
iSeries

Journal and Commit APIs

Version 5 Release 3

���

iSeries

Journal and Commit APIs

Version 5 Release 3

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 155.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Journal and Commit APIs 1

APIs 2

Add Commitment Resource (QTNADDCR) API . . 3

Authorities and Locks 4

Restrictions 4

Required Parameter Group 5

Optional Parameter Group 1 7

Optional Parameter Group 2 7

Input Options Structure 7

Field Descriptions 8

Usage Notes 12

Error Messages 12

Add Remote Journal (QjoAddRemoteJournal) API 13

Restrictions 14

Authorities and Locks 15

Required Parameter Group 15

Omissible Parameter Group 15

ADRJ0100 Format 16

Field Descriptions 16

Error Messages 17

Change Commitment Options (QTNCHGCO) API 18

Required Parameter Group 19

Commitment Options Format 19

Field Descriptions 19

Restrictions 22

Error Messages 23

Change Journal Recovery Count (QJOCHRVC) API 23

Restrictions 24

Authorities and Locks 24

Required Parameter Group 24

Error Messages 24

Change Journal State (QjoChangeJournalState) API 25

Restrictions 26

Authorities and Locks 26

Required Parameter Group 26

Omissible Parameter Group 27

CJST0100 Format 28

CJST0300 Format 28

CJST0400 Format 28

CJST0500 Format 29

Field Descriptions 29

Error Messages 31

Clear LU6.2 Partners (QTNCLRLU) API 33

Authorities and Locks 33

Required Parameters 33

Optional Parameter 34

Usage Notes 34

Error Messages 34

Delete Pointer Handle (QjoDeletePointerHandle)

API 35

Authorities and Locks 35

Required Parameter 35

Omissible Parameter 35

Error Messages 35

End Journal (QjoEndJournal) API 36

Authorities and Locks 37

Required Parameters 37

Omissible Parameters 38

Keys 40

Field Descriptions 40

Error Messages 41

Example 41

Materialize Journal Port Attributes

(QusMaterializeJournalPortAttr) API 43

Error Messages 43

Materialize Journal Space Attributes

(QusMaterializeJournalSpaceAttr) API 44

Error Messages 44

Remove Commitment Resource (QTNRMVCR) API 44

Required Parameter Group 45

Restrictions 45

Error Messages 45

Remove Remote Journal (QjoRemoveRemoteJournal)

API 46

Restrictions 46

Authorities and Locks 47

Required Parameter Group 47

Omissible Parameter Group 47

RMRJ0100 Format 48

Field Descriptions 48

Error Messages 48

Retrieve Commitment Information (QTNRCMTI)

API 49

Required Parameter Group 49

CMTI0100 Format 50

Field Descriptions 50

Error Messages 54

Retrieve Journal Entries (QjoRetrieveJournalEntries)

API 54

Restrictions 55

Authorities and Locks 55

Required Parameter Group 56

Omissible Parameter Group 56

Format for Variable Length Record 57

Field Descriptions 57

Keys 57

Field Descriptions 58

File Format 62

Field Descriptions 62

Journal Code Format 63

Field Descriptions 63

Journal Entry Type Format 64

Field Descriptions 64

Receiver Range Format 64

Field Descriptions 64

RJNE0100 Format 65

RJNE0200 Format 67

Field Descriptions 70

Use of Pointers within Entry Specific Data . . . 78

Error Messages 79

Example 80

© Copyright IBM Corp. 1998, 2005 iii

Retrieve Journal Identifier Information (QJORJIDI)

API 85

Maintaining a JID for a Journaled Object . . . 86

Restrictions 86

Authorities and Locks 86

Required Parameter Group 87

RJID0100 Format 87

Field Descriptions 88

Error Messages 89

Retrieve Journal Information

(QjoRetrieveJournalInformation) API 90

Authorities and Locks 90

Required Parameter Group 91

Omissible Parameter 91

Format for Variable Length Record 92

Field Descriptions 92

Keys 92

Field Descriptions 92

RJRN0100 Format 93

Key 1 Output Section 95

Key 2 Output Section 95

Key 3 Output Section 96

Field Descriptions 97

Error Messages 108

Retrieve Journal Receiver Information

(QjoRtvJrnReceiverInformation) API 109

Authorities and Locks 109

Required Parameter Group 110

Omissible Parameter 110

RRCV0100 Format 111

Field Descriptions 112

Error Messages 119

Return LU6.2 Partners (QTNRTNLU) API 120

Authorities and Locks 120

Required Parameter 120

Optional Parameter 121

Usage Notes 121

Error Messages 121

Rollback Required (QTNRBRQD) API 121

Required Parameter Group 121

Restrictions 122

Error Messages 122

Send Journal Entry (QJOSJRNE) API 122

Restrictions 123

Authorities and Locks 123

Required Parameter Group 123

Format for Variable Length Record 124

Field Descriptions 125

Keys 125

Field Descriptions 125

Qualified Object Name Format 127

Field Descriptions 127

Error Messages 128

Start Journal (QjoStartJournal) API 129

Authorities and Locks 130

Required Parameters 130

Omissible Parameters 132

Keys 133

Field Descriptions 133

Error Messages 135

Example 135

Exit Programs 137

Commitment Control Exit Program 138

Required Parameter Group 138

Optional Parameter 139

Status Information Format 139

Field Descriptions 139

Return Information Format 142

Field Descriptions 142

Exit Program Locks 143

Exit Program Coding Guidelines 143

Process End, Activation Group End, and IPL or

ASP Device Vary On Recovery Processing

Guidelines 144

Delete Journal Receiver Exit Program 145

Restrictions 146

Authorities and Locks 146

Program Data 146

Required Parameter Group 146

Format of Delete Journal Receiver Exit

Information 147

Format of Status Information 147

Field Descriptions 147

IPL Processing Guidelines 149

Concepts 150

Journaling for Journal and Commit APIs 150

Commitment Control for Journal and Commit APIs 151

Appendix. Notices 155

Trademarks 156

Terms and conditions for downloading and

printing publications 157

Code disclaimer information 158

iv iSeries: Journal and Commit APIs

Journal and Commit APIs

Journaling allows you to specify objects that you want to protect for recovery purposes. It also provides

an audit trail for object changes. Journaling provides an audit or activity trail for other objects either

through system operations or user actions. The journal APIs allow you to:

v Obtain information about some of the journal’s attributes or the journal receiver’s attributes

v Obtain journal information based on the journal identifier

v Send an entry to specified journal

v Add, remove, activate, and inactivate remote journals.

v Start and stop journaling.

Commitment control allows you to define and process changes to resources, such as database files or

tables, as a single logical unit of work. Commitment control uses the journaling facility to provide for

logical units of work. The commitment control APIs allow you to:

v Add and remove your own resources to be used during system commit or rollback processing

v Retrieve information about the commitment control environment

v Change commitment control options

v Put a commitment definition into rollback-required state

For additional information, see:

v “Journaling for Journal and Commit APIs” on page 150

v “Commitment Control for Journal and Commit APIs” on page 151

If you plan to use the APIs described in this chapter, you must understand the Commitment Control and

Journal Management topics in the Information Center. These topics include information on remote

journaling, remote journaling support, and a complete description of the information contained in journal

entries that the system sends and all the possible journal codes and entry types.

The journal and commit APIs are:

v “Add Commitment Resource (QTNADDCR) API” on page 3 (QTNADDCR) adds an API commitment

resource to the current commitment definition.

v “Add Remote Journal (QjoAddRemoteJournal) API” on page 13 (QjoAddRemoteJournal) associates a

remote journal on the target system, as identified by the relational database directory entry, with the

specified journal on the source system.

v “Change Commitment Options (QTNCHGCO) API” on page 18 (QTNCHGCO) changes the

commitment control options for the current commitment definition.

v

“Change Journal Recovery Count (QJOCHRVC) API” on page 23 (QJOCHRVC) how often changes

to journaled objects are forced to auxiliary storage.

v “Change Journal State (QjoChangeJournalState) API” on page 25 (QjoChangeJournalState) changes the

journal state of local and remote journals.

v

“Clear LU6.2 Partners (QTNCLRLU) API” on page 33 (QTNCLRLU) clears LU6.2 syncpoint LOG

partners known to the system.

v “Delete Pointer Handle (QjoDeletePointerHandle) API” on page 35 (QjoDeletePointerHandle) deletes

the specified pointer handle.

v “End Journal (QjoEndJournal) API” on page 36 (QjoEndJournal) ends journaling for the specified

object.

v “Materialize Journal Port Attributes (QusMaterializeJournalPortAttr) API” on page 43

(QusMaterializeJournalPortAttr) retrieves some of the current attributes of a journal.

© Copyright IBM Corp. 1998, 2005 1

v “Materialize Journal Space Attributes (QusMaterializeJournalSpaceAttr) API” on page 44

(QusMaterializeJournalSpaceAttr) retrieves some of the current attributes of a journal receiver.

v “Remove Commitment Resource (QTNRMVCR) API” on page 44 (QTNRMVCR) removes an API

commitment resource from the current commitment definition.

v “Remove Remote Journal (QjoRemoveRemoteJournal) API” on page 46 (QjoRemoveRemoteJournal)

disassociates a remote journal on the target system, as identified by the relational database directory

entry, from the specified journal on the source system.

v “Retrieve Commitment Information (QTNRCMTI) API” on page 49 (QTNRCMTI) gets information

about the current commitment definition.

v “Retrieve Journal Entries (QjoRetrieveJournalEntries) API” on page 54 (QjoRetrieveJournalEntries)

provides access to journal entries.

v “Retrieve Journal Identifier Information (QJORJIDI) API” on page 85 (QJORJIDI) gets information

about a specific journal identifier (JID) for a specified journal.

v “Retrieve Journal Information (QjoRetrieveJournalInformation) API” on page 90

(QjoRetrieveJournalInformation) provides access to journal-related information to help manage a

journal environment, including a remote journal environment.

v “Retrieve Journal Receiver Information (QjoRtvJrnReceiverInformation) API” on page 109

(QjoRtvJrnReceiverInformation) provides access to journal-receiver-related information to help manage

a journal environment, including a remote journal environment.

v

“Return LU6.2 Partners (QTNRTNLU) API” on page 120 (QTNRTNLU) returnss LU6.2 syncpoint

LOG partners known to the system.

v “Rollback Required (QTNRBRQD) API” on page 121 (QTNRBRQD) puts the current commitment

definition into a rollback-required state.

v “Send Journal Entry (QJOSJRNE) API” on page 122 (QJOSJRNE) writes a single journal entry to a

specific journal.

v “Start Journal (QjoStartJournal) API” on page 129 (QjoStartJournal) starts journaling for the specified

object.

The journal and commit exit programs are:

v “Commitment Control Exit Program” on page 138 is called during commitment control operations after

an API commitment resource is added to a commitment definition. The commitment control operations

pass specific information to the exit program.

v “Delete Journal Receiver Exit Program” on page 145 is called when a journal receiver is to be deleted

by any method. For example, the exit program will be called when the user runs the Delete Journal

Receiver (DLTJRNRCV) command, or when the system attempts to delete a journal receiver because

the journal has the DLTRCV(*YES) attribute specified.

 Top | APIs by category

APIs

These are the APIs for this category.

2 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Add Commitment Resource (QTNADDCR) API

 Required Parameter Group:

1 Resource handle

Output Binary(4)

2 Resource name

Input Char(10)

3 Qualified commitment control exit program name

Input Char(20)

4 Commitment control exit program information

Input Char(80)

5 IPL and ASP device vary on processing option

Input Char(1)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Optional Parameter Group 1:

7 Add resource options

Input Char(*)

 Optional Parameter Group 2:

8 Current savepoint number

Output Binary(4)
 Threadsafe: Yes. See Usage Notes

The Add Commitment Resource (QTNADDCR) API adds an API commitment resource to a commitment

definition. When the resource has been added, the specified exit program is called during commitment

control operations performed for the commitment definition until the resource is removed. Once an API

commitment resource is added, it must be removed with the Remove Commitment Resource

(QTNRMVCR) API before commitment control can be ended for the commitment definition, unless

activation-group-level commitment definitions are used. Activation-group-level commitment definitions

for nondefault activation groups are automatically ended by the system and any API commitment

resources are implicitly removed when the activation group is ended. See “Remove Commitment

Resource (QTNRMVCR) API” on page 44 (QTNRMVCR) API for more information about this API.

To have several API commitment resources at once, you must use this API to add each resource, one at a

time. This API does not check for duplicate resource names or duplicate commitment control exit

programs.

API commitment resources are considered either one-phase or two-phase. One-phase API commitment

resources cannot be registered with any remote resource. One-phase resources are called once during both

Journal and Commit APIs 3

commit and rollback processing. Two-phase resources are optionally called three times for commit

processing and twice for rollback processing. Optionally, two-phase resources may also be called to

reacquire their locks during IPL and ASP device vary on. IPL and ASP device vary on recovery may need

to take place after the IPL or vary on finishes and resources that are not locked may not be able to be

recovered. For more information about one-phase and two-phase API commitment resources, see the

Journal management topic.

For each API commitment resource that is added, and specified not to be called during both the classify

and prepare phases, a single call is made to the associated exit program by commit or rollback

processing. For each two-phase resource added and specified to be called during both the classify and

prepare phases, the associated exit program is called three times for commit processing and twice for

rollback processing. During the first call (or classify call), the exit program should place its conversations

in protected states and force any buffered data. During the second call (or prepare call), the exit program

must place its resources in a state where they can be committed, rolled back, or recovered from a system

failure. The prepare call is made only for commit processing, not rollback processing. During the third

call, the exit program is told to commit or roll back its resources.

A journal name can be specified when the API commitment resource is added to associate a journal with

the resource. If specified, the journal must not be a remote journal. The resource can use this journal to

permanently store information that may be needed to commit, rollback, or reacquire locks on the

resource. This journal can be used in a manner similar to the way the database uses journals to keep

track of record-level I/O. When the commitment control exit program is called to commit or roll back the

resource or to reacquire locks during IPL, the commit cycle identifier of the current logical unit of work is

passed to the program. This commit cycle identifier can be used as a starting or ending point when

receiving, retrieving, or displaying entries from the journal.

Exit programs are grouped according to what is specified for the journal name in the add resource

options. All exit programs that have been associated with the same journal are grouped together and all

exit programs that are not associated with a journal are grouped together. During commit processing the

exit programs are called in the order within the group in which they were added to their particular

commitment definition. During rollback processing the exit programs are called in the reverse order. All

calls to API commitment resources are made before record-level I/O operations are processed.

For more information about the exit program and information that is passed to it, see the “Commitment

Control Exit Program” on page 138.

Authorities and Locks

Exit Program Authority

*USE

Exit Program Library Authority

*EXECUTE

Exit Program Lock

*SHRNUP

Journal Authority

*USE

Journal Library Authority

*EXECUTE

Journal Lock

*SHRUPD

Restrictions

You are prevented from adding a commitment resource using this API when:

4 iSeries: Journal and Commit APIs

v Distributed data management (DDM) or distributed relational database is used to update remote

resources under commitment control and two-phase commit protocols are not supported at the remote

system.

Note: If remote resources are read-only, the API can be used to register a commitment resource as long

as the resource is compatible with remote resources. See the Add resource options (page 7) parameter

for more details.

Note: You can use the “Retrieve Commitment Information (QTNRCMTI) API” on page 49

(QTNRCMTI) API to retrieve information about what type of commitment control resources are

currently associated with the currently active commitment definition for the program making the

retrieve request.

v Commitment control is not active for the program when making the request to add a commitment

resource.

v Commitment control cannot get a shared-no-update (*SHRNUP) lock on the commitment control exit

program.

v Commitment control cannot get a shared-for-update (*SHRUPD) lock on the journal associated with

this resource. This is a restriction only if a journal is specified to be associated with the resource.

v A commitment control operation is currently in progress for the commitment definition that is to have

the commitment resource added.

v The checkpoint processing for a save-while-active function is in progress in another job, when you

specify the option to allow normal save processing or specify the default (N).

In addition to the preceding restrictions, you are prevented from adding a one-phase API commitment

resource when any remote resources exist for the commitment definition. Adding a resource is also

disallowed when incompatible option values are specified.

In all other instances, the API commitment resource is added to the commitment definition.

Once a resource has been added to a commitment definition, the process must not change the authorities

to the commitment control exit program or delete the exit program.

Required Parameter Group

Resource handle

OUTPUT; BINARY(4)

 An identifier made up of an arbitrary number returned by the API and used to identify the

commitment resource for subsequent operations, such as the Remove Commitment Resource

(QTNRMVCR) API.

Resource name

INPUT; CHAR(10)

 The name that identifies this commitment resource. It is used, for example, in some error

messages associated with the commitment control exit programs.

Qualified commitment control exit program name

INPUT; CHAR(20)

 The name of the commitment control exit program to be called from the commitment control

operations and the library in which it is located. The exit program must exist when this API is

called.

The exit program must reside on the same ASP as the commitment definition to which the API

commitment resource is added. If the exit program can be called during ASP device vary on

processing, it may also reside on the system ASP.

Journal and Commit APIs 5

The first 10 characters of this name contain the program name, and the second 10 characters

contain the library name. The special values supported for the library name are *LIBL and

*CURLIB.

Note: The special values *LIBL and *CURLIB apply only to the time the resource is added. For

example:

1. The API user specifies PROGRAMA in *CURLIB when a commitment resource is added.

LIBRARYA is the *CURLIB when the resource is added.

2. After the resource addition, *CURLIB is changed to LIBRARYB, which also happens to contain

a PROGRAMA.

3. The commit operation occurs and PROGRAMA in LIBRARYA is called, not PROGRAMA in

LIBRARYB.

The user of this API must supply this exit program. The considerations for coding this exit

program, as well as the information that the commitment control operations pass to this exit

program, are described in the “Commitment Control Exit Program” on page 138.

Commitment control exit program information

INPUT; CHAR(80)

 Data to be passed directly to the commitment control exit program. This may be any data that is

needed by the exit program, such as a reference to an object or area to be used by the exit

program. This may be any type of data, including pointers. However, if pointers are used, this

field must be on a 16-byte boundary.

Pointers provide better performance than if this parameter were an object name. Resolving to an

object on every commit or rollback operation degrades performance. However, pointers to data

residing on an ASP may become not usable if the ASP is no longer available.

If the exit program is to be called during IPL or ASP device vary on processing, the information

passed-in or pointed-to by this parameter must not be temporary. That is, the information

referred to and used by the exit program must persist across an IPL and ASP device vary on.

IPL and ASP device vary on processing option

INPUT; CHAR(1)

 Whether the commitment control exit program will be called during any commitment control

processing that occurs during IPL and/or ASP device vary on recovery processing for the

commitment definition.

 N If the API resource is in the commitment definition when the system ends abnormally, the

commitment control exit program is not called during the IPL recovery processing for the

commitment definition.

Y If the API resource is in the commitment definition when the system ends abnormally, the

commitment control exit program is called during the IPL recovery processing for the commitment

definition.

V If the API resource is in the commitment definition when the ASP device ends abnormally, the

commitment control exit program is called during the ASP device vary on recovery processing for

the commitment definition.

B If the API resource is in the commitment definition when the system or ASP device ends

abnormally, the commitment control exit program is called during the IPL and ASP device vary on

recovery processing for the commitment definition.

Note: When called during IPL or ASP device vary on, the exit program runs under the same user

profile that originally added the commitment resource.

The order in which commitment definitions are processed during IPL or ASP device vary on

recovery processing is not predictable. However, for each particular commitment definition, the

commitment control exit programs are grouped according to what was specified for the

associated journal name when they were added with the QTNADDCR API. All exit programs

6 iSeries: Journal and Commit APIs

that were associated with the same journal are grouped together, and all exit programs that were

not associated with a journal are grouped together. If a commit operation is being finished during

IPL or ASP device vary on recovery, the programs within each group are called in the order they

were added. If a rollback is being performed, the programs are called in reverse order.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 1

Add resource options

INPUT; CHAR(*)

 A structure of input options. See “Input Options Structure” for the format of the options and a

description of the individual options.

When this parameter is specified, the optional parameters will be passed to the commitment

control exit program when it is called. See the “Commitment Control Exit Program” on page 138

for more information.

If the add resource options parameter is left out, the API commitment resource is assumed to be a

one-phase API commitment resource. The other options are ignored and the options are not

passed to the exit program.

Optional Parameter Group 2

Current savepoint number

OUTPUT; BINARY(4)

 An identifier of the savepoint assigned to the savepoint name. This identifier may not increment

by 1 because of internally created savepoints.

Input Options Structure

 Offset

Type Field Dec Hex

0 0 BINARY(4) Structure length

4 4 CHAR(20) Qualified journal name

24 18 CHAR(1) Resource protocol

25 19 CHAR(1) Call for classify

26 1A CHAR(1) Call for prepare

27 1B CHAR(1) Call for rollback required

28 1C CHAR(1) Call for reacquiring locks during IPL or ASP device vary on

29 1D CHAR(1) Last agent

30 1E CHAR(1) Allow normal save processing

31 1F CHAR(1) Savepoint compatible

32 20 CHAR(1) Call for setting a savepoint

33 21 CHAR(1) Call for rollback to a savepoint

34 22 CHAR(1) Call for release a savepoint

Journal and Commit APIs 7

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Field Descriptions

Allow normal save processing. Whether the registration of this API commitment resource allows save

processing to perform normally.

If multiple API commitment resources are to be registered, they all must specify Y in order to prevent

poor performance of save-while-active processing.

Valid values for this option are:

 N This resource does not allow all save requests to perform normally.

v All save operations that are attempted from the job in which the resource is registered are

rejected. The resource must be removed before a save can be performed in the job.

v Save operations that are attempted from other jobs, and that specify save-while-active, wait for

this resource to be at a commitment boundary. A commit or rollback must be performed for the

job in which the resource is registered before the save-while-active will be allowed in the other

job.

v Save operations that are attempted from other jobs, and that do not specify save-while-active,

perform normally. They do not wait for this resource to be at a commit boundary.

Y This resource will allow all save requests to perform normally.

 Note: If the optional parameter group is not specified, this resource does not allow all save

requests to perform normally.

Call for classify. Whether the commitment control exit program should be called during the classify

phase of a commit or rollback. The commitment control exit program is called during the classify phase

to use protected conversations and force any buffered data.

Valid values for this option are:

 N Do not call the commitment control exit program during the classify phase of commit or rollback

processing.

Y Call the commitment control exit program during the classify phase of commit or rollback

processing.

 Note: One-phase API commitment resources cannot be called for classify.

Call for prepare. Whether the commitment control exit program should be called during the prepare

phase of a commit. The commitment control exit program is called during the prepare phase of the

commit to put its resources in a position to either commit, rollback, or recover from a system failure. The

commitment control exit program is also given a chance to vote whether this logical unit of work should

commit, rollback, or that the resources associated with this commitment control exit program have not

been changed. If the resources have not been changed then the exit program can choose not to be called

during the second phase of the commit. This is commonly referred to as voting read-only.

Voting is done by setting flags in the parameter structure which is passed to the commitment control exit

program when it is called.

Valid values for this option are:

 N Do not call the commitment control exit program during the prepare phase of commit processing.

Commit processing assumes the vote is to commit the logical unit of work.

Y Call the commitment control exit program during the prepare phase of commit processing.

Notes:

1. One-phase API commitment resources cannot be called for prepare.

8 iSeries: Journal and Commit APIs

2. Two-phase API commitment resources with a Last agent option value of Y cannot be called for

prepare.

Call for reacquiring locks during IPL or ASP device vary on. Whether the commitment control exit

program should be called during IPL or ASP device vary on if locks need to be reacquired. Under some

circumstances, IPL or ASP device vary on recovery cannot be completed for this resource until after the

IPL or ASP device vary on is complete. A call can be made to the commitment control exit program so

that any locks which were protecting this resource can be reacquired before the IPL or ASP device vary

onis complete.

It is the responsibility of the application that added the resource to keep track of which locks need to be

reacquired during IPL or ASP device vary on.

Valid values for this option are:

 N Do not call the commitment control exit program during

IPL to reacquire locks.

Y Call the commitment control exit program during IPL to

reacquire locks.

V Call the commitment control exit program during ASP

device vary on to reacquire locks.

B Call the commitment control exit program during both

IPL and ASP device vary on to reacquire locks.

Notes:

1. One-phase API commitment resources cannot be called to reacquire locks during IPL.

2. Two-phase API commitment resources with an IPL processing option value of N cannot be called to

reacquire locks during IPL. If the optional parameter group is not specified, the commitment control

exit program is not called during IPL to reacquire locks.

Call for rollback required. Whether the commitment control exit program should be called if the

commitment definition to which this resource was added is put in a rollback-required state. When a

commitment definition is placed in a rollback-required state, the use of protected resources is not allowed

until the commitment definition is rolled back. The commitment control exit program should take the

necessary action so that the API resources registered cannot be used until a rollback is done.

Valid values for this option are:

 N Do not call the commitment control exit program when the commitment definition is put into a

rollback-required state.

Y Call the commitment control exit program when the commitment definition is put into a

rollback-required state.

 Note: One-phase API commitment resources cannot be called for rollback-required state.

Call for rollback to a savepoint. Whether the commitment control exit program should be called when

rollback to savepoint is requested for the commitment definition to which this resource was added.

Valid values for this option are:

 N Do not call the commitment control exit program when rollback to savepoint is requested for the

commitment definition.

Y Call the commitment control exit program when rollback to savepoint is requested for the

commitment definition.

Journal and Commit APIs 9

Call for release a savepoint. Whether the commitment control exit program should be called when

release savepoint is requested for the commitment definition to which this resource was added.

Valid values for this option are:

 N Do not call the commitment control exit program when release savepoint is requested for the

commitment definition.

Y Call the commitment control exit program when release savepoint is requested for the

commitment definition.

Call for setting a savepoint. Whether the commitment control exit program should be called when a

savepoint is established for the commitment definition to which this resource was added.

Valid values for this option are:

 N Do not call the commitment control exit program when a savepoint is established for the

commitment definition.

Y Call the commitment control exit program when a savepoint is established for the commitment

definition.

Last agent. Whether this commitment resource should be called as the last agent. The last agent is called

after all resources have been prepared and before any resources have been committed. This resource will

make the decision about whether this logical unit of work commits or rolls back.

Specifying an API commitment resource to be called as the last agent could cause incompatibilities

between applications. It will also cause the logical unit of work to be rolled back if a last agent cannot be

selected.

A single call will be made to the commitment control exit program if it is the last agent. This exit

program must commit or roll back its resources and then inform commitment control of what it did

through the Commit Vote return field.

If the call to the exit program fails (an exception is returned) or if the system fails during the call to the

exit program, the logical unit of work will be committed or rolled back according to the Action if

problems commitment option. The Action if problems commitment option can be changed with the

Change Commitment Options (QTNCHGCO) API.

There can be only one last agent per commitment definition. Escape message CPF8369 is issued with

reason code 13 if an attempt is made to add a last agent commitment resource when one is already

registered.

Escape message CPF8369 is issued with reason code 7 if an attempt is made to add a last agent

commitment resource when the Last agent permitted commitment option is set to N. The Last agent

permitted commitment option can be changed with the Change Commitment Options (QTNCHGCO)

API.

Valid values for this option are:

 N This resource should not be called as the last agent.

Y This resource should be called as the last agent.

10 iSeries: Journal and Commit APIs

Notes:

1. One-phase API commitment resources cannot be called as the last agent.

2. Two-phase API commitment resources with a Call for prepare option value of Y cannot be

called as the last agent.

Qualified journal name. The name of the journal that will be associated with this resource. The first 10

characters of this name contain the journal name, and the second 10 characters contain the library name.

The special value *NONE is supported for the journal name if no journal is to be associated with this API

resource. The special value *DFTJRN specifies that the default journal specified when the commitment

definition was started should be associated with this commitment resource. The special value of *DFTJRN

will be substituted by the journal name specified when the commitment definition was started. If either

of these special values are specified, the library name is ignored. The special values supported for the

library name are *LIBL and *CURLIB.

Note: The special values *LIBL and *CURLIB apply only to the time the resource is added. For example:

1. The API user specifies JOURNALA in *CURLIB when a commitment resource is added. LIBRARYA is

the *CURLIB at the time the resource is added.

2. After the resource addition, *CURLIB is changed to LIBRARYB, which also happens to contain a

JOURNALA.

3. The commit operation occurs using JOURNALA in LIBRARYA, not JOURNALA in LIBRARYB.

Entries can be placed in the specified journal which could be used later by the commitment control exit

program to recover resources or reacquire locks. See “Send Journal Entry (QJOSJRNE) API” on page 122

(QJOSJRNE) API for information on sending journal entries. If a commit cycle has not been started for the

journal during the current logical unit of work, one is started when the user requests to include the

commit cycle identifier when sending a journal entry using the QJOSJRNE API. The commit cycle

identifier will be passed to the commitment control exit program and this commit cycle identifier can be

used as a starting or ending point when receiving, retrieving, or displaying entries from the journal. The

CL commands RCVJRNE and RTVJRNE can be used to receive and retrieve journal entries. The DSPJRN

command can display, print to a spool file, or put to an output file the journal entries.

If the optional parameter group is not specified, no journal will be associated with the API resource.

Resource protocol. Whether this API commitment resource is a one-phase or a two-phase commitment

resource. One-phase commitment resources are not compatible with any remote commitment resources

and cannot be called to classify, prepare, reacquire locks during IPL, or as the last agent. Two-phase

commitment resources can optionally be called to classify, prepare, reacquire locks during IPL, or as the

last agent.

Valid values for this option are:

 1 This is a one-phase API commitment resource.

2 This is a two-phase API commitment resource.

One-phase API commitment resources do not have the ability to fully protect themselves against a remote

resource failure.

Savepoint compatible. Whether the commitment control resource is compatible with savepoints.

Valid values for this option are:

 N The commitment control resource cannot be registered while a savepoint is in effect.

Journal and Commit APIs 11

Y The commitment control resource can be registered while a savepoint is in effect. Also, the exit

program may be optionally called when a savepoint is set, released or rolled back.

Structure length. The length of the input structure provided. To provide a journal without the remaining

options, specify 24 for the structure length. To provide all options but the journal, specify 31 for the

structure length and the special value *NONE for the journal.

Valid values for this option are:

 24 Only the journal is provided as an option.

31 Only the journal and two-phase commit related options are provided.

35 All options are provided.

Usage Notes

This API is always threadsafe. However, since the specified commitment control exit program is called

during commitment control operations performed in the same job, the exit program must also be

threadsafe if the API is used in a multithreaded job.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF705A E Operation failed due to remote journal.

CPF836A E Value &1 not valid for option &2.

CPF836D E Resource name &1 not valid.

CPF8367 E Cannot perform commitment control operation.

CPF8369 E Cannot place API commitment resource under commitment control; reason code &1.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

12 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Add Remote Journal (QjoAddRemoteJournal) API

 Required Parameter Group:

1 Qualified journal name

Input Char(20)

2 Relational database directory entry

Input Char(18)
 Omissible Parameter Group:

3 Request variable

Input Char(*)

4 Length of request variable

Input Binary(4)

5 Format name of request variable

Input Char(8)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QJOURNAL

 Header File: QSYSINC/H.QJOURNAL

 Threadsafe: No

The Add Remote Journal (QjoAddRemoteJournal) API associates a remote journal on the target system, as

identified by the relational database directory entry, with the specified journal on the source system. The

journal on the source system may be either a local journal or another remote journal. A maximum of 255

remote journals may be associated with a single journal on a source system.

When adding a remote journal to a source journal, the remote journal is created on the target system

using a combination of the attributes from the source journal and the input parameters provided on this

API. The library that the remote journal will be created in must already exist on the target system prior to

this API being called on the source system. When created by this API, the remote journal will be created

with a journal type of *REMOTE and the remote journal will not have an attached journal receiver.

When adding the remote journal, the remote journal can either be created into the same named library as

that of the source journal or into a redirected library on the target system. A redirected library provides a

means for remote journals and any of their associated journal receivers to reside in different named

libraries on the target system from the corresponding local journal and journal receivers on the local

system. When specified, all validation for the journal library on the target system will be performed using

the redirected library name. Similarly, the journal receivers that will later be created and associated with

this remote journal can either reside in the same library as the source journal receivers on the source

system, or into a distinct redirected library name on the target system. The journal receiver library

redirection, if desired, must be specified when the remote journal is added using this API.

Journal and Commit APIs 13

When adding a remote journal on a target system, two remote journal types can be specified, *TYPE1 and

*TYPE2. The remote journal type influences the redirection capabilities, journal receiver restore

operations, and remote journal association characteristics. See the Journal management topic for detailed

descriptions of the differences.

If the specified journal already exists on the target system, the journal can be associated with the source

journal, but only if the journal is of type *REMOTE, the remote journal type matches the specified journal

type, and the journal was previously associated with this same source journal. Also, the journal may or

may not have an attached journal receiver.

After the remote journal has been successfully added on the target system, the remote journal will have a

journal state of *INACTIVE. A journal state of *INACTIVE for a remote journal means that the remote

journal is currently not receiving journal entries from its source journal on the source system. The Change

Remote Journal (CHGRMTJRN) command or the Change Journal State (QjoChangeJournalState) API is

used to activate a remote journal and start the replication of journal entries from the source journal to the

remote journal.

Once a remote journal has been added to a journal, the journal receiver which was attached at that time

on the source system, and any journal receivers attached after that time on the source system, will be

protected from deletion if all journal entries for a given journal receiver have not yet been replicated to

the remote journal. This protection ends when the remote journal is removed using the Remove Remote

Journal (RMVRMTJRN) command or the Remove Remote Journal (QjoRemoveRemoteJournal) API.

Restrictions

The following restrictions apply:

v The Add Remote Journal (QjoAddRemoteJournal) API may only be used from the source system for a

local or remote journal.

v A user profile must exist on the target system by the same name as the user profile that is running the

Add Remote Journal (QjoAddRemoteJournal) API on the source system.

v When adding a *TYPE1 remote journal to a source journal, the same journal and journal receiver

library redirection must be specified that exists for any *TYPE1 remote journals which have already

been added to the source journal. A remote journal will always use the redirected library, if any, that is

specified for the local journal.

Note: The only way to change the remote journal library field and the remote journal receiver library

field for a *TYPE1 journal is to do all of the following:

1. Remove all *TYPE1 remote journals.

2. Change the local journal and attach a new journal receiver.

3. Delete the remote journal from the target system.

4. Add the *TYPE1 remote journal, and specify the new library redirection, if any.
v QTEMP cannot be specified for the remote journal library, remote journal receiver library, or remote

message queue library.

v A remote journal whose name starts with a Q cannot specify a remote journal library that starts with a

Q, unless the remote journal library is QGPL. This is required to prevent collisions between local and

remote journals that are used for system functions.

v A *TYPE1 remote journal cannot be added to a *TYPE2 remote journal.

v The remote journal message queue on the remote journal system must be either in the same ASP group

as the remote journal, or in the system ASP, or a basic user ASP.

v The remote receiver library and remote journal library on the remote system must both exist in either

the system and basic user ASPs or in the same ASP group. They cannot be in two different ASP

groups.

14 iSeries: Journal and Commit APIs

Authorities and Locks

Source Journal Authority

*CHANGE, *OBJMGT

Source Journal Library Authority

*EXECUTE

Target Journal Library Authority

*EXECUTE, *ADD

Service Program Authority

*EXECUTE

Source Journal Lock

*EXCLRD

Target Journal Library Lock

*SHRUPD

Target Journal Lock

*SHRUPD

Required Parameter Group

Qualified journal name

INPUT; CHAR(20)

 The name of the journal on the source system to which the remote journal is being added, and

the library where it resides. The journal on the source system may be either a local journal or

another remote journal. The first 10 characters contain the journal name, and the second 10

characters contain the name of the library where the journal is located.

The special values supported for the library name follow:

 *LIBL Library list

*CURLIB Current library

Relational database directory entry

INPUT; CHAR(18)

 The name of the relational database directory entry that contains the remote location name of the

target system. This name should match the name of the *LOCAL relational database directory

entry on the target system.

Omissible Parameter Group

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Add Remote Journal

(QjoAddRemoteJournal) API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be 102 bytes

or greater.

Format name of request variable

INPUT; CHAR(8)

Journal and Commit APIs 15

The format ADRJ0100 is the only supported format that is used by this API. See “ADRJ0100

Format” for more information on the ADRJ0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

ADRJ0100 Format

The following table defines the information that may be provided for format ADRJ0100 when you add a

remote journal.

 Offset

Type Field Dec Hex

0 0 CHAR(20) Qualified remote journal name

20 14 CHAR(10) Remote journal receiver library

30 1E CHAR(1) Remote journal type

31 1F CHAR(20) Qualified journal message queue

51 33 CHAR(1) Delete receivers

52 34 CHAR(50) Text

102 66 CHAR(2) Reserved

104 68 BINARY(4) Delete receivers delay

Field Descriptions

Delete receivers. Whether the system deletes the target journal receivers when they are no longer needed

or keeps them on the target system for the user to delete after they have been detached by the target

system. If this field is not provided or is blank, a value of 0 is assumed. A value is only set for a journal

that is created on the target system.

The possible values are:

 0 The target journal receivers are not deleted by the target system.

1 The target journal receivers are deleted by the target system.

Delete receivers delay. The number of minutes (from 1 to 1440) the target system waits to retry deleting

a target journal receiver if it cannot be allocated on the target system. If this field is not provided, a value

of 10 minutes is assumed. A value is set for a journal that is created on the target system only.

The possible values are:

 Number The number of minutes to delay, from 1 through 1440.

Qualified journal message queue. The qualified name of the message queue that is associated with this

remote journal. If this field is not provided or is blank, a value of QSYSOPR QSYS is assumed. A value is

only set for a journal that is created on the target system.

The possible values are:

16 iSeries: Journal and Commit APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

QSYSOPR QSYS The message is sent to the QSYSOPR message queue in library QSYS.

Journal message

queue

The name of the message queue to which the remote journal messages are sent on the target

system. If this message queue is not available when a message is to be sent, the message is sent to

the QSYSOPR message queue. The first 10 characters contain the message queue name, and the

second 10 characters contain the name of the library where the message queue is located.

Qualified remote journal name. The qualified name of the remote journal on the target system. The first

10 characters contain the remote journal name; the second 10 characters contain the name of the library

where the remote journal is to be located. If this field is not provided or is blank, the resolved qualified

journal name is assumed.

If the remote journal type is *TYPE1, then the remote journal name must match the specified journal

name. Whether a *TYPE1 or *TYPE2 remote journal is being added, the library name can be any name

which will become the redirected journal library name.

Remote journal receiver library. The name of the library for the remote journal receivers on the target

system that is associated with this remote journal. If this field is not provided or is blank, the journal

receivers are created on the target system in the same library as they exist on the source system.

Remote journal type. The type of remote journal on the target system. The remote journal type influences

the redirection capabilities, journal receiver restore operations, and remote journal association

characteristics. See the Journal management topic for detailed descriptions of the differences. If this field

is not provided or is blank, a value of 1 is assumed.

The possible values are:

 1 A *TYPE1 remote journal will be added.

2 A *TYPE2 remote journal will be added.

Reserved. The bytes reserved to align binary fields or for future use. This field must be set to

hexadecimal zero.

Text. The text that briefly describes the remote journal on the target system. If this field is not provided, a

value of all blanks is assumed. A value is only set for a journal that is created on the target system.

The possible values are:

 Text No more than 50 characters of text.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C39 E Value for reserved field not valid.

CPF3C4E E Value not valid for field &1.

CPF3C90 E Literal value cannot be changed.

CPF69A4 E Remote journal &1 in &2 not added.

CPF695A E Remote journal &1 in &2 not added.

CPF695B E Remote journal &1 in &2 not added.

CPF695C E Remote journal &1 in &2 not added.

CPF695D E Remote journal &1 in &2 not added.

CPF695E E Remote journal &1 in &2 not added.

Journal and Commit APIs 17

Message ID Error Message Text

CPF695F E Remote journal &1 in &2 not added.

CPF696A E Request variable length &1 not valid.

CPF6973 E Systems not compatible.

CPF6982 E Relational database directory entry &1 not valid.

CPF6983 E Remote journal &1 in &2 not added.

CPF6984 E Remote journal &1 in &2 not added.

CPF6985 E Remote journal &1 in &2 not added.

CPF6986 E The request variable parameters are in error.

CPF6987 E Field value &1 specified incorrectly.

CPF6988 E Remote journal &1 in &2 not added.

CPF6989 E Remote journal &1 in &2 not added.

CPF699B E User profile &8 not found.

CPF6991 E Remote journal &1 in &2 not added.

CPF70DB E Remote journal function failed.

CPF70D6 E Remote journal ended, reason code &6.

CPF701B E Journal recovery of interrupted operation failed.

CPF7010 E Object &1 in &2 type *&3 already exists.

CPF7011 E Not enough storage.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V4R2

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Change Commitment Options (QTNCHGCO) API

 Required Parameter Group:

1 Commitment options

Input Char(*)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Change Commitment Options (QTNCHGCO) API changes the current commitment options. This API

will change the commitment options for the commitment definition associated with the activation group

for the HLL program that called the API. Commitment options for any other commitment definition will

not be affected.

These options affect the operation of the system during a two-phase commit operation. The OS/400

implementation of two-phase commit is based on the SNA LU 6.2 protocol. Beginning in Version 3

18 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Release 7 Modification 0, the OS/400 implementation supports the presumed abort architecture and its

optimizations that are described in the SNA LU 6.2 protocol. The details of this protocol and the

relationships between locations that support the presumed abort architecture and those that support the

presumed nothing architecture, should be understood before changing these options. See the

Commitment control topic, LU 6.2 Reference: Peer Protocols, SC31-6808, and Transaction Programmer’s

Reference Manual for LU Type 6.2, GC30-3084, for detailed information.

Required Parameter Group

Commitment options

INPUT; CHAR(*)

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Commitment Options Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Structure length

4 4 CHAR(1) Wait for outcome

5 5 CHAR(1) Action if problems

6 6 CHAR(1) Vote read-only permitted

7 7 CHAR(1) Action if ENDJOB

8 8 CHAR(1) Last agent permitted

9 9 CHAR(1) OK to leave out

10 A CHAR(1) Accept vote reliable

Field Descriptions

Accept vote reliable. Whether this location accepts the vote reliable indicator if it is received from its

agents during the prepare wave of a commit operation. The vote reliable indicator indicates that it is

unlikely that a heuristic decision will be made at the agent if a failure occurs before the committed wave

completes. If an agent sends the vote reliable indicator, and this location accepts it, performance is

improved because one communications flow is eliminated and control is returned to the application

before the committed wave is completed for that agent. However, if a heuristic decision that causes

heuristic damage is made at that agent, the application at this location will not receive an error message

if the Accept vote reliable commitment option is set to Y.

The valid options are:

 Y The location accepts the vote reliable indicator.

N The location does not accept the vote reliable indicator.

* Do not change the current value.

When the commitment definition was started, the value for this option was set to Y.

Note: If the commitment definition has a Wait for outcome value of Y or wait, or inherits a value of wait,

the value of the Accept vote reliable commitment option is ignored, and the system behaves as though

the Accept vote reliable commitment option is No.

Journal and Commit APIs 19

error.htm#HDRERRCOD
error.htm#HDRERRCOD

See the Commitment control topic for more information about the vote reliable indicator.

Action if ENDJOB. The action to take for changes associated with this logical unit of work when the job

in which the logical unit of work is a part of is ended during a commit operation while the status of

resources is in doubt.

The valid options are:

 W The system waits to allow the normal processing of the logical unit of work to complete.

R The changes to local resources whose status is in doubt for this logical unit of work will be rolled

back.

C The changes to local resources whose status is in doubt for this logical unit of work will be

committed.

* Do not change the current value.

When the commitment definition was started, the value for this option was set to W.

Note: Setting this option to R or C may lead to inconsistencies in the database if a job is ended during a

commit operation while the status of resources is in doubt.

Action if problems. The action to take if the system receives an unrecognized message or detects damage

in the logical unit of work.

The valid options are:

 R The changes to local resources associated with this logical unit of work will be rolled back.

C The changes to local resources associated with this logical unit of work will be committed.

* Do not change the current value.

When the commitment definition was started, the value for this option was set to R.

Last agent permitted. Whether a last agent can be selected when one is eligible to be selected during a

commit operation. A last agent is eligible to be selected at the location that initiates a commit operation,

and at locations that are selected as a last agent by the location that propagates the commit operation to

that location.

Performance is usually enhanced when a last agent is selected because fewer interactions between this

location and the last agent are required during a commit operation. However, if a communications failure

occurs between a location and its last agent during a commit operation, the commit operation will not

complete until resynchronization completes, regardless of the value of the Wait for outcome commitment

option. Such a failure will be rare, but this option allows the application writer to consider the negative

impact of causing the user to wait indefinitely for the resynchronization to complete when such a failure

occurs. This should be weighed against the performance enhancement that is provided by last agent

optimization during successful commit operations. This consideration would generally be more

significant for interactive jobs than for batch jobs.

There is one case where performance is not enhanced when a last agent is selected. If no committable

changes have been made at an agent, and the Vote read only permitted commitment option has been set

to Y at that agent, then performance would actually be degraded by selecting that agent as a last agent.

The decrease in performance occurs because fewer write operations to auxiliary storage are required

when the vote read only optimization is used. Therefore, applications written such that no data is

changed at all agents during most logical units of work should set the Last agent permitted option to N.

The valid options are:

20 iSeries: Journal and Commit APIs

S The system is allowed to select a last agent at this location.

N The system is not allowed to select a last agent at this location.

* Do not change the current value.

When the commitment definition was started, the value for this option was set to S.

Note: The Last agent permitted commitment option cannot be changed to N if an API commitment

resource that is specified to be called as the last agent has already been added to the commitment

definition using the Add Commitment Resource (QTNADDCR) API.

OK to leave out. Whether this location indicates that it is OK to leave out during a commit operation

initiated at another location. OK to leave out means that no communications flows are sent to this

location during subsequent commit or rollback operations until a data flow is received from the initiator.

Also, control is not returned to the application until the data flow is received. The length of the delay in

regaining control depends on the application running at the initiator.

In a client/server environment, setting the OK to leave out to Y at all the servers provides improved

performance if data is not sent to all servers during every logical unit of work (LUW). The OK to leave

out value is communicated from a server to a client during commit operations. Therefore, changing the

OK to leave out value from N to Y does not take effect until after the next commit operation. Likewise,

changing the OK to leave out value from Y to N does not take effect until after the commit of the next

LUW, during which data has been sent to the server. Note that the OK to leave out value is not

communicated during rollback operations.

The valid options are:

 Y This location may be left out of subsequent logical units of work.

N This location may not be left out of subsequent logical units of work.

* Do not change the current value.

When the commitment definition was started, the value for this option was set to N.

Structure length. The length of the input structure provided. The minimum valid structure length is 5. If

the length indicates that one or more options are not passed, the current value for those options is not

changed.

Vote read-only permitted. Whether this location can vote read-only in response to a commit operation

initiated at another location. If this location does vote read-only, control is not returned to the application

until this location gets a message from the initiating location that indicates a new logical unit of work has

started. The indicator flows in the data sent from the initiator of the previous commit operation. The

length of the delay in regaining control depends on the application running at the initiator.

See the Commitment control topic for more information about when a location will vote read-only.

The valid options are:

 N This location is not allowed to vote read-only.

Y This location is allowed to vote read-only.

* Do not change the current value.

When the commitment definition was started, the value for this option was set to N.

Wait for outcome. Whether the system will wait for the outcome of commit or rollback operations.

Journal and Commit APIs 21

The valid options are:

 Y The system completes resynchronization before allowing the commit or rollback operation to

complete.

L Value L has the same effect as value Y when this location is the initiator of the commit or rollback

operation. When this location is not the initiator, and the initiator supports the presumed abort

protocol, the Wait for outcome value is inherited from the initiator. When this location is not the

initiator, and the initiator does not support the presumed abort protocol, value L has the same

effect as value Y.

N The system attempts resynchronization once before allowing the commit or rollback operation to

complete. If resynchronization fails, it will be completed in a system server job. The application

will not be notified of the result of the resynchronization.

U Value U has the same effect as value N when this location is the initiator of the commit or rollback

operation. When this location is not the initiator, and the initiator supports the presumed abort

protocol, the Wait for outcome value is inherited from the initiator. When this location is not the

initiator, and the initiator does not support the presumed abort protocol, value U has the same

effect as value N.

* Do not change the current value.

When the commitment definition was started, this option was set to Y.

Notes:

1. The Wait for outcome value has no effect when a failure occurs while a logical unit of work is in

doubt if the failure is between this location and the location that owns the commit or rollback

decision. This is the case if the LUW state is PREPARED and the failure occurs between this location

and the initiator location, or if the LUW state is LAST AGENT PENDING and the failure occurs

between this location and the last agent location. In this case, the system always waits for the

resynchronization to complete regardless of the Wait for outcome value.

2. If the ENDJOB command is used to end a job while it is waiting for resynchronization to complete,

the Wait for outcome value is changed to N so that the job is allowed to end quickly. However, if the

logical unit of work is in doubt, the Action if ENDJOB commitment option controls whether the job

will be allowed to end before resynchronization completes with the location that owns the commit or

rollback decision.

3. Consider the following when setting the Wait for outcome value:

v When the Wait for outcome value is N, the application will not learn about inconsistencies at other

locations in the transaction program network. Inconsistencies can result only if a system operator

takes manual intervention due to the failure that caused the resynchronization.

v When the Wait for outcome value is Y, most of the performance benefits provided by the presumed

abort protocol are lost.

v The Wait for outcome value is most useful when the same value is used at all locations in the

transaction program network. If the Wait for outcome value is Y at the initiator but N at an agent,

the initiator may not learn the full outcome of the commit or rollback operation because the agent

did not wait for it. If the Wait for outcome value is N at the initiator but Y at an agent, the initiator

may be forced to wait for the outcome of resynchronization performed by the agent. Therefore, it is

recommended that all locations in the transaction program network specify either L or U for the

Wait for outcome value. This allows the entire tree to use a consistent value because the initiator’s

value will be inherited by all locations.

v If the commitment definition has a Wait for outcome value of Y or wait, or inherits a value of Wait,

the value of the Accept vote reliable commitment option is ignored, and the system behaves as

though the Accept vote reliable commitment option is No.

Restrictions

You are prevented from changing the commitment options using this API when:

22 iSeries: Journal and Commit APIs

v Commitment control is not active for the program when making the request to change the commitment

options.

v A commitment control operation is in progress for the current commitment definition whose options

are to be changed.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF83D5 E Cannot change commitment options; reason code &1.

 Note: Reason codes for the previous message will include commitment control not being started

and value specified for option not valid.

CPF8367 E Cannot perform commitment control operation.

API introduced: V4R4

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Change Journal Recovery Count (QJOCHRVC) API

 Required Parameter Group:

1 Recovery count

Input Binary(4)

2 Error Code

I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The Change Journal Recovery Count (QJOCHRVC) API controls how often changes to journaled objects

are forced to auxiliary storage. When a change is made to a journaled object, a journal entry is created

and the object is updated with the new values. To improve the performance of applications, only the

journal entry is forced to auxiliary storage. Changes to the journaled objects are bundled together and

only forced to auxiliary storage periodically.

The value for the journal recovery count controls how frequently these changes are forced to auxiliary

storage. The larger the value for the journal recovery count, the less frequently changes will be written to

auxiliary storage. This will improve overall system performance because there is less activity on the

auxiliary storage devices. The smaller the value for the journal recovery count, the quicker the IPL time

will be if the system terminates abnormally. After an abnormal termination of the system, the journal

entries are read from each journal and they are applied to journaled objects that were in use at the time

of the failure. This API allows you to choose between quicker abnormal termination IPL recovery and run

time performance.

A journal recovery count value of 50,000 will wait until there are 50,000 journal entries deposited before

the changes for the first object that was changed are forced to auxiliary storage. As more journal entries

Journal and Commit APIs 23

#TOP_OF_PAGE
aplist.htm

are written, more objects will be forced to keep the number of journal entries that have to be processed

for each journal during the journal synchronization step of IPL to about 50,000.

This API changes the recovery count for all journals on the system. The default value for journal recovery

count is 50,000.

Restrictions

None

Authorities and Locks

*ALLOBJ special authority is required to use this API.

Required Parameter Group

Recovery count

INPUT; BINARY(4)

 The new value for the journal recovery count. This must be between 10,000 and 2,000,000,000.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF69A5 E Recovery count must be between &2 and &3.

CPF69A6 E Unable to change journal recovery count.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB802 E The caller of the API must have *ALLOBJ special authority.

API introduced: V5R3

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

24 iSeries: Journal and Commit APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Change Journal State (QjoChangeJournalState) API

 Required Parameter Group:

1 Qualified journal name

Input Char(20)

2 Request variable

Input Char(*)

3 Length of request variable

Input Binary(4)

4 Format name of request variable

Input Char(8)
 Omissible Parameter Group:

5 Receiver variable

Output Char(*)

6 Length of receiver variable

Input Binary(4)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QJOURNAL

Header File: QSYSINC/H.QJOURNAL

 Threadsafe: No

The Change Journal State (QjoChangeJournalState) API is used to change the journal state for local and

remote journals.

When this API is called from the source system for a local journal, the journal state may be changed

from *STANDBY to *ACTIVE. A journal state of *ACTIVE for a local journal indicates that journal entries

are allowed to be deposited into the attached journal receiver of the journal. A request to change the

journal state of a local journal from *ACTIVE to *INACTIVE is ignored.

When this API is called from the source system for a remote journal that is associated with a source

system journal, the remote journal state may be changed from *ACTIVE to *INACTIVE or from

*INACTIVE to *ACTIVE. This API also allows additional attributes that are associated with the journal

state to be set. For additional details on the other attributes that are associated with the journal state, see

“Field Descriptions” on page 29.

When this API is called from the target system for a remote journal that is associated with a source

system journal, the journal state may be changed from *ACTIVE to *INACTIVE.

Journal and Commit APIs 25

A journal state of *ACTIVE for a remote journal indicates that journal entries can be received from the

associated journal on the source system. A journal state of *INACTIVE for a remote journal indicates that

journal entries are currently not being received.

Restrictions

The following restrictions apply:

v A user profile must exist on the target system by the same name as the user profile that is running this

API on the source system.

v Synchronous delivery mode is not supported when a remote journal is specified for the qualified

journal name parameter.

v The journal state of the remote journal to be activated cannot already be *ACTIVE.

v The journal state of the remote journal to be inactivated cannot already be *INACTIVE.

v If the remote journal state is *CTLINACT, then the remote journal cannot be inactivated by specifying a

preferred inactivate type of controlled inactivate.

v The remote journal to be activated cannot already be replicating journal entries to other remote

journals.

v A journal receiver that was never attached to a journal after Version 4 Release 2 Modification 0 has

been installed cannot be replicated.

v Format CJST0100 cannot be used with a journal whose names starts with a Q, in a library that starts

with Q, unless that library is QGPL.

Authorities and Locks

Source Journal Authority

*CHANGE, *OBJMGT

Source Journal Library Authority

*EXECUTE

Source Journal Receiver Authority

*USE, *OBJMGT

Source Journal Receiver Library Authority

*EXECUTE

Service Program Authority

*EXECUTE

Source Journal Lock

*SHRUPD

Source Journal Receiver Lock

*SHRRD

Target Journal Lock

*SHRUPD

Target Journal Receiver Lock

*SHRRD

Target Journal Receiver Library Lock

*SHRUPD

Required Parameter Group

Qualified journal name

INPUT; CHAR(20)

26 iSeries: Journal and Commit APIs

For formats CJST0100 and CJST0200 the name of the journal for which the journal state is being

changed, and the library in which it resides. For formats CJST0300, CJST0400, and CJST0500 the

name of the source journal that is associated with the remote journal for which the journal state is

being changed, and the library in which it resides. The first 10 characters contain the journal

name, and the second 10 characters contain the name of the library where the journal is located.

The special values supported for the library name follow:

 *LIBL Library list

*CURLIB Current library

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Change Journal State

(QjoChangeJournalState) API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be equal to

the length of the input format specified. Zero must be specified for this parameter when you use

format CJST0200.

Format name of request variable

INPUT; CHAR(8)

 The format of the information that is provided as input for the Change Journal State

(QjoChangeJournalState) API.

The possible format names follow:

 CJST0100

Activate a local journal from the source system.

See “CJST0100 Format” on page 28 for

more information on the CJST0100 format.

CJST0200 Inactivate a remote journal from the target system. There is no additional information required for

format CJST0200.

CJST0300 Inactivate a remote journal from the source system. See “CJST0300 Format” on page 28 for more

information on the CJST0300 format.

CJST0400 Activate a synchronously maintained remote journal from the source system. See “CJST0400

Format” on page 28 for more information on the CJST0400 format.

CJST0500 Activate an asynchronously maintained remote journal from the source system. See “CJST0500

Format” on page 29 for more information on the CJST0500 format.

Omissible Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive output from the API. The size of the area to receive the

output can be smaller than the output returned for the format requested as long as the length of

receiver variable parameter is specified correctly. Only format CJST0300 returns output. If this

parameter is omitted, the length of receiver variable parameter must also be omitted. If this

parameter is specified, the length of receiver variable parameter must also be specified.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable, in bytes. The length of the receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of the

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. For formats other than CJST0300

Journal and Commit APIs 27

this value must be 0 or the parameter must be omitted. For format CJST0300 this value must be

greater than or equal to 8 or the parameter must be omitted. If this parameter is omitted, the

receiver variable parameter must also be omitted.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

CJST0100 Format

The following table defines the information required for format CJST0100 to

activate a local journal

from the source system.

 Offset

Type Field Dec Hex

0 0 CHAR(1) New journal state

CJST0300 Format

The following table defines the information required for format CJST0300 to inactivate a remote journal

from the source system.

 Offset

Type Field Dec Hex

0 0 CHAR(18) Relational database directory entry

18 12 CHAR(20) Remote journal

38 26 CHAR(1) Preferred inactivate type

The following table defines the information returned in the receiver variable for format CJST0300 after a

remote journal has been inactivated:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(18) Relational database directory entry

26 1A CHAR(20) Remote journal

46 2E CHAR(1) Preferred inactivate type

47 2F CHAR(1) Inactivate type

48 30 CHAR(10) Inactivate journal receiver name

58 3A CHAR(10) Inactivate journal receiver library

68 44 BINARY(4) Inactivate sequence number

72 48 CHAR(20) Inactivate sequence number - long

CJST0400 Format

The following table defines the information required for format CJST0400 to activate a synchronously

maintained remote journal from the source system.

28 iSeries: Journal and Commit APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

0 0 CHAR(18) Relational database directory entry

18 12 CHAR(20) Remote journal

38 26 CHAR(20) Starting journal receiver

CJST0500 Format

The following table defines the information required for format CJST0500 to activate an asynchronously

maintained remote journal from the source system.

 Offset

Type Field Dec Hex

0 0 CHAR(18) Relational database directory entry

18 12 CHAR(20) Remote journal

38 26 CHAR(20) Starting journal receiver

58 3A CHAR(2) Reserved

60 3C BINARY(4) Sending task priority

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Inactivate journal receiver library. The library of the journal receiver that contains the inactivate

sequence number. This field will be blank if the system was unable to determine the library name.

Inactivate journal receiver name. The name of the journal receiver that contains the inactivate sequence

number. This field will be blank if the system was unable to determine the journal receiver name.

Inactivate sequence number. If a controlled inactivate was initiated, this is the sequence number of the

last journal entry that was queued for replication before the API was called. If an immediate inactivate

was performed, this is the sequence number of the last journal entry that was replicated to the remote

journal. This field will be 0 if the system was unable to determine the last entry that would have been, or

was, replicated.

This field will be -1 if the value could not fit in the specified Binary(4) field. The complete value will be

in the Inactivate sequence number - long field.

Inactivate sequence number - long. The same field as Inactivate sequence number except the information

is in a Char(20) field that is treated as Zoned(20,0).

Inactivate type. How the replication of journal entries was actually ended.

The possible values follow:

 0 A controlled inactivate of journal entry replication is being performed. All journal entries already

queued to be sent from the source system to the target system will be replicated before the

inactivate operation completes.

Journal and Commit APIs 29

1 An immediate inactivate of journal entry replication was performed. The system did not continue

to replicate queued journal entries before inactivating the remote journal.

New journal state. Whether the depositing of journal entries into the local journal should be

activated.

The possible values follow:

1 *ACTIVE

Preferred inactivate type. How the replication of journal entries should be ended.

The possible values follow:

 0 A controlled inactivate of journal entry replication should be performed. A controlled inactivate

means that the system should replicate all journal entries already queued to be sent from the

source system to the target system before inactivating the remote journal. No additional journal

entries will be queued after a request to perform a controlled inactivate. A controlled inactivate is

not possible when a journal is in catch-up, or when it is being synchronously maintained. In both

of these cases, the request to perform a controlled inactivate will be implicitly changed by the

system to an immediate inactivate request.

1 An immediate inactivate of journal entry replication should be performed. An immediate

inactivate means that the system should not continue to replicate any journal entries that are

already queued before inactivating the remote journal.

Relational database directory entry. The name of the relational database directory entry that contains the

remote location name of the target system.

Remote journal. The name of the remote journal on the target system for which the journal state is being

changed, and the library in which it resides. The first 10 characters contain the remote journal name, and

the second 10 characters contain the name of the library where the remote journal is located.

Reserved. A reserved space for the purpose of alignment. This field must be initialized to binary 0.

Sending task priority. The priority of the sending task on the source system for asynchronously

maintained remote journals. The priority is a value from 1 (highest priority) through 99 (lowest priority),

which represents the importance of the task when it competes with other tasks for machine resources.

This value represents the relative (not absolute) importance of the task. A special value of 0 indicates that

the system will choose a system default for the priority.

When the system chooses a priority it is a

priority higher than 1.

Starting journal receiver. The journal receiver where the replication of journal entries from the source

system to the target system will start.

The possible values follow:

 *ATTACHED The replication of journal entries starts with the journal receiver that is currently attached to the

remote journal on the target system. The journal entries are replicated from the corresponding

journal receiver that is associated with the journal on the source system. The replication starts with

the journal entries that follow the last journal entry that currently exists in the attached journal

receiver on the target system.

30 iSeries: Journal and Commit APIs

If the remote journal on the target system does not have an attached journal receiver, the journal

receiver that is currently attached to the journal on the source system is created on the target

system and attached to the remote journal on the target system. Then journal entries are replicated

starting with the first journal entry in the journal receiver that is currently attached to the journal

on the source system.

 If the journal on the source system does not have an attached journal receiver, which is only

possible in the case of a remote journal that is associated with another remote journal, no journal

entries can be replicated and an error is returned.

*SRCSYS The replication of journal entries starts with the journal receiver that is currently attached to the

journal on the source system.

 If the corresponding journal receiver exists and is attached to the remote journal on the target

system, journal entries are replicated starting with the journal entries that follow the last journal

entry that currently exists in the attached journal receiver on the target system. Otherwise, if the

corresponding journal receiver exists but is not attached to the remote journal on the target

system, no journal entries can be replicated and an error is returned.

 If the corresponding journal receiver does not exist on the target system, the journal receiver is

created on the target system and attached to the remote journal on the target system. Then journal

entries are replicated starting with the first journal entry in the journal receiver that is currently

attached to the journal on the source system.

 If the journal on the source system does not have an attached journal receiver, which is only

possible in the case of a remote journal that is associated with another remote journal, no journal

entries can be replicated and an error is returned.

Qualified journal

receiver name

The replication of journal entries starts with the specified journal receiver name for the journal on

the source system. The first 10 characters contain the journal receiver name, and the second 10

characters contain the name of the library where the journal receiver is located on the source

system.
The special values supported for the library name follow:

*LIBL Library list

*CURLIB

Current library

 If the corresponding journal receiver exists and is attached to the remote journal on the target

system, journal entries are replicated starting with the journal entries that follow the last journal

entry that currently exists in the attached journal receiver on the target system. Otherwise, if the

corresponding journal receiver exists but is not attached to the remote journal on the target

system, no journal entries can be replicated and an error is returned.

 If the corresponding journal receiver does not exist on the target system, then the journal receiver

is created on the target system and attached to the remote journal on the target system. Then

journal entries are replicated starting with the first journal entry in the specified journal receiver

on the source system.

 If the journal on the source system does not have an attached journal receiver, which is only

possible in the case of a remote journal that is associated with another remote journal, no journal

entries can be replicated and an error is returned.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF69A2 E State of journal &1 in &2 not changed.

CPF69A3 E State of journal &1 in &2 not changed.

CPF694D E Unexpected journal receiver &8 found.

CPF694F E Communications failure.

CPF696A E Request variable length &1 not valid.

Journal and Commit APIs 31

Message ID Error Message Text

CPF696B E New journal state &1 not valid.

CPF696C E Sending task priority &1 not valid.

CPF696D E Length of receiver variable &1 not valid.

CPF696E E Type of journal &1 in &2 not valid.

CPF696F E State of journal &1 in &2 not changed.

CPF697A E State of journal &1 in &2 not changed.

CPF697B E State of journal &1 in &2 not changed.

CPF697C E State of journal &1 in &2 not changed.

CPF697D E State of journal &1 in &2 not changed.

CPF697E E State of journal &1 in &2 not changed.

CPF697F E State of journal &1 in &2 not changed.

CPF6973 E Systems not compatible.

CPF6974 E State of journal &1 in &2 not changed.

CPF698A E State of journal &1 in &2 not changed.

CPF698B E Unexpected journal receiver attached to &1.

CPF698C E State of journal &1 in &2 not changed.

CPF698D E Journal &1 not a remote journal.

CPF698E E Journal &1 not associated with source journal.

CPF698F E State of journal &1 in &2 not changed.

CPF6982 E Relational database directory entry &1 not valid.

CPF699A E Unexpected journal receiver &8 found.

CPF699C E Receiver variable parameters not valid.

CPF699D E Preferred inactivate type &1 not valid.

CPF699E E State of journal &1 in &2 not changed.

CPF6993 E State of journal &1 in &2 not changed.

CPF6994 E State of journal &1 in &2 not changed.

CPF6995 E Unexpected journal receiver &8 found.

CPF6996 E Replication of journal entries ended.

CPF6997 E Unexpected journal receiver &8 found.

CPF6998 E State of journal &1 in &2 not changed.

CPF6999 E State of journal &1 in &2 not changed.

CPF70DB E Remote journal function failed.

CPF70D9 E Changing journal state not allowed.

CPF701B E Journal recovery of interrupted operation failed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V4R2

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

32 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Clear LU6.2 Partners (QTNCLRLU) API

 Required Parameter Group:

1 Partner LU remote network identifier

Input Char(8)

2 Partner LU location name

Input Char(8)
 Optional Parameter:

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Clear LU6.2 Partners (QTNCLRLU) API clears the specified partner logical unit (LU) from the LU6.2

log on this system. In terms of the LU6.2 Peer Protocols, this is known as forcing a cold start with the

partner LU during the next connection attempt. This API can be used to eliminate connection problems

after the partner LU is moved to a backup system with the same SNA configuration as the original

system.

The following informational message is sent to the joblog of the job issuing the API to identify each

partner that is cleared:

 CPI83DB Partner LU &1.&2 cleared.

Clearing a partner LU will be rejected if there is an active protected conversation between this system

and the partner, or if resynchronization to the partner is pending due to a prior communications or

system failure. In such cases, the following diagnostic messages will be sent to the joblog to identify any

partners that were not cleared, and the API will return error message CPF83EF.

 CPD83C3 Partner LU &1.&2 not cleared due to active connection.

CPD83C4 Partner LU &1.&2 not cleared due to pending resynchronization.

Authorities and Locks

Authority

*ALLOBJ special authority is required.

Locks None.

Required Parameters

Partner LU remote network identifier

INPUT; CHAR(8)

Journal and Commit APIs 33

The remote network identifier of the partner that is to be cleared.

 *ALL All partners with the specified partner LU location name will be reset. All partners known to this

system will be cleared if *ALL is specified for both partner LU remote network identifier and partner

LU location name.

Partner LU location name

INPUT; CHAR(8)

 The location name of the partner that is to be cleared.

 *ALL All partners with the specified partner LU remote network identifier will be cleared. All partners

known to this system will be cleared if *ALL is specified for both partner LU remote network identifier

and partner LU location name.

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the caller of

the API.

Usage Notes

This API was designed so that it would be easy to use from a CL command line. For example, the

following CL command will clear partner APPC.SYSTEM1 from the LU6.2 log:

CALL PGM(QTNCLRLU) PARM(APPC SYSTEM1)

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF83ED E &1 API requires &2 special authority.

CPF83EE E Partner LU &1.&2 is not known to this system.

CPF83EF E At least one partner LU was not cleared. See previous messages.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R3

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

34 iSeries: Journal and Commit APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Delete Pointer Handle (QjoDeletePointerHandle) API

 Required Parameter:

1 Pointer handle

Input Binary(4)
 Omissible Parameter:

2 Error code

I/O Char(*)
 Service Program: QJOURNAL

 Threadsafe: No

The Delete Pointer Handle (QjoDeletePointerHandle) API deletes the specified pointer handle. This

pointer handle was generated using the Retrieve Journal Entries (QjoRetrieveJournalEntries) API. See the

“Retrieve Journal Entries (QjoRetrieveJournalEntries) API” on page 54 (QjoRetrieveJournalEntries) API for

more information. The deletion of the pointer handle must occur from the same process that called the

Retrieve Journal Entries (QjoRetrieveJournalEntries) API, in which the point handle was created. If the

handle is not valid because it does not exist or has already been deleted, an error message will be sent.

Authorities and Locks

None

Required Parameter

Pointer handle

INPUT; BINARY(4), UNSIGNED.

 The pointer handle to be deleted.

Omissible Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF6947 E A pointer handle not deleted.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V4R4

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Journal and Commit APIs 35

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

End Journal (QjoEndJournal) API

 Required Parameter Group:

1 Object entry

Input Char(*)

2 File ID entry

Input Char(*)

 Omissible Parameter Group:

3 Journal

Input Char(*)

4 End journal options

Input Char(*)

5 Error code

I/O Char(*)

 Service Program Name: QJOURNAL

 Default Public Authority: *USE

 Threadsafe: Yes

The End Journal (QjoEndJournal) API is used to end journaling changes (made to an object or list of

objects) to a specific journal. All objects of object type *DIR, *STMF, *SYMLNK, *DTAARA or *DTAQ that

currently are being journaled to a specific journal also may have journaling stopped. For objects of type

*STMF, *DIR or *SYMLNK, only objects in the Root (’/’), QOpensys, and user-defined file systems are

supported.

Note: For other ways to end journaling, see the following commands in the Control Language (CL)

information:

v Integrated File System objects - End Journal (ENDJRN)

v Access Paths - End Journal Access Path (ENDJRNAP)

v Data Areas and Data Queues -

End Journal Object (ENDJRNOBJ)

v Physical Files - End Journal Physical File (ENDJRNPF)

Restrictions:

1. Objects specified on the API cannot be in use for any reason at the time the API is running.

2. If a journal name and a list of object names are specified, all objects currently must be journaled to the

indicated journal.

3. At least one of parameter object entry or file ID entry must not be NULL.

4.

The specified journal must be a local journal.

36 iSeries: Journal and Commit APIs

Authorities and Locks

Journal Authority

*OBJOPR, *OBJMGT

Non-IFS Object Authority (if specified)

*OBJOPR, *READ, *OBJMGT

IFS Object Authority (if specified)

*R, *OBJMGT (also *X if object is a directory and *ALL is specified for the directory subtree key)

Directory Authority (for each directory preceding the last component in the path name)

*X

Journal Lock

*EXCLRD

Non-IFS Object Lock (if specified)

*EXCL

IFS Object Lock (if specified)

O_RDONLY | O_SHARE_NONE

Required Parameters

Object entry

INPUT; CHAR(*)

 The path name of the object for which changes are no longer to be journaled. If the object path

contains *ALL, all objects supported by this API that currently are being journaled to the

indicated journal are to stop having their changes journaled. If the object path is *ALL, then the

file ID entry must be NULL.

If this parameter is NULL, the file ID entry parameter must not be NULL.

The object entry must be in the following format.

Object Entry Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number in array

4 4 CHAR(12) Reserved

Note: These fields repeat for each object path name.

16 10 BINARY(4) Length of this path name entry

20 14 CHAR(10) Include or omit

30 1E CHAR(2) Reserved

32 20 CHAR(*) Object path name

Number in array. The number of objects in the object entry list. The possible values are 1 through

300.

Length of this path name entry. The length of the current path name entry that can be used as

the displacement from the start of this path name entry to the next path name entry. The length

must be a minimum of 32 bytes and must be a multiple of 16.

Include or omit. Whether the path name is included or omitted from the end journal operation. If

the object path is *ALL, then the include or omit paramter is ignored.

Journal and Commit APIs 37

*INCLUDE Objects that match the object name path are to end journaling, unless overridden by an *OMIT

specification.

*OMIT Objects that match the object name path are not to end journaling. This overrides any *INCLUDE

specification and is intended to be used to omit a subset of a previously selected path.

Object path name. The object path name for which changes are no longer to be journaled. All

relative path names are relative to the current directory at the time of the call to QjoEndJournal.

In the last component of the path name, an asterisk (*) or a question mark (?) can be used to

search for patterns of names. The * tells the system to search for names that have any number of

characters in the position of the * character. The ? tells the system to search for names that have a

single character in the position of the ? character. Symbolic links within the path name will not be

followed. If the path name begins with the tilde (~) character, then the path is assumed to be

relative to the appropriate home directory.

If a pointer is specified in the object path name, it must be 16-byte aligned. If not, unpredictable

results may occur.

For more information on the path name format, see Path name format.

Reserved. A reserved field that must be set to hexadecimal zeros.

File ID entry

INPUT; CHAR(*)

 File identifiers (FID) for which changes are no longer to be journaled.

If the pointer to this parameter is NULL, the object entry parameter must not be NULL.

The structure of this parameter follows.

Object Identifier Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number in array

4 4 CHAR(12) Reserved

Note: These fields repeat for each file identifier.

4 4 CHAR(16) File Identifier

Number in array. The number of objects in the file identifier list. The possible values are 1

through 300.

File identifier. The unique 16-byte file identifier (FID) associated with integrated file

system-related objects.

Omissible Parameters

Journal

INPUT; CHAR(*)

 The path name of the journal to which changes currently are being journaled. All relative path

names are relative to the current directory at the time of the call to QjoEndJournal.

If the journal path name entry contains *OBJ, the path name of the journal is determined by the

system from the specified object path name or object file identifier.

If the journal parameter is NULL, *OBJ is assumed.

If a pointer is specified in the path name of the journal, it must be 16-byte aligned. If not,

unpredictable results may occur.

38 iSeries: Journal and Commit APIs

pns.htm

For more information on the journal path name format, see Path name format.

End journal options

INPUT; CHAR(*)

 The end journal options, if any, to use for the selection of objects to end journaling changes. If

this parameter is not specified, objects will have journaling ended using the default actions

described in the field descriptions of the valid keys. See “Keys” on page 40 for the list of valid

keys.

This parameter must be specified, but may be a NULL pointer.

You may specify a key more than once. If duplicate keys are specified, the last specified value for

that key is used.

Each option must be 16-byte aligned. If not, unpredictable results may occur.

The information must be in the following format.

Journal Options Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of option records

4 4 CHAR(12) Reserved

Note: These fields repeat for each option record.

16 10 BINARY(4) Length of option record

20 14 BINARY(4) Key

24 18 BINARY(4) Length of data

28 1C CHAR(4) Reserved

32 20 CHAR(*) Data

Number of option records. The total number of all option records. If this field is zero, an error

will be returned.

Length of option record.

The length of the option record. This length is used to calculate the starting position of the next

option record. If you specify a length of option record that is not equal to the key field’s required

option record length, an error message is returned.

Key. Specific action for end journal. See “Keys” on page 40 for the list of valid keys.

Length of data.

The length of the option record. This length is used to calculate the ending position of the data

for this option.

If you specify a length of data that is not equal to the key field’s required data length, an error

message is returned.

Reserved. A reserved field that must be set to hexadecimal zeros.

Data. The data that is used to determine the journal option. All values are validity checked.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Journal and Commit APIs 39

pns.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Keys

The following table lists the valid keys for the key field area of the journal options record. For detailed

descriptions of the keys, see the “Field Descriptions.”

Some messages for this API refer to parameters and values for the End Journal (ENDJRN) command. The

following table also can be used to locate the key names that correspond to the ENDJRN command

parameters.

Key Input Type Field

Length of
Option
Record

Length
of Data

ENDJRN Command

Parameter

1 CHAR(5) Directory Subtree 32 5 SUBTREE

2 CHAR(48) Name Pattern 64 48 PATTERN

Field Descriptions

Directory subtree. Whether the directory subtrees are included in the end journal operation. If this

parameter is not specified, the default is *NONE.

This parameter is ignored if the object entry parameter is not specified or if the object is not a directory.

 *NONE Only the objects that match the selection criteria are processed. The objects within selected

directories are not processed implicitly.

*ALL All objects that meet the selection criteria are processed in addition to the entire subtree of each

directory that matches the selection criteria. The subtree includes all subdirectories and the objects

within those subdirectories.

Name pattern. The patterns to be used to include or omit objects for processing. The default will be to

include all patterns that match.

Additional information about path name patterns is in the Integrated file system information in the Files

and file systems topic.

Note: This parameter is ignored if the object entry parameter is not specified.

Name Pattern Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number in array

8 8 CHAR(12) Reserved

Note: These fields repeat for each name pattern.

16 10 BINARY(4) Length of this pattern entry

20 14 CHAR(10) Include or omit

30 1E CHAR(2) Reserved

32 20 PTR(16) Pointer to pattern path structure

Number in array. The number of patterns in the pattern list. The possible values are 1 through 20.

Reserved. A reserved field that must be set to hexadecimal zeros.

40 iSeries: Journal and Commit APIs

Length of this pattern entry. The length of this pattern entry. It is used to calculate the position of the

next pattern entry. This field must be set to 32.

Include or omit. Whether the name pattern is included or omitted from the operation.

 *INCLUDE Objects that match the object name pattern are processed, unless overridden by an *OMIT

specification.

*OMIT Objects that match the object name pattern are not processed. This overrides an *INCLUDE

specification and is intended to be used to omit a subset of a previously selected pattern.

Pointer to pattern path structure. A pointer to a path structure.

This pointer must be 16-byte aligned. If not, unpredictable results may occur.

For more information on the pattern path name format, see Path name format.

Error Messages

The following messages may be sent from this API:

 Message ID Error Message Text

CPFA0D4 E File system error occurred.

CPF700B E &1 of &2 objects ended journaling.

CPF705A E Operation failed due to remote journal.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

Example

See Code disclaimer information for information pertaining to code examples.

The following example ends journaling a directory object and all objects within that directory subtree.

Additionally, it ends journaling on another object identified by its file ID.

#include <string.h>

#include <qjournal.h>

void main()

{

 Qjo_Object_Entry_Array_t objectEntryArray;

 Qjo_File_ID_Entry_Array_t fileIDEntryArray;

 struct PathNameStruct

 {

 Qlg_Path_Name_T header;

 char p[50];

 };

 struct PathNameStruct path;

 struct PathNameStruct journalPath;

 char pathName[] = "/CustomerData";

 Qp0lFID_t fileID;

 struct JournalOptionsStruct

Journal and Commit APIs 41

pns.htm
aboutapis.htm#CODEDISCLAIMER

{

 Qjo_Journal_Options_t opts;

 char spaceForAdditionalOptions[200];

 };

 struct JournalOptionsStruct journalOptions;

 Qjo_Option_t *optionP;

 Qus_EC_t errorCode;

 /* Setup the object’s path name structure. */

 memset(&path name, 0, sizeof(path));

 path.header.CCSID = 37;

 memcpy(path.header.Country_ID,"US",2);

 memcpy(path.header.Language_ID,"ENU",3);

 path.header.Path_Type = QLG_CHAR_SINGLE;

 path.header.Path_Length = strlen(pathName);

 path.header.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.p, pathName, path.header.Path_Length);

 /* Setup the object entry array. */

 memset(&objectEntryArray,0,sizeof(objectEntryArray));

 objectEntryArray.Number_In_Array = 1;

 objectEntryArray.Entry[0].Length_Of_Object_Entry =

 sizeof(objectEntryArray.Entry[0]);

 memcpy(objectEntryArray.Entry[0].Include_Or_Omit,

 QJO_INC_ENT_INCLUDE,

 sizeof(objectEntryArray.Entry[0].Include_Or_Omit));

 objectEntryArray.Entry[0].Path_Name =

 (Qlg_Path_Name_T *)&path;

 /* Get an object’s file ID.

 This example is not including the retrieval of the

 file ID for an object. The user can see the

 Qp0lGetAttr API for information on retrieving an

 object’s file ID. This example will proceed as if the

 fileID variable is set to a valid file ID. */

 /* Setup the file ID entry array. */

 memset(&fileIDEntryArray,0,sizeof(fileIDEntryArray));

 fileIDEntryArray.Number_In_Array = 1;

 memcpy(&fileIDEntryArray.Entry,

 fileID,

 sizeof(fileIDEntryArray.Entry));

 /* Set the journal options. */

 memset(&journalOptions,0,sizeof(journalOptions));

 journalOptions.opts.Number_Of_Options = 1;

 /* Set the subtree processing images key. */

 optionP = (Qjo_Option_t *)&journalOptions.opts.Option[0];

 optionP->Length_Of_Record = QJO_KEY_MINIMUM_RECORD_LENGTH;

 optionP->Key = QJO_KEY_SUBTREE;

 optionP->Length_Of_Data = QJO_KEY_SUBTREE_LENGTH;

 memcpy(optionP->Data,

 QJO_SUBTREE_ALL,

 QJO_KEY_SUBTREE_LENGTH);

 /* Setup the error code structure to cause an exception

 to be sent upon error. */

 memset(&errorCode,0,sizeof(errorCode));

 errorCode.Bytes_Provided = 0;

 QjoEndJournal(&objectEntryArray,

42 iSeries: Journal and Commit APIs

&fileIDEntryArray,

 (Qlg_Path_Name_T *)NULL,

 (Qjo_Journal_Options_t *)&journalOptions,

 &errorCode);

}

API introduced: V5R1

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Materialize Journal Port Attributes (QusMaterializeJournalPortAttr) API

 Required Parameter Group:

1 Receiver

I/O PTR(SPP)

2 Journal port

Input Open pointer
 Service Program Name: QUSMIAPI

 Default Public Authority: *USE

 Threadsafe: No

The Materialize Journal Port Attributes (QusMaterializeJournalPortAttr) API allows you to retrieve some

of the current attributes of a journal.

This API provides the function of the MATJPAT MI instruction on all security levels of OS/400. See the

MATJPAT instruction in the iSeries Machine Interface Instructions for the documentation of this API.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

MCHxxxx E See the iSeries Machine Interface Instructions for exact MCH messages that could be signaled.

API introduced: V3R7

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Journal and Commit APIs 43

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Materialize Journal Space Attributes (QusMaterializeJournalSpaceAttr)

API

 Required Parameter Group:

1 Receiver

I/O PTR(SPP)

2 Journal space

Input PTR(SYP)
 Service Program Name: QUSMIAPI

 Default Public Authority: *USE

 Threadsafe: No

The Materialize Journal Space Attributes (QusMaterializeJournalSpaceAttr) API allows you to retrieve

some of the current attributes of a journal receiver.

This API provides the function of the MATJSAT MI instruction on all security levels of OS/400. See the

MATJSAT instruction in the iSeries Machine Interface Instructions for the documentation of this API.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

MCHxxxx E See the iSeries Machine Interface Instructions for exact MCH messages that could be signaled.

API introduced: V3R7

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Remove Commitment Resource (QTNRMVCR) API

 Required Parameter Group:

1 Resource handle

Input Binary(4)

2 Error code

I/O Char(*)
 Threadsafe: Yes

The Remove Commitment Resource (QTNRMVCR) API removes an API commitment resource that was

added to a commitment definition using the Add Commitment Resource (QTNADDCR) API. For more

information about adding resources to a commitment definition, see “Add Commitment Resource

(QTNADDCR) API” on page 3 (QTNADDCR) API.

44 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Once a commitment resource is removed, the resource handle that refers to it is no longer valid. You

cannot end commitment control for a commitment definition until all API commitment resources have

been removed.

If an End Job (ENDJOB) command is entered or you sign off the job, the system automatically ends

commitment control for all commitment definitions for the job. Likewise, the system will automatically

end an activation-group-level commitment definition for a nondefault activation group that is ending.

Any API commitment resources that have not yet been removed from any commitment definition being

automatically ended by the system will be implicitly removed by the system during the end job or the

activation group end processing. Prior to the system implicitly removing the API commitment resources

and automatically ending a commitment definition, an implicit commitment control operation is

performed by the system if pending changes exist for the commitment definition, with the appropriate

exit program calls made for any API commitment resources. An implicit commit is performed by the

system if the activation group is ending normally. An implicit rollback is performed by the system if the

activation group is ending abnormally or the job is ending. For more information about the exit program

and information that is passed to it, see “Commitment Control Exit Program” on page 138.

Required Parameter Group

Resource handle

INPUT; BINARY(4)

 The resource handle returned by the QTNADDCR API when the API commitment resource was

added to the commitment definition.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Restrictions

You are prevented from removing a commitment resource using this API when:

v The resource handle is not valid.

v Commitment control is not active for the program making the request to remove the commitment

resource.

v A commitment control operation is currently in progress for the commitment definition that is to have

the commitment resource removed from the commitment definition.

In all other instances, the API commitment resource is removed from the commitment definition.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8362 E Request for commit resource is not valid; reason code &1.

CPF8367 E Cannot perform commitment control operation.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Journal and Commit APIs 45

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Remove Remote Journal (QjoRemoveRemoteJournal) API

 Required Parameter Group:

1 Qualified journal name

Input Char(20)

2 Relational database directory entry

Input Char(18)
 Omissible Parameter Group:

3 Request variable

Input Char(*)

4 Length of request variable

Input Binary(4)

5 Format name of request variable

Input Char(8)

6 Error code

I/O Char(*)
 Service Program: QJOURNAL

 Default Public Authority: *USE

 Threadsafe: No

The Remove Remote Journal (QjoRemoveRemoteJournal) API disassociates a remote journal on the

specified target system from the specified journal on the source system. The journal on the source system

may be either a local journal or another remote journal.

The remote journal, and any associated journal receivers, are not deleted from the target system by the

API processing. No processing is performed on the target system for the API. The remote journal that

remains on the target system may later be added back to the remote journal definition for the journal on

the source system by using the Add Remote Journal (ADDRMTJRN) command or the Add Remote

Journal (QjoAddRemoteJournal) API.

It is the responsibility of the user to delete the remote journal and any associated journal receivers from

the target system, if so desired.

Once a remote journal has been removed from a journal, all of the journal receivers that are currently in

the journal’s receiver directory on the source system will no longer be protected from deletion even if the

journal entries have not yet been replicated to the remote journal.

Restrictions

The following restrictions apply:

v The API must be called from the source system for a local or remote journal.

v The remote journal on the specified target system cannot have a journal state of *ACTIVE.

46 iSeries: Journal and Commit APIs

Authorities and Locks

Source Journal Authority

*CHANGE, *OBJMGT

Source Journal Library Authority

*EXECUTE

Service Program Authority

*EXECUTE

Source Journal Lock

*EXCLRD

Required Parameter Group

Qualified journal name

INPUT; CHAR(20)

 The name of the journal on the source system from which the remote journal is being removed,

and the library where it resides. The journal on the source system may be either a local journal or

a remote journal. The first 10 characters contain the journal name, and the second 10 characters

contain the name of the library where the journal is located on the source system.

The special values supported for the library name follow:

 *LIBL Library list

*CURLIB Current library

Relational database directory entry

INPUT; CHAR(18)

 The name of the relational database directory entry that contains the remote location name of the

target system.

Omissible Parameter Group

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Remove Remote Journal

(QjoRemoveRemoteJournal) API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be set to 20

bytes.

Format name of request variable

INPUT; CHAR(8)

 The format RMRJ0100 is the only supported format that is used by this API. See “RMRJ0100

Format” on page 48 for more information on the RMRJ0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Journal and Commit APIs 47

error.htm#HDRERRCOD
error.htm#HDRERRCOD

RMRJ0100 Format

The following table defines the information that may be provided for format RMRJ0100 when you

remove a remote journal.

 Offset

Type Field Dec Hex

0 0 CHAR(20) Qualified remote journal name

Field Descriptions

Qualified remote journal name. The qualified name of the remote journal on the target system. The first

10 characters contain the remote journal name, and the second 10 characters contain the name of the

library where the remote journal resides on the target system. If this field is not provided or is blank, the

resolved qualified journal name is assumed.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF6981 E Remote journal &1 in &2 not removed.

CPF6982 E Relational database directory entry &1 not valid.

CPF6992 E Remote journal &1 in &2 not removed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V4R2

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

48 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Retrieve Commitment Information (QTNRCMTI) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Error code

I/0 Char(*)
Threadsafe: Yes

The Retrieve Commitment Information (QTNRCMTI) API allows you to determine if commitment control

is active within the activation group for the program performing the retrieve request. Other information

that can be retrieved includes:

v Default lock level and default journal name and library

v Commitment definition scope

v Activation group commitment definition status

v Commitment options

v Logical unit of work identifier

Information about commitment definitions that are started by the system for system use only is not

available through this API.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the information requested. You can specify the size of the

area smaller than the format requested as long as you specify the receiver variable length

parameter correctly. As a result, the API returns only the data the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. The length must be at least 8 bytes. If the variable is not long

enough to hold the information, the data is truncated. If the length is larger than the size of the

receiver variable, the results are not predictable.

Format name

INPUT; CHAR(8)

 The format name CMTI0100 is the only valid format name used by this API. For more

information, see “CMTI0100 Format” on page 50.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Journal and Commit APIs 49

error.htm#HDRERRCOD
error.htm#HDRERRCOD

CMTI0100 Format

The structure of the information returned is determined by the specified format name. For detailed

descriptions of the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(1) Commitment definition status

9 9 CHAR(10) Commitment definition default lock level

19 13 CHAR(1) Commitment definition scope

20 14 CHAR(1) Commitment definition status for the activation group

21 15 CHAR(1) Wait for outcome commitment option

22 16 CHAR(1) Action if problems commitment option

23 17 CHAR(1) Vote read-only permitted commitment option

24 18 CHAR(1) Action if ENDJOB commitment option

25 19 CHAR(10) Default journal name

35 23 CHAR(10) Default journal library name

45 2D CHAR(39) Logical unit of work identifier

84 54 CHAR(1) Last agent permitted commitment option

85 55 CHAR(1) OK to leave out commitment option

86 56 CHAR(1) Accept vote reliable commitment option

Field Descriptions

For more detailed descriptions of these fields and their values, refer to “Commitment Options Format” on

page 19 in the Change Commitment Options (QTNCHGCO) API.

Accept vote reliable commitment option. The current value of this commitment option.

The possible values are:

 Y The system accepts the vote reliable indicator if it is returned from its agents during the prepare

wave of a commit operation. Control is returned to the application before the committed wave is

completed for agents that send the vote reliable indicator if this system accepts it. If heuristic

damage is encountered during the committed wave at any agents that voted reliable, it is not

reported to the application.

N The system does not accept the vote reliable indicator. Control is returned to the application after

the committed wave is completed for all agents. If heuristic damage is encountered during the

committed wave, it is reported to the application as an escape message.

Action if ENDJOB commitment option. The current value of this commitment option.

The possible values are:

 W The system waits to allow the normal processing of the logical unit of work to complete.

R Local resources whose status is in doubt are rolled back in the event of an ENDJOB.

C Local resources whose status is in doubt are committed in the event of an ENDJOB.

50 iSeries: Journal and Commit APIs

Action if problems commitment option. The current value of this commitment option.

The possible values are:

 R If a problem is detected and the local resources have not been committed or rolled back, the local

resources will be rolled back.

C If a problem is detected and the local resources have not been committed or rolled back, the local

resources will be committed.

Bytes available. The length in bytes of all data available to return. All available data is returned if

enough space is provided.

Bytes returned. The length in bytes of all data actually returned.

Commitment-definition default lock level. The default lock level at the start of commitment control for

the commitment definition. This is the level of record locking that applies to records in all commitment

resources under commitment control for the commitment definition. The level of record locking is this

value unless it is overridden when the file is opened. You cannot override this value; however, the system

can override for files opened for system functions.

The possible values are:

 blank Blanks are returned when I is returned for commitment definition status.

*ALL Changed and retrieved records are protected from changes by other jobs running at the same time.

*CHG Changed records are protected from changes by other jobs running at the same time.

*CS Changed and retrieved records are protected from changes by other jobs running at the same time.

Retrieved records are protected until they are released or until a different record is retrieved.

Commitment definition scope. The scope for the commitment definition currently active within the

activation group for the program performing the retrieve request.

The possible values are:

 A Activation group level

J Job level

Commitment definition status. The overall status of the commitment definition currently active for the

activation group for the program performing the retrieve request. The scope for this commitment

definition is returned in the commitment definition scope field.

The possible values are:

 I Commitment control is not active at either the activation group level or the job level for the

program making the retrieve request.

A The commitment definition is active within the activation group for the program performing the

retrieve request. No local, remote, or API commitment resource is associated with the commitment

definition.

L The commitment definition is active on the local system within the activation group for the

program performing the retrieve request.

Journal and Commit APIs 51

An L is returned if one or more of the following resources are under commitment control.

v Local, open database files

v Local, closed database files with pending changes

v Resources with object-level changes

v Local relational database resources

v API commitment resources

R The commitment definition is active on one or more remote systems within the activation group

for the program performing the retrieve request.

 An R is returned if one or more of the following resources are under commitment control.

v Remote DDM resources

v Remote distributed relational database resources

v Protected conversations

B The commitment definition is active on both the local and one or more remote systems.

 If both L and R could be returned, a B will be returned.

Commitment definition status for the activation group. The status of the commitment definition

currently active for the activation group for the program performing the retrieve request, but specifically

regarding any commitment resource changes made by programs running within the activation group.

The possible values are:

 I Commitment control is not active at the activation group level or the job level for the program

making the retrieve request. The overall status for the job-level commitment definition is also not

active.

A The commitment definition is currently being used by one or more programs running within this

activation group. Local, remote or API commitment resources may have been placed under

commitment control to the commitment definition by a program running within the activation

group. The overall status for the commitment definition is either active (A), active on the local

system (L), active on a remote system (R), or active on both the local and one or more remote

systems (B).

N The job-level commitment definition is active but is not in use by any program running within

this activation group. The overall status for the commitment definition is either active (A), active

on the local system (L), active on a remote system (R), or active on both the local and one or more

remote systems (B). It is possible to start the activation-group-level commitment definition for

programs running within this activation group.

Default journal name. The journal name specified for the default journal when this commitment

definition was started. If no default journal was specified, blanks are returned.

Default journal library name. The journal library name specified for the default journal when this

commitment definition was started. If no default journal was specified, blanks are returned.

Last agent permitted commitment option. The current value of this commitment option.

The possible values are:

 S The system is allowed to select a last agent.

N The system is not allowed to select a last agent.

Logical unit of work identifier. The identifier for the logical unit of work currently associated with this

commitment definition.

Table 1. Logical Unit of Work Identifier Format

52 iSeries: Journal and Commit APIs

Field Type Description

Network ID CHAR(0-8) Network identifier

Separator CHAR(1) The separator character ″.″

Local location name CHAR(0-8) The name of the local location

Separator CHAR(3) The separator characters ″.X’″

Instance number CHAR(12) The hex value of the instance number converted to decimal

Separator CHAR(2) The separator characters ″’.″

Sequence number CHAR(5) The hex value of the sequence number converted to decimal

OK to leave out commitment option. The current value of this commitment option.

The possible values are:

 Y If this location does not initiate the commit operation, it may be left out of subsequent logical

units of work. Control is not returned to the application until a data flow is received from the

initiator.

N This location may not be left out of subsequent logical units of work. Control is returned to the

application immediately after the commit operation completes.

Vote read-only permitted commitment option. The current value of this commitment option.

The possible values are:

 N This location is not allowed to vote read-only in response to a prepare request from a remote

location.

Y This location is allowed to vote read-only in response to a prepare request from a remote location.

Control will not be returned to the application until data is sent from the remote location that sent

the prepare request.

Wait for outcome commitment option. The current value of this commitment option.

The possible values are:

 Y If a remote resource failure occurs during a commit or rollback operation, the system will not

return from the operation until resynchronization is complete.

L Value L has the same effect as value Y when this location is the initiator of the commit or rollback

operation. When this location is not the initiator and the initiator supports the presumed abort

protocol, the Wait for outcome value is inherited from the initiator. When this location is not the

initiator and the initiator does not support the presumed abort protocol, value L has the same

effect as value Y.

N If a remote resource failure occurs during a commit or rollback operation, the system will attempt

to resynchronize with the failed resource once. If the one attempt fails, resynchronization will then

be done in a system job and control is returned to the application.

U Value U has the same effect as value N when this location is the initiator of the commit or rollback

operation. When this location is not the initiator and the initiator supports the presumed abort

protocol, the Wait for outcome value is inherited from the initiator. When this location is not the

initiator and the initiator does not support the presumed abort protocol, value U has the same

effect as value N.

Journal and Commit APIs 53

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Retrieve Journal Entries (QjoRetrieveJournalEntries) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Qualified journal name

Input Char(20)

4 Format name

Input Char(8)
 Omissible Parameter Group:

5 Journal entries to retrieve

Input Char(*)

6 Error code

I/O Char(*)
 Service Program Name: QJOURNAL

 Header File Name: QSYSINC/H.QJOURNAL

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Journal Entries (QjoRetrieveJournalEntries) API provides access to journal entries. The

journal entry information available is similar to what is provided by using the Display Journal (DSPJRN),

Receive Journal Entry (RCVJRNE), and Retrieve Journal Entry (RTVJRNE) CL commands. Additionally,

journal entry data that cannot be retrieved through these CL interfaces because of length or structure is

available through this API as pointers to the additional data.

54 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

See the Journal management topic for more information about journaling and the various types of journal

entries that are available for retrieval.

Note: Under certain conditions, even if an error message is returned to this API, a partial list of journal

entries may be retrieved into the receiver variable. If you receive error messages CPF3CF1, CPF3C90,

CPF6948, CPF6949 or CPF9872, then the receiver variable has not yet been modified. For all other error

messages, a non-zero value for bytes returned indicates journal entry information may be available and

the number of entries retrieved field will reflect how many entries are being returned prior to receiving

the error message.

Restrictions

v If the sequence number is reset in the range of the receivers specified, the first occurrence of starting

sequence number or ending sequence number is used if these key fields are specified.

v The job, program, and user profile keys cannot be used to specify selection criteria if one or more

journal receivers in the specified receiver range was attached to a journal that had a RCVSIZOPT or

FIXLENDTA option specified that omitted the collection of that data.

v The file, journal code, entry type, job, program, user profile, commit cycle identifier, and dependent

entries keys can be used to specify a subset of all available entries within a range of journal entries.

– If no values are specified using these keys, all available journal entries are retrieved.

– If more than one of these keys are specified, then a journal entry must satisfy all of the values

specified on these keys, except when ignore file selection (*IGNFILSLT) is specified on the journal

code key.

– If a journal code is specified on the journal code key and *IGNFILSLT is the second element of that

journal code, then journal entries with the specified journal code are selected if they satisfy all

selection criteria except what is specified on the file key.
v If more than the maximum number of objects is identified (65535 objects), an error occurs and no

entries are converted for output. This restriction is ignored if *ALLFILE is specified.

Authorities and Locks

Journal Authority

*USE

Journal Library Authority

*EXECUTE

Journal Receivers Authority

*USE

Journal Receivers Library’s Authority

*EXECUTE

File Authority (if specified)

*USE

File Library Authority

*EXECUTE

Journal Lock

*SHRRD

Journal Receiver Lock

*SHRRD

File Lock (if specified)

*SHRRD

 *OBJEXIST is also required for the journal authority if any of the the following are true:

Journal and Commit APIs 55

v *ALLFILE has been specified for the file key

v Specified object does not exist on the system

v *IGNFILSLT is specified for the journal code selection value for any selected journal codes

v The journal is a remote journal

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the entries requested. You can specify the size of the area

smaller than the format requested as long as you specify the length of receiver variable parameter

correctly. As a result, the API returns only the data the area can hold. Only complete journal

entries will be returned.

Note: This receiver variable must be aligned on a 16-byte boundary since the journal entry

specific data could include actual pointers.

If the receiver variable was not large enough to hold the retrieved journal entries, the API can be

called again, specifying the same selection criteria and specifying a starting sequence number one

greater than the last sequence number returned.

Length of receiver variable

INPUT; BINARY(4)

 The length of receiver variable specified in the user program. If the length of receiver variable

parameter specified is larger than the allocated size of the receiver variable specified in the user

program, the results are not predictable. The minimum length is 13 bytes.

Qualified journal name

INPUT; CHAR(20)

 The name of the journal and its library from which the journal entries are to be retrieved. The

first 10 characters contain the journal name. The second 10 characters contain the library name.

The special values supported for the library name follow:

 *LIBL Library list

*CURLIB Current library

Format name

INPUT; CHAR(8)

 The formats RJNE0100 and RJNE0200 are the only supported formats that are used by this API.

For more information, see the “RJNE0100 Format” on page 65 and the “RJNE0200 Format” on

page 67.

Omissible Parameter Group

Journal entries to retrieve

INPUT; CHAR(*)

 The selection criteria, if any, to use for the journal entries to be retrieved from the journal. If this

parameter is not specified, all journal entries in the currently attached journal receiver that fit in

the length of receiver variable parameter will be retrieved. Only complete journal entries will be

returned. The information must be in the following format:

Number of variable length records

BINARY(4)

 The total number of all of the variable length records. If this field is zero, no variable

length records are processed, and no key information will be retrieved.

56 iSeries: Journal and Commit APIs

Variable length records

CHAR(*)

 The types of entries that should be retrieved. For the specific format of the variable

length record, see “Format for Variable Length Record.”

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Format for Variable Length Record

The following table defines the format for the variable length records.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of variable

length record

4 4 BINARY(4) Key

8 8 BINARY(4) Length of data

12 C CHAR(*) Data

If you specify a length of data that is longer than the key field’s required data length, the data will be

truncated at the right. No error message will be returned.

If you specify a length of data that is shorter than the key field’s required data length, an error message

will be returned.

You may specify a key more than once. If duplicate keys are specified, the last specified value for that

key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Data. The data that is used to determine how the journal entries should be retrieved. All values are

validity checked.

Key. Identifies specific entries to be retrieved from the journal. See “Keys” for the list of valid keys.

Length of data. The length of the key information.

Length of variable length record. The length of the variable length record. This field is used to get the

addressability of the next variable length record.

Keys

The following table lists the valid keys for the key field area of the variable length record. For detailed

descriptions of the keys, see the “Field Descriptions” on page 58.

Journal and Commit APIs 57

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Some messages for this API refer to parameters and values of the Receive Journal Entry (RCVJRNE)

command. This table also can be used to locate the key names that correspond to the RCVJRNE

command parameters.

Key Input Type Field

RCVJRNE Command

Parameter

1 CHAR(40) Range of journal receivers RCVRNG

2 CHAR(20) Starting sequence number FROMENT

3 CHAR(26) Starting time stamp FROMTIME

4 CHAR(20) Ending sequence number TOENT

5 CHAR(26) Ending time stamp TOTIME

6 BINARY(4) Number of entries NBRENT

7 CHAR(*) Journal codes JRNCDE

8 CHAR(*) Journal entry types ENTTYP

9 CHAR(26) Job JOB

10 CHAR(10) Program PGM

11 CHAR(10) User profile USRPRF

12 CHAR(20) Commit cycle identifier CMTCYCID

13 CHAR(10) Dependent entries DEPENT

14 CHAR(10) Include entries INCENT

15 CHAR(10) Null value indicators length NULLINDLEN

16 CHAR(*) File FILE

Field Descriptions

Commit cycle identifier. The commit cycle identifier of the specific journal that participated in a logical

unit of work for which the journal entries are to be retrieved. This Char(20) field is treated as Zoned(20,0)

except when the special value *ALL is specified. The default is *ALL. The possible values are:

 *ALL The journal entries for all commit cycle identifiers are to be retrieved.

commit cycle

identifier

The identifier for the commit cycle whose journaled changes are to be retrieved.

Dependent entries Whether the journal entries to be retrieved include the journal entries recording

actions

v that occur as a result of a trigger program.

v on records that are part of a referential constraint.

v that will be ignored during an apply journaled changes (APYJRNCHG) or remove journaled changes

(RMVJRNCHG) operation.

The default is *ALL. The possible values are:

 *ALL The journal entries relating to trigger programs, referential constraints, and the entries that will be

ignored by an apply journaled changes or remove journaled changes operation are retrieved.

*NONE The journal entries relating to trigger programs, referential constraints, and the entries that will be

ignored by an applyjournaled changes or remove journaled changes operation are not retrieved.

58 iSeries: Journal and Commit APIs

Ending sequence number. The last journal entry considered for retrieval. This Char(20) field is treated as

Zoned(20,0) except when the special value *LAST is specified. The default is *LAST. If this key is

specified, Key 5 (ending time stamp) cannot be specified also. The possible values are:

 *LAST The last journal entry in the specified journal receiver range is the last entry considered for

retrieval.

sequence number The sequence number of the journal entry that is the last entry considered for retrieval.

Ending time stamp. The time stamp of the last journal entry considered for retrieval. This Char(26) field

is in the format

YYYY-MM-DD-HH.MM.SS.UUUUUU where

 YYYY Year

MM Month

DD Day

HH Hours

MM Minutes

SS Seconds

UUUUUU Microseconds

Note: If this key is specified, Key 4 (ending sequence number) cannot be specified also.

Note: If the system value QLEAPADJ (Leap year adjustment) is zero, then the result returned will be in 1

microsecond granularity. If the system value QLEAPADJ is greater than zero, then the result returned will

be in 8 microsecond granularity.

File A list of files and members for which journal entries are to be retrieved. For the format of this field,

see “File Format” on page 62. If *ALLFILE is specified for the file name, the list cannot contain other

entries. The default is *ALLFILE for the file.

To determine which journal entries are to be retrieved, based on the specified file member name, the

following is done:

v If the journal is a local journal, and if the specified file member currently exists on the system, the

journal identifier is determined from the specified file member. All journal entries in the specified

receiver range for that journal identifier are retrieved.

v If the journal is a remote journal, or if the specified file member does not currently exist on the system,

the specified receiver range is searched to determine all possible journal identifiers that are associated

with the specified file member. All journal entries in the specified receiver range for those journal

identifiers are retrieved.

There can be more than one journal identifier associated with the specified file member if, for example,

a file member was created by that name, journaled, and then deleted. Then another file member was

created with the same name, and it also was journaled and then deleted. All of these actions would

have had to occur within the specified receiver range.

Notes:

1. The journal identifier is the unique identifier associated with the object when journaling is started for

that object. The journal identifier stays constant, even if the object is renamed, moved or restored. See

the Journal management topic for more information.

2. When specifying a database file on this key, journal entries with the following journal code values are

retrieved only if they satisfy the values specified on the other keys:

Journal and Commit APIs 59

v Journal code D (database file-level information entries).

v Journal code F (file member-level information entries).

v Journal code R (record-level information entries).

v Journal code U (user-generated entries).

v Other journal codes if *IGNFILSLT is the second element of the journal code key. If *ALLSLT is the

second element of the journal code key, no journal entries with that code are retrieved.

Include entries. Whether only the confirmed or both the confirmed and unconfirmed journal entries are

retrieved. This key only applies when retrieving journal entries from a remote journal. The default is

*CONFIRMED.

Confirmed entries are those journal entries that have been sent to this remote journal, and the state of the

input/output (I/O) to auxiliary storage for the same journal entries on the local journal is known.

Unconfirmed entries can occur for two reasons. First, the journal entries have been sent to the remote

journal, but the state of the input/output (I/O) to auxiliary storage for the same journal entries on the

local journal is not yet known. If the connection to the source system is lost, these entries will be deleted

from the remote system and will never become confirmed. This situation only occurs if synchronous

delivery mode is being used for the remote journal. Secondly, unconfirmed entries may exist because the

object name information for those journal entries is not yet known to the remote journal. Even if the

connection to the source system is lost, these entries will eventually become confirmed. This situation can

occur for either synchronous or asynchronous delivery mode to a remote journal.

The possible values are:

 *CONFIRMED Only those journal entries that have been confirmed are retrieved.

*ALL All confirmed and unconfirmed journal entries are retrieved.

Job. Whether the journal entries being retrieved are limited to the journal entries for a specified job. Only

journal entries for the specified job are considered for retrieval. The default is *ALL. The possible values

are:

 *ALL The retrieval is not limited to entries for a specific job.

job The retrieval is limited to entries for a specific job where the first 10 characters are the job name,

the second 10 characters are the user name, and the last 6 characters are the job number.

Journal codes. A list of journal codes for which entries are to be retrieved. For the format of this field, see

“Journal Code Format” on page 63. If *ALL or *CTL is specified for the journal code value, the list cannot

contain other entries and the journal code selection field must be blank. The default is *ALL for the

journal code value.

Journal entry types. A list of journal entry types for which entries are to be retrieved. For the format of

this field, see “Journal Entry Type Format” on page 64. If *ALL or *RCD is specified for the journal entry

type, the list cannot contain other entries. The default is *ALL for the journal entry type.

Null value indicators length. The length, in bytes, used for the null value indicators portion of the

journal entry retrieved by the user. This Char(10) field is treated as Zoned(10,0) except when the special

value *VARLEN is specified. The default is *VARLEN. The possible values are:

 *VARLEN The null value indicators field is a variable-length field. The received journal entry has the format

shown in This journal entry’s null value indicators if Null Value Indicators (*VARLEN) specified

(page 67). All possible null value indicators will be retrieved.

60 iSeries: Journal and Commit APIs

field length The null value indicators field is a fixed-length field of the specified field length. Valid values

range from 1 to 8000 characters. The format of the retrieved journal entry is shown in This journal

entry’s null value indicators if Null Value Indicators (field length) specified (page 67).

If the journal entry being retrieved has fewer null value indicators than the length specified, the trailing

bytes are set to ’F0’X. Conversely, if a journal entry retrieved has more null value indicators than the

specified field length and truncation will result in the loss of a ’F1’X null value indicator, the request is

ended.

Number of entries. The maximum number of journal entries that are requested to be retrieved. Less than

this maximum could be retrieved if fewer entries meet all the other selection criteria or if there is not

enough space for all the requested entries.

Program. Whether the journal entries being retrieved are limited to the journal entries for a specified

program. Only journal entries for the specified program name are considered for retrieval. The default is

*ALL. The possible values are:

 *ALL The retrieval is not limited to entries for a specific program.

program The name of the program whose journal entries are considered for retrieval. Only journal entries

for this program are considered for retrieval.

Range of journal receivers. The qualified names of the starting (first) and ending (last) journal receivers

used in the search for a journal entry to be retrieved. For the format of this field, see “Receiver Range

Format” on page 64. The system starts the search with the starting journal receiver and proceeds through

the receiver chain until the ending journal receiver is processed.

If dual receivers (pairs of receivers added or removed at the same time) are used at any time, the first of

the receivers is used when chaining through the receivers. The Work with Journal Attributes (WRKJRNA)

command can be used to display the order of the receivers in the receiver chain. If any problem is found

in the receiver chain before the search operation begins, such as damaged or offline receivers, the system

attempts to use the second of the dual receivers. If the second of the receivers is damaged or offline, or if

a problem is found during the operation, the operation ends.

If *CURCHAIN or *CURRENT is specified for the starting journal receiver, the remaining fields should be

set to blanks. The default is *CURRENT for the starting journal receiver. If the total number of receivers

in the range is larger than

1024,

an error message is sent and no journal entry is retrieved.

Starting sequence number. The first journal entry considered for retrieval. This Char(20) field is treated

as Zoned(20,0) except when the special value *FIRST is specified. If this key is specified, Key 3 (starting

time stamp) cannot be specified also. The default is *FIRST. The possible values are:

 *FIRST The first journal entry in the specified journal receiver range is the first entry considered for

retrieval.

sequence number The sequence number of the journal entry that is the first entry considered for retrieval.

Starting time stamp. The time stamp of the first journal entry considered for retrieval. This Char(26) field

is in the format

YYYY-MM-DD-HH.MM.SS.UUUUUU where

 YYYY Year

MM Month

DD Day

HH Hours

MM Minutes

SS Seconds

Journal and Commit APIs 61

UUUUUU Microseconds

Note: If this key is specified, Key 2 (starting sequence number) cannot be specified also.

Note: If the system value QLEAPADJ (Leap year adjustment) is zero, then the result returned will be in 1

microsecond granularity. If the system value QLEAPADJ is greater than zero, then the result returned will

be in 8 microsecond granularity.

User profile. Whether the journal entries being retrieved are limited to the journal entries for a specified

user profile name. The user profile name is the user profile under which the job is run that deposited the

journal entries. Only journal entries for the specified user profile are considered for retrieval. The default

is *ALL. The possible values are:

 *ALL The retrieval is not limited to entries for a specific user profile.

user profile The name of the user profile whose journal entries are considered for retrieval. Only journal

entries for this user profile are considered for retrieval.

File Format

 Offset

Type Field Dec Hex

 BINARY(4) Number in array

Note: These fields repeat for each file member.

 CHAR(10) File name

 CHAR(10) Library name

 CHAR(10) Member name

Field Descriptions

File name. The file name for which journal entries are to be retrieved. The possible values are:

 *ALLFILE The search for the journal entries retrieved is not limited to a specified file name. If *ALLFILE is

specified, the associated library name and member name fields should be blank.

*ALL Journal entries for all physical files in the specified library (the library name must be specified) for

which journaled changes currently in the specified journal receiver range are retrieved. If *ALL is

specified and the user does not have the required authority to all of the files, an error occurs and

the command ends.

file name The name of the physical database file for which journaled changes are being retrieved.

Library name. The library name associated with the file name for which journal entries are to be

retrieved. The possible values are:

 *LIBL All libraries in the job’s library list are searched until the first match is found.

*CURLIB The current library for the job is searched. If no library is specified as the current library for the

job, the QGPL library is used.

library name The name of the library to be searched.

62 iSeries: Journal and Commit APIs

blank The library name field must be blank if *ALLFILE is specified for the file name.

Member name. The file member name for which journal entries are to be retrieved. The possible values

are:

 *FIRST Entries for the first member in the file are retrieved.

*ALL Entries for currently existing members of the file are retrieved.

member name The name of the file member for which entries are retrieved. If the specified physical file does not

exist on the system, specify either *ALL or a specific file member name.

If *ALL is specified for the file name, this member name is used for all applicable files in the

library.

blank The member name field must be blank if *ALLFILE is specified for the file name.

Number in array. The number of file codes that are specified for this key. The possible values are 1

through 300. The value must be 1 if *ALLFILE or *ALL is specified for file name.

Journal Code Format

 Offset

Type Field Dec Hex

 BINARY(4) Number in array

Note: These fields repeat for each journal code.

 CHAR(10) Journal code value

 CHAR(10) Journal code selection

Field Descriptions

Journal code value. The journal code for which journal entries are to be retrieved. The possible values

are:

 *ALL The retrieval of journal entries is not limited to entries with a particular journal code.

*CTL Only journal entries deposited to control the journal functions are to be retrieved (journal codes =

J and F).

code The 1-character journal code for which journal entries are to be retrieved.

A list of journal codes that can be specified is provided in the Journal management topic. The

1-character code should be left-justified.

Journal code selection. Whether other selection criteria apply to this specified journal code. The possible

values are:

 *ALLSLT The journal entries with the specified journal code are to be retrieved only if all selection keys are

satisfied.

*IGNFILSLT The journal entries with the specified journal code are to be retrieved only if all selection keys

except the file key are satisfied. Note: This value is not valid for journal code D, F or R.

blank The journal code selection must be blank if *ALL or *CTL is specified for the journal code value.

Number in array. The number of journal codes that are specified for this key. The possible values are 1

through 16. The value must be 1 if *ALL or *CTL is specified for the journal code value.

Journal and Commit APIs 63

Journal Entry Type Format

 Offset

Type Field Dec Hex

 BINARY(4) Number in array

Note: These fields repeat for each entry type.

 CHAR(10) Journal entry type

Field Descriptions

Journal entry types. The journal entry types for which journal entries are to be retrieved. The possible

values are:

 *ALL The retrieval of journal entries is not limited to entries with a particular journal entry type.

*RCD Only journal entries that have an entry type for record level operations are retrieved. The

following entry types are valid: BR, DL, DR, IL, PT, PX, UB, UP, and UR.

entry type The 2-character entry type that limits the search for the journal entries to retrieve. Only journal

entries that contain the specified entry type are considered for retrieval. A list of valid entry types

is in the Journal management topic. The 2-character entry type should be left-justified.

Number in array. The number of journal entry types that are specified for this key. The possible values

are 1 through 300. The value must be 1 if *ALL or *RCD is specified for journal entry type.

Receiver Range Format

 Offset

Type Field Dec Hex

 CHAR(10) Starting journal

receiver name

 CHAR(10) Starting journal

receiver library

 CHAR(10) Ending journal

receiver name

 CHAR(10) Ending journal

receiver library

Field Descriptions

Ending journal receiver library. The ending journal receiver library for which journal entries are to be

retrieved. The possible values are:

 *LIBL All libraries in the job’s library list are searched until the first match is found.

*CURLIB The current library for the job is searched. If no library is specified as the current library for the

job, the QGPL library is used.

library The name of the library to be searched.

blank This field can be blank only if *CURCHAIN or *CURRENT is specified.

Ending journal receiver name. The ending journal receiver name for which journal entries are to be

retrieved. The possible values are:

64 iSeries: Journal and Commit APIs

*CURRENT The journal receiver that is attached when starting to retrieve journal entries is used. If

*CURRENT is specified, the associated library name field should be blank.

name The name of the last journal receiver that contains entries to be retrieved. If a name is specified,

the ending journal receiver name field must be specified also. If the end of the receiver chain is

reached before a receiver of this name is found, an error message is sent and no journal entry is

retrieved.

blank This field can be blank only if *CURCHAIN or *CURRENT is specified.

Starting journal receiver library. The starting journal receiver library for which journal entries are to be

retrieved. The possible values are:

 *LIBL All libraries in the job’s library list are searched until the first match is found.

*CURLIB The current library for the job is searched. If no library is specified as the current library for the

job, the QGPL library is used.

library The name of the library to be searched.

blank This field can be blank only if *CURCHAIN or *CURRENT is specified.

Starting journal receiver name. The starting journal receiver name for which journal entries are to be

retrieved. The possible values are:

 *CURRENT The journal receiver that is attached when starting to retrieve journal entries is used. If

*CURRENT is specified, the associated library name and ending journal receiver fields should be

blank.

*CURCHAIN The journal receiver chain that includes the journal receiver that is attached when starting to

retrieve journal entries is used. This receiver chain does not cross a break in the chain. If there is a

break in the chain, the receiver range is from the most recent break in the chain through the

receiver that is attached when starting to retrieve journal entries. If *CURCHAIN is specified, the

associated library name and ending journal receiver fields should be blank.

Note: For journal receivers with reset sequence numbers in the chain, the

QjoRetrieveJournalEntries API can return the same journal entries for repeated API calls. To avoid

receiving the same journal entries, change the Starting journal receiver name field to indicate the

next receiver in the chain after the initial call to the API. The reset sequence numbers do not cause

a break in the journal receiver chain, but rather the sequence number is reset to one at the

beginning of a new journal receiver. See the restrictions that discuss the reset sequence number.

name The name of the first journal receiver that contains entries to be retrieved.

RJNE0100 Format

The structure of the information returned is determined by the specified format name. For detailed

descriptions of the fields, see “Field Descriptions” on page 70. The retrieved data is composed of four

different sections as follows:

v A header section. Only one header section is returned per call. See Header (page 66).

v Journal entry sections. These three sections will be repeated for each journal entry retrieved.

– Header section of journal entry. See This journal entry’s header with format RJNE0100 (page 66).

– Null value indicators section of journal entry. This section will be one of the two following formats,

depending on what was specified for the null value indicators key.

- If the user did not specify the null value indicators key or specified null value indicators

length(*VARLEN), see This journal entry’s null value indicators if Null Value Indicators

(*VARLEN) specified (page 67).

- If the user specified null value indicators length(field length), see This journal entry’s null value

indicators if Null Value Indicators (field length) specified (page 67).

Journal and Commit APIs 65

Note: If a null value indicators length of 0 was specified, then this section will not appear in the

journal entry data.
– Entry specific data section of journal entry. See This journal entry’s entry specific data (page 67).

 Header

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Offset to first journal

entry header

8 8 BINARY(4) Number of entries

retrieved

12 C CHAR(1) Continuation handle

This journal entry’s header with format RJNE0100

 Offset

Type Field Dec Hex

0 0 BINARY(4) Displacement to next

journal entry’s header

4 4 BINARY(4) Displacement to this

journal entry’s null

value indicators

8 8 BINARY(4) Displacement to this

journal entry’s entry

specific data

12 C BINARY(4), UNSIGNED Pointer handle

16 10 CHAR(20) Sequence number

36 24 CHAR(1) Journal code

37 25 CHAR(2) Entry type

39 27 CHAR(26) Time stamp

65 41 CHAR(10) Job name

75 4B CHAR(10) User name

85 55 CHAR(6) Job number

91 5B CHAR(10) Program name

101 65 CHAR(30) Object

131 83 CHAR(10) Count/relative record

number

141 8D CHAR(1) Indicator flag

142 8E CHAR(20) Commit cycle

identifier

162 A2 CHAR(10) User profile

172 AC CHAR(8) System name

180 B4 CHAR(10) Journal identifier

190 BE CHAR(1) Referential constraint

191 BF CHAR(1) Trigger

66 iSeries: Journal and Commit APIs

Offset

Type Field Dec Hex

192 C0 CHAR(1) Incomplete data

193 C1 CHAR(1) Object name indicator

194 C2 CHAR(1) Ignore during

APYJRNCHG or

RMVJRNCHG

195 C3 CHAR(1) Minimized entry

specific data

This journal entry’s null value indicators if Null Value Indicators (*VARLEN) specified

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of null value

indicators

4 4 CHAR(*) Null value indicators

This journal entry’s null value indicators if Null Value Indicators (field length) specified

 Offset

Type Field Dec Hex

0 0 CHAR(specified Null value

indicators field length)

Null value indicators

This journal entry’s entry specific data

 Offset

Type Field Dec Hex

0 0 CHAR(5) Length of entry

specific data

5 5 CHAR(11) Reserved

16 16 CHAR(*) Entry specific data

RJNE0200 Format

The structure of the information returned is determined by the specified format name. For detailed

descriptions of the fields, see “Field Descriptions” on page 70. The retrieved data is composed as follows:

v A header section. Only one header section is returned per call. See Header (page 68).

v Journal entry sections. These optional sections will be repeated for each journal entry retrieved.

– Header section of journal entry. See This journal entry’s header with format RJNE0200 (page 68).

– Transaction identifier section of journal entry if the displacement to transaction identifier is not 0.

See the QSYSINC/H.XA header file for the layout of this data.

– Logical unit of work section of journal entry if the displacement to logical unit of work is not 0. See

This journal entry’s Logical unit of work if the displacement to logical unit of work is not 0 (page

70).

Journal and Commit APIs 67

– Receiver information section of journal entry if the displacement to receiver information is not 0. See

This journal entry’s receiver information if the displacement to receiver information is not 0 (page

70).

– Null value indicators section of journal entry if the displacement to null values indicators is not 0.

This section will be one of the two following formats, depending on what was specified for the null

value indicators key

- If the user did not specify the null value indicators key or specified null value indicators

length(*VARLEN), see This journal entry’s null value indicators if Null Value Indicators

(*VARLEN) specified (page 67).

- If the user specified null value indicators length(field length), see This journal entry’s null value

indicators if Null Value Indicators (field length) specified (page 67).

Note: If a null value indicators length of 0 was specified, then this section will not appear in the

journal entry data.
– Entry specific data section of journal entry if the displacement to entry specific data is not 0. See

This journal entry’s entry specific data (page 67).

Header

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Offset to first journal

entry header

8 8 BINARY(4) Number of entries

retrieved

12 C CHAR(1) Continuation

indicator

13 D CHAR(10) Continuation starting

receiver

23 17 CHAR(10) Continuation starting

receiver library

33 21 CHAR(20) Continuation starting

sequence number

53 35 CHAR(11) Reserved

This journal entry’s header with format RJNE0200

 Offset

Type Field Dec Hex

0 0 BINARY(4), UNSIGNED Displacement to next

journal entry’s header

4 4 BINARY(4), UNSIGNED Displacement to this

journal entry’s null

value indicators

8 8 BINARY(4), UNSIGNED Displacement to this

journal entry’s entry

specific data

12 C BINARY(4), UNSIGNED Displacement to this

journal entry’s

transaction identifier

68 iSeries: Journal and Commit APIs

Offset

Type Field Dec Hex

16 10 BINARY(4), UNSIGNED Displacement to this

journal entry’s logical

unit of work

20 14 BINARY(4), UNSIGNED Displacement to this

journal entry’s

receiver information

24 18 BINARY(8), UNSIGNED Sequence number

32 20 BINARY(8), UNSIGNED Unformatted Time

stamp

40 28 BINARY(8), UNSIGNED Thread identifier

48 30 BINARY(8), UNSIGNED System sequence

number

56 38 BINARY(8), UNSIGNED Count/relative record

number

64 40 BINARY(8), UNSIGNED Commit cycle

indentifier

72 48 BINARY(4), UNSIGNED Pointer handle

76 4C BINARY(2), UNSIGNED Remote port

78 4E BINARY(2), UNSIGNED Arm number

80 50 BINARY(2), UNSIGNED Program library ASP

number

82 52 CHAR(16) Remote Address

98 62 CHAR(1) Journal code

99 63 CHAR(2) Entry type

101 65 CHAR(10) Job name

111 6F CHAR(10) User name

121 79 CHAR(6) Job number

127 7F CHAR(10) Program name

137 89 CHAR(10) Program library name

147 93 CHAR(10) Program library ASP

device name

157 9D CHAR(30) Object

187 BB CHAR(10) User profile

197 C5 CHAR(10) Journal identifier

207 CF CHAR(1) Address family

208 D0 CHAR(8) System name

216 D8 CHAR(1) Indicator flag

217 D9 CHAR(1) Object name indicator

218(0) DA(0) BIT(1) Referential constraint

218(1) DA(1) BIT(1) Trigger

218(2) DA(2) BIT(1) Incomplete data

Journal and Commit APIs 69

Offset

Type Field Dec Hex

218(3) DA(3) BIT(1) Ignored during

APYJRNCHG or

RMVJRNCHG

218(4) DA(4) BIT(1) Minimized entry

specific data

218(5) DA(5) BIT(3) Reserved

219 DB CHAR(9) Reserved

This journal entry’s Logical unit of work if the displacement to logical unit of work is not 0

 Offset

Type Field Dec Hex

0 0 CHAR(39) Logical unit of work

This journal entry’s receiver information if the displacement to receiver information is not 0

 Offset

Type Field Dec Hex

0 0 CHAR(10) Receiver name

10 A CHAR(10) Receiver library name

20 14 CHAR(10) Receiver library ASP

device name

30 1E BINARY(2) Receiver library ASP

number

Field Descriptions

Address family. The address family identifies the format of the remote address for this journal entry. If

RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*RMTADR) was not in effect for the journal

when the journal receiver that contains this journal entry was attached, then 0 will be returned for the

address family.

 0 This entry was not associated with any remote address.

4 The format of the remote address is internet protocol version 4.

6 The format of the remote address is internet protocol version 6.

Arm number. The number of the disk arm that contains the journal entry.

Bytes returned. The number of bytes of data returned.

If an error message is returned, other than error messages CPF3CF1, CPF3C90, CPF6948, CPF6949 or

CPF9872, this field should be checked to determine if partial journal entry information has been returned.

Commit cycle identifier. A number that identifies the commit cycle. This is either a Char(20) or Binary(8)

field and if Char(20), it is treated as Zoned(20,0). A commit cycle is from one commit or rollback

operation to another.

70 iSeries: Journal and Commit APIs

The commit cycle identifier is found in every journal entry that is associated with a commitment

transaction. If the journal entry was not made as part of a commitment transaction, this field is zero.

Continuation handle. An indicator for more journal entries available that meet any specified selection

criteria. The possible values are:

 0 All the journal entries that match the search criteria are returned to this structure.

1 There are more journal entries available in the specified receiver range that match the search

criteria, but there is no room available in the return structure. You may request more data by

calling the API again, and by specifying one more than the sequence number of the last journal

entry returned as the starting sequence number on the next API call as long as there has been no

reset of the sequence number within the receiver range.

Note: If an error message was returned and partial journal entry information was returned, this field may

not correctly indicate whether additional journal entries are available.

Continuation indicator. An indicator for more journal entries available that meet the specified selection

criteria. The possible values are:

 0 All the journal entries that match the search criteria are returned to this structure.

1 There are more journal entries available in the specified receiver range that match the search

criteria, but there is no room available in the return structure. You may request more data by

calling the API again, and by specifying the following as part of your selection criteria:

Starting receiver name

Set from the value returned in Continuation starting receiver.

Starting receiver library name

Set from the value returned in Continuation starting receiver library.

Starting sequence number

Set from the value returned in Continuation starting sequence number.

Note: If an error message was returned and partial journal entry information was returned, this field may

not correctly indicate whether additional journal entries are available.

Continuation starting receiver library. When the continuation indicator is 1, then this field will identify

the name of the library that contains the receiver that holds the next journal entry that could be retrieved

with the same selection criteria on a subsequent call to this API. When used in conjunction with the

continuation starting receiver name and the continuation starting sequence number, a subsequent API call

will ensure that no journal entries in the given receiver range will be skipped, irrespective of any reset of

sequence numbers that may have taken place within the given receiver range. When the continuation

indicator is 0, then this field will be blanks.

Continuation starting receiver. When the continuation indicator is 1, then this field will identify the

name of the receiver that holds the next journal entry that could be retrieved with the same selection

criteria on a subsequent call to this API. When used in conjunction with the continuation starting receiver

library name and the continuation starting sequence number, a subsequent API call will ensure that no

journal entries in the given receiver range will be skipped, irrespective of any reset of sequnece numbers

that may have taken place within that receiver range. When the continuation indicator is 0, then this field

will be blanks.

Continuation starting sequence number. When the continuation indicator is 1, then this field will

identify the sequence number of the next journal entry that could be retrieved with the same selection

criteria on a subsequent call to this API. When used in conjunction with the continuation starting receiver

library name and the continuation starting receiver name, a subsequent API call will ensure that no

journal entries in the given receiver range will be skipped, irrespective of any reset of sequnece numbers

Journal and Commit APIs 71

that may have taken place within that receiver range. When the continuation indicator is 0, then this field

will be blanks. This is a Char(20) field that is treated as Zoned(20,0).

Count/relative record number. Contains either the relative record number (RRN) of the record that

caused the journal entry or a count that is pertinent to the specific type of journal entry. See the Journal

Entry Information appendix in the Journal management topic to see specific values for this field, if

applicable. This is either a Char(10) or a unsigned Binary(8) field and if Char(10), it is treated as

Zoned(10,0).

Displacement to next journal entry’s header. The displacement from the start of this journal entry’s

header section to the start of the journal entry header section for the next journal entry.

Displacement to this journal entry’s entry specific data. The displacement from the start of this journal

entry’s header section to the start of the entry specific data section for this journal entry. A value of 0

indicates that this data is not returned for this journal entry.

Displacement to this journal entry’s logical unit of work. The displacement from the start of this journal

entry’s header section to the start of the logical unit of work section for this journal entry. A value of 0

indicates that this data is not returned for this journal entry.

Displacement to this journal entry’s receiver information. The displacement from the start of this

journal entry’s header section to the start of the receiver information section for this journal entry. A value

of 0 indicates that this data is not returned for this journal entry. Journal receiver information is returned

only for the first entry in a buffer and when the receiver information changes from one journal entry to

the next. If no journal receiver information is returned, it can be assumed that the receiver information

from the previous entry will apply to the current journal entry.

Displacement to this journal entry’s null value indicators. The displacement from the start of this

journal entry’s header section to the start of the null value indicators section for this journal entry. A

value of 0 indicates that this data is not returned for this journal entry.

Displacement to this journal entry’s transaction identifier. The displacement from the start of this

journal entry’s header section to the start of the transaction identifier section for this journal entry. A

value of 0 indicates that this data is not returned for this journal entry.

Entry specific data. The entry specific data returned for this journal entry. See the Journal management

topic for the layouts of this information for each journal entry type.

If the incomplete data indicator is on, then this data contains pointers to additional journal entry data.

See “Use of Pointers within Entry Specific Data” on page 78 for a discussion on the use of these pointers.

Entry type. Further identifies the type of user-created or system-created entry. See the Journal Entry

Information in the Journal management topic for descriptions of the entry types.

Ignore during APYJRNCHG or RMVJRNCHG. Whether this entry is ignored during a Apply Journaled

Changes (APYJRNCHG) or Remove Journaled Changed (RMVJRNCHG) command. The possible values

are:

 0 This entry will not be ignored during APYJRNCHG or RMVJRNCHG

1 This entry will be ignored during APYJRNCHG or RMVJRNCHG

Incomplete data. Whether this entry has data that must be additionally retrieved using a pointer

returned for the missing information. See “Use of Pointers within Entry Specific Data” on page 78 for

more information. The possible values are:

72 iSeries: Journal and Commit APIs

0 This entry does not have any pointers included.

1 This entry does have pointers included.

Indicator flag. An indicator for the operation. See the Journal Entry Information appendix in the Journal

management topic to see specific values for this field, if applicable.

Job name. The name of the job that added the entry.

Notes:

1. If RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*JOB) was not in effect for the journal

when the journal receiver that contains this journal entry was attached, then *OMITTED is returned

for the job name.

2. If the journal entry was deposited by a system task that was not associated with a job, then *TDE will

be returned for the job name.

3. If the job name was not available when the journal entry was deposited, then *NONE is returned for

the job name.

Job number. The job number of the job that added the entry.

Notes:

1. If the RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*JOB) was not was in effect for the

journal when the journal receiver that contains the journal entry was attached, then zeros are returned

for the job number.

2. If the journal entry was deposited by a system task that was not associated with a job, then zeros will

be returned for the job number.

3. If the job name was not available when the journal entry was deposited, then zeros are returned for

the job number.

Journal code. The primary category of the journal entry. See the Journal Entry Information section in the

Journal management topic for descriptions of the journal codes.

Journal identifier. The journal identifier (JID) for the object. When journaling is started for an object, the

system assigns a unique JID to that object. The JID remains constant even if the object is renamed or

moved. If journaling is stopped, however, there is no guarantee that the JID will be the same when

journaling is started again for the same object.

If no JID is associated with the entry, this field has hexadecimal zeros.

Length of entry specific data. The length of the entry specific data returned for this journal entry. This

Char(5) field is treated as Zoned(5,0). If the entry specific data includes any pointers to additional data,

the length of that additional data in not included in this value. See “Use of Pointers within Entry Specific

Data” on page 78 for more information.

Length of null value indicators. The length of the null value indicators returned for this journal entry.

Logical unit of work. The logical unit of work identifies entries to be associated with a given unit of

work, usually within a commit cycle. If RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*LUW)

was not in effect for the journal when the journal receiver that contains this journal entry was attached,

then no logical unit of work will be returned for this entry and the displacement to to this entry’s logical

unit of work will be 0.

Minimized entry specific data. Whether this entry has minimized entry specific data as a result of the

journal having specified MINENTDTA for the object type of the entry. The possible values are:

Journal and Commit APIs 73

0 This entry has complete entry specific data.

1 This entry has minimized entry specific data.

Null value indicators. The null value indicators returned for this journal entry.

Number of entries retrieved. The number of journal entries that were retrieved.

If an error message is returned, other than error messages CPF3CF1, CPF3C90, CPF6948, CPF6949 or

CPF9872, a non-zero bytes returned field will reflect how much data was returned prior to the sending of

the error message.

Object. The name of the object for which the journal entry was added. If the entry is not associated with

a journaled object, this field is blank.

If the object associated with the journal entry is a file object the format of this field is:

 Char(10) File name

Char(10) File library name

Char(10) Member name

Note: If the journal receiver was attached prior to installing V4R2M0 on your system, the following items

are true:

v If *ALLFILE is specified for the file key, then the fully qualified name is the most recent name of the

file when the newest receiver in the receiver range was the attached receiver and when the file was still

being journaled.

v If a file name is specified or if library *ALL is specified on the file key, the current fully qualified name

of the file appears in the retrieved journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the fully

qualified name is the name of the object at the time the journal entry was deposited.

If the object associated with the journal entry is an integrated file system object, the format of this field is:

 Char(16) File identifier

Char(14) Blanks

For all other entries associated with journaled objects, the format of this information is:

 Char(10) Object name

Char(10) Object library name

Char(10) Blanks

Object name indicator. An indicator with respect to the information in the object field. The valid values

are:

 0 Either the journal entry has no object information or the object information in the journal entry

header does not necessarily reflect the name of the object at the time the journal entry was

deposited into the journal.

Note: This value is returned only when retrieving journal entries from a journal receiver that was

attached to a journal prior to V4R2M0.

1 The object information in the journal entry header reflects the name of the object at the time the

journal entry was deposited into the journal.

74 iSeries: Journal and Commit APIs

2 The object information in the journal entry header does not necessarily reflect the name of the

object at the time the journal entry was deposited into the journal. The object information may be

returned as a previously known name for the object prior to the journal entry being deposited into

the journal or be returned as *UNKNOWN.

Note: This value will be returned only when retrieving journal entries from a remote journal and

the remote journal is currently being caught up from its source journal. A remote journal is being

caught up from its source journal when the Change Remote Journal (CHGRMTJRN) command or

Change Journal State (QjoChangeJournalState) API is called and is currently replicating journal

entries to the remote journal. After the call to the CHGRMTJRN command or

QjoChangeJournalState API returns, the remote journal is maintained with a synchronous or

asynchronous delivery mode, and the remote journal is no longer being caught up.

Offset to first journal entry header. The offset from the start of the format to the journal entry header

section for the first journal entry that is retrieved. If no entries are retrieved, this value is 0.

Pointer handle. If the entry specific data returned for this journal entry returned any pointers, this is the

handle associated with those pointers. Otherwise, it is 0.

See “Use of Pointers within Entry Specific Data” on page 78 for a discussion on the use of these pointers

and what you must do with this pointer handle.

Program library ASP device name. The name of the ASP device that contains the program.

Notes:

1. If the program library ASP is not an independant ASP, then *SYSBAS will be returned for the program

library ASP device name.

2. If the program library ASP device name was not available when the journal entry was deposited, or if

RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*PGMLIB) was not in effect for the journal

when the journal receiver that contains this journal entry was attached, then *OMITTED is returned

for the program library ASP device name.

Program library ASP number. The number for the auxilliary storage pool that contains the program that

added the journal entry. If RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*PGMLIB) was not in

effect for the journal when the journal receiver that contains this journal entry was attached, then Hex 0

will be returned for program ASP number.

Program library name. The name of the library that contains the program that added the journal entry. If

RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*PGMLIB) was not in effect for the journal

when the journal receiver that contains this journal entry was attached, then *OMITTED will be returned

for the program library name.

Program name. The name of the program that added the entry. If an application or CL program did not

add the entry, the field contains the name of a system-supplied program such as QCMD or

QPGMMENU. If the program name is the special value *NONE, then one of the following is true:

v The program name does not apply to this journal entry.

v The program name was not available when the journal entry was made. For example, the program

name is not available if the program was destroyed.

If the program that deposited the journal entry is an original program model program, this data will be

complete. Otherwise, this data is unpredictable.

If RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*PGM) was not in effect for the journal when

the journal receiver that contains this journal entry was attached, *OMITTED is returned as the program

name.

Journal and Commit APIs 75

Receiver library ASP device name. The name of the ASP device that contains the receiver.

Notes:

1. If the receiver library ASP is not an independant ASP, then *SYSBAS will be returned for the receiver

library ASP device name.

2. If the receiver library ASP device name was not available when the journal entry was deposited, then

*OMITTED is returned for the receiver library ASP device name.

Receiver library ASP number. The number for the auxilliary storage pool containing the receiver holding

the journal entry.

Receiver library name. The name of the library containing the receiver holding the journal entry.

Receiver name. The name of the receiver holding the journal entry.

Referential constraint. Whether this entry was recorded for actions that occurred on records that are part

of a referential constraint.

 0 This entry was not created as part of a referential constraint.

1 This entry was created as part of a referential constraint.

Remote address. The remote address associated with the journal entry. The format of the address is

dependent on the value of the address family for this journal entry. If RCVSIZOPT(*MINFIXLEN) was in

effect or FIXLENDTA(*RMTADR) was not in effect for the journal when the journal receiver that contains

this journal entry was attached, then Hex 0 will be returned for remote address.

Remote port. The port number of the remote address associate with this journal entry. If

RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*RMTADR) was not in effect for the journal

when the journal receiver that contains this journal entry was attached, then Hex 0 will be returned for

remote port.

Reserved. Reserved area. It always contains hexadecimal zeros.

Sequence number. A number assigned by the system to each journal entry. This is either a Char(20) or

Binary(8) field and if Char(20), it is treated as Zoned(20,0). It is initially set to 1 for each new or restored

journal and is incremented until you request that it be reset when you attach a new receiver. There are

occasional gaps in the sequence numbers because the system uses internal journal entries for control

purposes. These gaps occur if you use commitment control, journal physical files, or journal access paths.

System name. The name of the system on which the entry is being retrieved, if the journal receiver was

attached prior to installing V4R2M0 on the system. If the journal receiver was attached while the system

was running V4R2M0 or a later release, the system name is the system where the journal entry was

actually deposited.

System sequence number. The system sequence number indicates the relative sequence of when this

journal entry was deposited into the journal. The system sequence number could be used to sequentially

order journal entries that are in separate journal receivers. If RCVSIZOPT(*MINFIXLEN) was in effect or

FIXLENDTA(*SYSSEQ) was not in effect for the journal when the journal receiver that contains this

journal entry was attached, then Hex 0 will be returned for the system sequence number.

Thread identifier. Identifies the thread within the process that added the journal entry. If

RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*THD) was not in effect for the journal when

the journal receiver that contains this journal entry was attached, then hex 0 will be returned for the

thread identifier.

76 iSeries: Journal and Commit APIs

Time stamp. The system date and time when the journal entry was added to the journal receiver. The

time stamp is in the format

YYYY-MM-DD-HH.MM.SS.UUUUUU where

 YYYY Year

MM Month

DD Day

HH Hours

MM Minutes

SS Seconds

UUUUUU Microseconds

The system cannot assure that the time stamp is always in ascending order for sequential journal entries

because the value of the system time could have been changed.

Note: If the system value QLEAPADJ (Leap year adjustment) is zero, then the result returned will be in 1

microsecond granularity. If the system value QLEAPADJ is greater than zero, then the result returned will

be in 8 microsecond granularity.

Transaction identifier. See the QSYSINC/H.XA header file for the layout of this data. If

RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*XID) was not in effect for the journal when the

journal receiver that contains the journal entry was attached, then the displacement to transaction

identifier will be 0 and no transaction identifier will be returned.

Trigger. Whether this entry was created as result of a trigger program.

 0 This entry was not created as the result of a trigger program.

1 This entry was created as the result of a trigger program.

Unformatted time stamp. The system date and time when the journal entry was added to the journal

receiver. The time stamp is in machine readable format and can be used as input to a time conversion

api, which will covert it to a human readable format.

User name. The user profile name of the user that started the job.

Notes:

1. If RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*JOB) was not in effect for the journal

when the journal receiver that contains the journal entry was attached, then blanks are returned for

the user name.

2. If the job name was not available when the journal entry was deposited, then blanks are returned for

the user name.

User profile. The name of the effective user profile under which the job was running when the entry was

created.

Notes:

1. If RCVSIZOPT(*MINFIXLEN) was in effect or FIXLENDTA(*JOB) was not in effect for the journal

when the journal receiver that contains this journal entry was attached, *OMITTED is returned for the

effective user profile.

Journal and Commit APIs 77

2. If the journal entry was deposited by a system task that was not associated with a job, then a

character representation of the task description entry number will be returned for the user profile.

Use of Pointers within Entry Specific Data

There are some journal entries that require additional handling of the journal receiver entry specific data

using pointers. This was done to minimize movement of large amounts of data and to facilitate support

of tables or database files with large object (LOB) fields. The types of entries that may require pointer

support are:

v Any operations on specific records or files (journal code R or F) of tables or database files that include

any fields of data type BLOB (binary large object), CLOB (character large object), or DBCLOB

(double-byte character large object). See the DB2 UDB for iSeries SQL Programming Concepts and DB2

UDB for iSeries SQL Reference books for more information on these data types.

v Operations related to byte stream file write operations, Journal Code B, Entry type WA. See the

Integrated file system information for more information about these journal entries.

v Operations related to data queue send operations, Journal Code Q, Entry types QK and QS. See the

Journal management topic for more information on these journal entries.

v Any operations on specific records or files (journal code R or F) of tables or database files resulting in

minimized entry specific data when the journal has MINENTDTA specified for the corresponding

object type. See the Journal management topic for restrictions and usage of journal entries with

minimized entry specific data.

If the incomplete data indicator is returned as a 1, then that indicates that the journal-entry specific data

includes a pointer to additional data. Additionally, a pointer handle will be returned with the journal

entry. This handle is associated with any allocations required to support the pointer processing.

The pointer must be used by the same process that called this API; it cannot be stored and used by a

different process. The pointer can be used for read access only. See the Journal management topic for

descriptions of the entry types that may include pointer data. The pointer can be used in the following

way:

v It can be used directly to copy the data addressed to some other storage space.

v If the journal entry is a record entry (journal code R), the journal-entry specific data could be used for

an update or insert operation to the database file through SQL. See the DB2 UDB for iSeries SQL

Reference book for more information.

The pointer handles will be implicitly deleted when the process that requested the journal entries is

ended.

These pointers can be used only with the V4R4M0 or later versions of the following languages:

v ILE COBOL

v ILE RPG

v ILE C if the TERASPACE parameter is used when compiling the program. See the WebSphere

Development Studio: ILE C/C++ Programmer’s Guide

book for more information.

Once the pointer data is used, you must delete the pointer handle to free the handle and any allocations

associated with that handle. This can be done by using the “Delete Pointer Handle

(QjoDeletePointerHandle) API” on page 35 (QjoDeletePointerHandle) API. If the handles are not deleted,

the maximum number allowed can be reached, which will prevent further retrieval of journal entries. The

deletion must occur from the same process that called the Retrieve Journal Entries

(QjoRetrieveJournalEntries) API.

78 iSeries: Journal and Commit APIs

Even if the journal entry data is not used, all pointer handles returned to the user through this interface

should be deleted. This is also true when partial journal entry information is returned, even though an

error message was returned.

Note: No system function will prevent the deletion of journal receivers that may have outstanding

pointer handles. If you want to prevent the journal receivers from being deleted prior to your use of the

pointers, you may want to consider using the “Delete Journal Receiver Exit Program” on page 145 exit

point, QIBM_QJO_DLT_JRNRCV.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C88 E Number of variable length records &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF694A E Number of fields &1 for key &2 is not valid.

CPF694B E Length &1 of variable record for key &2 not valid.

CPF694C E Variable length record data for key &1 not valid.

CPF6946 E Number &1 specified for key &2 not valid.

CPF6948 E Length of the receiver variable &1 is not valid.

CPF6949 E Pointer to a receiver variable is not valid.

CPD7061 E FROMENT and FROMTIME parameters cannot be used together.

CPD7062 E TOENT and TOTIME parameters cannot be used together.

CPD7076 E Value specified for JRNCDE not valid.

CPD7078 E Duplicate journal code not valid.

CPF7002 E File &1 in library &2 not a physical file.

CPF7006 E Member &3 not found in file &1 in &2.

CPF7007 E Cannot allocate member &3 file &1 in &2.

CPF701B E Journal recovery of interrupted operation failed.

CPF705C E INCENT(*ALL) not allowed for a local journal.

CPF7053 E Values for RCVRNG parameter not correct; reason code &1.

CPF7054 E FROM and TO values not valid.

CPF7055 E Maximum number of files and members exceeded.

CPF7057 E *LIBL not allowed with FILE(*ALL).

CPF706A E Significant null value indicator truncated.

CPF7060 E File &1 member &5 never journaled to journal &3.

CPF7061 E Conversion of journal entries failed.

CPF7062 E No entries converted or received from journal &1.

CPF7065 E Entry type (ENTTYP) not valid for journal code (JRNCDE).

CPF7074 E RCVRNG for specified SEARCH not valid.

CPF708D E Journal receiver found logically damaged.

CPF709C E JOB, PGM, and USRPRF not valid for receiver range.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9809 E Library &1 cannot be accessed.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9822 E Not authorized to file &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Journal and Commit APIs 79

Example

See Code disclaimer information for information pertaining to code examples.

The following example retrieves one journal entry based on four keys that we will pass in the Variable

Length Record structure.

/**/

/* Setup instructions: */

/* CRTLIB RJESAMPLE */

/* CRTJRNRCV JRNRCV(RJESAMPLE/R1) */

/* CRTJRN JRN(RJESAMPLE/J1) JRNRCV(RJESAMPLE/R1) */

/* CRTPF FILE(RJESAMPLE/F1) RCDLEN(12) */

/* STRJRNPF FILE(RJESAMPLE/F1) JRN(RJESAMPLE/J1) IMAGES(*BOTH) */

/* Create some journal entries: */

/* STRSQL */

/* INSERT INTO RJESAMPLE/F1 VALUES (’REC1’) */

/* INSERT INTO RJESAMPLE/F1 VALUES (’REC2’) */

/* INSERT INTO RJESAMPLE/F1 VALUES (’REC3’) */

/* DELETE FROM RJESAMPLE/F1 WHERE F1 = ’REC2’ */

/* F3 to exit, then ENTER */

/* */

/* In this example, we are only going to retrieve one journal entry. */

/* When you retrieve more than one, you can just increase the size */

/* of the receiver variable and then work through the data using the */

/* displacement values returned in the structure. All of the */

/* structures used here are based on structures defined or are */

/* structures defined in QSYSINC/QJOURNAL. */

/**/

/* Some include files we will need */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <ctype.h>

#include <qusec.h>

#include <qmhsndpm.h>

#include <qjournal.h>

/* Some constants we should define */

#define LIB “RJESAMPLE ”

#define JRN “J1 ”

#define RCV “R1 ”

#define FILE “F1 ”

#define SEQ “00000000000000000014”

/* These are declares for the Variable Length Record structure

 for the keys */

typedef _Packed struct

{

 Qjo_JE_Fmt_Var_Len_Rcrd_t base_structure;

 Qjo_JE_Data_t Data[9004];

} Qjo_JE_Fmt_Var_Len_Rcrd_varlen_t;

typedef _Packed struct

{

 Qjo_JE_Jrn_Info_Retrieve_t base_structure;

 Qjo_JE_Fmt_Var_Len_Rcrd_varlen_t Fmt_Var_Len_Rcrd[4];

} Qjo_JE_Jrn_Info_Retrieve_varlen_t;

/* Function prototypes */

void buildKey1(Qjo_JE_Data_Key_1_t*);

void buildKey2(Qjo_JE_Data_Key_2_t*);

void buildKey4(Qjo_JE_Data_Key_4_t*);

void buildKey6(Qjo_JE_Data_Key_6_t*);

void copyKeysToVLR(Qjo_JE_Data_Key_1_t*, Qjo_JE_Data_Key_2_t*,

80 iSeries: Journal and Commit APIs

aboutapis.htm#CODEDISCLAIMER

Qjo_JE_Data_Key_4_t*, Qjo_JE_Data_Key_6_t*,

 Qjo_JE_Jrn_Info_Retrieve_varlen_t*);

void printEntryInfo(Qjo_RJNE0100_Hdr_t*);

void sendMsg(int, char*);

const short VLRSize = sizeof(Qjo_JE_Fmt_Var_Len_Rcrd_varlen_t);

void main()

{

 /* declare the key structures - we will input keys 1, 2, 4, and 6 */

 Qjo_JE_Data_Key_1_t key1;

 Qjo_JE_Data_Key_2_t key2;

 Qjo_JE_Data_Key_4_t key4;

 Qjo_JE_Data_Key_6_t key6;

 /* declare the structure that will hold the keys */

 Qjo_JE_Jrn_Info_Retrieve_varlen_t infoRetrieve;

 /* Misc variables */

 char qualJrnName[20];

 Qus_EC_t *errCode;

 char errorbuffer[17];

 long int lenRcvVar = 2048;

 /* declare the header structure for format RJNE0100 */

 Qjo_RJNE0100_Hdr_t *rjne0100Hdr;

 /* build the key structures */

 buildKey1(&key1);

 buildKey2(&key2);

 buildKey4(&key4);

 buildKey6(&key6);

 /* Copy the key structures into Format variable length records */

 memset(&(infoRetrieve), 0x00,

 sizeof(Qjo_JE_Jrn_Info_Retrieve_varlen_t));

 infoRetrieve.base_structure.Num_Var_Len_Rcrds = 0;

 copyKeysToVLR(&key1, &key2, &key4, &key6, &infoRetrieve);

 /* Set up the qualified journal name */

 memcpy(qualJrnName, JRN, sizeof(JRN));

 memcpy(qualJrnName+10, LIB, sizeof(LIB));

 /* Tell the error code structure we want data returned to the

 job log */

 errCode = (Qus_EC_t *) errorbuffer;

 errCode->Bytes_Provided = 0;

 /* Allocate the receiver space */

 if((rjne0100Hdr = (Qjo_RJNE0100_Hdr_t *) malloc(lenRcvVar)) != NULL)

 {

 rjne0100Hdr->Bytes_Returned = 0;

 /* Call the API */

 QjoRetrieveJournalEntries(rjne0100Hdr,

 &lenRcvVar,

 qualJrnName,

 “RJNE0100”,

 &infoRetrieve,

 errCode);

 /* Display the entry information returned (send to job log) */

 printEntryInfo(rjne0100Hdr);

 free(rjne0100Hdr);

 }

 /* That’s it :) */

Journal and Commit APIs 81

}

void buildKey1(Qjo_JE_Data_Key_1_t *key1)

{

 /* Initialize to all blanks */

 memset(key1, ’ ’, sizeof(Qjo_JE_Data_Key_1_t));

 /* We will use R1 as both the starting and ending receiver */

 /* Do the starting receiver and receiver lib first */

 memcpy(&(key1->Receiver_Range.Starting_Jrn_Rcv_Name),

 RCV, sizeof(Qjo_Jrn_Rcv_Name_t));

 memcpy(&(key1->Receiver_Range.Starting_Jrn_Rcv_Lib_Name),

 LIB, sizeof(Qjo_Jrn_Rcv_Lib_Name_t));

 /* Then do the ending receiver and receiver lib */

 memcpy(&(key1->Receiver_Range.Ending_Jrn_Rcv_Name),

 RCV, sizeof(Qjo_Jrn_Rcv_Name_t));

 memcpy(&(key1->Receiver_Range.Ending_Jrn_Rcv_Lib_Name),

 LIB, sizeof(Qjo_Jrn_Rcv_Lib_Name_t));

}

void buildKey2(Qjo_JE_Data_Key_2_t *key2)

{

 /* We will look for the sequence number of the delete entry (R DL).

 On a V5R2 system, that is journal sequence number 14 based on

 the instructions above. Starting seq num is 14. */

 /* Initialize key2 structure to NULL */

 memset(key2, 0x00, sizeof(Qjo_JE_Data_Key_2_t));

 memcpy(&(key2->Starting_Seq_Num), SEQ, sizeof(Qjo_Seq_Num_t));

}

void buildKey4(Qjo_JE_Data_Key_4_t *key4)

{

 /* We will look for the sequence number of the delete entry (R DL).

 On a V5R2 system, that is journal sequence number 14 based on

 the instructions above. Ending seq num is 14. */

 /* Initialize key4 structure to NULL */

 memset(key4, 0x00, sizeof(Qjo_JE_Data_Key_4_t));

 memcpy(&(key4->Ending_Seq_Num), SEQ, sizeof(Qjo_Seq_Num_t));

}

void buildKey6(Qjo_JE_Data_Key_6_t *key6)

{

 /* Initialize key6 to NULL */

 memset(key6, 0x00, sizeof(Qjo_JE_Data_Key_6_t));

 /* We will only look for one entry - the R DL entry */

 key6->Number_Entries = 1;

}

void copyKeysToVLR(Qjo_JE_Data_Key_1_t *key1, Qjo_JE_Data_Key_2_t *key2,

 Qjo_JE_Data_Key_4_t *key4, Qjo_JE_Data_Key_6_t *key6,

 Qjo_JE_Jrn_Info_Retrieve_varlen_t *infoRetrieve)

{

 short i = infoRetrieve->base_structure.Num_Var_Len_Rcrds;

 /* Key 1 copy */

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Len_Var_Len_Rcrd

 = VLRSize;

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Key = 1;

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Len_Of_Data =

 sizeof(Qjo_JE_Data_Key_1_t);

 memcpy(&(infoRetrieve->Fmt_Var_Len_Rcrd[i].Data),

 key1, sizeof(Qjo_JE_Data_Key_1_t));

82 iSeries: Journal and Commit APIs

infoRetrieve->base_structure.Num_Var_Len_Rcrds++;

 i++;

 /* Key 2 copy */

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Len_Var_Len_Rcrd

 = VLRSize;

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Key = 2;

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Len_Of_Data =

 sizeof(Qjo_JE_Data_Key_2_t);

 memcpy(&(infoRetrieve->Fmt_Var_Len_Rcrd[i].Data),

 key2, sizeof(Qjo_JE_Data_Key_2_t));

 infoRetrieve->base_structure.Num_Var_Len_Rcrds++;

 i++;

 /* Key 4 copy */

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Len_Var_Len_Rcrd

 = VLRSize;

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Key = 4;

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Len_Of_Data =

 sizeof(Qjo_JE_Data_Key_4_t);

 memcpy(&(infoRetrieve->Fmt_Var_Len_Rcrd[i].Data),

 key4, sizeof(Qjo_JE_Data_Key_4_t));

 infoRetrieve->base_structure.Num_Var_Len_Rcrds++;

 i++;

 /* Key 6 copy */

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Len_Var_Len_Rcrd

 = VLRSize;

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Key = 6;

 infoRetrieve->Fmt_Var_Len_Rcrd[i].base_structure.Len_Of_Data =

 sizeof(Qjo_JE_Data_Key_6_t);

 memcpy(&(infoRetrieve->Fmt_Var_Len_Rcrd[i].Data),

 key6, sizeof(Qjo_JE_Data_Key_6_t));

 infoRetrieve->base_structure.Num_Var_Len_Rcrds++;

}

void printEntryInfo(Qjo_RJNE0100_Hdr_t *rjne0100Hdr)

{

 char msg[50];

 Qjo_RJNE0100_JE_Hdr_t *entry_ptr;

 /* get a pointer to the entry */

 entry_ptr = (Qjo_RJNE0100_JE_Hdr_t *)((char *)rjne0100Hdr +

 rjne0100Hdr->Offset_First_Jrn_Entry);

 /* Access the data of interest - we will just print the header,

 sequence number, journal code, and entry type to ensure

 we got the R DL entry */

 memset(msg, ’ ’, sizeof(msg));

 sprintf(msg, “JH:Bytes Rtrnd:%d\n”, rjne0100Hdr->Bytes_Returned);

 sendMsg(sizeof(msg), msg);

 memset(msg, ’ ’,sizeof(msg));

 sprintf(msg, “JH:Dsp to 1st JEH:%d\n”,

 rjne0100Hdr->Offset_First_Jrn_Entry);

 sendMsg(sizeof(msg), msg);

 memset(msg, ’ ’,sizeof(msg));

 sprintf(msg, “JH:Num ent rtrv:%d\n”,

 rjne0100Hdr->Number_Entries_Retreived);

 sendMsg(sizeof(msg), msg);

 memset(msg, ’ ’,sizeof(msg));

 sprintf(msg, “JH:Cont Hndl:%1.1s\n”,

 (char *)&rjne0100Hdr->Continuation_Handle);

 sendMsg(sizeof(msg), msg);

Journal and Commit APIs 83

memset(msg, ’ ’,sizeof(msg));

 sprintf(msg, “Seq #:%-20.20s\n”, entry_ptr->Seq_Number);

 sendMsg(sizeof(msg), msg);

 memset(msg, ’ ’,sizeof(msg));

 sprintf(msg, “Jrn code:%1.1s\n”, (char *)&entry_ptr->Jrn_Code);

 sendMsg(sizeof(msg), msg);

 memset(msg, ’ ’,sizeof(msg));

 sprintf(msg, “Entry type:%-2.2s\n”, entry_ptr->Entry_Type);

 sendMsg(sizeof(msg), msg);

}

void sendMsg(int length, char *message)

{

 char msgid[8] = “CPF9897”;

 char path[21] = “QCPFMSG *LIBL ”;

 char msgtype[11] = “*INFO ”;

 char callstcken[11] = “* ”;

 int callstckco = 1;

 char msgkey[5] = “ ”;

 Qus_EC_t *errCode;

 char errorbuffer[512];

 errCode = (Qus_EC_t *) errorbuffer;

 errCode->Bytes_Provided = 0;

 QMHSNDPM(msgid, path, message, length,

 msgtype, callstcken, callstckco, msgkey,

 errCode);

}

API introduced: V4R4

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

84 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Retrieve Journal Identifier Information (QJORJIDI) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Qualified journal name

Input Char(20)

4 Journal identifier value

Input Char(10)

5 Format name

Input Char(8)

6 Error Code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Journal Identifier Information (QJORJIDI) API retrieves the current name and type of the

object associated with the specified journal identifier (JID) for the specified journal. A JID is unique; it is

assigned to a particular object when journaling is started for the object. The JID associates the journal

entries with a particular object. See “Maintaining a JID for a Journaled Object” on page 86 for more

information about how the system maintains a JID value for a journaled object.

This API retrieves the object name and type associated with a particular JID if:

v The specified JID is associated with an object that is journaled to the specified journal.

v The specified JID is associated with an object that was journaled to the specified journal, but the object

has since been deleted and a change journal operation1 has not yet attached a new receiver.

v The specified JID is associated with an object that was journaled to the specified journal, but journaling

has since been ended for the object and a change journal operation1 has not yet attached a new

receiver. This is true even if the object is currently journaled to a different journal than the one

specified.

This API cannot retrieve an object name for a specified JID if:

v The specified JID was never associated with an object journaled to the specified journal.

v The specified JID is associated with an object that was journaled to the specified journal, but the object

has since been deleted and a change journal operation has attached a new receiver.

v The specified JID is associated with an object that was journaled to the specified journal, but journaling

has since been ended for the object and a change journal operation has attached a new receiver.

Note: The change journal operation can be a user initiated Change Journal (CHGJRN) command or from

system change-journal management support. System change-journal management support is activated by

a Create Journal (CRTJRN) or Change Journal (CHGJRN) command with the MNGRCV(*SYSTEM)

parameter and value.

Journal and Commit APIs 85

If an object name or file identifier cannot be retrieved, blanks are returned for the object name, library

name, member name, type, and object file identifier.

The JID for the object associated with a particular journal entry is in the fixed-length portion of the

journal entry when specifying:

v OUTPUT(*OUTFILE) and OUTFILFMT(*TYPE4) on the Display Journal (DSPJRN) command.

v ENTFMT(*TYPE4 or *TYPEPTR) on the Receive Journal Entry (RCVJRNE) command.

v ENTFMT(*TYPE4) on the Retrieve Journal Entry (RTVJRNE) command.

1 The change journal operation can be a user-initiated Change Journal (CHGJRN) command or from

system change-journal management support. System change-journal management support is activated by

a Create Journal (CRTJRN) or Change Journal (CHGJRN) command with the MNGRCV(*SYSTEM)

parameter and value.

Maintaining a JID for a Journaled Object

The following are the system rules for maintaining a JID for a journaled object:

v A JID is assigned for a journaled object when journaling is first started for the object. For example,

when journaling is started for a database file with a single member, a JID value is assigned to the data

portion of the member. If two members exist in the file, a different JID is assigned to the data portion

for each member.

v The JID remains the same for the journaled object if:

– The object is moved to a different library.

– The object is renamed.

– Journaling is ended for the object, and then started again to either the same journal or to a different

journal.

– The object is saved while being journaled, deleted from the system, and then restored from the

saved version. This is true whether the object is being restored to the original system from which it

was saved or to a different system, as long as the same version of the object does not already exist

on that system.
v The JID does not remain the same for the journaled object if:

– The object is deleted, and then created again. When journaling is started for the newly created

object, a new JID is assigned.

– The object is saved while being journaled, then renamed or moved to another library, and then the

object is restored using the saved version. The restored version will be assigned a new JID because

the original JID for the object is currently assigned to the original object that was renamed or moved

to a different library.

See the Journal management topic for more information about what object types are associated with the

various types of journal entries.

Restrictions

v The specified journal cannot be a remote journal.

Authorities and Locks

Journal Authority

*USE, *OBJEXIST

Journal Library Authority

*EXECUTE

86 iSeries: Journal and Commit APIs

Currently Attached Receiver Authority

*USE

Currently Attached Receiver Library Authority

*EXECUTE

Journal Lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the information requested. You can specify the size of the

area smaller than the format requested as long as you specify the length of receiver variable

parameter correctly. As a result, the API returns only the data the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. The length must be at least 8 bytes. If the variable is not long

enough to hold the information, the data is truncated. If the length is larger than the size of the

receiver variable, the results beyond the length of the largest format are not predictable.

Qualified journal name

INPUT; CHAR(20)

 The name of the journal that is to be used when retrieving the JID information and the library in

which it resides. The first 10 characters contain the journal name and the second 10 characters

contain the library name. The special values supported for the library name are:

 *LIBL Library list

*CURLIB Current library

Journal identifier (JID) value

INPUT; CHAR(10)

 The journal identifier (JID) value that is to be used for the retrieve operation. Information will be

retrieved based on this JID value.

Format name

INPUT; CHAR(8)

 The format name RJID0100 is the only valid format name used bythis API. For more information,

see “RJID0100 Format.”

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RJID0100 Format

The structure of the information returned is determined by the specified format name. For detailed

descriptions of the fields, see “Field Descriptions” on page 88.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

Journal and Commit APIs 87

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Journal name

18 12 CHAR(10) Journal library name

28 1C CHAR(10) Journal identifier (JID) value

38 26 CHAR(10) Object name

48 30 CHAR(10) Object library name

58 3A CHAR(10) Member name

68 44 CHAR(10) Object type

78 4E CHAR(16) Object file identifier

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Journal identifier (JID) value. The JID value used to retrieve the object name, object library name,

member name, and object type.

Journal library name. The name of the library for the journal. If *LIBL or *CURLIB was specified as

input, then this field will contain the actual library name for the journal.

Journal name. The name of the journal.

Member name. If the object type is *QDDS or *QDDSI, then this field contains the member name.

Otherwise, this field is returned as blanks.

Object file identifier. The file identifier of the object associated with the specified JID value. If the object

name could not be retrieved for the specified JID value, then this field is returned as blanks. File

identifiers are unique identifiers associated with integrated file system related objects.

If the object type is not *DIR, *STMF, or *SYMLNK, then this field is returned as blanks.

Object library name. The name of the library for the object associated with the specified JID value. If the

object name could not be retrieved for the specified JID value, then this field is returned as blanks.

If the object type is *DIR, *STMF, or *SYMLNK, then this field is returned as blanks.

Object name. The name of the object associated with the specified JID value. If the object name could not

be retrieved for the specified JID value, then this field is returned as blanks.

If the object type is *DIR, *STMF, or *SYMLNK, then this field is returned as blanks.

Object type. The type of the object associated with the specified JID value. If the object name could not

be retrieved for the specified JID value, then this field is returned as blanks. The following lists the valid

object types that can be retrieved for a specified JID value:

 *DIR Integrated file system directory

*DTAARA Data area

88 iSeries: Journal and Commit APIs

*DTAQ Data queue

*FILE Data base file

*JRNRCV Journal receiver

*QDDS Data portion of a database member

*QDDSI Access path for a database member

*STMF Integrated file system byte stream file

*SYMLNK Integrated file system symbolic link

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF6958 E No attached receiver can be used.

CPF701B E Journal recovery of interrupted operation failed.

CPF705A E Operation failed due to remote journal.

CPF708D E Journal receiver found logically damaged.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Journal and Commit APIs 89

#TOP_OF_PAGE
aplist.htm

Retrieve Journal Information (QjoRetrieveJournalInformation) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Qualified journal name

Input Char(20)

4 Format name

Input Char(8)

5 Journal information to retrieve

Input Char(*)
 Omissible Parameter:

6 Error Code

I/O Char(*)

 Service Program Name: QJOURNAL

 Header File: QSYSINC/H.QJOURNAL

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Journal Information (QjoRetrieveJournalInformation) API provides access to journal-related

information to help manage a journal environment, including a remote journal environment.

Various types of journal information are provided by the API. General information, similar to information

reported by using the Work with Journal Attributes (WRKJRNA) CL command, and additional

information are contained in the header section. If requested, information is provided for the journal

receiver directory, journaled objects, and remote journals.

Authorities and Locks

Journal Authority

*OBJOPR and some data authority other than *EXECUTE

Journal Library Authority

*EXECUTE

Service Program Authority

*EXECUTE

90 iSeries: Journal and Commit APIs

Journal Lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the information requested. You can specify the size of the

area smaller than the format requested as long as you specify the length of receiver variable

parameter correctly. As a result, the API returns only the data the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Qualified journal name

INPUT; CHAR(20)

 The name of the journal and its library from which the journal attributes and information are to

be retrieved. The first 10 characters contain the journal name, and the second 10 characters

contain the library name. The special values supported for the library name follow:

 *LIBL Library list

*CURLIB Current library

Format name

INPUT; CHAR(8)

 The format RJRN0100 is the only supported format that is used by this API. For more

information, see “RJRN0100 Format” on page 93.

Journal information to retrieve

INPUT; CHAR(*)

 Information to be retrieved that is associated with the journal. The information must be in the

following format:

Number of variable length records

BINARY(4)

 The total number of all of the variable length records. If this field is zero, no variable

length records are processed, and no key information will be retrieved.

Variable length records

CHAR(*)

 The types of information that should be retrieved. For the specific format of the variable

length record, see “Format for Variable Length Record” on page 92.

Omissible Parameter

Error code

I/O; CHAR(*)

Journal and Commit APIs 91

The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Format for Variable Length Record

The following table defines the format for the variable length records.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of variable

length record

4 4 BINARY(4) Key

8 8 BINARY(4) Length of data

12 C CHAR(*) Data

If the length of the data is longer than the key field’s data length, the data will be truncated at the right.

If the length of the data is shorter than the key field’s data length and the key contains binary data, an

error message is issued. If the key does not contain binary data, the field is padded with blanks.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value

for that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Data. The data that is used to determine how the journal information should be retrieved. All values are

validity checked.

Key. Identifies specific information to be retrieved about the journal. See “Keys” for the list of valid keys.

Length of data. The length of the key information.

Length of variable length record. The length of the variable length record. This field is used to get the

addressability of the next variable length record.

Keys

The following table lists the valid keys for the key field area of the variable length record.

 Key Input Type Field

1 N/A Journal receiver directory information

2 CHAR(10) Journaled object information

3 CHAR(38) Remote journal information

Field Descriptions

Journaled object information. The list of objects that are journaled to the specified journal of specific

object types. The input key value indicates what journaled object information to retrieve. The object types

that are supported for retrieval are *FILE, *DTAARA, *DTAQ, *DIR, *STMF, and *SYMLNK. The possible

values follow:

92 iSeries: Journal and Commit APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

*ALL All objects that are journaled to the journal, of the object types supported for retrieval with this

key, are returned.

*ALLIFS Only the following object types that are journaled to the journal are returned: *DIR, *STMF, and

*SYMLNK.

Object type Only the objects of the specified object type that are journaled to the journal are returned.

Note: The following object types cannot be specified individually in this field: *DIR, *STMF, and

*SYMLNK. To retrieve these object types, specify *ALLIFS.

For output values, see “Key 2 Output Section” on page 95.

Journal receiver directory information. The journal receiver directory information that is returned for the

journal. Journal receiver directory information can be retrieved for local and remote journals. There are no

input values for this key. For output values, see “Key 1 Output Section” on page 95.

Remote journal information. The remote journal information that is returned. Remote journal

information can be retrieved for local and remote journals. The input key value indicates what remote

journal information to retrieve. The possible values follow:

 Char(18) The relational database directory entry information as follows:

*ALL All remote journal information is returned.

Relational database directory entry

Only the remote journal information for the specified relational database directory entry

is to be returned.

Char(20) The remote journal name information as follows:

*ALL All remote journals that are associated with the specified relational database directory

entry are returned.

Qualified remote

journal name

Only the remote journal information for the specified journal that is associated with the specified

relational database directory entry is to be returned. The first 10 characters contain the remote

journal name, and the second 10 characters contain the library name.

For output values, see “Key 3 Output Section” on page 96.

RJRN0100 Format

The structure of the information returned is determined by the specified format name. For detailed

descriptions of the fields, see “Field Descriptions” on page 97.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to key information

12 C CHAR(10) Journal name

22 16 CHAR(10) Journal library name

32 20 BINARY(4) Auxiliary storage pool (ASP)

36 24 CHAR(10) Message queue name

46 2E CHAR(10) Message queue library name

56 38 CHAR(1) Manage receiver option

57 39 CHAR(1) Delete receiver option

58 3A CHAR(1) Receiver size option *RMVINTENT

59 3B CHAR(1) Receiver size option *MINFIXLEN

60 3C CHAR(1) Receiver size option *MAXOPT1

61 3D CHAR(1) Receiver size option *MAXOPT2

Journal and Commit APIs 93

Offset

Type Field Dec Hex

62 3E CHAR(1) Receiver size option *MAXOPT3

63 3F CHAR(2) Reserved

65 41 CHAR(1) Journal type

66 42 CHAR(1) Remote journal type

67 43 CHAR(1) Journal state

68 44 CHAR(1) Journal delivery mode

69 45 CHAR(10) Local journal name

79 4F CHAR(10) Local journal library name

89 59 CHAR(8) Local journal system

97 61 CHAR(10) Source journal name

107 6B CHAR(10) Source journal library name

117 75 CHAR(8) Source journal system

125 7D CHAR(10) Redirected receiver library name

135 87 CHAR(50) Journal text

185 B9 CHAR(1) Minimize entry specific data for data areas

186 BA CHAR(1) Minimize entry specific data for files

187 BB CHAR(8) Reserved

195 C3 CHAR(1) Journal Cache

196 C4 BINARY(4) Number of attached journal receivers

200 C8 CHAR(10) Attached journal receiver name

210 D2 CHAR(10) Attached journal receiver library name

220 DC CHAR(8) Local journal system associated with the attached journal receiver

228 E4 CHAR(8) Source journal system associated with the attached journal receiver

236 EC CHAR(10) Attached dual journal receiver name

246 F6 CHAR(10) Attached dual journal receiver library name

256 100 BINARY(4) Manage receiver delay

260 104 BINARY(4) Delete receiver delay

264 108 CHAR(10) ASP device name

274 112 CHAR(10) Local journal ASP group name

284 11C CHAR(10) Source journal ASP group name

294 126 CHAR(1) Fixed length data JOB

295 127 CHAR(1) Fixed length data USR

296 128 CHAR(1) Fixed length data PGM

297 129 CHAR(1) Fixed length data PGMLIB

298 12A CHAR(1) Fixed length data SYSSEQ

299 12B CHAR(1) Fixed length data RMTADR

300 12C CHAR(1) Fixed length data THD

301 12D CHAR(1) Fixed length data LUW

302 12E CHAR(1) Fixed length data XID

303 12F CHAR(145) Reserved

448 1C0 BINARY(4) Number of keys in key section

Note:These fields repeat for each key specified.

BINARY(4) Key

BINARY(4) Offset to start of key information

BINARY(4) Length of key information header section

BINARY(4) Number of entries

BINARY(4) Length of each entry in key information list section

94 iSeries: Journal and Commit APIs

Key 1 Output Section

 Offset

Type Field Dec Hex

Note: The following fields are returned when the journal receiver directory key information is specified. Otherwise,

they will not be used.

0 0 BINARY(4) Total number of journal

receivers

4 4 BINARY(4) Total size of journal

receivers

8 8 BINARY(4) Total size of journal

receivers multiplier

12 C CHAR(8) Reserved

Note: The following fields repeat for each journal receiver that is returned.

CHAR(10) Journal receiver name

CHAR(10) Journal receiver library

name

CHAR(5) Journal receiver number

CHAR(13) Journal receiver attached

date and time

CHAR(1) Journal receiver status

CHAR(13) Journal receiver saved date

and time

CHAR(8) Local journal system

associated with the journal

receiver

CHAR(8) Source journal system

associated with the journal

receiver

BINARY(4) Journal receiver size

CHAR(56) Reserved

Key 2 Output Section

 Offset

Type Field Dec Hex

Note: The following fields are returned when the journaled object information key is specified. Otherwise, they will

not be used.

0 0 BINARY(4) Total number of journaled

files

4 4 BINARY(4) Total number of journaled

members

8 8 BINARY(4) Total number of journaled

data areas

12 C BINARY(4) Total number of journaled

data queues

Journal and Commit APIs 95

Offset

Type Field Dec Hex

16 10 BINARY(4) Total number of journaled

IFS objects of type *DIR,

*STMF, and *SYMLNK

20 14 CHAR(16) Reserved

Note: The following fields repeat for each journaled object that is returned.

 CHAR(10) Object type

 CHAR(10) Object name

 CHAR(10) Object library name

 CHAR(16) Object file identifier

 CHAR(2) Reserved

Key 3 Output Section

 Offset

Type Field Dec Hex

Note: The following fields are returned when the remote journal information key is specified. Otherwise, they will

not be used.

0 0 BINARY(4) Total number of remote

journals

4 4 CHAR(16) Reserved

Note: The following fields repeat for each remote journal that is returned.

 CHAR(18) Relational database

directory entry

 CHAR(10) Remote journal name

 CHAR(10) Remote journal library

name

 CHAR(10) Remote journal receiver

library name

 CHAR(10) Controlled-inactivate

journal information journal

receiver

 CHAR(10) Controlled-inactivate

journal information journal

receiver library

 BINARY(4) Controlled-inactivate

journal information

sequence number

 BINARY(4) Reserved

 CHAR(1) Remote journal type

 CHAR(1) Remote journal state

 CHAR(1) Remote journal delivery

mode

 CHAR(1) Reserved

 BINARY(4) Sending task priority

 CHAR(20) Controlled-inactivate

journal information

sequence number - long

 CHAR(60) Reserved

 CHAR(512) Relational database

directory entry details

 CHAR(348) Reserved

96 iSeries: Journal and Commit APIs

Field Descriptions

Attached dual journal receiver library name. The name of the library that contains the dual journal

receiver.

This field is blank if there is no dual receiver.

Attached dual journal receiver name. The journal receiver that was attached at the same time as the

attached journal receiver.

This field is blank if there is no dual receiver.

Attached journal receiver library name. The name of the library that contains the attached journal

receiver. This field will be blank if no journal receivers are attached.

Attached journal receiver name. The name of the journal receiver that is currently attached to this

journal. This field will be blank if no journal receivers are attached.

Auxiliary storage pool (ASP). The number of the auxiliary storage pool to which storage for the object is

allocated.

ASP device name. The name of the independent auxiliary storage pool (ASP) to which storage for the

object is allocated. *SYSBAS is used to indicate the system ASP and all basic user ASPs.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Controlled-inactivate journal information journal receiver. The name of the journal receiver that

contains the controlled inactivate journal information sequence number.

This field will be blank unless the remote journal state is *CTLINACT.

Controlled-inactivate journal information journal receiver library. The library of the journal receiver

that contains the controlled inactivate journal information sequence number.

This field will be blank unless the remote journal state is *CTLINACT.

Controlled-inactivate journal information sequence number. The sequence number of the last journal

entry that was queued for replication before the Change Remote Journal (CHGRMTJRN) command or the

Change Journal State (QjoChangeJournalState) API was called to start a controlled inactivate of the

remote journal.

This field will be 0 unless the remote journal state is *CTLINACT.

This field will be -1 if the value could not fit in the specified Binary(4) field. The complete value will be

in the Controlled-inactivate journal information sequence number - long field.

Controlled-inactivate journal information sequence number - long. This is the same field as

Controlled-inactivate journal information sequence number except the information is in a Char(20) field

which is treated as Zoned(20,0).

Delete receiver delay. The delay time (in minutes) between attempts to delete journal receivers associated

with this journal if the delete receiver option is a 1. The default is 10 minutes.

Journal and Commit APIs 97

Delete receiver option. Whether the system deletes detached journal receivers that are associated with

this journal when they are no longer needed for IPL recovery.

 0 The system does not delete detached journal receivers

that are associated with this journal.

1 The system deletes detached journal receivers that are

associated with this journal.

Fixed length data *JOB. Indicates whether the job name will be stored when journal entries are

deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the job name.

1 Journal entries deposited to the journal will include the job name.

Fixed length data *LUW. Indicates whether the logical unit of work identifier will be stored when journal

entries are deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the logical unit of work identifier.

1 Journal entries deposited to the journal may include the logical unit of work identifier.

Fixed length data *PGM. Indicates whether the program name will be stored when journal entries are

deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the program name.

1 Journal entries deposited to the journal will include the program name.

Fixed length data *PGMLIB. Indicates whether the program library name will be stored when journal

entries are deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the program library name and library ASP

information.

1 Journal entries deposited to the journal will include the program library name and library ASP

information.

Fixed length data *RMTADR. Indicates whether the remote address will be stored when journal entries

are deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the remote address.

1 Journal entries deposited to the journal may include the remote address.

Fixed length data *SYSSEQ. Indicates whether the system sequence number will be stored when journal

entries are deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the system sequence number.

1 Journal entries deposited to the journal will include the system sequence number.

98 iSeries: Journal and Commit APIs

Fixed length data *THD. Indicates whether the thread identifier will be stored when journal entries are

deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the thread identifier.

1 Journal entries deposited to the journal will include the thread identifier.

Fixed length data *USR. Indicates whether the user name will be stored when journal entries are

deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the user name.

1 Journal entries deposited to the journal will include the user name.

Fixed length data *XID. Indicates whether the transaction identifier will be stored when journal entries

are deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the transaction identifier.

1 Journal entries deposited to the journal may include the transaction identifier.

Journal cache. Specifies whether journal entries were cached before being written out to disk.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries are written to disk immediately if needed to assure single-system recovery.

1 Journal entries are written to main memory. When there are several journal entries in main

memory then the journal entries are written from main memory to disk. If the application

performs large numbers of changes, this may result in fewer synchronous disk writes resulting in

improved performance. However, is is not recommended to use this option if it is unacceptable to

lose even one recent change in the event of a system failure where the contents of main memory

are not preserved. This type of journaling is directed primarily toward batch jobs and may not be

suitable for interactive applications where single system recovery is the primary reason for using

journaling.

Note:Applications using commitment control will likely see less performance improvement

because commitment control already performs some journal caching.

Journal delivery mode. The journal delivery mode that is being used to replicate journal entries to this

journal.

 0 Not applicable. This is a local journal or this remote journal is not *ACTIVE or not *CTLINACT.

1 *ASYNC. Journal entries are being delivered or replicated asynchronously.

2 *SYNC. Journal entries are being delivered or replicated synchronously.

3 *ASYNCPEND. Journal entries are to be delivered or replicated asynchronously, but the journal is

currently in catch-up mode.

4 *SYNCPEND. Journal entries are to be delivered or replicated synchronously, but the journal is

currently in catch-up mode.

Journal library name. The name of the library that contains the journal.

Journal name. The name of the journal.

Journal and Commit APIs 99

Journal receiver attached date and time. The date and time that this journal receiver was attached to the

journal. For a journal receiver attached to a *REMOTE journal, this is the date and time that the journal

receiver was attached on the local system. This field is in the CYYMMDDHHMMSS format as follows:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

Journal receiver library name. The name of the library that contains the journal receiver.

Journal receiver name. The name of the journal receiver.

Journal receiver number. A number that is associated with a journal receiver and assigned by the system,

which is relative to all other journal receivers in the journal receiver directory at this time. For a given

journal receiver, this number will change as journal receivers are added and deleted from the directory.

The first 2 digits identify the journal chain number and the last 3 digits identify the journal receiver

number within the chain.

A chain identifies a group of journal receivers that are contiguous, which allows the system to process

entries across journal receivers within the same chain.

The chain number starts with zero and is incremented sequentially each time a new chain is needed. For

example, new chains are started when a damaged journal receiver is recovered by restoring a partial

version.

Within a chain, each newly attached journal receiver is given a journal receiver number starting with one

and incrementing sequentially to 999.

When you journal to dual journal receivers, both journal receivers are assigned the same number.

Journal receiver saved date and time. The date and time that the journal receiver was last saved. This

field is in the CYYMMDDHHMMSS format, which is described in the journal receiver attached date and

time field description.

Journal receiver size. The number of kilobytes of auxiliary disk storage used by this journal receiver.

This field will be zero if the journal receiver is damaged.

Journal receiver status. The status of the journal receiver. The status can be one of the following:

 1 The journal receiver is currently attached to the journal.

2 The journal receiver is online. The journal receiver has not been saved, and it has been detached

from the journal.

3 The journal receiver was saved after it was detached. The journal receiver storage was not freed

when it was saved.

4 The journal receiver was saved after it was detached. The journal receiver storage was freed when

it was saved.

100 iSeries: Journal and Commit APIs

5 The journal receiver status is partial for one of the following reasons:

v It was restored from a version that was saved while it was attached to the journal. Additional

journal entries may have been written that were not restored.

v It was one of a pair of dual journal receivers, and it was found damaged while attached to the

journal. The journal receiver has since been detached. This journal receiver is considered partial

because additional journal entries may have been written to the dual journal receiver.

v It is associated with a remote journal and it does not contain all the journal entries that are in

the corresponding journal receiver associated with the source journal.

Journal state. An indication as to whether journal entries are currently being sent to a journal. For a

remote journal, this is whether the journal is actively receiving journal entries from the source system

journal.

 0 *INACTIVE.

If this is a remote journal, this means journal entries cannot be received from a

source journal.

1 *ACTIVE. If this is a local journal, this means journal entries can be deposited to this journal. If

this is a remote journal, this means journal entries can be received from a source journal.

2 *FAILED. If this is a remote journal, this means journal entries cannot be received from a source

journal due to a remote journal function failure, for example, a communications failure. Before

inactivating the remote journal by using the Change Remote Journal (CHGRMTJRN) command or

by calling the Change Journal State (QjoChangeJournalState) API, you may want to receive,

retrieve, or display any unconfirmed entries from this journal.

This value does not apply to local journals.

4 *INACTPEND. If this is a remote journal, this means a request is being processed to set the

journal state to *INACTIVE.

This value does not apply to local journals.

5 *STANDBY. If this is a local journal, this means that most journal entries are not deposited into the

journal and there will be no errors indicating that the entry was not deposited. While in standby

state, journaling can be started or stopped, however using explicit commitment control is not

allowed.

Also, databases files that have referential integrity constraints or data links defined

cannot be used when a journal is in standby state. The operating system needs to use commitment

control for these functions. However, referential integrity constraints can be used in standby state

if RESTRICT is specified on the ON UPDATE or ON DELETE attribute for the constraint.

This value applies only to local journals.

Journal text. The text description of the journal.

Journal type. The journal type defines the scope of the journal and some of its characteristics. The valid

journal types follow:

 0 *LOCAL

1 *REMOTE

Key. Specific information retrieved about the journal.

Length of key information header section. The length of the header information in the given keys

information section. The header is followed by the list information section, which is a repeating list of

entries for the given key.

Length of each entry in key information list section. The length of an entry within a specific list that is

returned for a given key.

Journal and Commit APIs 101

Local journal ASP group name. The name of the independent auxiliary storage pool (ASP) group of the

local journal. *SYSBAS is used to indicate the system ASP and all basic user ASPs. The local journal is the

journal that is the initiator of the original journal deposit that has been replicated downstream to this

journal.

This field is blank if there is no local journal.

Local journal library name. The library name of the local journal. The local journal is the journal that is

the initiator of the original journal deposit that has been replicated downstream to this journal.

This field is blank if there is no local journal.

Local journal name. The journal name of the local journal. The local journal is the journal that is the

initiator of the original journal deposit that has been replicated downstream to this journal.

This field is blank if there is no local journal.

Local journal system. The system name of the local journal. The local journal is the journal that is the

initiator of the original journal deposit that has been replicated downstream to this journal.

This system name is determined when the remote journal is activated by using the Change Remote

Journal (CHGRMTJRN) command or by calling the Change Journal State (QjoChangeJournalState) API.

The name is based on the current system name at that time as seen by using the Display Network

Attributes (DSPNETA) command.

This field is blank if there is no local journal.

This field is *UNKNOWN if no journal receiver is currently attached or if the journal receiver is damaged

or destroyed.

Local journal system associated with the attached journal receiver. If this attached journal receiver is

associated with a remote journal, this field is the system name of the local journal. See the local journal

system field for more information.

Local journal system associated with the journal receiver. If this journal receiver was associated with a

remote journal, this field is the system name of the local journal. See the local journal system field for

more information.

Manage receiver delay. The delay time (in minutes) between attempts to attach new journal receivers to

this journal if the manage receiver option is a value of 1. The default is 10 minutes.

Zero is returned when the journal is a remote journal.

Manage receiver option. Whether the system or user manages the changing of journal receivers; that is,

detaching the currently attached journal receivers and attaching new journal receivers. This option is

applicable only for local journals and is blank for remote journals. Possible values follow:

 blank Blank is returned when the journal is a remote journal.

0 The user manages the changing of journal receivers by issuing the Change Journal (CHGJRN)

command to attach new journal receivers and detach old journal receivers.

1 The system manages the changing of journal receivers. When an attached journal receiver reaches

its size threshold, the system creates and attaches new journal receivers, and detaches the

currently attached journal receivers. Additionally, during an initial program load (IPL), the system

performs a Change Journal (CHGJRN) command to change journal receivers and reset the journal

sequence number if the journal is not needed to complete commitment-control IPL recovery.

102 iSeries: Journal and Commit APIs

Message queue library name. The name of the library that contains the message queue.

Message queue name. The name of the message queue that is associated with this journal. This message

queue will receive various messages that describe the operations on the journal. For example, if the

threshold value of the attached journal receiver is exceeded during journaling and the journal currently is

being managed by the user, a CPF7099 message is sent to this message queue. If the journal is being

managed by the system, then CPF7020 is sent to this message queue when the change journal has

successfully completed. Messages issued by the remote journal support will also be sent to this message

queue. The MNGRCV parameter on the Create Journal (CRTJRN) command or on the Change Journal

(CHGJRN) command) specifies whether the journal is being managed by the user or by the system.

Minimize entry specific data for data areas. Whether journal entries for data areas may have minimized

entry specific data. The possible values are:

 blank Blank is returned when the journal is a remote journal.

0 Journal entries for data areas will have complete entry specific data.

1 Journal entries for data areas may have minimized entry specific data.

Minimize entry specific data for files. Whether journal entries for files may have minimized entry

specific data. The possible values are:

 blank Blank is returned when the journal is a remote journal.

0 Journal entries for files will have complete entry specific data.

1 Journal entries for files may have minimized entry specific data.

Number of attached journal receivers. The number of journal receivers that are currently attached to the

journal. If this number is two, the dual journal receiver information is returned. If this number is one or

zero, the dual journal receiver information is returned as blanks. If this number is zero, the journal

receiver information is returned as blanks, and if the journal receiver directory key is specified, there will

be no entries returned.

Number of entries. The number of entries that are contained within the specific list of information

returned for a given key.

Number of keys in key section. The number of keys that are listed in the key section with specific

information returned.

Object file identifier. The file identifier (FID) of the integrated file system object that is journaled to the

specified journal.

This field will be blank if the object type field is not the special value *IFS.

Object library name. The name of the library that contains the object that is journaled to the specified

journal.

This field will be blank if the object type field is the special value *IFS.

Object name. The name of the object that is journaled to the specified journal.

This field will be blank if the object type field is the special value *IFS.

Object type. The type of the object that is journaled to the specified journal.

Note: If the object is of type *DIR, *SYMLNK, or *STMF, the object type listed will be the special value

*IFS.

Journal and Commit APIs 103

Offset to key information. The offset from the start of the format to the key information section.

Specifically, this offset points to the Number of keys in key section field.

Offset to start of key information. The offset from the start of the key section, which starts immediately

after the Number of keys in key section field, to the specific information returned for a given key.

Receiver size option *MAXOPT1. Whether the journal receiver attached to the journal can have a

maximum receiver size of approximately one terabyte (1,099,511,627,776 bytes) and a maximum sequence

number of 9,999,999,999. Additionally, the maximum size of the journal entry that can be deposited is

15,761,440 bytes. Journal receivers attached to a journal while this option is in effect cannot be saved and

restored to any releases prior to V4R5M0, nor can they be replicated to any remote journals on any

systems at releases prior to V4R5M0. This option is applicable only for local journals and is blank for

remote journals.

 blank Blank is returned when the journal is a remote journal.

0 The journal receivers attached to the journal will have a maximum journal receiver size of

approximately 1.9 gigabytes and a maximum sequence number of 2,147,483,136, if

neither

*MAXOPT2 nor *MAXOPT3

is specified.

1 The journal receivers attached to the journal will have a maximum journal receiver size of

approximately one terabyte (1,099,511,627,776 bytes) and a maximum sequence number of

9,999,999,999. Additionally, the maximum size of the journal entry that can be deposited is

15,761,440 bytes.

Receiver size option *MAXOPT2. Whether the journal receiver attached to the journal can have a

maximum receiver size of approximately one terabyte (1,099,511,627,776 bytes) and a maximum sequence

number of 9,999,999,999. Additionally, the maximum size of the journal entry which can be deposited is

4,000,000,000 bytes. Journal receivers attached to a journal while this option is in effect cannot be saved

and restored to any releases prior to V5R1M0, nor can they be replicated to any remote journals on any

systems at releases prior to V5R1M0. This option is applicable only for local journals and is blank for

remote journals.

 blank Blank is returned when the journal is a remote journal.

0 The journal receivers attached to the journal will have a maximum journal receiver size of

approximately 1.9 gigabytes and a maximum sequence number of 2,147,483,136, if

neither

*MAXOPT1 nor *MAXOPT3

is specified.

1 The journal receivers attached to the journal will have a maximum journal receiver size of

approximately one terabyte (1,099,511,627,776 bytes) and a maximum sequence number of

9,999,999,999. Additionally, the maximum size of the journal entry that can be deposited is

4,000,000,000 bytes.

Receiver size option *MAXOPT3. Whether the journal receiver attached to the journal can have a

maximum receiver size of approximately one terabyte (1,099,511,627,776 bytes) and a maximum sequence

number of 18,446,744,073,709,551,600. Additionally, the maximum size of the journal entry which can be

deposited is 4,000,000,000 bytes. Journal receivers attached to a journal while this option is in effect

cannot be saved and restored to any releases prior to V5R3M0, nor can they be replicated to any remote

journals on any systems at releases prior to V5R3M0. This option is applicable only for local journals and

is blank for remote journals.

 blank Blank is returned when the journal is a remote journal.

0 The journal receivers attached to the journal will have a maximum journal receiver size of

approximately 1.9 gigabytes and a maximum sequence number of 2,147,483,136, if neither

*MAXOPT1 nor *MAXOPT2 is specified.

1 The journal receivers attached to the journal will have a maximum journal receiver size of

approximately one terabyte (1,099,511,627,776 bytes) and a maximum sequence number of

18,446,744,073,709,551,600. Additionally, the maximum size of the journal entry that can be

deposited is 4,000,000,000 bytes.

104 iSeries: Journal and Commit APIs

Receiver size option *MINFIXLEN. The size of the journal entries that are deposited into the attached

journal receivers is reduced by the automatic removal of all fixed length data such as job name, machine

sequence number, and so on. This option is applicable only for local journals and is blank for remote

journals.

 blank Blank is returned when the journal is a remote journal.

0 The journal entries that are deposited include all of the fixed length data such as job name, system

sequence number, and so on.

1 The journal entries that are deposited do not include any of the fixed length data such as job

name, system sequence number, and so on.

Receiver size option *RMVINTENT. Whether the size of the receivers that are attached to the journal are

reduced by automatic removal of the internal system entries. Removal occurs only for entries that are

required for initial program load (IPL) recovery when those entries are no longer required. This option is

applicable only for local journals and is blank for remote journals.

 blank Blank is returned when the journal is a remote journal.

0 The internal system entries are not automatically removed when they are no longer needed for

recovery.

1 The internal system entries are automatically removed when they are no longer needed for

recovery.

Redirected receiver library name. For a local or *TYPE1 remote journal, this field gives the redirected

receiver library name that is currently in place on this journal’s local journal for any downstream journal

receivers associated with *TYPE1 remote journals.

This field is set to *NONE if no receiver library redirection was specified when *TYPE1 remote journals

were added.

This field is set to the redirected receiver library name that is currently in place on this remote journal if

the specified journal is a *TYPE2 remote journal.

Relational database directory entry. The name of the relational database directory entry that is associated

with the remote journal.

Relational database directory entry details. The details that are associated with the relational database

directory entry. To view the format of this information, which is a copy of a record in the relational

database directory file, use the Display File Field Description (DSPFFD) command on the RDB directory

logical file, QADBXRMTNM, in library QSYS.

Remote journal delivery mode. The remote journal delivery mode that is being used to replicate journal

entries to the remote journal.

 0 Not applicable. The remote journal is not *ACTIVE or not *CTLINACT.

1 *ASYNC. Journal entries are being delivered or replicated asynchronously.

2 *SYNC. Journal entries are being delivered or replicated synchronously.

3 *ASYNCPEND. Journal entries are to be delivered or replicated asynchronously, but the remote

journal is currently in catch-up mode.

4 *SYNCPEND. Journal entries are to be delivered or replicated synchronously, but the remote

journal is currently in catch-up mode.

Journal and Commit APIs 105

Remote journal library name. The library name of the remote journal that is directly downstream of this

journal.

This field is blank if there is no remote journal.

Remote journal name. The name of the remote journal that is directly downstream of this journal.

This field is blank if there is no remote journal.

Remote journal receiver library name. The library name of the remote journal receiver that is directly

downstream of this journal.

This field is blank if there is no remote journal or if one was not specified on the Add Remote Journal

(ADDRMTJRN) command or the Add Remote Journal (QjoAddRemoteJournal) API.

Remote journal state. An indication as to whether the remote journal is actively receiving journal entries

from the source system journal.

 0 *INACTIVE. The remote journal is not ready to receive any journal entries from its source journal.

1 *ACTIVE. The remote journal is ready to receive any journal entries from its source journal.

2 *FAILED. The remote journal is not ready to receive any journal entries from its source journal

due to a remote journal function failure, for example, a communications failure. You will need to

inactivate the remote journal by using the Change Remote Journal (CHGRMTJRN) command or by

calling the Change Journal State (QjoChangeJournalState) API.

3 *CTLINACT. The remote journal is in the process of a controlled inactivate. Therefore, the remote

journal will be receiving those journal entries that were already queued for replication when the

Change Remote Journal (CHGRMTJRN) command or the Change Journal State

(QjoChangeJournalState) API requested to inactivate the remote journal. However, no entries

deposited after that request will be replicated to the remote journal.

Remote journal type. The type of remote journal that was created, and that influences characteristics of

the remote journal such as journal receiver restore options, redirection capabilities, and remote journal

association support. The possible values are:

 0 Local journal

1 *TYPE1 remote journal

2 *TYPE2 remote journal

Reserved. The bytes reserved to align binary fields or for future use.

Sending task priority. If the remote journal delivery mode is *ASYNC, this is the priority of the sending

task on the source system.

If the remote journal delivery mode is not *ASYNC, or the remote journal state is *INACTIVE, this field

is -1.

Source journal ASP group name. The name of the independent auxiliary storage pool (ASP) group of the

source journal. *SYSBAS is used to indicate the system ASP and all basic user ASPs. The source journal is

the journal that is directly upstream from this journal.

This field is blank if there is no source journal.

Source journal library name. The library name of the source journal. The source journal is the journal

that is directly upstream of this journal.

106 iSeries: Journal and Commit APIs

This field is blank if there is no source journal, if no journal receiver is currently attached, or if the

journal receiver is damaged or destroyed.

Source journal name. The journal name of the source journal. The source journal is the journal that is

directly upstream of this journal.

This field is blank if there is no source journal.

This field is *UNKNOWN if no journal receiver is currently attached, or if the journal receiver is

damaged.

Source journal system. The system name of the source journal. The source journal is the journal that is

directly upstream of this journal.

This system name is determined when the remote journal is activated by using the Change Remote

Journal (CHGRMTJRN) command or by calling the Change Journal State (QjoChangeJournalState) API.

The name is based on the current system name at that time as seen by using the Display Network

Attributes (DSPNETA) command.

This field is blank if there is no source journal, if no journal receiver is currently attached, or if the

journal receiver is damaged.

Source journal system associated with the attached journal receiver. If this attached journal receiver is

associated with a remote journal, this field is the system name of the source journal. See the source

journal system field for more information.

Source journal system associated with the journal receiver. If this journal receiver was associated with a

remote journal, this field is the system name of the source journal. See the source journal system field for

more information.

Total number of journaled data areas. The total number of data areas that are currently being journaled

to this journal.

Note: This field will be set only if data areas were requested to be returned by the journaled object

information key. Otherwise it will be 0.

Total number of journaled data queues. The total number of data queues that are currently being

journaled to this journal.

Note: This field will be set only if data queues were requested to be returned by the journaled object

information key. Otherwise it will be 0.

Total number of journaled files. The total number of files that are currently being journaled to this

journal.

Note: This field will be set only if files were requested to be returned by the journaled object information

key. Otherwise it will be 0.

Total number of journaled IFS objects of type *DIR, *STMF, and *SYMLNK. The total number of

integrated file system objects of type *DIR, *STMF, and *SYMLNK that are currently being journaled to

this journal.

Note:This field will be set only if IFS objects were requested to be returned by the journaled object

information key. Otherwise it will be 0.

Journal and Commit APIs 107

Total number of journaled members. The total number of file members that are currently being

journaled to this journal.

Note:This field will be set only if files were requested to be returned by the journaled object information

key. Otherwise it will be 0.

Total number of journal receivers. The total number of journal receivers that are associated with the

journal.

Total number of remote journals. The total number of remote journals that are directly downstream of

this journal.

Total size of journal receivers. The total size of the journal receivers in number of kilobytes of auxiliary

disk storage that are associated with the journal. The size is in units of the total size of journal receivers

multiplier. The total size is equal to or smaller than the total size multiplied by the total size of journal

receivers multiplier.

Total size of journal receivers multiplier. The value to multiply the total size of journal receivers by to

get the true total size. The value is 1 if the total size of journal receivers is smaller than 2,147,483,647

kilobytes and 1024 if it is larger.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C88 E Number of variable length records &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF694B E Length &1 of variable record for key &2 not valid.

CPF694C E Variable length record data for key &1 not valid.

CPF6948 E Length of the receiver variable &1 is not valid.

CPF701B E Journal recovery of interrupted operation failed.

CPF702C E An attached receiver has previously been destroyed.

CPF708D E Journal receiver found logically damaged.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

108 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Retrieve Journal Receiver Information (QjoRtvJrnReceiverInformation)

API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Qualified journal receiver name

Input Char(20)

4 Format name

Input Char(8)
 Omissible Parameter:

5 Error code

I/O Char(*)
 Service Program Name: QJOURNAL

 Header File: QSYSINC/H.QJOURNAL

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Journal Receiver Information (QjoRtvJrnReceiverInformation) API provides access to

journal-receiver-related information to help manage a journal environment, including a remote journal

environment.

Various types of journal receiver information are provided by the API, similar to information reported

using the Display Journal Receiver Attributes (DSPJRNRCVA) CL command.

Authorities and Locks

Journal Receiver Authority

*OBJOPR and some data authority other than *EXECUTE

Journal Receiver Library Authority

*EXECUTE

Journal Authority

*OBJOPR

Journal Library Authority

*EXECUTE

Service Program Authority

*EXECUTE

Journal and Commit APIs 109

Journal Receiver Lock

*SHRRD

Journal Lock

*SHRRD

 For the following authorities and locks:

v Journal Authority

v Journal Library Authority

v Journal Lock

These are required only if the journal receiver has ever been associated with a journal, and that journal is

on the system.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the information requested. You can specify the size of the

area smaller than the format requested as long as you specify the length of receiver variable

parameter correctly. As a result, the API returns only the data the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Qualified journal receiver name

INPUT; CHAR(20)

 The name of the journal receiver and its library from which the journal receiver attributes and

information is to be retrieved. The first 10 characters contain the journal receiver name, and the

second 10 characters contain the library name. The special values supported for the library name

follow:

 *LIBL Library list

*CURLIB Current library

Format name

INPUT; CHAR(8)

 The format RRCV0100 is the only supported format that is used by this API. For more

information, see “RRCV0100 Format” on page 111.

Omissible Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

110 iSeries: Journal and Commit APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

RRCV0100 Format

The structure of the information returned is determined by the specified format name. For detailed

descriptions of the fields, see “Field Descriptions” on page 112.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Journal receiver name

18 12 CHAR(10) Journal receiver library name

28 1C CHAR(10) Journal name

38 26 CHAR(10) Journal library name

48 30 BINARY(4) Threshold

52 34 BINARY(4) Size

56 38 BINARY(4) Auxiliary storage pool (ASP)

60 3C BINARY(4) Number of journal entries

64 40 BINARY(4) Maximum entry-specific data length

68 44 BINARY(4) Maximum null value indicators

72 48 BINARY(4) First sequence number

76 4C CHAR(1) Minimize entry specific data for data areas

77 4D CHAR(1) Minimize entry specific data for files

78 4E CHAR(2) Reserved

80 50 BINARY(4) Last sequence number

84 54 BINARY(4) Reserved

88 58 CHAR(1) Status

89 59 CHAR(1) Receiver size option *MINFIXLEN

90 5A CHAR(1) Receiver maximums option

91 5B CHAR(4) Reserved

95 5F CHAR(13) Attached date and time

108 6C CHAR(13) Detached date and time

121 79 CHAR(13) Saved date and time

134 86 CHAR(50) Text

184 B8 CHAR(1) Pending transactions

185 B9 CHAR(1) Remote journal type

186 BA CHAR(10) Local journal name

196 C4 CHAR(10) Local journal library name

206 CE CHAR(8) Local journal system

214 D6 CHAR(10) Local journal receiver library name

224 E0 CHAR(10) Source journal name

234 EA CHAR(10) Source journal library name

244 F4 CHAR(8) Source journal system

252 FC CHAR(10) Source journal receiver library name

Journal and Commit APIs 111

Offset

Type Field Dec Hex

262 106 CHAR(10) Redirected journal receiver library

272 110 CHAR(10) Dual journal receiver name

282 11A CHAR(10) Dual journal receiver library name

292 124 CHAR(10) Previous journal receiver name

302 12E CHAR(10) Previous journal receiver library name

312 138 CHAR(10) Previous dual journal receiver name

322 142 CHAR(10) Previous dual journal receiver library name

332 14C CHAR(10) Next journal receiver name

342 156 CHAR(10) Next journal receiver library name

352 160 CHAR(10) Next dual journal receiver name

362 16A CHAR(10) Next dual journal receiver library name

372 174 CHAR(20) Number of journal entries - long

392 188 CHAR(20) Maximum entry-specific data length - long

412 19C CHAR(20) First sequence number - long

432 1B8 CHAR(20) Last sequence number - long

452 1C4 CHAR(10) ASP device name

462 1CE CHAR(10) Local journal ASP group name

472 1D8 CHAR(10) Source journal ASP group name

482 1E2 CHAR(1) Fixed length data *JOB

483 1E3 CHAR(1) Fixed length data *USR

484 1E4 CHAR(1) Fixed length data *PGM

485 1E5 CHAR(1) Fixed length data *PGMLIB

486 1E6 CHAR(1) Fixed length data *SYSSEQ

487 1E7 CHAR(1) Fixed length data *RMTADR

488 1E8 CHAR(1) Fixed length data *THD

489 1E9 CHAR(1) Fixed length data *LUW

490 1EA CHAR(1) Fixed length data *XID

491 1EB CHAR(21) Reserved

Field Descriptions

Attached date and time. The date and time that this journal receiver was attached to the journal. For a

journal receiver attached to a *REMOTE journal, this is the date and time that the journal receiver was

attached on the local system. This field is in the CYYMMDDHHMMSS format as follows:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

112 iSeries: Journal and Commit APIs

Auxiliary storage pool (ASP). The number of the auxiliary storage pool to which storage for the object is

allocated.

ASP device name. The name of the independent auxiliary storage pool (ASP) device to which storage for

the object is allocated. *SYSBAS is used to indicate the system ASP and all basic user ASPs.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Detached date and time. The date and time that this journal receiver was detached from the journal. For

a journal receiver attached to a *REMOTE journal, this is the date and time that the journal receiver was

detached on the local system. This field is in the CYYMMDDHHMMSS format, which is described in the

attached date and time field description.

Dual journal receiver library name. The name of the library that contains the dual journal receiver.

This field is blank if there is no dual receiver.

Dual journal receiver name. The journal receiver that was attached at the same time as the journal

receiver.

This field is blank if there is no dual receiver.

First sequence number. The journal sequence number of the first journal entry in this journal receiver.

This field will be -1 if the value could not fit in the specified Binary(4) field. The complete value will be

in the First sequence number - long field.

First sequence number - long. This is the same field as First sequence number except the information is

in a Char(20) field which is treated as Zoned(20,0).

Fixed length data *JOB. Indicates whether the job name will be stored when journal entries are

deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the job name.

1 Journal entries deposited to the journal will include the job name.

Fixed length data *LUW. Indicates whether the logical unit of work identifier will be stored when journal

entries are deposited.

 blank Blank is returned when the journal is a remote journal

0 Journal entries deposited to the journal will not include the logical unit of work identifier.

1 Journal entries deposited to the journal may include the logical unit of work identifier.

Fixed length data *PGM. Indicates whether the program name will be stored when journal entries are

deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the program name.

1 Journal entries deposited to the journal will include the program name.

Journal and Commit APIs 113

Fixed length data *PGMLIB. Indicates whether the program library name will be stored when journal

entries are deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the program library name and the library

ASP information.

1 Journal entries deposited to the journal will include the program library name and the library ASP

information.

Fixed length data *RMTADR. Indicates whether the remote address will be stored when journal entries

are deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the remote address.

1 Journal entries deposited to the journal may include the remote address.

Fixed length data *SYSSEQ. Indicates whether the system sequence number will be stored when journal

entries are deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the system sequence number.

1 Journal entries deposited to the journal will include the system sequence number.

Fixed length data *THD. Indicates whether the thread identifier will be stored when journal entries are

deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the thread identifier.

1 Journal entries deposited to the journal will include the thread identifier.

Fixed length data *USR. Indicates whether the user name will be stored when journal entries are

deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the user name.

1 Journal entries deposited to the journal will include the user name.

Fixed length data *XID. Indicates whether the transaction identifier will be stored when journal entries

are deposited.

 blank Blank is returned when the journal is a remote journal.

0 Journal entries deposited to the journal will not include the transaction identifier.

1 Journal entries deposited to the journal may include the transaction identifier.

Journal library name. The name of the library in which the journal is stored.

This field is blank if this journal receiver is not yet associated with any journal.

Journal name. The name of the journal.

This field is *NONE if this journal receiver is not yet associated with any journal.

114 iSeries: Journal and Commit APIs

Journal receiver library name. The name of the library that contains the journal receiver.

Journal receiver name. The name of the journal receiver.

Last sequence number. The journal sequence number of the last journal entry in this journal receiver.

This field will be -1 if the value could not fit in the specified Binary(4) field. The complete value will be

in the Last sequence number - long field.

Last sequence number - long. This is the same field as Last sequence number except the information is

in a Char(20) field which is treated as Zoned(20,0).

Local journal ASP group name. The name of the independent auxiliary storage pool (ASP) group of the

local journal. *SYSBAS is used to indicate the system ASP and all basic user ASPs. The local journal is the

journal that is the initiator of the original journal deposit that has been replicated downstream to this

journal.

This field is blank if there is no local journal.

Local journal library name. The library name of the local journal. The local journal is the journal that is

the initiator of the original journal deposit that has been replicated downstream to this journal.

This field is blank if there is no local journal.

Local journal name. The journal name of the local journal. The local journal is the journal that is the

initiator of the original journal deposit that has been replicated downstream to this journal.

This field is blank if there is no local journal.

This field is *NONE if this journal receiver is not yet associated with any journal.

Local journal receiver library name. The library name of the local journal receiver that is associated with

the local journal. The local journal is the journal that is the initiator of the original journal deposit that

has been replicated downstream to this journal.

This field is blank if there is no local journal.

This field is *NONE if this journal receiver is not yet associated with any journal.

Local journal system. The system name of the local journal. The local journal is the journal that is the

initiator of the original journal deposit that has been replicated downstream to this journal.

This system name is determined when the remote journal is activated by using the Change Remote

Journal (CHGRMTJRN) command or by calling the Change Journal State (QjoChangeJournalState) API.

The name is based on the current system name at that time as seen by using the Display Network

Attributes (DSPNETA) command.

This field is blank if there is no local journal.

Maximum entry-specific data length. The length in bytes of the longest entry-specific data among all

journal entries in this journal receiver.

This field will be -1 if the value could not fit in the specified Binary(4) field. The complete value will be

in the Maximum entry-specific data length - long field.

Journal and Commit APIs 115

Maximum entry-specific data length - long. This is the same field as Maximum entry-specific data

length except the information is in a Char(20) field which is treated as Zoned(20,0).

Maximum null value indicators. The maximum number of null value indicators among all journal

entries in this journal receiver.

Minimize entry specific data for data areas. Whether the receiver was attached when

MINENTDTA(*DTAARA) was in effect for the journal. Possible values follow:

 0 Journal entries for data areas will have complete entry specific data.

1 Journal entries for data areas may have minimized entry specific data.

If this journal receiver is associated with a remote journal, then the value for this field was determined by

the local journal.

Minimize entry specific data for files. Whether the receiver was attached when MINENTDTA(*FILE)

was in effect for the journal. Possible values follow:

 0 Journal entries for files will have complete entry specific data.

1 Journal entries for files may have minimized entry specific data.

If this journal receiver is associated with a remote journal, then the value for this field was determined by

the local journal.

Next dual journal receiver library name. The library name of the next dual journal receiver that is

associated with this journal receiver.

This field is blank if there is no next dual journal receiver, or if the specified journal receiver is currently

associated with a remote journal.

Next dual journal receiver name. The name of the next dual journal receiver that is associated with this

journal receiver.

This field is blank if there is no next dual journal receiver, or if the specified journal receiver is currently

associated with a remote journal.

Next journal receiver library name. The library name of the next journal receiver that is associated with

this journal receiver.

This field is blank if there is no next journal receiver, or if the specified journal receiver is currently

associated with a remote journal.

Next journal receiver name. The name of the next journal receiver that is associated with this journal

receiver.

This field is blank if there is no next journal receiver, or if the specified journal receiver is currently

associated with a remote journal.

Number of journal entries. The number of journal entries that are contained in this journal receiver.

This field will be -1 if the value could not fit in the specified Binary(4) field. The complete value will be

in the Number of journal entries - long field.

Number of journal entries - long. This is the same field as Number of journal entries except the

information is in a Char(20) field which is treated as Zoned(20,0).

116 iSeries: Journal and Commit APIs

Pending transactions. Whether the journal receiver contains journal entries for commitment control

transactions that have not yet been committed or rolled back. The possible values are:

 0 The journal receiver does not contain entries for pending commitment control transactions.

1 The journal receiver contains entries for pending commitment control transactions.

Previous dual journal receiver library name. The library name of the previous dual journal receiver that

is associated with this journal receiver.

This field is blank if there is no previous dual journal receiver, or if the specified journal receiver is

currently associated with a remote journal.

Previous dual journal receiver name. The name of the previous dual journal receiver that is associated

with this journal receiver.

This field is blank if there is no previous dual journal receiver, or if the specified journal receiver is

currently associated with a remote journal.

Previous journal receiver library name. The library name of the previous journal receiver that is

associated with this journal receiver.

This field is blank if there is no previous journal receiver, or if the specified journal receiver is currently

associated with a remote journal.

Previous journal receiver name. The name of the previous journal receiver that is associated with this

journal receiver.

This field is blank if there is no previous journal receiver, or if the specified journal receiver is currently

associated with a remote journal.

Receiver maximums option. Indicates the journal receiver sequence number and size option for this

journal receiver. Possible values follow:

 blank The journal receiver has not yet been attached to any journal.

0 The journal receiver has a maximum journal receiver size of approximately 1.9 gigabytes and a

maximum sequence number of 2,147,483,136.

1 The journal receiver has a maximum journal receiver size of approximately one terabyte

(1,099,511,627,776 bytes) and a maximum sequence number of 9,999,999,999. Additionally, the

maximum size of the journal entry that can be deposited is 15,761,440 bytes. This occurs if this

receiver was attached when RCVSIZOPT(*MAXOPT1) was in effect for the journal. These journal

receivers cannot be saved and restored to any releases prior to V4R5M0, nor can they be replicated

to any remote journals on any systems at releases prior to V4R5M0.

2 The journal receiver has a maximum journal receiver size of approximately one terabyte

(1,099,511,627,776 bytes) and a maximum sequence number of 9,999,999,999. This occurs if this

receiver was attached when RCVSIZOPT(*MAXOPT2) was in effect for the journal. Additionally,

the maximum size of the journal entry which can be deposited is 4,000,000,000 bytes. These

journal receivers cannot be saved and restored to any releases prior to V5R1M0, nor can they be

replicated to any remote journals on any systems at releases prior to V5R1M0.

3 The journal receiver has a maximum journal receiver size of approximately one terabyte

(1,099,511,627,776 bytes) and a maximum sequence number of 18,446,744,073,709,551,600. This

occurs if this receiver was attached when RCVSIZOPT(*MAXOPT3) was in effect for the journal.

Additionally, the maximum size of the journal entry which can be deposited is 4,000,000,000 bytes.

These journal receivers cannot be saved and restored to any releases prior to V5R3M0, nor can

they be replicated to any remote journals on any systems at releases prior to V5R3M0.

Journal and Commit APIs 117

If this journal receiver is associated with a remote journal, then the value for this field was determined by

the local journal.

Receiver size option *MINFIXLEN. The size of the journal entries that are deposited into the attached

journal receivers is reduced by the automatic removal of all fixed length data such as job name, system

sequence number, and so on. This option is applicable only for local journals and is blank for remote

journals.

 blank Blank is returned when the journal is a remote journal.

0 The journal entries in the receiver include all of the fixed length data such as job name, system

sequence number, and so on.

1 The journal entries in the receiver do not include any fixed length data such as job name, system

sequence number, and so on.

Redirected journal receiver library. If this journal receiver was attached to a remote journal, this field is

the *TYPE1 receiver library redirection that was in effect when this journal receiver was attached.

This field is blank if this journal receiver was attached to a local journal, or if the journal receiver was

attached to a remote journal with no *TYPE1 receiver library redirection.

This field is *NONE if this journal receiver is not yet associated with any journal.

Remote journal type. If this journal receiver was attached to a remote journal, this field is the remote

journal type for that journal, when this journal receiver was attached. The possible values are:

 blank The journal receiver has not yet been attached to any journal.

0 The journal receiver was attached to a local journal.

1 The journal receiver was attached to a *TYPE1 remote journal.

2 The journal receiver was attached to a *TYPE2 remote journal.

Reserved. The bytes reserved to align binary fields or for future use.

Saved date and time. The date and time that the journal receiver was last saved. This value reflects when

the receiver was saved from the system it exists on (either the source or target system time). This field is

in the CYYMMDDHHMMSS format, which is described in the attached date and time field description.

Size. The number of kilobytes of auxiliary disk storage used by this journal receiver.

Source journal ASP group name. The name of the independent auxiliary storage pool (ASP) group of the

source journal. *SYSBAS is used to indicate the system ASP and all basic user ASPs. The source journal is

the journal that is directly upstream of this journal.

This field is blank if there is no source journal.

Source journal library name. The library name of the source journal. The source journal is the journal

that is directly upstream of this remote journal.

This field is blank if there is no source journal.

Source journal name. The journal name of the source journal. The source journal is the journal that is

directly upstream of this remote journal.

This field is blank if there is no source journal.

118 iSeries: Journal and Commit APIs

This field is *NONE if this journal receiver is not yet associated with any journal.

Source journal receiver library name. The library name of the source journal receiver that is associated

with the source journal. The source journal is the journal that is directly upstream of this remote journal.

This field is blank if there is no source journal.

This field is *NONE if this journal receiver is not yet associated with any journal.

Source journal system. The system name of the source journal. The source journal is the journal that is

directly upstream of this remote journal.

This system name is determined when the remote journal is activated by using the Change Remote

Journal (CHGRMTJRN) command or by calling the Change Journal State (QjoChangeJournalState) API,

and is based on the current system name at that time as seen by using the Display Network Attributes

(DSPNETA) command.

This field is blank if there is no source journal.

Status. The status of the journal receiver. The status can be one of the following:

 1 The journal receiver is currently attached to the journal.

2 The journal receiver is online. The journal receiver has not been saved, and it has been detached

from the journal.

3 The journal receiver was saved after it was detached. The journal receiver storage was not freed

when it was saved.

4 The journal receiver was saved after it was detached. The journal receiver storage was freed when

it was saved.

5 The journal receiver status is partial for one of the following reasons:

v It was restored from a version that was saved while it was attached to the journal. Additional

journal entries may have been written that were not restored.

v It was one of a pair of dual journal receivers, and it was found damaged while attached to the

journal. The journal receiver has since been detached. This journal receiver is considered partial

because additional journal entries may have been written to the dual journal receiver.

v It is associated with a remote journal and it does not contain all the journal entries that are in

the associated journal receiver attached to the source journal.

6 The journal receiver status is empty, since the receiver has never been attached to a journal.

Text. The text description of the journal receiver.

Threshold. An auxiliary disk storage space threshold value (in kilobytes) for the journal receiver. If the

threshold value is exceeded during journaling and the journal has the MNGRCV(*USER) attribute, a

message (CPF7099) is sent to the message queue that is specified on the Create Journal (CRTJRN) or the

Change Journal (CHGJRN) command. If the journal has the MNGRCV(*SYSTEM) attribute, the system

creates and attaches a new journal receiver, detaches the old journal receiver when the threshold is

reached, and sends message CPF7020 to the journal message queue. This option is applicable only for

local journals and is zero for remote journals.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

Journal and Commit APIs 119

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6948 E Length of the receiver variable &1 is not valid.

CPF701A E Journal receiver not eligible for operation.

CPF701B E Journal recovery of interrupted operation failed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Return LU6.2 Partners (QTNRTNLU) API

 Optional Parameter:

1 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Return LU6.2 Partners (QTNRTNLU) API identifies all the LU6.2 partner logical unit (LU) names that

are known to this system. The following informational message is sent to the joblog of the job issuing the

API to identify each partner:

 CPI83D1 Partner LU &1.&2 is known to this system.

Replacement variable &1 is the partner LU remote network identifier and &2 is the partner LU location

name.

Connection problems sometimes occur after a partner LU is moved to a backup system with the same

SNA configuration as the original system. The “Clear LU6.2 Partners (QTNCLRLU) API” on page 33 can

be used to correct such problems.

Authorities and Locks

Authority

*ALLOBJ special authority is required.

Locks None.

Required Parameter

None

120 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the caller of

the API.

Usage Notes

This API was designed so that it would be easy to use from a CL command line. The following CL

command will return all the LU6.2 partners known to this system:

CALL PGM(QTNRTNLU)

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF83ED E &1 API requires &2 special authority.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R3

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Rollback Required (QTNRBRQD) API

 Required Parameter Group:

1 Resource handle

Input Binary(4)

2 Error code

I/O Char(*)
 Threadsafe: Yes

The Rollback Required (QTNRBRQD) API puts the commitment definition currently active for the

activation group of the program making the request into a rollback-required state. When a commitment

definition is in a rollback-required state, protected resources cannot be used until a rollback operation is

performed.

Required Parameter Group

Resource handle

INPUT; BINARY(4)

 The resource handle returned by the Add Commitment Resource (QTNADDCR) API when the

API commitment resource was added to the current commitment definition.

Error code

I/O; CHAR(*)

Journal and Commit APIs 121

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Restrictions

You are prevented from putting the current commitment definition in a rollback-required state when:

v The resource handle is not valid.

v Commitment control is not active for the program making the request to put the commitment

definition into a rollback required state.

v Commit or rollback processing is in progress for the current commitment definition.

In all other instances, the current commitment definition is put in a rollback-required state.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8362 E Request for commit resource is not valid; reason code &1.

CPF8367 E Cannot perform commitment control operation.

API introduced: V2R3

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Send Journal Entry (QJOSJRNE) API

 Required Parameter Group:

1 Qualified journal name

Input Char(20)

2 Journal entry information

Input Char(*)

3 Entry data

Input Char(*)

4 Length of entry data

Input Binary(4)

5 Error Code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Send Journal Entry (QJOSJRNE) API writes a single journal entry to a specific journal. The entry can

contain any information. You can assign an entry type to the journal entry. You can associate the journal

entry with additional information such as a journaled object or a commit cycle identifier.

122 iSeries: Journal and Commit APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

If the journal currently has a state of *STANDBY, then the journal entry will not be deposited unless 1 is

specified for the override standby key.

Note:The journal code for the entry is ’U’, indicating a user-specified journal entry. See the Journal

management topic for more information.

Restrictions

v

If an object other than a file is specified, it currently must be journaled to the specified journal.

If a file object is specified, it currently must either be journaled to the specified journal or it must have

been last journaled to the specified journal.

v The specified journal cannot be a remote journal.

v Only one of the following keys can be specified in one call of this API:

– Keys 2 and 3, qualified file name and member name

– Key 6, qualified object name

– Key 7, object path name

– Key 8, object file identifier

Authorities and Locks

Journal Authority

*OBJOPR and *ADD

Journal Library Authority

*EXECUTE

Non-IFS Object Authority

*OBJOPR

Non-IFS Object Library Authority

*EXECUTE

IFS Object Authority (if present)

*R

IFS Object Directory Authority

*X

File Lock

*SHRNUP

Non-IFS Object, other than File, Lock

*SHRRD

IFS Object Lock (if present)

O_RDONLY | O_SHARE_RDWR

Journal Lock

*SHRUPD

 *EXECUTE, *OBJOPR, *R, *X, *SHRUPD, *SHRRD, and O_RDONLY | O_SHARE_RDWR are required

only if an object is specified in the qualified file name, qualified object name, object path, or object file

identifier key fields.

Required Parameter Group

Qualified journal name

INPUT; CHAR(20)

Journal and Commit APIs 123

The name of the journal to which the entry is to be added and the library in which it is located.

The first 10 characters contain the journal name and the second 10 characters contain the library

name. The special values supported for the library name are:

 *LIBL Library list

*CURLIB Current library

Journal entry information

INPUT; CHAR(*)

 Information pertinent to the journal entry that is to be added. The information must be in the

following format:

Number of variable length records

BINARY(4)

 Total number of all of the variable length records.

Variable length records

The fields of the information that should be included in the journal entry. For the specific

format of the variable length record, see “Format for Variable Length Record.”

Entry data

INPUT; CHAR(*)

 The user-specified data that is placed in the variable portion of the journal entry (also known as

entry specific data).

Length of entry data

INPUT; BINARY(4)

 The length of the entry data parameter. Valid values are 0 - 32766. If 0 is specified, this is

equivalent to *BLANKS on the SNDJRNE CL command.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format for Variable Length Record

The following table defines the format for the variable length records.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of data

8 8 CHAR(*) Data

If the length of the data is longer than the key field’s data length, the data will be truncated at the right.

No message will be issued.

If the length of the data is smaller than the key field’s data length, an error message (CPF3C4D) will be

issued.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value

for that key is used.

124 iSeries: Journal and Commit APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Data. The data used to determine how the journal entry should be sent. All values are validity checked.

Key. Identifies specific information about the journal entry that will be sent. See “Keys” for the list of

valid keys.

Length of data. The length of the journal entry information value. The length of data field is used to get

the addressability of the next attribute record.

Keys

The following table lists the valid keys for the key field area of the variable length record.

Some messages for this API refer to parameters and values of the Send Journal Entry (SNDJRNE)

command. This table also can be used to locate the key names that correspond to the SNDJRNE

command parameters.

Key Type Field

SNDJRNE Command

Parameter

1 CHAR(2) Journal entry type TYPE

2 CHAR(20) Qualified file name FILE

3 CHAR(10) Member name FILE

4 CHAR(1) Force journal entry FORCE

5 CHAR(1) Include commit cycle identifier Not applicable

6 CHAR(40) Qualified object name OBJ

7 CHAR(*) Object path name OBJPATH

8 CHAR(16) Object file identifier OBJFID

9 CHAR(1) Override journal state OVRSTATE

Field Descriptions

Force journal entry. Whether the journal receiver is forced to auxiliary storage after the user entry is

written to it. Possible values are:

 0 The journal receiver is not forced to auxiliary storage. This is the default value if the key is not

specified.

1 The journal receiver is forced to auxiliary storage.

Include commit cycle identifier. Whether the commit cycle identifier should be included with this user

journal entry when it is written. The commit cycle identifier will be the one associated with the

commitment definition that is being used by the program that calls this API. Possible values are:

 0 The commit cycle identifier is not included and will not be written with this user journal entry.

This is the default value if the key is not specified.

Journal and Commit APIs 125

1 The commit cycle identifier is determined and will be associated with this user journal entry if it

is available. So that the commit cycle identifier can be determined for the specified journal, you

must have registered an API commitment resource with the Add Commitment Resource

(QTNADDCR) API. Also, you must have specified that this journal was associated with this

commitment resource. For more information, see “Add Commitment Resource (QTNADDCR)

API” on page 3 (QTNADDCR) API.

Note: If commitment control is not active for the program that calls this API, an error will be

returned as no commit cycle identifier is available. You can use the “Retrieve Commitment

Information (QTNRCMTI) API” on page 49 (QTNRCMTI) API to determine whether commitment

control is active or not for the commitment definition of the program that calls this API.

Notes:

1. If QJOSJRNE is called during commitment control IPL recovery, no commit cycle identifier is available

to be included. Therefore, during this IPL recovery, the journal entry will be sent without a commit

cycle identifier, no matter which value is specified.

2. For more information on commitment definitions and commit cycle identifiers, see the Journal

management topic.

Journal entry type. The journal entry type of this journal entry. Specify a 2-character value for the journal

entry type. This value must be greater than or equal to hex C000. A default value of ’00’ (hex F0F0) is

assumed if the key is not specified.

If a hexadecimal value is specified that does not represent characters, that value is not shown on the

DSPJRN display or printout.

Member name. The name of the physical file member with which this entry is associated. Special values

are *FIRST and *NONE.

The default value is *FIRST. If file name is *NONE and this field has a

specific member listed, an error will be returned.

Object file identifier. The file identifier (FID) of the object with which this entry is associated. An FID is

a unique identifier associated with integrated file system-related objects. Only objects whose FIDs identify

objects of type *STMF, *DIR, or *SYMLNK that are in the Root (’/’), QOpensys, and user-defined file

systems are supported.

The only special value supported is 16 bytes of hexadecimal zeros

(’00000000000000000000000000000000’X) and represents no object identified by an FID will be associated

with the entry. This is the default if the object file identifier key is not specified.

Object path name. The path name of the object with which this entry is associated. Only objects whose

FIDs identify object of type *STMF, *DIR, or *SYMLNK that are in the Root (’/’), QOpensys, and

user-defined file systems are supported. Symbolic links within the path name will not be followed.

If a pointer is specified in the object path name, it must be 16-byte aligned. If not, unpredictable results

may occur.

For more information on the path name format, see Path name format.

The only special value supported is *NONE, and this is the default if the object path name key is not

specified. If *NONE is specified, then in the path name header structure, the length must be set to 5 and

*NONE must follow the path name header structure.

The maximum length of data for this key is 16,773,120.

126 iSeries: Journal and Commit APIs

pns.htm

Override journal state. Whether the journal entry will be deposited, overriding the current state of the

journal. Possible values are:

 0 None of the journal state values are overridden. That is,

v The journal entry is deposited if the journal state is *ACTIVE.

v The journal entry is not deposited and no error is sent if the journal state is *STANDBY.

1 The journal entry is deposited even if the journal state is *STANDBY.

Qualified file name. The first 10 characters contain the name of the physical file with which this entry is

associated. The only special value supported for the file name is *NONE. The second 10 characters

contain the name of the library containing the physical file. Special values are:

 *LIBL Library list

*CURLIB Current library

If the file name is *NONE, then the library name is ignored. *NONE is the default if the qualified file

name key is not specified.

Qualified object name. The qualified name of the object with which this entry is associated. For the

format of this field, see “Qualified Object Name Format.”

If *NONE is specified for object name, the remaining fields should be set to blanks. *NONE is the default

if the qualified file name key is not specified.

Qualified Object Name Format

 Offset

Type Field Dec Hex

CHAR(10) Object name

CHAR(10) Object library name

CHAR(10) Object type

CHAR(10) Member name, if *FILE specified

Field Descriptions

Member name. The name of the physical file member with which this entry is associated. The possible

values are:

 *FIRST The entry is associated with the first member in the file.

*NONE The entry is associated with the file, not with any member of the file.

member name The name of the file member with which this entry is associated.

blank The member name field must be blank if *NONE is specified for the object name.

Note: If the specified object type was not *FILE, the member name value is ignored.

Object library name. The name of the library containing the object. The possible values are:

 *LIBL All libraries in the job’s library list are searched until the first match is found.

*CURLIB The current library for the job is searched. If no library is specified as the current library for the

job, the QGPL library is used.

library name The name of the library to be searched.

blank The library name field must be blank if *NONE is specified for the object name.

Journal and Commit APIs 127

Object name. The name of the object with which this entry is associated.

 *NONE No object is associated with the journal entry.

Object name The name of the object with which this entry is associated.

Object type. The object type associated with the object with which this entry is associated. The possible

values are:

 *FILE The entry is associated with a

database file or

database file member.

*DTAARA The entry is associated with a data area.

*DTAQ The entry is associated with a data queue.

blank The object type field must be blank if *NONE is specified for the object name.

Error Messages

 Message ID Error Message Text

CPFA0D4 E File system error occurred.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C81 E Value for key &1 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C85 E Value for key &1 not allowed with value for key &2.

CPF3C88 E Number of variable length records &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF7002 E File &1 in library &2 not a physical file.

CPF7003 E Entry not journaled to journal &1. Reason code &3.

CPF7004 E Maximum number of objects journaled to journal &1.

CPF7007 E Cannot allocate member &3 file &1 in &2.

CPF7035 E Object &1 in &2 already known to journal.

CPF7037 E File &1 not journaled to journal &3.

CPF706E E Length of entry data &1 not valid.

CPF708D E Journal receiver found logically damaged.

CPF70EF E Parameters cannot be used together.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF83DE E No API commitment resource associated with journal &2.

CPF83D1 E Commit cycle identifier not available.

CPF8350 E Commitment definition not found.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9812 E File &1 in library &2 not found.

CPF9815 E Member &5 file &2 in library &3 not found.

CPF9820 E Not authorized to use library &1.

CPF9822 E Not authorized to file &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

128 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Start Journal (QjoStartJournal) API

 Required Parameter Group:

1 Object entry array

Input Char(*)

2 File ID entry array

Input Char(*)

3 Journal

Input Char(*)

 Omissible Parameter Group:

4 Start journal options

Input Char(*)

5 Error code

I/O Char(*)

 Service Program Name: QJOURNAL

 Default Public Authority: *USE

 Threadsafe: Yes

The Start Journal (QjoStartJournal) API is used to start journaling changes (made to an object or list of

objects) to a specific journal. The object types that are supported through this API are Data Areas

(*DTAARA), Data Queues (*DTAQ), Byte Stream Files (*STMF), Directories (*DIR), and Symbolic Links

(*SYMLNK). For objects of type *STMF, *DIR, or *SYMLNK, only objects in the Root (’/’), QOpenSys, and

User-defined file systems are supported. For more information about the possible journal entries that can

be sent, see the Journal management topic.

After journaling begins for the object, the user should save the journaled objects. The objects must be

saved because, for example, journaled changes cannot be applied to a version of the object that was

saved before journaling was in effect.

Note: For other ways to start journaling, see the following commands in the Control Language (CL)

information:

v Integrated File System objects - Start Journal (STRJRN)

v Access Paths - Start Journal Access Path (STRJRNAP)

v Data Areas and Data Queues - Start Journal Object (STRJRNOBJ)

v Physical Files - Start Journal Physical File (STRJRNPF)

Restrictions:

1. The object must not be journaling changes to another journal.

Journal and Commit APIs 129

2. The maximum number of objects that can be associated with one journal is 250,000. This maximum

number includes objects whose changes are currently being journaled,

and journal receivers

that are associated with the journal. If the number of objects is larger than this maximum number,

journaling does not start.

3.

The specified journal must be a local journal. Although all object types which can be journaled to a

local journal can also have their changes sent to a remote journal, this is accomplished by a two step

process. First start journaling to the local journal. Then connect the local journal to a remote instance.

To initiate such a connection, use the Add Remote Journal (ADDRMTJRN) command or the “Add

Remote Journal (QjoAddRemoteJournal) API” on page 13. For information about remote journaling,

see the Journal management topic.

4. The specified journal and object must reside in the same Auxiliary Storage Pool (ASP).

5.

Byte stream files that are currently memory mapped or byte stream files that are being used as IXS

network storage spaces cannot be journaled.

6. Objects that are internally marked as not eligible for journaling cannot be journaled. The system may

mark system working directories that are created inside of user directories as not eligible for

journaling.

7. For data areas, only local external data area objects may be journaled. The special data areas (*LDA,

*GDA, *PDA) and DDM data areas cannot be journaled.

8. For data queues, only local data queues are supported. DDM data queues cannot be journaled.

9. At least one of parameter object entry or file ID entry must not be NULL.

Authorities and Locks

Journal Authority

*OBJOPR, *OBJMGT

Non-IFS Object Authority (if specified)

*OBJOPR, *READ, *OBJMGT

IFS Object Authority (if specified)

*R, *OBJMGT (also *X if object is a directory and *ALL is specified for the directory subtree key)

Directory Authority (for each directory preceding the last component in the path name)

*X

Journal Lock

*SHRUPD

Non-IFS Object Lock (if specified)

*SHRUPD

IFS Object Lock (if specified)

O_RDONLY | O_SHARE_RDWR

Required Parameters

Object entry array

INPUT; CHAR(*)

 The path name of the object for which changes are to be journaled.

If this parameter is NULL, the file ID entry must not be NULL.

The object entry must be in the following format.

130 iSeries: Journal and Commit APIs

Object Entry Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number in array

4 4 CHAR(12) Reserved

Note:These fields repeat for each object path name.

16 10 BINARY(4) Length of this object path name entry

20 14 CHAR(10) Include or omit

30 1E CHAR(2) Reserved

32 20 PTR(16) Pointer to an object path name

Number in array. The number of objects in the object entry array. The possible values are 1

through 300.

Length of this object path name entry. The length of the current object path name entry that can

be used as the displacement from the start of this path name entry to the next path name entry.

The length must be a minimum of 32 bytes and must be a multiple of 16.

Include or omit. Whether the path name is included or omitted from the start journal operation.

 *INCLUDE Objects that match the object name path are to be journaled, unless overridden by an *OMIT

specification.

*OMIT Objects that match the object name path are not to be journaled. This overrides any *INCLUDE

specification and is intended to be used to omit a subset of a previously selected path.

Pointer to an object path name. A pointer to the object path name for which changes are to be

journaled. All relative path names are relative to the current directory at the time of the call to

QjoStartJournal.

In the last component of the path name, an asterisk (*) or a question mark (?) can be used to

search for patterns of names. The * tells the system to search for names that have any number of

characters in the position of the * character. The ? tells the system to search for names that have a

single character in the position of the ? character. Symbolic links within the path name will not be

followed. If the path name begins with the tilde (~) character, then the path is assumed to be

relative to the appropriate home directory.

Additional information about path name patterns is in the Integrated file system information in

the Files and file systems topic.

The pointer given points to a path name structure. If that path name structure contains a pointer,

it must be 16-byte aligned. If not, unpredictable results may occur.

For more information on the path name format, see Path name format.

Reserved. A reserved field that must be set to hexadecimal zeros.

File ID entry array

INPUT; CHAR(*)

 The object file identifiers (FID) for which changes are to be journaled.

If this parameter is NULL, the object entry parameter must not be NULL.

The structure of this parameter follows.

Journal and Commit APIs 131

pns.htm

Object Identifier Array Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number in array

4 4 CHAR(12) Reserved

Note: These fields repeat for each file identifier.

16 10 CHAR(16) Object file identifier

Number in array. The number of objects in the object file identifier list. The possible values are 1

through 300.

Reserved. A reserved field that must be set to hexadecimal zeros.

Object file identifier. The unique 16-byte file identifier (FID) associated with integrated file

system related objects.

Journal

INPUT; CHAR(*)

 The path name of the journal that receives the journal entries. All relative path names are relative

to the current directory at the time of the call to QjoStartJournal.

If a pointer is specified in the path name of the journal, it must be 16-byte aligned. If not,

unpredictable results may occur.

For more information on the journal path name format, see Path name format.

Omissible Parameters

Start journal options

INPUT; CHAR(*)

 The start journal options, if any, to use for the selection of objects to start journaling changes and

how those changes should be journaled. If this parameter is not specified, objects will be

journaled using the default actions described in the field descriptions of the valid keys. See

“Keys” on page 133 for the list of valid keys.

This parameter must be specified, but may be a NULL pointer.

You may specify a key more than once. If duplicate keys are specified, the last specified value for

that key is used.

Each option record must be 16-byte aligned. If not, unpredictable results may occur.

The information must be in the following format:

Journal Options Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of option records

4 4 CHAR(12) Reserved

Note:These fields repeat for each option record.

16 10 BINARY(4) Length of option record

20 14 BINARY(4) Key

24 18 BINARY(4) Length of data

132 iSeries: Journal and Commit APIs

pns.htm

Offset

Type Field Dec Hex

28 1C CHAR(4) Reserved

32 20 CHAR(*) Data

Number of option records. The total number of all option records. If this field is zero, an error

will be returned.

Length of option record. The length of the option record. This length is used to calculate the

starting position of the next option record. If you specify a length of option record that is not

equal to the key field’s required option record length, an error message will be returned.

Key. Specific action for start journal. See “Keys” for the list of valid keys.

Length of data. The length of the option record. This length is used to calculate the ending

position of the data for this option.

If you specify a length of data that is not equal to the key field’s required data length, an error

message will be returned.

Reserved. A reserved field that must be set to hexadecimal zeros.

Data. The data that is used to determine the journal option. All values are validity checked.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Keys

The following table lists the valid keys for the key field area of the journal options record. For detailed

descriptions of the keys, see the “Field Descriptions.”

Some messages for this API refer to parameters and values for the Start Journal (STRJRN) command. This

table also can be used to locate the key names that correspond to the STRJRN command parameters.

Key Input Type Field

Length of
Option
Record

Length
of Data

STRJRN Command

Parameter

1 CHAR(5) Directory Subtree 32 5 SUBTREE

2 CHAR(48) Name Pattern 64 48 PATTERN

3 CHAR(4) New objects inherit

journaling

32 4 INHERIT

4

CHAR(6)

Images 32

6

IMAGES

5 CHAR(10) Omit journal entry 32 10 OMTJRNE

Field Descriptions

Directory subtree. Whether the directory subtrees are included in the start journal operation. The default

is *NONE.

Note: This parameter is ignored if the object entry parameter is not specified or if the object is not a

directory.

Journal and Commit APIs 133

error.htm#HDRERRCOD
error.htm#HDRERRCOD

*NONE Only the objects that match the selection criteria are processed. The objects within selected

directories are not processed implicitly.

*ALL All objects that meet the selection criteria are processed in addition to the entire subtree of each

directory that matches the selection criteria. The subtree includes all subdirectories and the objects

within those subdirectories.

Name pattern. The patterns to be used to include or omit objects for the start journal operation. The

default will be to include all patterns that match.

Additional information about path name patterns is in the Integrated file system information in the Files

and file systems topic.

Note: This parameter is ignored if the object entry parameter is not specified.

Name Pattern Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number in array

8 8 CHAR(12) Reserved

Note: These fields repeat for each name pattern.

16 10 BINARY(4) Length of this pattern entry

20 14 CHAR(10) Include or omit

30 1E CHAR(2) Reserved

32 20 PTR(16) Pointer to pattern path structure

Number in array. The number of patterns in the pattern list. The possible values are 1 through 20.

Reserved. A reserved field that must be set to hexadecimal zeros.

Length of this pattern entry. The length of this pattern entry. It is used to calculate the position of the

next pattern entry. This must be set to 32.

Include or omit. Whether the name pattern is included or omitted from the start journal operation.

 *INCLUDE Objects that match the object name pattern are to be journaled, unless overridden by an *OMIT

specification.

*OMIT Objects that match the object name pattern are not to be journaled. This overrides an *INCLUDE

specification and is intended to be used to omit a subset of a previously selected pattern.

Pointer to pattern path structure. A pointer to a path structure.

This pointer must be 16-byte aligned. If not, unpredictable results may occur.

For more information on the pattern path name format, see Path name format.

New objects inherit journaling. Whether new objects created in an object can inherit the journaling

options and the journal state of the parent directory. If the new objects inherit journaling parameter is not

specified, the default will be to not inherit journaling options and the journal state of the parent directory.

134 iSeries: Journal and Commit APIs

pns.htm

*NO New objects created within a directory will not inherit the journaling options and journal state of

the parent directory.

*YES New objects created within a directory will inherit the journaling options and journal state of the

parent directory.

Images. The kinds of images that are written to the journal receiver for updates to objects. The value

*BOTH is only supported for objects of type *DTAARA.

If the images parameter is not specified, the default value will be *AFTER.

 *AFTER Only after images are generated for changes to the objects.

*BOTH The system generates both before and after images for changes to the objects.

Omit journal entry. The journal entries that are omitted. This parameter only supports objects of type

*STMF, *DIR, or *SYMLNK that are in the Root (’/’), QOpenSys, and user-defined file systems. If the omit

journal entry parameter is not specified, the default will be *NONE.

 *NONE No entries are omitted.

*OPNCLOSYN Open, close, and force operations on the specified objects do not generate open, close, and force

journal entries. This prevents the use of TOJOBO and TOJOBC entries on the Apply Journal

Changes (APYJRNCHG) command, but it saves some storage space in the journal receivers.

Error Messages

The following messages may be sent from this API:

 Message ID Error Message Text

CPFA0D4 E File system error occurred.

CPF6979 E Journal is unusable.

CPF700A E &1 of &2 objects started journaling.

CPF70EF E Parameters cannot be used together.

CPF705A E Operation failed due to remote journal.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

Example

See Code disclaimer information for information pertaining to code examples.

The following example starts journaling a directory object and all objects within that directory subtree.

Additionally, it starts journaling on another object identified by its file ID.

#include <string.h>

#include <qjournal.h>

void main()

{

 Qjo_Object_Entry_Array_t objectEntryArray;

 Qjo_File_ID_Entry_Array_t fileIDEntryArray;

 struct PathNameStruct

 {

 Qlg_Path_Name_T header;

Journal and Commit APIs 135

aboutapis.htm#CODEDISCLAIMER

char p[50];

 };

 struct PathNameStruct path;

 struct PathNameStruct journalPath;

 char pathName[] = "/CustomerData";

 char jrnPathName[] = "/QSYS.LIB/ADMIN.LIB/CUSTDATA.JRN";

 Qp0lFID_t fileID;

 struct JournalOptionsStruct

 {

 Qjo_Journal_Options_t opts;

 char spaceForAdditionalOptions[200];

 };

 struct JournalOptionsStruct journalOptions;

 Qjo_Option_t *optionP;

 Qus_EC_t errorCode;

 /* Setup the object’s path name structure. */

 memset(&path name, 0, sizeof(path));

 path.header.CCSID = 37;

 memcpy(path.header.Country_ID,"US",2);

 memcpy(path.header.Language_ID,"ENU",3);

 path.header.Path_Type = QLG_CHAR_SINGLE;

 path.header.Path_Length = strlen(pathName);

 path.header.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.p, pathName, path.header.Path_Length);

 /* Setup the object entry array. */

 memset(&objectEntryArray,0,sizeof(objectEntryArray));

 objectEntryArray.Number_In_Array = 1;

 objectEntryArray.Entry[0].Length_Of_Object_Entry =

 sizeof(objectEntryArray.Entry[0]);

 memcpy(objectEntryArray.Entry[0].Include_Or_Omit,

 QJO_INC_ENT_INCLUDE,

 sizeof(objectEntryArray.Entry[0].Include_Or_Omit));

 objectEntryArray.Entry[0].Path_Name =

 (Qlg_Path_Name_T *)&path;

 /* Get an object’s file ID.

 This example is not including the retrieval of the

 file ID for an object. The user can see the

 Qp0lGetAttr API for information on retrieving an

 object’s file ID. This example will proceed as if the

 fileID variable is set to a valid file ID. */

 /* Setup the file ID entry array. */

 memset(&fileIDEntryArray,0,sizeof(fileIDEntryArray));

 fileIDEntryArray.Number_In_Array = 1;

 memcpy(&fileIDEntryArray.Entry,

 fileID,

 sizeof(fileIDEntryArray.Entry));

 /* Setup the journal’s path name structure. */

 memset(&journalPath, 0, sizeof(journalPath));

 journalPath.header.CCSID = 37;

 memcpy(journalPath.header.Country_ID,"US",2);

 memcpy(journalPath.header.Language_ID,"ENU",3);

 journalPath.header.Path_Type = QLG_CHAR_SINGLE;

 journalPath.header.Path_Length = strlen(jrnPathName);

136 iSeries: Journal and Commit APIs

journalPath.header.Path_Name_Delimiter[0] = ’/’;

 memcpy(journalPath.p,

 jrnPathName,

 journalPath.header.Path_Length);

 /* Set the journal options. */

 memset(&journalOptions,0,sizeof(journalOptions));

 journalOptions.opts.Number_Of_Options = 3;

 /* Set the *AFTER images key. */

 optionP = (Qjo_Option_t *)&journalOptions.opts.Option[0];

 optionP->Length_Of_Record = QJO_KEY_MINIMUM_RECORD_LENGTH;

 optionP->Key = QJO_KEY_IMAGES;

 optionP->Length_Of_Data = QJO_KEY_IMAGES_LENGTH;

 memcpy(optionP->Data,

 QJO_IMAGES_AFTER,

 QJO_KEY_IMAGES_LENGTH);

 /* Set the inherit directory journaling attributes key. */

 optionP = (Qjo_Option_t *)((char *)optionP +

 optionP->Length_Of_Record);

 optionP->Length_Of_Record = QJO_KEY_MINIMUM_RECORD_LENGTH;

 optionP->Key = QJO_KEY_INHERIT;

 optionP->Length_Of_Data = QJO_KEY_INHERIT_LENGTH;

 memcpy(optionP->Data,

 QJO_INHERIT_YES,

 QJO_KEY_INHERIT_LENGTH);

 /* Set the subtree processing images key. */

 optionP = (Qjo_Option_t *)((char *)optionP +

 optionP->Length_Of_Record);

 optionP->Length_Of_Record = QJO_KEY_MINIMUM_RECORD_LENGTH;

 optionP->Key = QJO_KEY_SUBTREE;

 optionP->Length_Of_Data = QJO_KEY_SUBTREE_LENGTH;

 memcpy(optionP->Data,

 QJO_SUBTREE_ALL,

 QJO_KEY_SUBTREE_LENGTH);

 /* Setup the error code structure to cause an exception

 to be sent upon error. */

 memset(&errorCode,0,sizeof(errorCode));

 errorCode.Bytes_Provided = 0;

 QjoStartJournal(&objectEntryArray,

 &fileIDEntryArray,

 (Qlg_Path_Name_T *)&journalPath,

 (Qjo_Journal_Options_t *)&journalOptions,

 &errorCode);

}

API introduced: V5R1

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Exit Programs

These are the Exit Programs for this category.

Journal and Commit APIs 137

#TOP_OF_PAGE
aplist.htm

Commitment Control Exit Program

 Required Parameter Group:

1 Commitment control exit program information

Input Char(80)

2 Status information

Input Char(*)
 Optional Parameter:

3 Return information

Output Char(*)
 QSYSINC Member Name: ETNCMTRB

Users who add API commitment resources to the commitment definition must supply a commitment

control exit program as described in Qualified commitment control exit program name. The commitment

control operations call this exit program:

v Optionally when the commitment definition associated with this resource is placed in a

rollback-required state.

v Optionally during the classify phase of commit or rollback processing.

v Optionally during the prepare phase of commit processing.

v To commit during commit processing.

v To roll back during rollback processing.

v Optionally to reacquire locks during IPL or ASP device vary on.

The commitment control operations pass specific information to the commitment control exit program.

The exit program must be coded to handle this specific information as described in Required Parameter

Group.

Required Parameter Group

Commitment control exit program information

INPUT; CHAR(80)

 Information associated with the commitment control exit program specified when the API

commitment resource was added to the commitment definition. This information is passed to the

exit program exactly as it was entered when the API commitment resource was added. The area

may contain any data such as pointers or an object name. If pointers are used, each one must

start on a 16-byte boundary. A pointer may refer to an area of storage that contains information

required by your exit program. A pointer may refer only to an area of storage on an ASP that is

available when the exit program is called.

Status information

INPUT; CHAR(*)

 Status information from the commitment control operations. Each field of this information has a

specific meaning. The fields, their meanings, and size are shown in “Status Information Format”

on page 139.

138 iSeries: Journal and Commit APIs

#SPTQNAME
#HDREXINFO
#HDREXINFO

Optional Parameter

Return information

OUTPUT; CHAR(*)

 Information returned from the commitment control exit program. Each field of this information

has a specific meaning. The fields, their meanings, and size are shown in “Return Information

Format” on page 142.

This parameter is not passed to the commitment control exit program if the Add resource options

parameter was not coded on the Add Commitment Resource (QTNADDCR) API when the

resource was registered.

Status Information Format

The following table shows the offsets, type, and name for the fields passed to the exit program as status

information. See “Field Descriptions” for a description of each of these fields.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Status information length

4 4 CHAR(1) Action required

5 5 CHAR(1) Called for IPL recovery or ASP device vary on

6 6 CHAR(4) Reserved

10 A CHAR(1) Process error status

11 B CHAR(1) Process end status

12 C CHAR(1) Reserved

13 D CHAR(1) Commit or rollback qualifier

14 E CHAR(1) Commitment definition scope

15 F CHAR(25) Reserved

40 28 BINARY(4) Commit cycle identifier

44 2C CHAR(10) Journal name

54 36 CHAR(10) Journal library name

64 40 CHAR(39) Logical unit of work identifier

103 67 CHAR(1) Commitment definition status

104 68 Binary(4) Active savepoint

108 6C Binary(4) Savepoint number

112 70 CHAR(20) Commit cycle identifier - long

132 84 Char(4) Reserved

136 88 Char(128) Savepoint name

Field Descriptions

Action required. The action the commitment control exit program is called to perform. The possible

values are:

 A Exit program called as a last agent. The program owns the decision of whether the logical unit of

work is committed or rolled back. The program must commit or rollback its resources and inform

the system of the decision with the Commit vote field of the Return information parameter.

B Exit program called to place its resources in a rollback-required state.

Journal and Commit APIs 139

C Exit program called to commit its resources.

E Exit program called to set a savepoint in its resources.

F Exit program called to release a savepoint in its resources.

G Exit program called to rollback its resources to a savepoint.

L Exit program called to reacquire its locks. This happens when the status of the API commitment

resource is found to be in doubt during an IPL or ASP device vary on. The locks should be

released when the exit program is called to commit or rollback its resources after the IPL or vary

on completes.

P Exit program called to prepare its resources.

R Exit program called to rollback its resources.

S Exit program called to classify its resources prior to a rollback operation.

Y Exit program called to classify its resources prior to a commit operation.

Note: The commitment control exit program is called for actions A, B, L, P, S, and Y only if it is indicated

when the resource was added that calls should be made to do these actions.

Active savepoint. The identifier assigned to the savepoint that was active when the commit, set

savepoint, release savepoint, rollback to savepoint or rollback was requested. A value of 1 indicates there

were no active savepoints. This identifier may not increment by 1 for consecutive savepoints because of

savepoints created internally by the system. This value applies only when the Action required field is C,

E, F, G or R.

Called for IPL or ASP device vary on recovery. Whether the exit program was called to perform IPL or

ASP device vary on recovery processing for the API commitment resource. The possible values are:

 N Not called to perform IPL or ASP device vary on recovery processing for the API commitment

resource.The action required field may have any valid value.

P Called to perform recovery for the API commitment resource after the IPL or ASP device vary on

is completed. The purpose of this call is to commit or rollback resources whose status was found

to be in doubt during the IPL or ASP device vary on. These resources were called to reacquire

locks during the IPL or ASP device vary on if so indicated when the resource was added. The

action required field will be C (exit program called to commit its resources) or R (exit program

called to rollback its resources).

Y Called during IPL recovery processing for the API commitment resource. The action required field

will be C (exit program called to commit its resources), L (exit program called to reacquire its

locks), or R (exit program called to rollback its resources).

Commit cycle identifier. Commit cycle identifier of the current commit cycle. This value is provided only

if a journal name was specified when the API resource associated with the exit program was added. If no

journal name was specified this field will be zero.

This commit cycle identifier applies only to the journal specified when the resource was added. If the

journal has been placed in STANDBY state, this field will be zero.

This field will be -1 if the value could not fit in the specified Binary(4) field. The complete value will

always be provided in the Commit cycle identifier - long field.

Commit cycle identifier - long. The same field as Commit cycle identifier except the information is in a

Char(20) field that is treated as Zoned(20,0).

Commit or rollback qualifier. If the commit or rollback operation is being performed on behalf of an

explicit request by a program or is being performed implicitly by the system.

 E Explicit commit or rollback (initiated by the user)

I Implicit commit or rollback (initiated by the system)

140 iSeries: Journal and Commit APIs

This commit or rollback qualifier applies only when the action required is C, E, F, G, P, R, S, or Y. For all

other actions, a blank is sent.

Commitment definition scope. The scope for the commitment definition. The possible values are:

 A Activation group level

J Job level

Commitment definition status. The overall status of the commitment definition currently active for the

activation group for the program performing the retrieve request. The scope for this commitment

definition is returned in the commitment definition scope field. The possible values are:

 L The commitment definition is active on the local system within the activation group for the

program performing the retrieve request. An L is returned if one or more of the following

resources are under commitment control.

v Local, open database files

v Local, closed database files with pending changes

v Resources with object-level changes

v Local relational database resources

v API commitment resources

B The commitment definition is active on both the local and one or more remote systems.

Journal library name. The journal library name specified when the commitment resource was added to

the commitment definition. If *CURLIB or *LIBL was specified for the library when the resource was

added, the actual library name at the time the resource was added is placed in this field. If no journal

was specified when the resource was added, blanks are placed in this field.

Journal name. The journal name specified when the commitment resource was added to the commitment

definition. If no journal was specified when the resource was added, a value of *NONE is placed in this

field.

Logical unit of work identifier. The identifier for the logical unit of work currently associated with this

commitment definition.

 Logical Unit of Work Identifier Format

Field Type Description

Network ID CHAR(0-8) Network identifier

Separator CHAR(1) The separator character “.”

Local location name CHAR(0-8) The name of the local location

Separator CHAR(3) The separator characters “.X’”

Instance number CHAR(12) The hex value of the instance number

converted to decimal

Separator CHAR(2) The separator characters “’.”

Sequence number CHAR(5) The hex value of the sequence

number converted to decimal

Process end status. If the exit program was called because of process end, and if so, how the process is

ending, or if the exit program was called as the result of an activation group ending. The possible values

are:

 0 Not during the process or activation group end

Journal and Commit APIs 141

1 Normal process end; job ended with a zero completion code

2 Abnormal process end; job ended with a completion code that is not zero

4 Activation group is ending

Process error status. If errors occurred in the commitment control processing for this logical unit of work

prior to this call to the exit program. The possible values are:

 0 No errors occurred

1 Errors occurred

Reserved. An ignored field.

Savepoint number. The identifier assigned to the savepoint that is being set, released or rolled back. This

identifier may not increment by 1 for consecutive savepoints because of savepoints created internally by

the system. This value applies only when the Action required field is E, F or G.

Savepoint name. The name that identifies the savepoint that is being set, released or rolled back. This

value applies only when the Action required field is E, F or G.

Status information length. The length in bytes of all data passed to the Commitment control exit

program.

Return Information Format

The following table shows the offsets, type, and name for the fields returned from the exit program.

 Offset

Type Field Dec Hex

0 0 Binary(4) Return information length

4 4 Char(1) Commit vote

5 5 Char(1) Classify result

6 6 Char(1) Changes ended

Field Descriptions

Changes ended. This field is used when the commitment control exit program is called with the Action

required field set to A, C, E, F, G or R. It determines whether the commitment resource should be

removed at the end of the commit or rollback operation. The possible values are:

 0 The resource should not be removed at the end of the commit or rollback operation.

1 The resource should be unconditionally removed at the end of the commit or rollback operation.

2 The resource should be removed only if the commit operation was successful. If the commit

operation is not successful the resource is not removed and the Changes Ended field is set back to

0.

If a valid value is not returned, message CPD835E is issued and the resource is not removed.

Classify result. This field is used when the commitment control exit program is called with the Action

required field set to S or Y. The possible values are:

 0 The classify was successful.

142 iSeries: Journal and Commit APIs

1 The classify was not successful. The commit or rollback operation is ended and message CPF835F

is issued. A recoverable failure should be reported for this resource.

If a valid value is not returned, message CPD835E is issued and the classify is considered unsuccessful.

Commit vote. This field is used when the commitment control exit program is called with the Action

required field set to A or P. At this point the exit program has a chance to vote whether the entire logical

unit of work should commit or roll back. If the exit program votes to roll back, the logical unit of work

will roll back regardless of any other votes.

The exit program can also vote read-only. This tells the system that this resource has had no changes

made to it and it does not matter if the logical unit of work commits or rolls back. If this exit program

votes read-only, it will not be called to commit or roll back this logical unit of work. The possible values

are:

 1 The commitment control exit program votes to commit the logical unit of work.

2 The commitment control exit program votes to roll back the logical unit of work.

3 The commitment control exit program votes read-only and does not want a call to commit or roll

back this logical unit of work.

If a valid value is not returned, message CPD83DE is issued and the logical unit of work is rolled back.

Return Information Length. The length in bytes of all data returned from the commitment control exit

program. This field is used to determine whether a particular return value should be used or not. The

only valid value for this field is 7. If the returned length is not 7, message CPD83DE is issued and all the

other return fields are considered to be not valid.

Exit Program Locks

Commitment control obtains a shared-no-update (*SHRNUP) lock on the exit program when the

commitment resource is added using the Add Commitment Resource (QTNADDCR) API. This lock is

maintained until the resource is removed using the Remove Commitment Resource (QTNRMVCR) API.

This locking is done to prevent any changes by other processes to the Commitment control exit program.

Changes by other processes, such as deletion, modification, or authority changes, are prevented.

Exit Program Coding Guidelines

When coding a commitment control exit program, consider the items in the following lists.

Your exit program must:

v Complete its processing within 5 minutes. During process end or IPL, or ASP device vary on recovery

processing, the system does not allow a Commitment control exit program to run more than 5 minutes.

An exit program will not be allowed to prevent a process from ending or an IPL or ASP device vary on

from completing.

v Return an exception to a commitment control operation only if there has been a failure in the exit

program. If the exit program signals an escape message to commitment control, the system assumes

there is a failure. A diagnostic message with a final escape message is returned to the calling program,

or a message is sent to the system operator if the error occurs during or after IPL or ASP device vary

on processing.

v Perform any necessary cleanup of locks acquired by the exit program. This is especially important

when the program is called after IPL or ASP device vary on recovery to commit or rollback resources

whose statuses were found to be in doubt and were called to reacquire locks during IPL or ASP device

vary on recovery.

Journal and Commit APIs 143

v Be written expecting to be called as part of every commitment control operation that is performed for a

commitment definition, including implicit commitment control operations performed by the system at:

– Activation group end

– Job end

– IPL or ASP device vary on time (optionally)
v Be threadsafe if the API commitment resource is added in a multithreaded job.

Your exit program must not perform any of these operations if the scope for the commitment definition

is the job level, or any of these functions from the same activation group if the scope for the commitment

definition is the activation group level.

v Call any commit or rollback operations such as the CL COMMIT command or SQL COMMIT

statement. If it does, message CPF8367 is returned to the exit program.

v Call the QTNADDCR, the QTNRMVCR, or the QTNRBRQD API. If it does, message CPF8367 is

returned to the exit program.

v Open a local database or DDM file member under commitment control. If it does, message CPF432A is

returned to the exit program.

v Start commitment control. If it does, message CPF8351 is returned to the exit program.

v End commitment control. If it does, message CPF8367 is returned to the exit program.

v Use any protected conversations. If it does, a return code is returned to the exit program.

v Connect to a remote relational database with a program that is running under commitment control. If it

does, either a return code or an error message is returned to the exit program.

Your exit program should not attempt any of these functions if the scope for the commitment definition

is the job level, or any of these functions from the same activation group if the scope for the commitment

definition is the activation group level.

v Record-level I/O for a local database or DDM file member opened under commitment control

v SQL statements under commitment control

If either of these functions are performed, the results are unpredictable and no error messages are issued.

The following items are good guidelines to follow for any program you write. Your program should:

v Handle all potential error conditions (fault tolerant). Perform any necessary cleanup of locks acquired

by the exit program.

v Prevent the potential for any infinite looping conditions. The system stops the exit program, after 5

minutes, during process end, IPL or ASP device vary on time.

v Be relatively short and perform well.

v Be callable during IPL or ASP device vary on to reacquire locks and to recover resources.

v Notify the application when placing a commitment definition in rollback-required state.

v Release all locks before finishing IPL or ASP device vary on recovery.

If your exit program changes any of the required parameter values passed to it, these changes are not

preserved for future calls to the exit program.

Process End, Activation Group End, and IPL or ASP Device Vary On

Recovery Processing Guidelines

During process end, activation group end, and IPL or ASP device vary on recovery processing, the debug

functions are not available to help debug any exit program problems. The following operations may be

performed during these processing phases. If any other actions take place, the Commitment control exit

program may not run successfully or the results will be unpredictable.

144 iSeries: Journal and Commit APIs

v Working with physical files, including creating, changing, opening, closing, clearing, and deleting

v Database input and output operations

v Working with data areas, including creation, changing, retrieving, and deletion

v Working with data queues, including creation and deletion

v Working with message queues, including creation, clearing, changing and deletion

Some examples of things your exit program might not be able to do during process end, activation group

end, IPL, or ASP device vary on are:

v Signal any inquiry messages.

v Submit any other jobs.

v Use or attempt to start any remote communications activities.

v Start any subsystems.

v Include a commit cycle identifier if sending journal entries using the Send Journal Entry (QJOSJRNE)

API. This restriction applies during IPL only.

When called after IPL or ASP device vary on recovery to commit or rollback resources whose status was

found to be in doubt during IPL or ASP device vary on recovery, the exit program will be called in a

system database server job. The job name for these jobs The job name for these jobs on the system ASP

start with the characters QDBSRV and end with a number beginning with 02 (for example, QDBSRV02,

QDBSRV03, and so forth). On an IASP, the job name for these jobs starts with the characters “QDBS”

followed by three digits of the ASP device number and ends with the character “V” and a number

beginning with 02 (for example for ASP device number 34, QDBS034V02, QDBS034V03, and so forth).

Debug functions can be used for these jobs by using the Start Service Job (STRSRVJOB) command.

Exit program introduced: V2R2. Formerly called Commit and Rollback.

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Delete Journal Receiver Exit Program

 Required Parameter Group:

1 Delete journal receiver exit information

Input Char(*)

2 Status information

Output Char(*)
 QSYSINC Member Name: EDLTRCV1

 Exit Point Name: QIBM_QJO_DLT_JRNRCV

 Exit Point Format Names: DRCV0100

The Delete Journal Receiver exit program is called when a journal receiver is to be deleted on the server.

When a journal receiver is to be deleted on the server, the operating system calls the user-written exit

programs through the registration facility. The exit programs will be called before the journal receiver is

actually deleted and can indicate whether the exit program considers the receiver eligible for deletion.

Journal and Commit APIs 145

#TOP_OF_PAGE
aplist.htm

The exit point supports an unlimited number of exit programs. For information about adding an exit

program to an exit point, see the Registration Facility.

Note: If the Delete Journal Receiver exit program returns any error messages, the journal receiver will not

be considered eligible for deletion.

Restrictions

v When a user specifies DLTRCV(*YES) as an attribute of a journal, the system will attempt to delete the

journal receiver when the system sees it is no longer required for recovery purposes. Before the journal

receiver is deleted, the system will call all of the exit programs registered for the

QIBM_QJO_DLT_JRNRCV exit point. If any of the exit programs give an indication that the journal

receiver is not eligible for deletion, then the journal receiver will not be deleted. Instead, the system

will retry the deletion in the time specified for the DLTRCVDLY value for the journal. These system

deletion attempts take place in system jobs, during an IPL and during the vary on of an independent

ASP; therefore, the exit program will be allowed to run for only 5 minutes when called during either of

these conditions. If the exit program has not completed in that time, the system cancels the call, and

the journal receiver will not be considered eligible for deletion.

Note: Since these attempts do occur in system jobs, we recommend that the exit program not send any

diagnostic, informational, or completion messages to the job log because those messages would only be

in the system job logs.

v If the delete journal receiver is called as part of process end, the exit program can run for only 5

minutes. If it exceeds 5 minutes, the call is canceled, and the journal receiver is not eligible for deletion.

v During the call to the exit programs, the debug functions, accessed via Start Debug (STRDBG), are not

available to help debug any exit program problems.

v During the call to the exit programs the ASP group associated with the job will not be able to be

changed. The ASP group associated with the job will be the ASP group associated with the journal

receiver to be deleted.

v The exit programs must exist in the system Auxiliary Storage Pool (ASP) or in a basic user ASP. It

cannot exist in an independent ASP. Any ASP group could be associated with the job when the exit

program is called. If the exit program is not found, the journal receiver will not be considered eligible

for deletion.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add exit programs to the registration facility

 *ALLOBJ and *SECADM to remove exit programs from the registration facility

Program Data

When you register the exit program, the following program data can be optionally provided. This

program data specifies the user profile under which the exit program being registered will run. If the

program data is not provided, the exit programs will run under the QUSER user profile.

 Offset

Type Field Dec Hex

0 0 Char(10) User profile

Required Parameter Group

Delete journal receiver exit information

INPUT; CHAR(*)

146 iSeries: Journal and Commit APIs

Information that is needed by the exit program for notification of any journal receiver deletions.

For details, see “Format of Delete Journal Receiver Exit Information.”

Status information

OUTPUT; CHAR(*)

 Information that is returned by the exit program stating whether the deletion can occur or not.

For details, see “Format of Status Information.”

Format of Delete Journal Receiver Exit Information

The following table shows the structure of the delete journal receiver exit information for exit point

format DRCV0100. For a description of the fields in this format, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Delete journal receiver exit information length

4 4 CHAR(20) Exit point name

24 18 CHAR(8) Exit point format name

32 20 CHAR(10) Journal receiver name

42 2A CHAR(10) Journal receiver library name

52 34 CHAR(10) Journal name

62 3E CHAR(10) Journal library name

72 48 CHAR(1) Called by system job

73 49 CHAR(1) Called during IPL or vary on of an independent ASP.

74 4A CHAR(1) Called during process end

75 4B CHAR(1) Journal type

76 4C CHAR(1) Remote journal type

77 4D CHAR(1) Save status

78 4E CHAR(1) Partial status

79 4F CHAR(13) Detached date and time

Format of Status Information

The following table shows the structure of the status information. For a description of the fields in this

format, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Delete status information length

4 4 CHAR(1) Delete status

Field Descriptions

Called by system job. Whether this call was from a user job or a system job. The possible values are:

 0 The call is from a user job.

1 The call is from a system job, and is therefore limited to 5 minutes.

Journal and Commit APIs 147

Called during IPL or vary on of an independent ASP. Whether this call was during an IPL or during the

vary on of an independent ASP. The possible values are:

 0 The call is not during an IPL or vary on of an independent ASP.

1 The call is during an IPL or vary on of an independent ASP, and is therefore limited to 5 minutes.

Called during process end. Whether this call was during process end. The possible values are:

 0 The call is not during process end.

1 The call is during process end.

Delete journal receiver exit information length. The length in bytes of all data passed to the delete

journal receiver exit program.

Delete status. The status value that indicates whether the exit program considers the journal receiver

eligible for deletion. The possible values are:

 0 The journal receiver is not eligible for deletion. Therefore, the delete journal receiver command

will be ended, and the receiver will not be deleted.

1 The journal receiver is eligible for deletion.

Note: If any other value is specified for this item, it will be ignored, and the journal receiver will not be

eligible for deletion.

Delete status information length. The length in bytes of all data returned from the Delete Journal

Receiver exit program. The only valid value for this field is 5. If anything else is entered, the receiver is

not considered eligible for deletion.

Detached date and time. The date and time that this journal receiver was detached from the journal. For

a journal receiver that was attached to a *REMOTE journal, this is the date and time that the journal

receiver was detached on the local system. This field is in the CYYMMDDHHMMSS format as follows:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YYYY Year

MM Month

DD Day

HH Hours

MM Minutes

SS Seconds

If the journal receiver was never attached to a journal, this field will be blank. If the journal receiver was

never detached from a journal, or if this journal receiver is a partial receiver, this field will be all zeros.

Exit point format name. The format name for the delete journal receiver exit program. The possible

format name follows:

 DRCV0100 The format name that is used before a user journal receiver is to be deleted.

Exit point name. The name of the exit point that is calling the exit program.

Journal library name. The library name of the journal that is associated with the journal receiver library

being deleted. If there is no journal associated with this journal receiver, this field will be blank.

148 iSeries: Journal and Commit APIs

Journal name. The name of the journal that is associated with the journal receiver being deleted. If there

is no journal associated with this journal receiver, this field will be blank.

Journal receiver library name. The name of the journal receiver library being deleted.

Journal receiver name. The name of the journal receiver being deleted.

Journal type. An indication of whether the journal currently associated with the journal receiver being

deleted is local or remote. The possible values are:

 blank The journal receiver has not yet been attached to any journal or the receiver is not currently

associated with any journal.

0 *LOCAL

1 *REMOTE

Partial status. An indication of whether the journal receiver is a partial receiver. A journal receiver is

partial for one of the following reasons:

v It was restored from a version that was saved while it was attached to the journal. Additional journal

entries may have been written that were not restored.

v It was one of a pair of dual journal receivers, and it was found damaged while attached to the journal.

The journal receiver has since been detached. This journal receiver is considered partial because

additional journal entries may have been written to the dual journal receiver.

v It is associated with a remote journal and it does not contain all the journal entries that are in the

associated journal receiver attached to the source journal.

The possible values are:

 0 The journal receiver is not a partial journal receiver.

1 The journal receiver is a partial journal receiver.

Remote journal type. If this journal receiver was attached to a remote journal, this field is the remote

journal type for that journal, when this journal receiver was attached. The possible values are:

 blank The journal receiver has not yet been attached to any journal.

0 The journal receiver was attached to a local journal.

1 The journal receiver was attached to a *TYPE1 remote journal.

2 The journal receiver was attached to a *TYPE2 remote journal.

Save status. An indication of whether the journal receiver has been saved after it was detached. The

possible values are:

 0 The journal receiver has not been saved after it was detached.

1 The journal receiver has been saved after it was detached.

User profile. The exit program will be called under this user profile. If the user profile is not valid at the

time the exit programs are called, the QUSER user profile will be used.

IPL Processing Guidelines

The following operations may be performed during the IPL. If any other actions take place, the Delete

Journal Receiver exit program may not run successfully or the results will be unpredictable.

v Working with physical files, including creating, changing, opening, closing, clearing, and deleting

v Database input and output operations

Journal and Commit APIs 149

v Working with data areas, including creating, changing, retrieving, and deleting

v Working with data queues, including creating and deleting

v Working with message queues, including creating, clearing, changing, and deleting

Some examples of things your exit program might not be able to do during IPL are:

v Signal any inquiry messages

v Submit any other jobs

v Use or attempt to start any remote communications activities

v Start any subsystems

 API introduced: V4R2

 top | “Journal and Commit APIs,” on page 1 | APIs by category

Concepts

These are the concepts for this category.

Journaling for Journal and Commit APIs

Journaling allows you to specify database files or access paths you want to protect for recovery purposes,

or allows you to provide an audit trail for changes to database files. In addition, journaling allows you to

provide an audit or activity trail for other objects or activities either by system activities, such as security

auditing, or by user activities, such as the Send Journal Entry (SNDJRNE) command or QJOSJRNE API.

Two objects are associated with journaling: journals and journal receivers.

A journal is the object that identifies:

v The journaled objects, if any

v The current journal receivers

v Any journal receivers on the system that have been, or are, associated with the journal

v Any remote journals that are associated with the journal

A local journal is the journal that is the initiator of the original journal deposit. Objects can be journaled

to a local journal, and journal entries are deposited into a local journal due to changes made to the

journaled objects, or because journal entries were sent to the local journal.

A remote journal is a journal that has been associated with another journal via the Add Remote Journal

(QjoAddRemoteJournal) API. Objects cannot be journaled to a remote journal nor can journal entries be

directly deposited into a remote journal. Instead, a remote journal has journal entries replicated to it from

its upstream source journal. The upstream source journal can be either a local journal or a remote journal.

A journal receiver is the object that contains journal entries, and can be associated with either a local or

remote journal. For a journal receiver attached to a local journal, journal entries are directly deposited

into the journal receiver. For a journal receiver attached to a remote journal, journal entries are replicated

into the journal receiver from the source journal receiver associated with the upstream source journal.

Journal entries contain information such as:

v The job name, program name, and user that caused the journal entry to be deposited into the local

journal.

v The date and time the journal entry was deposited into the local journal.

v Journal code.

150 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

v Entry type.

v Information that is unique to each journal entry type, called entry specific data.

For example, the entry specific data associated with the put of a record to a physical file member (journal

code R, entry type PT) contains an image of the actual record that was put. The rest of the journal entry

information helps determine at what time, by what user the entry was sent, and other details. If a user

sends information to the journal using the SNDJRNE command or QJOSJRNE API (journal code U, entry

type is defined at send time by the user), the entry specific data contains what was specified at that time.

When journaling is started for an object, a unique identifier called a journal identifier (JID) is assigned.

This identifier remains the same even if the object is renamed or moved. The journal identifier is

associated with every journal entry that is associated with a specific journaled object.

The JID allows the journal facility to associate the current name of an object with the journal entries, even

if the entry was made before the object was renamed. To determine what name is currently associated

with a particular JID, use the QJORJIDI API. See “Retrieve Journal Identifier Information (QJORJIDI) API”

on page 85 (QJORJIDI) API for more information on the JID and this API.

The SNDJRNE command and the QJOSJRNE API provide similar function, the sending of a journal entry

at a user’s request. See “Send Journal Entry (QJOSJRNE) API” on page 122 (QJOSJRNE) API for more

information on this API. The major differences between the API and command are:

v The API allows up to 32766 bytes of entry specific data, as opposed to 3000 bytes with the command.

v The API allows the association of the current commit cycle identifier with the journal entry. This

support can be used with the QTNADDCR API. For more information see “Add Commitment

Resource (QTNADDCR) API” on page 3 (QTNADDCR) API.

The QjoAddRemoteJournal, QjoRemoveRemoteJournal, and QjoChangeJournalState APIs allow you to

establish, manipulate, and maintain a remote journal environment. A remote journal environment allows

you to replicate journal entries from one system to another via communications methods such as TCP/IP,

SNA, and OptiConnect for OS/400(R). This support can be used to help replicate data from one iSeries(TM)

server to one or more additional iSeries servers. Using application programs, the replicated entries can

then be used to maintain a backup, or replica of the primary systems data. If desired, the backup data

can be used in the event the primary system fails. See “Add Remote Journal (QjoAddRemoteJournal)

API” on page 13 (QjoAddRemoteJournal) API, “Change Journal State (QjoChangeJournalState) API” on

page 25 (QjoChangeJournalState) API, and “Remove Remote Journal (QjoRemoveRemoteJournal) API” on

page 46 (QjoRemoveRemoteJournal) API for more information on these APIs. The Add Remote Journal

(ADDRMTJRN), Change Remote Journal (CHGRMTJRN), and Remove Remote Journal (RMVRMTJRN)

commands provide support similar to these APIs.

The QjoRetrieveJournalInformation and QjoRtvJrnReceiverInformation APIs provide information that is

similar to the Work with Journal Attributes (WRKJRNA) and Display Journal Receiver Attributes

(DSPJRNCVA) commands, respectively. See “Retrieve Journal Information

(QjoRetrieveJournalInformation) API” on page 90 (QjoRetrieveJournalInformation) API and “Retrieve

Journal Receiver Information (QjoRtvJrnReceiverInformation) API” on page 109

(QjoRtvJrnReceiverInformation) API for more information on these APIs.

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

Commitment Control for Journal and Commit APIs

The terms commit or rollback include all methods of commit and rollback available on the server, such

as:

v CL COMMIT and ROLLBACK commands

v ILE C_Rcommit and _Rrollbck functions

Journal and Commit APIs 151

#TOP_OF_PAGE
aplist.htm

v SQL COMMIT and ROLLBACK statements

A commitment resource is any part of the system that is used by a process and placed under

commitment control. When a part of the system is put under commitment control by the Add

Commitment Resource (QTNADDCR) API, that resource can be referred to as an API commitment

resource.

API commitment resources are processed by the system during:

v Commit

v Rollback

v Process end

v Activation group end

v and, optionally, during:

– Initial program load (IPL)

– The classify phase of a commit or rollback

– The prepare phase of a commit

When commitment control is started using the Start Commitment Control (STRCMTCTL) command, the

system creates a commitment definition that is scoped to a particular activation group or to the job as

indicated on the commit scope (CMTSCOPE) keyword.

Each group of committable changes is intended to be an atomic operation. Each group can be committed

(changes are made permanent to the system) or rolled back (changes are permanently removed from the

system) and is referred to as a logical unit of work. The first logical unit of work begins when

commitment control is started. Each commit and rollback completes the current logical unit of work and

starts a new one.

A commitment definition saves internal control information pertaining to the resources under

commitment control. This internal control information is maintained as the state of those commitment

resources changes, until that commitment definition is ended using the End Commitment Control

(ENDCMTCTL) command. A commitment definition generally includes:

v The parameters on the Start Commitment Control (STRCMTCTL) command

v The current status of the commitment definition

v Information about files and other resources that contain changes made during the current logical unit

of work

The Example Using Selective Commitment Control APIs (page 152) shows how some of the commitment

control APIs can be used together. First, the Retrieve Commitment Information (QTNRCMTI) API is used

by the high-level language (HLL) program to determine if commitment control is active within the

activation group for the HLL program. If the activation-group-level commitment definition is already

active, then the status retrieved by the API will be with respect to that activation-group-level commitment

definition. If the activation-group-level commitment definition is not active, but the job-level commitment

definition is active, then the status retrieved by the API will be with respect to the job-level commitment

definition. If status is being retrieved for the job-level commitment definition, then information from a

second status field returned by the API can be used to determine whether programs that have run within

the activation group have already used the job-level commitment definition. If no program running

within the activation group has used the job-level commitment definition, then an activation-group-level

commitment definition may be started by the HLL program.

Example Using Selective Commitment Control APIs

152 iSeries: Journal and Commit APIs

Note: Programs running within a single activation group may use the activation-group-level or the

job-level commitment definition, but cannot use both definitions concurrently. Two programs running

within different activation groups may each use a separate activation-group-level commitment definition,

or one or both programs may use the job-level commitment definition.

Journal and Commit APIs 153

Once a commitment definition has been established for the HLL program, the Add Commitment

Resource (QTNADDCR) API is used to add one or more commitment resources to the commitment

definition. When a commit or rollback operation is performed to complete a transaction for this

commitment definition, the system performs the commit or rollback operation for all record-level and

object-level resources. It also calls an exit program, as identified by the HLL program when the API

commitment resource was added, for each API commitment resource.

The Example Using Selective Commitment Control APIs (page 152) shows one call to each exit program

during commit and rollback operations. This is the case for one-phase resources. For two-phase resources,

up to three calls are made during commit operations, and up to two calls are made during rollback

operations. See “Add Commitment Resource (QTNADDCR) API” on page 3 (QTNADDCR) API for more

information on one-phase and two-phase commitment resources.

After all the desired logical units of work are completed by the HLL program, the Remove Commitment

Resource (QTNRMVCR) API must be used to remove each of the commitment resources added to the

commitment definition before the commitment definition can be ended by the End Commitment Control

(ENDCMTCTL) command. However, if an activation-group-level commitment definition is being used

and the activation group is ended when the HLL program returns, then any API commitment resources

are implicitly removed by the system and the activation-group-level commitment definition is

automatically ended by the system. Prior to the system implicitly removing the API commitment

resources and automatically ending the activation-group-level commitment definition, an implicit commit

or rollback operation is performed by the system if pending changes exist for the commitment definition,

with the appropriate exit program calls made for any API commitment resources. An implicit commit is

performed by the system if the activation group is ending normally. An implicit rollback is performed by

the system if the activation group is ending abnormally.

Note: The implicit end performed by the system for activation-group-level commitment definitions does

not apply for the default activation group. This is because the default activation group is never ended

when a program running within it returns. The default activation group persists for the life of the job.

Regardless of the scope for a particular commitment definition, any pending changes for a commitment

definition at process end or during IPL recovery processing are always rolled back. This is true unless the

process or system ended in the middle of a commit operation for that commitment definition. In that

case, the commit operation is completed for the commitment definition.

 Top | “Journal and Commit APIs,” on page 1 | APIs by category

154 iSeries: Journal and Commit APIs

#TOP_OF_PAGE
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 155

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

156 iSeries: Journal and Commit APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 157

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

158 iSeries: Journal and Commit APIs

����

Printed in USA

	Contents
	Journal and Commit APIs
	APIs
	Add Commitment Resource (QTNADDCR) API
	Authorities and Locks
	Restrictions
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Input Options Structure
	Field Descriptions
	Usage Notes
	Error Messages

	Add Remote Journal (QjoAddRemoteJournal) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	Omissible Parameter Group
	ADRJ0100 Format
	Field Descriptions
	Error Messages

	Change Commitment Options (QTNCHGCO) API
	Required Parameter Group
	Commitment Options Format
	Field Descriptions
	Restrictions
	Error Messages

	Change Journal Recovery Count (QJOCHRVC) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Change Journal State (QjoChangeJournalState) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	Omissible Parameter Group
	CJST0100 Format
	CJST0300 Format
	CJST0400 Format
	CJST0500 Format
	Field Descriptions
	Error Messages

	Clear LU6.2 Partners (QTNCLRLU) API
	Authorities and Locks
	Required Parameters
	Optional Parameter
	Usage Notes
	Error Messages

	Delete Pointer Handle (QjoDeletePointerHandle) API
	Authorities and Locks
	Required Parameter
	Omissible Parameter
	Error Messages

	End Journal (QjoEndJournal) API
	Authorities and Locks
	Required Parameters
	Omissible Parameters
	Keys
	Field Descriptions
	Error Messages
	Example

	Materialize Journal Port Attributes (QusMaterializeJournalPortAttr) API
	Error Messages

	Materialize Journal Space Attributes (QusMaterializeJournalSpaceAttr) API
	Error Messages

	Remove Commitment Resource (QTNRMVCR) API
	Required Parameter Group
	Restrictions
	Error Messages

	Remove Remote Journal (QjoRemoveRemoteJournal) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	Omissible Parameter Group
	RMRJ0100 Format
	Field Descriptions
	Error Messages

	Retrieve Commitment Information (QTNRCMTI) API
	Required Parameter Group
	CMTI0100 Format
	Field Descriptions
	Error Messages

	Retrieve Journal Entries (QjoRetrieveJournalEntries) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	Omissible Parameter Group
	Format for Variable Length Record
	Field Descriptions
	Keys
	Field Descriptions
	File Format
	Field Descriptions
	Journal Code Format
	Field Descriptions
	Journal Entry Type Format
	Field Descriptions
	Receiver Range Format
	Field Descriptions
	RJNE0100 Format
	RJNE0200 Format
	Field Descriptions
	Use of Pointers within Entry Specific Data
	Error Messages
	Example

	Retrieve Journal Identifier Information (QJORJIDI) API
	Maintaining a JID for a Journaled Object
	Restrictions
	Authorities and Locks
	Required Parameter Group
	RJID0100 Format
	Field Descriptions
	Error Messages

	Retrieve Journal Information (QjoRetrieveJournalInformation) API
	Authorities and Locks
	Required Parameter Group
	Omissible Parameter
	Format for Variable Length Record
	Field Descriptions
	Keys
	Field Descriptions
	RJRN0100 Format
	Key 1 Output Section
	Key 2 Output Section
	Key 3 Output Section
	Field Descriptions
	Error Messages

	Retrieve Journal Receiver Information (QjoRtvJrnReceiverInformation) API
	Authorities and Locks
	Required Parameter Group
	Omissible Parameter
	RRCV0100 Format
	Field Descriptions
	Error Messages

	Return LU6.2 Partners (QTNRTNLU) API
	Authorities and Locks
	Required Parameter
	Optional Parameter
	Usage Notes
	Error Messages

	Rollback Required (QTNRBRQD) API
	Required Parameter Group
	Restrictions
	Error Messages

	Send Journal Entry (QJOSJRNE) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	Format for Variable Length Record
	Field Descriptions
	Keys
	Field Descriptions
	Qualified Object Name Format
	Field Descriptions
	Error Messages

	Start Journal (QjoStartJournal) API
	Authorities and Locks
	Required Parameters
	Omissible Parameters
	Keys
	Field Descriptions
	Error Messages
	Example

	Exit Programs
	Commitment Control Exit Program
	Required Parameter Group
	Optional Parameter
	Status Information Format
	Field Descriptions
	Return Information Format
	Field Descriptions
	Exit Program Locks
	Exit Program Coding Guidelines
	Process End, Activation Group End, and IPL or ASP Device Vary On Recovery Processing Guidelines

	Delete Journal Receiver Exit Program
	Restrictions
	Authorities and Locks
	Program Data
	Required Parameter Group
	Format of Delete Journal Receiver Exit Information
	Format of Status Information
	Field Descriptions
	IPL Processing Guidelines

	Concepts
	Journaling for Journal and Commit APIs
	Commitment Control for Journal and Commit APIs

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

