

CPF7AE6 E Communication with control point &3.&4 failed.

CPF7AE9 E Request identifier not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

Network Management APIs 35

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Send Reply (QNMSNDRP) API

 Required Parameter Group:

1 Handle

Input Binary(4)

2 Request Identifier

Input Char(53)

3 Send buffer

Input Char(*)

4 Length of send buffer

Input Binary(4)

5 Reply type

Input Char(10)

6 Wait time

Input Binary(4)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Send Reply (QNMSNDRP) API, an SNA/Management Services Transport API, sends a reply to a

request that was received from a source application. Single or multiple replies may be sent for a

particular request. The received request must have indicated that a reply is expected.

Multiple replies are sent by calling the Send Reply (QNMSNDRP) API one or more times. To send

multiple replies, the reply type parameter is set to incomplete until the last reply is sent, when it is set to

complete.

If the wait time is 0, then an entry is placed on the data queue when the operation is complete. If

multiple replies are sent without waiting (wait time equals 0), multiple entries are placed on the data

queue.

The same mode name used with the Send Request (QNMSNDRQ) API is used for the reply. See the

“Send Request (QNMSNDRQ) API” on page 38 for more information about sending a request.

Required Parameter Group

Handle

INPUT; BINARY(4)

 The unique identifier for this application.

Request identifier

INPUT; CHAR(53)

 The request identifier of the corresponding request. The request identifier is returned when the

original request is received.

36 iSeries: Network Management APIs

*PRV The last request identifier used (for example, the one

specified on the Receive Data (QNMRCVDT) API).

Send buffer

INPUT; CHAR(*)

 The data being sent.

Length of send buffer

INPUT; BINARY(4)

 The size of the data being sent. The send buffer can range in size from 0 through 31739.

Reply type

INPUT; CHAR(10)

 The type of data being sent:

 *RPYCPL The last or only reply (the reply is complete).

*RPYINCPL Additional replies will be sent (the reply is incomplete).

Wait time

INPUT; BINARY(4)

 The amount of time the application waits for the send operation to complete.

 -1 Waits for the send operation to complete or for a

condition such that the operation cannot complete (for

example, a communications failure).

0 The application does not wait for the operation to

complete.

1-99999 The number of seconds the application waits.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7AC0 E &3.&4 cannot receive data at this time.

CPF7AC1 E Reply cannot be sent.

CPF7ADC E Internal processing error.

CPF7ADD E Operation did not complete.

CPF7ADF E Session failure. Cannot send data at this time.

CPF7AD2 E Send buffer length value &3 not valid.

CPF7AD5 E Reply type value &3 not valid.

CPF7AEC E Wait time &3 not between -1 and 99999.

CPF7AE2 E Handle &1 not found.

CPF7AE6 E Communication with control point &3.&4 failed.

CPF7AE9 E Request identifier not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2r1.1

Network Management APIs 37

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Top | “Network Management APIs,” on page 1 | APIs by category

Send Request (QNMSNDRQ) API

 Required Parameter Group:

1 Handle

Input Binary(4)

2 Remote application name

Input Char(24)

3 Request Identifier

Output Char(53)

4 Send buffer

Input Char(*)

5 Length of send buffer

Input Binary(4)

6 Request type

Input Char(10)

7 Post reply

Input Char(10)

8 Wait time

Input Binary(4)

9 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Send Request (QNMSNDRQ) API, an SNA/Management Services Transport API, sends a request to a

remote application. The source application program using this API can indicate if a reply should be

returned. If request-only data is sent, the source application will not know if the request data was

successfully delivered. To confirm delivery, the source application must request a reply.

When the Send Request (QNMSNDRQ) API operation completes, the remote application may or may not

be present. When the send request is complete, the request has been sent from the local system. If a reply

is expected but the remote application does not exist, an error code is returned on the subsequent receive

operation.

If a reply is not expected, the post reply parameter is ignored.

If the wait time is 0, an entry is placed on the data queue when the send request completes. The

application should then perform a Receive Operation Completion (QNMRCVOC) to obtain the results of

the send operation. It is recommended that a minimum of 30 seconds be used for the wait time. Larger

values may be required in some networks.

38 iSeries: Network Management APIs

#TOP_OF_PAGE
aplist.htm

The current value for the mode name of the application identified by the handle determines which

session is used to send the request.

Required Parameter Group

Handle

INPUT; BINARY(4)

 The unique identifier for this application, which was returned by the Start Application

(QNMSTRAP) API.

Remote application name

INPUT; CHAR(24)

 The name of the remote application to which the request is sent. The first 8 characters contain the

network ID, the second 8 characters contain the control point name (or the logical unit name may

be used), and the third 8 characters contain the application name of the remote application.

Request identifier

OUTPUT; CHAR(53)

 The identifier that the system assigned to this request. This identifier must be kept by the

application to receive replies to the request (if any).

Send buffer

INPUT; CHAR(*)

 The data record being sent.

Length of send buffer

INPUT; BINARY(4)

 The size of the data record being sent. The send buffer can range in size from 0 through 31739.

Request type

INPUT; CHAR(10)

 The type of data to be sent:

 *RQS This is a request only; no reply is expected.

*RQSRPY A reply is expected to this request.

Post reply

INPUT; CHAR(10)

 Whether entries should be put on the data queue when replies to this request arrive.

 *NO Do not place a reply entry on a data queue.

*YES Place the reply entry on the data queue associated with

the handle.

Wait time

INPUT; BINARY(4)

 The amount of time the application waits for the send operation to complete.

 -1 Waits for the send operation to complete or for a

condition such that the operation cannot complete (for

example, a communications failure).

0 Does not wait for the operation to complete.

1-99999 The number of seconds the application waits.

Network Management APIs 39

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7AC0 E &3.&4 cannot receive data at this time.

CPF7ADC E Internal processing error.

CPF7ADD E Operation did not complete.

CPF7ADF E Session failure. Cannot send data at this time.

CPF7AD2 E Send buffer length value &3 not valid.

CPF7AD6 E Request type value &3 not valid.

CPF7AD9 E Post reply value &3 not valid.

CPF7AEC E Wait time &3 not between -1 and 99999.

CPF7AE0 E Function requested not supported by remote system.

CPF7AE1 E Sign-on to control point &3.&4 denied.

CPF7AE2 E Handle &1 not found.

CPF7AE3 E Management Services transport operation not permitted.

CPF7AE5 E Control point &3.&4 not found.

CPF7AE6 E Communication with control point &3.&4 failed.

CPF7AE7 E Remote application program &5 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

Start Application (QNMSTRAP) API

 Required Parameter Group:

1 Handle

Output Binary(4)

2 Local application name

Input Char(8)

3 Qualified data queue name

Input Char(20)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

40 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

The Start Application (QNMSTRAP) API, an SNA/Management Services Transport API, starts support for

a network management application. The handle returned by this SNA/Management Services program

must be used on all subsequent API calls to identify this application. The handle is unique to a specific

job.

The Start Application API must be called before any other SNA/Management Services Transport APIs.

Authorities and Locks

Data queue name

*CHANGE

Target data queue

Other than *NONE

Data queue library

*USE

Required Parameter Group

Handle

OUTPUT; BINARY(4)

 A variable that represents an instance of an application using some function.

Local application name

INPUT; CHAR(8)

 The application name to be associated with the handle.

Qualified data queue name

INPUT; CHAR(20)

 The data queue that indicates when asynchronous events occur, and enables an application to

receive requests. The first 10 characters specify the data queue object name, and the last 10

characters specify the library name.

 The data queue object must exist when this SNA/Management Services program is called. The

maximum entry length of the data queue must be at least 80 bytes. You must specify FIFO for the

sequence of the data when you create the data queue.

 *NONE A data queue is not used.

The following special values may be specified for the library name:

*LIBL The library list.

*CURLIB The job’s current library.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7ADA E Data queue &4/&3 not valid.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

Network Management APIs 41

error.htm#HDRERRCOD
error.htm#HDRERRCOD

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

Alert APIs

The alert APIs let your application create alerts, notify the OS/400(R) alert manager of alerts that need to

be handled, and allow you to retrieve alerts and alert data. The generate and send APIs differ from

ordinary OS/400 alert processing in that they let your application create an alert at any time without

sending an alertable message to an alertable message queue. (An alertable message queue is a message

queue that has been created or changed with the allow alerts (ALWALR) parameter specified as yes.) The

retrieve API allows your application, in conjunction with alert filtering, to perform user-defined actions

based on the contents of the alert.

For more information on creating and sending OS/400 alerts, see the Alerts Support

book.

The alert APIs are:

v “Generate Alert (QALGENA) API” on page 43 (QALGENA) creates an alert for a particular message

ID.

v “Retrieve Alert (QALRTVA) API” on page 45 (QALRTVA) retrieves an alert from the alert database.

v “Send Alert (QALSNDA) API” on page 50 (QALSNDA) sends an alert to the OS/400 alert manager for

processing.

 Top | “Network Management APIs,” on page 1 | APIs by category

42 iSeries: Network Management APIs

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Generate Alert (QALGENA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Size of alert

Output Binary(4)

4 Qualified alert table (message file) name

Input Char(20)

5 Message ID

Input Char(7)

6 Message data

Input Char(*)

7 Length of message data

Input Binary(4)

8 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Generate Alert (QALGENA) API, an alert API, creates an alert for a particular message ID. The alert

is then returned to the calling program.

Authorities and Locks

Alert Table Authority

*USE

Message File Authority

*READ

Library Authority

*USE

Required Parameter Group

Receiver variable (alert major vector)

OUTPUT; CHAR(*)

 The variable that receives the generated alert, in the format of an SNA alert major vector. This

area must be large enough to hold the alert. If the area is too small, the alert is not returned. A

suggested size is 512 bytes because alerts cannot exceed 512 bytes for the OS/400 licensed

program.

Network Management APIs 43

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable parameter. If this is too small, no data is returned, and the API

ends with an exception.

Size of alert

OUTPUT; BINARY(4)

 The size of the successfully generated alerts. If the size of the alert is smaller than the length of

receiver variable, the alert is returned in the receiver variable. If the size of the alert is greater

than the length of receiver variable, the alert is not returned.

Qualified alert table (message file) name

INPUT; CHAR(20)

 The name of the alert table where the alert description defining the alert is stored, and the name

of the library in which it resides. This parameter also identifies the name of the message file to

use because the alert table and message file must have the same name.

 The first 10 characters contain the alert table name, and the second 10 characters contain the

name of the library.

 Valid values for the library name are:

 *CURLIB The job’s current library. The alert table and message file must both be in this library.

*LIBL The library list. The alert table and message file can be in different libraries, but the libraries must

both be in the library list.

Specific library The alert table and message file must be in the same library.

Message ID

INPUT; CHAR(7)

 The message ID of the alert description defining the alert. This parameter also identifies the

message ID of the corresponding message description. The message does not need to be an

alertable message. The ALROPT parameter of the Display Message Description (DSPMSGD)

command is ignored and an alert is always returned, provided that an alert description with the

given message ID exists in the given alert table.

Message data

INPUT; CHAR(*)

 The message data to use for message substitution on the alert description and message

description. The format of the message data is the same as used for the Send Program Message

(SNDPGMMSG) command and the Send Program Message (QMHSNDPM) API. See the CL

Programming

book for more information about message data in general and the online help

for details about the SNDPGMMSG command.

Length of message data

INPUT; BINARY(4)

 The length of the message data provided by the message data parameter above.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Handling

Some of the QALGENA API errors allow an alert to be returned to the application. An alert is returned to

the application in these cases:

44 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

v The user is not authorized to the message file.

v A message cannot be added to the alert because the message or message file cannot be found.

No alert is returned to the application in these cases:

v The user is not authorized to the alert table.

v OS/400 alert support cannot build an alert because no message ID is given, the alert table is missing or

damaged, or no alert description is found. In this case, the alert generated could only be a

cause-undetermined alert of little or no value.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7B01 E Receiver variable too small to hold alert.

CPF7B02 E Message ID not valid.

CPF7B03 E Alert table &2/&1 not found.

CPF7B04 E Alert description &1 not found in alert table &4/&3.

CPF7B05 E Message file &2/&1 not available for alert processing.

CPF7B06 E Message &1 not found in message file &4/&3 for alert processing.

CPF7B10 E Length parameter &1 is not valid.

CPF9802 E Not authorized to object &2 in &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Network Management APIs,” on page 1 | APIs by category

Retrieve Alert (QALRTVA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format

Input Char(8)

4 Alert log identifier

Input Char(8)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

Network Management APIs 45

#TOP_OF_PAGE
aplist.htm

The Retrieve Alert (QALRTVA) API, an alert API, retrieves an alert from the alert database. Different

formats of data can be returned depending on what value is specified for the format parameter.

This API can be used to automate alerts such that an alert notification is sent to a data queue monitored

by a user application whenever an alert is processed or received.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The area to receive the formatted data. The data is formatted based on the format parameter. The

data is either part of the alert or the alert major vector itself.

Length of receiver variable

INPUT; BINARY(4)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Format

INPUT; CHAR(8)

 The format of the data to return. The possible formats are:

 ALRT0100 Does not return the alert. It returns information about the

alert that can be seen on the Work with Alerts display.

See “ALRT0100 Format” for more information.

ALRT0200 Does return the alert and some information about the

alert that is not contained within the alert. See

“ALRT0200 Format” on page 47 for more information.

Alert log identifier

INPUT; CHAR(8)

 The identifier used to retrieve the alert from the alert log. The log ID can be found in the alert

notification record,

which is displayed below after the ALRT0100 and ALRT0200 Format

tables.

The notification record is placed on a data queue during alert filtering by the send to

data queue action.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

ALRT0100 Format

See “Field Descriptions” on page 48 for descriptions of the fields in this format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Timestamp

16 10 CHAR(10) User assigned to this alert

26 1A CHAR(10) Group assigned to this alert

46 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

36 24 CHAR(20) Filter used

56 38 CHAR(4) Alert ID

60 3C CHAR(10) Problem ID

70 46 CHAR(20) Origin system of problem

90 5A CHAR(1) Alert holding flag

91 5B CHAR(1) Local or received alert flag

92 5C CHAR(1) Alert held flag

93 5D CHAR(1) Delayed alert flag

94 5E CHAR(1) Operator-generated alert flag

95 5F CHAR(1) Analysis available flag

96 60 CHAR(2) Alert type code point

98 62 CHAR(4) Alert description code point

102 66 CHAR(4) First probable cause code point

106 6A CHAR(10) Resource name

116 74 CHAR(3) Resource type

ALRT0200 Format

See “Field Descriptions” on page 48 for descriptions of the fields in this format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Timestamp

16 10 CHAR(10) User assigned to this alert

26 1A CHAR(10) Group assigned to this alert

36 24 CHAR(20) Filter used

56 38 CHAR(512) Alert major vector

Alert Notification Record

 Offset

Type Field Dec Hex

0 0 CHAR(10) Alert Notification (always ’*ALRFTR ’)

10 A CHAR(2) Function code (always ’01’ = Alert processed)

12 C CHAR(10) Group assigned to this alert

22 16 CHAR(10) Filter used

32 20 CHAR(10) Library of the filter

Network Management APIs 47

Offset

Type Field Dec Hex

42 2A CHAR(8) Alert log identifier

50 32 CHAR(30) Reserved

Field Descriptions

Alert description code point. The description of the alert. The text is found in the QALRMSG message

file in the QSYS library. The prefix for the message ID is ALD, and the suffix is the value of this field.

Alert held flag. If the alert has ever been held for the purpose of sending to the focal point, this flag is

set to 1; if the alert has never been held, it is set to 0.

Alert holding flag. If the alert is currently being held to send to the focal point system, this flag is set to

H; if not, the field is blank.

Alert ID. An assigned value for a particular alert.

Alert major vector. This is the SNA alert major vector.

Alert type code point. The type of alert. The text for the code point is found in the QALRMSG message

file in the QSYS library. The prefix for the message ID is ALT, and the suffix is the value of this field

followed by 00.

Analysis available flag. If further problem analysis is available for this problem or if the alert is for a

problem analysis message, then this flag is set to 1; if the message is not for problem analysis, it is set to

0.

Bytes available. The number of bytes of data available to be returned.

Bytes returned. The number of bytes of data that were returned.

Delayed alert flag. If the alert was ever delayed, this flag is set to 1; if it has never been delayed, it is set

to 0.

Filter used. The filter used to categorize the alert when it was first processed. The filter is not

dynamically updated.

First probable cause code point. The most probable cause for an alert. The text for the description is

found in the QALRMSG message file in the QSYS library. The prefix for the message ID is ALP, and the

suffix is the value of this field.

Group assigned to this alert. The group the alert is assigned to when the alert is first filtered in the

system. This value can be changed from the Work with Alerts display.

Local or received alert flag. If the alert is a locally generated alert, this flag is set to L; if it is a received

alert, the flag is set to R.

Operator-generated alert flag. If the alert was generated by an operator, this flag is set to 1; if not, it is

set to 0.

Origin system of problem. The system that was the origin of the associated problem entry. If no problem

log entry is associated with the alert, this field is blank.

48 iSeries: Network Management APIs

Problem ID. The ID of the problem associated with the alert. If no problem log entry is associated with

the alert, this field is blank.

Resource name. The name of the resource that detected the error condition. The resource name indicates

the location of the actual resource with the problem that created the alert. Generally, this is the control

point name of the origin system.

Resource type. The type of resource that detected the error condition, for example, diskette, tape, printer,

line, or display. The failing resource is the lowest resource in the resource hierarchy. See the Alerts

Support

book for the values of the resource type.

Timestamp. The machine timestamp (time of day) the alert was logged.

User assigned to this alert. The user the alert is assigned to when the alert is first filtered into the

system. This value can be changed from the Work with Alerts display.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF7B10 E Length parameter &1 is not valid.

CPF7B11 E Alert not found.

CPF9845 E Error occurred while opening file &1.

CPF9846 E Error while processing file &1 in library &2.

CPF9847 E Error occurred while closing file &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

Network Management APIs 49

#TOP_OF_PAGE
aplist.htm

Send Alert (QALSNDA) API

 Required Parameter Group:

1 Alert major vector

Input Char(*)

2 Length of alert major vector

Input Binary(4)

3 Local or received indicator

Input Char(1)

4 Origin

Input Char(10)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Send Alert (QALSNDA) API, an alert API, sends an alert to the OS/400 alert manager for processing.

The alert is created by calling the Generate Alert (QALGENA) API. An alert may be received by your

application from another system or it can be built by other means.

When the OS/400 alert manager receives the alert, it handles it like any other alert on the system. The

alert function is notified of the alert, and the alert can be logged and forwarded to a focal point or central

site. The alert can be treated as either a locally generated alert or a received alert. The OS/400 alert

manager updates the hierarchical information of received alerts with the name of the iSeries server

control point that is handling the alert (that is, the LCLCPNAME network attribute value).

Required Parameter Group

Alert major vector

INPUT; CHAR(*)

 The variable that contains the alert major vector.

Length of alert major vector

INPUT; BINARY(4)

 The length of the alert, in bytes.

 Valid values are 1 through 512.

Local or received indicator

INPUT; CHAR(1)

 One of these values, indicating whether the alert is handled as locally generated or received:

 L Locally generated alert. This alert is listed in the output

from the Work with Alerts (WRKALR) command using

the display option (DSPOPT) parameter with the *LOCAL

special value. The alert hierarchy is not changed to add

the current system’s name.

50 iSeries: Network Management APIs

R Received alert. This alert is listed in the output from the

Work with Alerts (WRKALR) command using the display

options (DSPOPT) parameter with the *RCV special

value. The system name is added to the processing node

list. The current system’s name, stored in the

LCLCPNAME network attribute, is added to the alert

hierarchy.

Origin

INPUT; CHAR(10)

 The origin of the alert. This value is not included in the alert. It is used only in the substitution

text for messages CPI7B62 (Alert received from &1) and CPI7B60 (Incorrect alert received from

&1), which are sent to the QSYSOPR message queue. Thus, you could use it for the name of the

program generating a locally generated alert, or the name of the system sending a received alert.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7B07 E Alert exceeds maximum size allowed.

CPF7B08 E Alert is not valid.

CPF7B09 E Value specified for parameter &1 not valid.

CPF7B10 E Length parameter &1 is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Network Management APIs,” on page 1 | APIs by category

Node List API

A node list contains a list of systems identified by a remote location name and an address type. Nodes

with an SNA address type are identified by a network ID and a control point name. Nodes with an

internet protocol (IP) type are identified by a host name or an internet address.

The node list API is:

v “List Node List Entries (QFVLSTNL) API” on page 52 (QFVLSTNL) returns, in a user space, a list of

the nodes contained in the specified node list object.

 Top | “Network Management APIs,” on page 1 | APIs by category

Network Management APIs 51

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

List Node List Entries (QFVLSTNL) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 Qualified node list name

Input Char(20)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The List Node List Entries (QFVLSTNL) API returns, in a user space, a list of the nodes contained in the

specified node list object.

Authorities and Locks

Node List Object Authority

*USE

Node List Object Lock

*SHRRD

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Required Parameter Group

Qualified user space name

INPUT; CHAR (20)

 The name of the user space that is to receive the generated list. The first 10 characters contain the

user space name. The second 10 characters contain the name of the library where the user space

is located.

 The following special values can be used for the library name:

 *CURLIB The current library.

*LIBL The library list.

Format name

INPUT; CHAR(8)

52 iSeries: Network Management APIs

The format of the data placed in the user space. The valid value is:

 NODL0100 All node list entry information returned. This format is

explained in “NODL0100 List Data Section” on page 54.

Qualified node list name

INPUT; CHAR(20)

 The name of the node list object from which the entries are to be retrieved. The first 10 characters

contain the node list name. The second 10 characters contain the name of the library where the

node list is located.

 Special values for the name of the node list library are:

 *CURLIB The current library.

*LIBL The library list.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Generated Lists

The returned user space will contain:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section

For details about the user area and generic header, see User Space Format for List APIs. For details about

the other items, see the following sections. For a detailed description of each field in the information

returned, see “Field Descriptions” on page 54.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Node list object name specified

38 26 CHAR(10) Node list object library name specified

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name used

Network Management APIs 53

error.htm#HDRERRCOD
error.htm#HDRERRCOD
usf.htm

Offset

Type Field Dec Hex

10 A CHAR(10) User space library name used

20 14 CHAR(10) Node list object name used

30 1E CHAR(10) Node list object library name used

NODL0100 List Data Section

 Offset

Type Field Dec Hex

0 0 CHAR(1) Address type

1 1 CHAR(20) Remote location name (for address type 1)

21 15 CHAR(50) Text description

71 47 CHAR(1) Reserved

72 48 BINARY(4) Text description CCSID

76 4C CHAR(256) Remote location name (for address type 1, 2, or 3)

Field Descriptions

Address type. The type of address returned. The following values are used:

 1 SNA APPN address type. The network ID and control

point name are given in both the remote location name

field at offset 1 and at offset 76.

2 Internet protocol (IP) address type. The host name is

given in the remote location name field at offset 76.

3 Internet protocol (IP) address type. The internet address

is given in the remote location name field at offset 76.

Format name specified. The format name specified as input for the API.

Node list object library name specified. The name of the node list object library as specified on the call

to the API.

Node list object library name used. The actual name of the node list object library used to report data.

Node list object name specified. The node list object name as specified on the call to the API. Nodes

with an SNA address type are identified by a network ID and a control point name. Nodes with an

internet protocol (IP) type are identified by a host name or an internet address. The system-recognized

identifier for the object type is *NODL.

Node list object name used. The actual node list object name used to report data. The system-recognized

identifier for the object type is *NODL.

Remote location name (for address type x). The name of a system in a network.

The remote location name field at offset 1 contains an 8-character SNA network ID, an 8-character control

point name, and 4 reserved characters. The remote location name field at offset 1 is only used if the

address type is 1 (SNA). Otherwise, the field at offset 1 is blank.

54 iSeries: Network Management APIs

The contents of the remote location name field at offset 76 depends on the address type:

 1 Contains the same name as the field at offset 1: an

8-character SNA network ID, an 8-character control point

name, and 4 reserved characters.

2 Contains a 255-character host name and 1 reserved

character.

3 Contains a 15-character internet address and 241 reserved

characters.

Reserved. An ignored field.

Text description. The text description of the node list entry.

Text description CCSID. The coded character set identifier (CCSID) used for the text description.

User space library name specified. The user space library name as specified on the call to the API.

User space library name used. The actual user space library name used to report data.

User space name specified. The user space name as specified on the call to the API.

User space name used. The actual user space name used to report data.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF813E E Node list &4 in &9 damaged.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Network Management APIs,” on page 1 | APIs by category

Registered Filter APIs

A filter is a function you can use to assign events into groups and to specify actions to take for each

group. The registered filter APIs allow a product to register a filter with the operating system. The

product can receive notification of events recorded in a data queue by using the Send to Data Queue

(SNDDTAQ) action of the Work with Filter Action Entry (WRKFTRACNE) command.

Network Management APIs 55

#TOP_OF_PAGE
aplist.htm

A user filter is the filter defined by the network attributes for alert filtering and by the system value for

problem log filtering. A user filter and a registered filter differ in their function and their notification

record. There can only be one user filter active at one time for each type of filter, but there can be

multiple registered filters active at one time. All actions are active for a user filter, but only the

SNDDTAQ action is active for a registered filter.

A product can use registered filter APIs for the following purposes:

v To register multiple filters at the same time for each event type (alert or problem log)

v To deregister a filter when notifications from that filter are no longer necessary

v To retrieve all the filters that are registered

The event notification record for a registered filter differs from notification records for other types of

filters. The registered notification contains a common header for all events, as well as specific information

based on the type of event. The common header includes the name of the notification, a function type, a

format, the filter name and library, the group name, and a timestamp. The specific information for the

problem log includes the problem ID, the last event logged, and the timestamp for the last event.

The registered filter APIs are:

v “Deregister Filter Notifications (QNMDRGFN) API” (QNMDRGFN) deregisters a filter. If the identified

filter is not currently registered, an error is returned.

v “Register Filter Notifications (QNMRGFN) API” on page 58 (QNMRGFN) registers a filter to send

notifications for a specific event to a data queue.

v “Retrieve Registered Filters (QNMRRGF) API” on page 62 (QNMRRGF) returns all filters registered for

a filter type.

 Top | “Network Management APIs,” on page 1 | APIs by category

Deregister Filter Notifications (QNMDRGFN) API

 Required Parameter Group:

1 Qualified filter name

Input Char(20)

2 Filter type

Input Char(10)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Deregister Filter Notifications (QNMDRGFN) API deregisters a filter. If the identified filter is not

currently registered, an error is returned.

Authorities and Locks

Registered Filter

*USE

56 iSeries: Network Management APIs

#TOP_OF_PAGE
aplist.htm

Registered Filter Library

*USE

Required Parameter Group

Qualified filter name

INPUT; CHAR(20)

 The qualified filter name that is being deregistered. The first 10 characters are the filter name, and

the last 10 characters are the library name. Special values *LIBL and *CURLIB are not supported

for the library name.

Filter type

INPUT; CHAR(10)

 The filter type that is being deregistered.

 Special values supported are:

 *ALR Alert filter

*PRB Problem log filter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF91D1 E Filter &1/&2 of type &3 was not deregistered.

CPF91D2 E Filter type &3 not correct for this operation.

CPF91D4 E Filter &1/&2 of type &3 is not registered.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

API introduced: V2R1

 Top | “Network Management APIs,” on page 1 | APIs by category

Network Management APIs 57

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Register Filter Notifications (QNMRGFN) API

 Required Parameter Group:

1 Qualified filter name

Input Char(20)

2 Filter type

Input Char(10)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Register Filter Notifications (QNMRGFN) API registers a filter to send notifications for a specific

event to a data queue. This data queue is defined in the *SNDDTAQ action entry field of the registered

filter. These notification records are the asynchronous output of this API. All CL filter commands can be

performed against a registered filter.

A filter can only be registered once. If a registered filter is being registered again, an error is returned. No

checking is done to see if the registered filter is the same as another filter, such as an active user filter.

A check to prevent duplicate notifications for a single event is made when the registered filters are

processed. If a notification record for a registered filter is a duplicate of another notification record (such

as an active user filter) the registered filter is not processed.

If an error occurs in accessing a registered filter, or while enqueuing the notification record, the filter is

automatically deregistered, and an informational message (CPI91D5) is sent to the system operator

(QSYSOPR) message queue. This prevents the system from encountering the error again.

The registration for a filter remains active after the initial program load of a system. This ensures that a

product receives all notifications. A product should register its filter either when the product is installed

or when the product is started. A product should check to see that its filter is registered at its start-up

time to ensure that its filter was not automatically deregistered. You do not have to deregister a filter to

change the filter.

Authorities and Locks

Registered Filter

*USE

Registered Filter Library

*USE

Required Parameter Group

Qualified filter name

INPUT; CHAR(20)

 The qualified filter name that is being registered. The first 10 characters are the filter name, and

the last 10 characters are the library name. Special values *LIBL and *CURLIB are not supported

for the library name.

58 iSeries: Network Management APIs

Filter type

INPUT; CHAR(10)

 The type of filter. The following filter types are specified in the format field.

 Special values supported are:

 *ALR Alert filter. (See “Alert Filter” for details about the

format.)

*PRB Problem log filter. (See “Problem Log Filter” for details

about the format.)

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Registered Filter Data Queue Notification

See “Field Descriptions” on page 60 for descriptions of the fields in this format.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Notification name

10 A CHAR(2) Function code

12 C CHAR(8) Format

20 14 CHAR(10) Filter name

30 1E CHAR(10) Filter library name

40 28 CHAR(10) Group name

50 32 CHAR(8) Timestamp

58 3A CHAR(22) Reserved

80 50 CHAR(*) Event-specific notification data

The types of event-specific notification data used by the format field are described below.

Alert Filter

See “Field Descriptions” on page 60 for descriptions of the fields in this format.

 Offset

Type Field Dec Hex

80 50 CHAR(512) Alert major vector

Problem Log Filter

See “Field Descriptions” on page 60 for descriptions of the fields in this format.

 Offset

Type Field Dec Hex

80 50 CHAR(30) Problem ID

110 6E CHAR(1) Last event

Network Management APIs 59

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

111 6F CHAR(8) Last event timestamp

Field Descriptions

Alert major vector. The actual alert that caused the notification.

Event-specific notification data. Data specific to the event identified in the function code. The data is in

the format specified by the format variable.

Filter library name. The library that contains the filter.

Filter name. The name of the filter that sent the notification.

Format. The format of the event-specific data of a problem log filter. Valid values are:

 RGFN0100 Alert filter

RGFN0200 Problem log filter

Function code. The event that caused the notification. Valid values are:

 01 Alert event

02 Problem log event

Group name. The group into which the event was filtered.

Last event. The last event performed on the problem. Valid values are:

 01 Problem entry opened

02 Service request received code

03 Opened by alert

10 Problem analyzed

11 Verification test ran

12 Recovery procedure ran

20 Prepared to report

21 Service request sent

22 Problem answered

23 Response sent

24 Reported by voice

25 Fixes transmitted

26 Change request submitted

27 Change request ended

30 Fix verified

41 Remote analysis

42 Remote verification ran

43 Remote recovery ran

50 Alert created

51 APAR created

52 APAR data collected

54 APAR data restored

55 APAR data deleted

60 iSeries: Network Management APIs

60 Changed by CHGPRB

61 Deleted by DLTPRB

62 Recurring problem

70 Status changed

71 Status query sent

80 Auto-PAR done

81 Auto-PAR not done - SRC OFF

82 Auto-PAR not done - SBMJOB

83 Auto-PAR failed

86 Auto-notify done

87 Auto-notify not done - SRC off

88 Auto-notify not done - SBMJOB

89 Auto-notify failed

99 Problem entry closed

Last event timestamp. The time at which the last event was performed.

Notification name. The type of notification record. It is set to *RGFN for all registered filter notifications.

Problem ID. The ID of the problem that caused the notification.

Reserved. An ignored field.

Timestamp. The time at which the event was processed.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C7C E User index is full.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF91D2 E Filter type &3 not correct for this operation.

CPF91D3 E Filter &1/&2 with type &3 is already registered.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

API introduced: V2R3

 Top | “Network Management APIs,” on page 1 | APIs by category

Network Management APIs 61

#TOP_OF_PAGE
aplist.htm

Retrieve Registered Filters (QNMRRGF) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Filter type

Input Char(10)

4 Format

Input Char(8)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Registered Filters (QNMRRGF) API returns all filters registered for a filter type. If not

enough space exists to return all the registered filters, then as many registered filters as fit in the

provided space are returned. A count of the total number of registered filters for the specific filter type is

also returned.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable in which the registered filters are returned. If the variable is not large enough to

contain all the registered filters, then only as many registered filters will be returned as will fit in

the receiver variable.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable parameter. If not enough space is given, then only the number

of filters that fit will be returned. In this case the number of bytes available will be greater than

the number of bytes returned.

Filter type

INPUT; CHAR(10)

 The type of filter to be retrieved.

 Special values supported are:

 *ALR Alert filter

*PRB Problem log filter

Format

INPUT; CHAR(8)

62 iSeries: Network Management APIs

The format of the receiver variable. The valid value is format RGFN0100. See “RGFN0100

Format” for the format of the receiver variable.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RGFN0100 Format

See “Field Descriptions” for a description of the fields in this format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Returned registered filters

12 C BINARY(4) Total registered filters

16 10 BINARY(4) Element length

20

14

CHAR(*) Array of registered filters

Note: This is an array with the following element structure:

0 0 CHAR(10) Filter name

10 A CHAR(10) Filter library name

20 14 CHAR(10) Library type

Field Descriptions

Array of registered filters. A 10-character filter name followed by a 10-character library name followed

by a 10-character filter type.

Bytes available. The number of bytes of data that is available. If this number is greater than the bytes

returned, the receiver variable was not large enough to contain all the registered filters.

Bytes returned. The number of bytes of data returned in the receiver variable.

Element length. The length of a single array element. For format RGFN0100 the length is 30 bytes.

Filter library name. The name of the library containing the registered filter.

Filter name. The name of the filter object that was registered.

Filter type. The type of the filter as defined by the FTRTYPE parameter on the Create Filter (CRTFTR)

command.

Returned registered filters. The number of registered filters that is returned in the array.

Total registered filters. The total number of filters registered for the specified filter type.

Network Management APIs 63

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF91D6 E Filter type &1 not valid.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

API introduced: V2R3

 Top | “Network Management APIs,” on page 1 | APIs by category

Change Request Management APIs

The change request management APIs add, remove, and list activities and retrieve change request

descriptions.

The change request management APIs are:

v “Add Activity (QFVADDA) API” on page 65 (QFVADDA) adds an activity to the specified change

request description.

v “List Activities (QFVLSTA) API” on page 71 (QFVLSTA) retrieves a list of activities from a qualified

change request description.

v “Remove Activity (QFVRMVA) API” on page 77 (QFVRMVA) removes an activity from the specified

change request description.

v “Retrieve Change Request Description (QFVRTVCD) API” on page 79 (QFVRTVCD) retrieves either

general change request description information, or information pertaining to a single activity within the

change request description.

 Top | “Network Management APIs,” on page 1 | APIs by category

64 iSeries: Network Management APIs

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Add Activity (QFVADDA) API

 Required Parameter Group:

1 Qualified change request description name

Input Char(20)

2 Activity name

Input Char(10)

3 Activity type

Input Char(10)

4 Destination format

Input Char(10)

5 Destination

Input Array of Char(20)

6 Number of destinations

Input Binary(4)

7 Condition list

Input Array of Char(32)

8 Number of conditions

Input Binary(4)

9 Start time

Input Char(40)

10 Hold

Input Char(10)

11 Function parameters

Input Char(*)

12 Length of function parameters

Input Binary(4)

13 Text

Input Char(50)

14 Replace

Input Char(10)

15 Activity added

Output Char(10)

16 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

Network Management APIs 65

The Add Activity (QFVADDA) API adds an activity to the specified change request description.

Authorities and Locks

Change request description authority

*CHANGE

Change request description lock

*EXCLRD

Required Parameter Group

Qualified change request description name

INPUT; CHAR(20)

 The name and library of the qualified change request description to which an activity is added.

The first ten characters contain the name of the change request description. The second ten

characters contain the name of the library where the change request description is located.

 The following special values can be used for library name:

 *CURLIB The current library

*LIBL The library list

Activity name

INPUT; CHAR(10)

 The name of the activity to add to the qualified change request description. The first character

must be alphabetic or one of the special symbols $, @, or #. The remaining characters can be

alphanumeric (A through Z, a through z, 0 through 9, and special symbols $, #, @, ., or _). The

maximum number of activities allowed per change request description is 200.

 Special values for the name of the activity are:

 *GEN The activity name is generated automatically in the

format QACTnnnnnn where nnnnnn is a multiple of 10

from 000010 to 999990.

*LAST This activity is the last activity to run for the change

request. Only one activity in a change request may be

specified with this value. The number of conditions must

be 0. The start after time and date of start time parameter

must be *CURRENT. The start before time and date of

start parameter must be *ANY.

Activity type

INPUT; CHAR(10)

 The name of the activity type to be added to the change request description. This value is defined

by the user program. The API does not define the possible values. The characters that can be

used for the activity type name are A through Z, 0 through 9, and *. Only IBM activity types

should start with *.

Destination format

INPUT; CHAR(10)

 Whether the activity runs on the local system, a node list name, or a list of 1 to 50 nodes

specified by the user.

66 iSeries: Network Management APIs

Special values for the destination format are:

 *LCL The activity runs on the local system. The destination and

number of destinations parameters are ignored if they are

specified (the local network ID and control point name

are assumed).

*NODL The activity runs on the systems identified in the node

list name. The number of destinations parameter is

ignored if it is specified. The node list is not restricted to

50 nodes.

*SNALST The activity runs on the systems identified in the list of

user-specified SNA nodes.

Destination

INPUT; Array of CHAR(20)

 The destination of the activity. The format of the destination is based on the destination format

parameter.

 When the destination format is *SNALST, the destination parameter is an array of the number of

destinations elements.

 The format for each element is:

 Network ID CHAR(8)

Control point CHAR(8)

Reserved CHAR(4)

When the destination format is *NODL, the destination parameter is an array of one element with

the following format:

 Node list name CHAR(10)

Library CHAR(10)

When the destination format is *LCL, the destination parameter is ignored.

Number of destinations

INPUT; BINARY(4)

 The number of elements in the destination array. Valid values range from 1 through 50. The

number of destinations parameter is ignored if the destination format parameter is *LCL or

*NODL.

Condition list

INPUT: Array of CHAR(32)

 The list of conditions that must be met before the activity can be run.

 The format for each element is:

 Activity name CHAR(10)

The activity name which can be:

activity name

the activity is conditioned on the activity name specified.

generic name

the activity is conditioned on all the activities that match the generic name (partial

activity followed by an asterisk (*)).

*PRV the activity is conditioned on the activity that precedes it alphabetically.

Network Management APIs 67

Relation CHAR(3)

Valid values are *EQ, *NE, *GT, *LT, *GE, and *LE.

Reserved CHAR(3)

Code BINARY(31)

The end code value to base conditioning on. Possible values are:

0-99 user-specified

-1 (*SUCCESS)

end code is any value from 0-9.

 If specified, relation must be *EQ or *NE.

-2 (*FAIL)

end code is any value from 10-89.

 If specified, relation must be *EQ or *NE.

-3 (*NOTRUN)

end code is any value from 90-99.

 If specified, relation must be *EQ or *NE.

-4 (*ANY)

end code is any value from 0-99.

 If specified, relation must be *EQ.

Mode CHAR(10)

Possible vales are:

*ALLNODES

all nodes of the conditioning activity must meet the completion criteria before this

condition is considered met.

*SAMENODE

nodes of the conditioned activity need only wait for the same node of the conditioning

activity to meet the completion criteria before this condition is considered met.

Reserved Null

Number of conditions

INPUT; BINARY(4)

 The number of condition elements. The valid values are 0 through 5. When the number of

condition elements is 0, the activity specified is not dependent on any other activities to complete

before it can start, and the condition list parameter is ignored.

Start time

INPUT; CHAR(40)

 The date and time window during which this activity can be started. The current date and time

values and next date values are determined when the change request is submitted. The structure

is:

 Start after time CHAR(10)

The time after which this activity may be started. Special

values supported are:

*CURRENT

68 iSeries: Network Management APIs

Start after date CHAR(10)

The date after which this activity may be started. Special

value supported:

*CURRENT

*NEXT

Start before time CHAR(10)

The time before which the activity must be started. If the

activity cannot be started before this time then it is never

started. Special values supported are:

*ANY

*CURRENT

Start before date CHAR(10)

The date before which the activity must be started. If the

activity cannot be started before this date then it is never

started. Special values supported are:

*ANY

*CURRENT

*NEXT

The format for time is hhmmss. The format for date is cyymmdd.

Hold INPUT; CHAR(10)

 Whether or not this activity is in Held status when it is submitted.

 Valid values are *YES and *NO.

Function parameters

INPUT; CHAR(*)

 The structure containing the specific function parameters. The format is known only by the

program calling this API and the exit program that is called to display, change, print, or run this

activity.

Length of function parameters

INPUT; BINARY(4)

 The total length in bytes of the function parameters parameter. Valid values range from 1 through

12288 (12k).

Text INPUT; CHAR(50)

 The description of the activity.

Replace

INPUT; CHAR(10)

 Whether an activity that already exists is replaced. If the activity name is found, it is replaced on

this parameter.

 *YES The activity that already exists in the change request

description is replaced.

*NO The activity that already exists in the change request

description is not replaced.

Network Management APIs 69

Activity added

OUTPUT; CHAR(10)

 The name of the activity added to the change request description. This is useful when *GEN is

specified for the activity name. This parameter is ignored if the activity already exists.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3793 E Machine storage limit reached.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9681 E Activity &1 already exists.

CPF9682 E Element &3 of destination array not valid.

CPF9683 E Number of conditions &1 not valid.

CPF9684 E Start after time &1 not valid.

CPF9685 E Start before time &1 not valid.

CPF9686 E Destination format value &1 not valid.

CPF9687 E Number of destinations &1 not valid.

CPF9688 E Element &3 of condition list array not valid.

CPF9689 E Hold value &1 not valid.

CPF968A E Activity name &1 not valid.

CPF968B E Activity type &1 not valid.

CPF968C E Replace value &1 not valid.

CPF968D E Function parameters length &1 not valid.

CPF968E E Condition list or start time cannot be specified.

CPF9691 E Start after date &1 not valid.

CPF9692 E Start before date &1 not valid.

CPF9696 E Generated activity name limit exceeded.

CPF9697 E Activity cannot be conditioned on itself.

CPF9698 E Maximum size of CRQD &1 exceeded.

CPF9699 E Start time not valid.

CPF969E E Internal processing error occurred.

CPF969F E Activity &1 already exists in condition list.

CPF96A2 E CRQD library name &1 not valid.

CPF96A4 E Activity not added, limit exceeded.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

70 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

API introduced: V3R1

 Top | “Network Management APIs,” on page 1 | APIs by category

List Activities (QFVLSTA) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format

Input Char(8)

3 Qualified change request description name

Input Char(20)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The List Activities (QFVLSTA) API retrieves a list of activities from a qualified change request

description.

Authorities and Locks

Change request description authority

*USE

Change request description lock

*SHRRD

User space authority

*CHANGE

User space library authority

*EXECUTE

User space lock

*EXCLRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The name of the qualified user space that receives the generated list. The first 10 characters

contain the user space name, the second 10 characters contain the user space library name.

 Special values for the user space library name are:

 *CURLIB The current library

*LIBL The library list

Network Management APIs 71

#TOP_OF_PAGE
aplist.htm

Format

INPUT; CHAR(8)

 The format of the data to return. The valid values are:

 CRDA0100 The activity name is returned. See “CRDA0100 Format”

on page 73.

CRDA0200 The activity name, start time, and conditions are returned.

See “CRDA0200 Format” on page 73.

CRDA0300 The activity name, type, text, conditions and function

parameters are returned. See “CRDA0300 Format” on

page 73.

Qualified change request description name

INPUT; CHAR(20)

 The name of the qualified change request description from which information will be retrieved.

The first 10 characters contain the change request description name and the second 10 characters

contain the change request description library name.

 Special values for the qualified change request description library name are:

 *CURLIB The current library

*LIBL The library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Generated List

The user space is used to retrieve the activity list with the requested information and consists of:

v A user area

v A generic header

v An input parameter section

v A header section

For details about the user area and generic header, see User Space Format for List APIs. For details about

the other items, see the following sections. For a detailed description of each field in the information

returned, see “Field Descriptions” on page 74.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Change request description name specified

38 26 CHAR(10) Change request description library name specified

72 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
usf.htm

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name used

10 A CHAR(10) User space library name used

20 14 CHAR(10) Change request description name used

30 1E CHAR(10) Change request description library name used

CRDA0100 Format

See “Field Descriptions” on page 74 for descriptions of the fields in this format.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Activity name

CRDA0200 Format

See “Field Descriptions” on page 74 for descriptions of the fields in this format.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Activity name

10 A Array of CHAR(32) Conditions array

170 AA CHAR(2) Reserved

172 AC BINARY(4) Number of conditions

176 BO CHAR(40) Start time

CRDA0300 Format

See “Field Descriptions” on page 74 for descriptions of the fields in this format.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Activity name

10 A CHAR(10) Activity type

20 14 CHAR(50) Activity text description

70 46 CHAR(2) Reserved

72 48 BINARY(4) CCSID of activity text description

76 4C Array of CHAR(32) Conditions array

236 EC BINARY(4) Number of conditions

240 F0 BINARY(31) Function parameters length

271 10F CHAR(*) Function parameters

Network Management APIs 73

Field Descriptions

Activity name. The name of the activity stored in the change request description name.

Activity text description. The description of the activity.

Activity type. The name of the activity type stored in the change request description name. This value is

defined by the user program. The API does not define the possible values.

Change request description name specified. The name of the change request description specified to the

API.

Change request description name used. The name of the change request description used to retrieve the

list.

Change request description library name specified. The name of the library where the change request

description is stored specified to the API. If the special values *LIBL or *CURLIB are used, the library

name resolved is set here.

Change request description library name used. The name of the library used where the change request

description is stored.

Conditions array. The list of conditions that must be met before the activity can be run. This is an array

of 5 elements. The number of conditions field indicates the actual number of conditions specified for the

activity.

The structure of each element is:

 activity CHAR(10)

Activity name. Possible values: *PRV, user-specified name,

or a generic name (partial name followed by an asterisk

(*)).

relation CHAR(3)

The relational operator. Possible values are:

*EQ, *NE, *GT, *LT, *GE, *LE.

reserved An ignored field.

74 iSeries: Network Management APIs

code BIN(31)

The end code value to base conditioning on. The

following values are supported:

0-99 User can specify anything in this range.

-1 (*SUCCESS)

The end code is any value from 0-9.

 If specified, relation must be *EQ or *NE.

-2 (*FAIL)

The end code is any value from 10-89.

 If specified, relation must be *EQ or *NE.

-3 (*NOTRUN)

The end code is any value from 90-99.

 If specified, relation must *EQ or *NE.

-4 (*ANY)

The end code is any value from 0-99.

 If specified, relation must be *EQ.

mode CHAR(10)

Condition mode. Possible values are:

*ALLNODES

All nodes of the conditioning activity must meet

the completion criteria before this condition is

considered met.

*SAMENODE

Nodes of the conditioned activity need only wait

for the same node of the conditioning activity to

meet the completion criteria before this condition

is considered met.

CCSID of activity text. The CCSID of the activity text description.

Format name specified. The format name specified to the API.

Function parameters. The parameters defined by the calling application when the activity was added.

Function parameters length. The length of the function parameters returned.

Number of conditions. The number of conditions specified for the activity. Valid values range from 0

through 5. This field is used to determine how many elements of the condition array contain valid data.

Reserved. An ignored field.

Start time. The date and time window during which this activity can be started. The current date and

time values and next date values are determined when change request is submitted. The structure is:

Network Management APIs 75

start after time CHAR(10)

The time after which this activity may be started. Special

value supported is:

*CURRENT

This activity may start any time on or after the

time at which the change request was submitted.

start after date CHAR(10)

The date after which this activity may be started. Special

values supported are:

*CURRENT

This activity may start on any date on or after

the date on which the change request was

submitted.

*NEXT This activity may start on any date after the date

on which the change request was submitted.

start before time CHAR(10)

The time before which the activity must be started. If the

activity cannot be started before this time then it will

never be started. Special values supported are:

*ANY The activity may start any time on or after the

start time.

*CURRENT

The activity must start before the time the

change request was submitted on the date

specified on the start before date field.

start before date CHAR(10)

The date before which the activity must be started. If the

activity cannot be started by this date then it will never

be started. Special values supported are:

*ANY The activity may start at any date on or after the

start date.

*CURRENT

The activity must start on the date the change

request was submitted.

*NEXT The activity must start by the day after the date

the change request was submitted.

The format of time is HHMMSS and the format of date is CYYMMDD.

User space library name specified. The user space library name specified to the API.

User space library name used. The names of the actual user space library used to report data. If the

special values *LIBL or *CURLIB are used, the library name resolved is set here.

User space name specified. The user space name specified to the API.

User space name used. The actual user space name used to report data.

76 iSeries: Network Management APIs

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3793 E Machine storage limit reached.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF969E E Internal processing error occurred.

CPF96A1 E User space library name &1 not valid.

CPF96A2 E CRQD library name &1 not valid.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9821 E Not authorized to program &1 in library &2.

CPF9822 E Not authorized to file &1 in library &2.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9831 E Cannot assign device &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Network Management APIs,” on page 1 | APIs by category

Remove Activity (QFVRMVA) API

 Required Parameter Group:

1 Qualified change request description name

Input Char(20)

2 Activity name

Input Char(10)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Remove Activity (QFVRMVA) API removes an activity from the specified change request description.

Network Management APIs 77

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

Change request description authority

*CHANGE

Change request description lock

*EXCLRD

Library Authority

*EXECUTE

Required Parameter Group

Qualified change request description name

INPUT;CHAR(20)

 The name of the change request description from which an activity is removed. The first 10

characters contain the name of the change request description and the second 10 characters

contain the change request description library name.

 Special values for the change request description library name are:

 *CURLIB The current library

*LIBL The library list

Activity name

INPUT; CHAR(10)

 The name of the activity to remove from the change request description.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9693 E Activity &1 not found.

CPF96A2 E CRQD library name &1 not valid.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

78 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Top | “Network Management APIs,” on page 1 | APIs by category

Retrieve Change Request Description (QFVRTVCD) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format

Input Char(8)

4 Qualified change request description name

Input Char(20)

5 Activity name

Input Char(10)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Change Request Description (QFVRTVCD) API retrieves either general change request

description information, or information pertaining to a single activity within the change request

description.

Authorities and Locks

Change request description authority

*USE

Change request description lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold. See Table 1 and Table 2 for

descriptions of the formats.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

Network Management APIs 79

#TOP_OF_PAGE
aplist.htm
#TBLXXW1
#TBLXXW2

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format

INPUT; CHAR(8)

 The format of the data to return. The possible formats are:

 CRQD0100 Returns general change request description information.

CRQD0200 Returns specific activity information for the specified

change request description.

Qualified change request description name

INPUT; CHAR(20)

 The qualified name of the change request description to retrieve information for. The Format is:

 name CHAR(10)

library CHAR(10)

 Possible values: *LIBL, *CURLIB, library name.

Activity name

INPUT; CHAR(10)

 The name of the activity to retrieve information for. This is ignored when the format parameter is

CRQD0100.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

CRQD0100 Format

See “Field Descriptions” on page 81 for descriptions of the fields in this format.

 Offset

Type Field Dec Hex

0 0 BIN(4) Bytes returned

4 4 BIN(4) Bytes available

8 8 CHAR(10) Qualified change request description name

18 12 CHAR(10) Qualified change request description library name

28 1C CHAR(10) Owner’s profile

38 26 CHAR(10) User profile to run under

48 30 CHAR(6) Sequence number

54 36 CHAR(10) Problem ID

64 40 CHAR(21) Problem origin

85 55 CHAR(50) Text description

CRQD0200 Format

See “Field Descriptions” on page 81 for descriptions of the fields in this format.

80 iSeries: Network Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

0 0 BIN(4) Bytes returned

4 4 BIN(4) Bytes available

8 8 CHAR(10) Qualified change request description name

18 12 CHAR(10) Activity name

28 1C CHAR(10) Qualified change request description library name

38 26 CHAR(10) Activity type

48 30 CHAR(40) Start time

88 58 CHAR(10) Hold

98 62 CHAR(1) Destination of *LCL

99 63 CHAR(50) Activity text

149 95 CHAR(3) Reserved

152 98 BIN(4) CCSID of activity text description

156 9C BIN(4) Offset to node list name

160 A0 BIN(4) Number of nodes

164 A4 BIN(4) Offset to destination nodes

168 A8 BIN(4) Number of conditions

172 AC BIN(4) Offset to conditions

176 B0 BIN(4) Length of function parameters.

180 B4 BIN(4) Offset to function parameters.

184 B8 CHAR(*) Reserved

See note CHAR(10) Node list name

See note CHAR(10) Node list library name

See note Array of CHAR(20) Destination nodes

See note Array of CHAR(32) Conditions list

See note CHAR(*) Function parameters

Note: The offset varies. This field is either optional or variable length. The offset is specified in a previous field. The

data is left-justified with a blank pad at the end. The array of destination nodes and the array of conditions are

returned in the same sequence they were entered.

Field Descriptions

Activity name. The name of the activity for which information is retrieved.

Activity text. The text description of the activity specified.

Activity type. The name of the activity type for this activity.

Bytes available. The number of bytes of data available to the calling program. The receiver variable could

get this much data from this format if the receiver variable was this large or larger.

Bytes returned. The number of bytes of data that were returned to the calling program in the receiver

variable. If this value is smaller than bytes available, there was more data than there was room for.

Network Management APIs 81

CCSID of activity text description. The coded character set identifies (CCSID) used for the activity text

description.

Conditions list. The list of conditions that must be met before the activity can run. This is an array of up

to 5 elements. The number of elements is specified by the number of conditions field. There can be up to

5 elements. If this data is not present, number of conditions and offset to conditions is 0.

Each element has the following format:

 activity CHAR(10)

Activity name Possible values are: *PRV, user specified name.

relation CHAR(3)

The relational operator. Possible values are:

*EQ, *GT, *LT, *GE, *LE, *NE.

reserved CHAR(3)

code BIN(4)

The end code of conditioning activity. Valid values are

0-99. The following special values are also supported:

-1(*SUCCESS)

The end code is any value from 0-9

-2(*FAIL)

The end code is any value from 10-89

-3 (*NOTRUN)

The end code is any value from 90-99.

-4 (*ANY)

The end code is any value from 0-99.

mode CHAR(10)

Condition mode. Valid values are:

*ALLNODES

All nodes of the conditioning activity must meet

the completion criteria before this condition is

considered met.

*SAMENODE

Nodes of the conditioned activity need only wait

for the same node of the conditioning activity to

meet the completion criteria before this condition

is considered met.

reserved CHAR(2).

Reserved for boundary alignment.

Destination is *LCL. Whether the destination for this activity is the local system. Possible values are Y

and N.

Destination nodes. An array of elements. The number of elements is specified by the number of nodes

field. There can be up to 50 elements. If number of nodes is 0, this field will not exist.

Each element has the following format:

 Network ID CHAR(8)

Control point CHAR(8)

82 iSeries: Network Management APIs

Reserved CHAR(4)

Function parameters. The structure is defined by the calling program.

Hold. Whether the activity is held when the change request is submitted. Possible values are:

 *YES The activity is held when the change request is

submitted. The user must release the activity before it

will run.

*NO The activity is not held when the change request is

submitted.

Length of function parameters. The length of the function parameters.

Node list name. The name of the node list. If no node list name exists, the offset to node list name is 0.

Node list library name. The library name of the node list.

Number of conditions. The number of conditions that must be satisfied before the activity can run.

Possible values are 0 to 5. If no conditions are present, number of conditions and the offset to conditions

are 0.

Number of nodes. The number of nodes in the destination nodes field. The possible values are 1 to 50.

Offset to conditions. If no conditions are present, number of conditions and the offset to conditions are 0.

Offset to destination nodes. The offset to the list of destination nodes.

Offset to function parameters. The offset to the function parameters.

Offset to node list name. Offset to the node list name. If this is 0, the node list name is not present.

Owner’s profile. User profile that created the change request description object.

Problem ID. The ID of the problem associated with the change request description retrieved.

Problem origin. The origin system of the problem ID. The Format is:

 Origin type CHAR(1)

Currently, the only value supported is A, which indicates

the transport type is APPN.

Network ID CHAR(8)

Control point CHAR(8)

Reserved CHAR(4)

Qualified change request description name. The qualified name of the change request description object

for which data is retrieved. The Format is:

 Name CHAR(10)

Library CHAR(10)

Sequence number. The sequence number that is used to generate a generic activity name at the time an

activity is added to the change request description.

Network Management APIs 83

Start time. The date and time window during which this activity can be started. The current date and

time values and next date values are determined when the change request is submitted. The format is:

 Start after time CHAR(10)

The time after which this activity may be started. Special

values supported:

*CURRENT

This activity may start any time on or after the

time at which the change request was submitted.

Start after date CHAR(10)

The date after which this activity may be started. Special

values supported:

*CURRENT

This activity may start on any date on or after

the date on which the change request was

submitted.

*NEXT This activity may start on any date after the date

on which the change request was submitted.

Start before time CHAR(10)

The time before which the activity must be started. If the

activity cannot be started before this time then it is never

started. Special values supported:

*ANY The activity may start any time on or after the

start time.

*CURRENT

The activity must start before the time the

change request was submitted on the date

specified on the start before date field.

Start before date CHAR(10)

The date before which the activity must be started. If the

activity cannot be started by this date then it is never

started. Special values supported:

*ANY The activity may start at any date on or after the

start date.

*CURRENT

The activity must start on the date the change

request was submitted.

*NEXT The activity must start by the day after the date

the change request was submitted.

The format of time is HHMMSS, where:

 HH Hour. Value: 00-23

MM Minute. Value: 00-59

SS Second. Value: 00-59

The format of date is CYYMMDD, where:

84 iSeries: Network Management APIs

C Century, where 0 indicates years 19xx and 1 indicates

years 20xx.

YY Year. Value: 00-99

MM Month. Value: 01-12

DD Day. Value: 01-31

Text description. Text description of the change request description specified.

User profile to run under. Whether the authority checking done while this change request is running is

based on the user who submitted the change request or the owner of the change request description.

Possible values are:

 *OWNER Change request runs under the user profile of the owner

of the change request description.

*SBM Change request runs under the submitter of the change

request.

Error Messages

The following messages are possible as either escape messages or return codes.

 Message ID Error Message Text

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9693 E Activity &1 not found.

CPF9694 E Activity name required.

CPF969E E Internal processing error occurred.

CPF96A2 E CRQD library name &1 not valid.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 Top | “Network Management APIs,” on page 1 | APIs by category

Network Management APIs 85

#TOP_OF_PAGE
aplist.htm

86 iSeries: Network Management APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 87

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

88 iSeries: Network Management APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 89

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

90 iSeries: Network Management APIs

����

Printed in USA

	Contents
	Network Management APIs
	APIs
	APPN Topology Information APIs
	Local and Network Topology Updates
	APPM Network Topology Updates
	APPN Local Topology Updates
	Adjacent Subnetworks

	Deregister APPN Topology Information (QNMDRGTI) API
	Required Parameter Group
	Error Messages

	Register APPN Topology Information (QNMRGTI) API
	Authorities and Locks
	Required Parameter Group
	Format of the Generated List
	Field Descriptions
	Format of Node Attributes Field
	Format of Transmission Group Flags Field
	Format of Transmission Group Characteristics
	Error Messages

	SNA/Management Services Transport APIs
	Using the SNA/Management Services Transport APIs
	Entry Format
	Field Descriptions
	Data
	Routing

	Change Mode Name (QNMCHGMN) API
	Required Parameter Group
	Error Messages

	Deregister Application (QNMDRGAP) API
	Required Parameter Group
	Error Messages

	End Application (QNMENDAP) API
	Required Parameter Group
	Error Messages

	Receive Data (QNMRCVDT) API
	Required Parameter Group
	Error Messages

	Receive Operation Completion (QNMRCVOC) API
	Required Parameter Group
	Error Messages

	Register Application (QNMREGAP) API
	Required Parameter Group
	Error Messages

	Retrieve Mode Name (QNMRTVMN) API
	Required Parameter Group
	Error Messages

	Send Error (QNMSNDER) API
	Required Parameter Group
	Error Messages

	Send Reply (QNMSNDRP) API
	Required Parameter Group
	Error Messages

	Send Request (QNMSNDRQ) API
	Required Parameter Group
	Error Messages

	Start Application (QNMSTRAP) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Alert APIs
	Generate Alert (QALGENA) API
	Authorities and Locks
	Required Parameter Group
	Error Handling
	Error Messages

	Retrieve Alert (QALRTVA) API
	Required Parameter Group
	ALRT0100 Format
	ALRT0200 Format
	Alert Notification Record
	Field Descriptions
	Error Messages

	Send Alert (QALSNDA) API
	Required Parameter Group
	Error Messages

	Node List API
	List Node List Entries (QFVLSTNL) API
	Authorities and Locks
	Required Parameter Group
	Format of the Generated Lists
	Input Parameter Section
	Header Section
	NODL0100 List Data Section
	Field Descriptions
	Error Messages

	Registered Filter APIs
	Deregister Filter Notifications (QNMDRGFN) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Register Filter Notifications (QNMRGFN) API
	Authorities and Locks
	Required Parameter Group
	Format of Registered Filter Data Queue Notification
	Alert Filter
	Problem Log Filter
	Field Descriptions
	Error Messages

	Retrieve Registered Filters (QNMRRGF) API
	Required Parameter Group
	RGFN0100 Format
	Field Descriptions
	Error Messages

	Change Request Management APIs
	Add Activity (QFVADDA) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	List Activities (QFVLSTA) API
	Authorities and Locks
	Required Parameter Group
	Format of the Generated List
	Input Parameter Section
	Header Section
	CRDA0100 Format
	CRDA0200 Format
	CRDA0300 Format
	Field Descriptions
	Error Messages

	Remove Activity (QFVRMVA) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Retrieve Change Request Description (QFVRTVCD) API
	Authorities and Locks
	Required Parameter Group
	CRQD0100 Format
	CRQD0200 Format
	Field Descriptions
	Error Messages

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

