
iSeries

Debugger APIs

Version 5 Release 3

ERserver

���

iSeries

Debugger APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 145.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Debugger APIs 1

APIs 1

Retrieve Program Variable (QTERTVPV) API . . . 2

Restriction 2

Required Parameter Group 2

Format of Receiver Variable 4

Data for Binary Numeric (1) 5

Data for Floating Point (2) 5

Data for Zoned Decimal (3) 5

Data for Packed Decimal (4) 5

Data for Fixed Character (5) 6

Data for Varying Character (6) 6

Data for Fixed Bit (7) 6

Data for Unsigned Binary (8) 6

Data for Space Pointer (9) 6

Data for Data Pointer (10) 7

Data for Instruction Definition List (11) 7

Data for System Pointer (12) 8

Data for Machine Space Pointer (13) 8

Data for Exception Description (14) 8

Field Descriptions 9

Error Messages 12

Source Debugger APIs 12

Dump Module Variables

(QteDumpModuleVariables) API 13

Required Parameter Group 14

Format of the Receiver Variable 15

Receiver Variable Header Section 15

Module Variable Header Section 15

Module Variable Section (Scalar Variable Entry

Type) 16

Module Variable Section (Array Definition Entry

Type) 17

Module Variable Section (Block Definition Entry

Type) 17

Field Descriptions 17

Error Messages 20

Submit Debug Command

(QteSubmitDebugCommand) API 21

Required Parameter Group 21

Receiver Variable Format 22

Field Descriptions 22

Description of the Structure of the Receiver

Variable 23

Results Array Entry Structure Summary 24

StepR (1) 24

BreakR (2) 24

ClearBreakpointR (3) 25

ClearPgmR (4) 25

BreakPositionR (5) 25

EvaluationR (6) 25

ExpressionTextR (7) 26

ExpressionValueR (8) 26

ExpressionTypeR (9) 26

QualifyR (10) 26

TypeR (11) 26

TypeDescR (12) 27

DecimalR (13) 27

ArrayR (14) 27

DimensionR (15) 27

WatchR (16) 28

WatchNumberR (17) 28

ClearWatchNumberR (18) 28

ClearWatchR (19) 28

TBreakR (20) 29

SBreakR (21) 29

Field Descriptions 29

Statement Results 31

Examples of Result Records Returned by Submit

Debug Command API 33

Break Statement Example 33

Scalar Evaluate Statement Example 34

Scalar Evaluate Statement Example 35

Structure Evaluate Statement Example 35

Step Statement Example 37

ATTR Statement Example 38

WATCH Statement Example 38

Error Messages 39

Debug Language Statements 41

ATTR Statement 42

Break Statement 42

Clear Statement 43

Evaluate Statement 44

Locality 46

Qualify Statement 46

SBreak Statement 46

Step Statement 47

TBreak Statement 48

Watch Statement 48

Debug Session Control APIs 49

Change Current Thread (QteChangeCurrentThread)

API 50

Required Parameter Group 51

Error Messages 51

Change Thread Status (QteChangeThreadStatus) API 51

Authorities and Locks 52

Required Parameter Group 52

Error Messages 52

End Source Debug (QteEndSourceDebug) API . . . 53

Required Parameter 53

Error Messages 53

Register Service Entry Point Stop Handler

(QteRegSrvEntPntStpHdlr) API 54

Authorities and Locks 54

Required Parameter Group 54

Error Messages 54

Retrieve Debug Attribute

(QteRetrieveDebugAttribute) API 55

Required Parameter Group 55

Error Messages 56

Retrieve Debugged Threads

(QteRetrieveDebuggedThreads) API 57

© Copyright IBM Corp. 1998, 2005 iii

Authorities and Locks 57

Required Parameter Group 57

Format of Receiver Variable 58

THDL0100 Format 58

THDL0200 Format 59

Field Descriptions 60

Error Messages 61

Retrieve Module Views (QteRetrieveModuleViews)

API 62

Authorities 63

Required Parameter Group 63

VEWL0100 Format 64

Field Descriptions 65

Format of JAVA Returned Library Name

Parameter 66

Field Descriptions 66

Error Messages 67

Retrieve Source Path Name

(QteRetrieveSourcePathName) API 68

Authorities and Locks 68

Required Parameter Group 68

SRCP0100 Format 69

Field Descriptions 69

Error Messages 69

Set Debug Attribute (QteSetDebugAttribute) API . . 70

Required Parameter Group 71

Error Messages 71

Start Source Debug (QteStartSourceDebug) API . . 72

Authorities 72

Required Parameter Group 72

Error Messages 73

Stop Debugged Job (QteStopDebuggedJob) API . . 73

Required Parameter Group 73

Error Messages 74

Create View APIs 74

Add View Description (QteAddViewDescription)

API 75

Required Parameter Group 76

Error Messages 78

Add View File (QteAddViewFile) API 78

Required Parameter Group 79

FILA0100 Format 79

FILA0200 Format 80

Field Descriptions 80

Error Messages 81

Add View Map (QteAddViewMap) API 81

Required Parameter Group 82

MAPA0100 Format 83

Field Descriptions 83

Error Messages 84

Add View Text (QteAddViewText) API 85

Required Parameter Group 86

TXTA0100 Format 87

TXTA0101 Format 87

TXTA0102 Format 87

TXTA0103 Format 88

Field Descriptions 88

Error Messages 89

End View Creation (QteEndViewCreation) API . . 90

Authorities 90

Required Parameter 90

Error Messages 90

Start View Creation (QteStartViewCreation) API . . 91

Authorities 92

Required Parameter Group 93

FILA0100 Format 94

FILA0200 Format 94

Field Descriptions 94

Error Messages 95

View Information APIs 96

Map View Position (QteMapViewPosition) API . . 97

Required Parameter Group 97

Format of Receiver Variable 98

Field Descriptions 99

Error Messages 99

Register Debug View (QteRegisterDebugView) API 100

Authorities 101

Required Parameter Group 101

Format of JAVA Returned Library Parameter 103

Field Descriptions 103

Error Messages 103

Remove Debug View (QteRemoveDebugView) API 104

Required Parameter Group 104

Error Messages 104

Retrieve Statement View

(QteRetrieveStatementView) API 105

Required Parameter Group 105

Format of Receiver Variable 106

Receiver Variable Header Section 106

Statement View Section 107

Procedure Information Section 107

Procedure Name String Space 107

Statement-View-Line Additional-Information

Offsets Section 108

Statement-View-Line Additional-Information

Section 108

Variable Length Field Section 108

Field Descriptions 109

Error Messages 110

Retrieve Stopped Position

(QteRetrieveStoppedPosition) API 111

Required Parameter Group 111

Format of Receiver Variable 112

Field Descriptions 112

Error Messages 113

Retrieve View File (QteRetrieveViewFile) API . . . 113

Required Parameter Group 113

Format of Text Descriptor Receiver Variable . . 114

Format of File Name Receiver Variable 115

Field Descriptions 115

Formats of File Format Name 116

Field Descriptions 116

Field Description 116

Error Messages 117

Retrieve View Line Information

(QteRetrieveViewLineInformation) API 117

Required Parameter Group 118

RTVL0100 Format 118

Field Descriptions 119

Error Messages 119

Retrieve View Text (QteRetrieveViewText) API . . 120

Required Parameter Group 121

iv iSeries: Debugger APIs

Format of Receiver Variable 122

Field Descriptions 123

Error Messages 124

Fast-path Debugger APIs 124

Add Breakpoint (QteAddBreakpoint) API 125

Required Parameter Group 125

Error Messages 126

Remove All Breakpoints

(QteRemoveAllBreakpoints) API 126

Required Parameter Group 126

Error Messages 127

Remove Breakpoint (QteRemoveBreakpoint) API 127

Required Parameter Group 127

Error Messages 128

Step (QteStep) API 129

Required Parameter Group 129

Error Messages 130

Exit Programs 130

Debug Session Handler Exit Program 130

Required Parameter Group 131

Format of *STARTJAVA Program List Parameter 132

Field Descriptions 132

Program-Stop Handler Exit Program 133

Required Parameter Group 134

Format of Watch-Program Stop Reason for

Receiver Variable 136

Watch Receiver Variable Header 136

Watch Stopped Program Information 136

Watch Interrupt Information 136

Field Descriptions 137

Format of Message Data 139

Field Descriptions 139

Service Entry Point Stop Handler Exit Program . . 140

Required Parameter Group 140

Concepts 141

Using Source Debugger APIs 141

How a compiler uses the APIs to generate debug

data for ILE programs 142

How a source debugger uses the APIs to debug

ILE or OPM programs 143

Appendix. Notices 145

Trademarks 146

Terms and conditions for downloading and

printing publications 147

Code disclaimer information 148

Contents v

vi iSeries: Debugger APIs

Debugger APIs

The Debugger APIs can be used for program debugging on the server. The Debugger APIs include:

v “Source Debugger APIs” on page 12 (Integrated Language Environment (ILE) APIs)

v “Retrieve Program Variable (QTERTVPV) API” on page 2 (Original program model (OPM) API)

The debugger API user can use these APIs independently of each other or together as needed. For

general information about the integrated language environment, see the ILE Concepts

book.

Select one of the following for more information:

v “Using Source Debugger APIs” on page 141

v “How a compiler uses the APIs to generate debug data for ILE programs” on page 142

v “How a source debugger uses the APIs to debug ILE or OPM programs” on page 143

 APIs by category

APIs

These are the APIs for this category.

© Copyright IBM Corp. 1998, 2005 1

aplist.htm

Retrieve Program Variable (QTERTVPV) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Program variable

Input Char(132)

4 Basing pointer

Input Array(5) of Char(132)

5 Starting position

Input Binary(4)

6 Length of string

Input Binary(4)

7 Output format

Input Char(10)

8 Program

Input Char(10)

9 Recursion level

Input Binary(4)

10 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Program Variable (QTERTVPV) API retrieves the current value of one program variable in a

program that is being debugged. The information is returned to the calling program in a receiver

variable. The amount of returned information is limited to the size of the receiver variable. This

information is similar to the information returned using the Display Program Variable (DSPPGMVAR)

command.

Restriction

This API is valid only in debug mode and supports original program model (OPM) programs only. It

cannot be used if the user is servicing another job and that job is on a job queue, or is held, suspended,

or ended.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

2 iSeries: Debugger APIs

The variable that is to receive the information requested. The minimum size for this area is 8

bytes. If the size of this area is smaller than the available information, the API returns only the

data that the area can hold.

 See “Format of Receiver Variable” on page 4 for details about the format.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If this value is larger than the actual size of storage allocated

for the receiver variable, the results are not predictable. The minimum length is 8 bytes.

Program variable

INPUT; CHAR(132)

 The name of the program variable whose value is to be retrieved. Possible values follow:

 *CHAR This special value is specified instead of a variable name if a basing pointer is also specified. This

special value returns a character view of the area addressed by a pointer.

Program variable

name

The name of the program variable. For information about program variables, see the topic on

program-variable description in the Control Language (CL) information.

Basing pointer

INPUT; ARRAY(5) of CHAR(132)

 In languages where a program variable may be based on a pointer variable, you can specify the

basing pointers for the variable to be retrieved. Up to five basing pointers may be specified. If the

basing pointer is an element in an array, the subscript representing an element in the array must

be specified. Up to 132 characters can be specified for one basing pointer name. If no basing

pointer is specified, then the structure must be initialized to blanks. If one or more basing

pointers are specified, then the subsequent array entries must be initialized to blanks. For more

information on basing pointers, refer to the topic on basing-pointer description in the Control

Language (CL) information in the iSeries Information center.

Starting position

INPUT; BINARY(4)

 For string variables only, the starting position in the string from which its value is being

retrieved. For a bit string, the value is the starting bit position. For a character string, the value is

the starting character position.

 This parameter is ignored on nonstring variables but must be initialized to any number greater

than 0.

Length of string

INPUT; BINARY(4)

 For string variables only, the length of the string retrieved, starting at the position specified by

the start parameter. For a bit string, this value is the number of bits to retrieve. For a character

string, this value is the number of characters to retrieve.

 0 The value of the string variable is retrieved to the end of

the string or retrieved for 200 bytes, whichever is less. If

the string variable has a maximum length of zero, only 0

is allowed.

Retrieve length The length of data to retrieve.

This parameter is ignored on nonstring variables but

must be initialized to any number 0 or greater.

Output format

INPUT; CHAR(10)

Debugger APIs 3

The format in which the value is to be returned.

 *CHAR The value of the program variable is returned in character

form.

*HEX The value of the program variable is returned in

hexadecimal form.

Program

INPUT; CHAR(10)

 The name of the program that contains the program variable to be retrieved.

 *DFTPGM The program currently specified as the default program will be used.

Program name The name of the program whose program variable is retrieved.

Recursion level

INPUT; BINARY(4)

 The recursion level of the program that contains the program variable.

 0 The last (most recent) call of the program is the one from

which the automatic program variable is retrieved.

n The number of the recursion level of the program from

which the automatic program variable is retrieved.

This parameter is ignored on static variables but must be initialized to any number 0 or greater.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Receiver Variable

The following table shows the information supplied in the receiver variable parameter. For more

information on each field, see “Field Descriptions” on page 9.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Variable type

12 C BINARY(4) Data error

16 10 POINTER Pointer to variable

32 20 BINARY(4) Bit position

36 24 BINARY(4) Variable length

40 28 BINARY(4) Variable precision

44 2C BINARY(4) Number of array dimensions

48 30 BINARY(4) Number of array elements returned

52 34 ARRAY(15) of

BINARY(4)

Subscript bounds

172 AC BINARY(4) Element length

176 B0 BINARY(4) Character string length

4 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

180 B4 CHAR(64) Reserved

244 F4 CHAR(*) Data retrieved

The following tables show the information supplied in the data retrieved field. The variable type field,

which is enclosed in parentheses, indicates which table is used.

Data for Binary Numeric (1)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(*) Variable value

Data for Floating Point (2)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(*) Variable value

Data for Zoned Decimal (3)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(*) Variable value

Data for Packed Decimal (4)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(*) Variable value

Debugger APIs 5

Data for Fixed Character (5)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(*) Variable value

Data for Varying Character (6)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC BINARY(4) Varying character length

256 100 CHAR(*) Variable value

Data for Fixed Bit (7)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(*) Variable value

Data for Unsigned Binary (8)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(*) Variable value

Data for Space Pointer (9)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(8) Hexadecimal offset

6 iSeries: Debugger APIs

Offset

Type Field Dec Hex

260 104 CHAR(8) Reserved

268 10C CHAR(30) Object addressed by pointer

298 12A CHAR(10) Library name

308 134 CHAR(8) Object type

Data for Data Pointer (10)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FA CHAR(1) Reserved

252 FB CHAR(8) Hexadecimal offset

260 104 CHAR(30) Object addressed by pointer

290 122 CHAR(10) Library name

300 12C CHAR(8) Object type

308 134 BINARY(4) Data type

312 138 BINARY(4) Data length

316 13C BINARY(4) Data precision

320 140 BINARY(4) Data string length

324 144 BINARY(4) Element length

328 148 CHAR(*) Data

Data for Instruction Definition List (11)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(8) Instruction number

260 104 CHAR(8) Reserved

268 10C CHAR(30) Object addressed by pointer

298 12A CHAR(10) Library name

308 134 CHAR(8) Object type

Debugger APIs 7

Data for System Pointer (12)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(16) Authorization

268 10C CHAR(30) Object addressed by pointer

298 12A CHAR(10) Library name

308 134 CHAR(8) Object type

Data for Machine Space Pointer (13)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(8) Hexadecimal offset

260 104 CHAR(8) Reserved

268 10C CHAR(30) Object addressed by pointer

298 12A CHAR(10) Library name

308 134 CHAR(8) Object type

Data for Exception Description (14)

 Offset

Type Field Dec Hex

244 F4 CHAR(7) Message ID

251 FB CHAR(1) Reserved

252 FC CHAR(1) Control

253 FD CHAR(1) Handler type

254 FE CHAR(8) Instruction number

262 106 CHAR(10) Program name

272 110 CHAR(10) Library name

282 11A CHAR(2) Reserved

284 11C BINARY(4) Compare string length

288 120 CHAR(28) Compare string

316 13C CHAR(1) Job log

317 13D CHAR(3) Message type

320 140 BINARY(4) Number of message IDs

324 144 ARRAY(*) of

CHAR(7)

Array of messages

8 iSeries: Debugger APIs

Field Descriptions

Array of messages. An array of the number of message IDs is returned.

Authorization. Pointer authorization.

Bit position. The starting bit position, 1-8, for bit strings returned in *HEX format. The least significant

bit is 1 and 8 the most significant bit. This field will be initialized to 0 for any other variable type.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Character string length. For output format *CHAR, this value is the length of the returned character

string. For output format *HEX, this value is initialized to 0. For fixed character, varying character, and

fixed bit variables this field contains the actual length of the data returned for *CHAR and *HEX output

formats. For pointers and exception monitors this field is 0.

Comparison string. The specified comparison string.

Comparison string length. The length of the comparison string. This value is 0 if a value is not specified.

Control. Exception monitor control action. The following values may be returned:

 X’00’ Default

X’01’ Off

X’02’ Resignal

X’04’ Defer

X’05’ Handle

Data. The data addressed by the pointer. This field is returned in the corresponding output format for the

variable type (data type).

Data error. Whether an error was returned when returning a variable.

 0 No errors were returned with the variable data.

1 One or more errors were returned with the variable data.

Data length. The length of the data addressed by the pointer. This is the same value as in the variable

length field in the header.

Data precision. The precision of the data addressed by the pointer. This is the same value as in the

variable precision field in the header.

Data retrieved. If an error is encountered while retrieving the data, CPD messages may be returned

instead of the variable data. The structure of this parameter is dependent on the object type. The format

of the data depends on the variable type field.

Data string length. The string length of the data addressed by the pointer. This is the same value as in

the variable string length field in the header.

Debugger APIs 9

Data type. The type of data addressed by the pointer. This is the same value as in the variable type field

in the header.

Element length. The length of the data element returned. If this field is 0, each element can be a different

length and the user must go to the element to get the element length.

Handler type. Exception monitor handler type.

 ’00’X External handler

’01’X Call internal handler

’02’X Branch point handler

Hexadecimal offset. Hexadecimal offset of the space pointed to by the space or machine space pointer.

Instruction number. The exception handler instruction number for a monitor with an internal handler or

X’0’ for an external handler.

Job log. Put messages on job log.

 0 No

1 Yes

Library name. The library containing the object addressed by the pointer, *LIBL, or X’0’ for internal

monitors.

Message ID. If an error was received with the variable data, this field contains the diagnostic message

ID. If no error was received with the variable’s data, this field contains blanks.

Message type. Message types being monitored.

 100 Escape

010 Notify

001 Status

More than one message type can be monitored at a time. If the first and third characters are 1’s, then

escape and status messages are being monitored.

Number of array dimensions. If the variable is an array or an element of an array, this field is the

number of array dimensions. Otherwise, this field is initialized to 0.

Number of array elements returned. If the variable is an array, this field is the number of array elements

returned. Otherwise, this field is initialized to 0.

Number of message IDs. The number of message identifiers being monitored.

Object addressed by pointer. The fully qualified name of the object addressed by the pointer.

Object type. The Machine Interface (MI) type of the object addressed by the pointer.

Pointer to variable. Pointer to variable, if applicable. For example, a pointer is not returned to a variable

of type machine space pointer or for an exception description. For system security reasons a pointer is

not returned if the security level is 50 and if the job using the API is servicing and debugging another

job.

10 iSeries: Debugger APIs

Program name. External handler program name or X’0’ for an internal monitor.

Reserved. An ignored field.

Subscript bounds. The subscript lower bounds and subscript upper bounds for each array dimension. If

the variable is not an element of an array, or the dimension is not used, the subscript lower and upper

bounds are initialized to 0.

Varying character length. The actual length of the varying character string.

Variable length. The length of the variable value. For bit strings, this value is the number of bits. For

packed and zoned variables, this value is the number of digits. For pointers and exception monitors this

field is 0. For all other variable types, this value is the number of bytes.

Variable precision. The number of decimal digits or fractional digits for zoned and packed variables. For

any other variable type, this field will be initialized to 0.

Variable type. The following are the possible variable types:

 1 Binary numeric

2 Floating point

3 Zoned decimal

4 Packed decimal

5 Fixed character

6 Varying character

7 Fixed bit

8 Unsigned binary

9 Space pointer

10 Data pointer

11 Instruction definition list

12 System pointer

13 Machine space pointer

14 Exception description

Variable value. The value of the variable being retrieved.

The following messages may be returned in this field:

 CPD1901 Variable contains invalid decimal data.

CPD1902 Pointer to be displayed not set to any address.

CPD1903 Floating-point value displayed is not exact.

CPD1904 Object not found for system pointer with initial value.

CPD1905 Variable not found for data pointer with initial value.

CPD1906 Variable to be displayed contained in deleted object.

CPD1907 Variable refers to object with freed storage.

CPD1908 Space addressing error for variable.

CPD1909 Pointer alignment error. Pointer not on 16-byte boundary.

CPD1910 High-level language (HLL) pointer invalid.

CPD1911 START plus LEN values exceed length of string.

CPD1913 Space addressing error for variable.

CPD1914 Pointer addresses a deleted object.

Debugger APIs 11

Error Messages

 Message ID Error Message Text

CPF1902 E No default program exists.

CPF1903 E Program &1 not in debug mode.

CPF1905 E Starting position parameter is not valid.

CPF1906 E Command is not valid. No programs in debug mode.

CPF1915 E Length parameter is not valid.

CPF1919 E Recursion level parameter is not valid.

CPF1927 E Output format name not valid.

CPF1938 E Command is not allowed while serviced job is not active.

CPF1939 E Time-out occurred waiting for a reply from the serviced job.

CPF1941 E Serviced job has completed. Debug commands are not allowed.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C24 E Length of the receiver variable is not valid.

CPF7133 E Variable or basing pointer name missing.

CPF9549 E Error addressing API parameter.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Source Debugger APIs

The source debugger APIs are divided into the following functional areas:

v “Debug Session Control APIs” on page 49

v “Create View APIs” on page 74

v “View Information APIs” on page 96

v “Fast-path Debugger APIs” on page 124

v “Submit Debug Command (QteSubmitDebugCommand) API” on page 21, which allows a program to

issue debug language statements. Debug language statements permit programs to enter breakpoints,

run one or more statements of a program being debugged, and evaluate expressions. Debug commands

are a part of the API that takes on free-form expressions. They are referred to as the debug language

that the the program may supply to the source debugger support.

v “Dump Module Variables (QteDumpModuleVariables) API” on page 13, which gets a list of all the

variable names and current values of those variables.

 “Debugger APIs,” on page 1 | APIs by category

12 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm
aplist.htm

Dump Module Variables (QteDumpModuleVariables) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Receiver variable length

Input Binary(4)

3 Format name

Input Char(8)

4 Qualified program name

Input Char(20)

5 Program type

Input Char(10)

6 Module name

Input Char(10)

7 Data option

Input Binary(4)

8 Continuation handle

Input Char(16)

9 Error code

I/O Char(*)
 Service Program: QTEDMPV

 Default Public Authority: *USE

 Threadsafe: No

The Dump Module Variables (QteDumpModuleVariables) API is used to get a list of all the variable

names and current values of those variables. Variable values may only be requested if an active call stack

entry for the module specified exists in the job in which this API is called. Values existing in program

static or automatic storage are not accessible by this API unless the program has a current call stack entry.

All variables that were defined by the compiler and stored in the module HLL symbol table will be

returned. This API supports the ILE CL, ILE COBOL, and ILE RPG compilers.

The module for which variable information is being requested must contain debug data. See the debug

view (DBGVIEW) parameter of the Create RPG Module (CRTRPGMOD), Create COBOL Module

(CRTCBLMOD), or Create CL Module (CRTCLMOD) command. It is not necessary that the job in which

the program is running be in debug mode to use this API.

Variable names and, optionally, their values will be provided within the block in which they were

declared. This API does not guarantee that those variables are returned in any particular order within the

block.

Debugger APIs 13

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the list of program variables and current values for the specified

module.

Receiver variable length

INPUT; BINARY(4)

 The length of the receiver variable that is provided in the previous parameter. This value must be

at least 48 to provide space for the receiver variable header section. The bytes available field tells

the caller what size is required to receive the entire results of the request.

Format name

INPUT; CHAR(8)

 The format of the information returned for the module. The possible format name is:

 DMPV0100 Dump module variables.

Qualified program name

INPUT; CHAR(20)

 The name of the program for which the variables and values will be provided.

 The first 10 characters contain the name of the program. The second 10 characters contain the

name of the library where the program is located. Each name will be left-justified. The special

values of *LIBL and *CURLIB may be specified.

Program type

INPUT; CHAR(10)

 The object type of the program. The possible values are:

 *PGM ILE program

*SRVPGM ILE service program

This API cannot be used to dump variable information for an OPM program.

Module name

INPUT; CHAR(10)

 The name of the module (left-justified) within the program. The module must be written in one

of the supported ILE languages or an error is reported.

Data option

INPUT; BINARY(4)

 The content of the information returned for the module. The possible values are:

 0 Variable names only.

1 Variable names and current values in default character

format (the type associated with the variable will be used

in determining the format of the value returned).

2 Variable names, the current values in default character

format, and the current values in hex format.

Continuation handle

INPUT; CHAR(16)

14 iSeries: Debugger APIs

The handle used to continue from a previous call to this API that resulted in partially complete

information. You can determine if a previous call resulted in partially complete information by

checking the continuation handle variable in the receiver variable header section following the

API call.

 If the API is not attempting to continue from a previous call, this parameter must be set to

blanks. Otherwise, a valid continuation value must be supplied. When continuing, the first entry

in the returned receiver variable parameter is the entry that immediately follows the last entry

returned in the previous call.

 An error will occur under the following conditions:

v The continuation handle is not blank on the first request for a given set of input parameters.
v The continuation handle is not the same as provided in the receiver variable header section on

the previous call to this API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Receiver Variable

The receiver variable area consists of:

v A receiver variable header section.
v A module variable header section for each variable returned by the Dump Module Variables API. The

module variable header section consists of:
– A fixed-length header section
– A variable-length section containing the information requested for the module variable.

Receiver Variable Header Section

Table 1. Receiver Variable Header Section

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of variable sections

12 C CHAR(10) Returned library

22 16 CHAR(10) Reserved

32 20 CHAR(16) Continuation handle

Note: The following information is repeated as many times as the value specified in the number of variable sections

field.

 Module variable header section

 Module variable section

Module Variable Header Section

This table describes the common header area to each subsequently defined module variable section.

Table 2. Module Variable Header Section

Debugger APIs 15

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

0 0 BINARY(4) Length of module variable section

4 4 BINARY(4) Offset to next variable

8 8 BINARY(4) Variable entry type

This portion of the module variable section will always start in the next available 4-word boundary to

ensure proper alignment of the BINARY(4) fields within each section. The caller must use the offset to

next variable field to find the start of the next module variable section and use the length of module

variable section to determine the length of the current section.

Module Variable Section (Scalar Variable Entry Type)

The following table is used when the variable entry being returned is scalar. This section could occur by

itself or following an array definition.

Table 3. Scalar Variable Section

 Offset

Type Field Dec Hex

0 0 BINARY(4) Variable type

4 4 BINARY(4) Total digits

8 8 BINARY(4) Precision

12 C BINARY(4) Scaling factor

16 10 BINARY(4) Offset to variable name

20 14 BINARY(4) Length of variable name

24 18 BINARY(4) Length of default value

28 1C BINARY(4) Length of hexadecimal value

32 20 BINARY(4) String content descriptor

36 24 BINARY(4) Length of string prefix

 CHAR(*) Variable name

 CHAR(*) Default value

 CHAR(*) Hexadecimal value

All variable values will be returned in displayable character format. For example, if the internal

representation of a 2-byte unsigned integer is X’0345’ the data returned through this API in the default

value area will be ’837 ’ (X’F8F3F7404040’), and in the hex value area will be ’0345’ (X’F0F3F4F5’).

When the scalar values of an array are being retrieved, the values will be returned in row major order,

with no separating characters. The data option parameter will be used to determine if any values are

displayed and in what form.

 0 No values will be returned.

1 Only the default value of each scalar will be returned.

The length of default value field will specify the length of

each value. Each scalar value in the array will be

provided in row major order.

16 iSeries: Debugger APIs

2 The default value and the hex value of each scalar will be

returned. The length of default value field and the length

of hex value field will specify the length of each value.

Each scalar value in the array will be provided with each

representation in row major order with the default value

leading each pair of values.

Module Variable Section (Array Definition Entry Type)

The following table is used when the variable entry being returned is an array. This section will define

the array and will be followed by one or more scalar variable sections.

Table 4. Array Definition Variable Section

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of scalar fields

4 4 BINARY(4) Offset to first variable

8 8 BINARY(4) Offset to dimensions

12 C BINARY(4) Offset to array name

16 10 BINARY(4) Number of array dimensions

20 14 BINARY(4) Length of array name

 BINARY(4) Dimension lower bound

 BINARY(4) Dimension upper bound

 CHAR(*) Array name

Module Variable Section (Block Definition Entry Type)

The following table is used when the variable entry being returned is a block definition. One of these

sections will exist for each block defined in the program. A block definition entry will precede all other

variable entry sections for variables defined within the specified block.

Table 5. Block Definition Variable Section

 Offset

Type Field Dec Hex

0 0 BINARY(4) Block number

4 4 BINARY(4) Offset to block name

8 8 BINARY(4) Length of block name

 CHAR(*) Block name

Field Descriptions

Array name. The field containing the name of the array.

Block name. The field containing the name of the block.

Block number. The number of the block.

Debugger APIs 17

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Continuation handle. When not all the requested data can be returned on a single call to this API, a

value will be supplied in this field which may be used to continue on the next call to this API.

Default value. The value of the variable represented in the default format for the variable type.

Dimension lower bound. The lower bound of an array dimension.

Dimension upper bound. The upper bound of an array dimension.

Hexadecimal value. The value of the variable represented in hexadecimal format as it is stored in the

machine.

Length of array name. The length of the array name field.

Length of block name. The length of the block name field (may be zero if no name is associated with the

block).

Length of default value. The length of the data in the default value field. This will be zero if the data

option parameter is 0.

Length of hexadecimal value. The length of the data in the hexadecimal value field. This will be zero if

the data option parameter is 0 or 1.

Length of module variable section. The module variable entry section length, including the length of the

module variable section header.

Length of string prefix. The length of the string prefix (may be 0 if no prefix is associated with the

string).

Length of variable name. The length of the variable name field.

Number of array dimensions. The number of dimensions in the array. The dimension upper and lower

bound fields are repeated for each array dimension.

Number of scalar fields. Number of scalar fields in each array element. There will be one module

variable section for each scalar following an array definition header.

Number of variable sections. The number of variable entries returned by the API. These include block

variable entries, scalar variable entries, and array variable entries.

Offset to array name. Offset to the start of the array name field.

Offset to block name. Offset to the start of the block name field.

Offset to dimensions. Offset to the start of the first dimension lower bound field.

Offset to first variable. Offset to the start of the module variable header section for the first scalar

variable.

Offset to next module variable header section. Offset to the start of the next module variable header

section.

18 iSeries: Debugger APIs

Offset to variable name. Offset to the start of the variable name field.

Precision. The precision associated with a decimal type (packed, zoned, or binary decimal).

Reserved. An ignored field.

Returned library. The library where the program was found. This is useful when *LIBL or *CURLIB is

specified for the program library portion of the program name parameter.

Scaling factor. The scaling factor associated with a decimal type (packed, zoned, or binary decimal).

String content descriptor. The type of the string variable. It may be one of the following values:

 0 An error occurred evaluating the variable

1 A null-terminated unicode string

2 A length-prefix-2 unicode string

3 A length-prefix-4 unicode string

4 A fixed-length unicode string

5 A variable-length unicode string

6 A null-terminated graphic string

7 A length-prefix-2 graphic string

8 A length-prefix-4 graphic string

9 A fixed-length graphic string

10 A variable-length graphic string

11 A date string

12 A packed date string

13 A time string

14 A packed time string

15 A timestamp string

Total digits. The total number of digits associated with a decimal type (packed, zoned, or binary

decimal).

Variable entry type. The type of variable section that follows the module variable header section. It may

be one of the following values:

 0 Scalar variable

1 Array definition

2 Block definition

Variable name. The field containing the name of the variable.

Variable type. The data type of the variable. It may be one of the following values:

 0 An error occurred evaluating the variable

1 An 8-bit (1-byte) character

2 A 16-bit character

3 A 32-bit quantity having ordinal values of zero or one.

Zero is the ordinal value for FALSE, and one is the

ordinal value for TRUE.

4 A 16-bit unsigned integer

5 A 32-bit unsigned integer

6 A 16-bit two’s complement (signed) integer

7 A 32-bit two’s complement (signed) integer

8 A 32-bit IEEE 754 floating point value

Debugger APIs 19

9 A 64-bit IEEE 754 floating point value

10 A 128-bit space pointer

11 A fixed-length character string

12 A packed decimal

13 A zoned trailing embedded sign

14 A zoned leading embedded sign

15 A zoned trailing separate sign

16 A zoned leading separate sign

17 A 16-bit binary decimal

18 A 32-bit binary decimal

19 A 64-bit binary decimal

20 A 32-bit index value

21 An 8-bit unsigned integer

22 An 8-bit signed integer

23 A 64-bit unsigned integer

24 A 64-bit signed integer

25 A variable-length character string

Error Messages

 Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9549 E Error addressing API parameter.

CPF954F E Module &1 not found.

CPF955F E Program &1 not a bound program.

CPF9562 E Module &1 cannot be debugged.

CPF956D E Parameter does not match on continuation request.

CPF956E E Program language of module not supported.

CPF956F E Continuation handle parameter not valid.

CPF9573 E Program type parameter not valid.

CPF9574 E Call stack entry does not exist.

CPF9579 E Data option specified not valid.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9809 E Library &1 cannot be accessed.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

API introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

20 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm

Submit Debug Command (QteSubmitDebugCommand) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 View ID

Input Binary(4)

4 Input buffer

Input Char(*)

5 Input buffer length

Input Binary(4)

6 Compiler ID

Input Char(20)

7 Error Code

I/O Char(*)
 Service Program Name: QTEDBGS

 Default Public Authority: *USE

 Threadsafe: No

The Submit Debug Command (QteSubmitDebugCommand) API allows a client program to issue debug

language statements. Debug language statements permit client programs to enter breakpoints, run one or

more statements of the program under investigation (step), and evaluate expressions. Watch conditions

may also be entered to cause a breakpoint when the contents at a specified storage location are changed.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the results of the Submit Debug Command API. For more

information on the structure of the receiver variable, see Variations in Receiver Variable Structure

(page 23).

 The Submit Debug Command API may have more data to return than can be stored in the

receiver variable. The bytes available field, described in Variations in Receiver Variable Structure,

specifies how large the receiver variable must be to contain the results for the Debug Language

statements submitted. If more data is available than the receiver variable can contain, a larger

buffer should be provided and the API should be reissued.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results may not be predictable. The minimum length is 8 bytes.

Debugger APIs 21

View ID

INPUT; BINARY(4)

 An identifier of a view of a module whose operation is managed by the source debugger. The

view ID is returned as a result of issuing the Register Debug View API. The view ID is used to

find debug data associated with the module.

Input buffer

INPUT; CHAR(*)

 The input variable that is passed to the Submit Debug Command API. The information passed in

the buffer is debug language statements.

Input buffer length

INPUT; BINARY(4)

 The length of the data provided in the input buffer.

Compiler ID

INPUT; CHAR(20)

 The compiler ID of the compiler that produced the module being debugged. This information is

used by the debug translator during expression evaluation. The compiler ID is returned by the

Retrieve Module Views (QteRetrieveModuleViews) API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Receiver Variable Format

The following table shows the structure of the receiver variable. For more information on the fields

contained in the table, see “Field Descriptions.”

Receiver Variable Structure

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Entry count

12 C CHAR(*) Results array

 CHAR(*) String space

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Entry count. The number of entries in the results array. The value of the field is the number of entries in

the results array. Each entry occupies 12 bytes. Depending on the kind of information returned, values in

entries vary.

22 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Results array. The results of interpreting debug language statements. This is an array of records having

similar structures. Each record in the array occupies 12 bytes. There can be up to three fields in each

record. Each field occupies 4 bytes and can be interpreted as an unsigned (nonnegative) integer. The first

field in a record is the result type field and is used to select the remaining fields. Entries in the result

record array fall into several classes. Variations in Receiver Variable Structure (page 23) depicts several

formats of result records.

Statements are interpreted sequentially and the results of each statement are placed in the order in which

statements appear in the input buffer. The evaluate statement can return many values if an array or a

structure is evaluated. The entry count field contains the number of entries in the results array, and the

structure of each entry is summarized in Variations in Receiver Variable Structure (page 23).

String space. A sequence of strings. Each string is an array of characters whose last character is a null

character.

Description of the Structure of the Receiver Variable

Variations in Receiver Variable Structure illustrates three possible variations in the structure of the

receiver variable. The receiver variable consists of the following structures:

v A header record
This structure consists of three fields:

– Bytes returned

– Bytes available

– Entry count
v A result array

v A string space

 Variations in Receiver Variable Structure

Header Bytes Returned Bytes Available Entry Count

Result array 1 Result type

Result array 2 Result type Count

Result array 3 Result type Offset Length

String space

Each row of Variations in Receiver Variable Structure occupies 12 bytes. The row containing the headings

describes the remainder of the receiver variable. The number of bytes returned is assigned to that field.

The value of the bytes returned field is always less than or equal to the size of the receiver variable. The

number of bytes available may be greater than the number returned. In that case, the client program

should reissue the Submit Debug Command API to obtain all data produced for the input debug

language statements. The entry count field in the first row indicates the number of 12-byte records, each

beginning with a result type field, that follow.

Records beginning with a result type field have the following basic formats.

v The first entry in the array shows a record containing only one field, result type. Records having this

structure acknowledge that a kind of debug language statement was translated. An example of this

kind of record is the result record for a CLEAR PGM statement.

v The second entry in the array shows a record containing a count field as well as a result type field. The

count field can serve two purposes:

– It can acknowledge that a debug language statement was properly translated as in the case of the

StepR result record.

Debugger APIs 23

– It can enumerate the number of related records to follow as in the case of the BreakR result record.
v The offset field contains the displacement from the start of the receiver variable to the first byte of the

character string. All character strings are stored at the end of the receiver variable directly after the

record entries. Displacements are measured in bytes.

The length field contains the number of characters in the character string.

The last character of each string in the string space has an ordinal value of zero. All characters in the

string space occupy 8 bits. The length of a string in the string space does not include the last character.

Note: The length field will always be set to 512, with each of the 512 characters occupying 16 bits,

for a string of type kStringF_E when debugging a JAVA executable. This will occur even when the

returned string has a length of less than 512. The end of the returned string can be found by

locating the first unicode character in the string that has an ordinal value of zero. As unicode, this

character will occupy 16 bits.
v The last row of Variations in Receiver Variable Structure (page 23) depicts an arbitrarily large string

space containing character data. Names and other text fields that are referred to in the result type fields

shown in the other rows of Variations in Receiver Variable Structure are stored in this area.

Results Array Entry Structure Summary

The following tables describe each result record in detail. Each result record contains up to three fields

and always occupies 12 bytes. The first field, the result type field, is used as an enumerated type. The

result type field determines the format of each result record.

Each of the following enumeration constants has both a symbolic name and an ordinal value. The terms

symbolic and ordinal refer to enumerations found in programming languages. The symbolic value of an

enumeration constant is the symbol, usually a descriptive word that serves as a keyword for the

programmer (for example, StepR). The ordinal value of an enumeration constant is the integer constant

assigned, usually by the compiler, to the symbolic value. For example, 1 is assigned for StepR.

StepR (1)

Record format StepR is returned as a result of evaluating a step statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Step count

8 8 CHAR(4) Reserved

BreakR (2)

Record format BreakR contains the number of records returned for a break statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Break results count

8 8 CHAR(4) Reserved

24 iSeries: Debugger APIs

ClearBreakpointR (3)

Record format ClearBreakpointR contains the line number of the breakpoint removed as a result of

interpreting the CLEAR break-position statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Line number

8 8 CHAR(4) Reserved

ClearPgmR (4)

Record format ClearPgmR indicates that all breakpoints have been removed in the current program as

result of interpreting the CLEAR PGM statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 CHAR(4) Reserved

8 8 CHAR(4) Reserved

BreakPositionR (5)

Record format BreakPositionR identifies the line number on which a breakpoint was entered. This may

not be the same line number as the one entered in the break statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Line number

8 8 CHAR(4) Reserved

EvaluationR (6)

Record format EvaluationR contains the number of records returned for an evaluate statement that are

referred to in the subsequent ExpressionValueR record.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Evaluation count

8 8 BINARY(4) Reserved

Debugger APIs 25

ExpressionTextR (7)

Record format ExpressionTextR describes a character string that contains the expression that was

evaluated by the evaluate statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Expression text offset

8 8 BINARY(4) Expression text length

ExpressionValueR (8)

Record format ExpressionValueR refers to text that contains the formatted value of the expression that is

described by the ExpressionTextR record.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Expression value offset

8 8 BINARY(4) Expression value length

ExpressionTypeR (9)

Record format ExpressionTypeR contains the type of the expression whose value is referred to in the

ExpressionValueR record.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Expression type

8 8 CHAR(4) Reserved

QualifyR (10)

Record format QualifyR is returned as a result of evaluating a qualify statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Line number

8 8 BINARY(4) Reserved

TypeR (11)

Record format TypeR contains the number of records that are returned for an ATTR statement.

26 iSeries: Debugger APIs

Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Type record count

8 8 BINARY(4) Reserved

TypeDescR (12)

Record format TypeDescR contains the type and length of the program variable.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Type

8 8 BINARY(4) Length

DecimalR (13)

Record format DecimalR is returned only for decimal type variables and contains the total and fractional

number of digits in the decimal number.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Total digits

8 8 BINARY(4) Fraction digits

ArrayR (14)

Record format ArrayR is returned only for array type variables and contains the number of dimensions in

the array. The ArrayR record is followed by a DimensionR record for each dimension.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Dimensions

8 8 BINARY(4) Reserved

DimensionR (15)

Record format DimensionR is returned only for array type variables and contains the low and high

bounds of the array dimensions. There is one DimensionR record for each dimension in the array.

Debugger APIs 27

Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Low bound

8 8 BINARY(4) High bound

WatchR (16)

Record format WatchR contains the number of records returned for a watch statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Watch results count

8 8 BINARY(4) Reserved

WatchNumberR (17)

Record format WatchNumberR describes the watch condition that was set as a result of the watch

statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Watch number

8 8 BINARY(4) Watch length

ClearWatchNumberR (18)

Record format ClearWatchNumberR contains the watch number that is cleared as a result of interpreting

the CLEAR WATCH watch-number statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Watch number

8 8 BINARY(4) Reserved

ClearWatchR (19)

Record format ClearWatchR indicates that all watches in this debug session have been removed as a

result of interpreting the CLEAR WATCH ALL statement.

28 iSeries: Debugger APIs

Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) Reserved

8 8 BINARY(4) Reserved

TBreakR (20)

Record format TBreakR contains the number of records that are returned for a tbreak statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) TBreak results count

8 8 CHAR(4) Reserved

SBreakR (21)

Record format SBreakR contains the number of records that are returned for a sbreak statement.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Result type

4 4 BINARY(4) SBreak results count

8 8 CHAR(4) Reserved

Field Descriptions

Break results count. The number of entries returned for the break statement.

Dimensions. The number of dimensions in the array.

Expression text length. The number of characters in the expression text.

Expression text offset. The displacement from the start of the receiver variable to the first character of the

expression text. Displacement is measured in bytes.

Expression value length. The number of characters in the expression value text.

Expression value offset. The displacement from the start of the receiver variable to the first byte of the

expression value text. Displacement is measured in bytes.

Evaluation count. The number of records returned for an evaluate statement.

Expression type. The data type of the expression. The expression type may be one of the following:

 Type Enumeration Description

0 kNoType__E Type is not valid

Debugger APIs 29

Type Enumeration Description

1 kChar__8_E 8-bit character value

2 kChar_16_E 16-bit character value

3 kBool_32_E 32-bit Boolean value

4 kCard_16_E 16-bit unsigned integer value

5 kCard_32_E 32-bit unsigned integer value

6 kInt__16_E 16-bit two’s complement integer value

7 kInt__32_E 32-bit two’s complement integer value

8 kReal_32_E 32-bit real floating-point value

9 kReal_64_E 64-bit real floating-point value

10 kSpcPtr__E 64 or 128-bit pointer

11 kFncPtr__E 64 or 128-bit function pointer

12 kMchAddr_E 64 or 128-bit machine pointer

13 kRecord__E Structure or record

14 kArray___E Array

15 kEnum____E Enumerated type

16 kString__E String (:s format on EVAL)

17 kPacked__E Packed decimal

18 kZonedTE_E Zoned, trailing embedded sign

19 kZonedTS_E Zoned, trailing separate sign

20 kZonedLE_E Zoned, leading embedded sign

21 kZonedLS_E Zoned, leading separate sign

22 kBinD_16_E 16-bit binary decimal value

23 kBinD_32_E 32-bit binary decimal value

24 kBinD_64_E 64-bit binary decimal value

25 kTable___E Multiple occurrence data structure

26 kInd_____E Indicator

27 kDate____E Date

28 kTime____E Time

29 kTstamp__E Timestamp

30 kFixedL__E Fixed-length string

31 kStringF_E String (:f, :a, :u format on EVAL command)

100 kHex_____E Hexadecimal (:x format on EVAL command)

Fraction digits. The number of digits to the right of the decimal point in a decimal number.

High bound. The high boundary of the array dimension.

Length. The program variable length that is returned by the TypeDescR result record. The length units

are bits.

Line number. The number of the line on which the action requested was performed.

Low bound. The low boundary of the array dimension.

Reserved. An ignored field.

Result type. The ordinal value of the result array.

SBreak results count. The number of entries returned for the sbreak statement.

Step count. The number of statements processed.

TBreak results count. The number of entries returned for the tbreak statement.

30 iSeries: Debugger APIs

Total digits. The total number of digits in a decimal number.

Type. The program variable type that is returned by the TypeDescR result record. The meanings of this

field’s value are the same as the expression type field.

Type record count. The number of records returned for an attr statement.

Watch length. The length in bytes of the storage being watched for this watch condition.

Watch number. The identification number assigned to the watch condition. This number is used by

various debug functions to identify individual watches.

Watch results count. The number of result records returned for the watch statement.

Statement Results

ATTR Statement Results. The Submit Debug Command API returns a description of the symbol table

entry for the program variable entered. A variable number of result records may be produced:

v A TypeR record is returned, which provides a count of the number of records returned for an ATTR

statement.

v A TypeDescR record is returned, which provides the type and size of the program variable.

v A DecimalR record is returned only if the program variable is a decimal type. This record describes the

total and fractional digits in the decimal number.

v An ArrayR record is returned only if the program variable is an array. This record returns the number

of dimensions in an array.

v A DimensionR record is returned only if the program variable is an array. This record returns the low

and high bounds of the array dimensions.

Break Statement Results. The Submit Debug Command API returns a detailed description of the

break-position and conditional expression of a conditional breakpoint when a break statement is

translated.

The items returned follow:

v The number of records returned as a result of evaluating a break statement. Record type BreakR

contains this information.

v The position on which the breakpoint was entered. Record type BreakPositionR contains the line

number of the line on which the breakpoint was entered. Be aware that the input line number may be

mapped to a different line. For example, a breakpoint entered on a line that contains a comment is

mapped to the next line that contains an operational statement.

v The text of the expression that defines a conditional breakpoint. Record type ExpressionTextR refers to

the text of the condition.

The break statement is interpreted. Program operation is managed by OS/400 according to the definition

of the break statement.

Clear Statement Results. One record is returned. The record type depends on the operand following the

keyword CLEAR. If the operand is a line number, the record type is ClearBreakpointR. If the operand is

the keyword PGM, the record type is ClearPgmR. If the operand is WATCH and a watch number is

specified, the record type is ClearWatchNumberR. If the operand is WATCH and all watches are cleared,

the record type is ClearWatchR.

The ClearBreakpointR record contains the line number input for the break position.

Debugger APIs 31

The clear statement is interpreted. One or more breakpoints are removed from the program under

investigation.

Evaluate Statement Results. An evaluate statement produces a variable number of Result Records. The

first four result records follow:

v An EvaluationR record is returned, which enumerates itself and subsequent records. The EvaluationR

result record always contains an evaluation count of four.

v An Expression text record is returned, which contains the offset and length of the string, which

represents the expression text.

v An Expression value record is returned, which contains the offset and length of the string, which

represents the value of the expression.

Note: The length field will always be set to 512, with each of the 512 characters occupying 16 bits, for a

string of type kStringF_E when debugging a JAVA executable. This will occur even when the returned

string has a length of less than 512. The end of the returned string can be found by locating the first

unicode character in the string that has an ordinal value of zero. As unicode, this character will occupy

16 bits.

v An Expression type record is returned, which contains the type of the expression.

A single value is returned for an arithmetic expression or scalar variable. Multiple values are returned

when a structure is evaluated. Refer to “Examples of Result Records Returned by Submit Debug

Command API” on page 33 for examples of the result records returned when a structure or an array is

evaluated.

The evaluate statement is interpreted. Data is formatted according to the type of the input expression.

Refer to Presentation Formats (page 45) for a description of presentation formats.

Qualify Statement Results. One record is returned. The value of the result type field is QualifyR. The

QualifyR record contains the input line number used to establish the current locality for subsequent

evaluate statements.

A reference to the block that defines the current locality is assigned by the qualify statement.

SBreak Statement Results. The Submit Debug Command API returns a detailed description of the

break-position when an sbreak statement is translated. The items returned are:

v The number of records returned as a result of evaluating a sbreak statement. Record type SBreakR

contains this information.

v The position on which the breakpoint was entered. Record type BreakPositionR contains the line

number of the line on which the breakpoint was entered. Be aware that the input line number may be

mapped to a different line. For example, a breakpoint entered on a line that contains a comment is

mapped to the next line that contains an operational statement.

The sbreak statement is interpreted. Program operation is managed by OS/400 according to the definition

of the sbreak statement.

Step Statement Results. One record is returned. The value of the result type field is StepR. The StepR

record contains the number of statements to be run when control is given to the program under

investigation.

The step statement is interpreted. Program processing is managed by OS/400 according to the definition

of the step statement.

TBreak Statement Results. The Submit Debug Command API returns a detailed description of the thread

break-position and conditional expression of a conditional breakpoint when a tbreak statement is

translated. The items returned follow:

32 iSeries: Debugger APIs

v The number of records returned as a result of evaluating a tbreak statement. Record type TBreakR

contains this information.

v The position on which the thread breakpoint was entered. Record type BreakPositionR contains the line

number of the line on which the thread breakpoint was entered. Be aware that the input line number

may be mapped to a different line. For example, a thread breakpoint entered on a line that contains a

comment is mapped to the next line that contains an operational statement.

v The text of the expression that defines a conditional breakpoint for a thread. Record type

ExpressionTextR refers to the text of the condition.

The tbreak statement is interpreted. Program operation is managed by OS/400 according to the definition

of the tbreak statement.

Watch Statement Results. The watch statement returns the following result records:

v A WatchR record is returned, which provides a count of the number of result records for the watch

statement.

v A WatchNumberR record is returned, which contains the watch number assigned and the length in

bytes of the storage being watched.

v An ExpressionTextR record, which contains the offset and length of a string. This record represents the

watch statement expression text.

v An ExpressionValueR record, which contains the offset and length of a string. This record represents

the watch storage location address. This value is always a text representation of a space pointer that

contains the value of the pointer to the watched storage location (for example, ’SPP:08006F0054001004’).

Examples of Result Records Returned by Submit Debug Command API

This section contains examples of result records returned by the Submit Debug Command API. Each

example contains a fragment of a program, a debug language statement that appears in the input buffer,

and the results produced in the receiver variable.

The null termination symbol denotes the end of a character string in the examples that follow.

Break Statement Example

C Program Fragment

Assume program operation is suspended in the program shown in Figure 1 (page 33) just before line 6

runs.

Figure 1. Program for Break Example

 Line C Source

 1 #include stdio.h

 2 int T[] = {1,2,3,5,7,11,13,17,23,29};

 3 int BinarySearch(int v, int f, int l);

 4 main()

 5 { int result;

 6 result = BinarySearch(17,0,9);

 7 printf(“result= ”); printf(“%d”,result); printf(“ \n”);

 8 }

Input Buffer

BREAK 7 WHEN result > 5

Receiver Variable

Debugger APIs 33

Offset Field Value

0 Bytes returned
Bytes available
Entry count

59
59
3

12 Result type
Break results count
Reserved

BreakR
3

24 Result type
Line number
Reserved

BreakPositionR
7

36 Result type
Expression text offset
Expression text length

ExpressionTextR
48
10

48 String space result > 5

Scalar Evaluate Statement Example

C Program Fragment

Consider the C program fragment in Figure 2 (page 34). Variable i defines an integer.

Figure 2. Program for Scalar Evaluate Example

 Line C Source

 1 int i = 29;

Input Buffer

EVAL i

Receiver Variable

 Offset Field Value

0 Bytes returned
Bytes available
Entry count

65
65
4

12 Result type
Evaluation count
Reserved

EvaluationR
4

24 Result type
Expression text offset
Expression text length

ExpressionTextR
60
1

36 Result type
Expression value offset
Expression value length

ExpressionValueR
62
2

48 Result type
Expression type
Reserved

ExpressionTypeR
kInt__32_E

60 String space i29

34 iSeries: Debugger APIs

Scalar Evaluate Statement Example

RPG Program Fragment

Consider the RPG program fragment in Figure 3 (page 35). The fragment assigns 1 to a zoned(1,0)

variable I.

The program is currently stopped at line 2.

Figure 3. RPG Programming Language Example, Evaluate

 CL0N01Factor1++++++OpcodeE+Extended-factor2

 1 C EVAL I=1

 2 C MOVE *ON *INLR

Input Buffer

EVAL I

Receiver Variable

 Offset Field Value

0 Bytes returned
Bytes available
Entry count

64
64
4

12 Result type
Evaluation count
Reserved

EvaluationR
4

24 Result type
Expression text offset
Expression text length

ExpressionTextR
60
1

36 Result type
Expression value offset
Expression value length

ExpressionValueR
62
1

48 Result type
Expression type
Reserved

ExpressionTypeR
kZonedTE_E

60 String space I1

Structure Evaluate Statement Example

C Program Fragment

Consider the C program fragment in Figure 4 (page 35).

Figure 4. Program for Structure Evaluate Example

Debugger APIs 35

Line C Source

 1 struct {

 2 int i;

 3 float f;

 4 struct {

 5 char c;

 6 enum e {red,yellow};

 7 } s2;

 8 } s1 = { 1 , 5.0, {’a’ , red } };

Input Buffer

EVAL s1

Receiver Variable

 Offset Field Value

0 Bytes returned
Bytes available
Entry count

246
246
16

12 Result type
Evaluation count
Reserved

EvaluationR
4

24 Result type
Expression text offset
Expression text length

ExpressionTextR
204
4

36 Result type
Expression value offset
Expression value length

ExpressionValueR
209
1

48 Result type
Expression type
Reserved

ExpressionTypeR
kInt__32_E

60 Result type
Evaluation count
Reserved

EvaluationR
4

72 Result type
Expression text offset
Expression text length

ExpressionTextR
211
4

84 Result type
Expression value offset
Expression value length

ExpressionValueR
216
7

96 Result type
Expression type
Reserved

ExpressionTypeR
kReal_64_E

108 Result type
Evaluation count
Reserved

EvaluationR
4

120 Result type
Expression text offset
Expression text length

ExpressionTextR
224
7

132 Result type
Expression value offset
Expression value length

ExpressionValueR
232
1

36 iSeries: Debugger APIs

Offset Field Value

144 Result type
Expression type
Reserved

ExpressionTypeR
kChar__8_E

156 Result type
Evaluation count
Reserved

EvaluationR
4

168 Result type
Expression text offset
Expression text length

ExpressionTextR
234
7

180 Result type
Expression value offset
Expression value length

ExpressionValueR
242
3

192 Result type
Expression type
Reserved

ExpressionTypeR
kEnum____E

204 String space See Note.

Note: s1.i1s1.f5.0E+00s1.s2.cas1.s2.ered

Step Statement Example

C Program Fragment

Assume program operation is suspended in the program shown in Figure 5 (page 37) just before line 6

runs.

Figure 5. Program for Step Example

 Line C Source

 1 #include stdio.h

 2 int T[] = {1,2,3,5,7,11,13,17,23,29};

 3 int BinarySearch(int v, int f, int l);

 4 main()

 5 { int result;

 6 result = BinarySearch(17,0,9);

 7 printf(“result= ”); printf(“%d”,result); printf(“ \n”);

 8 }

Input Buffer

STEP

Receiver Variable

 Offset Field Value

0 Bytes Returned
Bytes Available
Entry Count

24
24
1

12 Result type
Step Count
Reserved

StepR
1

Debugger APIs 37

ATTR Statement Example

RPG Program Fragment

Consider the RPG program fragment in Figure 6 (page 38). The fragment assigns 1 to a zoned(1,0)

variable I.

The program is currently stopped at line 2.

Figure 6. RPG Programming Language Example, Evaluate

 CL0N01Factor1++++++OpcodeE+Extended-factor2

 1 C EVAL I=1

 2 C MOVE *ON *INLR

Input Buffer

ATTR I

Receiver Variable

 Offset Field Value

0 Bytes returned
Bytes available
Entry count

48
48
3

12 Result type
Type record count
Reserved

TypeR
3

24 Result type
Type
Length

TypeDescR
kZonedTE_E
1

36 Result type
Total digits
Fractional digits

DecimalR
1
0

WATCH Statement Example

C Program Fragment

Consider the C program fragment in Figure 7 (page 38). Variable i defines an integer.

Figure 7. Program for Scalar Evaluate Example

 Line C Source

 1 int i = 29;

Input Buffer

WATCH i

Receiver Variable

38 iSeries: Debugger APIs

Offset Field Value

0 Bytes returned
Bytes available
Entry count

83
83
4

12 Result type
Watch results count
Reserved

WatchR
4

24 Result type
Watch number
Watch length

WatchNumberR
1
4

36 Result type
Expression text offset
Expression text length

ExpressionTextR
60
1

48 Result type
Expression value offset
Expression value length

ExpressionValueR
62
20

60 String space See note.

Note: iSPP:08006F0054001004

Error Messages

 Message ID Error Message Text

CPF1938 E Command is not allowed while serviced job is not active.

CPF1939 E Time-out occurred waiting for a reply from the serviced job.

CPF1941 E Serviced job has completed. Debug commands are not allowed.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF7102 E Unable to add breakpoint or trace.

CPF7E01 E Pointer to receiver variable is NULL.

CPF7E02 E Receiver variable length not valid.

CPF7E03 E Pointer to input buffer is NULL.

CPF7E04 E Input buffer length not valid.

CPF7E05 E Input buffer is not as long as specified.

CPF7E06 E Pointer to error code structure is NULL.

CPF7E07 E Not enough space was provided for error code.

CPF7E08 E Value of BytesProvided field is not correct.

CPF7E09 E Value of BytesProvided field, &1, is not correct.

CPF7E10 E Internal error occurred.

CPF7E11 E Type error occurred.

CPF7E12 E Identifier does not exist.

CPF7E14 E Field does not exist.

CPF7E15 E Syntax error occurred.

CPF7E16 E Token error occurred.

CPF7E17 E Structure type error occurred.

CPF7E18 E Pointer type error occurred.

CPF7E19 E Integral type error occurred.

CPF7E1A E Enumerated type error occurred.

CPF7E1B E Arithmetic type error occurred.

CPF7E1C E Scalar type error occurred.

CPF7E1D E Address type error occurred.

CPF7E1E E Adding type error occurred.

Debugger APIs 39

Message ID Error Message Text

CPF7E1F E Subtracting type error occurred.

CPF7E20 E Relational type error occurred.

CPF7E21 E Equality type error occurred.

CPF7E22 E Casting type error occurred.

CPF7E23 E Assignment type error occurred.

CPF7E24 E Line number not found.

CPF7E25 E Array type error occurred.

CPF7E26 E Subscript type error occurred.

CPF7E27 E Format type error occurred.

CPF7E28 E Type error occurred.

CPF7E29 E Unsupported bit field alignment.

CPF7E2A E String constants are not supported.

CPF7E2B E Type compatibility error occurred.

CPF7E2C E Too few array dimensions specified.

CPF7E2D E Too many array dimensions specified.

CPF7E2E E Incorrectly formed range expression.

CPF7E2F E Range expression expands to exceed input buffer.

CPF7E50 E Decimal type error occurred.

CPF7E51 E Decimal size error occurred.

CPF7E52 E Unsupported syntax.

CPF7E53 E Assignment size error occurred.

CPF7E54 E Integer type error occurred.

CPF7E55 E Constant type error occurred.

CPF7E56 E Identifier is ambiguous.

CPF7E57 E Integer constant not valid.

CPF7E58 E Compiler not valid.

CPF7E59 E String type error occurred.

CPF7E5A E Substring extends beyond end of string.

CPF7E5B E Format length error occurred.

CPF7E5C E Hexadecimal constant not valid.

CPF7E5D E Decimal constant size error occurred.

CPF7E5E E Integer constant size error occurred.

CPF7E5F E Relational size error occurred.

CPF7E60 E Constant not a decimal number.

CPF7E61 E System cannot determine which expansion of the template to use.

CPF7E62 E Watch cannot be set on this variable.

CPF7E63 E Watch length is not valid.

CPF7E64 E Clear watch number not found.

CPF8E03 E Internal error occurred.

CPF8E04 E Internal error occurred.

CPF8E05 E Error on equal operator.

CPF8E06 E Error on not-equal operator.

CPF8E07 E Error on greater-than operator.

CPF8E08 E Error on greater-than-or-equal-to operator.

CPF8E09 E Error on less-than operator.

CPF8E0A E Error on less-than-or-equal-to operator.

CPF8E0B E Error on logical-and operator.

CPF8E0C E Error on logical-or operator.

CPF8E0D E Error on logical-exclusive-or operator.

CPF8E0E E Error on logical-not operator.

CPF8E0F E Error on add operator.

CPF8E10 E Error on subtract operator.

CPF8E11 E Error on negate operator.

CPF8E12 E Error on multiply operator.

40 iSeries: Debugger APIs

Message ID Error Message Text

CPF8E13 E Error on divide operator.

CPF8E14 E Error on increment operator.

CPF8E15 E Error on decrement operator.

CPF8E16 E Error on modulo operator.

CPF8E17 E Pointer not set for location referenced.

CPF8E18 E Conversion error.

CPF8E19 E Error on absolute value operator.

CPF8E1A E Domain violation occurred.

CPF8E1B E Domain violation occurred.

CPF8E1C E Error on write operator.

CPF8E1D E Error on shift operator.

CPF8E1E E Error on operand value.

CPF8E1F E Error on load constant operator.

CPF8E20 E Error on load address operator.

CPF8E21 E Error on store indirect operator.

CPF8E22 E Error on move operator.

CPF8E23 E Error on fill operator.

CPF8E24 E Incorrect array index value.

CPF8E25 E Call stack entry does not exist.

CPF8E26 E Translation failed.

CPF8E27 E Call to user method failed.

CPF8E28 E Variable not available to display.

CPF8E29 E Debug recursion error.

CPF8E2A E Error occurred while processing operation.

CPF8E2B E Watch cannot overlap another active watch.

CPF8E2C E Maximum number of watches exceeded.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

Debug Language Statements

Debug language statements are the principal mechanism by which a programmer debugs a program.

Programmers control the operation of a program by:

v Entering break statements to select where the program will stop

v Entering step statements to run one or more statements of the program under investigation

v Entering watch statements to stop the program when a specified storage location is changed

The clear statement enables programmers to remove a particular breakpoint or all breakpoints. It can also

be used to clear watches. Information about the state of the program being debugged can be extracted

when program processing is suspended. The evaluate statement permits programmers to display the

value of an expression, or to display an aggregate, and to alter the value of a variable.

Debug language statements are constructed by the client program and placed in the input buffer. If

multiple debug language statements are placed in the input buffer, they must be separated by one or

more blanks. The Submit Debug Command API accepts the debug language statements of ATTR, BREAK,

CLEAR, EVAL, QUAL, SBREAK, STEP, TBREAK, and WATCH.

When multiple debug statements are specified in the same input buffer, a QUAL statement must not

follow an EVAL statement. The WATCH debug statement cannot be specified with any other debug

statement, including another WATCH statement.

Debugger APIs 41

ATTR Statement

The variable appearing in an ATTR statement is found in the debug symbol table. The symbol table

information for the variable is returned.

The following example shows an ATTR statement:

The locality of variables that appear in an ATTR statement is defined by the most recently run qualify

statement. The program calling this API is advised to issue a qualify statement that defines the stop

position when program operation is suspended.

Break Statement

The break statement permits a programmer to enter a breakpoint. Breakpoints are entered on the

program under investigation. When the program under investigation encounters a breakpoint, operation

is suspended.

The following example shows a break statement:

The position marks where program operation is suspended when a breakpoint is encountered. Line

numbers are used to identify the position when the break statement is entered. The line number entered

is mapped to a statement by the Submit Debug Command API. A breakpoint causes the program to stop

just before the break statement is run.

Unconditional and conditional breakpoints can be entered. Unconditional breakpoints are discussed first,

followed by a discussion of conditional breakpoints.

An unconditional breakpoint is entered by issuing the first form of the break statement.

A line number is entered for the position. Line numbers are associated with each view in that they

identify the lines of source in a view. Line numbers are assigned sequentially beginning with line one.

A conditional breakpoint is entered by issuing the second form of the break statement.

42 iSeries: Debugger APIs

The position of a conditional breakpoint is assigned in the same way as the position in an unconditional

breakpoint. A line number is entered for the position.

The condition of a conditional breakpoint is the expression following the reserved word WHEN. The

result of the expression must have a Boolean or a logical value when evaluated. The expression is

interpreted before the statement on which the breakpoint was entered is run. If the value of the

expression is TRUE, operation of the program investigation is suspended. If the value of the expression is

FALSE, operation continues without interruption.

The locality of variables used in the conditional expression is defined by the line number that defines the

position.

A breakpoint can be replaced by entering another breakpoint using the same position. The most recent

breakpoint entered on a position is the active breakpoint.

BREAK may be replaced by the reserved word AT in the statement that defines the break statement.

For threaded applications, breakpoints that are specified with the break statement are global to all threads

in the job being debugged. These are called job breakpoints. Thread-specific breakpoints are set with the

tbreak statement. A job may not have both a job breakpoint and thread breakpoints at the same position.

When a job breakpoint is in effect and a thread breakpoint is specified, the job breakpoint is replaced.

When thread breakpoints are in effect and a job breakpoint is specified, the thread breakpoints are

replaced.

Clear Statement

The clear statement enables a programmer to remove a particular breakpoint or all breakpoints in a

program. Particular breakpoints are identified by the number of the line on which they are active. All

breakpoints in a program are designated by the keyword PGM. The clear statement is also used to clear

one or all watch conditions. The keyword WATCH followed by the ALL keyword clears all watch

conditions. If a watch number is specified after the WATCH keyword, only the watch represented by that

watch number is cleared.

The following example shows a clear statement:

For threaded applications, if a thread breakpoint is in effect at the position specified, it is cleared in the

current thread only. If the breakpoint is a job breakpoint, it is cleared for the job. When the clear

statement with the PGM keyword is specified, it will remove all job and thread breakpoints.

Debugger APIs 43

Evaluate Statement

The expression appearing in an evaluate statement is evaluated, and the value of the expression is

returned. The value of an expression is formatted according to the expression type.

The following example shows an evaluate statement:

An evaluate statement allows a programmer to display the value of an expression or an aggregate, or to

alter the value of a variable. The precise definition of what can be displayed or altered is dependent on

the language of the module being debugged.

Variables can be displayed or altered when program processing is suspended. Program operation is

temporarily suspended as a result of encountering a breakpoint or completing a step statement. It is also

suspended when a watch condition is satisfied.

Variables are formatted according to their type recorded in the HLL symbol table, and according to the

language of the module being debugged. Formats available include integer, hexadecimal, exponential,

and address, among others.

Variables also may be formatted using the formatting option. The formatting option has the general form

of: :<format code> <length>, such as EVAL STRING :s 50.

The:<format code> can be one of the following:

 Format Code Description

:c An EBCDIC single-character format

:x A hexadecimal format

:s An EBCDIC character-string format (only for the C and C++ languages)

:f An EBCDIC character-string format (only for the C and C++ languages). This returned type

can be used by the source debugger to indicate that alternative formatting was requested by

the user.

:a An ASCII character-string format (only for the ILE languages). The string is converted from

the job CCSID’s related-ASCII CCSID to the job CCSID.

:u A Unicode character-string format (only for ILE languages). The string is converted from

Unicode CCSID 13488 to the job CCSID.

The <length> is a positive integer that indicates the number of bytes to format. The defaults for the

format codes are as follows:

 Format Code Default

:c 1

:x The length of the expression value

:s 30

:f 1024

:a 1024

:u 1024

44 iSeries: Debugger APIs

The locality of variables that appear in an evaluate statement is defined by the most recently run qualify

statement. The program calling this API is advised to issue a qualify statement that defines the stop

position when program operation is suspended.

EVAL may be replaced by the reserved word LIST in the statement that defines the evaluate statement.

The following table describes the formatting of data by type.

 Presentation Formats

Type Format Example

kChar__8_E c A

kChar_16_E Shift-out cc... shift-in

kEnum____E ccccc (dd) yellow (25)

kString__E ccccccccc Hello World

kInt_32__E -dd...d
dd...d

-676

kPacked__E dd.ddd
-dd.ddd

5678.01

kZonedTE_E dd.ddd
-dd.ddd

5678.01

kZonedTS_E dd.ddd
-dd.ddd

5678.01

kZonedLE_E dd.ddd
-dd.ddd

5678.01

kZonedLS_E dd.ddd
-dd.ddd

5678.01

kBinD_16_E dd.ddd
-dd.ddd

5678.01

kBinD_32_E dd.ddd
-dd.ddd

5678.01

kBinD_64_E dd.ddd
-dd.ddd

5678.01

kFixedL__E ccccc Hello World

kHex_____E xx xx xx xx F1 F2 F3

kCard_32_E dd...d 546

kReal_64_E +d.d...dE+dd
-d.d...dE-dd

-1.2345678901234E-95

KSpcPtr__E Pointer types:
BEP (behavior)
IVP (invocation)
LBL (label)
MTP (method)
OBP (object)
PRP (procedure)
SPP (space)
SYP (system)

SPP:*NULL
IVP:COFE001001201003
SPP:COCE100201021003

Debugger APIs 45

For threaded applications, the EVAL statement is run in the current thread.

Locality

Locality is the term used to describe the range over which an entity may be referred to in a module. The

terms locality and scope are synonymous. By this definition, the locality of an entity is always confined to

the compilation unit in which it was declared.

Entity is a formal way of describing all things that can be declared in a module. Variables, procedures,

labels, types, and constants are entities.

The locality of an entity is defined by the block in which it is declared. An entity is visible in the block in

which it is declared and all subordinate blocks. A variable can be referred to in the block in which it is

declared.

An entity may be declared in a block that encloses other blocks. The entity declared in the outer,

enclosing block is visible in inner blocks if the name does not collide with other entities in inner blocks.

A variable declared in an outer block can be referred to in an inner block if no variable of the same name

is declared in the inner block.

To fully qualify a particular locality in a program, both program and module must be identified.

Qualify Statement

The qualify statement permits a programmer to define the locality of variables that appear in succeeding

evaluate statements. Locality is defined by the line number operand on the qualify statement. The locality

assigned is that block in which the line number appears.

The following example shows a qualify statement:

The locality assigned when a qualify statement is issued remains in effect until the next qualify statement

is issued. The Submit Debug Command API keeps the locality assigned for the purpose of evaluating

expressions. Users of the Submit Debug Command API are advised to issue the qualify statement

whenever program operation is suspended. Use the line number of the stopped position to identify the

current locality. In this way, programmers may issue several evaluate statements that refer to variables

that are defined in the locality of the stopped position.

For threaded applications, the QUAL statement is run in the current thread.

SBreak Statement

The sbreak statement permits a programmer to enter a service entry breakpoint. Service entry breakpoints

are entered on the program about to be spawned by another program. When the spawned program

encounters a service entry breakpoint, operation is suspended.

The following example shows a sbreak statement:

46 iSeries: Debugger APIs

The position marks where program operation is suspended when a service entry breakpoint is

encountered. Line numbers are used to identify the position when the sbreak statement is entered. The

line number entered is mapped to a statement by the Submit Debug Command API. A service entry

breakpoint causes the program to stop just before the sbreak statement is run.

The userid specifies the user profile under which a job must be executing for the service entry point

being set to be active in that job. If the userid is not specified, it defaults to the user profile under which

the job in which the sbreak command is issued is running.

A service entry point, job breakpoint or thread breakpoint cannot exist at the same time at the same

position. Only one of the three types of breakpoints may exist at a specified position. If the sbreak

command is issued for a position in which one of the three types of breakpoints already exists, the

existing breakpoint will be replaced by the service entry point.

Step Statement

The step statement permits a programmer to run one or more statements of the program under

investigation for testing purposes. The program being tested runs the number of statements specified in

the statement-count operand. Operation of the program under test is suspended at completion of the step

statement.

The following example shows a step statement:

If no value is entered for the statement-count, one statement is run.

The reserved words OVER and INTO direct the source debugger to step over or into procedures,

respectively. If OVER appears in a step statement, the source debugger does not suspend operation in

any procedures that are called. Procedures and functions are run without interruption.

The INTO reserved word directs the source debugger to stop in procedures that are called.

If neither INTO or OVER is entered on the step statement, OVER is assumed.

There are some step limitations. The following code cannot be entered using the step statement:

v Procedures in modules that have no debug data.

v Modules that are optimized at level 40.

For threaded applications, the STEP statement is run in the current thread. Each thread can step

independently of each other, at the same time.

Debugger APIs 47

TBreak Statement

The tbreak statement permits a programmer to enter a breakpoint for the current thread. Breakpoints are

entered on the program under investigation. When the program under investigation encounters a

breakpoint in the thread, operation is suspended. The tbreak statement has the same format and

operation as the break statement.

Each thread in a threaded application may have a different thread breakpoint at the same position. Job

breakpoints and thread breakpoints cannot coexist.

A tbreak statement entered at the same position as a tbreak that was specified earlier in the same thread

is replaced by the new thread breakpoint.

A tbreak statement entered at the same position as a job breakpoint that was specified earlier replaces the

job breakpoint with a thread breakpoint.

A break statement entered at the same position as thread breakpoints that were specified earlier replaces

all thread breakpoints at that position with a job breakpoint that is in effect for all threads.

Watch Statement

The watch statement permits a programmer to request a breakpoint when the content of a specified

storage location is changed from its current value. After the watch condition is successfully set, a change

to the content of the watched storage location causes program operation to be suspended. Then the

Program Stop Handler exit program that is specified on the Start Source Debug API is called.

The following shows the syntax of the watch statement:

The expression is used to determine the address of the storage location to watch. The expression must

resolve to an lvalue (that is, a location that can be assigned to). If an expression is specified that is not

supported, error code CPF7E62 is returned. The scope of the expression variables in a watch statement is

defined by the most recently issued QUAL debug language statement.

The length of the watch comparison operation is the same as the expression type length, or the length

specified with the optional watch length parameter. For example, if a 4-byte binary integer is specified

without the watch length parameter, the comparison length is 4 bytes. If the watch length parameter is

specified, it overrides the length of the expression in determining the watch length. The watch length

specification format is a colon character followed by the length in bytes to watch. For example, the watch

command below would watch 2 bytes starting at the first byte of variable i:

watch i : 2

The watch length must be in the range 1 through 128 bytes. If the watch length is not valid, error code

CPF7E63 is returned.

The maximum number of watches that can be active across the entire system is guaranteed to be at least

128, but may range up through 256, depending on how the watched storage is mapped by the system.

This includes dedicated service tools (DST) watches. Exceeding this number results in error code

CPF8E2C being returned. A user session may have as many watches as are available.

48 iSeries: Debugger APIs

There are some restrictions on overlapping watch locations. If any of the following conditions are true,

error code CPF8E2B is returned:

v Watches in same job: Two watch locations may not overlap in any way.

v Watches in different jobs: Two watch locations may not start at the same storage address. Otherwise,

overlap is permitted.

A watch condition is cleared by using the CLEAR debug language statement.

It is important to understand that the watch statement establishes the watched storage location address

when the watch statement is entered, and it does not change. This can cause misleading results if a

temporary storage location is watched and that storage location is reused while the application is

running. An example of this is the automatic storage of an ILE C procedure, which can be reused if the

procedure ends.

The WATCH debug statement cannot be specified with any other debug statement, including another

WATCH statement.

For threaded applications, the WATCH statement is run in the current thread. The address watched is

global to all threads. Any thread changing a watched location will cause a breakpoint in that thread.

API introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Debug Session Control APIs

Debug session control APIs are used to start the source debug session, determine which programs,

modules, and views are referenced, and control certain attributes of the debug environment.

The Debug Session Control APIs are:

v “Change Current Thread (QteChangeCurrentThread) API” on page 50 (QteChangeCurrentThread)

changes the current thread to any thread being debugged.

v “Change Thread Status (QteChangeThreadStatus) API” on page 51 (QteChangeThreadStatus) changes

the debug status for threads being debugged.

v “End Source Debug (QteEndSourceDebug) API” on page 53 (QteEndSourceDebug) takes the job out of

debug mode.

v “Register Service Entry Point Stop Handler (QteRegSrvEntPntStpHdlr) API” on page 54

(QteRegSrvEntPntStpHdlr) registers a special event handler to handle Service Entry breakpoint events.

v “Retrieve Debug Attribute (QteRetrieveDebugAttribute) API” on page 55 (QteRetrieveDebugAttribute)

retrieves the attributes of the source debug session.

v “Retrieve Debugged Threads (QteRetrieveDebuggedThreads) API” on page 57

(QteRetrieveDebuggedThreads) retrieves information for threads being debugged.

v “Retrieve Module Views (QteRetrieveModuleViews) API” on page 62 (QteRetrieveModuleViews())

returns to the caller the list of modules and views that are associated with a specific ILE or OPM

program.

v “Retrieve Source Path Name (QteRetrieveSourcePathName) API” on page 68

(QteRetrieveSourcePathName) returns the full source path name for a Java source file.

v “Set Debug Attribute (QteSetDebugAttribute) API” on page 70 (QteSetDebugAttribute) sets the

attributes of the source debug session.

v “Start Source Debug (QteStartSourceDebug) API” on page 72 (QteStartSourceDebug()) enables your

session to use the source debugger.

Debugger APIs 49

#TOP_OF_PAGE
aplist.htm

v “Stop Debugged Job (QteStopDebuggedJob) API” on page 73 (QteStopDebuggedJob) causes debug to

halt all threads being debugged in a job.

Debug session control exit programs are used to process breakpoints and start, stop, and display screens

within the source debug session. The debug session control exit programs are:

v “Debug Session Handler Exit Program” on page 130 manages the source debugger, telling it when to

start, stop, and display its screens. This program is registered on the Start Debug Command.

v “Program-Stop Handler Exit Program” on page 133 is registered on the Start Source Debug API. This

program is called by the source debugger support when an ILE or OPM program stops at a breakpoint

or for other reasons.

v “Service Entry Point Stop Handler Exit Program” on page 140 is a user-written program that handles

the service entry point program-stop condition.

 Top | “Debugger APIs,” on page 1 | APIs by category

Change Current Thread (QteChangeCurrentThread) API

 Required Parameter Group:

1 Thread ID

Input Char(8)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTETHRD

 Threadsafe: No

The Change Current Thread (QteChangeCurrentThread) API changes the current thread to any thread

being debugged.

Note: A job may have several threads, each of which are debugged if the job is debugged. By

default, the current thread is the initial thread of the debugged job, or the thread at a debug stop.

A current thread has several properties that distinguish it from other threads being debugged:

v Debug commands are run in this thread.
v This is the first thread released after a return to the base debug support after a debug stop (breakpoint,

step, watch, or unmonitored exception).
v If there are multiple debug stops at the same time, this thread is the first one processed.

Before the current thread can be changed the new current thread must be stopped or halted and is

waiting for debug to restart it. If this is not true, an error is returned to the API caller and the current

thread is not changed.

Threads debugging is supported if a service job is used to debug a job that was spawned by native

threads support. If this is not the debug environment present when this API is called, a CPF958B error is

returned.

50 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Thread ID

INPUT; CHAR(8)

 This is an 8-byte handle assigned by the system.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9549 E Error addressing API parameter.

CPF9589 E Thread &1 not stopped or halted.

CPF958A E Thread &1 not found.

CPF958B E Threads debugging not supported.

API introduced: V4R2

 Top | “Debugger APIs,” on page 1 | APIs by category

Change Thread Status (QteChangeThreadStatus) API

 Required Parameter Group:

1 Thread debug status

Input Char(10)

2 Thread array

Input Array of Char(8)

3 Number of threads

Input Binary(4)

4 Error code

I/O Char(*)
 Service Program: QTETHRD

 Threadsafe: No

The Change Thread Status (QteChangeThreadStatus) API changes the debug status for threads being

debugged.

Note: A job may have several threads, each of which are debugged if the job is debugged. By

default, the current thread is the initial thread of the debugged job, or the thread at a debug stop.

Debugger APIs 51

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Before the debug status of a thread can be changed, the thread must be stopped or halted by debug

support. If any thread specified in the thread array has not been stopped or halted by debug support, an

error is returned to the API caller and the debug status of all threads is unchanged.

Threads debugging is supported if a service job is used to debug a job that was spawned by native

threads support. If this is not the debug environment present when this API is called, a CPF958B error is

returned.

Authorities and Locks

None

Required Parameter Group

Thread debug status

INPUT; CHAR(10)

 The desired debug status for the thread identifiers specified in the thread array parameter. The

valid debug status values are:

 *ENABLE Enable the specified threads.

*DISABLE Disable the specified threads.

Thread array

INPUT; ARRAY OF CHAR(8)

 The thread identifiers for which debug status is changed. Each thread identifier in the thread

array is 8 bytes long. The number of thread identifiers is specified in the number of threads

parameter.

 If the number of threads parameter is minus one, the first and only thread array parameter must

be a special value. In this case, all other thread array parameters are ignored. Valid special values

are:

 *ALL The debug status for all threads is changed to the debug

status specified in the thread debug status parameter.

Number of threads

INPUT; BINARY(4)

 The number of thread identifiers provided in the thread array parameter. The number of threads

parameter must be greater than zero or a minus one. If it has a value of minus one, the first and

only thread array parameter must be a special value. If it is greater than zero, the number

specified is the number of thread array parameters that must be provided.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode

CPF9549 E Error addressing API parameter.

52 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF958A E Thread &1 not found.

CPF958B E Threads debugging not supported.

CPF958C E Number of threads not valid.

CPF959B E Thread status value not valid.

CPF959C E Thread array special value not valid.

CPF959D E Thread status cannot be changed.

API introduced: V4R3

 Top | “Debugger APIs,” on page 1 | APIs by category

End Source Debug (QteEndSourceDebug) API

 Required Parameter Group:

1 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTEDBGS

 Threadsafe: No

The End Source Debug (QteEndSourceDebug) API is used to end the source debug support. All ILE and

OPM programs being debugged under the source debug support are removed from debug mode. All

registered views to programs being debugged are no longer valid.

Required Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9549 E Error addressing API parameter.

API introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Debugger APIs 53

#TOP_OF_PAGE
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Register Service Entry Point Stop Handler (QteRegSrvEntPntStpHdlr)

API

 Required Parameter Group:

1 Qualified program name

Input Char(20)

2 Error Code

I/O Char(*)
 Service Program Name: QTEDBGS

 Default Public Authority: *USE

 Threadsafe: No

The Register Service Entry Point Stop Handler API registers a special event handler to handle Service

Entry breakpoint events. The Start Source Debug (QteStartSourceDebug) API must be called before this

API can be issued.

Authorities and Locks

Program Authority

*EXECUTE

Library Authority

*EXECUTE

Required Parameter Group

Qualified program name

INPUT; CHAR(20)

 The name of the exit program that is called when a service entry point is encountered.

 The first 10 characters contain the program name. The second 10 characters contain the name of

the library in which the program is located. Both entries must be left-justified.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3CF1 Error code parameter not valid.

CPF3CF2 Errors occurred during running of API.

CPF9541 Not in debug mode.

CPF9549 Error addressing API parameter.

CPF9803 Cannot allocate object in library.

CPF9809 Library cannot be accessed.

CPF9810 Library not found.

54 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF9811 Program in library not found.

CPF9820 Not authorized to use library.

CPF9821 Not authorized to program in library.

API introduced: V5R2

 Top | “Debugger APIs,” on page 1 | APIs by category

Retrieve Debug Attribute (QteRetrieveDebugAttribute) API

 Required Parameter Group:

1 Debug attribute

Input Char(10)

2 Attribute value

Output Char(10)

3 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The Retrieve Debug Attribute (QteRetrieveDebugAttribute) API is used to retrieve the attributes of the

source debug session. These attributes may be any of the following:

v Default attributes established when the debug session was started
v Attributes changed with the Set Debug Attribute API
v Attributes changed by the Change Debug (CHGDBG) command

The attributes of the debug environment cannot be retrieved unless the job is currently in debug mode.

Required Parameter Group

Debug attribute

INPUT; CHAR(10)

 The name of the debug environment attribute that is retrieved. The valid values for this

parameter are:

 *UPDPROD Retrieves the value of the update production files attribute.

*DEBUGJOB Retrieves an indicator of which job is being debugged.

*OPMSRC Retrieves the value of the OPM source debug attribute.

Attribute value

OUTPUT; CHAR(10)

 The current value of the attribute identified in the debug attribute parameter.

 When the debug attribute parameter contains *UPDPROD, the attribute value parameter can have

one of the following values:

Debugger APIs 55

#TOP_OF_PAGE
aplist.htm

*YES Allow the updating of production files while in debug

mode.

*NO Do not allow the updating of production files while in

debug mode.

When the debug attribute parameter contains *DEBUGJOB, the attribute value parameter can

have one of the following values:

 *LOCAL The debug session is debugging programs that run in the

job in which this API is running.

*REMOTE The debug session is debugging programs that run in the

job specified in the Start Service Job (STRSRVJOB)

command.

When the debug attribute parameter contains *OPMSRC, the attribute value parameter can have

one of the following values:

 *YES Allow OPM programs that have source debug data to be

debugged by using the ILE debug APIs.

*NO Do not allow OPM programs to be debugged by using

the ILE debug APIs.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9549 E Error addressing API parameter.

CPF9559 E Debug attribute parameter not valid.

API introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

56 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Retrieve Debugged Threads (QteRetrieveDebuggedThreads) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Thread array

Input Array of Char(8)

5 Number of threads

Input Binary(4)

6 Error code

I/O Char(*)
 Service Program: QTETHRD

 Threadsafe: No

The Retrieve Debugged Threads (QteRetrieveDebuggedThreads) API retrieves information for threads

being debugged.

Note: A job may have several threads, each of which is debugged if the job is debugged. By default,

the current thread is the initial thread of the debugged job or the thread at a debug stop.

Information about the requested threads is returned in the receiver variable. This allows the writer of a

debugger to maintain and control a list of threads that are being debugged. If this API is processed when

threads are active, the information returned by the API may no longer be accurate. Check the job status

flag to see what state the job was in when the API was processed.

Threads debugging is supported if a service job is used to debug a job that was spawned by native

threads support. If this is not the debug environment present when this API is called, a CPF958B error is

returned.

Authorities and Locks

None

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of this area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data the area can hold. For more information, see “Format of

Receiver Variable” on page 58. Entries are only returned in their entirety. The API never returns

anything less. If there is not enough space for the entire entry, that entry is not returned and

bytes available and bytes returned are not equal.

Debugger APIs 57

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. The length of receiver variable parameter may be specified up

to the size of the receiver variable specified in the user program. If the length of receiver variable

parameter specified is larger than the allocated size of the receiver variable in the user program,

the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The content and format of the information returned in the receiver variable. The possible format

names are:

 THDL0100 Basic thread debug information.

THDL0200 Extended thread debug information.

Thread array

INPUT; ARRAY OF CHAR(8)

 The thread identifiers (IDs) for which debug information is returned. In the thread array

parameter, thread IDs are specified and debug information about the requested threads is

returned in the receiver variable. Each thread identifier in the thread array is 8 bytes long. The

number of thread identifiers is specified in the number of threads parameter.

 If the number of threads parameter is minus one, the first thread array parameter must be a

special value. In this case, all other thread array parameters are ignored. Valid special values are:

 *ALL Thread debug information for all threads is returned.

*CURRENT Thread debug information for the current thread is returned.

*INITIAL Thread debug information for the initial thread is returned.

*ENABLE Thread debug information for all enabled threads is returned.

*DISABLE Thread debug information for all disabled threads is returned.

Number of threads

INPUT; BINARY(4)

 The number of thread identifiers provided in the thread array parameter. The number of threads

parameter must be greater than zero or minus one. If it has a value of minus one, the first and

only thread array parameter must be a special value. If it is greater than zero, the number

specified is the number of thread array parameters that must be provided.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Receiver Variable

The following receiver variable formats are returned based on the format name parameter:

THDL0100 Format

The following table shows the format of the receiver variable for the THDL0100 format. For more

information on the fields, see “Field Descriptions” on page 60.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

58 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

4 4 BINARY(4) Bytes available

8 8 CHAR(1) Job status flag

9 9 CHAR(3) Reserved

12 C BINARY(4) Offset to thread records

16 10 BINARY(4) Number of thread records

20 14 BINARY(4) Size of thread record

 CHAR(*) Reserved

Note: The following fields repeat the number of times specified in the number of thread records field.

 CHAR(8) Thread ID

 CHAR(1) Current thread flag

 CHAR(1) Initial thread flag

 CHAR(1) Thread run state

 CHAR(1) Thread debug status

THDL0200 Format

The following table shows the format of the receiver variable for the THDL0200 format. For more

information on the fields, see “Field Descriptions” on page 60.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(1) Job status flag

9 9 CHAR(3) Reserved

12 C BINARY(4) Offset to thread records

16 10 BINARY(4) Number of thread records

20 14 BINARY(4) Size of thread record

 CHAR(*) Reserved

Note: The following fields repeat the number of times specified in the number of thread records field.

 CHAR(8) Thread ID

 CHAR(1) Current thread flag

 CHAR(1) Initial thread flag

 CHAR(1) Thread run state

 CHAR(1) Thread debug status

 CHAR(3) Reserved

 CHAR(1) top of stack flag

 BINARY(4) Statement view ID stopped in

 BINARY(4) Line in statement view stopped in

Debugger APIs 59

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user.

Bytes returned. The number of bytes of data returned to the user.

Current thread flag. Whether the thread is the current thread or not. Possible values are:

 0 The thread is not the current thread.

1 The thread is the current thread.

Initial thread flag. Whether the thread is the initial thread or not. Possible values are:

 0 The thread is not the initial thread.

1 The thread is the initial thread.

Job status flag. The status of the job when the API was processed.

 0 The job is stopped by debug. The information returned

by this API is accurate.

1 The job is running and has not been stopped by debug

(for example, breakpoint, step, watch, or unmonitored

exception). If threads are running it is not possible for

debug to present a stable debugging environment. The

information returned by this API may no longer be

accurate.

Line in statement view stopped in. If the thread is stopped in a module that has been registered under

debug, this is the line number in the module’s statement view where the thread is stopped. See the

statement view ID stopped in field for more information. This field is only applicable for the current

thread. If the thread being returned is not the current thread then this field will contain a -1.

Number of thread records. The number of thread records that are returned in the receiver variable. Each

record has the same format, and is repeated in the receiver variable.

Offset to thread records. The offset in bytes from the start of the receiver variable to the first requested

thread information record.

Reserved. An ignored field.

Size of thread record. The number of bytes occupied by each thread record.

Statement view ID stopped in. The view ID of a previously registered debug statement view. It is the

statement view ID of the highest module found on the call stack that has been registered under debug. If

no statement views on the stack are registered, the thread is not stopped by debug, or if the thread is not

the current thread a value of -1 is returned.

Thread debug status. The debug status of the thread.

 0 The thread is disabled.

1 The thread is enabled.

Thread ID. This is an 8-byte thread handle assigned by the system.

Thread run state. The debug run status of the thread.

60 iSeries: Debugger APIs

0 The thread is running.

1 The thread is currently stopped at a breakpoint, step,

watch or unmonitored exception. When this happens all

other threads are halted.

2 This is a thread that was halted by debug because of a

debug stop that occurred in one of the debugged job’s

threads. The reason for stopping or halting all threads is

to provide a static debugging environment.

Top of stack flag. Whether the stopped view ID is at the top of the call stack or not. Possible values are:

 blank This is not the current thread. This field is only applicable

for the current thread.

0 The view ID is not at the top of the call stack.

1 The view ID is at the top of the call stack.

Error Messages

 Message ID Error Message Text

CPF3C19 E Error occurred with receiver variable specified.

CPF3C1E E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9549 E Error addressing API parameter.

CPF958A E Thread &1 not found.

CPF958B E Threads debugging not supported.

CPF958C E Number of threads not valid.

CPF958E E Thread array special value not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

 Top | “Debugger APIs,” on page 1 | APIs by category

Debugger APIs 61

#TOP_OF_PAGE
aplist.htm

Retrieve Module Views (QteRetrieveModuleViews) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Qualified program name

Input Char(20) or Char(*)

5 Program type

Input Char(10)

6 Module name

Input Char(10) or Binary(4)

7 Returned library name

Output Char(10) or Char(*)

8 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The Retrieve Module Views (QteRetrieveModuleViews) API is used to return a list of modules and views

associated with a specified program to the caller of the API. The list includes all of the following:

v All modules bound to the program that can be debugged
v Every view (by number and type) that was created by the compiler when the module object was

created
v Views created by the OPM RPG, OPM COBOL, and OPM CL compilers using the *SRCDBG and

*LSTDBG options
v Views created by the JAVA language support in OS/400

If you specify a module name, a list of views for that module is returned. If you specify *ALL for the

module name, the list includes all modules for a given program.

The module name parameter must be specified as either *ALL or blanks for OPM programs. The

statement view and a source view (or the statement view and a listing view) are always returned. The

module name field is returned as blanks.

This API also supports JAVA class file debug views. In this case the program type parameter must be

*CLASS and the qualified program name parameter must be a null-terminated JAVA class file name. The

class path name of the file that contains the JAVA class file is returned in the returned library name

parameter. For JAVA, the module name parameter must be specified as a binary field that contains the

number of bytes provided in the returned library name field for JAVA class path name information.

62 iSeries: Debugger APIs

Information returned by the Retrieve Module Views API is used by the calling program as input

parameters to the Register Debug View API. Every module returned has at least one view associated with

it. This is the statement view. It can be assumed that any additional views returned have text associated

with them, and source debug can be done on these modules.

Authorities

The authorities required are dependent on the program type parameter. If the program type is *PGM or

*SRVPGM, the authorities are as follows:

Program Authority

Either *SERVICE and *USE, or *CHANGE

Library Authority

*USE

 If the program type is *CLASS, the authorities are as follows:

Class File Authority

*R

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 A variable that is to receive the information requested. You can specify the size of this area to be

smaller than that needed to hold the information. In this case, only part of the information is

returned. However, the number of bytes that the API needs to return all of the information is still

returned.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. The minimum length is 8 bytes.

 It is suggested that a length of 8 be passed to the API, which fills in the first two fields of the

receiver variable. One of the fields, bytes available, indicates how much space must be provided.

This space can then be obtained, and a second call to the API can be made.

Format name

INPUT; CHAR(8)

 The content and format of the module view information that is returned. The only valid value for

this parameter is:

 VEWL0100 Module view information. For more information, see “VEWL0100 Format” on page 64.

Qualified program name

INPUT; CHAR(20) or CHAR(*)

 The format of this parameter is dependent on the program type parameter. If the program type is

*PGM or *SRVPGM, the format of this parameter is as follows:

v The name of a program about which module and view information is listed.
v The first 10 characters contain the program name.
v The second 10 characters contain the name of the library where the program can be located.
v Both entries must be left-justified.

The following special values may be used for the library name:

 *CURLIB The job’s current library.

Debugger APIs 63

*LIBL The library list.

If the program type is *CLASS, the format of this parameter is as follows:

 The null-terminated class file name of the JAVA class.

Program type

INPUT; CHAR(10)

 The type of program for which a view is to be registered. This is the object type of the program

object. The allowable values are:

 *PGM ILE or OPM program

*SRVPGM ILE service program

*CLASS JAVA class file name

Module name

INPUT; CHAR(10) or BINARY(4)

 The format of this parameter is dependent on the program type parameter.If the program type is

*PGM or *SRVPGM, the format of this parameter is as follows:

v A module name or *ALL (*ALL refers to all modules in the program).
v The module name parameter must be specified as either *ALL or blanks for OPM programs.

If the program type is *CLASS, the format of this parameter is as follows:

v A 4-byte binary field. This field contains the number of bytes provided in the returned library

name parameter for returning JAVA class path name information.
v The value specified in this parameter must be at least 8 bytes.

Returned library name

OUTPUT; CHAR(10) or CHAR(*)

 The format of this parameter is dependent on the program type parameter.If the program type is

*PGM or *SRVPGM, the format of this parameter is OUTPUT CHAR(10) as follows:

v The library where the program was found. This is useful when *LIBL or *CURLIB is specified

for the program library.

If the program type is *CLASS, the format of this parameter is OUTPUT CHAR(*) as follows:

v Class path name information for the requested class file. For more information, see “Format of

JAVA Returned Library Name Parameter” on page 66.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

VEWL0100 Format

The following table shows the format of the receiver variable for the VEWL0100 format.For more

information on the fields, see “Field Descriptions” on page 65.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of elements

64 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

Note: The following fields repeat once for each element.

 CHAR(10) Module name

 CHAR(10) View type

 CHAR(20) Compiler ID

 CHAR(10) Main indicator

 CHAR(13) View timestamp

 CHAR(50) View description

 CHAR(3) Reserved

 BINARY(4) View number

 BINARY(4) Number of views

All views for a module are listed together in the receiver variable. The number of views field contains the

total number of views for the module. The views are contiguous.

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user.

Bytes returned. The number of bytes of data returned to the user.

Compiler ID. The ID of the compiler that generated this view. For unique identification the first 4 bytes

are used as follows:

 x’00050000’ ILE C

x’00050001’ CSET C++ cooperative compiler

x’00060000’ ILE CL

x’00060001’ OPM CL

x’00070000’ OPM COBOL

x’00070001’ ILE COBOL

x’00170001’ OPM RPG

x’00170002’ ILE RPG

x’001D0000’ JAVA

Main indicator. Whether the module is a main module (entry point) for the program. The main indicator

field can have one of the following values:

 *MAIN Module is a main module

*NOMAIN Module is not a main module

There is at most one main module per program. Service programs contain no main entry point. *MAIN is

always returned for OPM programs. For JAVA class files *MAIN is returned if the class file has a main

procedure. Otherwise, *NOMAIN is returned for JAVA.

Module name. The name of the module for this list entry. For OPM programs and JAVA class files, the

module name is returned as blanks.

Number of elements. The number of elements returned in the receiver variable. Each element has the

same format, and it is repeated in the receiver variable. If the number of elements is zero and the receiver

Debugger APIs 65

variable has room for at least one element, the program has no views in the module requested. If the

module requested is *ALL, zero elements indicate the program cannot be debugged. For OPM programs,

a CPF9584 error code is returned, instead of a zero number of elements value, if the program cannot be

debugged. For class files, a CPF9599 error code is returned, instead of a zero number of elements value, if

the program cannot be debugged.

Number of views. The number of views in this module listed in the receiver variable

Reserved. An ignored field.

View description. A character string that describes the view.

View number. A number that identifies a view within a module. Each view has a unique view number,

which is used when you specify a specific view to register using the Register Debug View API.

View timestamp. The timestamp indicating when the view was created. It has the format of the

American National Standard timestamp.

View type. The type of view. The view type can be one of the following values:

 *TEXT This is a view where text comes from files or text supplied by the processor.

*LISTING This is a view where text comes entirely from text supplied by the processor.

*STATEMENT This is a view consisting of statement identifiers. All modules have a statement view.

Format of JAVA Returned Library Name Parameter

When the program type parameter is *CLASS, class path name information is returned in the returned

library name parameter. The following table shows the format of the returned library name parameter

when the JAVA class file view information is retrieved. For more information on the fields, see “Field

Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to class path name

C C BINARY(4) Length of class path name

 CHAR(*) Class path name

Field Descriptions

Bytes available. The number of bytes available to be returned in the returned library name parameter. If

the bytes available value is larger than the bytes provided value passed in the module name parameter,

the API should be called again with a value that is at least as large as the bytes available. If the space

provided is not large enough, the string space is filled with as many characters of the class path name as

will fit.

Bytes returned. The number of bytes returned in the returned library name parameter.

Class path name. The path name of the file that contains the class file that was retrieved.

Length of class path name. The length of the class path name returned.

66 iSeries: Debugger APIs

Offset to class path name. The offset from the start of the returned library name parameter to the class

path name.

Error Messages

 Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9549 E Error addressing API parameter.

CPF954F E Module &1 not found.

CPF955F E Program &1 not a bound program.

CPF9584 E OPM program &1 cannot be added to ILE debug environment.

CPF9585 E Program &1 already active in OPM debug environment.

CPF9587 E Module name value &1 not valid.

CPF9591 E Value specified in module name parameter is not valid.

CPF9592 E Class file not found.

CPF9593 E Not authorized to class file.

CPF9594 E JAVA class file not available.

CPF9599 E Class file cannot be debugged.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9809 E Library &1 cannot be accessed.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

API introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Debugger APIs 67

#TOP_OF_PAGE
aplist.htm

Retrieve Source Path Name (QteRetrieveSourcePathName) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Source file name

Input Char(*)

5 Error code

I/O Char(*)
 Service Program: QTEDBGSI

 Threadsafe: No

The Retrieve Source Path Name (QteRetrieveSourcePathName) API returns the full source path name for

a Java source file.

This API expects the DEBUGSOURCEPATH environment variable to be set to one or more directory

paths that contain Java source files. These directory paths are used to search for the Java source file

specified by the source file name parameter. If the Java source file is found, the full source path name is

returned in the receiver variable. If the Java source file is not found or if the DEBUGSOURCEPATH

environment variable is not set, a CPF959E error is returned.

Authorities and Locks

Directory Authority

*X

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 A variable that is to receive the information requested. You can specify the size of this area to be

smaller than that needed to hold the information. In this case, only part of the information is

returned. The number of bytes that the API needs to return all of the information, however, is

still returned.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. The minimum length is 8 bytes.

 It is suggested that a length of 8 be passed to the API, which fills in the first two fields of the

receiver variable. The bytes available field indicates how much space must be provided. This

space can then be obtained and a second call can be made to the API.

68 iSeries: Debugger APIs

Format name

INPUT; CHAR(8)

 The content and format of the full source path information that is returned. The only valid value

for this parameter is:

 SRCP0100 Source path information. For more information, see “SRCP0100 Format.”

Source file name

INPUT; CHAR(*)

 The null-terminated Java source file name (such as Hello.java).

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

SRCP0100 Format

The following table shows the format of the receiver variable for the SRCP0100 format. For more

information on the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to source path name

12 C BINARY(4) Length of source path name

 CHAR(*) Source path name

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user.

Bytes returned. The number of bytes of data returned to the user.

Length of source path name. The length of the full source path name returned.

Offset to source path name. The offset from the start of the receiver variable to the source path name.

Source path name. The path name of where the Java source file resides. The Java source file name is

returned as part of the source path name (for example, /home/javasource/Hello.java). The source path

name is returned in the CCSID of the job.

Error Messages

 Message ID Error Message Text

CPF3C19 E Error occurred with receiver variable specified.

CPF3C1E E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

Debugger APIs 69

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF959E E Source file not found.

API introduced: V4R5

 Top | “Debugger APIs,” on page 1 | APIs by category

Set Debug Attribute (QteSetDebugAttribute) API

 Required Parameter Group:

1 Debug attribute

Input Char(10)

2 Attribute value

Input Char(10)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTEDBGS

 Threadsafe: No

The Set Debug Attribute (QteSetDebugAttribute) API is used to set the attributes of the source debug

session.

The attributes of the debug session cannot be set unless the job is currently in debug mode. The job is

put in debug mode by a call to the Start Source Debug (QteStartSourceDebug) API.

The *UPDPROD value on the debug attribute parameter sets the update production files attribute of the

debug session.

You can use files in production libraries while you are in debug mode. To prevent database files in

production libraries from being changed unintentionally, you can specify a value of *NO. Then, only files

in test libraries can be opened for updating or adding new records. If you want to open database files in

production libraries for updating or adding new libraries, or if you want to delete members from

production physical files, you can specify *YES. The initial setting when the Start Source Debug API is

issued is *NO. However, this value can be changed at any time while in debug mode.

You can use this function with the library list. In the library list for your debug job, you can place a test

library before a production library. In the test library, you should have copies of the production files that

might be updated by the program being debugged. Then, when the program runs, it uses the files in the

test library. Therefore, production files cannot be unintentionally updated.

The *OPMSRC value on the debug attribute parameter sets the OPM source debug attribute of the debug

session. It is used to enable or disable the OPM source debug support. When this support is enabled,

OPM RPG, OPM COBOL, and OPM CL programs can be debugged by using the ILE debug APIs if they

were compiled with the *SRCDBG or *LSTDBG option on the following CL commands:

v Create RPG/400 Program (CRTRPGPGM)

70 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm

v Create COBOL Program (CRTCBLPGM)
v Create Control language Program (CRTCLPGM)
v Create SQL RPG Program (CRTSQLRPG)
v Create SQL COBOL Program (CRTSQLCBL)
v Create Auto Report RPG Program (CRTRPTPGM)

The initial value of the *OPMSRC attribute is set by the Start Debug (STRDBG) command, and can also

be changed by the Change Debug (CHGDBG) command. Changing the *OPMSRC value has no effect on

programs that are already under debug. They remain in the debug environment (ILE or OPM) that they

are currently added to.

Required Parameter Group

Debug attribute

INPUT; CHAR(10)

 The name of the debug session that is to be set. The value of the debug attribute must be:

 *UPDPROD Set the value of the update production files attribute.

*OPMSRC Set the value of the OPM source debug attribute.

Attribute value

INPUT; CHAR(10)

 The value of the attribute specified in the debug attribute parameter.

 When the debug attribute parameter specifies *UPDPROD, the attribute value parameter can

have one of the following values:

 *YES Allow the updating of production files while in debug

mode.

*NO Do not allow the updating of production files while in

debug mode.

When the debug attribute parameter specifies *OPMSRC, the attribute value parameter can have

one of the following values:

 *YES Allow OPM programs that have source debug data to be

debugged by using the ILE debug APIs.

*NO Do not allow OPM programs to be debugged by using

the ILE debug APIs.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9549 E Error addressing API parameter.

CPF9550 E Value for debug attribute not valid.

CPF9559 E Debug attribute parameter not valid.

Debugger APIs 71

error.htm#HDRERRCOD
error.htm#HDRERRCOD

API introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

Start Source Debug (QteStartSourceDebug) API

 Required Parameter Group:

1 Qualified program name

Input Char(20)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTEDBGS

 Threadsafe: No

The Start Source Debug (QteStartSourceDebug) API lets you use the source debugging APIs in your

session. This allows the debugging of any ILE programs or service programs that contain debug

information. OPM CL, OPM RPG, and OPM COBOL programs that are created with OPTION(*SRCDBG)

or OPTION(*LSTDBG) may also be debugged.

Your job must be put in debug mode before this API is issued. Debug mode is a special environment in

which the debug functions can be used in addition to routine system functions. Debug functions cannot

be used outside debug mode. To start debug mode, you must issue the Start Debug (STRDBG) command.

The Start Source Debug API must be used before an ILE or OPM program can be debugged. This API

requires that you specify a user exit program to be called by the source debugger support to handle

breakpoints, steps, and unmonitored exceptions.

Your job remains in debug mode until an End Source Debug (QteEndSourceDebug) API is issued or until

your current routing step ends.

If the job is servicing another job, the job will actually debug the job being serviced.

Authorities

Program Authority

*USE

Library Authority

*USE

Required Parameter Group

Qualified program name

INPUT; CHAR(20)

72 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm

The name of the exit program that is called whenever a breakpoint, a program step, or an

unmonitored exception occurs. See “Program-Stop Handler Exit Program” on page 133 for a

discussion of the parameters passed to this program to assist in processing breakpoint, step, and

exception information.

 The first 10 characters contain the program name. The second 10 characters contain the name of

the library where the program is located. Both entries must be left-justified.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9540 E Already in debug mode.

CPF9541 E Not in debug mode.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9809 E Library &1 cannot be accessed.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9821 E Not authorized to program &1 in library &2.

CPF9549 E Error addressing API parameter.

API introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Stop Debugged Job (QteStopDebuggedJob) API

 Required Parameter Group:

1 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTETHRD

 Threadsafe: No

The Stop Debugged Job (QteStopDebuggedJob) API causes debug to halt all threads in a job being

debugged. The job stopped is being serviced and debugged by the job calling the QteStopDebuggedJob

API. This API is allowed for servicing of both threaded and nonthreaded applications.

Required Parameter Group

Error code

I/O; CHAR(*)

Debugger APIs 73

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF958F E Debug is not servicing a job.

CPF9590 E Debugged job not stopped.

API introduced: V4R2

 Top | “Debugger APIs,” on page 1 | APIs by category

Create View APIs

The create view APIs create view information, which is then available to source-level debugger

applications through the source debugger APIs.

The create view APIs are:

v “Add View Description (QteAddViewDescription) API” on page 75 (QteAddViewDescription) describes

a view to be created.

v “Add View File (QteAddViewFile) API” on page 78 (QteAddViewFile) describes the files that can be

used to construct the text for a view.

v “Add View Map (QteAddViewMap) API” on page 81 (QteAddViewMap) describes how to map

positions in one view to positions in another view.

v “Add View Text (QteAddViewText) API” on page 85 (QteAddViewText) describes the pieces of text

making up the view text.

v “End View Creation (QteEndViewCreation) API” on page 90 (QteEndViewCreation) completes view

creation processing.

v “Start View Creation (QteStartViewCreation) API” on page 91 (QteStartViewCreation) initializes the

view creation environment.

 Top | “Debugger APIs,” on page 1 | APIs by category

74 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Add View Description (QteAddViewDescription) API

 Required Parameter Group:

1 Previous view number

Input Binary(4)

2 View type

Input Char(10)

3 Input/output

Input Char(10)

4 Create map

Input Char(10)

5 View description

Input Char(50)

6 View number

Output Binary(4)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTECRTVS

 Threadsafe: No

The program uses the Add View Description (QteAddViewDescription) API to add a new view in the

existing view information. The added view can then be used on subsequent APIs when providing text

and map details associated with this view.

It is the responsibility of each processor to create its input view, which is the root source file read by the

processor. Each processor must also create its output view, which is the source produced by the processor.

Other intermediate views may be produced, but, as a minimum, there must be a map between a

processor’s input and output view.

If a processor discards views produced by previous preprocessors, then it is not necessary for the input

source view to be created. For example, the C compiler can create only a listing file view, as long as it

discards all previous views.

It is possible to create several views at one time. It is the responsibility of the processes creating multiple

views to manage them.

When a view is created, a handle to that view is returned in the form of a view number. This number is

needed when adding text or maps that refer to the view. Once a view has been created, it cannot be

created again. However, text and maps can be added to the view if it already exists. Thus, one processor

can create the view, and another processor can add a map to the view, if that processor knows the view

number.

Debugger APIs 75

There is only one statement view per module. If the statement view is created more than once, an error

results. However, the statement view number is returned. This allows one processor to create the

statement view and another processor to determine which number the view is.

Note: The following restrictions apply to the adding of views.

1. If a *TEXT view is added and that view refers to text in a previous view, the previous view must also

be a *TEXT view.

2. The *INPUT and *OUTPUT views of a processor must be *TEXT views. A processor does not have to

create these views.

Required Parameter Group

Previous view number

INPUT; BINARY(4)

 The view number of a previous view whose text is used in creating the text for this view. When

describing text for this view, it can be indicated that part of the text is a direct copy of text in the

previous view. This allows the API to automatically generate a map between this view and the

previous view.

 As an example, if a preprocessor takes as input some source, changes it by expanding macros or

SQL statements, and outputs the changed source, then the output view would have the input

view as its previous view. When creating text from the output view, some of the text could come

from the input view.

 The previous view of a *TEXT view must also be a *TEXT view.

 If there is no previous view, specify zero for the view number.

View type

INPUT; CHAR(10)

 The type of view being created. Not all view types need be present in the view information. View

type can be one of the following values:

 *TEXT The view may contain supplied text as a result of macro

expansions. Text may also come from a previous view or

from files.

*LISTING Text for this view comes entirely from supplied text.

Thus, the entire text for this view is encapsulated with

the view debug data and is not dependent on the

existence of source files.

*STATEMENT This view has no source text. Instead, the text of the view

consists of HLL statement number, statement type, and

the procedure dictionary ID. This view is necessary

because breakpoint positions are given in terms of

positions in this view.

Input/output

INPUT; CHAR(10)

 Indicates whether the view is an input view, an output view, or an intermediate view. An input

view is the view created from the output of the previous processor, or the view created from the

root source file. It is not necessary for each processor to have an input view.

 An output view is the view created by the processor to be input to the next processor. If a

processor creates views that will not be used by any subsequent processors, then no output view

is specified.

76 iSeries: Debugger APIs

The allowable values for this parameter are:

 *INPUT The view is an input view. This means that it must come

from a root source file created by the user or by a

previous processor, generally the input file specified on

Start View Creation.

*OUTPUT The view is an output view. This means that it forms the

text of a view that may be read by a subsequent

processor, and is generally stored in the output file

specified on Start View Creation.

blank The view is neither an input nor an output view, but is

an intermediate view produced by the processor.

Create map

INPUT; CHAR(10)

 Specifies whether the using program will be supplying mapping information for this view, or

whether the source debugger support should infer (create) the mapping at the time the text is

described.

 The purpose of the automatic mapping is to allow the ease of creating an include view. An

include view has a previous view (usually the input view) which consists of only one file. The

include view gets its text from this file and from include files.

 This parameter applies only when the view type specified in the previous parameter is *TEXT,

and when this view has a previous view. A map can then be inferred from the previous view to

this view. To do so, the following criteria must be met:

v This view must contain text from the previous view whenever possible.

v The first file specified on the QteAddViewFile API call for this view must be the file which is

equivalent to the previous view.

v When constructing the include view, the line with the include statement must never be

included in the text of the view. Instead, it is replaced with the file that is specified.

Create map can be one of the following values:

 *YES The source debugger support should infer the map

between this *TEXT view and its previous view based on

the text added with the QteAddViewText API. This is the

only map to this view that is inferred.

*NO The program creating this *TEXT view uses the

QteAddViewMap API to provide mapping information

for this view.

View description

INPUT; CHAR(50)

 A character string that describes the view being created. The source debugger has the option of

displaying this text with the view for identification purposes. The description should be

left-justified.

View number

OUTPUT; BINARY(4)

 A number used to identify the view. Other APIs must be passed this number when they require a

view.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Debugger APIs 77

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9547 E Previous view not correct.

CPF9549 E Error addressing API parameter.

CPF954B E Statement view already exists.

CPF954D E View type not valid.

CPF9555 E Create Map parameter not valid.

CPF9556 E API not valid at this time.

CPF955A E Input Output parameter not valid.

CPF955D E View data overflow. All debug data lost.

API introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

Add View File (QteAddViewFile) API

 Required Parameter Group:

1 File descriptor buffer

Input Char(*)

2 Number of entries

Input Binary(4)

3 Format name

Input Char(8)

4 View number

Input Binary(4)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTECRTVS

 Threadsafe: No

The Add View File (QteAddViewFile) API provides a list of files that can be used when describing text

for a previously added view. If a file is read more than once (such as a multiple included file), it should

be added multiple times. When this file needs to be identified to other APIs, its file index is given, which

is an index into the list of files supplied. The first file supplied has an index of zero.

The first file added to a view must be the root file for that view. For example, if a processor produces a

source view, where a root file includes other files, the root file must be specified as the first file for the

view. This is true even if the file is not the first file to produce view text (which would happen if an

include statement is on the first line of the file).

78 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm

All files for a view must be added at one time, with one call to this API.

Required Parameter Group

File descriptor buffer

INPUT; CHAR(*)

 The input variable containing the list of files that make up the specified view text.

 The source debugger support does not validate the existence of this file. This validation is done

when text from the file is retrieved.

Number of entries

INPUT; BINARY(4)

 The number of files that are provided in the file descriptor buffer parameter.

 Many files may be described in a single file descriptor buffer. However, each entry must

represent a single file, and this parameter must be a count of the number of files provided.

 For format FILA0200, the number specifies the number of format entries, each containing seven

fields, that are present before the external file names buffer.

Format name

INPUT; CHAR(8)

 The content and format of the information supplied by the calling program in the file descriptor

buffer. The valid values for format name are:

 FILA0100 OS/400 file

FILA0200 External file (workstation file not on an iSeries server) or

OS/400 integrated file system file

For more information, see “FILA0100 Format” or “FILA0200 Format” on page 80.

View number

INPUT; BINARY(4)

 The number assigned by the debug support as an output parameter on the Add View Description

API, which must be called prior to this API. If a file is used for more than one view, it must be

supplied once for each view in which it is used.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

FILA0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) OS/400 file name

10 A CHAR(10) OS/400 file library

20 14 CHAR(10) OS/400 member name

Debugger APIs 79

error.htm#HDRERRCOD
error.htm#HDRERRCOD

FILA0200 Format

 Offset

Type Field Dec Hex

Note: The first seven fields repeat the number of times specified in the number of entries parameter.

 BINARY(4) Offset of file name

 BINARY(4) Length of file name

 BINARY(4) File flag

 BINARY(4) CCSID of file name

 CHAR(2) Country or region ID of file

name

 CHAR(3) Language ID of file name

 CHAR(3) Reserved

Note: The following field occurs after the preceding header fields.

 CHAR(*) File names buffer

Field Descriptions

OS/400 file library. The name of the library that contains the file being listed. It is an OS/400 object

name, left-justified, and padded with blanks.

OS/400 file name. The name of the OS/400 file being listed. It is an OS/400 object name, left-justified,

and padded with blanks.

OS/400 member name. The name of the member in the file being listed. It is an OS/400 object name,

left-justified, and padded with blanks.

CCSID of file name. The CCSID the file name is in. A value of zero indicates to use the CCSID value of

the job. A value of 65 535 causes an error message to be sent and the request to be ended.

Country or region ID of file name. The country or region ID of the file name. A value of blanks

indicates that the country or region ID of job should be used.

File flag. Whether the file is an OS/400 integrated file system file or an external file (a workstation file

not on an iSeries server).

 0 External file

1 OS/400 integrated file system file

File names buffer. The names of external files or OS/400 integrated file system files being listed. The file

names are laid out one after another in this buffer. There is a pair of offset and length fields for each file

name in this buffer.

Language ID of file name. The language ID of the file name. A value of blanks indicates to use the

language ID value of the job.

Length of file name. This is the length in bytes of the external file name in the external file names buffer.

Offset of file name. This offset from the start of the file descriptor buffer specifies the start of an external

file name.

80 iSeries: Debugger APIs

Reserved. Reserved for future use.

Error Messages

 Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF9556 E API not valid at this time.

CPF9558 E View already contains file descriptors.

CPF955B E Number of entries not valid.

CPF955D E View data overflow. All debug data lost.

CPF956B E File name length not valid.

CPF956C E File name offset not valid.

CPF9575 E File flag not valid.

CPF9581 E CCSID of file name parameter not valid.

API introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

Add View Map (QteAddViewMap) API

 Required Parameter Group:

1 Map descriptor buffer

Input Char(*)

2 Number of entries

Input Binary(4)

3 Format name

Input Char(8)

4 From view number

Input Binary(4)

5 To view number

Input Binary(4)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTECRTVS

 Threadsafe: No

Debugger APIs 81

#TOP_OF_PAGE
aplist.htm

The Add View Map (QteAddViewMap) API is used to map positions in one view to positions in another

view. Both the view being mapped from and the view being mapped to must be previously added with

the Add View Description API.

When mapping one view to another view, positions on both views are specified. There are two ways of

specifying a position in the view:

v A line and column number in the view can be specified. This is the line number of the text of the view.

The text is the concatenation of all text described by text descriptors.

v Alternatively, a file index, and a line and column in the file, can be specified. This allows view

positions to be specified in terms of file positions.

A few rules must be followed when using the file method to specify positions. These rules pertain to the

view for which file positions are to be specified:

1. The view must be a text view (type *TEXT).

2. All positions in the view must be specified using the file method. File positions and view positions

may not be mixed.

3. The view may have a *TEXT view as a previous view, but the text from the previous view must

consist of exactly one text descriptor, and that text descriptor must indicate that text comes from a file.

All lines in the from view must map to a position in the to view. For this reason, the first element in the

mapping must specify line 1 of the from view.

This API is also used when mapping locations in a view to HLL statement numbers (the *STATEMENT

view). This is accomplished by referencing the locations in the from view parameters (from view number

and from line) and specifying the statement view number in the to view parameters (to view number and

to line).

This API is also used when mapping HLL statement numbers (the statement view) to block numbers.

This is accomplished by putting positions in the *STATEMENT view in the from line parameter and the

block number in the to line parameter.

All the map positions for the two views must be added at once, with one call to this API. For this reason,

the maps must be built up in a buffer as the processor produces its output. At the end of view creation,

all maps are then supplied to this API.

Required Parameter Group

Map descriptor buffer

INPUT; CHAR(*)

 The input variable containing view-mapping information that is to be passed to the API. This

variable may contain multiple sets of information as long as each format in the variable is the

same and the number of entries is specified appropriately.

 Note: It is required that all map descriptors for a view be supplied with one call to this API.

Number of entries

INPUT; BINARY(4)

 The number of map descriptors that are provided in the map descriptor buffer parameter.

 Many map entries may be described in a single map descriptor buffer. However, each entry must

represent a single map descriptor, and this parameter must be a count of the number of entries

provided.

 Each entry must contain all fields indicated, but, depending on the type of map being described

by the entry, certain fields will not be used by the API.

82 iSeries: Debugger APIs

Format name

INPUT; CHAR(8)

 The content and format of the information supplied by the calling program in the map descriptor

buffer. The valid values for format name are:

 MAPA0100 Line and column mapping

From view number

INPUT; BINARY(4)

 The number of the view being mapped from. This number must have been obtained from a

previously added view with the Add View Description API.

 Note: The from view number cannot refer to a statement view unless a map block is being

created. In other words, a statement view cannot be mapped to a text view. However, text views

may be mapped to the statement view.

To view number

INPUT; BINARY(4)

 The number of the view being mapped to. This number must have been obtained from a view

previously added with the Add View Description API. The special value supported is:

 -1 This may be specified when providing a map from a

*STATEMENT view to block identifiers.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

MAPA0100 Format

The following table shows the information supplied in the MAPA0100 format:

 Offset

Type Field Dec Hex

0 0 BINARY(4) From file index

4 4 BINARY(4) From line

8 8 BINARY(4) From column

12 C BINARY(4) To file index

16 10 BINARY(4) To line

20 14 BINARY(4) To column

24 18 BINARY(4) Map type

Field Descriptions

From column. The column number where text is located. This is the character position on the line

specified above. Column numbers in the range 1 through 255 can be specified.

Note: Column numbers are not supported at this time. For upward compatibility, you should

specify a value of 1.

Debugger APIs 83

error.htm#HDRERRCOD
error.htm#HDRERRCOD

From file index. The number of the file, if the position is specified in terms of a file. This file must have

been added and used in a text descriptor of the view. If the position is specified in terms of a view, the

file index must be set to special value -1.

When file 0 is specified and the view has a previous view, then this file is assumed to mean a line in the

previous view, because the first file specified in the file descriptor must be the root source file used to

construct this view. This root source file is the same as the previous view.

From line. The line number of the view or file where the text is mapped from.

When the from view is a *STATEMENT view, this parameter indicates which statement to map from. Its

position in the *STATEMENT view is supplied, the first statement having position 1.

Map type. Specifies how text from the from view is being mapped to the to view at the position

indicated.

 0 The type is not supplied, and is allowed only for

statement or block mappings where the type is always

known.

1 The text from the from view is being copied to the to

view at the specified positions.

2 The text in the to view is an expansion of text in the from

view at the specified positions. This is because of a macro

expansion or an include statement.

To column. The column number specifying the starting character position within the line where the text

is to go. Column numbers in the range 1 through 255 can be specified.

Note: Column numbers are not supported at this time. For upward compatibility, you should

specify a value of 1.

To file index. The number of the file, if the position is specified in terms of a file. This file must have

been added and used in a text descriptor of the view. If the position is specified in terms of a view, the

file index must be set to special value -1.

When file 0 is specified and the view has a previous view, then this file is assumed to mean a line in the

previous view, because the first file specified in the file descriptor must be the root source file used to

construct this view. This root source file is the same as the previous view.

To line. The line number of the view or file where the text is mapped to.

When the to view is a *STATEMENT view, this parameter indicates which statement to map to, the first

view having position 1.

When the to view is a block view (special value -1), this parameter indicates which block number to map

to.

Error Messages

 Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9543 E From view not found.

CPF9544 E To view not found.

84 iSeries: Debugger APIs

Message ID Error Message Text

CPF9549 E Error addressing API parameter.

CPF9551 E File not found.

CPF9552 E Cannot map between views.

CPF9553 E Map type not defined.

CPF9556 E API not valid at this time.

CPF955B E Number of entries not valid.

CPF955D E View data overflow. All debug data lost.

API introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

Add View Text (QteAddViewText) API

 Required Parameter Group:

1 View number

Input Binary(4)

2 Text descriptor buffer

Input Char(*)

3 Number of entries

Input Binary(4)

4 Format name

Input Char(8)

5 Supplied text buffer

Input Char(*)

6 Length of text buffer

Input Binary(4)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTECRTVS

 Threadsafe: No

The Add View Text (QteAddViewText) API is used to describe a piece of text of a previously added view.

As a processor reads its input source, it creates at least one view. This API is issued to add the directions

for re-creating the text of these views. For the debugger to show the text that makes up a view, the

location of the pieces of text that make up the view must be specified.

When the view is reconstructed by the debugger, the pieces of text will be retrieved and concatenated

into a single piece of text, following the directions given when this API is called. Thus, when it is

mentioned that text is copied, it is referring to a later time, when the view is reconstructed.

Debugger APIs 85

#TOP_OF_PAGE
aplist.htm

All the text for a view must be added at once, with one call to this API. For this reason, the text must be

built up in a buffer as the processor produces its output. At the end of view creation, all text is then

supplied to this API.

If any text comes from files, the file descriptors must have been previously added to the view with the

Add View File (QteAddViewFile) API.

Required Parameter Group

View number

INPUT; BINARY(4)

 The number of the view to which a piece of text is being added. This number must be the same

as the number previously returned by the Add View Description API.

Text descriptor buffer

INPUT;CHAR(*)

 The input variable containing the text descriptors. Text descriptors define the location of text used

to build the view specified in the view name parameter.

Number of entries

INPUT;BINARY(4)

 The number of text descriptors that are provided in the text descriptor buffer parameter.

 Many pieces of text may be described in a single text descriptor buffer. However, each entry must

represent a single piece of contiguous text, and this parameter must be a count of the number of

entries provided.

 Each entry must contain all fields indicated, but, depending on the type of text being described

by the entry, certain fields will not be used by the API.

 If any text is supplied by the calling program, it is identified by a text descriptor, but the text

itself is contained in the supplied text buffer.

Format name

INPUT; CHAR(8)

 The content and format of the information supplied by the calling program in the text descriptor

buffer. The valid values for format name are:

 TXTA0100 Used when the text being added to this view can come

from any of the following:

v Blanks

v Stored in a file

v Copied from the previous view

v Supplied by the calling program within the supplied

text buffer parameter

This is the case for a *TEXT view.

TXTA0101 Used when the entire text for this view is supplied text.

This is the case for a *LISTING view.

TXTA0102 Used when statement information for a *STATEMENT

view is to be supplied.

TXTA0103 Used when the entire text for this view is supplied text.

This is the case for a *LISTING view. Note that this

format is identical to TXTA0101; however, when the

TXTA0103 format is specified, the listing view that is

created will be compressed. When it is reconstructed, it

will be decompressed at that time.

86 iSeries: Debugger APIs

Supplied text buffer

INPUT; CHAR(*)

 The input variable that is to be passed to the API, containing the text that is supplied when a text

descriptor in the text descriptor buffer parameter indicates that text is supplied. Text descriptors

within the text descriptor buffer refer to text locations within this buffer by the offset from the

beginning of the buffer. The piece of text is ended by a NULL (hex 00) character. To conserve

storage, delete the trailing blanks in lines of supplied text, and end the text with a null character.

 Note: A line of supplied text must not be more than 255 characters in length, not counting the

NULL character.

Length of text buffer

INPUT; BINARY(4)

 The length of the supplied text buffer.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

TXTA0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Text location

10 A CHAR(2) Reserved

12 C BINARY(4) File index

16 10 BINARY(4) Starting offset

20 14 BINARY(4) Number of lines

24 18 BINARY(4) From line

TXTA0101 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Starting offset

TXTA0102 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Procedure dictionary ID

4 4 BINARY(4) Statement number

8 8 CHAR(1) Statement type

Debugger APIs 87

error.htm#HDRERRCOD
error.htm#HDRERRCOD

TXTA0103 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Starting offset

Field Descriptions

File index. A file member added by the Add View File API. This field is required if the text location is set

to *FILE; otherwise, it is ignored. The first file added for the specified view is file 0, the second is file 1,

and so forth.

When the view has a previous view, file 0 should not be specified. File 0 is assumed to mean a line in the

previous view because the first file specified in the file descriptor must be the root source file used to

construct this view. This root source file is the same as the previous view. Instead, *PREVIOUS should be

specified in the text location field. If file 0 is specified instead of the previous view and the previous view

was created by another preprocessor that created a temporary file as its output, that file may not exist at

run time. In that case, text for the view could not be retrieved. However, if *PREVIOUS is specified, the

View Retrieval API can use the text descriptors of the output view created by the preprocessor to

reconstruct the text.

Note: The source debugger support does not validate the existence of this file. It merely uses the

name in the view information to refer to the location of debug data. When the text of the view is

reconstructed, text will be retrieved from the file named in this parameter (and the member name

parameter), and the file name will be validated at that time.

From line. The line number where text is located. If the text location is a file, this is the line number in

that file. If the text location is a previous view, this is the line position within that view. This can be

thought of as the start line position. This field is required if the text location is set to *FILE or

*PREVIOUS.

Number of lines. The number of lines of text being described. It is intended that views be created in

order, where each piece of text comes directly after the previous text added. This field is required when

text location is set to *FILE or *PREVIOUS.

Procedure dictionary ID. The dictionary number of the procedure where the statement is located.

Reserved. Reserved for future use.

Starting offset. The location within the supplied text buffer of the start of the supplied text. This is an

offset from the beginning of the buffer to the start of the text. This field is required if the text location is

set to *SUPPLIED in the TXTA0100 format.

Statement number. The HLL statement number of the statement.

Statement type. The type of the statement being added. Possible values are:

 X’01’ INIT CODE

X’02’ PROC ENTRY

X’03’ PROC EXIT

X’04’ ALLOC

X’05’ STMT

X’06’ ENTRY

X’07’ EXIT

88 iSeries: Debugger APIs

X’08’ MULTIEXIT

X’09’ PATH LABEL

X’10’ PATH CALL BGN

X’11’ PATH CALL RET

X’12’ PATH DO BGN

X’13’ PATH TRUEIF

X’14’ PATH FALSEIF

X’15’ PATH WHEN BGN

X’16’ PATH OTHERW

X’17’ GOTO

X’18’ POST COMPOUND

Text location. The location of the text being referred to. This field is required for all entries.

 *FILE The text is stored in a file.

*PREVIOUS The text is a copy of the previous view text. The previous

view is specified when the view is created.

*SUPPLIED The text is supplied by the API user within the supplied

text buffer parameter. The text that is supplied by the

using program must be in the suppled text buffer

parameter and referred to by a text descriptor within the

text descriptor buffer parameter.

*BLANK The text consists of blank lines. The number of blank

lines inserted is specified by the number of lines field.

Error Messages

 Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9542 E View not found.

CPF9545 E No previous view.

CPF9549 E Error addressing API parameter.

CPF954E E Text location is not valid.

CPF9551 E File not found.

CPF9552 E Cannot map between views.

CPF9556 E API not valid at this time.

CPF9557 E View already contains text descriptors.

CPF955B E Number of entries not valid.

CPF955C E Supplied Text Length parameter not valid.

CPF955D E View data overflow. All debug data lost.

CPF9569 E Missing supplied text.

CPF956A E No such text in previous view.

API introduced: V4R2

 Top | “Debugger APIs,” on page 1 | APIs by category

Debugger APIs 89

#TOP_OF_PAGE
aplist.htm

End View Creation (QteEndViewCreation) API

 Required Parameter Group:

1 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTECRTVS

 Threadsafe: No

The End View Creation (QteEndViewCreation) API is used by a processor when all debug data views

have been created. At that time, views are written to the output

OS/400 library file member or OS/400

integrated file system file

(if any) specified on the Start View Creation API. This End View Creation

API should not be called if the view is not complete (for example, if a compiler that is creating the view

fails the compilation).

If the output file specified on the Start View Creation API is an OS/400 integrated file system file, the

End View Creation API will create a debug view integrated file system file. The debug view integrated file

system file will be used to hold debug view information. The debug view integrated file system file will

have the same name as the integrated file system output file with the extension of ″.dbgvwinfo″

appended at the end.

Authorities

Authority Required

The authorities required are dependent on the output file specified on the Start View Creation

API.

v *OBJOPR + *ADD authority to the output file

v *EXECUTE authority to the output file library

v *X authority to each directory in the path of the debug view file

v *WX authority to the parent directory of the debug view file

Required Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

90 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9546 E View information damaged.

CPF9549 E Error addressing API parameter.

CPF9556 E API not valid at this time.

CPF955D E View data overflow. All debug data lost.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9809 E Library &1 cannot be accessed.

CPF9810 E Library &1 not found.

CPF9815 E Member &5 file &2 in library &3 not found.

CPF9820 E Not authorized to use library &1.

CPF9822 E Not authorized to file &1 in library &2.

CPFA0D4 E File system error occurred. Error number &1.

API introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

Start View Creation (QteStartViewCreation) API

 Required Parameter Group:

1 Input file descriptor buffer

Input Char(*)

2 Output file descriptor buffer

Input Char(*)

3 Format name

Input Char(8)

4 Discard previous views

Input Char(10)

5 Processor ID

Input Char(20)

6 View CCSID

Input Binary(4)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTECRTVS

 Threadsafe: No

The calling program uses the Start View Creation (QteStartViewCreation) API to initialize the debug view

creation environment. This API should be the first one of the view creation APIs to be called.

Debugger APIs 91

#TOP_OF_PAGE
aplist.htm

This calling program is usually a text preprocessor or a compiler. In this document, the term processor

will be used to specify any program that reads input text and produces view data for the debugger.

The processor that calls the Start View Creation API must provide the names of the

input file read and

the output file created (if any). The input and output files may be OS/400 library files or OS/400

integrated file system files.

The input file name is the name of the root source file read by the processor. If the input file is an

OS/400 library file created by a previously run processor, then view information is stored with the file. If

the input file is an OS/400 integrated file system file, the view information is stored in a debug view

integrated file system file that was created by the End View Creation API. The name of the debug view

integrated file system file is the same as the input integrated file system file with the extension of

″.dbgvwinfo″ appended at the end. The input file view information is combined with the view

information previously produced by the processor and stored in the output source file specified by the

processor. If the input file is an OS/400 integrated file system file, the debug view integrated file system

file with extension ″.dbgvwinfo″ is deleted after reading the view information it contains.

If an input file is specified and there is no view information associated with the file, it is assumed that

this file is the root source from which the program is created. It is also assumed that the processor that

specifies this file is the first processor in the chain of processors that produces the program.

The processor creating the view supplies the CCSID in which all supplied text is stored. Thus, when view

text is extracted, all supplied text is translated from this CCSID to the CCSID of the job. When view text

(such as macro expansion text) is supplied, it must be supplied in the same CCSID. Text that comes from

other files may be in any CCSID, as it will automatically be translated into the job’s CCSID when the text

is retrieved.

If no input file is specified, it is assumed that a previous processor created view information in a

temporary space, instead of storing it with the file. This is the case when a compiler runs and produces

view information. Since the compiler does not produce an output file to be read by another processor, the

view information is stored in a temporary location associated with the process, and no output file is

specified.

Each processor creates view information that is combined with information produced by previous

processors. The final, and complete, view information is stored by the binder in the module and program

object associated space.

After the view information is complete, the End View Creation API should be called.

The input file must exist and be available at the time this API is issued. The output file must exist and be

available at the time the QteEndViewCreation API is issued.

Authorities

Authority Required

The authorities required are dependent on the format name parameter.

 If the format name is FILA0100:

v *USE authority to the input file

v *EXECUTE authority to the input file library

If the format name is FILA0200:

v *R authority to the input file

v *X authority to each directory in the input file path

v *R and *OBJEXIST authority to the debug view file, if it exists

92 iSeries: Debugger APIs

v *WX authority to the parent directory of the debug view file, if it exists

Required Parameter Group

Input file descriptor buffer

INPUT; CHAR(*)

The name of the file read by the processor creating debug data. This file may have been

created by the customer, or it may be the output of a previously run preprocessor. The special

value of *NONE is used when input from the processor does not come from a source file.

In

general, the only processor which would indicate *NONE is the back end of the compiler.

The

*NONE special value must be specified in the OS/400 file name field of the FILA0100 format or

in the file name field of the FILA0200 format.

 This file may contain view information if it is created by a previously run preprocessor.

 The structure of this parameter is specified by the format name parameter.

Output file descriptor buffer

INPUT; CHAR(*)

The file written by the processor creating debug data.

A special value of *NONE for the

output file indicates that the view information created will remain with the job and will be

passed to the next compilation step without being associated with a specific file.

Generally,

only the compiler uses this special value, as it does not create a source file to be read by another

processor. The *NONE special value must be specified in the OS/400 file name field of the

FILA0100 format or in the file name field of the FILA0200 format.

 The associated space of this file will contain view information created by this processor in

addition to view information created by any previous preprocessor steps. It is the responsibility

of the processor to create this file and make it available before the QteEndViewCreation API is

called.

 The structure of this parameter is specified by the format name parameter.

Format name

INPUT; CHAR(8)

 The content and format of the information supplied by the calling program in the input file

descriptor buffer and the output file descriptor buffer.

The valid values for format name are:

 FILA0100

OS/400 file

FILA0200 OS/400 integrated file system file

Discard previous views

INPUT; CHAR(10)

 Whether the program creating debug view information wants the source debugger support to

throw away any previously created view information. This allows a processor to force the view

information created to be the only debug data available. In general, processors would specify

*NO to allow any previous processor’s view information to be included in the final program

object.

 *YES The source debugger support does not use any previously

built view information but rather starts with the

information provided by the processor creating debug

data.

Debugger APIs 93

*NO The source debugger support uses any previously built

and existing view information and adds to it the view

information created during this compiler step.

Processor ID

INPUT; CHAR(20)

 The processor that creates view information.

View CCSID

INPUT; BINARY(4)

 The CCSID of any text supplied to the view creation APIs.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

FILA0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10)

OS/400 file name

10 A CHAR(10)

OS/400 file library

20 14 CHAR(10)

OS/400 member name

FILA0200 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset of file name

4 4 BINARY(4) Length of file name

8 8 BINARY(4) File flag

12 C BINARY(4) CCSID of file name

16 10 CHAR(2) Country or region ID of file name

18 12 CHAR(3) Language ID of file name

21 15 CHAR(3) Reserved

Note: The following field occurs after the preceding header fields.

24 18 CHAR(*) File name

Field Descriptions

CCSID of file name. The CCSID the file name is in. A value of zero indicates to use the CCSID value of

the job. A value of 65 535 causes an error message to be sent and the request to be ended.

94 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Country or region ID of file name. The country or region ID of the file name. A value of blanks

indicates that the country or region ID of job should be used.

File flag. The file flag specifies that the file is an OS/400 integrated file system file. The only valid value

is:

 1 OS/400 integrated file system file

File name. The name of the OS/400 integrated file system file. A special value of *NONE for an input file

indicates that input from the processor does not come from a source file. A special value of *NONE for

an output file indicates that the view information created will remain with the job and will be passed to

the next compilation step without being associated with a specific file.

Language ID of file name. The language ID of the file name. A value of blanks indicates to use the

language ID value of the job.

Length of file name. This is the length in bytes of the OS/400 integrated file system file name in the file

name buffer.

Offset of file name. This offset from the start of the file descriptor buffer specifies the start of the file

name.

OS/400 file library. The name of the library that contains the file being listed. It is an OS/400 object

name, left-justified, and padded with blanks.

OS/400 file name. The name of the file being listed. It is an OS/400 object name, left-justified, and

padded with blanks. A special value of *NONE for an input file indicates that input from the processor

does not come from a source file. A special value of *NONE for an output file indicates that the view

information created will remain with the job and will be passed to the next compilation step without

being associated with a specific file.

OS/400 member name. The name of the member in the file being listed. It is an OS/400 object name,

left-justified, and padded with blanks.

Reserved. Reserved for future use. This field must be initialized to hexadecimal zeros.

Error Messages

 Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3C39 E Value for reserved field not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9549 E Error addressing API parameter.

CPF9554 E Discard Previous Views parameter not valid.

CPF955D E View data overflow. All debug data lost.

CPF956B E File name length not valid.

CPF956C E File name offset not valid.

CPF9575 E File flag not valid.

CPF9581 E CCSID of file name parameter not valid.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9809 E Library &1 cannot be accessed.

Debugger APIs 95

Message ID Error Message Text

CPF9810 E Library &1 not found.

CPF9815 E Member &5 file &2 in library &3 not found.

CPF9820 E Not authorized to use library &1.

CPF9822 E Not authorized to file &1 in library &2.

CPFA0D4 E File system error occurred. Error number &1.

API introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

View Information APIs

View information APIs retrieve view information, including view text information and view mapping

information, and allow the program to set parameters associated with a view.

The view information APIs are:

v “Map View Position (QteMapViewPosition) API” on page 97 (QteMapViewPosition()) used to map

positions in one view to positions in another view.

v “Register Debug View (QteRegisterDebugView) API” on page 100 (QteRegisterDebugView) registers a

view of a module, which allows a program to be debugged in terms of that view.

v “Remove Debug View (QteRemoveDebugView) API” on page 104 (QteRemoveDebugView) removes a

view of a module that was previously registered by the Register Debug View API. This is necessary

when a program is to be removed from debug mode so it can be deleted and recompiled.

v “Retrieve Statement View (QteRetrieveStatementView) API” on page 105 (QteRetrieveStatementView)

returns the statement view and related information.

v “Retrieve Stopped Position (QteRetrieveStoppedPosition) API” on page 111

(QteRetrieveStoppedPosition) determines if a program is on the call stack and indicates the position in

the view at which the program is stopped if it is on the stack.

v “Retrieve View File (QteRetrieveViewFile) API” on page 113 (QteRetrieveViewFile) returns all the files

and text information necessary to construct the text for a view.

v “Retrieve View Line Information (QteRetrieveViewLineInformation) API” on page 117

(QteRetrieveViewLineInformation) returns information about the specified number of lines in a

registered view.

v “Retrieve View Text (QteRetrieveViewText) API” on page 120 (QteRetrieveViewText()) retrieves the text

of a view.

 Top | “Debugger APIs,” on page 1 | APIs by category

96 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Map View Position (QteMapViewPosition) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 From view ID

Input Binary(4)

4 From line number

Input Binary(4)

5 From column number

Input Binary(4)

6 To view ID

Input Binary(4)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTEDBGS

 Threadsafe: No

The Map View Position (QteMapViewPosition) API maps positions from one view to another view within

the same program and module. A specified position in the view identified in the from view ID parameter

is used for the mapping. The position is specified as a line number and a column number in the from

view ID.

A position in one view can map to more than one position in another view. For example, an SQL

statement in the SQL input source view may map to many positions in the C input source view.This is

because a single SQL statement may distribute source throughout the output of the SQL processor.

One or more positions in the to view ID are returned as a line number and a column number.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested if you specify the length of receiver variable parameter

correctly. As a result, the API returns only the data that the area can hold. For more information

on the size and format of the receiver variable, see “Format of Receiver Variable” on page 98.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. The minimum length is 8 bytes.

Debugger APIs 97

It is suggested that a receiver variable length be given that is large enough to hold one map

element. Because this is normally the number of elements returned, a single call to this API is

usually sufficient.

From view ID

INPUT; BINARY(4)

 The identifier of a previously registered view, which is obtained using theRegister Debug View

API. This ID specifies the from view in the mapping function provided.

From line number

INPUT; BINARY(4)

 The line number in the view specified by the from view ID parameter mapped to aline number in

the view specified by the to view ID parameter.

 If the information in the from view ID parameter is a statement view, this parameter represents

the line number in the statement view.

 Note: The statement view is the lowest level view. Breakpoints, steps, and unmonitored

exceptions are reported as a line number within this view. Therefore, the statement view must

exist and be registered to accomplish source level debugging.

From column number

INPUT; BINARY(4)

 The position in the line specified by the from line number parameter. Column numbers are 1

through 255.

 If the from view ID parameter is a statement view, this parameter is not used and should be set

to column one.

To view ID

INPUT; BINARY(4)

 The identifier of a previously registered view, which is obtained using the Register Debug View

API. This specifies the to view in the mapping function provided.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Receiver Variable

The following table shows the information supplied in the receiver variable parameter.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of map elements

Note: The following fields are repeated for each map element.

 BINARY(4) Line number

 BINARY(4) Column number

98 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user.

Bytes returned. The number of bytes of data returned to the user.

Column number. The column number within the from line number parameter that maps to the current

position in the to view ID parameter. Column numbers are 1 through 255.

If the view is a statement view, this number is not used and is set to column one.

Line number. The line number in the view specified by the to view ID parameter.

Number of map elements. Theline number and column number fields are repeated this number of times,

once for each map available.

Error Messages

 Message ID Error Message Text

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9543 E From view not found.

CPF9544 E To view not found.

CPF9548 E Map not available.

CPF9567 E Column number not valid.

CPF9568 E Line number not valid.

CPF9549 E Error addressing API parameter.

API introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Debugger APIs 99

#TOP_OF_PAGE
aplist.htm

Register Debug View (QteRegisterDebugView) API

 Required Parameter Group:

1 View ID

Output Binary(4)

2 Number of lines

Output Binary(4)

3 Returned library

Output Char(10) or Char(*)

4 View timestamp

Output Char(13)

5 Qualified program name

Input Char(20) or Char(*)

6 Program type

Input Char(10)

7 Module name

Input Char(10) or Binary(4)

8 View number

Input Binary(4)

9 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The Register Debug View (QteRegisterDebugView) API registers a view of a module, which allows a

program to be debugged in terms of that view. An identifier to the view is returned on successful

completion of the API to be used in subsequent view information APIs. A program is considered to be

active under ILE debug only after at least one of its debug views is registered.

Views retrieved by the Retrieve Module Views (QteRetrieveModuleViews) API can be registered. This

includes both ILE and OPM program views. OPM program views must have been created by the OPM

CL, OPM COBOL, or OPM RPG compiler using the *SRCDBG or *LSTDBG option.

This API will also register JAVA class file views. In this case the input program type parameter must be

*CLASS and the input qualified program name parameter must be a null-terminated JAVA class file

name. The class path name of the file that contains the class file is returned in the returned library

parameter.

If a request is made to register an already registered view, no error occurs. Instead, the previous ID is

returned.

Note: Before registering views for a program again, it is recommended that all views for that program

first be removed.

100 iSeries: Debugger APIs

Authorities

The authorities required are dependent on the program type parameter. If the program type is *PGM or

*SRVPGM, the authorities are as follows:

Program Authority

Either *SERVICE and *USE, or *CHANGE

Library Authority

*USE

 If the program type is *CLASS, the authorities are as follows:

Class File Authority

*R

Required Parameter Group

View ID

OUTPUT; BINARY(4)

 The returned ID of the successfully (or previously) registered debug view. The source debugger

support supplies and maintains the view IDs. If no error is reported by the API, this value is

used by the program in view ID input parameters that occur on subsequent debugger APIs.

Number of lines

OUTPUT; BINARY(4)

 The number of lines of text in the view.

Returned library

OUTPUT; CHAR(10) or CHAR(*)

 The format of this parameter is dependent on the program type parameter. If the program type is

*PGM or *SRVPGM, the format of this parameter is OUTPUT CHAR(10) as follows:

 The library where the program was found. This is useful when *LIBL or *CURLIB is

specified for the program library.

 If the program type is *CLASS, the format of this parameter is OUTPUT CHAR(*) as follows:

 Class path name information for the requested class file. For more information, see “Format

of JAVA Returned Library Parameter” on page 103.

View timestamp

OUTPUT; CHAR(13)

 The date and time the view was created. If this time is greater than the time obtained from the

Retrieve Module Views API, the view may not be the same as the previous one. Users should run

the Retrieve Module Views API before registering the view. The value is the American National

Standard 13-character timestamp CYYMMDDHHMMSS format, where:

 C Century, where 0 indicates years 19xx and 1 indicates

years 20xx.

YY Year

MM Month

HH Hour

MM Minute

SS Second

Qualified program name

INPUT; CHAR(20) or CHAR(*)

Debugger APIs 101

The format of this parameter is dependent on the program type parameter. If the program type is

*PGM or *SRVPGM, the format of this parameter is as follows:

v The name of a program for which a view is to be registered.

v The first 10 characters contain the program name.

v The second 10 characters contain the name of the library where the program is located.

The following special values may be used for the library name:

 *CURLIB The job’s current library.

*LIBL The library list.

If the program type is *CLASS, the format of this parameter is as follows:

 The null-terminated class file name of the JAVA class to register.

Program type

INPUT; CHAR(10)

 The type of program for which a view is to be registered. This is the object type of the program

object. The valid values are:

 *PGM ILE or OPM program

*SRVPGM ILE service program

*CLASS JAVA class file

Module name

INPUT; CHAR(10) or BINARY(4)

 The format of this parameter is dependent on the program type parameter. If the program type is

*PGM or *SRVPGM, the format of this parameter is as follows:

v The name of a module for which a view is to be registered.

v The module name should be left-justified.

v The module name parameter must be specified as all blanks for OPM programs.

Information for this parameter is available by using the Retrieve Module Views API to retrieve

available module names for a specified program.

 If the program type is *CLASS, the format of this parameter is as follows:

v The module name parameter must contain a 4-byte binary field.

v This field contains the number of bytes provided in the returned library parameter for returned

JAVA class path name information.

v The value specified in this parameter must be at least 8 bytes.

View number

INPUT; BINARY(4)

 The number of a view to be registered for subsequent view information and debug command

APIs. If -1 is specified, the statement view is registered. The value -1 is a shortcut to allow the

registering of this view without going through the Retrieve Module Views API to obtain the

number.

 Information for this parameter is available by using the Retrieve Module Views API to retrieve

available view numbers for modules associated with a specific program.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

102 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Format of JAVA Returned Library Parameter

When the program type parameter is *CLASS, class path name information is returned in the returned

library parameter. The following table shows the format of the returned library parameter when JAVA

class file view information is registered. For more information on the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to class path name

C C BINARY(4) Length of class path name

 CHAR(*) Class path name

Field Descriptions

Bytes available. The number of bytes available to be returned in the returned library parameter. If the

bytes available value is larger than the bytes provided value passed in the module name parameter, the

API should be called again with a value that is at least as large as the bytes available. If the space

provided is not large enough, the string space is filled with as many characters of the class path name as

will fit.

Bytes returned. The number of bytes returned in the returned library parameter.

Class path name. The path name of the file that contains the class file that was retrieved.

Length of class path name. The length of the class path name returned.

Offset to class path name. The offset from the start of the returned library parameter to the class path

name.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF954F E Module &1 not found.

CPF955F E Program &1 not a bound program.

CPF9562 E Module &1 cannot be debugged.

CPF9584 E OPM program &1 cannot be added to ILE debug environment.

CPF9585 E Program &1 already active in OPM debug environment.

CPF9587 E Module name value &1 not valid.

CPF9588 E OPM source cannot be accessed.

CPF9591 E Value specified in module name parameter is not valid.

CPF9592 E Class file not found.

CPF9593 E Not authorized to class file.

CPF9594 E JAVA class file not available.

CPF9599 E Class file cannot be debugged.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

Debugger APIs 103

Message ID Error Message Text

CPF9803 E Cannot allocate object &2 in library &3.

CPF9809 E Library &1 cannot be accessed.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

API introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Remove Debug View (QteRemoveDebugView) API

 Required Parameter Group:

1 View ID

Input Binary(4)

2 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The Remove Debug View (QteRemoveDebugView) API removes a view of a module that was previously

registered by the Register Debug View API. This API is needed when a program is to be removed from

debug, so that it can be deleted and recompiled. Once a view is removed from being debugged, its view

number may not be used again.

If the last registered view of a program is removed, all breakpoints are removed from that program, and

the step statement is disabled if it was active.

Required Parameter Group

View ID

INPUT; BINARY(4)

 The ID of a view to be removed from debug. This ID was obtained from a previous use of the

Register Debug View API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

104 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

API Introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Retrieve Statement View (QteRetrieveStatementView) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 View ID

Input Binary(4)

4 Start line number

Input Binary(4)

5 Number of lines

Input Binary(4)

6 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The Retrieve Statement View (QteRetrieveStatementView) API is used to retrieve the statement view and

related information. The statement view information that is retrieved can be useful for breakpoint

processing. The caller must specify the following:

v The registered statement view ID
v The starting statement view line number to be retrieved
v The number of statement view lines to retrieve
v A buffer to contain the statement view and related information

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold. For more information, see “Format

of Receiver Variable” on page 106.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Debugger APIs 105

#TOP_OF_PAGE
aplist.htm

View ID

INPUT; BINARY(4)

 The identifier of the previously registered statement view obtained by using the Register Debug

View (QteRegisterDebugView) API.

Start line number

INPUT; BINARY(4)

 The number of the first statement view line that the API is to retrieve. Statement view lines begin

at line 1.

Number of lines

INPUT; BINARY(4)

 The number of lines of the statement view to be retrieved. This number includes the line

specified in the start line number parameter. If fewer lines than requested are available, the

number of lines placed in the receiver variable may be less than the number specified. No more

than the number of lines specified is placed in the receiver variable.

 The following special value is supported for this parameter:

 0 All lines from the start line number to the end of the

statement view should be retrieved.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Receiver Variable

The receiver variable consists of:

v A receiver variable header section.
v A section containing the statement view lines.
v A section containing information for each procedure in the statement view.
v A string space containing the statement view procedure names.
v A section containing offsets to additional information about individual statement view lines.
v A section containing additional information about individual statement view lines.
v A space containing variable length fields that are referenced by other returned data sections.

Variables containing offsets are used to access statement view data. All offsets are relative to the

beginning of the receiver variable.

Receiver Variable Header Section

The following table shows the information supplied in the receiver variable parameter. For more

information on each field, see “Field Descriptions” on page 109.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to first statement view line

12 C BINARY(4) Number of lines returned

16 10 BINARY(4) Length of statement view line

106 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

20 14 BINARY(4) Offset to first procedure information structure

24 18 BINARY(4) Offset to first statement-view-line additional-information offset.

Statement View Section

The statement view is returned as an array of statement lines. The first statement view line can be

accessed by using the first view line offset in the receiver header. The number of lines returned variable

in the receiver header is used to tell how many statement lines were returned. The total number of bytes

in each line is equal to the line length. Each line has the following format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Statement number

4 4 BINARY(4) Statement type

8 8 BINARY(4) Offset to statement procedure information structure

Procedure Information Section

The procedure information section contains one variable-length data structure for each procedure in the

statement view. The first procedure information data structure can be accessed by using the first

procedure information offset in the receiver header. Each statement view line contains a statement

procedure information offset that can be used to locate procedure information for the statement line. Each

procedure information data structure has the following format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to next procedure information structure

4 4 BINARY(4) Procedure dictionary number

8 8 BINARY(4) Offset to procedure name

12 C BINARY(4) Length of procedure name

16 10 BINARY(4) Offset to first statement line range element

20 14 BINARY(4) Number of statement line ranges

Note: The following fields are repeated for each statement line range.

 BINARY(4) Low line number

 BINARY(4) High line number

Procedure Name String Space

The procedure name string space contains the text of the procedure names in the module. The procedure

name offset in the procedure information section is used to access a procedure name. The procedure

name length is also contained in the procedure information section. The procedure name is converted to

the coded character set identifier (CCSID) of the job.

Debugger APIs 107

Offset

Type Field Dec Hex

 CHAR(*) Procedure name

Statement-View-Line Additional-Information Offsets Section

If the compiler supplies it, additional information is returned for individual statement view lines. For

example, a statement may have a name associated with it, such as a block or label name. Each line in the

statement view section has a corresponding offset to additional information for the line. Thus, the first

offset in this section is used to find the additional information for the first statement view line returned.

The second offset will reference additional information for the second statement view line returned, and

so on. There must be space in the receiver variable for the additional-information offsets of all statement

view lines returned or none of the offsets is returned. The presence of this section is indicated by a

nonzero value in the offset to first statement-view-line additional-information offset in the receiver

header. If this section is present, there is one offset for each statement view line returned. If there is

additional information for a statement view line, the additional information offset for it is nonzero. Each

offset has the following format.

 Offset

Type Field Dec Hex

Note: The following field is repeated for each statement view line returned.

0 0 BINARY(4) Offset to

statement-view-line

additional information

Statement-View-Line Additional-Information Section

If the compiler supplies it, additional information is returned for individual statement view lines. For

example, a statement may have a name associated with it, such as a block or label name. The

statement-view-line additional-information section contains one variable-length data structure for each

statement view line that has additional information associated with it. If there is not enough room in the

receiver variable for all of the additional-information data structures to be returned, the number that fits

is returned. The additional information data structures are referenced by the offsets in the

statement-view-line additional-information offsets section. Each additional-information data structure has

the following format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to statement name

4 4 BINARY(4) Length of statement name

Variable Length Field Section

This section contains space to return variable length fields. These fields are referenced by other returned

data structures through offsets. Usually, a length field would also be contained within the same data

structure that references a field in this space.

108 iSeries: Debugger APIs

Offset

Type Field Dec Hex

 CHAR(*) Variable length field

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

High line number. The high view-line number in the statement view of a procedure statement range.

Length of procedure name. The length of the procedure name in the procedure string space. For OPM

programs the procedure name length is set to a value of 1.

Length of statement name. The length of the statement name associated with the statement view line.

Length of statement view line. The length of each statement view line in the statement view section.

Low line number. The low view-line number in the statement view of a procedure statement range.

Number of lines returned. The number of statement view lines retrieved by this API. This may be less

than the number of lines requested or available if the receiver variable is not large enough to hold the

number of lines requested.

Number of statement line ranges. The number of statement view line ranges in the procedure

information data structure.

Offset to first procedure information structure. The displacement from the start of the receiver variable

to the first procedure information data structure in the procedure information section. This value is zero

when no procedure information is returned because of insufficient receiver variable space.

Offset to first statement line range element. The displacement from the start of the receiver variable to

the first statement range element in the procedure information data structure.

Offset to first statement view line. The displacement from the start of the receiver variable to the first

statement view line. This value is zero if no statement view lines are returned because of insufficient

receiver variable space.

Offset to first statement-view-line additional-information offset. The displacement from the start of the

receiver variable to the first statement-view-line additional-information offset. This value is zero if no

statement-view-line additional-information offsets are returned because of insufficient receiver variable

space, or if the compiler does not support debug data for additional statement view lines.

Offset to next procedure information structure. The displacement from the start of the receiver variable

to the next procedure information data structure. This value is zero when there are no more procedure

information data structures.

Offset to procedure name. The displacement from the start of the receiver variable to the procedure

name. This value is zero if the procedure name is not returned because it would not fit in the procedure

string space.

Debugger APIs 109

Offset to statement name. The displacement from the start of the receiver variable to the statement name

that is associated with the statement view line. For example, this could be a block or label name. This

value is zero if the statement name is not returned because it would not fit in the variable length field

section, or because the compiler did not provide a statement name.

Offset to statement procedure information structure. The displacement from the start of the receiver

variable to appropriate procedure information data structure in the procedure information section. This

value is zero if the procedure information for this statement was not returned because of insufficient

receiver-variable space.

Offset to statement-view-line additional information. The displacement from the start of the receiver

variable to the statement-view-line additional-information data structure. This value is zero if no

statement-view-line additional information is returned because of insufficient receiver variable space, or

because there is no additional information for the statement view line.

Procedure dictionary number. The number that uniquely identifies the procedure in this module. For

OPM programs the procedure dictionary number is set to a value of 0.

Procedure name. The name of the procedure. The procedure name is converted to the CCSID of the job.

For OPM programs the procedure name is set to a blank value with a length of 1 byte.

Statement number. The number that uniquely identifies the statement in the procedure. This number is

shown on the compiler listing. For OPM programs the statement number is the same as the machine

interface (MI) number.

Statement type. The type number of statement produced by the compiler. Possible values are as follows:

 1 INIT CODE

2 PROC ENTRY

3 PROC EXIT

4 ALLOC

5 STMT

6 ENTRY

7 EXIT

8 MULTIEXIT

9 PATH LABEL

10 PATH CALL BGN

11 PATH CALL RET

12 PATH DO BGN

13 PATH TRUEIF

14 PATH FALSEIF

15 PATH WHEN BGN

16 PATH OTHERW

17 GOTO

18 POST COMPOUND

Variable length field. A field referenced by an offset in a returned data structure. The data type is

determined by where it is referenced. For example, a statement name field is a text string.

Error Messages

 Message ID Error Message Text

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

110 iSeries: Debugger APIs

Message ID Error Message Text

CPF9541 E Not in debug mode

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF954A E No source text available.

CPF9563 E Number of lines not valid.

CPF9564 E Starting line number not valid.

CPF9582 E View is not a statement view.

API Introduced: V3R6

 Top | “Debugger APIs,” on page 1 | APIs by category

Retrieve Stopped Position (QteRetrieveStoppedPosition) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 View ID

Input Binary(4)

4 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The Retrieve Stopped Position (QteRetrieveStoppedPosition) API is used to determine if a module in a

program is on the call stack. It indicates the position in the view at which the program stopped if the

program is on the stack. The caller must specify a registered view ID. The most recently called procedure

in the specified module is the one whose line is returned. If a program is on the stack, the stack is

searched from the most recent call backward until a procedure in the module is found. The location in

that procedure is returned.

If no procedure in the identified module is on the stack, a zero is returned.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested if you specify the length of receiver variable parameter

correctly. As a result, the API returns only the data that the area can hold. For more information,

see “Format of Receiver Variable” on page 112.

Length of receiver variable

INPUT; BINARY(4)

Debugger APIs 111

#TOP_OF_PAGE
aplist.htm

The length of the receiver variable. The minimum length is 8 bytes.

 It is suggested that a receiver variable length be given that is large enough to hold one position

element. Because this normally is the number of elements that are returned, a single call to this

API is usually sufficient. Also, this allows the number of stopped positions field to be used to

determine whether the program is stopped. If zero elements are returned, the program is not

stopped in the specified view.

View ID

INPUT; BINARY(4)

 The identifier of a previously registered view obtained using the Register Debug View API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Receiver Variable

The following table shows the information supplied in the receiver variable parameter. For more

information on the fields see, “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of stopped positions

Note: The following fields are repeated for each stopped position.

 BINARY(4) Line number

 BINARY(4) Column number

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Column number. The column number within the line number specified where the program is stopped in

the view ID. Column numbers can be 1 through 255.

Line number. The line number within the view ID where the program is stopped. This number

represents the line number within the view that corresponds to text retrieved using the Retrieve View

Text API.

Number of stopped positions. A stopped position consists of the line number and column number fields

and are repeated this number of times, once for each position available. If the view is not on the stack,

this number is zero. If there is no room in the receiver variable to hold any stopped positions, this

number is also zero. Therefore, there should be enough room in the receiver variable to hold at least one

stopped position.

Because of program optimization, it is possible for the API not to know exactly where the view is

stopped. For this reason, more than one position may be returned.

112 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9548 E Map not available.

CPF9549 E Error addressing API parameter.

API Introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Retrieve View File (QteRetrieveViewFile) API

 Required Parameter Group:

1 Text descriptor receiver variable

Output Char(*)

2 Length of text descriptor receiver variable

Input Binary(4)

3 File name receiver variable

Output Char(*)

4 Length of file name receiver variable

Input Binary(4)

5 Format of file name receiver variable

Input Char(8)

6 View ID

Input Binary(4)

7 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The Retrieve View File (QteRetrieveViewFile) API is used to retrieve all the files and text information

necessary to construct the text for the entire view specified by the view ID parameter. A list of text

descriptors is returned. Each text descriptor describes where a piece of text for the view comes from,

either from a file specified in the file name receiver variable or from supplied text that may be obtained

using the Retrieve View Text API.

Required Parameter Group

Text descriptor receiver variable

OUTPUT; CHAR(*)

Debugger APIs 113

#TOP_OF_PAGE
aplist.htm

The output variable containing the list of text descriptors, which describe how the specified view

is constructed. For more information, see “Format of Text Descriptor Receiver Variable.”

Length of text descriptor receiver variable

INPUT; BINARY(4)

 The length in bytes of the text descriptor receiver variable parameter. The minimum length is 8

bytes.

File name receiver variable

OUTPUT; CHAR(*)

 The output variable containing the list of files referenced by the text descriptor receiver variable.

Length of file name receiver variable

INPUT; BINARY(4)

 The length in bytes of the file name receiver variable. The minimum length is 8 bytes.

Format of file name receiver variable

INPUT; CHAR(8)

 The content and format of the information to be supplied by the API in the file name receiver

variable. The only valid value is:

 RVFN0100 Format of file name receiver variable

For more information, see “Format of File Name Receiver Variable” on page 115.

View ID

INPUT; BINARY(4)

 The identifier of a previously registered view obtained by using the Register Debug View API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Text Descriptor Receiver Variable

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of text descriptor entries

Note: The following three fields are repeated the number of times specified in the number of text descriptor entries

field.

 BINARY(4) File name index

 BINARY(4) Line number

 BINARY(4) Number of lines

114 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Format of File Name Receiver Variable

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of file name entries

Note: The following eight fields are repeated the number of times specified on the number of file name entries field.

 BINARY(4) Offset of file name

 BINARY(4) Length of file name

 CHAR(8) File format name

 BINARY(4) External or OS/400 IFS file flag

 BINARY(4) CCSID of file name

 CHAR(2) Country or region ID of file name

 CHAR(3) Language ID of file name

 CHAR(3) Reserved

Note: The file names buffer follows all file name entries.

 CHAR(*) File names buffer

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

CCSID of file name. The CCSID the file name is in. The value of this field is only valid for file format

name RTVF0200.

Country or region ID of file name. The country or region ID of the file name. The value of this field is

valid for file format name RTVF0200 only.

External or IFS file flag. Whether the file is an OS/400 integrated file system file or an external file. A

value of 0 means external file; a value of 1 means OS/400 integrated file system file. The value of this

field is valid only for file format name RTVF0200.

File names buffer. A list of file names from which text should be retrieved.

File name index. An index into the file name receiver variable array. 0 is the first file entry in the file

name receiver variable. If the index is -1, the text comes from supplied text.

File format name. The format of a file in the file names buffer. Possible formats are:

 RTVF0100 OS/400 file (see RTVF0100 Format (page 116))

RTVF0200 External or OS/400 HFS file (see RTVF0200 Format (page 116))

Language ID of file name. The language ID of the file name. The value of this field is valid only for file

format name RTVF0200.

Debugger APIs 115

Length of file name. The length in bytes of a file name in the file names buffer.

Line number. The line number in the file that is referenced by the file name index to start reading text

from. If the file name index is -1, this specifies the line number in the view where the supplied text can

be retrieved using the QteRetrieveViewText API.

Number of file name entries. The number of entries returned in the file name receiver variable.

Number of lines. The number of lines of text described by the text descriptor. The number of lines to

read from the file, which is the number of lines of supplied text to be retrieved using the

QteRetrieveViewText API.

Number of text descriptor entries. The number of entries returned in the receiver variable. The file name

index, line number, and number of lines fields are repeated this number of times.

Offset of file name. From the start of the file names buffer, the start of a file name.

Formats of File Format Name

RTVF0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) OS/400 file name

10 A CHAR(10) OS/400 library

20 14 CHAR(10) OS/400 member name

Field Descriptions

OS/400 file name. The name of an OS/400 file from which text should be retrieved. It is an OS/400

object name, left-justified, and padded with blanks.

OS/400 library. The name of a library that contains the file from which text should be retrieved. It is an

OS/400 object name, left-justified, and padded with blanks.

OS/400 member name. The name of the member of the file from which text should be retrieved. It is an

OS/400 object name, left-justified, and padded with blanks.

RTVF0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(*) External file or OS/400 integrated file system file name

Field Description

External file or OS/400 integrated file system file name. The name of an external file or OS/400

integrated file system file from which text should be retrieved. The value of this field is valid only for file

format name RTVF0200.

116 iSeries: Debugger APIs

Error Messages

 Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF954A E No source text available.

API Introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

Retrieve View Line Information (QteRetrieveViewLineInformation) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Receiver variable length

Input Binary(4)

3 Format name

Input Char(8)

4 View ID

Input Binary(4)

5 Start line number

Input Binary(4)

6 Number of lines

Input Binary(4)

7 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The Retrieve View Line Information (QteRetrieveViewLineInformation) API is used to retrieve

information about a specified number of lines in a registered view.

The data returned to the caller of the API indicates whether a given line or range of lines within a view

can be run or not.

Debugger APIs 117

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

 See “RTVL0100 Format” for details on the format of the receiver variable.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided by the receiver variable parameter. If this value is

larger than the actual amount of storage allocated for the receiver variable, the results are not

predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the information returned. The possible format names are:

 RTVL0100 Retrieve view line information.

View ID

INPUT; BINARY(4)

 The identifier of a previously registered view obtained by using the Register Debug View

(QteRegisterDebugView) API.

Start line number

INPUT; BINARY(4)

 The number of the first line in the view for which the API is to retrieve information. This must be

greater than or equal to 1 and less than or equal to the total number of lines in the view.

Number of lines

INPUT; BINARY(4)

 The number of lines in the view for which the API is to retrieve information. This number

includes the line specified in the start line number parameter. Fewer than number of lines

elements may be placed in the receiver variable if fewer lines than requested are available. No

more than number of lines elements are placed in the receiver variable.

 The following special values are supported for this parameter:

 -1 All lines associated with this view starting at the value

specified for the start line number parameter should be

processed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RTVL0100 Format

For a description of the fields in the receiver variable, see “Field Descriptions” on page 119.

118 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to line information array

12 C BINARY(4) Number of line information array elements

16 10 BINARY(4) Length of line information array element

 CHAR(*) Reserved

Note: The following fields describe an element in the line information array and are repeated the “number of line

information array elements” times. The nth element of the array (n > 0) describes the start line number + n-1 line in

the view, where start line number is a parameter to this API.

 CHAR(1) Line disposition

 CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Length of line information array element. The number of bytes occupied by a single element of the line

information array. Line information array elements are contiguous and all have the same length.

Line disposition. Whether the line in the view described by this array element can be run or not.

Possible values are:

 0 Line cannot be run

1 Line can be run

Number of line information array elements. The number of elements in the line information array that

were returned by this API.

Offset to line information array. The offset (in bytes) from the start of the receiver variable to the first

element of the line information array.

Reserved. An ignored field.

Error Messages

 Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF9564 E Starting line number not valid.

CPF957A E Number of lines not valid.

Debugger APIs 119

Message ID Error Message Text

CPF957B E Required information not found for operation.

API Introduced: V3R6

 Top | “Debugger APIs,” on page 1 | APIs by category

Retrieve View Text (QteRetrieveViewText) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 View ID

Input Binary(4)

4 Start line number

Input Binary(4)

5 Number of lines

Input Binary(4)

6 Line length

Input Binary(4)

7 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The Retrieve View Text (QteRetrieveViewText) API is used to retrieve source text from a specified view.

This text may be formatted and displayed by the user of this API. The caller must specify the following:

v A registered view ID
v The starting line number to be retrieved
v The number of lines of text to retrieve
v A buffer to contain the text retrieved

All text retrieved, whether it comes from files or as text supplied by a processor, is in the CCSID of the

job.

If source files have changed since the view was created, diagnostic messages CPF9561 (for OS/400 files)

and CPF9596 (for OS/400 integrated file system files) are sent to the calling program’s message queue for

each file. Error messages CPF9566 (for OS/400 files) and CPF9597 (for OS/400 integrated file system files)

also are issued, and all of the text available is retrieved. The calling program should warn the user that

the view text may be incorrect.

120 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm

If a source file cannot be accessed because it is deleted or the user is not authorized, error messages

CPF9565 (for OS/400 files) and CPF9598 (for OS/400 integrated file system files) are issued. No more text

is retrieved. Text up to that file is retrieved and this is indicated in the fields of the receiver variable. If

the calling program attempts to read text in the view following the file, the starting line number can be

set to a line after the file. The number of lines in the file that should have been read is returned in the

exception data. This allows the calling program to skip over this file if desired.

It is suggested that the calling program buffer the retrieved text to minimize use of this API. Source files

accessed by this API do not remain open across API calls. Performance degradation occurs for every use

of the API that results in file access because of opening and closing files.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested if you specify the length of receiver variable parameter

correctly. As a result, the API returns only the data that the area can hold. For more information,

see “Format of Receiver Variable” on page 122.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable parameter. The minimum length is 8 bytes.

View ID

INPUT; BINARY(4)

 The identifier of a previously registered view obtained by using the Register Debug View API.

Start line number

INPUT; BINARY(4)

 The number of the first line to be retrieved.

Number of lines

INPUT; BINARY(4)

 The number of lines of source text to be retrieved. This number includes the line specified in the

start line number parameter. Fewer than the number of lines may be placed in the receiver

variable if fewer lines than requested are available. No more than the number of lines specified is

placed in the receiver variable.

 The following special value is supported for this parameter:

 0 All of the text associated with this view should be

retrieved.

Line length

INPUT; BINARY(4)

 The length of each line of text to be retrieved. Each line takes exactly this many characters. If the

actual line of text is shorter, it is padded to the right with blanks. If the line is longer than this

length, it is truncated to fit. The line length must be a number from 1 through 255.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Debugger APIs 121

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Format of Receiver Variable

The following tables show the information supplied in the receiver variable parameter. The information

returned depends on the type of view being used. For more information on each field, see “Field

Descriptions” on page 123. For the listing view:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of lines returned

12 C BINARY(4) Line length

Note: The following field is repeated for each line returned. The number of characters is equal to the line length.

 CHAR(*) Listing view source line

For the statement view:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of lines returned

12 C BINARY(4) Line length

Note: The following fields are repeated for each line returned. The total number of characters in each line is equal

to the line length (10 + 10 + 10 + * = line length).

 CHAR(10) Procedure dictionary number

 CHAR(10) Statement number

 CHAR(10) Statement type number

 CHAR(*) Procedure name

For the text view:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of lines returned

12 C BINARY(4) Line length

Note: The following fields are repeated for each line returned.

 CHAR(12) Sequence number

 CHAR(*) Text view source line

122 iSeries: Debugger APIs

Field Descriptions

Bytes available. The number of bytes of data available to be returned.

Bytes returned. The number of bytes of data returned.

Line length. The length of each line of text in the receiver variable parameter.

Listing view source line. The text associated with each line retrieved. The number of characters in each

line is equal to the line length.

Number of lines returned. The number of lines of source text retrieved by this API and available in the

receiver variable. This may be less than the number of lines requested or available, if the receiver variable

is not large enough to hold the text requested.

Procedure dictionary number. The number that uniquely identifies the procedure in this module. The

number is left-justified and padded on the right with blanks. For OPM programs the procedure

dictionary number is set to a value of 0.

Procedure name. The name of the procedure. The name is left-justified and padded on the right with

blanks. For OPM programs the procedure name is blanks.

Sequence number. If the text is from a source physical file, these 12 bytes contain the sequence number

and source date for that line. If the text is from an OS/400 integrated file system file, these 12 bytes are

blank. If the text is supplied by the compiler, these 12 bytes are blank.

Statement number. The number that uniquely identifies the statement in the procedure. The number is

left-justified and padded on the right with blanks. This number is shown on the compiler listing. For

OPM programs the statement number is the same as the machine interface (MI) number.

Statement type number. The type of statement produced by the compiler. The number is left-justified

and padded on the right with blanks. Possible values are:

 1 INIT CODE

2 PROC ENTRY

3 PROC EXIT

4 ALLOC

5 STMT

6 ENTRY

7 EXIT

8 MULTIEXIT

9 PATH LABEL

10 PATH CALL BGN

11 PATH CALL RET

12 PATH DO BGN

13 PATH TRUEIF

14 PATH FALSEIF

15 PATH WHEN BGN

16 PATH OTHERW

17 GOTO

18 POST COMPOUND

Text view source line. The text associated with each line retrieved. The number of characters in each line

equals the line length minus 12 bytes (the sequence number).

Debugger APIs 123

Error Messages

 Message ID Error Message Text

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF954A E No source text available.

CPF954C E Cannot retrieve text from file.

CPF9560 E Line length not valid.

CPF9561 E Source file has changed.

CPF9563 E Number of lines not valid.

CPF9564 E Starting line number not valid.

CPF9565 E Source cannot be accessed.

CPF9566 E One or more source files have changed.

CPF9596 E Source file has changed.

CPF9597 E One or more source files have changed.

CPF9598 E Source file cannot be accessed.

CPF959A E Source file type not valid.

API introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Fast-path Debugger APIs

Fast-path debugger APIs allow the caller to bypass the generalized Debug Command API for some of the

simpler, but more common, source debugging functions.

The fast-path debugger API are:

v “Add Breakpoint (QteAddBreakpoint) API” on page 125 (QteAddBreakpoint) adds a breakpoint to the

specified location in a registered view.

v “Remove All Breakpoints (QteRemoveAllBreakpoints) API” on page 126 (QteRemoveAllBreakpoints)

removes all breakpoints from all modules in a program.

v “Remove Breakpoint (QteRemoveBreakpoint) API” on page 127 (QteRemoveBreakpoint) removes a

breakpoint from the specified location in a registered view.

v “Step (QteStep) API” on page 129 (QteStep) adds a step to a program specifying that the program will

run one or more statements after which program processing is suspended.

 Top | “Debugger APIs,” on page 1 | APIs by category

124 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Add Breakpoint (QteAddBreakpoint) API

 Required Parameter Group:

1 View ID

Input Binary(4)

2 Line number

Input Binary(4)

3 Column number

Input Binary(4)

4 Line in statement view

Output Binary(4)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTEDBGS

 Threadsafe: No

The calling program uses the Add Breakpoint (QteAddBreakpoint) API to add a breakpoint at a location

in a registered view.

Required Parameter Group

View ID

INPUT; BINARY(4)

 The identifier of a previously registered view obtained by using the Register Debug View API.

Line number

INPUT; BINARY(4)

 The line in the View ID where the breakpoint is to be added.

Column number

INPUT; BINARY(4)

 The column in the line where the breakpoint is to be added.

 Note: At this time, column numbers are ignored. Column one must be specified.

Line in statement view

OUTPUT; BINARY(4)

 The API returns the line number in the statement view where the breakpoint was added.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Debugger APIs 125

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF1938 E Command is not allowed while serviced job is not active.

CPF1939 E Time-out occurred waiting for a reply from the serviced job.

CPF1941 E Serviced job has completed. Debug commands are not allowed.

CPF3CF1 E Error code parameter not valid.

CPF7102 E Unable to add breakpoint or trace.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF9567 E Column number not valid.

CPF9568 E Line number not valid.

API Introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

Remove All Breakpoints (QteRemoveAllBreakpoints) API

 Required Parameter Group:

1 View ID

Input Binary(4)

2 Remove type

Input Char(10)

3 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The calling program uses the Remove All Breakpoints (QteRemoveAllBreakpoints) API to remove all

breakpoints from a program. All breakpoints in all modules will be removed, even though only one view

in the program is specified. It does not matter which view of the program is specified, as long as it is a

registered view.

Required Parameter Group

View ID

INPUT; BINARY(4)

 The identifier of a previously registered view obtained by using the Register Debug View API.

Remove type

INPUT; CHAR(10)

 Specifies which breakpoints are to be removed. The following is allowed:

 *PGM All breakpoints in the program or service program

specified by view ID are removed.

126 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF1938 E Command is not allowed while serviced job is not active.

CPF1939 E Time-out occurred waiting for a reply from the serviced job.

CPF1941 E Serviced job has completed. Debug commands are not allowed.

CPF3CF1 E Error code parameter not valid.

CPF9541 E Not in debug mode

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF9578 E Remove type not valid.

API Introcuced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

Remove Breakpoint (QteRemoveBreakpoint) API

 Required Parameter Group:

1 View ID

Input Binary(4)

2 Line number

Input Binary(4)

3 Column number

Input Binary(4)

4 Line in statement view

Output Binary(4)

5 Error code

I/O Char(*)
 Service Program: QTEDBGS

 Threadsafe: No

The calling program uses the Remove Breakpoint (QteRemoveBreakpoint) API to remove a breakpoint

from a location in a registered view. The API will complete normally whether or not there was actually a

breakpoint previously added to that location.

Required Parameter Group

View ID

INPUT; BINARY(4)

 The identifier of a previously registered view obtained by using the Register Debug View API.

Debugger APIs 127

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Line number

INPUT; BINARY(4)

 The line in the view ID where the breakpoint is to be removed.

Column number

INPUT; BINARY(4)

 The column in the line where the breakpoint is to be removed.

 Note: At this time, column numbers are ignored. Column one must be specified.

Line in statement view

OUTPUT; BINARY(4)

 The API returns the line number in the statement view where the breakpoint was removed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF1938 E Command is not allowed while serviced job is not active.

CPF1939 E Time-out occurred waiting for a reply from the serviced job.

CPF1941 E Serviced job has completed. Debug commands are not allowed.

CPF3CF1 E Error code parameter not valid.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF9567 E Column number not valid.

CPF9568 E Line number not valid.

API Introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

128 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Step (QteStep) API

 Required Parameter Group:

1 View ID

Input Binary(4)

2 Step count

Input Binary(4)

3 Step type

Input Char(10)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Service Program: QTEDBGS

 Threadsafe: No

The calling program uses the Step (QteStep) API to start a step in a program. A step count is specified.

When the number of statements specified by the step count is run, the program will be stopped.

Required Parameter Group

View ID

INPUT; BINARY(4)

 The identifier of a previously registered view obtained by using the Register Debug View API.

Step count

INPUT; BINARY(4)

 The number of statements to be run before the program is to be stopped.

Step type

INPUT; CHAR(10)

 Which statements are counted when stepping in the program. The following are allowed:

 *INTO Statements in the procedure currently stopped in are

counted. Also, if that procedure calls other procedures,

these statements are also counted as they are run. Thus, it

is possible to stop the program in a procedure called by

the procedure currently stopped.

*OVER Only statements in the procedure currently stopped in are

counted in the step. Thus, procedures that this procedure

calls are stepped over when doing the step. If the

program is not currently stopped, then the step count will

start with the first procedure called in that program, and

all procedures that are called by this procedure are not

stepped into, and their statements are not counted.

Error code

I/O; CHAR(*)

Debugger APIs 129

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF1938 E Command is not allowed while serviced job is not active.

CPF1939 E Time-out occurred waiting for a reply from the serviced job.

CPF1941 E Serviced job has completed. Debug commands are not allowed.

CPF3CF1 E Error code parameter not valid.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF9576 E Step count not valid.

CPF9577 E Step type not valid.

API Introduced: V3R1

 Top | “Debugger APIs,” on page 1 | APIs by category

Exit Programs

These are the Exit Programs for this category.

Debug Session Handler Exit Program

 Required Parameter Group:

1 Reason

Input Char(10)

2 Program list

Input Char(*)

3 Number of programs

Input Binary(4)
 Threadsafe: No

The Debug Session Handler exit program is a user-written program that manages the Integrated

Language Environment (ILE) debugger. It determines when the debugger starts, stops, and shows its

displays.

The name of the program is specified in the SRCDBGPGM parameter of the Start Debug (STRDBG)

command. This program is called by the STRDBG command to initialize the user-written debugger, and

is called by the End Debug (ENDDBG) command to end it. It is also called by the STRDBG and the

Display Module Source (DSPMODSRC) commands to show the Display Module Source display.

If a JAVA class file name was specified in the JAVA parameter of the STRDBG command, the Debug

Session Handler exit program will be called during debug initialization with a reason of *STARTJAVA.

This call will be in addition to a separate call with a *START reason if ILE or OPM programs were also

specified in the STRDBG PGM parameter.

130 iSeries: Debugger APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Reason

INPUT; CHAR(10)

 The reason the program was called. Valid reasons include:

 *START The program-stop handler should be initialized by the

Start Source Debug API if this has not been done. The

program list parameter format consists of 30-character

entries. See the program list parameter description below.

*STARTJAVA The program-stop handler should be initialized by the

Start Source Debug API if this has not been done. The

program list parameter format consists of JAVA class file

names. See the program list parameter description below.

*STOP The program-stop handler should be removed by the End

Source Debug API.

*DISPLAY The debugger should display itself.

*RLSJOB The batch job being debugged has been released from the

job queue. This is only supported for a debug session

handler running in a batch job.

Program list

INPUT; CHAR(*)

 The format of this parameter depends on the value of the reason parameter. If the reason

parameter is *START, the program list format is as follows:

 The list that is to receive a list of ILE or OPM programs to add to the debugger. This list contains

the number of program entries, each entry being 30 characters in length. The first 10 characters

contain the name of the program. The second 10 characters contain the name of the library where

the program is located. The third 10 characters contain the type of object being named and can be

*PGM (a callable program) or *SRVPGM (a service program). Each name is left-justified within

the field.

 If the reason parameter is *STARTJAVA, the format is as follows:

 A list of JAVA class file name entries. For more information see “Format of *STARTJAVA Program

List Parameter” on page 132. The number of list entries is contained in the number of programs

parameter.

 If the reason parameter is *DISPLAY, the format is as follows:

 The eight character thread identifier of the current thread. This is valid only if threads debugging

is allowed and the Number of programs parameter contains a value of 1.

 If the reason parameter is *Stop or *RLSJOB, this parameter is not valid.

Number of programs

INPUT; BINARY(4)

 The format of this parameter depends on the value of the reason parameter. If the reason

parameter is *START or *STARTJAVA, the format is as follows:

 The number of programs stored in the program list parameter.

 If the reason parameter is *DISPLAY, the format is as follows:

 The status of the threaded job. This is valid only if threads debugging is allowed.

 0 The job is running and has not been stopped by debug

(for example, breakpoint, step, watch, or unmonitored

exception).

Debugger APIs 131

1 The job is stopped by debug.

If the reason parameter is *Stop or *RLSJOB, this parameter is not valid.

Format of *STARTJAVA Program List Parameter

When the reason parameter is *STARTJAVA the program list parameter contains JAVA class file names.

The following table shows the format of the program list parameter for the *STARTJAVA reason. For

more information on the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

Note: The following fields are repeated for each input class file name. The number of programs parameter contains

the number of class file names.

0 0 BINARY(4) Offset to class file name

4 4 BINARY(4) Length of class file name

Note: Following all of the above fields is a string space containing the input class file names.

 CHAR(*) Class file names

Field Descriptions

Class file names. The class file names that are specified on the STRDBG command.

Length of class file name. The length of the class file name.

Offset to class file name. The offset from the start of the program list parameter to the class file name.

Exit Program Introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

132 iSeries: Debugger APIs

#TOP_OF_PAGE
aplist.htm

Program-Stop Handler Exit Program

 Required Parameter Group:

1 Qualified program name

Input Char(20) or Char(*)

2 Program type

Input Char(10)

3 Module name

Input Char(10)

4 Stop reason

Input Char(10)

5 Receiver variable

Input Char(*)

6 Number of entries

Input Binary(4)

7 Message data

Input Char(*)
 QSYSINC Member Name: ETEPGMST

 Threadsafe: No

The Program-Stop Handler exit program is a user-written program that handles program-stop conditions.

This program must be identified to the Source Debugger support with the Start Source Debug

(QteStartSourceDebug) API.

Breakpoint- and step-program stop conditions are reported using stop reasons 2, 3, and 4. The location at

which the program-stop condition occurred is specified in the receiver variable parameter and is in terms

of the statement view. The user-supplied program may use the Map View Position (QteMapViewPosition)

API to determine the location to which this program maps any other registered view.

Watch-program stop conditions are reported using stop reasons 5 and 6. For watch-program stop

conditions, the program stopped might not have debug data. In this case, the machine interface (MI)

number is reported for OPM programs and the statement number is reported for ILE programs and Java

class files. If the program can be debugged, the line number in the statement view is reported for OPM

programs, ILE programs, and Java class files. Other information is also included in the receiver variable

to identify the program that caused the watch condition to be satisfied.

Unmonitored-exception-program stop conditions are represented through stop reason 1. Unmonitored

exceptions are reported through this exit program only when the program and module identified have

been created with debug data. Without debugging data, the message that is the cause of the unmonitored

exception is issued, and the Program-Stop Handler exit program is not called.

When a job being debugged by a servicing job is stopped by the QteStopDebuggedJob API, reason code 7

is reported. When this reason code is reported, none of the other input parameters are used and can be

ignored.

Debugger APIs 133

Debugging of threaded jobs is enabled by the thread ID field that is contained in the parameters passed

to the stop handler. Threads debugging is supported if a service job is used to debug a job that was

spawned by native threads support. For nonthreaded applications, the thread ID passed will always be

that of the initial job thread.

Required Parameter Group

Qualified program name

INPUT; CHAR(20) or CHAR(*)

 The format of this parameter is dependent on the program type parameter. If the program type is

*PGM or *SRVPGM, the format of this parameter is as follows:

 The name of the program that is stopped as a result of a breakpoint, program step, or

unmonitored exception. This parameter may also be the name of the program that is stopped

because a watch condition has been satisfied.

 The first 10 characters contain the name of the program. The second 10 characters contain the

name of the library where the program is located. Each name is left-justified.

 If the program type is *CLASS, the format of this parameter is as follows:

 The null-terminated class file name of the JAVA class.

Program type

INPUT; CHAR(10)

 The object type of the program that is stopped. The possible values are:

 *PGM Bound program or OPM program

*SRVPGM Service program

*CLASS JAVA class file

Module name

INPUT; CHAR(10)

 The name of the module (left-justified) that is stopped. The value of this field is blank for OPM

programs and JAVA class files.

Stop reason

INPUT; CHAR(10)

 The reason the program was called. Each character of this parameter has a specific meaning. The

characters and their meanings are:

 1 This reason is set when an unmonitored exception is received by the program being serviced by

the source debugger support.

0 No unmonitored exception

1 Unmonitored exception

2 The program stopped because an unconditional or conditional breakpoint was satisfied.

0 No break condition

1 Break condition

3 The program stopped because a step condition was reached.

0 No step condition

1 Step condition

134 iSeries: Debugger APIs

4 The program stopped because a conditional breakpoint was set and there was a failure in running

the condition. The program is stopped at the break position specified.

0 No break condition failure

1 Break condition failure

5 The program stopped because a watch condition set with the watch debug statement was

satisfied.

0 No watch condition

1 Watch condition

6 The program stopped because there was a failure in processing the watch condition.

0 No watch condition failure

1 Watch condition failure

7 The debugged job being serviced was stopped by the QteStopDebuggedJob API.

0 Debugged job not stopped

1 Debugged job stopped

8-10 Reserved. These characters are set to 0.

Receiver variable

INPUT; CHAR(*)

 Stop Reasons 1, 2, 3, 4:

 If only stop reason 1, 2, 3, or 4 is present, the following receiver variable format is passed:

A list of locations within the statement view where the program stop condition occurred.

This list contains the number of entries where each number is defined as follows:

 Stopped locations Array of BINARY(4)
The line number in the statement view where the program is stopped.

Thread ID CHAR(8)
The thread identification of the thread where the program is stopped. This value immediately

follows the last stopped location.

 Stop Reasons 5, 6:

 Whenever stop reason 5 or 6 is present (other stop reasons can be present also), the

following receiver variable format is passed:

Information about the watch stop condition, including the program stopped and the

program that caused the watch condition to be satisfied. See “Format of Watch-Program

Stop Reason for Receiver Variable” on page 136.

 Stop Reason 7:

 For stop reason 7, the receiver variable parameter is not used and can be ignored.

Number of entries

INPUT; BINARY(4)

 The number of positions stored in the receiver variable parameter. In some cases, it is not known

exactly where a program is stopped; therefore, multiple positions are given. Each entry specifies

one position in the statement view. This number is not less than one nor greater than three. At

least one stopped position will be identified; if stopped at more than one position, no more than

the first three positions are made available.

Debugger APIs 135

This parameter is valid when stop reason 1, 2, 3, or 4 is the only reason present (stop reason 5 or

6 cannot be present). If stop reason 5 or 6 is present, the receiver variable contains the equivalent

number of stopped locations parameter.

Message data

INPUT; CHAR(*)

 Information about the message. The information in this parameter is valid only when the stop

reason specified is an unmonitored exception. For a detailed description of the format, see

“Format of Message Data” on page 139.

Format of Watch-Program Stop Reason for Receiver Variable

The following table shows the information supplied in the receiver variable parameter when a stop

reason of 5 or 6 is present. For more information on the fields, see “Field Descriptions” on page 137.

Watch Receiver Variable Header

 Offset

Type Field Dec Hex

0 0 BINARY(4) Watch number

4 4 BINARY(4) Offset to stopped program information

8 8 BINARY(4) Offset to watch interrupt information

Watch Stopped Program Information

The following table shows the stopped program information that is supplied in the receiver variable

parameter. This data structure is accessible by adding the offset to stopped program information field in

the receiver variable header to the address of the receiver variable.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to stopped procedure name

4 4 BINARY(4) Length of stopped procedure name

8 8 BINARY(4) Offset to stopped locations

12 C BINARY(4) Number of stopped locations

16 10 CHAR(1) Stopped locations flag

17 11 CHAR(3) Reserved

20 14 CHAR(8) Thread ID

 CHAR(*) Reserved

 Array of BINARY(4) Stopped locations

 CHAR(*) Stopped procedure name

Watch Interrupt Information

The following table shows the watch-interrupt information that is supplied in the receiver variable

parameter. This data structure is accessible by adding the offset to watch interrupt information field in

the receiver variable header to the address of the receiver variable.

136 iSeries: Debugger APIs

Offset

Type Field Dec Hex

0 0 CHAR(26) Qualified interrupt job name

26 1A CHAR(20) Qualified interrupt program name

46 2E CHAR(10) Interrupt program type

56 38 CHAR(10) Interrupt module name

66 42 CHAR(1) Interrupt locations flag

67 43 CHAR(1) Reserved

68 44 BINARY(4) Offset to interrupt procedure name

72 48 BINARY(4) Length of interrupt procedure name

76 4C BINARY(4) Offset to interrupt locations

80 50 BINARY(4) Number of interrupt locations

84 54 CHAR(8) Thread ID

92 5C BINARY(4) Offset to interrupt class file name

96 60 BINARY(4) Length of interrupt class file name

 CHAR(*) Reserved

 Array of BINARY(4) Interrupt locations

 CHAR(*) Interrupt procedure name

 CHAR(*) Interrupt class file name

Field Descriptions

Interrupt class file name. The Java class file name of the Java class containing the locations that caused

the watch condition to be satisfied. For OPM and ILE programs, the Java class file name is not returned.

Interrupt locations. A list of locations, of the type described by the interrupt locations flag, that caused

the watch condition to be satisfied.

Interrupt locations flag. The type of the locations in the interrupt locations field. All locations are of the

same type.

 1 Line number in statement view

2 Statement number

3 MI number

Interrupt module name. The name of the module (left-justified) in the program that caused the watch

condition to be satisfied. The value of this field is blank for OPM programs and JAVA class files.

Interrupt procedure name. The procedure name of the procedure that contains the program locations that

caused the watch condition to be satisfied. For OPM programs the procedure name is not returned.

Interrupt program type. The object type of the program that caused the watch condition to be satisfied.

The possible values follow:

 *PGM Bound program or OPM program

*SRVPGM Service program

*CLASS JAVA class file

Debugger APIs 137

Length of interrupt class file name. The length of the interrupt class file name. This field is zero if there

is no interrupt class file name available (for example, OPM and ILE programs).

Length of interrupt procedure name. The length of the interrupt procedure name. This field is zero if

there is no interrupt procedure name available (for example, OPM programs).

Length of stopped procedure name. The length of the stopped procedure name. This field is zero if there

is no stopped procedure name available (for example, OPM programs).

Number of interrupt locations. The number of locations in the program that caused the watch condition

to be satisfied. At most, three locations are returned.

Number of stopped locations. The number of stopped program locations. At most, three stop locations

are returned.

Offset to interrupt class file name. The offset from the start of the receiver variable to the name of the

Java class file containing the location that caused the watch condition to be satisfied. The field is zero if

there is no interrupt class file name available (for example, OPM and ILE programs).

Offset to interrupt locations. The offset from the start of the receiver variable to the list of locations in

the program that caused the watch condition to be satisfied.

Offset to interrupt procedure name. The offset from the start of the receiver variable to the name of the

procedure that contains the program location that caused the watch condition to be satisfied. This field is

zero if there is no interrupt procedure name available (for example, OPM programs).

Offset to stopped locations. The offset from the start of the receiver variable to the stopped program

location entries.

Offset to stopped procedure name. The offset from the start of the receiver variable to the name of the

procedure that contains the stopped program location. This field is zero if there is no stopped procedure

name available (for example, OPM programs).

Offset to stopped program information. The offset from the start of the receiver variable to the stop

information for the program that is stopped as a result of the watch condition being satisfied.

Offset to watch interrupt information. The offset from the start of the receiver variable to the watch

interrupt information. This data structure describes the program that caused the interruption.

Qualified interrupt job name. The name of the job that caused the watch condition to be satisfied. The

first 10 characters contain the job name. The second 10 characters contain the user profile name. The next

6 characters contain the job number. Each name is left-justified.

Note: This field is the same as the name of the job being debugged. Watch program interruptions in other

jobs are ignored.

Qualified interrupt program name. The name of the program that caused the watch condition to be

satisfied. The first 10 characters contain the name of the program. The second 10 characters contain the

name of the library where the program is located. Each name is left-justified. The value of this field is

blank for Java class files.

Reserved. An ignored field.

Stopped locations. A list of locations, of the type described by the stop location flag, where the program

stop condition occurred.

138 iSeries: Debugger APIs

Stopped locations flag. The type of the locations in the stop locations field. All stop locations are of the

same type.

 1 Line number in the statement view

2 Statement number

3 MI number

Stopped procedure name. The name of the procedure that contains the stopped locations. For OPM

programs the procedure name is not returned.

Thread ID. This is an 8-byte thread identification that is assigned by the system. It identifies the thread

associated with the stopped or interrupt locations fields.

Watch number. The watch number identifier of the watch condition being satisfied. This is the same

number that is returned by the Submit Debug Command API when the watch condition was set.

Format of Message Data

The following table shows the information supplied in the message data parameter. For more information

on the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of message data

4 4 CHAR(7) Message ID

11 B CHAR(20) Message file

31 1F CHAR(1) Reserved

32 20 CHAR(512) Message data

Field Descriptions

Length of message data. The length of the data available in the message data parameter, in bytes. This

field contains the length of the available message data for the predefined message indicated in the

message ID field.

Message data. The values for substitution variables in the predefined message specified in the message

ID field and located in the message file field.

Message file. The name of the message file that contains the message identified in the message ID field.

The first 10 characters contain the message file name. The second 10 characters contain the name of the

library where the file can be located. Both entries are left-justified.

Message ID. The identifying code of the message.

Reserved. An ignored field.

Exit program introduced: V2R3

 Top | “Debugger APIs,” on page 1 | APIs by category

Debugger APIs 139

#TOP_OF_PAGE
aplist.htm

Service Entry Point Stop Handler Exit Program

 Required Parameter Group:

1 Qualified program name

Input Char(*)

2 Program type

Input Char(10)

3 Module name

Input Char(10)

4 Stop information

Input Char(*)

5 Fully qualified job name

Input Char(30)
 QSYSINC Member Name: ETEPSEPH

 Threadsafe: No

The Service Entry Point Stop Handler exit program is a user-written program that handles the service

entry point program-stop condition.

This program must be identified to the Source Debugger support with the Register Service Entry Point

Handler (QteRegSrvEntPntStpHdlr) API.

The location at which the service entry point was encountered is specified in the stop information

parameter and is in terms of the statement view. The user-supplied program may use the Map View

Position (QteMapViewPosition) API to determine the location to which this program maps any other

registered view.

Debugging of threaded jobs is enabled by the thread ID field that is contained in the parameters passed

to the stop handler. Threads debugging is supported if a service job is used to debug a job that was

spawned by native threads support. For nonthreaded applications, the thread ID passed will always be

that of the initial job thread.

Required Parameter Group

Qualified program name

INPUT; CHAR(*)

 The format of this parameter is dependent on the program type parameter. If the program type is

*PGM or *SRVPGM, the format of this parameter is as follows:

v The name of the program that is stopped as a result of a service entry point.

v The first 10 characters contain the name of the program. The second 10 characters contain the

name of the library where the program is located. Each name is left-justified.

If the program type is *CLASS, the format of this parameter is as follows:

v The null-terminated class file name of the JAVA class.

Program type

INPUT; CHAR(10)

140 iSeries: Debugger APIs

The object type of the program that is stopped.

 The possible values are:

 *PGM Bound program or OPM program

*SRVPGM Service program

*CLASS JAVA class file

Module name

INPUT; CHAR(10)

 The name of the module (left-justified) that is stopped. The value of this field is blank for OPM

programs and JAVA class files.

Stop information

INPUT; CHAR(*)

 A list of locations within the statement view where the program stop condition occurred.

 Thread ID CHAR(8)
The thread identification of the thread where the program is stopped.

Offset to stopped

locations

BINARY(4)
The offset from the start of the stop information to the first stop location.

Number of stopped

locations

BINARY(4)
The number of positions stored in the stop information parameter. In some cases, it is not known

exactly where a program is stopped; therefore, multiple positions are given. Each entry specifies

one position in the statement view. This number is not less than one nor greater than three. At

least one stopped position will be identified; if stopped at more than one position, no more than

the first three positions are made available.

Stopped locations Array of BINARY(4)
The line number in the statement view where the program is stopped.

Fully qualified job name

INPUT; CHAR(30)

 The name of the job in which the program stop condition occurred. The fully qualified job name

consists of three parts. The first 10 characters contain the job name. The next 10 characters contain

the user name. The last 10 characters contain the 6-character job number followed by 4 blanks.

 Exit program introduced: V5R2

 Top | “Debugger APIs,” on page 1 | APIs by category

Concepts

These are the concepts for this category.

Using Source Debugger APIs

The Source Debugger APIs can be used to write debuggers for the iSeries(TM). The users of these APIs

include:

v The source debugger that is shipped with the OS/400(R) licensed program. A source debugger is a tool

for debugging Integrated Language Environment (ILE) programs or original program model (OPM)

programs by displaying a representation of their source code.

v Any other debugger that IBM(R) or a business partner writes.

Debugger functions are designed to help you write and maintain your applications. You can run your

programs in a special testing environment while closely observing and controlling the processing of these

Debugger APIs 141

#TOP_OF_PAGE
aplist.htm

programs in the testing environment. You can write a debugger application that interacts with the APIs

provided in this chapter, or you can use the debugger provided with the system.

No special commands specifically for testing are contained in the program being tested. The same

program being tested can run normally without changes. All debugger APIs must be called within the job

in which the Start Debug (STRDBG) command is issued. The debugger APIs should not be called from

within the program being tested. With the debugger APIs provided, you interact with your programs

symbolically in the same terms as the high-level language (HLL) in the program. You refer to variables by

their names and to locations as the line and the column within a view. In addition, the debugger

functions are only applicable to the job in which they are set up. The same program can be used at the

same time in another job without being affected by the debugger functions set up.

 “Debugger APIs,” on page 1 | APIs by category

How a compiler uses the APIs to generate debug data for ILE

programs

To enable source-level debugging of ILE programs, view information must be stored with the compiled

program. The ILE compilers use the Create View APIs to create view information. This information is

then available to source-level debugger applications through the Source Debugger APIs.

The first API that is called is the “Start View Creation (QteStartViewCreation) API” on page 91

(QteStartViewCreation) API, which is used to initialize the debug view creation environment.

The views being created are described by the “Add View Description (QteAddViewDescription) API” on

page 75 (QteAddViewDescription) API. Examples of views created by a compiler are text views (for

example, the input source) and listing views (for example, a compiler output listing). A parameter passed

back by this API is the view number, which is used by subsequent APIs to identify the view being

processed.

The text of a view comes from files (for example, the input source file to the compiler) or supplied text

(for example, macro expansion text). The supplied text is stored with the view information in the

program object. The file text is copied at source debugging time when the text is retrieved. Thus, the

view information stored for the file text contains references to the files containing the text and not the

text itself. The files to be used in a view are described by use of the “Add View File (QteAddViewFile)

API” on page 78 (QteAddViewFile) API.

The “Add View Text (QteAddViewText) API” on page 85 (QteAddViewText) API is used to describe how

the text for a view is constructed. The view text can be composed of pieces of text, which are

concatenated together when the text is retrieved, according to the instructions specified through this API.

The “Add View Map (QteAddViewMap) API” on page 81 (QteAddViewMap) API is used to map

positions in one view to positions in another view. This is necessary to be able to relate positions in one

view to equivalent positions in another view. In some cases a map can be generated automatically

without using this API (see QteAddViewDescription API). Other maps may need to be supplied to allow

certain source debugger functions such as breakpoint processing, in which the breakpoint parameters are

supplied by the system in terms of the statement view only.

When the view creation processing is complete, a call to the “End View Creation (QteEndViewCreation)

API” on page 90 (QteEndViewCreation) API is required.

To use a Create View API, the application must bind to the service program QTECRTVS in QSYS. All

Create View API functions are then available to the application.

 Top | “Debugger APIs,” on page 1 | APIs by category

142 iSeries: Debugger APIs

aplist.htm
#TOP_OF_PAGE
aplist.htm

How a source debugger uses the APIs to debug ILE or OPM programs

The Start Debug command has a parameter, SRCDBGPGM, that specifies which program is called when

an ILE or OPM program is debugged. The system calls this program, indicating that the debug session is

to begin. It also calls this program when the user wants to show the Display Module Source display.

When OPM programs are to be debugged, the additional OPMSRC(*YES) parameter must be specified on

the Start Debug command.

When the system calls the source debugger program, indicating the start of a debug session, that

program uses source debugger APIs to perform debug functions. The first API that is called is the “Start

Source Debug (QteStartSourceDebug) API” on page 72 (QteStartSourceDebug) API, which indicates to the

system that a source debugger is running.

When an ILE program is debugged, the “Retrieve Module Views (QteRetrieveModuleViews) API” on

page 62 (QteRetrieveModuleViews) API is used to obtain information about the views available in the

modules of that program. For an OPM program, information about the views available for that program

is obtained. These views previously were created by the compiler by using the create view APIs for ILE

programs. For OPM programs, the views were created by using OPTION(*SRCDBG) or

OPTION(*LSTDBG) on the appropriate OPM language create program command. The OPM CL, COBOL,

and RPG languages are supported by the source debugger APIs. A view is text that is displayed by the

source debugger. A module may have several views, depending on the debug data supplied by the

compiler of that module. OPM programs always have a statement view, and either a source or listing

view, depending on the OPM compiler option selected. See the appropriate language reference manual to

determine which views are available.

To be debugged, a module has to have at least one view: the statement view. A statement view is a

low-level view that contains information about each high-level statement in that module. This view is not

meant to be displayed, although there is text associated with that view. The information in the statement

view text can be used by the source debugger to determine the following:

v Procedure name

v Statement number

v Statement type associated with any high-level language statement in the module

The source debugger application uses the “Register Debug View (QteRegisterDebugView) API” on page

100 (QteRegisterDebugView) API to register the views of a program. Once these views are registered,

various debug operations can be performed against these views. These operations include:

v Retrieving the text associated with the views

v Adding a breakpoint to the program at a certain location in a view

v Displaying variables that are defined in the program

The source debugger application uses the “Retrieve View Text (QteRetrieveViewText) API” on page 120

(QteRetrieveViewText) API to retrieve the text of a view. Every view has text associated with it that can

be retrieved using the QteRetrieveViewText API.

When a program is being debugged and it stops at a breakpoint, the system indicates that it has stopped

by calling the Program-Stop Handler exit program. This program is passed a line number in the

statement view where the program being debugged has stopped.

The “Map View Position (QteMapViewPosition) API” on page 97 (QteMapViewPosition) API is used to

map positions in one view to positions in another view. For example, if the source debugger currently is

displaying a source view in a module, and a breakpoint occurs, the Program-Stop Handler exit program

is called. This program is passed a line number in the statement view of that module, which indicates at

Debugger APIs 143

which statement the program has stopped. To show the position in the source view where the program

has stopped, the application maps the statement view position to a source view position. This mapping

function is made possible by maps, which are created by the ILE compiler using the create view APIs, or

by the debug data, which is created by OPM compilers.

When the debug session is over, the source debugger application issues the “End Source Debug

(QteEndSourceDebug) API” on page 53 (QteEndSourceDebug) API, which removes all ILE and OPM

programs from debug mode. No source debugger APIs can be issued until the source debug session is

ended with the End Debug Command and started again with the Start Debug command.

The Create View APIs require the application to bind to the service program QTECRTVS in library QSYS.

All other Source Debugger APIs require the application to bind to the service program QTEDBGS in

library QSYS. All source debugger API functions are then available to the application.

For a coding example of how to write a source debugger, see Using Source Debugger APIs in the API

examples.

 Top | “Debugger APIs,” on page 1 | APIs by category

144 iSeries: Debugger APIs

apiexusdeb.htm
#TOP_OF_PAGE
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 145

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

146 iSeries: Debugger APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 147

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

148 iSeries: Debugger APIs

����

Printed in USA

	Contents
	Debugger APIs
	APIs
	Retrieve Program Variable (QTERTVPV) API
	Restriction
	Required Parameter Group
	Format of Receiver Variable
	Data for Binary Numeric (1)
	Data for Floating Point (2)
	Data for Zoned Decimal (3)
	Data for Packed Decimal (4)
	Data for Fixed Character (5)
	Data for Varying Character (6)
	Data for Fixed Bit (7)
	Data for Unsigned Binary (8)
	Data for Space Pointer (9)
	Data for Data Pointer (10)
	Data for Instruction Definition List (11)
	Data for System Pointer (12)
	Data for Machine Space Pointer (13)
	Data for Exception Description (14)
	Field Descriptions
	Error Messages

	Source Debugger APIs
	Dump Module Variables (QteDumpModuleVariables) API
	Required Parameter Group
	Format of the Receiver Variable
	Receiver Variable Header Section
	Module Variable Header Section
	Module Variable Section (Scalar Variable Entry Type)
	Module Variable Section (Array Definition Entry Type)
	Module Variable Section (Block Definition Entry Type)
	Field Descriptions
	Error Messages

	Submit Debug Command (QteSubmitDebugCommand) API
	Required Parameter Group
	Receiver Variable Format
	Field Descriptions
	Description of the Structure of the Receiver Variable
	Results Array Entry Structure Summary
	StepR (1)
	BreakR (2)
	ClearBreakpointR (3)
	ClearPgmR (4)
	BreakPositionR (5)
	EvaluationR (6)
	ExpressionTextR (7)
	ExpressionValueR (8)
	ExpressionTypeR (9)
	QualifyR (10)
	TypeR (11)
	TypeDescR (12)
	DecimalR (13)
	ArrayR (14)
	DimensionR (15)
	WatchR (16)
	WatchNumberR (17)
	ClearWatchNumberR (18)
	ClearWatchR (19)
	TBreakR (20)
	SBreakR (21)
	Field Descriptions
	Statement Results
	Examples of Result Records Returned by Submit Debug Command API
	Break Statement Example
	Scalar Evaluate Statement Example
	Scalar Evaluate Statement Example
	Structure Evaluate Statement Example
	Step Statement Example
	ATTR Statement Example
	WATCH Statement Example
	Error Messages
	Debug Language Statements
	ATTR Statement
	Break Statement
	Clear Statement
	Evaluate Statement
	Locality
	Qualify Statement
	SBreak Statement
	Step Statement
	TBreak Statement
	Watch Statement

	Debug Session Control APIs
	Change Current Thread (QteChangeCurrentThread) API
	Required Parameter Group
	Error Messages

	Change Thread Status (QteChangeThreadStatus) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	End Source Debug (QteEndSourceDebug) API
	Required Parameter
	Error Messages

	Register Service Entry Point Stop Handler (QteRegSrvEntPntStpHdlr) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Retrieve Debug Attribute (QteRetrieveDebugAttribute) API
	Required Parameter Group
	Error Messages

	Retrieve Debugged Threads (QteRetrieveDebuggedThreads) API
	Authorities and Locks
	Required Parameter Group
	Format of Receiver Variable
	THDL0100 Format
	THDL0200 Format
	Field Descriptions
	Error Messages

	Retrieve Module Views (QteRetrieveModuleViews) API
	Authorities
	Required Parameter Group
	VEWL0100 Format
	Field Descriptions
	Format of JAVA Returned Library Name Parameter
	Field Descriptions
	Error Messages

	Retrieve Source Path Name (QteRetrieveSourcePathName) API
	Authorities and Locks
	Required Parameter Group
	SRCP0100 Format
	Field Descriptions
	Error Messages

	Set Debug Attribute (QteSetDebugAttribute) API
	Required Parameter Group
	Error Messages

	Start Source Debug (QteStartSourceDebug) API
	Authorities
	Required Parameter Group
	Error Messages

	Stop Debugged Job (QteStopDebuggedJob) API
	Required Parameter Group
	Error Messages

	Create View APIs
	Add View Description (QteAddViewDescription) API
	Required Parameter Group
	Error Messages

	Add View File (QteAddViewFile) API
	Required Parameter Group
	FILA0100 Format
	FILA0200 Format
	Field Descriptions
	Error Messages

	Add View Map (QteAddViewMap) API
	Required Parameter Group
	MAPA0100 Format
	Field Descriptions
	Error Messages

	Add View Text (QteAddViewText) API
	Required Parameter Group
	TXTA0100 Format
	TXTA0101 Format
	TXTA0102 Format
	TXTA0103 Format
	Field Descriptions
	Error Messages

	End View Creation (QteEndViewCreation) API
	Authorities
	Required Parameter
	Error Messages

	Start View Creation (QteStartViewCreation) API
	Authorities
	Required Parameter Group
	FILA0100 Format
	FILA0200 Format
	Field Descriptions
	Error Messages

	View Information APIs
	Map View Position (QteMapViewPosition) API
	Required Parameter Group
	Format of Receiver Variable
	Field Descriptions
	Error Messages

	Register Debug View (QteRegisterDebugView) API
	Authorities
	Required Parameter Group
	Format of JAVA Returned Library Parameter
	Field Descriptions
	Error Messages

	Remove Debug View (QteRemoveDebugView) API
	Required Parameter Group
	Error Messages

	Retrieve Statement View (QteRetrieveStatementView) API
	Required Parameter Group
	Format of Receiver Variable
	Receiver Variable Header Section
	Statement View Section
	Procedure Information Section
	Procedure Name String Space
	Statement-View-Line Additional-Information Offsets Section
	Statement-View-Line Additional-Information Section
	Variable Length Field Section
	Field Descriptions
	Error Messages

	Retrieve Stopped Position (QteRetrieveStoppedPosition) API
	Required Parameter Group
	Format of Receiver Variable
	Field Descriptions
	Error Messages

	Retrieve View File (QteRetrieveViewFile) API
	Required Parameter Group
	Format of Text Descriptor Receiver Variable
	Format of File Name Receiver Variable
	Field Descriptions
	Formats of File Format Name
	Field Descriptions
	Field Description
	Error Messages

	Retrieve View Line Information (QteRetrieveViewLineInformation) API
	Required Parameter Group
	RTVL0100 Format
	Field Descriptions
	Error Messages

	Retrieve View Text (QteRetrieveViewText) API
	Required Parameter Group
	Format of Receiver Variable
	Field Descriptions
	Error Messages

	Fast-path Debugger APIs
	Add Breakpoint (QteAddBreakpoint) API
	Required Parameter Group
	Error Messages

	Remove All Breakpoints (QteRemoveAllBreakpoints) API
	Required Parameter Group
	Error Messages

	Remove Breakpoint (QteRemoveBreakpoint) API
	Required Parameter Group
	Error Messages

	Step (QteStep) API
	Required Parameter Group
	Error Messages

	Exit Programs
	Debug Session Handler Exit Program
	Required Parameter Group
	Format of *STARTJAVA Program List Parameter
	Field Descriptions

	Program-Stop Handler Exit Program
	Required Parameter Group
	Format of Watch-Program Stop Reason for Receiver Variable
	Watch Receiver Variable Header
	Watch Stopped Program Information
	Watch Interrupt Information
	Field Descriptions
	Format of Message Data
	Field Descriptions

	Service Entry Point Stop Handler Exit Program
	Required Parameter Group

	Concepts
	Using Source Debugger APIs
	How a compiler uses the APIs to generate debug data for ILE programs
	How a source debugger uses the APIs to debug ILE or OPM programs

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

