
iSeries

High-Level Language APIs 

Version 5 Release 3 

 

 

 

ERserver  

���





iSeries

High-Level Language APIs 

Version 5 Release 3 

 

 

 

ERserver  

���



Note  

Before  using  this  information  and  the  product  it supports,  be  sure  to read  the  information  in  

“Notices,”  on  page  65.

Sixth  Edition  (August  2005)  

This  edition  applies  to version  5, release  3, modification  0 of Operating  System/400  (product  number  5722-SS1)  and  

to  all subsequent  releases  and  modifications  until  otherwise  indicated  in new  editions.  This  version  does  not  run  on 

all  reduced  instruction  set  computer  (RISC)  models  nor  does  it run  on CISC  models.  

© Copyright  International  Business  Machines  Corporation  1998,  2005.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

High-Level Language APIs . . . . . . . 1 

APIs   . . . . . . . . . . . . . . . . . 1 

Application  Development  Manager/400  APIs   . . . 1  

Get  Space  Status  (QLYGETS)  API   . . . . . . . 2 

Authorities  and  Locks   . . . . . . . . . . 2  

Required  Parameter  Group   . . . . . . . . 2 

Error  Messages   . . . . . . . . . . . . 2  

Read  Build  Information  (QLYRDBI)  API   . . . . . 3  

Authorities  and  Locks   . . . . . . . . . . 3  

Required  Parameter  Group   . . . . . . . . 3 

Error  Messages   . . . . . . . . . . . . 4  

Set  Space  Status  (QLYSETS)  API  . . . . . . . . 4 

Authorities  and  Locks   . . . . . . . . . . 5  

Required  Parameter  Group   . . . . . . . . 5 

Error  Messages   . . . . . . . . . . . . 5  

Write Build  Information  (QLYWRTBI)  API   . . . . 6 

Authorities  and  Locks   . . . . . . . . . . 6  

Required  Parameter  Group   . . . . . . . . 6 

Error  Messages   . . . . . . . . . . . . 6  

COBOL/400  APIs  . . . . . . . . . . . . . 7 

Change  COBOL  Main  Program  (QLRCHGCM)  API   . 8 

Required  Parameter   . . . . . . . . . . . 9 

Error  Messages   . . . . . . . . . . . . 9  

Dump  COBOL  (QlnDumpCobol)  API  . . . . . . 10 

Required  Parameter  Group   . . . . . . . . 11 

Error  Messages   . . . . . . . . . . . . 12  

Retrieve  COBOL  Error  Handler  

(QlnRtvCobolErrorHandler)  API   . . . . . . . 12 

Required  Parameter  Group   . . . . . . . . 12  

Error  Messages   . . . . . . . . . . . . 13  

Retrieve  COBOL  Error  Handler  (QLRRTVCE)  API  13 

Required  Parameter  Group   . . . . . . . . 13  

Error  Messages   . . . . . . . . . . . . 14  

Set  COBOL  Error  Handler  (QLRSETCE)  API   . . . 15 

Required  Parameter  Group   . . . . . . . . 16  

Error  Messages   . . . . . . . . . . . . 17  

Set  COBOL  Error  Handler  

(QlnSetCobolErrorHandler)  API   . . . . . . . 17 

Required  Parameter  Group   . . . . . . . . 18  

Error  Messages   . . . . . . . . . . . . 18  

ILE  C/C++  Run-Time  Library  Functions  . . . . . 19 

REXX/400  Functions   . . . . . . . . . . . 35 

Exit  Programs   . . . . . . . . . . . . . 35 

ILE  COBOL  Error-Handling  Exit  Procedure  . . . . 35  

Required  Parameter  Group   . . . . . . . . 36  

OPM  COBOL  Error-Handling  Exit  Program   . . . 37  

Required  Parameter  Group   . . . . . . . . 38  

Concepts   . . . . . . . . . . . . . . . 39  

Record  Types . . . . . . . . . . . . . . 39 

Processor  member  start  record   . . . . . . . 43 

Processors  for  which  this  record  type  applies   . . 44  

Field  Descriptions   . . . . . . . . . . . 44 

Processor  object  start  record   . . . . . . . . 45  

Processors  for  which  this  record  type  applies   . . 45  

Field  Descriptions   . . . . . . . . . . . 45 

Normal  processor  end  record   . . . . . . . 46  

Processors  for  which  this  record  type  applies   . . 46  

Field  Descriptions   . . . . . . . . . . . 46 

Normal  processor  end  call  next  record   . . . . 47 

Processors  for  which  this  record  type  applies   . . 47  

Field  Descriptions   . . . . . . . . . . . 47 

Normal  multiple  end  record  . . . . . . . . 48 

Processors  for  which  this  record  type  applies   . . 48  

Field  Descriptions   . . . . . . . . . . . 48 

Abnormal  processor  end  record   . . . . . . 49  

Processors  for  which  this  record  type  applies   . . 49  

Field  Descriptions   . . . . . . . . . . . 49 

Include  record   . . . . . . . . . . . . 49 

Processors  for  which  this  record  type  applies   . . 50  

Field  Descriptions   . . . . . . . . . . . 50 

File  reference  record   . . . . . . . . . . 51 

Processors  for  which  this  record  type  applies   . . 51  

Field  Descriptions   . . . . . . . . . . . 51 

Module  reference  record   . . . . . . . . . 52 

Processors  for  which  this  record  type  applies   . . 52  

Field  Descriptions   . . . . . . . . . . . 52 

Service  program  reference  record   . . . . . . 52 

Processors  for  which  this  record  type  applies   . . 53  

Field  Descriptions   . . . . . . . . . . . 53 

Bind  directory  reference  record   . . . . . . . 53 

Processors  for  which  this  record  type  applies   . . 54  

Field  Descriptions   . . . . . . . . . . . 54 

Record  format  reference  record   . . . . . . . 54 

Processors  for  which  this  record  type  is 

applicable   . . . . . . . . . . . . . . 54  

Field  Descriptions   . . . . . . . . . . . 55 

Field  reference  record   . . . . . . . . . . 55 

Processors  for  which  this  record  type  applies   . . 56  

Field  Descriptions   . . . . . . . . . . . 56 

Message  reference  record  . . . . . . . . . 56  

Processors  for  which  this  record  type  applies   . . 57  

Field  Descriptions   . . . . . . . . . . . 57 

External  reference  error  record   . . . . . . . 57 

Processors  for  which  this  record  type  applies   . . 58  

Field  Descriptions   . . . . . . . . . . . 58 

Object  already  exists  error  record   . . . . . . 58 

Processors  for  which  this  record  type  applies   . . 59  

Field  Descriptions   . . . . . . . . . . . 59 

Start  of new  program  record  . . . . . . . . 59 

Processors  for  which  this  record  type  applies   . . 60  

Field  Descriptions   . . . . . . . . . . . 60 

Examples  of Records  Written  . . . . . . . . 60 

Example  1 . . . . . . . . . . . . . . 60 

Example  2 . . . . . . . . . . . . . . 61 

Example  3 . . . . . . . . . . . . . . 61 

Example  4 . . . . . . . . . . . . . . 61 

Example  5 . . . . . . . . . . . . . . 61 

Example  6 . . . . . . . . . . . . . . 62 

Using  Application  Development  Manager/400  APIs  62 

Appendix. Notices . . . . . . . . . . 65 

 

© Copyright  IBM Corp. 1998, 2005 iii



Trademarks   . . . . . . . . . . . . . . 66 

Terms and  conditions  for downloading  and  printing  

publications   . . . . . . . . . . . . . . 67 

Code  disclaimer  information  . . . . . . . . . 68

 

iv iSeries:  High-Level  Language  APIs



High-Level  Language  APIs  

The  high-level  language  APIs  communicate  with  compilers,  and  the  DB2(R) Universal  Database(TM) for  

iSeries(TM) SQL,  COBOL/400(R), ILE  C/C++,  and  REXX/400  languages.  The  high-level  language  APIs  

include:  

v   “Application  Development  Manager/400  APIs”  

v   “COBOL/400  APIs”  on  page  7 

v   

  

“ILE  C/C++  Run-Time  Library  Functions”  on  page  19  

  

 

v   

  

“REXX/400  Functions”  on  page  35  

  

 

 APIs by category
  

APIs 

These  are  the  APIs  for  this  category.  

Application Development Manager/400 APIs 

   

The  Application  Development  Manager/400  (ADM/400)  feature  is no  longer  available  as  of Version  5 

Release  3 of  iSeries(TM). However,  the  Application  Development  Manager/400  APIs  can  still  be  used  by  

applications  written  in  high-level  programming  languages.  The  Application  Development  Manager/400  

feature  is not  required.  

   

The  Application  Development  Manager/400  APIs  allow  a control  language  (CL)  command  such  as  the  

Build  Part  (BLDPART)  command  to  determine,  for  example,  the  includes  and  external  references  that  

were  used  by  certain  processors  when  processing  a source  member.  The  term  processor  is  used  in  these  

APIs  to  mean  compiler  or  preprocessor.  A part  can  be  either  a source  member  or  an  object,  such  as  a file.  

The  Get  and  Set  Status  APIs  are  used  to  query  and  initialize  the  build  information  space  that  is to  contain  

the  Application  Development  Manager/400  information.  The  Write and  Read  Build  Information  APIs  are  

used  to  write  or  read  records  of  build  information  to and  from  the  space.  

For  additional  information,  see  “Using  Application  Development  Manager/400  APIs”  on  page  62. 

For  information  on  the  different  types  of  records  that  can  be  read  or  written  using  the  Application  

Development  Manager/400  APIs,  see:  

v   “Record  Types”  on  page  39  

v   “Examples  of  Records  Written”  on  page  60 

The  Application  Development  Manager/400  APIs  are:  

v   “Get  Space  Status  (QLYGETS)  API”  on  page  2 (QLYGETS)  obtains  the  status  of  the  space.  

v   “Read  Build  Information  (QLYRDBI)  API”  on  page  3 (QLYRDBI)  reads  one  or  more  records  from  the  

space.  

v   “Set  Space  Status  (QLYSETS)  API”  on  page  4 (QLYSETS)  sets  the  status  of the  space.  

v   “Write  Build  Information  (QLYWRTBI)  API”  on  page  6 (QLYWRTBI)  writes  one  or  more  records  to  the  

space.

 

© Copyright  IBM Corp. 1998, 2005 1

aplist.htm


Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

Get Space Status (QLYGETS) API 

 

 Required  Parameter  Group: 

 

1 Status 

Output  Char(10)  

2 Error  code 

I/O Char(*)

 

 Default  Public  Authority:  *USE  

 

 Threadsafe: No
  

The  Get  Space  Status  (QLYGETS)  API  obtains  the  status  of the  space.  

Authorities and Locks 

None  

Required Parameter Group 

Status  OUTPUT;  CHAR(10)  

 *READY  Information  in the space is ready to be processed.  

*COMPLETE  Information  in the space has been processed. 

*NONE  The space does not exist.  Use QLYSETS  to create the space.
  

  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID Error Message  Text  

CPF3CF1  E Error  code parameter  not valid.  

CPF3C90  E Literal value cannot  be changed.  

CPF9872  E Program or service  program &1 in library &2 ended. Reason  code &3.
  

API  introduced:  V2R2  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
 

 

2 iSeries:  High-Level  Language  APIs

#TOP_OF_PAGE
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Read Build Information (QLYRDBI) API 

 

 Required Parameter  Group: 

 

1 Buffer  

Output  Char(*) 

2 Maximum  size 

Input  Binary(4)  

3 Read mode  

Input  Char(10)  

4 Buffer  length 

Output  Binary(4)  

5 Number  of records  

Output  Binary(4)  

6 Error  code 

I/O Char(*)
 Default  Public  Authority:  *USE 

 

 Threadsafe: No
  

The  Read  Build  Information  (QLYRDBI)  API  reads  one  or  more  records  from  the  space.  

QLYRDBI  reads  the  space  starting  at the  first  location  after  the  last  record  was  read.  If  this  is  the  first  

time  QLYRDBI  is  called,  the  first  record  following  the  header  record  is read.  

After  QLYRDBI  has  read  the  final  record,  the  next  call  to QLYRDBI  starts  reading  the  space  from  the  

beginning  again.  

QLYRDBI  reads  one  or  more  records  depending  on  the  value  specified  on  the  Read  mode  parameter.  

QLYRDBI  does  not  read  more  records  than  can  fit  in  the  buffer.  The  buffer  is determined  by  the  

Maximum-size  parameter.  

Authorities and Locks 

None.  

Required Parameter Group 

Buffer  OUTPUT;  CHAR(*)  

 A character  string  to  contain  one  or  more  records  of  build  information.  

Maximum  size  

INPUT;  BINARY(4)  

 The  maximum  size  of  the  data  that  is expected  to  be  returned  to  this  call.  Maximum  size  should  

be  large  enough  to  fit  at  least  one  record.  If it is too  small  for  one  record,  an  error  occurs.  

Read  mode  

INPUT;  CHAR(10)  

 The  mode  of  reading.  

 

High-Level  Language  APIs 3



The  possible  read  mode  values  are:  

 *SINGLE  Read only one record. 

*MULTIPLE  Read more  than one record. The maximum  number of records that are read is determined  by the size of 

Maximum  size.
  

Buffer  length  

OUTPUT;  BINARY(4)  

 The  length  of the  data  returned.  If records  are  not  read,  0 is returned.  

Number  of  records  

OUTPUT;  BINARY(4)  

 The  number  of  records  read.  Number  of  records  is 0 if no  records  were  read,  1 if one  record  was  

read  or  greater  than  1 if *MULTIPLE  was  specified  on  read  mode  and  more  than  one  record  

could  fit  in  the  buffer.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

The  LIBxxxx  error  messages  are  located  in  the  message  file  QLIBMSG  in  the  QSYS  library.  

 Message  ID Error Message  Text  

LIB9005 Value  specified  for Maximum  size parameter  is not valid. 

LIB9006 Value  specified  for Read mode  parameter  is not valid. 

LIB9007 Value  specified  for Maximum  size parameter  is too small. 

LIB9009 Build information  space does not exist, or it is damaged  or deleted. 

LIB9010 Build information  missing  or no more build information.  

LIB9011  Build information  in the space is not complete.  

CPF3CF1  E Error  code parameter  not valid.  

CPF3C90  E Literal value cannot  be changed.  

CPF9872  E Program or service  program &1 in library &2 ended. Reason  code &3.
  

API  introduced:  V2R2  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

Set Space Status (QLYSETS) API 

 

 Required  Parameter  Group: 

 

1 Status 

Input Char(10)  

2 Error  code 

I/O Char(*)

 

 Default  Public  Authority:  *USE  

 

 Threadsafe: No
 

 

4 iSeries:  High-Level  Language  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


The  Set  Space  Status  (QLYSETS)  API  sets  the  status  of the  space.  

When  QLYSETS  is first  called  to  create  the  space  (if  the  space  does  not  exist  already)  or  to  initialize  the  

space  so  the  information  can  be  written  to  it by  compilers  or  preprocessors,  the  Status  parameter  should  

be  set  to  *READY.  Then  QLYSETS  writes  a special  record  (called  the  HEADER  record)  at the  beginning  of 

the  space  and  initializes  a status  flag  in that  record  to  *READY.  Now  the  space  is ready  to  accept  records  

containing  build  information.  Compilers  write  to the  space  using  the  QLYWRTBI  API.  QLYWRTBI  writes  

records  to  the  space  concatenated  to  each  other.  QLYRDBI  later  reads  them  sequentially  in  the  order  in  

which  they  are  written.  

Use  the  QLYSETS  API  to  set  the  status  flag  in  the  space  to *COMPLETE  after  the  information  in the  space  

is  processed  using  the  QLYRDBI  API.  This  indicates  that  the  information  in  the  space  has  been  processed  

and  the  space  can  be  reused.  

Authorities and Locks 

None  

Required Parameter Group 

Status  INPUT;  CHAR(10)  

 The  status  for  the  space.  

 The  possible  status  values  are:  

 *READY  Initialize  the space. If the space  does not exist, it is created. 

*COMPLETE  Information  in the space has been processed. The space  can now be used by setting it to *READY  with another  

call to QLYSETS.
  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID Error Message  Text 

LIB9001  Value  specified  on the Status parameter  is not valid. 

CPF3CF1  E Error  code parameter  not valid. 

CPF3C90  E Literal  value cannot  be changed.  

CPF9872  E Program or service  program &1 in library  &2 ended. Reason code &3.
  

API  introduced:  V2R2  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
 

 

High-Level  Language  APIs 5

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Write  Build Information (QLYWRTBI) API 

 

 Required  Parameter  Group: 

 

1 Buffer  

Input Char(*) 

2 Buffer  length  

Input Binary(4)  

3 Error  code 

I/O Char(*)

 

 Default  Public  Authority:  *USE  

 

 Threadsafe: No
  

The  Write  Build  Information  (QLYWRTBI)  API  writes  one  or  more  records  to  the  space.  

QLYWRTBI  writes  records  to  the  space  concatenated  to  each  other. QLYRDBI  later  reads  them  

sequentially  in  the  order  in  which  they  are  written.  

QLYWRTBI  continues  to  write  records  to  the  API  space  concatenated  to  previous  records  written,  until  

QLYSETS  is called.  See  “Record  Types”  on  page  39  for  the  records  that  can  be  written.  See  “Examples  of 

Records  Written”  on  page  60  for  examples  of  the  sequence  of records  written.  

Authorities and Locks 

None.  

Required Parameter Group 

Buffer  INPUT;  CHAR(*)  

 A  character  string  containing  one  or  more  records  of  build  information.  

Buffer  length  

INPUT;  BINARY(4)  

 The  length  of the  buffer  in  bytes.  The  buffer  length  must  be  equal  to  the  sum  of  the  lengths  of  all  

the  concatenated  records  being  passed,  otherwise  an  error  occurs.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

 The  first  field  in  each  record  indicates  the  record  length.  This  allows  all  the  records  to be  read  

sequentially  using  the  QLYRDBI  API.  

Error Messages 

 Message  ID Error Message  Text  

LIB9002 Value  specified  for the buffer length  parameter  is not valid. 

LIB9003 Value  specified  for the buffer length  parameter  is too small. 

 

6 iSeries:  High-Level  Language  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD


Message  ID Error Message  Text 

LIB9004  Record not in correct  sequence.  

LIB9008  Record has a record type that is not valid. 

LIB9009  Build  information  space does not exist, or it is damaged  or deleted. 

CPF3CF1  E Error  code parameter  not valid. 

CPF3C90  E Literal  value cannot  be changed.  

CPF9872  E Program or service  program &1 in library  &2 ended. Reason code &3.
  

API  introduced:  V2R2  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

COBOL/400 APIs 

The  OPM  and  ILE  COBOL/400(R) APIs  let  you  control  run units  and  error  handling.  

Refer  to  Using  COBOL  Program  to  Call  APIs  and  Error  Handler  for  Example  COBOL  Program  in  the  API  

Examples  for  illustrations  of how  to  use  these  APIs.  

For  a description  of how  to  use  the  ILE  COBOL/400  APIs,  refer  to  the  chapter  about  error  and  exception  

handling  in  the  WebSphere  Development  Studio:  ILE  COBOL  Programmer″s Guide  

   

book.  

The  COBOL/400  APIs  are:  

v   “Change  COBOL  Main  Program  (QLRCHGCM)  API”  on  page  8 (QLRCHGCM)  lets  you  create  an  

additional  run unit  (1)  by  assigning  a different  System/36-compatible  COBOL,  System/38-compatible  

COBOL,  or  iSeries  OPM  COBOL/400  program  to  serve  as  a main  program.  

v   “Dump  COBOL  (QlnDumpCobol)  API”  on  page  10  (QlnDumpCobol)  allows  you  to  perform  a 

formatted  dump  of  an  ILE  COBOL/400  program.  

v   “Retrieve  COBOL  Error  Handler  (QlnRtvCobolErrorHandler)  API”  on  page  12  

(QlnRtvCobolErrorHandler)  allows  you  to  retrieve  the  procedure  pointer  of the  current  COBOL  

error-handling  procedure.  

v   “Retrieve  COBOL  Error  Handler  (QLRRTVCE)  API”  on  page  13  (QLRRTVCE)  allows  you  to  retrieve  

the  name  of the  current  or  pending  COBOL  error-handling  program.  

v   “Set  COBOL  Error  Handler  (QLRSETCE)  API”  on  page  15  (QLRSETCE)  allows  you  to  specify  the  

identity  of a COBOL  error-handling  program.  

v   “Set  COBOL  Error  Handler  (QlnSetCobolErrorHandler)  API”  on  page  17  (QlnSetCobolErrorHandler)  

allows  you  to  specify  the  identity  of  a COBOL  error-handling  procedure.  

The  COBOL/400  exit  programs  are:  

v   “ILE  COBOL  Error-Handling  Exit  Procedure”  on  page  35  acts  as  an  error  handler  for  an  ILE  

COBOL/400  program.  

v   “OPM  COBOL  Error-Handling  Exit  Program”  on  page  37  acts  as an  error  handler  for  an  OPM  COBOL  

program.

  Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
 

 

High-Level  Language  APIs 7

#TOP_OF_PAGE
aplist.htm
apiexusapi.htm
apiexusapi.htm#HDRCOBSM2
#TOP_OF_PAGE
aplist.htm


Change COBOL Main Program (QLRCHGCM) API 

 

 Required  Parameter  

 

1 Error  code 

I/O Char(*)
 Default  Public  Authority:  *USE  

 

 Threadsafe: No
  

The  Change  COBOL  Main  Program  (QLRCHGCM)  API  allows  you  to  create  an  additional  run unit  by 

assigning  a different  System/36-compatible  COBOL,  System/38-compatible  COBOL,  or  iSeries  OPM  

COBOL/400  program  to  serve  as  a main  program.  You can  call  it from  any  programming  language.  

Note:  By  creating  more  than  one  run unit,  you  cantreat  files,  storage,  and  error  conditions  differently  than  

you  would  using  an  ordinary  subprogram.  

After  you  call  this  API,  the  next  nonactive  COBOL  program  that  runs becomes  the  main  program  in  a 

new  run unit.  An  active  COBOL  program  is a program  that  has  been  called,  and  is not  in its  initial  state.  

In  the  following  example,  System/38-compatible  COBOL  Program  A calls  iSeries  COBOL/400  Program  B. 

Because  Program  A is  the  first  COBOL  program,  it is  the  main  COBOL  program.  

COBOL  Program  B is a menu  program  that  calls  CL  Program  C.  

Program  C must  start  a new  COBOL  application  that  will  pass  control  back  to  it,  regardless  of  error  

conditions.  To accomplish  this,  Program  C calls  the  QLRCHGCM  API  before  calling  the  new  COBOL  

application.  

When  program  C calls  the  new  COBOL  application  in  the  form  of Program  D,  Program  D becomes  the  

main  program  in  a new  run unit.  When  Program  D’s  run unit  ends,  control  returns  to  the  original  run 

unit,  and  Program  A  becomes  the  current  main  program  again.  

If, at  the  time  a run unit  is  created,  a program  is active  as a subprogram  in  an  existing  run unit,  and  this  

program  is then  called  within  the  new  run unit,  it will  be  made  available  in  its  last-used  state.  

 

8 iSeries:  High-Level  Language  APIs



Required Parameter 

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID Error Message  Text 

CPF3C90  E Literal  value cannot  be changed.  

LBE7040  E Format  of error  code parameter  is not correct.
  

API  introduced:  V2R2  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
 

 

High-Level  Language  APIs 9

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Dump COBOL (QlnDumpCobol) API 

 

 Required  Parameter  Group: 

 

1 Program object  name 

Input Char(10)  

2 Library  name 

Input Char(10)  

3 Module  object  name 

Input Char(10)  

4 Program object  type 

Input Char(10)  

5 Dump  type 

Input Char(1)  

6 Error  code 

I/O Char(*)
 Default  Public  Authority:  *USE  

 

 Service  Program: QLNRMAIN  

 

 Threadsafe: No
  

The  Dump  COBOL  (QlnDumpCobol)  API  allows  you  to  perform  a formatted  dump  of  an  ILE  

COBOL/400  program.  You can  call  it from  any  ILE  program;  however,  if the  calling  program  is not  an  

ILE  COBOL/400  program,  only  a data  dump  will  be  performed.  Message  CPF955F  will  be  issued  if this  

API  is called  to  dump  any  module  other  than  those  created  by  the  ILE  COBOL/400  compiler.  

This  API  provides  two  types  of  dumps,  a data  dump  and  an  extended  dump.  The  data  dump  contains  

the  following  information:  

v   The  name  of  each  variable  

v   The  data  type  

v   The  default  value  

v   The  hexadecimal  value  

Note:  Only  the  first  250  characters  of  the  values  will  be  shown  in  the  dump.  

The  extended  dump  contains  the  following  additional  information:  

v   The  name  of  each  file  

v   The  system  name  of  each  file  

v   External/internal  flag  

v   Open/close  status  

v   Last  I/O  operation  attempted  

v   Last  file  status  

v   Last  extended  status  

v   Blocking  information  

v   Blocking  factor  

 

10 iSeries:  High-Level  Language  APIs



v   Linage-counter  value  

v   I/O  feedback  area  information  

v   Open  feedback  area  information  

Variable  values  may  only  be  requested  if an  active  call  stack  entry  exists  for  the  module  object  specified  

in  the  job  in  which  this  API  is called.  Values  existing  in  program  static  or  automatic  storage  are  not  

accessible  by  this  API  unless  the  program  object  has  a current  call  stack  entry.  All  variables  that  were  

defined  by  the  compiler  and  stored  in  the  module  object’s  HLL  symbol  table  will  be  returned.  

Also,  the  module  object  for  which  variable  information  is requested  must  contain  debug  data.  Thus,  the  

module  object  must  be  compiled  with  a *DBGVIEW  option  other  than  *NONE.  

Required Parameter Group 

Program  object  name  

INPUT;  CHAR(10)  

 The  name  of  the  program  to  be  dumped.  If  this  parameter  is omitted,  the  program  object  name  of 

the  caller  is  used.  

Library  name  

INPUT;  CHAR(10)  

 The  name  of  the  library  in  which  the  program  to  be  dumped  is  found.  *CURLIB  and  *LIBL  can  

be  specified  as  valid  values  to  indicate  the  current  library  and  the  library  list,  respectively.  If this  

parameter  is omitted,  the  library  associated  with  the  calling  program  is used.  

Module  object  name  

INPUT;  CHAR(10)  

 The  name  of  the  module,  within  the  specified  program,  to be  dumped.  If this  parameter  is  

omitted,  the  module  object  name  of the  caller  is used.  

Program  object  type  

INPUT;  CHAR(10)  

 The  object  type  of the  program  object.  

 Valid values  are:  

 *PGM Program object  

*SRVPGM  Service  program
  

Dump  type  

INPUT;  CHAR(1)  

 The  type  of  dump.  

 Valid values  are:  

 D Data dump.  Gives  a dump  of the COBOL identifiers.  

F Extended  dump.  Gives a dump  of COBOL  identifiers  and file-related information.
  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

 

High-Level  Language  APIs 11

error.htm#HDRERRCOD
error.htm#HDRERRCOD


Error Messages 

 Message  ID Error Message  Text  

CPF3C21  E Format name &1 is not valid.  

CPF3C90  E Literal value cannot  be changed.  

CPF3CF1  E Error  code parameter  not valid.  

CPF3CF2  E Error(s)  occurred during  running  of &1 API. 

CPF9549  E Error  addressing API parameter.  

CPF954F  E Module  &1 not found.  

CPF955F  E Program &1 not a bound  program. 

CPF9562  E Module  &1 cannot  be debugged.  

CPF956D  E Parameter  does not match  on continuation  request. 

CPF956E  E Program language  of module  not supported.  

CPF956F  E Continuation  handle parameter  not valid. 

CPF9573  E Program type parameter  not valid. 

CPF9574  E Call stack entry does not exist.  

CPF9579  E Data option specified  not valid. 

CPF9801  E Object &2 in library &3 not found. 

CPF9802  E Not authorized  to object  &2 in &3. 

CPF9803  E Cannot allocate  object  &2 in library  &3. 

CPF9809  E Library &1 cannot  be accessed.  

CPF9810  E Library &1 not found.  

CPF9820  E Not authorized  to use library  &1.
  

API  introduced:  V3R6  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

Retrieve COBOL Error Handler (QlnRtvCobolErrorHandler) API 

 

 Required  Parameter  Group: 

 

1 Current error-handling  exit procedure  pointer  

Output  Anyptr  

2 Error  code 

I/O Char(*)
 Default  Public  Authority:  *USE  

 

 Service  Program: QLNRMAIN  

 

Threadsafe: No
  

The  Retrieve  COBOL  Error  Handler  (QlnRtvCobolErrorHandler)  API  allows  you  to  retrieve  the  procedure  

pointer  of  the  current  COBOL  error-handling  procedure.  You can  call  it  from  any  ILE  programming  

language;  however,  this  API  only  retrieves  the  procedure  pointer  of  the  error  handling  program  that  is 

called  when  an  error  occurs  in  an  ILE  COBOL/400  program.  

Required Parameter Group 

Current  error-handling  exit  procedure  pointer  

OUTPUT;  ANYPTR  

 

12 iSeries:  High-Level  Language  APIs

#TOP_OF_PAGE
aplist.htm


Valid values  are:  

 NULL  No current  error-handling procedure found.  

procedure-pointer  The procedure pointer  of the error handler.
  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  code  

parameter.

Error Messages 

 Message  ID Error Message  Text 

CPF3C90  E Literal  value cannot  be changed.  

LNR7074  E Error  code not valid.  

LNR7075  E Error  addressing API parameters.
  

API  introduced:  V2R1.1  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

Retrieve COBOL Error Handler (QLRRTVCE) API 

 

 Required Parameter  Group: 

 

1 Current or pending  error-handling exit program name 

Output  Char(20)  

2 Scope of error-handling  exit program  

Input  Char(1)  

3 Error  code 

I/O Char(*)
 Default  Public  Authority:  *USE 

 

 Threadsafe: No
  

The  Retrieve  COBOL  Error  Handler  (QLRRTVCE)  API  allows  you  to  retrieve  the  name  of the  current  or  

pending  COBOL  error-handling  program.  You can  call  it from  any  programming  language;  however,  this  

API  only  retrieves  the  name  of  the  error  handling  program  that  is called  when  an  error  occurs  in  an OPM  

COBOL/400  program.  

Required Parameter Group 

Current  or  pending  error-handling  exit  program  name  

OUTPUT;  CHAR(20)  

 The  qualified  name  of  the  error-handling  program  for  the  current  or  pending  COBOL  run unit.  

 

High-Level  Language  APIs 13

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


The  20  characters  of  this  parameter  are:  

 1-10 The name of the program object.
Valid  values are: 

 

*NONE  No user-defined COBOL error handler has been set. 

program-name  

The name of the error-handling program. 

11-20  The library  where the program object existed.
The  valid value is: 

 

library-name  

The library  where the program object existed.
  

Scope  of  error-handling  exit  program  

INPUT;  CHAR(1)  

 The  program  can  apply  to  a current  or  pending  run unit.  

 Valid values  are:  

 C Current COBOL  run unit 

P Pending  COBOL run unit
  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID Error Message  Text  

CPF3C90  E Literal value cannot  be changed.  

LBE7040  E Format of error code parameter  is not correct. 

LBE7051  E Scope parameter  not valid.  

LBE7052  E Run unit specified  for error handler does not exist. 

LBE7055  E Severe  error while addressing parameter  list. The API did not complete.
  

API  introduced:  V3R6  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
 

 

14 iSeries:  High-Level  Language  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Set COBOL Error Handler (QLRSETCE) API 

 

 Required Parameter  Group: 

 

1 Error-handling  exit program name 

Input  Char(20)  

2 Scope of error-handling  program 

Input  Char(1)  

3 New error-handling  exit program library  

Output  Char(10)  

4 Current or pending  error-handling exit program name 

Output  Char(20)  

5 Error  code 

I/O Char(*)
 Default  Public  Authority:  *USE 

 

 Threadsafe: No
  

The  Set  COBOL  Error  Handler  (QLRSETCE)  API  allows  you  to  specify  the  identity  of  a COBOL  

error-handling  program.  You can  call  it from  any  programming  language;  however,  this  API  only  sets  the  

name  of  the  error  handling  program  that  is called  when  an  error  occurs  in an  OPM  COBOL/400  

program.  

After  you  call  this  API,  any  COBOL/400  program  that  issues  an  inquiry  message  with  options  C,  D,  or  F 

will  first  call  the  defined  error-handling  program.  This  program  receives  the  message  identification  and  

substitution  text,  as  well  as  the  name  of  the  program  that  received  it,  and  a list  of  valid  one-character  

responses.  The  defined  program  is  responsible  for  returning  a one-character  code  (blank,  C,  D,  F, or  G)  

indicating  whether  the  COBOL  program  should  continue  or  not.  

Note:  All  messages  issued  by  the  operating  system  during  the  running  of  a COBOL  program  are  

monitored  by  the  COBOL  program.  Only  some  of the  system  messages  issued  will  result  in  a COBOL  

inquiry  message.  

For  more  information  about  error  handling  and  the  issuing  of COBOL  inquiry  messages,  see  the  chapter  

on  error  handling  in  the  WebSphere  Development  Studio:  ILE  COBOL  Programmer’s  Guide  

   

book.  

You can  define  a different  error-handling  program  for  each  COBOL  run unit,  but  when  a new  COBOL  

run unit  starts,  it  uses  the  error-handling  program  from  the  previous  run unit.  

Only  one  error-handling  program  can  be  active  at a time.  If  an  error  occurs  in  the  error-handling  

program,  the  COBOL  program  does  not  call  the  error-handling  program  again.  (In  other  words,  recursive  

calls  do  not  occur.)  Instead,  the  inquiry  message  would  be  issued  as  if no  error-handling  program  were  

defined.  

You cannot  change  the  name  of the  error-handling  program  while  it  is responding  to  an  error  in a 

COBOL  program.  

If an  error  occurs  during  the  calling  of  the  error-handling  program,  an  informational  message  (LBE7430)  

is  issued,  and  processing  continues  as  if no  error-handling  program  were  defined.  

 

High-Level  Language  APIs 15



The  error-handling  program  is defined  by  the  user. The  parameters  are  described  under  “OPM  COBOL  

Error-Handling  Exit  Program”  on  page  37.  

Required Parameter Group 

Error-handling  exit  program  name  

INPUT;  CHAR(20)  

 The  qualified  name  of  the  error-handling  program.  

 The  20  characters  of  this  parameter  are:  

 1-10 The name of the program object.
Valid  values are:

*NONE  No user-defined COBOL error-handling  program 

exists. 

program-name  

The name of the error-handling program. The name 

can be an extended one.

11-20  The library  where the program object exists.
Valid  values are: 

*CURLIB  

The current library  is used. 

*LIBL The API searches the library list to find the object. 

library-name  

The name of the library  where  the program object 

exists. The name can be an extended one.
  

Scope  of  error-handling  program  

INPUT;  CHAR(1)  

 The  program  can  apply  to  a current  or  pending  run unit.  

 Valid values  are:  

 C Current COBOL  run unit 

P Pending  COBOL run unit
  

New  error-handling  exit  program  library  

OUTPUT;  CHAR(10)  

 The  library  where  the  program  object  exists.  If  *CURLIB  or  *LIBL  was  specified  for  the  

error-handling  exit  program  name  parameter,  the  library  returned  for  this  parameter  shows  the  

library  where  the  program  was  found.  If *CURLIB  or  *LIBL  was  not  specified,  the  library  

returned  here  should  be  the  same  as  character  11 through  20  of the  error-handling  exit  program  

name  parameter.  

 Valid value  is:  

 library-name  The library  where the program object exists.
  

Current  or  pending  error-handling  exit  program  name  

OUTPUT;  CHAR(20)  

 The  qualified  name  of  the  error-handling  program  that  was  in  place  before  the  current  

error-handling  program  was  set.  

 

16 iSeries:  High-Level  Language  APIs



The  20  characters  of  this  parameter  are:  

 1-10 The name of the previous error-handling program object.
Valid  values are: 

*NONE  No previous current or pending  error-handling 

program existed. 

program-name 

The name of the error-handling  program. 

11-20  The library  where the previous error-handling  program object 

existed.
Valid  value is: 

library-name  

The library where the previous error-handling program 

object existed.
  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID Error Message  Text  

CPF3C90  E Literal  value cannot  be changed.  

LBE7040  E Format  of error code parameter  is not correct.  

LBE7050  E Error  handler  is already responding to an error in the same run unit. 

LBE7051  E Scope  parameter  not valid. 

LBE7052  E Run unit specified  for error  handler  does not exist. 

LBE7055  E Severe  error while addressing parameter  list.The API did not complete.  

LBE7060  E Error  in program name or availability.  

LBE7061  E Error  in library  name or availability.  

LBE7062  E Error  in library  list.
  

API  introduced:  V3R6  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

Set COBOL Error Handler (QlnSetCobolErrorHandler) API 

 

 Required Parameter  Group: 

 

1 New error-handling  exit procedure pointer  

Input  Anyptr  

2 Current error-handling exit procedure pointer  

Output  Anyptr  

3 Error  code 

I/O Char(*)
 Default  Public  Authority:  *USE 

 

 Threadsafe: No
 

 

High-Level  Language  APIs 17

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


The  Set  COBOL  Error  Handler  (QlnSetCobolErrorHandler)  API  allows  you  to  specify  the  identity  of  a 

COBOL  error-handling  procedure.  You can  call  it from  any  ILE  programming  language;  however,  this  API  

only  sets  the  procedure  pointer  of  the  error-handling  program  that  is  called  when  an  error  occurs  in  an  

ILE  COBOL/400  program.  

After  you  call  this  API,  any  ILE  COBOL/400  program  that  issues  an  inquiry  message  with  options  C,  D,  

or  F will  first  call  the  defined  error-handling  procedure.  This  procedure  receives  the  message  

identification  and  substitution  text,  as  well  as  the  name  of  the  program  that  received  it,  and  a list  of  valid  

1-character  responses.  The  defined  procedure  is responsible  for  returning  a 1-character  code  (blank,  C,  D,  

F, or  G)  indicating  whether  the  COBOL  program  should  continue  or  not.  

Note:  All  messages  issued  by  the  operating  system  during  the  running  of a COBOL  program  are  

monitored  by  the  COBOL  program.  Only  some  of  the  system  messages  issued  will  result  in  a COBOL  

inquiry  message.  

You can  define  a different  error-handling  procedure  for  each  activation  group.  

Only  one  ILE  error-handling  procedure  can  be  active  at a time.  If  an  error  occurs  in  the  error-handling  

procedure,  the  COBOL  program  does  not  call  the  error-handling  procedure  again.  (In  other  words,  

recursive  calls  do  not  occur.)  Instead,  the  inquiry  message  would  be  issued  as  if no  error-handling  

procedure  were  defined.  

You cannot  change  the  error-handling  procedure  while  it is responding  to an  error  in  a COBOL  program.  

If an  error  occurs  during  the  calling  of  the  error-handling  procedure,  an  informational  message  

(LNR7430)  is issued,  and  processing  continues  as  if no  error-handling  procedure  were  defined.  

The  error-handling  procedure  is  defined  by  the  user.  The  parameters  aredescribed  under  “ILE  COBOL  

Error-Handling  Exit  Procedure”  on  page  35.  

Required Parameter Group 

New  error-handling  exit  procedure  pointer  

INPUT;  ANYPTR  

 The  pointer  to  the  new  error-handling  procedure  that  you  want  to set.  

Current  error-handling  exit  procedure  pointer  

OUTPUT;  ANYPTR  

 The  pointer  to  the  error-handling  procedure  that  was  in  place  before  the  new  error-handling  

procedure  was  set.  

 Valid values  are:  

 NULL No current  error-handling  exit procedure was found. 

procedure-pointer  The pointer  to the error-handling  procedure.
  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  code  

parameter.

Error Messages 

 Message  ID Error Message  Text  

CPF3C90  E Literal value cannot  be changed.  

 

18 iSeries:  High-Level  Language  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD


Message  ID Error Message  Text 

LNR7074  E Error  code not valid.  

LNR7075  E Error  addressing API parameters.  

LNR7077  E Procedure reference not valid.
  

API  introduced:  V2R2  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

ILE C/C++ Run-Time  Library Functions 

The  ILE  C/C++  run-time  library  provides  functions  that  can  be  used  when  programming  ILE  C and  C++  

application  programs.  

The  ILE  C/C++  run-time  library  functions  are:  

v   Access  function  arguments

   

(va_end())  accesses  the  arguments  to  a function  when  it  takes  a fixed  

number  of  required  arguments  and  a variable  number  of  optional  arguments.  

v   Access  function  arguments

   

(va_arg())  accesses  the  arguments  to a function  when  it takes  a fixed  

number  of  required  arguments  and  a variable  number  of  optional  arguments.  

v   Access  function  arguments

   

(va_start())  accesses  the  arguments  to  a function  when  it takes  a fixed  

number  of  required  arguments  and  a variable  number  of  optional  arguments.  

v   Acquire  a program  device

   

(_Racquire())  acquires  the  program  device  specified  by  the  dev  

parameter  and  associates  it with  the  file  specified  by  fp.  

v   Adjust  current  file  position

   

(rewind())  repositions  the  file  pointer  associated  with  stream  to  the  

beginning  of  the  file.  

v   Associates  stream  with  file  descriptor

   

(fdopen())  associates  an  input  or  output  stream  with  the  file  

that  is identified  by  handle.  

v   Calculate  absolute  value  of  long  and  long  long  integer

   

(labs())  produces  the  absolute  value  of its  

long  integer  argument  n.  

v   Calculate  absolute  value  of  long  and  long  long  integer

   

(llabs())  returns  the  absolute  value  of  its  

long  long  integer  operand.  

v   Calculate  arccosine

   

(acos())  calculates  the  arccosine  of x, expressed  in radians,  in  the  range  0 to  pi.  

v   Calculate  arcsine

   

(asin())  calculates  the  arcsine  of x, in  the  range  -/2  to  p /2  radians.  

v   Calculate  arctangent

   

(atan())  calculates  the  arctangent  of  x. 

v   Calculate  Arctangent

   

(atan2())  calculate  the  arctangent  of y/x.  

v   Calculate  base  10  logarithm

   

(log10())  calculates  the  base  10  logarithm  of  x. 

v   Calculate  cosine

   

(cos())  calculates  the  cosine  of  x. 

v   Calculate  error  functions

   

(erfc())  computes  the  value  of 1.0  - erf(x).  

v   Calculate  error  functions

   

(erf())  calculates  an  error  function.  

 

High-Level  Language  APIs 19

#TOP_OF_PAGE
aplist.htm


v   Calculate  exponential  function

   

(exp())  calculates  the  exponential  value  of a floating-point  argument  

x ( e^x  , where  e equals  2.17128128...).  

v   Calculate  floating-point  absolute  value

   

(fabs())  calculates  the  absolute  value  of  the  floating-point  

argument  x.  

v   Calculate  floating-point  remainder

   

(fmod())  calculates  the  floating-point  remainder  of x/y.  

v   Calculate  hyperbolic  cosine

   

(cosh())  calculates  the  hyperbolic  cosine  of  x. 

v   Calculate  hyperbolic  sine

   

(sinh())  calculates  the  hyperbolic  sine  of  x, with  x expressed  in  radians.  

v   Calculate  hyperbolic  tangent

   

(tanh())  calculates  the  hyperbolic  tangent  of  x, where  x is expressed  

in  radians.  

v   Calculate  hypotenuse

   

(hypot)  calculates  the  length  of the  hypotenuse  of  a right-angled  triangle  

based  on  the  lengths  of  two  sides  side1  and  side2.  

v   Calculate  integer  absolute  value

   

(abs())  returns  the  absolute  value  of  an  integer  argument  n.  

v   Calculate  length  of wide-character  string

   

(wcslen())  computes  the  number  of  wide  characters  in the  

string  pointed  to  by  string.  

v   Calculate  natural  logarithm

   

(log())  calculates  the  natural  logarithm  (base  e)  of x. 

v   Calculate  quotient  and  remainder

   

(div())  calculates  the  quotient  and  remainder  of  the  division  of  

numerator  by  denominator.  

v   Calculate  sine

   

(sin())  calculates  the  sine  of  x, with  x expressed  in  radians.  

v   Calculate  square  root

   

(sqrt())  calculates  the  nonnegative  value  of  the  square  root  of  x. 

v   Calculate  Tangent

   

(tan())  calculates  the  tangent  of  x, where  x is expressed  in  radians.  

v   Change  data  area

   

(QXXCHGDA())  allows  you  to change  the  data  area  specified  by  dtaname,  

starting  at position  offset,  with  the  data  in  the  user  buffer  pointed  to by  dtaptr  of  length  len.  

v   Change  reserved  storage  block  size

   

(realloc())  changes  the  size  of  a previously  reserved  storage  

block.  

v   Change/Add  environment  variables

   

(putenv())  sets  the  value  of  an  environment  variables  by  

altering  an  existing  variable  or  creating  a new  one.  

v   Close  a file

   

(_Rclose())  closes  the  file  specified  by  fp.  

v   Close  message  catalog

   

(catclose())  closes  the  previously  opened  message  catalog  that  is identified  

by  catd.  

v   Close  stream

   

(fclose())  closes  a stream  pointed  to  by  stream.  

v   Commit  current  record

   

(_Rcommit())  completes  the  current  transaction  for  the  job  that  calls  it and  

establishes  a new  commitment  boundary.  

v   Compare  buffers

   

(memcmp())  compares  the  first  count  bytes  of  buf1  and  buf2.  

 

20 iSeries:  High-Level  Language  APIs



v   Compare  bytes

   

(memicmp())  compares  the  first  cnt  bytes  of  buf1  and  buf2  without  regard  to the  

case  of letters  in  the  two  buffers.  

v   Compare  strings

   

(strncmp())  compares  string1  and  string2  to the  maximum  of count.  

v   Compare  strings

   

(strcoll())  compares  two  strings  using  the  collating  sequence  that  is  specified  by  

the  program″s locale.  

v   Compare  strings

   

(strcmp())  compares  string1  and  string2.  

v   Compare  strings  without  case  sensitivity

   

(strcasecmp())  compares  string1  and  string2  without  

sensitivity  to  case.  

v   Compare  strings  without  case  sensitivity

   

(strcmpi())  compares  string1  and  string2  without  

sensitivity  to  case.  

v   Compare  strings  without  case  sensitivity

   

(stricmp())  compares  string1  and  string2  without  

sensitivity  to  case.  

v   Compare  strings  without  case  sensitivity

   

(strncasecmp())  compares  up  to count  characters  of  

string1  and  string2  without  sensitivity  to  case.  

v   Compare  substrings  without  case  sensitivity

   

(strnicmp())  compares,  at most,  the  first  n characters  

of string1  and  string2  without  sensitivity  to  case.  

v   Compare  wide  character  strings  without  case  sensitivity

   

(_wcsnicmp())  compares  up  to count  

characters  of  string1  and  string2  without  sensitivity  to  case.  

v   Compare  wide  character  strings  without  case  sensitivity

   

(_wcsicmp())  compares  string1  and  

string2  without  sensitivity  to  case.  

v   Compare  wide-character  buffers

   

(wmemcmp())  compares  the  first  n wide  characters  of  the  object  

pointed  to  by  s1  to  the  first  n wide  characters  of  the  object  pointed  to by  s2.  

v   Compare  wide-character  strings

   

(wcscmp())  compares  two  wide-character  strings.  

v   Compare  wide-character  strings

   

(wcsncmp())  compares  up  to count  wide  characters  in  string1  to  

string2.  

v   Compile  regular  expression

   

(regcomp())  compiles  the  source  regular  expression  pointed  to  by  

pattern  into  an  executable  version  and  stores  it in  the  location  pointed  to by  preg.  

v   Compute  power

   

(pow())  calculates  the  value  of  x to the  power  of  y.  

v   Compute  time  difference

   

(difftime())  computes  the  difference  in seconds  between  time2  and  time1.  

v   Concatenate  strings

   

(strncat())  appends  the  first  count  characters  of string2  to  string1  and  ends  the  

resulting  string  with  a null  character.  

v   Concatenate  strings

   

(strcat())  concatenates  string2  to  string1  and  ends  the  resulting  string  with  the  

null  character.  

v   Concatenate  wide-character  strings

   

(wcsncat())  appends  up  to count  wide  characters  from  string2  

to  the  end  of  string1,  and  appends  a wchar_t  null  character  to the  result.  

 

High-Level  Language  APIs 21



v   Concatenate  wide-character  strings

   

(wcscat())  appends  a copy  of the  string  pointed  to  by  string2  to 

the  end  of the  string  pointed  to  by  string1.  

v   Control  buffering

   

(setbuf())  controls  buffering  for  the  specified  stream,  if the  operating  system  

supports  user-defined  buffers.  

v   Control  buffering

   

(setvbuf())  allows  control  over  the  buffering  strategy  and  buffer  size  for  a 

specified  stream.  

v   Convert  a multibyte  character  to  a wide  character  (restartable)

   

(mbsrtowcs())  converts  a sequence  

of  multibyte  characters  that  begins  in  the  conversion  state  described  by  ps  from  the  array  indirectly  

pointed  to  by  src  into  a sequence  of  corresponding  wide  characters.  

v   Convert  a multibyte  character  to  a wide  character  (restartable)

   

(mbrtowc())  is the  restartable  

version  of  the  mbtowc()  function.  

v   Convert  a multibyte  string  to  a wide  character  string  (restartable)

   

(mbstowcs())  determines  the  

length  of  the  sequence  of  the  multibyte  characters  pointed  to  by  string.  

v   Convert  a wide  character  to  a multibyte  character  (restartable)

   

(wcrtomb())  converts  a wide  

character  to  a multibyte  character.  

v   Convert  character

   

(toascii())  determines  to what  character  c would  be  mapped  to  in  a 7-bit  

US-ASCII  locale  and  returns  the  corresponding  EBCDIC  encoding  in  the  current  locale.  

v   Convert  character  case

   

(tolower())  converts  the  uppercase  letter  C  to  the  corresponding  lowercase  

letter. 

v   Convert  character  case

   

(toupper())  converts  the  lowercase  letter  c to  the  corresponding  uppercase  

letter. 

v   Convert  character  string  to  double

   

(strtod())  converts  a character  string  to  a double-precision  

value.  

v   Convert  character  string  to  float

   

(atof())  converts  a character  string  to a double-precision  

floating-point  value.  

v   Convert  character  string  to  integer

   

(atoi())  converts  a character  string  to  an  integer  value.  

v   Convert  character  string  to  long  and  long  long  integer

   

(strtol())  converts  a character  string  to a 

long  integer  value.  

v   Convert  character  string  to  long  and  long  long  integer

   

(strtoll())  converts  a character  string  to a 

long  long  integer  value.  

v   Convert  character  string  to  long  or  long  long  integer

   

(atoll())  converts  a character  string  to  a long  

long  value.  

v   Convert  character  string  to  long  or  long  long  integer

   

(atol())  converts  a character  string  to a long  

value.  

v   Convert  character  string  to  unsigned  long  and  unsigned  long  long  integer

   

(strtoull())  converts  a 

character  string  to  an  unsigned  long  long  integer  value.  

 

22 iSeries:  High-Level  Language  APIs



v   Convert  character  string  to  unsigned  long  and  unsigned  long  long  integer

   

(strtoul())  converts  a 

character  string  to  an  unsigned  long  integer  value.  

v   Convert  date/time  to  string

   

(strftime())  places  bytes  into  the  array  pointed  to  by  s as controlled  by  

the  string  pointed  to  by  format.  

v   Convert  double  to  packed  decimal

   

(QXXDTOP())  converts  the  double  value  specified  in  value  to  a 

packed  decimal  number  with  digits  total  digits,  and  fraction  fractional  digits.  

v   Convert  double  to  zoned  decimal

   

(QXXDTOZ())  converts  the  double  value  specified  in  value  to  a 

zoned  decimal  number  with  digits  total  digits,  and  fraction  fractional  digits.  

v   Convert  floating-point  to  string

   

(_gcvt())  converts  a floating-point  value  to  a character  string  

pointed  to  by  buffer.  

v   Convert  integer  to  packed  decimal

   

(QXXITOP())  converts  the  integer  specified  in  value  to  a 

packed  decimal  number  with  digits  total  digits,  and  fraction  fractional  digits.  

v   Convert  integer  to  string

   

(_itoa())  converts  the  digits  of  the  given  value  to a character  string  that  

ends  with  a null  character  and  stores  the  result  in  string.  

v   Convert  integer  to  zoned  decimal

   

(QXXITOZ())  converts  the  integer  specified  in  value  to  a zoned  

decimal  number  with  digits  total  digits,  and  fraction  fractional  digits.  

v   Convert  local  time

   

(mktime())  converts  local  time,  stored  as a tm  structure  pointed  to by  time,  into  

a time_t  structure  suitable  for  use  with  other  time  functions.  

v   Convert  long  integer  to  string

   

(_ltoa())  converts  the  digits  of the  given  long  integer  value  to  a 

character  string  that  ends  with  a null  character  and  stores  the  result  in  string.  

v   Convert  monetary  value  to  string

   

(strfmon())  places  characters  into  the  array  pointed  to  by  s as 

controlled  by  the  string  pointed  to  by  format.  

v   Convert  multibyte  character  to  a wide  character

   

(mbtowc())  determines  the  length  of  the  multibyte  

character  pointed  to  by  string.  

v   Convert  packed  decimal  to  double

   

(QXXPTOD())  converts  a packed  decimal  number  to a double.  

v   Convert  packed  decimal  to  integer

   

(QXXPTOI())  converts  a packed  decimal  number  to  an  integer.  

v   Convert  single  byte  to  wide  character

   

(btowc())  converts  the  single  byte  value  c to  the  

wide-character  representation  of  c.  

v   Convert  string  to  date/time

   

(strptime())  converts  the  character  string  pointed  to by  buf  to  values  

that  are  stored  in  the  tm  structure  pointed  to  by  tm,  using  the  format  specified  by  format.  

v   Convert  time

   

(gmtime())  breaks  down  the  time  value,  in seconds,  and  stores  it  in a tm  structure,  

defined  in  <time.h>.  

v   Convert  time

   

(localtime())  converts  a time  value,  in seconds,  to  a structure  of type  tm.  

v   Convert  time  (restartable)

   

(localtime_r())  converts  a time  value,  in  seconds,  to  a structure  of type  

tm.  

 

High-Level  Language  APIs 23



v   Convert  time  (restartable)

   

(gmtime_r())  breaks  down  the  time  value,  in  seconds,  and  stores  it  in  a 

tm  structure,  defined  in  <time.h>.  

v   Convert  time  to  a character  string  (restartable)

   

(ctime_r())  is  the  restartable  version  of  the  ctime()  

function.  

v   Convert  time  to  a character  string  (restartable)

   

(asctime_r())  converts  time,  stored  as  a structure  

pointed  to  by  tm,  to  a character  string.  

v   Convert  time  to  character  string

   

(ctime())  converts  the  time  value  pointed  to by  time  to  local  time  

in  the  form  of  a character  string.  

v   Convert  time  to  character  string

   

(asctime())  converts  time,  stored  as  a structure  pointed  to by  time,  

to  a character  string.  

v   Convert  to  formatted  date  and  time

   

(wcsftime())  converts  the  time  and  date  specification  in the  

timeptr  structure  into  a wide-character  string.  

v   Convert  unsigned  long  integer  to  string

   

(_Ultoa())  converts  the  digits  of the  given  unsigned  long  

value  to  a character  string  that  ends  with  a null  character  and  stores  the  result  in  string.  

v   Convert  wide  character  case

   

(towupper())  converts  the  uppercase  character  wc  to the  

corresponding  lowercase  letter. 

v   Convert  wide  character  case

   

(towlower())  converts  the  lowercase  character  wc  to  the  

corresponding  uppercase  letter.  

v   

  

Convert  wide  character  string  to  date/time

   

(wcsptime())  converts  the  wide  character  string  

pointed  to  by  buf  to  values  that  are  stored  in  the  tm  structure  pointed  to by  tm,  using  the  format  

specified  by  format.
   

v   Convert  wide  character  string  to  long  and  long  long  integer

   

(wcstol())  converts  the  initial  portion  

of  the  wide-character  string  pointed  to  by  nptr  to a long  integer  value.  

v   Convert  wide  character  string  to  long  and  long  long  integer

   

(wcstoll())  converts  a wide-character  

string  to  a long  long  integer.  

v   Convert  wide  character  string  to  multibyte  string  (restartable)

   

(wcsrtombs())  converts  a sequence  

of  wide  characters  from  the  array  indirectly  pointed  to by  src  into  a sequence  of corresponding  

multibyte  characters  that  begins  in  the  shift  state  described  by  ps.  

v   Convert  wide  character  string  to  unsigned  long  and  unsigned  long  long  integer

   

(wcstoull())  

converts  a wide-character  string  to  an  unsigned  long  long  integer.  

v   Convert  wide  character  string  to  unsigned  long  and  unsigned  long  long  integer

   

(wcstoul())  

converts  the  initial  portion  of  the  wide-character  string  pointed  to  by  nptr  to an  unsigned  long  integer  

value.  

v   Convert  wide  character  to  byte

   

(wctob())  determines  whether  wc  corresponds  to  a member  of  the  

extended  character  set,  whose  multibyte  character  has  a length  of 1 byte  when  in  the  initial  shift  state.  

v   Convert  wide  character  to  multibyte  character

   

(wctomb())  converts  the  wchar_t  value  of character  

into  a multibyte  array  pointed  to  by  string.  

 

24 iSeries:  High-Level  Language  APIs



v   Convert  wide-character  string  to  double

   

(wcstod())  converts  the  initial  portion  of the  

wide-character  string  pointed  to  by  nptr  to a double  value.  

v   Convert  wide-character  string  to  multibyte  string

   

(wcstombs())  converts  the  wide-character  string  

pointed  to  by  string  into  the  multibyte  array  pointed  to by  dest.  

v   Convert  zoned  decimal  to  double

   

(QXXZTOD())  converts  to  a double,  the  zoned  decimal  number  

(with  digits  total  digits,  and  fraction  fractional  digits)  pointed  to  by  zptr. 

v   Convert  zoned  decimal  to  integer

   

(QXXZTOI())  converts  to an  integer,  the  zoned  decimal  number  

(with  digits  total  digits,  and  fraction  fractional  digits)  pointed  to  by  zptr. 

v   Copy  bytes

   

(memcpy())  copies  count  bytes  of src  to  dest.  

v   Copy  bytes

   

(memmove())  copies  count  bytes  of src  to  dest.  

v   Copy  strings

   

(strcpy())  copies  string2,  including  the  ending  null  character,  to  the  location  that  is 

specified  by  string1.  

v   Copy  strings

   

(strncpy())  copies  count  characters  of string2  to  string1.  

v   Copy  wide-character  buffer

   

(wmemmove())  copies  n wide  characters  from  the  object  pointed  to  by  

s2  to  the  object  pointed  to  by  s1.  

v   Copy  wide-character  buffer

   

(wmemcpy())  copies  n wide  characters  from  the  object  pointed  to by  

s2  to  the  object  pointed  to  by  s1.  

v   Copy  wide-character  strings

   

(wcscpy())  copies  the  contents  of  string2  (including  the  ending  

wchar_t  null  character)  into  string1.  

v   Copy  wide-character  strings

   

(wcsncpy())  copies  up  to  count  wide  characters  from  string2  to  

string1.  

v   Create  temporary  file

   

(tmpfile())  creates  a temporary  binary  file.  

v   Delete  a record

   

(_Rdelete())  deletes  the  record  that  is currently  locked  for  update  in  the  file  

specified  by  fp.  

v   Delete  file

   

(remove())  deletes  the  file  specified  by  filename.  

v   

  

Determine  amount  of  teraspace  memory  used

   

(_C_TS_malloc_info())  determines  the  amount  of 

teraspace  memory  used  and  returns  the  informatoin  within  the  given  output_record  structure.
   

v   

  

Determine  amount  of  teraspace  memory  used  (with  optional  dumps  and  verification)

   

(_C_TS_malloc_debug())  determines  the  amount  of  teraspace  memory  used  and  returns  the  information  

within  the  given  output_record  structure.
   

v   Determine  current  time

   

(time())  determines  the  current  calendar  time,  in  seconds.  

v   Determine  file  handle

   

(fileno())  determines  the  file  handle  that  is currently  associated  with  stream.  

v   Determine  length  of  a multibyte  character

   

(mblen())  determines  the  length  in  bytes  of  the  

multibyte  character  pointed  to  by  string.  

 

High-Level  Language  APIs 25



v   Determine  length  of a multibyte  character  (restartable)

   

(mbrlen())  determines  the  length  of a 

multibyte  character.  

v   Determine  processor  time

   

(clock())  returns  an  approximation  of  the  processor  time  used  by  the  

program  since  the  beginning  of  an  implementation-defined  time-period  that  is related  to  the  process  

invocation.  

v   Determine  stream  orientation

   

(fwide())  determines  the  orientation  of the  stream  pointed  to by  

stream.  

v   Determine  string  length

   

(strlen())  determines  the  length  of string  excluding  the  ending  null  

character.  

v   Determine  the  display  width  of  a wide  character

   

(wcwidth())  determines  the  number  of  printing  

positions  that  a graphic  representation  of wc  occupies  on  a display  device.  

v   Determine  the  display  width  of  a wide  character  string

   

(wcswidth())  determines  the  number  of  

printing  positions  that  a graphic  representation  of  n wide  characters  in the  wide  string  pointed  to by  

wcs  occupies  on  a display  device.  

v   Duplicate  string

   

(strdup())  reserves  storage  space  for  a copy  of  string  by  calling  malloc.  

v   End  program

   

(exit())  returns  control  to  the  host  environment  from  the  program.  

v   Execute  a command

   

(system())  passes  the  given  string  to  the  CL  command  processor  for  

processing.  

v   Execute  compiled  regular  expression

   

(regexec())  compares  the  null-ended  string  against  the  

compiled  regular  expression  preg  to  find  a match  between  the  two.  

v   Find  characters  in  string

   

(strpbrk())  locates  the  first  occurrence  in  the  string  pointed  to by  string1  

of  any  character  from  the  string  pointed  to  by  string2.  

v   Find  integer  <=  argument

   

(floor())  calculates  the  largest  integer  that  is less  than  or  equal  to x.  

v   Find  integer  >=  argument

   

(ceil())  computes  the  smallest  integer  that  is greater  than  or equal  to x. 

v   Find  offset  of  first  character  match

   

(strcspn())  finds  the  first  occurrence  of a character  in  string1  

that  belongs  to  the  set  of  characters  that  is specified  by  string2.  

v   Find  offset  of  first  non-matching  character

   

(strspn())  finds  the  first  occurrence  of a character  in  

string1  that  is not  contained  in  the  set  of  characters  that  is  specified  by  string2.  

v   Find  offset  of  first  non-matching  wide  character

   

(wcsspn())  computes  the  number  of  wide  

characters  in  the  initial  segment  of  the  string  pointed  to  by  string1,  which  consists  entirely  of wide  

characters  from  the  string  pointed  to  by  string2.  

v   Find  offset  of  first  wide-character  match

   

(wcscspn())  determines  the  number  of  wchar_t  characters  

in  the  initial  segment  of  the  string  pointed  to  by  string1  that  do  not  appear  in the  string  pointed  to by  

string2.  

v   Force  the  end-of-data

   

(_Rfeod())  forces  an  end-of-data  condition  for  a device  or  member  associated  

with  the  file  specified  by  fp.  

 

26 iSeries:  High-Level  Language  APIs



v   Force  the  end-of-file

   

(_Rfeov())  forces  an  end-of-volume  condition  for  a tape  file  that  is associated  

with  the  file  that  is  specified  by  fp.  

v   Format  and  write  wide  characters  to  buffer

   

(vswprintf())  formats  and  stores  a series  of wide  

characters  and  values  in the  buffer  wcsbuffer.  

v   Format  and  write  wide  characters  to  buffer

   

(swprintf())  formats  and  stores  a series  of  wide  

characters  and  values  into  the  wide-character  buffer  wcsbuffer.  

v   Format  argument  data  as  wide  characters  and  print

   

(vwprintf())  is  equivalent  to  the  wprintf()  

function,  except  that  the  variable  argument  list  is replaced  by  arg,  which  the  va_start  macro  (and  

possibly  subsequent  va_arg  calls)  will  have  initialized.  

v   Format  argument  data  as  wide  characters  and  write  to a stream

   

(vfwprintf())  is equivalent  to  the  

fwprintf()  function,  except  that  the  variable  argument  list  is replaced  by  arg,  which  the  va_start  macro  

(and  possibly  subsequent  va_arg  calls)  will  have  initialized.  

v   Format  data  as  wide  characters  and  print

   

(wprintf())  is equivalent  to  fwprintf(stdout,format,...).  

v   Format  data  as  wide  characters  and  write  to  a stream

   

(fwprintf())  writes  output  to the  stream  

pointed  to  by  stream,  under  control  of the  wide  string  pointed  to  by  format.  

v   Free  memory  for  regular  expression

   

(regfree())  frees  any  memory  that  was  allocated  by  the  

regcomp()  function  to  implement  the  regular  expression  preg.  

v   Gamma  function

   

(gamma())  computes  the  natural  logarithm  of  the  absolute  value  of  G(x)  

(ln(|G(x)|)).  

v   Get  current  position

   

(ftell())  finds  the  current  position  of the  file  associated  with  stream.  

v   Get  current  position

   

(ftello())  finds  the  current  position  of the  file  associated  with  stream.  

v   Get  device  attributes

   

(_Rdevatr())  returns  a pointer  to a copy  of the  device  attributes  feedback  area  

for  the  file  pointed  to  by  fp,  and  the  device  specified  by  dev.  

v   Get  exception  data

   

(_GetExcData())  returns  information  about  the  current  exception  from  within  a 

C signal  handler.  

v   Get  file  position

   

(fgetpos())  stores  the  current  position  of the  file  pointer  that  is associated  with  

stream  into  the  object  pointed  to  by  pos.  

v   Get  handle  for  character  mapping

   

(wctrans())  constructs  a value  with  type  wctrans_t.  

v   Get  handle  for  character  property  classification

   

(wctype())  determines  values  of  wctype_t  

according  to  rules of  the  coded  character  set  that  are  defined  by  character  type  information  in  the  

program″s locale  (category  LC_CTYPE).  

v   Get  wide  character  from  stdin

   

(getwchar())  reads  the  next  multibyte  character  from  stdin,  converts  

it to  a wide  character,  and  advances  the  associated  file  position  indicator  for  stdin.  

v   Handle  interrupt  signals

   

(signal())  allows  a program  to choose  one  of several  ways  to  handle  an  

interrupt  signal  from  the  operating  system  or  from  the  raise()  function.  

v   Handle  to  a C  session

   

(_C_Get_Ssn_Handle())  Returns  a handle  to  the  C session  for  use  with  

Dynamic  Screen  Manager  (DSM)  APIs.  

 

High-Level  Language  APIs 27



v   Language  collation  string  comparison

   

(wcscoll())  compares  the  wide-character  strings  pointed  to  

by  wcs1  and  wcs2,  both  interpreted  as  appropriate  to the  LC_COLLATE  category  of  the  current  locale.  

v   Locate  last  occurrence  of  character  in  string

   

(strrchr())  finds  the  last  occurrence  of c (converted  to  a 

character)  in  string.  

v   Locate  last  occurrence  of  wide  character  in  string

   

(wcsrchr())  locates  the  last  occurrence  of 

character  in  the  string  pointed  to  by  string.  

v   Locate  substring

   

(strstr())  finds  the  first  occurrence  of string2  in  string1.  

v   Locate  wide  character  in  wide-character  buffer

   

(wmemchr())  locates  the  first  occurrence  of c in  the  

initial  n wide  characters  of  the  object  pointed  to  by  s. 

v   Locate  wide  characters  in string

   

(wcspbrk())  locates  the  first  occurrence  in  the  string  pointed  to  by  

string1  of  any  wide  character  from  the  string  pointed  to  by  string2.  

v   Locate  wide-character  substring

   

(wcswcs())  locates  the  first  occurrence  of string2  in  the  

wide-character  string  pointed  to  by  string1.  

v   Locate  wide-character  substring

   

(wcsstr())  locates  the  first  occurrence  of  wcs2  in  wcs1.  

v   Multiply  by  a power  of  two

   

(ldexp())  calculates  the  value  of x *(2^exp).  

v   Obtain  I/O  feedback  information

   

(_Riofbk())  returns  a pointer  to  a copy  of  the  I/O  feedback  area  

for  the  file  that  is  specified  by  fp.  

v   Obtain  open  feedback  information

   

(_Ropnfbk())  returns  a pointer  to a copy  of  the  open  feedback  

area  for  the  file  that  is  specified  by  fp.  

v   Open  a record  file  for  I/O  operations

   

(_Ropen())  opens  the  record  file  specified  by  filename  

according  to  the  mode  parameter,  which  may  be  followed  by  optional  parameters,  if the  varparm  

keyword  parameter  is  specified  in  the  mode  parameter.  

v   Open  files

   

(fopen())  opens  the  file  that  is specified  by  filename.  

v   Open  files

   

(wfopen())  accepts  file  name  and  mode  as  wide  characters  and  assumes  CCSID  13488  if 

neither  CCSID  nor  codepage  keyword  is specified.  

v   Open  message  catalog

   

(catopen())  opens  a message  catalog,  which  must  be  done  before  a message  

can  be  retrieved.  

v   Perform  long  and  long  long  division

   

(ldiv())  calculates  the  quotient  and  remainder  of  the  division  

of  numerator  by  denominator.  

v   Perform  long  and  long  long  division

   

(lldiv())  computes  the  quotient  and  remainder  of  the  

numerator  parameter  by  the  denominator  parameter.  

v   Position  a record

   

(_Rlocate())  positions  to  the  record  in  the  file  associated  with  fp  and  specified  by  

the  key,  klen_rrn  and  opts  parameters.  

v   Preserve  environment

   

(setjmp())  saves  a stack  environment  that  can  subsequently  be  restored  by  

the  longjmp()  function.  

v   Print  argument  data

   

(vprintf())  formats  and  prints  a series  of  characters  and  values  to  stdout.  

 

28 iSeries:  High-Level  Language  APIs



v   Print  argument  data  to  buffer

   

(vsnprintf())  formats  and  stores  a series  of characters  and  values  in  

the  buffer  target-string.  

v   Print  argument  data  to  stream

   

(vfprintf())  formats  and  writes  a series  of  characters  and  values  to  

the  output  stream.  

v   Print  error  message

   

(perror())  prints  an  error  message  to stderr.  

v   Print  formatted  characters

   

(printf())  formats  and  prints  a series  of  characters  and  values  to the  

standard  output  stream  stdout.  

v   Print  formatted  data  to  buffer

   

(sprintf())  formats  and  stores  a series  of  characters  and  values  in the  

array  buffer.  

v   Print  formatted  data  to  buffer

   

(snprintf())  formats  and  stores  a series  of  characters  and  values  in 

the  array  buffer.  

v   Produce  temporary  file  name

   

(tmpnam())  produces  a valid  file  name  that  is not  the  same  as the  

name  of  any  existing  file.  

v   Provide  information  on  last  I/O  operation

   

(_Rupfb())  updates  the  feedback  structure  associated  

with  the  file  specified  by  fp  with  information  about  the  last  I/O  operation.  

v   Push  character  onto  input  stream

   

(ungetc())  pushes  the  unsigned  character  c back  onto  the  given  

input  stream.  

v   Push  wide  character  onto  input  stream

   

(ungetwc())  pushes  the  wide  character  wc  back  onto  the  

input  stream.  

v   Read  a character

   

(getc())  reads  a single  character  from  the  current  stream  position  and  advances  

the  stream  position  to  the  next  character.  

v   Read  a character

   

(fgetc())  reads  a single  unsigned  character  from  the  input  stream  at  the  current  

position  and  increases  the  associated  file  pointer,  if any,  so  that  it points  to the  next  character.  

v   Read  a character

   

(getchar())  reads  a single  character  from  the  current  stream  position  and  

advances  the  stream  position  to  the  next  character.  

v   Read  a line

   

(gets())  reads  a line  from  the  standard  input  stream  stdin  and  stores  it in  buffer.  

v   Read  a record  by  key

   

(_Rreadk())  reads  the  record  in  the  keyed  access  path  that  is  currently  being  

used  for  the  file  that  is  associated  with  fp.  

v   Read  a record  by  relative  record  number

   

(_Rreadd())  reads  the  record  that  is specified  by  rrn  in  

the  arrival  sequence  access  path  for  the  file  that  is associated  with  fp.  

v   Read  a string

   

(fgets())  reads  characters  from  the  current  stream  position  up  to and  including  the  

first  new-line  character  (),  up  to  the  end  of the  stream,  or  until  the  number  of  characters  read  is  equal  

to  n-1,  whichever  comes  first.  

v   Read  data

   

(sscanf())  reads  data  from  buffer  into  the  locations  that  are  given  by  argument-list.  

v   Read  data

   

(scanf())  reads  data  from  the  standard  input  stream  stdin  into  the  locations  that  is  given  

by  each  entry  in argument-list.  

 

High-Level  Language  APIs 29



v   Read  data  from  stream  using  wide  character

   

(fwscanf())  reads  input  from  the  stream  pointed  to  by  

stream,  under  control  of  the  wide  string  pointed  to  by  format.  

v   Read  data  using  wide-character  format  string

   

(wscanf())  is equivalent  to  the  fwscanf()  function  

with  the  argument  stdin  interposed  before  the  arguments  of the  wscanf()  function.  

v   

  

Read  formatted  data

   

(vsscanf())  reads  data  from  a buffer  into  locations  specified  by  a variable  

number  of  arguments.
   

v   

  

Read  formatted  data

   

(vfscanf())  reads  data  from  a stream  into  locations  specified  by  a variable  

number  of  arguments.
   

v   

  

Read  formatted  data

   

(vscanf())  reads  data  from  stdin  into  locations  specified  by  a variable  

number  of  arguments.
   

v   Read  formatted  data

   

(fscanf())  reads  data  from  the  current  position  of the  specified  stream  into  the  

locations  that  are  given  by  the  entries  in  argument-list,  if  any.  

v   

  

Read  formatted  wide  character  data

   

(vwscanf())  reads  wide  data  from  stdin  into  locations  

specified  by  a variable  number  of  arguments.
   

v   

  

Read  formatted  wide  character  data

   

(vswscanf())  reads  wide  data  from  a buffer  into  locations  

specified  by  a variable  number  of  arguments.
   

v   

  

Read  formatted  wide  character  data

   

(vfwscanf())  reads  wide  data  from  a stream  into  locations  

specified  by  a variable  number  of  arguments.
   

v   Read  from  an  invited  device

   

(_Rreadindv())  reads  data  from  an  invited  device.  

v   Read  items

   

(fread())  reads  up  to  count  items  of  size  length  from  the  input  stream  and  stores  them  

in  the  given  buffer.  

v   Read  the  first  record

   

(_Rreadf())  reads  the  first  record  in  the  access  path  that  is currently  being  

used  for  the  file  specified  by  fp.  

v   Read  the  last  record

   

(_Rreadl())  reads  the  last  record  in  the  access  path  currently  being  used  for  

the  file  specified  by  fp.  

v   Read  the  next  changed  record  in  a subfile

   

(_Rreadnc())  reads  the  next  changed  record  from  the  

current  position  in  the  subfile  that  is  associated  with  fp.  

v   Read  the  next  record

   

(_Rreadn())  reads  the  next  record  in  the  access  path  that  is currently  being  

used  for  the  file  that  is  associated  with  fp.  

v   Read  the  previous  record

   

(_Rreadp())  reads  the  previous  record  in  the  access  path  that  is currently  

being  used  for  the  file  that  is associated  with  fp.  

v   Read  the  same  record

   

(_Rreads())  reads  the  current  record  in  the  access  path  that  is currently  being  

used  for  the  file  that  is  associated  with  fp.  

v   Read  wide  character  data

   

(swscanf())  specifies  a wide  string  from  which  the  input  is to  be  

obtained,  rather  than  from  a stream.  

v   Read  wide  character  from  stream

   

(getwc())  reads  the  next  multibyte  character  from  stream,  

converts  it  to  a wide  character,  and  advances  the  associated  file  position  indicator  for  stream.  

 

30 iSeries:  High-Level  Language  APIs



v   Read  wide  character  from  stream

   

(fgetwc())  reads  the  next  multibyte  character  from  the  input  

stream  pointed  to  by  stream,  converts  it to a wide  character,  and  advances  the  associated  file  position  

indicator  for  the  stream  (if  defined).  

v   Read  wide-character  string  from  stream

   

(fgetws())  reads  at most  one  less  than  the  number  of wide  

characters  specified  by  n from  the  stream  pointed  to  by  stream.  

v   Record  program  ending  function

   

(atexit())  records  the  function,  pointed  to  by  func,  that  the  system  

calls  at  normal  program  end.  

v   Redirect  open  files

   

(freopen())  closes  the  file  that  is  currently  associated  with  stream  and  reassigns  

stream  to  the  file  that  is specified  by  filename.  

v   Release  a program  device

   

(_Rrelease())  releases  the  program  device  that  is specified  by  dev  from  

the  file  that  is associated  with  fp.  

v   Release  a record  lock

   

(_Rrlslck())  releases  the  lock  on  the  currently  locked  record  for  the  file  

specified  by  fp.  

v   Release  storage  blocks

   

(free())  frees  a block  of  storage.  

v   Rename  file

   

(rename())  renames  the  file  specified  by  oldname  to the  name  given  by  newname.  

v   Reposition  file  position

   

(fseeko())  changes  the  current  file  position  that  is associated  with  stream  to  

a new  location  within  the  file.  

v   Reposition  file  position

   

(fseek())  changes  the  current  file  position  that  is associated  with  stream  to  

a new  location  within  the  file.  

v   Reserve  and  initialize  storage

   

(calloc())  reserves  storage  space  for  an  array  of num  elements,  each  

of length  size  bytes.  

v   Reserve  Storage  Block

   

(malloc())  reserves  a block  of  storage  of size  bytes.  

v   Reset  error  indicators

   

(clearerr())  resets  the  error  indicator  and  end-of-file  indicator  for  the  

specified  stream.  

v   Restore  stack  environment

   

(longjmp())  restores  a stack  environment  previously  saved  in  env  by  the  

setjmp()function.  

v   Retrieve  a message  from  a message  catalog

   

(catgets())  retrieves  message  msg_id,  in setset_id  from  

the  message  catalog  that  is  identified  by  catd.  

v   Retrieve  data  area

   

(QXXRTVDA())  retrieves  a copy  of  the  data  area  specified  by  dtaname  starting  

at  position  offset  with  a length  of  len.  

v   Retrieve  information  from  the  environment

   

(localeconv())  sets  the  components  of  a structure  

having  type  struct  lconv  to  values  appropriate  for  the  current  locale.  

v   Retrieve  locale  information

   

(nl_langinfo())  retrieves  from  the  current  locale  the  string  that  

describes  the  requested  information  specified  by  item.  

v   

  

Retrieve  wide  locale  information

   

(wcslocaleconv())  sets  the  components  of a structure  having  

type  structure  wcslconv  to  values  appropriate  for  the  current  locale.
   

 

High-Level  Language  APIs 31



v   Return  error  message  for  regular  expression

   

(regerror())  finds  the  description  for  the  error  code  

errcode  for  the  regular  expression  preg.  

v   Roll  back  commitment  control  changes

   

(_Rrollbck())  reestablishes  the  last  commitment  boundary  

as  the  current  commitment  boundary.  

v   Search  arrays

   

(bsearch())  performs  a binary  search  of  an  array  of  num  elements,  each  of size  bytes.  

v   Search  buffer

   

(memchr())  searches  the  first  count  bytes  of buf  for  the  first  occurrence  of  c 

converted  to  an  unsigned  character.  

v   Search  for  character

   

(strchr())  finds  the  first  occurrence  of  a character  in  a string.  

v   Search  for  environment  variables

   

(getenv())  searches  the  list  of  environment  variables  for  an  entry  

corresponding  to  varname.  

v   Search  for  wide  character

   

(wcschr())  searches  the  wide-character  string  for  the  occurrence  of 

character.  

v   Send  signal

   

(raise())  sends  the  signal  sig  to  the  running  program.  

v   Separate  floating-point  value

   

(modf())  breaks  down  the  floating-point  value  x into  fractional  and  

integral  parts.  

v   Separate  floating-point  value

   

(frexp())  breaks  down  the  floating-point  value  x into  a term  m  for  the  

mantissa  and  another  term  n for  the  exponent.  

v   Set  bytes  to  value

   

(memset())  sets  the  first  count  bytes  of dest  to  the  value  c. 

v   Set  characters  in  string

   

(strnset())  sets,  at most,  the  first  n characters  of string  to  c (converted  to  a 

char).  If n is greater  than  the  length  of  string,  the  length  of  string  is used  in place  of  n. 

v   Set  characters  in  string

   

(strset())  sets  all  characters  of string  to  c. 

v   Set  default  program  device

   

(_Rpgmdev())  sets  the  current  program  device  for  the  file  that  is 

associated  with  fp  to  dev.  

v   Set  file  position

   

(fsetpos())  moves  any  file  position  that  is  associated  with  stream  to  a new  location  

within  the  file  according  to  the  value  pointed  to by  pos.  

v   Set  locale

   

(setlocale())  changes  or  queries  variables  that  are  defined  in  the  <locale.h>  include  file,  

that  indicate  location.  

v   Set  pointer  to  run-time  error  message

   

(strerror())  maps  the  error  number  in  errnum  to  an  error  

message  string.  

v   Set  seed  for  rand()  function

   

(srand())  sets  the  starting  point  for  producing  a series  of 

pseudo-random  integers.  

v   Set  separate  indicator  area

   

(_Rindara())  registers  indic_buf  as  the  separate  indicator  area  to be  used  

by  the  file  specified  by  fp.  

v   Set  the  record  format  name

   

(_Rformat())  sets  the  record  format  to  fmt  for  the  file  specified  by  fp.  

 

32 iSeries:  High-Level  Language  APIs



v   Set  wide  character  buffer  to  a value

   

(wmemset())  copies  the  value  of c into  each  of  the  first  n wide  

characters  of  the  object  pointed  to  by  s. 

v   Solve  equations

   

(Bessel  Functions)  solves  certain  types  of differential  equations.  

v   Sort  array

   

(qsort())  sorts  an  array  of  num  elements,  each  of  width  bytes  in  size.  

v   Stop  a Program

   

(abort())  causes  an  abnormal  end  to the  program  and  returns  control  to  the  host  

environment.  

v   Test end-of-file  indicator

   

(feof())  indicates  whether  the  end-of-file  flag  is set  for  the  given  stream.  

v   Test for  ASCII  value

   

(isascii())  tests  if an  EBCDIC  character,  in the  current  locale,  is a valid  7-bit  

US-ASCII  character.  

v   Test for  blank  or  tab  character

   

(isblank())  tests  if a character  is either  the  EBCDIC  space  or  

EBCDIC  tab  character.  

v   Test for  character  property

   

(iswctype())  determines  whether  the  wide  character  wc  has  the  

property  wc_prop.  

v   Test for  read/write  errors

   

(ferror())  tests  for  an  error  in  reading  from  or  writing  to the  given  

stream.  

v   Test integer  value

   

(isalnum())  tests  a character  with  an  integer  value.  

v   Test integer  value

   

(isxdigit())  tests  a character  with  an  integer  value.  

v   Test state  object  for  initial  state

   

(mbsinit())  specifies  whether  the  pointed  to  mbstate_t  object  

describes  an  initial  conversion  state.  

v   Test wide  integer  value

   

(iswalnum())  tests  a given  wide  integer  value.  

v   Test wide  integer  value

   

(iswxdigit())  tests  a given  wide  integer  value.  

v   Tokenize  string

   

(strtok())  reads  string1  as a series  of  zero  or  more  tokens,  and  string2  as  the  set  of 

characters  serving  as  delimiters  of  the  tokens  in string1.  

v   Tokenize  string  (restartable)

   

(strtok_r())  reads  string  as  a series  of zero  or  more  tokens,  and  seps  as  

the  set  of  characters  serving  as  delimiters  of  the  tokens  in  string.  

v   Tokenize  wide-character  string

   

(wcstok())  reads  wcs1  as  a series  of  zero  or  more  tokens  and  wcs2  

as  the  set  of wide  characters  serving  as  delimiters  for  the  tokens  in  wcs1.  

v   Transform  a wide-character  string

   

(wcsxfrm())  transforms  the  wide-character  string  pointed  to  by  

wcs2  to  values  which  represent  character  collating  weights  and  places  the  resulting  wide-character  

string  into  the  array  pointed  to  by  wcs1.  

v   Transform  string

   

(strxfrm())  transforms  the  string  pointed  to  by  string2  and  places  the  result  into  

the  string  pointed  to  by  string1.  

v   Translate  wide  character

   

(towctrans())  maps  the  wide  character  wc  using  the  mapping  that  is 

described  by  desc.  

 

High-Level  Language  APIs 33



v   Update  a record

   

(_Rupdate())  updates  the  record  that  is currently  locked  for  update  in  the  file  that  

is specified  by  fp.  

v   Verify  condition

   

(assert())  prints  a diagnostic  message  to stderr  and  aborts  the  program  if 

expression  is  false  (zero).  

v   Write a character

   

(putchar())  converts  c to  unsigned  char  and  then  writes  c to  the  output  stream  at  

the  current  position.  

v   Write a character

   

(putc())  converts  c to  unsigned  char  and  then  writes  c to the  output  stream  at the  

current  position.  

v   Write a record  directly

   

(_Rwrited())  writes  a record  to  the  file  associated  with  fp  at  the  position  

specified  by  rrn.  

v   Write a string

   

(puts())  writes  the  given  string  to  the  standard  output  stream  stdout;  it  also  appends  

a new-line  character  to  the  output.  

v   Write and  read  a record

   

(_Rwriterd())  performs  a write  and  then  a read  operation  on  the  file  that  

is specified  by  fp.  

v   Write and  read  a record  (separate  buffers)

   

(_Rwrread())  performs  a write  and  then  a read  

operation  on  the  file  that  is  specified  by  fp.  

v   Write buffer  to  file

   

(fflush())  causes  the  system  to  empty  the  buffer  that  is associated  with  the  

specified  output  stream,  if possible.  

v   Write character

   

(fputc())  converts  c to  an  unsigned  char  and  then  writes  c to the  output  stream  at  

the  current  position  and  advances  the  file  position  appropriately.  

v   Write character

   

(_fputchar())  writes  the  single  character  c to  the  stdout  stream  at the  current  

position.  

v   Write formatted  data  to  a stream

   

(fprintf())  formats  and  writes  a series  of  characters  and  values  to  

the  output  stream.  

v   Write items

   

(fwrite())  writes  up  to  count  items,  each  of size  bytes  in  length,  from  buffer  to  the  

output  stream.  

v   Write string

   

(fputs())  copies  string  to  the  output  stream  at the  current  position.  

v   Write the  next  record

   

(_Rwrite())  appends  a record  to  the  file  specified  by  fp.  

v   Write wide  character

   

(putwc())  converts  the  wide  character  wc  to  a multibyte  character,  and  writes  

it to  the  stream  at  the  current  position.  

v   Write wide  character

   

(fputwc())  converts  the  wide  character  wc  to  a multibyte  character  and  writes  

it to  the  output  stream  pointed  to  by  stream  at  the  current  position.  

v   Write wide  character  to  stdout

   

(putwchar())  converts  the  wide  character  wc  to  a multibyte  

character  and  writes  it to  stdout.  

v   Write wide-character  string

   

(fputws())  converts  the  wide-character  string  wcs  to  a 

multibyte-character  string  and  writes  it to  stream  as  a multibyte-character  string.

 

34 iSeries:  High-Level  Language  APIs



Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

REXX/400 Functions 

REXX/400  Programmer’s  Guide  

   

provides  information  about  programming  with  REXX/400.  

REXX/400  Reference  

   

gives  detailed  descriptions  of  REXX/400  functions.  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

Exit Programs 

These  are  the  Exit  Programs  for  this  category.  

ILE COBOL Error-Handling Exit Procedure 

 

 Required Parameter  Group: 

 

1 COBOL  message  identification  

Input  Char(7)  

2 Valid  responses  to message  

Input  Char(6)  

3 Name of program issuing error  

Input  Char(20)  

4 System message  causing  COBOL  message  

Input  Char(7)  

5 Length of passed message  text 

Input  Binary(4)  

6 Return  code 

Output  Char(1)  

7 Message  text 

Input  Char(*) 

8 Module  name 

Input  Char(10)  

9 COBOL  program name 

Input  Char(256)

  

This  is a user-defined  program  that  acts  as  an  error  handler  for  an  ILE  COBOL/400  program.  Use  the  Set  

COBOL  Error  Handler  (QlnSetCobolErrorHandler)  API  to  establish  this  relationship  between  the  two  

programs.

 

High-Level  Language  APIs 35

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm


Required Parameter Group 

COBOL  message  identification  

INPUT;  CHAR(7)  

 A  3-character  prefix  followed  by  a 4-character  number.  

Valid  responses  to  message  

INPUT;  CHAR(6)  

 The  list  of  valid  1-character  responses.  This  list  is variable  in length  and  consists  of uppercase  

letters  in  alphabetical  order.  The  list  always  ends  with  a space.  

 The  following  are  examples  of  lists  of  valid  responses:  

 CG   

CDFG  

  

Name  of  program  issuing  error  

INPUT;  CHAR(20)  

 The  qualified  name  of  the  ILE  COBOL/400  program  that  issued  the  error.  

 The  20  characters  of  this  parameter  are:  

 1-10 The name of the program object.
The  valid value is: 

program-name  

The name of the program object.

11-20  The library  where the program object existed.
The  valid value is: 

library-name  

The library  where the program object existed.

   

  

System  message  causing  COBOL  message  

INPUT;  CHAR(7)  

 Some  COBOL  error  messages  are  issued  because  of error  messages  received  from  the  system.  This  

parameter  identifies  such  system  messages.  

 Valid values  are:  

 *NONE  No system message  is available.  

message-id  A 3-character  message  prefix followed  by a 4-character  number.
  

Length  of  passed  message  text  

INPUT;  BINARY(4)  

 If the  original  message  was  a system  message,  the  substitution  text  for  the  system  message  is 

passed.  In the  absence  of  an  original  system  message,  Parameter  4 has  a value  of  *NONE,  and  the  

substitution  text  for  the  COBOL  message  is passed.  

Return  code  

OUTPUT;  CHAR(1)  

 Must  be  one  of  the  values  specified  in  Parameter  2,  or a space.  If  the  value  is not  one  of  these,  a 

response  of  a space  is assumed.  

 

36 iSeries:  High-Level  Language  APIs



Valid values  are:  

 blank Issue the COBOL message  that was passed to the error-handling  

program. 

G Continue  running  the COBOL program. 

C End the current COBOL run unit. 

D Same as C, but produce a formatted  dump of user-defined 

COBOL variables.  

F Same as D, but also dump COBOL’s  file-related internal 

variables.
  

Message  text  

INPUT;  CHAR(*)  

 The  substitution  text  of  the  message.  Its  length  is determined  by  Parameter  5.  

Module  name  

INPUT;  CHAR(10)  

 The  module  within  the  program  object  that  issued  the  error. 

COBOL  program  name  

INPUT;  CHAR(256)  

 The  name  of  the  COBOL  program,  from  the  PROGRAM-ID  paragraph,  that  issued  the  error.

 Exit  program  introduced:  V3R2  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

OPM COBOL Error-Handling Exit Program 

 

 Required Parameter  Group: 

 

1 COBOL  message  identification  

Input  Char(7)  

2 Valid  responses  to message  

Input  Char(6)  

3 Name of program issuing error  

Input  Char(20)  

4 System message  causing  COBOL  message  

Input  Char(7)  

5 Message  text 

Input  Char(*) 

6 Length of passed message  text 

Input  Binary(4)  

7 Return  code 

Output  Char(1)

  

This  is a user-defined  program  that  acts  as  an  error  handler  for  an  OPM  COBOL  program.  Use  the  Set  

COBOL  Error  Handler  (QLRSETCE)  API  to establish  this  relationship  between  the  two  programs.

 

High-Level  Language  APIs 37

#TOP_OF_PAGE
aplist.htm


Required Parameter Group 

COBOL  message  identification  

INPUT;  CHAR(7)  

 A  3-character  prefix  followed  by  a 4-character  number.  

Valid  responses  to  message  

INPUT;  CHAR(6)  

 The  list  of  valid  1-character  responses.  The  list  is variable  in  length  and  consists  of  uppercase  

letters  in  alphabetical  order.  The  list  always  ends  with  a space.  

 Examples  of  lists  of  valid  responses:  

 CG   

CDFG  

  

Name  of  program  issuing  error  

INPUT;  CHAR(20)  

 The  qualified  name  of  the  COBOL/400  program  that  issued  the  error. 

 The  20  characters  of  this  parameter  are:  

 1-10 The name of the program  object.
The  valid  value is: 

program-name  

The name of the program object. 

  The library  where the program object existed.
The  valid  value is: 

library-name  

The library  where the program object existed.
  

System  message  causing  COBOL  message  

INPUT;  CHAR(7)  

 Some  COBOL  error  messages  are  issued  because  of error  messages  received  from  the  system.  This  

parameter  identifies  such  system  messages.  

 Valid values  are:  

 *NONE  No system  message  is available.  

message-id  A 3-character  message  prefix followed  by a 4-character  number.
  

Message  text  

INPUT;  CHAR(*)  

 The  substitution  text  of  the  message,  its  length  determined  by  Parameter  6. 

Length  of  passed  message  text  

INPUT;  Binary(31)  

 If the  original  message  was  a system  message,  the  substitution  text  for  the  system  message  is 

passed.  In the  absence  of  an  original  system  message,  Parameter  4 has  a value  of  *NONE,  and  the  

substitution  text  for  the  COBOL  message  is passed.  

Return  code  

OUTPUT;  CHAR(1)  

 Must  be  one  of  the  values  specified  in  Parameter  2,  or a space.  If  the  value  is not  one  of  these,  a 

response  of  a space  is assumed.  

 

38 iSeries:  High-Level  Language  APIs



Valid values  are:  

 blank Issue the COBOL  message  that was passed to the error-handling  program. 

G Continue  running the COBOL  program. 

C End the current  COBOL  run unit. 

D Same as C, but produce a formatted  dump  of user-defined COBOL variables.  

F Same as D, but also dump COBOL’s  file-related internal  variables.
  

 Exit  Program  Introduced:  V3R2  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

Concepts 

These  are  the  concepts  for  this  category.  

Record Types  

This  section  describes  the  information  contained  in  all  the  different  record  types.  Typically  a compiler  

writes  records  and  an  application  reads  them.  

Names,  field  types  and  other  information  passed  through  the  different  record  types  are  not  validated  and  

no  authority  is  checked  by  QLYWRTBI.  The  QLYWRTBI  API  assumes  that  all  that  validation  and  

checking  has  been  done.  

There  are  the  following  record  types:  

v   Processor  member  start  record  

v   Processor  object  start  record  

v   Normal  processor  end  record  

v   Normal  processor  end  call  next  record  

v   Normal  multiple  end  record  

v   Abnormal  processor  end  record  

v   Include  record  

v   File  reference  record  

v   Module  reference  record  

v   Service  program  reference  record  

v   Bind  directory  reference  record  

v   Record  format  reference  record  

v   Field  reference  record  

v   Message  reference  record  

v   External  reference  error  record  

v   Object  already  exists  error  record  

v   Start  of  new  program  record  

The  following  table  shows  the  records  that  can  be  written  by  each  compiler.  

All  fields  where  information  is  not  available  to  put  in these  records  should  be  filled  with  blanks.  

The  following  is true for  the  Library  specified  fields  for  all  records  and  compilers:  

v   When  *CURLIB  is  specified  for  the  Library  specified  fields,  *CURLIB  is passed.  

 

High-Level  Language  APIs 39

#TOP_OF_PAGE
aplist.htm


v   When  *LIBL  is  specified  for  the  Library  specified  fields,  or  implied  by  not  being  specified,  *LIBL  is 

passed.  

Notes  and  restrictions  are  explained  in the  footnotes  following  the  tables.  

Record  Types and  Processors  (Part  1)  

 

Record Type Record  ID 

RPG/400(R): 

CRTRPGPGM  

COBOL/400(R): 

CRTCBLPGM  

CLD: 

CRTCLD  

DDS: CRTPF  

CRTLF  

CRTDSPF  

CRTICFF  

CRTPRTF  

CL: 

CRTCLPGM  

CMD: 

CRTCMD  

Processor 

member start 

’01’ X(1, 3) X X(1, 3) X X(1, 3, 5) X(1) 

Processor 

object start 

’50’             

Normal  

processor end 

’20’ X X X X X(5) X 

Normal  

processor end 

call next 

’21’             

Normal  

multiple  end 

record 

’65’             

Abnormal  

processor end 

’30’ X X X X X(5) X 

Include ’02’ X(11)  X         

File reference ’03’ X X   X X(1, 5)   

Module  

reference 

’55’             

Service 

program 

reference 

’60’             

Bind directory  

reference 

’75’             

Record  format 

reference 

’04’ X X   X X(1, 5)   

Field reference ’05’       X(2)     

Message  

reference 

’06’       X(2, 9)   X(1, 2, 6, 9) 

External  

reference error 

’15’ X(10)  X   X(10) X(1, 4, 5)   

Object already  

exists error 

’16’       X     

Start of new 

program 

’40’   X(20)        

  

  

Record  Types and  Processors  (Part  2)  

 

40 iSeries:  High-Level  Language  APIs



Record  Type Record ID 

DB2(R) UDB 

for 

iSeries(TM): 

CRTSQLRPG  

CRTSQLCBL  

ILE RPG/400:  

CRTRPGMOD  

CRTBNDRPG  

ILE 

COBOL/400:  

CRTCBLMOD  

CRTBNDCBL  

ILE C: 

CRTCMOD  

CRTBNDC  

ILE CL: 

CRTCLMOD  

CRTBNDCL  

ILE DB2 UDB 

for iSeries:  

CRTSQLRPGI  

CRTSQLCBLI  

CRTSQLCI  

Processor 

member  start 

’01’ X(1) X(1, 3) X X(3) X(1, 3) X(1) 

Processor 

object  start 

’50’             

Normal  

processor end 

’20’ X X X X X X 

Normal  

processor end 

call next 

’21’ X X(14) X(14) X(14) X(14) X 

Normal  

multiple  end 

record  

’65’             

Abnormal  

processor end 

’30’ X X X X X X 

Include  ’02’ X(1, 7) X(11)  X X(8, 12)   X(1, 7) 

File reference ’03’ X(1) X X X X(1) X(1) 

Module  

reference  

’55’             

Service  

program 

reference  

’60’             

Bind directory  

reference  

’75’           X 

Record format  

reference  

’04’ X(1) X X X X(1) X(1) 

Field reference ’05’             

Message  

reference  

’06’             

External  

reference  error 

’15’ X(1) X(10) X X(10, 13) X(1, 4) X(1) 

Object  already  

exists error 

’16’             

Start of new 

program 

’40’     X(20)     X(20)

  

  

Record  Types and  Processors  (Part  3) 

 

Record  Type Record ID 

ILE SRVPGM:  

CRTSRVPGM  

ILE CRTPGM  

UIM: 

CRTPNLGRP  

CRTMNU  

UDT:  

SYSTYPE  

(*NONE)  

UDT: member 

Processor 

member  start 

’01’ X(18)    X X(17)   X 

Processor 

object  start 

’50’   X(16)     X(19)   

Normal  

processor end 

’20’ X X X X   X 

Normal  

processor end 

call next 

’21’           X 

 

High-Level  Language  APIs 41



Record Type Record  ID 

ILE SRVPGM:  

CRTSRVPGM  

ILE CRTPGM  

UIM: 

CRTPNLGRP  

CRTMNU  

UDT: 

SYSTYPE  

(*NONE)  

UDT: member  

Normal  

multiple  end 

record 

’65’         X(19)   

Abnormal  

processor end 

’30’ X X X X X(19) X 

Include ’02’     X X   X 

File reference ’03’           X 

Module  

reference 

’55’ X X         

Service 

program 

reference 

’60’ X X         

Bind directory  

reference 

’75’ X X         

Record  format 

reference 

’04’           X 

Field reference ’05’           X 

Message  

reference 

’06’     X X   X 

External  

reference error 

’15’ X(15)  X(15) X X   X 

Object already  

exists error 

’16’           X 

Start of new 

program 

’40’           X

  

Notes  and  Restrictions  for  the  Above  Tables:  

 1.   If *CURLIB  is specified  for  the  Library  specified  fields  (this  includes  the  Source  library  specified  field  on  

the  Processor  member  start  record),  the  resolved  library  name  is passed  instead  of *CURLIB.  

 2.   If *LIBL  is specified  for  the  Library  specified  fields,  or  implied  by  not  being  specified,  the  resolved  

library  name  is  passed  instead  of  *LIBL.  

 3.   If *CURLIB  is specified  for  the  Target  library  field,  the  resolved  library  name  is passed  instead  of 

*CURLIB.  

 4.   For  most  Used  fields,  when  a file  being  referenced  on  the  DCLF  command  cannot  be  found,  CL  puts  

blanks  in  this  field.  There  is no  actual  file  or  library  name  when  the  file  is not  found.  

 5.   For  all  fields  marked  Reserved,  CL  initializes  them  to  hex  zeros.  However,  fields  that  are  not  reserved  

are  set  to  blanks  when  they  do  not  apply  and  are  defined  as  characters.  For  example,  Target  member  

on  the  Processor  member  start  record  does  not  have  meaning  for  the  CL  compiler  and  is initialized  

to  blanks.  

 6.   Message  reference  records  are  written  only  for  messages  specified  on  the  PROMPT  parameter  of the  

PARM,  ELEM,  or  QUAL  command  definition  statement.  

 7.   The  SQL  compilers  do  not  write  include  records  for  the  following  statements:

  EXEC  SQL  INCLUDE  SQLCA  

  EXEC  SQL  INCLUDE  SQLDA
These  statements  are  not  true includes  in  the  sense  that  the  SQL  compiler  does  not  read  source  from  

another  member  or  source  file.  

 8.   The  ILE  C compiler  does  not  write  API  Include  records  for  system  include  files.  File  names  enclosed  

in  angle  brackets,  (<  ... >),  designate  system  include  files.  File  names  enclosed  in  double  quotation  

marks,  (″  ... ″),  designate  user  include  files.

 

42 iSeries:  High-Level  Language  APIs



9.   The  Message  file  used  and  Library  used  fields  are  always  blank.  

10.   If *LIBL  is  specified  in  the  source,  or  implied  by  not  being  specified  (Library  specified  is *LIBL),  the  

Library  used  field  is  set  to  *LIBL  because  no  specific  library  can  be  determined  if the  file  is not  found  

in  the  library  list.  

11.   The  RPG/400  compiler  puts  *LIBL  in  the  Library  specified  field  if it is not  already  specified,  and  

QRPGSRC  in  the  File  specified  field  if it is not  already  specified.  

The  ILE  RPG/400  compiler  puts  *LIBL  in the  Library  specified  field  if it is  not  already  specified,  and  

QRPGLESRC  in  the  File  specified  field  if it is not  already  specified.  

12.   The  Library  specified  field  is  the  resolved  library  name  if the  library  name  is not  already  specified.  The  

Include  file  specified  field  contains  the  resolved  file  name  if the  file  name  is not  already  specified.  

13.   If *CURLIB  is specified  in the  source  (Library  specified  is *CURLIB),  the  Library  used  field  is set  to  

*CURLIB  because  no  specific  library  can  be  determined  if the  file  is not  found  in the  library  list.  

14.   This  record  is  written  only  by  the  CRTBNDxxx  commands.  

15.   This  record  is  written  only  when  a SRVPGM  or  MODULE  does  not  exist,  and  this  causes  the  

compilation  to  fail.  

16.   The  object  fields  in  this  record  refer  to  the  ENTMOD  parameter  for  the  CRTPGM  command.  

17.   CRTMNU  only  writes  records  when  TYPE(*UIM)  is specified.  

18.   The  source  used  fields  contain  the  same  information  as  the  source  specified  fields.  

19.   

   

User-defined  types  are  part  types  that  the  user  created.  

  

 

20.   Any  COBOL/400  source  may  contain  more  than  one  program.

Processor member start record 

This,  or  the  Processor  object  start  record,  must  be  the  first  record  that  is passed  by  the  compiler  or  

preprocessor  on  its  first  call  to  the  QLYWRTBI  API.  Its  purpose  is to identify  the  source  that  is being  

compiled,  and  also  to  describe  the  expected  output  object,  if any.  

Note:  This  record  was  previously  called  the  processor  start  record,  but  the  format  remains  the  same.  

The  Processor  member  start  record  has  the  following  format:  

 Offset  

Type Field Dec Hex 

0 0 BINARY(4) Record  length  

4 4 CHAR(2)  Record  type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  Processor command 

18 12 CHAR(10)  Source object name specified  

28 1C CHAR(10)  Source library name specified  

38 26 CHAR(7)  Source object type 

45 2D CHAR(10)  Source member name specified  

55 37 CHAR(10)  Source object name used 

65 41 CHAR(10)  Source library name used 

75 4B CHAR(10)  Source member name used 

85 55 CHAR(10)  Target object name specified  

95 5F CHAR(10)  Target library  name specified  

105 69 CHAR(7)  Target object type 

112 70 CHAR(10)  Target member  name specified  

 

High-Level  Language  APIs 43



Offset 

Type Field Dec Hex 

122 7A CHAR(2)  Reserved
  

  

Processors for which this record type applies 

All  compilers  and  preprocessors  listed  in  Record  Types  and  Processors  (Part  1)  except  CRTPGM,  and  the  

processor  processing  the  user-defined  types  added  with  SYSTYPE(*NONE)  on  the  ADDADMTYPE  

command.  

Field Descriptions 

Processor  command.  The  compiler  or  preprocessor  that  wrote  this  record,  for  example,  CRTRPGPGM.  

Record  length.  The  length  of  this  record  is  124.  

Record  type.  The  type  of  this  record  is  ’01’.  

Reserved.  An  ignored  field.  

Source  library  name  used.  The  actual  name  of  the  library  that  was  used.  The  library  name  could  be  

different  from  the  specified  library  name  because  *LIBL  or  *CURLIB  was  specified,  or  an  override  was  

used.  This  field  contains  the  name  the  library  resolves  to.  

Source  library  name  specified.  The  library  name  of the  source  file  specified  on  the  compiler  or  

preprocessor  command.  

Source  member  name  used.  The  actual  name  of  the  source  member  that  was  used.  This  field  is required,  

even  if the  two  member  names  are  the  same.  

Source  member  name  specified.  The  source  member  name  specified  on  the  compiler  or  preprocessor  

command.  

Source  object  name  used.  The  actual  name  of the  object  that  was  used.  The  object  name  could  be  

different  from  the  specified  object  name  if an  override  was  used.  

Source  object  name  specified.  The  object  name  specified  on  the  compiler  or  preprocessor  command.  

Source  object  type.  The  OS/400(R) type  of  the  source  object  (for  example,  *FILE).  

Target  library  name  specified.  The  library  of  the  target  object  specified  on  the  compiler  or  preprocessor  

command.  

Target  member  name  specified.  The  name  of  the  member  to be  created,  if applicable,  specified  on  the  

compiler  or  preprocessor  command.  

Target  object  name  specified.  The  name  of  the  object  to be  created,  called  the  target  object,  specified  on  

the  compiler  or  preprocessor  command.  The  actual  name  of the  object  that  was  created  is passed  through  

the  Normal  processor  end  record.  (See  “Normal  processor  end  record”  on  page  46.)  

Target  object  type.  The  OS/400  type  of the  object  to  be  created  (for  example,  *FILE).

 

44 iSeries:  High-Level  Language  APIs

hll1.htm#TBLPREPROC


Processor object start record 

This,  or  the  Processor  member  start  record,  must  be  the  first  record  that  is passed  by  the  compiler  or  

preprocessor  on  its  first  call  to  the  QLYWRTBI  API.  Its  purpose  is to identify  the  object  that  is  being  

processed,  and  also  to  describe  the  expected  output  object,  or, for  user-defined  types,  the  expected  

location  of  the  output  members,  if any.  

User-defined  types  added  with  SYSTYPE(*NONE)  on  the  ADDADMTYPE  command  must  write  this  

record  before  any  other  record.  

The  Processor  object  start  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length  

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved 

8 8 CHAR(10)  Processor command  

18 12 CHAR(10)  Object name specified 

28 1C CHAR(10)  Object library name specified  

38 26 CHAR(7)  Object type specified  

45 2D CHAR(10)  Object name used 

55 37 CHAR(10)  Object library name used 

65 41 CHAR(7)  Object type used 

72 48 CHAR(10)  Target object name specified 

82 52 CHAR(10)  Target object library  name specified  

92 5C CHAR(7)  Target object type specified  

99 63 CHAR(1)  Reserved
  

  

Processors for which this record type applies 

CRTPGM  and  the  processor  processing  the  user-defined  types  added  with  SYSTYPE(*NONE)  on  the  

ADDADMTYPE  command.  

Field Descriptions 

Object  library  name  specified.  The  library  name  of the  object  specified  on  the  compiler  or  preprocessor  

command.  If  the  object  type  specified  is  a user-defined  type  with  SYSTYPE(*NONE),  the  library  name  

specified  should  be  the  group  library  name.  

Object  library  name  used.  The  actual  name  of the  library  that  the  object  was  found  in.  The  library  name  

could  be  different  from  the  specified  library  name  because,  for  example,  *LIBL  or  *CURLIB  was  specified.  

This  field  contains  the  name  the  library  resolves  to.  

Object  name  specified.  The  object  name  specified  on  the  command.  If  the  object  type  specified  is a 

user-defined  type  with  SYSTYPE(*NONE),  the  object  name  specified  should  be  the  part  name.  

Object  name  used.  The  actual  name  of  the  object  that  was  used.  The  object  name  could  be  different  from  

the  specified  object  name  if an  override  was  used.  

Object  type  specified.  The  object  type  specified  on  the  command.  For  user-defined  types  this  must  be left  

blank.  If the  object  type  specified  is a user-defined  type  with  SYSTYPE(*NONE),  the  object  type  specified  

should  be  the  part  type.  

 

High-Level  Language  APIs 45



Object  type  used.  The  actual  type  of the  object  used.  For  example,  *MODULE.  For  user-defined  types  

this  can  be  left  blank.  

Processor  command.  The  compiler  or  preprocessor  that  wrote  this  record,  for  example,  CRTPGM.  

Record  length.  The  length  of  this  record  is  100.  

Record  type.  The  type  of  this  record  is  ’50’.  

Reserved.  An  ignored  field.  

Target  object  library  name  specified.  The  library  of  the  target  object  specified  on  the  command.  For  

user-defined  types,  the  library  where  the  output  members  are  created,  as  specified  on  the  command.  

Target  object  name  specified.  The  name  of  the  object  to be  created,  or  modified  as  specified  on  the  

command.  For  user-defined  types  this  can  be  left  blank.  

Target  object  type  specified.  The  type  of  the  object  to  be  created.  For  example,  *PGM.  The  actual  name  of  

the  object  that  was  created  is passed  through  the  Normal  processor  end  record.  (See  “Normal  processor  

end  record.”)  For  user-defined  types,  the  names  of  the  output  members  are  passed  through  the  Normal  

multiple  end  record.  For  user-defined  types  this  value  must  be  *MBR.  

Normal processor end record 

This  is the  last  record  passed  by  the  compiler  or  preprocessor  to  indicate  that  processing  ended  

successfully.  

The  Normal  processor  end  record  has  the  following  format:  

 Offset  

Type Field Dec Hex 

0 0 BINARY(4) Record length 

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  Object name created 

18 12 CHAR(10)  Library  

28 1C CHAR(7)  Object type 

35 23 CHAR(10)  Member  

45 2D CHAR(7)  Message  identifier
  

  

Processors for which this record type applies 

All  compilers  and  preprocessors  listed  in  Record  Types  and  Processors  (Part  1),  except  the  processor  

processing  the  user-defined  types  added  with  SYSTYPE(*NONE)  on  the  ADDADMTYPE  command.  

Field Descriptions 

Library  name.  The  library  where  the  object  was  created.  

Member  name.  The  name  of  the  member  created,  if applicable.  

Message  identifier.  The  message  identification  of  the  completion  message.  

 

46 iSeries:  High-Level  Language  APIs

hll1.htm#TBLPREPROC


Object  name  created.  The  object  created  by  the  compiler  or  preprocessor.  If an  object  is not  created,  this  

field  stores  the  value  of  ’*NONE’.  

Object  type.  The  type  of  object  created.  

Record  length.  The  length  of  this  record  is 52.  

Record  type.  The  type  of  this  record  is  ’20’.  

Reserved.  An  ignored  field.  

Normal processor end call next record 

When  a preprocessor  successfully  creates  an  object  or  a member  and  needs  to  call  another  compiler  or  

preprocessor,  it should  pass  this  record  instead  of  passing  the  Normal  processor  end  record  as  the  final  

record.  For  example,  if the  CRTSQLCI  command  is entered  with  OPTION(*GEN),  and  the  member  is 

created  successfully,  the  last  record  written  by  CRTSQLCI  is  the  Normal  processor  end  call  next  record.  

The  preprocessor  then  calls  the  CRTBNDC  command  that  eventually  writes  the  Normal  or  Abnormal  

processor  end  record.  

The  Normal  processor  end  call  next  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length  

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  Object name 

18 12 CHAR(10)  Library  name 

28 1C CHAR(7)  Object type 

35 23 CHAR(10)  Member name 

45 2D CHAR(7)  Message  identifier
  

  

Processors for which this record type applies 

 CRTSQLRPG  CRTSQLCBL CRTSQLRPGI CRTSQLCBLI  

CRTBNDRPG  CRTBNDCBL  CRTBNDC CRTBNDCL 

CRTSQLCI when 

OPTION(*GEN)  is specified  

processor  processing the user-defined types represented as members

  

  

Field Descriptions 

Library  name.  The  library  where  the  object  was  created.  

Member  name.  The  name  of  the  member  created,  if applicable.  

Message  identifier.  The  message  identification  of  the  completion  message.  

Object  name.  The  name  of  the  object  created.  

Object  type.  The  type  of  object  created.  

Record  length.  The  length  of  this  record  is 52.  

 

High-Level  Language  APIs 47



Record  type.  The  type  of  this  record  is  ’21’.  

Reserved.  An  ignored  field.  

Normal multiple end record 

This  is the  last  record  passed  by  a user-defined  type  added  with  SYSTYPE(*NONE)  on  the  

ADDADMTYPE  command.  It identifies  Normal  multiple  end  processing  of  all  the  output  members.  One  

Normal  multiple  end  record  is written  per  member  generated.  The  Normal  processor  end  record  should  

not  be  written.  

Note:  It  is possible  that  the  processor  generated  10  members  on  the  last  build,  and  because  of a change,  

now  needs  to  regenerate  just  2 of  those  members.  For  the  build  process  to preserve  the  relationships  to  

the  remaining  8 members,  the  processor  must  write  all  members  to  the  API,  regardless  of  whether  the  

member  was  actually  regenerated.  The  build  process  ignores  those  parts  (members)  that  have  either  not  

changed  (because  the  processor  did  not  regenerate  them),  or  do  not  exist  (because  the  processor  did  not  

generate  them,  and  they  may  exist  higher  in  the  hierarchy).  

The  Normal  multiple  end  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length  

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  Library  

18 12 CHAR(10)  File name created 

28 1C CHAR(10)  Member  

38 26 CHAR(32)  Part type 

70 46 CHAR(32)  Part language  

102 66 CHAR(22)  Reserved
  

  

Processors for which this record type applies 

The  processor  processing  the  user-defined  types  added  with  SYSTYPE(*NONE)  on  the  ADDADMTYPE  

command.  

Field Descriptions 

File  name  created.  The  file  name  that  was  created  or  used  to hold  the  member.  

Library.  The  library  where  the  member  was  created.  

Member.  The  name  of  the  member  created.  

Part  language.  The  language  of  the  part  to  represent  this  member.  

Part  type.  The  type  of the  part  to  represent  this  member.  

Record  length.  The  length  of  this  record  is  124.  

Record  type.  The  type  of  this  record  is  ’65’.  

Reserved.  An  ignored  field.

 

48 iSeries:  High-Level  Language  APIs



Abnormal processor end record 

This  is the  last  record  passed  if the  compiler  or  preprocessor  fails  because  of  an  error. For  example,  an  

object  or  a member  was  not  created  because  of compile  errors,  or  REPLACE(*NO)  was  specified  on  the  

command  and  the  object  existed.  

If the  command  failed  because  an  external  reference  to  a file,  message  file,  module,  bind  directory  or  

service  program  could  not  be  found,  the  command  passes  the  External  reference  error  record  before  

passing  this  one.  See  “External  reference  error  record”  on  page  57  for  more  information  on  this  record.  

The  Abnormal  processor  end  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length  

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(7)  Message  identifier  

15 F CHAR(1)  Reserved
  

  

Processors for which this record type applies 

All  compilers  and  preprocessors  listed  in  Record  Types and  Processors  (Part  1).  

Field Descriptions 

Message  identifier.  The  message  identification  of  the  completion  message.  

Record  length.  The  length  of  this  record  is 16.  

Record  type.  The  type  of  this  record  is  ’30’.  

Reserved.  An  ignored  field.  

Include record 

This  record  is passed  when  the  compiler  or  preprocessor  processes  an  include.  An  include  statement  is  a 

statement  that  causes  the  compiler  to  replace  the  include  statement  with  the  contents  of the  specified  

header  or  file.  If  the  include  is not  found,  the  compiler  or  preprocessor  passes  the  Abnormal  processor  

end  record.  

The  Include  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record  length  

4 4 CHAR(2)  Record  type 

6 6 CHAR(2)  Reserved  

8 8 BINARY(4) Nesting  level 

12 C CHAR(10)  Include  file name specified  

22 16 CHAR(10)  Include  file library name specified  

32 20 CHAR(10)  Include  file member  name specified  

42 2A CHAR(7)  Object type 

 

High-Level  Language  APIs 49

hll1.htm#TBLPREPROC


Offset 

Type Field Dec Hex 

49 31 CHAR(10)  Include file name used 

59 3B CHAR(10)  Include file library name used 

69 45 CHAR(10)  Include file member  name used 

79 4F CHAR(1)  Reserved
  

  

Processors for which this record type applies 

 CRTRPGPGM  CRTCBLPGM  CRTRPGMOD CRTBNDRPG  

CRTCBLMOD  CRTBNDCBL  CRTCMOD CRTBNDC 

CRTSQLRPGI  CRTSQLCBLI  CRTSQLCI CRTPNLGRP 

CRTMNU processor processing  the user-defined types represented as members
  

  

Field Descriptions 

Include  file  used.  The  actual  name  of  the  include  file  that  was  used.  For  example,  the  default  include  file  

used  by  the  compiler  and  implied  in the  source,  or  the  file  different  from  the  one  specified  in  the  source  

as  a result  of  an  override.  This  name  must  always  be  filled  in.  

Include  file  specified.  The  name  of  the  file  that  contains  the  include.  This  is the  name  specified  in  the  

source  (if  the  include  was  file  qualified),  otherwise  it is  blank.  

Include  file  library  used.  The  name  of  the  actual  library  that  contains  the  include  file  that  was  used  (for  

example,  a specific  library  name  instead  of  *CURLIB  or  *LIBL,  as specified  in  the  source,  or  a library  

different  from  the  one  specified  in  the  source,  as a result  of  an  override).  

Include  file  library  specified.  The  name  of  the  library  where  the  include  file  resides,  as  specified  in  the  

source  (if  the  include  was  library  qualified),  otherwise  it  is blank.  

Include  file  member  used.  The  actual  name  of the  source  member  containing  the  include  that  was  used.  

This  name  must  always  be  filled  in.  

Include  file  member  specified.  The  name  of the  source  member  containing  the  include,  as  specified  in  

the  source.  

Nesting  level.  The  level  of  nesting  of  the  include.  Includes  found  in  the  root  source  have  a nesting  level  

of 1,  includes  found  in  level  1 have  a nesting  level  of  2 and  so  on.  

Object  type.  The  object  type  of  the  object  containing  the  include,  for  example  *FILE.  

Record  length.  The  length  of  this  record  is  80.  

Record  type.  The  type  of  this  record  is  ’02’.  

Reserved.  An  ignored  field.  

The  nesting  level  should  be  indicated  even  by  those  compilers  that  do  not  allow  include  nesting.  In  that  

case,  the  nesting  level  passed  should  be  equal  to  1.

 

50 iSeries:  High-Level  Language  APIs



File reference record 

This  record  is passed  when  the  compiler  or  preprocessor  encounters  a reference  to  an  externally  described  

file  but  not  its  record  format  or  field.  

For  example,  a reference  is made  in  DDS  source  using  the  PFILE  or  JFILE  keywords.  Another  example  is  

when  a compiler  or  preprocessor  copies  all  the  record  format  declares  from  a file.  This  is not  considered  

to  be  a dependency  on  any  specific  record  format  and  is treated  as a dependency  on  the  file,  so  this  

record  must  be  passed,  not  the  Record  format  reference  records  for  all  the  individual  record  formats.  

The  File  reference  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length  

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  File name specified  

18 12 CHAR(10)  File library  name specified 

28 1C CHAR(1)  Based on indicator  

29 1D CHAR(10)  File name used 

39 27 CHAR(10)  File library  name used 

49 31 CHAR(3)  Reserved  

52 34 BINARY(4) Nesting  level
  

  

Processors for which this record type applies 

 CRTRPGPGM  CRTCBLPGM  CRTPF CRTLF 

CRTDSPF CRTICFF CRTPRTF CRTCLPGM 

CRTSQLRPG  CRTSQLCBL CRTRPGMOD CRTBNDRPG  

CRTCBLMOD  CRTBNDCBL  CRTCMOD CRTBNDC 

CRTCLMOD  CRTBNDCL  CRTSQLRPGI CRTSQLCBLI  

CRTSQLCI processor  processing the user-defined types represented as members
  

  

Field Descriptions 

Based  on  indicator.  Indicates  whether  the  referenced  file  is used  to base  another  file  on.  Possible  values  

are  N  (no)  and  Y (yes).  

File  name  used.  The  name  of  the  actual  file  that  was  referenced.  This  name  must  always  be  filled  in.  

File  name  specified.  The  name  of  the  file  referenced,  as  specified  in the  source.  

File  library  name  used.  The  name  of  the  actual  library  that  contains  the  file  that  was  referenced.  The  

library  name  could  be  different  from  the  specified  library  name  because  *LIBL  or  *CURLIB  was  specified,  

or  an  override  was  used.  

File  library  name  specified.  The  name  of  the  library  of  the  file  referenced,  as  specified  in  the  source.  

Nesting  level.  If  this  file  reference  is  made  within  an  include,  this  field  has  value  of N  + 1,  where  N  is 

the  nesting  level  of  the  include.  Otherwise,  the  value  of this  field  is 1.  

 

High-Level  Language  APIs 51



Record  length.  The  length  of  this  record  is  56.  

Record  type.  The  type  of  this  record  is  ’03’.  

Reserved.  An  ignored  field.  

  

Module reference record 

This  record  is passed  when  a module  is successfully  referenced  by  a processor.  This  record  is not  to  be  

written  for  the  ENTMOD  module,  on  the  CRTPGM  command.  

The  Module  reference  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length 

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  Module name specified 

18 12 CHAR(10)  Module library  name specified  

28 1C CHAR(10)  Module name used 

38 26 CHAR(10)  Module library  name used
  

  

Processors for which this record type applies 

CRTSRVPGM  and  CRTPGM.  

Field Descriptions 

Module  name  used.  The  name  of  the  actual  module  that  was  referenced.  This  name  must  always  be  

filled  in.  

Module  name  specified.  The  name  of  the  module  referenced,  as  specified  on  the  command,  or  in  the  

bind  directory.  

Module  library  name  used.  The  name  of  the  actual  library  that  contains  the  module  that  was  referenced.  

The  library  name  could  be  different  from  the  specified  library  name  because  *LIBL  or  *CURLIB  was  

specified.  

Module  library  name  specified.  The  name  of  the  library  of the  module  referenced,  as  specified  on  the  

command,  or  in  the  bind  directory.  

Record  length.  The  length  of  this  record  is  92.  

Record  type.  The  type  of  this  record  is  ’55’.  

Reserved.  An  ignored  field.  

Service program reference record 

This  record  is passed  when  a service  program  is successfully  referenced  by  a processor.  

The  Service  program  reference  record  has  the  following  format:  

 

52 iSeries:  High-Level  Language  APIs



Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length  

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  Service  program name specified  

18 12 CHAR(10)  Service  program library name specified 

28 1C CHAR(10)  Service  program name used 

38 26 CHAR(10)  Service  program library name used 

48 30 CHAR(16)  Service  program signature used
  

  

Processors for which this record type applies 

CRTSRVPGM  and  CRTPGM.  

Field Descriptions 

Record  length.  The  length  of  this  record  is 64.  

Record  type.  The  type  of  this  record  is  ’60’.  

Service  program  name  used.  The  name  of  the  actual  service  program  that  was  referenced.  This  name  

must  always  be  filled  in.  

Service  program  name  specified.  The  name  of  the  service  program  as  specified  on  the  command.  

Service  program  library  name  used.  The  name  of  the  actual  library  that  contains  the  service  program  

that  was  referenced.  The  library  name  could  be  different  from  the  specified  library  name  because  *LIBL  or 

*CURLIB  was  specified.  

Service  program  library  name  specified.  The  name  of  the  library  of  the  service  program  referenced,  as 

specified  on  the  command.  

Service  program  signature  used.  The  current  signature  of  the  service  program  used.  

Bind directory reference record 

This  record  is passed  when  a module  is successfully  referenced  by  a processor.  This  record  is not  to  be  

written  for  the  ENTMOD  module,  on  the  CRTPGM  command.  

The  Bind  directory  reference  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record  length 

4 4 CHAR(2)  Record  type 

6 6 CHAR(2)  Reserved 

8 8 CHAR(10)  Bind directory name specified  

18 12 CHAR(10)  Bind directory library  name specified  

28 1C CHAR(10)  Bind directory name used 

38 26 CHAR(10)  Bind directory library  name used
  

 

 

High-Level  Language  APIs 53



Processors for which this record type applies 

CRTSRVPGM  and  CRTPGM.  

Field Descriptions 

Bind  directory  name  used.  The  name  of  the  actual  bind  directory  that  was  referenced.  This  name  must  

always  be  filled  in.  

Bind  directory  name  specified.  The  name  of the  bind  directory  referenced,  as specified  on  the  command.  

Bind  directory  library  name  used.  The  name  of the  actual  library  that  contains  the  bind  directory  that  

was  referenced.  The  library  name  could  be  different  from  the  specified  library  name  because  *LIBL  or  

*CURLIB  was  specified.  

Bind  directory  library  name  specified.  The  name  of the  library  of the  bind  directory  referenced,  as  

specified  on  the  command.  

Record  length.  The  length  of  this  record  is  48.  

Record  type.  The  type  of  this  record  is  ’75’.  

Reserved.  An  ignored  field.  

Record format reference record 

This  record  is passed  when  the  compiler  or  preprocessor  encounters  a reference  to  a record  format  of  an  

externally  described  file  (but  not  to  any  single  field).  For  example,  a reference  is made  in  DDS  source  

using  the  FORMAT  keyword  or  in  the  RPG,  COBOL,  CL,  DB2  UDB  for  iSeries  SQL,  ILE  RPG,  ILE  

COBOL,  ILE  CL,  or  ILE  C  processors  whenever  a declaration  of  a record  format  structure  from  a 

DDS-described  file  is  generated  by  the  compiler  or  preprocessor.  

The  Record  format  reference  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length 

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  File name specified 

18 12 CHAR(10)  File library name specified  

28 1C CHAR(10)  Record format name 

38 26 CHAR(13)  Record format level ID 

51 33 CHAR(10)  File name used 

61 3D CHAR(10)  File library name used 

71 47 CHAR(1)  Reserved  

72 48 BINARY(4) Nesting  level
  

  

Processors for which this record type is applicable 

 CRTRPGPGM  CRTCBLPGM  CRTPF CRTLF 

CRTDSPF CRTICFF CRTPRTF CRTCLPGM 

CRTSQLRPG CRTSQLCBL  CRTRPGMOD CRTBNDRPG  

CRTCBLMOD  CRTBNDCBL  CRTCMOD CRTBNDC 

 

54 iSeries:  High-Level  Language  APIs



CRTCLMOD  CRTBNDCL  CRTSQLRPGI CRTSQLCBLI  

CRTSQLCI processor  processing the user-defined types represented as members
  

  

Field Descriptions 

File  name  used.  The  name  of  the  actual  file  that  was  referenced.  This  name  must  always  be  filled  in.  

File  name  specified.  The  name  of  the  file  being  referenced,  as  specified  in  the  source.  

File  library  name  used.  The  name  of  the  actual  library  that  contains  the  file  that  was  referenced.  The  

library  name  could  be  different  from  the  specified  library  name  because  *LIBL  or  *CURLIB  was  specified,  

or  an  override  was  used.  This  field  contains  the  name  the  library  resolves  to.  

File  library  name  specified.  The  name  of  the  library  of  the  file  being  referenced,  as specified  in  the  

source.  

Nesting  level.  If  this  record  format  reference  is made  within  an  include,  this  field  has  value  of N  + 1,  

where  N  is the  nesting  level  of  the  include.  Otherwise,  the  value  of this  field  is  1. 

Record  format  level  ID.  The  level  ID  of  the  record  format  referenced.  

Record  format  name.  The  name  of  the  record  format  referenced.  

Record  length.  The  length  of  this  record  is 76.  

Record  type.  The  type  of  this  record  is  ’04’.  

Reserved.  An  ignored  field.  

Field reference record 

This  record  is passed  when  the  compiler  or  preprocessor  encounters  a reference  to  a field  in  an  externally  

described  file.  For  example,  a reference  is made  in  DDS  source  using  the  REF  and  REFFLD  keywords.  

The  Field  reference  record  has  the  following  format:  

 Offset  

Type Field Dec Hex 

0 0 BINARY(4) Record length 

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  File name specified  

18 12 CHAR(10)  File library name specified  

28 1C CHAR(10)  Record format name 

38 26 CHAR(13)  Record format level ID 

51 33 CHAR(10)  Field 

61 3D CHAR(3)  Reserved  

64 40 BINARY(4) Field length  

68 44 BINARY(4) Decimal positions  

72 48 CHAR(1)  Data type 

73 49 CHAR(1)  Fixed/variable  length  indicator  

74 4A CHAR(10)  File name used 

 

High-Level  Language  APIs 55



Offset 

Type Field Dec Hex 

84 54 CHAR(10)  File library name used 

94 5E CHAR(2)  Reserved
  

  

Processors for which this record type applies 

 CRTPF CRTLF CRTDSPF CRTICFF 

CRTPRTF processor processing  the user-defined types represented as members
  

  

Field Descriptions 

Data  type.  The  field  data  type  in  DDS.  For  example,  P,  S, B,  F, A,  or  H.  

Decimal  positions.  The  number  of  decimal  positions  if the  field  is numeric,  otherwise  0. 

Field.  The  name  of  the  referenced  field.  

Field  length.  The  length  of  the  field  in bytes.  If  the  field  is a variable-length  field,  the  maximum  length  

should  be  passed.  

File  name  used.  The  name  of  the  actual  file  that  was  referenced.  This  name  must  always  be  filled  in. 

File  name  specified.  The  name  of  the  file  being  referenced,  as specified  in  the  source.  

Fixed/variable  length  indicator.  Contains  F  if the  field  is of fixed  length,  or  V if variable  length.  

File  library  name  used.  The  name  of  the  actual  library  that  contains  the  file  that  was  referenced.  

File  library  name  specified.  The  name  of  the  library  of the  file  being  referenced,  as  specified  in  the  

source.  

Record  format  level  ID.  The  level  ID  of  the  record  format  referenced.  

Record  format  name.  The  name  of  the  record  format  referenced.  

Record  length.  The  length  of  this  record  is  96.  

Record  type.  The  type  of  this  record  is  ’05’.  

Reserved.  An  ignored  field.  

Message reference record 

This  record  is passed  when  the  compiler  encounters  a reference  to  a message  ID  in  a message  file.  For  

example,  a reference  is  made  in  DDS  source  using  the  MSGCON  keyword.  

The  Message  reference  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length  

 

56 iSeries:  High-Level  Language  APIs



Offset 

Type Field Dec Hex 

4 4 CHAR(2)  Record  type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(7)  Message identifier 

15 F CHAR(10)  Message file name specified 

25 19 CHAR(10)  Message file library name specified  

35 23 CHAR(10)  Message file name used 

45 2D CHAR(10)  Message file library name used 

55 37 CHAR(1)  Reserved  

56 38 BINARY(4) Nesting  Level
  

  

Processors for which this record type applies 

 CRTPF CRTLF CRTDSPF CRTPRTF 

CRTICFF CRTCMD CRTPNLGRP  CRTMNU 

processor processing the user-defined  types represented as members  

  

  

Field Descriptions 

Message  file  library  used.  The  name  of  the  actual  library  that  contains  the  message  file.  This  may  be  

*CURLIB  or  *LIBL  if the  compiler  does  not  resolve  to  the  library  name.  

Message  file  library  specified.  The  name  of  the  library  that  contains  the  message  file,  as specified  in the  

source.  

Message  file  name  used.  The  name  of  the  actual  message  file  that  was  referenced.  This  name  must  

always  be  filled  in.  

Message  file  name  specified.  The  name  of the  message  file  referenced,  as specified  in  the  source.  

Message  identifier.  The  message  ID  referenced.  

Nesting  Level.  The  level  of  nesting  of  the  MSGF.  MSGFs  referenced  in  the  root  source  have  a nesting  

level  of  1,  MSGFs  found  in level  1 have  a nesting  level  of  2 and  so  on.  

Record  length.  The  length  of  this  record  is 60.  

Record  type.  The  type  of  this  record  is  ’06’.  

Reserved.  An  ignored  field.  

External reference error record 

This  record  is passed  when  processing  fails  because  a referenced  object,  such  as  a file,  message  file,  

module,  bind  directory  or  service  program  cannot  be  found.  This  record  does  not  apply  to  includes.  

After  passing  one  or  more  of  these  records,  the  compiler  or  preprocessor  also  passes  the  Abnormal  

processor  end  record  (see  “Abnormal  processor  end  record”  on  page  49).  

The  External  reference  error  record  has  the  following  format:  

 

High-Level  Language  APIs 57



Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length 

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  Object name specified 

18 12 CHAR(10)  Object library  name specified 

28 1C CHAR(7)  Object type 

35 23 CHAR(10)  Object name used 

45 2D CHAR(10)  Object library  name used 

55 37 CHAR(1)  Based on indicator
  

  

Processors for which this record type applies 

 CRTRPGPGM  CRTCBLPGM  CRTPF CRTLF 

CRTDSPF CRTICFF CRTPRTF CRTCLPGM 

CRTSQLRPG CRTSQLCBL  CRTRPGMOD CRTBNDRPG  

CRTCBLMOD  CRTBNDCBL  CRTCMOD CRTBNDC 

CRTCLMOD CRTBNDCL  CRTSQLRPGI CRTSQLCBLI 

CRTSQLCI CRTSRVPGM  CRTPGM CRTPNLGRP 

CRTMNU processor processing  the user-defined types represented as members
  

  

Field Descriptions 

Based  on  indicator.  Whether  the  referenced  file  is used  to  base  another  file  on.  Possible  values  are  N  (no)  

and  Y  (yes).  This  field  is  used  by  the  CRTLF  processor.  

Object  library  name  used.  The  actual  name  of  the  library  that  contains  the  object  that  was  referenced.  

Object  library  name  specified.  The  name  of  the  library  that  contains  the  object  that  was  not  found.  

Object  name  used.  The  actual  name  of  the  object  that  was  referenced.  This  name  must  always  be  filled  

in.  

Object  name  specified.  The  name  of  the  object  referenced  that  was  not  found.  

Object  type.  The  type  of  object  that  was  not  found.  

Record  length.  The  length  of  this  record  is  56.  

Record  type.  The  type  of  this  record  is  ’15’.  

Reserved.  An  ignored  field.  

Object already exists error record 

This  record  is passed  when  the  compiler  or  preprocessor  fails  because  the  object  that  was  to  be  created  

exists.  There  is no  REPLACE  parameter  on  the  command  because  the  compiler  or preprocessor  expects  

the  object  not  to  exist.  

After  passing  this  record,  the  compiler  or  preprocessor  must  also  pass  the  Abnormal  processor  end  record  

(see  “Abnormal  processor  end  record”  on  page  49).  

 

58 iSeries:  High-Level  Language  APIs



The  Object  already  exists  error  record  has  the  following  format:  

 Offset  

Type Field Dec Hex 

0 0 BINARY(4) Record length 

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved  

8 8 CHAR(10)  Object name that already exists 

18 12 CHAR(10)  Object library  name 

28 1C CHAR(7)  Object type 

35 23 CHAR(1)  Reserved
  

  

Processors for which this record type applies 

 CRTPF CRTLF CRTDSPF CRTICFF 

CRTPRTF processor  processing the user-defined types represented as members
  

  

Field Descriptions 

Object  library  name.  The  name  of  the  library  that  contains  the  object  that  already  exists.  A  specific  

library  name,  not  *CURLIB  or  *LIBL  must  be  passed.  

Object  name  that  already  exists.  The  name  of the  object  that  already  exists  and  could  not  be  replaced.  

Object  type.  The  type  of  the  object  that  already  exists.  

Record  length.  The  length  of  this  record  is 36.  

Record  type.  The  type  of  this  record  is  ’16’.  

Reserved.  An  ignored  field.  

Start of new program record 

The  COBOL/400  compiler  is  able  to  compile  source  that  contains  more  than  one  program.  This  record  is 

passed  by  the  COBOL/400  compiler  when  the  beginning  of a new  program  is encountered.  

The  Start  of  new  program  record  has  the  following  format:  

 Offset 

Type Field Dec Hex 

0 0 BINARY(4) Record length  

4 4 CHAR(2)  Record type 

6 6 CHAR(2)  Reserved 

8 8 CHAR(10)  New program name 

18 12 CHAR(10)  Object name created 

28 1C CHAR(10)  Object library name 

38 26 CHAR(7)  Message identifier  

45 2D CHAR(3)  Reserved 

48 30 CHAR(7)  Object type 

 

High-Level  Language  APIs 59



Offset  

Type Field Dec Hex 

55 37 CHAR(1)  Reserved
  

  

Processors for which this record type applies 

 CRTCBLPGM  CRTCBLMOD  CRTBNDCBL CRTSQLCBLI 

processor processing the user-defined  types represented as members   

  

  

Field Descriptions 

Message  identifier.  The  message  ID  of  the  completion  message.  

New  program  name.  The  name  of  the  new  program,  per  IDENTIFICATION  DIVISION.  

Object  library  name.  The  library  where  the  object  was  created.  This  field  contains  blank  if an  error  

occurred.  

Object  name  created.  The  name  of  the  object  created  in  the  previous  step.  If an  object  was  not  created  

because  of  syntax  errors  or  because  REPLACE(*NO)  was  specified  and  the  object  already  existed,  this  

field  contains  ’*ERROR’.  

Object  type.  The  type  of  object  created.  For  example,  *PGM  or  *MODULE.  

Record  length.  The  length  of  this  record  is  56.  

Record  type.  The  type  of  this  record  is  ’40’.  

Reserved.  An  ignored  field.  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

Examples of Records Written  

The  following  examples  illustrate  how  compilers  and  preprocessors  communicate  with  the  Application  

Development  Manager/400  APIs  in  different  circumstances.  In  all  these  examples,  assume  that  the  

compiles  are  submitted  by  an  Application  Development  Manager/400  BLDPART  command,  which  means  

it has  called  QLYSETS  to  set  the  status  of  the  space  to  *READY  before  calling  the  compiler  or  

preprocessor.  

It is also  assumed  that  a cleanup  is done  after  the  compile  by  calling  QLYSETS  again  to  set  the  status  of  

the  space  to  *COMPLETE.  

Example 1 

RPG/400(R) compiler  successfully  compiles  source  that  has  one  include  in  it.  

The  compiler  first  calls  QLYGETS  and  determines  that  it  was  started  by  the  BLDPART  command.  Then  it 

calls  QLYWRTBI  to  pass  records  of  the  following  record  types  and  in  the  following  order:  

1.   Processor  member  start  

2.   Include  

3.   Normal  processor  end

 

60 iSeries:  High-Level  Language  APIs

#TOP_OF_PAGE
aplist.htm


Example 2 

DDS  compiler  successfully  compiles  source  of  type  LF  and  creates  a logical  file  based  on  two  physical  

files.  

The  compiler  first  calls  QLYGETS  and  determines  that  it was  started  by  the  BLDPART  command.  Then  it 

calls  QLYWRTBI  to  pass  records  of  the  following  record  types  and  in  the  following  order:  

1.   Processor  member  start  

2.   File  reference  

This  record  is called  for  the  first  physical  file  on  which  the  logical  file  is based.  The  based-on  indicator  

is set  to  Y (yes).  

3.   File  reference  

This  record  is called  for  the  second  physical  file  on  which  the  logical  file  is based.  The  based-on  

indicator  is  set  to  Y  (yes).  

4.   Normal  processor  end

Example 3 

COBOL/400(R) compiler  fails  when  compiling  source  that  has  one  include  in  it because  the  include  was  

not  found  in  *LIBL.  

The  compiler  first  calls  QLYGETS  and  determines  that  it was  started  by  a BLDPART  command.  Then  it  

calls  QLYWRTBI  to  pass  records  of  the  following  record  types  and  in  the  following  order:  

1.   Processor  member  start  

2.   Abnormal  processor  end

Example 4 

COBOL/400  compiler  fails  when  compiling  source  that  references  a record  format  of  a database  file  

because  the  file  was  not  found  in  *LIBL.  

The  compiler  first  calls  QLYGETS  and  determines  that  it was  started  by  a BLDPART  command.  Then  it  

calls  QLYWRTBI  to  pass  records  of  the  following  record  types  and  in  the  following  order:  

1.   Processor  member  start  

2.   External  reference  error  

The  name  of  the  Library  specified  passed  to  QLYWRTBI  is *LIBL.  

3.   Abnormal  processor  end

Example 5 

ILE  C CRTBNDC  compiler  successfully  compiles  a *PGM  from  a source  that  has  one  include  in  it.  

The  compiler  calls  QLYGETS  and  determines  that  it was  started  by  the  BLDPART  command.  Then  it calls  

QLYWRTBI  to  pass  records  of  the  following  record  types  and  in  the  following  order:  

1.   Processor  member  start  

2.   Include  

3.   Normal  processor  end  call  next  

4.   Processor  object  start  

5.   Normal  processor  end  

Note:  The  Processor  object  start  and  the  Normal  processor  end  records  are  written  by  the  CRTPGM  

processor  internally  called  by  the  CRTBNDC  compiler.  

 

High-Level  Language  APIs 61



Example 6 

CRTPGM  binder  successfully  binds  objects  from  2 modules,  and  references  a bind  directory  and  a service  

program.  

The  compiler  calls  QLYGETS  and  determines  that  it was  started  by  the  BLDPART  command.  Then  it calls  

QLYWRTBI  to  pass  records  of  the  following  record  types  and  in  the  following  order:  

1.   Processor  object  start  

2.   Module  reference  

3.   Module  reference  

4.   Bind  directory  reference  

5.   Service  program  reference  

6.   Normal  processor  end. 

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

Using Application Development Manager/400 APIs 

The  following  compilers  and  preprocessors  use  the  the  Application  Development  Manager/400  APIs.  

Table  1.  Compilers  and  preprocessors  that  can  be  used  with  the  Application  Development  

Manager/400  feature  

 

Compiler/  

Preprocessor  

Language  

Compiler/Preprocessor  OS/400(R) Command  Supported  if *PRV  is 

Specified  for Target  Release 

RPG/400(R) CRTRPGPGM Yes  

ILE RPG/400  No 

COBOL/400(R) CRTCBLPGM Yes  

ILE COBOL/400  No 

ILE CL No 

ILE C Yes  

CRTPF, CRTLF, CRTDSPF,  

CRTPRTF, CRTICFF 

Not applicable  

CL CRTCLPGM Yes  

CLD CRTCLD Yes  

CMD CRTCMD Not applicable 

CRTSQLRPG, CRTSQLCBL,  

CRTSQLCI 

Yes  

CRTSQLRPGI,  CRTSQLCBLI No 

CRTSRVPGM  CRTSRVPGM  Yes  

CRTPGM CRTPGM Yes  

MENU CRTMNU TYPE(*UIM)  Not applicable 

PNLGRP  CRTPNLGRP Not applicable 

Notes: 

1.   Default  command  is used by the BLDPART  command.  

2.   Appropriate default  compiler  command  is used based on the part type and the language.
  

The  following  diagram  shows  the  proper  usage  and  order  in  which  the  APIs  should  be  called.  

 

62 iSeries:  High-Level  Language  APIs

#TOP_OF_PAGE
aplist.htm


Overall  Application  Development  Manager/400  API  Usage  

 

   

  

QLYGETS  should  be  called  by  the  application  or  compiler  before  calling  the  other  three  APIs:  QLYSETS,  

QLYWRTBI,  and  QLYRDBI  to  verify  that  the  space  is available  for  use.  

The  following  table  describes  the  API  space  status  values  that  can  be  received  by  calling  the  QLYGETS  

API,  and  the  action  that  should  be  taken  by  the  application  or  compiler  that  is calling  the  API.  

Table  2. API  Space  Status

 

High-Level  Language  APIs 63



Status Application  Compiler  

*COMPLETE  The space is available  for use. Call 

QLYSETS  to set to *READY.  

Do not write API records. 

*NONE  The space does not exist. The application  

calls QLYSETS  to create and set the space 

to *READY.  

Do not write API records. 

*READY  The space is in use by a compiler.  The 

other APIs should  not be called. 

The space is available for writing.

  

Compilers  use  the  APIs  to  write  to  the  space.  Applications  use  the  APIs  to  read  from  the  space.  

Note:  Unpredictable  results  can  occur  when  the  APIs  are  not  properly  used  or  are  used  in  the  incorrect  

order.  

Calling  multiple  API-supporting  compilers  simultaneously  in  a single  interactive  session  (one  possible  

way  of  doing  this  is  by  pressing  the  Attention  key  and  then  command  key  F9  to  get  to the  command  

line)  may  cause  unpredictable  results.  The  compiler  can  fail,  for  example,  or  incorrect  or  incomplete  

information  can  be  put  in  the  work  space.  

 Top  | “High-Level  Language  APIs,” on page 1 | APIs by category
  

 

64 iSeries:  High-Level  Language  APIs

#TOP_OF_PAGE
aplist.htm


Appendix.  Notices  

This  information  was  developed  for  products  and  services  offered  in  the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in  other  countries.  

Consult  your  local  IBM  representative  for  information  on  the  products  and  services  currently  available  in 

your  area.  Any  reference  to  an  IBM  product,  program,  or  service  is not  intended  to  state  or  imply  that  

only  that  IBM  product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  program,  

or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  be  used  instead.  However,  it is 

the  user’s  responsibility  to  evaluate  and  verify  the  operation  of any  non-IBM  product,  program,  or  

service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  described  in this  

document.  The  furnishing  of  this  document  does  not  grant  you  any  license  to these  patents.  You can  send  

license  inquiries,  in  writing,  to:  

IBM  Director  of Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.  

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  Intellectual  Property  

Department  in  your  country  or  send  inquiries,  in  writing,  to:  

IBM  World  Trade  Asia  Corporation  

Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106-0032,  Japan  

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  country  where  such  

provisions  are  inconsistent  with  local  law:  INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  

PROVIDES  THIS  PUBLICATION  ″AS  IS″  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  EXPRESS  OR  

IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  

NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  FOR  A PARTICULAR  PURPOSE.  Some  

states  do  not  allow  disclaimer  of  express  or  implied  warranties  in  certain  transactions,  therefore,  this  

statement  may  not  apply  to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  Changes  are  periodically  

made  to  the  information  herein;  these  changes  will  be  incorporated  in new  editions  of the  publication.  

IBM  may  make  improvements  and/or  changes  in  the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  convenience  only  and  do  not  in  

any  manner  serve  as  an  endorsement  of those  Web sites.  The  materials  at those  Web sites  are  not  part  of  

the  materials  for  this  IBM  product  and  use  of  those  Web sites  is at  your  own  risk.  

IBM  may  use  or  distribute  any  of  the  information  you  supply  in  any  way  it believes  appropriate  without  

incurring  any  obligation  to  you.  

Licensees  of this  program  who  wish  to  have  information  about  it for  the  purpose  of enabling:  (i)  the  

exchange  of information  between  independently  created  programs  and  other  programs  (including  this  

one)  and  (ii)  the  mutual  use  of  the  information  which  has  been  exchanged,  should  contact:  

 

© Copyright  IBM Corp. 1998, 2005 65



IBM  Corporation  

Software  Interoperability  Coordinator,  Department  YBWA  

3605  Highway  52 N 

Rochester,  MN 55901  

U.S.A.  

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  including  in  some  cases,  

payment  of  a fee.  

The  licensed  program  described  in  this  information  and  all  licensed  material  available  for  it are  provided  

by  IBM  under  terms  of  the  IBM  Customer  Agreement,  IBM  International  Program  License  Agreement,  

IBM  License  Agreement  for  Machine  Code,  or  any  equivalent  agreement  between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  environment.  Therefore,  the  

results  obtained  in  other  operating  environments  may  vary  significantly.  Some  measurements  may  have  

been  made  on  development-level  systems  and  there  is no  guarantee  that  these  measurements  will  be  the  

same  on  generally  available  systems.  Furthermore,  some  measurements  may  have  been  estimated  through  

extrapolation.  Actual  results  may  vary.  Users  of  this  document  should  verify  the  applicable  data  for  their  

specific  environment.  

All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to  change  or  withdrawal  without  

notice,  and  represent  goals  and  objectives  only.  

This  information  contains  examples  of  data  and  reports  used  in  daily  business  operations.  To illustrate  

them  as  completely  as  possible,  the  examples  include  the  names  of  individuals,  companies,  brands,  and  

products.  All  of  these  names  are  fictitious  and  any  similarity  to  the  names  and  addresses  used  by  an  

actual  business  enterprise  is  entirely  coincidental.  

COPYRIGHT  LICENSE:  

This  information  contains  sample  application  programs  in  source  language,  which  illustrate  programming  

techniques  on  various  operating  platforms.  You may  copy,  modify,  and  distribute  these  sample  programs  

in  any  form  without  payment  to  IBM,  for  the  purposes  of developing,  using,  marketing  or  distributing  

application  programs  conforming  to  the  application  programming  interface  for  the  operating  platform  for  

which  the  sample  programs  are  written.  These  examples  have  not  been  thoroughly  tested  under  all  

conditions.  IBM,  therefore,  cannot  guarantee  or  imply  reliability,  serviceability,  or  function  of these  

programs.  

If you  are  viewing  this  information  softcopy,  the  photographs  and  color  illustrations  may  not  appear.  

Trademarks 

The  following  terms  are  trademarks  of  International  Business  Machines  Corporation  in  the  United  States,  

other  countries,  or  both:
Advanced  36
Advanced  Function  Printing
Advanced  Peer-to-Peer  Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2  Universal  Database
Distributed  Relational  Database  Architecture
Domino
DPI

 

66 iSeries:  High-Level  Language  APIs



DRDA
eServer
GDDM
IBM
Integrated  Language  Environment
Intelligent  Printer  Data  Stream
IPDS
iSeries
Lotus  Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating  System/2
Operating  System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print  Services  Facility
RISC  System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries  

Microsoft,  Windows,  Windows  NT, and  the  Windows  logo  are  trademarks  of Microsoft  Corporation  in the  

United  States,  other  countries,  or  both.  

Java  and  all  Java-based  trademarks  are  trademarks  of Sun  Microsystems,  Inc.  in the  United  States,  other  

countries,  or  both.  

UNIX  is a registered  trademark  of  The  Open  Group  in  the  United  States  and  other  countries.  

Other  company,  product,  and  service  names  may  be  trademarks  or  service  marks  of  others.  

Terms  and conditions for downloading and printing publications 

Permissions  for  the  use  of  the  information  you  have  selected  for  download  are  granted  subject  to the  

following  terms  and  conditions  and  your  indication  of acceptance  thereof.  

Personal  Use:  You may  reproduce  this  information  for  your  personal,  noncommercial  use  provided  that  

all  proprietary  notices  are  preserved.  You may  not  distribute,  display  or  make  derivative  works  of  this  

information,  or  any  portion  thereof,  without  the  express  consent  of  IBM(R). 

 

Appendix.  Notices  67



Commercial  Use:  You may  reproduce,  distribute  and  display  this  information  solely  within  your  

enterprise  provided  that  all  proprietary  notices  are  preserved.  You may  not  make  derivative  works  of  this  

information,  or  reproduce,  distribute  or  display  this  information  or  any  portion  thereof  outside  your  

enterprise,  without  the  express  consent  of  IBM.  

Except  as  expressly  granted  in  this  permission,  no  other  permissions,  licenses  or  rights  are  granted,  either  

express  or  implied,  to  the  information  or  any  data,  software  or  other  intellectual  property  contained  

therein.  

IBM  reserves  the  right  to  withdraw  the  permissions  granted  herein  whenever,  in  its  discretion,  the  use  of  

the  information  is  detrimental  to  its  interest  or, as  determined  by  IBM,  the  above  instructions  are  not  

being  properly  followed.  

You may  not  download,  export  or  re-export  this  information  except  in  full  compliance  with  all  applicable  

laws  and  regulations,  including  all  United  States  export  laws  and  regulations.  IBM  MAKES  NO  

GUARANTEE  ABOUT  THE  CONTENT  OF  THIS  INFORMATION.  THE  INFORMATION  IS  PROVIDED  

″AS-IS″ AND  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  EXPRESSED  OR  IMPLIED,  INCLUDING  

BUT  NOT  LIMITED  TO  IMPLIED  WARRANTIES  OF  MERCHANTABILITY,  NON-INFRINGEMENT,  

AND  FITNESS  FOR  A PARTICULAR  PURPOSE.  

All  material  copyrighted  by  IBM  Corporation.  

By  downloading  or  printing  information  from  this  site,  you  have  indicated  your  agreement  with  these  

terms  and  conditions.  

Code disclaimer information 

This  document  contains  programming  examples.  

SUBJECT  TO  ANY  STATUTORY  WARRANTIES  WHICH  CANNOT  BE  EXCLUDED,  IBM(R), ITS  

PROGRAM  DEVELOPERS  AND  SUPPLIERS  MAKE  NO  WARRANTIES  OR  CONDITIONS  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OR  

CONDITIONS  OF  MERCHANTABILITY,  FITNESS  FOR  A  PARTICULAR  PURPOSE,  AND  

NON-INFRINGEMENT,  REGARDING  THE  PROGRAM  OR  TECHNICAL  SUPPORT,  IF  ANY.  

UNDER  NO  CIRCUMSTANCES  IS  IBM,  ITS  PROGRAM  DEVELOPERS  OR  SUPPLIERS  LIABLE  FOR  

ANY  OF  THE  FOLLOWING,  EVEN  IF  INFORMED  OF  THEIR  POSSIBILITY:  

1.   LOSS  OF, OR  DAMAGE  TO,  DATA; 

2.   SPECIAL,  INCIDENTAL,  OR  INDIRECT  DAMAGES,  OR  FOR  ANY  ECONOMIC  CONSEQUENTIAL  

DAMAGES;  OR  

3.   LOST  PROFITS,  BUSINESS,  REVENUE,  GOODWILL,  OR  ANTICIPATED  SAVINGS.  

SOME  JURISDICTIONS  DO  NOT  ALLOW  THE  EXCLUSION  OR  LIMITATION  OF  INCIDENTAL  OR  

CONSEQUENTIAL  DAMAGES,  SO  SOME  OR  ALL  OF  THE  ABOVE  LIMITATIONS  OR  EXCLUSIONS  

MAY  NOT  APPLY  TO  YOU.  

 

68 iSeries:  High-Level  Language  APIs





����

  

Printed in USA 

 

 

 

 


	Contents
	High-Level Language APIs
	APIs
	Application Development Manager/400 APIs
	Get Space Status (QLYGETS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Read Build Information (QLYRDBI) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Set Space Status (QLYSETS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Write Build Information (QLYWRTBI) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	COBOL/400 APIs
	Change COBOL Main Program (QLRCHGCM) API
	Required Parameter
	Error Messages

	Dump COBOL (QlnDumpCobol) API
	Required Parameter Group
	Error Messages

	Retrieve COBOL Error Handler (QlnRtvCobolErrorHandler) API
	Required Parameter Group
	Error Messages

	Retrieve COBOL Error Handler (QLRRTVCE) API
	Required Parameter Group
	Error Messages

	Set COBOL Error Handler (QLRSETCE) API
	Required Parameter Group
	Error Messages

	Set COBOL Error Handler (QlnSetCobolErrorHandler) API
	Required Parameter Group
	Error Messages

	ILE C/C++ Run-Time Library Functions
	REXX/400 Functions
	Exit Programs
	ILE COBOL Error-Handling Exit Procedure
	Required Parameter Group

	OPM COBOL Error-Handling Exit Program
	Required Parameter Group

	Concepts
	Record Types
	Processor member start record
	Processors for which this record type applies
	Field Descriptions
	Processor object start record
	Processors for which this record type applies
	Field Descriptions
	Normal processor end record
	Processors for which this record type applies
	Field Descriptions
	Normal processor end call next record
	Processors for which this record type applies
	Field Descriptions
	Normal multiple end record
	Processors for which this record type applies
	Field Descriptions
	Abnormal processor end record
	Processors for which this record type applies
	Field Descriptions
	Include record
	Processors for which this record type applies
	Field Descriptions
	File reference record
	Processors for which this record type applies
	Field Descriptions
	Module reference record
	Processors for which this record type applies
	Field Descriptions
	Service program reference record
	Processors for which this record type applies
	Field Descriptions
	Bind directory reference record
	Processors for which this record type applies
	Field Descriptions
	Record format reference record
	Processors for which this record type is applicable
	Field Descriptions
	Field reference record
	Processors for which this record type applies
	Field Descriptions
	Message reference record
	Processors for which this record type applies
	Field Descriptions
	External reference error record
	Processors for which this record type applies
	Field Descriptions
	Object already exists error record
	Processors for which this record type applies
	Field Descriptions
	Start of new program record
	Processors for which this record type applies
	Field Descriptions

	Examples of Records Written
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Using Application Development Manager/400 APIs

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information


