
iSeries

Developer Kit for Java Commands
Version 5 Release 3

ERserver

���

iSeries

Developer Kit for Java Commands
Version 5 Release 3

ERserver

���

Note
Before using this information and the product it supports, be sure to read the information in
“Notices,” on page 17.

First Edition (May 2004)

This edition applies to version 5, release 3, modification 0 of Developer Kit for Java (product number 5722-JV1) and
to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on
all reduced instruction set computer (RISC) models nor does it run on CICS models.

© Copyright International Business Machines Corporation 1998, 2004. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Run Java Program (JAVA) 1

Run Java Program (RUNJVA) 9

Appendix. Notices 17

© Copyright IBM Corp. 1998, 2004 iii

iv iSeries: Developer Kit for Java Commands

Run Java Program (JAVA)
 Where allowed to run: All environments (*ALL)
Threadsafe: No

Parameters
Examples

Error messages

The Run Java Program (JAVA) command runs the Java program associated with the specified Java class.
If no Java program exists, one is created and associated with the class file.

This command can operate on files in any file system that supports the integrated file system APIs.

 Top

Parameters
 Keyword Description Choices Notes

CLASS Class file or JAR file Path name, *VERSION Required, Positional 1

PARM Parameters Single values: *NONE
Other values (up to 200
repetitions): Character value

Optional, Positional 2

CLASSPATH Classpath Path name, *ENVVAR Optional

CHKPATH Classpath security check level *WARN, *SECURE, *IGNORE Optional

OPTIMIZE Optimization *JIT, *INTERPRET, 10, 20, 30,
40

Optional

INTERPRET Interpret *OPTIMIZE, *YES, *NO, *JIT Optional

PROP Properties Single values: *NONE
Other values (up to 100
repetitions): Element list

Optional

Element 1: Property name Path name

Element 2: Property value Character value, *NONE

GCHINL Garbage collect initial size 256-240000000, *DFT Optional

GCHMAX Garbage collect maximum size 256-240000000, *DFT,
*NOMAX

Optional

GCFRQ Garbage collection frequency 0-100, 50 Optional

GCPTY Garbage collection priority 20, 10, 30 Optional

OPTION Option Values (up to 4 repetitions):
*NONE, *VERBOSE, *DEBUG,
*VERBOSEGC, *NOCLASSGC

Optional

JOB Job name Name, QJVACMDSRV, *GEN Optional

AGTPGM Agent program Single values: *NONE
Other values: Qualified object
name

Optional

Qualifier 1: Agent program Name

Qualifier 2: Library Name, *LIBL, *CURLIB

AGTOPTIONS Agent options Character value, *NONE Optional

OUTPUT Output Single values: *PRINT, *NONE
Other values: Element list

Optional

Element 1: Destination *

Element 2: Program end action *PAUSE, *CONTINUE

© Copyright IBM Corp. 1998, 2004 1

Top

Class file or JAR file (CLASS)
Specifies the class name or jar file to be run. The class name may be qualified by one or more package
names. Each package name must be followed by a period. For example, CLASS(’pkg1.pkg2.myclass’)
identifies a class qualified by two package names.

A jar file name may be specified only when running JDK 1.2 or higher. The start up class must be
indicated by the Main-Class in the manifest header.

class-name
Specify the name of the class to be run.

jar-name
Specify the name of the jar file with the Main-Class specified in the manifest.

*VERSION
The build version information for the Java Development Kit (JDK) and the Java Virtual Machine
(JVM) is displayed. No Java program is run.

 Top

Parameters (PARM)
Specifies one or more parameter values that are passed to the Java program. A maximum of 200
parameter values can be passed.

*NONE
There are no input parameters to the Java program.

parameter-value
Specify the parameter value to be passed to the Java program.

 Top

Classpath (CLASSPATH)
Specifies the path used to locate classes. Directories are separated by colons.

*ENVVAR
The class path is determined by the environment variable CLASSPATH.

class-path
Path used to locate classes. An example class path is
’/directory1/directory2:/QIBM/ProdData/Java400’.

 Top

Classpath security check level (CHKPATH)
Specifies the level of warnings given for directories in the CLASSPATH that have public write authority.
A directory in the CLASSPATH that has public write authority is a security exposure because it may
contain a class file with the same name as the one you want to run. Whichever class file is found first is
run.

2 iSeries: Developer Kit for Java Commands

*WARN
A warning message is sent for each directory in the CLASSPATH that has public write authority.

*SECURE
A warning message is sent for each directory in the CLASSPATH that has public write authority.
If one or more warning messages are sent, an escape message is sent and the Java program is not
run.

*IGNORE
Ignore the fact that directories in the CLASSPATH may have public write authority. No warnings
messages are sent.

 Top

Optimization (OPTIMIZE)
Specifies how to treat class files if no Java program is associated with the file.

For 10,20,30,40 this specifies the optimization level of the Java program which will be created if no Java
program is associated with the Java class file. The Java program will contain machine instruction
sequences that are run when the Java program is invoked and will remain associated with the class file
after the Java program has been run.

If the Java class file is determined to be downlevel or out of date, a new Java program will be created
using the optimization level that was used when the previous Java program was created, instead of the
value specified for this parameter.

For OPTIMIZE(*INTERPRET), the resulting Java program interprets the class byte codes when invoked.

OPTIMIZE(*INTERPRET) Java programs will be smaller but will run slower than Java programs created
with higher optimization levels. As you increase the optimization level beyond 10, the Java program
performance will generally improve, but the time required to create the Java program will increase and
you will have less ability to debug the Java program.

For OPTIMIZE(*JIT), no Java program containing machine instruction sequences is created if no program
is associated with the class file. Rather, the class is run using the Just In Time compiler (JIT).

*JIT No Java program containing machine instruction sequences is created. The class is run using the
Just In Time compiler (JIT).

*INTERPRET
The Java program created does not contain machine specific instructions. It will be interpreted
when the program is started. Variables can be displayed and modified while debugging.

 If *OPTIMIZE is specified for the Interpret (INTERPRET) parameter, all of the classes that run
will be run interpreted even if there is an optimized Java program associated with the class.

10 The Java program contains a compiled version of the class file byte codes and has only minimal
additional compiler optimization. Variables can be displayed and modified while debugging.

20 The Java program contains a compiled version of the class file byte codes and has some
additional compiler optimization. Variables can be displayed but not modified while debugging.

30 The Java program contains a compiled version of the class file byte codes and has more compiler
optimization than optimization level 20. During a debug session, user variables cannot be
changed, but can be displayed. The presented values may not be the current values of the
variables.

40 The Java program contains a compiled version of the class file byte codes and has more compiler
optimization than optimization level 30. All call and instruction tracing is disabled.

Run Java Program (JAVA) 3

Top

Interpret (INTERPRET)
Specifies how the Java class files should be run.

*OPTIMIZE
Whether all Java classes are run interpretively depends on the value specified for the OPTIMIZE
parameter. If OPTIMIZE(*INTERPRET) was specified, all Java classes will be run interpretively. If
any other value was specified for the OPTIMIZE parameter, only Java classes with Java programs
created using CRTJVAPGM command and specifying OPTIMIZE(*INTERPRET) will be run
interpretively.

*YES All Java classes will be run interpretively regardless of the OPTIMIZE value associated Java
program. Java classes that need a Java program created will use the optimization level specified
in the OPTIMIZE parameter.

*NO Only Java classes with Java programs created using CRTJVAPGM command and specifying
OPTIMIZE(*INTERPRET) will be run interpretively. Java classes that need a Java program created
will be created with the optimization level specified in the OPTIMIZE parameter.

*JIT All Java class files will be run using the Just In Time compiler (JIT), regardless of what
OPTIMIZE value was used when the associated Java program was created.

 Top

Properties (PROP)
Specifies a list of values to assign to Java properties. Up to 100 properties can have a value assigned.

Single values

*NONE
No properties are specified.

 Element 1: Property name

property-name
Specify the name of the property to be changed.

 Element 2: Property value

property-value
Specify the value to be assigned to the property.

 Top

Garbage collect initial size (GCHINL)
Specifies the initial size, in kilobytes, of the garbage collection heap. This is used to prevent garbage
collection from starting on small programs.

*DFT The default initial size is 2048 kilobytes unless it is overridden by a property.

256-240000000
Specify the initial size, in kilobytes, of the garbage collection heap. It is recommended that the
initial heap size be set to 2048 kilobytes (the default) or larger.

4 iSeries: Developer Kit for Java Commands

Top

Garbage collect maximum size (GCHMAX)
Specifies the maximum size, in kilobytes, that the garbage collection heap can grow to. This is used to
prevent runaway programs that consume all of the available storage. Normally, garbage collection runs as
an asynchronous thread in parallel with other threads. If the maximum size is reached, all other threads
are stopped while garbage collection takes place. This may adversely affect performance.

*DFT The default for the parameter is used. The default maximum is determined by the system unless
a property is specified. The heap will grow until all system resources are depleted. Then a
synchronous garbage collection is started to reclaim resources no longer in use.

*NOMAX
The maximum size is not specified by the user. The maximum is determined by the system. The
heap will grow until all system resources are depleted. Then a synchronous garbage collection is
started to reclaim resources no longer in use.

256-240000000
Specify the size, in kilobytes, that the garbage collection heap can grow to.

 Top

Garbage collection frequency (GCFRQ)
Specifies the relative frequency that garbage collection runs.

This parameter is no longer supported. It exists solely for compatibility with the releases earlier than
Version 4 Release 3 Modification 0 of the server.

 Top

Garbage collection priority (GCPTY)
Specifies the priority of the tasks running garbage collection.

This parameter is no longer supported. It exists solely for compatibility with the releases earlier than
Version 4 Release 3 Modification 0 of the server.

 Top

Option (OPTION)
Specifies special options used when running the Java class.

*NONE
No special options are used when running the Java class.

*VERBOSE
A message is displayed each time a class file is loaded.

*DEBUG
Allows the system debugger to be used for this Java program. This value cannot be used with the
JIT compiler. That is, *DEBUG is mutually exclusive with INTERPRET(*JIT). Also, *DEBUG
cannot be used when a JAR file is specified for the CLASS keyword.

Run Java Program (JAVA) 5

*VERBOSEGC
A message is displayed for each garbage collection sweep.

*NOCLASSGC
Unused classes are not reclaimed when garbage collection is run.

 Top

Job name (JOB)
Specifies the name that is associated with the batch immediate (BCI) job that is started when this
command is run. The BCI job is where the Java program will be run.

QJVACMDSRV
The job name for the BCI job will be QJVACMDSRV.

*GEN The job name is generated from the class name.

name Specify the name to be used for the BCI job that is used to run the Java program.

 Top

Agent program (AGTPGM)
Specifies an ILE service program or OS/400 PASE program that contains a virtual machine (VM) agent.
For example, a VM agent can be a remote debugger or profiler. The VM loads the agent program and
looks for the entry point:
jint JNICALL JVM_OnLoad(JavaVM *jvm, char *options, void *reserved);

The VM calls the JVM_OnLoad function, passing a pointer to the JavaVM instance as the first argument,
and the character string specified in the AGTOPTIONS parameter as the second argument. The third
argument to JVM_OnLoad is reserved and set to NULL.

Single values

*NONE
No VM agent program is specified.

 Qualifier 1: Agent program

name Specify the name of the VM agent program.

 Qualifier 2: Library

*LIBL All libraries in the library list for the current thread are searched until the first match is found. If
the VM agent is an OS/400 PASE program, the directories contained in the LIBPATH and
PASE_LIBPATH environment variables are used to locate the program.

*CURLIB
The current library for the thread is searched. If no library is specified as the current library for
the thread, the QGPL library is searched.

name Specify the name of the library to be searched.

 Top

6 iSeries: Developer Kit for Java Commands

Agent options (AGTOPTIONS)
Specifies a character string of the virtual machine (VM) agent options. A pointer to this character string
will be passed as the second argument to the JVM_OnLoad function in the VM agent program specified
in the AGTPGM parameter. The format of the options string is determined by the agent program.

*NONE
No options are specified. A NULL options argument will be passed to the JVM_OnLoad function.

character-value
Specify the options string to be passed to the VM agent program on start-up.

 Top

Output (OUTPUT)
Specifies where output from the Java program should be sent and, if output is directed to the Java shell
display, whether the shell display panel should go away when the Java program ends.

Single values

*PRINT
The Java program output is sent to a spooled file through the QPRINT printer device file.

*NONE
The Java program output is discarded.

 Element 1: Destination

* A Java shell display panel will be used to display output if the Java program is run from an
interactive job. If the Java program is run in a batch job, the Java program output is sent to a
spooled file through the QPRINT printer device file.

 Element 2: Program end action

*PAUSE
The Java shell display panel is shown until the F3, F12, or Enter key is pressed.

*CONTINUE
The Java shell display panel is closed (goes away) when the Java program ends.

 Top

Examples
Example 1: Run a Java Program
JAVA CLASS(’projectA.myJavaclassname’)

This command will run the iSeries Java program associated with the class myJavaclassname. The job name
of the batch immediate (BCI) job where the Java program will run will be QJVACMDSRV.

Example 2: Generate the Job Name for the Java Program
JAVA CLASS(’projectA.myJavaclassname’) JOB(*GEN)

This command will run the iSeries Java program associated with the class myJavaclassname. The job name
of the batch immediate (BCI) job where the Java program will run will be MYJAVACLAS.

 Top

Run Java Program (JAVA) 7

Error messages
*ESCAPE Messages

JVAB534
Unable to complete Java program ″&1″.

JVAB535
Unmonitored exception received.

JVAB537
Java shell already active in job.

JVAB538
Error occurred when running Java shell.

JVAB539
Unable to start system debugger.

JVAB53A
Unable to start Java shell, reason code &1.

JVAB53B
Java processing canceled.

JVAB53D
Java Development Kit could not be found.

JVAB546
Error detected while running java in batch mode.

 Top

8 iSeries: Developer Kit for Java Commands

Run Java Program (RUNJVA)
 Where allowed to run: All environments (*ALL)
Threadsafe: No

Parameters
Examples

Error messages

The Run Java Program (JAVA) command runs the Java program associated with the specified Java class.
If no Java program exists, one is created and associated with the class file.

This command can operate on files in any file system that supports the integrated file system APIs.

 Top

Parameters
 Keyword Description Choices Notes

CLASS Class file or JAR file Path name, *VERSION Required,
Positional 1

PARM Parameters Single values: *NONE
Other values (up to 200 repetitions): Character value

Optional,
Positional 2

CLASSPATH Classpath Path name, *ENVVAR Optional

CHKPATH Classpath security check
level

*WARN, *SECURE, *IGNORE Optional

OPTIMIZE Optimization *JIT, *INTERPRET, 10, 20, 30, 40 Optional

INTERPRET Interpret *OPTIMIZE, *YES, *NO, *JIT Optional

PROP Properties Single values: *NONE
Other values (up to 100 repetitions): Element list

Optional

Element 1: Property name Path name

Element 2: Property value Character value, *NONE

GCHINL Garbage collect initial size 256-240000000, *DFT Optional

GCHMAX Garbage collect maximum
size

256-240000000, *DFT, *NOMAX Optional

GCFRQ Garbage collection frequency 0-100, 50 Optional

GCPTY Garbage collection priority 20, 10, 30 Optional

OPTION Option Values (up to 4 repetitions): *NONE, *VERBOSE,
*DEBUG, *VERBOSEGC, *NOCLASSGC

Optional

JOB Job name Name, QJVACMDSRV, *GEN Optional

AGTPGM Agent service program Single values: *NONE
Other values: Qualified object name

Optional

Qualifier 1: Agent service
program

Name

Qualifier 2: Library Name, *LIBL, *CURLIB

AGTOPTIONS Agent options Character value, *NONE Optional

OUTPUT Output Single values: *PRINT, *NONE
Other values: Element list

Optional

Element 1: Destination *

Element 2: Program end
action

*PAUSE, *CONTINUE

© Copyright IBM Corp. 1998, 2004 9

Top

Class file or JAR file (CLASS)
Specifies the class name or jar file to be run. The class name may be qualified by one or more package
names. Each package name must be followed by a period. For example, CLASS(’pkg1.pkg2.myclass’)
identifies a class qualified by two package names.

A jar file name may be specified only when running JDK 1.2 or higher. The start up class must be
indicated by the Main-Class in the manifest header.

class-name
Specify the name of the class to be run.

jar-name
Specify the name of the jar file with the Main-Class specified in the manifest.

*VERSION
The build version information for the Java Development Kit (JDK) and the Java Virtual Machine
(JVM) is displayed. No Java program is run.

 Top

Parameters (PARM)
Specifies one or more parameter values that are passed to the Java program. A maximum of 200
parameter values can be passed.

*NONE
There are no input parameters to the Java program.

parameter-value
Specify the parameter value to be passed to the Java program.

 Top

Classpath (CLASSPATH)
Specifies the path used to locate classes. Directories are separated by colons.

*ENVVAR
The class path is determined by the environment variable CLASSPATH.

class-path
Path used to locate classes. An example class path is
’/directory1/directory2:/QIBM/ProdData/Java400’.

 Top

Classpath security check level (CHKPATH)
Specifies the level of warnings given for directories in the CLASSPATH that have public write authority.
A directory in the CLASSPATH that has public write authority is a security exposure because it may
contain a class file with the same name as the one you want to run. Whichever class file is found first is
run.

10 iSeries: Developer Kit for Java Commands

*WARN
A warning message is sent for each directory in the CLASSPATH that has public write authority.

*SECURE
A warning message is sent for each directory in the CLASSPATH that has public write authority.
If one or more warning messages are sent, an escape message is sent and the Java program is not
run.

*IGNORE
Ignore the fact that directories in the CLASSPATH may have public write authority. No warnings
messages are sent.

 Top

Optimization (OPTIMIZE)
Specifies how to treat class files if no Java program is associated with the file.

For 10,20,30,40 this specifies the optimization level of the Java program which will be created if no Java
program is associated with the Java class file. The Java program will contain machine instruction
sequences that are run when the Java program is invoked and will remain associated with the class file
after the Java program has been run.

If the Java class file is determined to be downlevel or out of date, a new Java program will be created
using the optimization level that was used when the previous Java program was created, instead of the
value specified for this parameter.

For OPTIMIZE(*INTERPRET), the resulting Java program interprets the class byte codes when invoked.

OPTIMIZE(*INTERPRET) Java programs will be smaller but will run slower than Java programs created
with higher optimization levels. As you increase the optimization level beyond 10, the Java program
performance will generally improve, but the time required to create the Java program will increase and
you will have less ability to debug the Java program.

For OPTIMIZE(*JIT), no Java program containing machine instruction sequences is created if no program
is associated with the class file. Rather, the class is run using the Just In Time compiler (JIT).

*JIT No Java program containing machine instruction sequences is created. The class is run using the
Just In Time compiler (JIT).

*INTERPRET
The Java program created does not contain machine specific instructions. It will be interpreted
when the program is started. Variables can be displayed and modified while debugging.

 If *OPTIMIZE is specified for the Interpret (INTERPRET) parameter, all of the classes that run
will be run interpreted even if there is an optimized Java program associated with the class.

10 The Java program contains a compiled version of the class file byte codes and has only minimal
additional compiler optimization. Variables can be displayed and modified while debugging.

20 The Java program contains a compiled version of the class file byte codes and has some
additional compiler optimization. Variables can be displayed but not modified while debugging.

30 The Java program contains a compiled version of the class file byte codes and has more compiler
optimization than optimization level 20. During a debug session, user variables cannot be
changed, but can be displayed. The presented values may not be the current values of the
variables.

40 The Java program contains a compiled version of the class file byte codes and has more compiler
optimization than optimization level 30. All call and instruction tracing is disabled.

Run Java Program (RUNJVA) 11

Top

Interpret (INTERPRET)
Specifies how the Java class files should be run.

*OPTIMIZE
Whether all Java classes are run interpretively depends on the value specified for the OPTIMIZE
parameter. If OPTIMIZE(*INTERPRET) was specified, all Java classes will be run interpretively. If
any other value was specified for the OPTIMIZE parameter, only Java classes with Java programs
created using CRTJVAPGM command and specifying OPTIMIZE(*INTERPRET) will be run
interpretively.

*YES All Java classes will be run interpretively regardless of the OPTIMIZE value associated Java
program. Java classes that need a Java program created will use the optimization level specified
in the OPTIMIZE parameter.

*NO Only Java classes with Java programs created using CRTJVAPGM command and specifying
OPTIMIZE(*INTERPRET) will be run interpretively. Java classes that need a Java program created
will be created with the optimization level specified in the OPTIMIZE parameter.

*JIT All Java class files will be run using the Just In Time compiler (JIT), regardless of what
OPTIMIZE value was used when the associated Java program was created.

 Top

Properties (PROP)
Specifies a list of values to assign to Java properties. Up to 100 properties can have a value assigned.

Single values

*NONE
No properties are specified.

 Element 1: Property name

property-name
Specify the name of the property to be changed.

 Element 2: Property value

property-value
Specify the value to be assigned to the property.

 Top

Garbage collect initial size (GCHINL)
Specifies the initial size, in kilobytes, of the garbage collection heap. This is used to prevent garbage
collection from starting on small programs.

*DFT The default initial size is 2048 kilobytes unless it is overridden by a property.

256-240000000
Specify the initial size, in kilobytes, of the garbage collection heap. It is recommended that the
initial heap size be set to 2048 kilobytes (the default) or larger.

12 iSeries: Developer Kit for Java Commands

Top

Garbage collect maximum size (GCHMAX)
Specifies the maximum size, in kilobytes, that the garbage collection heap can grow to. This is used to
prevent runaway programs that consume all of the available storage. Normally, garbage collection runs as
an asynchronous thread in parallel with other threads. If the maximum size is reached, all other threads
are stopped while garbage collection takes place. This may adversely affect performance.

*DFT The default for the parameter is used. The default maximum is determined by the system unless
a property is specified. The heap will grow until all system resources are depleted. Then a
synchronous garbage collection is started to reclaim resources no longer in use.

*NOMAX
The maximum size is not specified by the user. The maximum is determined by the system. The
heap will grow until all system resources are depleted. Then a synchronous garbage collection is
started to reclaim resources no longer in use.

256-240000000
Specify the size, in kilobytes, that the garbage collection heap can grow to.

 Top

Garbage collection frequency (GCFRQ)
Specifies the relative frequency that garbage collection runs.

This parameter is no longer supported. It exists solely for compatibility with the releases earlier than
Version 4 Release 3 Modification 0 of the server.

 Top

Garbage collection priority (GCPTY)
Specifies the priority of the tasks running garbage collection.

This parameter is no longer supported. It exists solely for compatibility with the releases earlier than
Version 4 Release 3 Modification 0 of the server.

 Top

Option (OPTION)
Specifies special options used when running the Java class.

*NONE
No special options are used when running the Java class.

*VERBOSE
A message is displayed each time a class file is loaded.

*DEBUG
Allows the system debugger to be used for this Java program. This value cannot be used with the
JIT compiler. That is, *DEBUG is mutually exclusive with INTERPRET(*JIT). Also, *DEBUG
cannot be used when a JAR file is specified for the CLASS keyword.

Run Java Program (RUNJVA) 13

*VERBOSEGC
A message is displayed for each garbage collection sweep.

*NOCLASSGC
Unused classes are not reclaimed when garbage collection is run.

 Top

Job name (JOB)
Specifies the name that is associated with the batch immediate (BCI) job that is started when this
command is run. The BCI job is where the Java program will be run.

QJVACMDSRV
The job name for the BCI job will be QJVACMDSRV.

*GEN The job name is generated from the class name.

name Specify the name to be used for the BCI job that is used to run the Java program.

 Top

Agent service program (AGTPGM)
Specifies an ILE service program or OS/400 PASE program that contains a virtual machine (VM) agent.
For example, a VM agent can be a remote debugger or profiler. The VM loads the agent program and
looks for the entry point:
jint JNICALL JVM_OnLoad(JavaVM *jvm, char *options, void *reserved);

The VM calls the JVM_OnLoad function, passing a pointer to the JavaVM instance as the first argument,
and the character string specified in the AGTOPTIONS parameter as the second argument. The third
argument to JVM_OnLoad is reserved and set to NULL.

Single values

*NONE
No VM agent program is specified.

 Qualifier 1: Agent service program

name Specify the name of the VM agent program.

 Qualifier 2: Library

*LIBL All libraries in the library list for the current thread are searched until the first match is found. If
the VM agent is an OS/400 PASE program, the directories contained in the LIBPATH and
PASE_LIBPATH environment variables are used to locate the program.

*CURLIB
The current library for the thread is searched. If no library is specified as the current library for
the thread, the QGPL library is searched.

name Specify the name of the library to be searched.

 Top

14 iSeries: Developer Kit for Java Commands

Agent options (AGTOPTIONS)
Specifies a character string of the virtual machine (VM) agent options. A pointer to this character string
will be passed as the second argument to the JVM_OnLoad function in the VM agent program specified
in the AGTPGM parameter. The format of the options string is determined by the agent program.

*NONE
No options are specified. A NULL options argument will be passed to the JVM_OnLoad function.

character-value
Specify the options string to be passed to the VM agent program on start-up.

 Top

Output (OUTPUT)
Specifies where output from the Java program should be sent and, if output is directed to the Java shell
display, whether the shell display panel should go away when the Java program ends.

Single values

*PRINT
The Java program output is sent to a spooled file through the QPRINT printer device file.

*NONE
The Java program output is discarded.

 Element 1: Destination

* A Java shell display panel will be used to display output if the Java program is run from an
interactive job. If the Java program is run in a batch job, the Java program output is sent to a
spooled file through the QPRINT printer device file.

 Element 2: Program end action

*PAUSE
The Java shell display panel is shown until the F3, F12, or Enter key is pressed.

*CONTINUE
The Java shell display panel is closed (goes away) when the Java program ends.

 Top

Examples
Example 1: Run a Java Program
JAVA CLASS(’projectA.myJavaclassname’)

This command will run the iSeries Java program associated with the class myJavaclassname. The job name
of the batch immediate (BCI) job where the Java program will run will be QJVACMDSRV.

Example 2: Generate the Job Name for the Java Program
JAVA CLASS(’projectA.myJavaclassname’) JOB(*GEN)

This command will run the iSeries Java program associated with the class myJavaclassname. The job name
of the batch immediate (BCI) job where the Java program will run will be MYJAVACLAS.

 Top

Run Java Program (RUNJVA) 15

Error messages
*ESCAPE Messages

JVAB534
Unable to complete Java program ″&1″.

JVAB535
Unmonitored exception received.

JVAB537
Java shell already active in job.

JVAB538
Error occurred when running Java shell.

JVAB539
Unable to start system debugger.

JVAB53A
Unable to start Java shell, reason code &1.

JVAB53B
Java processing canceled.

JVAB53D
Java Development Kit could not be found.

JVAB546
Error detected while running java in batch mode.

 Top

16 iSeries: Developer Kit for Java Commands

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY8809
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1998, 2004 17

Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming
to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

Advanced Function Printing
AFP
AS/400
CICS
COBOL/400
C/400
DataPropagator
DB2
IBM
Infoprint
InfoWindow
iSeries
LPDA
OfficeVision

18 iSeries: Developer Kit for Java Commands

OS/400
Print Services Facility
RPG/400
SystemView
System/36
TCS
WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications
Permissions for the use of the publications you have selected for download are granted subject to the
following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these Publications, or reproduce, distribute or display these Publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the Publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations. IBM MAKES NO
GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE

All material copyrighted by IBM Corporation.

By downloading or printing a publication from this site, you have indicated your agreement with these
terms and conditions.

Code disclaimer information
This document contains programming examples.

Appendix. Notices 19

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly
disclaimed.

20 iSeries: Developer Kit for Java Commands

����

Printed in USA

	Contents
	Run Java Program (JAVA)
	Parameters
	Class file or JAR file (CLASS)
	Parameters (PARM)
	Classpath (CLASSPATH)
	Classpath security check level (CHKPATH)
	Optimization (OPTIMIZE)
	Interpret (INTERPRET)
	Properties (PROP)
	Garbage collect initial size (GCHINL)
	Garbage collect maximum size (GCHMAX)
	Garbage collection frequency (GCFRQ)
	Garbage collection priority (GCPTY)
	Option (OPTION)
	Job name (JOB)
	Agent program (AGTPGM)
	Agent options (AGTOPTIONS)
	Output (OUTPUT)
	Examples
	Error messages

	Run Java Program (RUNJVA)
	Parameters
	Class file or JAR file (CLASS)
	Parameters (PARM)
	Classpath (CLASSPATH)
	Classpath security check level (CHKPATH)
	Optimization (OPTIMIZE)
	Interpret (INTERPRET)
	Properties (PROP)
	Garbage collect initial size (GCHINL)
	Garbage collect maximum size (GCHMAX)
	Garbage collection frequency (GCFRQ)
	Garbage collection priority (GCPTY)
	Option (OPTION)
	Job name (JOB)
	Agent service program (AGTPGM)
	Agent options (AGTOPTIONS)
	Output (OUTPUT)
	Examples
	Error messages

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

