
iSeries

Miscellaneous APIs

Version 5 Release 3

���

iSeries

Miscellaneous APIs

Version 5 Release 3

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 43.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Miscellaneous APIs 1

APIs 1

General Miscellaneous APIs 1

Add Seed for Pseudorandom Number Generator

(QC3ADDSD, Qc3AddPRNGSeed) API 2

Authorities and Locks 2

Required Parameter Group 2

Error Messages 3

Check Communications Trace (QSCCHKCT) API . . 3

Authorities and Locks 3

Required Parameter Group 4

Error Messages 4

Control Device (QTACTLDV) API 5

Authorities and Locks 5

Required Parameter Group 6

CTLD0100 Format 7

Field Descriptions 7

Error Messages 8

Reason Codes 8

Usage Notes 9

Usage Example 9

Convert Date and Time Format (QWCCVTDT) API 10

Required Parameter Group 11

Optional Parameter Group 1 12

Optional Parameter Group 2 13

Input and Output Variable Formats 13

16-Byte Character Date and Time Value Structure 13

17-Byte Character Date and Time Value Structure 14

19-Byte Character Date and Time Value Structure 14

20-Byte Character Date and Time Value Structure 14

DOSGetDateTime Value Structure 14

Time Zone Information Value Structure 15

Field Descriptions 15

Usage Notes 16

Error Messages 18

Generate Pseudorandom Numbers

(QC3GENRN,Qc3GenPRNs) API 18

Authorities and Locks 19

Required Parameter Group 19

Error Messages 20

Remove All Bookmarks from a Course

(QEARMVBM) API 20

Authority 20

Required Parameter Group 20

Error Messages 20

Retrieve Data (QPARTVDA) API 21

Required Parameter Group 21

Error Messages 22

Start Pass-Through (QPASTRPT) API 22

Authorities and Locks 22

Required Parameter Group 23

PAST0100 Format 23

PAST0200 Format 24

Field Descriptions 25

Error Messages 26

Update Device Microcode (QTAUPDDV) API . . . 27

Authorities and Locks 27

Required Parameter Group 28

Optional Parameter Group 28

Error Messages 28

Using the WebFacing Environment API

(QqfEnvironment) 29

Examples 29

User Application APIs 30

Remove User Application Information

(QsyRemoveUserApplicationInfo) API 31

Authorities and Locks 31

Required Parameter Group 31

Error Messages 32

Retrieve User Application Information

(QsyRetrieveUserApplicationInfo) API 32

Authorities and Locks 33

Required Parameter Group 33

Receiver Variable Description 34

Format of Returned Records Feedback

Information 34

Field Descriptions 34

Error Messages 35

Update User Application Information

(QsyUpdateUserApplicationInfo) API 36

Authorities and Locks 36

Required Parameter Group 36

Error Messages 37

Exit Programs 38

Device Selection Exit Program 38

Authorities and Locks 38

Required Parameter Group 39

PDSC0100 Format 39

PDSR0100 Format 39

Field Descriptions 40

Coding Guidelines 40

Appendix. Notices 43

Trademarks 44

Terms and conditions for downloading and printing

publications 45

Code disclaimer information 46

© Copyright IBM Corp. 1998, 2005 iii

iv iSeries: Miscellaneous APIs

Miscellaneous APIs

The miscellaneous APIs are APIs that do not logically fall in a specific part of the OS/400(R) reference

information.

The miscellaneous APIs consist of:

v “General Miscellaneous APIs”

v

“User Application APIs” on page 30

 APIs by category

APIs

These are the APIs for this category.

General Miscellaneous APIs

The general miscellaneous APIs perform a variety of functions, including removing bookmarks from a

course, converting date and time, starting pass-through, and retrieving data on a target system.

The general miscellaneous APIs are:

v “Add Seed for Pseudorandom Number Generator (QC3ADDSD, Qc3AddPRNGSeed) API” on page 2

(QC3ADDSD, Qc3AddPRNGSeed) allows the user to add seed into the server’s pseudorandom number

generator system seed digest.

v “Check Communications Trace (QSCCHKCT) API” on page 3 (QSCCHKCT) returns, in bytes, the

maximum size configured for the communications trace tool.

v “Control Device (QTACTLDV) API” on page 5 (QTACTLDV) provides a direct command interface to a

device.

v “Convert Date and Time Format (QWCCVTDT) API” on page 10 (QWCCVTDT) allows you to convert

date and time formats from one format to another format.

v “Generate Pseudorandom Numbers (QC3GENRN,Qc3GenPRNs) API” on page 18 (QC3ADDSD,

Qc3GenPRNs) generates a pseudorandom binary stream.

v “Remove All Bookmarks from a Course (QEARMVBM) API” on page 20 (QEARMVBM) allows you to

remove the bookmarks from a Tutorial System Support course.

v “Retrieve Data (QPARTVDA) API” on page 21 (QPARTVDA) retrieves up to 1KB of user data, which

was passed to this system with the Start Pass-through (QPASTRPT) API.

v “Start Pass-Through (QPASTRPT) API” on page 22 (QPASTRPT) starts a 5250 pass-through session and

optionally passes up to 1KB of user data from the source system to the target system. This data can be

accessed on the target system with the Retrieve Data (QPARTVDA) API.

v

“Update Device Microcode (QTAUPDDV) API” on page 27 (QTAUPDDV) provides an interface for

updating device microcode from a code image stored in an Integrated File System (IFS) stream file.

v “Using the WebFacing Environment API (QqfEnvironment)” on page 29 (QqfEnvironment) 0

The exit program within the general miscellaneous APIs is:

v “Device Selection Exit Program” on page 38 provides an interface to control virtual device selection

and automatic creation used by the system for connection requests from clients using virtual device

support.

 Top | “Miscellaneous APIs” | APIs by category

© Copyright IBM Corp. 1998, 2005 1

aplist.htm
#TOP
aplist.htm

Add Seed for Pseudorandom Number Generator (QC3ADDSD,

Qc3AddPRNGSeed) API

 Required Parameter Group:

1 Seed data

Input Char(*)

2 Seed data length

Input Binary(4)

3 Error Code

I/O Char(*)
 Service Program Name: QC3PRNG

 Default Public Authority: *USE

 Threadsafe: Yes

The Add Seed for Pseudorandom Number Generator

(OPM, QC3ADDSD; ILE, Qc3AddPRNGSeed)

API allows the user to add seed into the server’s pseudorandom number generator system seed digest.

The pseudorandom number generator is composed of two parts: pseudorandom number generation and

seed management. Pseudorandom number generation is performed using the FIPS 186-1 algorithm. (See

the Generate Pseudorandom Numbers (Qc3GenPRNs) API.) Cryptographically-secure pseudorandom

numbers rely on good seed. The FIPS 186-1 key and seed values are obtained from the system seed

digest. The server automatically generates seed using data collected from system information or by using

the random number generator function on a cryptographic coprocessor, such as a 4758, if one is available.

System-generated seed can never be truly unpredictable. If a cryptographic coprocessor is not available,

you can use this API to add your own random seed to the system seed digest. This should be done as

soon as possible any time the Licensed Internal Code is installed.

Authorities and Locks

All object (*ALLOBJ) special authority is needed to use this API.

User Profile Authority

*ALLOBJ

Required Parameter Group

Seed data

INPUT; CHAR(*)

 The input seed data for the system seed digest.

 It is important that the seed data be unpredictable and have as much entropy as possible.

Entropy is the minimum number of bits needed to represent the information contained in some

data. For seeding purposes, entropy is a measure of the amount of uncertainty or unpredictability

of the seed. The system seed digest holds a maximum of 160 bits of entropy. You should add at

2 iSeries: Miscellaneous APIs

least that much entropy to refresh the system seed digest totally. Possible sources of seed data are

coin flipping, keystroke or mouse timings, or a noise source such as the one available on the 4758

Cryptographic Coprocessor.

Seed data length

INPUT; BINARY(4)

 The length of the seed data, in bytes. If this length is 0, no seed data is added.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF222E E *ALLOBJ special authority is required.

CPF3C17 E Error occurred with input data parameter.

CPF3CF1 E Error code parameter not valid.

API introduced: V5R1

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

Check Communications Trace (QSCCHKCT) API

 Required Parameter Group:

1 Storage allocated

Output Binary(8)

2 Storage in use

Output Binary(8)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Check Comunications Trace (QSCCHKCT) API returns, in bytes, the maximum size configured for

the communications trace tool and the portion of that size that is currently in use for all communications

traces active (running or stopped state), or zero if no traces are active.

Authorities and Locks

Caller must have *SERVICE special authority, or be authorized to the Service Trace function of OS/400

through iSeries Navigator’s Application Administration support.

Miscellaneous APIs 3

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP
aplist.htm

Required Parameter Group

Storage allocated

OUTPUT; Binary(8)

 The variable containing the maximum bytes configured for the communications trace tool after

the QSCCHKCT API has completed processing.

Storage in use

Output; Binary(8)

 The variable containing the total bytes in use for all communications traces active (running or

stopped state), or zero if no traces are active, after the QSCCHKCT API has completed

processing.

Error Code

I/O; Char(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF39A8 E Not authorized to communications trace service tool.

CPF39B6 E Communications trace function cannot be performed.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R2

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

4 iSeries: Miscellaneous APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Control Device (QTACTLDV) API

 Required Parameter Group:

1 Device name

Input Char(10)

2 Requested function

Input Binary(4)

3 Send buffer

Input Char(*)

4 Length of send buffer

Input Binary(4)

5 Receive buffer

Output Char(*)

6 Length of receive buffer

Input Binary(4)

7 Command format

Input Char(8)

8 Command data

Input Char(*)

9 Length of command data

Input Binary(4)

10 Error code

I/O Char(*)
 Default Public Authority: *EXCLUDE

 Threadsafe: Conditional; see “Usage Notes” on page 9.

The Control Device (QTACTLDV) API provides a direct command interface to a device. The caller of this

API can issue any command directly to a device and transfer data to or from the device.

Note: For tape devices, the Retrieve Device Capabilities (QTARDCAP) API can be used to determine if

the tape device supports the QTACTLDV API. Other kinds of devices currently do not support this API.

This API can be used for a tape device within a media library if the device is deallocated from the library.

Note: Incorrect use of this API can cause damage to data saved on tape media or can interfere with I/O

processor function.

Authorities and Locks

API Public Authority

*EXCLUDE

Special Authority

*SERVICE

Miscellaneous APIs 5

Device Description Authority

*CHANGE

Device Description Lock

*EXCLRD

Required Parameter Group

Device name

INPUT; CHAR(10)

 The device description to which the request is sent.

Requested function

INPUT; BINARY(4)

 The function to perform. The possible values are:

 1 Open a connection to the device. This function must be performed before any commands can be

sent to the device. The device must be varied on before this function is performed. No other job

can use the device while the connection is open.

2 Send a command to the device. When running in a multithreaded environment, a command sent

by a thread must be complete before another command can be sent by another thread.

3 Close the connection to the device. This function must be performed after the user has completed

sending commands to the device. No other job can use the device until the connection is closed.

Send buffer

INPUT; CHAR(*)

 A buffer containing data to send to the device when a data transfer command is sent. No support

is provided to send and receive data on the same command.

 This parameter is ignored if the length of the send buffer is 0.

Length of send buffer

INPUT; BINARY(4)

 The length of the send buffer.

 This parameter must be 0 for the open connection and close connection functions.

Receive buffer

OUTPUT; CHAR(*)

 A buffer to store data received from the device after a data transfer command is sent. No support

is provided to send and receive data on the same command.

 This parameter is ignored if the length of the receive buffer is 0.

Length of receive buffer

INPUT; BINARY(4)

 The length of the receive buffer.

 This parameter must be 0 for the open connection and close connection functions.

Command format

INPUT; CHAR(8)

 The format of the command data. The following format is supported.

CTLD0100

Issue command to a tape device.

Note: The connection must be opened using the open function before a command can be issued

to the device.

6 iSeries: Miscellaneous APIs

See “CTLD0100 Format” for more information on the command data format.

Command data

INPUT; CHAR(*)

 The variable that contains the command data.

 This parameter is ignored if the length of command data is set to 0.

Length of command data

INPUT; BINARY(4)

 The length of the command data to be sent to the device. The command data must be 0, or a

minimum of 32 bytes long and a maximum of 56 bytes long.

 This parameter must be 0 for the open connection and close connection functions.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

CTLD0100 Format

The following table shows the command information that is required for the CTLD0100 format. For more

details about the fields in the following table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Data transfer direction

4 4 BINARY(4) Requested transfer length

8 8 BINARY(4) Ignore length errors

12 C BINARY(4) Command timeout value

16 10 BINARY(4) Type of command

20 14 BINARY(4) Offset to command string

24 18 BINARY(4) Length of command string

28 1C BINARY(4) Reserved

CHAR(*) Command string

Field Descriptions

Command string. The command string to send to the device. See the device specifications to determine

what command strings are supported by the device.

Command timeout value. The time, in seconds, to wait for the command to complete. Valid values are 1

through 7200.

Data transfer direction. The direction of any data transfer associated with the command. The possible

values are:

 0 No data transfer.

1 Receive data from the device.

2 Send data to the device.

Miscellaneous APIs 7

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Ignore length errors. The possible values are:

 0 Report length errors.

1 Ignore length errors.

Length of command string. The length of the command string to send to the device. Valid values are 0

through 24.

Offset to command string. The offset from the start of the command data, in bytes, to the start of the

command string. Valid values are 32 and greater.

Requested transfer length. The expected length of the data to be transferred by the command. The

requested transfer length must be less than or equal to the length of the buffer parameter that will be

used to send or receive the data.

Note: This field must be 0 for commands with no data transfer.

Reserved. An ignored field. This value must be set to 0.

Type of Command. The type of command. The possible values are:

 0 Small Computer System Interface (SCSI) command.

1 Reset the device.

Error Messages

For descriptions of the reason codes in CPF67C8, see “Reason Codes.”

 Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C39 E Value for reserved field not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C4C E Value not valid for field &1.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF6708 E Command ended due to error.

CPF67C8 E Command failed for device &1. Reason code &2.

CPF9814 E Device &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Reason Codes

This topic contains the description of the reason codes returned in message CPF67C8.

Note: For command timeouts, I/O processor errors, system bus errors, and device bus errors, a reset

operation might occur on the device bus. Other devices attached to the same bus may be affected by this

reset operation.

Possible reason code values are:

8 iSeries: Miscellaneous APIs

’010300’x Command length not valid: The command length was too long for existing device interface

specifications.

’010700’x Data length not valid: The IOP does not support the size of the data transfer. Use the Retrieve

Device Capabilities (QTARDCAP) API to determine the maximum block size supported.

’020900’x Insufficient data: The data transfer buffer is not large enough.

’02C0yy’x Device detected error: The tape device reported an error condition. For an SCSI type of command,

yy is set to the value of the completion status.

’02C100’x Selection timeout: The tape device did not respond to the command. Check device power and

cables and retry the command. If the problem persists, contact your hardware service provider.

’02C200’x I/O processor length error: Length error on the data transfer. The ignore length errors field was

not set in the command data.

’02C300’x I/O processor error: The I/O processor card detected an internal hardware failure. Contact your

hardware service provider.

’02C400’x Command timed out: The tape device did not complete the requested command within the

specified time. Correct the command timeout value and retry the command. If the problem

persists, contact your hardware service provider.

’02C500’x System bus error: The host internal system bus failed. Contact your hardware service provider.

’02C600’x Device bus error: The I/O processor detected a failure in the device interface. Check the device

power and cables and retry the command. If the problem persists, contact your hardware service

provider.

’100000’x Open failure: A connection could not be opened to the device. The device may not be varied on or

is being used by another job.

’100001’x Open failure: A connection could not be opened to the device. The device does not support the

QTACTLDV API.

’100002’x Open failure: A connection could not be opened to the device. The device is in a failed state.

’200000’x Close failure: The connection to the device could not be closed. The device may not be varied on

or is being used by another job.

’200002’x Close failure: The connection to the device could not be closed. The device is in a failed state.

’300000’x Device not valid: The device specified is not a tape device.

’300001’x Resource not valid: The resource name associated with the specified device is not valid or does

not exist.

’400000’x Connection not open: The command could not be completed because there is not an open

connection.

Usage Notes

When running in a multithreaded environment, a command sent by a thread to a device must be

complete before a command can be sent by another thread to the same device.

Usage Example

See Using the QTACTLDV API in API examples for an example of how to use the QTACTLDV API.

API introduced: V4R4

 “Control Device (QTACTLDV) API” on page 5 | “Miscellaneous APIs,” on page 1 | APIs by category

Miscellaneous APIs 9

apiexusdev.htm
aplist.htm

Convert Date and Time Format (QWCCVTDT) API

 Required Parameter Group:

1 Input format

Input Char(10)

2 Input variable

Input Char(*)

3 Output format

Input Char(10)

4 Output variable

Output Char(*)

5 Error code

I/O Char(*)

 Optional Parameter Group 1:

6 Input time zone

Input Char(10)

7 Output time zone

Input Char(10)

8 Time zone information

Output Char(*)

9 Length of time zone information

Input Bin(4)

10 Precision indicator

Input Char(1)
 Optional Parameter Group 2:

11 Input time indicator

Input Char(1)

 Default Public Authority: *USE

 Threadsafe: Yes

The Convert Date and Time Format (QWCCVTDT) API converts date and time values from one format to

another format. The QWCCVTDT API lets you:

v Convert a time-stamp (*DTS, for system time-stamp) value to character format

v Convert a character date and time value to time-stamp format

v Convert a date from one character format to another

10 iSeries: Miscellaneous APIs

v

Convert a date and time based on input and output time zone values and return the time zone

information that is associated with the converted output

v Specify a precision of milliseconds or microseconds for your input and output variables

v Retrieve a current clock time based on the output time zone and return it based on the output format

you specify

For additional information on converting dates and times, see “Usage Notes” on page 16.

Required Parameter Group

Input format

INPUT; CHAR(10)

 The format of the data you give QWCCVTDT to convert. Valid values are:

 *CURRENT

The current system time.

*DTS System time-stamp.

*JOB The format given in the DATFMT job attribute.

*SYSVAL The format given in the QDATFMT system value.

*YMD YYMMDD (year, month, day) format.

*YYMD YYYYMMDD (4-digit year, month, day) format.

*MDY MMDDYY (month, day, year) format.

*MDYY MMDDYYYY (month, day, 4-digit year) format.

*DMY DDMMYY (day, month, year) format.

*DMYY DDMMYYYY (day, month, 4-digit year) format.

*JUL Julian format (YYDDD (year, day of year)).

*LONGJUL Long Julian format (YYYYDDD (4-digit year, day of year)).

Input variable

INPUT; CHAR(*)

 The data to be converted. If the input format is *CURRENT, then this parameter is not used. See

“Input and Output Variable Formats” on page 13 to determine the structure of the input variable

for all other input formats.

Output format

INPUT; CHAR(10)

 The format to convert the data to. Valid values are:

 *DTS System time-stamp.

*JOB The format given in the DATFMT job attribute

*SYSVAL The format given in the QDATFMT system value

*YMD YYMMDD format

*YYMD YYYYMMDD format

*MDY MMDDYY format

*MDYY MMDDYYYY format

*DMY DDMMYY format

*DMYY DDMMYYYY format

*JUL Julian format (YYDDD)

*LONGJUL Long Julian format (YYYYDDD)

*DOS DOSGetDateTime format. The *DOS value can be specified only when *CURRENT or *DTS is

specified for the input format parameter.

Output variable

OUTPUT; CHAR(*)

Miscellaneous APIs 11

The converted data.

If the output format is *DOS, the first 11 characters of this parameter are

used. For details, see “DOSGetDateTime Value Structure” on page 14. See “Input and Output

Variable Formats” on page 13 to determine the structure of the output variable for all other

output formats.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 1

Input time zone

INPUT; CHAR(10)

 Specifies the time zone associated with the input variable. If the input format is *CURRENT, then

this parameter is not used. The default value is *SYS. Valid values are:

 *SYS The input variable is a local system time value and the associated time zone is specified by the

time zone system value.

*UTC The input variable is a Coordinated Universal Time (UTC) value.

*JOB The input variable is a local job time value and the associated time zone is specified by the time

zone job attribute.

Time zone name Specifies the name of a time zone description (*TIMZON) object.

Output time zone

INPUT; CHAR(10)

 Specifies the time zone associated with the output variable. The default value is *SYS. Valid

values are:

 *SYS The output variable is a local system time value and the associated time zone is specified by the

time zone system value.

*UTC The output variable is a Coordinated Universal Time (UTC) value.

*JOB The output variable is a local job time value and the associated time zone is specified by the time

zone job attribute.

Time zone name Specifies the name of a time zone description (*TIMZON) object.

Time zone information

OUTPUT; CHAR(*)

 Specifies the time zone information associated with the output time zone. If 0 is specified for the

length of time zone information, then this parameter is not used. For the format of the structure,

see “Time Zone Information Value Structure” on page 15.

Length of time zone information

INPUT; BIN(4)

 Specifies the length of the time zone information to be returned. The minimum length is 0 which

indicates to not return any time zone information.

Precision indicator

INPUT; CHAR(1)

 Specifies the precision of the input and output variables. The default value is 0 or milliseconds.

Valid values are:

 0 The input and output variables will have a precision in milliseconds.

12 iSeries: Miscellaneous APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

1 The input and output variables will have a precision in microseconds.

Optional Parameter Group 2

Input time indicator

INPUT; CHAR(1)

 Specifies which segment of time to use when the input variable has a date and time value that

matches a repeated time. Otherwise, this parameter is not used. Repeated times occur when time

changes from Daylight Saving Time (DST) to Standard Time (ST). For example, if DST ends on a

given day at 02:00AM, then the segment of time from 01:00:00.000000 to 01:59:59.999999 on that

day repeats. The first segment of time is considered in DST and the second segment is considered

in ST. The default value is 1 or use the DST segment. For additional information on this

parameter, see “Usage Notes” on page 16.

 0 The input variable contains a date and time value that is contained in the second or Standard

Time segment.

1 The input variable contains a date and time value that is contained in the first or Daylight Saving

Time segment.

Input and Output Variable Formats

This table shows the format used for the input or output variable parameters.

 Input or Output Format Input or Output Variable

*DTS System time-stamp. The first 8 characters are used.

*YYMD, *MDYY, *DMYY, *LONGJUL in milliseconds The first 17 characters are used. See “17-Byte Character

Date and Time Value Structure” on page 14.

All other character formats in milliseconds The first 16 characters are used. See “16-Byte Character

Date and Time Value Structure.”

*YYMD, *MDYY, *DMYY, *LONGJUL in microseconds The first 20 characters are used. See “20-Byte Character

Date and Time Value Structure” on page 14.

All other character formats in microseconds The first 19 characters are used. See “19-Byte Character

Date and Time Value Structure” on page 14.

16-Byte Character Date and Time Value Structure

This table shows the structure used for the input and output variables when the format is *JOB,

*SYSVAL, *YMD, *MDY, *DMY, and *JUL

and the precision indicator specifies milliseconds.

 Offset Description

0 Century. Possible values are 0, which indicates years 19xx, 1, which indicates years 20xx

and

so forth through 9, which indicates years 28xx.

1-6 Date, left-justified. This value cannot be all blanks or all zeros. Left-justify Julian dates, using

blanks to fill the space.

7-12 Time, in HHMMSS (hours, minutes, seconds) format.

Miscellaneous APIs 13

Offset Description

13-15 Milliseconds. This value cannot be blanks.

17-Byte Character Date and Time Value Structure

This table shows the structure used for the input and output variables when the format is *YYMD,

*MDYY, *DMYY, and *LONGJUL

and the precision indicator specifies milliseconds.

 Offset Description

0-7 Date, left-justified. This value cannot be all blanks or all zeros. Left-justify Julian dates, using

blanks to fill the space.

8-13 Time, in HHMMSS (hours, minutes, seconds) format.

14-16 Milliseconds. This value cannot be blanks.

19-Byte Character Date and Time Value Structure

This table shows the structure used for the input and output variables when the format is *JOB,

*SYSVAL, *YMD, *MDY, *DMY, and *JUL and the precision indicator specifies microseconds.

 Offset Description

0 Century. Possible values are 0, which indicates years 19xx, 1, which indicates years 20xx and so

forth through 9, which indicates years 28xx.

1-6 Date, left-justified. This value cannot be all blanks or all zeros. Left-justify Julian dates, using

blanks to fill the space.

7-12 Time, in HHMMSS (hours, minutes, seconds) format.

13-18 Microseconds. This value cannot be blanks.

20-Byte Character Date and Time Value Structure

This table shows the structure used for the input and output variables when the format is *YYMD,

*MDYY, *DMYY, and *LONGJUL and the precision indicator specifies microseconds..

 Offset Description

0-7 Date, left-justified. This value cannot be all blanks or all zeros. Left-justify Julian dates, using

blanks to fill the space.

8-13 Time, in HHMMSS (hours, minutes, seconds) format.

14-19 Microseconds. This value cannot be blanks.

DOSGetDateTime Value Structure

This table shows the structure used for the output variable.

 Offset Description

0 Hours (0-23)1

1 Minutes (0-59)1

2 Seconds (0-59)1

14 iSeries: Miscellaneous APIs

Offset Description

3 Hundredths of seconds (0-99)1

4 Day (1-31)1

5 Month (1-12)1

6-7 Year (for example, 1995)2

8-9 Time zone offset (in minutes)2, 3

10 Day of the week, where 0 is Sunday (0-6)1

Notes:

1 A 1-byte integer.

2 A 2-byte integer.

3

This is the negative value of the offset associated with the specified output time zone. If *UTC is

specified for the output time zone, then this value will be 0. If an output time zone is not specified, then

this is the negative value of the system value QUTCOFFSET.

Time Zone Information Value Structure

This table shows the structure used for the time zone information output parameter. If *UTC is specified

for the output time zone, or if the input and output time zone parameter values are the same and the

input variable contains a date that is outside the supported date range (from August 25, 1928,

00:00:00.000000 to May 09, 2071, 00:00:00.000000), then all binary fields will be set to 0 and all character

fields will be set to blanks.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Time zone description name

18 12 CHAR(1) Reserved

19 13 CHAR(1) Current Daylight Saving Time indicator

20 14 BINARY(4) Current offset

24 18 CHAR(50) Current full name

74 4A CHAR(10) Current abbreviated name

84 54 CHAR(7) Current message identifier

91 5B CHAR(10) Message file name

101 65 CHAR(10) Message file library

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Miscellaneous APIs 15

Current abbreviated name. The abbreviated, or short, name for the time zone. This field will contain

either the Standard Time or Daylight Saving Time abbreviated name depending on whether or not

Daylight Saving Time is in effect. If the time zone description uses a message to specify the current

abbreviated name and the message cannot be retrieved, this field returns *N. This can occur when the

caller of the API is not authorized to the message file or its library, the message file cannot be found or

the message does not exist in the message file.

Current Daylight Saving Time indicator. Indicates whether or not the output date and time (output

variable converted based on the output time zone) is observing Daylight Saving Time or not. Valid values

that are returned are:

 0 Daylight Saving Time is not being observed (Standard Time).

1 Daylight Saving Time is being observed.

Current full name. The full, or long, name for the time zone. This field will contain either the Standard

Time or Daylight Saving Time full name depending on whether or not Daylight Saving Time is in effect.

If the time zone description uses a message to specify the current full name and the message cannot be

retrieved, this field returns *N. This can occur when the caller of the API is not authorized to the message

file or its library, the message file cannot be found or the message does not exist in the message file.

Current message identifier. The identifier of the message that contains the current full and abbreviated

names. This field will be *NONE if a message was not specified when the time zone description was

created.

Current offset. The time difference, in minutes, between the output time zone and Coordinated Universal

Time (UTC). This value has been adjusted for Daylight Saving Time, if necessary.

Message file library. The name of the library that contains the message file. The field will contain all

blanks if the current message identifier is *NONE.

Message file name. The name of the file that contains the current message. The field will contain *NONE

if the current message identifier is *NONE.

Reserved. An unused field.

Time zone description name. The name of the time zone description that is associated with the output

time zone. If *SYS or *JOB was specified for the output time zone and a time zone has not been set for

the Time zone (QTIMZON) system value, this field returns *N.

Usage Notes

When converting an input date from a 2-digit year format to a *DTS time-stamp format without time

zone conversion, the supported date range is from August 23, 1928, 12:03:06.314752 (.315 for milliseconds)

to May 10, 2071, 11:56:53.685240 (.685 for milliseconds). Converting an input date that is outside this

range will result in an output date within this range.

When converting an input date from a 4-digit year format to a *DTS time-stamp format without time

zone conversion, the supported date range is from August 24, 1928, 00:00:00.000000 to May 09, 2071,

23:59:59.999999 (.999 for milliseconds). Converting an input date that is outside this range will result in

error message CPF1060.

When converting an input date from a 4-digit year format to a 2-digit year format without time zone

conversion, the supported date range is from January 1, 1900, 00:00:00.000000 to December 31, 2899,

23:59:59.999999 (.999 for milliseconds). Converting an input date that is outside this range will result in

error message CPF1060.

16 iSeries: Miscellaneous APIs

When converting an input date from a 4-digit year format to a 4-digit year format without time zone

conversion, the supported date range is from January 1, 0001, 00:00:00.000000 to December 31, 9999,

23:59:59.999999 (.999 for milliseconds). Converting an input date that is outside this range will result in

error message CPF1060.

When converting an input date from 2-digit year format to a 2-digit year format without time zone

conversion, the supported date range is from January 1, 1900, 00:00:00.000000 to December 31, 2899,

23:59:59.999999 (.999 for milliseconds). The century digit of the input variable is copied into the output

variable without validation.

When converting an input date from 2-digit year format to a 4-digit year format without time zone

conversion, the supported date range is from January 1, 1900, 00:00:00.000000 to December 31, 2899,

23:59:59.999999 (.999 for milliseconds).

When converting an input date from a *DTS time-stamp format to an output date of any format without

time zone conversion, the supported date range is from August 23, 1928, 12:03:06.314752 (.315 for

milliseconds) to May 10, 2071, 11:56:53.685240 (.685 for milliseconds).

When converting an input date of any format to an output date of any format that involves time zone

conversion as well, the supported date range is from August 25, 1928, 00:00:00.000000 to May 08, 2071,

23:59:59.999999 (.999 for milliseconds). Converting an input date that is outside this range will result in

error message CPF1060.

When moving from Standard Time (ST) to Daylight Saving Time (DST) there is a window of time (1

hour) that does not occur. Any time zone conversion where the input variable date and time value is

within this window will result in error message CPF1060.

When moving from Daylight Saving Time (DST) to Standard Time there is a window of time (1 hour)

that repeats. For example, if DST ends on a given day at 02:00AM, then the segment of time from

01:00:00.000000 to 01:59:59.999999 on that day repeats. The first segment of repeated time is the DST

segment. The second segment of repeated time is the Standard Time segment. It is possible using time

zone conversion to have the output variable date and time value end up in either segment. If you are

retrieving time zone information, the current Daylight Saving Time indicator will be set accordingly. By

default, for any time zone conversion the input variable that is within this window of time that repeats is

considered part of the DST segment. However, you can use the optional Input time indicator parameter

to cause the input variable to be considered within the Standard Time segment. You can copy the

resultant current DST indicator into the Input time indicator parameter when converting back and forth

between time zones. For example, when converting a date and time value from *UTC to time zone A, the

resultant time is 01:15:00 AM and the current DST indicator returned is 0, which means the resultant time

is Standard Time. In order to obtain the original *UTC value when converting back to *UTC from time

zone A, the current DST indicator value should be copied to the Input time indicator parameter. This will

cause the date and time value to be treated as Standard Time rather than as the default, Daylight Saving

Time.

You can convert any input format except *CURRENT to the same output format without receiving an

error (time zone conversion is not specified, or if specified, the input and output time zone parameter

values must be the same and the time zone information length must be 0 as well). For these cases, the

input variable is copied into the output variable without validation.

When converting one character date format (that is, anything other than *CURRENT, the current

machine-clock time, *DTS, the system time-stamp, or any specified time zone conversion) to another

character date format, the date information is validated and converted. However, the time portion of the

input variable is copied into the output variable without validation.

When requesting time zone conversion with different input and output time zone values, or when

requesting time zone information, the time portion is validated and converted as well as the date portion.

Miscellaneous APIs 17

When converting a character date and time value to *DTS and back to character format using

microseconds precision, there is a rounding error of minus 1 to minus 7 microseconds. If you specify a

precision of microseconds, it is recommended that you use a microsecond value that is evenly divisible

by 8.

Error Messages

 Message ID Error Message Text

CPF1060 E Date not valid.

CPF1061 E Time not valid.

CPF1848 E Century digit &1 not valid.

CPF1849 E Millisecond

or microsecond value

not valid.

CPF1850 E Format &1 not valid

CPF24B4 E Severe error while addressing parameter list.

CPF3C36 E Number of parameters, &1, for API not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

Generate Pseudorandom Numbers (QC3GENRN,Qc3GenPRNs) API

 Required Parameter Group:

1 PRN data

Output Char(*)

2 PRN data length

Input Binary(4)

3 PRN type

Input Char(1)

4 PRN Parity

Input Char(1)

5 Error code

I/O Char(*)

 Service Program Name: QC3PRNG

 Default Public Authority: *USE

 Threadsafe: Yes

18 iSeries: Miscellaneous APIs

#TOP_OF_PAGE
aplist.htm

The Generate Pseudorandom Numbers

(OPM, QC3GENRN; ILE, Qc3GenPRNs)

API generates a

pseudorandom binary stream.

The pseudorandom number generator is composed of two parts: pseudorandom number generation and

seed management. Pseudorandom number generation is performed using the FIPS 186-1 algorithm.

Cryptographically-secure pseudorandom numbers rely on good seed. The FIPS 186-1 key and seed values

are obtained from the system seed digest. The server automatically generates seed using data collected

from system information or by using the random number generator function on a cryptographic

coprocessor, such as a 4758, if one is available. System-generated seed can never be truly unpredictable. If

a cryptographic coprocessor is not available, you can use the Add Seed for PRNG (Qc3AddPRNGSeed)

API to add your own random seed to the system seed digest. This should be done as soon as possible

any time the Licensed Internal Code is installed.

Authorities and Locks

None.

Required Parameter Group

PRN data

OUTPUT; CHAR(*)

 The generated pseudorandom binary stream.

PRN data length

INPUT; BINARY(4)

 The number of pseudorandom number bytes to return in the PRN data parameter. If 0 is

specified, no pseudorandom numbers are returned.

PRN type

INPUT; CHAR(1)

 The API can generate a real pseudorandom binary stream or a test binary stream.

 The FIPS 186-1 algorithm obtains the inital key and seed values from the system seed digest

when generating a real pseudorandom binary stream. When generating a test binary stream, the

algorithm uses preset values for the key and seed. Valid values are:

 0 Generate real pseudorandom numbers.

1 Generate test pseudorandom numbers.

PRN Parity

INPUT; CHAR(1)

 The API sets each byte of the pseudorandom number binary stream to the specified parity by

altering the low order bit in each byte as necessary. Valid values are:

 0 Do not set parity.

1 Set each byte to odd parity.

2 Set each byte to even parity.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Miscellaneous APIs 19

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF3C19 E Error occurred with receiver variable specified.

CPF3CF1 E Error code parameter not valid.

CPFBAF1 E PRN type not valid.

CPFBAF2 E Parity not valid.

CPFBAF3 E The system seed digest is not ready.

API introduced: V5R1

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

Remove All Bookmarks from a Course (QEARMVBM) API

 Required Parameter Group:

1 Course ID

Input Char(10)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Remove All Bookmarks from a Course (QEARMVBM) API removes all bookmarks from a Tutorial

System Support course. This API provides support similar to option 9 (Remove bookmarks) on the Work

with Courses display within the Start Education (STREDU) command.

Authority

The user must be an education administrator and have one of the following authorities:

Authority

*ALLOBJ or *SECADM

Required Parameter Group

Course ID

INPUT; CHAR(10)

 The ID of the course that is to have all bookmarks removed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF1D50 E Not authorized to remove bookmarks.

CPF1D51 E Not all bookmarks removed.

20 iSeries: Miscellaneous APIs

#TOP
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF1D52 E Course not found.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

Retrieve Data (QPARTVDA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Actual length of user data

Output Binary(4)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Data (QPARTVDA) API retrieves up to 1KB of user data, which was passed to this system

with the Start Pass-through (QPASTRPT) API.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 User data associated with a pass-through session. You can specify the size of the area to be

smaller than the data sent by the source system as long as you specify the length parameter

correctly. As a result, the API returns only the data the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results are not predictable.

Actual length of user data

OUTPUT; BINARY(4)

 The actual length of user data associated with this pass-through session. If this value is greater

than the length of receiver variable parameter, then truncation occurred.

Error code

I/O; CHAR(*)

Miscellaneous APIs 21

#TOP_OF_PAGE
aplist.htm

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8942 E Command or API call not allowed on source system.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R6

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

Start Pass-Through (QPASTRPT) API

 Required Parameter Group:

1 Pass-through information

Input Char(*)

2 Length of pass-through information

Input Binary(4)

3 Format name

Input Char(8)

4 Data

Input Char(*)

5 Length of data

Input Binary(4)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Start Pass-Through (QPASTRPT) API starts a 5250 pass-through session and optionally passes up to

1KB of user data from the source system to the target system. This data can be accessed on the target

system with the Retrieve Data (QPARTVDA) API.

Authorities and Locks

APPC Device on Source System

*CHANGE

APPC Device on Target System

*CHANGE

22 iSeries: Miscellaneous APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Virtual Controller on Target System

*USE

Virtual Device on Target System

*CHANGE

Program Specified in QRMTSIGN System Value on Target System

*USE

Required Parameter Group

Pass-through information

INPUT; CHAR(*)

 Information associated with establishing the 5250 pass-through session.

Length of pass-through information

INPUT; BINARY(4)

 The length, in bytes, of the pass-through information parameter. This value must be greater than

or equal to 8 and less than or equal to 580.

Format name

INPUT; CHAR(8)

 The format of the pass-through information. The supported format names are:

 PAST0100 Pass-through with up to 10-byte password

PAST0200 Pass-through with up to 128-byte password

See “PAST0100 Format” and “PAST0200 Format” on page 24 for details.

Data INPUT; CHAR(*)

 User-defined data to be passed to the target system. The format of this data is not defined by the

API, and is sent to the target system as is.

Length of data

INPUT; BINARY(4)

 The length of the data parameter.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

PAST0100 Format

The following table is the layout of the pass-through information for format PAST0100, which controls

how the pass-through session is established for a pass-through with up to a 10-byte password.

 Offset

Type Field Dec Hex

0 0 CHAR(8) Remote location name

8 8 CHAR(10) Virtual controller

18 12 CHAR(8) Mode name

26 1A CHAR(8) Local location name

34 22 CHAR(8) Remote network ID

42 2C CHAR(10) System request program name

Miscellaneous APIs 23

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

52 34 CHAR(10) System request library name

62 3E CHAR(10) Remote user ID

72 48 CHAR(10) Remote password

82 52 CHAR(10) Initial program

92 5C CHAR(10) Initial menu

102 66 CHAR(10) Current library

112 70 CHAR(1) Display option

113 71 CHAR(3) Reserved

116 74 BINARY(4) Offset to virtual devices

120 78 BINARY(4) Number of virtual devices

 CHAR(*) Array of virtual devices

PAST0200 Format

The following table is the layout of the pass-through information for format PAST0200, which controls

how the pass-through session is established for a pass-through with up to a 128-byte password.

 Offset

Type Field Dec Hex

0 0 CHAR(8) Remote location name

8 8 CHAR(10) Virtual controller

18 12 CHAR(8) Mode name

26 1A CHAR(8) Local location name

34 22 CHAR(8) Remote network ID

42 2C CHAR(10) System request program name

52 34 CHAR(10) System request library name

62 3E CHAR(10) Remote user ID

72 48 CHAR(10) Reserved

82 52 CHAR(10) Initial program

92 5C CHAR(10) Initial menu

102 66 CHAR(10) Current library

112 70 CHAR(1) Display option

113 71 CHAR(3) Reserved

116 74 BINARY(4) Offset to virtual devices

120 78 BINARY(4) Number of virtual devices

124 7C BINARY(4) Offset to remote password

128 80 BINARY(4) Phrase length of remote password

 CHAR(*) Remote password

 CHAR(*) Array of virtual devices

24 iSeries: Miscellaneous APIs

Field Descriptions

Array of virtual devices. An array of 0 through 32 virtual devices on the target system. A device on the

target system is selected from this list based on a comparison of device type and model.

Current library. The library to be the current library on the target system. The special value

*RMTUSRPRF can be used to indicate that the current library found in the remote user profile should be

used.

Display option. Whether the pass-through and associated status messages appear. Special values follow:

 0 Do not display pass-through information.

1 Display pass-through information.

Initial menu. The menu that is initially shown at the target system. This runs after the initial program.

Special values follow:

 *RMTUSRPRF Show the initial menu as specified by the remote user profile.

*SIGNOFF Sign off the target system after running the initial program.

Initial program. The program that is called immediately after sign-on to the target system. Special values

follow:

 *RMTUSRPRF Call the initial program as specified by the remote user profile.

*NONE There is no initial program to call.

Local location name. The name by which the local iSeries server is known to other devices in the

network. Special values follow:

 *LOC The local location name is chosen by the system.

*NETATR The local location name, a system network attribute, is used.

Mode name. The mode to be used. The special value *NETATR can be used to indicate that the system

network attribute mode should be used.

Number of virtual devices. The number of virtual devices in the array of virtual devices. If the virtual

controller field is not *NONE, this field must be set to 0.

Offset to remote password. The offset from the beginning of the format to the start of the remote

password. The phrase length of the remote password field must be a valid value.

Offset to virtual devices. The offset from the beginning of the format to the start of the array of virtual

devices. If the virtual controller field is not *NONE, this field must be set to 0.

Phrase length of remote password. The length, in bytes, of the remote password. This value must be

greater than 0 and less than or equal to 128.

Remote location name. The name of the location that is the target of the pass-through session.

Remote network ID. The network ID of the network where the remote location resides. Special values

follow:

 *LOC Any remote location name will be used.

*NETATR The local network ID, a system network attribute, is used.

Miscellaneous APIs 25

*NONE The remote system does not support network IDs.

Remote password. The password being sent to the target system. The special value allowed is *NONE. If

a profile is specified for the remote user ID field and password security is active on the target system,

*NONE is not allowed.

Remote user ID. The user profile for automatic sign-on to the target system. Special values follow:

 *NONE No user ID is passed to the target system; automatic sign-on is not used.

*CURRENT The user ID that is active in the current job is passed to the remote system.

Reserved. An ignored field. This field must be blanks.

System request library name. The library in which the system request program can be found. Special

values are *LIBL and *CURLIB. If the system request program is *SRQMNU, this field must be set to

blanks.

System request program name. The program that is to be called on the source system when system

request option 10 is selected. The special value *SRQMNU causes the system-supplied system request

menu to be displayed.

Virtual controller. The name of the virtual controller on the target system that is used to do

pass-through. If you specify a virtual controller, one of the virtual display devices attached to it is

selected for the pass-through job. This entry is mutually exclusive of the array of virtual devices, and

must be *NONE if the number of virtual devices field is not 0. The default is *NONE.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF2702 E Device description &1 not found.

CPF2703 E Controller description &1 not found.

CPF3CF1 E Error code parameter not valid.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF5383 E Mode &7 specified for divice &4 not valid.

CPF5536 E System cannot automatically select an APPC device description for the remote location.

CPF5546 E Class-of-service for device &4 not valid.

CPF8901 E Virtual device &1 not varied on.

CPF8902 E Virtual device &1 not available.

CPF8904 E Pass-through request not accepted.

CPF8905 E Pass-through not allowed on this system.

CPF8906 E Error during session initialization. Reason code &1.

CPF8907 E Communications failure for device &1.

CPF8908 E Controller &1 not varied on.

CPF8911 E Communications failure. Session was not started.

CPF8912 E Pass-through session ended. Reason code &1.

CPF8913 E Pass-through ended abnormally.

CPF8916 E Cannot select virtual device &1 at system &2.

CPF8918 E Job canceled at system &1.

CPF8919 E Device &1 not accessed by system &2.

CPF8920 E Pass-through failed. &1 must be varied off and on.

CPF8921 E APPC failure. Failure code is &3.

26 iSeries: Miscellaneous APIs

Message ID Error Message Text

CPF8922 E Negative response from device &1 at system &2.

CPF8935 E Pass-through not allowed to system &1.

CPF8936 E Pass-through failed for security reasons.

CPF8937 E Automatic sign on not allowed.

CPF8939 E Trying to send too much data.

CPF8944 E Device &1 no longer communicating with system &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R6

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

Update Device Microcode (QTAUPDDV) API

 Required Parameter Group:

1 Device name

Input Char(10)

2 Source path name

Input Char(*)
 Optional Parameter Group:

3 Length of source path name

Input Binary(4)

4 Format Name

Input Char(8)

5 Error code

I/O Char(*)
 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Update Device Microcode (QTAUPDDV) API provides an interface for updating device microcode

from a code image stored in an Integrated File System (IFS) stream file.

The QTAUPDDV API only supports self-configuring, stand alone tape devices. The Retrieve Device

Capabilities (QTARDCAP) API can be used to determine if the tape device is a self-configured tape

device. Other types of devices are currently not supported by this API. This API can be used for a tape

device within a media library if the device is deallocated from the library.

Note: Incorrect use of this API can cause damage to the tape device.

Authorities and Locks

API Public Authority

*EXCLUDE

Miscellaneous APIs 27

#TOP_OF_PAGE
aplist.htm

Special Authority

*SERVICE

Directory Access Authority

*X

Stream File Access Authority

*R

Device Description Authority

*CHANGE

Device Description Lock

*EXCLRD

Required Parameter Group

Device name

INPUT; CHAR(10)

 The name of the device for which for which the code image is to be updated.

Source path name.

INPUT; CHAR(*)

 The path name for the code image.

Optional Parameter Group

Length of source path name.

INPUT; BINARY(4)

 The length of the source path name provided. Valid values range from 1 through 32048 or -1. If

this parameter is omitted, the source path name is assumed to be a simple blank terminated path

name. Use -1 if the length is in the LG-type structure.

Format name

INPUT; CHAR(8)

 The format of the source path name parameter. If this parameter is omitted the source path name

is assumed to be a simple blank terminated path name in the current CCSID.

TAUD0100

The source path name is a simple path name in the current CCSID.

TAUD0200

The source path name is a LG-type path name structure. For more information on this

structure, see Path name format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, any problems will result in escape messages to the

application.

Error Messages

 Message ID Error Message Text

CPFA0A9 E Object not found. Object is *.

CPFA09C E Not authorized to object.

28 iSeries: Miscellaneous APIs

pns.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF222E E * special authority is required.

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter * not valid.

CPF3C21 E Format name * is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF6B35 E File member is in use.

CPF6708 E Command ended due to error.

CPF671F E Parameter list not correct.

CPF67C2 E Path name structure field * not valid.

CPF67C8 E Command faild for device *. Reason code *.

CPF8068 E Error detected while processing file.

CPF9802 E Not authorized to object * in *.

CPF9814 E Device &1 not found.

API introduced: V5R3 with PTF

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

Using the WebFacing Environment API (QqfEnvironment)

The WebFacing Environment (QqfEnvironment) API enables you to check whether a user is accessing

your application through a Web browser or through 5250 emulation. Use this API when you would like

to change the behavior of your program according to the type of access a user has. For example, there

may be an extra field or different text that you would like to display if your program is being accessed

through a browser, but you would like to suppress display of the field or text if 5250 emulation is being

used.

The WebFacing Environment API is called QqfEnvironment and is part of the WebFacing server runtime.

The external procedure name QqfEnvironment is case sensitive. It is a procedure packaged in a service

program called QQFENV that is located in the QSYS library. The API returns 1 if the application is

running under WebFacing and 0 if it is running under 5250 emulation.

Examples

The following examples show how to use this API. In the RPG sample, the external procedure

QqfEnvironment is defined with the DSpec QQFENV. In this example, the QQFENV DSpec has been given the

same name as the service program and has been defined as an integer since the procedure returns 0 or 1.

A DSpec rc has also been defined to hold the value 0 or 1 when the Eval rc = QQFENV is performed. The

RPG progam then uses the value of rc to conditionally determine the behaviour of the program and what

will get displayed on the DDS display.

In the DDS sample below, if the value for rc in the RPG module is NOT 1, the text “Application is not

running in the Webfacing environment” will be displayed. If the value for rc is 1, the text “Application is

running in the Webfacing environment” will be displayed.

When you are creating a program to use this API:

1. Use the CRTRPGMOD command to create a module with your RPG code that is calling the API. An

RPG module needs to be created because it is using a procedure not in the program.

2. When you create your program (CRTPGM) use the BNDSRVPGM keyword to bind your RPG module

with the QQFENV service program in QSYS.

Miscellaneous APIs 29

#TOP_OF_PAGE
aplist.htm

See Code disclaimer information for information pertaining to code examples.

 Table 1. RPGLE sample

.........1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 FCHKENVFM CF E Workstn

 *

 DQQFENV PR 10I 0 Extproc(’QqfEnvironment’)

 *

 Drc S 10I 0

 *

 C Eval rc = QQFENV

 C Eval FLD001 = rc

 *

 C Dow NOT *IN03

 *

 C If rc = 1

 C Eval *in01 = *on

 *

 C Else

 C Eval *IN01 = *off

 C EndIf

 *

 C Exfmt FMT01

 C EndDo

 *

 C Eval *inlr = *on

 Table 2. DDS Sample

....+A*..1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A*%%TS SD 20010924 150104 USERID REL-V4R4M0 5769-PW1

 A*%%EC

 A DSPSIZ(24 80 *DS3)

 A R FMT01

 A*%%TS SD 20010924 150104 USERID REL-V4R4M0 5769-PW1

 A CA03(03)

 A 1 24’Testing Webfacing Environment API’

 A DSPATR(HI)

 A 10 3’F3=Exit’

 A COLOR(BLU)

 A N01 5 13’Application is not running in the -

 A Webfacing environment’

 A 01 6 15’Application is running in the Webf-

 A acing environment’

 A COLOR(RED)

 A FLD001 4S 0O 7 39

 A 7 22’QqfEnvironment:’

 A

 A*%%GP SCREEN1 01

API introduced: V5R1

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

User Application APIs

The user application APIs are:

v

“Remove User Application Information (QsyRemoveUserApplicationInfo) API” on page 31

(QsyRemoveUserApplicationInfo) removes the specified application information from the specified user

profile.

v

“Retrieve User Application Information (QsyRetrieveUserApplicationInfo) API” on page 32

(QsyRetrieveUserApplicationInfo) retrieves the application information for a user profile.

30 iSeries: Miscellaneous APIs

aboutapis.htm#CODEDISCLAIMER
#TOP
aplist.htm

v

“Update User Application Information (QsyUpdateUserApplicationInfo) API” on page 36

(QsyUpdateUserApplicationInfo) updates the specified application information for a user profile.

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

Remove User Application Information

(QsyRemoveUserApplicationInfo) API

 Syntax for QsyRemoveUserApplicationInfo:

 #include <qsyusrin.h>

 void QsyRemoveUserApplicationInfo

 (char *User_profile,

 char *Application_information_ID,

 int *Length_of_application_information_ID,

 void *Error_code);

 Service Program: QSYUSRIN

 Default Public Authority: *USE

 Threadsafe: No

The Remove User Application Information (QsyRemoveUserApplicationInfo) API removes the specified

application information from the specified user profile.

The Change User Profile exit programs are not called from this API.

Authorities and Locks

If the user profile parameter is not *CURRENT or the user profile currently running, then the user profile

that calls this API must have *SECADM special authority and *OBJMGT and *USE authorities to the user

profile.

Required Parameter Group

User profile

INPUT; CHAR(10)

 The user profile for which the application information will be removed. The special value

*CURRENT may be specified to remove application information for the user profile that calls this

API.

Application information ID

INPUT; CHAR(*)

 The ID for the application information to be removed. The following can be specified for the

application information ID:

generic*

All application information IDs that have IDs beginning with the generic string will be

removed.

application information ID

Specific application information ID will be removed.

Miscellaneous APIs 31

#TOP
aplist.htm

Length of application information ID

INPUT; BINARY(4)

 The length of the application information ID that is specified in the application information ID

parameter. The length of the application information ID must be a value from 1 to 200.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF226C E Not authorized to perform function.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF4AA2 E Application information ID &1 does not exist.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R3

 Top | Security APIs | APIs by category

Retrieve User Application Information

(QsyRetrieveUserApplicationInfo) API

 Syntax for QsyRetrieveUserApplicationInfo:

 #include <qsyusrin.h>

 void QsyRetrieveUserApplicationInfo

 (void *Receiver_variable,

 int *Length_of_receiver_variable,

 void *Return_records_feedback_information,

 char *Format_name,

 char *User_profile,

 char *Application_information_ID,

 int *Length_of_application_information_ID,

 void *Error_code);

 Service Program: QSYUSRIN

 Default Public Authority: *USE

 Threadsafe: No

32 iSeries: Miscellaneous APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

The Retrieve User Application Information (QsyRetrieveUserApplicationInfo) API returns a list of

application information entries for a user profile.

Authorities and Locks

User Profile Authority

*READ

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable.

Returned records feedback information

OUTPUT; CHAR(12)

 Information about the entries that are returned in the receiver variable.

 See “Format of Returned Records Feedback Information” on page 34 for details.

Format name

INPUT; CHAR(8)

 The name of the format that is used to retrieve application information entries for the user

profile.

 You can specify this format:

 RUAI0100 For a detailed description of this format, see “RUAI0100 Format” on page 34.

User profile

INPUT; CHAR(10)

 The name of the user profile for which the application information will be retrieved. The special

value *CURRENT may be specified to retrieve application information for the user profile that

calls this API.

Application information ID

INPUT; CHAR(*)

 The ID for the application information to retrieve. The following can be specified for the

application information ID:

generic*

All application information IDs that have IDs beginning with the generic string will be

retrieved.

application information ID

Specific application information ID will be retrieved.

Miscellaneous APIs 33

Length of application information ID

INPUT; BINARY(4)

 The length of the application information ID. The length of the application information ID may

be from 1 to 200.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Receiver Variable Description

The following tables describe the order and format of the data returned in the receiver variable. For

detailed descriptions of the fields in the tables, see “Field Descriptions.”

RUAI0100 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry

4 4 CHAR(200) Application information ID

204 CC BINARY(4) Displacement to user application information

208 D0 BINARY(4) Length of user application information

212 D4 BINARY(4) CCSID of user application information

216 D8 CHAR(6) First valid release

 CHAR(*) User application information

Format of Returned Records Feedback Information

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of user application information entries

Field Descriptions

Application information ID. The application information ID that identifies this entry.

Bytes available. The number of bytes of data available to be returned to the user in the receiver variable.

If all data is returned, bytes available is the same as the number of bytes returned. If the receiver variable

was not large enough to contain all of the data, this value is estimated based on the total number of

application information entries for the user profile and the format specified.

Bytes returned. The number of bytes of data returned to the user in the receiver variable. This is the

lesser of the number of bytes available to be returned or the length of the receiver variable.

CCSID of user application information. The CCSID of the user application information. This will be the

default job CCSID of the job that last updated the user application information.

34 iSeries: Miscellaneous APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Displacement to user application information. The displacement in the entry to the start of the user

application information.

First valid release. The first release that this application information is valid. This field will be in the

format VxRxMx (for example, V5R3M0).

Length of entry. The length (in bytes) of the current entry. This length can be used to access the next

entry.

Length of user application information. The length (in bytes) of the user application information.

Number of user application information entries. The number of complete entries returned in the list of

user application information entries. A value of zero is returned if the list is empty.

User application information. The user application information that is associated with the user profile.

Error Messages

 Message ID Error Message Text

CPFA0AA E Error occurred while attempting to obtain space.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2217 E Not authorized to user profile &1.

CPF2222 E Storage limit is greater than specified for user profile &1.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R3

 Top | Security APIs | APIs by category

Miscellaneous APIs 35

#TOP_OF_PAGE
sec.htm
aplist.htm

Update User Application Information (QsyUpdateUserApplicationInfo)

API

 Syntax for QsyUpdateUserApplicationInfo:

 #include <qsyusrin.h>

 void QsyUpdateUserApplicationInfo

 (char *User_profile,

 char *Application_information_ID,

 int *Length_of_application_information_ID,

 char *Application_information,

 int *Length_of_application_information,

 char *First_valid_release,

 void *Error_code);

 Service Program: QSYUSRIN

 Default Public Authority: *USE

 Threadsafe: No

The Update User Application Information (QsyUpdateUserApplicationInfo) API updates the specified

application information for a user profile. The specified information is stored in an object that is saved

and restored with the user profile.

The Change User Profile exit programs are not called from this API.

Authorities and Locks

If the user profile parameter is not *CURRENT or the user profile currently running, then the user profile

that calls this API must have *SECADM special authority and *OBJMGT and *USE authorities to the user

profile.

Required Parameter Group

User profile

INPUT; CHAR(10)

 The user profile for which the application information will be updated. The special value

*CURRENT may be specified to update application information for the user profile that calls this

API.

Application information ID

INPUT; CHAR(*)

 The ID for the application information entry to update. IBM-supplied AS/400 application

information IDs are named QIBM_ccc_name, where ccc is the component identifier. User-supplied

application information IDs should not preface their application information ID with QIBM.

User-supplied application information IDs should start with the company name to eliminate most

problems that involve unique names. Application information IDs should use an underscore (_)

to separate parts of the name. Also, IDs for related applications should start with the same name.

 The first character of the application information ID must be one of the following:

 A-Z Uppercase A-Z

36 iSeries: Miscellaneous APIs

The remaining characters in the application information ID must be made up of the following

characters:

 A-Z Uppercase A-Z

0-9 Digits 0-9

. Period

_ Underscore

Length of application information ID

INPUT; BINARY(4)

 The length of the application information ID that is specified in the application information ID

parameter. The length of the application information ID must be a value from 1 to 200.

Application information

INPUT; CHAR(*)

 The application information to be associated with the specified user profile.

Length of application information

INPUT; BINARY(4)

 The length of the application information that is specified in the application information

parameter. The length of the application information must be a value from 1 to 1700.

First valid release

INPUT; CHAR(6)

 The first release that this application information is valid. This field is used to determine the

earliest release this user application information is valid when saving a user profile to a previous

release. If the user profile is saved to a release previous to the release specified in this field, this

information will not be saved with the user profile information. This field must be in the format

VxRxMx (for example, V5R3M0). The release specified must be V5R3M0 or greater.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2222 E Storage limit is greater than specified for user profile &1.

CPF226C E Not authorized to perform function.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF4AA0 E Application information ID &1 not valid.

CPF4AA1 E First release value &1 not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R3

 Top | Security APIs | APIs by category

Miscellaneous APIs 37

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

Exit Programs

These are the Exit Programs for this category.

Device Selection Exit Program

 Required Parameter Group:

1 Format name

Input Char(8)

2 Device selection information

Input/Output

Char(*)

3 Return code

Output Binary(4)
 Exit point name: QIBM_QPA_DEVSEL

 Exit point format name: PADS0100

 QSYSINC Member Name: EPADSEL

The Device Selection exit program provides an interface to control virtual device selection and automatic

creation used by the system for connection requests from clients using virtual device support. The

interface allows the user to write an exit program to specify the naming conventions used for

automatically created virtual devices and virtual controllers and to specify the automatic creation limit to

be used for the specific request.

The exit program can:

1. Reject a specific name for a device connection request.
2. Specify a naming pattern to be used for the automatic creation of a virtual device. This is used only if

a specific device name was not requested on the client’s connection request.
3. Specify the naming pattern of the virtual controller to be used:

v to search in an attempt to select an existing device (if a specific device name was not requested on

the client’s connection request) or

v to specify a controller to which to attach the automatically created device.

This naming pattern is also used to ’count’ the number of existing devices toward the automatic

creation limit.

4. Specify a second controller naming pattern to be used to ’count’ the number of existing virtual

devices.
5. Specify the number of devices that can exist on the virtual controllers whose naming pattern is

specified.

Authorities and Locks

You must have *ALLOBJ authority to register an exit program for the QIBM_QPA_DEVSEL exit point.

38 iSeries: Miscellaneous APIs

Required Parameter Group

Format name

INPUT; CHAR(8)

 The format of the information provided in the Device selection information parameter. The

format name is “PDSC0100 Format.”

Device selection information

INPUT/OUTPUT; CHAR(*)

 The structure containing the data that is being passed to the exit program and that is returned

from the exit program.

Return code

OUTPUT; BINARY(4)

 Whether to allow the connection request to continue. The possible values are:

 0

Allow connection request.

1

Do not allow connection request.

If any other value is returned, the request for selection and automatic creation of a device

description for the client request will be processed using the system defaults for the QAUTOVRT

system value and the defaults for the device and controller naming conventions.

 This parameter is initialized to 0 on the call to the exit program.

PDSC0100 Format

For details about the fields in the following table, see “Field Descriptions” on page 40

 Offset

Type Field Dec Hex

0 0 BINARY(4) Size of structure

4 4 BINARY(4) Function

8 8 BINARY(4) Specific name requested

12 C CHAR(10) Name for requested device

22 16 CHAR(8) Format of returned data

PDSR0100 Format

For details about the fields in the following table, see “Field Descriptions” on page 40

 Offset

Type Field Dec Hex

30 1E CHAR(2) Reserved

32 20 BINARY(4) Autocreation limit

36 24 CHAR(6) Naming pattern for device

42 2A CHAR(6) Controller naming pattern for device attachment

48 30 CHAR(6) Additional controller naming pattern

Miscellaneous APIs 39

Field Descriptions

Additional controller naming pattern. The naming pattern for the controllers to be used for the device

automatic creation limit. When applying the check for automatic creation limit, devices attached to these

controllers are also counted when determining ifr the limit is exceeded. This field is initialized to blanks

before the call is made to the exit program.

Autocreation limit. The number to be used for the virtual device automatic creation limit for this

connection request. Possible values are:

 0 Do not allow any additional virtual device descriptions to be created automatically.

1-32500 The number of devices that can be attached to the controller descriptions whose naming patterns

are specified in Controller naming pattern for device attachment and Additional controller naming

pattern.

32767 The special value of *NOMAX. Do not limit the automatic creation of virtual devices.

Controller naming pattern for device attachment. The naming pattern for the controller to which an

automatically created device is to be attached. These characters must be a valid input to the CRTCTLVWS

command. If there are not six characters, the pattern is padded with zeros. If the Autocreation limit is

1-32500, the devices attached to controllers with this pattern are counted and this number is used toward

the automatic creation limit. This field is initialized to blanks before the call is made to the exit program.

Format of returned data. The format name specified by the user exit program for the output data

returned from the Device Selection exit point. The only format supported currently is PDSR0100. This

field is initialized to PDSR0100 on the call to the exit program.

Function. The function being used by the client. Possible values are:

 1 APPC

2 TELNET

3 Virtual Terminal Manager API (VTM API)

Name for requested device. The name of the device requested by the client. If Specific name requested is

set to 0, this field is blank.

Naming pattern for device. The naming pattern to be used for device automatic creation. These

characters must be a valid input to the CRTDEVDSP command. This field is checked only if the Specific

name requested field is 0. This field is initialized to blanks before the call is made to the exit program.

Reserved. A reserved field that must be set to hexadecimal zeros.

Size of structure. The size of the structure containing the data being passed to and returned from the exit

program.

Specific name requested. Whether a specific name was requested by the client. If a specific name was

requested, this name will be passed to the exit program in the Name for requested device field.

 0 No specific name was requested.

1 Specific name was requested.

Coding Guidelines

Applications should consider the following when coding this exit program:

40 iSeries: Miscellaneous APIs

v The program should return an exception for the requested operation only if there has been a failure in

the operation. If the program signals an escape message to the API, the system assumes there is a

failure. A diagnostic message is returned to the calling program. The request for selection and

automatic creation of a device description for the client request will be processed using the system

defaults for the QAUTOVRT system value and the defaults for the device and controller naming

conventions.
v The program must clean up any locks that it acquires.
v The program must handle all potential error conditions associated with its own operations (be fault

tolerant).
v The program must avoid infinite looping conditions.

Exit program introduced: V5R2

 Top | “Miscellaneous APIs,” on page 1 | APIs by category

Miscellaneous APIs 41

#TOP_OF_PAGE
aplist.htm

42 iSeries: Miscellaneous APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 43

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

44 iSeries: Miscellaneous APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 45

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

46 iSeries: Miscellaneous APIs

����

Printed in USA

	Contents
	Miscellaneous APIs
	APIs
	General Miscellaneous APIs
	Add Seed for Pseudorandom Number Generator (QC3ADDSD, Qc3AddPRNGSeed) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Check Communications Trace (QSCCHKCT) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Control Device (QTACTLDV) API
	Authorities and Locks
	Required Parameter Group
	CTLD0100 Format
	Field Descriptions
	Error Messages
	Reason Codes
	Usage Notes
	Usage Example

	Convert Date and Time Format (QWCCVTDT) API
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Input and Output Variable Formats
	16-Byte Character Date and Time Value Structure
	17-Byte Character Date and Time Value Structure
	19-Byte Character Date and Time Value Structure
	20-Byte Character Date and Time Value Structure
	DOSGetDateTime Value Structure
	Time Zone Information Value Structure
	Field Descriptions
	Usage Notes
	Error Messages

	Generate Pseudorandom Numbers (QC3GENRN,Qc3GenPRNs) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Remove All Bookmarks from a Course (QEARMVBM) API
	Authority
	Required Parameter Group
	Error Messages

	Retrieve Data (QPARTVDA) API
	Required Parameter Group
	Error Messages

	Start Pass-Through (QPASTRPT) API
	Authorities and Locks
	Required Parameter Group
	PAST0100 Format
	PAST0200 Format
	Field Descriptions
	Error Messages

	Update Device Microcode (QTAUPDDV) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Error Messages

	Using the WebFacing Environment API (QqfEnvironment)
	Examples

	User Application APIs
	Remove User Application Information (QsyRemoveUserApplicationInfo) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Retrieve User Application Information (QsyRetrieveUserApplicationInfo) API
	Authorities and Locks
	Required Parameter Group
	Receiver Variable Description
	RUAI0100 Format

	Format of Returned Records Feedback Information
	Field Descriptions
	Error Messages

	Update User Application Information (QsyUpdateUserApplicationInfo) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Exit Programs
	Device Selection Exit Program
	Authorities and Locks
	Required Parameter Group
	PDSC0100 Format
	PDSR0100 Format
	Field Descriptions
	Coding Guidelines

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

