
iSeries

Message Handling APIs

Version 5 Release 3

ERserver

���

iSeries

Message Handling APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 197.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Message Handling APIs 1

APIs 2

Change Exception Message (QMHCHGEM) API . . 3

Authorities and Locks 3

Required Parameter Group 3

Error Messages 6

Control Job Log Output (QMHCTLJL) API 6

Authorities and Locks 8

Required Parameter Group 8

CTLJ0100 Output File Names Structure 9

Message Filter Array Elements 9

Field Descriptions 10

CCSID Considerations 12

Error Considerations 12

Job Message Queue Full Considerations 13

Usage Notes 13

Error Messages 13

Job Log Production Messages 14

List Job Log Messages (QMHLJOBL) API 14

Authorities and Locks 15

Required Parameter Group 16

Format of Generated Lists 17

Input Parameter Section 17

Header Section 18

LJOB0100 Format 18

JSLT0100 Format 19

JSLT0200 Format 19

Valid Field Identifiers 20

Field Descriptions 21

Error Messages 30

List Nonprogram Messages (QMHLSTM) API . . . 32

Authorities and Locks 33

Required Parameter Group 33

Format of Generated Lists 34

Input Parameter Section 34

Header Section 35

LSTM0100 Format 35

MSLT0100 Format 36

MSLT0200 Format 37

Valid Field Identifiers 37

Field Descriptions 38

Error Messages 48

Move Program Messages (QMHMOVPM) API . . . 50

Authorities and Locks 51

Required Parameter Group 51

Optional Parameter Group 1 54

Optional Parameter Group 2 55

Error Messages 56

Open List of Job Log Messages (QGYOLJBL) API . . 57

Differences between QMHLJOBL and QGYOLJBL 58

Authorities and Locks 58

Required Parameter Group 58

OLJL0100 Format 59

Field Descriptions 60

Message Selection Information Format 62

Field Descriptions 62

Valid Field Identifiers 64

Field Descriptions 65

Error Messages 69

Open List of Messages (QGYOLMSG) API 70

Differences between the QMHLSTM and

QGYOLMSG APIs 71

Difference between the QSYRUSRI and

QGYOLMSG APIs 71

Authorities and Locks 71

Required Parameter Group 71

LSTM0100 Format 74

Field Descriptions 74

Message Selection Information Format 76

Field Descriptions 77

Valid Field Identifiers 78

Field Descriptions 79

Error Messages 83

Promote Message (QMHPRMM) API 84

Authorities and Locks 85

Required Parameter Group 85

Error Messages 87

Receive Nonprogram Message (QMHRCVM) API . 88

Authorities and Locks 88

Required Parameter Group 89

Optional Parameter Group 1 91

Optional Parameter Group 2 91

Message Types and Message Keys 92

RCVM0100 Format 93

RCVM0200 Format 93

Field Descriptions 95

Error Messages 98

Receive Program Message (QMHRCVPM) API . . 100

Authorities and Locks 101

Required Parameter Group 101

Optional Parameter Group 1 104

Optional Parameter Group 2 105

Optional Parameter Group 3 106

Message Types and Message Keys 106

RCVM0100 Format 107

RCVM0200 Format 108

RCVM0300 Format 109

Sender Information Format 110

Field Descriptions 111

Error Messages 117

Remove Nonprogram Messages (QMHRMVM) API 118

Authorities and Locks 118

Required Parameter Group 118

Optional Parameter Group 119

Error Messages 119

Remove Program Messages (QMHRMVPM) API 121

Authorities and Locks 122

Required Parameter Group 122

Optional Parameter Group 1 124

Optional Parameter Group 2 125

Optional Parameter Group 3 125

Error Messages 126

© Copyright IBM Corp. 1998, 2005 iii

Resend Escape Message (QMHRSNEM) API . . . 127

Authorities and Locks 127

Required Parameter Group 127

Optional Parameter Group 128

RSNM0100 Format 129

RSNM0200 Format 129

Field Descriptions 129

Error Messages 133

Retrieve Message (QMHRTVM) API 134

Authorities and Locks 135

Required Parameter Group 135

Optional Parameter Group 137

RTVM0100 Format 137

RTVM0200 Format 138

RTVM0300 Format 138

RTVM0400 Format 139

Relational Test Entry Format 141

Special Reply Value Entry Format 142

Substitution Variable Format 142

Valid Reply Entry Format 142

Field Descriptions 142

Error Messages 148

Retrieve Message File Attributes (QMHRMFAT)

API 149

Authorities and Locks 149

Required Parameter Group 149

RMFA0100 Format 150

Field Descriptions 150

Error Messages 151

Retrieve Nonprogram Message Queue Attributes

(QMHRMQAT) API 151

Authorities and Locks 152

Required Parameter Group 152

RMQA0100 Format 152

Field Descriptions 153

Error Messages 155

Retrieve Request Message (QMHRTVRQ) API . . 156

Authorities and Locks 156

Required Parameter Group 156

RTVQ0100 Format 157

RTVQ0200 Format 157

Field Descriptions 158

Error Messages 159

Send Break Message (QMHSNDBM) API 160

Authorities and Locks 161

Required Parameter Group 161

Optional Parameter 162

Error Messages 162

Send Nonprogram Message (QMHSNDM) API . . 164

Authorities and Locks 165

Required Parameter Group 165

Optional Parameter Group 167

Dependencies among Parameters 168

Error Messages 168

Send Program Message (QMHSNDPM) API . . . 170

Authorities and Locks 171

Required Parameter Group 171

Optional Parameter Group 1 174

Optional Parameter Group 2 176

Dependencies among Parameters 177

Additional Information about Message Types 177

Error Messages 179

Send Reply Message (QMHSNDRM) API 180

Authorities and Locks 181

Required Parameter Group 181

Optional Parameter Group 1 182

Optional Parameter Group 2 182

Coded Character Set Identifier (CCSID)

Considerations 182

Error Messages 183

Send Scope Message (QMHSNDSM) API 184

Authorities and Locks 185

Required Parameter Group 185

Error Messages 186

Exit Programs 186

Break Handling Exit Program 186

Required Parameter Group 186

Usage Notes 187

Default Handling Exit Program 187

Required Parameter Group 187

Format for Receiving Program Information . . 187

Field Descriptions 188

Usage Notes 188

Reply Handling Exit Program 189

Authorities and Locks 190

Required Parameter Group 190

Coded Character Set Identifier (CCSID)

Considerations 192

Usage Notes 193

Concepts 194

Message Handling Terms and Concepts 194

Immediate and Predefined Messages 194

Message Types 195

Message Destinations 195

Appendix. Notices 197

Trademarks 198

Terms and conditions for downloading and

printing publications 199

Code disclaimer information 200

iv iSeries: Message Handling APIs

Message Handling APIs

The Message Handling APIs let your applications work with iSeries(TM) messages. They allow you to do

the following:

v Send messages to users or programs

v Receive messages from a message queue

v Handle errors

v Return message and message queue information

v Return message description and message file information

Before using the message handling APIs, read the following material:

v “Message Handling Terms and Concepts” on page 194. This section briefly describes the elements of

iSeries messages and message handling.

v CL Programming

. For complete background information, see the sections that discuss defining and

working with messages.

The Message Handling APIs are:

v “Change Exception Message (QMHCHGEM) API” on page 3 (QMHCHGEM) changes an exception

message on a call message queue. This API allows the current program to perform a variety of actions

on an exception message that was sent to its caller, a previous caller, or itself.

v “Control Job Log Output (QMHCTLJL) API” on page 6 (QMHCTLJL) controls the production of a job

log when the related job ends or when the job message queue becomes full and the print-wrap option

is in effect for the job.

v “List Job Log Messages (QMHLJOBL) API” on page 14 (QMHLJOBL) lists messages from the job

message queue of a job. This function gets the requested message information and returns it in a user

space in the format specified in the parameter list.

v “List Nonprogram Messages (QMHLSTM) API” on page 32 (QMHLSTM) lists messages from one or

two nonprogram message queues. This function gets the requested message information and returns it

in a user space in the format specified in the parameter list.

v “Move Program Messages (QMHMOVPM) API” on page 50 (QMHMOVPM) moves messages from one

call message queue to the message queue of an earlier call stack entry in the call stack. This is

especially useful for error handling.

v “Open List of Job Log Messages (QGYOLJBL) API” on page 57 (QGYOLJBL) lists messages from a job

log. Returned messages are sorted by their sending date and time unless the message being listed is a

reply message to an inquiry, a sender’s copy, or a notify type of message.

v “Open List of Messages (QGYOLMSG) API” on page 70 (QGYOLMSG) provides information on

messages for the current user, a specific user, or one specific nonprogram message queue.

v “Promote Message (QMHPRMM) API” on page 84 (QMHPRMM) promotes an escape or status

message that was sent to a call stack entry. That is, the message is handled and replaced with a new

escape or status message. You may promote an escape message to another escape message or to a

status message. You may promote a status message to an escape message or to another status message.

v “Receive Nonprogram Message (QMHRCVM) API” on page 88 (QMHRCVM) receives a message from

a nonprogram message queue, providing information about the sender of the message as well as the

message itself. This API is similar in function to the Receive Message (RCVMSG) command with the

MSGQ parameter.

© Copyright IBM Corp. 1998, 2005 1

v “Receive Program Message (QMHRCVPM) API” on page 100 (QMHRCVPM) receives a message from

a call message queue, and provides information about the sender of the message as well as the

message itself. This API is similar in function to the Receive Message (RCVMSG) command with the

PGMQ parameter.

v “Remove Nonprogram Messages (QMHRMVM) API” on page 118 (QMHRMVM) removes messages

from nonprogram message queues. This API is similar in function to the Remove Message (RMVMSG)

command with the MSGQ parameter.

v “Remove Program Messages (QMHRMVPM) API” on page 121 (QMHRMVPM) removes messages

from call message queues. This API is similar in function to the Remove Message (RMVMSG)

command with the PGMQ parameter.

v “Resend Escape Message (QMHRSNEM) API” on page 127 (QMHRSNEM) resends an escape message

from one call message queue to the message queue of the previous call stack entry in the call stack.

v “Retrieve Message (QMHRTVM) API” on page 134 (QMHRTVM) retrieves the message text and other

elements of a predefined message stored in a message file on your system. This API is similar to the

Retrieve Message (RTVMSG) command.

v “Retrieve Message File Attributes (QMHRMFAT) API” on page 149 (QMHRMFAT) retrieves

information about the attributes of a message file.

v “Retrieve Nonprogram Message Queue Attributes (QMHRMQAT) API” on page 151 (QMHRMQAT)

provides information about the attributes of a nonprogram message queue.

v “Retrieve Request Message (QMHRTVRQ) API” on page 156 (QMHRTVRQ) retrieves request messages

from the current job’s call message queue.

v “Send Break Message (QMHSNDBM) API” on page 160 (QMHSNDBM) sends a message to a work

station for immediate display, interrupting the work station user’s task. You can use break messages to

warn users of impending system outages and the like. This API is similar in function to the Send Break

Message (SNDBRKMSG) command.

v “Send Nonprogram Message (QMHSNDM) API” on page 164 (QMHSNDM) sends a message to a

system user or a message queue that is not associated with a specific program. This API is similar in

function to the Send Program Message (SNDPGMMSG) command with the TOMSGQ parameter.

v “Send Program Message (QMHSNDPM) API” on page 170 (QMHSNDPM) sends a message to the

message queue of a call stack entry in the call stack. This API is similar in function to the Send

Program Message (SNDPGMMSG) command with the TOPGMQ parameter.

v “Send Reply Message (QMHSNDRM) API” on page 180 (QMHSNDRM) sends a response to an inquiry

message. This API is similar in function to the Send Reply (SNDRPY) command.

v “Send Scope Message (QMHSNDSM) API” on page 184 (QMHSNDSM) Sends a scope message that

allows a user to specify a program to run when your program or job is completed.

The Message Handling exit programs are:

v “Break Handling Exit Program” on page 186 provides the capability of handling messages that arrive

at a message queue that is in *BREAK mode.

v “Default Handling Exit Program” on page 187 provides a default message handling action that can be

used if the program that is signaled an escape message does not monitor for or handle the escape

message.

v “Reply Handling Exit Program” on page 189 is called when a reply is sent to an inquiry message.

 Top | APIs by category

APIs

These are the APIs for this category.

2 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

Change Exception Message (QMHCHGEM) API

 Required Parameter Group:

1 Invocation pointer

Input Pointer

2 Call stack counter

Input Binary(4)

3 Message key

Input Char(4)

4 Modification option

Input Char(10)

5 Reply text

Input Char(*)

6 Reply text length

Input Binary(4)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Change Exception Message (QMHCHGEM) API changes an exception message on a call message

queue. This API allows the current program to perform one of the following actions on an exception

message that was sent to its caller, a previous caller, or itself:

v Handle the escape, status, or notify message. If the exception is a notify message that has not already

received a reply, return the default reply.

v If it is a notify message that has not been replied to, return a reply to the call stack entry that sent this

message. Handle the exception.

v Handle the escape, status, or notify message and remove it from the job log. If the exception is a notify

message that has not been replied to, return its default reply or another reply to the call stack entry

that sent it.

Authorities and Locks

None.

Required Parameter Group

Invocation pointer

INPUT; POINTER

 The invocation pointer to the call stack entry to which the exception message was sent. When

using a value other than 0 for the call stack counter parameter, the invocation pointer points to

the call stack entry from which to start counting in the call stack. This is the location of the call

stack entry that received the exception message that was sent. The call stack entry you specify

must be in the call stack. A null invocation pointer may be specified. If this pointer is not set, the

call stack entry that called the QMHCHGEM API is used.

Message Handling APIs 3

Call stack counter

INPUT; BINARY(4)

 A number that identifies the location in the call stack of the call stack entry that received the

message you are changing. The number is relative to the call stack entry specified in the

invocation pointer parameter. The number indicates how many calls earlier in the call stack the

call stack entry is from the one specified in the invocation pointer parameter. Valid values follow:

 0 Change a message in the message queue of the call stack entry specified in the invocation pointer

parameter.

1 Change a message in the message queue of the call stack entry that called the call stack entry

specified in the invocation pointer parameter.

n Change a message in the message queue of the nth call stack entry earlier up the stack from the

call stack entry specified in the invocation pointer parameter.

You can use any positive number that offsets to an actual call stack entry in the call stack.

Message key

INPUT; CHAR(4)

 The message key of the exception message being changed. This parameter is ignored when

*CHANGEALL or *CHANGELST is specified for the modification option parameter.

Modification option

INPUT; CHAR(10)

 The type of change to be done to the exception message. Valid values follow:

 *HANDLE Causes the exception to be handled. No error message is returned if the exception is already

handled.

If the exception is a status message, it is immediately removed from the job message queue and is

no longer accessible. If the exception is an escape or notify message and is still in the job log, it is

still accessible through its message key.

If the exception is a notify message, the default reply is sent. If the notify message already

received a reply but was not handled, the exception will still be handled. If the notify message

was already handled but had not received a reply, the default reply will still be sent.

*CHANGE Changes escape message to a diagnostic message and handles it. If the escape message has already

been handled, it is still changed to a diagnostic message. If the exception is not an escape

message, an error is returned to the caller of this API and the exception is not handled or

changed.

*CHANGEALL Changes all escape messages that were sent to the specified call stack entry. Each escape message

is changed to a diagnostic message and handled. If the escape message has already been handled,

it is still changed to a diagnostic message. If any messages are encountered that are not escape

messages, they are ignored. When *CHANGEALL is specified, the message key parameter value is

ignored.

*CHANGELST Changes the last escape message that was sent to the specified call stack entry. The escape

message is changed to a diagnostic message and handled. If the escape message has already been

handled, it is still changed to a diagnostic message. When *CHANGELST is specified, the message

key parameter value is ignored.

4 iSeries: Message Handling APIs

*REPLY Replies to a notify message and handles it. The default reply or the reply specified in the reply

text parameter is returned to the call stack entry that sent the notify message. If the reply text

length parameter value is 0, the default reply is sent. The notify message is handled after its reply

is sent.

If the notify message has already been handled, the reply is still sent.

If the notify message has already been replied to, an error is returned to the caller of this API, and

the exception is not handled.

If the exception is not a notify message, an error is returned to the caller of this API, and the

exception is not handled.

*REMOVE Handles the escape, notify, or status exception and removes the message from the job log. If the

exception is a notify message, its default reply or the reply specified in the reply text parameter is

returned to the call stack entry that sent it. If the reply text length parameter value is 0, the default

reply is sent. No error message is returned if the exception is already handled. The exception is

immediately inaccessible for any further operations.

If the exception is a notify message that has already been replied to, it is handled and removed

from the job log. No error message is returned to the caller of this API.

If the exception is not a notify message, the reply text length parameter value must be 0. If the

reply text length parameter value is not 0, an error is returned to the caller of this API. The

exception is not handled or removed from the job log.

Reply text

INPUT; CHAR(*)

 The data that is returned as the reply to a notify message when *REPLY or *REMOVE is specified

for the modification option parameter. This data must be compatible with the reply type, reply

length, and valid reply values stored in the message description for the message. If it is not

compatible, an error is returned to the caller of this API.

 This parameter is ignored if:

v The message being changed is not a notify message.

v The modification option is not *REPLY or *REMOVE.

v The reply text length parameter is 0.

Reply text length

INPUT; BINARY(4)

 The length, in bytes, of the data that is returned as the reply to a notify message. This length

must be compatible with the reply type and maximum reply length stored in the message

description for the message.

 Valid values follow:

 0 Return the notify message’s default reply.

1-132 Return the reply specified in the reply text parameter. This is the number of bytes to return.

If the message being changed is not a notify message, or the modification option is not *REPLY or

*REMOVE, this parameter is ignored.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Message Handling APIs 5

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF24A3 E Value for call stack counter parameter not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B6 E Length of &1, not valid for message text or data.

CPF2401 E Not authorized to library &1.

CPF2410 E Message key not found in message queue &1.

CPF2411 E Not authorized to message file &1 in &2.

CPF242D E Modification option &1 not valid.

CPF242E E Tried to change message which is not an exception.

CPF242F E Message type must be ESCAPE for *CHANGE modification option.

CPF2420 E Reply already sent for inquiry or notify message.

CPF2422 E Reply not valid.

CPF243A E Invocation pointer parameter not valid.

CPF2432 E Cannot send reply to message type other than *INQ or *NOTIFY.

CPF2547 E Damage to message file QCPFMSG.

CPF2548 E Damage to message file &1 in &2.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Message Handling APIs,” on page 1 | APIs by category

Control Job Log Output (QMHCTLJL) API

 Required Parameter Group:

1 Output file names structure

Input Char(65)

2 Output file name structure format

Input Char(8)

3 Message filter array

Input Char(*)

4 Number of message filter elements

Input Binary(4)

5 Qualified error message queue name

Input Char(20)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 13.

6 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

The Control Job Log Output (QMHCTLJL) API controls the production of a job log when the related job

ends or when the job message queue becomes full and the print-wrap option is in effect for the job. The

API can only influence the job log for the job in which it is used. The API can be used to control:

v The destination of the job log.

v The amount of message information written to the job log.

v The occurrence of messages in the job log.

To have an effect on the job log, the API must be called before the job ends. It can be called in an initial

program for the job.

This API does not produce a job log; rather, the API captures the control information specified on the

parameters and retains the information until job log production. The API also prepares the output files

for job log production. When job log production occurs, such as at end of job, the control information and

the prepared output files direct the job log to the output file.

If the API is not used, normal job log production occurs. That is, all messages in the job message queue

for the job are written to a spooled file from which the job log can be printed. If the API is used, no

spooled file is produced. Instead, the messages are written into one or two output files, depending upon

the amount of information requested. Once the API is used, the options selected remain in effect for the

current job until the API is called again. Each time the API is used, the selected options can be changed.

The options in effect when the job ends or when the job message queue becomes full are the ones used to

produce the job log.

One or two output files can be produced at job log production time.

v The primary output file contains one record for each message selected for inclusion in the job log. A

record in the primary output file contains the essential information of the message: message ID,

message type, message severity, time sent, sender and receiver information, and the message data.

v Output to a secondary output file can also be produced. Secondary output is optional and is controlled

by providing an output file name for the secondary file. Secondary output consists of the first and

second level text for a message. The first and second level text has all message data inserted and is an

image of the print line. Since there can be more than one print line for first and second level text, there

can be more than one secondary record for a message. Thus, for a single message, the primary file

contains one record and the secondary file contains one or more records. For example, if the print

image for first level text is 2 print lines and the second level is 4 print lines, there are 6 records

produced for the message in the secondary file. With the 1 primary record, there would be a total of 7

records produced for that message.

Detailed information about the formats of the primary output file and secondary output file is provided

in the CL Programming

book.

This API does not influence the DSPJOBLOG CL command when OUTPUT(*OUTFILE) is specified on the

command. If OUTPUT(*OUTFILE) is specified on the command, the primary job log information is

written to the file specified on the command, and no message filtering is performed. If

OUTPUT(*APIDFN) is specified on the command, the files specified by the call to the API are used for

output, and message filtering is performed by the call to this API. The error message queue is not used

so any errors are returned to the issuer of the DSPJOBLOG command.

If the DSPJOBLOG command is used with the files prepared by this API, note the following:

v The files specified on the API are prepared only once, when the API is called. Preparing the files

includes clearing the members of any existing data if requested on the API. The files prepared by this

API can be used on several calls of the DSPJOBLOG command. However, the members are not cleared

between calls.

Message Handling APIs 7

v Each time the DSPJOBLOG command is called, the output is added to whatever is already in the

members. Additionally, at end of job, the final records for the job log are added to the members.

v If the members need to be cleared between calls of the DSPJOBLOG command or before the job ends,

call the API again or use the CLRPFM (Clear Physical File Member) command.

This API does not override the LOG job attribute for the job or the LOG attribute on the SIGNOFF CL

command. The LOG job attribute controls whether any job log is to be produced and controls whether

second level text is to be logged.

Authorities and Locks

Authorization to the specified output file(s) is checked when this API is used. If the specified output

file(s) does not exist, this API creates them. Additionally, if the output file member(s) does not exist, this

API adds a new member by the specified name to the output file(s). The authorization checking is

performed using the user profile the API was called under. If an output file needs to be created, the user

profile the API was called under becomes the owner of the output file. Public authority to files created by

this API is controlled by the library containing those files. Public authority for objects created into a

library is controlled by the CRTAUT parameter on the CRTLIB or CHGLIB command.

Output file library authority:

v *EXECUTE required in all cases.

v *ADD required when the output file or member does not exist.

Output file authority:

v *OBJOPR, *OBJMGT, *ADD required in all cases.

v *DLT required to clear the member of existing records.

Required Parameter Group

Output file names structure

INPUT; CHAR(65)

 Provides information about the primary and secondary files and members.

Output file names structure format

INPUT; CHAR(8)

 The format of the output file names structure parameter. This must be set to CTLJ0100. See

“CTLJ0100 Output File Names Structure” on page 9 for details about this format.

Message filter array

INPUT; CHAR(*)

 An array of zero or more elements. Each element in the array defines a test applied against each

message before it is written to the output file. The tests are performed in the order they appear in

the array. A message is rejected and not written to the output file if any one test defined in the

array is true for the message. A message is selected and written to the output file if all tests

defined in the array are false for the message.

 Each array element specifies a message severity, message type, and message ID. If a message has

a message severity less than or equal to the specified severity, has the specified type, and has a

message ID equal to the specified ID, the test is true and the message is not written to the output

file. Processing stops on the rejected message and the next message is processed.

 If a message meets one or two of the criteria but not all three, the test is false and the test defined

by the next array element is applied. If all array elements have been applied to the message and

none have been found true, the message is written to the output file.

Number of message filter elements

INPUT; BINARY(4)

8 iSeries: Message Handling APIs

The number of elements in the Message filter array parameter. The value must be greater than or

equal to 0 but less than or equal to 255. If no message filtering is to be done during job log

production, this parameter must be set to 0.

Qualified error message queue name

INPUT; CHAR(20)

 The qualified name of a message queue to which a message should be sent to record any errors

detected during the production of the job log to an output file. The first 10 characters of this

parameter contain the message queue name and the second 10 characters contain the library

name. A library name must be specified. The special values *CURLIB and *LIBL cannot be used.

QTEMP cannot be specified as the library name. The message queue name specified cannot be

QHST or QSYSMSG.

 The following special value can be used for the message queue name of this parameter:

 *NONE No messages are sent. If errors occur during job log production to an output file, there is no

record of what the error was or the action taken in response to the error.

*SYSOPR Send the messages to the system operator’s message queue, QSYSOPR.

If a qualified message queue name is provided and that message queue does not exist or is

unusable at job log production time, any messages are sent to *SYSOPR.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

CTLJ0100 Output File Names Structure

The following table shows the layout of the output file names structure for format CTLJ0100.

 Offset

Type Field Dec Hex

0 0 BIN(4) Output file names structure length

4 4 CHAR(20) Qualified primary file name

24 18 CHAR(10) Primary file member name

34 22 CHAR(20) Qualified secondary file name

54 36 CHAR(10) Secondary file member name

64 40 CHAR(1) Member replace option

Message Filter Array Elements

The following table shows the structure of an array element in the message filter array parameter. This

structure is repeated for each element in the array.

 Offset

Type Field Dec Hex

0 0 CHAR(4) Reserved

4 4 BINARY(4) Message severity

8 8 CHAR(10) Message Type

18 12 CHAR(7) Message ID

Message Handling APIs 9

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

25 19 CHAR(3) Reserved

Field Descriptions

Member replace option. Specifies if an existing member of either the primary or secondary file is to be

cleared. If the member is to be cleared, it is cleared when this API is called. If a member contains existing

records and is not cleared, at job log production time, the new records are added to the member and the

existing records are left unchanged. Use one of the following special values:

 0 Do not clear the member.

1 Clear the member of existing records.

Message ID. The message ID to test each message against. The following special values can be used in

place of a message ID:

 *ANY Any message ID is considered equal. Message type and message severity determine if the message

is selected or rejected. If message type is specified as *ANY, message severity as 99, and message

ID as *ANY, all messages are rejected. There is no job log output to the output file(s).

*IMMED Identifies immediate messages with no message ID.

A generic message ID can be used in place of a specific message ID. A generic message ID is an ID in

which the last 2 or 4 characters are 0. For example, CPF2400 and CPF0000 are generic IDs. A generic ID

represents a range of IDs rather than a single ID. A generic ID of the form XXXnn00 represents all IDs

from XXXnn00 through XXXnnFF. A generic ID of the form XXX0000 represents all IDs from XXX0000

through XXXFFFF.

When a generic ID is specified, any message ID within the range of the generic ID is considered to match

the generic ID. The message severity to test each message against. If severity is not important in rejecting

a message use 99 as the value for this field. When 99 is used, each message’s severity is less than or

equal and, as a result, message type and message ID will determine if a message is selected or rejected.

Message type. The message type to test each message for. Use one of the following special values:

 *ANY Any message type. Use this when message type is not important in rejecting a message. Any

message type is considered equal to this and, as a result, message severity and message ID

determines if the message is selected or rejected.

*CMD Commands that are logged from the running of a CL program.

*COMP Completion message type.

*COPY Sender’s copy message type. If a sender’s copy message is not written to the output file, its reply

message is also not written.

*DIAG Diagnostic message type.

*ESCAPE Escape message type. The *ESCAPE message type includes the function check message.

*EXCP Exception message type. Includes both *ESCAPE and *NOTIFY message types.

*INFO Information message type.

*INQ Inquiry message type. If an inquiry message is not written to the output file, its reply message is

also not written.

*NOTIFY Notify message type. If a notify message is not written to the output file, its reply message is also

not written.

*RQS Request message type.

*RPY Reply message type. If a reply message is not written to the output file, its inquiry, notify, or

sender’s copy message is also not written.

10 iSeries: Message Handling APIs

Output file names structure length. The length of this structure. This must be set to a value of 65.

Primary file member name. The name of the member within the primary file used for the primary job

log information.

If a member of the specified name does not exist, a member by that name is added to the primary file by

this API.

If a member by the specified name does exist, this API will clear the member if the Member replace

option field of this structure specifies replace. Otherwise, the member is not cleared. At job log

production time, new records are added to the member and any existing records are left unchanged.

The following special value can be used in this field:

 *FIRST The first member in the file receives the output. If a member does not exist, one is created with a

name the same as the file name.

Qualified primary file name. The qualified name of the primary output file. This field consists of two

parts. The first 10 positions contain the file name and the second 10 positions contain the library name. A

specific library name can be provided or the special values *CURLIB and *LIBL can be used. QTEMP

cannot be used as a library name.

If an output file by the specified name does not exist when this API is called, one is created by that name

in the specified library. If the library was specified as *LIBL, the file is created in the current library. If

*LIBL or *CURLIB was specified and there is no current library, the file is created in QGPL. The file is

created with the attributes MAXRCDS and MAXMBRS set to *NOMAX.

The following special value can be used in this field:

 *PRINT Resets the job so the job log is written to a spooled file rather than an output file. When this

special value is used the remaining parameters on this API are ignored.

The API does not allow the primary file specification to be overridden by the use of the Override

Database File (OVRDBF) command. The primary file also cannot be overridden at job log production

time. The file object determined to be the primary file used by this API is the one used at job log

production time. If the file does not exist at job log production time, the job log is redirected to a spooled

file.

The primary file must be a local physical file; it cannot be a DDM file.

Qualified secondary file name. The name of the file into which the secondary job log information is

written. The parameter consists of two parts. The first 10 positions to contain the file name and the

second 10 positions contain the library name. A library name can be provided or the special values

*CURLIB and *LIBL can be used. QTEMP cannot be used for the library name.

If an output file by the specified name does not exist when the API is called, one is created by that name

in the specified library. If the library was specified as *LIBL, the file is created in the current library. If

*LIBL or *CURLIB was specified and there is no current library, the file is created in QGPL. The file

attributes MAXRCDS and MAXMBRS are set to *NOMAX.

The following special value can be used in this field:

 *NONE No secondary file is provided. This special value prevents the generation of the secondary job log

information. When this special value is used, the secondary library and member names are

ignored.

Message Handling APIs 11

The API does not allow the secondary file specification to be overridden by the use of the OVRDBF

command. The secondary file also cannot be overridden at job log production time. The file object

determined to be the secondary file by this API is used at job log production time. If the file does not

exist at job log production time, the job log automatically redirects to a spooled file.

The secondary file must be a local physical file; it cannot be a DDM file.

Reserved. This field must be set to binary zeros.

Secondary file member name. The name of the member within the secondary file used for the secondary

job log information.

If a member of the specified name does not exist, a member by that name is added to the secondary file.

If a member by the specified name does exist, the member is cleared if the Member replace option field

of this structure specifies replace. Otherwise, the member is not cleared. At job log production time, new

records are added to the member and any existing records are left unchanged.

The following special value can be used in this field:

 *FIRST The first member in the file receives the output. If a member does not exist, one is created with

the same name as the file name.

CCSID Considerations

CCSID conversion is allowed on any field in the primary file with the exception of the field QMHMDT,

which contains the message data or immediate message text. The QMHMDT field is defined with a

CCSID of 65535 so conversion does not occur on this field when the record is written. CCSID processing

is done on the message data when the message is sent. The CCSID that the QMHMDT field data is in is

stored in the record with the message data. The CCSID is placed in field QMHCID.

CCSID conversion is allowed for any field in the secondary file except for the field QMHLIN which

contains a line of message text. This field is defined with CCSID 65535. The message text has completed

CCSID processing before the record is written to the file. The CCSID the message text is in is stored in

field QMHSID.

The model files QAMHJLPR and QAMHJLSC specify no CCSID definitions other than the two fields

mentioned previously. CCSID processing for the remaining fields is allowed to default.

Detailed information about the fields mentioned in this discussion is provided in the CL Programming

book.

Error Considerations

During job log production to an output file, different types of errors can be encountered. Some errors

allow the job log to be written to the output file but the information in a record can be incomplete. Other

errors can prevent the job log from being written to the output file. For example, when the output file has

been deleted between the time this API has been run and job log production starts. Other errors, such as

when a member becomes full, allow a certain number of records to be written but not all. Whenever an

error is encountered, an informational message is written to the user or workstation queue specified by

the API parameter. If the API parameter specifies *NONE, these messages are not written.

If the error is such that the data can still be written to the output file, even though it can be incomplete,

processing continues and at the end of job log production there are output file(s) and member(s) which

contains the information that could be written. For example, if the message data for a message needs to

12 iSeries: Message Handling APIs

be truncated to 3000 characters, production of the job log to the output file continues but a message is

sent to record the fact that the message data was truncated.

If the error is such that no data can be written, the job log automatically redirects to a spooled file. This

occurs if the objects, determined by the API to be the output files, are deleted, damaged, or otherwise

unusable at the time job log production started. If any such error is encountered on the primary or

secondary output file, this redirection to a spooled file occurs. A message is sent to the specified message

queue to record that the job log has been redirected to a spooled file.

If only certain records are written to the output file, the remaining messages are redirected to a spooled

file. A message is sent to notify of this.

Job Message Queue Full Considerations

If the print-wrap option is used to control the action to take when a job message queue becomes full,

consider the following when using this API to direct the output to an output file.

Each time the job message queue becomes full, records are written to the output file for those messages

that are being removed from the job message queue. All new records are added to the member. The

Member replace option specified on this API has an effect only when this API is preparing the output file

for use. It has no effect when the records are written to the output file. For the print-wrap option, the

member contains the complete set of messages for the job rather than a partial set.

For long running jobs, it is possible that the job message queue can become full and the output file

member also becomes full. If the member becomes full, output is automatically redirected to a spooled

file until the API is run another time to specify a new member to use.

Changing the action from print-wrap to wrap will stop the production of records to the file(s). When the

job ends or if the action is changed back to print-wrap, records are again written to the file(s).

Usage Notes

This API can be called from the initial thread of a multithreaded job to control the job log output for all

threads. It should not be called from a secondary thread.

Error Messages

 Message ID Error Message Text

CPF24D0 E QTEMP is not a valid library to use for the file &1.

CPF24D1 E Member replace option &1 is not valid.

CPF24D2 E Number of elements &1 in message filter array is not valid.

CPF24D3 E Message queue &1 not valid for use with the QMHCTLJL API.

CPF24D4 E Message type &1 specified in filter element &2 is not valid.

CPF24D5 E Message severity &1 specified in filter element &2 is not valid.

CPF24D6 E Reserved field in filter element &1 does not contain a null value.

CPF24D7 E File &1 in library &2 cannot be used for job log production.

CPF24D8 E DDM file &1 in library &2 cannot be used for job log production.

CPF24D9 E Error message queue library name &1 is not valid.

CPF24DA E Failure while preparing for job log production to a physical file.

CPF3CF1 E Error code parameter not valid.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9822 E Not authorized to file &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Message Handling APIs 13

Job Log Production Messages

 Message ID Message Text

CPD241A E Output file &1 member &3 moved or renamed.

CPD241B E Error occurred on file &1 member &3 in &2.

CPD241C E Job log file &1 member &3 in &2 has been deleted.

CPD241D E Job log file &1 member &3 in &2 is not available.

CPD241E E No records written to job log file &1 member &3 in &2.

CPD241F E Not all records written to job log file &1 member &3 in &2.

CPD242B E Message data truncated for message key &7.

API introduced: V3R1

 Top | “Message Handling APIs,” on page 1 | APIs by category

List Job Log Messages (QMHLJOBL) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 Message selection information

Input Char(*)

4 Size of message selection information

Input Binary(4)

5 Format of message selection information

Input Char(8)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The List Job Log Messages (QMHLJOBL) API lists messages sent to the job message queue of a job. This

API gets the requested message information and returns it in a user space in the format specified in the

parameter list. The following discusses how the list is sorted for nonbatch jobs and for batch jobs.

When the job whose messages are being listed is not a batch job, the returned messages are sorted by

their sending date and time unless the message being listed is a reply message to an inquiry, a sender’s

copy, or a notify message. If it is a reply message, it is listed immediately following the inquiry, sender’s

copy, or notify message with which it is associated.

If the last message listed is an inquiry, a sender’s copy, or a notify message, the user of the API must call

the API again using parameters that would include listing the next later message after the inquiry,

sender’s copy, or notify message in order to obtain an available reply message.

14 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

When the job whose messages are listed is a batch job, the messages are grouped into two categories:

v Request messages that have been or are being processed, and the other messages that occurred during

the processing of those requests.

v Request messages that are yet to be processed, and any diagnostic messages associated with these

request messages.

The API treats unprocessed request messages as if they had a sending time later than all the request

messages and their associated messages that have been or are being processed. The following two

examples describe the sorting further.

For example, if the call to this API specifies to list the messages for a batch job from oldest to newest, the

list consists of all requests and their associated messages that have been or are being processed. They are

sorted as described above for a job that is not a batch job. They are followed by any request messages

and any associated diagnostic messages that have not yet been processed (in the order that they will be

processed).

As an opposite example, if the call to this API specifies to list the messages for a batch job from newest to

oldest, the list consists of the request messages that remain to be processed. They are in the opposite

order that they are processed. They are followed by the request messages that have been or are being

processed and their associated messages. These are sorted backward through time as described above for

nonbatch jobs.

The generated list replaces any existing information in the user space.

If the user space is not large enough to contain the data to be returned, the user space is increased to the

maximum user space size allowed (16MB) or the maximum amount of storage allowed to the user of the

API. If this is not large enough to contain the data to be returned, only the number of complete messages

that fit in the user space are returned. The information status field in the generic header is set to P

(partial but accurate). The user can then resubmit the request from the last message returned to obtain

the additional messages. The key of the last message listed for each message queue is provided in the

ending message key field in the header portion of the user space.

An alternative to making multiple calls to QMHLJOBL to list all of the messages is to change to use

the Open List of Job Log Messages (QGYOLJBL) API. QGYOLJBL can create a list that contains up to 2GB

of data. Instead of acessing a user space to get the message entries, the Get List Entry (QGYGTLE) API is

used to get the the message entries from the list created by QGYOLJBL.

The maximum messages requested field and the number of fields to return field for each listed message

increase the system resources required to create the list. Users of this API should use caution when

specifying parameters that list many messages or request many identified fields to be returned for each

listed message.

Authorities and Locks

User space

*CHANGE

User space library

*EXECUTE

User space lock

*EXCLRD

Job authority

v *JOBCTL

special authority

if the job for which messages are being retrieved has a user

profile different from that of the job that calls the QMHLJOBL API.

Message Handling APIs 15

v *ALLOBJ and *JOBCTL

special authorities if the job for which messages are being retrieved

has *ALLOBJ and *JOBCTL special authority. As an alternative to having *ALLOBJ authority,

the user calling the API can be authorized to the All Object Job Log function of Operating

System/400 through iSeries Navigator’s Application Administration support. The Change

Function Usage (CHGFCNUSG) command, with a function ID of

QIBM_ACCESS_ALLOBJ_JOBLOG, can also be used to change the list of users that are allowed

to access a job log that has *ALLOBJ special authority.

For additional information on job authorities, see Basic system security and planning.

Required Parameter Group

Qualified user space name

INPUT;CHAR(20)

 The user space that receives the generated list, and the library in which it is located. The first 10

characters contain the user space name, and the second 10 characters contain the user space

library. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format name

INPUT; CHAR(8)

 The format of the returned message information. You must use this format:

 LJOB0100 Basic message information with identified return fields. This format is described in “LJOB0100

Format” on page 18.

Message selection information

INPUT; CHAR(*)

 The information that determines the job message queue and messages to be listed. The format of

this information is described in “JSLT0100 Format” on page 19 and in “JSLT0200 Format” on page

19.

Size of message selection information

INPUT; BINARY(4)

 The size in bytes of the message selection information parameter.

Format of message selection information

INPUT; CHAR(8)

 The format of the message selection information parameter. You must use one of these formats:

 JSLT0100 The specific information identifying the messages to be listed. This format is described in

“JSLT0100 Format” on page 19. Message text and data are returned in the CCSID of your job.

JSLT0200 The specific information identifying the messages to be listed. This format is described in

“JSLT0200 Format” on page 19. This format is the same as JSLT0100 with the exception that you

can specify the CCSID you want your message text and data returned in.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

16 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Format of Generated Lists

The user space created consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v LJOB0100 format

For details about the user area and generic header, see the User Space Format for List APIs. For details

about the remaining items, see the following sections. For descriptions of each field in the list returned,

see “Field Descriptions” on page 21.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library specified

20 14 CHAR(8) Format name specified

28 1C CHAR(8) Format of message selection information specified

36 24 BINARY(4) Size of message selection information specified

40 28 BINARY(4) Maximum messages requested specified

44 2C CHAR(10) List direction specified

54 36 CHAR(10) Job name specified

64 40 CHAR(10) User profile specified

74 4A CHAR(6) Job number specified

80 50 CHAR(16) Internal job identifier specified

96 60 CHAR(4) Starting message key specified

100 64 BINARY(4) Maximum message length specified

104 68 BINARY(4) Maximum message help length specified

108 6C BINARY(4) Offset to identifiers of fields to return specified

112 70 BINARY(4) Number of fields to return specified

116 74 BINARY(4) Offset to call message queue specified

120 78 BINARY(4) Length of call message queue specified

124 7C BINARY(4) Coded character set identifier (CCSID) specified

128 80 CHAR(*) Reserved

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) of

BINARY(4)

Identifiers of fields to return specified

CHAR(*) Call message queue specified

Message Handling APIs 17

usf.htm

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name used

10 A CHAR(10) User space library used

20 14 CHAR(4) Starting message key used

24 18 CHAR(4) Ending message key

28 1C CHAR(10) Job name used

38 26 CHAR(10) User profile used

48 30 CHAR(6) Job number used

54 36 CHAR(2) Reserved

56 38 BINARY(4) Coded character set identifier (CCSID) used

LJOB0100 Format

The following table shows the information returned in the list data section of the user space for the

LJOB0100 format. The offsets listed are from the beginning of the user space. For a detailed description of

each field, see “Field Descriptions” on page 21.

The structure defined by this format is repeated for each message entry returned.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to the next entry

4 4 BINARY(4) Offset to fields returned

8 8 BINARY(4) Number of fields returned

12 C BINARY(4) Message severity

16 10 CHAR(7) Message identifier

23 17 CHAR(2) Message type

25 19 CHAR(4) Message key

29 1D CHAR(10) Message file name

39 27 CHAR(10) Message file library specified at send time

49 31 CHAR(7) Date sent

56 38 CHAR(6) Time sent

62 3E CHAR(6) Microseconds

68 44 CHAR(*) Reserved

18 iSeries: Message Handling APIs

Offset

Type Field Dec Hex

These fields repeat for

each identifier field

specified.

BINARY(4) Offset to the next field information returned

BINARY(4) Length of field information returned

BINARY(4) Identifier field

CHAR(1) Type of data

CHAR(1) Status of data

CHAR(14) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

JSLT0100 Format

The organization of the JSLT0100 format of the message selection information parameter follows. For a

detailed description of each field, see “Field Descriptions” on page 21.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Maximum messages requested

4 4 CHAR(10) List direction

14 E CHAR(10) Qualified job name

24 18 CHAR(10) Qualified user name

34 22 CHAR(6) Qualified job number

40 28 CHAR(16) Internal job identifier

56 38 CHAR(4) Starting message key

60 3C BINARY(4) Maximum message length

64 40 BINARY(4) Maximum message help length

68 44 BINARY(4) Offset to identifiers of fields to return

72 48 BINARY(4) Number of fields to return

76 4C BINARY(4) Offset to call message queue name

80 50 BINARY(4) Length of call message queue name

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) of

BINARY(4)

Identifiers of fields to return

CHAR(*) Call message queue name

JSLT0200 Format

The organization of the JSLT0200 format of the message selection information parameter follows. For a

detailed description of each field, see “Field Descriptions” on page 21.

Message Handling APIs 19

Offset

Type Field Dec Hex

0 0 BINARY(4) Maximum messages requested

4 4 CHAR(10) List direction

14 E CHAR(10) Qualified job name

24 18 CHAR(10) Qualified user name

34 22 CHAR(6) Qualified job number

40 28 CHAR(16) Internal job identifier

56 38 CHAR(4) Starting message key

60 3C BINARY(4) Maximum message length

64 40 BINARY(4) Maximum message help length

68 44 BINARY(4) Offset to identifiers of fields to return

72 48 BINARY(4) Number of fields to return

76 4C BINARY(4) Offset to call message queue name

80 50 BINARY(4) Length of call message queue name

84 54 BINARY(4) Coded character set identifier (CCSID) to return text and data in

88 58 BINARY(4) Reserved (must be set to 0)

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) of

BINARY(4)

Identifiers of fields to return

CHAR(*) Call message queue name

Valid Field Identifiers

The following table contains a list of the valid identifiers that can be specified in the message selection

information parameter. For a detailed description of each field, see “Field Descriptions” on page 21.

 Identifier Type Description

0101 CHAR(9) Alert option

0201 CHAR(*) Replacement data or impromptu message text

0301 CHAR(*) Message

0302 CHAR(*) Message with replacement data

0401 CHAR(*) Message help

0402 CHAR(*) Message help with replacement data

0403 CHAR(*) Message help with formatting characters

0404 CHAR(*) Message help with replacement data and formatting characters

0501 CHAR(*) Default reply

0601 CHAR(26) Qualified sender job name

0602 CHAR(1) Sender type

0603 CHAR(*) Sending program name

0604 CHAR(10) Sending module name

0605 CHAR(*) Sending procedure name

20 iSeries: Message Handling APIs

Identifier Type Description

0606 BINARY(4) followed

by ARRAY(*) of

CHAR(10)

Number of sending statement numbers or instruction numbers available

followed by an array of the sending statement numbers or instruction

numbers

0607 CHAR(10) Sending user profile

0702 CHAR(1) Receiving type

0703 CHAR(10) Receiving program name

0704 CHAR(10) Receiving module name

0705 CHAR(*) Receiving procedure name

0706 BINARY(4) followed

by ARRAY(*) of

CHAR(10)

Number of receiving statement numbers or instruction numbers available

followed by an array of the receiving statement numbers or instruction

numbers

0801 CHAR(10) Message file library used

0901 CHAR(30) Problem identification

1001 CHAR(1) Reply status

1101 CHAR(1) Request status

1201 BINARY(4) Request level

1301 BINARY(4) Coded character set identifier (CCSID) for text

1302 BINARY(4) CCSID conversion status indicator for text

1303 BINARY(4) Coded character set identifier (CCSID) for data

1304 BINARY(4) CCSID conversion status indicator for data

Field Descriptions

Alert option. Whether and when an SNA alert is created and sent for the message. The value is one of

the following:

 *DEFER An alert is sent after local problem analysis.

*IMMED An alert is sent immediately when the message is sent to a message queue that has the allow

alerts attribute set to *YES.

*NO No alert is sent.

*UNATTEND An alert is sent immediately when the system is running in unattended mode (when the value of

the alert status network attribute, ALRSTS, is *UNATTEND).

For more information about alerts, see the Alerts Support

book.

This field is set to blanks if no alert option was specified when the message was sent.

Call message queue name. The name of the call message queue from which the messages are listed. You

must use one of these values:

 * Messages from every call stack entry of the job are listed. If the length of call message queue name

field is greater than 1, the value must be left-justified and padded on the right with blanks.

*EXT Only messages sent to the external message queue (*EXT) of the job are to be listed. If the length

of the call message queue name field is greater than 4. The value must be left-justified in the field

and padded on the right with blanks.

Call message queue specified. The call message queue name as specified on the call to the API.

Message Handling APIs 21

CCSID conversion status indicator for data. The following values may be returned:

 0 No conversion was needed because the CCSID of the data matched the CCSID you wanted the

data converted to.

1 No conversion occurred because either the data was 65535 or the CCSID you wanted the data

converted to was 65535.

2 No conversion occurred because you did not ask for any message data to be returned or the data

did not contain any *CCHAR type data.

3 The data was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The text was not converted.

CCSID conversion status indicator for text. The following values may be returned:

 0 No conversion was needed because the CCSID of the text matched the CCSID you wanted the text

converted to.

1 No conversion occurred because either the text was 65535 or the CCSID you wanted the text

converted to was 65535.

2 No conversion occurred because you did not ask for any text to be returned.

3 The text was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The data was not converted.

Coded character set identifier (CCSID) for data. The coded character set identifier that the replacement

data is returned in. This only applies to the part of the replacement data that corresponds to a convertible

character data type (*CCHAR). All other replacement data will not be converted before it is returned and

can be considered to have a CCSID of 65535. If a conversion error occurs or if the CCSID you requested

the data to be converted to is 65535, the CCSID of the data is returned. If there is no *CCHAR

replacement data, 65535 is returned. Otherwise the CCSID you wanted the data converted to is returned.

For more information about message handler and its use of CCSIDs, see CCSIDs: Message Support in the

Globalization topic. For more information about the *CCHAR field type, see the Add Message

Description (ADDMSGD) command.

Coded character set identifier (CCSID) for text. The coded character set identifier that the message text

is returned in. If a conversion error occurs or if the CCSID you requested the message text to be

converted to is 65535, the CCSID that the message text is stored in is returned. Otherwise the CCSID you

wanted your message text converted to is returned. If you do not want the text converted before it is

returned to you but you do want to know the CCSID that the message text is stored in, specify 65535 on

the coded character set identifier to return text and data in parameter. The CCSID that the message text is

stored in is returned in the coded character set identifier for text output field.

This applies to the following fields only:

v Message

v Message with replacement data

v Message help

v Message help with replacement data

v Message help with replacement data and formatting characters

v Message help with formatting characters

Note: This CCSID value does not apply to the replacement data that has been substituted into the text.

See the coded character set identifier for data for this information.

22 iSeries: Message Handling APIs

Coded character set identifier to return text and data in. The CCSID that the text and data are converted

to before they are returned. The following values are allowed:

 0 The text and data are converted to the CCSID of the job before being returned. This is the default

value used when the JSLT0100 format is specified.

 If the job is 65535 and the text or data is something other than EBCDIC single byte or EBCDIC

mixed, the text and data are converted to the default job CCSID.

65535 The text and data are not converted before being returned.

CCSID Specify a valid CCSID you want your text and data converted to before being returned. The

CCSID must be between 1 and 65535. The CCSID is validated by this API. Only CCSIDs that a job

can be changed to are accepted.

For a list of valid CCSIDs, see CCSIDs: Message Support.

Coded character set identifier specified. The CCSID that was specified that the text and data are

converted to before they are returned.

Coded character set identifier used. The CCSID that was used that the text and data are converted to

before they are returned.

Data. The data returned for the specified identifier field.

Date sent. The date on which the message was sent, in CYYMMDD (century, year, month, and day)

format.

Default reply. The text of the default reply when a stored message is being listed and a default reply

exists. If this is not an inquiry message, or no default reply exists, this field is not used and the length of

data field is 0.

Ending message key. The message key of the last message actually listed by the API. If no message is

listed, the value returned is the same as the value specified in the starting message key specified field.

Format of message selection information specified. The format name of the message selection

information parameter as specified on the call to the API.

Format name specified. The format name as specified on the call to the API.

Identifier field. The field ID actually returned in the LJOB0100 format. See “Valid Field Identifiers” on

page 20 for the list of valid field identifiers.

Identifiers of fields to return. The list of the field identifiers returned in the LJOB0100 format. For a list

of the valid field identifiers, see “Valid Field Identifiers” on page 20.

Identifiers of fields to return specified. The list of identifiers of fields to return as specified on the call to

the API.

Internal job identifier. The internal name for the job. The List Job (QUSLJOB) API creates this identifier.

If you do not specify *INT for the qualified job name parameter, this parameter must contain blanks. If

your application already has this information available from QUSLJOB, the QMHLJOBL API can locate

the job more quickly with this information than with a job name. However, calling QUSLJOB solely to

obtain this parameter for use by QMHLJOBL would result in poorer performance than using a job name

in calling QMHLJOBL.

Internal job identifier specified. The internal job identifier as specified on the call to the API.

Job name specified. The job name of the job that lists the messages as specified on the call to the API.

Message Handling APIs 23

Job name used. The actual job name of the job that was used to list the messages.

Job number specified. The job number of the job that lists the messages as specified on the call to the

API.

Job number used. The actual job number of the job that was used to list the messages.

Length of data. The length of the data returned for the data field, in bytes.

Length of field information returned. The total length of information returned for this field, in bytes.

Length of call message queue name. The length of the call message queue name field, in bytes. The

maximum length that can be specified is 256. The minimum length is 1.

Length of call message queue specified. The length of the call message queue specified field, in bytes.

List direction. The direction to list messages. You must use one of these directions:

 *NEXT Returns messages that are newer than the message specified by the starting message key field.

*PRV Returns messages that are older than the messages specified by the starting message key field.

When a batch job is being listed, request messages that have not yet been processed or received are

considered to have a sending date and time later than all other messages on the job log. This is also true

for any diagnostic messages associated with those request messages.

List direction specified. The direction to list messages as specified on the call to the API.

Maximum message help length. The maximum number of characters of text that this API returns for

field identifiers 0401, 0402, 0403, and 0404. (See “Valid Field Identifiers” on page 20.)

Specify a value to limit the number of characters returned for field identifiers 0401, 0402, 0403, and 0404.

This value can be no smaller than 4. The maximum allowed value is 32765. To specify that the maximum

length be used, use the special value of -1. This value is not checked if field identifiers 0401, 0402, 0403 or

0404 are not specified.

Maximum message help length specified. The maximum number of characters to return for field

identifiers 0401, 0402, 0403 and 0404 as specified on the call to the API.

Maximum message length. The maximum number of characters of text that this API returns for field

identifiers 0301 and 0302.

Specify a value to limit the number of characters returned for field identifiers 0301 and 0302. (See “Valid

Field Identifiers” on page 20.) This value can be no smaller than 4. The maximum allowed value is 32765.

To specify that the maximum length be used, use the special value -1. This value is not checked if field

identifiers 0301 or 0302 are not specified.

Maximum message length specified. The maximum number of characters to return for field identifiers

0301 and 0302 as specified on the call to the API.

Maximum messages requested. The maximum number of messages to be returned.

If fewer messages than the number requested exist on the job message queue, only the number of

messages that exist are returned. No error is signaled, and the information status field in the generic

header would be marked as C for complete and accurate.

24 iSeries: Message Handling APIs

To list all messages in the job log in the specified list direction from the starting message key, use the

special value of -1.

Maximum messages requested specified. The number of messages requested to be listed as specified on

the call to the API.

Message. The text of a predefined message without replacement data substitution. If an impromptu

message is listed, this field contains the impromptu message text.

Message file library specified at send time. The name of the library containing the message file as

specified when the message was sent. If *CURLIB or *LIBL were specified for the library when the

message was sent, that value is returned as the library here. For the actual library used when the

message is sent, see the message file library used field.

Message file library used. The actual name of the library that contains the message file used to retrieve

the message information. If an immediate message is listed, this field is set to blanks.

Message file name. The name of the message file containing the message listed.

Message help. The message help for the message listed without formatting characters and without

replacement of data. If an impromptu message is listed, this field contains the impromptu message text.

Message help with formatting characters. The message help for the message listed, including formatting

characters.

Three format control characters can be returned within the message. In the Add Message Description

(ADDMSGD) command, they are defined to have these meanings:

 &N Forces the text to a new line (column 2). If the text is longer than one line, the next lines are

indented to column 4 until the end of text or another format control character is found.

&P Forces the text to a new line indented to column 6. If the text is longer than one line, the next

lines start in column 4 until the end of text or another format control character is found.

&B Forces the text to a new line, starting in column 4. If the text is longer than one line, the next lines

are indented to column 6 until the end of text or another format control character is found.

If an impromptu message is listed, this field contains the immediate message text.

Message help with replacement data. The message help for the message listed, including the

replacement data. If an impromptu message is listed, this field contains the impromptu message text.

Message help with replacement data and formatting characters. The message help for the message

listed, including the replacement data and the formatting characters. See the description of the message

help with formatting characters field for an explanation of formatting characters. If an impromptu

message is listed, this field contains the impromptu message text.

Message identifier. The identifying code of the message listed. If an impromptu message is listed, this

field is set to blanks.

Message key. The message reference key of the message listed.

Message severity. The severity of the message listed. Possible values are 0 through 99.

Message type. The type of message listed. The possible values and their meanings follow:

 Value Message Type

01 Completion

Message Handling APIs 25

Value Message Type

02 Diagnostic

04 Informational

05 Inquiry

06 Sender’s copy

08 Request

10 Request with prompting

14 Notify, exception already handled when API is called

15 Escape, exception already handled when API is called

16 Notify, exception not handled when API is called

17 Escape, exception not handled when API is called

21 Reply, not checked for validity

22 Reply, checked for validity

23 Reply, message default used

24 Reply, system default used

25 Reply, from system reply list

26 Reply, from exit program

Message with replacement data. The text of a predefined message with the replacement data included. If

an impromptu message is listed, this field contains the impromptu message text.

Microseconds. The microseconds part of the time sent.

Number of fields returned. The number of identifier fields returned to the application.

Number of fields to return. The number of fields to return in the LJOB0100 format (the number of

entries in the identifiers of fields to return array).

Number of fields to return specified. The number of identifier fields to return as specified on the call to

the API.

Number of receiving statement numbers or instruction numbers available followed by an array of the

receiving statement numbers. The number of statement numbers or instruction numbers available for the

receiving program or procedure.

For OPM programs and nonoptimized procedures, this count is 1.

For optimized procedures, this count can be greater than 1. In this case, each statement number

represents a potential point at which the message could have been received. If the mapping table

information has been removed from the program, this field returns a count of 0 and no statement

numbers are available. The array of receiving statement numbers or instruction numbers immediately

follows this field in the returned data.

Number of sending statement numbers or instruction numbers available followed by an array of the

sending statement numbers or instruction numbers. The number of statement numbers or instruction

numbers available for the sending program or procedure.

For OPM programs and nonoptimized procedures, this count is 1.

For optimized procedures, this count can be greater than 1. In this case, each statement number

represents a potential point at which the message could have been sent. If the mapping table information

has been removed from the program, this field returns a count of 0, and no statement numbers are

available. The array of sending statement numbers or instruction numbers immediately follows this field

in the returned data.

26 iSeries: Message Handling APIs

Offset of fields to return specified. The offset, in bytes, from the beginning of the user space to the

beginning of the identifiers of fields to return specified field.

Offset to call message queue name. The offset, in bytes, from the beginning of the message selection

information parameter to the beginning of the call message queue name field.

Offset to call message queue specified. The offset, in bytes, from the beginning of the user space to the

beginning of the call message queue specified field.

Offset to fields returned. The offset, in bytes, from the beginning of the user space to the beginning of

the first repeating identified field of the LJOB0100 format.

Offset to identifiers of fields to return. The offset, in bytes, from the beginning of the message selection

information parameter to the beginning of the identifiers of fields to return array.

Offset to the next entry. The offset, in bytes, from the beginning of the user space to the beginning of the

next message entry.

Offset, in bytes, to the next field information returned. The offset from the beginning of the user space

to the beginning of the next repeating identified field of the LJOB0100 format.

Problem identification. This field can be specified for the QMHLJOBL API, but it never returns any data

and the length of data field is 0.

Qualified job name. The specific job name of the job whose messages are to be listed, or one of the

following special values:

 * The job that this program is running in. If this special value is used, the Qualified User Name and

Qualified Job Number parameters must be blank.

*INT The internal job identifier locates the job. If this special value is used, the Qualified User Name

and Qualified Job Number parameters must be blank.

Qualified user name. A specific user profile name of the job whose messages are to be listed, or blanks

when the Qualified Job Name parameter is the special value of * or *INT.

Qualified job number. A specific job number of the job whose messages are to be listed, or blanks when

the Qualified Job Name parameter is the special value of * or *INT.

Qualified sender job name. This field can be specified for the QMHLJOBL API, but it never returns any

data and the length of data field is 0.

Receiving module name. The name of the module that contains the procedure where the message was

sent. If the message was not sent to a procedure within a ILE program, this field is not set and the length

of data field is 0.

Receiving procedure name. The name of the procedure receiving the message. If the message was not

sent to a procedure within an ILE program, this field is not set and the length of data field is 0. A nested

procedure name has each procedure name separated by a colon. The outermost procedure name is

identified first followed by the procedures it contains. The innermost procedure is identified last in the

string.

Receiving program name. The program name, or the ILE program name that contains the procedure that

the message was sent to.

Receiving type. The type of the receiver (whether it is a program or a procedure). Possible values and

their meanings follow:

Message Handling APIs 27

0 Receiver is an original program model (OPM) program.

1 Receiver is a procedure within an ILE program, and the procedure name is up to and including

256 characters in length.

2 Receiver is a procedure within an ILE program, and the procedure name is 257 or more characters

in length.

Replacement data or impromptu message text. The values for replacement variables in a predefined

message, or the text of an impromptu message. If the message identifier field is not blank, this field

contains message data. If the message identifier field is blank, this field contains impromptu message

text.

Any pointer data in this field is marked as not valid if both:

v The API is called by a call stack entry not running in system state.

v The system security level is 50 or above.

Reply status. The reply status of the message (whether it accepts a reply, and if so, whether a reply has

been sent). Possible values and their meanings follow:

 A Message accepts a reply, and a reply has been sent.

W Message accepts a reply, and a reply has not been sent. (The message is waiting for a reply.)

N Message does not accept a reply.

Request level. The level of the request-processing program that received the request message. If the

message being listed is not a request, this field is set to 0.

Request status. Information regarding the processing status of the request message. Possible values and

their meanings follow:

 O This request message has been received and processed.

C This request message is currently being processed.

N This request message has not yet been processed.

If the message being listed is not a request, this field is set to a blank character.

Reserved. An ignored field.

Sender type. The type of the sender (whether it is a program or procedure). Possible values and their

meanings follow:

 0 Sender is an OPM or a System Licensed Internal Code (SLIC) program with a name that is 12

characters or less.

1 Sender is a procedure within an ILE program, and the procedure name is up to and including 256

characters in length.

2 Sender is a procedure within an ILE program, and the procedure name is from 257 characters up

to and including 4096 characters in length.

3 Sender is a SLIC program with a name that is from 13 characters up to and including 256

characters in length.

Sending module name. The name of the module that contains the procedure sending the message. If the

message was not sent by a procedure within an ILE program, this field is not set and the length of data

field is 0.

28 iSeries: Message Handling APIs

Sending procedure name. The name of the procedure sending the message. If the message was not sent

by a procedure within an ILE program, this field is not set and the length of data field is 0. A nested

procedure name has each procedure name separated by a colon. The outermost procedure name is

identified first followed by the procedures it contains. The innermost procedure is identified last in the

string.

Sending program name. The sending program name or ILE program name that contains the procedure

sending the message.

Sending user profile. The name of the user profile that the thread was running under when the

message was sent.

Size of message selection information specified. The size of the message selection information field, in

bytes, as specified in the call to the API.

Starting message key. The message key to begin searching for messages to list from the job. You can use

these special values for the message key:

 ’00000000’X The first message to be returned is the oldest message in the queue.

’FFFFFFFF’X The first message to be returned is the newest message in the queue.

When the list direction field is *NEXT, the first message listed is the first message with a message key

equal to or greater than the key specified. If no message is found in this manner, an error is returned.

When the list direction field is *PRV, the first message listed is the first message with a message key

equal or less than the key specified. If no message is found in this manner, an error is returned.

If a key of a reply message is specified, the message search begins with the inquiry, sender’s copy, or

notify message with which the reply is associated. It does not begin with the reply message itself.

Note: When a batch job is being listed, request messages that have not yet been processed or received are

considered to have a sending date and time later than all other messages on the job log. This is also true

for any diagnostic messages associated with those request messages. If the starting message key provided

is to one of these messages, and the list direction is *NEXT, only additional request messages and

associated diagnostic messages that remain to be processed are listed. If the list direction is *PRV, any

earlier request messages or associated diagnostic messages are listed. These are followed by messages on

the job log associated with request messages that have been or are being processed.

Starting message key specified. The starting message key as specified on the call to the API.

Starting message key used. The message keys of the first message actually listed by the API. If no

message is listed, the value returned is the same as the value specified in the starting message key

specified field.

Status of data. The status of the data listed for this message. Possible values and their meanings follow:

 blank The data returned is complete.

A The caller of the API was not authorized to view the data. This occurs when the caller of the API

is not authorized to the message file or the message file library containing a stored message being

listed.

D The data was damaged. This occurs when the message file or library specified at send time for a

stored message is damaged when the API is called.

U The data was unavailable. This occurs when the message file or library specified at send time for a

stored message is exclusively used by another process when the API is called.

N The data was not found. This occurs when the message file or library specified at send time for a

stored message cannot be found or resolved when the API is called.

Message Handling APIs 29

This field is applicable to the field identifiers that are retrieved from the message file for a stored

message. A description of the action that occurs for specific field identifiers when the status of data field

is not blank follows:

 0101 When the status of data field is not blank, the alert option field identifier contains blanks.

0301, 0302 When the status of data field is not blank, these message field identifiers contain message text

regarding the problem encountered while attempting to access the message file. Both fields have

the replacement data substituted.

0401, 0402, 0403,

0404

When the status of data field is not blank, these message help field identifiers contain message

text regarding the problem encountered while attempting to access the message file. All fields

have the replacement data substituted. The message help with formatting characters and message

help with replacement data and formatting characters field identifiers also have the message

formatting characters included.

0501 When the status of data field is not blank, the default reply field identifier contains the system

default reply.

0801 When the status of data field is not blank, the message file library used field identifier contains

blanks.

This field is also applicable to the various sending and receiving information fields when a problem is

encountered while attempting to retrieve this information. This includes field identifiers 0602, 0603, 0604,

0605, 0606, 0702, 0703, 0704, 0705, and 0706. When one of these fields cannot be retrieved from the

message, the status of data field is set to U and the field is set to blanks.

The status of data field is always blank for the other field identifiers.

Time sent. The time at which the message being listed was sent, in HHMMSS (hour, minute, and second)

format.

Type of data. The type of data returned.

 C The data is returned in character format.

B The data is returned in binary format.

M The data is returned in a mixed format. This value is returned for the field IDs 0606 and 0706,

which contain a binary(4) value followed by an array of 10-character elements.

User profile specified. The user profile of the job from which to list messages as specified on the call to

the API.

User profile used. The actual user profile of the job used from which to list messages.

User space library specified. The name of the user space library as specified on the call to the API.

User space library used. The actual name of the library where the user space was found.

User space name specified. The name of the user space as specified on the call to the API.

User space name used. The actual name of the user space used to store the data listed.

Error Messages

 Message ID Error Message Text

CPF1866 E Value &1 for number of fields to return not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B7 E Value &1 for call stack entry name length not valid.

CPF240D E Message search direction specified is not valid.

30 iSeries: Message Handling APIs

Message ID Error Message Text

CPF240E E Format name of message selection information is not valid.

CPF240F E Field identifier is not valid or is a duplicate of another field identifier specified.

CPF241E E Call stack entry name is not valid.

CPF241F E Length &1 specified for maximum message length is not valid.

CPF2410 E Message key not found in message queue &1.

CPF2441 E Not authorized to display job log.

CPF2443 E Job log not displayed or listed because job has ended.

CPF247D E Size of message selection information, &1, is not valid.

CPF247E E CCSID &1 is not valid.

CPF2476 E The maximum number of messages to list, &1, is not valid.

CPF252F E Length &1 specified for maximum message help length is not valid.

CPF2532 E Job message queue is damaged. Job log ended.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9821 E Not authorized to program &1 in library &2.

CPF9822 E Not authorized to file &1 in library &2.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9831 E Cannot assign device &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 31

#TOP_OF_PAGE
aplist.htm

List Nonprogram Messages (QMHLSTM) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 Message selection information

Input Char(*)

4 Size of message selection information

Input Binary(4)

5 Format of message selection information

Input Char(8)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The List Nonprogram Messages (QMHLSTM) API lists messages from one or two nonprogram message

queues. This API obtains the requested message information and returns it in a user space through the

format specified in the parameter list.

If multiple message queues are specified, the messages are sorted by their sending dates and times.

However, messages listed as a reply message to an inquiry or a sender’s copy message are sorted

differently. When a reply message exists for one of these types, it is listed immediately following the

inquiry or sender’s copy message with which it is associated.

If messages in multiple queues have identical sending dates and times, the message from the first queue

in the qualified message queue names array is listed first.

If the last message listed is an inquiry or sender’s copy message, the user must call the API again using

parameters that would include listing the next later message after the inquiry or sender’s copy message

in order to determine and obtain an available reply message.

The QMHLSTM API lists messages from nonprogram message queues only. The QMHLSTM API cannot

be used to list messages sent to a job log (including the external message (*EXT) queue of a job). See “List

Job Log Messages (QMHLJOBL) API” on page 14 (QMHLJOBL) API for information on listing messages

sent to a job log. QMHLSTM cannot be used to list messages sent to the history log (QHST).

The generated list replaces any existing information in the user space.

If the user space is not large enough to contain the amount of data that is to be returned, the user space

is increased up to the maximum user space size allowed (16MB) or to the maximum amount of storage

allowed to the user of the API. If this is not large enough to contain the data to be returned, only the

number of complete messages that fit in the user space are returned. The information status field in the

generic header is set to P (partial but accurate). The user can then resubmit the request from the last

32 iSeries: Message Handling APIs

message returned to obtain the additional messages. The key of the last message listed for each message

queue is provided in the ending message key field in the header portion of the user space.

An alternative to making multiple calls to QMHLSTM to list all of the messages is to change to use

the Open List of Messages (QGYOLMSG) API. QGYOLMSG can create a list that contains up to 2GB of

data. Instead of acessing a user space to get the message entries, the Get List Entry (QGYGTLE) API is

used to get the the message entries from the list created by QGYOLMSG.

New messages are prevented from being added to or removed from the message queues being listed

during the use of this API. The maximum messages requested field and the number of fields to return

field for each listed message increases the time that the queues are unavailable. Users of this API should

use caution when listing many messages or many fields. Try to avoid causing lock-out situations on

highly used message queues.

Authorities and Locks

Message queue

*USE

Message queue library

*EXECUTE

User space

*CHANGE

User space library

*EXECUTE

User space lock

*EXCLRD

Required Parameter Group

Qualified user space name

INPUT;CHAR(20)

 The user space that receives the generated list, and the library in which it is located. The first 10

characters contain the user space name, and the second 10 characters contain the user space

library. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format name

INPUT; CHAR(8)

 The format of the returned message information. You must use this format:

 LSTM0100 Basic message information with identified return fields. This format is described in “LSTM0100

Format” on page 35.

Message selection information

INPUT; CHAR(*)

 The information that determines the message queues and messages to be listed. The format of

this information is described in “MSLT0100 Format” on page 36 and in “MSLT0200 Format” on

page 37.

Size of message selection information

INPUT; BINARY(4)

Message Handling APIs 33

The size, in bytes, of the message selection information parameter.

Format of message selection information

INPUT; CHAR(8)

 The format of the message selection information parameter. You must use one of these formats:

 MSLT0100 The specific information identifying the messages to be listed. This format is described in

“MSLT0100 Format” on page 36. Message text and data are returned in the CCSID of your job.

MSLT0200 The specific information identifying the messages to be listed. This format is described in

“MSLT0200 Format” on page 37. This is the same as format MSLT0100 with the exception of the

following:

v You are able to specify the CCSID in which you wish your message text and data returned.

v You may optionally specify a date and time with which to begin the list, relative to the

beginning message key.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Generated Lists

The user space created consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v LSTM0100 format

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections. For descriptions of each field in the list returned, see

“Field Descriptions” on page 38.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library specified

20 14 CHAR(8) Format name specified

28 1C CHAR(8) Format of message selection information specified

36 24 BINARY(4) Size of message selection information specified

40 28 BINARY(4) Maximum messages requested specified

44 2C CHAR(10) List direction specified

54 36 CHAR(10) Selection criteria specified

64 40 BINARY(4) Severity criteria specified

68 44 BINARY(4) Maximum message length specified

72 48 BINARY(4) Maximum message help length specified

76 4C BINARY(4) Offset to message queue names specified

34 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
usf.htm

Offset

Type Field Dec Hex

80 50 BINARY(4) Offset to starting message keys specified

84 54 BINARY(4) Number of message queues specified

88 58 BINARY(4) Offset to identifiers of fields to return specified

92 5C BINARY(4) Number of fields to return specified

96 60 BINARY(4) Coded character set identifier (CCSID) specified

100 64 CHAR(13) Date and time criteria specified

113 71 CHAR(*) Reserved

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) of

CHAR(20)

Message queue names specified

ARRAY(*) of

CHAR(4)

Starting message key specified

ARRAY(*) of

BINARY(4)

Identifiers of fields to return specified

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name used

10 A CHAR(10) User space library used

20 14 BINARY(4) Offset to message queue names used

24 18 BINARY(4) Offset to starting message keys used

28 1C BINARY(4) Offset to ending message keys

32 20 BINARY(4) Number of message queues used

36 24 BINARY(4) Coded character set identifier (CCSID) used

40 28 CHAR(13) Date and time of first message listed

53 35 CHAR(13) Date and time of last message listed

66 42 CHAR(*) Reserved

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) of

CHAR(20)

Message queue names used

ARRAY(*) of

CHAR(4)

Starting message key used

ARRAY(*) of

CHAR(4)

Ending message key used

LSTM0100 Format

The following table shows the information returned in the list data section of the user space for the

LSTM0100 format. The offsets listed are from the beginning of the user space. For a detailed description

of each field, see “Field Descriptions” on page 38.

The structure defined by this format is repeated for each message entry returned.

Message Handling APIs 35

Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to the next entry

4 4 BINARY(4) Offset to fields returned

8 8 BINARY(4) Number of fields returned

12 C BINARY(4) Message severity

16 10 CHAR(7) Message identifier

23 17 CHAR(2) Message type

25 19 CHAR(4) Message key

29 1D CHAR(10) Message file name

39 27 CHAR(10) Message file library specified at send time

49 31 CHAR(10) Message queue

59 3B CHAR(10) Message queue library used

69 45 CHAR(7) Date sent

76 4C CHAR(6) Time sent

82 52 CHAR(6) Microseconds

88 58 CHAR(*) Reserved

These fields repeat for

each identifier field

specified.

BINARY(4) Offset to the next field information returned

BINARY(4) Length of field information returned

BINARY(4) Identifier field

CHAR(1) Type of data

CHAR(1) Status of data

CHAR(14) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

MSLT0100 Format

The organization of the MSLT0100 format of the message selection information parameter follows. For a

detailed description of each field, see “Field Descriptions” on page 38.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Maximum messages requested

4 4 CHAR(10) List direction

14 E CHAR(10) Selection criteria

24 18 BINARY(4) Severity criteria

28 1C BINARY(4) Maximum message length

32 20 BINARY(4) Maximum message help length

36 24 BINARY(4) Offset to qualified message queue names

40 28 BINARY(4) Offset to starting message keys

44 2C BINARY(4) Number of message queues

36 iSeries: Message Handling APIs

Offset

Type Field Dec Hex

48 30 BINARY(4) Offset to identifiers of fields to return

52 34 BINARY(4) Number of fields to return

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) of

CHAR(20)

Qualified message queue names

ARRAY(*) of

CHAR(4)

Starting message key

ARRAY(*) of

BINARY(4)

Identifiers of fields to return

MSLT0200 Format

The organization of the MSLT0200 format of the message selection information parameter follows. For a

detailed description of each field, see “Field Descriptions” on page 38.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Maximum messages requested

4 4 CHAR(10) List direction

14 E CHAR(10) Selection criteria

24 18 BINARY(4) Severity criteria

28 1C BINARY(4) Maximum message length

32 20 BINARY(4) Maximum message help length

36 24 BINARY(4) Offset to qualified message queue names

40 28 BINARY(4) Offset to starting message keys

44 2C BINARY(4) Number of message queues

48 30 BINARY(4) Offset to identifiers of fields to return

52 34 BINARY(4) Number of fields to return

56 38 BINARY(4) Coded character set identifier (CCSID) to return text and data in

60 3C CHAR(13) Date and time criteria

73 49 CHAR(3) Reserved (Must be blanks)

76 4C BINARY(4) Reserved (Must be 0)

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) of

CHAR(20)

Qualified message queue names

ARRAY(*) of

CHAR(4)

Starting message key

ARRAY(*) of

BINARY(4)

Identifiers of fields to return

Valid Field Identifiers

The following table contains a list of the valid identifiers for the MSLT0100 and the MSLT0200 format.

Message Handling APIs 37

Identifier Type Description

0101 CHAR(9) Alert option

0201 CHAR(*) Replacement data or impromptu message text

0301 CHAR(*) Message

0302 CHAR(*) Message with replacement data

0401 CHAR(*) Message help

0402 CHAR(*) Message help with replacement data

0403 CHAR(*) Message help with formatting characters

0404 CHAR(*) Message help with replacement data and formatting characters

0501 CHAR(*) Default reply

0601 CHAR(26) Qualified sender job name

0602 CHAR(1) Sender type

0603 CHAR(12) Sending program name

0604 CHAR(10) Sending module name

0605 CHAR(256) Sending procedure name

0606 BINARY(4) followed

by ARRAY(*) of

CHAR(10)

Number of sending statement numbers or instruction numbers available

followed by an array of the sending statement numbers or instruction

numbers

0607 CHAR(10) Sending user profile

0702 CHAR(1) Receiving type

0703 CHAR(10) Receiving program name

0704 CHAR(10) Receiving module name

0705 CHAR(256) Receiving procedure name

0706 BINARY(4) followed

by ARRAY(*) of

CHAR(10)

Number of receiving statement numbers or instruction numbers available

followed by an array of the receiving statement numbers or instruction

numbers

0801 CHAR(10) Message file library used

0901 CHAR(30) Problem identification

1001 CHAR(1) Reply status

1002 CHAR(1) Critical break message status

1101 CHAR(1) Request status

1201 BINARY(4) Request level

1301 BINARY(4) Coded character set identifier (CCSID) for text

1302 BINARY(4) Coded character set identifier (CCSID) conversion status indicator for text

1303 BINARY(4) Coded character set identifier (CCSID) for data

1304 BINARY(4) Coded character set identifier (CCSID) conversion status indicator for

data

Field Descriptions

Alert option. Whether and when an SNA alert is created and sent for the message. If a message is listed,

the value is one of the following:

 *DEFER An alert is sent after local problem analysis.

38 iSeries: Message Handling APIs

*IMMED An alert is sent immediately when the message is sent to a message queue that has the allow

alerts attribute set to *YES.

*NO No alert is sent.

*UNATTEND An alert is sent immediately when the system is running in unattended mode (when the value of

the alert status network attribute, ALRSTS, is *UNATTEND).

For more information on alerts, see the Alerts Support

book.

This field is set to blanks if no alert option was specified when the message was sent.

CCSID conversion status indicator for data. The following values may be returned:

 0 No conversion was needed because the CCSID of the data matched the CCSID you wanted the

data converted to.

1 No conversion occurred because either the data was 65535 or the CCSID you wanted the data

converted to was 65535.

2 No conversion occurred because you did ask for any data to be returned, or there was no

*CCHAR type data.

3 The data was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The data was not converted.

CCSID conversion status indicator for text. The following values may be returned:

 0 No conversion was needed because the CCSID of the text matched the CCSID you wanted the text

converted to.

1 No conversion occurred because either the text was 65535 or the CCSID you wanted the text

converted to was 65535.

2 No conversion occurred because you did not ask for any text to be returned.

3 The text was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The data was not converted.

Coded character set identifier (CCSID) for data. The coded character set identifier that the data is

returned in. If a conversion error occurs or if the CCSID you requested the data to be converted to is

65535, the CCSID of the data is returned. If there is no *CCHAR replacement data, 65535 is returned.

Otherwise the CCSID you wanted the data converted to is returned.

This only applies to the part of the replacement data that corresponds to a convertible character data type

(*CCHAR).

For more information about message handler and its use of CCSIDs, see CCSIDs: Message Support in the

Globalization topic.

Coded character set identifier (CCSID) for text. The coded character set identifier that the message text

is returned in. If a conversion error occurs or if the CCSID you requested the message text to be

converted to is 65535, the CCSID that the message text is stored in is returned. Otherwise the CCSID you

wanted your message text converted to is returned. If you do not want the message text converted before

it is returned to you but you do want to know the CCSID that the message text is stored in, specify 65535

on the Coded character set identifier to return text and data in parameter. The CCSID that the message

text is stored in is returned in the Coded character set identifier for text output field.

Message Handling APIs 39

This applies to the following fields only:

v Message

v Message with replacement data

v Message help

v Message help with replacement data

v Message help with replacement data and formatting characters

v Message help with formatting characters

Note: This CCSID value does not apply to the replacement data that has been substituted into the text.

See the Coded character set identifier for data for this information.

Coded character set identifier (CCSID) to return text and data in. The CCSID that the text and data are

converted to before they are returned. The following values are allowed:

 0 The text and data are converted to the CCSID of the job before being returned. This is the default

value used when the MSLT0100 format is specified.

If the job is 65535 and the text or data is something other than EBCDIC single byte or EBCDIC

mixed, the text and data are converted to the default job CCSID.

65535 The text and data are not converted before being returned.

CCSID Specify a valid CCSID you want your text and data converted to before being returned. The

CCSID must be between 1 and 65535. Only CCSIDs that a job can be changed to are accepted. The

CCSID is validated by this API. For a list of valid CCSIDs, see CCSIDs: Message Support.

Coded character set identifier (CCSID) specified. The CCSID that was specified that the text and data

are converted to before they are returned.

Coded character set identifier (CCSID) used. The CCSID that was used that the text and data are

converted to before they are returned.

Critical break message status. Whether the message was sent by the operating system as a critical break

message. The following values are returned:

 1 The message was sent as a critical break message.

0 The message was not sent as a critical break message.

Data. The data returned for the specified identifier field.

Date sent. The date on which the message was sent, in CYYMMDD (century, year, month, and day)

format.

Date and time criteria. The date and time starting point for messages to be listed. This is optional and

must be blanks if not specified. The search for messages to list begins from the message that is specified

by the starting message key. If the date and time criteria is specified in the call to the API and the list

direction is *PRV, then only messages whose time of arrival on the queue is equal to or less than the date

and time criteria that is specified are listed. Similarly, if the direction is *NEXT and the date and time

criteria is specified on the call to the API, then only those messages whose time of arrival on the queue is

equal to or greater than that specified are listed. The format of this field is in the CYYMMDDHHMMSS

as follows:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

40 iSeries: Message Handling APIs

HH Hour

MM Minute

SS Second

Date and time criteria specified. The date and time criteria as specified on the call to the API.

Date and time of first message listed. The date and time of the first message that is actually listed by the

API. If no message is actually listed by the API, this field is blank.

Date and time of last message listed. The date and time of the last message that is actually listed by the

API. If no message is actually listed by the API, this field is blank.

Default reply. The text of the default reply. When a stored message is being listed and a default reply

exists. If this is not an inquiry message or no default reply exists, this field is not used and the length of

data field is 0.

Ending message key used. The message keys of the last message actually listed by the API. If no

message is listed from a particular queue, the value returned for that queue is the same as that in the

starting message key specified field.

Format of message selection information specified. The format name of the message selection

information parameter as specified on the call to the API.

Format name specified. The format name as specified on the call to the API.

Identifier field. The field returned. See “Valid Field Identifiers” on page 37 for the list of valid field

identifiers.

Identifiers of fields to return. The list of the field identifiers to be returned in the LSTM0100 format. For

a list of the valid field identifiers, see “Valid Field Identifiers” on page 37. An error is returned if the

identifier matches one specified earlier in the array, or if the identifier is not valid.

Identifiers of fields to return specified. The list of field identifiers to return as specified on the call to

the API.

Length of data. The length of the data returned for the data field, in bytes.

Length of field information returned. The total length of information returned for this field, in bytes.

List direction. The direction to list messages. You must use one of these directions:

 *NEXT Returns messages that are newer than the messages specified by the starting message key field.

*PRV Returns messages that are older than the message specified by the starting message key field.

If multiple message queues are to be listed, messages are intermixed and sorted by date and time in the

specified manner.

List direction specified. The direction to list messages as specified on the call to the API.

Maximum message help length. The maximum number of characters of text that this API returns for

field identifiers 0401, 0402, 0403, and 0404. (See “Valid Field Identifiers” on page 37.)

Message Handling APIs 41

Specify a value to limit the number of characters returned for field identifiers 0401, 0402, 0403, and 0404.

This value can be no smaller than 4. The maximum allowed value is 32765. To specify that the maximum

length be used, use the special value of -1. This value is not checked if field identifiers 0401, 0402, 0403,

or 0404 are not specified.

Maximum message help length specified. The maximum number of characters to return for field

identifiers 0401, 0402, 0403, and 0404 as specified on the call to the API.

Maximum message length. The maximum number of characters of text that this API returns for field

identifiers 0301 and 0302. (See “Valid Field Identifiers” on page 37.)

Specify a value to limit the number of characters returned for field identifiers 0301 and 0302. This value

can be no smaller than 4. The maximum allowed value is 32765. To specify that the maximum length be

used, use the special value of -1. This value is not checked if field identifiers 0301 or 0302 are not

specified.

Maximum message length specified. The maximum number of characters to return for field identifiers

0301 and 0302 as specified on the call to the API.

Maximum messages requested. The maximum number of messages to be returned.

If fewer messages than the number requested exist on the queues, only the number of messages that exist

are returned. No error is signaled, and the information status field in the generic header would be

marked as C for complete and accurate.

Use the special value of -1 to list all messages on the queues in the specified list direction. The list runs

from the starting message keys that meet the selection and severity criteria.

Maximum messages requested specified. The number of messages requested to be listed as specified on

the call to the API.

Message. The text of a predefined message without replacement data substitution. If an impromptu

message is listed, this field contains the impromptu message text.

Message file library specified at send time. The name of the library containing the message file as

specified when the message was sent. If *CURLIB or *LIBL was specified for the library when the

message was sent, that value is returned as the library here. For the actual library used when the

message is sent, see the message file library used field.

Message file library used. The actual name of the library that contains the message file used to retrieve

the message information. If an immediate message is listed, this field is set to blanks.

Message file name. The name of the message file containing the message listed.

Message help. The message help for the message listed without formatting characters and without

replacement data. If an impromptu message is listed, this field contains the impromptu message text.

Message help with formatting characters. The message help for the message listed, including formatting

characters.

Three format control characters can be returned within the message. They are defined in the online help

for the Add Message Description (ADDMSGD) command to have these meanings:

 &N Forces the text to a new line (column 2). If the text is longer than one line, the next lines are

indented to column 4 until the end of text or another format control character is found.

42 iSeries: Message Handling APIs

&P Forces the text to a new line indented to column 6. If the text is longer than one line, the next

lines start in column 4 until the end of text or another format control character is found.

&B Forces the text to a new line, starting in column 4. If the text is longer than one line, the next lines

are indented to column 6 until the end of text or another format control character is found.

If an impromptu message is listed, this field contains the impromptu message text.

Message help with replacement data. The message help for the message listed, including the

replacement data. If an impromptu message is listed, this field contains the impromptu message text.

Message help with replacement data and formatting characters. The message help for the message

listed, including the replacement data and the formatting characters. See the message help with

formatting characters field for an explanation of formatting characters. If an impromptu message is listed,

this field contains the impromptu message text.

Message identifier. The identifying code of the message listed. If an impromptu message is listed, this

field is set to blanks.

Message key. The key of the message listed.

Message queue. The name of the message queue where the message was listed.

Message queue library used. The actual library that contains the message queue.

Message queue names specified. The qualified message queue names specified on the call to the API.

Message queue names used. The actual message queue names used to list messages. The first 10

characters are the message queue name, and the second 10 characters are the message queue library.

Message severity. The severity of the message listed. Possible values are 0 through 99.

Message type. The type of message listed. The possible values and their meanings follow:

 Value Message Type

01 Completion

02 Diagnostic

04 Informational

05 Inquiry

06 Sender’s copy

08 Request

10 Request with prompting

14 Notify, exception already handled when API is called

15 Escape, exception already handled when API is called

16 Notify, exception not handled when API is called

17 Escape, exception not handled when API is called

21 Reply, not checked for validity

22 Reply, checked for validity

23 Reply, message default used

24 Reply, system default used

25 Reply, from system reply list

26 Reply, from exit program

Message with replacement data. The text of a predefined message with the replacement data included. If

an impromptu message is listed, this field contains the impromptu message text.

Message Handling APIs 43

Microseconds. The microseconds part of the time sent.

Number of fields returned. The number of identifier fields returned to the application.

Number of fields to return. The number of fields to return in the LSTM0100 format (the number of

entries in the identifiers of fields to return array).

Number of fields to return specified. The number of identifier fields to return as specified on the call to

the API.

Number of message queues. The number of message queues to list. The valid values follow:

 1 One message queue listed. Both the qualified message queue names field and the starting message

key field contain one entry.

2 Two message queues listed. Both the qualified message queue names field and the starting

message key field contain two entries.

Number of message queues specified. The number of message queues to be listed as specified on the

call to the API. This is the size of the declared array of the message queue names specified and the

starting message key specified fields.

Number of message queues used. The number of message queues listed. This is the number of elements

in the message queue names used, starting message key used, and ending message key arrays.

Number of receiving statement numbers or instruction numbers available followed by an array of the

receiving statement numbers or instruction numbers. This field can be specified for the QMHLSTM API,

but it never returns any data and the length of data field is 0.

Number of sending statement numbers or instruction numbers available followed by an array of the

sending statement numbers or instruction numbers. This field can be specified for the QMHLSTM API,

but it never returns any data and the length of data field is 0.

Offset to ending message key. The offset, in bytes, from the beginning of the user space to the beginning

of the ending message key field.

Offset to fields returned. The offset, in bytes, from the beginning of the user space to the beginning of

the first repeating identified field of the LSTM0100 format.

Offset to identifiers of fields to return. The offset, in bytes, from the beginning of the message selection

information parameter to the beginning of the identifiers of fields to return field.

Offset to identifiers of fields to return specified. The offset, in bytes, from the beginning of the user

space to the beginning of the identifiers of fields to return specified field.

Offset to message queue names specified. The offset, in bytes, from the beginning of the user space to

the beginning of the message queue names specified field.

Offset to message queue names used. The offset, in bytes, from the beginning of the user space to the

beginning of the message queue names used field.

Offset to qualified message queue names. The offset, in bytes, from the beginning of the message

selection information parameter to the beginning of the qualified message queue names field.

Offset to starting message keys. The offset, in bytes, from the beginning of the message selection

information parameter to the beginning of the starting message key field.

44 iSeries: Message Handling APIs

Offset to starting message key specified. The offset, in bytes, from the beginning of the user space to the

beginning of the starting message key specified field.

Offset to starting message key used. The offset, in bytes, from the beginning of the user space to the

beginning of the starting message key used field.

Offset to the next entry. The offset, in bytes, from the beginning of the user space to the beginning of the

next message entry.

Offset to the next field information returned. The offset, in bytes, from the beginning of the user space

to the beginning of the next repeating identified field of the LSTM0100 format.

Problem identification. The number the system generates to identify a problem if problem analysis can

be run for the message being listed. The problem identification is in the following format:

 CHAR 1-10 Problem ID number. The number the system generates to identify the problem.

CHAR 11-30 Origin system in the format network-ID.control-point-name.

If problem analysis cannot be run, and this field is specified, the length of data field is 0.

Qualified message queue names. The list of message queues and the libraries where the message queues

are located. The number of entries in the array must match the number specified in the number of

message queues field. The first 10 characters of each entry contain the message queue name, and the

second 10 characters of each entry contain the message queue library. You can use the following values

for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Qualified sender job name. The name of the job that sent the message. The job name has three parts:

 CHAR 1-10 The specific job name.

CHAR 11-20 The specific user profile name.

CHAR 21-26 The specific job number.

Receiving module name. This field can be specified for the QMHLSTM API, but it never returns any

data and the length of data field is 0.

Receiving procedure name. This field can be specified for the QMHLSTM API, but it never returns any

data and the length of data field is 0.

Receiving program name. This field can be specified for the QMHLSTM API, but it never returns any

data and the length of data field is 0.

Receiving type. This field can be specified for the QMHLSTM API, but it never returns any data and the

length of data field is 0.

Replacement data or impromptu message text. The values for replacement variables in a predefined

message, or the text of an impromptu message. If the message identifier field is not blank, this field

contains message data. If the message identifier field is blank, this field contains impromptu message

text.

Any pointer data in this field is marked as not valid if both:

v The API is called by a call stack entry not running in system state.

Message Handling APIs 45

v The system security level is 50 or above.

Reply status. The reply status of the message (whether it accepts a reply, and if so, whether a reply has

been sent). Possible values and their meanings follow:

 A Message accepts a reply, and a reply has been sent.

W Message accepts a reply, and a reply has not been sent. (The message is waiting for a reply.)

N Message does not accept a reply.

Request level. This field can be specified for the QMHLSTM API, but it never returns any data and the

length of data field is 0.

Request status. This field can be specified for the QMHLSTM API, but it never returns any data the

length of data field is 0.

Reserved. An ignored field.

Selection criteria. The type of messages to be listed. Valid values follow:

 *ALL All messages are to be listed.

*MNNR Only messages not requiring a reply are listed. This includes informational, completion,

diagnostic, request, notify, escape, reply, answered inquiry, and answered sender’s copy messages.

*MNR Only messages needing a reply are listed. This includes only unanswered inquiry messages.

*PAR Only messages that can have problem analysis run against them are listed.

*SCNR Only sender’s copy messages requiring a reply are listed. This includes only unanswered sender’s

copy messages.

Selection criteria specified. The selection criteria as specified on the call to the API.

Sender type. This field can be specified for the QMHLSTM API, but it never returns any data and the

length of data field is 0.

Sending module name. This field can be specified for the QMHLSTM API, but it never returns any data

and the length of data field is 0.

Sending procedure name. This field can be specified for the QMHLSTM API, but it never returns any

data and the length of data field is 0.

Sending program name. The sending program name or ILE program name that contains the procedure

sending the message. Under certain conditions, the actual name of the program that sent the message is

not known. In these cases, this field contains the 6-byte hexadecimal address of the program converted

into 12 displayable characters. In all other cases, the 10-character program name is returned left-justified

in the field; the final 2 characters contain blanks.

Sending statement numbers or instruction numbers. This field can be specified for the QMHLSTM API,

but it never returns any data and the length of data field is 0.

Sending user profile. The name of the user profile that the thread was running under when the

message was sent.

Severity criteria. The minimum severity of a message to be included in the list. The value must be

between 0 and 99. To retrieve all messages, specify a severity criteria of 0.

Severity criteria specified. The severity criteria as specified on the call to the API.

46 iSeries: Message Handling APIs

Size of message selection information specified. The size of the message selection information field, in

bytes, as specified in the call to the API.

Starting message key. The message key used to begin searching for messages to list from the

corresponding entry in the qualified message queue names field. You can use these special values for the

message keys:

 ’00000000’X The first message to be returned is the oldest message in the queue.

’FFFFFFFF’X The first message to be returned is the newest message in the queue.

If a value other than X’00000000’ or X’FFFFFFFF’ is specified and a message with that key does not exist,

an error is returned.

If the message that is specified by the starting message key exists but does not meet the selection criteria,

the severity criteria, or the date and time criteria fields that are specified, no error is returned. The search

for messages to list begins from the message that is specified by the starting message key.

Starting message key specified. The starting message keys as specified on the call to the API.

Starting message key used. The message keys of the first message actually listed by the API. If no

message is listed from a particular message queue, the value returned for that queue is the same as that

in the starting message key specified field.

Status of data. The status of the data listed for this message. Possible values and their meanings follow:

 blank The data returned is complete.

A The caller of the API was not authorized to view the data. This occurs when the caller of the API

is not authorized to the message file or message file library containing a stored message being

listed.

D The data was damaged. This occurs when the message file or library specified at send time for a

stored message is damaged when the API is called.

U The data was unavailable. This occurs when the message file or library specified at send time for a

stored message is exclusively used by another process when the API is called.

N The data was not found. This occurs when the message file or library specified at send time for a

stored message cannot be found or resolved when the API is called.

This field is applicable to the field identifiers that are retrieved from the message file for a stored

message. A description of the action that occurs for specific field identifiers when the status of data field

is not blank follows:

 0101 When the status of data field is not blank, the alert option field identifier contains blanks.

0301, 0302 When the status of data field is not blank, these message field identifiers contain message text.

regarding the problem encountered while attempting to access the message file. Both fields have

the replacement data substituted.

0401, 0402, 0403,

0404

When the status of data field is not blank, these message help field identifiers contain the text of

the message regarding the problem encountered while attempting to access the message file. All

fields have the replacement data substituted. The message help with formatting characters and

message help with replacement data and formatting characters field identifiers also have the

message formatting characters included.

0501 When the status of data field is not blank, the default reply field identifier contains the system

default reply.

0801 When the status of data field is not blank, the message file library used field identifier contains

blanks.

Message Handling APIs 47

This field is also applicable to the various sending information fields (identifiers 0601, 0603) when a

problem is encountered while attempting to retrieve this information. When one of these fields cannot be

retrieved from the message:

v The status of data field is set to N.

v The length of data field is set to 0.

The status of data field is always blank for the other field identifiers. The length of data field is zero.

Time sent. The time at which the message being listed was sent, in HHMMSS (hour, minute, and second)

format.

Type of data. The type of data returned.

 C The data is returned in character format.

B The data is returned in binary format.

M The data is returned in a mixed format. This value is returned for the field IDs 0606 and 0706.

User space library specified. The name of the user space library as specified on the call to the API.

User space library used. The actual name of the library where this user space was found.

User space name specified. The name of the user space as specified on the call to the API.

User space name used. The actual name of the user space used to store the data listed.

Error Messages

 Message ID Error Message Text

CPF1060 E Date not valid.

CPF1061 E Time not valid.

CPF1866 E Value &1 for number of fields to return not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF240D E Message search direction specified is not valid.

CPF240E E Format name of message selection information is not valid.

CPF240F E Field identifier is not valid or is a duplicate of another field

CPF2401 E Not authorized to library &1.

CPF2403 E Message queue &1 in &2 not found.

CPF2408 E Not authorized to message queue &1.

CPF241D E Severity criteria specified is not valid.

CPF241F E Length &1 specified for maximum message length is not valid.

CPF2410 E Message key not found in message queue &1.

CPF2433 E Function not allowed for system log message queue &1.

CPF2444 E Number of message queues, &1, is not valid.

CPF2467 E &3 message queue &1 in library &2 logically damaged.

CPF247D E Size of message selection information, &1, is not valid.

CPF247E E CCSID &1 is not valid.

CPF2476 E The maximum number of messages to list, &1, is not valid.

CPF2477 E Message queue &1 currently in use.

CPF252F E Length &1 specified for maximum message help length is not valid.

CPF2538 E Value for selection criteria not valid.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C39 E Value for reserved field not valid.

48 iSeries: Message Handling APIs

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF8198 E Damaged object found.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9821 E Not authorized to program &1 in library &2.

CPF9822 E Not authorized to file &1 in library &2.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9831 E Cannot assign device &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 49

#TOP_OF_PAGE
aplist.htm

Move Program Messages (QMHMOVPM) API

 Required Parameter Group:

1 Message key

Input Char(4)

2 Message types

Input Array of Char(10)

3 Number of message types

Input Binary(4)

4 To call stack entry

Input Char(*) or Pointer

5 To call stack counter

Input Binary(4)

6 Error code

I/O Char(*)
 Optional Parameter Group 1:

7 Length of to call stack entry

Input Binary(4)

8 To call stack entry qualification

Input Char(20)
 Optional Parameter Group 2:

9 To call stack entry data type

Input Char(10)

10 From call stack entry address

Input Char(16) or Pointer

11 From call stack counter

Input Binary(4)
 Default Public Authority: *USE

 Threadsafe: Yes

The Move Program Message (QMHMOVPM) API moves messages from a call message queue in the call

stack to the call message queue of an earlier call stack entry. Moving a message does not change the

sender information stored with the message. However, moving an escape message automatically changes

it to a diagnostic message.

You can use the QMHMOVPM API to pass messages up the call stack, transferring important information

to a previous program. When messages are sent to a call stack entry and the program running in that

entry ends without moving its messages up the stack, the programs left in the stack cannot receive those

messages unless:

50 iSeries: Message Handling APIs

v They use the message key of those messages.

v They use the List Job Log (QMHLJOBL) API.

For example, assume a program is sent several diagnostic messages and one escape message in response

to an error. Another program earlier in the stack can handle the error. If the first program uses the

QMHMOVPM API to move all the diagnostic messages to the program earlier in the stack, it then uses

“Resend Escape Message (QMHRSNEM) API” on page 127 (QMHRSNEM) API to send the escape

message to the calling program.

In a multithreaded job, messages can be moved only from one call message queue to another call

message queue within the thread that calls this API. Messages cannot be moved to a call stack entry in

another thread.

Authorities and Locks

None.

Required Parameter Group

Message key

INPUT; CHAR(4)

 When moving a single, specific message, use the key to that message for this parameter. The key

is assigned by the command or API that sends the message.

 When using the message types parameter to move a group of messages, use blanks for this

parameter.

Message types

INPUT; ARRAY of CHAR(10)

 The type or types of the messages being moved.

 When moving a group of messages, specify a list of one through four message types. You can use

these values in the list to move all messages of one or more types:

 *COMP Completion

*DIAG Diagnostic

*ESCAPE Escape. After an escape message is moved, its message type changes to diagnostic.

*INFO Informational

For descriptions of the message types, see “Message Types” on page 195.

 If there are no messages of a type you specify, the QMHMOVPM API does not return an error. It

simply returns control to the calling program.

 If the number of message types parameter specifies 0, this parameter is ignored.

Number of message types

INPUT; BINARY(4)

 The number of message types specified in the message types parameter.

 When moving a single message by specifying the message key in the message key parameter, use

0 for the number of message types parameter.

 If you use blanks for the message key parameter and specify one or more message types, the

value must be 1 through 4.

To call stack entry

INPUT; CHAR(*) OR POINTER

Message Handling APIs 51

The call stack entry to move the messages to, or the call stack entry to start counting from when

using a value other than 0 for the To call stack counter parameter. The call stack entry specified

must be in the call stack; you cannot specify the external message queue.

 You can specify a call stack entry by:

v Providing the name of the OPM program or ILE procedure running in the entry.

v Providing a pointer to the call stack entry, or

v Using one of the following special values:

 * The current call stack entry (that is, the one in which the program or procedure using the API is

running).

*PGMBDY The call stack entry is for the boundary of the specified program object. The program object is

specified by providing a program name in the optional To call stack entry qualification parameter.

The program object can be also be provided by not using the optional parameter or by specifying

*NONE for the program name. In this case, the program object is assumed to be the program that

is using the API.

This option essentially identifies the oldest call stack entry which began a sequence of calls, where

each call in this sequence involved the same program object. The call sequence could involve

recursive calls to the same program or, in the case of ILE, calls to different procedures of the same

ILE program or ILE service program.

For OPM programs, in most cases, using *PGMBDY produces the same result as using * or using

an OPM program name in this parameter. A difference will appear when an OPM program calls

itself recursively. In this case, using * or an OPM program name identifies the current recursion

level of the program. In contrast, using *PGMBDY identifies the first recursion level.

For an ILE program, this option can be used to identify the first procedure of the ILE program

that was called in the current sequence. If the ILE program was called using a dynamic call, this is

the PEP (program entry procedure).

For ILE service programs, this option can be used to identify the call stack entry for the first

procedure that was called in the identified service program.

*CTLBDY The call stack entry at the most recent control boundary. This call stack entry is in the same

activation group as the one using the API.

If this keyword value is used and there is no control boundary in the current call stack entry, the

error CPF24C8 is returned to the user of this API. This happens if the only entries on the call stack

are for OPM programs.

In some cases, *PGMBDY and *CTLBDY identify the same call stack entry. The option *CTLBDY

does not care if all call stack entries in a call sequence involve the same program object. It only

cares that a sequence started at a control boundary. Conversely, the start of a call sequence

identified by *PGMBDY may not fall on a control boundary.

52 iSeries: Message Handling APIs

*PGMNAME The to call stack entry is identified by the program name and, optionally, module name that is

provided by the optional To call stack entry qualification parameter.

For OPM programs, specifying this special value and the optional parameter is the same as

specifying the OPM program name in this parameter.

For ILE programs or ILE service programs this special key value indicates that a procedure name

is not being specified. Rather the call stack entry is identified by providing only the ILE program

or service program name and optionally the ILE module name. This means that the call stack

entry is the most recently called procedure that is part of the specified ILE program or ILE service

program (and part of the ILE module if module name is also specified). The name of this most

recently called procedure is not important in determining the correct call stack entry.

If this special value is specified with a program name only, then the call stack entry is the most

recently called OPM program that has the specified program name or the most recently called ILE

procedure that is part of an ILE program or ILE service program of the specified name, whichever

occurs most recently on the call stack. If the module name is also specified, then the call stack

entry is the most recently called ILE procedure that is part of specified the ILE program or service

program and module. If a module name is given, the call stack entry cannot be an OPM program.

If the call stack entry is identified by pointer, the pointer specified must address a valid call stack

entry within the same job as the one the API is used in. Alternatively, the pointer can be set to

Null. The Optional Parameter Group 1 must be used and the Length of To call stack entry

parameter must be set to 16. In addition, the Optional Parameter Group 2 must also be used and

the Call stack entry format parameter must be set to *PTR.

 If the pointer provided is set to Null, this indicates that the call stack entry is the one in which

the API is being used.

 If the pointer does not address a valid call stack entry or is not a Null pointer, the error message

CPF24C5 is sent to the user of the API.

 The call stack entry can be a nested procedure name from 1 through 4096 characters in length.

When specifying nested procedures, each procedure name must be separated by a colon, and the

outermost procedure is identified first followed by the procedures it contains. The innermost

procedure is the last procedure identified in the string.

 The call stack entry can be a partial name. To specify a partial name, place three less-than signs

(<<<) at the beginning of the call stack entry identifier, or place three greater-than signs (>>>) at

the end of the call stack entry identifier, or place both the less-than signs and the greater-than

signs at their respective ends of the call stack entry identifier. The value for the call stack entry

excluding the less-than signs and the greater-than signs is used to search backward through the

stack for the requested call stack entry name.

 When searching for a partial call stack entry name:

v If the less-than signs (<<<) are specified only at the beginning of the call stack entry name, the

less-than signs are truncated and the remaining character string is right-justified. The

remaining string is then compared to the current call stack entry on the call stack. The

comparison starts at the end of the call stack entry name and backwardly compares the

number of characters in the specified string.

v If the greater-than signs (>>>) are specified only at the end of the call stack entry name, the

greater-than signs are truncated. The remaining character string is compared to the current call

stack entry on the call stack. The comparison starts at position 1 of the call stack entry name

and compares the number of characters in the specified string.

v If the less-than signs (<<<) are specified at the beginning of the call stack entry name and the

greater-than signs (>>>) are specified at the end of the call stack entry name, both the less-than

signs and the greater-than signs are truncated. The remaining characters are used to scan and

to compare the entire length of the specified string and the current call stack entry on the call

stack.

Message Handling APIs 53

Note: If the optional parameters Length of to call stack entry and To call stack entry data type are

not specified, this parameter is assumed to be CHAR(10).

To call stack counter

INPUT; BINARY(4)

 A number identifying the location in the call stack of the call stack entry to whose message queue

the messages are to be moved. The number is relative to the call stack entry identified by the To

call stack entry parameter. It indicates how many calls up the call stack the target entry is from

the one identified by the To call stack entry parameter. Valid values follow:

 0 Move the messages to the message queue of the entry specified by the to call stack entry

parameter. You cannot use 0 when the to call stack entry parameter specifies *, a Null pointer, or a

pointer that points to the user of the API. This combination means that you want to move the

message from yourself to yourself which is not a valid operation.

1 Move the messages to the message queue of the call stack entry one earlier on the stack than the

one identified by the To call stack entry parameter.

n (any positive
number)

Move the messages to the queue of the nth call stack entry earlier in the stack from the one

identified by the To call stack entry parameter.

You can use any positive number that does not exceed the actual number of call stack entries in

the call stack. Do not include the external message queue in your count.

Optional Parameter Group 1

Length of to call stack entry

INPUT; BINARY(4)

 The length of the value for the to call stack entry parameter.

 Valid values for this parameter are as follows:

v 1 to and including 4096 if partial name indicators are not used.

v 16 if the call stack entry parameter is a pointer.

v 1 to and including 4102 if partial name indicators are used.

Note: The actual length of the call stack entry name cannot exceed 4096 characters. If this

parameter is not used, the value for the call stack entry parameter is assumed to be 10 characters

in length.

To call stack entry qualification

INPUT; CHAR(20)

 Further identifies the To call stack entry. The parameter consists of two 10 character parts. The

first part is the module name qualifier and the second part is the program name qualifier. The

values provided in this parameter are used as a qualifier for the value provided in the To call

stack entry parameter. The values that can be specified here depend upon the value provided in

the To call stack entry parameter.

 The special values discussed with this parameter can be used to indicate that the module name

qualifier or program name qualifier is not being specified:

 If the To call stack entry parameter contains an ILE procedure name then this parameter can

contain the name of the module and the ILE program to further qualify the procedure name. The

first 10 characters specify the module name, and the second 10 characters specify the ILE

program name. If this parameter is not used or if *NONE is specified for both qualifiers, only the

specified procedure name is used to determine the call stack entry.

 If the required To call stack entry parameter contains the key value *PGMNAME, then the

program name qualifier must contain either an OPM program name or an ILE program name.

For ILE, the module name qualifier may contain a module name; otherwise it must contain

*NONE.

54 iSeries: Message Handling APIs

When the To call stack entry parameter contains the special value * or *CTLBDY, the Optional

Parameter Group 1 should either not be used or both the module name and program name

qualifiers must be specified as *NONE.

 When the To call stack entry parameter contains an OPM program name, the Optional Parameter

Group 1 should also either not be used or both the module name and program name qualifiers

should be specified as *NONE. If a module name or program name is specified here, the name

specified as the To call stack entry is interpreted as an ILE procedure name rather than an OPM

program name. Either the entry would not be found or an incorrect entry would be found.

 When the special value *PGMBDY is used, the Optional Parameter Group 1 may be used. In this

case, the module name qualifier must be specified as *NONE. For the program name qualifier, an

OPM or ILE program name may be specified or *NONE may be used.

 If the To call stack entry is identified by pointer, this parameter must still be passed to the API.

The value specified for the module name qualifier must be specified as *NONE. The program

name qualifier serves as a qualifier for the pointer and must be specified as one of the following

special values:

 *NONE The call stack entry addressed by the pointer is the one to which the message is to be moved or

the one to start counting from when using a value other than 0 for the To call stack counter

parameter.

*PGMBDY The call stack entry to move the message to or to start counting from is an ILE program boundary.

The ILE program is the one which contains the procedure that is running in the call stack entry

addressed by the pointer.

If the ILE program was called using a dynamic call, using this special value with a pointer will

identify the call stack entry for the PEP of that program. If a call was made using a procedure

pointer, it will identify the call stack entry for the procedure that was pointed to.

If the pointer addresses a call stack entry that is running a procedure from an ILE service

program, this option can be used to identify the call stack entry for the first procedure that was

called in that service program.

If the call stack entry addressed by the pointer is running an OPM program than using the special

value *PGMBDY here will have the same effect as using *NONE in most cases. A difference will

occur if the OPM program called itself recursively. In this case using *PGMBDY identifies the first

recursion level while *NONE identifies the current recursion level.

Optional Parameter Group 2

Use these optional parameters when:

v The call stack entry to which the messages are to be moved is identified by a pointer.

v The messages to be moved are not on the current call stack entry’s message queue.

To call stack entry data type

INPUT; CHAR(10)

 Whether the value of the To call stack entry parameter is a character string (a name or special

value) or a pointer.

 Use one of the following special values;

 *CHAR Value of the parameter is a character string (name or special value)

*PTR Value of the parameter is a pointer.

If the above optional parameter is not specified, it is assumed that the value of the To call stack

entry parameter is a character string.

From call stack entry address

INPUT CHAR(16) OR POINTER

Message Handling APIs 55

A pointer to the call stack entry where the messages to be moved exist or the call stack entry to

start counting from if the from call stack counter is not 0.

 The pointer that is specified must be an invocation pointer that addresses a valid call stack entry

or must be set to Null.

 For program languages that do not support pointers, a Null pointer can be presented by using a

16 byte variable. The first byte of the variable is set to the special value * and the remaining 15

bytes set to blanks.

 If the pointer provided is set to Null, this indicates the current call stack entry (the one using the

API).

 If the pointer is not a valid pointer or if it is a valid pointer but is not Null nor does it address a

valid call stack entry, the error message CPF24C5 is sent to the user of the API.

From call stack counter

INPUT; BINARY(4)

 A number identifying the location in the call stack of the call stack entry where the messages to

be moved exist. The number is relative to the To call stack entry that is addressed by the From

call stack entry address pointer. It indicates how many calls up the call stack the entry is from the

one that is addressed by the pointer. Valid values follow:

 0 The message to move exists at the call stack entry that is addressed by the pointer.

1 The message to move exists at the call stack entry that is one earlier in the call stack than the one

addressed by the pointer.

n (any positive

number)

The message to move exists at the nth call stack entry earlier in the stack from the one addressed

by the pointer.

You can use any positive number that does not exceed the actual number of call stack entries in

the call stack. Do not include the external message queue in your count.

The From call stack entry cannot be the same as the To call stack entry. Additionally, the To call

stack entry must be earlier on the call stack than the From call stack entry.

Error Messages

 Message ID Error Message Text

CPF24A3 E Value for call stack counter parameter not valid.

CPF24A5 E Value of &1, for number of message types, not valid.

CPF24BF E Module or bound-program name is blank.

CPF24B3 E Message type &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B5 E Not able to move message.

CPF24B7 E Value &1 for call stack entry name length not valid.

CPF24B9 E When call stack entry name is ’*’ or ’*CTLBDY’, module name and program name must be

’*NONE’.

CPF24C5 E Pointer to call stack entry not valid.

CPF24C6 E Value of To call stack entry data type parameter not valid.

CPF24C8 E Control boundary not found on call stack.

CPF24C9 E Program boundary not found on call stack.

CPF24CB E *PGMNAME requires a specified program name.

CPF24CC E Call stack entry &2 for *PGMNAME not found.

CPF24CD E Module name cannot be specified when *PGMBDY is used.

CPF24CE E Qualifier &1 incorrect for use with pointer.

CPF241B E Message type &1 in system program is not valid.

CPF2410 E Message key not found in message queue &1.

CPF247A E Call stack entry not found.

56 iSeries: Message Handling APIs

Message ID Error Message Text

CPF2471 E Length of field not valid.

CPF2479 E Call stack entry not found.

CPF2508 E Cannot move messages to same or later call stack entry.

CPF2509 E Message key &2 refers to a message that is not on the mover’s call stack entry.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1.1

 Top | “Message Handling APIs,” on page 1 | APIs by category

Open List of Job Log Messages (QGYOLJBL) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List Information

Output Char(80)

4 Number of records to return

Input Binary(4)

5 Message selection information

Input Char(*)

6 Size of message selection information

Input Binary(4)

7 Error code

I/O CHAR(*)
 Default Public Authority: *USE

 Threadsafe: No

The Open List of Job Log Messages (QGYOLJBL) API lists messages from a job log. The returned

messages are sorted by their sending date and time unless the message being listed is a reply message to

an inquiry, a sender’s copy, or a notify type message. When a reply message exists for one of these

messages, the reply message is not positioned according to the sending date and time of the reply. The

reply message is, instead, listed immediately following the inquiry, the sender’s copy, or the notify

message that it is associated with.

Note: The QTEMP library and the system portion of the library list could be different between the main

job and the server job when the list is being built asynchronously. If this is a problem, request that the list

be built synchronously.

Message Handling APIs 57

#TOP_OF_PAGE
aplist.htm

For more information, see Process Open List APIs.

Differences between QMHLJOBL and QGYOLJBL

The differences between the QGYOLJBL API and the List Job Log Messages (QMHLJOBL) API follow:

v The message information for the QGYOLJBL API is returned into a receiver variable instead of a user

space.

v The request handle parameter was added to the QGYOLJBL API, so that a distinct value is associated

with the list. This value ensures that a request for more messages from the list (call QGYGTLE API) is

sent to the correct list.

v The total records parameter was added to the QGYOLJBL API, so that the caller of the API knows the

size of the list from which information can be requested.

v The records returned parameter was added to the QGYOLJBL API. Now if the request is for X records

and only Y records exist (where Y < X), the requestor is aware that it did not get the number of records

requested.

v

The amount of information returned by the QMHLJOBL API is limited by the size of a user space,

approximately 16MB. The list created by the QGYOLJBL API can contain up to 2GB of information.

Authorities and Locks

User Space Lock

*EXCLRD

Job Authority

v *JOBCTL

special authority

if the job for which messages are being listed has a different

user profile from that of the job that calls the QGYOLJBL API.

v *ALLOBJ

and *JOBCTL special authorities if the job for which messages are being retrieved

has *ALLOBJ and *JOBCTL special authority. As an alternative to having *ALLOBJ authority,

the user calling the API can be authorized to the All Object Job Log function of Operating

System/400 through iSeries Navigator’s Application Administration support. The Change

Function Usage (CHGFCNUSG) command, with a function ID of

QIBM_ACCESS_ALLOBJ_JOBLOG, can also be used to change the list of users that are allowed

to access a job log that has *ALLOBJ special authority.

For additional information on job authorities, see Basic system security and planning.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable used to return the requested number of records containing message information. See

“OLJL0100 Format” on page 59 for a description of this parameter.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

List information

OUTPUT; CHAR(80)

 The variable used to return status information about the list of job log messages that was opened.

For a description of this parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to be put into the receiver variable. Valid values for this field

are:

58 iSeries: Message Handling APIs

misc1b.htm
oli.htm

-1 All records are built synchronously in the list by the main job.

0 All records are built asynchronously in the list by a server job.

If a positive number of records is specified, at least that many records are built synchronously (in

order to return those records immediately to the caller of this API), and the remainder are built

asynchronously by a server job.

Message selection information

INPUT; CHAR(*)

 The information that determines the job message queue and messages to be listed. The format of

this information is described in “Message Selection Information Format” on page 62.

Size of message selection information

INPUT; BINARY(4)

 The size, in bytes, of the message selection information parameter. The minimum value of this

parameter is 85.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

OLJL0100 Format

For detailed descriptions of each field, see the “Field Descriptions” on page 60.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to the next entry

4 4 BINARY(4) Offset to fields returned

8 8 BINARY(4) Number of fields returned

12 C BINARY(4) Message severity

16 10 CHAR(7) Message identifier

23 17 CHAR(2) Message type

25 19 CHAR(4) Message key

29 1D CHAR(10) Message file name

39 27 CHAR(10) Message file library specified at send time

49 31 CHAR(7) Date sent

56 38 CHAR(6) Time sent

62 3E CHAR(6) Microseconds

68 44 CHAR(*) Reserved

Message Handling APIs 59

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

These fields repeat for

each identifier field

specified.

BINARY(4) Offset to the next field information returned

BINARY(4) Length of field information returned

BINARY(4) Identifier field

CHAR(1) Type of data

CHAR(1) Status of data

CHAR(14) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Data. The data returned for the specified identifier field.

Date sent. The date on which the message was sent, in CYYMMDD (century, year, month, and day)

format.

Identifier field. The field ID actually returned in the OLJL0100 format. See “Valid Field Identifiers” on

page 64 for the list of valid field identifiers.

Length of data. The length of the data returned for the data field, in bytes.

Length of field information returned. The total length of information returned for this field, in bytes.

Message file library specified at send time. The name of the library containing the message file as

specified when the message was sent. If *CURLIB or *LIBL were specified for the library when the

message was sent, that value is returned as the library here. For the actual library used when the

message is sent, see the message file library used field identifier.

Message file name. The name of the message file containing the message listed.

Message identifier. The identifying code of the message listed. If an impromptu message is listed, this

field is set to blanks.

Message key. The message reference key of the message listed.

Message severity. The severity of the message listed. Possible values are 0 through 99.

Message type. The type of message listed. The possible values and their meanings follow:

 Value Message Type

01 Completion

02 Diagnostic

04 Informational

05 Inquiry

06 Sender’s copy

08 Request

10 Request with prompting

14 Notify, exception already handled when API is called

60 iSeries: Message Handling APIs

Value Message Type

15 Escape, exception already handled when API is called

16 Notify, exception not handled when API is called

17 Escape, exception not handled when API is called

21 Reply, not checked for validity

22 Reply, checked for validity

23 Reply, message default used

24 Reply, system default used

25 Reply, from system reply list

26 Reply, from exit program

Microseconds. The microseconds part of the time sent.

Number of fields returned. The number of identifier fields returned to the application.

Offset to fields returned. The offset, in bytes, from the beginning of the receiver variable to the

beginning of the first repeating identified field of the OLJL0100 format.

Offset to the next entry. The offset, in bytes, from the beginning of the receiver variable to the beginning

of the next message entry.

Offset to the next field information returned. The offset, in bytes, from the beginning of the receiver

variable to the beginning of the next repeating identified field of the OLJL0100 format.

Reserved. An ignored field.

Status of data. The status of the data listed for this message. Possible values and their meanings follow:

 blank The data returned is complete.

A The caller of the API was not authorized to view the data. This occurs when the caller of the API

is not authorized to the message file or the message file library containing a stored message being

listed.

D The data was damaged. This occurs when the message file or library specified at send time for a

stored message is damaged when the API is called.

U The data was unavailable. This occurs when the message file or library specified at send time for a

stored message is exclusively used by another process when the API is called.

N The data was not found. This occurs when the message file or library specified at send time for a

stored message cannot be found or resolved when the API is called.

This field is applicable to the field identifiers that are retrieved from the message file for a stored

message. A description of the action that occurs for specific field identifiers when the status of data field

is not blank follows:

 0101 When the status of data field is not blank, the alert option field identifier contains blanks.

0301, 0302 When the status of data field is not blank, these message field identifiers contain message text

regarding the problem encountered while attempting to access the message file. Both fields have

the replacement data substituted.

0401, 0402, 0403,

0404

When the status of data field is not blank, these message help field identifiers contain message

text regarding the problem encountered while attempting to access the message file. All fields

have the replacement data substituted. The message help with formatting characters and message

help with replacement data and formatting characters field identifiers also have the message

formatting characters included.

0501 When the status of data field is not blank, the default reply field identifier contains the system

default reply.

Message Handling APIs 61

0801 When the status of data field is not blank, the message file library used field identifier contains

blanks.

This field is also applicable to the various sending and receiving information fields when a problem is

encountered while attempting to retrieve this information. This includes field identifiers 0602, 0603, 0604,

0605, 0606, 0702, 0703, 0704, 0705, and 0706. When one of these fields cannot be retrieved from the

message, the status of data field is set to U and the field is set to blanks.

The status of data field is always blank for the other field identifiers.

Time sent. The time at which the message being listed was sent, in HHMMSS (hour, minute, and second)

format.

Type of data. The type of data returned.

 C The data is returned in character format.

B The data is returned in binary format.

M The data is returned in a mixed format. This value is returned for the field IDs 0606 and 0706,

which contain a binary(4) value followed by an array of 10-character elements.

Message Selection Information Format

For detailed descriptions of each field, see the “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) List direction

10 A CHAR(26) Qualified job name

36 24 CHAR(16) Internal job identifier

52 34 CHAR(4) Starting message key

56 38 BINARY(4) Maximum message length

60 3C BINARY(4) Maximum message help length

64 40 BINARY(4) Offset of identifiers of fields to return

68 44 BINARY(4) Number of fields to return

72 48 BINARY(4) Offset to call message queue name

76 4C BINARY(4) Size of call message queue name

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) of

BINARY(4)

Identifiers of fields to return

CHAR(*) Call message queue name

Field Descriptions

Call message queue name. The name of the call message queue from which to list messages. You must

use these values:

 * Messages from every call of the job are listed.

*EXT Only messages sent to *EXT of the job are listed.

62 iSeries: Message Handling APIs

Identifiers of fields to return. The list of the identifiers of fields to be returned. For a list of the valid

field identifiers, see “Valid Field Identifiers” on page 64.

Internal job identifier. The internal name for the job. The List Job (QUSLJOB) API creates this identifier.

If you do not specify *INT for the job name parameter, this parameter must contain blanks. With this

parameter, the system can locate the job more quickly than with a job name.

List direction. The direction to list messages. You must use one of the following directions:

 *NEXT Return messages that are newer than the message specified by the starting message key parameter

and the starting offset parameter. This returns messages that start with the oldest first, and the

most recently sent message last.

*PRV Return messages that are older than the messages specified by the starting message key parameter.

This returns messages that start with the most recently sent message first, and the oldest message

last.

Maximum message help length. The maximum length of data to be returned for field identifiers 0401,

0402, 0403, and 0404.

Maximum message length. The maximum length of data to be returned for field identifiers 0301 and

0302.

Number of fields to return. The number of fields to return (the number of entries in the identifiers of

fields to return array).

To avoid heavy utilization of system resources, users of this API must be cautious of selecting too many

fields to return for the messages that are listed.

Offset to call message queue name. The offset, in bytes, from the beginning of the message selection

information parameter to the beginning of the call message queue name field.

Offset of identifiers of fields to return. The offset, in bytes, from the beginning of the message selection

information parameter to the beginning of the identifiers of fields to return array.

Qualified job name. The name of the job whose messages are to be listed. The qualified job name has

three parts:

 Job name CHAR(10)A specific job name or one of the following special values:

* The job that this program is running in. The rest of the qualified job name parameter

must be blank.

*INT The internal job identifier locates the job. The rest of the qualified job name parameter

must be blank.

User name CHAR(10) A specific user profile name, or blanks when the job name is the special value of * or

*INT.

Job number CHAR(6) A specific job number, or blanks when the job name is the special value of * or *INT.

Size of call message queue name. The length of the call message queue name parameter, in bytes. The

maximum length that can be specified is 256; the minimum length is 1.

Starting message key. The message key to be used to begin searching for messages to list from the job.

You can use these special values for the message key:

 ’00000000’X The first message to be returned is the oldest message in the queue.

’FFFFFFFF’X The first message to be returned is the newest message in the queue.

Message Handling APIs 63

If the specified key does not exist, messages are listed with the next key that does exist in the search

direction specified by the list direction parameter.

If a key of a reply message is specified, the message search begins with the inquiry or notify message that

the reply is associated with, not the reply message itself.

If the message specified by the starting message key exists but does not meet the selection criteria

parameter and the severity criteria parameter specified, no error is returned. The search for messages to

list begins from the point that is specified by the starting message key.

Valid Field Identifiers

For a detailed description of each field, see “Field Descriptions” on page 65.

 Identifier Type Description

0101 CHAR(9) Alert option

0201 CHAR(*) Replacement data or impromptu message text

0301 CHAR(*) Message

0302 CHAR(*) Message with replacement data

0401 CHAR(*) Message help

0402 CHAR(*) Message help with replacement data

0403 CHAR(*) Message help with formatting characters

0404 CHAR(*) Message help with replacement data and formatting characters

0501 CHAR(*) Default reply

0601 CHAR(26) Qualified sender job name

0602 CHAR(1) Sender type

0603 CHAR(*) Sending program name

0604 CHAR(10) Sending module name

0605 CHAR(*) Sending procedure name

0606 BINARY(4) followed

by ARRAY(*) of

CHAR(10)

Number of sending statement numbers or instruction numbers available

followed by an array of the sending statement numbers or instruction

numbers

0607 CHAR(10) Sending user profile

0702 CHAR(1) Receiving type

0703 CHAR(10) Receiving program name

0704 CHAR(10) Receiving module name

0705 CHAR(*) Receiving procedure name

0706 BINARY(4) followed

by ARRAY(*) of

CHAR(10)

Number of receiving statement numbers or instruction numbers available

followed by an array of the receiving statement numbers or instruction

numbers

0801 CHAR(10) Message file library used

0901 CHAR(30) Problem identification

1001 CHAR(1) Reply status

1101 CHAR(1) Request status

1201 BINARY(4) Request level

1301 BINARY(4) Coded character set identifier (CCSID) for text

1302 BINARY(4) CCSID conversion status indicator for text

64 iSeries: Message Handling APIs

Identifier Type Description

1303 BINARY(4) Coded character set identifier (CCSID) for data

1304 BINARY(4) CCSID conversion status indicator for data

Field Descriptions

Alert option. Whether and when an SNA alert is created and sent for the message. The value is one of

the following:

 *DEFER An alert is sent after local problem analysis.

*IMMED An alert is sent immediately when the message is sent to a message queue that has the allow

alerts attribute set to *YES.

*NO No alert is sent.

*UNATTEND An alert is sent immediately when the system is running in unattended mode (when the value of

the alert status network attribute, ALRSTS, is *UNATTEND).

For more information about alerts, see the Alerts Support

book.

This field is set to blanks if no alert option was specified when the message was sent.

CCSID conversion status indicator for data. The following values may be returned:

 0 No conversion was needed because the CCSID of the data matched the CCSID that you wanted

the data converted to.

1 No conversion occurred because either the data was 65535, or the CCSID you wanted the data

converted to was 65535.

2 No conversion occurred because you did not ask for any message data to be returned or the data

did not contain any *CCHAR type data.

3 The data was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The data was not converted.

CCSID conversion status indicator for text. The following values may be returned:

 0 No conversion was needed because the CCSID of the text matched the CCSID you wanted the text

converted to.

1 No conversion occurred because either the text was 65535 or the CCSID you wanted the text

converted to was 65535.

2 No conversion occurred because you did not ask for any text to be returned.

3 The text was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The data was not converted.

Coded character set identifier (CCSID) for data. The coded character set identifier that the replacement

data is returned in. This only applies to the part of the replacement data that corresponds to a convertible

character data type (*CCHAR). All other replacement data will not be converted before it is returned and

can be considered to have a CCSID of 65535. If a conversion error occurs or if the CCSID you requested

the data to be converted to is 65535, the CCSID of the data is returned. If there is no *CCHAR

replacement data, 65535 is returned. Otherwise the CCSID you wanted the data converted to is returned.

Message Handling APIs 65

For more information about message handler and its use of CCSIDs, see CCSIDs: Message Support in the

Globalization topic. For more information about the *CCHAR field type, see the Add Message

Description (ADDMSGD) command.

Coded character set identifier (CCSID) for text. The coded character set identifier that the message text

is returned in. If a conversion error occurs or if the CCSID you requested the message text to be

converted to is 65535, the CCSID that the message text is stored in is returned. Otherwise, the CCSID you

wanted your message text converted to is returned. If you do not want the text converted before it is

returned to you but you do want to know the CCSID that the message text is stored in, specify 65535 on

the coded character set identifier to return text and data in parameter. The CCSID that the message text is

stored in is returned in the coded character set identifier for text field.

This applies to the following fields only :

v Message

v Message with replacement data

v Message help

v Message help with replacement data

v Message help with replacement data and formatting characters

v Message help with formatting characters

Note: This CCSID value does not apply to the replacement data that has been substituted into the text.

See the coded character set identifier for data for this information.

Default reply. The text of the default reply when a stored message is being listed, and a default reply

exists. If this is not an inquiry message, or no default reply exists, this field is not used, and the length of

data field is 0.

Message. The text of a predefined message without replacement data substitution. If an impromptu

message is listed, this field contains the impromptu message text.

Message file library used. The actual name of the library that contains the message file that is used to

retrieve the message information. If an immediate message is listed, this field is set to blanks.

Message help. The message help for the message listed without formatting characters and without

replacement of data. If an impromptu message is listed, this field contains the impromptu message text.

Message help with formatting characters. The message help for the message listed, including formatting

characters.

Three format control characters can be returned within the message. They are defined in the online help

for the Add Message Description (ADDMSGD) command to have these meanings:

 &N Forces the text to a new line (column 2). If the text is longer than one line, the next lines are

indented to column 4 until the end of text or another format control character is found.

&P Forces the text to a new line indented to column 6. If the text is longer than one line, the next

lines start in column 4 until the end of text or another format control character is found.

&B Forces the text to a new line, starting in column 4. If the text is longer than one line, the next lines

are indented to column 6 until the end of text or another format control character is found.

If an impromptu message is listed, this field contains the immediate message text.

Message help with replacement data. The message help for the message listed, including the

replacement data. If an impromptu message is listed, this field contains the impromptu message text.

66 iSeries: Message Handling APIs

Message help with replacement data and formatting characters. The message help for the message

listed, including the replacement data and the formatting characters. See the description of the message

help with formatting characters field for an explanation of formatting characters. If an impromptu

message is listed, this field contains the impromptu message text.

Message with replacement data. The text of a predefined message with the replacement data included. If

an impromptu message is listed, this field contains the impromptu message text.

Number of the receiving statement numbers or instruction numbers available followed by an array of

the receiving statement numbers. The number of statement numbers or instruction numbers available for

the receiving program or procedure.

For original program model (OPM) programs and nonoptimized procedures, this count is 1.

For optimized procedures, this count can be greater than 1. In this case, each statement number

represents a potential point at which the message could have been received. If the mapping table

information has been removed from the program, this field returns a count of 0 and no statement

numbers are available. The array of receiving statement numbers or instruction numbers immediately

follows this field in the returned data.

Number of sending statement numbers or instruction numbers available followed by an array of the

sending statement numbers or instruction numbers. The number of statement numbers or instruction

numbers available for the sending program or procedure.

For OPM programs and nonoptimized procedures, this count is 1.

For optimized procedures, this count can be greater than 1. In this case, each statement number

represents a potential point at which the message could have been sent. If the mapping table information

has been removed from the program, this field returns a count of 0, and no statement numbers are

available. The array of sending statement numbers or instruction numbers immediately follows this field

in the returned data.

Problem identification. This field can be specified for the QGYOLJBL API, but it never returns any data

and the length of data field is 0.

Qualified sender job name. This field can be specified for the QGYOLJBL API, but it never returns any

data and the length of data field is 0.

Receiving module name. The name of the module that contains the procedure where the message was

sent. If the message was not sent to a procedure within an Integrated Language Environment (ILE)

program, this field is not set and the length of data field is 0.

Receiving procedure name. The name of the procedure receiving the message. If the message was not

sent to a procedure within an ILE program, this field is not set and the length of data field is 0. A nested

procedure name has each procedure name separated by a colon. The outermost procedure name is

identified first followed by the procedures it contains. The innermost procedure is identified last in the

string.

Receiving program name. The program name, or the ILE program name that contains the procedure that

the message was sent to.

Receiving type. The type of the receiver (whether it is a program or a procedure). Possible values and

their meanings follow:

 0 Receiver is an original program model (OPM) program

Message Handling APIs 67

1 Receiver is a procedure within an ILE program and the procedure name is up to and including

256 characters in length

2 Receiver is a procedure within an ILE program and the procedure name is 257 or more characters

in length

Replacement data or impromptu message text. The values for replacement variables in a predefined

message, or the text of an impromptu message. If the message identifier field is not blank, this field

contains message data. If the message identifier field is blank, this field contains impromptu message

text.

Any pointer data in this field is marked as not valid if both of the following are true:

v The API is called by a call stack entry not running in system state.

v The system security level is 50 or above.

Reply status. The reply status of the message (whether it accepts a reply, and if so, whether a reply has

been sent). Possible values and their meanings follow:

 A Message accepts a reply, and a reply has been sent.

W Message accepts a reply, and a reply has not been sent. (The message is waiting for a reply.)

N Message does not accept a reply.

Request level. The level of the request-processing program that received the request message. If the

message being listed is not a request, this field is set to 0.

Request status. Information regarding the processing status of the request message. Possible values and

their meanings follow:

 O This request message has been received and processed.

C This request message is currently being processed.

N This request message has not yet been processed.

If the message being listed is not a request, this field is set to a blank character.

Sender type. The type of the sender (whether it is a program or procedure). Possible values and their

meanings follow:

 0 Sender is an OPM or a System Licensed Internal Code (SLIC) program with a name that is 12

characters or less.

1 Sender is a procedure within an ILE program and the procedure name is up to and including 256

characters in length.

2 Sender is a procedure within an ILE program and the procedure name is from 257 characters up

to and including 4096 characters in length.

3 Sender is a SLIC program with a name that is from 13 characters up to and including 256

characters in length.

Sending module name. The name of the module that contains the procedure sending the message. If the

message was not sent by a procedure within an ILE program, this field is not set and the length of data

field is 0.

Sending procedure name. The name of the procedure sending the message. If the message was not sent

by a procedure within an ILE program, this field is not set and the length of data field is 0. A nested

68 iSeries: Message Handling APIs

procedure name has each procedure name separated by a colon. The outermost procedure name is

identified first followed by the procedures it contains. The innermost procedure is identified last in the

string.

Sending program name. The sending program name or ILE program name that contains the procedure

sending the message.

Sending user profile. The name of the user profile that the thread was running under when the

message was sent.

Error Messages

 Message ID Error Message Text

CPF1866 E Value &1 for number of fields to return not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B7 E Value &1 for call stack entry name length not valid.

CPF240D E Message search direction specified is not valid.

CPF240F E Field identifier is not valid or is a duplicate of another field identifier specified.

CPF2401 E Not authorized to library &1.

CPF2410 E Message key not found in message queue &1.

CPF241E E Call stack entry name is not valid.

CPF241F E Length &1 specified for maximum message length is not valid.

CPF2441 E Not authorized to display job log.

CPF2443 E Job log not displayed or listed because job has ended.

CPF252F E Length &1 specified for maximum message help length is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF6565 E User profile storage limit exceeded.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9821 E Not authorized to program &1 in library &2.

CPF9822 E Not authorized to file &1 in library &2.

CPF9825 E Not authorized to device &1.

CPF9831 E Cannot assign device &1.

CPF9838 E User profile storage limit exceeded.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

GUI0044 E &1 is not valid for length of message selection information.

API introduced: V3R6

Message Handling APIs 69

Top | “Message Handling APIs,” on page 1 | APIs by category

Open List of Messages (QGYOLMSG) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List information

Output Char(80)

4 Number of records to return

Input Binary(4)

5 Sort information

Input Char(1)

6 Message selection information

Input Char(*)

7 Size of message selection information

Input Binary(4)

8 User or queue information

Input Char(21)

9 Message queues used

Output Char(44)

10 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Open List of Messages (QGYOLMSG) API provides information on one of the following:

v Messages for the current user

v Messages for a specific user

v Messages on one specific message queue

If messages for the current user are to be listed, the user’s messages are listed from both the user message

queue and the APPC device message queue. The messages are sorted by their type and sending date and

time, unless the message being listed is a message needing a reply or a reply message. When a reply

message exists for a message needing a reply, the reply message is not positioned by the sending date

and time of the reply. The reply message is listed immediately after the message that needs a reply.

70 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

This API only lists messages from nonprogram message queues. The Open List of Messages API cannot

be used to list messages sent to a job log (including *EXT) or to list messages sent to the QHST message

queue.

New messages are prevented from being added to or removed from the message queues listed during the

use of the QGYOLMSG API when it calls the List Nonprogram Messages (QMHLSTM) API.

Message file overrides are not honored by the server job when the list is built asynchronously by the

server job.

Note: The QTEMP library and the system portion of the library list could be different between the main

job and the server job when the list is being built asynchronously. If this is a problem, then request that

the list be built synchronously.

For more information, see Process Open List APIs.

Differences between the QMHLSTM and QGYOLMSG APIs

The differences between the QGYOLMSG API and the List Nonprogram Messages (QMHLSTM) API

follow:

v The message information for the QGYOLMSG API is returned into a receiver variable instead of a user

space.

v The request handle parameter was added to the QGYOLMSG API so that a distinct value is associated

with the list. This value ensures that a request for more messages from the list (Get List Entries

(QGYGTLE) API) is sent to the correct list.

v The total records parameter was added to the QGYOLMSG API so that the caller of the API knows the

size of the list from which information can be requested.

v The records returned parameter was added to the QGYOLMSG API. If the request is for X records and

only Y records exist (where Y > X), the requestor is aware that it did not get the number of records

requested.

v

The amount of information returned by the QMHLSTM API is limited by the size of a user space,

approximately 16MB. The list created by the QGYOLMSG API can contain up to 2GB of information.

Difference between the QSYRUSRI and QGYOLMSG APIs

The difference between the QGYOLMSG API and the Retrieve User Information (QSYRUSRI) API is:

v The user name parameter was added to the QGYOLMSG API so that the message queue name for that

user can be retrieved by calling the QSYRUSRI API.

Authorities and Locks

Message Queue

*USE

Message Queue Library

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Message Handling APIs 71

misc1b.htm

The entries returned are in the LSTM0100 format. See “LSTM0100 Format” on page 74 for

information about the format.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable.

List information

OUTPUT; CHAR(80)

 The variable used to return status information about the list of messages that was opened. For a

description of the layout of this parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable after the sorting has been done.

The valid values for this field are as follows:

 -1 All records are built synchronously in the list by the main job.

0 All records are built asynchronously in the list by a server job.

If a positive number of records is specified, at least that many records are built synchronously (in

order to return those records immediately to the caller of this API), and the remainder are built

asynchronously by a server job.

Sort information

INPUT; CHAR(1)

 Indicates whether the list should be sorted by type if the selection criteria contains *ALL. Possible

values are as follows:

 0 No sort

1 Sort by the following message types in the listed order:

*MNR Unanswered, inquiry-type messages

*SCNR Unanswered, sender’s-copy type of messages

*MNNR

Informational, completion, diagnostic, request, notify, escape, request, answered inquiry,

and answered, sender’s-copy type messages.

Message selection information

INPUT; CHAR(*)

 The information that determines the message queues and messages to be listed. The format of

this information is described in “Message Selection Information Format” on page 76.

Size of message selection information

INPUT; BINARY(4)

 The size, in bytes, of the message selection information parameter. The minimum value required

for this parameter is 62.

User or queue information

INPUT; CHAR(21)

 The name that is given (the user name or the qualified user message queue name) and the value

of that name. This parameter consists of the following parts:

72 iSeries: Message Handling APIs

oli.htm

User or queue indicator

CHAR(1)

 Whether a value is given in the user name part of this parameter, or in the qualified-user

message queue name part of this parameter. One of the following values must be

specified:

 0 The user name is given

1 The user message queue name is given

Depending on the value of this parameter, either the user name or the qualified-user

message queue name contains a nonblank value.

User or queue name

CHAR(20)

 If the user or queue indicator value is 0, the first 10 characters specify the user name for

which information is returned; the last 10 characters must be blank. You can specify the

following special value in the first 10 characters:

 *CURRENT The information for the user running currently is returned.

This value is used to get the message queue name for the user.

 If the user or queue indicator value is 1, this field contains the name of a message queue.

The first 10 characters contain the name of the message queue, and the second 10

characters contain the name of the library where the message queue is located.

Message queues used

OUTPUT; CHAR(44)

 The name given (the user name or the qualified user message queue name) and the value of that

name. This parameter consists of two parts:

Number of queues used

BINARY(4)

 The number of message queues used to build the list. This value is 2 if both of the

following list items are true:

v *CURRENT is specified for the user name in the user or queue information parameter

v Messages from both a user queue and a workstation message queue are included in the

list.

Otherwise, this value is set to 1.

Message queue names

ARRAY(2) OF CHAR(20)

 An array of qualified message queue names, which contain the names of the queues used

to build the list. For each array element, the first 10 characters represent the message

queue name, and the last 10 characters hold the library name.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Message Handling APIs 73

error.htm#HDRERRCOD
error.htm#HDRERRCOD

LSTM0100 Format

The following table shows the information returned in the receiver variable for the LSTM0100 format.

The offsets listed are from the beginning of the receiver variable. For a detailed description of each field,

see “Field Descriptions.”

The structure defined by this format is repeated for each message entry returned.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to the next entry

4 4 BINARY(4) Offset to fields returned

8 8 BINARY(4) Number of fields returned

12 C BINARY(4) Message severity

16 10 CHAR(7) Message identifier

23 17 CHAR(2) Message type

25 19 CHAR(4) Message key

29 1D CHAR(10) Message file name

39 27 CHAR(10) Message file library specified at send time

49 31 CHAR(10) Message queue

59 3B CHAR(10) Message queue library used

69 45 CHAR(7) Date sent

76 4C CHAR(6) Time sent

82 52 CHAR(6) Microseconds

88 58/td> CHAR(*) Reserved

These fields repeat for

each identifier field

specified.

BINARY(4) Offset to the next field information returned

BINARY(4) Length of field information returned

BINARY(4) Identifier field

CHAR(1) Type of data

CHAR(1) Status of data

CHAR(14) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Data. The data returned for the specified identifier field.

Date sent. The date on which the message was sent, in CYYMMDD (century, year, month, and day)

format.

Identifier field. The field returned. See “Valid Field Identifiers” on page 78 for the list of valid field

identifiers.

Length of data. The length of the data returned for the data field, in bytes.

74 iSeries: Message Handling APIs

Length of field information returned. The total length of information returned for this field, in bytes.

Message file library specified at send time. The name of the library containing the message file as

specified when the message was sent. If *CURLIB or *LIBL was specified for the library when the

message was sent, that value is returned as the library here. For the actual library used when the

message is sent, see the message file library used field identifier.

Message file name. The name of the message file containing the message listed.

Message identifier. The identifying code of the message listed. If an immediate message is listed, this

field is set to blanks.

Message key. The key of the message listed.

Message queue. The name of the message queue where the message was listed.

Message queue library used. The actual library that contains the message queue.

Message severity. The severity of the message listed. Possible values are 0 through 99.

Message type. The type of message listed. The possible values and their meanings follow:

 Value Message Type

01 Completion

02 Diagnostic

04 Informational

05 Inquiry

06 Sender’s copy

08 Request

10 Request with prompting

14 Notify, exception already handled when API is called

15 Escape, exception already handled when API is called

16 Notify, exception not handled when API is called

17 Escape, exception not handled when API is called

21 Reply, not checked for validity

22 Reply, checked for validity

23 Reply, message default used

24 Reply, system default used

25 Reply, from system reply list

26 Reply, from exit program

Microseconds. The microseconds part of the time sent.

Number of fields returned. The number of identifier fields returned to the application.

Offset to fields returned. The offset, in bytes, from the beginning of the receiver variable to the

beginning of the first repeating identified field of the LSTM0100 format.

Offset to the next entry. The offset, in bytes, from the beginning of the receiver variable to the beginning

of the next message entry.

Offset to the next field information returned. The offset, in bytes, from the beginning of the receiver

variable to the beginning of the next repeating identified field of the LSTM0100 format.

Reserved. An ignored field.

Message Handling APIs 75

Status of data. The status of the data listed for this message. Possible values and their meanings follow:

 blank The data returned is complete.

A The caller of the API was not authorized to view the data. This occurs when the caller of the API

is not authorized to the message file or message file library containing a stored message being

listed.

D The data was damaged. This occurs when the message file or library specified at send time for a

stored message is damaged when the API is called.

U The data was unavailable. This occurs when the message file or library specified at send time for a

stored message is exclusively used by another process when the API is called.

N The data was not found. This occurs when the message file or library specified at send time for a

stored message cannot be found or resolved when the API is called.

This field is applicable to the field identifiers that are retrieved from the message file for a stored

message. A description of the action that occurs for specific field identifiers when the status of data field

is not blank follows:

 0101 When the status of data field is not blank, the alert option field identifier contains blanks.

0301, 0302 When the status of data field is not blank, these message field identifiers contain message text

about the problem encountered while attempting to access the message file. Both fields have the

replacement data substituted.

0401, 0402, 0403,

0404

When the status of data field is not blank, these message help field identifiers contain the text of

the message regarding the problem encountered while attempting to access the message file. All

fields have the replacement data substituted. The message help with formatting characters and

message help with replacement data and formatting characters field identifiers also have the

message formatting characters included.

0501 When the status of data field is not blank, the default reply field identifier contains the system

default reply.

0801 When the status of data field is not blank, the message file library used field identifier contains

blanks.

This field is also applicable to the various sending information fields (identifiers 0601, 0603) when a

problem is encountered while attempting to retrieve this information. When one of these fields cannot be

retrieved from the message:

v The status of data field is set to N.

v The length of data field is set to 0.

The status of data field is always blank for the other field identifiers. The length of data field is zero.

Time sent. The time at which the message being listed was sent, in HHMMSS (hour, minute, and second)

format.

Type of data. The type of data returned.

 C The data is returned in character format.

B The data is returned in binary format.

M The data is returned in a mixed format. This value is returned for the field IDs 0606 and 0706.

Message Selection Information Format

The organization of the message selection information parameter is shown below. For detailed

descriptions of each field, see “Field Descriptions” on page 77.

76 iSeries: Message Handling APIs

Offset

Type Field Dec Hex

0 0 CHAR(10) List direction

10 0A CHAR(2) Reserved

12 0C BINARY(4) Severity criteria

16 10 BINARY(4) Maximum message length

20 14 BINARY(4) Maximum message help length

24 18 BINARY(4) Offset of selection criteria

28 1C BINARY(4) Number of selection criteria

32 20 BINARY(4) Offset of starting message keys

36 24 BINARY(4) Offset of identifiers of fields to return

40 28 BINARY(4) Number of fields to return

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) of

CHAR(10)

Selection criteria

ARRAY(*) of

CHAR(4)

Starting message keys

ARRAY(*) of

BINARY(4)

Identifiers of fields to return

Field Descriptions

Identifiers of fields to return. The list of the identifiers of fields to be returned in the receiver variable.

For a list of the valid field identifiers, see “Valid Field Identifiers” on page 78.

The reply status field must always be requested.

List direction. The direction to list messages. You must use one of these directions:

 *NEXT Return messages that are newer than the messages specified by the starting message keys

parameter. *NEXT lists the messages starting with the oldest message first in the list, and the most

recently sent message last in the list.

*PRV Return messages that are older than the messages specified by the starting message keys

parameter. *PRV lists the messages starting with the most recently sent message first in the list,

and the oldest message last in the list.

If multiple message queues are to be listed, messages are intermixed and sorted by date and time in the

specified manner.

Maximum message help length. The maximum length to be returned for fields 0401, 0402, 0403, and

0404.

Maximum message length. The maximum length to be returned for fields 0301 and 0302.

Number of fields to return. The number of fields to return. The reply status field must always be

requested.

Number of selection criteria. The number of selection criteria specified. You must specify at least 1 and

no more than 3.

Message Handling APIs 77

Offset of identifiers of fields to return. The offset, in bytes, from the beginning of the message selection

information parameter to the beginning of the identifiers of fields to return array.

Offset of starting message keys. The offset, in bytes, from the beginning of the message selection

information parameter to the beginning of the starting message keys array.

Offset to selection criteria. The offset, in bytes, from the beginning of the message selection information

parameter to the beginning of the selection criteria array.

Reserved. An ignored field.

Selection criteria. The type of messages to be listed. You must use at least one of these values and no

more than three for this parameter. If more than one value is given and one of them is *ALL, an error is

given. If more than one value is given, the messages are grouped by type. Specifying all three values is

equivalent to specifying *ALL and requesting sorting.

 *ALL All messages are to be listed.

*MNR Only messages that need a reply are listed. This includes only unanswered, inquiry-type messages.

*SCNR Only the sender’s copy messages that need a reply are listed. This includes only unanswered,

sender’s-copy type of messages.

*MNNR Only messages that do not need a reply are listed. This includes informational, completion,

diagnostic, request, notify, escape, request, answered inquiry, and answered, sender’s-copy type of

messages.

Severity criteria. The minimum severity of a message to be included in the list. The value must be in the

range 0 to 99. To list all messages, specify a severity criteria of 0.

Starting message keys. The message key used to begin searching for messages to list from the

corresponding entry in the message queue. If *CURRENT is specified for the user name in the user or

queue information parameter, two values must be specified. The first value is the starting message key

for the current user’s user message queue. The second value is the starting message key for the current

user’s workstation message queue. If either a specific user name or a specific message queue name is

specified in the user or queue information parameter, only one message key is used.

You can use these special values for the message keys:

 ’00000000’X The first message to be returned is the oldest message in the queue.

’FFFFFFFF’X The first message to be returned is the newest message in the queue.

If a value other than ’00000000’X or ’FFFFFFFF’X is specified and a message with that key does not exist,

an error is returned. If a key of a reply message is specified, the message search begins with the inquiry

or sender’s copy message that the reply is associated with, not the reply message itself.

If the message specified by the starting message key exists but does not meet the selection criteria and

severity criteria parameters specified, no error is returned and the search for messages to list begins from

the message specified by the starting message key.

Valid Field Identifiers

For a detailed description of each field, see “Field Descriptions” on page 79.

 Identifier Type Description

0101 CHAR(9) Alert option

0201 CHAR(*) Replacement data or immediate message text

78 iSeries: Message Handling APIs

Identifier Type Description

0301 CHAR(*) Message

0302 CHAR(*) Message with replacement data

0401 CHAR(*) Message help

0402 CHAR(*) Message help with replacement data

0403 CHAR(*) Message help with formatting characters

0404 CHAR(*) Message help with replacement data and formatting characters

0501 CHAR(*) Default reply

0601 CHAR(26) Qualified sender job name

0602 CHAR(1) Sender type

0603 CHAR(*) Sending program name

0604 CHAR(10) Sending module name

0605 CHAR(*) Sending procedure name

0606 BINARY(4) followed

by ARRAY(*) of

CHAR(10)

Number of sending statement numbers or instruction numbers available

followed by an array of the sending statement numbers or instruction

numbers

0607 CHAR(10) Sending user profile

0702 CHAR(1) Receiving type

0703 CHAR(10) Receiving program name

0704 CHAR(10) Receiving module name

0705 CHAR(*) Receiving procedure name

0706 BINARY(4) followed

by ARRAY(*) of

CHAR(10)

Number of receiving statement numbers or instruction numbers available

followed by an array of the receiving statement numbers or instruction

numbers

0801 CHAR(10) Message file library used

0901 CHAR(30) Problem identification

1001 CHAR(1) Reply status

1002 CHAR(1) Critical break message status

1101 CHAR(1) Request status

1201 BINARY(4) Request level

1301 BINARY(4) Coded character set identifier (CCSID) for text

1302 BINARY(4) CCSID conversion status indicator for text

1303 BINARY(4) Coded character set identifier (CCSID) for data

1304 BINARY(4) CCSID conversion status indicator for data

Field Descriptions

Alert option. Whether and when an SNA alert is created and sent for the message. If a message is listed,

the value is one of the following:

 *DEFER An alert is sent after local problem analysis.

*IMMED An alert is sent immediately when the message is sent to a message queue that has the allow

alerts attribute set to *YES.

*NO No alert is sent.

Message Handling APIs 79

*UNATTEND An alert is sent immediately when the system is running in unattended mode (when the value of

the alert status network attribute, ALRSTS, is *UNATTEND).

For more information about alerts, see the Alerts Support

book.

This field is set to blanks if no alert option was specified when the message was sent.

CCSID conversion status indicator for data. The following values may be returned:

 0 No conversion was needed because the CCSID of the data matched the CCSID that you wanted

the data converted to.

1 No conversion occurred because either the data was 65535, or the CCSID you wanted the data

converted to was 65535.

2 No conversion occurred because you did not ask for any message data to be returned or the data

did not contain any *CCHAR type data.

3 The data was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The data was not converted.

CCSID conversion status indicator for text. The following values may be returned:

 0 No conversion was needed because the CCSID of the text matched the CCSID you wanted the text

converted to.

1 No conversion occurred because either the text was 65535 or the CCSID you wanted the text

converted to was 65535.

2 No conversion occurred because you did not ask for any text to be returned.

3 The text was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The data was not converted.

Coded character set identifier (CCSID) for data. The coded character set identifier that the replacement

data is returned in. This only applies to the part of the replacement data that corresponds to a convertible

character data type (*CCHAR). All other replacement data will not be converted before it is returned and

can be considered to have a CCSID of 65535. If a conversion error occurs or if the CCSID you requested

the data to be converted to is 65535, the CCSID of the data is returned. If there is no *CCHAR

replacement data, 65535 is returned. Otherwise the CCSID you wanted the data converted to is returned.

For more information about message handler and its use of CCSIDs, see CCSIDs: Message Support in the

Globalization topic. For more information about the *CCHAR field type, see the Add Message

Description (ADDMSGD) command.

Coded character set identifier (CCSID) for text. The coded character set identifier that the message text

is returned in. If a conversion error occurs or if the CCSID you requested the message text to be

converted to is 65535, the CCSID that the message text is stored in is returned. Otherwise the CCSID you

wanted your message text converted to is returned. If you do not want the text converted before it is

returned to you but you do want to know the CCSID that the message text is stored in, specify 65535 on

the coded character set identifier to return text and data in parameter. The CCSID that the message text is

stored in is returned in the coded character set identifier for text field.

This applies to the following fields only:

v Message

80 iSeries: Message Handling APIs

v Message with replacement data

v Message help

v Message help with replacement data

v Message help with replacement data and formatting characters

v Message help with formatting characters

Note: This CCSID value does not apply to the replacement data that has been substituted into the text.

See the coded character set identifier (CCSID) for data field for this information.

Critical break message status. Whether the message was sent by the operating system as a critical break

message. The following values are returned:

 1 The message was sent as a critical break message.

0 The message was not sent as a critical break message.

Default reply. The text of the default reply when a stored message is being listed, and a default reply

exists. If this is not an inquiry message, or no default reply exists, this field is not used, and the length of

data field is 0.

Message. The text of a predefined message without replacement data substitution. If an immediate

message is listed, this field contains the immediate message text.

Message file library used. The actual name of the library that contains the message file that is used to

retrieve the message information. If an immediate message is listed, this field is set to blanks.

Message help. The message help for the message listed without formatting characters and without

replacement of data. If an immediate message is listed, this field contains the immediate message text.

Message help with formatting characters. The message help for the message listed, including formatting

characters.

Three format control characters can be returned within the message. They are defined in the online help

of the Add Message Description (ADDMSGD) command to have these meanings:

 &N Forces the text to a new line (column 2). If the text is longer than one line, the next lines are

indented to column 4 until the end of text or another format control character is found.

&P Forces the text to a new line indented to column 6. If the text is longer than one line, the next

lines start in column 4 until the end of text or another format control character is found.

&B Forces the text to a new line, starting in column 4. If the text is longer than one line, the next lines

are indented to column 6 until the end of text or another format control character is found.

If an immediate message is listed, this field contains the immediate message text.

Message help with replacement data. The message help for the message listed, including the

replacement data. If an immediate message is listed, this field contains the immediate message text.

Message help with replacement data and formatting characters. The message help for the message

listed, including the replacement data and the formatting characters. See the description of the message

help with formatting characters field for an explanation of formatting characters. If an immediate

message is listed, this field contains the immediate message text.

Message with replacement data. The text of a predefined message with the replacement data included. If

an immediate message is listed, this field contains the immediate message text.

Message Handling APIs 81

Number of receiving statement numbers or instruction numbers available followed by an array of the

receiving statement numbers or instruction numbers. This field can be specified for the QGYOLMSG

API, but it never returns any data and the length of data field is 0.

Number of sending statement numbers or instruction numbers available followed by an array of the

sending statement numbers or instruction numbers. This field can be specified for the QGYOLMSG API,

but it never returns any data and the length of data field is 0.

Problem identification. The number the system generates to identify a problem if problem analysis can

be run for the message being listed. The problem identification is in the following format:

 CHAR 1-10 Problem ID number. The number the system generates to identify the problem.

CHAR 11-30 Origin system in the format network-ID.control-point-name.

If problem analysis cannot be run, and this field is specified, the length of data field is 0.

Qualified sender job name. The name of the job that sent the message. The job name has three parts:

 CHAR 1-10 The specific job name.

CHAR 11-20 The specific user profile name.

CHAR 21-26 The specific job number.

Receiving module name. This field can be specified for the QGYOLMSG API, but it never returns any

data and the length of data field is 0.

Receiving procedure name. This field can be specified for the QGYOLMSG API, but it never returns any

data and the length of data field is 0.

Receiving program name. This field can be specified for the QGYOLMSG API, but it never returns any

data and the length of data field is 0.

Receiving type. This field can be specified for the QGYOLMSG API, but it never returns any data and

the length of data field is 0.

Replacement data or immediate message text. The values for replacement variables in a predefined

message, or the text of an immediate message. If the message identifier field is not blank, this field

contains message data. If the message identifier field is blank, this field contains immediate message text.

Any pointer data in this field is marked as not valid if both of the following are true:

v The API is called by a call stack entry not running in system state.

v The system security level is 50 or above.

Reply status. The reply status of the message (whether it accepts a reply, and if so, whether a reply has

been sent). This field must always be requested. Possible values and their meanings follow:

 A Message accepts a reply, and a reply has been sent.

W Message accepts a reply, and a reply has not been sent. (The message is waiting for a reply.)

N Message does not accept a reply.

Request level. This field can be specified for the QGYOLMSG API, but it never returns any data and the

length of data field is 0.

Request status. This field can be specified for the QGYOLMSG API, but it never returns any data and the

length of data field is 0.

82 iSeries: Message Handling APIs

Sender type. This field can be specified for the QGYOLMSG API, but it never returns any data and the

length of data field is 0.

Sending module name. This field can be specified for the QGYOLMSG API, but it never returns any data

and the length of data field is 0.

Sending procedure name. This field can be specified for the QGYOLMSG API, but it never returns any

data and the length of data field is 0.

Sending program name. The sending program name or ILE program name that contains the procedure

sending the message.

Sending user profile. The name of the user profile that the thread was running under when the

message was sent.

Error Messages

 Message ID Error Message Text

CPF2203 E User profile &1 not correct.

CPF2204 E User profile &1 not found.

CPF2207 E Not authorized to use object &1 in library &3 type *&2.

CPF2213 E Not able to allocate user profile &1.

CPF2217 E Not authorized to user profile &1.

CPF2225 E Not able to allocate internal system object.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0017 E &1 is not valid for user or queue indicator.

GUI0027 E &1 is not valid for number of records to return.

GUI0040 E User name cannot be blank.

GUI0043 E &1 is not valid for sort indicator parameter.

GUI0044 E &1 is not valid for length of message selection information.

GUI0045 E &1 is not valid for number of selection criteria.

GUI0046 E *ALL cannot be specified with another value in message selection criteria.

GUI004A E Key 1001 for reply status field is not specified.

GUI004B E Message queue associated with user name &1 does not exist.

GUI004C E Message queue name and library must be specified.

API introduced: V3R6

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 83

#TOP_OF_PAGE
aplist.htm

Promote Message (QMHPRMM) API

 Required Parameter Group:

1 Invocation pointer

Input Pointer

2 Call stack counter

Input Binary(4)

3 Message key

Input Char(4)

4 Message identifier

Input Char(7)

5 Qualified message file name

Input Char(20)

6 Message data

Input Char(*)

7 Length of message data

Input Binary(4)

8 Message type

Input Char(10)

9 Message severity

Input Binary(4)

10 Log option

Input Char(1)

11 Priority

Input Char(10)

12 New message key

Output Char(4)

13 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Promote Message (QMHPRMM) API promotes an escape or status message that has been sent to a

call stack entry. The API replaces the message with a new escape or status message to the same call stack

entry. An escape message may be promoted to another escape message or to a status message. A status

message may be promoted to an escape message or to another status message. The stored severity of the

new message may be overridden. The new message may be added to the job log, and the initial priority

of the new message may be changed.

The message to be promoted must be an active escape message or status message, existing on the

message queue of the specified call stack entry. This API causes the existing message to be handled. The

84 iSeries: Message Handling APIs

source call stack entry of the new message is the same as the source call stack entry of the promoted

message. The message key of the new message is returned to the caller of this API. If the new message is

not monitored by the target call stack entry, an error may be returned to the caller of this API and the

new message key may not be returned.

In a multithreaded job only messages on a call message queue in the thread that calls this API can be

promoted. This API cannot promote messages on call message queues in other threads.

Authorities and Locks

Message File Authority

*USE

Message File Library Authority

*EXECUTE

Required Parameter Group

Invocation pointer

INPUT; POINTER

 The invocation pointer to the call stack entry receiving the escape message or status message that

is to be promoted. When the call stack counter parameter is other than 0, the invocation pointer

points to the call stack entry from which to start counting earlier in the call stack. This locates the

call stack entry that received the escape message or status message being promoted. The call

stack entry you specify must be in the call stack. A null invocation pointer may be specified. If

this pointer is not set, the call stack entry that called the QMHPRMM API is used.

Call stack counter

INPUT; BINARY(4)

 A number identifying the location in the call stack of the call stack entry receiving the escape or

status message that is to be promoted. The number is relative to the call stack entry specified in

the invocation pointer parameter. It indicates how many calls up the call stack the call stack entry

is from the one specified in the invocation pointer parameter. Valid values follow:

 0 Promotes the message that was sent to the call stack entry specified in the invocation pointer

parameter.

1 Promotes the message sent to the call stack entry that called the call stack entry specified in the

invocation pointer parameter.

n (any positive

number)

Promotes the message sent to the nth call stack entry earlier in the stack from the call stack entry

specified in the invocation pointer parameter.

You can use any positive number that points to an actual call stack entry in the call stack.

Message key

INPUT; CHAR(4)

 The message key of the existing message that is to be promoted.

Message identifier

INPUT; CHAR(7)

 The identifying code for the new predefined message that replaces the message being promoted.

Qualified message file name

INPUT; CHAR(20)

 The name of the message file and the library in which the new predefined message resides. The

first 10 characters specify the file name, and the second 10 characters specify the library. You

must specify both the message file name and the library name. You can use these special values

Message Handling APIs 85

for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Message data

INPUT; CHAR(*)

 The data to insert in the predefined message’s substitution variables.

 If there is no data to insert, a value of 0 should be specified for the length of message data

parameter.

 If this parameter contains pointer data, each pointer must start on a 16-byte boundary to keep the

data accurate.

Length of message data

INPUT; BINARY(4)

 The length of the message data, in bytes. Valid values are 0 through 32767.

Message type

INPUT; CHAR(10)

 The type of the new message.

 You must specify one of these values:

 *ESCAPE Escape message

*STATUS Status message

You may promote an escape message to another escape message or to a status message. You may

promote a status message to an escape message or to another status message.

Message severity

INPUT; BINARY(4)

 A number identifying the message severity that overrides the severity that is stored in the

message description for the message. Valid values follow:

 -1 The message severity is not to be overridden.

0-99 The severity for the new message that replaces the message being promoted. For a list of the

severity codes and their meanings, see the CL Programming

book.

Log option

INPUT; CHAR(1)

 A value that indicates whether the new message is to appear in the job log. Valid values follow:

 0 The new message is not to appear in the job log.

1 The new message is to appear in the job log. However, if the exception monitor for the new

message indicates that it is not to be enqueued, it does not appear in the job log. This parameter

value is only valid when the message type parameter is *ESCAPE. If the message type parameter

is *STATUS, an error is returned to the caller of this API.

Priority

INPUT; CHAR(10)

 The initial priority of the new message.

86 iSeries: Message Handling APIs

You must specify one of these values:

 *CONTINUE Continue. The initial priority of the new message is the same as the current priority of the

message that is being promoted.

*LERETRY Retry. The initial priority of the new message is 135, so that the first condition handler that will

get control is the ILE condition manager.

*LEDFT LE/400 Default. The initial priority of the new message is 225, which indicates LE default action.

This causes the exception to be moved up to the next call stack entry where processing continues

at the first handler condition.

New message key

OUTPUT;CHAR(4)

 The message key of the new message that replaces the promoted message.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24A3 E Value for call stack counter parameter not valid.

CPF24B3 E Message type &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B6 E Length of &1, not valid for message text or data.

CPF2401 E Not authorized to library &1.

CPF2407 E Message file &1 in &2 not found.

CPF2410 E Message key not found in message queue &1.

CPF2411 E Not authorized to message file &1 in &2.

CPF2419 E Message identifier &1 not found in message file &2 in &3.

CPF243A E Invocation pointer parameter not valid.

CPF243B E Message severity &1 not valid.

CPF243C E Log option &1 not valid.

CPF243D E Priority &1 not valid.

CPF243E E Message is not an active exception.

CPF243F E Cannot promote message of type other than *ESCAPE or *STATUS.

CPF2499 E Message identifier &1 not allowed.

CPF2531 E Message file &1 in &2 damaged for &3.

CPF2548 E Damage to message file &1 in &2.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 87

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Receive Nonprogram Message (QMHRCVM) API

 Required Parameter Group:

1 Message information

Output Char(*)

2 Length of message information

Input Binary(4)

3 Format name

Input Char(8)

4 Qualified message queue name

Input Char(20)

5 Message type

Input Char(10)

6 Message key

Input Char(4)

7 Wait time

Input Binary(4)

8 Message action

Input Char(10)

9 Error code

I/O Char(*)
 Optional Parameter Group 1:

10 Coded character set identifier

Input Binary(4)
 Optional Parameter Group 2:

11 Allow default reply rejection

Input Char(10)
 Default Public Authority: *USE

 Threadsafe: Yes

The Receive Nonprogram Message (QMHRCVM) API receives a message from a nonprogram message

queue. To receive a message from a program message queue or from the external message queue, see

“Receive Program Message (QMHRCVPM) API” on page 100 API.

Authorities and Locks

Message Queue Authority

*USE and *DLT if the message action parameter specifies *REMOVE; *USE for other message

actions.

88 iSeries: Message Handling APIs

Message Queue Library Authority

*EXECUTE

Message File Authority

*USE, if receiving a predefined message and the message file used when the message was sent

was deleted and recreated.

Message File Library Authority

*EXECUTE, if receiving a predefined message and the message file used when the message was

sent was deleted and recreated.

Message Queue Lock

If a wait time is specified and the API must wait, the message queue is allocated to the job calling

the API for the duration of the wait.

 Other jobs on the system can only send messages to the queue during the wait time. Other jobs

cannot place the queue in *BREAK or *NOTIFY mode, remove messages from the queue, or do

an additional receive message with wait operation during this time.

Required Parameter Group

Message information

OUTPUT; CHAR(*)

 The variable that receives the information returned, in the format specified by the format name

parameter, of the length specified by the length of message information parameter.

Length of message information

INPUT; BINARY(4)

 The size of the area to contain the message information, in bytes. The minimum size is 8.

 This parameter must specify the size of the variable you use for the message information

parameter. If this parameter specifies a longer size, other parts of storage could be overwritten

when the API returns the information.

 The API returns as much information as it can fit in this length. If the available message

information is longer, it is truncated. If the available message information is shorter, the unused

output area is unchanged; whatever is already stored in that space remains there.

 To determine how much information the API actually returns in response to this call, see the

bytes returned field in the RCVM0100 or RCVM0200 output. To determine how much

information the API could return if space were available, see the bytes available field.

Format name

INPUT; CHAR(8)

 The format to use for the message information. Specify one of these format names:

 RCVM0100 Brief message information. For details, see “RCVM0100 Format” on page 93.

RCVM0200 All message information. For details, see “RCVM0200 Format” on page 93.

Qualified message queue name

INPUT; CHAR(20)

 The name of the message queue from which to receive the message, and the library in which it

resides. The first 10 characters specify the message queue, and the second 10 characters specify

the library. You can use these special values for the library name:

Message Handling APIs 89

*CURLIB The job’s current library

*LIBL The library list

You cannot receive messages from the history log, QHST.

Message type

INPUT; CHAR(10)

 The type of the message being received. The message type and message key parameters work

together. Depending on the message type, the key can be required, optional, or disallowed. For a

list of valid message types and information about how they work with the message key

parameter, see “Message Types and Message Keys” on page 92.

Message key

INPUT; CHAR(4)

 The key to the message being received. The key is assigned by the command or API that sends

the message.

 What you can use for this parameter depends on what you use for the message type. For details,

see “Message Types and Message Keys” on page 92.

 If you are not receiving messages by key, use blanks for this parameter.

 If you specify a key and the message queue does not contain a message with that key, an error is

returned.

 If you specify a key and the message queue does contain a message with that key, the API might

or might not return a message. It never returns an error in this case. Whether or not the API

returns a message depends on the value of the message type parameter. For example, if you

specify the message type *PRV and there is no message before the message with the key, the API

does not return a message. Because the key you specified is valid, the API does not return an

error either.

 You can receive the reply to an inquiry message through the key to the sender’s copy of the

inquiry. If the reply is not available, no message is returned, and the API does not return an error.

 When the message type is the special value *NEXT, you can use the special value *TOP for the

message key. *TOP returns the message at the top of the queue.

 When the message type is the special value *NEXT or *PRV, you can use hexadecimal zeros for

the message key for the first receive operation.

Wait time

INPUT; BINARY(4)

 The length of time in seconds to wait for the message to arrive in the queue so it can be received.

 The system ignores this parameter when you specify both a message key and a message type

other than reply (*RPY). The parameter is used in only two cases:

1. The message type is reply (*RPY), and the message key parameter specifies the key to the

sender’s copy of the message.

2. The message type is anything except reply (*RPY), and the message key parameter is blank. In

this case, the QMHRCVM API does not use the wait time parameter immediately. First, the

API checks the queue for the first message of that type that has not been received. If no such

message is found, the API then waits the specified length of time for a message to arrive.

Valid values follow:

 0 Do not wait for the message. You must use 0 if you specify a message key and the message is not

a reply message.

90 iSeries: Message Handling APIs

-1 Wait until the message arrives in the queue and is received, no matter how long it takes. The

system has no limit for the wait time.

n (any positive

number)

Wait n seconds for the message to arrive in the queue.

If you specify a value of zero or above and the message does not arrive in the specified time,

most fields in the RCVM0100 or RCVM0200 output are unchanged. The bytes returned output

field has a value of 8, and the bytes available output field has a value of 0. The remaining output

fields are unchanged; they contain whatever was already stored in the space.

Message action

INPUT; CHAR(10)

 The action to take after the message is received. Valid values follow:

 *OLD Keep the message in the message queue and mark it as an old message. You can receive the

message again only by using the message key or by specifying the message type *NEXT, *PRV

(previous), *FIRST, or *LAST.

*REMOVE Remove the message from the message queue. The message key is no longer valid, so you cannot

receive the message again.

*SAME Keep the message in the message queue without changing its new or old designation. *SAME lets

you receive the message again later without using the message key.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 1

Coded character set identifier

INPUT; BINARY(4)

 The coded character set identifier (CCSID) in which that you want your message text and

replacement data returned. This applies to the message text and the parts of the replacement data

defined as a convertible character field (*CCHAR). For more information about *CCHAR fields,

see the Add Message Description (ADDMSGD) Command. The following values are allowed:

 0 The received message is converted to the CCSID of the job before being returned. This is the

default value if this parameter is not coded.

If the job is 65535 and the text or data is something other than EBCDIC single byte or EBCDIC

mixed, the text and data are converted to the default job CCSID.

65535 The received message will not be converted before being returned.

CCSID Specify a CCSID you want your text and data converted to before being returned. Only CCSIDs

that a job can be changed to are acceptable values. This API will validate the CCSID specified.

Note: If an invalid CCSID conversion is detected during the receive function, the data is not

converted before it is returned. The CCSID conversion status field should be checked to

determine if an error occurred.

 For more information about message handler and its use of CCSIDs, see CCSIDs: Message

Support in the Globalization topic.

Optional Parameter Group 2

Allow default reply rejection

INPUT; CHAR(10)

Message Handling APIs 91

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Removing an unanswered inquiry causes the default reply to be sent to the inquiry message. This

value indicates whether a reply handling exit program will be allowed to reject a default reply

that is sent as a result of using this function. A reply handling exit program can be registered via

the system registration facility for exit point QIBM_QMH_REPLY_INQ. If this parameter is not

specified, a value of *NO is used. This parameter is only applicable when *REMOVE is specified

for the message action parameter. Valid values are:

 *NO A reply handling exit program will not be allowed to reject a default reply.

*YES A reply handling exit program will be allowed to reject a default reply. If an exit program rejects

the reply, a CPD2476 (Reply rejected by a reply handling exit program) will be sent as a diagnostic

message to the program using this function. The CPD2476 will be followed by a CPF2422 (Reply

not valid) escape message that the program using this function should monitor for to handle and

recover from error situations.

Message Types and Message Keys

The message type and message key parameters work together. Depending on the message type, the key

can be required, optional, or disallowed. The following table lists each message type you can specify, tells

whether it requires a key, and gives other information about using that type.

When used without a key, most message types receive only new messages. When used with a key, most

can receive old or new messages. Message types *FIRST, *LAST, *PRV (previous), and *NEXT always

receive both old and new messages.

New messages are messages that have been sent to a queue and have not yet been received. Old

messages are messages that have been received but have not yet been removed from the queue.

All message types listed in the following table are received in first-in first-out (FIFO) order.

The following terms are used to describe the message key in the following table:

 Disallowed Do not specify a message key. Instead, use blanks for the message key parameter. Specifying a

message key results in an error.

Required Specify a message key. Not specifying a message key results in an error.

Optional You can either specify a message key or use blanks for the message key parameter.

When you do not specify a message key, the first new message of the specified type is received. If

a new message of that type is not in the message queue, no error is returned. The unused space

allowed for the output in the message information parameter is unchanged.

When you specify a message key and the message in the message queue is of the type specified,

the message is received. If the message is not found, or if the message found does not match the

type specified, an error code or exception is returned.

There are two cases where the message is not found and no error is returned. In both cases, the bytes

returned field equals 8 and the bytes available field equals 0. The two cases are:

v Receiving without a message key (the key is optional or disallowed). A message of the specified type is

not found in the queue.

v Receiving with a message key (the key is required) and the message type is *PRV or *NEXT. The

message with the key specified was found in the queue, but no *PRV or *NEXT message is found.

The message types you can specify in the QMHRCVM API follow:

 Message Type Message Key Description

*ANY Optional Receives a message of any type except sender’s copy.

*COMP Optional Receives a completion message.

92 iSeries: Message Handling APIs

Message Type Message Key Description

*COPY Required Receives the sender’s copy of a previously sent inquiry message. The qualified

message queue name parameter must specify the reply message queue specified

when the inquiry was sent.

*DIAG Optional Receives a diagnostic message.

*FIRST Disallowed Receives the first new or old message in the queue.

*INFO Optional Receives an informational message.

*INQ Optional Receives an inquiry message. If the message action is *REMOVE and a reply to

the inquiry message has not been sent yet, the default reply is automatically

sent when the inquiry message is received.

*LAST Disallowed Receives the last new or old message in the queue.

*NEXT Required Receives the next new or old message after the message with the specified key.

You can use the special value *TOP for the message key. *TOP designates the

message at the top of the message queue.

You can use hexadecimal zeros (hex 00000000) for the message key for the first

receive operation to receive the first message on the queue.

*PRV Required Receives the new or old message before the message with the specified key.

You can use hexadecimal zeros (hex 00000000) for the message key for the first

receive operation to receive the last message on the queue.

*RPY Optional Receives the reply to an inquiry message. For the message key, you can use the

key to the sender’s copy of the inquiry or notify message.

RCVM0100 Format

The following table lists the fields returned in the RCVM0100 format. For more information about each

item of information, see “Field Descriptions” on page 95.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Message severity

12 C CHAR(7) Message identifier

19 13 CHAR(2) Message type

21 15 CHAR(4) Message key

25 19 CHAR(7) Reserved

32 20 BINARY(4) CCSID conversion status indicator of message data or text

36 24 BINARY(4) CCSID of message data or text

40 28 BINARY(4) Length of replacement data or impromptu message text returned

44 2C BINARY(4) Length of replacement data or impromptu message text available

48 30 CHAR(*) Replacement data or impromptu message text

RCVM0200 Format

The following table lists the fields returned in the RCVM0200 format. For more information about each

item of information, see “Field Descriptions” on page 95.

Message Handling APIs 93

Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Message severity

12 C CHAR(7) Message identifier

19 13 CHAR(2) Message type

21 15 CHAR(4) Message key

25 19 CHAR(10) Message file name

35 23 CHAR(10) Message file library specified

45 2D CHAR(10) Message file library used

55 37 CHAR(10) Sending job

65 41 CHAR(10) Sending

job’s

user profile

75 4B CHAR(6) Sending job’s number

81 51 CHAR(12) Sending program name

93 5D CHAR(4) Reserved

97 61 CHAR(7) Date sent

104 68 CHAR(6) Time sent

110 6E CHAR(6) Microseconds

116 74 CHAR(10) Sending user profile

126 7E CHAR(1)

Reserved

127 7F BINARY(4) CCSID conversion status indicator for text

131 83 BINARY(4) CCSID conversion status indicator for data

135 87 CHAR(9) Alert option

144 90 BINARY(4) CCSID of message or message help

148 94 BINARY(4) CCSID of replacement data or impromptu message text

152 98 BINARY(4) Length of replacement data or impromptu message text returned

156 9C BINARY(4) Length of replacement data or impromptu message text available

160 A0 BINARY(4) Length of message returned

164 A4 BINARY(4) Length of message available

168 A8 BINARY(4) Length of message help returned

172 AC BINARY(4) Length of message help available

176 B0 CHAR(*) Replacement data or impromptu text

The offsets to these

fields equal the offset

to the last fixed-length

field plus the length of

the previous variable

length fields.

CHAR(*) Message

CHAR(*) Message help

94 iSeries: Message Handling APIs

Field Descriptions

The following field descriptions apply only when a message is received. If no message is found, only the

bytes available and bytes returned fields contain new values. The remaining fields contain whatever

information was already stored in the space allowed for the output.

Alert option. Whether and when an SNA alert is created and sent for the message. If a message is

received, the value is one of the following:

 *DEFER An alert is sent after local problem analysis.

*IMMED An alert is sent immediately when the message is sent to a message queue that has the allow

alerts attribute set to *YES.

*NO No alert is sent.

*UNATTEND An alert is sent immediately when the system is running in unattended mode (when the value of

the alert status network attribute, ALRSTS, is *UNATTEND).

For more information, see the Alerts Support

book.

Bytes available. The length of all available information that could be returned for the format. Bytes

available can be greater than the length specified in the API’s length of message information parameter. If

it is greater, the information returned in the message information parameter is truncated to the length

specified.

Bytes returned. The length of all information returned in the format. The value of the bytes returned field

is always less than or equal to the length of the message information parameter. Also, it is always less

than or equal to the bytes available. There is one exception to this. When you attempt to receive a

message and the message is not found, the following occurs:

v The value of the bytes returned field is 8.

v The value of the bytes available field is 0.

v The remaining fields are unchanged (that is, they contain whatever was already stored in that space).

If the bytes returned value is less than the length specified in the length of message information

parameter, the extra space in the message information parameter is unchanged.

CCSID conversion status indicator for text. The following values may be returned:

 0 No conversion was needed because the CCSID of the message or message help text matched the

CCSID you wanted the message or message help text converted to.

1 No conversion occurred because either the message or message help text was 65535 or the CCSID

you wanted the message or message help text converted to was 65535.

2 No conversion occurred because you did not supply enough space for the message or message

help.

3 The message or message help text was converted to the CCSID specified using the best fit

conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The text was not converted.

CCSID conversion status indicator for data. The following values may be returned:

 0 No conversion was needed because the CCSID of the replacement data or impromptu message

text matched the CCSID you wanted the data or text converted to.

1 No conversion occurred because either the data was 65535 or the CCSID you wanted the data

converted to was 65535.

Message Handling APIs 95

2 No conversion occurred because you did not supply enough space for the data.

3 The data was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The data was not converted.

CCSID of message and message help. The CCSID of the text in the message and message help fields is

returned. The inserted replacement data may not be the same CCSID. Refer to the CCSID of the

replacement data or impromptu message text field description for a more details.

If a conversion error occurs or the CCSID you requested the text to be converted to is 65535, the CCSID

that the message description is stored in is returned. Otherwise, the CCSID you wanted your text

converted to is returned. If you do not want the text converted before it is returned to you but you do

want to know the CCSID that the message description is stored in, specify 65535 on the coded character

set identifier parameter. The CCSID that the message description is stored in is returned in the CCSID of

message and message help output field.

CCSID of replacement data or impromptu message text. The CCSID of the replacement data or

impromptu message text is returned. If an impromptu message text is received, this is the CCSID of the

impromptu message text. When replacement data is received, this is the CCSID of the replacement data

fields defined as convertible character (*CCHAR) in the message description. All other replacement data

is not converted before it is returned. If a conversion error occurs or the CCSID you requested the data to

be converted to is 65535, the CCSID of the data or text is returned. If replacement data is being returned

and there is no *CCHAR replacement data, 65535 is returned. Otherwise the CCSID you wanted the data

converted to is returned.

Date sent. The date on which the message was sent, in CYYMMDD (century, year, month, day) format.

Length (general information about the following length fields). These formats use two types of length

fields, each related to a single variable length text field. (The variable length text fields return information

to the caller.) The first type of length field is returned length; the second is available length. Returned

length is the actual length of the text in the variable length text field. Available length is the length of

the text before it is placed in the variable length text field. It is always greater than or equal to the

returned length. If the available length equals the returned length, all the message information is

returned. If the text is truncated when placed in the variable length field, the available length is greater

than the returned length by the number of characters truncated.

Length of message available. The length of the available message text, in bytes. If an immediate message

is received, the value of this field is zero.

Length of message help available. The length of the available message help information, in bytes. If an

impromptu message is received, the value of this field is zero.

Length of message help returned. The length of the message help information, in bytes. If an impromptu

message is received, the value of this field is zero.

Length of message returned. The length of the returned text of a predefined message, in bytes. If an

impromptu message is received, the value of this field is zero.

Length of replacement data or impromptu message text available. The length of the available

impromptu message text or replacement data, in bytes. If the message identifier is not blank, this field

contains the length of the available replacement data for a predefined message. If the message identifier

is blank, this field contains the length of the available text of an impromptu message.

96 iSeries: Message Handling APIs

Length of replacement data or impromptu message text returned. The length of the returned impromptu

message text or replacement data, in bytes. If the message identifier is not blank, this field contains the

length of the replacement data. If the message identifier is blank, this field contains the length of the

impromptu message text.

Message. The text of a predefined message. If an impromptu message is received, this field is blank.

The API can truncate the message to fit the available space. If truncation occurs in the middle of

double-byte character set (DBCS) data, the API returns only complete DBCS characters. It ends the data

with a DBCS shift-in character.

Message file name. The name of the message file containing the message received.

Message file library specified. The name of the library containing the message file, as specified in the

call to this API. If you specify *CURLIB or *LIBL for the library when you send the message, that value is

returned as the library here. For the actual library used when the message is sent, see the message file

library used field.

Message file library used. The name of the library used to send the message. Because the library can

contain override instructions, this is not necessarily the library in which the message actually resides.

Message help. The message help for the message received. If an immediate message is received, this field

is blank.

The API can truncate the message help to fit the available space. If truncation occurs in the middle of

double-byte character set (DBCS) data, the API returns only complete DBCS characters. It ends the data

with a DBCS shift-in character.

Message identifier. The identifying code of the message received. If an impromptu message is received,

this field is blank.

Message key. The key to the message received. The key is assigned by the command or API that sends

the message. If the message action parameter specifies *REMOVE, this field is blank.

Message severity. The severity of the message received. Possible values are 0 through 99.

Message type. The message type of the message received. The possible values and their meanings are:

 Value Message Type

01 Completion

02 Diagnostic

04 Informational

05 Inquiry

06 Sender’s copy

08 Request

10 Request with prompting

14 Notify

15 Escape

21 Reply, not validity checked

22 Reply, validity checked

23 Reply, message default used

24 Reply, system default used

25 Reply, from system reply list

26 Reply, from exit program

Message Handling APIs 97

Microseconds. The microseconds part of the time sent.

Replacement data or impromptu message text. The values for substitution variables in a predefined

message, or the text of an impromptu message. If the message identifier is not blank, this field contains

message data. If the message identifier is blank, this field contains impromptu message text.

If this field contains message data that contains pointer data, each pointer must start on a 16-byte

boundary. If you are running at security level 50, the pointer data is invalidated.

The API can truncate the data or text to fit the available space. If the field contains the text of an

impromptu message and is truncated in the middle of double-byte character set (DBCS) data, the API

returns only complete DBCS characters. It ends the data with a DBCS shift-in character. However, if the

field contains data for a predefined message, the API does not check for DBCS data. This is because

message data can contain pointers, and pointers can contain the same characters used to mark DBCS

data.

Reserved. An ignored field.

Sending job. The name of the job in which the message being received was sent.

Sending job’s number. The job number of the job in which the message being received was sent.

Sending job’s user profile. The name of the user profile in the qualified job name of the job that sent

the message being received.

Sending program name. The original program model (OPM) program name or ILE bound program name

that contains the procedure sending the message.

Sending program’s instruction number. The number of the program instruction that issued the

command or called the API used to send the message being received.

Sending user profile.

The name of the user profile that the thread was running under when the

message was sent.

Time sent. The time at which the message being received was sent, in HHMMSS (hour, minute, second)

format.

Error Messages

 Message ID Error Message Text

CPF24AF E Message key not allowed with message type specified.

CPF24A7 E Value for the length of message information not valid.

CPF24A8 E Value for wait time not valid.

CPF24A9 E Value for message action not valid.

CPF24B1 E Message key required for message type specified.

CPF24B2 E Message key of *TOP requires message type of *NEXT.

CPF24B3 E Message type &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF2401 E Not authorized to library &1.

CPF2403 E Message queue &1 in &2 not found.

CPF2407 E Message file &1 in &2 not found.

CPF2408 E Not authorized to message queue &1.

CPF2410 E Message key not found in message queue &1.

CPF2411 E Not authorized to message file &1 in &2.

CPF2422 E Reply not valid.

CPF2433 E Function not allowed for system log message queue &1.

98 iSeries: Message Handling APIs

Message ID Error Message Text

CPF2450 E Work station message queue &1 not allocated to job.

CPF2451 E Message queue &1 is allocated to another job.

CPF247E E CCSID &1 is not valid.

CPF2477 E Message queue &1 currently in use.

CPF2531 E Message file &1 in &2 damaged for &3.

CPF2548 E Damage to message file &1 in &2.

CPF2551 E Message key and message type combination not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1.1

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 99

#TOP_OF_PAGE
aplist.htm

Receive Program Message (QMHRCVPM) API

 Required Parameter Group:

1 Message information

Output Char(*)

2 Length of message information

Input Binary(4)

3 Format name

Input Char(8)

4 Call stack entry

Input Char(*) or Pointer

5 Call stack counter

Input Binary(4)

6 Message type

Input Char(10)

7 Message key

Input Char(4)

8 Wait time

Input Binary(4)

9 Message action

Input Char(10)

10 Error code

I/O Char(*)
 Optional Parameter Group 1:

11 Length of call stack entry

Input Binary(4)

12 Call stack entry qualification

Input Char(20)
 Optional Parameter Group 2:

13 Call stack entry data type

Input Char(10)

14 Coded character set identifier

Input Binary(4)

Optional Parameter Group 3:

15 Allow default reply rejection

Input Char(10)

 Default Public Authority: *USE

 Threadsafe: Yes

100 iSeries: Message Handling APIs

The Receive Program Message (QMHRCVPM) API receives a message from a call message queue or

external message queue and returns information describing the message.

To receive a message from nonprogram message queues, see “Receive Nonprogram Message

(QMHRCVM) API” on page 88 (QMHRCVM) API.

In a multithreaded job messages can be received from call message queues within the thread that calls

this API, and messages sent from within the same thread can be received from the external message

queue. Messages on call message queues in other threads or sent to the external message queue from

other threads cannot be received.

Authorities and Locks

Message File Authority

*USE, if receiving a predefined message and the message file used when the message was sent

was deleted and recreated.

Message File Library Authority

*EXECUTE, if receiving a predefined message and the message file used when the message was

sent was deleted and recreated.

Required Parameter Group

Message information

OUTPUT; CHAR(*)

 The variable that receives the information returned, in the format specified in the format name

parameter, of the length specified in the length of message information parameter.

Length of message information

INPUT; BINARY(4)

 The size of the area to contain the message information, in bytes. The minimum size is 8.

 This parameter must specify the size of the variable you use for the message information

parameter. If this parameter specifies a longer size, other parts of storage could be overwritten

when the API returns the information.

 The API returns as much information as it can fit in this length. If the available message

information is longer, it is truncated. If the available message information is shorter, the unused

output area is unchanged; whatever is already stored in that space remains there.

 To determine how much information the API actually returns in response to this call, see the

bytes returned field in the RCVM0100, RCVM0200, or RCVM0300 output. To determine how

much information the API could return if space were available, see the bytes available field.

Format name

INPUT; CHAR(8)

 The format to use for the message information. Specify one of these format names:

 RCVM0100 Brief message information. For details, see “RCVM0100 Format” on page 107.

RCVM0200 All message information. For details, see “RCVM0200 Format” on page 108.

RCVM0300 All message information. Complete sender information for the message being received. For details,

see “RCVM0300 Format” on page 109.

Message Handling APIs 101

Call stack entry

INPUT; CHAR(*) or Pointer

 The call stack entry from whose message queue messages are to be received, or the call stack

entry to start counting from when using a value other than 0 for the call stack counter parameter.

The call stack entry you specify must be in the call stack or you can specify the external message

queue instead of a call stack entry.

 You can specify a call stack entry by providing the name of the OPM program or ILE procedure

running in the entry, by providing a pointer to the call stack entry, or by using one of the

following special values:

 * The current call stack entry (that is, the one in which the API is being used).

*EXT The external message queue. The call stack counter parameter is ignored. You cannot receive

escape messages from this queue.

If the call stack entry is to be identified by pointer, the pointer that is specified must address a

valid call stack entry within the same job as the one the API is used in. Alternatively, the pointer

can be set to Null. The pointer must be 16 byte aligned. The Optional Parameter Group 1 must be

used and the Length of call stack entry parameter must be set to 16. In addition, the Optional

Parameter Group 2 must also be used and the Call stack entry format parameter must be set to

*PTR.

 If the pointer provided is set to Null, this indicates that the call stack entry is the one in which

the API is being used.

 If the pointer does not address a valid call stack entry or is not a Null pointer, the error message

CPF24C5 is sent to the user of the API.

 The call stack entry can be a nested procedure name from 1 through 4096 characters in length.

When specifying nested procedures, each procedure name must be separated by a colon, and the

outermost procedure is identified first followed by the procedures it contains. The innermost

procedure is the last procedure identified in the string.

 The call stack entry can be a partial name. To specify a partial name, place three less-than signs

(<<<) at the beginning of the call stack entry identifier, or place three greater-than signs (>>>) at

the end of the call stack entry identifier, or place both the less-than signs and the greater-than

signs at their respective ends of the call stack entry identifier. The value for the call stack entry

excluding the less-than signs and the greater-than signs is used to search backward through the

stack for the requested call stack entry name.

 When searching for a partial call stack entry name:

v If the less-than signs (<<<) are specified only at the beginning of the call stack entry name, the

less-than signs are truncated and the remaining character string is right-justified. The

remaining string is then compared to the current call stack entry on the call stack. The

comparison starts at the end of the call stack entry name and backwardly compares the

number of characters in the specified string.

v If the greater-than signs (>>>) are specified only at the end of the call stack entry name, the

greater-than signs are truncated. The remaining character string is compared to the current call

stack entry on the call stack. The comparison starts at position 1 of the call stack entry name

and compares the number of characters in the specified string.

v If the less-than signs (<<<) are specified at the beginning of the call stack entry name and the

greater-than signs (>>>) are specified at the end of the call stack entry name, both the less-than

signs and the greater-than signs are truncated. The remaining characters are used to scan and

to compare the entire length of the specified string and the current call stack entry on the call

stack.

Note: If the optional parameters Length of to call stack entry and To call stack entry data type are

not specified, this parameter is assumed to be CHAR(10).

102 iSeries: Message Handling APIs

Call stack counter

INPUT; BINARY(4)

 A number identifying the location in the call stack of the call stack entry from whose message

queue the messages are to be received. The number is relative to the call stack entry identified by

the Call stack entry parameter. It indicates how many calls up the call stack the target entry is

from the one identified by the Call stack entry parameter. Valid values follow:

 0 Receive the message from the message queue of the call stack entry specified in the Call stack

entry parameter.

1 Receive the message from the message queue of the call stack entry that is one earlier than the

entry identified by the Call stack entry parameter.

n (any positive

number)

Receive the message from the message queue of the nth call stack entry up the stack from the call

stack entry specified in the Call stack entry parameter.

You can use any positive number that does not exceed the actual number of call stack entries in

the call stack, excluding the external message queue.

Message type

INPUT; CHAR(10)

 The type of the message being received. The message type and message key parameters work

together. Depending on the message type, the key can be required, optional, or disallowed. For a

list of valid message types and information about how they work with the message key

parameter, see “Message Types and Message Keys” on page 106.

Message key

INPUT; CHAR(4)

 The key to the message being received. The key is assigned by the command or API that sends

the message.

 What you can use for the message key parameter depends on what you use for the message type.

For details, see “Message Types and Message Keys” on page 106.

 If you are not receiving messages by key, use blanks for this parameter.

 If you specify a key and the message queue does not contain a message with that key, an error is

returned.

 If you specify a key and the message queue does contain a message with that key, the API might

or might not return a message. It never returns an error in this case. Whether or not the API

returns a message depends on the value of the message type parameter. For example, if you

specify the message type *PRV and there is no message before the message with the key, the API

does not return a message. Because the key you specified is valid, the API does not return an

error either.

 You can receive the reply to a message through the key to the sender’s copy of the message. If

the reply is not available, no message is returned, and the API does not return an error.

 When the message type is *NEXT, you can use *TOP for the message key to receive the next

message after the last message received.

 When the message type is *NEXT or *PRV, you can use hexadecimal zeros for the message key

for the first receive operation.

 If you know the message key of a message you want to receive, you can receive that message

without regard to the call message queue containing the message. You can do this by specifying

the key in this parameter, the special value ’*’ for the Call stack entry parameter and the value ’0’

for the call stack counter parameter. This is useful if the message was sent to a call stack entry

that is no longer in the call stack.

Message Handling APIs 103

Wait time

INPUT; BINARY(4)

 The length of time to wait for the message to arrive in the queue so it can be received. Valid

values follow:

 0 Do not wait for the message. If the message is not in the queue and you specified a message key,

an error is returned.

-1 Wait until the message arrives in the queue and is received, no matter how long it takes. The

system has no limit for the wait time.

n (any positive

number)

Wait n seconds for the message to arrive in the queue.

If you specify a value of zero or above and the message does not arrive in the specified time,

most fields in the RCVM0100, RCVM0200 or RCVM0300 output are unchanged. The bytes

returned output field has a value of 8, and the bytes available output field has a value of 0. The

remaining output fields are unchanged; they contain whatever was already stored in the space.

Message action

INPUT; CHAR(10)

 The action to take after the message is received. Valid values follow:

 *OLD Keep the message in the message queue and mark it as an old message. You can receive the

message again only by using the message key or by specifying the message type *NEXT, *PRV

(previous), *FIRST, or *LAST.

*REMOVE Remove the message from the message queue. This instance of the message is no longer available

for you to work with. The message key is no longer valid; therefore, you cannot receive the

message again.

*SAME Keep the message in the message queue without changing its new or old designation. *SAME lets

you receive the message again later without using the message key.

For Integrated Language Environment (ILE) programs, the message action also indicates if an

exception message should be handled. If the message action is *OLD or *REMOVE, an exception

is handled. If *SAME is specified, the exception is not handled.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 1

Length of call stack entry

INPUT; BINARY(4)

 The length of the value for the call stack entry parameter. Valid values for this parameter are as

follows:

v 1 through 4096 if partial name indicators are not used.

v 16 if the call stack entry parameter is a pointer.

v 1 through 4102 if partial name indicators are used.

Note: The actual length of the call stack entry name cannot exceed 4096 characters. If this

parameter is not used, the value for the call stack entry parameter is assumed to be 10 characters

in length. If this parameter is not used, the value for the call stack entry parameter is assumed to

be 10 characters in length.

Call stack entry qualification

INPUT; CHAR(20)

104 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

The name of the module and the ILE program or service program to further qualify the

procedure name specified by the Call stack entry parameter. The first 10 characters specify the

module name, and the second 10 characters specify the ILE program or service program name. If

this parameter is not used, only the Call stack entry parameter is used to determine the call stack

entry. The following special value may be used:

 *NONE This value is used for the module or ILE program name or service program name, or both. When

*NONE is specified for one of the names, then that name is not used when searching for the call

stack entry. If *NONE is specified for both names, only the Call stack entry parameter is used to

identify the call stack entry.

If the call stack entry is to be identified by pointer, this parameter must still be passed to the API

but both the module name and program name qualifiers must be specified as *NONE. When a

pointer is used, the module and program name qualification is not applicable.

 The module name and bound program name should be used only when identifying the call stack

entry for an ILE procedure. When identifying the entry for an OPM program, the Optional

Parameter Group 1 should either not be used or both the module name and bound program

name should be specified as *NONE.

Optional Parameter Group 2

Call Stack entry data type

INPUT; CHAR(10)

 Whether the value of the call stack entry parameter is a character string (a name or special value)

or a pointer. Use one of the following special values:

 *CHAR Value of the parameter is a character string (name or special value).

*PTR Value of the parameter is a pointer.

If the above optional parameter is not specified, it is assumed that the value of the Call stack

entry parameter is a character string.

Coded character set identifier

INPUT; BINARY(4)

 The coded character set identifier (CCSID) that you want your message text and message data

returned in. This applies to the text and the parts of the message data defined as a convertible

character field (*CCHAR). For more information about *CCHAR fields, see the Add Message

Description (ADDMSGD) Command. The following values are allowed:

 0 The received message is converted to the CCSID of the job before being returned.

If the job is 65535 and the text or data is something other than EBCDIC single byte or EBCDIC

mixed, the text and data are converted to the default job CCSID.

65535 The received message will not be converted before being returned.

CCSID Specify a CCSID you want your text and data converted to before being returned. Valid values are

between 1 and 65535. This API will validate the CCSID specified.

Only CCSIDs that a job can be changed to are accepted. For a list of valid job CCSIDs, display the

prompt for the CCSID parameter on the CHGJOB command.

If this parameter is not specified, 0 is used and messages are returned in the CCSID of the job.

Note: If an invalid CCSID conversion is detected during the receive function, the data is not

converted before it is returned. The CCSID conversion status field should be checked to

determine if an error occurred.

Message Handling APIs 105

For more information about message handler and its use of CCSIDs, see CCSIDs: Message

Support in the Globalization topic.

Optional Parameter Group 3

Allow default reply rejection

INPUT; CHAR(10)

 Removing an unanswered inquiry causes the default reply to be sent to the inquiry message. This

value indicates whether a reply handling exit program will be allowed to reject a default reply

that is sent as a result of using this function. A reply handling exit program can be registered via

the system registration facility for exit point QIBM_QMH_REPLY_INQ. If this parameter is not

specified, a value of *NO is used. This parameter is only applicable when *REMOVE is specified

for the message action parameter. Valid values are:

 *NO A reply handling exit program will not be allowed to reject a default reply.

*YES A reply handling exit program will be allowed to reject a default reply. If an exit program rejects

the reply, a CPD2476 (Reply rejected by a reply handling exit program) will be sent as a diagnostic

message to the program using this function. The CPD2476 will be followed by a CPF2422 (Reply

not valid) escape message that the program using this function should monitor for to handle and

recover from error situations.

Message Types and Message Keys

The message type and message key parameters work together. Depending on the message type, the key

can be required, optional, or disallowed. The following table lists each message type you can specify, tells

whether it requires a key, and gives other information about using that type.

When used without a key, most message types receive only new messages. When used with a key, most

can receive old or new messages. Message types *FIRST, *LAST, *PRV (previous), and *NEXT always

receive both old and new messages.

New messages are messages that have been sent to a queue and have not yet been received. Old

messages are messages that have been received but have not yet been removed from the queue.

Messages of type *EXCP are received in last-in first-out (LIFO) order. Messages of all other types are

received in first-in first-out (FIFO) order.

The following terms are used to describe the message key in the following table:

 Disallowed Do not specify a message key. Instead, use blanks for the message key parameter. Specifying a

message key results in an error.

Required Specify a message key. Not specifying a message key results in an error.

Optional You can either specify a message key or use blanks for the message key parameter.

When you do not specify a message key, the first new message of the specified type is received. If

a new message of that type is not in the message queue, no error is returned. The unused space

allowed for the output in the message information parameter is unchanged.

When you specify a message key and the message in the message queue is of the type specified,

the message is received. If the message is not found, or if the message found does not match the

type specified, an error code or exception is returned.

There are two cases where the message is not found and no error is returned. In both cases, the bytes

returned field equals 8 and the bytes available field equals 0. The two cases are:

106 iSeries: Message Handling APIs

v Receiving without a message key (the key is optional or disallowed). A message of the specified type is

not found in the queue.

v Receiving with a message key (the key is required) and the message type is *PRV or *NEXT. The

message with the key specified was found in the queue, but no *PRV or *NEXT message is found.

The message types you can specify in the QMHRCVPM API are:

 Message Type Message Key Description

*ANY Optional If message key is blanks, then this receives a message of any type except a

sender’s copy or request. If the message key is not blank, this receives the

requested message. If the message is a sender’s copy type message, the

associated reply is received.

*COMP Optional Receives a completion message.

*COPY Required Receives a copy of a previously sent inquiry message. The program message

queue parameter must specify the reply message queue specified when the

inquiry was sent.

*DIAG Optional Receives a diagnostic message.

*ESCAPE Optional Receives an escape message.

*EXCP Optional Receives an escape or notify message. Both types of messages are received in

last-in first-out (LIFO) order.

*FIRST Disallowed Receives the first new or old message in the queue, unless it is a request

message. Request messages are skipped.

*INFO Optional Receives an informational message.

*LAST Disallowed Receives the last new or old message in the queue.

*NEXT Required Receives the next new or old message after the message with the specified key,

unless it is a request message. Request messages are skipped.

You can use the special value *TOP for the message key. *TOP designates the

message at the top of the message queue.

You can use hexadecimal zeros (hex 00000000) for the message key for the first

receive operation.

If *TOP or hexadecimal zeros are specified, the search for the next message

begins after the last request message is received. If no request messages have

been received, the search starts at the top of the message queue.

*NOTIFY Optional Receives a notify message.

*PRV Required Receives the new or old message before the message with the specified key.

You can use hexadecimal zeros (hex 00000000) for the message key for the first

receive operation to receive the last message on the queue.

*RPY Optional Receives the reply to an inquiry or notify message. For the message key, you

can use the key to the sender’s copy of the inquiry or notify message.

*RQS Optional Receives the next request in the program message queue for the program. Two

actions are possible if no request exists:

1. If the job is interactive and the program queue is the external message

queue, the Command Entry display is called to allow the work station user

to type requests.

2. In all other cases, an error code or exception is returned.

RCVM0100 Format

The following table lists the fields returned in the RCVM0100 format. For more information about each

item of information, see “Field Descriptions” on page 111.

Message Handling APIs 107

Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Message severity

12 C CHAR(7) Message identifier

19 13 CHAR(2) Message type

21 15 CHAR(4) Message key

25 19 CHAR(7) Reserved

32 20 BINARY(4) CCSID conversion status indicator of message data or text

36 24 BINARY(4) CCSID of replacement data or impromptu message text

40 28 BINARY(4) Length of replacement data or impromptu message text returned

44 2C BINARY(4) Length of replacement data or impromptu message text available

48 30 CHAR(*) Replacement data or impromptu message text

RCVM0200 Format

The following table lists the fields returned in the RCVM0200 format. For more information about each

item of information, see “Field Descriptions” on page 111.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Message severity

12 C CHAR(7) Message identifier

19 13 CHAR(2) Message type

21 15 CHAR(4) Message key

25 19 CHAR(10) Message file name

35 23 CHAR(10) Message file library specified

45 2D CHAR(10) Message file library used

55 37 CHAR(10) Sending job

65 41 CHAR(10) Sending

job’s

user profile

75 4B CHAR(6) Sending job’s number

81 51 CHAR(12) Sending program name

93 5D CHAR(4) Sending program’s instruction number

97 61 CHAR(7) Date sent

104 68 CHAR(6) Time sent

110 6E CHAR(10) Receiving program name

120 78 CHAR(4) Receiving program’s instruction number

124 7C CHAR(1) Sending type

125 7D CHAR(1) Receiving type

126 7E CHAR(1) Reserved

108 iSeries: Message Handling APIs

Offset

Type Field Dec Hex

127 7F BINARY(4) CCSID conversion status indicator for text

131 83 BINARY(4) CCSID conversion status indicator for data

135 87 CHAR(9) Alert option

144 90 BINARY(4) CCSID of message and message help

148 94 BINARY(4) CCSID of replacement data or impromptu message text

152 98 BINARY(4) Length of replacement data or impromptu message text returned

156 9C BINARY(4) Length of replacement data or impromptu message text available

160 A0 BINARY(4) Length of message returned

164 A4 BINARY(4) Length of message available

168 A8 BINARY(4) Length of message help returned

172 AC BINARY(4) Length of message help available

176 B0 CHAR(*) Replacement data or impromptu message text

The offsets to these

fields equal the offset

to the last fixed-length

field plus the length of

the previous variable

length fields.

CHAR(*) Message

CHAR(*) Message help

RCVM0300 Format

The following table lists the fields returned in the RCVM0300 format. For more information about each

item of information, see “Field Descriptions” on page 111.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Message severity

12 C CHAR(7) Message identifier

19 13 CHAR(2) Message type

21 15 CHAR(4) Message key

25 19 CHAR(10) Message file name

35 23 CHAR(10) Message file library specified

45 2D CHAR(10) Message file library used

55 37 CHAR(9) Alert option

64 40 BINARY(4) CCSID conversion status indicator of message and message help

68 44 BINARY(4) CCSID conversion status indicator of message data or text

72 48 BINARY(4) CCSID of replacement data or impromptu message text

76 4C BINARY(4) CCSID of replacement data and message help

80 50 BINARY(4) Length of replacement data or impromptu message text returned

84 54 BINARY(4) Length of replacement data or impromptu message text available

Message Handling APIs 109

Offset

Type Field Dec Hex

88 58 BINARY(4) Length of message returned

92 5C BINARY(4) Length of message available

96 60 BINARY(4) Length of message help returned

100 64 BINARY(4) Length of message help available

104 68 BINARY(4) Length of sender information returned

108 6C BINARY(4) Length of sender information available

112 70 CHAR(*) Replacement data or impromptu message text

The offsets to these

fields equal the offset

to the last fixed-length

field plus the length of

the previous variable

length fields.

CHAR(*) Message

CHAR(*) Message help

CHAR(*) Sender information

Sender Information Format

The following table lists the fields for the sender information format of the RCVM0300 format. For more

information about each item of information, see “Field Descriptions” on page 111.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Sending job

10 A CHAR(10) Sending

job’s

user profile

20 14 CHAR(6) Sending job’s number

26 1A CHAR(7) Date sent

33 21 CHAR(6) Time sent

39 27 CHAR(1) Sending type

40 28 CHAR(1) Receiving type

41 29 CHAR(12) Sending program name

53 35 CHAR(10) Sending module name

63 3F CHAR(256) Sending procedure name

319 13F CHAR(1) Reserved

320 140 BINARY(4) Number of statement numbers or instruction numbers available for

the sending program or procedure

324 144 CHAR(30) Sending program’s statement numbers or instruction numbers

354 162 CHAR(10) Receiving program name

364 16C CHAR(10) Receiving module name

374 176 CHAR(256) Receiving procedure name

630 276 CHAR(10) Reserved

640 280 BINARY(4) Number of statement numbers or instruction numbers available for

the receiving program or procedure

644 284 CHAR(30) Receiving program’s statement number or instruction number

674 2A2 CHAR(2) Reserved

110 iSeries: Message Handling APIs

Offset

Type Field Dec Hex

676 2A4 BINARY(4) Displacement to long sending program name

680 2A8 BINARY(4) Length of long sending program name

684 2AC BINARY(4) Displacement to long sending procedure name

688 2B0 BINARY(4) Length of long sending procedure name

692 2B4 BINARY(4) Displacement to long receiving procedure name

696 2B8 BINARY(4) Length of long receiving procedure name

700 2BC CHAR(6) Microseconds

706 2C2 CHAR(10) Sending user profile

716 2CC

CHAR(*) Reserved

The offsets to these

fields are found in the

displacement fields

identified in this table.

CHAR(*) Long sending program name

CHAR(*) Long sending procedure name

CHAR(*) Long receiving procedure name

Field Descriptions

The following field descriptions apply only when a message is received. If no message is found, only the

bytes available and bytes returned fields contain new values. The remaining fields contain whatever

information was already stored in the space allowed for the output.

Alert option. Whether and when an SNA alert is created and sent for the message. If a message is

received, the value is one of the following:

 *DEFER An alert is sent after local problem analysis.

*IMMED An alert is sent immediately when the message is sent to a message queue that has the allow

alerts attribute set to *YES.

*NO No alert is sent.

*UNATTEND An alert is sent immediately when the system is running in unattended mode (when the value of

the alert status network attribute, ALRSTS, is *UNATTEND).

For more information, see the Alerts Support

book.

Bytes available. The length of all available information that could be returned for the format. Bytes

available can be greater than the length specified in the API’s length of message information parameter. If

it is greater, the information returned in the message information parameter is truncated to the length

specified.

Bytes returned. The length of all information returned in the format. The value of the bytes returned field

is always less than or equal to the length of the message information parameter. Also, it is always less

than or equal to the bytes available. There is one exception to this. When you attempt to receive a

message and the message is not found, the following occurs:

v The value of the bytes returned field is 8.

v The value of the bytes available field is 0.

v The remaining fields are unchanged (that is, they contain whatever was already stored in that space).

If the bytes returned value is less than the length specified in the length of message information

parameter, the extra space in the message information parameter is unchanged.

Message Handling APIs 111

CCSID conversion status indicator for data. The following values may be returned:

 0 No conversion was needed because the CCSID of the replacement data or impromptu message

text matched the CCSID you wanted the data converted to.

1 No conversion occurred because either the data was 65535 or the CCSID you wanted the data

converted to was 65535.

2 No conversion occurred because you did not supply enough space for the data.

3 The data was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The data was not converted.

CCSID conversion status indicator for text. The following values may be returned:

 0 No conversion was needed because the CCSID of the message or message help text matched the

CCSID you wanted the message or message help text converted to.

1 No conversion occurred because either the message or message help text was 65535 or the CCSID

you wanted the message or message help text converted to was 65535.

2 No conversion occurred because you did not supply enough space for the message or message

help text.

3 The message or message help text was converted to the CCSID specified using the best fit

conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The text was not converted.

CCSID of message and message help. The CCSID of the text in the message and message help fields is

returned. The inserted replacement data may not be the same CCSID. Refer to the CCSID of the

replacement data or impromptu message text field description for a more details.

If a conversion error occurs or the CCSID you requested the text to be converted to is 65535, the CCSID

that the message description is stored in is returned. Otherwise, the CCSID you wanted your text

converted to is returned. If you do not want the text converted before it is returned to you but you do

want to know the CCSID that the message description is stored in specify 65535 on the Coded character

set identifier parameter. The CCSID that the message description is stored in is returned in the CCSID of

message and message help output field.

CCSID of replacement data or impromptu message text. The CCSID of the impromptu message text or

replacement data is returned. If an impromptu message is received, this is the CCSID of the impromptu

message text. When replacement data is received, this is the CCSID of the message data fields defined as

convertible character (*CCHAR) in the message description. All other replacement data will not be

converted before it is returned. If a conversion error occurs or if the CCSID you requested the data to be

converted to is 65535, the CCSID of the data is returned. If message data is being returned and there is

no *CCHAR replacement data, 65535 is returned. Otherwise, the CCSID you wanted the data converted

to is returned.

Date sent. The date on which the message was sent, in CYYMMDD (century, year, month, day) format.

Displacement to long receiving procedure name. When the receiving type is 1 or 2, the offset to the long

receiving procedure name, in bytes, from the beginning of the data returned in the sender information

format. If there is not enough room to contain any of the long receiving procedure, this field is zero.

Displacement to long sending procedure name. When the sending type is 1 or 2, the offset to the long

sending procedure name, in bytes, from the beginning of the data returned in the sender information

format. If there is not enough room to contain any of the long sending procedure, this field is zero.

112 iSeries: Message Handling APIs

Displacement to long sending program name. The offset to the long sending program name, in bytes,

from the beginning of the data returned in the sender information format. If there is not enough room to

contain any of the long sending program, this field is zero.

Length (general information about the following length fields). These formats use two types of length

fields, each related to a single variable length text field. (The variable length text fields return information

to the caller.) The first type of length field is returned length; the second is available length. Returned

length is the actual length of the text in the variable length text field. Available length is the length of

the text before it is placed in the variable length text field. It is always greater than or equal to the

returned length. If the available length equals the returned length, all the message information is

returned. If the text is truncated when placed in the variable length field, the available length is greater

than the returned length by the number of characters truncated.

Length of long receiving procedure name. For type 1 and 2, the length of the complete receiving

procedure name, in bytes.

Length of long sending procedure name. For type 1 and 2, the length of the complete sending procedure

name, in bytes.

Length of long sending program name. The length of the complete sending program name, in bytes.

Length of message available. The length of the available message text, in bytes. If an immediate message

is received, the value of this field is zero.

Length of message help available. The length of the available message help information, in bytes. If an

impromptu message is received, the value of this field is zero.

Length of message help returned. The length of the message help information, in bytes. If an impromptu

message is received, the value of this field is zero.

Length of message returned. The length of the returned text of a predefined message, in bytes. If an

impromptu message is received, the value of this field is zero.

Length of replacement data or impromptu message available. The length of the available impromptu

message text or replacement data, in bytes. If the message identifier is not blank, this field contains the

length of the available message data for a predefined message. If the message identifier is blank, this field

contains the length of the available text of an impromptu message.

Length of replacement data or impromptu message returned. The length of the returned impromptu

message text or replacement data, in bytes. If the message identifier is not blank, this field contains the

length of the replacement data. If the message identifier is blank, this field contains the length of the

impromptu message text.

Length of sender information available. The length, in bytes, of information available in the sender

information format.

Length of sender information returned. The length, in bytes, of information returned in the sender

information format.

Long receiving procedure name. For type 1 and 2, complete procedure name that received the message.

A nested procedure name has each procedure name separated by a colon. The outermost procedure name

is identified first followed by the procedures it contains. The innermost procedure is identified last in the

string.

Message Handling APIs 113

Long sending procedure name. For type 1 and 2, complete procedure name that sent the message. A

nested procedure name has each procedure name separated by a colon. The outermost procedure name is

identified first followed by the procedures it contains. The innermost procedure is identified last in the

string.

Long sending program name. The program name that sent the message.

Message. The text of a predefined message. If an impromptu message is received, this field is blank.

The API can truncate the message to fit the available space. If truncation occurs in the middle of

double-byte character set (DBCS) data, the API returns only complete DBCS characters. It ends the data

with a DBCS shift-in character.

Message file library specified. The name of the library containing the message file, as specified in the

call to this API. If you specify *CURLIB or *LIBL for the library when you send the message, that value is

returned as the library here. For the actual library used when the message is sent, see the message file

library used field.

Message file library used. The name of the library used to send the message. Because the library can

contain override instructions, this is not necessarily the library in which the message actually resides.

Message file name. The name of the message file containing the message received.

Message help. The message help for the message received. If an immediate message is received, this field

is blank.

The API can truncate the message help to fit the available space. If truncation occurs in the middle of

double-byte character set (DBCS) data, the API returns only complete DBCS characters. It ends the data

with a DBCS shift-in character.

Message identifier. The identifying code of the message received. If an immediate message is received,

this field is blank.

Message key. The key to the message received. The key is assigned by the command or API that sends

the message. If the message action parameter specifies *REMOVE, this field is blank.

Message severity. The severity of the message received. Possible values are 0 through 99.

Message type. The message type of the message received. The possible values and their meanings are:

 Value Message Type

01 Completion

02 Diagnostic

04 Informational

05 Inquiry

06 Sender’s copy

08 Request

10 Request with prompting

14 Notify

15 Escape

16 Notify, exception not handled when API is called

17 Escape, exception not handled when API is called

21 Reply, not validity checked

22 Reply, validity checked

23 Reply, message default used

24 Reply, system default used

114 iSeries: Message Handling APIs

Value Message Type

25 Reply, from system reply list

26 Reply, from exit program

Microseconds. The microseconds part of the time sent.

Name of the procedure receiving the message. This field is blank if the message was received by an

original program model (OPM) program.

Number of statement numbers or instruction numbers available for the receiving program or

procedure. For OPM programs and nonoptimized procedures, this count is 1. For optimized procedures,

this count can be greater than 1. In this case, each statement number represents a potential point at which

the message could have been received. If the mapping table information is removed from the program,

this field returns a count of zero and no statement numbers are available.

Number of statement numbers or instruction numbers available for the sending program or procedure.

For OPM programs and nonoptimized procedures, this count is 1. For optimized procedures, this count

can be greater than 1. In this case, each statement number represents a potential point at which the

message could have been sent. If the mapping table information is removed from the program, this field

returns a count of zero and no statement numbers are available.

Receiving module name. For type 1 and 2, the name of the module receiving the message.

Receiving procedure name. For type 1 and 2, the name of the procedure receiving the message. A nested

procedure name has each procedure name separated by a colon. The outermost procedure name is

identified first followed by the procedures it contains. The innermost procedure is identified last in the

string.

Receiving program name. The name of the program receiving the message, or the Integrated Language

Environment (ILE) program name that contains the procedure receiving the message.

Receiving program’s statement number or instruction number. This field can contain up to three

statement numbers or instruction numbers. When the receiving type is 1 or 2, the field contains statement

numbers. When the receiving type is 0, this field contains an instruction number. Each statement number

can be up to 10 characters in length. The instruction number is 4 characters in length. Each statement

number or instruction number is left-justified in a 10-character partition of the 30-character field. The first

statement number or instruction number is in the leftmost 10 characters and the third in the rightmost 10

characters. The unused parts of this field are set to blanks.

Receiving type. The type of program that received the message. Valid values follow:

 0 The message was sent to an original program model (OPM) program.

1 The message was sent to a procedure within an ILE program, and the procedure name is up to

and including 256 characters in length.

2 The message was sent to a procedure within an ILE program, and the procedure name is from 257

characters up to and including 4096 characters in length. For this type, the receiving procedure

name is blank, and the name can be obtained from the long receiving procedure name.

Replacement data or impromptu message text. The values for substitution variables in a predefined

message, or the text of an impromptu message. If the message identifier is not blank, this field contains

message data. If the message identifier is blank, this field contains impromptu message text.

If this field contains message data that contains pointer data, each pointer must start on a 16-byte

boundary. If you are running at security level 50, the pointer data is invalidated.

Message Handling APIs 115

The API can truncate the data or text to fit the available space. If the field contains the text of an

impromptu message and is truncated in the middle of double-byte character set (DBCS) data, the API

returns only complete DBCS characters. It ends the data with a DBCS shift-in character. However, if the

field contains data for a predefined message, the API does not check for DBCS data. This is because

message data can contain pointers, and pointers can contain the same characters used to mark DBCS

data.

Reserved. An ignored field.

Sending job. The name of the job in which the message being received was sent. Because the sending job

also must be the receiving job for call message queues, this field is always blank.

Sending job’s number. The job number of the job in which the message being received was sent. Because

the sending job also must be the receiving job for call message queues, this field is always blank.

Sending job’s user profile. The name of the user profile in the qualified job name of the job that sent

the message being received.

Because the sending job also must be the receiving job for call message

queues, this field is always blank.

Sending module name. For type 1 and 2, the name of the module that contains the sending message.

Sending procedure name. For type 1, the name of the procedure sending the message. A nested

procedure name has each procedure name separated by a colon. The outermost procedure name is

identified first followed by the procedures it contains. The innermost procedure is identified last in the

string.

Sending program name. The program name or ILE program name that contains the procedure sending

the message. This field is blank if the sending type is 3.

Sending program’s instruction number. The number of the program instruction that issued the

command or called the API used to send the message being received.

Sending program’s statement numbers or instruction numbers. This field can contain up to three

statement numbers or an instruction number. When the sending type is 0 or 3, this field contains an

instruction number. The instruction number is 4 characters in length of original program model (OPM)

programs and 6 characters in length for System Licensed Internal Code (SLIC) programs. For all other

sending types, this field contains statement numbers. Each statement number can be up to 10 characters

in length. The instruction number is 4 characters in length. Each statement number or instruction number

is left-justified in a 10-character partition of the 30-character field. The first statement number or

instruction number is in the leftmost 10 characters and the third in the rightmost 10 characters. The

unused parts of this field are set to blanks.

Sending type. The type of the sender (whether it is a program or procedure). Possible values and their

meanings are as follow:

 0 Sender is an original program model (OPM) program or a System Licensed Internal Code (SLIC)

program with up to and including 12 characters in its name.

1 Sender is a procedure within an ILE program, and the procedure name is up to and including 256

characters in length.

2 Sender is a procedure within an ILE program, and the procedure name is from 257 characters up

to and including 4096 characters in length. For this type, the sending procedure name is blank and

the name can be obtained from the long sending procedure name.

3 Sender is a SLIC program with 13 or more characters in its name. For this type, the sending

program name is blank, and the name can be obtained from the long sending program name.

116 iSeries: Message Handling APIs

Sending user profile.

The name of the user profile that the thread was running under when the

message was sent.

Time sent. The time at which the message being received was sent, in HHMMSS (hour, minute, second)

format.

Error Messages

 Message ID Error Message Text

CPF24A3 E Value for call stack counter parameter not valid.

CPF24A7 E Value for the length of message information not valid.

CPF24A8 E Value for wait time not valid.

CPF24A9 E Value for message action not valid.

CPF24AF E Message key not allowed with message type specified.

CPF24B9 E When call stack entry name is ’*’ or ’*CTLBDY’, module name and program name must be

’*NONE’.

CPF24BF E Module or bound-program name is blank.

CPF24B1 E Message key required for message type specified.

CPF24B2 E Message key of *TOP requires message type of *NEXT.

CPF24B3 E Message type &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B7 E Value &1 for call stack entry name length not valid.

CPF24CE E Qualifier &1 incorrect for use with pointer.

CPF24C5 E Pointer to call stack entry not valid.

CPF24C6 E Value of To call stack entry data type parameter not valid.

CPF2401 E Not authorized to library &1.

CPF2407 E Message file &1 in &2 not found.

CPF2410 E Message key not found in message queue &1.

CPF2411 E Not authorized to message file &1 in &2.

CPF2415 E End of requests.

CPF2422 E Reply not valid.

CPF2423 E Variable specified in SENDER parameter less than 80 bytes.

CPF2449 E Message that should be a reply, is not a reply.

CPF247A E Call stack entry not found.

CPF247E E CCSID &1 is not valid.

CPF2479 E Call stack entry not found.

CPF2531 E Message file &1 in &2 damaged for &3.

CPF2548 E Damage to message file &1 in &2.

CPF2551 E Message key and message type combination not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1.1

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 117

#TOP_OF_PAGE
aplist.htm

Remove Nonprogram Messages (QMHRMVM) API

 Required Parameter Group:

1 Qualified message queue name

Input Char(20)

2 Message key

Input Char(4)

3 Messages to remove

Input Char(10)

4 Error code

I/O Char(*)
 Optional Parameter Group:

5 Allow default reply rejection

Input Char(10)
 Default Public Authority: *USE

 Threadsafe: Yes

The Remove Nonprogram Messages (QMHRMVM) API removes messages from nonprogram message

queues. The removed instances of the messages are no longer available for you to work with. However,

other instances of the messages might still exist in other message queues, and the definitions of

predefined messages are still in the message files.

You can use this API to remove a single message or a group of messages from a message queue, or to

clear a message queue of all messages except unanswered inquiries.

To remove messages from program message queues, see “Remove Program Messages (QMHRMVPM)

API” on page 121 (QMHRMVPM) API.

Authorities and Locks

Message Queue Authority

*OBJOPR and *DLT

Message Queue Library Authority

*EXECUTE

Required Parameter Group

Qualified message queue name

INPUT; CHAR(20)

 The name of the message queue from which to remove messages, and the library in which it

resides. The first 10 characters specify the message queue, and the second 10 characters specify

the library.

118 iSeries: Message Handling APIs

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Message key

INPUT; CHAR(4)

 If the messages to remove parameter specifies *BYKEY, the key to the single message being

removed. The key is assigned by the command or API that sends the message.

 If the messages to remove parameter does not specify *BYKEY, use blanks for this parameter.

Messages to remove

INPUT; CHAR(10)

 The message or group of messages being removed. Valid values follow:

 *ALL All messages in the message queue.

*BYKEY The single message specified in the message key parameter.

*KEEPUNANS All messages in the message queue except unanswered inquiry and unanswered senders’ copy

messages.

*NEW All new messages in the message queue. New messages are those that have not been received.

*OLD All old messages in the message queue. Old messages are those that have already been received.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Allow default reply rejection

INPUT; CHAR(10)

 Removing an unanswered inquiry causes the default reply to be sent to the inquiry message. This

value indicates whether a reply handling exit program will be allowed to reject a default reply

that is sent as a result of using this function. A reply handling exit program can be registered via

the system registration facility for exit point QIBM_QMH_REPLY_INQ. If the parameter is not

specified, a value of *NO is used. Valid values are:

 *NO A reply handling exit program will not be allowed to reject a default reply.

*YES A reply handling exit program will be allowed to reject a default reply. If an exit program rejects

the reply, a CPD2476 (Reply rejected by a reply handling exit program) will be sent as a diagnostic

message to the program using this function. The CPD2476 will be followed by a CPF2422 (Reply

not valid) escape message that the program using this function should monitor for to handle and

recover from error situations.

Error Messages

 Message ID Error Message Text

CPF24AE E Message key and messages to remove are mutually dependent.

CPF24A6 E Value for messages to remove not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF2401 E Not authorized to library &1.

CPF2403 E Message queue &1 in &2 not found.

CPF2408 E Not authorized to message queue &1.

Message Handling APIs 119

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF2410 E Message key not found in message queue &1.

CPF2422 E Reply not valid.

CPF2450 E Work station message queue &1 not allocated to job.

CPF2451 E Message queue &1 is allocated to another job.

CPF2477 E Message queue &1 currently in use.

CPF3CF1 E Error code parameter not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8127 E &8 damage on message queue &4 in &9. VLIC log-&7.

CPF8176 E Message queue for device description &4 damaged.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1.1

 Top | “Message Handling APIs,” on page 1 | APIs by category

120 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

Remove Program Messages (QMHRMVPM) API

 Required Parameter Group:

1 Call stack entry

Input Char(*) or Pointer

2 Call stack counter

Input Binary(4)

3 Message key

Input Char(4)

4 Messages to remove

Input Char(10)

5 Error code

I/O Char(*)
 Optional Parameter Group 1:

6 Length of call stack entry

Input Binary(4)

7 Call stack entry qualification

Input Char(20)

8 Remove unhandled exceptions

Input Char(10)
 Optional Parameter Group 2:

9 Call stack entry data type

Input Char(10)

Optional Parameter Group 3:

10 Allow default reply rejection

Input Char(10)

 Default Public Authority: *USE

 Threadsafe: Yes

The Remove Program Messages (QMHRMVPM) API removes messages from call message queues and

the external message queue. The removed instances of the messages are no longer available for you to

work with. However, other instances of the messages might still exist in other message queues, and the

definitions of predefined messages are still in the message files.

To remove messages from nonprogram message queues, see “Remove Nonprogram Messages

(QMHRMVM) API” on page 118 (QMHRMVM) API.

Message Handling APIs 121

You can use the QMHRMVPM API to streamline program message handling. Assume that a program

receives several diagnostic messages and an escape message from a called program. The program handles

the escape message without receiving the diagnostic messages. The program could then use the

QMHRMVPM API to remove all the new messages it has not received, including the unneeded

diagnostic messages. This can prevent confusion if the program gets another escape message and must

receive the diagnostic messages associated with the new escape to analyze the error.

In a multithreaded job messages can be removed from call message queues within the thread that calls

this API, and messages sent from within the same thread can be removed from the external message

queue. Messages on call message queues in other threads or sent to the external message queue from

other threads cannot be removed.

Authorities and Locks

None.

Required Parameter Group

Call stack entry

INPUT; CHAR(*) or Pointer

 The call stack entry from whose message queue the message are to be removed, or the call stack

entry to start counting from when using the call stack counter parameter. The call stack entry you

specify must be in the call stack or you can specify the external message queue instead of a call

stack entry.

 You can specify a call stack entry by providing the name of the OPM program or ILE procedure

running in the entry, by providing a pointer to the call stack entry, or by using one of the

following special values:

 * The message queue of the current call stack entry (that is, the call stack entry removing the

messages).

*ALLINACT All message queues for inactive call stack entries. The messages to remove parameter must specify

*ALL. The call stack counter parameter is ignored.

*EXT The external message queue. The call stack counter parameter is ignored.

If you specify a message key and the messages to remove parameter specifies *BYKEY, this

parameter is ignored.

 If the call stack entry is to be identified by pointer, the pointer that is specified must address a

valid call stack entry within the same job as the one the API is used in. Alternatively, the pointer

can be set to Null. The Optional Parameter Group 1 must be used and the Length of Call stack

entry parameter must be set to 16. In addition, the Optional Parameter Group 2 must also be

used and the Call stack entry format parameter must be set to *PTR.

 If the pointer provided is set to Null, this indicates that the call stack entry is the one in which

the API is being used.

 If the pointer does not address a valid call stack entry or is not a Null pointer, the error message

CPF24C5 is sent to the user of the API.

 The call stack entry can be a nested procedure name from 1 through 4096 characters in length.

When specifying nested procedures, each procedure name must be separated by a colon, and the

outermost procedure is identified first followed by the procedures it contains. The innermost

procedure is the last procedure identified in the string.

 The call stack entry can be a partial name. To specify a partial name, place three less-than signs

(<<<) at the beginning of the call stack entry identifier, or place three greater-than signs (>>>) at

the end of the call stack entry identifier, or place both the less-than signs and the greater-than

122 iSeries: Message Handling APIs

signs at their respective ends of the call stack entry identifier. The value for the call stack entry

excluding the less-than signs and the greater-than signs is used to search backward through the

stack for the requested call stack entry name.

 When searching for a partial call stack entry name:

v If the less-than signs (<<<) are specified only at the beginning of the call stack entry name, the

less-than signs are truncated and the remaining character string is right-justified. The

remaining string is then compared to the current call stack entry on the call stack. The

comparison starts at the end of the call stack entry name and backwardly compares the

number of characters in the specified string.

v If the greater-than signs (>>>) are specified only at the end of the call stack entry name, the

greater-than signs are truncated. The remaining character string is compared to the current call

stack entry on the call stack. The comparison starts at position 1 of the call stack entry name

and compares the number of characters in the specified string.

v If the less-than signs (<<<) are specified at the beginning of the call stack entry name and the

greater-than signs (>>>) are specified at the end of the call stack entry name, both the less-than

signs and the greater-than signs are truncated. The remaining characters are used to scan and

to compare the entire length of the specified string and the current call stack entry on the call

stack.

Note: If the optional parameters Length of to call stack entry and To call stack entry data type are

not specified, this parameter is assumed to be CHAR(10).

Call stack counter

INPUT; BINARY(4)

 A number identifying the location in the call stack of the call stack entry from whose message

queue the messages are to be removed. The number is relative to the call stack entry identified by

the Call stack entry parameter. It indicates how many calls up the call stack the target entry is

from the one identified by the Call stack entry parameter.Valid values follow:

 0 Remove the messages from the message queue of the call stack entry specified in the Call stack

entry parameter.

1 Remove the messages from the message queue of the call stack entry that is one earlier than the

entry identified by the Call stack entry parameter.

n (any positive

number)

Remove the messages from the message queue of the nth call stack entry up the stack from the

call stack entry specified in the Call stack entry parameter.

You can use any positive number that does not exceed the actual number of call stack entries in

the call stack, excluding the external message queue.

This parameter is ignored in these cases:

v When the program message queue parameter specifies all queues for inactive call stack entries

(*ALLINACT) or the external message queue (*EXT).

v When you specify a message key and the messages to remove parameter specifies *BYKEY.

Message key

INPUT; CHAR(4)

 If the messages to remove parameter specifies *BYKEY or *SCOPE, the key to the single message

being removed. (The key is assigned by the command or API that sends the message.) The call

stack entry and call stack counter parameters are ignored

when the message to remove

parameter specifies *BYKEY.

 If the messages to remove parameter does not specify *BYKEY or *SCOPE, you must use blanks

for this parameter.

Message Handling APIs 123

When the messages to remove parameter specifies *BYKEY, the call stack entry parameter and

the call stack counter parameters are ignored, and the message will be removed without regard to

the call message queue that contains the message. This is useful if the message was sent to a call

stack entry that is no longer in the call stack.

 When the messages to remove parameter specifies *SCOPE, the call stack entry and call stack

counter parameters must specify the call message queue that contains the scope message.

Messages to remove

INPUT; CHAR(10)

 The message or group of messages being removed. Valid values follow:

 *ALL All messages in the call message queue.

*BYKEY The single message specified in the message key parameter. If the message to be removed is a

*SCOPE message, the *SCOPE value must be used instead of *BYKEY.

*KEEPRQS All messages in the call message queue except requests.

*NEW All new messages in the call message queue. New messages are those that have not been received.

*OLD All old messages in the call message queue. Old messages are those that have already been

received. The *SCOPE type message identified by the message key specified in the Message key

parameter.

*SCOPE The scope message specified in the message key parameter.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 1

Length of call stack entry

INPUT; BINARY(4)

 The length of the value for the call stack entry parameter. Valid values for this parameter are as

follows:

v 1 through 4096 if partial name indicators are not used.

v 16 if the call stack entry parameter is a pointer.

v 1 through 4102 if partial name indicators are used.

Note: The actual length of the call stack entry name cannot exceed 4096 characters. If this

parameter is not used, the value for the call stack entry parameter is assumed to be 10 characters

in length.

Call stack entry qualification

INPUT; CHAR(20)

 The name of the module and the ILE program or service program to further qualify the

procedure name specified by the Call stack entry parameter. The first 10 characters specify the

module name, and the second 10 characters specify the ILE program name or service program

name. If this parameter is not used, only the Call stack entry parameter is used to determine the

call stack entry. The following special value may be used:

 *NONE This value is used for the module or ILE program name

or service program name, or both. When *NONE is

specified for one of the names, then that name is not used

when searching for the call stack entry. If *NONE is

specified for both names, only the Call stack entry

parameter is used to identify the call stack entry.

124 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

If the call stack entry is to be identified by pointer, this parameter must still be passed to the API

but both the module and program qualifiers must be specified as *NONE. When a pointer is

used, the module and program name qualification is not applicable.

 The module name and bound program name should be used only when identifying the call stack

entry for an ILE procedure. When identifying the entry for an OPM program, the Optional

Parameter Group 1 should either not be used or the module and program qualifiers should be

specified as *NONE.

Remove unhandled exceptions

INPUT; CHAR(10)

 Whether to remove unhandled exceptions in the identified call message queue. The exception

handling support for some languages allows exceptions to not be handled. Valid values follow:

 *YES Remove any unhandled exceptions in the identified call message queue. This is the default when

this parameter is not used.

*NO Do not remove any unhandled exceptions in the identified call message queue.

Optional Parameter Group 2

This parameter group is used when the Call stack entry parameter is specified as a pointer.

Call stack entry data type

INPUT; CHAR(10)

 Whether the value of the call stack entry parameter is a character string (a name or special value)

or a pointer. Use one of the following special values;

 *CHAR Value of the parameter is a character string (name or special value)

*PTR Value of the parameter is a pointer.

If the above optional parameter is not specified, it is assumed that the value of the call stack

entry parameter is a character string.

Optional Parameter Group 3

Allow default reply rejection

INPUT; CHAR(10)

 Removing an unanswered inquiry causes the default reply to be sent to the inquiry message. This

value indicates whether a reply handling exit program will be allowed to reject a default reply

that is sent as a result of using this function. A reply handling exit program can be registered via

the system registration facility for exit point QIBM_QMH_REPLY_INQ. If the parameter is not

specified, a value of *NO is used. Valid values are:

 *NO A reply handling exit program will not be allowed to reject a default reply.

*YES A reply handling exit program will be allowed to reject a default reply. If an exit program rejects

the reply, a CPD2476 (Reply rejected by a reply handling exit program) will be sent as a diagnostic

message to the program using this function. The CPD2476 will be followed by a CPF2422 (Reply

not valid) escape message that the program using this function should monitor for to handle and

recover from error situations.

Message Handling APIs 125

Error Messages

 Message ID Error Message Text

CPF24AD E Messages to remove must be *ALL if program message queue is *ALLINACT.

CPF24AE E Message key and messages to remove are mutually dependent.

CPF24A3 E Value for call stack counter parameter not valid.

CPF24A6 E Value for messages to remove not valid.

CPF24BF E Module or bound-program name is blank.

CPF24B4 E Severe error while addressing parameter list.

CPF24B7 E Value &1 for call stack entry name length not valid.

CPF24B8 E Value &1 for remove unhandled exceptions not valid.

CPF24C5 E Pointer to call stack entry not valid.

CPF24C6 E Value of To call stack entry data type parameter not valid.

CPF241A E Clear option &1 in system program is not valid.

CPF2410 E Message key not found in message queue &1.

CPF2422 E Reply not valid.

CPF247A E Call stack entry not found.

CPF2479 E Call stack entry not found.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1.1

 Top | “Message Handling APIs,” on page 1 | APIs by category

126 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

Resend Escape Message (QMHRSNEM) API

 Required Parameter Group:

1 Message key

Input Char(4)

2 Error code

I/O Char(*)
 Optional Parameter Group:

3 To call stack entry

Input CHAR(*)

4 To call stack entry length

Input Binary(4)

5 Format of to call stack entry parameter

Input Char(8)

6 From call stack entry address

Input CHAR(16) or Pointer

7 From call stack counter

Input Binary(4)
 Default Public Authority: *USE

 Threadsafe: Yes

The Resend Escape Message (QMHRSNEM) API resends an escape message from the current call stack

entry to the previous call stack entry in the call stack or to any call stack entry that is earlier if the

optional parameters are used. This API can also be used to resend an escape message from a call stack

entry other than the current one.

You can use this API along with the Move Program Messages (QMHMOVPM) API to streamline

exception message handling. If a call stack entry is sent diagnostic messages and an escape message but

cannot handle the error itself, you can use the QMHMOVPM API to move the diagnostic messages. You

can use the QMHRSNEM API to forward the escape message to the previous call stack entry in the call

stack. The call stack entry does not need to send an escape message of its own. For details about the

QMHMOVPM API, see “Move Program Messages (QMHMOVPM) API” on page 50 (QMHMOVPM) API.

In a multithreaded job messages can be resent only from one call message queue to another call message

queue within the thread that calls this API. Messages cannot be resent to a call stack entry in another

thread.

Authorities and Locks

None.

Required Parameter Group

Message key

INPUT; CHAR(4)

Message Handling APIs 127

The key to the escape message being resent. The key is assigned by the command or API that

first sends the message.

 To resend the last new escape message, use blanks for this parameter.

 A message is new until it is received. It then becomes an old message. You can resend an old

message only if you specify the message key.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Use these optional parameters if the call stack entry, to which the message is to be resent, is not just

previous to the one that is using this API. Use these optional parameters also when the message to

resend is not on the current call stack entry’s message queue.

To call stack entry

INPUT; CHAR(*)

 A structure that contains the information that this API will use to determine the call stack entry

to resend the message to. The structure can be in one of two formats; RSNM0100 or RSNM0200.

To call stack entry length

INPUT; BINARY(4)

 The length of the To call stack entry parameter. The length specified here must be at least large

enough to hold the specified format of the To call stack entry parameter. It may be larger. In case

it is larger, the structure must be left justified in the area. If the length specified by this parameter

is not adequate for the format being used, error CPF24C7 is sent to the caller of this API.

Format of to call stack entry parameter

INPUT; CHAR(8)

 The format of the to call stack entry parameter. Use one of the following format names:

 RSNM0100 The To call stack entry parameter is in the RSNM0100 format. This format is used when the to call

stack entry is identified by name or by special value.

RSNM0200 The To call stack entry parameter is in the RSNM0200 format. This format is used when the call

stack entry is identified by a pointer.

From call stack entry address

INPUT; Pointer or CHAR(16)

 A pointer to the call stack entry where the escape message to resend exists or the call stack entry

to start counting from if the From call stack counter is not 0.

 The pointer that is specified must be an invocation pointer that addresses a valid call stack entry

or must be set to Null.

 For programming languages that do not support pointers, a Null pointer can be represented by a

16 byte variable in which the first byte is set to the special value ’*’ and the remaining 15 bytes

are set to blanks.

 If the pointer provided is set to Null, this indicates the current call stack entry.

 If the pointer is not Null or it does not address a valid call stack entry, the error message

CPF24C5 is sent to the user of the API.

From call stack counter

INPUT; BINARY(4)

128 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

A number identifying the location in the call stack of the call stack entry from where the message

is to be resent. The number is relative to the from call stack entry that is addressed by the

pointer. It indicates how many calls earlier in the call stack the entry is from the one that is

addressed by the pointer. Valid values follow:

 0 The message to resend exists at the call stack entry that is addressed by the pointer.

1 The message to resend exists at the call stack entry that is one earlier in the call stack than the one

addressed by the pointer.

n (any positive

number)

The message to resend exists at the nth call stack entry earlier in the stack from the one addressed

by the pointer.

You can use any positive number that does not exceed the actual number of call stack entries in

the call stack. Do not include the external message queue in your count.

RSNM0100 Format

The following table shows the structure of the To call stack entry parameter when the RSNM0100 format

is used. This format is used when the to call stack entry is identified by name or by special value.

The information passed in the RSNM0100 format is described in “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) To call stack counter

4 4 CHAR(20) To call stack entry qualification

24 18 BINARY(4) Length of to call stack entry identifier

28 1C CHAR(*) To call stack entry identifier

RSNM0200 Format

The following table shows the structure of the To call stack entry parameter when the RSNM0200 format

is used. This format is used when the to call stack entry is identified by a pointer.

The information passed in the RSNM0200 format is described in “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 Pointer To call stack entry address

16 10 BINARY(4) To call stack counter

20 14 CHAR(10) Pointer qualifier

Field Descriptions

Length of the to call stack entry identifier. The length of the To call stack entry identifier. Valid values

for this parameter are as follows:

v 1 to and including 4096 if partial name indicators are not used.

v 1 to and including 4102 is partial name indicators are used.

Note: The actual length of the call stack entry name cannot exceed 4096.

Pointer qualifier.

Message Handling APIs 129

Specify one of the following special values:

 *NONE Specify this special value if the call stack entry addressed by the pointer is the one to which the

message is to be resent or the one to start counting from when using a value other than 0 for the

To call stack counter parameter.

*PGMBDY Specify this special value if call stack entry to resend the message to or to start counting from is

an ILE program boundary. The ILE program is the one which contains the procedure that is

running in the call stack entry addressed by the pointer.

If the ILE program was called using a dynamic call, using this special value with a pointer will

identify the call stack entry for the PEP of that program. If a call was made using a procedure

pointer, it will identify the call stack entry for the procedure that was pointed to.

If the pointer addresses a call stack entry that is running a procedure from an ILE service

program, this option can be used to identify the call stack entry for the first procedure that was

called in that service program.

If the call stack entry addressed by the pointer is running an OPM program, using the special

value *PGMBDY here will have the same effect as using *NONE in most cases. A difference will

occur if the OPM program called itself recursively. In this case using *PGMBDY identifies the first

recursion level while *NONE identifies the current recursion level.

To call stack counter. A number identifying the location in the call stack of the call stack entry to which

the message is to be resent. The number is relative to the call stack entry identified by the To call stack

entry identifier field. It indicates how many calls up the call stack the target entry is from the one

specified in the To call stack entry identifier field. Valid values follow:

 0 Resend the message to the message queue of call stack entry specified by the To call stack entry

identifier field. You cannot use 0 when the To call stack identifier field specifies * to designate the

current call stack entry.

1 Resend the message to the message queue of the call stack entry that is one earlier in the call stack

than the one identified by the To call stack entry identifier field.

n (any positive

number)

Resend the message to the queue of the nth call stack entry earlier in the stack from the one

specified in the to call stack entry field.

You can use any positive number that does not exceed the actual number of call stack entries in

the call stack. Do not include the external message queue in your count.

The From call stack entry cannot be the same as the To call stack entry. Additionally, the To call stack

entry must be earlier on the call stack than the From call stack entry.

To call stack entry address. A pointer to the call stack entry to resend the messages to, or the call stack

entry to start counting from when using a value other than 0 for the To call stack counter parameter.

The pointer that is specified must be an invocation pointer that addresses a valid call stack entry or must

be set to Null.

If the pointer provided is Null, this indicates the current call stack entry. If a Null pointer is provided, the

To call stack counter parameter must be specified as a non-zero value.

If the pointer provided is not Null and does not address a valid call stack entry, the error message

CPF24C5 is sent to the user of the API.

To call stack entry identifier. An identification of the call stack entry to resend the message to or the call

stack entry to start counting from when using a value other than 0 for the To call stack counter

parameter. The call stack entry identified by this field must be in the call stack, and you cannot specify

the external message queue.

130 iSeries: Message Handling APIs

You can identify the To call stack entry by providing the name of the OPM program or ILE procedure

running in the entry or by using one of the following special values:

 * The call stack entry of the program or procedure using the API.

*PGMBDY The call stack entry is for the boundary of the specified program object. The program object is

specified explicitly by providing a program name in the To call stack entry qualification field. The

program object can be implicitly specified by specifying the program name qualification as

*NONE. In this case, the program object is assumed to be the program that is using the API.

This option essentially identifies the oldest call stack entry which began a sequence of calls, where

each call in this sequence involved the same program object. The call sequence could involve

recursive calls to the same program or, in the case of ILE, calls to different procedures of the same

ILE program or ILE service program.

For OPM programs, in most cases using *PGMBDY produces the same result as using * or an

OPM program name directly in this field. A difference will appear when an OPM program calls

itself recursively. In this case, using * or an OPM program name identifies the current recursion

level. In contrast, using *PGMBDY identifies the first recursion level.

For an ILE program, this option can be used to identify the first procedure of the ILE program

that was called in the current sequence. If the ILE program was called using a dynamic call, this is

the PEP (program entry procedure) of the ILE program. If sequence was started by calling using a

procedure pointer, this is the call stack entry for the procedure that was pointed to.

For ILE service programs, this special value can be used to specify the call stack entry for the first

procedure called in the identified service program.

*CTLBDY The call stack entry at the most recent control boundary. This call stack entry is in the same

activation group as the one that is using the API.

If this key word value is used and there is no control boundary in the current call stack, the error

CPF24C8 is returned to the user of this API. This would happen if the only entries on the call

stack are for OPM programs.

Note that in some cases, *PGMBDY and *CTLBDY will identify the same call stack entry but not

in all cases. The option *CTLBDY does not care if all call stack entries in a call sequence involve

the same program object. It cares only that a sequence started at a control boundary. Conversely,

the start of a call sequence identified by *PGMBDY may not fall on a control boundary.

*PGMNAME The call stack entry is identified entirely by the program name and optionally module name that

is provided in the To call stack entry qualification field.

For OPM programs, specifying this special value here and the program name in the To call stack

entry qualification field produces the same results as if the program name had been specified

directly here.

For ILE programs or service programs, this special value is used to indicate that a procedure name

is not being specified. Rather the call stack entry is identified by providing only the ILE program

name or ILE service program name and optionally the ILE module name. This means that the call

stack entry will be the most recently called procedure that is part of the specified ILE program

(and part of the ILE module if module name is also specified). The name of this most recently

called procedure is not important in determining the correct call stack entry.

If this key value is specified with a program name only, then the call stack entry is the most

recently called OPM program that has the specified program name or the most recently called ILE

procedure that is part of an ILE program or service program of the specified name, whichever is

the most recent on the call stack. If the module name is also specified, then the call stack entry is

the most recently called ILE procedure that is part of specified ILE program or service program

and module. If module name is given then the call stack entry cannot be an OPM program.

Message Handling APIs 131

The call stack entry can be a nested procedure name from 1 through 4096 characters in length. When

specifying nested procedures, each procedure name must be separated by a colon, and the outermost

procedure is identified first followed by the procedures it contains. The innermost procedure is the last

procedure identified in the string.

The call stack entry can be a partial name. To specify a partial name, place three less-than signs (<<<) at

the beginning of the call stack entry identifier, or place three greater-than signs (>>>) at the end of the

call stack entry identifier, or place both the less-than signs and the greater-than signs at their respective

ends of the call stack entry identifier. The value for the call stack entry excluding the less-than signs and

the greater-than signs is used to search backward through the stack for the requested call stack entry

name.

When searching for a partial call stack entry name:

v If the less-than signs (<<<) are specified only at the beginning of the call stack entry name, the

less-than signs are truncated and the remaining character string is right-justified. The remaining string

is then compared to the current call stack entry on the call stack. The comparison starts at the end of

the call stack entry name and backwardly compares the number of characters in the specified string.

v If the greater-than signs (>>>) are specified only at the end of the call stack entry name, the

greater-than signs are truncated. The remaining character string is compared to the current call stack

entry on the call stack. The comparison starts at position 1 of the call stack entry name and compares

the number of characters in the specified string.

v If the less-than signs (<<<) are specified at the beginning of the call stack entry name and the

greater-than signs (>>>) are specified at the end of the call stack entry name, both the less-than signs

and the greater-than signs are truncated. The remaining characters are used to scan and to compare the

entire length of the specified string and the current call stack entry on the call stack.

To call stack entry qualification. This field is used when it is necessary to further identify the To call

stack entry. The parameter consists of two 10 character parts. The first part is the module name qualifier

and the second part is the program name qualifier. The values provided in this field are used as a

qualifier for the value provided in the To call stack entry identifier field. The values that can be specified

here depend upon the value provided as the To call stack entry identifier.

The following special value may be used to indicate that the module name qualifier or program name

qualifier is not being specified:

 *NONE This value can be used for the value of the module name qualifier, program name qualifier, or

both to indicate that no qualifier is being specified.

If the To call stack entry identifier field contains an ILE procedure name then this field can contain the

name of the module and program that the procedure was compiled and bound into. The module and

program name qualifiers are used to distinguish the correct call stack entry in the case where different

procedures of the same name are on the call stack at the same time. The first 10 characters specify the

module name, and the second 10 characters specify the ILE program name or ILE Service program name.

If *NONE is specified for both the module and program name qualifiers, only the specified procedure

name is used to determine the call stack entry.

If the To call stack entry identifier field contains the special value *PGMNAME than the program name

qualifier must contain either an OPM program name or an ILE program or Service program name. For

ILE, the module name qualifier may contain a module name; otherwise it must contain *NONE.

When the To call stack entry identifier field contains the special value * or *CTLBDY, both the module

name qualifier and program name qualifier must be specified as *NONE.

When the To call stack entry identifier field contains an OPM program name, both the module name and

program name qualifiers should be specified as *NONE. If a module name or program name is specified

132 iSeries: Message Handling APIs

here, the name specified as the To call stack entry identifier is interpreted as an ILE procedure name

rather than an OPM program name. Either the entry would not be found or an incorrect entry would be

found.

When the To call stack entry identifier field contains the special value *PGMBDY, the module name

qualifier must be specified as *NONE. For the program name qualifier, an OPM, ILE program, or ILE

Service program name may be specified or *NONE may be used.

Error Messages

 Message ID Error Message Text

CPF24A3 E Value for call stack counter parameter not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B7 E Value &1 for call stack entry name length not valid.

CPF24B9 E When call stack entry name is ’*’ or ’*CTLBDY’, module name and program name must be

’*NONE’.

CPF24BC E No escape message to resend.

CPF24C5 E Pointer to call stack entry not valid.

CPF24C7 E The length &1 is not valid when the specified format is &2.

CPF24C8 E Control boundary not found on call stack.

CPF24C9 E Program boundary not found on call stack.

CPF24CA E Call stack entry is not valid to resend message.

CPF24CB E *PGMNAME requires a specified program name.

CPF24CC E Call stack entry &2 for *PGMNAME not found.

CPF24CD E Module name cannot be specified when *PGMBDY is used.

CPF24CE E Qualifier &1 incorrect for use with pointer.

CPF24CF E Pointer qualifier &1 incorrect for use with pointer.

CPF2410 E Message key not found in message queue &1.

CPF246A E Destination call stack entry not valid.

CPF247A E Call stack entry not found.

CPF2479 E Call stack entry not found.

CPF2524 E Exception handler not available because of reason code &1.

CPF2550 E Exception message sent to a deleted program or procedure.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1.1

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 133

#TOP_OF_PAGE
aplist.htm

Retrieve Message (QMHRTVM) API

 Required Parameter Group:

1 Message information

Output Char(*)

2 Length of message information

Input Binary(4)

3 Format name

Input Char(8)

4 Message identifier

Input Char(7)

5 Qualified message file name

Input Char(20)

6 Replacement data

Input Char(*)

7 Length of replacement data

Input Binary(4)

8 Replace substitution values

Input Char(10)

9 Return format control characters

Input Char(10)

10 Error code

I/O Char(*)
 Optional Parameter Group:

11 Retrieve Option

Input Char(10)

12 CCSID to convert to

Input Binary(4)

13 CCSID of replacement data

Input Binary(4)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Message (QMHRTVM) API retrieves the message description of a predefined message. The

message description is created with the Add Message Description (ADDMSGD) command. It consists of

the text of the message and other information, such as the message help and the default reply for the

message. You can use the QMHRTVM API to copy the text of predefined messages into a program.

134 iSeries: Message Handling APIs

Retrieving a message is not the same as receiving a message. Retrieving a message with this API returns

the message and associated information stored in the message file. In contrast, receiving a message with

the Receive Nonprogram Message (QMHRCVM) or Receive Program Message (QMHRCVPM) API

focuses on the message as it is sent to a particular user or program at a particular time. The information

returned from the QMHRCVM or the QMHRCVPM API includes details about who sent the message,

when it was sent, why it was sent, and so on.

Authorities and Locks

Message File Authority

*USE

Message File Library Authority

*EXECUTE

Required Parameter Group

Message information

OUTPUT; CHAR(*)

 The variable that receives information returned, in the format specified in the format name

parameter, of the length specified in the length of message information parameter. If the user is

retrieving the next message of the last message of a message file or the first message of an empty

message file, blanks are returned for the message information field.

Length of message information

INPUT; BINARY(4)

 The size of the area to contain the message information, in bytes. The minimum size is 8.

 This parameter must specify the size of the variable you use for the message information

parameter. If this parameter specifies a longer size, other parts of storage could be overwritten

when the API returns the information.

 The API returns as much information as it can fit in this length. If the available message

information is longer, it is truncated. If the available message information is shorter, the unused

output area is unchanged; whatever is already stored in that space remains there.

 To determine how much information the API actually returns in response to this call, see the

bytes returned field in the message information format. To determine how much information the

API could return if space were available, see the bytes available field.

Format name

INPUT; CHAR(8)

 The format to use for the message information. Specify one of these format names:

 RTVM0100 Brief message information. For details, see “RTVM0100 Format” on page 137.

RTVM0200 Similar to RTVM0100 plus message severity, alert index, alert option, log indicator, and default

reply. For details, see “RTVM0200 Format” on page 138.

RTVM0300 Similar to RTVM0200 plus the message ID, CCSID information, and the replacement text formats.

For details, see “RTVM0300 Format” on page 138.

RTVM0400 All message information. For details, see “RTVM0400 Format” on page 139.

Message identifier

INPUT; CHAR(7)

 The identifying code for the predefined message being retrieved. If the retrieve option parameter

is *FIRST, this field is ignored and the first alphabetical message is retrieved from the message

file.

Message Handling APIs 135

Qualified message file name

INPUT; CHAR(20)

 The name of the message file from which to retrieve the message information and the library in

which it resides. The first 10 characters specify the file name; thesecond 10 characters specify the

library. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Replacement data

INPUT; CHAR(*)

 The values to insert in the substitution variables in the predefined message and message help.

 If you use blanks for this parameter, blanks are inserted for the substitution variables.

 If this parameter contains pointer data, each pointer must start on a 16-byte boundary to keep the

data accurate.

Length of replacement data

INPUT;BINARY(4)

 The length of the replacement data parameter, in bytes. Valid values are 0 through 32767.

Replace substitution variables

INPUT; CHAR(10)

 Whether to replace the substitution variables with the values given in the replacement data

parameter. Specify one of these values:

 *NO Do not use the replacement data. Instead, return the substitution variable numbers (that is, &1,

&2, and so on) in the message text.

*YES Use the replacement data in the message text. If you specified blanks in the replacement data

parameter, blanks are used for the substitution variables.

Return format control characters

INPUT; CHAR(10)

 Whether or not the format control characters are returned in the message help output field.

Specify one of these values:

 *NO Do not return the format control characters in the text.

*YES Return the format control characters in the text.

Three format control characters can be returned within the message. They are defined in the

online help of the Add Message Description (ADDMSGD) command to have these meanings:

 &N Forces the text to a new line (column 2). If the text is longer than one line, the next lines are

indented to column 4 until the end of text or another format control character is found.

&P Forces the text to a new line indented to column 6. If the text is longer than one line, the next

lines start in column 4 until the end of text or another format control character is found.

&B Forces the text to a new line, starting in column 4. If the text is longer than one line, the next lines

are indented to column 6 until the end of text or another format control character is found.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

136 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Optional Parameter Group

Retrieve option

INPUT; CHAR(10)

 If this parameter is not used, it is defaulted to *MSGID. The following options are allowed:

 *MSGID Retrieve the message description specified by the message ID parameter. This is the default value

of this parameter.

*NEXT Retrieve the next message description in the message file that is after the message description

specified on the message ID parameter.

*FIRST Retrieve the first message description of the message file. Note that if *FIRST is specified for this

parameter, the message ID parameter is ignored.

Note: Although the last 4 characters of a message identifier can be thought of as 4 hexadecimal

numbers, the values ’A’ through ’F’ are treated as characters when sorting. For example,

CPFAAAA is listed before CPF0001.

CCSID to convert to

INPUT; BINARY(4)

 The coded character set identifier (CCSID) in which you want your message text returned. This

only applies to text returned in the message and message help fields. The following values are

allowed:

 0 The retrieved message description is converted to the CCSID of the job. This is the default value if

this parameter is not specified.

If the job is 65535 and the text or data is something other than EBCDIC single byte or EBCDIC

mixed, the text and data are converted to the default job CCSID.

65535 The retrieved message description will not be converted before it is returned.

CCSID A valid CCSID in which you want your message text returned. The CCSID must be between 1 and

65535. The CCSID will be validated by this API.

Only CCSIDs that a job can be changed to are accepted. For a list of valid job CCSIDs, prompt the

CCSID parameter on the Change Job (CHGJOB) CL command.

Note: If the text contains substitution variables, only the substitution variables that are *CCHAR

type data are converted to this CCSID. All other message data is not converted before being

returned.

CCSID of replacement data

INPUT; BINARY(4)

 The coded character set identifier (CCSID) that the supplied replacement data is in. This only

applies to parts of the replacement data that are defined as *CCHAR. The *CCHAR data is

converted from this CCSID to the CCSID in which you want all your text converted. The

following values are allowed:

 0 The replacement data is assumed in the CCSID of the job. This is the default value if this

parameter is not specified.

65535 The replacement data will not be converted.

CCSID Specifies a valid CCSID that your replacement data is in. The CCSID must be between 1 and

65535. The CCSID is validated by this API. For a list of valid CCSIDs, see CCSIDs: Message

Support in the Globalization topic.

RTVM0100 Format

The following table lists the fields in the RTVM0100 format. For more information about each field, see

“Field Descriptions” on page 142.

Message Handling APIs 137

Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Length of message returned

12 C BINARY(4) Length of message available

16 10 BINARY(4) Length of message help returned

20 14 BINARY(4) Length of message help available

24 18 CHAR(*) Message

The offset to this field

equals the last offset

identified plus the

length of the previous

variable length fields.

CHAR(*) Message help

RTVM0200 Format

The following table lists the fields in the RTVM0200 format. For more information about each field, see

“Field Descriptions” on page 142.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Message severity

12 C BINARY(4) Alert index

16 10 CHAR(9) Alert option

25 19 CHAR(1) Log indicator

26 1A CHAR(2) Reserved

28 1C BINARY(4) Length of default reply returned

32 20 BINARY(4) Length of default reply available

36 24 BINARY(4) Length of message returned

40 28 BINARY(4) Length of message available

44 2C BINARY(4) Length of message help returned

48 30 BINARY(4) Length of message help available

52 34 CHAR(*) Default reply

The offset to this field

equals the last offset

identified plus the

length of the previous

variable length fields.

CHAR(*) Message

CHAR(*) Message help

RTVM0300 Format

The following table lists the fields in the RTVM0300 format. For more information about each field, see

“Field Descriptions” on page 142.

138 iSeries: Message Handling APIs

Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Message severity

12 C BINARY(4) Alert index

16 10 CHAR(9) Alert option

25 19 CHAR(1) Log indicator

26 1A CHAR(7) Message ID

33 21 CHAR(3) Reserved

36 24 BINARY(4) Number of substitution variable formats

40 28 BINARY(4) CCSID conversion status indicator of text

44 2C BINARY(4) CCSID conversion status indicator of replacement data

48 30 BINARY(4) CCSID of text returned

52 34 BINARY(4) Offset of default reply

56 38 BINARY(4) Length of default reply returned

60 3C BINARY(4) Length of default reply available

64 40 BINARY(4) Offset of message

68 44 BINARY(4) Length of message returned

72 48 BINARY(4) Length of message available

76 4C BINARY(4) Offset of message help

80 50 BINARY(4) Length of message help returned

84 54 BINARY(4) Length of message help available

88 58 BINARY(4) Offset of substitution variable formats

92 5C BINARY(4) Length of substitution variable formats returned

96 60 BINARY(4) Length of substitution variable formats available

100 64 BINARY(4) Length of substitution variable format element

104 68 CHAR(*) Reserved

The offsets to these

fields are specified in

the previous offset

variables.

CHAR(*) Default reply

CHAR(*) Message

CHAR(*) Message help

CHAR(*) Substitution variable formats

RTVM0400 Format

The following table lists the fields in the RTVM0400 format. For more information about each field, see

“Field Descriptions” on page 142.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Message severity

Message Handling APIs 139

Offset

Type Field Dec Hex

12 C BINARY(4) Alert index

16 10 CHAR(9) Alert option

25 19 CHAR(1) Log indicator

26 1A CHAR(7) Message ID

33 21 CHAR(3) Reserved

36 24 BINARY(4) Number of substitution variable formats

40 28 BINARY(4) CCSID conversion status indicator of text

44 2C BINARY(4) CCSID conversion status indicator of replacement data

48 30 BINARY(4) CCSID of text returned

52 34 BINARY(4) Offset of default reply

56 38 BINARY(4) Length of default reply returned

60 3C BINARY(4) Length of default reply available

64 40 BINARY(4) Offset of message

68 44 BINARY(4) Length of message returned

72 48 BINARY(4) Length of message available

76 4C BINARY(4) Offset of message help

80 50 BINARY(4) Length of message help returned

84 54 BINARY(4) Length of message help available

88 58 BINARY(4) Offset of substitution variable formats

92 5C BINARY(4) Length of substitution variable formats returned

96 60 BINARY(4) Length of substitution variable formats available

100 64 BINARY(4) Length of substitution variable format element

104 68 CHAR(10) Reply type

114 72 CHAR(2) Reserved

116 74 BINARY(4) Maximum reply length

120 78 BINARY(4) Maximum reply decimal positions

124 8C BINARY(4) Offset of valid reply value entries

128 80 BINARY(4) Number of valid reply values entries returned

132 84 BINARY(4) Length of valid reply value entries returned

136 88 BINARY(4) Length of valid reply value entries available

140 8C BINARY(4) Length of valid reply value entry

144 90 BINARY(4) Offset of special reply value entries

148 94 BINARY(4) Number of special reply values returned

152 98 BINARY(4) Length of special reply value entries returned

156 9C BINARY(4) Length of special reply value entries available

160 A0 BINARY(4) Length of special reply value entry

164 A4 BINARY(4) Offset of lower range reply value

168 A8 BINARY(4) Length of lower range reply value returned

172 AC BINARY(4) Length of lower range reply value available

176 B0 BINARY(4) Offset of upper range reply value

140 iSeries: Message Handling APIs

Offset

Type Field Dec Hex

180 B4 BINARY(4) Length of upper range reply value returned

184 B8 BINARY(4) Length of upper range reply value available

188 BC BINARY(4) Offset of relational test entry

192 C0 BINARY(4) Length of relational test entry returned

196 C4 BINARY(4) Length of relational test entry available

200 C8 CHAR(7) Message creation date

207 CF CHAR(1) Reserved

208 D0 BINARY(4) Message creation level number

212 D4 CHAR(7) Message modification date

219 DB CHAR(1) Reserved

220 DC BINARY(4) Message modification level number

224 E0 BINARY(4) Stored CCSID of message

228 E4 BINARY(4) Offset of dump list entries

232 E8 BINARY(4) Number of dump list entries returned

236 EC BINARY(4) Length of dump list entries returned

240 F0 BINARY(4) Length of dump list entries available

244 F4 CHAR(10) Default program name

254 FE CHAR(10) Default program library name

The offsets to these

fields are specified in

the previous offset

variables.

CHAR(*) Default reply

CHAR(*) Message

CHAR(*) Message help

CHAR(*) Substitution variable formats

CHAR(*) Valid reply value entries

CHAR(*) Special reply value entries

CHAR(*) Lower range reply value

CHAR(*) Upper range reply value

CHAR(*) Relational test entry

CHAR(*) Dump list entries

Relational Test Entry Format

The following table lists the fields in the Relational Test Entry format. For more information about each

field, see “Field Descriptions” on page 142.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Relational operator

10 A CHAR(2) Reserved

12 C BINARY(4) Length of relational value

16 10 CHAR(*) Relational value

Message Handling APIs 141

Special Reply Value Entry Format

The following table lists the fields in the Special Reply Value Entry format. For more information about

each field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(32) From-value

32 20 CHAR(32) To-value

Substitution Variable Format

The following table lists the fields in the Substitution Variable format. For more information about each

field,see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of replacement data for substitution variable

4 4 BINARY(4) Field size or decimal positions

8 8 CHAR(10) Substitution variable type

18 12 CHAR(*) Reserved

Valid Reply Entry Format

The following table lists the fields in the Valid Reply Entry format. For more information about each

field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(32) Valid reply value

Field Descriptions

This section describes the fields returned in further detail. The fields are listed in alphabetical order.

Alert index. The format number for the message data field. This number is also called the resource name

variable. For more information, see the Alerts Support

book.

Alert option. Whether and when an SNA alert is created and sent for the message. Valid values follow:

 *DEFER An alert is sent after local problem analysis.

*IMMED An alert is sent immediately when the message is sent to a message queue that has the allow

alerts attribute set to *YES.

*NO No alert is sent.

*UNATTEND An alert is sent immediately when the system is running in unattended mode (when the value of

the alert status network attribute, ALRSTS, is *UNATTEND).

142 iSeries: Message Handling APIs

For more information, see the Alerts Support book.

Bytes available. The length of all available information about the format. Bytes available can be greater

than the length specified in the APIs length of message information parameter. If it is greater, the

information returned is truncated.

Bytes returned. The length of all information returned in the format. The value of the bytes returned field

is always less than or equal to the value of the length of message information parameter, and less than or

equal to the bytes available. If the bytes returned value is less than the length of message information

value, the unused space is unchanged.

CCSID conversion status indicator of replacement data. This value indicates the status of any CCSID

conversion that may have occurred when inserting the replacement data into the message description.

The following values may be returned:

 0 No conversion was needed because the CCSID of the data matched the CCSID you wanted the

data converted to.

1 No conversion occurred because either the data was 65535 or the CCSID you wanted the data

converted to was 65535.

2 No conversion occurred because you did not supply enough space for the data or the replacement

data did not contain any *CCHAR type substitution variables.

3 The data was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on both the best fit and default conversions. The data was not converted.

CCSID conversion status indicator of text. This value indicates the status of any CCSID conversion that

may have occurred when retrieving the message description from the message file. The following values

may be returned:

 0 No conversion was needed because the CCSID of the text matched the CCSID you wanted the text

converted to.

1 No conversion occurred because either the text was 65535 or the CCSID you wanted the text

converted to was 65535.

2 No conversion occurred because you did not supply enough space for the text.

3 The text was converted to the CCSID specified using the best fit conversion tables.

4 A conversion error occurred using the best fit conversion tables so a default conversion was

attempted. This completed without error.

-1 An error occurred on the best fit conversion. The text was not converted.

CCSID of text returned. The coded character set identifier in which the text of the message description is

returned.

Note: If a conversion error occurs or if the CCSID you requested the text to be converted to is 65535, the

CCSID that the message description is stored in is returned. Otherwise the CCSID you wanted your text

converted to is returned. If you do not want the text converted before it is returned but you do want to

know the CCSID that the message description is stored in, specify 65535 on the coded character set

identifier to convert to parameter. The CCSID the message description is stored in is returned in the

coded character set identifier or text returned field.

The CCSID returned in the coded character set identifier for text returned may not apply to the

replacement data substituted in the text returned. Only the *CCHAR substitution variables are converted

to the CCSID specified. The rest of the replacement data is not converted before it is returned. Also, if an

error occurred trying to convert the replacement data from the CCSID of the message data to the CCSID

to convert to, the replacement data would not be converted before it is returned.

Message Handling APIs 143

Default program library name. The library specified for the default program. This can be the actual

library name, *LIBL, or *CURLIB.

Default program name. The name of the program called to take default action if this message is sent as

an escape message to a program or procedure that is not monitoring for it.

Default reply. The default reply for the message identifier retrieved.

Dump list entry. Each dump list entry is a BINARY(4) value that specifies data to be dumped when the

message is sent as an escape message to a program that is not monitoring for it. The following values

may be returned:

 1-99 The number of the message data field that is to be dumped.

-1 The data areas of the job are dumped as specified by the Dump Job (DMPJOB) command. This

corresponds to the special value *JOBDMP that can be specified in the DMPLST parameter of the

ADDMSGD and CHGMSGD commands.

-2 The internal machine data structures related to the machine process in which the job is running

are dumped to the machine error log. This corresponds to the special value *JOBINT that can be

specified in the DMPLST parameter of the ADDMSGD and CHGMSGD commands.

-4 The job information produced by the Display Job (DSPJOB) command is printed. This corresponds

to the special value *JOB that can be specified in the DMPLST parameter of the ADDMSGD and

CHGMSGD commands.

Field size or decimal positions. This value is used in one of two ways, depending on the substitution

variable type.

v If the substitution variable type is *QTDCHAR, *CHAR, *CCHAR, *HEX, or *SPP and *VARY is

specified as the length of replacement data for the substitution variable, the size of the length portion

of the replacement data is returned. This value is 2 if the length portion is 2 bytes long, or 4 if the

length portion is 4 bytes long.

v When the substitution variable type is *DEC, the number of decimal positions in the substitution

variable is returned.

v In all other cases, 0 is returned.

From-value. The from-value in a special reply value entry. This is a value that can be entered as a reply

to the message even though it may not meet the other reply validity checking specifications. It will be

accepted and converted to a valid response specified in the to-value.

Length (general information about the following length fields). These formats use two types of length

fields, each related to a single variable length text field. (The variable length text fields return information

to the caller.) The first type of length field is returned length; the second is available length. Returned

length is the actual length of the text in the variable length text field. Available length is the length of

the text before it is placed in the variable length text field. It is always greater than or equal to the

returned length. If the available length equals the returned length, all the message information is

returned. If the text is truncated when placed in the variable length field, the available length is greater

than the returned length by the number of characters truncated.

Length of default reply available. The length of the available default reply, in bytes.

Length of default reply returned. The length of the returned default reply, in bytes.

Length of dump list entries available. The length of the available dump list entries, in bytes.

Length of dump list entries returned. The length of the available dump list entries that were actually

returned, in bytes.

144 iSeries: Message Handling APIs

Length of lower range reply value available. The length of the available lower range reply value, in

bytes.

Length of lower range reply value returned. The length of the returned lower range reply value, in

bytes.

Length of message available. The length of the available message text, in bytes.

Length of message help available. The length of the available help information for the message, in bytes.

Length of message help returned. The length of the returned help information for the message, in bytes.

Length of message returned. The length of the returned message text, in bytes.

Length of relational test entry available. The length of the available relational test entry, in bytes.

Length of relational test entry returned. The length of the returned relational test entry, in bytes.

Length of relational value. The length of the value to be compared to the reply entered for a relational

test entry, in bytes.

Length of replacement data for substitution variable. The number of characters or digits that are needed

in the message replacement data for this substitution variable. The value returned is dependant on the

substitution variable type and length:

v -1 is returned if the length is *VARY.

v The total number of decimal digits (including the fractional portion) is returned if the substitution

variable type is *DEC.

v In all other cases, the value returned is the size in bytes of the substitution variable.

Length of special reply value entriesavailable. The total length in bytes of all the available special reply

value entries.

Length of special reply value entries returned. The length in bytes of the special reply value entries that

were actually returned.

Length of special reply value entry. The length of the special reply value entry, in bytes.

Length of substitution variable format element. The length in bytes of each substitution variable format

element.

Length of substitution variable formats available. The total length in bytes of all the available

substitution variable formats.

Length of substitution variable formats returned. The length in bytes of the substitution variable

formats that were actually returned.

Length of upper range reply value available. The length of the available upper range reply value, in

bytes.

Length of upper range reply value returned. The length of the returned upper range reply value, in

bytes.

Length of valid reply value entries available. The total length in bytes of all the available valid reply

value entries.

Message Handling APIs 145

Length of valid reply value entries returned. The length in bytes of the valid reply value entries that

were actually returned.

Length of valid reply value entry. The length of the valid reply value entry, in bytes.

Log indicator. The log problem indicator for the message retrieved. Possible values follow:

 N Problems are not logged.

Y Problems are logged.

Lower range reply value. The lower value limit for the valid reply.

Maximum reply decimal positions. The maximum number of decimal positions allowed in the message

reply.

Maximum reply length. The maximum length of a reply to an inquiry or notify message.

Message. The text of the message retrieved.

Message creation date. The date this the message was created, in CYYMMDD format.

Message creation level number. The level number of this message. This will be a value from 1 to 99.

Message help. The message help for the message retrieved.

Message ID. The message ID of the message retrieved.

Message modification date. The date this message was modified, in CYYMMDD format.

Message modification level number. The modification level number of this message. This will be a value

from 1 to 99.

Message severity. The severity of the message retrieved.

Number of dump list entries returned. The number of dump list entries that were returned in the

message information format. The dump list entry field is repeated once for each dump list entry.

Number of special reply values returned. The number of special reply values that were returned in the

message information format. The special reply value entry field structure is repeated once for each special

reply value.

Number of substitution variable formats. The number of substitution variables in the message

description. The substitution variable formats field structure is repeated once for each substitution

variable in the message.

Number of valid reply values returned. The number of valid reply values that were returned in the

message information format. The valid reply value entry field structure is repeated once for each valid

reply value.

Offset of default reply. The offset of the default reply, in bytes.

Offset of dump list entries. The offset of the dump list entries, in bytes.

Offset of lower range reply value. The offset of the lower range reply value, in bytes.

146 iSeries: Message Handling APIs

Offset of message. The offset of the first-level message, in bytes.

Offset of message help. The offset of the second-level message, in bytes.

Offset of relational test entry. The offset of the relational test entry, in bytes.

Offset of special reply value entries. The offset of the special reply value entries, in bytes.

Offset of substitution variable formats. The offset in bytes to the substitution variable formats.

Offset of upper range reply value. The offset of the upper range reply value, in bytes.

Offset of valid reply value entries. The offset of the valid reply value entries, in bytes.

Relational operator. The relational operator for a relational test entry. This value is one of the following:

 *LT Less than

*LE Less than or equal to

*GT Greater than

*GE Greater than or equal to

*EQ Equal to

*NE Not equal to

Relational test entry. The relational test for the reply value that is defined in the message description. For

more information, see “Relational Test Entry Format” on page 141.

Relational value. The value to be compared to the reply entered for a relational test entry.

Reply type. The type of valid values that can be made to an inquiry or notify message. One of the

following values will be returned:

 *CHAR Any character string is valid. If it is a quoted character string, the apostrophes are passed as part

of the character string.

*NONE No reply type is specified.

*DEC Only a decimal number is a valid reply.

*ALPHA Only an alphabetic string is valid. Blanks are not allowed.

*NAME Only a simple name is a valid reply. The name does not have to be an object name, but it must

start with an alphabetic character; the remaining characters must be alphanumeric.

Reserved. An ignored field.

Special reply value entries. Each special reply value that is defined in the message description is

returned in a special reply value entry. For more information, see “Special Reply Value Entry Format” on

page 142.

Stored CCSID of message. The CCSID that was specified for the message. For messages created on a

release prior to V3R1 the value 65535 will be returned.

Substitution variable formats. Each substitution variable that is defined in the message description is

returned in a substitution variable format. For more information, see “Substitution Variable Format” on

page 142.

Substitution variable type. The type of data the substitution variable contains and how the data is

formatted when substituted into the returned message text. The value is one of the following types:

Message Handling APIs 147

*QTDCHAR A character string formatted with enclosing apostrophes (’Monday, the 1st’).

*CHAR A character string formatted without enclosing apostrophes.

*CCHAR A convertible character string.

*HEX A string of bytes formatted as a hexadecimal value (X’C0F4’).

*SPP A 16-byte space pointer to data in a space object.

*DEC A packed decimal number that is formatted in the message as a signed decimal value with a

decimal point.

*BIN A binary value that is 2, 4, or 8 bytes long (B’0000 0000 0011 1010’) and is formatted in the

message as a signed decimal value (58).

*UBIN A binary value that is 2, 4 or 8 bytes long (B’0000 0000 0011 1010’) and is formatted in the message

as an unsigned decimal value (58).

*DTS An 8-byte field that contains a system date/time stamp. The date/time stamp contains the date

followed by one blank separator and then the time.

*SYP A 16-byte system pointer to a system object.

*ITV An 8-byte binary field that contains the time interval (in seconds) for wait time-out conditions.

To-value. The to-value in a special reply value entry. This is the value that will be used as the reply value

when the value entered matches the from-value.

Upper range reply value. The upper value limit for the valid reply.

Valid reply entries. Each valid reply value that is defined in the message description is returned in a

valid reply value entry. For more information, see “Valid Reply Entry Format” on page 142.

Valid reply value. The valid reply value in a valid reply value entry.

Error Messages

 Message ID Error Message Text

CPF24AA E Value for replace substitution variables not valid.

CPF24AB E Value for return format control characters not valid.

CPF24A7 E Value for the length of message information not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B6 E Length of &1, not valid for message text or data.

CPF2401 E Not authorized to library &1.

CPF2407 E Message file &1 in &2 not found.

CPF2411 E Not authorized to message file &1 in &2.

CPF2419 E Message identifier &1 not found in message file &2 in &3.

CPF2465 E Replacement text of message &1 in &2 in &3 not valid for format specified.

CPF247E E CCSID &1 is not valid.

CPF247F E Retrieve option &1 not valid.

CPF2499 E Message identifier &1 not allowed.

CPF2531 E Message file &1 in &2 damaged for &3.

CPF2548 E Damage to message file &1 in &2.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1.1

 Top | “Message Handling APIs,” on page 1 | APIs by category

148 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

Retrieve Message File Attributes (QMHRMFAT) API

 Required Parameter Group:

1 Message file information

Output Char(*)

2 Length of message file information

Input Binary(4)

3 Format name

Input Char(8)

4 Qualified message file name

Input Char(20)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Message File Attributes (QMHRMFAT) API provides information about the attributes of a

message file.

Authorities and Locks

Message file

*USE

Message file library

*EXECUTE

Required Parameter Group

Message file information

OUTPUT; CHAR(*)

 The parameter to receive the message file information. The format of the returned data is

specified in the format name parameter.

Length of message file information

INPUT; BINARY(4)

 The size of the area to contain the message information, in bytes. If the length specified is larger

than the actual size of the message file information parameter, the results may not be predictable.

The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the information to be returned. You must use the following format name:

 RMFA0100 This format is described in “RMFA0100 Format” on page 150.

Qualified message file name

INPUT; CHAR(20)

Message Handling APIs 149

The message file and the library in which the message file is located. The first 10 characters

contain the message file name, and the second 10 characters contain the message file library. You

can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RMFA0100 Format

The following table shows the information returned in the message file information parameter for the

RMFA0100 format. For a detailed description of each field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Message file used

18 12 CHAR(10) Message file library used

28 1C BINARY(4) Current storage size

32 20 BINARY(4) Increment storage size

36 24 BINARY(4) Number of increments

40 28 BINARY(4) Maximum increments

44 2C BINARY(4) Coded character set identifier (CCSID)

48 30 CHAR(50) Text description

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Coded character set identifier (CCSID). The coded character set identifier (CCSID) associated with this

message file. A special value of 65535 means that no conversions are to occur when adding or retrieving

message descriptions from this message file. A special value of 65534 means to use the CCSID associated

with the message description when conversions are to occur. For more information about message

handler use of CCSIDs, see CCSIDs: Message Support in the Globalization topic.

Current storage size. The current storage size of the message file in bytes.

Increment storage size. The number of bytes added each time the message file is increased in size.

Maximum increments. The maximum number of times the message file can be increased in size.

Message file library used. The actual library name that contains the message file.

150 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message file used. The name of the message file whose attributes were returned.

Number of increments. The number of times the message file has been increased in size.

Reserved. An ignored field.

Text description. Text that briefly describes the message file.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF2401 E Not authorized to library &1.

CPF2407 E Message file &1 in &2 not found.

CPF2411 E Not authorized to message file &1 in &2.

CPF2483 E Message file currently in use.

CPF2536 E Value &1, for the length of message queue information not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 Top | “Message Handling APIs,” on page 1 | APIs by category

Retrieve Nonprogram Message Queue Attributes (QMHRMQAT) API

 Required Parameter Group:

1 Message queue information

Output Char(*)

2 Length of message queue information

Input Binary(4)

3 Format name

Input Char(8)

4 Qualified message queue name

Input Char(20)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Nonprogram Message Queue Attributes (QMHRMQAT) API provides information about the

attributes of a nonprogram message queue. For more information on the attributes of nonprogram

message queues, see the Create Message Queue (CRTMSGQ) command and the Change Message Queue

(CHGMSGQ) command documentation in the online help.

Message Handling APIs 151

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

Message queue

*USE

Message queue library

*EXECUTE

Required Parameter Group

Message queue information

OUTPUT; CHAR(*)

 The parameter to receive the message queue information. The format of the returned data is

specified in “RMQA0100 Format.”

Length of message queue information

INPUT; BINARY(4)

 The size of the area to contain the message information, in bytes. If the length specified is larger

than the actual size of the message queue information parameter, the results may not be

predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the information to be returned. You must use the following format name:

 RMQA0100 This format is described in “RMQA0100 Format.”

Qualified message queue name

INPUT; CHAR(20)

 The message queue and the library in which the message queue is located. The first 10 characters

contain the message queue name, and the second 10 characters contain the message queue library.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RMQA0100 Format

The following table shows the information returned in the message queue information parameter for the

RMQA0100 format. For a detailed description of each field, see “Field Descriptions” on page 153.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Message queue used

18 12 CHAR(10) Message queue library used

28 1C BINARY(4) Number of messages on queue

152 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

32 20 BINARY(4) Current storage size

36 24 BINARY(4) Increment storage size

40 28 BINARY(4) Number of increments

44 2C BINARY(4) Maximum increments

48 30 BINARY(4) Severity code filter

52 34 CHAR(7) Delivery

59 3B CHAR(10) Break-handling program name

69 45 CHAR(10) Break-handling program library

79 4F CHAR(4) Force to auxiliary storage

83 53 CHAR(50) Text description

133 85 CHAR(1) Allow alerts

134 86 CHAR(2) Reserved

136 88 BINARY(4) Coded character set identifier (CCSID)

140 8C CHAR(10) Message queue full action

150 96 CHAR(10) Allow other jobs to reply

Field Descriptions

Allow alerts. Whether this message queue allows alerts to be generated from alert messages sent to it.

The values are:

 1 Allow alerts to be generated

0 Do not allow alerts to be generated

See the Alerts Support

book for information on alerts.

Allow other jobs to reply. Whether other jobs can reply to messages on the message queue when it is in

*BREAK delivery mode with a break-handling program other than *DSPMSG specified.

The field is set to *ALWRPY if the queue is in break mode and *DSPMSG is the break-handling program.

The field is set to blanks if the queue is not in break mode.

The possible values follow:

 *NOALWRPY When the message queue is in *BREAK mode with a break-handling program other than

*DSPMSG specified, other jobs can display the message queue but cannot reply to inquiry

messages on the message queue.

*ALWRPY When the message queue is in *BREAK mode with a break-handling program other than

*DSPMSG specified, other jobs can reply to inquiry messages on the message queue.

Break-handling program library. The library that is specified for the break-handling program.

If the message queue is not in break mode or the break-handling program name is specified as *DSPMSG,

this field is set to blanks.

Message Handling APIs 153

The following special values or a specific library may be returned:

 *LIBL The library list is used to locate the program.

*CURLIB The current library for the job is used to locate the program.

Break-handling program name. The program that is called when messages are sent to this message

queue. The delivery field must be set to *BREAK. The severity of the message sent to the queue must be

equal to or greater than the value shown in the severity code filter field.

The field is set to *DSPMSG if the queue is in break mode and there is no break-handling program set.

The field is set to blanks if the queue is not in break mode.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Coded character set identifier (CCSID). The coded character set identifier (CCSID) that is associated

with this message queue. A special value of 65535 means that no conversions are to occur when sending

or receiving messages from this message queue. A special value of 65534 means to use the CCSID

associated with the message when conversions are to occur. For more information about the message

handler use of CCSIDs, see CCSIDs: Message Support in the Globalization topic.

Current storage size. The current storage size of the message queue in bytes.

Delivery. How the messages that are sent to this message queue are delivered. The method of delivery is

in effect only as long as the message queue is allocated to a job. When the queue is no longer allocated,

the delivery mode is changed to *HOLD for work-station, system-operator, and user message queues. The

possible values follow:

 *HOLD The messages are held in the message queue until they are requested by a user or program.

*BREAK When a message arrives at the message queue, the job to which the message queue is allocated is

interrupted. Then the program specified on the break-handling program name field is called. If the

break-handling program name is set to *DSPMSG, the Display Message (DSPMSG) command is

processed.

*NOTIFY When a message arrives at the message queue, an interactive job to which the message queue is

allocated is notified. The message light turns on and a buzzer sounds (if the feature is available).

*DFT Messages requiring replies are answered with their default reply. No messages are added to the

message queue unless the message queue is QSYSOPR.

Force to auxiliary storage. Whether changes made to the message queue description or messages added

to or removed from the queue are immediately forced into auxiliary storage. If the value is *YES and a

system failure occurs, the changes to the message queue are not lost.

One of the following modes is returned:

 *YES All changes to the message queue description and to the messages in the queue are immediately

forced into auxiliary storage.

*NO Changes made to the message queue description, including its messages, are not immediately

forced into auxiliary storage.

Increment storage size. The number of bytes added each time the message queue is increased in size.

154 iSeries: Message Handling APIs

Maximum increments. The maximum number of times the message queue can be incremented. If

*NOMAX is specified for this attribute when the message is created, the value determined by the system

as the maximum number of times that the message queue can be incremented is returned.

Message queue full action. The action to take when the message queue becomes full. The possible values

follow:

 *SNDMSG When the queue is full, message CPF2460 (Message queue could not be extended) will be sent to

the program or user that sends a message to the full message queue.

*WRAP When the queue is full, it is wrapped by removing messages from the queue to make space for

new messages to be added to the queue.

Message queue library used. The actual library name that contains the message queue.

Message queue used. The name of the message queue whose attributes were returned.

Number of increments. The number of times that the message queue has been increased in size.

Number of messages on queue. The number of messages currently on the message queue.

Severity code filter. The lowest severity level that a message can have and still be delivered to a user in

break or notify mode. Messages arriving at the message queue whose severities are lower than that

specified here do not interrupt the job or turn on the message waiting light. Valid values are 0 through

99.

Reserved. An ignored field.

Text description. Text that briefly describes the message queue.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF2401 E Not authorized to library &1.

CPF2403 E Message queue &1 in &2 not found.

CPF2408 E Not authorized to message queue &1.

CPF2477 E Message queue &1 currently in use.

CPF2536 E Value &1, for the length of message queue information not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8127 E &8 damage on message queue &4 in &9. VLIC log-&7.

CPF8176 E Message queue for device description &4 damaged.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 155

#TOP_OF_PAGE
aplist.htm

Retrieve Request Message (QMHRTVRQ) API

 Required Parameter Group:

1 Message information

Output Char(*)

2 Length of message information

Input Binary(4)

3 Format name

Input Char(8)

4 Message type

Input Char(10)

5 Message key

Input Char(4)

6 Error code

I/0 Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Request Message (QMHRTVRQ) API retrieves request messages from the current job’s job

message queue. Only request messages (commands) that have been received are retrieved; new request

messages and all other types of messages are bypassed. One use for this API is in programs that support

a retrieve key on a command line to retrieve commands previously run.

Authorities and Locks

None.

Required Parameter Group

Message information

OUTPUT; CHAR(*)

 The variable that is to receive information about the request message. The minimum size for this

area is 8 bytes. If the size of this area is smaller than the available message information, the API

returns only the data that the area can hold. If no request message could be retrieved from the

job message queue, no error is returned. (For example, there are no request messages prior to or

after the one identified by the message key passed in.) Instead, bytes available is set to 0 to

indicate no message was found.

Length of message information

INPUT; BINARY(4)

 The size of the area to contain the message information, in bytes. The minimum size is 8. If this

value is larger than the actual size of the storage allocated for the message information parameter,

the result may not be predictable.

Format name

INPUT; CHAR(8)

 The format of the message information to be returned.

156 iSeries: Message Handling APIs

Valid formats are:

 RTVQ0100 Basic request message information.

RTVQ0200 All request message information.

Message type

INPUT; CHAR(10)

 The message to be retrieved.

 The valid values follow:

 *FIRST Retrieve the first request message in the current job.

*LAST Retrieve the last request message in the current job.

*NEXT Retrieve the request message after the message indicated by the message key parameter. Message

key is required when *NEXT is used.

*PRV Retrieve the request message before the message indicated by the message key parameter.

Message key is required when *PRV is used.

Message key

INPUT; CHAR(4)

 A value must be specified for this parameter when the message type parameter is *NEXT or *PRV

and is used to retrieve the request message after or before the message with this key. This

message key need not refer to a message on the job message queue. The search begins with the

message on the queue that has the key closest to this value. This value must be blank when the

message type parameter is *FIRST or *LAST.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RTVQ0100 Format

The following table describes the information that is returned in the message information parameter for

the RTVQ0100 format. For detailed descriptions of the fields, see “Field Descriptions” on page 158.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(4) Message key

12 C CHAR(20) Reserved

32 20 BINARY(4) Length of request message text returned

36 24 BINARY(4) Length of request message text available

40 28 CHAR(*) Request message text

RTVQ0200 Format

The following table describes the information that is returned in the message information parameter for

the RTVQ0200 format. For detailed descriptions of the fields, see “Field Descriptions” on page 158.

Message Handling APIs 157

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(4) Message key

12 C CHAR(10) Program name or ILE service program name

22 16 CHAR(1) Call stack entry type

23 17 CHAR(10) Module name

33 21 CHAR(256) Procedure name

289 121 CHAR(11) Reserved

300 12C BINARY(4) Offset to long procedure name

304 130 BINARY(4) Length of long procedure name

308 134 BINARY(4) Length of request message text returned

312 138 BINARY(4) Length of request message text available

316 13C CHAR(*) Request message text

CHAR(*) Long procedure name

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space

is provided.

Bytes returned. The length of all data actually returned. If the data is truncated because the length of

message information parameter did not specify an area large enough to hold the data, this value is less

than bytes available. When no request messages could be retrieved from the job message queue, the

following occurs:

v The value of the bytes returned field is set to 8.

v The value of the bytes available field is set to 0.

v The remaining fields are unchanged.

Call stack entry type. The type of call stack entry receiving the message.

The possible values follow:

 0 The receiving call stack entry is an original program model (OPM) program.

1 The receiving call stack entry is a procedure within an ILE program, and the procedure name is

up to and including 256 characters in length.

2 The receiving call stack entry is a procedure within an ILE program, and the procedure name is

257 through 4096 characters in length. For this type, the procedure name field is blank and the

name can be obtained from the long procedure name.

Length of long procedure name. The length of the procedure name, in bytes. If the message was sent to

an original program model (OPM) program, this field is zero.

Length of request message text available. The length of all available request message text, in bytes.

158 iSeries: Message Handling APIs

Length of request message text returned. The actual length of data in the request message text field. If

the returned length is equal to the available length, all request message text was returned. If the message

information parameter is not sufficiently large to hold all the text, the returned length is less than the

available length and the text is truncated.

Long procedure name. The complete procedure name that received the message. A nested procedure

name has each procedure name separated by a colon. The outermost procedure name is identified first

followed by the procedures it contains. The innermost procedure is identified last in the string.

If the message was sent to an OPM program, this field is not used. The offset to long procedure name

field and the length of long procedure name field are zero.

Message key. The key to the request message retrieved. This value can be used on subsequent calls to

this API using *NEXT or *PRV in the message type parameter. This retrieves the next or previous request

message on the job message queue. It can also be used on the Receive Program Message (QMHRCVPM)

API to get more information about the request message.

Module name. The name of the module that contains the ILE procedure receiving the message. If the

message was sent to an OPM program, this field is blank.

Offset to long procedure name. The offset to the procedure name, in bytes. If the message was sent to an

OPM program, this field is zero. If the message information parameter is not large enough to contain any

of the long procedure name field, this offset is set to zero.

Procedure name. The name of the ILE procedure receiving the message. When the call stack entry type is

0 or 2, this field is blank. A nested procedure name has each procedure name separated by a colon. The

outermost procedure name is identified first followed by the procedures it contains. The innermost

procedure is identified last in the string.

Program name or ILE service program name. The name of the program receiving the request message, or

the name of the ILE program that contains the procedure receiving the message.

Request message text. The text of the request message. If you are retrieving CL commands, the

maximum length of a CL command is 6000 bytes.

Reserved. An ignored field.

Error Messages

 Message ID Error Message Text

CPF24AF E Message key not allowed with message type specified.

CPF24A7 E Value for the length of message information not valid.

CPF24B3 E Message type &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 159

#TOP_OF_PAGE
aplist.htm

Send Break Message (QMHSNDBM) API

 Required Parameter Group:

1 Message text

Input Char(*)

2 Length of message text

Input Binary(4)

3 Message type

Input Char(10)

4 List of qualified message queue names

Input Array of Char(20)

5 Number of message queues

Input Binary(4)

6 Qualified name of the reply message queue

Input Char(20)

7 Error code

I/O Char(*)
 Optional Parameter:

8 Coded character set identifier

Input Binary(4)
 Default Public Authority: *USE

 Threadsafe: No

The Send Break Message (QMHSNDBM) API sends an immediate message to a work station message

queue. This forces the message queue to be displayed, interrupting whatever is on the user’s display. A

message delivered in this way is called a break message. Use break messages to ensure that users see

important information, such as a warning to sign off before you shut the system down for maintenance.

To keep break messages from interrupting a job, change the value of the BRKMSG parameter of the

Change Job (CHGJOB) command to either *NOTIFY or *HOLD.

If your application attempts to diagnose and recover from errors, it might need to take additional action

when using the QMHSNDBM API. The QMHSNDBM API sends a message to a list of message queues.

When the API encounters an error in sending your message to a message queue in the list, it sends a

diagnostic message to your program message queue. It then proceeds to the next message queue in the

list. After trying to send the message to all specified message queues and if the API detected any errors,

it returns a general escape message CPF2469. This message is returned as an exception or in the error

code.

To diagnose and recover from these errors, your program should call the QMHRCVPM API to receive the

diagnostic messages sent.

160 iSeries: Message Handling APIs

Authorities and Locks

When the message type being sent is an inquiry, the sender needs the following authority to the reply

message queue:

Reply Message Queue Authority

*OBJOPR and *ADD

Reply Message Queue Library Authority

*EXECUTE

Required Parameter Group

Message text

INPUT; CHAR(*)

 The complete text of the immediate message being sent. You cannot include pointer data in this

parameter.

 Coded Character Set Identifier (CCSID) Considerations: The text supplied on the Message text

parameter is assumed to be in the CCSID of the job executing this API unless the coded character

set identifier is supplied in the CCSID parameter. For more information about message handler

and its use of CCSIDs, see CCSIDs: Message Support in the Globalization topic.

Length of message text

INPUT; BINARY(4)

 The length of the message text, in bytes. Valid values are 1 through 6000.

Message type

INPUT; CHAR(10)

 The type of the message. You must specify one of these values:

 *INFO Informational. Conveys information without asking for a reply.

*INQ Inquiry. Conveys information and asks for a reply.

List of qualified message queue names

INPUT; ARRAY of CHAR(20)

 A list of 1 through 50 work station message queues to which the message is being sent, and the

libraries in which they reside.

 When you send an informational message, you can specify 1 through 50 specific message queues

or use this special value for the message queue name:

 *ALLWS All work station message queues. Use blanks for the library name, do not specify any other

message queues, and specify 1 for the number of message queues parameter.

When you send an inquiry message, specify only one message queue.

 When you send an informational or inquiry message to a specific message queue, use the first 10

characters for the message queue name. Use the second 10 characters for the library name.

 You can use this special value for the library name:

 *LIBL The library list

If you send a break message to a specific work station message queue and that work station is

not logged on, no error is returned. However, diagnostic message CPF2429, Message to work

station did not break, appears in the job log.

Message Handling APIs 161

Number of message queues

INPUT; BINARY(4)

 The number of message queues specified in the list of qualified message queue names parameter.

 For informational (*INFO) messages, valid values are 1 through 50.

 For inquiry (*INQ) messages or when using the special value *ALLWS for the message queue,

you must specify 1.

Qualified name of the reply message queue

INPUT; CHAR(20)

 For an inquiry message, the name of the message queue to receive the reply message, and the

library in which it resides. The first 10 characters specify the message queue, and the second 10

characters specify the library. You can use this special value for the message queue name:

 *PGMQ The current call stack entry’s call message queue. Use blanks for the library name.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

For an informational message, use blanks for this parameter. If you specify a message queue, the

API ignores it and does not return an error.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter

Coded character set identifier

INPUT; BINARY(4)

 The coded character set identifier (CCSID) that the supplied message text is in. The following

values are allowed:

 0 The message text is assumed in the CCSID of the job running this API. This is the default value if

this parameter is not specified.

65535 The message text will not be converted.

CCSID Specify a valid CCSID that your message text is in. Valid values are between 1 and 65535. This

API will validate the CCSID.

For a list of valid CCSIDs, see CCSIDs: Message Support in the Globalization topic.

Error Messages

 Message ID Error Message Text

CPF24A2 E Value for number of message queues not valid.

CPF24B3 E Message type &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B6 E Length of &1, not valid for message text or data.

CPF2421 E Message not sent. &1 in &2 not work station message queue.

CPF2428 E Message queue parameter is not valid.

CPF2429 E Message to work station &1 did not break.

162 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF2469 E Error occurred when sending message&1.

CPF2401 E Not authorized to library &1.

CPF2403 E Message queue &1 in &2 not found.

CPF2408 E Not authorized to message queue &1.

CPF2421 E Message not sent. &1 in &2 not work station message queue.

CPF2460 E Message queue &1 could not be extended.

CPF2467 E &3 message queue &1 in library &2 logically damaged.

CPF2477 E Message queue &1 currently in use.

CPF247E E CCSID &1 is not valid.

CPF2481 E Work station message queue not available.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF3CF1 E Error code parameter not valid.

CPF3C90 E Literal value cannot be changed.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 163

#TOP_OF_PAGE
aplist.htm

Send Nonprogram Message (QMHSNDM) API

 Required Parameter Group:

1 Message identifier

Input Char(7)

2 Qualified message file name

Input Char(20)

3 Message data or immediate text

Input Char(*)

4 Length of message data or immediate text

Input Binary(4)

5 Message type

Input Char(10)

6 List of qualified message queue names

Input Array of Char(20)

7 Number of message queues

Input Binary(4)

8 Qualified name of the reply message queue

Input Char(20)

9 Message key

Output Char(4)

10 Error code

I/O Char(*)
 Optional Parameter Group:

11 Coded character set identifier

Input Binary(4)
 Default Public Authority: *USE

 Threadsafe: Yes

The Send Nonprogram Message (QMHSNDM) API sends a message to a nonprogram message queue so

your program can communicate with another job or user.

To send a message to a call message queue or the external message queue, see “Send Program Message

(QMHSNDPM) API” on page 170 (QMHSNDPM) API.

Before coding your call to the QMHSNDM API, see “Dependencies among Parameters” on page 168.

If your application attempts to diagnose and recover from errors, it might need to take additional action

before calling the QMHSNDM API. The QMHSNDM API sends a message to a list of message queues.

When the API encounters an error in sending your message to a message queue in the list, it sends a

diagnostic message to your call message queue. The API then proceeds to the next message queue in the

164 iSeries: Message Handling APIs

list. After trying to send the message to all specified message queues and if the API detected any errors,

it returns the general escape message CPF2469. This message is sent as an exception or in the error code.

To diagnose and recover from these errors, your program should call the Receive Program Message

(QMHRCVPM) API to receive the diagnostic messages sent.

Authorities and Locks

Message File Authority

*USE

Message File Library Authority

*EXECUTE

Message Queue Authority

*OBJOPR and *ADD

Message Queue Library Authority

*EXECUTE

Reply Message Queue Authority

*OBJOPR and *ADD

Reply Message Queue Library Authority

*EXECUTE

Required Parameter Group

Message identifier

INPUT; CHAR(7)

 The identifying code for the predefined message being sent, or blanks for an immediate message.

 If you specify a message identifier, you must specify a qualified message file name. If you do not

specify a message identifier, the qualified message file name parameter is ignored.

Qualified message file name

INPUT; CHAR(20)

 For a predefined message, the name of the message file and the library in which it resides. The

first 10 characters specify the file name, and the second 10 characters specify the library.

 You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

For an immediate message, use blanks for this parameter. If you specify a name, the API ignores

it and does not return an error.

Replacement data or impromptu message text

INPUT; CHAR(*)

 If a message identifier is specified, the data to insert in the predefined message’s substitution

variables. If no message identifier is specified, the complete text of an immediate message.

 If this parameter contains pointer data, each pointer must start on a 16-byte boundary to keep the

data accurate.

Length of replacement data or impromptu message text

INPUT; BINARY(4)

Message Handling APIs 165

The length of the message data or immediate text, in bytes. Valid values for each are:

 Replacement data 0-32767

Impromptu

message text

1-6000

Message type

INPUT; CHAR(10)

 The type of the message. You must specify one of these values:

 *COMP Completion

*DIAG Diagnostic

*INFO Informational

*INQ Inquiry. When you send an inquiry message, a copy of the message is placed on the reply

message queue. The message key returned by this API is the key to that copy. To receive the reply,

use the “Receive Nonprogram Message (QMHRCVM) API” on page 88, specifying that key and a

message type of reply. To receive the copy of the inquiry, specify the same key and a message type

of *COPY.

 To send reply messages, see “Send Reply Message (QMHSNDRM) API” on page 180

(QMHSNDRM) API.

For descriptions of the message types, see “Message Types” on page 195. For details about coding

the other parameters when sending a particular type of message, see “Dependencies among

Parameters” on page 168.

List of qualified message queue names

INPUT; ARRAY of CHAR(20)

 A list of 1 through 50 message queues to which the message is being sent, and the libraries in

which they reside. When sending an inquiry message, you can list one message queue, or you

can list two message queues if one of the queues is *HSTLOG. The special value *HSTLOG

indicates the message will be sent to QSYS/QHST. When using the special value *ALLACT, you

can list only one queue. In all other cases, you can list up to 50 message queues.

 You can specify user profile message queues or other nonprogram message queues, or you can

use several special values.

 To specify the default message queue associated with a user profile, use the first 10 characters for

the user profile name. In the second 10 characters, use the special value *USER.

 To specify other nonprogram message queues, use the first 10 characters for the message queue

name and the second 10 characters for the library name. You can use these special values for the

library name:

 *CURLIB The job’s current library

*LIBL The library list

To specify other types of message queues, use one of the following special values for the first 10

characters, and leave the second 10 characters blank:

 *ALLACT The default message queues of all active users. When you use this value, it must be the only item

in the list. You cannot use this value with inquiry messages.

*REQUESTER In an interactive job, the current user’s message queue. In a batch job, the system operator’s

message queue, QSYSOPR.

*SYSOPR The system operator’s message queue, QSYS/QSYSOPR. Any message sent to QSYSOPR

automatically has a copy of the message sent to QHST.

*HSTLOG he system history log message queue, QSYS/QHST. If *HSTLOG is specified more than once, only

one message will be sent to QSYS/QHST. If *HSTLOG is specified with QSYSOPR, only one

message is sent to QSYS/QHST.

166 iSeries: Message Handling APIs

Number of message queues

INPUT; BINARY(4)

 The number of message queues specified in the list of qualified message queue names parameter.

Valid values are 1 through 50. When using the special value *ALLACT for the message queue,

you must specify 1. When sending an inquiry message, you can specify 1 or you can specify 2 if

one of the values is *HSTLOG.

Qualified name of the reply message queue

INPUT; CHAR(20)

 For an inquiry message only, the name of the message queue to receive the reply message, and

the library in which it resides.

 The first 10 characters specify the message queue, and the second 10 characters specify the

library.

 You can use these special values for the message queue name:

 *PGMQ The current call stack entry’s call message queue. Use blanks for the library name.

*WRKSTN The work station message queue. Use blanks for the library name. You cannot use this value when

running in batch mode.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

For all message types except inquiry, use blanks for this parameter. If you specify a message

queue, the API ignores it and does not return an error.

Message key

OUTPUT; CHAR(4)

 For an inquiry message only, the key to the sender’s copy of the message in the reply message

queue. This API assigns the key when it sends the message.

 For all other message types, no key is returned.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Coded character set identifier

INPUT; BINARY(4)

 The coded character set identifier (CCSID) that the supplied replacement data or impromptu

message text is in. If a message identifier is specified, the text supplied by the replacement data

or impromptu message text parameter that corresponds to *CCHAR type fields is assumed to be

in the CCSID supplied by this parameter. The data supplied that does not correspond to a

*CCHAR field is 65535 and is not converted. For more information about *CCHAR type fields see

the Add Message Description (ADDMSGD) command.

 If no message identifier is specified, the impromptu message text supplied by the replacement

data or impromptu message text parameter will all be assumed to be in the CCSID supplied by

this parameter. For more information about message handler and its use of CCSIDs, see CCSIDs:

Message Support in the Globalization topic. The following values are allowed:

Message Handling APIs 167

error.htm#HDRERRCOD
error.htm#HDRERRCOD

0 The replacement data or impromptu message text is assumed in the CCSID of the job running this

API. This is the default value if this parameter is not specified.

65535 The replacement data or impromptu message text will not be converted.

CCSID Specify a valid CCSID that your replacement data or impromptu message is in. Valid values are

between 1 and 65535. This API will validate the CCSID.

For a list of valid CCSIDs, see CCSIDs: Message Support in the Globalization topic.

Dependencies among Parameters

You can use many different combinations of parameters when calling the QMHSNDM API. The values

you specify for the message identifier and message type parameters determine which other input

parameters you must specify and which you must code as blanks. They also determine whether the

system returns the message key in the message key output parameter.

The following table summarizes the use of parameters for the QMHSNDM API.

 Parameter Message Type

*COMP, *DIAG, *INFO *INQ

Predefined Immediate Predefined Immediate

Message identifier Message ID Blank Message ID Blank

Qualified message file name Required Ignored Required Ignored

Message data or immediate text Data Text Data Text

Length of message data or immediate text 0-32767 1-6000 0-32767 1-6000

List of qualified message queue names Required Required Required Required

Number of message queues 1-50 1-50 1,2 if *HSTLOG 1,2 if *HSTLOG

Reply message queue Ignored Ignored Required Required

Message key Not used Not used Returned Returned

Error code Required Required Required Required

The terms used in the table to describe the parameter values are defined in the following list.

 Term Meaning

Blank You must use blanks for this parameter.

Data You must specify data for this parameter. The data is used as the values for a predefined

message’s substitution variables.

Ignored The API ignores this parameter. You should use blanks for the value, but if you use another value,

no error is returned.

Message ID You must specify the message identifier of the predefined message being sent.

Not used The API does not return data in this output parameter. The space remains unchanged.

Required You must specify a valid value for this parameter.

Returned The API returns data in this output parameter.

Text You must specify text for this parameter. The text is used as the complete text of an immediate

message.

Error Messages

 Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF24AC E Either message identifier or message text must be specified.

168 iSeries: Message Handling APIs

Message ID Error Message Text

CPF24A2 E Value for number of message queues not valid.

CPF24B3 E Message type &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B6 E Length of &1, not valid for message text or data.

CPF2428 E Message queue parameter is not valid.

CPF2433 E Function not allowed for system log message queue &1.

CPF2435 E System reply list not found.

CPF2469 E Error occurred when sending message&1.

CPF2401 E Not authorized to library &1.

CPF2403 E Message queue &1 in &2 not found.

CPF2407 E Message file &1 in &2 not found.

CPF2408 E Not authorized to message queue &1.

CPF2411 E Not authorized to message file &1 in &2.

CPF2421 E Message not sent. &1 in &2 not work station message queue.

CPF2460 E Message queue &1 could not be extended.

CPF2467 E &3 message queue &1 in library &2 logically damaged.

CPF2477 E Message queue &1 currently in use.

CPF247E E CCSID &1 is not valid.

CPF2548 E Damage to message file &1 in &2.

CPF2557 E System reply list damaged.

CPF2558 E System reply list currently in use.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF2481 E Work station message queue not available.

CPF2488 E Reply message queue *WRKSTN not valid for batch job.

CPF2499 E Message identifier &1 not allowed.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R6

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 169

#TOP_OF_PAGE
aplist.htm

Send Program Message (QMHSNDPM) API

 Required Parameters Group:

1 Message identifier

Input Char(7)

2 Qualified message file name

Input Char(20)

3 Message data or immediate text

Input Char(*)

4 Length of message data or immediate text

Input Binary(4)

5 Message type

Input Char(10)

6 Call stack entry

Input Char(*) or Pointer

7 Call stack counter

Input Binary(4)

8 Message key

Output Char(4)

9 Error code

I/O Char(*)
 Optional Parameter Group 1:

10 Length of call stack entry

Input Binary(4)

11 Call stack entry qualification

Input Char(20)

12 Display program messages screen wait time

Input Binary(4)
 Optional Parameter Group 2:

13 Call stack entry data type

Input Char(10)

14 Coded character set identifier

Input Binary(4)
 Default Public Authority: *USE

 Threadsafe: Yes

170 iSeries: Message Handling APIs

The Send Program Message (QMHSNDPM) API sends a message to a call message queue or the external

message queue. (The external message queue is the part of the job message queue that handles messages

between an interactive job and the work station user. It is not associated with a specific call stack entry.)

This API allows the current call stack entry to send a message to its caller, a previous caller, or itself.

In a multithreaded job, messages can be sent only to call message queues in the thread in which this API

is called or to the external message queue. Messages cannot be sent to call message queues in other

threads.

To send a message to a nonprogram message queue, see “Send Nonprogram Message (QMHSNDM) API”

on page 164 (QMHSNDM) API.

Before coding your call to the QMHSNDPM API, see “Dependencies among Parameters” on page 177.

Authorities and Locks

Message File Authority

*USE

Message File Library Authority

*EXECUTE

Required Parameter Group

Message identifier

INPUT; CHAR(7)

 The identifying code for the predefined message being sent, or blanks for an immediate message.

 When sending an escape, notify, or status message, you must specify a message identifier. When

sending a request message, you must use blanks. When sending other types of messages, you can

use either a message identifier or blanks.

 If you specify a message identifier, you must specify a qualified message file name. If you do not

specify a message identifier, the API ignores the qualified message file name parameter.

Qualified message file name

INPUT; CHAR(20)

 For a predefined message, the name of the message file and the library in which it resides. The

first 10 characters specify the file name, and the second 10 characters specify the library. You can

use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

For an immediate message, use blanks for this parameter. If you specify a name, the API ignores

it and does not return an error.

Replacement data or impromptu message text

INPUT; CHAR(*)

 If a message identifier is specified, this parameter specifies the data to insert in the predefined

message’s substitution variables. If blanks are used for the message identifier, this parameter

specifies the complete text of an immediate message.

 If this parameter contains pointer data, each pointer must start on a 16-byte boundary to keep the

data accurate.

Length of replacement data or impromptu message text

INPUT; BINARY(4)

Message Handling APIs 171

The length of the replacement data or impromptu message text, in bytes. Valid values for each

are:

 Message data 0-32767

Immediate text 1-6000

Message type

INPUT;CHAR(10)

 The type of the message. You must specify one of these values:

 *COMP Completion

*DIAG Diagnostic

*ESCAPE Escape

*INFO Informational

*INQ Inquiry.You can send inquiry messages only to the external message queue.

*NOTIFY Notify

*RQS Request

*STATUS Status

Call stack entry

INPUT; CHAR(*) or Pointer

 The call stack entry to send the message to, or the call stack entry to start counting from when

using a value other than 0 for the Call stack counter parameter. The call stack entry you specify

must be in the call stack. You can also specify the external message queue.

 You can specify a call stack entry by providing the name of the OPM program or ILE procedure

running in the entry, by providing a pointer to the call stack entry, or by using one of the

following special values:

 * The current call stack entry (that is, the one in which the program or procedure is using this API

is running).

*PGMBDY The call stack is for the boundary of the specified program object. The program object is identified

explicitly by providing a program name in the optional Call stack entry qualification parameter.

The program object can be specified by either not using the call stack entry qualification optional

parameter or by specifying *NONE for the program name. In this case, the program object is

assumed to be the program that is using this API.

This option essentially identifies the oldest call stack entry that began a sequence of calls, and

each call in this sequence involved the same program object. The call sequence could involve

recursive calls to the same program or, in the case of ILE, calls to different procedures of the same

ILE program or ILE service program.

For OPM programs, in most cases using *PGMBDY produces the same results as using * or an

OPM program name. A difference will appear when an OPM program calls itself recursively. In

this case, using * or an OPM program name identifies the current recursion level of the program.

In contrast, *PGMBDY identifies the first recursion level.

For an ILE program, this option can be used to identify the first procedure of the ILE program

that was called in the current sequence. If the ILE program was called using a dynamic call, this is

the PEP (program entry procedure) of the ILE program. If sequence was started by calling by

means of a procedure pointer, this is the call stack entry for the procedure that was pointed to.

For ILE service programs, this special value can be used to identify the call stack entry for the first

procedure called in the specified service program.

172 iSeries: Message Handling APIs

*CTLBDY The call stack entry at the most recent control boundary. This call stack entry is in the same

activation group as the one that is using the API.

If this key word value is used and there is no control boundary in the current call stack, the error

CPF24C8 is returned to the user of this API. This would happen if the only entries on the call

stack are for OPM programs.

In some cases, *PGMBDY and *CTLBDY will identify the same call stack entry. The option

*CTLBDY does not care if all call stack entries in a call sequence involve the same program object.

It cares only that a sequence started at a control boundary. Conversely, the start of a call sequence

identified by *PGMBDY may not fall on a control boundary.

*PGMNAME The call stack entry is identified entirely by the program name and optionally module name that

is provided by the optional Call stack entry qualification parameter.

For OPM programs, specifying this special value and the optional parameter is the same as

specifying the OPM program name directly in this required parameter.

For ILE programs or ILE service programs, this special key value is used to indicate that a

procedure name is not being specified. Rather the call stack entry is identified by providing only

the ILE program or service program name and optionally the ILE module name. This means that

the call stack entry will be the most recently called procedure that is part of the specified ILE

program or service program (and part of the ILE module if module name is also specified). The

name of this most recently called procedure is not important in determining the correct call stack

entry.

If this key value is specified with a program name only, then the call stack entry is the most

recently called OPM program that has the specified program name or the most recently called ILE

procedure that is part of an ILE program or service program of the specified name, whichever is

most recent on the call stack. If the module name is also specified, then the call stack entry is the

most recently called ILE procedure that is part of the specified ILE program or service program

and module. If module name is given then the call stack entry cannot be an OPM program.

*EXT The external message queue. The Call stack counter parameter is ignored. You cannot send escape

messages to this message queue. If you are sending an inquiry message, you must specify this

message queue.

If the call stack entry is to be identified by pointer, the pointer that is specified must address a

valid call stack entry within the same job as the one the API is used in. Alternatively, the pointer

can be set to Null. The Optional Parameter Group 1 must be used and the Length of Call Stack

Entry parameter must be set to 16. In addition, the Optional Parameter Group 2 must also be

used and the Call Stack Entry Format parameter must be set to *PTR.

 If the pointer provided is set to Null, this indicates that the call stack entry is the one in which

the API is being used.

 The call stack entry can be a nested procedure name from 1 through 4096 characters in length.

When specifying nested procedures, each procedure name must be separated by a colon, and the

outermost procedure is identified first followed by the procedures it contains. The innermost

procedure is the last procedure identified in the string.

 The call stack entry can be a partial name. To specify a partial name, place three less-than signs

(<<<) at the beginning of the call stack entry identifier, or place three greater-than signs (>>>) at

the end of the call stack entry identifier, or place both the less-than signs and the greater-than

signs at their respective ends of the call stack entry identifier. The value for the call stack entry

excluding the less-than signs and the greater-than signs is used to search backward through the

stack for the requested call stack entry name.

 When searching for a partial call stack entry name:

v If the less than signs (<<<) are specified only at the beginning of the call stack entry name, the

less-than signs are truncated and the remaining character string is right-justified. The

Message Handling APIs 173

remaining string is then compared to the current call stack entry on the call stack. The

comparison starts at the end of the call stack entry name and backwardly compares the

number of characters in the specified string.

v If the greater-than signs (>>>) are specified only at the end of the call stack entry name, the

greater-than signs are truncated. The remaining character string is compared to the current call

stack entry on the call stack. The comparison starts at position 1 of the call stack entry name

and compares the number of characters in the specified string.

v If the less-than signs (<<<) are specified at the beginning of the call stack entry name and the

greater-than signs (>>>) are specified at the end of the call stack entry name, both the less-than

signs and the greater-than signs are truncated. The remaining characters are used to scan and

to compare the entire length of the specified string and the current call stack entry on the call

stack.

Note: If the optional parameters Length of to call stack entry and To call stack entry data type are

not specified, this parameter is assumed to be CHAR(10).

Call stack counter

INPUT; BINARY(4)

 A number identifying the location in the call stack of the call stack entry to whose message queue

the message is to be sent. The number is relative to the call stack entry identified by the Call

stack entry parameter. It indicates how many calls up the call stack the target entry is from the

one identified by the Call stack entry parameter. Valid values follow:

 0 Send the messages to the message queue of the entry specified by the Call stack entry parameter.

1 Send the messages to the message queue of the call stack entry one earlier on the stack than the

one identified by the Call stack entry parameter.

n (any positive

number)

Send the messages to the queue of the nth call stack entry earlier in the stack from the one

identified by the Call stack entry parameter.

You can use any positive number that does not exceed the actual number of call stack entries in

the call stack. Do not include the external message queue in your count.

Message key

OUTPUT; CHAR(4)

 The key to the message being sent. This API assigns the key when it sends a message of any type

except status. For a status message, no key is returned and this parameter is not changed.

 For inquiry and notify messages, this is the key to the sender’s copy of the message in the

sending program’s message queue.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

 Note: The API does not return an error code for the message type of *STATUS if the qualified

message file name parameter is specified incorrectly, unless the call stack entry parameter is the

special value *EXT.

Optional Parameter Group 1

Length of call stack entry

INPUT; BINARY(4)

 The length of the value for the Call stack entry parameter. Valid values for this parameter are as

follows:

v 1 through 4096 if partial name indicators are not used.

174 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

v 16 if the call stack entry parameter is a pointer.

v 1 through 4102 if partial name indicators are used.

Note: The actual length of the call stack entry name cannot exceed 4096 characters. If this

parameter is not used, the value for the call stack entry parameter is assumed to be 10 characters

in length.

Call stack entry qualification

INPUT; CHAR(20)

 This parameter is used when it is necessary to further identify the call stack entry. The parameter

consists of two 10 character parts. The first part is the module name qualifier and the second part

is the program name qualifier. The values provided in this parameter are used as a qualifier for

the value provided in the Call stack entry parameter. The values that can be specified here

depend upon the value provided in the Call stack entry parameter.

 The following special value may be used to indicate that the module name qualifier or program

name qualifier is not being specified:

 *NONE This value can be used for the value of the module name qualifier, program name qualifier, or

both to indicate that no qualifier is being specified.

If the Call stack entry parameter contains an ILE procedure name then this parameter can contain

the name of the module and program that the procedure was compiled and bound into. The

module and program name qualifiers are used to distinguish the correct call stack entry in the

case where different procedures of the same name are on the call stack at the same time. The first

10 characters specify the module name, and the second 10 characters specify the ILE program or

Service program name. If *NONE is specified for both the module and program name qualifiers,

only the specified procedure name is used to determine the call stack entry.

 If the Call stack entry parameter contains the key value *PGMNAME, then the program name

qualifier must contain either an OPM program name or an ILE program or service program

name. For ILE, the module name qualifier may contain a module name; otherwise it must contain

*NONE.

 When the Call stack entry parameter specifies the special value * or *CTLBDY, both the module

name qualifier and program name qualifier must be specified as *NONE.

 When the Call stack entry parameter specifies an OPM program name, both the module name

and program name qualifiers should be specified as *NONE. If a module name or program name

is specified here, the name specified in the Call stack entry parameter is interpreted as an ILE

procedure name rather than an OPM program name. Either the entry would not be found or an

incorrect entry would be found.

 When the Call stack entry parameter specifies the special value *PGMBDY, the module name

qualifier must be specified as *NONE. For the program name qualifier, an OPM, ILE program, or

ILE Service program name may be specified or *NONE may be used.

 If the Call stack entry is identified by pointer, this parameter must still be passed to the API. The

value specified for the module name qualifier must be set to *NONE. The program name

qualifier serves as a qualifier for the pointer and must be specified as one of the following special

values:

 *NONE The call stack entry addressed by the pointer is the one to which the message is to be sent or the

one to start counting from when using a value other than 0 for the Call stack counter parameter.

Message Handling APIs 175

*PGMBDY The call stack entry to send the message to or to start counting from is an ILE program or Service

program boundary. The ILE program or Service program is the one which contains the procedure

that is running in the call stack entry addressed by the pointer.

If the ILE program was called using a dynamic call, using this special value with a pointer will

identify the call stack entry for the PEP of that program. If the call was made using a procedure

pointer, it will identify the call stack entry for the procedure that was pointed to.

If the pointer addresses a call stack entry that is running a procedure from an ILE service

program, this option can be used to identify the call stack entry for the first procedure that was

called in that service program.

If the call stack entry addressed by the pointer is running an OPM program than using the special

value *PGMBDY here will have the same effect as using *NONE in most cases. A difference will

occur if the OPM program called itself recursively. In this case using *PGMBDY identifies the first

recursion level while *NONE identifies the current recursion level.

Display program messages screen wait time

INPUT; BINARY(4)

 The amount of time in seconds to wait on the display program messages screen for any user

action when a message is sent to an external message queue. If there is no user action within the

specified time, the control returns to the statement following the call of this API. Valid values

follow:

 -1 Wait on the display program messages screen for the maximum length of time allowed by the

system (24 hours). If this parameter is not specified, this is the default.

0 Send the message, but do not show the display program messages screen.

>0 The amount of time to wait in seconds for user action. If there is no user action within the time,

then control returns. If the display file currently being displayed is defined with the restore

display attribute of *NO, the Display Program Messages screen wait time parameter is ignored.

Optional Parameter Group 2

Call stack entry data type

INPUT; CHAR(10)

 The value of the Call stack entry parameter is a character string (a name or special value) or a

pointer.

 Use one of the following special values:

 *CHAR Value of the parameter is a character string (name or special value)

*PTR Value of the parameter is a pointer.

If the above optional parameter is not specified, it is assumed that the value of the Call stack

entry parameter is a character string.

Coded character set identifier

INPUT; BINARY(4)

 The coded character set identifier (CCSID) that the supplied replacement data or impromptu

message text is in. If a message identifier is specified, the data supplied by the replacement data

or impromptu message text parameter that corresponds to *CCHAR type fields is assumed to be

in the CCSID supplied by this parameter. The data supplied that does not correspond to a

*CCHAR field is 65535 and will not be converted. For more information about *CCHAR type

fields see the Add Message Description (ADDMSGD) command.

 If no message identifier is specified, the text supplied by the message data or immediate text

parameter will all be assumed to be in the CCSID supplied by this parameter. For more

176 iSeries: Message Handling APIs

information about message handler and its use of CCSIDs, see CCSIDs: Message Support in the

Globalization topic. The following values are allowed:

 0 The message data or immediate text is assumed in the CCSID of the job running this API. This is

the default value if this parameter is not specified.

65535 The message data or immediate text will not be converted.

CCSID Specify a valid CCSID that your message data or immediate text is in. Valid values are between 1

and 65535. This API will validate the CCSID.

Dependencies among Parameters

You can use many different combinations of parameters when calling the QMHSNDPM API. The values

you specify for the message identifier and message type parameters determine which other input

parameters you must specify and which you must code as blanks. They also determine whether the

system returns the message key in the message key output parameter.

Additional Information about Message Types

The following sections discuss additional considerations in using the different types of messages that you

can specify when calling the QMHSNDPM API.

Completion and Diagnostic Messages: You can send completion and diagnostic messages as immediate

messages or with message identifiers to call message queues or to the external message queue.

Escape Messages: You can send escape messages only with a message identifier and only to a call

message queue. You cannot send them to the external message queue.

An escape message sent to a previous caller’s call message queue ends the current call stack entry.

Sending the escape message causes all the call stack entries up to but not including the call stack entry

receiving the escape message to end. For example, if three call stack entries are active and the third call

stack entry sends an escape message to the first, then the second and third call stack entries are ended.

Informational Messages: You can send informational messages as immediate messages or with

message identifiers to call message queues or to the external message queue.

When you send an informational or inquiry message to the external message queue and the job is

interactive, the message is displayed on the work station of the current job. The user sees the Display

Program Messages display. Sending messages of these types to the external message queue is the only

way to make the Display Program Messages display appear.

Inquiry Messages: You can send inquiry messages only to the external message queue. You cannot

send them to call message queues. The sending call stack entry would have to end before the receiving

call stack entry could receive the message and send a reply. At that point, the sending call stack entry is

no longer active, so it cannot receive a reply.

When you send an inquiry message, it is displayed at the work station as described in Informational

Messages (page 177). In addition, a copy of the message is placed in the reply message queue, which is

always the sending call stack entry’s call message queue. Sending an inquiry message lets your call stack

entry receive the reply to the message by using the message key returned by this API.

An inquiry message sent to the external message queue requires either the default reply or a reply from

an interactive user. Call stack entries cannot reply to inquiry messages sent to the external message

queue. In batch mode, the default reply is automatically sent as the reply.

The QMHSNDPM API returns the message key to the copy of the inquiry message in the reply message

queue. You can receive the reply to the inquiry message by using the Receive Program Message

Message Handling APIs 177

(QMHRCVPM) API specifying this key and the message type reply. You can receive the copy of the

original inquiry message by specifying this key and the message type of *COPY. You cannot use this key

to receive the original message.

Notify Messages You can send notify messages only with a message identifier. You can send them to a

call message queue or to the external message queue.

The reply message queue is always the sending call stack entry’s call message queue (*PGMQ). This API

returns the message key to the copy of the message in the reply message queue. To receive the reply, use

the Receive Program Message (QMHRCVPM) API specifying this key and a message type of reply

(*RPY).

When a notify message is sent to a call message queue, the action taken depends on two things:

v Whether the receiving call stack entry monitors for the message.

v Whether the receiving call stack entry has specified an external exception handler to handle the

message.

When a notify message is sent to the external message queue, the action taken is the same as if an

inquiry message were sent, with this exception. Notify messages are not responded to by the system

reply list.

 NOTIFY Message Results

Receiving Call Stack Entry Sending Call Stack Entry Default Reply

Action Taken after Notify

Message Is Sent

Monitor defined with

external handler

Does not end Not sent External handler is called

Monitor defined and no

external handler

Ends Not sent Control is returned to

receiving call stack entry

No monitor defined Does not end Sent Control is returned to

sending call stack entry

In an interactive job where a notify message is sent to *EXT, the user must take action to send any reply,

including the default reply. In a batch job, the default reply is automatically sent because programs

cannot reply to notify messages sent to the external message queue.

Request Messages: You can send a request message only as an immediate message. You can send it to

a call message queue or to the external message queue.

Request messages sent to the external message queue are never displayed on the Display Program

Messages display. The system program QCMD receives them. Before the Command Entry display

appears, the QCMD program attempts to perform the commands contained in the request messages. The

QCMD program performs this function only with request messages on the external message queue; it

does not work with request messages on other queues.

Status Messages: You must send status messages with a message identifier. You can send them to a call

message queue or the external message queue.

When you send status messages to the external message queue, the system displays them at the bottom

of the current job’s display station. This shows the status of running programs. You can use this to

reassure users that long programs are still running.

Status messages appear only on the display. Because they are never put in message queues and they do

not have message keys, you cannot receive them.

178 iSeries: Message Handling APIs

Status messages are predefined messages. However, you can send the user what appears to be an

immediate status message by using a message type of status and message CPF9898. CPF9898 is in

message file QCPFMSG in library QSYS. This message consists only of a substitution variable; thus, it

uses the message data that you supply as the full message text. To use it, specify CPF9898 in the message

identifier parameter and the text you want to send in the replacement data or impromptu text parameter.

To clear the message from the bottom of the display, you can send CPI9801, which only contains a blank

line as the message.

Error Messages

 Message ID Error Message Text

CPF24C5 E Pointer to call stack entry not valid.

CPF24C6 E Value of To call stack entry data type parameter not valid.

CPF24C8 E Control boundary not found on call stack.

CPF24C9 E Program boundary not found on call stack.

CPF24CB E *PGMNAME requires a specified program name.

CPF24CC E Call stack entry &2 for *PGMNAME not found.

CPF24CD E Module name cannot be specified when *PGMBDY is used.

CPF24CE E Qualifier &1 incorrect for use with pointer.

CPF24AC E Either message identifier or message text must be specified.

CPF24AD E Messages to remove must be *ALL if program message queue is *ALLINACT.

CPF24A3 E Value for call stack counter parameter not valid.

CPF24BF E Module or bound-program name is blank.

CPF24B3 E Message type &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B6 E Length of &1, not valid for message text or data.

CPF24B7 E Value &1 for call stack entry name length not valid.

CPF24B9 E When call stack entry name is ’*’ or ’*CTLBDY’, module name and program name must be

’*NONE’.

CPF24C2 E Value &1 for display wait time not valid.

CPF2401 E Not authorized to library &1.

CPF2407 E Message file &1 in &2 not found.

CPF2409 E Specified message type not valid with specified program message queue.

CPF2411 E Not authorized to message file &1 in &2.

CPF2435 E System reply list not found.

CPF246A E Destination call stack entry not valid.

CPF2467 E &3 message queue &1 in library &2 logically damaged.

CPF2469 E Error occurred when sending message&1.

CPF247A E Call stack entry not found.

CPF2479 E Call stack entry not found.

CPF247E E CCSID &1 is not valid.

CPF2489 E Message identifier required for *NOTIFY, *ESCAPE, or *STATUS message types.

CPF2493 E Message identifier not allowed with message type *RQS.

CPF2499 E Message identifier &1 not allowed.

CPF2524 E Exception handler not available because of reason code &1.

CPF2531 E Message file &1 in &2 damaged for &3.

CPF2547 E Damage to message file QCPFMSG.

CPF2548 E Damage to message file &1 in &2.

CPF2557 E System reply list damaged.

CPF2558 E System reply list currently in use.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9830 E Cannot assign library &1.

CPF9845 E Error occurred while opening file &1.

CPF9846 E Error while processing file &1 in library &2.

Message Handling APIs 179

Message ID Error Message Text

CPF9847 E Error occurred while closing file &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1.1

 Top | “Message Handling APIs,” on page 1 | APIs by category

Send Reply Message (QMHSNDRM) API

 Required Parameter Group:

1 Message key

Input Char(4)

2 Qualified message queue name

Input Char(20)

3 Reply text

Input Char(*)

4 Length of reply text

Input Binary(4)

5 Remove message

Input Char(10)

6 Error code

I/O Char(*)
 Optional Parameter Group 1:

7 Coded character set identifier

Input Binary(4)
 Optional Parameter Group 2:

8 Allow default reply rejection

Input Char(10)
 Default Public Authority: *USE

 Threadsafe: Yes

The Send Reply Message (QMHSNDRM) API sends a reply message to the sender of an inquiry message.

If your application attempts to diagnose and recover from errors, it might need to take additional action

when using the QMHSNDRM API. When the QMHSNDRM API encounters errors in the reply being

sent, it sends a diagnostic message describing each error to your program message queue. After the last

diagnostic message, the QMHSNDRM API sends a general escape message, CPF2422.

Exit point

QIBM_QMH_REPLY_INQ has been added to the system registration facility to allow an exit program to

be called when a reply is sent to an inquiry message. A reply handling exit program can accept, reject or

replace the reply value. If the reply is rejected, a diagnostic is sent followed by CPF2422 as indicated

180 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

above. If the reply value sent with this API is replaced by a reply handling exit program, CPF2458 (Reply

replaced by reply handling exit program) is sent as a diagnostic message to the caller of the

QMHSNDRM API to identify the new reply value and then the CPF2458 is sent again as a status message

that could be monitored to allow an application to be notified of the reply replacement.

To diagnose and recover from these errors, your application should call the QMHRCVPM API to receive

the diagnostic messages sent.

Authorities and Locks

Message File Authority

*USE

Message File Library Authority

*EXECUTE

Message Queue Authority

*USE and *ADD. Also need *DLT to remove a message.

Message Queue Library Authority

*EXECUTE

Required Parameter Group

Message key

INPUT; CHAR(4)

 The key to the inquiry message that the reply answers. The key is assigned by the command or

API that sends the message. You can obtain the key in these ways:

v By receiving an inquiry message with any of the following:

– Receive Message (RCVMSG) command

– Receive Program Message (QMHRCVPM) API

– Receive Nonprogram Message (QMHRCVM) API

– List Messages (QMHLSTM) API

– List Job Log (QMHLJOBL) API

v Through a break-handling program. See the CL Programming

book for more information.

Qualified message queue name

INPUT; CHAR(20)

 The name of the message queue containing the inquiry message being answered, and the library

in which it resides. The message queue is the one in which the inquiry—not the sender’s copy—is

located. The first 10 characters specify the message queue, and the second 10 characters specify

the library. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Reply text

INPUT; CHAR(*)

 The complete text of the reply being sent. To send the default reply stored in the message

description, use blanks for this parameter. A reply handling exit program can be used to limit the

use of default replies. See the allow default reply rejection parameter below for more information.

Length of reply text

INPUT; BINARY(4)

Message Handling APIs 181

The length of the reply text, in bytes. If you use blanks in the reply text parameter to indicate

that you are using the default reply, you can specify any valid value for this parameter. Valid

values are 1 through 132.

Remove message

INPUT; CHAR(10)

 Whether the inquiry message and the reply are removed from the message queue after the reply

is sent. Valid values follow:

 *NO Keep the inquiry message and the reply.

*YES Remove the inquiry message and the reply.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 1

Coded character set identifier

INPUT; BINARY(4)

 The coded character set identifier (CCSID) that the supplied message reply text is in. The

following values are allowed:

 0 The message reply text is assumed to be in the CCSID of the job running this API. This is the

default value if this parameter is not specified.

65535 The message reply text will not be converted.

CCSID Specify a valid CCSID that your message reply text is in. Valid values are between 1 and 65535.

This API will validate the CCSID.

For a list of valid CCSIDs, see CCSIDs: Message Support in the Globalization topic.

Optional Parameter Group 2

Allow default reply rejection

INPUT; CHAR(10)

 Specifies whether a reply handling exit program will be allowed to reject a default reply. A

default reply is requested by using blanks as the value for the reply text parameter. A reply

handling exit program can be registered using the system registration facility for exit point

QIBM_QMH_REPLY_INQ. If this parameter is not specified, a value of *NO is used. Valid values

are:

 *NO A reply handling exit program will not be allowed to reject a default reply.

*YES A reply handling exit program will be allowed to reject a default reply. If an exit program rejects

the reply, a CPD2476 (Reply rejected by a reply handling exit program) will be sent as a diagnostic

message to the program using this function. The CPD2476 will be followed by a CPF2422 (Reply

not valid) escape message that the program using this function should monitor for to handle and

recover from error situations.

Note: If a default reply is not being sent, this parameter is ignored and a reply handling exit

program can reject or replace the reply value.

Coded Character Set Identifier (CCSID) Considerations

If the inquiry message that this reply is being sent to is an impromptu message, the text supplied on the

reply text parameter is assumed to be in the CCSID of the job executing this API unless the coded

182 iSeries: Message Handling APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

character set identifier is supplied in the CCSID parameter. If the inquiry message that this reply is being

sent to is a predefined message, then the text supplied on the reply text parameter is considered 65535

and is not converted. For more information about message handler and its use of CCSIDs, see CCSIDs:

Message Support in the Globalization topic.

Error Messages

 Message ID Error Message Text

CPF24A4 E Value for remove message not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF24B6 E Length of &1, not valid for message text or data.

CPF2401 E Not authorized to library &1.

CPF2403 E Message queue &1 in &2 not found.

CPF2408 E Not authorized to message queue &1.

CPF2410 E Message key not found in message queue &1.

CPF2420 E Reply already sent for inquiry or notify message.

CPF2422 E Reply not valid.

CPF2432 E Cannot send reply to message type other than *INQ or *NOTIFY.

CPF2433 E Function not allowed for system log message queue &1.

CPF2439 E Reply value entered is not valid.

CPF2440 E Reply must be in range of &1 to &2.

CPF2442 E Reply does not meet specified relations.

CPF2460 E Message queue &1 could not be extended.

CPF2458 S Reply replaced by reply handling exit program.

CPF2466 E Reply length greater than &1.

CPF247E E CCSID &1 is not valid.

CPF2477 E Message queue &1 currently in use.

CPF2547 E Damage to message file QCPFMSG.

CPF2548 E Damage to message file &1 in &2.

CPF3CF1 E Error code parameter not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1.1

 Top | “Message Handling APIs,” on page 1 | APIs by category

Message Handling APIs 183

#TOP_OF_PAGE
aplist.htm

Send Scope Message (QMHSNDSM) API

 Required Parameter Group:

1 Scope type

Input Char(10)

2 Qualified scope program name

Input Char(20)

3 Scope program data

Input Char(*)

4 Scope program data length

Input Binary(4)

5 Message key

Output Char(4)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Send Scope Message (QMHSNDSM) API sends a scope message to a call stack entry.

Scope messages are a way to call a program when the call stack entry that called the QMHSNDSM API

ends or when the job using this API ends. The exit can be normal or abnormal. The three scope types,

*EXT, *PGM, and *CSE, indicate when the scope handling program should be called. To have the scope

handling program run at job

or routing step

ending, specify *EXT for the scope type parameter.

The difference between program scoping (*PGM) and call stack entry (*CSE) scoping is how they handle

a transfer control. When a transfer control occurs, the scope handling program is called for scope type

*PGM because the program or ILE procedure ended, but the scope handling program is not called for

scope type *CSE because the call stack is still active.

When a scope message is sent in a multithreaded job with a scope type of *PGM or *CSE, the scope

handling program runs in the thread that used the QMHSNDSM API to send the scope message. When a

multithreaded job uses a scope type of *EXT, the scope handling program runs in the initial thread when

the job

or routing step

ends.

You must also specify a scope-handling program to be run when the job, program or call stack entry

exits. You must have at least *EXECUTE authority to the scope-handling program library and at least

*USE authority to the program. If the user has below the minimum authorization, the scope message is

sent but an authorization violation is signaled when the scope-handling program is called and it is not

run. Any adopted authority the sending program may have does not affect the user’s authority to the

scope-handling program. The scope-handling program runs in the same state as the sender of the scope

message.

This API returns the message key which can be used to end scoping by deleting the message.

184 iSeries: Message Handling APIs

Authorities and Locks

Scope program

*USE

Scope program library

*EXECUTE

Required Parameter Group

Scope type

INPUT; CHAR(10)

 The type of scoping to be done. Valid values are:

 *EXT Scope handling program is called when the caller’s job

or routing step

ends.

*PGM The scope-handling program is called when the caller’s program ends or a transfer control is

issued.

*CSE The scope handling program is called only when the call stack entry ends. A transfer control does

not cause the scope handling program to be called.

Qualified scope program name

INPUT; CHAR(20)

 The name of the scope handling program and the library in which it resides. The first ten

characters represent the program name, the second ten characters the library name.

 The library can have these special values:

 *LIBL The library list is used to find the scope handling program

*CURLIB The current library is used to find the scope handling program

Scope program data

INPUT; CHAR(*)

 Data that is passed to the scope handling program as its one and only parameter.

 The user is responsible for the format of this data. Any pointers contained in the data must begin

on a 16-byte boundary.

 This data is copied to another area in storage when the scope message is sent. When the scope

program is called, a space pointer pointing to the copied data is passed to the scope handling

program.

Scope program data length

INPUT; BINARY(4)

 The length, in bytes, of the scope program data. The valid range is 0 through 32 767. If a data

length of zero is specified, a null pointer is passed to the scope handling program.

Message key

OUTPUT; CHAR(4)

 The key to the scope message being sent.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Message Handling APIs 185

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF2401 E Not authorized to library &1.

CPF3CF1 E Error code parameter not valid.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9805 E Object &2 in library &3 destroyed.

CPF9810 E Library &1 not found.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Message Handling APIs,” on page 1 | APIs by category

Exit Programs

These are the Exit Programs for this category.

Break Handling Exit Program

 Required Parameter Group:

1 Message queue name

Input Char(10)

2 Message queue library name

Input Char(10)

3 Message key

Input Char(4)

The Break Handling exit program provides the capability of handling messages that arrive at a message

queue that is in *BREAK mode. A break handling program is defined to the system by specifying both

break delivery and the name of the program on the same Change Message Queue (CHGMSGQ)

command. A break handling program should remove the message after it is handled. Additional

information and an example are provided in the CL Programming

book.

Required Parameter Group

Message queue name

INPUT; CHAR(10)

 The name of the message queue to which the message was sent. The message queue name is a

10-character field that is left-justified and padded with blanks to the right, if necessary.

Message queue library name

INPUT; CHAR(10)

186 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

The name of the library that contains the message queue. The library name is a 10-character field

that is left-justified and padded with blanks to the right, if necessary.

Message key

INPUT; CHAR(4)

 The message reference key of the message that was sent.

Usage Notes

This exit program could be called from an exit point within a multithreaded job and should be written to

be threadsafe.

Exit program introduced: V3R6

 Top | “Message Handling APIs,” on page 1 | APIs by category

Default Handling Exit Program

 Required Parameter Group:

1 Receiving program information

Input Char(*)

2 Message key

Input Char(4)
 QSYSINC Member Name: EMHDFTPG

The Default Handling exit program provides a default message handling action that can be used if the

program to which an escape message is sent does not monitor for the message. Additional information

and an example are provided in the CL Programming

book. A default handling program is defined

to the system through the Add Message Description (ADDMSGD) command and the Change Message

Description (CHGMSGD) command.

Required Parameter Group

Receiving program information

INPUT; CHAR(*)

 The name of the call message queue to which the message was sent (this name is the same name

as that of the program that did not monitor for the escape message). The structure for this

parameter is described in “Format for Receiving Program Information.”

Message key

INPUT; CHAR(4)

 The message reference key of the escape message on the call message queue.

Format for Receiving Program Information

For detailed descriptions of each field, see the “Field Descriptions” on page 188.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Receiving program name

Message Handling APIs 187

#TOP_OF_PAGE
aplist.htm

Offset

Type Field Dec Hex

10 A CHAR(10) Receiving module name

20 14 CHAR(256) Receiving procedure name

276 114 CHAR(1) Receiving program type

277 115 CHAR(3) Reserved

280 118 BINARY(4) Offset to long receiving procedure name

284 11C BINARY(4) Length of long receiving procedure name

288 120 CHAR(*) Reserved

The offset to this field

is found in the offset

field identified above.

CHAR(*) Long receiving procedure name

Field Descriptions

Length of long receiving procedure name. For receiving program types 1 and 2, the length of the

receiving procedure name, in bytes.

Long receiving procedure name. For receiving program types 1 and 2, the complete procedure name that

did not monitor for the message. A nested procedure name has each procedure name separated by a

colon. The outermost procedure name is identified first followed by its contained procedures. The

innermost procedure is identified last in the string.

Offset to long receiving procedure name. When the receiving program type is 1 or 2, the offset to the

long receiving procedure name, in bytes, from the beginning of this parameter structure.

Receiving module name. For receiving program types 1 and 2, the name of the module that did not

monitor for the message. For type 0, this field contains blanks.

Receiving procedure name. For receiving program type 1, the name of the procedure that did not

monitor for the message. A nested procedure name has each procedure name separated by a colon. The

outermost procedure name is identified first followed by its contained procedures. The innermost

procedure is identified last in the string. For types 0 and 2, this field contains blanks.

Receiving program name. The name of the program that did not monitor for the message.

Receiving program type. The type of program that received the message (that is, that did not monitor for

the message). Valid values follow:

 0 The message was sent to an OPM program.

1 The message was sent to a procedure within an ILE program, and the procedure name is 256

characters or less.

2 The message was sent to a procedure within an ILE program, and the procedure name is from 257

through 4096 characters. For this type, the receiving procedure name is blank, and the name can

be obtained from the long receiving procedure name.

Reserved. An ignored field.

Usage Notes

This exit program could be called from an exit point within a multithreaded job and should be written to

be threadsafe.

188 iSeries: Message Handling APIs

Exit program introduced: V3R6

 Top | “Message Handling APIs,” on page 1 | APIs by category

Reply Handling Exit Program

 Required Parameter Group:

1 Type of call

Input Binary(4)

2 Qualified message queue name

Input Char(20)

3 Message key

Input Char(4)

4 Message identifier

Input Char(7)

5 Reply

I/O Char(*)

6 Length of the reply

I/O Binary(4)

7 CCSID of the reply

I/O Binary(4)

8 Reply action return code

Output Binary(4)
 Exit Point Name: QIBM_QMH_REPLY_INQ

 Exit Point Format Name: RPYI0100

A reply handling exit program is called when a reply is sent to an inquiry message. The operating system

calls the user-written exit program identified through the registration facility. The program is called after

the system validates the reply, but before the reply is sent to the inquiry message. For some inquiry

messages, a reply handling exit program can indicate that the reply should be rejected. When an exit

program indicates that the reply should be rejected, a diagnostic message (CPD2476 Reply rejected by a

reply handling exit program) is sent to the caller of the send reply function.

This is followed by an

escape message CPF2422 (Reply not valid). An exit program can also replace the reply value to be sent.

When an exit program indicates that the reply should be replaced, the send reply function sends a

diagnostic message to itself. The message is CPD2479 (Reply handling exit program requested to replace

a reply value). After the reply is sent, CPF2458 (Reply replaced by a reply handling exit program) will be

sent as a diagnostic message and a status message to the caller of the send reply function. The status

message allows the caller to monitor for the condition when a reply value other than what was specified

is sent. When the condition occurs, the caller can then receive the diagnostic message to obtain details

about the reply replacement.

The first parameter sent to the exit program indicates the various reasons

for which the exit program can be called.

The exit point supports an unlimited number of exit programs. If multiple exit programs are defined, all

of the exit programs are called for each reply to an inquiry message until one of the exit programs rejects

Message Handling APIs 189

#TOP_OF_PAGE
aplist.htm

the reply or replaces the reply value. When a reply is rejected or replaced, any exit program that was

previously notified of the reply is called again to be informed the reply is now being rejected or replaced.

See “Required Parameter Group” for details on the types of calls the exit program must handle and the

valid return codes that can be specified to return to the exit point. For information about adding or

removing an exit program for an exit point, see Registration Facility documentation.

The exit program can use the receive message function to obtain additional information about the

message being replied to. For example, the program can obtain the message data, the sender of the

message, and so on. If the exit program attempts to obtain information from the sending job, it needs to

take into account that the job that sent the inquiry could have ended before the inquiry is replied to, thus

requiring the exit program to handle a not-found error. The exit program is executed within the same job

as the user that entered a reply. It can use commands or APIs to obtain information about the current job

and current user that provided the reply.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add or remove exit programs in the registration facility.

Required Parameter Group

Type of call

INPUT; BINARY(4)

 The reason the exit program is being called. The valid values are:

 0 Reply notification—no action allowed. Informs an exit program that a reply is being sent to

an inquiry message. The original reply value has been replaced by another exit program so

any remaining exit programs are informed of the reply with this value, but the reply cannot

be rejected or replaced. The return code parameter is ignored by the exit point.

1 Reply validation requested. The exit program should set the return code parameter to

indicate whether the reply should be accepted, rejected, or replaced. A return code

parameter with a value other than 0 or 2 will cause the reply to be accepted.

2 Default reply validation requested. The default reply is being sent to an inquiry message.

The exit program should set the return code parameter to indicate whether the reply should

be accepted or replaced. The exit program can set the return code parameter to indicate

rejected, but this will cause the inquiry message to be left as unanswered (and possibly

cause the job to hang). A return code parameter with a value other than 0 or 2 will cause the

reply to be accepted.

3 Default reply notification. Informs an exit program that an inquiry message is being replied

to with the default reply and the reply cannot be rejected, but the reply value can be

replaced by an exit program. A return code parameter value other than 2 is ignored by the

exit point and the reply is accepted. If a user or job requested a function that sends a default

reply and the reply is not allowed to be rejected, this value would be sent to an exit

program. Examples of when this value would be used:

v deleting a message queue that contains unanswered inquiry messages.

v sending the default reply to an unanswered inquiry and the parameter to allow default

reply rejection was not specified.

v sending an inquiry to a message queue that is in default mode.

v sending an inquiry to *EXT so it shows the Display Program Messages screen and the

user presses F3, F12 or Enter to exit the screen without entering any reply.

v sending an inquiry to *EXT in a batch job.

v a job uses an inquiry message reply job attribute of *DFT.

v wrapping a message queue.

190 iSeries: Message Handling APIs

reg1.htm

4 Reply rejected notification. Informs an exit program that another exit program rejected the

reply to an inquiry message. The return code parameter is ignored by the exit point and a

reply is not sent to the inquiry message. When an exit program rejects a reply, any exit

programs that previously accepted the reply are notified that a reply

was rejected with

the use of this value but any remaining exit programs that have never been informed of the

reply will not be called to be notified of the rejection. When a reply is rejected, message

CPD2476 (Reply rejected by a reply handling exit program) is sent as a diagnostic message

to the caller of the send reply function to indicate the reply they requested to be sent was

rejected. The send reply function will also send message CPD2476 a second time. The second

time it will be sent to the send reply function instead of to its caller. This will allow an exit

program to receive the CPD2476 by specifying to receive the message from the invocation

previous to the exit program. So there are not two CPD2476 messages left in the job log, the

second CPD2476 will be removed by the send reply function after all the exit programs that

accepted the reply are notified of the reply rejection.

5 Replaced reply not valid. Informs an exit program that the reply information it specified for

replacement is not valid.

The send reply function will send a diagnostic message to itself

to indicate the problem with the reply information. One of the following messages could be

sent: CPD2477 (Reply replaced by exit program not valid) or CPD2478 (Reply replaced by

exit program same as original reply value).

The return code parameter will be ignored by

the exit point and the original reply value, now specified in parameters 5 though 7, will be

used as the reply value for the message. The next reply handling exit program will be called

or the reply will be sent if there are no other exit programs to call.

6 Reply replaced notification. Informs an exit program, that has already accepted the reply,

that another exit program replaced that reply.

When a reply is replaced, the send reply

function will send CPD2479 (Reply handling exit program requested to replace a reply

value) as a diagnostic message to itself. This will allow an exit program to receive the

message from the previous invocation to find out information about the replacement.

The

return code parameter is ignored by the exit point. The reply cannot be rejected nor

replaced. Parameters 5 through 7 contain the new reply value to be sent to the inquiry

message.

7 Reply cannot be sent notification. The return code parameter is ignored by the exit point.

The reply is not sent to the inquiry message. When an exit program accepts a reply, but then

the system is not able to send that reply to the inquiry message, this value will be used to

notify all the exit programs. This may indicate that something is wrong with the queue.

After exit programs are notified, an error message is sent by the system reply function as it

ends or returns.

Note: For values 0, 4, 5, and 6, parameter 8 will be ignored. For values 4 and 7, parameter 5 will

be blank and parameters 6 and 7 will be zero.

Qualified message queue name

INPUT; CHAR(20)

 The name of the message queue and library containing the inquiry message. The message queue

name is a 10-character field that is left-justified and padded with blanks if the name is less than

10 characters. The 10-character message queue name is followed by the 10-character library name

that is padded with blanks to the right, if necessary. A special value of *EXT will be used for the

message queue name with blanks for the library name to indicate the inquiry message was sent

to the job’s external message queue.

Message key

INPUT; CHAR(4)

 The message reference key of the inquiry message that is being replied to.

Message identifier

INPUT; CHAR(7)

 The message identifier of the inquiry message that is being replied to. This value will be blank

for an impromptu message.

Reply I/O; CHAR(*)

Message Handling APIs 191

The reply to be sent to an inquiry message. If a reply is being replaced by an exit program, the

new reply value is specified in this parameter.

Length of the reply

I/O; BINARY(4)

 The length of the specified reply. The maximum value is 132. If a reply is being replaced by an

exit program, the length of the new reply value is specified in this parameter.

If a reply is

being replaced with a default reply value, a value of 0 can be specified.

CCSID of the reply

I/O; BINARY(4)

 The coded character set identifier of the specified reply. If a reply is being replaced, the CCSID of

the reply is specified in this parameter.

The valid values are:

 0 The message reply text is assumed to be in the CCSID of the job running the exit program.

65535 The message reply text will not be converted.

CCSID Specify a valid CCSID that your message reply text is in. Valid values are between 1 and 65535.

For a list of valid CCSIDs, see CCSIDs: Message Support in the Globalization topic.

Coded Character Set Identifier (CCSID) Considerations

If the inquiry message that this reply is being sent to is an impromptu message, the text supplied on the

reply parameter is assumed to be in the CCSID of the job running this exit program unless the coded

character set identifier is supplied in the CCSID parameter. If the inquiry message that this reply is being

sent to is a predefined message, then the text supplied on the reply text parameter is considered 65535

and is not converted. For more information about message handler and its use of CCSIDs, see CCSIDs:

Message Support in the Globalization topic.

Reply action return code

OUTPUT; BINARY(4)

 The return code to indicate whether the reply should be rejected, accepted, or replaced. The valid

values are:

 0 The reply should be rejected. Any exit program that previously accepted the reply will be notified

of the reply rejection. Any remaining exit programs will not be called.

1 The reply should be accepted. The next exit program will be called or the reply will be sent if

there are no other exit programs.

2 The reply should be replaced using the values provided in parameters 5 through 7, reply, length of

the reply, and CCSID of the reply. If the replaced reply value is not valid, or if the reply value is

the same as the original reply value,

the send reply function will send one of these messages

as a diagnostic message to itself: CPD2477 (Reply replaced by exit program not valid) or CPD2478

(Reply replaced by exit program same as original reply value). Then it will notify the exit program

of the the error with a type of call value of 5 and then

act as if the exit program accepted the

original value and the next exit program will be called or the original reply will be sent if there

are no other exit programs. If the replaced reply is valid, any exit program that previously

accepted the reply will be notified of the reply replacement. The remaining reply handling exit

programs will be called but they will not be allowed to reject or replace the reply. If there are no

remaining exit programs to call, the new reply value will be sent.

Note: A value other than 0 or 2 will cause the reply to be accepted.

192 iSeries: Message Handling APIs

Usage Notes

1.

System debug breakpoints in reply handling exit programs will be ignored while processing the

reply handling exit point. When sending a reply and a reply handling exit program is called, message

CPF195A (Breakpoint already run when notification received) will be generated for any breakpoints

set in the exit program.

2. A reply handling exit program can send a message other than an inquiry and reply, but the program

will get into a recursive loop if it tries to do functions like the following that affect inquiry messages

and their reply:

v send a reply to the inquiry message that it is being called to handle.

v send a reply to any other inquiry message.

v receive an unanswered inquiry message with the remove option set to yes.

v remove an unanswered inquiry message.

v send an inquiry message to *EXT.

For example, a user enters a reply, so a reply handling exit program is called. The exit program sends

a reply to the inquiry (or tries to remove the message, but the default reply must be sent first); this

calls the exit program again, causing a loop.

3. The time between checking if there is a reply for an inquiry and actually sending the reply to the

inquiry message will be greater with the use of reply handling exit programs. If the message queue is

not already allocated to the job in which the reply is being sent, when the reply is sent it is implicitly

allocated internally for the duration of the send. This means that if there are a number of exit

programs to call or if an exit program runs for a long time, other users or jobs trying to use the

message queue can see CPF2477 (message queue in use) more often if the exit programs could not

complete during the internal lock wait time built into message handling functions.

4.

Messages that provide information about reply rejection or replacement should not be removed by

an exit program. When an exit program is receiving one of these messages, the program should

specify parameter values on the receive such that it allows the messages to remain in the job log so

they are available to be received by other exit programs.

5. If an exit program uses a receive function to receive additional information about the inquiry message

on a nonprogram (standard) message queue, it should:

v use the receive nonprogram message API, QMHRCVM, and

v specify *SAME for the message action parameter.

Using this value on the API will not change the status of the message so other exit programs can still

receive the message, but it will also allow the receive to occur even if the queue is implicitly locked

due to a break handling program or a receive message with a wait time specified.

6. Error situations:

v If an error occurs while retrieving the list of exit programs for the reply handling exit point, the

error will be left in the joblog and the reply will be accepted as if no exit programs were specified

for the exit point.

v A reply will be accepted if a reply handling exit program:

– cannot be found

– specifies a return code that is not valid

– sends any error messages

– tries to replace a reply value with a reply that is not valid
v Any message resulting from calling the exit program (such as program not found) or any message

issued by the exit program will be left in the joblog. No new or additional message will be sent to

indicate that an error occurred or that the return code was not valid.
7. The send reply function is threadsafe. A reply handling exit program can be called from within a

multithreaded job. When a reply handling exit program is added to the registration facility, it can

Message Handling APIs 193

specify a multithreaded job action. One of the following actions will be taken in a multithreaded job,

depending on the value indicated by the registration facility:

 1 The exit program will be called.

2 The exit program will be called and then CPI3C80 (an exit program was called in a multithreaded

job) will be issued as an informational message to the caller of the send reply function for each

exit program with this value. If an exit program is called again for a reply being rejected by

another exit program, the CPI3C80 will not be resent.

3 The exit program will NOT be called and CPF3C80 (an exit program was not called in a

multithreaded job) will be issued as an informational message to the caller of the send reply

function for each exit program with this value. For exit programs with this value, the exit point

will act as if the reply was accepted by the exit program and continue the function of calling the

next exit program or sending the reply.

Exit program introduced: V5R2

 Top | “Message Handling APIs,” on page 1 | APIs by category

Concepts

These are the concepts for this category.

Message Handling Terms and Concepts

This article describes the basic elements of iSeries messages and message handling, including:

v Immediate and predefined messages

v Message types, or the purposes assigned to messages when they are sent

v Message destinations, such as work station displays and call message queues

For details about these topics, see the CL Programming

book.

Immediate and Predefined Messages

The OS/400 program uses two basic kinds of messages, immediate and predefined. Immediate messages,

also known as impromptu messages, are created by the sender when they are sent. They consist

completely of text that the sender supplies. They do not have identifying codes like CPF2469, and they

are not stored in message files on the system.

In contrast, predefined messages are created and exist outside the programs that use them. Each

predefined message has its own message description, which is stored in a message file (object type

*MSGF) on the system. The message description includes the message text and other items, such as

message help, the default reply for the message, and its severity level.

Each message description has its own message identifier. The message identifier is a 7-character code,

such as CPF2469, that refers to the message description as a whole. It is displayed with the text of the

message and lets programs refer to the message easily. The term message identifier is usually abbreviated

to MSGID in items such as CL commands.

Predefined messages have two types of text, message text and message help. The message text is the

version of the predefined message that is first displayed at a work station or logged in a job log. The

message text is also known as first-level text. It briefly describes a condition. Message help, also known

as second-level text, is available to the user on request. It usually describes the cause of the condition

and details any corrective action the user should take.

194 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

The message text and message help for predefined messages can consist of only constant text, only

substitution variables, or both constant text and substitution variables. are variables for items such as file

names in the message text or message help. They allow the message to better describe the recipient’s

individual circumstances. Substitution variables are also known as replacement data. Substitution

variables The specific values you assign to these variables are called message data.

When either an immediate or predefined message is sent, the command or API used to send it usually

assigns it a message key. The message key, also called the message reference key, is a unique string of

characters that identifies a particular instance of a message in a queue. (In contrast, a message identifier

identifies a message as it is stored in a message file, not as it is sent.) You can use the message key to

refer to a specific instance of a message in order to move, receive, reply to, resend, or remove it.

Message Types

The OS/400 program divides messages into types according to their use. These message types are

categories based on the message’s purpose. The sender of the message determines its type when sending

the message. The message handling APIs use these message types in defining and working with

messages:

Completion (*COMP). Reports the successful completion of a task.

Diagnostic (*DIAG). Describes errors in processes or input data. When an error occurs, a program

usually sends an escape message, which causes the task to end abnormally. One or more diagnostic

messages can be sent before the escape message to describe the error.

Escape (*ESCAPE). Indicates a condition causing a program to end abnormally, without completing its

work.

Exception (*EXCP). Indicates a condition causing a program to end abnormally, without completing its

work. An exception message can be either an escape or a notify message. The exception message type

and the special value *EXCP are used only with the Receive Program Message (QMHRCVPM) API.

Informational (*INFO). Conveys information without asking for a reply.

Inquiry (*INQ). Conveys information and asks for a reply.

Notify (*NOTIFY). Describes a condition in the sending program requiring corrective action or a reply.

Reply (*RPY). Responds to an inquiry or notify message.

Request (*RQS). Requests a function from the receiving program.

Sender’s copy (*COPY). Is a copy of an inquiry or notify message. This copy is kept by the sender of

the inquiry or notify message.

Scope (*SCOPE). Specifies a program to run when the program this message is sent to completes. If

the message is sent to *EXT the program is to run when the job completes.

Status (*STATUS). Describes the status of work being done by a program.

Message Destinations

All iSeries messages are sent to message queues. The system provides the following message queues:

v A work station message queue for each work station on the system.

v A user profile message queue for each enrolled user.

Message Handling APIs 195

v A job message queue for each job running on the system. The job message queue consists of two or

more message queues:

1. An external message queue (*EXT) to send messages between an interactive job and the work

station user.

Any thread in a multithreaded job can send messages to the external message queue. Each thread

can receive or remove only those messages sent to the external message queue from that thread.

2. A set of call message queues corresponding to the calls in the job. Each call within a job has a call

message queue. If a call stack entry appears in the call stack twice, it has two separate call message

queues.

A call message queue is also known as a program message queue. However, in the ILE model, you

can call procedures as well as programs. Both ILE procedure message queues and OPM program

message queues are referred to as call message queues. A multithreaded job has a separate set of

call message queues for each thread that is running in the job. Each thread can access only the

messages for the call message queues within its own thread; messages cannot be sent to, received

from, or removed from call message queues in other threads.

Note: An ILE procedure has an associated call message queue only if the related compiler does

not place the procedure inline. A inline procedure does not have a call message queue, and because

of this, cannot be referenced on any message handler API. For example, you cannot send a message

to an inline procedure by specifying the name of that inline procedure.

3. All message queues other than external and call message queues are considered nonprogram

message queues.

v The system operator’s message queue, QSYSOPR.

v The history log, QHST.

Note: A message sent to a message queue remains on the queue until you use a command or API to

remove it from the queue or move it to another queue. Removing a message from a message queue

deletes that one instance of the message from the system. After removal, you can no longer receive or

otherwise work with that instance of the message. However, other instances of the message might still be

available in the same or different message queues. The message description of a predefined message still

exists in a message file.

This exit program could be called from an exit point within a multithreaded job and should be written to

be threadsafe.

 Top | “Message Handling APIs,” on page 1 | APIs by category

196 iSeries: Message Handling APIs

#TOP_OF_PAGE
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 197

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

198 iSeries: Message Handling APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 199

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

200 iSeries: Message Handling APIs

����

Printed in USA

	Contents
	Message Handling APIs
	APIs
	Change Exception Message (QMHCHGEM) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Control Job Log Output (QMHCTLJL) API
	Authorities and Locks
	Required Parameter Group
	CTLJ0100 Output File Names Structure
	Message Filter Array Elements
	Field Descriptions
	CCSID Considerations
	Error Considerations
	Job Message Queue Full Considerations
	Usage Notes
	Error Messages
	Job Log Production Messages

	List Job Log Messages (QMHLJOBL) API
	Authorities and Locks
	Required Parameter Group
	Format of Generated Lists
	Input Parameter Section
	Header Section
	LJOB0100 Format
	JSLT0100 Format
	JSLT0200 Format
	Valid Field Identifiers
	Field Descriptions
	Error Messages

	List Nonprogram Messages (QMHLSTM) API
	Authorities and Locks
	Required Parameter Group
	Format of Generated Lists
	Input Parameter Section
	Header Section
	LSTM0100 Format
	MSLT0100 Format
	MSLT0200 Format
	Valid Field Identifiers
	Field Descriptions
	Error Messages

	Move Program Messages (QMHMOVPM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Error Messages

	Open List of Job Log Messages (QGYOLJBL) API
	Differences between QMHLJOBL and QGYOLJBL
	Authorities and Locks
	Required Parameter Group
	OLJL0100 Format
	Field Descriptions
	Message Selection Information Format
	Field Descriptions
	Valid Field Identifiers
	Field Descriptions
	Error Messages

	Open List of Messages (QGYOLMSG) API
	Differences between the QMHLSTM and QGYOLMSG APIs
	Difference between the QSYRUSRI and QGYOLMSG APIs
	Authorities and Locks
	Required Parameter Group
	LSTM0100 Format
	Field Descriptions
	Message Selection Information Format
	Field Descriptions
	Valid Field Identifiers
	Field Descriptions
	Error Messages

	Promote Message (QMHPRMM) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Receive Nonprogram Message (QMHRCVM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Message Types and Message Keys
	RCVM0100 Format
	RCVM0200 Format
	Field Descriptions
	Error Messages

	Receive Program Message (QMHRCVPM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Optional Parameter Group 3
	Message Types and Message Keys
	RCVM0100 Format
	RCVM0200 Format
	RCVM0300 Format
	Sender Information Format
	Field Descriptions
	Error Messages

	Remove Nonprogram Messages (QMHRMVM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Error Messages

	Remove Program Messages (QMHRMVPM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Optional Parameter Group 3
	Error Messages

	Resend Escape Message (QMHRSNEM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	RSNM0100 Format
	RSNM0200 Format
	Field Descriptions
	Error Messages

	Retrieve Message (QMHRTVM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	RTVM0100 Format
	RTVM0200 Format
	RTVM0300 Format
	RTVM0400 Format
	Relational Test Entry Format
	Special Reply Value Entry Format
	Substitution Variable Format
	Valid Reply Entry Format
	Field Descriptions
	Error Messages

	Retrieve Message File Attributes (QMHRMFAT) API
	Authorities and Locks
	Required Parameter Group
	RMFA0100 Format
	Field Descriptions
	Error Messages

	Retrieve Nonprogram Message Queue Attributes (QMHRMQAT) API
	Authorities and Locks
	Required Parameter Group
	RMQA0100 Format
	Field Descriptions
	Error Messages

	Retrieve Request Message (QMHRTVRQ) API
	Authorities and Locks
	Required Parameter Group
	RTVQ0100 Format
	RTVQ0200 Format
	Field Descriptions
	Error Messages

	Send Break Message (QMHSNDBM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter
	Error Messages

	Send Nonprogram Message (QMHSNDM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Dependencies among Parameters
	Error Messages

	Send Program Message (QMHSNDPM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Dependencies among Parameters
	Additional Information about Message Types
	Error Messages

	Send Reply Message (QMHSNDRM) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Coded Character Set Identifier (CCSID) Considerations
	Error Messages

	Send Scope Message (QMHSNDSM) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Exit Programs
	Break Handling Exit Program
	Required Parameter Group
	Usage Notes

	Default Handling Exit Program
	Required Parameter Group
	Format for Receiving Program Information
	Field Descriptions
	Usage Notes

	Reply Handling Exit Program
	Authorities and Locks
	Required Parameter Group
	Coded Character Set Identifier (CCSID) Considerations
	Usage Notes

	Concepts
	Message Handling Terms and Concepts
	Immediate and Predefined Messages
	Message Types
	Message Destinations

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

