

AS/400 IBM

Intrasystem Communications
Programming
Version 4

 SC41-5447-00

AS/400 IBM

Intrasystem Communications
Programming
Version 4

 SC41-5447-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page v.

August Edition (August 1997)

This edition applies to the licensed program IBM Operating System/400, (Program 5769-SS1), Version 4 Release 1 Modification 0, and to all
subsequent releases and modifications until otherwise indicated in new editions.

Make sure that you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto Rico, or
Guam, you can order publications through the IBM Software Manufacturing Solutions at 800+879-2755. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication. You can also mail your
comments to the following address:

IBM Corporation
Attention Department 542
IDCLERK
3605 Highway 52 N
Rochester, MN 55901-7829 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

If you have access to Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth
in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . v
Programming Interface Information v
Trademarks and Service Marks v

About Intrasystem Communications Programming
(SC41-5447) . vii

Who Should Use This Book vii
Prerequisite and Related Information vii
Information Available on the World Wide Web vii

Chapter 1. Introduction to Intrasystem
Communications 1-1

Overview of Intrasystem Communications 1-1
Using Intrasystem Communications to Test

Communications Applications 1-2

Chapter 2. Configuring Intrasystem
Communications 2-1

Defining the Intrasystem Communications Configuration 2-1
Example . 2-1

Chapter 3. Running Intrasystem Communications
Support . 3-1

Vary On and Vary Off Support 3-1
Example . 3-1

Chapter 4. Writing Intrasystem Application
Programs . 4-1

Intersystem Communications Function File 4-1
Specifying the Program Device Entry Commands . . . 4-2
Communications Operations 4-3
Starting a Session 4-3

Open/Acquire Operation 4-3
Starting a Transaction 4-3

Evoke Function 4-3
Sending Data . 4-4

Write Operation 4-4
Force-Data Function 4-4
Confirm Function 4-4
Format-Name Function 4-4
Subdevice Selection Function 4-4
End-of-Group Function 4-4
Function-Management-Header Function 4-4

Receiving Data . 4-4
Read Operation 4-4
Invite Function . 4-4
Read-from-Invited-Program-Devices Operation . . . 4-5
Waiting for a Display File, an ICF File, and a Data

Queue . 4-5
Notifying the Remote Program of Problems 4-5

Fail Function . 4-5
Cancel Function 4-5
Negative-Response Function 4-5

Using Additional Functions/Operations 4-6
Respond-to-Confirm Function 4-6

Request-to-Write Function 4-6
Allow-Write Function 4-6
Cancel-Invite Function 4-6
Timer Function . 4-6
Get-Attributes Operation 4-6

Ending Transactions 4-6
Detach Function 4-6

Ending Sessions . 4-7
Release Operation 4-7
End-of-Session Function 4-7
Close Operation 4-7

Using Response Indicators 4-7
Receive-Confirm 4-7
Receive-End-of-Group 4-7
Receive-Function-Management-Header 4-8
Receive-Fail . 4-8
Receive-Cancel 4-8
Receive-Negative-Response 4-8
Receive-Turnaround 4-8
Receive-Detach 4-8

Using the Input/Output Feedback Area 4-8
Using Return Codes 4-8

Chapter 5. Considerations for Intrasystem
Communications 5-1

Application Considerations 5-1
General Considerations 5-1
Open/Acquire Considerations 5-1
Input Considerations 5-1
Confirm Considerations 5-2
Release, End-of-Session, and Close Considerations 5-2

Performance Considerations 5-2
Prestarting Jobs for Program Start Requests 5-2

Appendix A. Language Operations, Data
Description, Specifications Keywords, and
System-Supplied Formats A-1

Language Operations A-1
Data Description Specifications Keywords A-2
System-Supplied Formats A-2

Appendix B. Return Codes, Messages, and Sense
Codes . B-1

Return Codes . B-1
Major Code 00 . B-1
Major Code 02 . B-4
Major Code 03 . B-7
Major Code 04 . B-8
Major Codes 08 and 11 B-9
Major Code 34 . B-10
Major Code 80 . B-11
Major Code 81 . B-13
Major Code 82 . B-14
Major Code 83 . B-19
Failed Program Start Requests B-24

 Copyright IBM Corp. 1997 iii

Appendix C. Using Intrasystem Communications to
Test Applications C-1

Using Intrasystem Communications for Advanced
Program-to-Program Communications C-1

Using Intrasystem Communications for Asynchronous
Communications C-2

Using Intrasystem Communications with Binary
Synchronous Communications Equivalence Link . . . C-2

Using Intrasystem Communications for Finance
Communications C-3

Using Intrasystem Communications for Retail
Communications C-4

Using Intrasystem Communications for Systems
Network Architecture Upline Facility C-5

Appendix D. Program Examples D-1

Description of the Single-Session Inquiry Program
Example . D-1

ILE C/400 Source Program for a Single-Session Inquiry D-1
ILE C/400 Target Program for a Single-Session Inquiry D-9
Description of the Two-Session Inquiry Program

Example . D-14
COBOL/400 Source Program for a Two-Session

Inquiry . D-14
COBOL/400 Target Program for a Two-Session Inquiry D-33
RPG/400 Source Program for a Two-Session Inquiry D-39
RPG/400 Target Program for a Two-Session Inquiry D-56

Bibliography . H-1
AS/400 Books . H-1
System/36 Communications Books H-1

Index . X-1

 Figures

1-1. Overview of Intrasystem Communications . . 1-1
1-2. A Source Program Communicating with

Multiple Target Programs 1-2
A-1. Language Operations A-1
A-2. Valid Operations for Programming Languages A-1
B-1. Actions for Return Code 0000 B-2
B-2. Reason Codes for Rejected Program Start

Requests B-25
D-1. DDS Source for a Single-Session Source

Program Using SRCICFF D-2
D-2. DDS Source for a Single-Session Source

Program Using DSPFIL D-2
D-3. Source Program Example — CSRCPGM . . D-4
D-4. DDS Source for a Single-Session Target

Program Using TGTICFF D-9
D-5. DDS Source for a Single-Session Source

Program Using CUSMSTP D-9
D-6. DDS Source for a Single-Session Target

Program Using LGCMSTF D-9
D-7. Target Program Example — CTGTPGM . D-11

D-8. DDS Source for a Two-Session Source
Program Using INTFIL D-15

D-9. DDS for Source Program Two-Session
Inquiry Using DSPFIL D-16

D-10. Source Program Example — CSDINT . . . D-20
D-11. DDS Source for a Two-Session Target

Program Using CFILE D-34
D-12. DDS Source for a Two-Session Target

Program Using PFILE D-34
D-13. Target Program Example — CTDINT

(User-Defined Formats) D-35
D-14. DDS Source for a Two-Session Source

Program Using INTFIL D-39
D-15. DDS Source for Source Program

Two-Session Inquiry Using DSPFIL D-40
D-16. Source Program Example — RSDINT . . . D-44
D-17. DDS Source for an ICF File Used by a

Target Program D-56
D-18. DDS Source for a Database File Used by a

Target Program D-57
D-19. Target Program Example —RTDINT . . . D-58

iv Intrasystem Communications Programming V4R1

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Subject to IBM's valid intellectual property or other legally protectable
rights, any functionally equivalent product, program, or service may be used instead of the IBM product, program, or service.
The evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, are
the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this docu-
ment does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information
between independently created programs and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact the software interoperability coordinator. Such information may be available,
subject to appropriate terms and conditions, including in some cases, payment of a fee.

Address your questions to:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829 USA

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This publication may also
refer to products that have not been announced in your country. IBM makes no commitment to make available any unan-
nounced products referred to herein. The final decision to announce any product is based on IBM's business and technical
judgment.

This publication contains examples of data and reports used in daily business operations. To illustrate them as completely as
possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious
and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished by IBM as simple examples to provide an illustration. These exam-
ples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. All programs contained herein are provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

Programming Interface Information

This book is intended to help the customer develop communications between two application programs on the same system. It
contains information about the intrasystem communications support provided by the AS/400 system. The Intrasystem Commu-
nications Programming book contains no programming interfaces for customers.

Trademarks and Service Marks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation in the United States
or other countries or both:

Application System/400
AS/400
COBOL/400
IBM
ILE C/400

ILE COBOL/400
ILE RPG/400
RPG/400
Operating System/400
OS/400
400

 Copyright IBM Corp. 1997 v

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or service
marks of others.

vi Intrasystem Communications Programming V4R1

About Intrasystem Communications Programming (SC41-5447)

This book contains information about the intrasystem com-
munications support provided by the AS/400 system. It is
intended to be used as a guide for developing communica-
tions between two application programs on the same system.

For a list of related publications, see the Bibliography.

Who Should Use This Book

This book is intended for the AS/400 application programmer
responsible for defining or using intrasystem communications
support. It is used for developing application programs that
use the support.

You should be familiar with the following information:

� Managing jobs and messages on the AS/400 system,
described in the System Operation book, SC41-4203.

� Using the intersystem communications function (ICF) file,
described in the ICF Programming book, SC41-5442.

� Communications configuration information described in
the Communications Configuration book, SC41-5401.

Prerequisite and Related Information

For information about other AS/400 publications (except
Advanced 36), see either of the following:

� The Publications Reference book, SC41-5003, in the
AS/400 Softcopy Library.

� The AS/400 Information Directory, a unique, multimedia
interface to a searchable database that contains
descriptions of titles available from IBM or from selected
other publishers. The AS/400 Information Directory is
shipped with the OS/400 operating system at no charge.

Information Available on the World Wide
Web

More AS/400 information is available on the World Wide
Web. You can access this information from the AS/400
home page, which is at the following uniform resource locator
(URL) address:

http://www.as4ðð.ibm.com

Select the Information Desk, and you will be able to access a
variety of AS/400 information topics from that page.

 Copyright IBM Corp. 1997 vii

viii Intrasystem Communications Programming V4R1

Chapter 1. Introduction to Intrasystem Communications

AS/400 intrasystem communications allows two application
programs, which are running in two different jobs on the
same system, to communicate with each other through an
ICF file. Using intrasystem communications can help you
debug the programs before they are used to communicate
with a remote system over a communications line. AS/400
application programs can be written in the ILE C/400*, ILE
COBOL/400, or ILE RPG/400* programming languages to
use intrasystem communications.

The intrasystem communications support uses intersystem
communications function (ICF) 1 data management to
handle the sending and receiving of data between the two
programs. For communications to begin between programs,
the intrasystem communications device description first
needs to be configured and varied on.

Note: Because intrasystem communications supports
process-to-process communications within the same system
without the use of communications lines, line and controller
descriptions are not used.

Overview of Intrasystem Communications

Figure 1-1 provides an overview of the Operating
System/400* (OS/400*) intrasystem communications support.
Application program A communicates with application
program B. ICF data management handles the communica-
tions functions and data from your program. The intrasystem
communications support handles the communications pro-
tocol needed for data transfer and communications between
the two programs.

Both the source program (Program A) and the program with
which it is communicating (Program B) must use the same
device description.

Figure 1-2 on page 1-2 shows how multiple target programs
can communicate with the same source program.

When using intrasystem communications, a source program
can acquire more than one session for a given device
description, and can issue more than one evoke function to

start multiple target programs. This means, for example, that
PGMA can establish a transaction with PGMB on one
session and another transaction with PGMC on another
session, and have all the transactions at the same time.
However, having established a communications transaction
with PGMB on a given session, PGMA cannot then establish
a transaction with PGMC on the same session.

Note: The term target program is used in this book to refer
to the program with which the source program communi-
cates, even though the target program is not on a remote
system.

Intrasystem communications imposes no restrictions as to
the maximum number of sessions that can be associated
with a device. However, the maximum program device
(MAXPGMDEV) parameter on the Create ICF File
(CRTICFF) command specifies the maximum number of
program devices that you can use with the ICF file.

 AS/4ðð System

 ┌──┐

 │ Process A Process B │

 │ ┌──────────────────────────┐ ┌───────────────────────────┐ │

 │ │ Application │ │ Application │ │

 │ │ Program A │ │ Program B │ │

 │ │ │ │ │ │

│ │ ┌──────────────────────┐ │ │ ┌───────────────────────┐ │ │

│ │ │ ┌──────┐ ┌──────┐ │ │ │ │ ┌──────┐ ┌──────┐ │ │ │

│ │ │ │ Data │ │ Data │ │ │ │ │ │ Data │ │ Data │ │ │ │

│ │ │ └┬─────┘ └─────&┘ │ │ │ │ └┬─────┘ └─────&┘ │ │ │

│ │ └───┼──────────────┼───┘ │ │ └───┼───────────────┼───┘ │ │

 │ │ │ │ │ │ │ │ │ │

 │ │ │ │ │ │ │ │ │ │

│ │ ┌───6──────────────┴───┐ │ │ ┌───6───────────────┴───┐ │ │

│ │ │ ICF │ │ │ │ ICF │ │ │

│ │ │ Data │ │ │ │ Data │ │ │

│ │ │ Management │ │ │ │ Management │ │ │

│ │ └───┬──────────────&───┘ │ │ └───┬───────────────&───┘ │ │

 │ │ │ │ │ │ │ │ │ │

 │ │ │ │ │ │ │ │ │ │

│ │ ┌───6──────────────┴───┐ │ │ ┌───6───────────────┴───┐ │ │

│ │ │ Intrasystem │ │ │ │ Intrasystem │ │ │

│ │ │ Communications │ │ │ │ Communications │ │ │

│ │ │ Support │ │ │ │ Support │ │ │

│ │ └───┬──────────────&───┘ │ │ └───┬───────────────&───┘ │ │

 │ │ │ └─────┼───┼─────┘ │ │ │

│ │ └────────────────────┼───┼─────────────────────┘ │ │

 │ │ │ │ │ │

 │ └──────────────────────────┘ └───────────────────────────┘ │

 └──┘

Figure 1-1. Overview of Intrasystem Communications

1 The intersystem communications function (ICF) is a function of the operating system that allows a program to communicate interactively with
another program or system.

 Copyright IBM Corp. 1997 1-1

 AS/4ðð System

┌───┐

│ ProcessA ProcessB ProcessC │

│ ┌─────────────────────────────────┐ ┌──────────────────────┐ ┌──────────────────────┐ │

│ │ PGMA │ │ PGMB │ │ PGMC │ │

│ │ ┌──────────────┬──────────────┐ │ │ ┌──────────────────┐ │ │ ┌──────────────────┐ │ │

│ │ │ Acquire │ Acquire │ │ │ │ │ │ │ │ │ │ │

│ │ │ PGMDEVC │ PGMDEVB │ │ │ │ │ │ │ │ │ │ │

│ │ │ Evoke PGMC │ Evoke PGMB │ │ │ │ & │ │ │ │ & │ │ │

│ │ └───┬──────────┴──────────┬───┘ │ │ └────────────────┼─┘ │ │ └────────────────┼─┘ │ │

│ │ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │

│ │ ┌───┼─────────────────────┼───┐ │ │ ┌────────────────┼─┐ │ │ ┌────────────────┼─┐ │ │

│ │ │ 6 ICF 6 │ │ │ │ ICF │ │ │ │ │ ICF │ │ │ │

│ │ │ Data │ │ │ │ Data │ │ │ │ Data │ │ │

│ │ │ │ Management │ │ │ │ │ Management & │ │ │ │ Management & │ │ │

│ │ └───┼─────────────────────┼───┘ │ │ └────────────────┼─┘ │ │ └────────────────┼─┘ │ │

│ │ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │

│ │ ┌───┼─────────────────────┼───┐ │ │ ┌────────────────┼─┐ │ │ ┌────────────────┼─┐ │ │

│ │ │ │ Intrasystem │ │ │ │ │ Intrasystem │ │ │ │ │ Intrasystem │ │ │ │

│ │ │ │ Communications │ │ │ │ │ Communications│ │ │ │ │ Communications│ │ │ │

│ │ │ 6 Support 6 │ │ │ │ Support │ │ │ │ │ Support │ │ │ │

│ │ │ ' ' │ │ │ │ ' │ │ │ │ ' │ │ │

│ │ └───'─────────────────────'───┘ │ │ └────────────────'─┘ │ │ └────────────────'─┘ │ │

│ └─────'─────────────────────'─────┘ └──────────────────'───┘ └──────────────────'───┘ │

│ ' ''''''''''''''''''''''''''''''' ' │

│ ''' │

└───┘

Figure 1-2. A Source Program Communicating with Multiple Target Programs

Using Intrasystem Communications to
Test Communications Applications

Intrasystem communications can be used to test new com-
munications programs to be run using other communications
types. Using intrasystem communications can help you
debug the programs before they are used to communicate
with a remote system over a communications line.

During testing, you can check only those return codes
returned by intrasystem communications and issue only
those operations supported by intrasystem communications.

It is also important to note that there are differences in the
way intrasystem communications supports certain read and
write operations and the way other communications types
support such operations. For example, intrasystem commu-
nications implicitly responds to a confirm request in the
AS/400 system environment, whereas advanced program-to-
program communications (APPC) does not. For further
details about using intrasystem communications to test other
communications types, refer to Appendix C.

1-2 Intrasystem Communications Programming V4R1

Chapter 2. Configuring Intrasystem Communications

This chapter describes the commands used for configuring
intrasystem communications on your system.

When using intrasystem communications configuration com-
mands, you can enter the commands in one of two ways:

� Using the command prompt. Enter the command and
press F4 (Prompt). A prompt menu is shown for the
command.

� Using direct entry. Enter the command and its parame-
ters following the syntax described in the CL Reference
book.

In this chapter, the parameters of the CL commands that
apply to intrasystem communications are described.

Defining the Intrasystem Communications
Configuration

A configuration for intrasystem communications consists of
an intrasystem communications device description. The
device description describes the characteristics of the logical
connection between the two programs. Because programs
are communicating with each other on the same system, line
and controller descriptions are not supported. To use the
intrasystem communications device, it must first be config-
ured and varied on. You can create or change an intra-
system communications device description using the
following commands:

� Create Device Description (Intrasystem) (CRTDEVINTR)
command

� Change Device Description (Intrasystem)
(CHGDEVINTR) command

The parameters for the CRTDEVINTR and CHGDEVINTR
commands are:

DEVD
Specifies the name for the device description.

RMTLOCNAME
Specifies the remote location name with which your
program communicates. This parameter cannot be
specified on the CHGDEVINTR command.

ONLINE
Specifies if this device should be automatically varied on
during an initial program load (IPL).

*YES: This device is varied on automatically at IPL.

*NO: This device is not varied on automatically at IPL.
This is the default value.

AUT
Specifies the authority you are granting users who do
not have specific authority to the object, are not on the
authorization list, or whose group has no specific
authority to the object.

*LIBCRTAUT: The system determines the authority for
the object by using the value specified on the CRTAUT
parameter on the CRTLIB command for the library con-
taining the object to be created. If the value specified on
the CRTAUT parameter is changed, the new value will
not affect any existing objects. This is the default value.

*CHANGE: Change authority allows the user to perform
all operations on the object except those limited to the
owner or controlled by object existence authority and
object management authority. The user can change the
object and perform basic functions on the object.
Change authority provides object operational authority
and all data authority.

*ALL: All authority allows the user to perform all oper-
ations on the object except those limited to the owner or
controlled by authorization list management authority.
The user can control the object’s existence, specify the
security for the object, change the object, and perform
basic functions on the object. The user cannot transfer
ownership of the object.

*USE: Use authority allows the user to perform basic
operations on the object, such as displaying the object.
The user is prevented from changing the object. Use
authority provides object operational authority and read
authority.

*EXCLUDE: Exclude authority prevents other users
from accessing the object.

TEXT
Specifies text that briefly describes the object.

*BLANK: No text is specified. This is the default value.

'description': Specify no more than 50 characters,
enclosed in apostrophes, provided you do not use the
prompt screen.

 Example

CRTDEVINTR DEVD(INTRALOC)

 RMTLOCNAME(INTRARMT)

 ONLINE(\YES) AUT(\CHANGE)

TEXT('This is an intrasystem

 device description')

This command creates a device named INTRALOC and a
remote location name INTRARMT, allowing two programs to
communicate within the same system.

 Copyright IBM Corp. 1997 2-1

2-2 Intrasystem Communications Programming V4R1

Chapter 3. Running Intrasystem Communications Support

This chapter contains the information you need to run the
intrasystem communications support.

Vary On and Vary Off Support

Once an intrasystem communications device has been con-
figured, you can use the Vary Configuration (VRYCFG)
command to activate and deactivate the device configuration.
This can also be done from the WRKCFGSTS display.

Use the VRYCFG command and specify CFGTYPE(*DEV)
and STATUS(*ON) to vary on the configured device
description.

Use the VRYCFG command and specify CFGTYPE(*DEV)
and STATUS(*OFF) to vary off the configured device
description.

The following parameters are applicable to intrasystem com-
munications:

CFGOBJ
Specifies the name of the description for the device to
be varied on or off.

CFGTYPE
Specifies the type of configuration description to be
varied on or off. This is a required parameter. The only
valid entry for intrasystem communications is:

*DEV: Device configuration

STATUS
Specifies the status of the configuration object.

*ON: The object is varied on.

*OFF: The object is varied off.

RANGE
Specifies what configuration elements should be varied,
either the configuration element specified (*OBJ) or the
configuration element specified and its attached config-

uration elements (*NET). Devices are considered not to
have attached configuration elements. For devices, you
can specify either RANGE(*OBJ) or RANGE(*NET).

VRYWAIT
Specifies whether the Ethernet, token-ring, X.25, or
switched SDLC, BSC, or asynchronous line description
is varied on asynchronously or synchronously. Specify
how long the system waits for vary on to be completed
(for synchronous vary on) after which the communica-
tions file is opened and the session is acquired.

If the VRYWAIT parameter is specified on the VRYCFG
command for a line description that is not Ethernet,
token-ring, X.25, or switched SDLC, BSC, or asynchro-
nous, the parameter is accepted but ignored.

*CFGOBJ: The VRYWAIT parameter value specified in
the line description is used.

*NOWAIT: The system does not wait for vary on com-
pletion. The line is varied on asynchronously.

vary-on-wait: Specify a value ranging from 15 through
180 seconds in 1-second intervals. The system waits
until either the line is varied on or the timer expires
before completing the VRYCFG command.

ASCVRYOFF
Specifies whether the vary off is asynchronous. This
parameter is not allowed when STATUS(*ON) is speci-
fied.

*NO: The vary off is synchronous.

*YES: The vary off is asynchronous.

 Example

VRYCFG CFGOBJ(INTRALOC) CFGTYPE(\DEV)

 STATUS(\ON) RANGE(\OBJ)

This command varies on the configured device description
INTRALOC.

 Copyright IBM Corp. 1997 3-1

3-2 Intrasystem Communications Programming V4R1

Chapter 4. Writing Intrasystem Application Programs

This chapter describes how an application program uses the
intersystem communications function (ICF) file and the intra-
system communications support. The program can be coded
using the ILE C/400, C Set ++, ILE COBOL/400, or ILE
RPG/400 programming languages, which allows the program
to do the following functions:

� Start a session by opening an ICF file and acquiring a
program device.

� Send and receive information by writing or reading to an
ICF file.

� End a session by releasing the program device and
closing the ICF file.

This chapter also includes a description of the read and write
operations that specify a record format containing specific
communications functions. Record formats can be defined
using data description specifications (DDS), or you may use
system-supplied formats.

After an operation is completed, a return code (and a high-
level language file status) is returned to your application.
The return code indicates whether the operation was com-
pleted successfully or unsuccessfully. Along with the return
code, exception messages may also be issued. Refer to
Appendix B for more information about return codes and to
the appropriate language reference books for more informa-
tion about the high-level language file status.

Intersystem Communications Function File

An intersystem communications function (ICF) file must be
created before your application can use the intrasystem com-
munications support. The ICF file is used to describe how
data is presented to the program with which your program is
communicating, and how data is received from that program.
If you are using DDS keywords, use the Create Intersystem
Communications Function File (CRTICFF) command to
create an ICF file. If you are using the system-supplied
formats (such as $$SEND), you do not need to create an
ICF file. The ICF file QICDMF, which is in the library QSYS,
is supplied by IBM for communications.

The ICF file is a system object of type *FILE with a specific
user interface. This interface is made up of a set of com-
mands and operations. The commands allow you to manage
the attributes of the file and the operations allow a program
to use the file. Commands allow you to create, delete,
change, and display the file description.

The following commands are used to manage the ICF file,
and are described in detail in the ICF Programming book.

CRTICFF Create ICF File. This command allows you
to create an ICF file and file level attributes.

CHGICFF Change ICF File. This command allows
you to change the file attributes of the ICF
file.

OVRICFF Override ICF File. This command allows
you to temporarily change the file attributes
of the ICF file at run time. These changes
are only in effect for the duration of the job
and do not affect other users of the file.

DLTF Delete File. This command allows you to
delete a file from the system.

DSPFD Display File Description. This command
displays the file description of any file on
the system. The information may be
printed or displayed.

DSPFFD Display File Field Description. This
command displays the description of the
fields in any file on the system. This infor-
mation may be printed or displayed.

ADDICFDEVE Add ICF Device Entry. This command
allows you to permanently add a program
device entry that contains a program device
name, remote location information, and
session-level attributes to an ICF file.

CHGICFDEVE Change ICF Device Entry. This command
allows you to permanently change the
program device attributes previously added
with the ADDICFDEVE command.

OVRICFDEVE Override ICF Device Entry. This command
allows you to do the following:

� Temporarily add the program device
entry, the remote location information,
and the session-level attributes to the
ICF file.

� Temporarily change a program device
entry with the specified remote location
information and session-level attributes
for an ICF file. These changes are
only in effect for the job.

RMVICFDEVE Remove ICF Device Entry. This command
allows you to permanently remove the
program device entry previously added to
an ICF file with the ADDICFDEVE
command or changed with the
CHGICFDEVE command.

 Copyright IBM Corp. 1997 4-1

Specifying the Program Device Entry
Commands

The following describes the parameters for the
ADDICFDEVE, CHGICFDEVE, and OVRICFDEVE com-
mands and lists the valid values for each parameter for intra-
system communications.

FILE
Specifies the name and library of the ICF file to which
you are adding or changing the program device entry.
The FILE parameter is not available on the
OVRICFDEVE command.

*LIBL : Intrasystem communications support uses the
library list to locate the ICF file.

*CURLIB : Intrasystem communications support uses
the current library for the job to locate the ICF file. If no
current library entry exists in the library list, intrasystem
communications uses QGPL.

filename: A 1- to 10-character value that specifies the
name of the ICF file.

library-name: A 1- to 10-character value that specifies
the library where the ICF file is located.

PGMDEV
Specifies the program device name that is defined in the
ICF file and specified in the application. The total
number of devices that can be acquired to an ICF file is
determined by the MAXPGMDEV parameter on the
CRTICFF or CHGICFF command.

pgm-device-name: Enter a 1- to 10- character value for
the program device name being defined. This name is
used on device-specific input and output operations to
identify the program device and the attributes.

RMTLOCNAME
Specifies the remote location name with which your
program communicates. A remote location name must
be specified on the ADDICFDEVE command or an
OVRICFDEVE command. If a remote location name is
not specified, a major and minor error code are returned
when the program device is acquired.

*REQUESTER: The name used to refer to the commu-
nications device through which the program was started.
The session that is assigned when the program device is
acquired is the same session that receives the program
start request. If the program is not started as a result of
a program start request, the acquire operation for the
program device fails. The target program always uses
*REQUESTER as the remote location name in the ICF
file to connect to the session that the source program
uses to send the program start request.

remote-location-name: Enter a 1- to 8-character name
for the remote location name that should be associated
with the program device.

FMTSLT
Specifies the type of record format selection used for
input operations for all devices.

*PGM: The program determines what record formats
are selected. If an input (read) operation with a record
format name is specified, that format is always selected.
If an input operation without a record format is specified,
the default format (the first record format in the file) is
always selected. This also means that if any record
identification (RECID) keywords are specified in the data
description specifications (DDS) for the file, they are not
taken into consideration when the record is selected.

*RECID: The RECID keywords specified in DDS for the
file are used to specify record selection. If no RECID
keywords are specified in the file, an error message is
sent and an acquire operation for the program device
will fail.

*RMTFMT: The remote format names received from the
sending program are used to select the record format.

CMNTYPE
Identifies the communications type for which you define
a program device entry. You should specify the value
*INTRA or *ALL for this parameter.

*INTRA: The prompt for all intrasystem
communications-supported attributes.

Note: When you specify *REQUESTER for the remote
location name (RMTLOCNAME), you are only prompted
for the attributes of the Format Select parameter
(FMTSLT) and the Secure from Override parameter
(SECURE).

BATCH
Specifies if batch processing is performed for the
session. If you specify RMTLOCNAME(*REQUESTER),
this parameter is ignored. The program that issues the
evoke function determines whether batch processing can
occur.

*NO: Specifies that batch processing does not occur.

*YES: Specifies that batch processing occurs.

Note: Function-management-header, cancel, and
negative-response functions are only valid if
BATCH(*YES) is specified.

SECURE
The SECURE parameter is valid only on the
OVRICFDEVE command. This parameter does not
apply to the ADDICFDEVE or CHGICFDEVE com-
mands. This parameter is used to restrict the effects of
override processing.

*NO: Specifies no protection from other program device
overrides.

*YES: Specifies program device override protection
from override commands started in earlier programs.

4-2 Intrasystem Communications Programming V4R1

 Communications Operations

This section provides a description of the operations you can
code into a program that uses intrasystem communications
support to communicate with another program.

Starting a Session

A communications session is a logical connection by which a
program running in one job can communicate with another
program running in a different job. A communications
session is established with an acquire operation, and is
ended with a release operation or end-of-session function.

 Open/Acquire Operation

Your application program uses the acquire operation to
establish the session on which your program will communi-
cate with another program. Intrasystem communications
uses the value of each parameter that was specified on the
ADDICFDEVE or OVRICFDEVE command for the program
device.

The parameters are used to determine the following session
characteristics:

Format selection option: This indicates the type of pro-
cessing that needs to be done to determine what record
format to use on an input operation. Intrasystem commu-
nications supports all three format selection options: *PGM,
*RECID, and *RMTFMT.

Batch option: This indicates whether or not batch pro-
cessing is performed for the session. The following functions
are only valid if BATCH(*YES) is specified on the
ADDICFDEVE or OVRICFDEVE command:

 � Function-management-header function
 � Cancel function
 � Negative-response function

Starting a Transaction

A transaction is a logical connection between two programs.
Use an evoke function to start a transaction between your
program and another program.

 Evoke Function

Your program uses the evoke function to start a transaction
with a target program after you start a session. It is not valid
if your program is already communicating with another
program on the same session.

The program that issues an evoke function (the source
program) is initially in send state unless, for example, it also
issues a read operation, an allow-write function, or an invite
function to the other program. The source program would
then be in receive state and the other program can send
data.

The program with which the source program communicates
(the target program) is initially in receive state, and should
issue read operations until a receive-turnaround indication is
received.

The program that is in send state controls the transaction,
and determines what the other program must do. For
example, if a program that is in send state sends data, then
the program in receive state should issue a read operation to
receive the data (it cannot also send data).

With the evoke function your program can specify the fol-
lowing information:

� The name of the program with which your program is to
communicate

� The library in which the other program exists (optional)
� User-defined program initialization parameters (optional)
� Synchronization level (optional)
� Security information (optional)

If your program is using the EVOKE DDS keyword, you can
specify all of the above information. If your program is using
one of the evoke system-supplied formats, you can specify
all of the above except for synchronization level. In this
case, synchronization or confirmation is not allowed.

If you specify program initialization parameters (PIP) 1 with
the evoke function, each parameter that is sent should be
equal in length to the corresponding parameter specified in
the target program. If it is longer than the parameter length
in the target program, truncation occurs. If it is shorter than
the parameter length in the target program, results that are
not predictable may occur.

For information on how to code the evoke function, refer to
the ICF Programming book and the DDS Reference book.

1 The program initialization parameter (PIP) is the initial parameter value passed to a target program as input or used to set up the process
environment.

 Chapter 4. Writing Intrasystem Application Programs 4-3

 Sending Data

You can send data during a transaction using the write oper-
ation. With the write operation, you can, for example, specify
the end of a group of records, or indicate when your program
has finished sending data.

 Write Operation

The write operation is used to send data records to another
program. Each write operation sends only one data record.
Intrasystem communications supports various functions that
are discussed following this description. These functions
may be issued by your program to another program either
with or without data. The only exception is the function-
management-header function, which requires data to be sent.

Only one write operation can be issued at a time. Therefore,
if your program issues a second write operation while the
first one has not been received by the other program, the
second write operation will not complete until the data previ-
ously sent is read by the other program.

 Force-Data Function

Your program uses the force-data function to send commu-
nications data currently held in the output buffer. However,
because intrasystem communications does not buffer data,
the force-data function does not provide any additional func-
tion.

 Confirm Function

Your program uses the confirm function to indicate to the
other program that a response is needed before an operation
can complete. Once a confirm function is issued, control
does not return to your program until the other program with
which you are communicating responds to the confirm.

Note: The confirm function is allowed only if the transaction
was started with a synchronization level of confirm on the
evoke function.

 Format-Name Function

Your program uses the format-name function to send the
record format name, along with data, to the other program.
This is the record format name that should be used by the
other program on the corresponding read operation.

Note: The value *RMTFMT for the FMTSLT parameter
needs to be specified by the other program on the
ADDICFDEVE or OVRICFDEVE command for the record
format name to be used.

Subdevice Selection Function

Your program uses the subdevice selection function to
specify to the other program the device to which the output is
to be directed. Intrasystem communications sends the
subdevice code as a separate record before sending the
data.

Note: The subdevice function is ignored on any write opera-
tion except for the first operation in a group.

 End-of-Group Function

Your program uses the end-of-group function to indicate to
the other program that this is the last record in a group. It
does not indicate, however, that your program is ready to
receive data. The session remains in a send state.

 Function-Management-Header Function

Your program uses the function-management-header function
to indicate to the other program that function-management-
header data is being sent. Function-management-header
data contains control information for the data that is to follow,
and is only valid under the following conditions:

� If the program is running in batch mode (BATCH(*YES)
was specified on the ADDICFDEVE or OVRICFDEVE
command)

� If data is being sent (the data length is greater than
zero)

Intrasystem communications inserts the characters FMH
before the data being sent.

 Receiving Data

Intrasystem communications supports various functions
designed to obtain data from the other program.

 Read Operation

Your application program uses the read operation to obtain
data or control information from the other program. This
operation causes the user to wait for the data if it is not
immediately available. You can use the read operation by
itself or in combination with other write operations, in which
case the write operation is performed first, followed by the
read operation.

 Invite Function

Your application program uses the invite function to request
input data from another program, but it receives control
without waiting for the input. To obtain the data, you must
issue either a read or a read-from-invited-program-devices
operation. This function can be issued by itself or in combi-
nation with other write operations.

4-4 Intrasystem Communications Programming V4R1

 Read-from-Invited-Program-Devices
Operation

You can use the read-from-invited-program-devices operation
to obtain data from any program that has responded to an
invite function previously issued in your program. If data
becomes available to your program from more than one
program device before the read-from-invited-program-devices
operation is issued, your program receives the data that was
first made available.

Waiting for a Display File, an ICF File, and
a Data Queue

Use data queues when a program must wait for a display
file, an ICF file, and a data queue, in any combination, at the
same time. The following commands are used with the
specified DTAQ parameter:

� Create Display File (CRTDSPF)
� Change Display File (CHGDSPF)
� Override Display File (OVRDSPF)
� Create ICF File (CRTICFF)
� Change ICF File (CHGICFF)
� Override ICF File (OVRICFF)

Use these commands to indicate a data queue that will have
entries placed in it when one of the following occurs:

� An enabled command key or Enter key is pressed from
an invited display device

� Data becomes available when the session is invited for
an ICF device

� A user-defined entry is made to a data queue by a job
running on the system

For more information, see the CL Programming book and the
ICF Programming book.

Notifying the Remote Program of
Problems

Your program uses the fail, cancel, and negative-response
functions to indicate that an error has occurred during a
transaction with the target program.

 Fail Function

Your program issues the fail function to indicate that it has
detected an error in the data while it was sending or
receiving data. The fail function can be sent in either send
or receive state. No data can be sent with the fail function.

If a program that is in the send state issues a fail function,
either the data just sent was in error or some other condition
occurred. Intrasystem communications support informs the
other program of the error by returning a 0302 return code.

The last record before the fail function was issued is still sent
to the other program.

If a program is in the receive state and issues a fail function,
intrasystem communications support discards the incoming
data, informs the other program that a fail is being sent by
returning a 0402 return code, and changes the state of your
program’s session from receive to send state.

In either case, the program that issued a fail function should
send, and the program that received the fail must receive.

If both programs issue a fail function at the same time, the
program that was receiving will be successful and should
send. The program that was sending receives a fail return
code.

 Cancel Function

Your application program can issue a cancel function to indi-
cate that it detected an error in the data it was sending. The
cancel function is only valid under the following conditions:

� If your program is running in batch mode (BATCH(*YES)
was specified on the ADDICFDEVE or OVRICFDEVE
command)

� Within a group of records

� When the program is in send state

When your program is sending data and issues a cancel
function, intrasystem communications support informs the
other program that a cancel is being sent. No data may be
sent with a cancel operation.

The program that issues a cancel function should send, and
the program that receives the cancel must receive.

Issuing a cancel function is similar to issuing a fail function
when your program is sending data.

 Negative-Response Function

Your application program can use a negative-response func-
tion to indicate that it detected an error in the data it was
receiving. The negative-response function is only valid under
the following conditions:

� If your program is running in batch mode (BATCH(*YES)
was specified on the ADDICFDEVE or OVRICFDEVE
command)

� Within a group of records, or as the first function after
receiving an end-of-group function

� When the program is in receive state, but an invite func-
tion has not yet been issued or is currently not in effect

When your program issues a negative-response function,
intrasystem communications support discards any data being
received, and informs the other program that a negative-
response is being sent.

 Chapter 4. Writing Intrasystem Application Programs 4-5

Your program can also send eight bytes of sense data with
the negative-response function to inform the other program
about the reason for the error. Intrasystem communications
checks this data to ensure that the first four bytes are 10xx,
08xx, or 0000, where x is a digit. If not, the function is
rejected, with a return code of 831B. If your program does
not supply sense data, then intrasystem communications
sends the code 08110000.

Issuing a negative-response function is similar to issuing a
fail function when your program is receiving data.

Using Additional Functions/Operations

Intrasystem communications supports the following additional
functions or operations.

 Respond-to-Confirm Function

Your program uses the respond-to-confirm function to send a
positive response to a received confirm request. The posi-
tive response indicates that data was received without error
or that the request received may be performed (such as a
detach).

You can issue the respond-to-confirm function only after
receiving a confirm request from the other program.

A respond-to-confirm function is not required, however, and
an implicit positive response is sent if the next operation is
not a fail, cancel, negative-response, or end-of-session func-
tion.

 Request-to-Write Function

Your program uses the request-to-write function to indicate
that it wants to send something to the other program rather
than continue receiving data. The other program decides,
however, whether to stop sending data and when it will stop.

After issuing a request-to-write function, your program must
continue to receive data until it receives a return code that
indicates the other program is ready to begin receiving (if it
decides to do so). Your program, in response to the return
code, can then begin to send its data, perform other pro-
cessing, or end.

Your program can issue the request-to-write function only
when no invite function is in effect, and only when your
program is in the receive state.

 Allow-Write Function

Your program issues the allow-write function to inform the
program with which it is communicating that it is finished
sending data and is ready to receive.

Intrasystem communications sends data and an indication to
the other program that allow-write is being sent. If the opera-

tion is successful, a return code of 0001 is returned to indi-
cate that your program is ready to receive data.

 Cancel-Invite Function

Your program uses the cancel-invite function to attempt to
cancel an outstanding invite function for which no data has
been received. Cancel-invite is only valid when an invite
function is still in effect.

When your program issues a cancel-invite function, intra-
system communications determines if data has been
received from the other program. If no data has been
received, the invite is canceled, and your program is
changed from an invite state to send state.

If data has already been received from the other program,
the invite is not canceled, and a return code of 0412 is
returned. Your program must then issue a read or read-
from-invited-program-devices operation to receive the data
that the other program has already sent.

 Timer Function

Your program can use the timer function to set the maximum
amount of time your program waits to receive data when
issuing the read-from-invited-program-devices operation.

 Get-Attributes Operation

Your program uses the get-attributes operation to determine
the status of the session. It can be issued at any time during
a session. The operation gets the current status information
about the session to which your program is communicating.

 Ending Transactions

The detach function is used to end an active transaction
between your program and the program with which it is com-
municating.

 Detach Function

Your program uses the detach function to inform the other
program that your program is finished sending data and
wants to end the transaction.

Intrasystem communications sends the data and indicates to
the other program that the current record is the last record.

When a detach function is issued with a confirm function, the
transaction is ended by your program if a positive response
is received, and no further input or output operations with the
other program is allowed. When a detach function is issued
without a confirm function, the transaction ends without
waiting for a response from the other program. When the
target program receives the detach, it can no longer commu-
nicate with the source program and must end the logical con-

4-6 Intrasystem Communications Programming V4R1

nection to the session by ending the session. A source
program must issue an evoke function to establish commu-
nications again with a target program after sending or
receiving a detach function.

When a detach function is issued by a target program, its
logical connection to the session, as well as to the trans-
action, is ended.

 Ending Sessions

The following function and operations can be used by your
program to end a session.

 Release Operation

Your program uses the release operation to attempt to end
the program’s attachment to a session. Depending on how
the session was started, the release operation produces dif-
ferent results:

� If the session is associated with the source program, the
release operation ends the session immediately (unless
some error condition occurs). The operation frees the
resources (allocated to the program) used during the
session. If the release operation is not successful, the
end-of-session function can be issued to end the
session. The release operation is only valid when a
transaction is not active.

� If the session is associated with the target program, the
release operation only temporarily ends the connection
to the source program. The session is kept active, and
is not available for use by other programs until the target
program issues an end-of-session function or ends. If a
detach has not been done (that is, the transaction is still
active), an acquire can be issued to continue commu-
nications on that session.

 End-of-Session Function

Your program uses the end-of-session function to end a
session with another program. Unlike the release operation,
the end-of-session function always ends the session.
However, if the function is issued during an active trans-
action, intrasystem communications abnormally ends the
session.

When your program issues an end-of-session function, intra-
system communications ends the program’s attachment to
the session and frees the resources in the AS/400 system
used during the session. The resources are made available
to other programs in the AS/400 system that want to estab-
lish a session.

 Close Operation

Your program uses the close operation to close the ICF file
and to end the program’s attachment to any active session
the program has acquired. If the close operation is issued to
a session that was established by a source program, intra-
system communications ends the session and deallocates all
resources that were allocated for the file. If a transaction is
active when the close operation is issued, both the session
and the transaction are abnormally ended.

If the close operation is issued to a session associated with a
target program, the connection to the program is only tempo-
rarily ended. The session is kept active and is not available
for use by other programs until the target program issues an
end-of-session function or ends.

Using Response Indicators

Response indicators 2 are defined to your program in the
ICF file and are set on each input operation. However, these
indicators are optional and major and minor return codes can
also be used to indicate the status of input operations.

 Receive-Confirm

Your program uses the receive-confirm response indicator to
receive an indication from the other program that the record
it received contained a confirm request. A received confirm
request indicates the other program is expecting your
program to perform a specific action to synchronize the pro-
grams. This action can be a respond-to-confirm function to
respond positively or a fail or end-of-session function to
respond negatively. Your program can also do a normal
input/output operation to respond positively.

The presence of the confirm request is also indicated by the
minor return codes 14, 15, 17, 1C, 44, 45, and 47 with the
major return code 00 (user data received) or 02 (user data
received but program is being ended), or by the minor return
codes 14, 15, 17, and 1C with the major return code 03 (no
data received).

 Receive-End-of-Group

The receive-end-of-group response indicator is used to indi-
cate that the other program has sent the last record in a
group.

The presence of the end-of-group function is also indicated
by the minor return codes 03, 07, 17, and 47 with the major
return code 00 (user data received) or 02 (user data received

2 A response indicator is a 1-character field passed with an input record from the system to a program to provide information about the data
record.

 Chapter 4. Writing Intrasystem Application Programs 4-7

but program is being ended), or by the minor return codes 03
and 17 with the major return code 03 (no data received).

 Receive-Function-Management-Header

Your program uses the receive-function-management-header
response indicator to receive an indication from the other
program that function-management-header data was
received. The first three characters of the received data are
the characters FMH.

The presence of function-management-header data is also
indicated by the minor return codes 04, 05, 07, 44, 45, and
47 with the major return code 00 (user data received) or 02
(user data received but program is being ended).

 Receive-Fail

Your program uses the receive-fail response indicator to
receive an indication that the other program encountered an
error when it was sending or receiving data, and your
program should take the appropriate recovery action. Your
program remains in receive state after receiving the receive-
fail indicator and should continue to issue read operations.

Receipt of a fail request is also indicated by the minor return
code 02 with the major return code 03 (no data received) or
04 (output exception occurred).

The failure notification is always received without user data.

 Receive-Cancel

Your program uses the receive-cancel response indicator to
receive an indication that the other program encountered an
error when it was sending data.

Receipt of a cancel request is also indicated by the minor
return codes 30 and 31 with the major return code 83.

The cancel notification is always received without user data.

 Receive-Negative-Response

Your program uses the receive-negative-response response
indicator to receive an indication that the other program
encountered an error when it was receiving data.

Your program must issue an input operation to receive the
eight character sense code that the other program (or intra-
system) sends with the negative-response indication.

Receipt of a negative-response function is also indicated by
the 8319 return code. Refer to Appendix B for a description
of the return code.

 Receive-Turnaround

Your program uses the receive-turnaround response indicator
to receive an indication from the other program indicating
that it is ready to receive data.

The presence of the turnaround indication is also indicated
by the minor return codes 00, 04, 14, and 44 with the major
return code 00 (user data received) or 02 (user data received
but program is being ended), or by the minor return codes 00
and 14 with the major return code 03 (no data received).

 Receive-Detach

Your program uses the receive-detach response indicator to
receive an indication when the received data ends a trans-
action (the detach request has been received).

The presence of the detach request is also indicated by the
minor codes 08 (detach only) and 1C (detach and confirm
request) with the major return codes 00 (user data received),
02 (user data received but program is being ended), or 03
(no data received).

Using the Input/Output Feedback Area

Your program may have access to the file-dependent
input/output (I/O) feedback area. If it does, you should be
aware of certain fields when writing applications using intra-
system communications:

Actual received data length
This field contains the length of the data received on
an input operation.

Major return code
This field contains the major return code indicating
the status of input and output operations.

Minor return code
This field contains the minor return code indicating
the status of input and output operations.

Request-to-write indicator
This field indicates whether the other program has
requested permission to send data.

Format name
This field contains the record format name used to
receive the data on an input operation.

Using Return Codes

After each operation, an ICF return code is returned to your
program. Your program should check this return code to
determine:

� The status of the operation just completed
� The operation that should be issued next

4-8 Intrasystem Communications Programming V4R1

Example: On an input operation, a major return code of 00
indicates that data was received. Along with this major code,
intrasystem communications could return one of these minor
codes:

� 01: Indicates that your program should continue
receiving data.

� 08: Indicates the other program has ended the trans-
action. Your program can do one of the following:

– If it is a source program, issue another evoke func-
tion or end the session.

– If it is the target program, end the session or go to
end of job.

� 1C: Indicates the program with which your program is
communicating wants to end the transaction and
requested confirmation. Your program must first
respond either positively or negatively to the confirmation
request. If your program responds positively, it should
continue as for the 08 minor code. If it responds nega-
tively, it should then inform the other program why it
responded negatively or it can go to end of job without
performing error recovery. In any case, if your program

responds negatively, it is responsible for the appropriate
error recovery.

Example, Error Condition: Another example would be a
major code of 83. In this case, an error was detected that
may be recoverable. Different minor codes can be returned,
just as for the 00 major. For example, if your program
receives a CD minor return code, your program has issued a
confirm function that is currently not allowed. Your program
is using a transaction that was not started with a synchroni-
zation level of confirm. For this return code, your program is
responsible for the necessary error recovery. The session
and transaction are still active and you can recover from this
error by issuing the operation without the confirm function.

It is recommended that your program check the ICF return
codes at the completion of every operation to ensure that the
operation completed successfully or that the appropriate
recovery action can be taken.

Refer to Appendix B for a description of the return codes
that can be returned to your application when it is using intra-
system communications.

 Chapter 4. Writing Intrasystem Application Programs 4-9

4-10 Intrasystem Communications Programming V4R1

Chapter 5. Considerations for Intrasystem Communications

This chapter describes the application and performance con-
siderations for intrasystem communications.

 Application Considerations

Before writing programs that use intrasystem communica-
tions, you must understand some of the characteristics of the
AS/400 environment.

 General Considerations

These general considerations apply to your program and the
program with which it is communicating.

� The first operation following the acquire operation by a
source program should be a write operation with an
evoke function specified. The evoke function starts the
program with which the source program is going to com-
municate.

� The source program can send program initialization
parameters, with the evoke function, to the other
program only if the other program supports the receipt of
these parameters.

� Target programs on the AS/400 system establish a con-
nection to the session and transaction (started by the
source program) by issuing an acquire operation to the
program device associated with the remote location
name *REQUESTER (requesting program device).

� When a program is in receive state, it can issue a read
operation, an invite function, or a request-to-write func-
tion. A write operation issued with a fail function can
also be used if your program is to send an error condi-
tion to the other program.

� When a program is in send state, all operations except
open (to the opened ICF file), acquire (to the same
program device), negative-response, and the request-to-
write function are generally valid.

� When a program is receiving data, it should continue to
issue input operations until one of the following is
received:

– A minor return code indicating that your program
may now send data. The RCVTRNRND keyword
can also be used.

– A minor return code indicating that detach has been
received. The RCVDETACH keyword can also be
used.

– A major and minor return code indicating an error
condition, for example, any of the 80 major return
codes.

– Data that contains an error, in which case the
program should issue a negative-response or fail
function.

� To increase performance, two communicating programs
can change states implicitly without using the turnaround
indication by synchronizing their input and output oper-
ations. For example, if Program A is sending data and
issues a read operation to Program B, which is receiving
data, Program B can issue a write operation without
having received a turnaround indication. Program A is
then ready to receive data and Program B can send
data.

 Open/Acquire Considerations

The following information describes how the acquire opera-
tion is used to start a session between the source program
(Program A) and the program with which it is communicating
(Program B).

� If Program B acquires a program device, other than the
requesting program device, a new session is established
and the connection with the source program (Program A)
is not established. No error is indicated because it is
valid for Program B to be a target on one session and to
be a source program on another session. If the program
issues an input operation as the first operation to the
newly established session, and an evoke function has
not yet been issued, it will receive a return code indi-
cating that no transaction is active.

� Multiple sessions (that run at the same time) can be
established with multiple programs. The program device
names are used to distinguish the sessions within your
program.

 Input Considerations

The following information describes the input considerations
for your program.

� The receive indicators RCVTRNRND, RCVDETACH,
RCVENDGRP, and RCVCONFIRM can be received
either with data or without data (indicators only). Your
program should examine the major return codes in the
communications device-dependent feedback area to
determine if the record contains data. A major code of
00 or 02 indicates data has been received, and a major
code of 03 indicates no data has been received.

� The actual received data length can be determined from
the file-dependent I/O feedback area.

� When a write operation is issued following an invite, the
system performs an implicit cancel-invite function and
your program can begin sending data to the other
program, provided data was not waiting to be received.

� When a read operation is issued following a write, or fol-
lowing a read in which turnaround was received, the
system performs an implicit allow-write function and
begins waiting for data from the other program.

 Copyright IBM Corp. 1997 5-1

 Confirm Considerations

The following information describes how the confirm function
is used by both your program and the other program with
which it is communicating.

� Your program requests that the other program confirm
receiving the data by issuing an output request with the
confirm function.

� Your program is notified that it has received a confirma-
tion request from the other program in the following
ways:

– A major return code of 00 or 02, with the minor
return codes 14, 15, 17, 1C, 44, 45, or 47, or a
major return code of 03 with the minor return codes
14, 15, 17, or 1C.

– The RCVCONFIRM indicator is set.

Once your program has received a confirmation request,
it must either respond positively or negatively to the
request as follows:

– To respond positively, issue the respond-to-confirm
function, or issue any input/output operation except
the fail, negative-response, or end-of-session func-
tion.

– To respond negatively to the request, do the fol-
lowing:

- Issue a fail function. In this case, your program
is responsible for the appropriate level of error
recovery.

- Abnormally end the transaction and session by
issuing either an end-of-session function or a
close operation.

� When it is essential to your application program that the
other program be started before you issue output oper-
ations to it, specify the confirm function with the evoke
function. The evoke function will not complete until the
other program responds to the confirmation request.

� Because the output operation with the confirm function
specified waits for a positive or negative response before
control is returned to the program, the source and target
programs should be coded to minimize the amount of
time between receiving the confirm request and sending
the response. If the program receiving the confirm
request performs complex processing before sending a
response, the delay time can be significant.

Release, End-of-Session, and Close
Considerations

The following information describes how the close operation
and release and end-of-session functions are used to end
communications between your program and the program with
which it is communicating.

� The close operation and end-of-session function are

valid in any state, but will abnormally end an active
transaction with the other program and could also indi-
cate a logic error in the program.

� The target program cannot begin error recovery using
release, close, and open and acquire logic. When a per-
manent session error occurs, the source program is
responsible for recovery.

� A release operation performed by the target program
does not perform a detach function. The transaction
with the source program can be resumed by a subse-
quent acquire of the requesting program device. That
acquire can be performed either by the program that ini-
tially had the transaction or by another program running
in the same job.

� A transaction remains allocated to a target job until the
job ends even though a close or release operation was
issued and a detach sent. As long as the job is active,
the Work with Active Jobs (WRKACTJOB) command or
the Work Configuration Status (WRKCFGSTS) command
shows the job as an intrasystem communications target
program. You can use the end-of-session function to
end the session associated with a job. In this case, the
job no longer shows as active.

 Performance Considerations

If your program issues more than one evoke function, poor
system performance may result. This is because each evoke
function that results in a successful transaction causes a job
to be started on the system. Because job initializations
require a fair amount of system resources, you should design
your application to minimize evoke functions.

In general, your program should issue multiple evoke func-
tions only when jobs are long-running or when multiple target
jobs need to run at the same time. If you issue a large
number of evoke functions in your program, you can use pre-
start jobs, described on 5-2, to minimize the time required to
start a job.

Prestarting Jobs for Program Start
Requests

A program start request is a request made by your program
to start another program. When your program issues an
evoke function, this signals a program start request to the
intrasystem communications support.

To minimize the time required to carry out a program start
request, you can use the prestart jobs entry to start a job for
the other program before it receives the program start
request. To use prestart jobs, you need to define both com-
munications and prestart job entries in the same subsystem
description, and make certain programming changes to the
prestart job program with which your program communicates.
For information about how to use prestart jobs, refer to the
ICF Programming book.

5-2 Intrasystem Communications Programming V4R1

Appendix A. Language Operations, Data Description, Specifications
Keywords, and System-Supplied Formats

This appendix contains charts that show the following for
intrasystem communications:

� All valid language operations supported by ICF

� Valid operations for each programming language that
supports ICF

� Data description specifications (DDS) processing
keywords

 � System-supplied formats

 Language Operations

Figure A-1 describes the language operations supported by
ICF.

Figure A-2 shows all the valid operations for each program-
ming language that supports ICF (LE C/400, C Set ++ for
OS/400, ILE COBOL/400, and ILE RPG/400 programming
languages).

Figure A-1. Language Operations

ICF Operations Description

Open Opens the ICF file.

Acquire Establishes a session.

Get attributes Used to determine the status of the
session.

Read Obtains data from a specific session.

Read-from-invited-
program-devices

Obtains data from any session that has
responded to an invite function.

Write Passes data records from the issuing
program to the other program in the
transaction.

Write/Read Allows a write operation followed by a
read operation. Valid for ILE C/400, C
Set ++ for OS/400, and ILE RPG/400
only.

Release Attempts to end a session.

Close Closes the ICF file.

Figure A-2. Valid Operations for Programming Languages

ICF Operation
ILE RPG/400
Operation Code

ILE COBOL/400
Procedure State-
ment ILE C/400 Function

Open OPEN OPEN fopen, _Ropen

Acquire ACQ ACQUIRE _Racquire

Get attributes POST ACCEPT _Rdevatr

Read READ READ fread, _Rreadn

Read-from- invited-
program- devices

READ1 READ1 _Rreadindv

Write WRITE WRITE fwrite, _Rwrite

Write/ Read EXFMT Not supported _Rwriterd

Release REL DROP _Rrelease

Close CLOSE CLOSE fclose, _Rclose

1 A read operation can be directed either to a specific program device or to any invited program device. The support provided by the
compiler you are using determines whether to issue an ICF read or read-from-invited-program-devices operation, based on the format of the
read operation. For example, if a read is issued with a specific format or terminal specified, the read operation is interpreted as an ICF
read operation. Refer to the appropriate language reference book for more information.

 Copyright IBM Corp. 1997 A-1

Data Description Specifications Keywords

The following lists the data description specifications (DDS)
processing keywords that are valid for intrasystem commu-
nications.

DDS Keyword Description

ALWWRT Allow-write

CANCEL Cancel

CNLINVITE Cancel-invite

CONFIRM Confirm

DETACH Detach (End of transaction)

ENDGRP End-of-group

EOS End-of-session

EVOKE Evoke

FAIL Fail

FMH Function-management-header

FMTNAME Format-name

FRCDTA Force-data

INVITE Invite

NEGRSP Negative-response

RCVCANCEL Receive-cancel

RCVCONFIRM Receive-confirm

RCVDETACH Receive-detach

RCVENDGRP Receive-end-of-group

RCVFAIL Receive-fail

RCVFMH Receive-function-management-header

RCVNEGRSP Receive-negative-response

RCVTRNRND Receive-turnaround

RECID Record-identification

RQSWRT Request-to-write

RSPCONFIRM Respond-to-confirm

SECURITY Security

SUBDEV Subdevice

SYNLVL Synchronization level

TIMER Timer

VARLEN Variable-length data

 System-Supplied Formats

The following lists all the keyword functions performed by the
system-supplied formats that are valid for intrasystem com-
munications.

System-Supplied
*Formats Description

$$CANL Cancel with invite

$$CANLNI Cancel

$$CNLINV Cancel-invite

$$EOS End-of-session

$$EVOK Evoke with invite

$$EVOKET Evoke with detach

$$EVOKNI Evoke

$$FAIL Fail

$$NRSP Negative-response with invite

$$NRSPNI Negative-response

$$RCD Request-to-write with invite

$$SEND Send with invite

$$SENDE Send with end-of-group

$$SENDET Send with detach

$$SENDFM Send function-management-header
with invite

$$SENDNF Send with function-management-
header

$$SENDNI Send

$$TIMER Timer

A-2 Intrasystem Communications Programming V4R1

Appendix B. Return Codes, Messages, and Sense Codes

 Return Codes
This section describes all the return codes that are valid for intrasystem communications.
These return codes are set in the I/O feedback area of the ICF file; they report the results of
each I/O operation issued by your application program. Your program should check the
return code and act accordingly. Refer to your high-level language book for more informa-
tion on how to access these return codes.

Each return code is a four-digit hexadecimal value. The first two digits contain the major
code, and the last two digits contain the minor code.

With some return codes, a message is also sent to the job log or the system operator
message queue (QSYSOPR). You can refer to the message for additional information.

Notes:

1. In the return code descriptions, your program refers to the AS/400 application program
that issues the operation and receives a return code from ICF communications. The
other program refers to the application program with which your program is communi-
cating through ICF.

2. Several references to input and output operations are made in the descriptions. These
operations can include DDS keywords and system-supplied formats, which are listed in
Appendix A.

Major Code 00

Major Code 00 – Operation completed successfully.

Description: The operation issued by your program
completed successfully.
Your program may have sent or received some data, or may have
received a message from the
system.

Action: Examine the minor return code
and continue with the next operation.

Code Description/Action

0000 Description: For input operations issued by your program, 0000 indicates that
your program received some data with a turnaround indication. The other
program is ready to receive data.

For output operations issued by your program, 0000 indicates that the last
output operation completed successfully and that your program can continue to
send data.

Action: If your program received a turnaround on an input operation, issue an
input or output operation. For the actions which can be taken after 0000 is
received, refer to the following table:

 Copyright IBM Corp. 1997 B-1

0001 Description: On a successful input operation, your program received some
data. Your program must continue to receive data until it receives a turnaround
indication (which allows your program to send data) or a detach indication.

Action: Issue another input operation. If your program detects a turnaround
indication, it can issue an output operation.

0003 Description: On a successful input operation, your program received some
data with an end-of-group indication.

Action: Issue an input operation to receive the next group of records.

0004 Description: On a successful input operation, your program received some
data with a function-management-header (FMH) and a turnaround indication.
The other program is ready to receive data.

Action: Issue an output operation.

0005 Description: On a successful input operation, your program received some
data with a function-management-header (FMH).

Action: Your program can issue another input operation to continue receiving
data until it receives a turnaround indication or a detach indication.

0007 Description: On a successful input operation, your program received a
function-management-header (FMH) and an end-of-group indication. Your
program should continue to receive data.

Action: Issue another input operation to receive the next group of records.

0008 Description: On a successful input operation, your program received a detach
indication with the last of the data. The communications transaction with the
other program has ended.

Action: If your program started the session, it can issue another evoke func-
tion (to start another program), issue a release operation (to perform local pro-
cessing or to start another session), or end. If a program start request from the
other program started the transaction, your program can either issue an end-of-
session function or end.

0010 Description: On a successful output operation, your program received a
request-to-write indication. The other program wants to send data as soon as
possible. You should allow the other program to send this data.

Action: Issue an input operation as soon as possible.

0014 Description: On a successful input operation, your program received some
data with a turnaround indication. In addition, the other program requested
confirmation.

Figure B-1. Actions for Return Code 0000

Type of Session Last Operation Issued Actions Your Program Can Take

Started by a source
program

Acquire or open Issue an evoke or timer function, or a get-
attributes operation.

Evoke with detach or
write with detach

Issue another evoke function, issue a release
operation, continue local processing, or end.

Any other output operation Issue another output operation (except
evoke), or issue an input operation.

End-of-Session Continue local processing or end.
Started by a remote
program start
request1

Acquire or open Issue an input or output operation.

Write with detach Continue local processing or end. This
session has ended.

Any other output operation Issue another output operation (except
evoke), or issue an input operation.

End-of-Session Continue local processing or end.
1 A target program (started by a program start request) cannot issue an evoke function in this session;

it can issue an evoke function only in a different session that it has first acquired.

B-2 Intrasystem Communications Programming V4R1

Action: Process any data received with the request. If your program detects
no errors, respond to the confirm request with a respond-to-confirm
(RSPCONFIRM) function, then issue an input or output operation. If your
program does detect an error, issue a fail function, or end your program.

0015 Description: On a successful input operation, your program received some
data. In addition, the other program requested confirmation.

Action: Process any data received with the request. If your program detects
no errors, respond to the confirm request with a respond-to-confirm
(RSPCONFIRM) function, then issue an input operation. If your program does
detect an error, issue a fail function, or end your program.

0017 Description: On a successful input operation, your program received some
data with an end-of-group indication. In addition, the other program requested
confirmation.

Action: Process any data received with the request. If your program detects
no errors, respond to the confirm request with a respond-to-confirm
(RSPCONFIRM) function, then issue another input operation. If your program
does detect an error, issue a fail function, or end your program.

001C Description: On a successful input operation, your program received some
data with a detach indication. In addition, the other program requested confir-
mation.

Action: If your program detects no errors, it should respond to the confirm
request with a respond-to-confirm (RSPCONFIRM) function, and then:

� If your program started the transaction, it can issue another evoke opera-
tion (to start another program), issue a release operation (to perform local
processing or to start another session), or end.

� If a program start request from the other program started the transaction,
your program can issue an end-of-session function or end.

If your program does detect an error, issue a fail operation. The transaction
remains active, and your program and the other program can perform the nec-
essary error recovery. If your program detects an error and wants to end the
transaction abnormally, issue an end-of-session function, or end your program.

0044 Description: On a successful input operation, your program received some
data with a function-management-header (FMH) and a turnaround indication.
In addition, the other program requested confirmation.

Action: If your program detects no errors, respond to the confirm request with
a respond-to-confirm (RSPCONFIRM) function, then issue an output operation.
If your program does detect an error, issue a fail function, or end your program.

0045 Description: On a successful input operation, your program received some
data with a function-management-header (FMH). In addition, the other program
requested confirmation.

Action: If your program detects no errors, respond to the confirm request with
a respond-to-confirm (RSPCONFIRM) function, then issue an input operation.
If your program does detect an error, issue a fail function, or end your program.

0047 Description: On a successful input operation, your program received some
data with a function-management-header (FMH) and an end-of-group indi-
cation. In addition, the other program requested confirmation.

Action: If your program detects no errors, respond to the confirm request with
a respond-to-confirm (RSPCONFIRM) function, then issue an input operation.
If your program does detect an error, issue a fail function, or end your program.

 Appendix B. Return Codes, Messages, and Sense Codes B-3

Major Code 02

Major Code 02 – Input operation completed successfully, but your job is being ended
(controlled).

Description: The input operation issued by your program completed successfully. Your
program may have received some data or a message from the system. However, your
job is being ended (controlled).

Action: Your program should complete its processing and end as soon as possible.
The system eventually changes a job ended (controlled) to a job ended (immediate) and
forces all processing to stop for your job.

Code Description/Action

0200 Description: On a successful input operation, your program received some
data with a turnaround indication. Also, your job is being ended (controlled).
The other program is ready to receive data from your program.

Action: Your program can issue an input or output operation. However, the
recommended action is to complete all processing and end your program as
soon as possible. The system eventually changes a job ended (controlled) to a
job ended (immediate) and forces all processing to stop for your job.

0201 Description: On a successful input operation, your program received some
data. Also, your job is being ended (controlled). Your program can continue to
receive data until it receives a turnaround indication (which allows your program
to send data) or a detach indication.

Action: Your program can issue another input operation. If your program
detects the equivalent of a turnaround indication, it can issue an output opera-
tion. However, the recommended action is to complete all processing and end
your program as soon as possible. The system eventually changes a job
ended (controlled) to a job ended (immediate) and forces all processing to stop
for your job.

0203 Description: On a successful input operation, your program received some
data with an end-of-group indication. Also, your job is being ended (controlled).

Action: Your program can issue an input operation to receive the next group
of records. However, the recommended action is to complete all processing
and end your program as soon as possible. The system eventually changes a
job ended (controlled) to a job ended (immediate) and forces all processing to
stop for your job.

0204 Description: On a successful input operation, your program received some
data with a function-management-header (FMH) and a turnaround indication.
Also, your job is being ended (controlled). The other program is ready to
receive data.

Action: Your program can issue an output operation. However, the recom-
mended action is to complete all processing and end your program as soon as
possible. The system eventually changes a job ended (controlled) to a job
ended (immediate) and forces all processing to stop for your job.

0205 Description: On a successful input operation, your program received some
data with a function-management-header (FMH). Also, your job is being ended
(controlled).

Action: Your program can issue another input operation to continue receiving
data until it receives a turnaround indication or a detach indication. However,
the recommended action is to complete all processing and end your program
as soon as possible. The system eventually changes a job ended (controlled)
to a job ended (immediate) and forces all processing to stop for your job.

B-4 Intrasystem Communications Programming V4R1

0207 Description: On a successful input operation, your program received a
function-management-header (FMH) and an end-of-group indication. Also, your
job is being ended (controlled).

Action: Your program can issue another input operation to receive the next
group of records. However, the recommended action is to complete all pro-
cessing and end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces all pro-
cessing to stop for your job.

0208 Description: On a successful input operation, your program received a detach
indication with the last of the data. The communications transaction with the
other program has ended. Also, your job is being ended (controlled).

Action: If your program started the session, it can issue another evoke func-
tion (to start another program), issue a release operation (to perform local pro-
cessing or to start another session), or end. If a program start request from the
other program started the transaction, your program can either issue an end-of-
session function or end. However, the recommended action is to complete all
processing and end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces all pro-
cessing to stop for your job.

0214 Description: On a successful input operation, your program received some
data with a turnaround indication. In addition, the other program requested
confirmation. Also, your job is being ended (controlled).

Action: Process any data received with the request. If your program detects
no errors, respond to the confirm request with a respond-to-confirm
(RSPCONFIRM) function, then issue an input or output operation. If your
program does detect an error, issue a fail function, or end your program.
However, the recommended action is to complete all processing and end your
program as soon as possible. The system eventually changes a job ended
(controlled) to a job ended (immediate) and forces all processing to stop for
your job.

0215 Description: On a successful input operation, your program received some
data. In addition, the other program requested confirmation. Also, your job is
being ended (controlled).

Action: Process any data received with the request. If your program detects
no errors, respond to the confirm request with a respond-to-confirm
(RSPCONFIRM) function, then issue an input operation. If your program does
detect an error, issue a fail function, or end your program. However, the
recommended action is to complete all processing and end your program as
soon as possible. The system eventually changes a job ended (controlled) to a
job ended (immediate) and forces all processing to stop for your job.

0217 Description: On a successful input operation, your program received some
data with an end-of-group indication. In addition, the other program requested
confirmation. Also, your job is being ended (controlled).

Action: Process any data received with the request. If your program detects
no errors, respond to the confirm request with a respond-to-confirm
(RSPCONFIRM) function, then issue another input operation. If your program
does detect an error, issue a fail function, or end your program. However, the
recommended action is to complete all processing and end your program as
soon as possible. The system eventually changes a job ended (controlled) to a
job ended (immediate) and forces all processing to stop for your job.

021C Description: On a successful input operation, your program received some
data with a detach indication. In addition, the other program requested confir-
mation. Also, your job is being ended (controlled).

Action: If your program detects no errors, it should respond to the confirm
request with a respond-to-confirm (RSPCONFIRM) function, and then:

 Appendix B. Return Codes, Messages, and Sense Codes B-5

� If your program started the transaction, it can issue another evoke opera-
tion (to start another program), issue a release operation (to perform local
processing or to start another session), or end.

� If a program start request from the other program started the transaction,
your program can issue an end-of-session function or end.

If your program does detect an error, issue a fail operation. The transaction
remains active, and your program and the other program can perform the nec-
essary error recovery. If your program detects an error and wants to end the
transaction abnormally, issue an end-of-session function, or end your program.

However, the recommended action is to complete all processing and end your
program as soon as possible. The system eventually changes a job ended
(controlled) to a job ended (immediate) and forces all processing to stop for
your job.

0244 Description: On a successful input operation, your program received some
data with a function-management-header (FMH) and a turnaround indication.
In addition, the other program requested confirmation. Also, your job is being
ended (controlled).

Action: If your program detects no errors, respond to the confirm request with
a respond-to-confirm (RSPCONFIRM) function, then issue an output operation.
If your program does detect an error, issue a fail function, or end your program.
However, the recommended action is to complete all processing and end your
program as soon as possible. The system eventually changes a job ended
(controlled) to a job ended (immediate) and forces all processing to stop for
your job.

0245 Description: On a successful input operation, your program received some
data with a function-management-header (FMH). In addition, the other program
requested confirmation. Also, your job is being ended (controlled).

Action: If your program detects no errors, respond to the confirm request with
a respond-to-confirm (RSPCONFIRM) function, then issue an input operation.
If your program does detect an error, issue a fail function, or end your program.
However, the recommended action is to complete all processing and end your
program as soon as possible. The system eventually changes a job ended
(controlled) to a job ended (immediate) and forces all processing to stop for
your job.

0247 Description: On a successful input operation, your program received some
data with a function-management-header (FMH) and an end-of-group indi-
cation. In addition, the other program requested confirmation. Also, your job is
being ended (controlled).

Action: If your program detects no errors, respond to the confirm request with
a respond-to-confirm (RSPCONFIRM) function, then issue an input operation.
If your program does detect an error, issue a fail function, or end your program.
However, the recommended action is to complete all processing and end your
program as soon as possible. The system eventually changes a job ended
(controlled) to a job ended (immediate) and forces all processing to stop for
your job.

B-6 Intrasystem Communications Programming V4R1

Major Code 03

Major Code 03 – Input operation completed successfully, but no data received.

Description: The input operation issued by your program completed successfully, but
no data was received.

Action: Examine the minor return code and continue with the next operation.

Code Description/Action

0300 Description: On a successful input operation, your program received a turn-
around indication without any data. The session is still active.

Action: Issue an input or output operation.

0301 Description: On a successful input operation, your program received no data.
Your program must continue to receive input until it receives a turnaround or
detach indication.

Action: Issue an input operation.

0302 Description: On a successful input operation, your program received a fail
indication without any data. Either the other program has sent a fail function,
or the system has detected a break condition.

Action: Issue an input operation to receive the reason for the fail from the
other program.

0303 Description: On a successful input operation, your program received an end-
of-group indication without any data.

Action: Issue another input operation.

0308 Description: On a successful input operation, your program received a detach
indication without any data. The communications transaction with the other
program has ended. If you specified the DDS keyword RCVDETACH, the
receive-detach indicator is also set on.

Action: If your program started the session, it can issue another evoke func-
tion (to start another program), issue a release operation (to perform local pro-
cessing or to start another session), or end. If a program start request from the
other program started the transaction, your program can either issue an end-of-
session function or end.

0309 Description: On a read-from-invited-program-devices operation, your program
did not receive any data. Also, your job is being ended (controlled).

Action: Your program can continue processing. However, the recommended
action is to complete all processing and end your program as soon as possible.
The system eventually changes a job ended (controlled) to a job ended (imme-
diate) and forces all processing to stop for your job.

Messages:

 CPF4741 (Notify)

0310 Description: On a read-from-invited-program-devices operation, the time
interval specified by a timer function in your program or by the WAITRCD value
specified for the ICF file expired.

Action: Issue the intended operation after the specified time interval has
ended. For example, if you were using the time interval to control the length of
time to wait for data, you can issue another read-from-invited-program-devices
operation to receive the data.

Note: Since no specific program device name is associated with the com-
pletion of this operation, the program device name in the common I/O

 Appendix B. Return Codes, Messages, and Sense Codes B-7

feedback area is set to *N. Therefore, your program should not make
any checks based on the program device name after receiving the 0310
return code.

Messages:

 CPF4742 (Status)

 CPF4743 (Status)

0314 Description: On a successful input operation, your program received a turn-
around indication without any data. In addition, the other program requested
confirmation.

Action: If your program detects no errors, respond to the confirm request with
a respond-to-confirm (RSPCONFIRM) function, then issue an input or output
operation. If your program does detect an error, issue a fail function, or end
your program.

0315 Description: On a successful input operation, your program did not receive
any data. In addition, the other program requested confirmation.

Action: If your program detects no errors, respond to the confirm request with
a respond-to-confirm (RSPCONFIRM) function, then issue an input operation.
If your program does detect an error, issue a fail function, or end your program.

0317 Description: On a successful input operation, your program received an end-
of-group indication without any data. In addition, the other program requested
confirmation.

Action: If your program detects no errors, respond to the confirm request with
a respond-to-confirm (RSPCONFIRM) function, then issue an input operation.
If your program does detect an error, issue a fail function, or end your program.

031C Description: On a successful input operation, your program received a detach
indication without any data. In addition, the other program requested confirma-
tion.

Action: If your program detects no errors, it should respond to the confirm
request with a respond-to-confirm (RSPCONFIRM) function, and then:

� If your program started the transaction, it can issue another evoke opera-
tion (to start another program), issue a release operation (to perform local
processing or to start another session), or end.

� If a program start request from the other program started the transaction,
your program can issue an end-of-session function or end.

If your program does detect an error, issue a fail operation. The transaction
remains active, and your program and the other program can perform the nec-
essary error recovery. If your program detects an error and wants to end the
transaction abnormally, issue an end-of-session function, or end your program.

Major Code 04

Major Code 04 – Output exception occurred.

Description: An output exception occurred because your program attempted to send
data when it should be receiving data. The data from your output operation was not sent
to the remote system. You can attempt to send the data later.

Action: Issue an input operation to receive the data.

B-8 Intrasystem Communications Programming V4R1

Code Description/Action

0402 Description: Your program was sending data when a fail indication was
received. Your program is now in receive state.

Action: Issue an input operation.

Messages:

 CPF48ð6 (Notify)

0412 Description: An output exception occurred because your program attempted
to send data when it should be receiving data that was sent by the other
program. The data from your output operation was not sent. Your program
can attempt to send the data later.

Action: Issue an input operation to receive the data.

Note: If your program issues another output operation before an input opera-
tion, your program receives a return code of 831C.

Messages:

 CPF475ð (Notify)

 CPF5ð76 (Notify)

Major Codes 08 and 11

Major Codes 08 and 11 – Miscellaneous program errors occurred.

Description: The operation just attempted by your program was not successful. The
operation may have failed because it was issued at the wrong time.

Action: Refer to the minor code description for the appropriate recovery action.

Code Description/Action

0800 Description: The acquire operation just attempted by your program was not
successful. Your program tried to acquire a program device that was already
acquired and is still active.

Action: If the session associated with the original acquire operation is the one
needed, your program can begin communicating in that session since it is
already available. If you want a different session, issue another acquire opera-
tion for the new session by specifying a different program device name in the
PGMDEV parameter of the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command that precedes the program.

Messages:

 CPD4ð77 (Diagnostic)

 CPF5ð41 (Status)

 CPF5ðAð (Status)

1100 Description: The read-from-invited-program-devices operation just attempted
by your program was not successful because your program tried this operation
when no program devices were invited and no timer function was in effect.

Action: Issue an invite function (or a combined operation that includes an
invite) followed by a read-from-invited-program-devices operation.

Messages:

 CPF474ð (Notify)

 Appendix B. Return Codes, Messages, and Sense Codes B-9

Major Code 34

Major Code 34 – Input exception occurred.

Description: The input operation attempted by your program was not successful. The
data received was too long for your program's input buffer or was not compatible with the
record format specified on the input operation.

Action: Refer to the minor code description for the appropriate recovery action.

Code Description/Action

3401 Description: The input operation issued by your program was not successful
because the length of the data record sent by the other system was longer than
the length specified for your program's input buffer. The length of the data
record received from the other system, if available, is in the actual-record-
length field in the I/O feedback area.

Action: Issue another input operation if your program can specify a record
size large enough to receive the data, plus any indicators for a file without a
separate indicator area. Otherwise, you should close the file, end your
program, correct the record size, then run your program again.

Messages:

 CPF4768 (Notify)

3441 Description: A valid record format name was specified with format selection
type *RMTFMT or *RECID. However, although the data received matched one
of the record formats in the ICF file, it did not match the format specified on the
read operation.

Action: Correct your program to issue a read operation that does not specify a
record format name, or specify the correct record format name to process the
data based on the format selection option for the file.

Messages:

 CPF5ð58 (Notify)

3451 Description: Your program specified a file record size that was not large
enough for the indicators to be included with the data sent by the other
program (for a file defined with a nonseparate indicator area). Your program
did not receive any data. For a file using a nonseparate indicator area, the
actual record length field in the device-dependent I/O feedback area contains
the number of indicators specified by the record format.

Action: End the session; close the file; correct the file record size; then open
the file again.

Messages:

 CPF4768 (Notify)

B-10 Intrasystem Communications Programming V4R1

Major Code 80

Major Code 80 – Permanent system or file error (irrecoverable).

Description: An irrecoverable file or system error has occurred. The underlying com-
munications support may have ended and your session has ended. If the underlying
communications support ended, it must be established again before communications can
resume. Recovery from this error is unlikely until the problem causing the error is
detected and corrected.

Action: You can perform the following general actions for all 80xx return codes. Spe-
cific actions are given in each minor code description.

� Close the file, open the file again, then establish the session. If the operation is still
not successful, your program should end the session.

� Continue local processing.
 � End.

Note: If the session is started again, it starts from the beginning, not at the point where
the session error occurred.

Code Description/Action

8081 Description: The operation attempted by your program was not successful
because a system error condition was detected.

Action: Your communications configurations may need to be varied off and
then on again. Your program can do one of the following:

� Continue local processing.
� Close the ICF file, open the file again, and establish the session again.

 � End.

Messages:

 CPF417ð (Escape)

 CPF451ð (Escape)

 CPF4566 (Escape)

 CPF5257 (Escape)

8082 Description: The operation attempted by your program was not successful
because the device supporting intrasystem communications between your
program and the other program is not usable. For example, this may have
occurred because communications were stopped for the device by a Hold Com-
munications Device (HLDCMNDEV) command. Your program should not issue
any operations to the device.

Action: Communications with the remote program cannot resume until the
device has been reset to a varied on state. If the device has been held, use
the Release Communications Device (RLSCMNDEV) command to reset the
device. If the device is in an error state, vary the device off and then on again.
Your program can attempt to establish the session again, continue local pro-
cessing, or end.

Messages:

 CPF4744 (Escape)

 CPF5269 (Escape)

80B3 Description: The open operation issued by your program was not successful
because the ICF file is in use by another process.

Action: Wait for the file to become available, then issue another open opera-
tion. Otherwise, your program may continue processing, or it can end.

 Appendix B. Return Codes, Messages, and Sense Codes B-11

Consider increasing the WAITFILE parameter with the Change ICF File
(CHGICFF) or Override ICF File (OVRICFF) command to allow more time for
the file resources to become available.

Messages:

 CPF4128 (Escape)

80EB Description: The open operation attempted by your program was not suc-
cessful due to one of the following:

� Your program used an option of update or delete to open the file, but that
option is not supported by the program device.

� Your program requested both blocked data and user buffers on an open
option, but these formats cannot be selected together.

� Your program tried to open a source file, but the file was not created as a
source file.

� There is a mismatch on the INDARA keyword between your program and
the ICF file as to whether or not a separate indicator area should be used.

� The file was originally opened as a shared file; however, no program
devices were ever acquired for the file before your program attempted the
current open operation.

Action: After performing one of the following actions, your program can try the
open operation again:

� If the update and delete options are not supported for the program device,
use an option of input, or output, or both.

� If your program tried selecting user buffers and blocked data together, it
should try selecting one or the other, but not both.

� If your program tried to open a non-source file as a source file, either
change the file name or change the library name.

� If there was a mismatch on the INDARA keyword, either correct the file or
correct your program so that the two match.

� If no program devices were previously acquired for a shared file, acquire
one or more program devices for the file.

Messages:

 CPF4133 (Escape)

 CPF4156 (Escape)

 CPF4238 (Escape)

 CPF425ð (Escape)

 CPF4345 (Escape)

 CPF5522 (Escape)

 CPF5549 (Escape)

80ED Description: The open operation attempted by your program was not suc-
cessful because there is a record format level mismatch between your program
and the ICF file.

Action: Close the file. Compile your program again to match the file level of
the ICF file, or change or override the file to LVLCHK(*NO); then open the file
again.

Messages:

 CPF4131 (Escape)

80EF Description: Your program attempted an open operation on a file or library for
which the user is not authorized.

Action: Close the file. Either change the file or library name on the open
operation, or obtain authority for the file or library from your security officer.
Then issue the open operation again.

Messages:

 CPF41ð4 (Escape)

B-12 Intrasystem Communications Programming V4R1

80F8 Description: The open operation attempted by your program was not suc-
cessful because one of the following occurred:

� The file is already open.
� The file is marked in error on a previous return code.

Action:

� If the file is already open, close the file and end your program. Remove
the duplicate open operation from your program, then issue the open oper-
ation again.

� If the file is marked in error, your program can check the job log to see
what errors occurred previously, then take the appropriate recovery action
for those errors.

Messages:

 CPF4132 (Escape)

 CPF5129 (Escape)

Major Code 81

Major Code 81 – Permanent session error (irrecoverable).

Description: An irrecoverable session error occurred during an I/O operation. Your
session cannot continue and has ended. Before communications can resume, the
session must be established again by using an acquire operation or another program
start request. Recovery from this error is unlikely until the problem causing the error is
detected and corrected. Operations directed to other sessions associated with the file
should work.

Action: You can perform the following general actions for all 81xx return codes. Spe-
cific actions are given in each minor return code description.

If your program initiated the session, you can:

� Correct the problem and establish the session again. If the operation is still not
successful, your program should end the session.

� Continue processing without the session.
 � End.

If your session was initiated by a program start request from the other program, you can:

� Continue processing without the session.
 � End.

Note: If the session is started again, it starts from the beginning, not at the point where
the session error occurred.

Code Description/Action

8140 Description: A cancel reply was received from your program or from the oper-
ator in response to a notify message, or was the result of a system default,
causing the session to be ended. The session is no longer active.

Action: If your program started the session, issue an acquire operation to start
the session again. If your program was started by a program start request, it
can continue local processing or end.

Messages:

 CPF51ð4 (Escape)

81E9 Description: An input operation was issued and the format selection option for
the ICF file was *RECID, but the data received did not match any record
formats in the file. There was no format in the file defined without a RECID

 Appendix B. Return Codes, Messages, and Sense Codes B-13

keyword, so there was no default record format to use. The session has
ended.

Action: Verify that the data sent by the other program was correct. If the data
was not correct, change the other program to send the correct data. If the data
was correct, add a RECID keyword definition to the file that matches the data,
or define a record format in the file without a RECID keyword so that a default
record format can be used on input operations. If your program started the
session, use another acquire operation to start the session again. If a program
start request started your program, continue local processing or end.

Messages:

 CPF5291 (Escape)

Major Code 82

Major Code 82 – Open or acquire operation failed.

Description: Your attempt to establish a session was not successful. The error may be
recoverable or permanent, and recovery from it is unlikely until the problem causing the
error is detected and corrected.

Action: You can perform the following general actions for all 82xx return codes. Spe-
cific actions are given in each minor code description.

If your program was attempting to start the session, you can:

� Correct the problem and attempt to establish the session again. The next operation
could be successful only if the error occurred because of some temporary condition.
If the operation is still not successful, your program should end.

� Continue processing without the session.
 � End.

If your session was initiated by a program start request from the other program, you can:

� Correct the problem and attempt to connect to the requesting program device again.
If the operation is still not successful, your program should end.

� Continue processing without the session.
 � End.

Several of the minor codes indicate that an error condition must be corrected by
changing a value in the communications configuration or in the file.

� To change a parameter value in the communications configuration, vary the config-
uration off, make the change to the configuration description, then vary the config-
uration on.

� To change a parameter value in the file, use the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command.

Note: When a parameter can be specified both in the ADDICFDEVE or
OVRICFDEVE command and in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command overrides the value specified in
the configuration (for your program only). Therefore, in some cases, you
may choose to make a change with the ADDICFDEVE or OVRICFDEVE
command rather than in the configuration.

If no changes are needed in your file or in the configuration (and depending on what the
return code description says):

� If the attempted operation was an acquire, issue the acquire operation again.
� If the attempted operation was an open, close the file and issue the open operation

again.

B-14 Intrasystem Communications Programming V4R1

Code Description/Action

8209 Description: The open or acquire operation issued by your program was not
successful because a prestart job is being canceled. One of the following may
have occurred:

� An End Job (ENDJOB), End Prestart Job (ENDPJ), End Subsystem
(ENDSBS), End System (ENDSYS), or Power Down System
(PWRDWNSYS) command was being issued.

� The maximum number of prestart jobs (MAXJOBS parameter) was
reduced by the Change Prestart Job Entry (CHGPJE) command.

� The value for the maximum number of program start requests allowed
(specified in the MAXUSE parameter on the ADDPJE or CHGPJE
command) was exceeded.

� Too many unused prestart jobs exist.
� The prestart job had an initialization error.

Action: Complete all processing and end your program as soon as possible.
Correct the system error before starting this job again.

Messages:

 CPF4292 (Escape)

 CPF5313 (Escape)

8233 Description: A program device name that was not valid was detected. Either
an ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command was not run, or
the program device name in your program does not match the program device
name specified in the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command for the session being acquired. The session was not started.

Action: If the error was in your program, change your program to specify the
correct program device name. If an incorrect identifier was specified in the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command, specify the correct
value in the PGMDEV parameter.

Messages:

 CPF4288 (Escape)

 CPF5ð68 (Escape)

8281 Description: On an unsuccessful open or acquire operation, a system error
condition was detected. For example, the file may previously have been in
error, or the file could not be opened due to a system error.

Action: Your communications configurations may need to be varied off and
then on again. Your program can do one of the following:

� Continue local processing.
� Close the ICF file, open the file again, and acquire the program device

again. However, if this results in another 8281 return code, your program
should close the file and end.

� Close the file and end.

Messages:

 CPF4168 (Escape)

 CPF4182 (Escape)

 CPF4369 (Escape)

 CPF437ð (Escape)

 CPF4375 (Escape)

 CPF5257 (Escape)

 CPF5274 (Escape)

 CPF5317 (Escape)

 CPF5318 (Escape)

8282 Description: The open or acquire operation attempted by your program was
not successful because the device supporting intrasystem communications
between your program and the other program is not usable. For example, this

 Appendix B. Return Codes, Messages, and Sense Codes B-15

may have occurred because communications were stopped for the device by a
Hold Communications Device (HLDCMNDEV) command. Your program should
not issue any operations to the device. The session was not started.

Action: Communications with the remote program cannot resume until the
device has been reset to a varied on state. If the device has been held, use
the Release Communications Device (RLSCMNDEV) command to reset the
device. If the device is in an error state, vary the device off, then on again.
Your program can attempt to acquire the program device again, continue local
processing, or end.

Messages:

 CPF4298 (Escape)

 CPF5269 (Escape)

82A8 Description: The acquire operation attempted by your program was not suc-
cessful because the maximum number of program devices allowed for the ICF
file has been reached. The session was not started.

Action: Your program can recover by releasing a different program device and
issuing the acquire operation again. If more program devices are needed,
close the file and increase the MAXPGMDEV value for the ICF file.

Messages:

 CPF4745 (Diagnostic)

 CPF5ð41 (Status)

82A9 Description: The acquire operation issued by your program to a
*REQUESTER device was not successful due to one of the following causes:

� Your program has already acquired the *REQUESTER device.
� The job was started by a program start request with the *REQUESTER

device detached.
� The *REQUESTER device was released because an end-of-session was

requested.
� The job does not have a *REQUESTER device; that is, the job was not

started by a program start request.
� A CPI Communications requesting conversation is already allocated.
� A permanent error occurred on the session.

Action:

� If the *REQUESTER device is already acquired and your program expects
to communicate with the *REQUESTER device, use the program device
that acquired the *REQUESTER.

� If the *REQUESTER device is not available and your program expects to
communicate with the *REQUESTER device, the other program must send
a program start request without a detach function.

� If your program released its *REQUESTER device, correct the error that
caused your program to release its *REQUESTER device before trying to
acquire it.

� If this job does not have a *REQUESTER device, correct the error that
caused your program to attempt to acquire a *REQUESTER device.

� If a permanent error caused the acquire operation to fail, verify that your
program correctly handles the permanent error return codes (80xx, 81xx) it
received on previously issued input and output operations. Because your
program was started by a program start request, your program cannot
attempt error recovery after receiving a permanent error return code. It is
the responsibility of the other program to initiate error recovery.

Messages:

 CPF4366 (Escape)

 CPF538ð (Escape)

 CPF5381 (Escape)

B-16 Intrasystem Communications Programming V4R1

82AA Description: The open or acquire operation attempted by your program was
not successful because the remote location name specified on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command does not match
any remote location configured on the system. The session was not started.

Action: Your program can continue local processing, or close the file and end.
Verify that the name of the remote location is specified correctly in the
RMTLOCNAME parameter on the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command.

Messages:

 CPF41ð3 (Escape)

 CPF4363 (Escape)

 CPF4364 (Escape)

 CPF4747 (Escape)

 CPF53ð4 (Escape)

 CPF5378 (Escape)

 CPF5379 (Escape)

82AB Description: The open or acquire operation attempted by your program was
not successful because the device description for the remote location was not
varied on. The session was not started.

Action: Your program can wait until the communications configuration is
varied on and then issue the acquire operation again, it can try the acquire
operation again using a different device description, continue local processing,
or end.

Messages:

 CPF43ð4 (Escape)

 CPF5355 (Escape)

82EA Description: The open or acquire operation attempted by your program was
not successful. A format selection of *RECID was specified on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command, but cannot be
used with the ICF file because the RECID DDS keyword is not used on any of
the record formats in the file. The session was not started.

Action: Close the ICF file. Change the record format selection (FMTSLT)
parameter to select formats by some means other than *RECID, or use a file
that has a RECID DDS keyword specified for at least one record format. Open
the file again.

Messages:

 CPF4348 (Escape)

 CPF5521 (Escape)

82EE Description: Your program attempted an open or acquire operation to a
device that is not supported. Your program tried to acquire a device that is not
a valid ICF communications type, or it is trying to acquire the requesting
program device in a program that was not started by a program start request.
The session was not started.

Action: Your program can continue local processing or end. Verify that the
name of the remote location is specified correctly in the RMTLOCNAME param-
eter on the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command. If your
program was attempting to acquire a non-ICF device, use the appropriate inter-
face for that communications type. If your program was attempting to acquire a
requesting program device, verify that your program is running in the correct
environment.

Messages:

 CPF41ð5 (Escape)

 CPF4223 (Escape)

 CPF4251 (Escape)

 Appendix B. Return Codes, Messages, and Sense Codes B-17

 CPF476ð (Escape)

 CPF5ð38 (Escape)

 CPF555ð (Escape)

82EF Description: Your program attempted an acquire operation, or an open opera-
tion that implicitly acquires a session, to a device that the user is not authorized
to, or that is in service mode. The session was not started.

Action: If the operation was an acquire, correct the problem and issue the
acquire again. If the operation was an open, close the file, correct the problem,
then issue the open operation again. To correct an authority error, obtain
authority for the device from your security officer or device owner. If the device
is in service mode, wait until machine service function (MSF) is no longer using
the device before issuing the operation again.

Messages:

 CPF41ð4 (Escape)

 CPF4186 (Escape)

 CPF5278 (Escape)

 CPF5279 (Escape)

82F4 Description: The open or acquire operation attempted by your program was
not successful because the open operation for input only is valid only for a
requesting program device.

Action: End your program, correct the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command, then run your program again.

Messages:

 CPF4322 (Escape)

 CPF5539 (Escape)

B-18 Intrasystem Communications Programming V4R1

Major Code 83

Major Code 83 – Session error occurred (the error is recoverable).

Description: A session error occurred, but the session may still be active. Recovery
within your program might be possible.

Action: You can perform the following general actions for all 83xx return codes. Spe-
cific actions are given in each minor code description.

� Correct the problem and continue processing with the session. If the error occurred
because of a resource failure on the system, a second attempt may be successful.
If the operation is still not successful, your program should end the session.

� Issue an end-of-session function and continue processing without the session.
 � End.

Several of the minor codes indicate that an error condition must be corrected by
changing a value in the communications configuration or in the file.

� To change a parameter value in the communications configuration, vary the config-
uration off, make the change to the configuration description, then vary the config-
uration on.

� To change a parameter value in the file, use the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command.

Note: When a parameter can be specified both in the ADDICFDEVE or
OVRICFDEVE command and in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command overrides the value specified in
the configuration (for your program only). Therefore, in some cases, you
may choose to make a change with the ADDICFDEVE or OVRICFDEVE
command rather than in the configuration.

If no changes are needed in your file or in the configuration, and depending on what the
return code description says, you should notify the system operator that a change is
required to correct the error received.

Code Description/Action

830B Description: Your program attempted an operation that was not valid because
the session was not yet acquired or has ended. The session may have ended
because of a release operation, an end-of-session function, or a permanent
error. Your program may have incorrectly handled a previous error.

Action: Verify that your program does not attempt any operations without an
active session. Also verify that your program correctly handles the permanent
error or session-not-acquired return codes (80xx, 81xx, 82xx) it received on
previously issued input and output operations. To recover from an incorrectly
handled error condition, your program may or may not be able to issue another
acquire operation, depending on the return code.

Messages:

 CPD4ð79 (Diagnostic)

 CPF4739 (Status)

 CPF5ð67 (Escape)

 CPF5ð68 (Escape)

 CPF5ð7ð (Escape)

8319 Description: The other program sent a negative-response with sense data.

Action: Issue an input operation to receive the sense data.

Messages:

 CPF4773 (Notify)

 Appendix B. Return Codes, Messages, and Sense Codes B-19

831A Description: One of the following occurred:

� The evoke function attempted by your program was not successful.
� The other program issued an end-of-session function.
� The other program ended abnormally.

Action: Your program can issue an end-of-session function, issue a different
evoke function, or end.

Messages:

 CPF48ð5 (Notify)

 CPF48ð8 (Notify)

831B Description: Your program tried to specify invalid sense data on a negative-
response function, or it tried to send a negative-response that has already been
sent to the current chain. The data was not sent.

Action: Correct your program so that it does not issue the same negative-
response more than once, and that it sends valid sense data on a negative-
response function. Valid sense data must be either 0 or 8 bytes long. To send
8 bytes, the first four bytes must be 0000, 08xx, or 10xx, and the remaining
four bytes must be in the ranges 0-9, A-F, or a-f. If your program chooses to
send a negative-response without sense data, intrasystem communications
automatically sends 08110000 to the other program.

Messages:

 CPF4774 (Notify)

831C Description: Your program's previous output operation received a return code
of 0412, indicating that your program must receive information sent by the other
program; however, your program did not handle the return code correctly. The
current output operation was not successful because your program should have
issued an input operation to receive the information already sent by the other
program.

Action: Issue an input operation to receive the previous information.

Messages:

 CPF4934 (Notify)

831E Description: The operation attempted by your program was not valid, or a
combination of operations that was not valid was specified. The session is still
active. The error may have been caused by one of the following:

� Your program issued an operation that is not recognizable or not supported
by intrasystem communications.

� Your program requested a combination of operations or keywords that was
not valid, such as a combined write-then-read operation with the invite
function specified.

� Your program issued an input operation, or an output operation with the
invite or allow-write function, for a file that was opened for output only.

� Your program issued an output operation for a file that was opened for
input only.

� Your program issued a close operation with a temporary close option.

Action: Your program can try a different operation, issue a release operation
or end-of-session function, or end. Correct the error in your program before
trying to communicate with the other program.

If the file was opened for input only, do not issue any output operations; or, if
the file was opened for output only, do not issue any input operations, and do
not use the invite or allow-write function on an output operation. If such an
operation is needed, then release the session, close the ICF file, and open the
file again for input and output.

Messages:

B-20 Intrasystem Communications Programming V4R1

 CPF4564 (Escape)

 CPF4764 (Notify)

 CPF4766 (Notify)

 CPF479ð (Notify)

 CPF48ð3 (Notify)

 CPF5132 (Escape)

 CPF5149 (Escape)

831F Description: Your program specified data or a length for the operation that
was not valid; however, the session is still active. One of the following caused
the error indication:

� On an output operation, your program tried to send a data record that was
longer than the MAXRCDLEN value specified for the ICF file.

� The program used a read or write operation that specified a data length
greater than the record format in the ICF file.

� If this was a timer function, the format of the timer interval was not
HHMMSS.

� If a system-defined format was used to specify the operation, or if the
variable-length-data-record (VARLEN) function was used, then the length
of the user buffer was not valid.

Action: If you want your program to recover, try the operation again with a
smaller data length. If you do not need your program to recover immediately,
do one of the following:

� Change the record format length in the ICF file, or change the record
length in your program and compile your program again.

� For an input operation, specify a data length equal to or less than the
record format length, or do not specify a length at all.

� If the timer function was used, verify that the format of the timer interval is
HHMMSS.

� For an output operation that used the variable-length-data-record
(VARLEN) function, verify that the length specified is less than the record
length specified for the ICF file when it was opened.

Messages:

 CPF4762 (Notify)

 CPF4765 (Notify)

 CPF4767 (Notify)

8322 Description: Your program tried to issue a negative-response or a request-to-
write function. These functions are only valid while your program is in receive
state.

Action: Your program can issue an output operation to continue sending data,
issue an input operation to begin receiving data, issue an end-of-session func-
tion to continue local processing, or end. Correct the error that caused your
program to attempt the operation that was not valid.

Messages:

 CPF47ð3 (Notify)

 CPF4775 (Notify)

8323 Description: Your program attempted to issue a cancel function when data
was received for your program. The cancel function is only valid in send state.

Action: Your program can issue an input operation to continue receiving data,
issue an end-of-session function, or end. Correct the error that caused your
program to attempt the invalid operation.

Messages:

 CPF4776 (Notify)

 Appendix B. Return Codes, Messages, and Sense Codes B-21

 CPF48ð9 (Notify)

8326 Description: Your program attempted to issue a negative-response function or
a cancel function to cancel a group of records when no records were previously
sent to start a group. The cancel function is only valid within a chain; it is not
valid preceding a chain or between chains. The session is still active.

Action: Correct the error that caused your program to attempt the invalid oper-
ation.

Messages:

 CPF4779 (Notify)

 CPF481ð (Notify)

8327 Description: The input or output operation issued by your program was not
successful because there was no active transaction. Either the transaction has
ended, or the transaction was never started.

Action: If your program wants to start a transaction, it can issue an evoke
function. Otherwise, it can issue an end-of-session function or end. If a coding
error in your program caused the error, correct your program.

Messages:

 CPF5ð98 (Notify)

8329 Description: An evoke function that was not valid was detected in this
session. Your program was started by a program start request and, therefore,
cannot issue any evoke functions in this session.

Action: To recover, your program can try a different operation or function. To
issue an evoke function in a different session, first issue an acquire operation
(using a different program device name), then try the evoke function. Other-
wise, your program can issue an end-of-session function, continue local pro-
cessing, or end. If a coding error caused your program to attempt an evoke
that was not valid, correct your program.

Messages:

 CPF5ð99 (Notify)

832A Description: Both your program and the other program were attempting to
receive data at the same time.

Action: The other program is waiting to receive data from your program.
Issue an output operation. If a coding error in your program caused the error,
correct your program.

Messages:

 CPF48ð7 (Notify)

832C Description: A release operation following an invite function was detected.
Because your program issued the invite function, it cannot issue a release
operation to end the invited session.

Action: Issue an input operation to satisfy the invite function, or issue a
cancel-invite function to cancel the invite function; then try the release operation
again. Otherwise, issue an end-of-session function to end the session. If a
coding error caused your program to attempt a release operation that was not
valid, correct your program.

Messages:

 CPF4769 (Notify)

832D Description: Following an invite function, your program issued a request-to-
write indication, a negative-response indication, a cancel reply, or an additional
invite function. This operation failed because the original invite function must
first be satisfied by an input operation.

B-22 Intrasystem Communications Programming V4R1

Action: Issue an input operation to receive the data that was invited. Other-
wise, issue an end-of-session function to end the session. If a coding error
caused your program to attempt a request-to-write indication or an additional
invite function, correct your program.

Messages:

 CPF4924 (Notify)

832F Description: The evoke function or release operation issued by your program
was not successful because your program attempted the operation while the
current transaction was still active. The operation was not performed, but the
session is still active.

Action: Use the detach function to end the current transaction before issuing
an evoke function or release operation. Correct the error that caused your
program to issue an evoke function during an active transaction; then run your
program again.

Messages:

 CPF5ð99 (Notify)

8330 Description: On a successful input operation, your program received a cancel
function with a turnaround indication. The other program has canceled the
group of records it was sending and is now ready to receive data from your
program. The session is still active.

Action: Normally, your program should discard the canceled data it received
from the other program, as the data may be in error. Your program can then
issue an output operation.

Messages:

 CPF4782 (Notify)

8331 Description: On a successful input operation, your program received a cancel
function without a turnaround indication. The other program has canceled the
group of records it was sending, but it is still in send state, and your program is
still in receive state. The session is still active.

Action: Normally, your program should discard the canceled data it received
from the other program, as the data may be in error. Your program should
then issue another input operation.

Messages:

 CPF4783 (Notify)

8334 Description: The evoke function attempted by your program was not valid. A
program name must be specified on the evoke function.

Action: Correct your program so that it issues the evoke correctly, then try the
operation again.

Messages:

 CPF48ð4 (Notify)

83CD Description: The input operation issued by your program was not successful
because your program attempted a confirm function for a transaction that was
started with a synchronization level of *NONE.

Action: Issue an end-of-session function and change your program to start the
transaction with a synchronization level of *CONFIRM.

Messages:

 CPF5ð16 (Notify)

83D6 Description: The RSPCONFIRM function issued by your program was not
valid because the other program did not request confirmation, or because the
current transaction was started with a synchronization level of *NONE.

 Appendix B. Return Codes, Messages, and Sense Codes B-23

Action: If the other program did not request confirmation, correct the error that
caused your program to issue the RSPCONFIRM function. However, if both
programs expect to use confirmation processing, the transaction must be
started with a synchronization level of *CONFIRM.

Messages:

 CPF4792 (Notify)

83E0 Description: Your program attempted an operation using a record format that
was not defined for the ICF file.

Action: Verify that the name of the record format in your program is correct,
then check to see whether the record format is defined in the file definition.

Messages:

 CPF5ð54 (Notify)

83E8 Description: Your program attempted to issue a cancel-invite function to a
session that was not invited. One of the following may have occurred:

� The invite function was implicitly canceled earlier in your program by a
valid output operation.

� The invite function was satisfied earlier in your program by a valid input
operation.

� Your program had already canceled the invite function, then tried to cancel
it again.

� Your program never invited the session.

The session is still active.

Action: Your program can issue an input or output operation, issue an end-of-
session function, continue local processing, or end. However, you should
correct the error that caused your program to attempt the cancel-invite to a
session that was not invited.

Messages:

 CPF4763 (Notify)

83F8 Description: Your program attempted to issue an operation to a program
device that is marked in error due to a previous I/O or acquire operation. Your
program may have handled the error incorrectly.

Action: Release the program device, correct the previous error, then acquire
the program device again.

Messages:

 CPF5293 (Escape)

Failed Program Start Requests
Message CPF1269 is sent to the system operator message queue when the local system
rejects an incoming program start request. You can use the message information to deter-
mine why the program start request was rejected.

The CPF1269 message contains two reason codes. One of the reason codes can be zero,
which can be ignored. If only one nonzero reason code is received, that reason code repre-
sents the reason the program start request was rejected. If you are running in the
System/36 environment on your AS/400 system, there can be two nonzero reason codes.
These two reason codes occur when the OS/400 program cannot determine whether the
program start request was to start a job in the System/36 environment or by the OS/400
program. One reason code explains why the program start request was rejected in the
System/36 environment and the other explains why the program start request was rejected
by the OS/400 program. Whenever you receive two reason codes, you should determine
which environment the job was to run in and correct the problem for that environment.

B-24 Intrasystem Communications Programming V4R1

Figure B-2 on page B-25 describes reason codes for failed program start requests.

Figure B-2 (Page 1 of 2). Reason Codes for Rejected Program Start Requests

Reason
Code Reason Description

401 Program start request received to a device that is not allocated to
an active subsystem.

402 Requested device is currently being held by a Hold Communica-
tions Device (HLDCMNDEV) command.

403 User profile is not accessible.
404 Job description is not accessible.
405 Output queue is not accessible.
406 Maximum number of jobs defined by subsystem description are

already active.
407 Maximum number of jobs defined by communications entry are

already active.
408 Maximum number of jobs defined by routing entry are already

active.
409 Library on library list is exclusively in use by another job.
410 Group profile cannot be accessed.
411 Insufficient storage in machine pool to start job.
412 System value not accessible.
501 Job description was not found.
502 Output queue was not found.

503 Class was not found.
504 Library on initial library list was not found.
505 Job description or job description library is damaged.
506 Library on library list is destroyed.
507 Duplicate libraries were found on library list.
508 Storage-pool defined size is zero.
602 Transaction program-name value is reserved but not supported.
604 Matching routing entry was not found.
605 Program was not found.
704 Password is not valid.
705 User is not authorized to device.
706 User is not authorized to subsystem description.
707 User is not authorized to job description.
708 User is not authorized to output queue.
709 User is not authorized to program.
710 User is not authorized to class.
711 User is not authorized to library on library list.
712 User is not authorized to group profile.
713 User ID is not valid.
714 Default user profile is not valid.
715 Neither password nor user ID was provided, and no default user

profile was specified in the communications entry.
718 No user ID.
722 A user ID was received but a password was not sent.
723 No password was associated with the user ID.
725 User ID does not follow naming convention.
726 User profile is disabled.
801 Program initialization parameters are present but not allowed.
802 Program initialization parameter exceeds 2000 bytes.
803 Subsystem is ending.
804 Prestart job is inactive or is ending.
805 WAIT(NO) was specified on the prestart job entry and no prestart

job was available.
806 The maximum number of prestart jobs that can be active on a

prestart job entry was exceeded.
807 Prestart job ended when a program start request was being

received.
901 Program initialization parameters are not valid.
902 Number of parameters for program not valid.
903 Program initialization parameters required but not present.

 Appendix B. Return Codes, Messages, and Sense Codes B-25

Figure B-2 (Page 2 of 2). Reason Codes for Rejected Program Start Requests

Reason
Code Reason Description

1001 System logic error. Function check or unexpected return code
encountered.

1002 System logic error. Function check or unexpected return code
encountered while receiving program initialization parameters.

1501 Character in procedure name not valid.
1502 Procedure not found.
1503 System/36 environment library not found.
1504 Library QSSP not found.
1505 File QS36PRC not found in library QSSP.
1506 Procedure or library name is greater than 8 characters.
1507 Current library not found.

1508 Not authorized to current library.
1509 Not authorized to QS36PRC in current library.
1510 Not authorized to procedure in current library.
1511 Not authorized to System/36 environment library.
1512 Not authorized to file QS36PRC in System/36 environment

library.
1513 Not authorized to procedure in System/36 environment library.
1514 Not authorized in library QSSP.
1515 Not authorized to file QS36PRC in QSSP.
1516 Not authorized to procedure in QS36PRC in QSSP.
1517 Unexpected return code from System/36 environment support.
1518 Problem phase program not found in QSSP.
1519 Not authorized to problem phase program in QSSP.
1520 Maximum number of target programs started (100 per System/36

environment).
2501 System logic error. Function check or unexpected return code

encountered while processing a program start request.
2502 Temporarily unable to allocate needed resources for a program

start request.
2503 No subsystem accepting program start requests for this device.

B-26 Intrasystem Communications Programming V4R1

Appendix C. Using Intrasystem Communications to Test Applications

This appendix discusses the differences between intrasystem
communications and other communications types, such as
advanced program-to-program communications (APPC),
binary synchronous communications equivalence link
(BSCEL), Systems Network Architecture Upline Facility
(SNUF), asynchronous, retail, and finance communications,
in sending and receiving data. There may also be differ-
ences in the way the communications types support the start
of sessions and transactions, online messages, record
length, and return codes.

These differences should be noted, especially if you use
intrasystem communications to test new application programs
to be run using other communications types.

If your program expects to receive certain return codes and
messages, these codes and messages may not be the same
for intrasystem communications as they are for another com-
munications type. You may only be able to observe a range
of messages, or you may have to refer to the return codes
section for a specific communications type to determine the
differences for each code.

Using Intrasystem Communications for
Advanced Program-to-Program
Communications

Advanced program-to-program communications (APPC)
allows programs on an AS/400 system to communicate with
programs on other systems having compatible communica-
tions support. It also provides the capability for two pro-
grams to communicate with each other while running on the
same AS/400 system. This capability is enabled when
LINKTYPE(*LOCAL) is specified when the APPC controller
description is created. We recommend this method to test
programs which you have written to use APPC. APPC is the
AS/400 implementation of the SNA LU session type 6.2
architecture. The following considerations apply when you
use intrasystem communications to test programs to be run
using APPC.

Confirm Function
When your program uses the confirm function, intra-
system communications sends a positive response to
a confirm request if the user does a valid read or
write operation. However, APPC requires the user to
use the RSPCONFIRM DDS keyword to send a posi-
tive response.

Intrasystem communications also supports the confirm
function with non-APPC functions, such as the end-of-
group function. This results in more return codes for
intrasystem communications.

Conversation Types
APPC supports both basic and mapped conversation
types; intrasystem communications only supports the
equivalent of a mapped conversation. Programs
written for either basic or mapped conversations can
run using intrasystem communications. However,
intrasystem communications does no checking to
ensure the two communicating programs are both
using the same conversation type.

Evoke Function
When your program uses the evoke function to start
another program and you specify *USER for the user
ID on the SECURITY keyword, intrasystem commu-
nications always passes the user ID on the program
start request. However, APPC only passes the user
ID if the remote system accepts a user ID that has
already been verified.

Fail Function
If your program receives a fail indication, intrasystem
communications issues a 0302 return code when your
program is in the receive state, and a 0402 return
code when your program is in the send state.
However, APPC issues 83C7 through 83CC return
codes when a fail indication is received in the send or
receive state.

Force-Data Function
Intrasystem communications does not buffer data,
APPC does. If you use APPC, and your program
issues a write operation without specifying a function
that forces the data to be sent (for example, an invite
function, force-data function, or read operation), the
data is buffered so it can be sent later.

Output Operations
If your program attempts to send data when it should
be receiving data, an output exception occurs and
intrasystem communications sends your program a
0412 return code. If your program issues another
output operation, it receives a 831C return code.
APPC continues to send the 0412 return code.

Record Length
On input operations, if the length of the data record
sent by the other program is greater than the length
of your program input buffer, intrasystem communica-
tions returns a 3401 return code, and your program
can issue another read operation if it can specify a
record size large enough to receive the entire record.
APPC truncates the data to fit in your program’s input
buffer, and returns a 3431 return code with the data;
the data that was truncated is lost.

Variable Buffer Management (VARBUFMGT)
APPC supports the variable buffer management
(VARBUFMGT) DDS keyword, whereas intrasystem
communications does not.

 Copyright IBM Corp. 1997 C-1

Using Intrasystem Communications for
Asynchronous Communications

Asynchronous communications is a method of commu-
nications that allows an exchange of data with a remote
device or system, using either a start-stop line or an X.25
line. The following considerations apply when you use intra-
system communications to test programs to be run using
asynchronous communications.

Detach Function
Intrasystem communications requires that your
program issue a detach function to end a transaction
before ending the session. Asynchronous commu-
nications does not support the detach function, and
does not require a transaction to be ended before
ending the session.

Evoke Function
Intrasystem communications requires that your
program issue an evoke function as the first operation
after an acquire operation, whereas asynchronous
communications does not. Therefore, your first oper-
ation following an acquire operation must be an evoke
function when you use intrasystem communications to
test an application program which is to be run using
asynchronous communications.

Fail Function
For both intrasystem and asynchronous communica-
tions, your program issues the fail function to indicate
that it has detected an error in the data while it was
sending or receiving. However, whereas asynchro-
nous communications always sends a 0302 return
code, intrasystem communications sends a 0302
return code when your program is in receive state,
and a 0402 return code when your program is in send
state. Also, asynchronous communications discards
all data waiting to be received by your application
whenever a fail indication is sent or received.

Function-Management-Header Function
If your program uses the function-management-
header function, intrasystem communications sends
the function-management-header data to the other
program. If your program uses asynchronous com-
munications and issues a write function-management-
header function, it affects data translation, changes
certain characteristics of data on an asynchronous
communications line, or sends packet
assembler/disassembler (PAD) messages.

Number of Sessions
Intrasystem communications allows multiple sessions
per device; asynchronous communications allows only
one session per device.

Read or Write Operations
Asynchronous communications allows your program
to issue read and write operations in any order. Intra-
system communications normally requires that your
application program be in the send state to issue
output operations, and in the receive state to issue

input operations; however, if your program is in the
send state, you may issue a read operation.

Translation
Asynchronous communications supports translation of
data from EBCDIC to ASCII, whereas intrasystem
communications does not.

Using Intrasystem Communications with
Binary Synchronous Communications
Equivalence Link

Binary synchronous communications (BSC) is a data
communications line protocol that uses a standard set of
transmission control characters and control character
sequences to send binary-coded data over a communications
line. The ICF support on the AS/400 system that provides
binary synchronous communications with another AS/400
system is referred to as binary synchronous communica-
tions equivalence link (BSCEL) support . The following
considerations apply when you use intrasystem communica-
tions to test programs to be run using binary synchronous
communications equivalence link (BSCEL).

Detach Function
Intrasystem communications requires that your
program use a detach function to end a transaction,
and the other program receives a minor return code
of 08 indicating that the detach function was sent. If
your program uses BSCEL and specifies
RMTBSCEL(*NO), BSCEL treats a detach function as
if it were an end-of-group function, and the receiving
program would never receive a 08 minor return code.

End-of-Group Function
Intrasystem communications issues a return code of
0003 or 0303 to the other program when your
program issues an end-of-group function (the '03'
minor code indicates an end of group). BSCEL
issues either a 0300 or 0301 return code to the
receiving program, depending on the value specified
for the GRPSEP parameter in the device description
or on the ADDICFDEVE, the CHGICFDEVE, or the
OVRICFDEVE command.

Evoke Function
Intrasystem communications requires that a source
program issue an evoke function as the first operation
after an acquire operation. However, if your program
uses BSCEL and you specify RMTBSCEL(*NO) on a
program device entry command, on the CRTDEVBSC
command, or the CHGDEVBSC command, the evoke
function is optional, and the first input or output opera-
tion from your program starts the transaction.

If your program uses intrasystem communications and
the evoke function fails, a notify message is sent to
your program with a reason code indicating why it
failed. If your program uses BSCEL and you specify
RMTBSCEL(*YES) and an evoke function fails, both a
notify message and an online message are sent to

C-2 Intrasystem Communications Programming V4R1

your program and your program must issue a read
operation to receive the online message.

Fail Function
When intrasystem communications support receives a
fail function, a return code of 0402 or 0302 is returned
to your program, and you may correct the error indi-
cated and continue sending data. When BSCEL
receives a fail function (an end-of-transmission, or
EOT, indication), a return code of 8197 or 8198 is
returned to your program, and the session is ended.

Number of Sessions
Intrasystem communications allows multiple sessions
per device; BSCEL allows only one session per
device.

Online Messages
Intrasystem communications does not send or receive
any online messages; BSCEL does support online
messages.

Program Start Requests
When using BSCEL, a source program that specifies
RMTBSCEL(*NO) for the communications session
can send data in the proper format for a program start
request with the program’s first output operation.
When using intrasystem communications, your source
program cannot issue a program start request; the
evoke function must be used to start another
program.

Receiving Data
If you are using intrasystem communications, a return
code of 0300 or 832A is used if both your program
and the program with which you are communicating
attempt to receive data at the same time. If you use
BSCEL, both programs will be waiting to receive data
indefinitely.

Receive-Turnaround Indication
If you use intrasystem communications, your program
may receive a turnaround indication on the same read
operation for which your program receives data.
BSCEL sends the turnaround indication as a separate
transmission after the data record is sent. Therefore,
you may need to issue an additional read operation
for BSCEL to receive the turnaround indication.

Record Blocking
Intrasystem communications does not support record
blocking (that is, you cannot specify the BLOCK
parameter on the program device entry commands);
BSCEL does support record blocking.

Record Length
Intrasystem communications supports a maximum
record length of 32767 bytes; BSCEL supports a
maximum record length of 8192 bytes.

Using Intrasystem Communications for
Finance Communications

Finance communications allows programs on an AS/400
system to communicate with programs using the SNA LU
session type 0 protocol. The following considerations apply
when you use intrasystem communications to test programs
to be run using finance communications.

Allow-Write and Request-to-Write Functions
Both intrasystem and finance communications require
that your program either send or receive at any given
time. However, whereas intrasystem communications
uses the allow-write and request-to-write functions as
a way of determining which program should send or
receive, finance communications does not. If you use
finance communications, and neither your program
nor the controller has sent a group of records, a con-
tention state exists, in which either program may
attempt to send. If both the local and the controller
program send at the same time, the controller is des-
ignated the sender, and can send a negative-
response indication to your program. When writing
programs that use finance communications, you need
to be aware of these contention error conditions.

Confirm, End-of-Group, Invite, or Read Functions Speci-
fied on Write Operations with Data

Intrasystem communications allows your program to
specify a confirm function on write operations with
data; finance communications does not. However,
finance communications supports a function similar to
the confirm function. When your program issues a
write operation with data, and the end-of-group func-
tion is also specified, the data is sent to the finance
controller, and the write operation does not complete
until a response is received from the controller.

If you specify invite or read functions on a write oper-
ation with data, however, the data is sent to the
finance controller as if an end-of-group function was
specified, but no response from the finance controller
is required.

Note: Data sent to a 3694 finance controller never
requires a response.

Force-Data Function
Intrasystem communications does not buffer data;
finance communications does. If you use finance
communications, and your program issues a write
operation and this is the first record in a group of
records, the data is sent immediately. However, if
your program sends subsequent records without
specifying a function that closes the group of records
(for example, end-of-group or invite functions or a
read operation), the data may be buffered to be sent
at a later time. Your program can use the force-data
function to ensure that data is sent when the write
operation is issued.

 Appendix C. Using Intrasystem Communications to Test Applications C-3

Number of Sessions
Intrasystem communications allows multiple sessions
per device; finance communications allows only one
session per device.

Read Operations
Intrasystem communications returns 0000 and 0001
return codes on read operations, finance communica-
tions does not. If you use finance communications;
your program must receive an entire group of records.
Therefore, your program can only receive the fol-
lowing return codes if the read operation is suc-
cessful: 0003 (the last record in a group of records
has been received) or 0007 (a group of records was
received with a function management header as the
first record).

Sense Data
Finance communications returns sense data to your
program in an I/O feedback area that is accessible to
your program. Sense data is returned for any opera-
tion that fails with an 8319 or 831A return code.
However, intrasystem communications requires that
the user issue an input operation to receive the sense
data.

Write Operations
If you use intrasystem communications, your program
receives an error indication on a write operation if the
error indication is received before the write operation
is issued. When finance communications receives an
error indication before your program issues a write
operation, your program either receives the error indi-
cation on the write operation, or is required to issue
an input operation to receive the error indication if the
session is invited.

Using Intrasystem Communications for
Retail Communications

Retail communications allows programs on an AS/400
system to communicate with programs using SNA LU
session type 0 protocol. The following considerations apply
when you use intrasystem communications to test programs
to be run using retail communications.

Sending and Receiving Data
Intrasystem communications is half-duplex, that is,
your program can send or receive data, but cannot do
both at the same time. Retail communications allows
you to acquire sessions with retail controllers using a
Systems Network Architecture (SNA) bind command
that specifies a duplex protocol, that is, you can send
and receive data at the same time. Therefore, when
writing programs that use retail communications, you
should note that it does not support the usual rules
relating to when your program can send or receive
data.

Note: Due to this major difference between intra-
system and retail communications, using intrasystem

communications may not be the most effective way to
test programs that use retail communications.

Confirm, End-of-Group, Invite, or Read Functions Speci-
fied on Write Operations with Data

Intrasystem communications allows your program to
specify a confirm function on write operations with
data; retail communications does not. However, retail
communications supports a function similar to the
confirm function. When your program issues a write
operation with data, and the end-of-group function is
also specified, the data is sent to the retail controller,
and the write operation does not complete until a
response is received from the controller.

If you specify invite or read functions on a write oper-
ation with data, however, the data is sent to the retail
controller as if an end-of-group function was specified,
but no response from the retail controller is required.

Detach Function
Intrasystem communications allows your program to
send data when using the detach function, but retail
communications does not. In addition, retail commu-
nications requires that any partially sent or partially
received group of records be closed before a detach
function is allowed. If any data or error indications
have been received from the retail controller but have
not yet been received by your program, the detach
function fails, and the return code 8322 is returned to
your program.

Evoke Function
When you use intrasystem communications and issue
an evoke function, you must specify the program
name. You may also use, for example, the SECU-
RITY keyword and program initialization parameters,
and specify read operations or functions such as the
invite and function-management-header functions. If
the retail controller program specifies program initial-
ization parameters or security information on the
evoke function, retail communications ignores this
information. If the function-management-header func-
tion is specified on an evoke function, retail commu-
nications issues an 831E return code.

Force-Data Function
Retail communications buffers data; intrasystem com-
munications does not. If your program issues a write
operation without specifying a function that closes the
group of records (for example, an end-of-group, force-
data, or invite function or a read operation), the data
may be buffered so that it can be sent at a later time.
Specifying any of these functions ensures that all the
data is sent.

Invite Function
If your program sends a group of records and then
issues an invite function, intrasystem communications
closes the group of records that is being sent.
However, retail communications does not; the session
is simply invited.

C-4 Intrasystem Communications Programming V4R1

Note: Retail communications does close a group of
records that your program is sending, however, when
you issue an invite function and it is specified on a
write operation with data.

Number of Sessions
Intrasystem communications allows multiple sessions
per device; retail communications allows only one
session per device.

Read Operations
Intrasystem communications returns a 0001 return
code on a read operation; retail communications does
not. A retail application program can receive one of
the following return codes: 0000 (one record was
received in a group of records); 0003 (the last record
was received or the only record of a group of records
was received); 0005 (the first record of a group of
records was received with a function-management-
header indication); or 0007 (a group of records was
received with function-management-header data as
the first record).

In addition, if you partially send a group of records on
a write operation, and then issue a read operation,
intrasystem communications closes the group of
records. However, retail communications only closes
a group of records on a read operation if it is speci-
fied on a write operation with data.

Sense Data
Retail communications returns sense data to your
program in an I/O feedback area that is accessible to
your program. Sense data is returned for any opera-
tion that fails with an 8319 or 831A return code.
However, intrasystem communications requires that
the user issue an input operation to receive the sense
data.

Write Operations
Intrasystem communications requires your program to
receive data when data is available to be received.
You cannot also send data while you are receiving.
However, retail communications allows your program
to issue write operations at any time. The only case
in which this is not true is when you receive an error
indication from the remote program.

Using Intrasystem Communications for
Systems Network Architecture Upline
Facility

The SNA upline facility (SNUF) is the communications
support that allows the AS/400 system to communicate with
CICS/VS and IMS/VS application programs on a host
system. The following considerations apply when you use

intrasystem communications to test programs to be run using
Systems Network Architecture upline facility (SNUF).

End-of-Group Function
Intrasystem communications issues a return code of
0003 or 0303 to indicate the end of a group of
records. SNUF issues a major return code of 00 with
minor return codes 01 or 03, or a major return code
03 with minor return codes 01 or 03, depending on
the value specified for the batch parameter on either
the Create Device Description (SNUF)
(CRTDEVSNUF) command or on the ADDICFDEVE
or OVRICFDEVE command.

Evoke Function
Intrasystem communications requires your program to
issue an evoke function after acquiring a session to
start the target program; SNUF does not.

Fail Function
Intrasystem communications can send and receive fail
indications in addition to cancel and negative-
response indications. If your program receives a fail
function while in the receive state, intrasystem com-
munications returns a 0302 return code. If your
program receives a fail function while in send state,
intrasystem communications returns a 0402 return
code. SNUF cannot receive a fail indication from the
host system, but can receive a cancel or negative-
response indication, depending on the state of the
transaction. If your program issues a fail function
while in receive state, SNUF sends a negative-
response indication to the host system. If your
program issues a fail function while in the send state,
SNUF sends a cancel indication to the host system.

Function-Management-Header Data
If a function-management-header indication is
received with data, intrasystem communications
inserts the characters FMH before the data that is
received. SNUF does not insert these characters;
instead, the return code indicates that the function-
management-header indication is being received.

Number of Sessions
Intrasystem communications allows multiple sessions
per device, SNUF allows only one session per device.

System Messages
Intrasystem communications does not send or receive
system messages. However, SNUF checks the
received data for system messages, and if they are
received, SNUF issues a major return code 00 with
the following minor return codes: 20, 21, 23, 25, 27,
28, 30, 31, 33, 35, 37, or 38.

 Appendix C. Using Intrasystem Communications to Test Applications C-5

C-6 Intrasystem Communications Programming V4R1

 Appendix D. Program Examples

This appendix provides sample programs to demonstrate
how intrasystem communications is used. Program exam-
ples for the ILE C/400, C Set ++, COBOL*/400, and
RPG*/400 programming languages are provided with expla-
nations.

In the ILE C/400 program example, both the source and the
target programs are provided to show how an application can
be involved in an interactive inquiry with a single ICF
session. A source program accepts inquiries from a display
device and sends a request to a target program. The source
program communicates with the display device through a
display file, and with the target program through an ICF file.

In the COBOL/400 and RPG/400 program examples, both
source and target programs are provided in an example that
illustrates how an application can be involved in an interac-
tive inquiry with two ICF sessions. A source program
accepts inquiries from a display device and sends a request
to one of two target programs. The source program commu-
nicates with the display device through a display file, and
with the two target programs through a single ICF file. The
purpose of the example is to show how a source program
can communicate with two sessions from a single ICF file.
From the viewpoint of each of the two target programs, the
requester is the only session. Therefore, the target programs
do not require any unique logic to support the two-session
source.

For both source and target programs, the DDS source for the
ICF file, program listings, and an explanation of the programs
are provided.

Description of the Single-Session Inquiry
Program Example

The following explanation describes the transaction between
a source program and a target program, and applies to the
ILE C/400 programs in this appendix.

The source program is started from a display station, and

both the display and the ICF files are opened. The work
station is implicitly acquired when the display file opens, but
because the ICF file is created with ACQPGMDEV(*NONE),
no ICF devices are acquired during open processing.

The ICF program device, ICF00, is explicitly acquired by the
source program using the acquire operation. After the
acquire, the source program starts the target program,
through a CL program, using an evoke function. The target
program also explicitly acquires a program device.

The source and target programs use their respective ICF
files with program device ICF00, which is defined as the
default program device from the acquire operation. Both pro-
grams will have only one session active at a time.

A customer inquiry prompt is displayed on the work station
by the source program. The source program uses a write-
with-invite function to send a number entered by the user to
the target program, and then waits for data to be received
from the target program. The target program reads the
number sent by the source program, and searches a data file
for a customer record based on the number received. If a
record was found, it is sent to the source program; if not, a
fail indication is sent. The source program ends by sending
a detach request to the target program, issuing an end-of-
session operation, and closing the files that were opened.

ILE C/400 Source Program for a
Single-Session Inquiry

The following describes an ILE C/400 source program for a
single-session inquiry.

Program Files: The ILE C/400 single-session source
program uses the following files:

SRCICFF An ICF file used to send records to, and
receive records from, the target program.

DSPFIL A display file used to enter requests that are
to be sent to the target program.

 Copyright IBM Corp. 1997 D-1

DDS Source: The DDS for the ICF file (SRCICFF) is illus-
trated in Figure D-1.

A\\

A\ \

A\ ICF FILE: SRCICFF \

A\ USED IN INTRASYSTEM ILE C/4ðð PROGRAM EXAMPLES \

A\ \

A\\

A INDARA

A R PGMSTR

A EVOKE(CEXAMPLES/CTGTPGMCL)

A SECURITY(2 \USER +

A 3 \USER)

A\

A R CUST

A INVITE

A NUMBER 5

A\

A R CINFO

A CUSTNO 5

A NAME 2ð

A ADDR 2ð

A CITY 2ð

A STATE 2

A ZIP 5

A ACCBAL 6

A\

A R SENDDETACH

A DETACH

A\

A R ENDSESSION

A EOS

Figure D-1. DDS Source for a Single-Session Source Program
Using SRCICFF

The DDS source file for the display file (DSPFIL) is illustrated
in Figure D-2.

A\\

A\ \

A\ DISPLAY FILE: DSPFIL \

A\ USED IN INTRASYSTEM ILE C/4ðð PROGRAM EXAMPLES \

A\ \

A\\

A INDARA

A DSPSIZ(24 8ð \DS3)

A PRINT(QSYSPRT)

A CAð3(ð3 'END OF JOB')

A\

A R HEADER

A OVERLAY

A 2 4TIME

A DSPATR(HI)

A 2 29'Customer Master Inquiry'

A DSPATR(HI)

A 2 7ðDATE

A EDTCDE(Y)

A DSPATR(HI)

A\

A R FOOT

A 24 4'F3 - End Job'

A DSPATR(HI)

Figure D-2 (Part 1 of 2). DDS Source for a Single-Session
Source Program Using DSPFIL

A\

A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\ PROMPT CUSTOMER NUMBER SCREEN

A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\

A R PROMPT

A OVERLAY

A 4 4'Enter Customer Number

A (ðððð1 - - 99999)'

A DSPATR(HI)

A CNUMBR 5A I 4 42DSPATR(CS)

A RANGE('ðððð1' '99999')

A\

A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\ CUSTOMER INFORMATION SCREEN

A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\

A R DTLSCR

A 6 25'Customer Information'

A CUSTNO 5A O 6 35DSPATR(HI)

A 8 25'Name'

A NAME 2ðA O 8 35DSPATR(HI)

A 1ð 25'Address'

A ADDR 2ðA O 1ð 35DSPATR(HI)

A 12 25'City'

A CITY 2ðA O 12 35DSPATR(HI)

A 14 25'State'

A STATE 2A O 14 35DSPATR(HI)

A 14 41'Zip Code'

A ZIP 5A O 14 5ðDSPATR(HI)

A 16 25'Account Balance'

A ACCBAL 6A O 16 42DSPATR(HI)

Figure D-2 (Part 2 of 2). DDS Source for a Single-Session
Source Program Using DSPFIL

Configuration: The following command is needed to create
the intrasystem communications device associated with the
ICF file:

CRTDEVINTR DEVD(INTRADEV)

 RMTLOCNAME(INTRARMT) ONLINE(\NO)

TEXT("THIS IS AN INTRASYSTEM DEVICE

 DESCRIPTION")

ICF File Creation and Program Device Entry Definition:
The following command is needed to create the ICF file:

CRTICFF FILE(CEXAMPLES/SRCICFF)

 SRCFILE(CEXAMPLES/QDDSSRC) SRCMBR(SRCICFF)

 ACQPGMDEV(\NONE) MAXPGMDEV(1)

TEXT("SOURCE ICF FILE FOR SINGLE

 SESSION PROGRAM")

It is not necessary to add a communications entry to the sub-
system because the system automatically defines an entry
for the device created above when the program is processed.
However, the following command is an example of what you
would use if you decided to add a communications entry:

ADDCMNE SBSD(QCMN) DEV(INTRADEV)

Note: Subsystem QCMN should be stopped before
ADDCMNE is entered, and then started again.

The following command is needed to define the program
device entry:

OVRICFDEVE PGMDEV(ICFðð) RMTLOCNAME(INTRARMT)

 FMTSLT(\PGM)

The following CL program could be used to run the source
program:

D-2 Intrasystem Communications Programming V4R1

PGM PARM(&RMT)

DCL VAR(&RMT) TYPE(\CHAR) LEN(8)

 CHGJOB OUTQ(CEXAMPLES/INTOUTQ)

LOG(4 ðð \SECLVL)

 LOGCLPGM(\YES)

OVRICFDEVE PGMDEV(ICFðð) RMTLOCNAME(&RMT)

 FMTSLT(\PGM)

 CALL CEXAMPLES/CSRCPGM

ENDPGM

The following CL program is used to start the target program
evoked by the source program (which calls the program
CTGTPGM shown in the example):

PGM

 ADDLIBLE LIB(CEXAMPLES)

 OVRICFDEVE PGMDEV(ICFðð)

 RMTLOCNAME(\REQUESTER)

 CALL PGM(CEXAMPLES/CTGTPGM)

ENDPGM

Program Explanation: The following explains the structure
of the program example illustrated in Figure D-3 on
page D-4. The ICF file used in the example is defined by
the user, and uses externally described data formats (DDS).
The reference numbers in the explanation below correspond
to the numbers in the following program example.

All output operations to the ICF file in the example are done
using the write statement with the record format name speci-
fied previously with a _Rformat function.

.1/ The display file descriptions (DSPFIL) are included in
the program.

.2/ The ICF file descriptions (SRCICFF) are included in
the program.

.3/ The routines are defined so the ILE C/400 compiler
knows the type of value returned and the type of
parameters passed, if any.

.4/ The ICF file is opened for record I/O with the sepa-
rate indicator area option specified.

.5/ The display file is opened for record I/O with the sep-
arate indicator area option specified.

.6/ The separate indicator area is initialized and defined
for DSPFIL. The variable dsp_indic is a 99 character
array.

.7/ Program device ICF00 is explicitly acquired with the
_Racquire function. A session is implicitly acquired
for the work station when DSPFIL is opened.

.8/ The PGMSTR format name is specified and an evoke
operation is performed with the _Rwrite function.

.9/ The program loops until either F3 is pressed from the
work station, which sets an indicator in the display
file’s separate indicator area, or an error occurs in the
transaction with the target program.

.1ð/ The get_cust_num() function is called to get a cus-
tomer number from the user using DSPFIL.

.11/ The get_cust_info() function is called to send a cus-
tomer number to the target program, and then to
receive the customer information if it was found by
the target program.

.12/ The get_cust_num() function gets a customer number
from the user. The program displays the customer
number inquiry, and reads the number.

.13/ The get_cust_info() function sends the customer
number to the target program, and then receives the
customer information sent by the target program.
The customer number is copied into the output buffer
of the ICF file for record format CUST defined in
SRCICFF. CUST is specified on the _Rformat func-
tion, and a write is issued to the ICF file. The record
format CINFO defined in SRCICFF to receive the
customer information from the target is specified, and
a read is issued to the ICF file.

The major return code is checked for a successful
operation. If a 00 major return code is received, the
customer information is displayed by calling the
display_info() function, and control returns to main().
If a 00 major return code was not received, then a
check is made to see if a 0302 or a 0402 return code
was received, indicating that the target program
issued a fail operation because it could not find cus-
tomer information based on the number sent. If none
of the above return codes is received, then an unex-
pected error has occurred and the program ends.

.14/ The display_info() function writes the customer infor-
mation received from the target program to the work
station.

.15/ The end_job() procedure is called when F3 is pressed
to issue a detach operation to the target program, fol-
lowed by an end-of-session operation to end the
session.

.16/ The end_error() procedure is called if an error has
occurred in trying to end the session. A detach is not
issued since the target may have ended abnormally.

.17/ The send_eos() procedure issues the end-of-session
operation to the ICF file.

.18/ The pos_resp() function checks for a 00 major return
code in the display/ICF I/O feedback area.

.19/ The fail_rt_cd() function checks for a 0302 or a 0402
return code in the display/ICF I/O feedback area.

.2ð/ The get_access_to_fb() function accesses the
display/ICF I/O feedback area by first accessing the
common I/O feedback area to obtain an offset. The
offset is added to the pointer to the common I/O feed-
back area to get access to the display/ICF I/O feed-
back area. The _Riofbk function returns a pointer to
the common I/O feedback area.

 Appendix D. Program Examples D-3

\ \ \ \ \ P R O L O G \ \ \ \ \

 Program name : CSRCPGM

Library name : CEXAMPLES

 Source file : QCSRC

Library name : CEXAMPLES

 Source member name : CSRCPGM

 Text Description : Source C program for Intra

 Compiler options : \SOURCE \NOXREF \NOSHOWUSR \NOSHOWSYS \NOSHOWSKP \NOEXPMAC \NOAGR

: \NOPPONLY \NODEBUG \GEN \NOSECLVL \PRINT \LOGMSG

 Language level options : \EXTENDED

 Source margins:

Left margin : 1

Right margin : 32767

 Sequence columns:

Left Column :

Right Column :

 Define name :

 Generation options : \NOLIST \NOXREF \GEN \NOATR \NODUMP \NOOPTIMIZE \NOALWBND

 : \NOANNO

 Print file : QSYSPRT

Library name : \LIBL

 Message flagging level : ð

 Compiler message:

Message limit : \NOMAX

Message limit severity . . . : 3ð

 Replace program object : \YES

 User profile : \USER

 Authority : \CHANGE

 Target Release : \CURRENT

 Last change : 9ð/ð8/21 1ð:23:36

 Source description : Source C program for Intra

 Compiler : IBM ILE C/4ðð Compiler

\ \ \ \ \ S O U R C E \ \ \ \ \

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

1 |#pragma mapinc("dspf/prompt", "cexamples/dspfil(prompt)", "both", "p z") | 1

2 |#pragma mapinc("dspf/dtlscr", "cexamples/dspfil(dtlscr)", "both", "p z") | 2

 .1/
 3 |#include "dspf/prompt" | 3

 4 |#include "dspf/dtlscr" | 4

5 |#pragma mapinc("icff/cust", "cexamples/srcicff(cust)", "output", "p z") | 5

6 |#pragma mapinc("icff/cinfo", "cexamples/srcicff(cinfo)", "input", "p z") | 6

 .2/
 7 |#include "icff/cust" | 7

 8 |#include "icff/cinfo" | 8

 9 |/\---\/ | 9

1ð |/\ SOURCE PROGRAM FOR INTRASYSTEM COMMUNICATIONS \/ | 1ð

11 |/\ This program reads a customer number from the display. The number \/ | 11

12 |/\ is sent to the target program, ctgtpgm, which searches a data file \/ | 12

13 |/\ for information about the customer. If the information is found, \/ | 13

14 |/\ then the data is received and printed on the display. If no infor- \/ | 14

15 |/\ mation is found for the given customer number, then the user is \/ | 15

16 |/\ prompted for another number. \/ | 16

 17 |/\---\/ | 17

 18 | | 18

19 |#define NOERROR ð /\ No error occured \/ | 19

2ð |#define ERROR 1 /\ An error occured \/ | 2ð

21 |#define NOEND ð /\ F3 wasn't pressed \/ | 21

22 |#define END 1 /\ F3 was pressed, signals end \/ | 22

23 |#define OFF 'ð' /\ Indicator off \/ | 23

24 |#define ON '1' /\ Indicator on \/ | 24

25 |#include <stdio.h> /\ Standard I/O header \/ | 25

26 |#include <recio.h> /\ Record I/O header \/ | 26

27 |#include <stddef.h> /\ Standard definitions \/ | 27

28 |#include <stdlib.h> /\ General utilities \/ | 28

29 |#include <string.h> /\ String handling utilities \/ | 29

3ð |#include <xxfdbk.h> /\ Feedback area structures \/ | 3ð

 31 | | 31

 32 | | 32

Figure D-3 (Part 1 of 6). Source Program Example — CSRCPGM

D-4 Intrasystem Communications Programming V4R1

 33 |CEXAMPLES_DSPFIL_PROMPT_both_t prompt_dsp_i; | 33

 34 |CEXAMPLES_DSPFIL_DTLSCR_both_t dtlscr_dsp_o; | 34

 35 | | 35

 36 |CEXAMPLES_SRCICFF_CUST_o_t cust_icf_o; | 36

 37 |CEXAMPLES_SRCICFF_CINFO_i_t cinfo_icf_i; | 37

 38 | | 38

39 |_XXIOFB_T \comm_fdbk; /\ Pointer to common I/O feedback \/ | 39

4ð |_XXIOFB_DSP_ICF_T \dsp_icf_fdbk; /\ Pointer to dsp/ICF I/O feedback \/ | 4ð

41 |_RFILE \icffptr; /\ Pointer to the ICF file \/ | 41

42 |_RFILE \dspfptr; /\ Pointer to the display file \/ | 42

 43 |.3/ | 43

 44 |int get_cust_num(char??(99??)); | 44

 45 |int get_cust_info(char??(99??)); | 45

 46 |int display_info(char??(99??)); | 46

 47 |int pos_resp(void); | 47

 48 |int fail_rt_cd(void); | 48

 49 |void end_job(void); | 49

 5ð |void end_error(void); | 5ð

 51 |void send_eos(void); | 51

 52 |void get_access_to_fb(void); | 52

 53 | | 53

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 54 |main() | 54

 55 |{ | 55

56 | char dsp_indic??(99??); /\ Display separate indic area \/ | 56

 57 | | 57

58 | /\ Open the ICF file \/ | 58

 59 |.4/ | 59

6ð | if ((icffptr=_Ropen("CEXAMPLES/SRCICFF", "ar+ indicators=y riofb=y")) | 6ð

61 1 | == NULL) { | 61

62 2 | printf("ICF file failed to open.\n"); | 62

 63 3 | exit(ERROR); | 63

 64 | } | 64

 65 | | 65

66 | /\ Open the display file \/ | 66

 67 |.5/ | 67

68 | if ((dspfptr=_Ropen("CEXAMPLES/DSPFIL", "ar+ indicators=y riofb=y")) | 68

69 4 | == NULL) { | 69

7ð 5 | printf("Display file failed to open.\n"); | 7ð

 71 6 | _Rclose(icffptr); | 71

 72 7 | exit(ERROR); | 72

 73 | } | 73

 74 | | 74

75 | /\ Set up separate indicator area space \/ | 75

 76 |.6/ | 76

77 8 | memset(dsp_indic, OFF, 99); | 77

 78 9 | _Rindara(dspfptr, dsp_indic); | 78

 79 | | 79

8ð | /\ Acquire a session \/ | 8ð

 81 |.7/ | 81

 82 1ð | _Racquire(icffptr, "ICFðð"); | 82

83 11 | if (pos_resp() == ERROR) | 83

 84 12 | printf("Acquire failed.\n"); | 84

 85 | else { | 85

 86 | | 86

87 | /\ Evoke the other program \/ | 87

 88 |.8/ | 88

 89 13 | _Rformat(icffptr, "PGMSTR"); | 89

9ð 14 | _Rwrite(icffptr, NULL, ð); | 9ð

 91 | | 91

92 | /\ Check if the evoke was successful \/ | 92

 93 | | 93

94 15 | if (pos_resp() == ERROR) { | 94

 95 16 | printf("Evoke failed.\n"); | 95

 96 17 | end_error(); | 96

 97 18 | return(ERROR); | 97

98 | } | 98

 99 | | 99

Figure D-3 (Part 2 of 6). Source Program Example — CSRCPGM

 Appendix D. Program Examples D-5

1ðð | /\ While F3 isn't pressed get the customer number \/ | 1ðð

1ð1 | /\ and display the customer record (if received) \/ | 1ð1

 1ð2 |.9/ | 1ð2

1ð3 19 | while (dsp_indic??(2??) == OFF) { | 1ð3

 1ð4 | | 1ð4

1ð5 | /\ read the customer number from the display \/ | 1ð5

 1ð6 |.1ð/ | 1ð6

1ð7 2ð | if (get_cust_num(dsp_indic) == NOEND) | 1ð7

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 1ð8 | | 1ð8

1ð9 | /\ Attempt to get customer information from the \/ | 1ð9

11ð | /\ target and display the customer record if found \/ | 11ð

 111 |.11/ | 111

112 21 | if (get_cust_info(dsp_indic) == ERROR) { | 112

 113 | | 113

114 | /\ An error occured in the transaction \/ | 114

 115 | | 115

 116 22 | end_error(); | 116

 117 23 | return(ERROR); | 117

 118 | } | 118

119 | } | 119

 12ð | | 12ð

121 | /\ F3 was pressed, end the session and the job \/ | 121

 122 | | 122

 123 24 | end_job(); | 123

 124 | } | 124

 125 25 | _Rclose(icffptr); | 125

 126 26 | _Rclose(dspfptr); | 126

 127 |} | 127

 128 | | 128

 129 | | 129

 13ð |/\--\/ | 13ð

131 |/\ Get a customer number from the display. \/ | 131

 132 |/\--\/ | 132

 133 |.12/ | 133

 134 |get_cust_num(char dsp_indic??(99??)) | 134

 135 |{ | 135

136 | /\ Put out display and get information \/ | 136

 137 | | 137

 138 1 | _Rformat(dspfptr, "HEADER"); | 138

139 2 | _Rwrite(dspfptr, NULL, ð); | 139

 14ð 3 | _Rformat(dspfptr, "FOOT"); | 14ð

141 4 | _Rwrite(dspfptr, NULL, ð); | 141

 142 5 | _Rformat(dspfptr, "PROMPT"); | 142

143 6 | _Rwrite(dspfptr, NULL, ð); | 143

144 7 | memset(dsp_indic, 'ð', 99); | 144

145 8 | _Rreadn(dspfptr, &prompt_dsp_i, sizeof(prompt_dsp_i), __DFT); | 145

 146 | | 146

147 | /\ Check if F3 (end the job) was pressed \/ | 147

 148 | | 148

149 9 | if (dsp_indic??(2??) == OFF) | 149

 15ð 1ð | return(NOEND); | 15ð

 151 | else | 151

 152 11 | return(END); | 152

 153 |} | 153

 154 | | 154

 155 | | 155

 156 |/\--\/ | 156

157 |/\ Evoke the target program, and then send the customer number to the \/ | 157

158 |/\ target. The target program should either send a customer record or \/ | 158

159 |/\ a fail indication (customer not in data file). The record is dis- \/ | 159

16ð |/\ played with a call to display_info. \/ | 16ð

 161 |/\--\/ | 161

Figure D-3 (Part 3 of 6). Source Program Example — CSRCPGM

D-6 Intrasystem Communications Programming V4R1

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 162 |.13/ | 162

 163 |get_cust_info(char dsp_indic??(99??)) | 163

 164 |{ | 164

165 | /\ Put number in ICF file and send it to the other program \/ | 165

 166 | | 166

167 1 | strncpy(cust_icf_o.NUMBER, prompt_dsp_i.CNUMBR, 5); | 167

 168 2 | _Rformat(icffptr, "CUST"); | 168

169 3 | _Rwrite(icffptr, &cust_icf_o, sizeof(cust_icf_o)); | 169

 17ð | | 17ð

171 | /\ Check if the number was sent successfully \/ | 171

 172 | | 172

173 4 | if (pos_resp() == ERROR) { | 173

174 5 | printf("Unexpected error in transaction.\n"); | 174

 175 6 | return(ERROR); | 175

 176 | } | 176

 177 | | 177

178 | /\ Read the customer information \/ | 178

 179 | | 179

 18ð 7 | _Rformat(icffptr, "CINFO"); | 18ð

181 8 | _Rreadn(icffptr, &cinfo_icf_i, sizeof(cinfo_icf_i), __DFT); | 181

 182 | | 182

183 | /\ Check if the record was returned, and if so print it on the \/ | 183

184 | /\ display, or the fail indicator may have been received from \/ | 184

185 | /\ the target program if the record wasn't found. \/ | 185

 186 | | 186

187 9 | if (pos_resp() == NOERROR) | 187

 188 | | 188

189 | /\ Display the record, and then return to main with the value \/ | 189

19ð | /\ returned from display_info. \/ | 19ð

 191 | | 191

 192 1ð | return(display_info(dsp_indic)); | 192

 193 | else | 193

194 11 | if (fail_rt_cd() == NOERROR) | 194

 195 12 | return(NOERROR); | 195

196 | else { | 196

197 13 | printf("Unexpected error in transaction.\n"); | 197

 198 14 | return(ERROR); | 198

199 | } | 199

 2ðð |} | 2ðð

 2ð1 | | 2ð1

 2ð2 | | 2ð2

 2ð3 |/\--\/ | 2ð3

2ð4 |/\ Display the customer information. \/ | 2ð4

 2ð5 |/\--\/ | 2ð5

 2ð6 |.14/ | 2ð6

 2ð7 |display_info(char dsp_indic??(99??)) | 2ð7

 2ð8 |{ | 2ð8

2ð9 | /\ Put out header and footing on display \/ | 2ð9

 21ð | | 21ð

 211 1 | _Rformat(dspfptr, "HEADER"); | 211

212 2 | _Rwrite(dspfptr, NULL, ð); | 212

 213 3 | _Rformat(dspfptr, "FOOT"); | 213

214 4 | _Rwrite(dspfptr, NULL, ð); | 214

 215 | | 215

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

216 | /\ Put out display of customer information \/ | 216

 217 | | 217

 218 5 | _Rformat(dspfptr, "DTLSCR"); | 218

219 6 | strncpy(dtlscr_dsp_o.CUSTNO, cinfo_icf_i.CUSTNO, 5); | 219

22ð 7 | strncpy(dtlscr_dsp_o.NAME, cinfo_icf_i.NAME, 2ð); | 22ð

221 8 | strncpy(dtlscr_dsp_o.ADDR, cinfo_icf_i.ADDR, 2ð); | 221

222 9 | strncpy(dtlscr_dsp_o.CITY, cinfo_icf_i.CITY, 2ð); | 222

223 1ð | strncpy(dtlscr_dsp_o.STATE, cinfo_icf_i.STATE, 2); | 223

224 11 | strncpy(dtlscr_dsp_o.ZIP, cinfo_icf_i.ZIP, 5); | 224

225 12 | strncpy(dtlscr_dsp_o.ACCBAL, cinfo_icf_i.ACCBAL, 6); | 225

226 13 | _Rwrite(dspfptr, &dtlscr_dsp_o, sizeof(dtlscr_dsp_o)); | 226

227 14 | memset(dsp_indic, 'ð', 99); | 227

228 15 | _Rreadn(dspfptr, NULL, ð, __DFT); | 228

 229 | | 229

Figure D-3 (Part 4 of 6). Source Program Example — CSRCPGM

 Appendix D. Program Examples D-7

23ð | /\ Check if F3 (end the job) was pressed \/ | 23ð

 231 | | 231

232 16 | if (dsp_indic??(2??) == OFF) | 232

 233 17 | return(NOEND); | 233

 234 | else | 234

 235 18 | return(END); | 235

 236 |} | 236

 237 | | 237

 238 | | 238

 239 |/\--\/ | 239

24ð |/\ F3 was pressed, end the job. \/ | 24ð

 241 |/\--\/ | 241

 242 |.15/ | 242

 243 |void end_job() | 243

 244 |{ | 244

245 | /\ Issue a detach to the target program, then end the session \/ | 245

 246 | | 246

 247 1 | _Rformat(icffptr, "SENDDETACH"); | 247

248 2 | _Rwrite(icffptr, NULL, ð); | 248

 249 3 | send_eos(); | 249

 25ð |} | 25ð

 251 | | 251

 252 | | 252

 253 |/\--\/ | 253

254 |/\ Error, clean up. \/ | 254

 255 |/\--\/ | 255

 256 |.16/ | 256

 257 |void end_error() | 257

 258 |{ | 258

 259 1 | send_eos(); | 259

 26ð 2 | _Rclose(icffptr); | 26ð

 261 3 | _Rclose(dspfptr); | 261

 262 |} | 262

 263 | | 263

 264 | | 264

 265 |/\--\/ | 265

266 |/\ Issue an end of session operation. \/ | 266

 267 |/\--\/ | 267

 268 |.17/ | 268

 269 |void send_eos() | 269

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 27ð |{ | 27ð

 271 1 | _Rformat(icffptr, "ENDSESSION"); | 271

272 2 | _Rwrite(icffptr, NULL, ð); | 272

 273 |} | 273

 274 | | 274

 275 | | 275

 276 |/\--\/ | 276

277 |/\ Check the major return code for a successful operation - ðð. \/ | 277

 278 |/\--\/ | 278

 279 |.18/ | 279

 28ð |pos_resp() | 28ð

 281 |{ | 281

 282 1 | get_access_to_fb(); | 282

283 2 | if (strncmp(dsp_icf_fdbk->major_ret_code, "ðð", 2) == ð) | 283

 284 3 | return(NOERROR); | 284

 285 | else | 285

 286 4 | return(ERROR); | 286

 287 |} | 287

 288 | | 288

 289 | | 289

 29ð |/\--\/ | 29ð

291 |/\ Check the major/minor return code for a fail - ð3ð2 or ð4ð2. \/ | 291

 292 |/\--\/ | 292

 293 |.19/ | 293

 294 |fail_rt_cd() | 294

 295 |{ | 295

 296 1 | get_access_to_fb(); | 296

297 | if ((strncmp(dsp_icf_fdbk->major_ret_code, "ð3", 2) == ð || | 297

298 | strncmp(dsp_icf_fdbk->major_ret_code, "ð4", 2) == ð) && | 298

299 2 | strncmp(dsp_icf_fdbk->minor_ret_code, "ð2", 2) == ð) | 299

 3ðð 3 | return(NOERROR); | 3ðð

 3ð1 | else | 3ð1

 3ð2 4 | return(ERROR); | 3ð2

 3ð3 |} | 3ð3

 3ð4 | | 3ð4

Figure D-3 (Part 5 of 6). Source Program Example — CSRCPGM

D-8 Intrasystem Communications Programming V4R1

 3ð5 | | 3ð5

 3ð6 |/\--\/ | 3ð6

3ð7 |/\ Get access to the display/ICF feedback area. \/ | 3ð7

 3ð8 |/\--\/ | 3ð8

 3ð9 |.2ð/ | 3ð9

 31ð |void get_access_to_fb() | 31ð

 311 |{ | 311

312 1 | comm_fdbk = _Riofbk(icffptr); | 312

313 | dsp_icf_fdbk = (_XXIOFB_DSP_ICF_T \)((char \)comm_fdbk + | 313

 314 2 | comm_fdbk->file_dep_fb_offset); | 314

 315 |} | 315

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Figure D-3 (Part 6 of 6). Source Program Example — CSRCPGM

ILE C/400 Target Program for a
Single-Session Inquiry

The following describes an ILE C/400 target program for a
single-session inquiry.

Program Files: The ILE C/400 single-session target
program uses the following files:

TGTICFF An ICF file used to send records to, and
receive records from, the source program. It
is done with the file-level INDARA DDS
keyword, indicating a separate indicator area.

CUSMSTP A physical file that contains customer records
to be sent to the source program.

CUSMSTL A logical file used with CUSMSTP to access
the customer records.

DDS Source: The DDS for the ICF file (TGTICFF) is illus-
trated in Figure D-4.

A\\

A\ \

A\ ICF FILE: TGTICFF \

A\ USED BY INTRASYSTEM ILE C/4ðð PROGRAM EXAMPLES \

A\ \

A\\

A INDARA

A R CUST

A NUMBER 5

A\

A R CINFO

A INVITE

A CUSTNO 5

A NAME 2ð

A ADDR 2ð

A CITY 2ð

A STATE 2

A ZIP 5

A ACCBAL 6

A\

A R NOCUST

A FAIL

A\

A R ENDSESSION

A EOS

Figure D-4. DDS Source for a Single-Session Target Program
Using TGTICFF

The DDS source for the database file (CUSMSTP) is illus-
trated in Figure D-5.

A\\\

A\ \

A\ PHYSICAL FILE: CUSMSTP \

A\ USED TO CONTAIN CUSTOMER RECORDS FOR \

A\ INTRASYSTEM ILE C/4ðð PROGRAM EXAMPLES \

A\ \

A\\\

A R CUSREC TEXT('Customer record')

A PCUST 5 TEXT('Customer number')

A PNAME 2ð TEXT('Customer name')

A PADDR 2ð TEXT('Customer address')

A PCITY 2ð TEXT('Customer city')

A PSTATE 2 TEXT('Customer state')

A PZIP 5 TEXT('Customer zip code')

A PACCBL 6 TEXT('Accounts receivable

 balance')

Figure D-5. DDS Source for a Single-Session Source Program
Using CUSMSTP

The DDS source for the logical file (CUSMSTL) is illustrated
in Figure D-6.

A\\\

A\ \

A\ LOGICAL FILE: LGCMSTF FOR \

A\ CUSMSTP USED IN INTRASYSTEM ILE C/4ðð PROGRAM EXAMPLES \

A\ \

A\\\

A UNIQUE

A R CUSREC PFILE(CUSMSTP)

A K PCUST

Figure D-6. DDS Source for a Single-Session Target Program
Using LGCMSTF

ICF File Creation and Program Device Entry Definition:
The following command is needed to create the ICF file:

CRTICFF FILE(CEXAMPLES/TGTICFF)

 SRCFILE(CEXAMPLES/QDDSSRC)

 SRCMBR(SRCICFF)

 ACQPGMDEV(\NONE)

TEXT("TARGET ICF FILE FOR SINGLE

 SESSION PROGRAM")

The following command is needed to define the program
device entry:

OVRICFDEVE PGMDEV(ICFðð)

 RMTLOCNAME(\REQUESTER)

Program Explanation: The following explains the structure
of the program example illustrated in Figure D-7 on
page D-11. The ICF file used in the example is defined by
the user, and uses externally described data formats (DDS).
The reference letters in the example below correspond to
those in the following program example.

.1/ The database logical file descriptions (CUSMSTL) are
included in the program.

.2/ The ICF file descriptions (TGTICFF) are included in
the program.

 Appendix D. Program Examples D-9

.3/ The routines are defined so the ILE C/400 compiler
knows the type of value returned and the type of
parameters passed, if any.

.4/ The ICF file is opened for record I/O with the sepa-
rate indicator area option specified.

.5/ The database logical file is opened for record input.
If an error occurs, the ICF file is closed and the
program ends.

.6/ The ICF00 program device is explicitly acquired with
the _Racquire function.

.7/ The program loops until either a detach is received,
or an error occurs in the transaction with the source
program.

.8/ The process_data() function receives a customer
number from the source program, reads the database
file using the number as the key, and either returns

customer data to the source program or issues a fail
operation to tell the other program that customer
information could not be found for the given number.

.9/ The send_eos() procedure issues an end-of-session
operation to the ICF file to end the session.

.1ð/ The pos_resp() checks for a 00 major return code.
The return code is obtained by accessing the
common I/O feedback area to get a pointer to the
display/ICF I/O feedback area. A pointer to the
common I/O feedback area is returned from the
QXXIOFBK function. The offset to the display/ ICF
I/O feedback area is added to the common I/O feed-
back area pointer to get a pointer to the display/ICF
I/O feedback area.

D-10 Intrasystem Communications Programming V4R1

\ \ \ \ \ P R O L O G \ \ \ \ \

 Program name : CTGTPGM

Library name : CEXAMPLES

 Source file : QCSRC

Library name : CEXAMPLES

 Source member name : CTGTPGM

 Text Description : Target C program for Intra

 Compiler options : \SOURCE \NOXREF \NOSHOWUSR \NOSHOWSYS \NOSHOWSKP \NOEXPMAC \NOAGR

: \NOPPONLY \NODEBUG \GEN \NOSECLVL \PRINT \LOGMSG

 Language level options : \EXTENDED

 Source margins:

Left margin : 1

Right margin : 32767

 Sequence columns:

Left Column :

Right Column :

 Define name :

 Generation options : \NOLIST \NOXREF \GEN \NOATR \NODUMP \NOOPTIMIZE \NOALWBND

 : \NOANNO

 Print file : QSYSPRT

Library name : \LIBL

 Message flagging level : ð

 Compiler message:

Message limit : \NOMAX

Message limit severity . . . : 3ð

 Replace program object : \YES

 User profile : \USER

 Authority : \CHANGE

 Target Release : \CURRENT

 Last change : 9ð/ð9/11 ð8:52:ðð

 Source description : Target C program for Intra

 Compiler : IBM ILE C/4ðð Compiler

\ \ \ \ \ S O U R C E \ \ \ \ \

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

1 |#pragma mapinc("dbf", "cexamples/cusmstl(\all)", "input", "p z") | 1

2 |#pragma mapinc("icff/cust", "cexamples/tgticff(cust)", "input", "p z") | 2

3 |#pragma mapinc("icff/cinfo", "cexamples/tgticff(cinfo)", "output", "p z") | 3

 .1/
 4 |#include "dbf" | 4

 .2/
 5 |#include "icff/cust" | 5

 6 |#include "icff/cinfo" | 6

 7 |/\--\/ | 7

8 |/\ TARGET PROGRAM FOR INTRASYSTEM COMMUNICATIONS \/ | 8

9 |/\ This program receives a customer number from the source program and \/ | 9

1ð |/\ searches a data base file for customer information. If a record is \/ | 1ð

11 |/\ found, it is sent to the source program, otherwise a fail indication \/ | 11

12 |/\ is sent. This program waits for a detach from the source program \/ | 12

13 |/\ to end. \/ | 13

 14 |/\--\/ | 14

 15 | | 15

16 |#define NOERROR ð /\ No error occurred \/ | 16

17 |#define ERROR 1 /\ An error occurred \/ | 17

18 |#include <stdio.h> /\ Standard I/O header \/ | 18

19 |#include <recio.h> /\ Record I/O header \/ | 19

2ð |#include <stddef.h> /\ Standard definitions \/ | 2ð

21 |#include <stdlib.h> /\ General utilities \/ | 21

22 |#include <string.h> /\ String handling utilities \/ | 22

23 |#include <xxfdbk.h> /\ Feedback area structures \/ | 23

 24 | | 24

 25 | | 25

 26 |CEXAMPLES_CUSMSTL_CUSREC_i_t cusrec_dbf_i; | 26

 27 | | 27

 28 |CEXAMPLES_TGTICFF_CUST_i_t cust_icf_i; | 28

 29 |CEXAMPLES_TGTICFF_CINFO_o_t cinfo_icf_o; | 29

 3ð | | 3ð

Figure D-7 (Part 1 of 3). Target Program Example — CTGTPGM

 Appendix D. Program Examples D-11

31 |_XXIOFB_T \comm_fdbk; /\ Ptr to common I/O feedback \/ | 31

32 |_XXIOFB_DSP_ICF_T \dsp_icf_fdbk; /\ Ptr to dsp/ICF I/O feedback \/ | 32

33 |_RFILE \icffptr; /\ Ptr to the ICF file \/ | 33

34 |_RFILE \dbfptr; /\ Ptr to the database file \/ | 34

 35 |.3/ | 35

 36 |int process_data(void); | 36

 37 |void send_eos(void); | 37

 38 |int pos_resp(void); | 38

 39 | | 39

 4ð |main() | 4ð

 41 |{ | 41

42 | /\ Open the the ICF file \/ | 42

 43 |.4/ | 43

44 | if ((icffptr = _Ropen("CEXAMPLES/TGTICFF", "ar+ indicators=y riofb=y")) | 44

 45 1 | == NULL) | 45

 46 2 | exit(ERROR); | 46

 47 | | 47

48 | /\ Open the the datbase file \/ | 48

 49 |.5/ | 49

5ð 3 | if ((dbfptr = _Ropen("CEXAMPLES/CUSMSTL", "rr riofb=y")) == NULL) { | 5ð

 51 4 | _Rclose(icffptr); | 51

 52 5 | exit(ERROR); | 52

 53 | } | 53

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 54 | | 54

55 | /\ Acquire a session \/ | 55

 56 |.6/ | 56

 57 6 | _Racquire(icffptr, "ICFðð"); | 57

 58 | | 58

59 | /\ Check that the acquire was successful and get the record \/ | 59

 6ð | | 6ð

61 7 | if (pos_resp() == NOERROR) { | 61

 62 | | 62

63 | /\ Keep processing numbers until detach or eos is received \/ | 63

 64 |.7/ | 64

65 8 | while (process_data() == NOERROR) | 65

 66 9 | ; | 66

 67 1ð | send_eos(); | 67

 68 | } | 68

 69 | | 69

7ð | /\ Close the ICF file \/ | 7ð

 71 | | 71

 72 11 | _Rclose(icffptr); | 72

 73 |} | 73

 74 | | 74

 75 | | 75

 76 |/\--\/ | 76

77 |/\ This routine will get a customer number from the source program and \/ | 77

78 |/\ attempt to find the corresponding record in the physical file CUSMSTP\/ | 78

79 |/\ (by using logical file CUSMSTL). The file is searched using the \/ | 79

8ð |/\ customer number received as the key. If the record was found, it \/ | 8ð

81 |/\ is sent to the source program, if not a fail is sent. \/ | 81

 82 |/\--\/ | 82

 83 |.8/ | 83

 84 |process_data() | 84

 85 |{ | 85

86 | _RIOFB_T \rio_fdbk; /\ Ptr to partial I/O feedback \/ | 86

 87 | | 87

 88 1 | _Rformat(icffptr, "CUST"); | 88

89 2 | _Rreadn(icffptr, &cust_icf_i, sizeof(cust_icf_i), __DFT); | 89

 9ð | | 9ð

91 | /\ Check if the read was successful, and if so find the \/ | 91

92 | /\ record in the data file searching by key \/ | 92

 93 | | 93

Figure D-7 (Part 2 of 3). Target Program Example — CTGTPGM

D-12 Intrasystem Communications Programming V4R1

94 3 | if (pos_resp() == NOERROR) { | 94

 95 | | 95

96 | /\ Read record from database file \/ | 96

 97 | | 97

98 | rio_fdbk = _Rreadk(dbfptr, &cusrec_dbf_i, sizeof(cusrec_dbf_i), | 98

99 4 | __KEY_EQ, cust_icf_i.NUMBER, 5); | 99

 1ðð | | 1ðð

1ð1 | /\ Check to see if the record was found \/ | 1ð1

 1ð2 | | 1ð2

1ð3 5 | if (rio_fdbk->num_bytes != ð) { | 1ð3

 1ð4 | | 1ð4

1ð5 | /\ Send the customer information to the source program \/ | 1ð5

 1ð6 | | 1ð6

1ð7 6 | memcpy(cinfo_icf_o.CUSTNO, cusrec_dbf_i.PCUST, 5); | 1ð7

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

1ð8 7 | memcpy(cinfo_icf_o.NAME, cusrec_dbf_i.PNAME, 2ð); | 1ð8

1ð9 8 | memcpy(cinfo_icf_o.ADDR, cusrec_dbf_i.PADDR, 2ð); | 1ð9

11ð 9 | memcpy(cinfo_icf_o.CITY, cusrec_dbf_i.PCITY, 2ð); | 11ð

111 1ð | memcpy(cinfo_icf_o.STATE, cusrec_dbf_i.PSTATE, 2); | 111

112 11 | memcpy(cinfo_icf_o.ZIP, cusrec_dbf_i.PZIP, 5); | 112

113 12 | memcpy(cinfo_icf_o.ACCBAL, cusrec_dbf_i.PACCBL, 6); | 113

 114 13 | _Rformat(icffptr, "CINFO"); | 114

115 14 | _Rwrite(icffptr, &cinfo_icf_o, sizeof(cinfo_icf_o)); | 115

116 | } | 116

117 | else { | 117

 118 | | 118

119 | /\ Customer record was not found, send a fail \/ | 119

 12ð | | 12ð

 121 15 | _Rformat(icffptr, "NOCUST"); | 121

122 16 | _Rwrite(icffptr, NULL, ð); | 122

123 | } | 123

 124 | | 124

125 | /\ Check for successful return code \/ | 125

 126 | | 126

 127 17 | return(pos_resp()); | 127

 128 | } | 128

129 | /\ A detach was received, or a transaction error occurred. \/ | 129

13ð | /\ Return error to main so the program can end. \/ | 13ð

 131 | | 131

 132 18 | return(ERROR); | 132

 133 |} | 133

 134 | | 134

 135 | | 135

 136 |/\--\/ | 136

137 |/\ Issue an end of session operation. \/ | 137

 138 |/\--\/ | 138

 139 |.9/ | 139

 14ð |void send_eos() | 14ð

 141 |{ | 141

 142 1 | _Rformat(icffptr, "ENDSESSION"); | 142

143 2 | _Rwrite(icffptr, NULL, ð); | 143

 144 |} | 144

 145 | | 145

 146 | | 146

 147 |/\--\/ | 147

148 |/\ Check the major return code for a successful operation - ðð. \/ | 148

 149 |/\--\/ | 149

 15ð |.1ð/ | 15ð

 151 |pos_resp() | 151

 152 |{ | 152

153 1 | comm_fdbk = _Riofbk(icffptr); | 153

154 | dsp_icf_fdbk = (_XXIOFB_DSP_ICF_T \)((char \)comm_fdbk + | 154

 155 2 | comm_fdbk->file_dep_fb_offset); | 155

156 3 | if (strncmp(dsp_icf_fdbk->major_ret_code, "ðð", 2) == ð) | 156

 157 4 | return(NOERROR); | 157

 158 | else | 158

 159 5 | return(ERROR); | 159

 16ð |} | 16ð

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Figure D-7 (Part 3 of 3). Target Program Example — CTGTPGM

 Appendix D. Program Examples D-13

Description of the Two-Session Inquiry
Program Example

The following explanation describes the transaction between
a source program and two target programs, and applies to
the COBOL/400 and RPG/400 programs in this appendix.

The source program is started from a display station, and
both the display and ICF files are opened. The work station
is implicitly acquired when the display file opens, but
because the ICF file is created with ACQPGMDEV(*NONE),
no ICF devices are acquired during open processing.

The two ICF program devices, ICF00 and ICF01, must be
explicitly acquired by the source program using the acquire
operation. The source program then starts the two target
programs using an evoke function.

The source program uses a specific program device name.
Each target program uses an ICF file with a program device
name that is associated with the requesting program device.
The target program’s only session is the one used to com-
municate with the source program. When the target program
is started, the ICF file is implicitly opened if you are using the
RPG/400 language support. However, if you are using the
COBOL/400 language support, you need to open the ICF file
explicitly using the open operation. Because the file is
created with the requesting program device specified on the
ACQPGMDEV parameter, the requesting program device is
acquired when the ICF file is opened.

The main menu, with a record format CIMENU, is written to
the display station and the program waits for a request from
the display station. Based on the request made from the
display station, the source program uses a write-with-invite
function to send an inquiry request to one of the target pro-
grams. The target program then sends a reply to the inquiry
using a read operation. Finally, the source program sends a
detach request and ends the session.

COBOL/400 Source Program for a
Two-Session Inquiry

The following describes a COBOL/400 source program for a
two-session inquiry.

Program Files: The COBOL/400 two-session source
program uses the following files:

INTFIL An ICF file used to send records to and receive
records from the target program.

DSPFIL A display file used to enter requests that are to
be sent to the target program.

QPRINT An AS/400 printer file used to print records, both
sent and received, as well as major and minor
ICF return codes.

DFILE An output file that is used to assist in problem
analysis for non-recoverable session errors.

D-14 Intrasystem Communications Programming V4R1

DDS Source: The DDS for the ICF file (INTFIL) is illus-
trated in Figure D-8.

5714PW1 Rð1Mðð 88ð3ð1 SEU SOURCE LISTING 1ð/14/87 17:2ð:41 PAGE 1

SOURCE FILE QINTSRC/INTLIB

MEMBER INTFIL

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 A\\

 A\ \

 A\ ICF FILE \

A\ USED IN SOURCE TWO SESSION PROGRAM \

 A\ \

 A\\

 A INDARA

A RCVFAIL(25 'RECEIVED FAIL')

 A RCVTRNRND(9ð)

 A R ITMRSP

 A RECID(1 'I')

 A RECITM 1

 A ITEMNO 6 ð

 A DESC 3ð

 A QTYLST 7 ð

 A QTYOH 7 ð

 A QTYOO 7 ð

 A QTYBO 7 ð

 A UNITQ 2

 A PRð1 7 2

 A PRð5 7 ð

 A UFRT 5 2

 A SLSTM 9 2

 A SLSTY 11 2

 A CSTTM 9 2

 A CSTTY 11 2

A PRO 5 2

A LOS 9 2

 A FILL1 56

 A R DTLRSP

 A RECID(1 'C')

 A RECCUS 1

 A CUSTNO 6 ð

 A DNAME 3ð

 A DLSTOR 6 ð

 A DSLSTM 9 ð

 A DSPMð1 9 ð

 A DSPMð2 9 ð

 A DSPMð3 9 ð

 A DSTTYD 11 ð

 A IDEPT 3 ð

 A FILL2 57

 A R DETACH

 A DETACH

 A R EOS

 A EOS

 A R EVKREQ

 A EVOKE(&LIB/&PGMID)

 A PGMID 1ðA P

 A LIB 1ðA P

 A R ITMREQ

 A INVITE

 A ITEMNO 6 ð

 A R DTLREQ

 A INVITE

 A CUSTNO 6 ð

 A R TIMER

 A TIMER(ðððð3ð)

Figure D-8. DDS Source for a Two-Session Source Program Using INTFIL

 Appendix D. Program Examples D-15

The DDS source file for the display file (DSPFIL) is illustrated
in Figure D-9.

5714PW1 Rð1Mðð 88ð3ð1 SEU SOURCE LISTING 1ð/14/87 16:59:5ð PAGE 1

SOURCE FILE QINTSRC/INTLIB

MEMBER DSPFIL

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 A\\

 A\ \

 A\ DISPLAY FILE \

A\ USED IN SOURCE TWO SESSION PROGRAM \

 A\ \

 A\\

 A\ BEGINNING MENU

 A\\\\\\\\\\\\\\\\\\\\

 A DSPSIZ(\DS3)

A CFð1(99) CFð2(98) CFð3(97)

A R CIMENU TEXT('MENU FOR INQUIRY')

A 1 34'INQUIRY MENU'

A 3 1'Select one of the following:'

A 4 3'1. Order inquiry'

A 5 3'2. Buyer inquiry'

 A 11 1'Option:'

 A OPTION 1N I 11 9VALUES('1' '2')

A 19 5DFT('CMD KEY 1 - END ')

A R DTLMNU TEXT(' BUYER INQUIRY SCREEN 1')

 A 2 2DFT('ENTER BUYER')

 A CUSTNO 6N ðI 2 2ð

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\ CUSTOMER INQUIRY SCREEN

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A R DTLSCR TEXT(' BUYER INQUIRY SCR. #2')

A 1 3DFT('BUYER DPT LAST ORD & THIS +

 A $MTH1 &MTH2 $MTH3 THIS+

 A YTD CNAME')

 A CUSTN 6N 2 2

 A DEPT 3N ð 2 9

 A DLSTR 6N ð 2 13

 A DSLSM 9N ð 2 22

 A DSPM1 9N ð 2 32

 A DSPM2 9N ð 2 42

 A DSPM3 9N ð 2 52

 A DSTYD 11N ð 2 62

 A CNAME 5 2 74

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\

 A\\\\\\\\\\\\\\\\\\\\\\\\

A\ ITEM INQUIRY SCREEN

 A\\\\\\\\\\\\\\\\\\\\\\\\

A R ITMMNU TEXT('ITEM INQUIRY SCREEN ONE')

A 2 2DFT('ENTER ITEM NUMBER')

 A ITEMNO 6N ðI 2 2ð

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\\\\\\\\\\\\\\\\\\\\\\\\

 A\ ITEM DISPLAY

 A\\\\\\\\\\\\\\\\\\\\\\\\

A R ITMSC2 TEXT('ITEM INQUIRY SCREEN TWO') OVE+

 A RLAY

 A 4 2DFT('DESC-')

 A DSC 3ð 4 8

 A 5 2DFT('QUANTITY AVAILABLE')

 A QAVAIL 7N ð 5 25

A 6 11DFT('ON HAND')

 A QTYH 7N ð 6 25

A 7 11DFT('ON ORDER')

Figure D-9 (Part 1 of 2). DDS for Source Program Two-Session Inquiry Using DSPFIL

D-16 Intrasystem Communications Programming V4R1

 A QTYO 7N ð 7 25

A 8 11DFT('BACK ORDER')

 A QTYB 7N ð 8 25

A 9 2DFT('UNIT OF MEASURE')

A UNT 2 9 3ð

A 1ð 2DFT('PRICE PER UNIT')

A PR1 7Y 2 1ð 24EDTCDE(3)

 A 11 8DFT('QUANTITY')

A PR5 7Y ð 11 25EDTCDE(3)

 A 12 8DFT('FREIGHT')

A UFR 5Y 2 12 26EDTCDE(3)

A 13 32DFT('MORE... ')

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

A 19 4ðDFT(' 3 - BUYER MENU')

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\ ITEM ADDITIONAL DISPLAY

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A R ITMSC3 TEXT('ITEM INQUIRY SCREEN 3 ') OVE+

 A RLAY

 A 5 2DFT('SALES MONTH')

 A SLSM 9Y 2 5 16EDTCDE(1)

 A 6 8DFT('Y-T-D')

 A SLSY 11Y 2 6 14EDTCDE(1)

 A 7 2DFT('COSTS MONTH')

 A CSTM 9Y 2 7 16EDTCDE(1)

 A 8 8DFT('Y-T-D')

 A CSTY 11Y 2 8 14EDTCDE(1)

 A 9 2DFT('PROFIT PCT')

 A PROFIT 5Y 2 9 22EDTCDE(1)

 A 1ð 2DFT('LOST SALES')

 A LOSTS 9Y 2 1ð 16EDTCDE(1)

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\\\\\\\\\\\\\\\\\\\\\\\\

 A\ TIMOUT SCREEN.

 A\\\\\\\\\\\\\\\\\\\\\\\\

A R TIMOUT TEXT('TIME OUT SCREEN') OVE+

 A RLAY

A 2ð 2DFT('TARGET PROGRAM TIMED OUT. ENTE-

A R 1 TO TRY AGAIN OR 2 TO END.')

A TIMRSP 1 I 2ð 61

Figure D-9 (Part 2 of 2). DDS for Source Program Two-Session Inquiry Using DSPFIL

Configuration: The following command is needed to create
the intrasystem communications device associated with the
ICF file:

CRTDEVINTR DEVD(INTRADEV)

 RMTLOCNAME(INTRARMT)

 ONLINE(\NO)

TEXT("THIS IS AN INTRASYSTEM DEVICE

 DESCRIPTION")

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:

CRTICFF FILE(INTLIB/INTFIL)

 SRCFILE(INTLIB/QINTSRC)

 SRCMBR(INTFIL)

 ACQPGMDEV(\NONE) MAXPGMDEV(2)

TEXT("SOURCE ICF FILE FOR TWO SESSION

 PROGRAM")

It is not necessary to add a communications entry to the sub-
system because the system automatically defines an entry
for the device created above when the program is processed.
However, the following is an example of what you would use
if you decided to add a communications entry:

ADDCMNE SBSD(QCMN) DEV(INTRADEV)

Note: Subsystem QCMN should be stopped before
ADDCMNE is entered, and then restarted again. The com-
mands needed to define the two program device entries are:

OVRICFDEVE PGMDEV(ICFðð)

 RMTLOCNAME(INTRARMT)

 FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð1)

 RMTLOCNAME(INTRARMT)

 FMTSLT(\RECID)

The CL program that could be used to run the source
program is:

CSDINTCL: PGM PARM(&RMT1 &RMT2)

 DCL VAR(&RMT1) TYPE(\CHAR)

 LEN(8)

 DCL VAR(&RMT2) TYPE(\CHAR)

 LEN(8)

 CHGJOB OUTQ(INTLIB/INTOUTQ)

LOG(4 ðð \SECLVL)

 LOGCLPGM(\YES)

 OVRICFDEVE PGMDEV(ICFðð)

 RMTLOCNAME(&RMT1)

 FMTSLT(\RECID)

 OVRICFDEVE PGMDEV(ICFð1)

 RMTLOCNAME(&RMT2)

 FMTSLT(\RECID)

 CALL INTLIB/CSDINT

ENDCSDINTCL: ENDPGM

A CL program that could be used as the target program
called by the source program (which calls the program
CTDINT shown in the example) is:

 Appendix D. Program Examples D-17

CTDINTCL: PGM

 CHGJOB OUTQ(INTLIB/INTOUTQ)

LOG(4 ðð \SECLVL)

 LOGCLPGM(\YES)

 ADDLIBLE INTLIB

 OVRICFDEVE PGMDEV(RQSDEV)

 RMTLOCNAME(\REQUESTER)

 CALL INTLIB/CTDINT

 RMVLIBLE INTLIB

 MONMSG MSGID(CPFðððð)

ENDCTDINTCL: ENDPGM

Program Explanation: The following explains the structure
of the program example illustrated in Figure D-10 on
page D-20. The ICF file used in the example is defined by
the user, and uses externally described data formats (DDS).
The reference numbers in the explanation below correspond
to the numbers in the following program example.

All output operations to the ICF file in the example are done
using the write statement with the record format name coded
as an operand.

.1/ This section defines the ICF file (INTFIL) and the
display file (DSPFIL) used in the program.

INTFIL is the ICF file used to send records to and
receive records from each of the two target programs.
INTFIL is established using the file-level keyword,
INDARA, indicating that a separate indicator area is
used.

DSPFIL is the display file used to receive user’s
requests and to report the information received based
on the request.

The control area clause in the select statements of
INTFIL and DSPFIL is used to define the I/O feed-
back area. Information from the I/O feedback is used
to determine the major/minor return code, record
format, and function key pressed.

.2/ THE DSP-ERROR SECTION and CMN-ERROR
SECTION define the error handling procedures for I/O
errors on the DSPFIL and INTFIL. A DSPFIL I/O
error causes the program to end, and an error
message to be sent to the printer file. The section for
INTFIL file I/O errors checks the major/minor return
code to determine if the error is recoverable. If the
error is recoverable (major code 83), it sets a flag
(ERR-SW) to 1 and returns to the program.

.3/ The program opens the files to be used and initializes
the ICF file separate indicator area.

.4/ If the ERR-SW switch is set to 1, indicating that a
recoverable error has occurred, the program deter-
mines whether the open-retry count limit of nine has
been exceeded. If it has, the program goes to
section 19 and then ends. If the limit count is less
than nine, one is added to the count and control
passes to section 17 and then to section 3 to try to
open the file.

.5/ The two program devices used by the program are
explicitly acquired.

The device for the work station is implicitly acquired
when the DSPFIL file is opened.

Also, the evoke requests are issued to the remote
programs by passing control to section 16.

When control returns from section 16, the main menu
(record format CIMENU) is then written to the work
station.

.6/ A read operation is issued to the display device, and
the program waits for an input request from the user.
When a record is returned, the last record format
used (as specified in the RCD-FMT field in the I/O
control area) is checked. Based on the value in
RCD-FMT, the program branches to the appropriate
routine.

If a match is not found for the display record format,
the main menu (CIMENU) is written to the work
station and control is returned to section 6.

.7/ The MENU routine is called if the request is made
from the main menu (CIMENU). If the CMD-KEY var-
iable is set to 01, indicating that the operator pressed
function key 1, the two transactions and sessions are
ended and the program ends. If the operator entered
option 1, the program writes the Item Inquiry menu
(ITMMNU) to the work station and returns to section
6.

If the option is not 1, the Buyer Inquiry menu
(DTLMNU) is written to the work station and control is
passed to section 6.

.8/ The ITMIN routine is called when the user is
requesting an item inquiry (record format ITMMNU).
If function key 1 (CMD-KEY = 01) is pressed, control
passes to section 19, and then to section 20, the two
transactions end, and the program ends. If function
key 2 is pressed, the inquiry request is canceled, the
main menu (CMENU) is written to the work station,
and the program returns to section 16.

The item number is read from the work station and
then the request is sent to the target program on
program device ICF01.

The request is sent to the appropriate target program
by writing data to the program device using format
ITMREQ. The INVITE keyword is specified as part of
the ITMREQ format to give the target program per-
mission to send.

A timer is issued for 30 seconds before the read
operation. This is provided to allow the local program
to have a time out when no response is received from
the target program.

The read is an implied read-from-invited-program-
devices because no record format is specified in the
read statement.

D-18 Intrasystem Communications Programming V4R1

If a fail indication is received (the item number
requested was not found), the request is not validated
and a new item inquiry menu (ITMMNU) is written to
the display device.

Control goes to section 9 to process the item informa-
tion based on the input data that was received, and
the result is written to the display using format
ITMSC2.

After returning from section 9, the program returns to
section 6.

.9/ The routine ITMOUT is called when the target
program responds to a request for an item record. If
the returned response is a fail indication (checked in
section 8), the request is invalidated and a new Item
Inquiry menu (ITMMNU) is written to the work station.

The program then performs the calculations to set the
quantity fields and writes the result to the requesting
work station using record format ITMSC2.

The program then returns to the calling routine.

.1ð/ The routine ITMRTN is called to process the next
user request. If function key 1 (CMD-KEY = 01) is
pressed, the transactions and session are ended in
section 19, and control goes to section 20 to end the
program.

If function key 2 is pressed, the main menu (CMENU)
is written to the work station. If function key 3 is
pressed, the Item Inquiry menu is written to the work
station, and the program returns to section 6. By
pressing Enter, the profit and loss figures are calcu-
lated and written to the work station before returning
control to section 6.

.11/ The PROFIT-LOSS routine calculates the profit and
loss figures for the second display of the requested
item number.

.12/ The DTLIN routine is called when a request is read
from the Buyer Inquiry menu (DTLMNU). If function
key 1 (CMD-KEY = 01) is pressed, the transactions
and sessions are ended. If function key 2 (CMD-KEY
= 02) is pressed, the main menu (CIMENU) is written
to the work station and the program returns to section
6.

The buyer inquiry request is sent to the target
program by writing data to the program device ICF00
using format DTLREQ. The INVITE keyword is speci-
fied as part of the DLTREQ format to give the target
program permission to send.

Control goes to section 14 to retrieve the buyer detail
information.

Routine DTLRTN in section 14 is called to continue
the buyer information processing.

The program then returns to section 6.

.13/ The routine DTLRTN is called from section 6, and
handles the user’s request following the display of the
buyer information. Function key 1 ends the job, func-
tion key 2 displays the main menu (CMENU), and
pressing Enter displays the Buyer Inquiry menu
(DTLMNU). Control then returns to section 6.

.14/ The CUSTOMER-DETAIL routine issues the read
operation to the program device.

This read is an implied read-from-invited-program-
devices because no record format is specified on the
read statement.

A check is made of the MAJ-MIN return code for pos-
sible error conditions on a successful return (control
is automatically passed to section 2 for unsuccessful
I/O operations). A 0310 return code means the
remote program has timed out. (The timer was
issued on the write operation.) If no data was
received (return codes of 03xx), the request is sent
again to the remote program. Finally, if the data
returns in the wrong format, control is passed to
section 17.

The buyer information received from the target
program is processed, and the result is written to the
user work station using screen format DTLBLK.

Control returns to the calling routine.

.15/ The EVOKE routine builds the evoke requests to
send to the remote programs. Because the DDS
keyword for the record format only specifies the field
identifiers with the record, this code moves the literal
value CTDINTCL to the field PGMID, and INTLIB to
the field LIB.

When the program start request is received at the
remote program, INTLIB is searched for CTDINTCL
and that program then starts. CTDINTCL is a CL
program that contains CL statements, as illustrated
on D-17.

.16/ The ERROR-RECOVERY routine ends the trans-
actions and closes the files. The ERR-SW indicator
is set again, and control returns to the calling routine.

.17/ The EXIT-FORMAT-ERR routine is run when the
program detects data in an incorrect record format. It
writes an error message to the printer file, ends the
program, and implicitly ends the session.

.18/ The DETACH routine issues the detach function to
the ICF file for each of the two program devices. In
the program using the user-supplied format, the write
operation is issued using the record format name
DETACH.

.19/ The END-JOB routine releases the program devices
and close the files. The program ends.

 Appendix D. Program Examples D-19

 5738CB1 V2R1Mð 91ð524 IBM AS/4ðð COBOL/4ðð INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 1

 Program : CSDINT

Library : INTLIB

 Source file : QINTSRC

Library : INTLIB

 Source member : CSDINT 1ð/ð8/9ð 11:ð8:48

 Generation severity level : 29

 Text 'description' : COBOL Source Intra Program Example

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 2

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

1 ððð1ðð IDENTIFICATION DIVISION. ð9/3ð/87

 2 ððð2ðð PROGRAM-ID. CSDINT. 11/15/88

 ððð3ðð\\ ð9/3ð/87

ððð4ðð\ THIS PROGRAM ASSIGNS TWO SESSIONS AS FOLLOWS: \ 11/15/88

ððð5ðð\ 'ICFðð' TO INQUIRE ABOUT A BUYER'S PURCHASING STATUS \ 11/15/88

ððð6ðð\ BEFORE AN ORDER IS ALLOWED. \ 11/15/88

ððð7ðð\ 'ICFð1' TO INQUIRE ABOUT THE AVAILABILITY OF AN ITEM \ 11/15/88

ððð8ðð\ BEING ORDERED (ITEM ððððð1 THRU 999999). \ 11/15/88

ððð9ðð\ A DISPLAY DEVICE IS USED TO ENTER THE REQUEST (USING A \ ð9/3ð/87

ðð1ððð\ BUYER AND AN ITEM MENU) THAT IS SENT TO THE TARGET. \ 1ð/ð5/9ð

 ðð11ðð\\ ð9/3ð/87

3 ðð12ðð ENVIRONMENT DIVISION. ð9/3ð/87

4 ðð13ðð CONFIGURATION SECTION. ð9/3ð/87

 5 ðð14ðð SOURCE-COMPUTER. IBM-AS4ðð. ð1/15/88

 6 ðð15ðð OBJECT-COMPUTER. IBM-AS4ðð. ð1/15/88

7 ðð16ðð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FEEDBACK ð9/3ð/87

8 ðð17ðð OPEN-FEEDBACK IS OPEN-FBA. ð9/3ð/87

9 ðð18ðð INPUT-OUTPUT SECTION. ð9/3ð/87

 1ð ðð19ðð FILE-CONTROL. ð9/3ð/87

 ðð2ððð\.1/ ð9/3ð/87

 ðð21ðð\\ ð9/3ð/87

 ðð22ðð\ \ ð9/3ð/87

ðð23ðð\ F I L E S P E C I F I C A T I O N S \ ð9/3ð/87

 ðð24ðð\ \ ð9/3ð/87

ðð25ðð\ INTFIL : ICF FILE USED TO SEND A REQUEST TO ONE \ 1ð/ð5/9ð

ðð26ðð\ OF TWO DIFFERENT TARGET PROGRAMS. TWO \ 1ð/ð5/9ð

ðð27ðð\ SESSIONS ARE ACTIVE AT THE SAME TIME. \ 1ð/ð5/9ð

 ðð28ðð\ \ ð9/3ð/87

ðð29ðð\ DSPFIL : DISPLAY FILE USED TO ENTER A REQUEST TO BE \ ð9/3ð/87

ðð3ððð\ SENT TO A TARGET PROGRAM. \ 1ð/ð5/9ð

 ðð31ðð\ \ ð9/3ð/87

 ðð32ðð\\ ð9/3ð/87

11 ðð33ðð SELECT INTFIL ASSIGN TO WORKSTATION-INTFIL-SI 11/21/88

12 ðð34ðð ORGANIZATION IS TRANSACTION ð9/3ð/87

13 ðð35ðð CONTROL-AREA IS TR-CTL-AREA ð9/3ð/87

14 ðð36ðð FILE STATUS IS STATUS-IND MAJ-MIN. ð9/3ð/87

15 ðð37ðð SELECT DSPFIL ASSIGN TO WORKSTATION-DSPFIL ð9/3ð/87

16 ðð38ðð ORGANIZATION IS TRANSACTION ð9/3ð/87

17 ðð39ðð CONTROL-AREA IS DISPLAY-FEEDBACK ð9/3ð/87

18 ðð4ððð FILE STATUS IS STATUS-DSP. ð9/3ð/87

19 ðð41ðð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. ð9/3ð/87

2ð ðð42ðð DATA DIVISION. ð9/3ð/87

21 ðð43ðð FILE SECTION. ð9/3ð/87

 22 ðð44ðð FD INTFIL 11/21/88

23 ðð45ðð LABEL RECORDS ARE STANDARD. ð9/3ð/87

 24 ðð46ðð ð1 INTREC. 11/21/88

25 ðð47ðð COPY DDS-ALL-FORMATS-I-O OF INTFIL. 11/21/88

26 +ððððð1 ð5 INTFIL-RECORD PIC X(196). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:ITMRSP FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 27 +ððððð4 ð5 ITMRSP-I REDEFINES INTFIL-RECORD. <-ALL-FMTS

 28 +ððððð5 ð6 RECITM PIC X(1). <-ALL-FMTS

 29 +ððððð6 ð6 ITEMNO PIC S9(6). <-ALL-FMTS

 3ð +ððððð7 ð6 DESC PIC X(3ð). <-ALL-FMTS

 31 +ððððð8 ð6 QTYLST PIC S9(7). <-ALL-FMTS

Figure D-10 (Part 1 of 13). Source Program Example — CSDINT

D-20 Intrasystem Communications Programming V4R1

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 3

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 32 +ððððð9 ð6 QTYOH PIC S9(7). <-ALL-FMTS

 33 +ðððð1ð ð6 QTYOO PIC S9(7). <-ALL-FMTS

 34 +ðððð11 ð6 QTYBO PIC S9(7). <-ALL-FMTS

 35 +ðððð12 ð6 UNITQ PIC X(2). <-ALL-FMTS

 36 +ðððð13 ð6 PRð1 PIC S9(5)V9(2). <-ALL-FMTS

 37 +ðððð14 ð6 PRð5 PIC S9(7). <-ALL-FMTS

 38 +ðððð15 ð6 UFRT PIC S9(3)V9(2). <-ALL-FMTS

 39 +ðððð16 ð6 SLSTM PIC S9(7)V9(2). <-ALL-FMTS

 4ð +ðððð17 ð6 SLSTY PIC S9(9)V9(2). <-ALL-FMTS

 41 +ðððð18 ð6 CSTTM PIC S9(7)V9(2). <-ALL-FMTS

 42 +ðððð19 ð6 CSTTY PIC S9(9)V9(2). <-ALL-FMTS

 43 +ðððð2ð ð6 PRO PIC S9(3)V9(2). <-ALL-FMTS

 44 +ðððð21 ð6 LOS PIC S9(7)V9(2). <-ALL-FMTS

 45 +ðððð22 ð6 FILL1 PIC X(56). <-ALL-FMTS

+ðððð23\ OUTPUT FORMAT:ITMRSP FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð24\ <-ALL-FMTS

 46 +ðððð25 ð5 ITMRSP-O REDEFINES INTFIL-RECORD. <-ALL-FMTS

 47 +ðððð26 ð6 RECITM PIC X(1). <-ALL-FMTS

 48 +ðððð27 ð6 ITEMNO PIC S9(6). <-ALL-FMTS

 49 +ðððð28 ð6 DESC PIC X(3ð). <-ALL-FMTS

 5ð +ðððð29 ð6 QTYLST PIC S9(7). <-ALL-FMTS

 51 +ðððð3ð ð6 QTYOH PIC S9(7). <-ALL-FMTS

 52 +ðððð31 ð6 QTYOO PIC S9(7). <-ALL-FMTS

 53 +ðððð32 ð6 QTYBO PIC S9(7). <-ALL-FMTS

 54 +ðððð33 ð6 UNITQ PIC X(2). <-ALL-FMTS

 55 +ðððð34 ð6 PRð1 PIC S9(5)V9(2). <-ALL-FMTS

 56 +ðððð35 ð6 PRð5 PIC S9(7). <-ALL-FMTS

 57 +ðððð36 ð6 UFRT PIC S9(3)V9(2). <-ALL-FMTS

 58 +ðððð37 ð6 SLSTM PIC S9(7)V9(2). <-ALL-FMTS

 59 +ðððð38 ð6 SLSTY PIC S9(9)V9(2). <-ALL-FMTS

 6ð +ðððð39 ð6 CSTTM PIC S9(7)V9(2). <-ALL-FMTS

 61 +ðððð4ð ð6 CSTTY PIC S9(9)V9(2). <-ALL-FMTS

 62 +ðððð41 ð6 PRO PIC S9(3)V9(2). <-ALL-FMTS

 63 +ðððð42 ð6 LOS PIC S9(7)V9(2). <-ALL-FMTS

 64 +ðððð43 ð6 FILL1 PIC X(56). <-ALL-FMTS

+ðððð44\ INPUT FORMAT:DTLRSP FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð45\ <-ALL-FMTS

 65 +ðððð46 ð5 DTLRSP-I REDEFINES INTFIL-RECORD. <-ALL-FMTS

 66 +ðððð47 ð6 RECCUS PIC X(1). <-ALL-FMTS

 67 +ðððð48 ð6 CUSTNO PIC S9(6). <-ALL-FMTS

 68 +ðððð49 ð6 DNAME PIC X(3ð). <-ALL-FMTS

 69 +ðððð5ð ð6 DLSTOR PIC S9(6). <-ALL-FMTS

 7ð +ðððð51 ð6 DSLSTM PIC S9(9). <-ALL-FMTS

 71 +ðððð52 ð6 DSPMð1 PIC S9(9). <-ALL-FMTS

 72 +ðððð53 ð6 DSPMð2 PIC S9(9). <-ALL-FMTS

 73 +ðððð54 ð6 DSPMð3 PIC S9(9). <-ALL-FMTS

 74 +ðððð55 ð6 DSTTYD PIC S9(11). <-ALL-FMTS

 75 +ðððð56 ð6 IDEPT PIC S9(3). <-ALL-FMTS

 76 +ðððð57 ð6 FILL2 PIC X(57). <-ALL-FMTS

+ðððð58\ OUTPUT FORMAT:DTLRSP FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð59\ <-ALL-FMTS

 77 +ðððð6ð ð5 DTLRSP-O REDEFINES INTFIL-RECORD. <-ALL-FMTS

 78 +ðððð61 ð6 RECCUS PIC X(1). <-ALL-FMTS

 79 +ðððð62 ð6 CUSTNO PIC S9(6). <-ALL-FMTS

 8ð +ðððð63 ð6 DNAME PIC X(3ð). <-ALL-FMTS

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 4

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 81 +ðððð64 ð6 DLSTOR PIC S9(6). <-ALL-FMTS

 82 +ðððð65 ð6 DSLSTM PIC S9(9). <-ALL-FMTS

 83 +ðððð66 ð6 DSPMð1 PIC S9(9). <-ALL-FMTS

 84 +ðððð67 ð6 DSPMð2 PIC S9(9). <-ALL-FMTS

 85 +ðððð68 ð6 DSPMð3 PIC S9(9). <-ALL-FMTS

 86 +ðððð69 ð6 DSTTYD PIC S9(11). <-ALL-FMTS

 87 +ðððð7ð ð6 IDEPT PIC S9(3). <-ALL-FMTS

 88 +ðððð71 ð6 FILL2 PIC X(57). <-ALL-FMTS

Figure D-10 (Part 2 of 13). Source Program Example — CSDINT

 Appendix D. Program Examples D-21

+ðððð72\ INPUT FORMAT:DETACH FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð73\ <-ALL-FMTS

 +ðððð74\ ð5 DETACH-I REDEFINES INTFIL-RECORD. <-ALL-FMTS

+ðððð75\ OUTPUT FORMAT:DETACH FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð76\ <-ALL-FMTS

 +ðððð77\ ð5 DETACH-O REDEFINES INTFIL-RECORD. <-ALL-FMTS

+ðððð78\ INPUT FORMAT:EOS FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð79\ <-ALL-FMTS

 +ðððð8ð\ ð5 EOS-I REDEFINES INTFIL-RECORD. <-ALL-FMTS

+ðððð81\ OUTPUT FORMAT:EOS FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð82\ <-ALL-FMTS

 +ðððð83\ ð5 EOS-O REDEFINES INTFIL-RECORD. <-ALL-FMTS

+ðððð84\ INPUT FORMAT:EVKREQ FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð85\ <-ALL-FMTS

 +ðððð86\ ð5 EVKREQ-I REDEFINES INTFIL-RECORD. <-ALL-FMTS

+ðððð87\ OUTPUT FORMAT:EVKREQ FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð88\ <-ALL-FMTS

 89 +ðððð89 ð5 EVKREQ-O REDEFINES INTFIL-RECORD. <-ALL-FMTS

 9ð +ðððð9ð ð6 PGMID PIC X(1ð). <-ALL-FMTS

 91 +ðððð91 ð6 LIB PIC X(1ð). <-ALL-FMTS

+ðððð92\ INPUT FORMAT:ITMREQ FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð93\ <-ALL-FMTS

 92 +ðððð94 ð5 ITMREQ-I REDEFINES INTFIL-RECORD. <-ALL-FMTS

 93 +ðððð95 ð6 ITEMNO PIC S9(6). <-ALL-FMTS

+ðððð96\ OUTPUT FORMAT:ITMREQ FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð97\ <-ALL-FMTS

 94 +ðððð98 ð5 ITMREQ-O REDEFINES INTFIL-RECORD. <-ALL-FMTS

 95 +ðððð99 ð6 ITEMNO PIC S9(6). <-ALL-FMTS

+ððð1ðð\ INPUT FORMAT:DTLREQ FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ððð1ð1\ <-ALL-FMTS

 96 +ððð1ð2 ð5 DTLREQ-I REDEFINES INTFIL-RECORD. <-ALL-FMTS

 97 +ððð1ð3 ð6 CUSTNO PIC S9(6). <-ALL-FMTS

+ððð1ð4\ OUTPUT FORMAT:DTLREQ FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ððð1ð5\ <-ALL-FMTS

 98 +ððð1ð6 ð5 DTLREQ-O REDEFINES INTFIL-RECORD. <-ALL-FMTS

 99 +ððð1ð7 ð6 CUSTNO PIC S9(6). <-ALL-FMTS

+ððð1ð8\ INPUT FORMAT:TIMER FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ððð1ð9\ <-ALL-FMTS

 +ððð11ð\ ð5 TIMER-I REDEFINES INTFIL-RECORD. <-ALL-FMTS

+ððð111\ OUTPUT FORMAT:TIMER FROM FILE INTFIL OF LIBRARY INTLIB <-ALL-FMTS

 +ððð112\ <-ALL-FMTS

 +ððð113\ ð5 TIMER-O REDEFINES INTFIL-RECORD. <-ALL-FMTS

 1ðð ðð48ðð FD DSPFIL ð9/3ð/87

1ð1 ðð49ðð LABEL RECORDS ARE STANDARD. ð9/3ð/87

 1ð2 ðð5ððð ð1 DSPREC. ð9/3ð/87

1ð3 ðð51ðð COPY DDS-ALL-FORMATS-I-O OF DSPFIL. ð9/3ð/87

1ð4 +ððððð1 ð5 DSPFIL-RECORD PIC X(79). <-ALL-FMTS

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 5

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

+ððððð2\ INPUT FORMAT:CIMENU FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ððððð3\ MENU FOR INQUIRY <-ALL-FMTS

 1ð5 +ððððð4 ð5 CIMENU-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 1ð6 +ððððð5 ð6 CIMENU-I-INDIC. <-ALL-FMTS

 1ð7 +ððððð6 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 1ð8 +ððððð7 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 1ð9 +ððððð8 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 11ð +ððððð9 ð6 OPTION PIC X(1). <-ALL-FMTS

Figure D-10 (Part 3 of 13). Source Program Example — CSDINT

D-22 Intrasystem Communications Programming V4R1

+ðððð1ð\ OUTPUT FORMAT:CIMENU FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð11\ MENU FOR INQUIRY <-ALL-FMTS

 +ðððð12\ ð5 CIMENU-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

+ðððð13\ INPUT FORMAT:DTLMNU FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð14\ BUYER INQUIRY SCREEN 1 <-ALL-FMTS

 111 +ðððð15 ð5 DTLMNU-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 112 +ðððð16 ð6 DTLMNU-I-INDIC. <-ALL-FMTS

 113 +ðððð17 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 114 +ðððð18 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 115 +ðððð19 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 116 +ðððð2ð ð6 CUSTNO PIC S9(6). <-ALL-FMTS

+ðððð21\ OUTPUT FORMAT:DTLMNU FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð22\ BUYER INQUIRY SCREEN 1 <-ALL-FMTS

 +ðððð23\ ð5 DTLMNU-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

+ðððð24\ INPUT FORMAT:DTLSCR FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð25\ BUYER INQUIRY SCR. #2 <-ALL-FMTS

 117 +ðððð26 ð5 DTLSCR-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 118 +ðððð27 ð6 DTLSCR-I-INDIC. <-ALL-FMTS

 119 +ðððð28 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 12ð +ðððð29 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 121 +ðððð3ð ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

+ðððð31\ OUTPUT FORMAT:DTLSCR FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð32\ BUYER INQUIRY SCR. #2 <-ALL-FMTS

 122 +ðððð33 ð5 DTLSCR-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 123 +ðððð34 ð6 CUSTN PIC X(6). <-ALL-FMTS

 124 +ðððð35 ð6 DEPT PIC S9(3). <-ALL-FMTS

 125 +ðððð36 ð6 DLSTR PIC S9(6). <-ALL-FMTS

 126 +ðððð37 ð6 DSLSM PIC S9(9). <-ALL-FMTS

 127 +ðððð38 ð6 DSPM1 PIC S9(9). <-ALL-FMTS

 128 +ðððð39 ð6 DSPM2 PIC S9(9). <-ALL-FMTS

 129 +ðððð4ð ð6 DSPM3 PIC S9(9). <-ALL-FMTS

 13ð +ðððð41 ð6 DSTYD PIC S9(11). <-ALL-FMTS

 131 +ðððð42 ð6 CNAME PIC X(5). <-ALL-FMTS

+ðððð43\ INPUT FORMAT:ITMMNU FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð44\ ITEM INQUIRY SCREEN ONE <-ALL-FMTS

 132 +ðððð45 ð5 ITMMNU-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 133 +ðððð46 ð6 ITMMNU-I-INDIC. <-ALL-FMTS

 134 +ðððð47 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 135 +ðððð48 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 136 +ðððð49 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 137 +ðððð5ð ð6 ITEMNO PIC S9(6). <-ALL-FMTS

+ðððð51\ OUTPUT FORMAT:ITMMNU FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð52\ ITEM INQUIRY SCREEN ONE <-ALL-FMTS

 +ðððð53\ ð5 ITMMNU-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

+ðððð54\ INPUT FORMAT:ITMSC2 FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð55\ ITEM INQUIRY SCREEN TWO <-ALL-FMTS

 138 +ðððð56 ð5 ITMSC2-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 6

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 139 +ðððð57 ð6 ITMSC2-I-INDIC. <-ALL-FMTS

 14ð +ðððð58 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 141 +ðððð59 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 142 +ðððð6ð ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

+ðððð61\ OUTPUT FORMAT:ITMSC2 FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð62\ ITEM INQUIRY SCREEN TWO <-ALL-FMTS

 143 +ðððð63 ð5 ITMSC2-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 144 +ðððð64 ð6 DSC PIC X(3ð). <-ALL-FMTS

 145 +ðððð65 ð6 QAVAIL PIC S9(7). <-ALL-FMTS

 146 +ðððð66 ð6 QTYH PIC S9(7). <-ALL-FMTS

 147 +ðððð67 ð6 QTYO PIC S9(7). <-ALL-FMTS

 148 +ðððð68 ð6 QTYB PIC S9(7). <-ALL-FMTS

 149 +ðððð69 ð6 UNT PIC X(2). <-ALL-FMTS

 15ð +ðððð7ð ð6 PR1 PIC S9(5)V9(2). <-ALL-FMTS

 151 +ðððð71 ð6 PR5 PIC S9(7). <-ALL-FMTS

 152 +ðððð72 ð6 UFR PIC S9(3)V9(2). <-ALL-FMTS

+ðððð73\ INPUT FORMAT:ITMSC3 FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð74\ ITEM INQUIRY SCREEN 3 <-ALL-FMTS

 153 +ðððð75 ð5 ITMSC3-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 154 +ðððð76 ð6 ITMSC3-I-INDIC. <-ALL-FMTS

 155 +ðððð77 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 156 +ðððð78 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 157 +ðððð79 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

Figure D-10 (Part 4 of 13). Source Program Example — CSDINT

 Appendix D. Program Examples D-23

+ðððð8ð\ OUTPUT FORMAT:ITMSC3 FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð81\ ITEM INQUIRY SCREEN 3 <-ALL-FMTS

 158 +ðððð82 ð5 ITMSC3-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 159 +ðððð83 ð6 SLSM PIC S9(7)V9(2). <-ALL-FMTS

 16ð +ðððð84 ð6 SLSY PIC S9(9)V9(2). <-ALL-FMTS

 161 +ðððð85 ð6 CSTM PIC S9(7)V9(2). <-ALL-FMTS

 162 +ðððð86 ð6 CSTY PIC S9(9)V9(2). <-ALL-FMTS

 163 +ðððð87 ð6 PROFIT PIC S9(3)V9(2). <-ALL-FMTS

 164 +ðððð88 ð6 LOSTS PIC S9(7)V9(2). <-ALL-FMTS

+ðððð89\ INPUT FORMAT:TIMOUT FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð9ð\ TIME OUT SCREEN <-ALL-FMTS

 165 +ðððð91 ð5 TIMOUT-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 166 +ðððð92 ð6 TIMOUT-I-INDIC. <-ALL-FMTS

 167 +ðððð93 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 168 +ðððð94 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 169 +ðððð95 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 17ð +ðððð96 ð6 TIMRSP PIC X(1). <-ALL-FMTS

+ðððð97\ OUTPUT FORMAT:TIMOUT FROM FILE DSPFIL OF LIBRARY INTLIB <-ALL-FMTS

+ðððð98\ TIME OUT SCREEN <-ALL-FMTS

 +ðððð99\ ð5 TIMOUT-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 171 ðð52ðð FD QPRINT ð9/3ð/87

172 ðð53ðð LABEL RECORDS ARE OMITTED. ð9/3ð/87

 173 ðð54ðð ð1 PRINTREC. ð1/14/88

 174 ðð55ðð ð5 RC PIC 9999. ð1/15/88

 175 ðð56ðð ð5 ERRMSG PIC X(128). ð1/14/88

176 ðð57ðð WORKING-STORAGE SECTION. ð9/3ð/87

 177 ðð58ðð 77 STATUS-IND PIC X(2). ð9/3ð/87

 178 ðð59ðð 77 STATUS-DSP PIC X(2). ð9/3ð/87

 179 ðð6ððð 77 MAJ-MIN-SAV PIC X(4). ð9/3ð/87

18ð ðð61ðð 77 EOF-PFILE-SW PIC X VALUE "ð". ð9/3ð/87

181 ðð62ðð 77 ERR-SW PIC X VALUE "ð". ð9/3ð/87

182 ðð63ðð 77 INDON PIC 1 VALUE B"1". ð9/3ð/87

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 7

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

183 ðð64ðð 77 INDOFF PIC 1 VALUE B"ð". ð9/3ð/87

184 ðð65ðð 77 OPEN-COUNT PIC 9(1) VALUE ð. ð9/3ð/87

185 ðð66ðð 77 LEN PIC 9(1ð)V9(5) COMP. ð9/3ð/87

186 ðð67ðð 77 PROFM PIC 9(7)V9(2) COMP-4. ð9/3ð/87

 187 ðð68ðð 77 CMD2 PIC X(31) ð9/3ð/87

188 ðð69ðð VALUE "CPYF HEXDUMP \LIST PRTFMT(\HEX)". ð9/3ð/87

 189 ðð7ððð ð1 SUBKEY-VALUE. ð9/3ð/87

19ð ðð71ðð ð5 SUBKEY PIC 9(3) VALUE ð. ð9/3ð/87

 191 ðð72ðð ð1 TR-CTL-AREA. ð9/3ð/87

 192 ðð73ðð ð5 FILLER PIC X(2). ð9/3ð/87

 193 ðð74ðð ð5 PGM-DEV-NME PIC X(1ð). ð9/3ð/87

 194 ðð75ðð ð5 RCD-FMT-NME PIC X(1ð). ð9/3ð/87

 195 ðð76ðð ð1 INTF-INDIC-AREA. 11/21/88

196 ðð77ðð ð5 IN25 PIC 1 INDIC 25. 11/16/88

 197 ðð78ðð 88 IN25-ON VALUE B"1". 11/16/88

 198 ðð79ðð 88 IN25-OFF VALUE B"ð". 11/16/88

199 ðð8ððð ð5 IN9ð PIC 1 INDIC 9ð. 11/16/88

 2ðð ðð81ðð 88 IN9ð-ON VALUE B"1". 11/16/88

 2ð1 ðð82ðð 88 IN9ð-OFF VALUE B"ð". 11/16/88

 2ð2 ðð83ðð ð1 DSPF-INDIC-AREA. ð9/3ð/87

2ð3 ðð84ðð ð5 IN23 PIC 1 INDIC 23. ð9/3ð/87

 2ð4 ðð85ðð 88 IN23-ON VALUE B"1". ð9/3ð/87

 2ð5 ðð86ðð 88 IN23-OFF VALUE B"ð". ð9/3ð/87

2ð6 ðð87ðð ð5 IN97 PIC 1 INDIC 97. ð9/3ð/87

 2ð7 ðð88ðð 88 IN97-ON VALUE B"1". ð9/3ð/87

 2ð8 ðð89ðð 88 IN97-OFF VALUE B"ð". ð9/3ð/87

2ð9 ðð9ððð ð5 IN98 PIC 1 INDIC 98. ð9/3ð/87

 21ð ðð91ðð 88 IN98-ON VALUE B"1". ð9/3ð/87

 211 ðð92ðð 88 IN98-OFF VALUE B"ð". ð9/3ð/87

212 ðð93ðð ð5 IN99 PIC 1 INDIC 99. ð9/3ð/87

 213 ðð94ðð 88 IN99-ON VALUE B"1". ð9/3ð/87

 214 ðð95ðð 88 IN99-OFF VALUE B"ð". ð9/3ð/87

 215 ðð96ðð ð1 MAJ-MIN. ð9/3ð/87

 216 ðð97ðð ð5 MAJ PIC X(2). ð9/3ð/87

 217 ðð98ðð ð5 MIN PIC X(2). ð9/3ð/87

 218 ðð99ðð ð1 DISPLAY-FEEDBACK. ð9/3ð/87

 219 ð1ðððð ð5 CMD-KEY PIC X(2). ð9/3ð/87

 22ð ð1ð1ðð ð5 FILLER PIC X(1ð). ð9/3ð/87

 221 ð1ð2ðð ð5 RCD-FMT PIC X(1ð). ð9/3ð/87

 ð1ð3ðð\ 11/18/88

222 ð1ð4ðð PROCEDURE DIVISION. ð9/3ð/87

Figure D-10 (Part 5 of 13). Source Program Example — CSDINT

D-24 Intrasystem Communications Programming V4R1

 ð1ð5ðð DECLARATIVES. ð9/3ð/87

 ð1ð6ðð\.2/ 1ð/14/87

 ð1ð7ðð\\ ð3/16/89

 ð1ð8ðð\ \ ð3/16/89

ð1ð9ðð\ AN ERROR ON THE DISPLAY FILE - DSPFIL - MAKES IT INACTIVE AND \ ð3/16/89

ð11ððð\ THE JOB IS ENDED. \ ð3/16/89

 ð111ðð\ \ ð3/16/89

 ð112ðð\\ ð3/16/89

ð113ðð DSP-ERROR SECTION. 1ð/ð5/87

ð114ðð USE AFTER STANDARD ERROR PROCEDURE ON DSPFIL. 1ð/ð5/87

 ð115ðð\ 1ð/ð5/87

 ð116ðð DSPFIL-EXCEPTION. 1ð/ð5/87

223 ð117ðð MOVE "DISPLAY ERROR. JOB TERMINATED" TO ERRMSG. 11/16/88

 224 ð118ðð WRITE PRINTREC. 11/16/88

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 8

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

225 ð119ðð CLOSE INTFIL DSPFIL QPRINT. 11/21/88

 226 ð12ððð STOP RUN. 11/16/88

 ð121ðð\ 1ð/13/87

 ð122ðð\\ ð3/16/89

 ð123ðð\ \ ð3/16/89

ð124ðð\ THIS SECTION HANDLES ERRORS ON THE INTFIL. A PERMANENT SESSION \ ð3/16/89

ð125ðð\ ERROR WILL END THE JOB. \ ð3/16/89

 ð126ðð\ \ ð3/16/89

 ð127ðð\\ ð3/16/89

ð128ðð INT-ERROR SECTION. 11/21/88

ð129ðð USE AFTER STANDARD ERROR PROCEDURE ON INTFIL. 11/21/88

 ð13ððð INTFIL-EXCEPTION. 11/21/88

 ð131ðð\ 1ð/ð5/9ð

ð132ðð\ RECOVERABLE SESSION ERROR. CLOSE ICF FILE. 1ð/ð5/9ð

227 ð133ðð IF MAJ = "83" ð9/3ð/87

228 ð134ðð MOVE MAJ-MIN TO RC ð1/14/88

229 ð135ðð MOVE "PROGRAM STARTED AGAIN DUE TO SESSION ERROR" ð9/3ð/87

 ð136ðð TO ERRMSG ð1/14/88

 23ð ð137ðð WRITE PRINTREC ð9/3ð/87

231 ð138ðð MOVE "1" TO ERR-SW ð9/3ð/87

232 ð139ðð GO TO EXIT-DECLARATIVES. ð9/3ð/87

 ð14ððð\ ð9/3ð/87

ð141ðð\ RECOVERABLE SESSION ERROR. CLOSE ICF FILE. 1ð/ð5/9ð

233 ð142ðð IF MAJ = "ð3" 11/3ð/88

234 ð143ðð MOVE MAJ-MIN TO RC 11/3ð/88

235 ð144ðð MOVE "ERROR IGNORED AND PROGRAM RESTARTED" 11/3ð/88

 ð145ðð TO ERRMSG 11/3ð/88

 236 ð146ðð WRITE PRINTREC 11/3ð/88

237 ð147ðð MOVE "1" TO ERR-SW 11/3ð/88

238 ð148ðð GO TO EXIT-DECLARATIVES. 11/3ð/88

 ð149ðð\ 11/3ð/88

 ð15ððð\\ ð3/16/89

 ð151ðð\ \ ð3/16/89

ð152ðð\ WHEN THERE IS A PERMANENT SESSION ERROR DETECTED, \ ð3/16/89

ð153ðð\ THE MAJOR-MINOR CODE IS PLACED INTO A DATABASE \ 1ð/ð5/9ð

ð154ðð\ FILE AND THE FILE CAN BE PRINTED IN HEX USING COPYFILE. \ ð3/16/89

 ð155ðð\ \ ð3/16/89

 ð156ðð\\ ð3/16/89

 ð157ðð\ ð9/3ð/87

 ð158ðð GETFBA. ð9/3ð/87

239 ð159ðð MOVE MAJ-MIN TO RC. ð1/14/88

24ð ð16ððð MOVE "PROGRAM TERMINATED DUE TO ERROR IN INTFIL FILE" 11/21/88

 ð161ðð TO ERRMSG. ð1/14/88

 241 ð162ðð WRITE PRINTREC. ð9/3ð/87

242 ð163ðð CLOSE INTFIL DSPFIL QPRINT. 11/21/88

 243 ð164ðð STOP RUN. ð9/3ð/87

 ð165ðð\ 1ð/ð2/87

 ð166ðð EXIT-DECLARATIVES. ð9/3ð/87

 ð167ðð EXIT. ð3/15/89

 ð168ðð\ ð9/3ð/87

244 ð169ðð END DECLARATIVES. ð9/3ð/87

 ð17ððð\ 11/18/88

 ð171ðð START-PROGRAM SECTION. ð9/3ð/87

 ð172ðð\ ð9/3ð/87

 ð173ðð START-PROGRAM-PARAGRAPH. ð9/3ð/87

Figure D-10 (Part 6 of 13). Source Program Example — CSDINT

 Appendix D. Program Examples D-25

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 9

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ð174ðð\.3/ ð9/3ð/87

 245 ð175ðð OPEN I-O INTFIL DSPFIL 11/21/88

 ð176ðð OUTPUT QPRINT. ð9/3ð/87

246 ð177ðð MOVE ZEROS TO INTF-INDIC-AREA. 11/21/88

 ð178ðð\ ð9/3ð/87

 ð179ðð\\ ð9/3ð/87

 ð18ððð\ \ ð3/16/89

ð181ðð\ THE FOLLOWING TEST IS TO ATTEMPT RECOVERY IF AN ERROR \ ð9/3ð/87

ð182ðð\ OCCURS WHEN OPENING THE ICF FILE. \ 1ð/ð5/9ð

 ð183ðð\ \ ð3/16/89

 ð184ðð\\ ð9/3ð/87

 ð185ðð\.4/ ð9/3ð/87

247 ð186ðð IF ERR-SW = "1" ð9/3ð/87

248 ð187ðð THEN IF OPEN-COUNT IS = 9 ð9/3ð/87

249 ð188ðð THEN PERFORM DETACH-ROUTINE THRU DETACH-EXIT ð9/3ð/87

25ð ð189ðð GO TO END-JOB ð9/3ð/87

 ð19ððð ELSE ð9/3ð/87

251 ð191ðð ADD 1 TO OPEN-COUNT ð9/3ð/87

 252 ð192ðð PERFORM ERROR-RECOVERY ð9/3ð/87

253 ð193ðð GO TO START-PROGRAM-PARAGRAPH ð9/3ð/87

 ð194ðð ELSE ð9/3ð/87

254 ð195ðð MOVE ð TO OPEN-COUNT. ð9/3ð/87

 ð196ðð\ ð9/3ð/87

 ð197ðð\\ ð9/3ð/87

 ð198ðð\ \ ð9/3ð/87

ð199ðð\ THE DISPLAY DEVICE IS IMPLICITLY ACQUIRED WHEN THE \ 1ð/15/87

ð2ðððð\ FILE IS OPENED. \ ð9/3ð/87

 ð2ð1ðð\ \ ð9/3ð/87

ð2ð2ðð\ ALL OF THE ICF PROGRAM DEVICES ARE EXPLICITLY ACQUIRED. \ 1ð/ð5/9ð

 ð2ð3ðð\ \ ð9/3ð/87

ð2ð4ðð\ THE TARGET PROGRAM IS EVOKED TWICE, ONCE FOR EACH SESSION \ 1ð/ð5/9ð

ð2ð5ðð\ ACQUIRED, TO START TWO TRANSACTIONS. \ 1ð/ð5/9ð

 ð2ð6ðð\ \ ð9/3ð/87

ð2ð7ðð\ THE MAIN INQUIRY MENU (CIMENU) IS WRITTEN TO THE USER'S \ ð9/3ð/87

 ð2ð8ðð\ DISPLAY. \ ð9/3ð/87

 ð2ð9ðð\ \ ð9/3ð/87

ð21ððð\ EVOKE TARGET PROGRAM "CTDINTCL" IN LIBRARY INTLIB. \ 1ð/ð5/9ð

 ð211ðð\ \ ð3/16/89

 ð212ðð\\ ð9/3ð/87

 ð213ðð\.5/ ð9/3ð/87

255 ð214ðð ACQUIRE "ICFðð " FOR INTFIL. 11/21/88

256 ð215ðð ACQUIRE "ICFð1 " FOR INTFIL. 11/21/88

257 ð216ðð PERFORM EVOKE-ROUTINE THRU EVOKE-EXIT. ð9/3ð/87

 ð217ðð\ ð9/3ð/87

258 ð218ðð WRITE DSPREC FORMAT IS "CIMENU" ð9/3ð/87

 ð219ðð INDICATORS ARE DSPF-INDIC-AREA. ð9/3ð/87

 ð22ððð\ 1ð/14/87

 ð221ðð\\ ð9/3ð/87

 ð222ðð\ \ ð9/3ð/87

ð223ðð\ DETERMINE USER'S REQUEST \ ð9/3ð/87

 ð224ðð\ \ ð9/3ð/87

ð225ðð\ A READ TO THE DISPLAY DEVICE IS ISSUED TO RECEIVE \ 1ð/15/87

ð226ðð\ THE USER'S REQUEST. THE TYPE OF REQUEST MADE IS BASED ON THE \ 1ð/13/87

ð227ðð\ DISPLAY FORMAT CURRENTLY ON THE SCREEN. THE RECORD FORMAT \ 1ð/13/87

ð228ðð\ NAME IS EXTRACTED FROM THE I/O FEEDBACK AREA FOR THE DISPLAY \ 1ð/13/87

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 1ð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

ð229ðð\ FILE AND USED TO DETERMINE WHAT ACTION SHOULD BE TAKEN NEXT. \ 1ð/13/87

 ð23ððð\ \ ð9/3ð/87

 ð231ðð\\ ð9/3ð/87

Figure D-10 (Part 7 of 13). Source Program Example — CSDINT

D-26 Intrasystem Communications Programming V4R1

 ð232ðð\.6/ ð9/3ð/87

 ð233ðð READRQ. ð9/3ð/87

259 ð234ðð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA. ð9/3ð/87

26ð ð235ðð IF RCD-FMT = "CIMENU" ð9/3ð/87

261 ð236ðð PERFORM MENU-ROUTINE THRU MENU-EXIT ð9/3ð/87

262 ð237ðð GO TO READRQ. ð9/3ð/87

263 ð238ðð IF RCD-FMT = "ITMMNU" ð9/3ð/87

264 ð239ðð PERFORM ITMIN-ROUTINE THRU ITMIN-EXIT ð9/3ð/87

265 ð24ððð GO TO READRQ. ð9/3ð/87

266 ð241ðð IF RCD-FMT = "ITMSC2" ð9/3ð/87

267 ð242ðð PERFORM ITMRTN-ROUTINE THRU ITMRTN-EXIT ð9/3ð/87

268 ð243ðð GO TO READRQ. ð9/3ð/87

269 ð244ðð IF RCD-FMT = "ITMSC3" ð9/3ð/87

27ð ð245ðð PERFORM ITMRTN-ROUTINE THRU ITMRTN-EXIT ð9/3ð/87

271 ð246ðð GO TO READRQ. ð9/3ð/87

272 ð247ðð IF RCD-FMT = "DTLMNU" ð9/3ð/87

273 ð248ðð PERFORM DTLIN-ROUTINE THRU DTLIN-EXIT ð9/3ð/87

274 ð249ðð GO TO READRQ. ð9/3ð/87

275 ð25ððð IF RCD-FMT = "DTLSCR" 1ð/12/87

276 ð251ðð PERFORM DTLRTN-ROUTINE THRU DTLRTN-EXIT 1ð/12/87

277 ð252ðð GO TO READRQ. 1ð/12/87

278 ð253ðð WRITE DSPREC FORMAT IS "CIMENU". ð9/3ð/87

 ð254ðð\ 11/18/88

279 ð255ðð GO TO READRQ. ð9/3ð/87

 ð256ðð\ 11/18/88

 ð257ðð\\ ð9/3ð/87

 ð258ðð\ \ ð9/3ð/87

 ð259ðð\ MAIN MENU \ ð9/3ð/87

 ð26ððð\ \ ð9/3ð/87

ð261ðð\ THE MAIN MENU IS READ TO DETERMINE THE REQUEST ENTERED \ 1ð/12/87

ð262ðð\ BY THE USER. IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM \ 1ð/12/87

ð263ðð\ IS ENDED. IF OPTION = 1, AN ITEM INQUIRY MENU IS WRITTEN TO \ 1ð/12/87

ð264ðð\ TO SCREEN. IF OPTION = 2, A CUSTOMER INQUIRY MENU IS \ 1ð/12/87

ð265ðð\ WRITTEN TO THE SCREEN. \ 1ð/12/87

 ð266ðð\ \ ð9/3ð/87

 ð267ðð\\ ð9/3ð/87

 ð268ðð\.7/ ð9/3ð/87

 ð269ðð MENU-ROUTINE. ð9/3ð/87

28ð ð27ððð IF CMD-KEY = "ð1" ð9/3ð/87

281 ð271ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT ð9/3ð/87

282 ð272ðð GO TO END-JOB. ð9/3ð/87

283 ð273ðð IF OPTION = "1" ð9/3ð/87

284 ð274ðð WRITE DSPREC FORMAT IS "ITMMNU" ð9/3ð/87

 ð275ðð ELSE ð9/3ð/87

285 ð276ðð WRITE DSPREC FORMAT IS "DTLMNU". ð9/3ð/87

 ð277ðð MENU-EXIT. ð9/3ð/87

 ð278ðð EXIT. ð9/3ð/87

 ð279ðð\ 11/18/88

 ð28ððð\\ ð9/3ð/87

 ð281ðð\ \ ð9/3ð/87

 ð282ðð\ ITEM INQUIRY \ ð9/3ð/87

 ð283ðð\ \ ð9/3ð/87

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 11

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

ð284ðð\ THE ITEM NUMBER REQUESTED BY THE USER ON THE ITEM INQUIRY \ ð9/3ð/87

ð285ðð\ SCREEN IS CHECKED. THIS IS DETERMINED BY THE \ ð9/3ð/87

ð286ðð\ DISPLAY RECORD FORMAT BEING PROCESSED - IN THIS CASE ITMMNU. \ ð9/3ð/87

 ð287ðð\ \ ð3/16/89

ð288ðð\ IF CMD KEY 1 IS PRESSED, THE PROGRAM IS ENDED. IF CMD KEY 2 \ 1ð/13/87

ð289ðð\ IS PRESSED, THE ITEM INQUIRY REQUEST IS CANCELED, AND THE \ ð9/3ð/87

ð29ððð\ MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. \ ð9/3ð/87

 ð291ðð\ \ ð9/3ð/87

ð292ðð\ IF AN ITEM NUMBER IS ENTERED, A ITEM INQUIRY REQUEST IS \ ð9/3ð/87

ð293ðð\ SENT TO THE APPROPRIATE TARGET PROGRAM. \ 1ð/ð5/9ð

 ð294ðð\ \ ð9/3ð/87

ð295ðð\ A CHECK IS MADE FOR THREE CONDITIONS FOLLOWING THE READ. \ 1ð/14/87

ð296ðð\ 1) THE TARGET PROGRAM TIMED OUT, 2) NO DATA RECEIVED, AND \ 1ð/ð5/9ð

ð297ðð\ 3) DATA RETURNED IN AN UNEXPECTED RECORD FORMAT. \ 1ð/14/87

 ð298ðð\ \ 1ð/14/87

ð299ðð\ IF THE TIMER RUNS OUT (MAJ-MIN = ð31ð) A MESSAGE \ 11/21/88

ð3ðððð\ IS WRITTEN TO THE SCREEN, ASKING TO TRY AGAIN OR END THE \ 1ð/14/87

 ð3ð1ðð\ PROGRAM. \ 1ð/14/87

 ð3ð2ðð\ \ 11/21/88

Figure D-10 (Part 8 of 13). Source Program Example — CSDINT

 Appendix D. Program Examples D-27

ð3ð3ðð\ IF A RECEIVE FAIL INDICATION IS RECEIVED (IN-25 FLAG ON), \ 11/21/88

ð3ð4ðð\ AFTER THE READ OPERATION TO THE PROGRAM DEVICE, \ 11/21/88

ð3ð5ðð\ A FRESH ITEM MENU (ITMMNU) IS WRITTEN \ 11/21/88

ð3ð6ðð\ TO THE DISPLAY DEVICE. \ 11/21/88

 ð3ð7ðð\ \ 1ð/14/87

ð3ð8ðð\ IF NO DATA IS RECEIVED OR IF RECEIVE FAIL INDICATION \ ð3/16/89

ð3ð9ðð\ IS RECEIVED (IN-25 FLAG IS ON), AFTER THE READ OPERATION \ 11/21/88

ð31ððð\ TO THE PROGRAM DEVICE, THE REQUEST IS SENT AGAIN \ 1ð/ð5/9ð

ð311ðð\ AND THE READ OPERATION IS ISSUED TO THE PROGRAM DEVICE. \ 1ð/ð5/9ð

 ð312ðð\ \ 1ð/14/87

ð313ðð\ IF THE RECORD RETURNS WITH THE WRONG RECORD FORMAT, THE \ 1ð/14/87

ð314ðð\ PROGRAM WILL GO TO EXIT-FORMAT-ERR ROUTINE. \ 1ð/14/87

 ð315ðð\ \ 1ð/14/87

 ð316ðð\\ ð9/3ð/87

 ð317ðð\.8/ ð9/3ð/87

 286 ð318ðð ITMIN-ROUTINE. ð9/3ð/87

287 ð319ðð IF CMD-KEY = "ð1" ð9/3ð/87

288 ð32ððð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/12/87

289 ð321ðð GO TO END-JOB. 1ð/12/87

29ð ð322ðð IF CMD-KEY = "ð2" 1ð/12/87

291 ð323ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/12/87

292 ð324ðð GO TO ITMIN-EXIT. 1ð/12/87

 ð325ðð XITMIN. 11/18/88

293 ð326ðð MOVE CORR ITMMNU-I TO ITMREQ-O. 11/18/88

\ \\ CORRESPONDING items for statement 293:

 \ \\ ITEMNO

\ \\ End of CORRESPONDING items for statement 293

294 ð327ðð MOVE "ICFð1 " TO PGM-DEV-NME. ð9/3ð/87

295 ð328ðð MOVE ZEROS TO INTF-INDIC-AREA. 11/21/88

296 ð329ðð WRITE INTREC FORMAT IS "ITMREQ" 11/21/88

 ð33ððð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

 ð331ðð TRY-AGAIN. 1ð/ð1/87

297 ð332ðð MOVE "ICFð1 " TO PGM-DEV-NME. 1ð/ð8/9ð

298 ð333ðð MOVE ZEROS TO INTF-INDIC-AREA. 11/28/88

299 ð334ðð WRITE INTREC FORMAT IS "TIMER" 11/28/88

 ð335ðð TERMINAL IS PGM-DEV-NME. 11/28/88

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 12

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 3ðð ð336ðð READ INTFIL 1ð/ð5/9ð

 ð337ðð INDICATORS ARE INTF-INDIC-AREA. 1ð/ð5/9ð

3ð1 ð338ðð IF MAJ-MIN = "ð31ð" 1ð/ð1/87

3ð2 ð339ðð WRITE DSPREC FORMAT IS "TIMOUT" ð9/3ð/87

3ð3 ð34ððð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA ð9/3ð/87

3ð4 ð341ðð IF TIMRSP = "1" GO TO TRY-AGAIN END-IF ð1/21/88

3ð6 ð342ðð IF TIMRSP = "2" GO TO END-JOB END-IF. ð1/21/88

 3ð8 ð343ðð IF IN25-ON 11/16/88

3ð9 ð344ðð WRITE DSPREC FORMAT IS "ITMMNU" 11/16/88

31ð ð345ðð GO TO ITMIN-EXIT. 11/16/88

311 ð346ðð IF RCD-FMT-NME IS NOT EQUAL "ITMRSP" GO TO EXIT-FORMAT-ERR. 11/28/88

313 ð347ðð PERFORM ITMOUT-ROUTINE THRU ITMOUT-EXIT. ð9/3ð/87

 ð348ðð ITMIN-EXIT. ð9/3ð/87

 ð349ðð EXIT. ð9/3ð/87

 ð35ððð\ 11/18/88

 ð351ðð\\ ð9/3ð/87

 ð352ðð\ \ ð9/3ð/87

ð353ðð\ PROCESS ITEM INFORMATION \ ð9/3ð/87

 ð354ðð\ \ ð9/3ð/87

ð355ðð\ THE ITEM RECORD RECEIVED FROM THE TARGET PROGRAM AND THE \ ð9/3ð/87

ð356ðð\ INFORMATION ABOUT THE ITEM IS PROCESSED AND DISPLAYED. \ ð9/3ð/87

ð357ðð\ IF ITEMNO IS ð OR LESS, IT IS AN INVALID REQUEST AND A FRESH \ ð9/3ð/87

ð358ðð\ ITEM MENU IS WRITTEN TO THE SCREEN. IF THE REQUEST IS \ ð9/3ð/87

ð359ðð\ VALID, VALUES ARE CALCULATED BASED ON THE INFORMATION \ ð9/3ð/87

 ð36ððð\ RECEIVED. \ ð9/3ð/87

 ð361ðð\ \ ð9/3ð/87

 ð362ðð\\ ð9/3ð/87

Figure D-10 (Part 9 of 13). Source Program Example — CSDINT

D-28 Intrasystem Communications Programming V4R1

 ð363ðð\.9/ ð9/3ð/87

 314 ð364ðð ITMOUT-ROUTINE. ð9/3ð/87

315 ð365ðð MOVE DESC OF ITMRSP-I TO DSC OF ITMSC2-O. 11/18/88

316 ð366ðð MOVE QTYLST OF ITMRSP-I TO QAVAIL OF ITMSC2-O. 11/18/88

317 ð367ðð MOVE QTYOO OF ITMRSP-I TO QTYO OF ITMSC2-O. 11/18/88

318 ð368ðð MOVE QTYOH OF ITMRSP-I TO QTYH OF ITMSC2-O. 11/18/88

319 ð369ðð MOVE QTYBO OF ITMRSP-I TO QTYB OF ITMSC2-O. 11/18/88

32ð ð37ððð MOVE UNITQ OF ITMRSP-I TO UNT OF ITMSC2-O. 11/18/88

321 ð371ðð MOVE PRð1 OF ITMRSP-I TO PR1 OF ITMSC2-O. 11/18/88

322 ð372ðð MOVE PRð5 OF ITMRSP-I TO PR5 OF ITMSC2-O. 11/18/88

323 ð373ðð MOVE UFRT OF ITMRSP-I TO UFR OF ITMSC2-O. 11/18/88

324 ð374ðð WRITE DSPREC FORMAT IS "ITMSC2" ð9/3ð/87

 ð375ðð INDICATORS ARE DSPF-INDIC-AREA. ð9/3ð/87

 ð376ðð ITMOUT-EXIT. ð9/3ð/87

 ð377ðð EXIT. ð9/3ð/87

 ð378ðð\ 1ð/14/87

 ð379ðð\\\ ð9/3ð/87

 ð38ððð\ \ ð9/3ð/87

ð381ðð\ ADDITIONAL ITEM INFORMATION \ ð9/3ð/87

 ð382ðð\ \ ð9/3ð/87

ð383ðð\ ADDITIONAL ITEM INFORMATION IS PROCESSED AND THE RESULT \ ð9/3ð/87

ð384ðð\ DISPLAYED ON THE SCREEN WHEN A RESPONSE IS READ FROM THE \ 1ð/13/87

ð385ðð\ DISPLAY STATION WITH AN ITEM SCREEN RECORD FORMAT. \ 1ð/14/87

 ð386ðð\ \ ð3/16/89

ð387ðð\ IF CMD KEY 1 IS PRESSED, THE PROGRAM IS ENDED. IF CMD KEY 2 \ 1ð/14/87

ð388ðð\ IS PRESSED, THE ITEM INQUIRY IS ENDED, AND THE MAIN MENU \ 1ð/14/87

ð389ðð\ (CIMENU) IS WRITTEN TO THE SCREEN. IF CMD KEY 3 IS PRESSED, \ 1ð/14/87

ð39ððð\ THE ITEM INQUIRY MENU IS WRITTEN TO THE SCREEN. BY PRESSING \ 1ð/14/87

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 13

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

ð391ðð\ ENTER WHEN SCREEN 2 IS DISPLAYED, MORE INFORMATION (PROFIT- \ 1ð/14/87

ð392ðð\ LOSS) IS WRITTEN TO THE SCREEN. IF SCREEN 3 IS DISPLAYED, \ 1ð/14/87

ð393ðð\ PRESSING ENTER WILL CAUSE THE ITEM INQUIRY MENU TO BE \ 1ð/14/87

ð394ðð\ WRITTEN TO THE SCREEN. \ ð3/16/89

 ð395ðð\ \ ð3/16/89

 ð396ðð\\\ ð9/3ð/87

 ð397ðð\.1ð/ ð9/3ð/87

 325 ð398ðð ITMRTN-ROUTINE. ð9/3ð/87

326 ð399ðð IF CMD-KEY = "ð1" ð9/3ð/87

327 ð4ðððð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/12/87

328 ð4ð1ðð GO TO END-JOB. 1ð/12/87

329 ð4ð2ðð IF CMD-KEY = "ð2" ð9/3ð/87

33ð ð4ð3ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/12/87

331 ð4ð4ðð GO TO ITMRTN-EXIT. 1ð/12/87

332 ð4ð5ðð IF CMD-KEY = "ð3" ð9/3ð/87

333 ð4ð6ðð WRITE DSPREC FORMAT IS "ITMMNU" 1ð/12/87

334 ð4ð7ðð GO TO ITMRTN-EXIT. 1ð/12/87

335 ð4ð8ðð IF RCD-FMT = "ITMSC2" 1ð/12/87

336 ð4ð9ðð PERFORM PROFIT-LOSS THRU PROFIT-LOSS-EXIT 1ð/12/87

337 ð41ððð WRITE DSPREC FORMAT IS "ITMSC3" 1ð/12/87

338 ð411ðð GO TO ITMRTN-EXIT. 1ð/12/87

339 ð412ðð WRITE DSPREC FORMAT IS "ITMMNU". 1ð/12/87

 ð413ðð ITMRTN-EXIT. ð9/3ð/87

 ð414ðð EXIT. ð9/3ð/87

 ð415ðð\ ð9/3ð/87

 ð416ðð\\\ ð9/3ð/87

 ð417ðð\ \ ð9/3ð/87

ð418ðð\ PROFIT AND LOSS FIGURES ARE CALCULATED FOR THE ITEM NUMBER \ 1ð/13/87

ð419ðð\ REQUESTED. THESE ARE USED IN SCREEN TWO OF THE ITEM. \ 1ð/13/87

 ð42ððð\ \ ð9/3ð/87

 ð421ðð\\\ ð9/3ð/87

 ð422ðð\.11/ ð3/17/89

 34ð ð423ðð PROFIT-LOSS. ð9/3ð/87

 ð424ðð\ ð3/17/89

341 ð425ðð SUBTRACT SLSTM OF ITMRSP-I FROM 11/18/88

ð426ðð CSTTM OF ITMRSP-I GIVING PROFM. 11/18/88

342 ð427ðð MULTIPLY PROFM BY 1ðð GIVING PROFM. ð9/3ð/87

343 ð428ðð IF SLSTM OF ITMRSP-I GREATER THAN ð 11/18/88

344 ð429ðð DIVIDE PROFM BY SLSTM OF ITMRSP-I GIVING PROFM. 11/18/88

345 ð43ððð MULTIPLY QTYLST OF ITMRSP-I BY 11/18/88

ð431ðð PRð1 OF ITMRSP-I GIVING LOSTS. 11/18/88

346 ð432ðð MOVE SLSTM OF ITMRSP-I TO SLSM OF ITMSC3-O. 11/18/88

347 ð433ðð MOVE SLSTY OF ITMRSP-I TO SLSY OF ITMSC3-O. 11/18/88

348 ð434ðð MOVE CSTTM OF ITMRSP-I TO CSTM OF ITMSC3-O. 11/18/88

349 ð435ðð MOVE PROFM TO PROFIT OF ITMSC3-O. 11/18/88

35ð ð436ðð MOVE CSTTY OF ITMRSP-I TO CSTY OF ITMSC3-O. 11/18/88

 ð437ðð PROFIT-LOSS-EXIT. ð9/3ð/87

 ð438ðð EXIT. ð9/3ð/87

 ð439ðð\ 11/18/88

Figure D-10 (Part 10 of 13). Source Program Example — CSDINT

 Appendix D. Program Examples D-29

 ð44ððð\\ ð9/3ð/87

 ð441ðð\ \ ð9/3ð/87

 ð442ðð\ CUSTOMER INQUIRY \ ð9/3ð/87

 ð443ðð\ \ ð9/3ð/87

ð444ðð\ THE REQUEST FROM THE CUSTOMER INQUIRY MENU IS PROCESSED. \ ð9/3ð/87

ð445ðð\ IF CMD KEY 1 IS PRESSED, THE PROGRAM IS ENDED. IF CMD KEY 2 \ 1ð/13/87

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 14

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

ð446ðð\ IS PRESSED, THE MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. \ 1ð/14/87

 ð447ðð\ \ ð9/3ð/87

ð448ðð\ IF A CUSTOMER NUMBER IS ENTERED, THE CUSTOMER INQUIRY \ ð9/3ð/87

ð449ðð\ REQUEST IS SENT, THEN DTOUT-ROUTINE THRU DTOUT-EXIT EXECUTE. \ ð3/16/89

 ð45ððð\ \ ð9/3ð/87

 ð451ðð\\ ð9/3ð/87

 ð452ðð\.12/ ð9/3ð/87

 351 ð453ðð DTLIN-ROUTINE. ð9/3ð/87

352 ð454ðð IF CMD-KEY = "ð1" ð9/3ð/87

353 ð455ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/12/87

354 ð456ðð GO TO END-JOB. 1ð/12/87

355 ð457ðð IF CMD-KEY = "ð2" 1ð/12/87

356 ð458ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/12/87

357 ð459ðð GO TO DTLIN-EXIT. 1ð/12/87

 ð46ððð EVDTL. ð9/3ð/87

358 ð461ðð MOVE "ICFðð " TO PGM-DEV-NME. ð9/3ð/87

359 ð462ðð MOVE CORR DTLMNU-I TO DTLREQ-O. 11/18/88

\ \\ CORRESPONDING items for statement 359:

 \ \\ CUSTNO

\ \\ End of CORRESPONDING items for statement 359

36ð ð464ðð WRITE INTREC FORMAT IS "DTLREQ" 11/21/88

 ð465ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

361 ð466ðð PERFORM CUSTOMER-DETAIL THRU CUSTOMER-DETAIL-EXIT. 1ð/ð8/9ð

 ð467ðð DTLIN-EXIT. ð9/3ð/87

 ð468ðð EXIT. ð9/3ð/87

 ð49ððð\ 1ð/14/87

 ð491ðð\\\ 1ð/12/87

 ð492ðð\ \ ð3/16/89

ð493ðð\ THIS ROUTINE HANDLES THE USER'S REQUEST FOLLOWING THE \ ð3/16/89

ð494ðð\ THE DISPLAY OF THE CUSTOMER INFORMATION. CMD KEY 1 WILL \ ð3/16/89

ð495ðð\ EXIT THE JOB, CMD KEY 2 WILL DISPLAY THE MAIN MENU, AND \ ð3/16/89

ð496ðð\ "ENTER" WILL BRING UP THE CUSTOMER INQUIRY MENU. \ ð3/16/89

 ð497ðð\ \ ð3/16/89

 ð498ðð\\\ 1ð/12/87

 ð499ðð\.13/ 1ð/ð8/9ð

 362 ð5ðððð DTLRTN-ROUTINE. 1ð/12/87

363 ð5ð1ðð IF CMD-KEY = "ð1" 1ð/12/87

364 ð5ð2ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/12/87

365 ð5ð3ðð GO TO END-JOB. 1ð/12/87

366 ð5ð4ðð IF CMD-KEY = "ð2" 1ð/12/87

367 ð5ð5ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/12/87

368 ð5ð6ðð GO TO DTLRTN-EXIT. 1ð/12/87

369 ð5ð7ðð WRITE DSPREC FORMAT IS "DTLMNU". 1ð/12/87

 ð5ð8ðð DTLRTN-EXIT. 1ð/12/87

 ð5ð9ðð EXIT. 1ð/12/87

 ð51ððð\ 1ð/12/87

 ð511ðð\\ ð3/16/89

 ð512ðð\ \ ð3/16/89

ð513ðð\ THE READ OPERATION TO THE PROGRAM DEVICE IS ISSUED. \ ð3/16/89

ð514ðð\ A CHECK IS MADE FOR THREE CONDITIONS FOLLOWING THE READ. \ ð3/16/89

ð515ðð\ 1) THE TARGET PROGRAM TIMED OUT, 2) NO DATA RECEIVED, AND \ 1ð/ð5/9ð

ð516ðð\ 3) DATA RETURNED IN AN UNEXPECTED RECORD FORMAT. \ ð3/16/89

 ð517ðð\ \ ð3/16/89

ð518ðð\ IF THE TARGET PROGRAM TIMES OUT (MAJ-MIN = ð31ð), A MESSAGE \ ð3/16/89

ð519ðð\ IS WRITTEN TO THE SCREEN, ASKING TO TRY AGAIN OR END THE \ ð3/16/89

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 15

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ð52ððð\ PROGRAM. \ ð3/16/89

 ð521ðð\ \ ð3/16/89

ð522ðð\ IF A RECEIVE FAIL INDICATION IS RECEIVED (IN-25 FLAG ON), \ ð3/16/89

ð523ðð\ AFTER THE READ OPERATION TO THE PROGRAM DEVICE, \ ð3/16/89

ð524ðð\ A FRESH CUSTOMER MENU (CIMENU) IS WRITTEN \ ð3/16/89

ð525ðð\ TO THE DISPLAY DEVICE. \ ð3/16/89

 ð526ðð\ \ ð3/16/89

ð527ðð\ IF NO DATA IS RECEIVED AFTER THE READ OPERATION TO THE \ ð3/16/89

ð528ðð\ PROGRAM DEVICE (MAJ-MIN = ð3__) THE REQUEST IS SENT AGAIN \ 1ð/ð5/9ð

ð529ðð\ TO THE TARGET PROGRAM AND THE READ OPERATION IS ISSUED TO \ ð3/16/89

ð53ððð\ THE ICF PROGRAM DEVICE. \ 1ð/ð5/9ð

 ð531ðð\ \ ð3/16/89

ð532ðð\ IF THE RECORD RETURNS WITH THE WRONG RECORD FORMAT, THE \ ð3/16/89

ð533ðð\ PROGRAM WILL GO TO EXIT-FORMAT-ERR ROUTINE. \ ð3/16/89

 ð534ðð\ \ ð3/16/89

 ð535ðð\\ ð3/16/89

Figure D-10 (Part 11 of 13). Source Program Example — CSDINT

D-30 Intrasystem Communications Programming V4R1

 ð536ðð\ ð3/17/89

 ð537ðð\.14/ 1ð/ð8/9ð

 37ð ð538ðð CUSTOMER-DETAIL. ð9/3ð/87

371 ð539ðð MOVE ZEROS TO INTF-INDIC-AREA. 11/21/88

372 ð54ððð MOVE "ICFðð " TO PGM-DEV-NME. 1ð/ð8/9ð

373 ð541ðð WRITE INTREC FORMAT IS "TIMER" 11/28/88

 ð542ðð TERMINAL IS PGM-DEV-NME. 11/28/88

 374 ð543ðð READ INTFIL 1ð/ð5/9ð

 ð544ðð INDICATORS ARE INTF-INDIC-AREA. 1ð/ð5/9ð

375 ð545ðð IF MAJ-MIN = "ð31ð" 1ð/ð1/87

376 ð546ðð WRITE DSPREC FORMAT IS "TIMOUT" ð9/3ð/87

377 ð547ðð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA ð9/3ð/87

378 ð548ðð IF TIMRSP = "1" GO TO CUSTOMER-DETAIL END-IF ð1/21/88

38ð ð549ðð IF TIMRSP = "2" GO TO END-JOB END-IF. ð1/21/88

 382 ð55ððð IF IN25-ON 11/16/88

383 ð551ðð WRITE DSPREC FORMAT IS "CIMENU" 11/16/88

384 ð552ðð GO TO CUSTOMER-DETAIL-EXIT. 11/16/88

385 ð553ðð IF MAJ = "ð3" ð9/3ð/87

386 ð554ðð MOVE ZEROS TO INTF-INDIC-AREA 11/21/88

387 ð555ðð WRITE INTREC FORMAT IS "DTLREQ" 11/21/88

ð556ðð TERMINAL IS PGM-DEV-NME ð9/3ð/87

388 ð557ðð GO TO CUSTOMER-DETAIL. ð9/3ð/87

389 ð558ðð MOVE CUSTNO OF DTLRSP-I TO CUSTN OF DTLSCR-O. 11/18/88

39ð ð559ðð MOVE DNAME OF DTLRSP-I TO CNAME OF DTLSCR-O. ð3/15/89

391 ð56ððð MOVE DLSTOR OF DTLRSP-I TO DLSTR OF DTLSCR-O. 11/18/88

392 ð561ðð MOVE DSLSTM OF DTLRSP-I TO DSLSM OF DTLSCR-O. 11/18/88

393 ð562ðð MOVE DSPMð1 OF DTLRSP-I TO DSPM1 OF DTLSCR-O. 11/18/88

394 ð563ðð MOVE DSPMð2 OF DTLRSP-I TO DSPM2 OF DTLSCR-O. 11/18/88

395 ð564ðð MOVE DSTTYD OF DTLRSP-I TO DSTYD OF DTLSCR-O. 11/18/88

396 ð565ðð MOVE IDEPT OF DTLRSP-I TO DEPT OF DTLSCR-O. 11/18/88

397 ð566ðð WRITE DSPREC FORMAT IS "DTLSCR". 1ð/12/87

 ð567ðð CUSTOMER-DETAIL-EXIT. ð9/3ð/87

 ð568ðð EXIT. ð9/3ð/87

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 16

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ð569ðð/ ð9/3ð/87

 ð57ððð\\ ð3/16/89

 ð571ðð\ \ ð3/16/89

ð572ðð\ THE EVOKE-ROUTINE IS CALLED TO EVOKE THE TARGET PROGRAM. \ ð3/16/89

ð573ðð\ THE SAME TARGET PROGRAM (INTLIB/CTDINTCL) IS EVOKED TWICE, \ ð3/16/89

ð574ðð\ CREATING TWO DIFFERENT JOBS. THE PROGRAM DEVICE IS USED TO \ ð3/16/89

 ð575ðð\ IDENTIFY THEM. \ ð3/16/89

 ð576ðð\ \ ð3/16/89

 ð577ðð\\ ð3/16/89

 ð578ðð\ ð3/17/89

 ð579ðð\.15/ 1ð/ð8/9ð

 398 ð58ððð EVOKE-ROUTINE. ð9/3ð/87

399 ð581ðð MOVE "CTDINTCL" TO PGMID OF EVKREQ-O. 11/18/88

4ðð ð582ðð MOVE "INTLIB" TO LIB OF EVKREQ-O. ð3/16/89

4ð1 ð583ðð MOVE "ICFðð " TO PGM-DEV-NME ð9/3ð/87

4ð2 ð584ðð WRITE INTREC FORMAT IS "EVKREQ" 11/21/88

ð585ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

4ð3 ð586ðð MOVE "ICFð1 " TO PGM-DEV-NME ð9/3ð/87

4ð4 ð587ðð WRITE INTREC FORMAT IS "EVKREQ" 11/21/88

ð588ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

 ð589ðð EVOKE-EXIT. ð9/3ð/87

 ð59ððð EXIT. ð9/3ð/87

 ð591ðð\ ð9/3ð/87

 ð592ðð\\ ð3/16/89

 ð593ðð\ \ ð3/16/89

ð594ðð\ THE TRANSACTION AND SESSION ARE ENDED WITH EACH OF THE \ ð3/16/89

 ð595ðð\ TARGET PROGRAMS. \ ð3/16/89

 ð596ðð\ \ ð3/16/89

 ð597ðð\\ ð3/16/89

 ð598ðð\.16/ 1ð/ð8/9ð

 4ð5 ð599ðð ERROR-RECOVERY. ð9/3ð/87

4ð6 ð6ðððð PERFORM DETACH-ROUTINE THRU DETACH-EXIT. ð9/3ð/87

4ð7 ð6ð1ðð CLOSE INTFIL DSPFIL 11/21/88

 ð6ð2ðð QPRINT. ð9/3ð/87

4ð8 ð6ð3ðð MOVE "ð" TO ERR-SW. ð9/3ð/87

 ð6ð4ðð ERROR-RECOVERY-EXIT. ð9/3ð/87

 ð6ð5ðð EXIT. ð9/3ð/87

 ð6ð6ðð\\ ð3/16/89

 ð6ð7ðð\ \ ð3/16/89

ð6ð8ðð\ EXIT-FORMAT-ERR IS PERFORMED WHEN A READ TO INTFIL RETURNS WITH \ ð3/16/89

ð6ð9ðð\ AN UNEXPECTED RCD-FMT-NME IN THE I-O-FEEDBACK AREA FOR INTFIL. \ ð3/16/89

ð61ððð\ AN ERROR MESSAGE IS PRINTED AND THE PROGRAM ENDS. \ ð3/16/89

 ð611ðð\ \ ð3/16/89

 ð612ðð\\ ð3/16/89

Figure D-10 (Part 12 of 13). Source Program Example — CSDINT

 Appendix D. Program Examples D-31

 ð613ðð\.17/ 1ð/ð8/9ð

 4ð9 ð614ðð EXIT-FORMAT-ERR. 1ð/ð1/87

41ð ð615ðð MOVE MAJ-MIN TO RC. ð1/14/88

411 ð616ðð MOVE "RECORD FORMAT IS INCORRECT ON READ " 1ð/ð1/87

 ð617ðð TO ERRMSG. ð1/14/88

 412 ð618ðð WRITE PRINTREC. 1ð/ð1/87

413 ð619ðð CLOSE INTFIL DSPFIL QPRINT. 11/21/88

 414 ð62ððð STOP RUN. 1ð/ð1/87

 ð621ðð\ ð9/3ð/87

 ð622ðð\\ ð3/16/89

 ð623ðð\ \ ð3/16/89

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 17

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

ð624ðð\ THIS ROUTINE IS CALLED TO END THE TRANSACTIONS WITH THE \ ð3/16/89

 ð625ðð\ TARGET PROGRAMS. \ ð3/16/89

 ð626ðð\ \ ð3/16/89

 ð627ðð\\ ð3/16/89

 ð628ðð\.18/ 1ð/ð8/9ð

 ð629ðð DETACH-ROUTINE. ð9/3ð/87

415 ð63ððð MOVE "ICFðð " TO PGM-DEV-NME ð9/3ð/87

416 ð631ðð WRITE INTREC FORMAT IS "DETACH" 11/21/88

 ð632ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

417 ð633ðð MOVE "ICFð1 " TO PGM-DEV-NME ð9/3ð/87

418 ð634ðð WRITE INTREC FORMAT IS "DETACH" 11/21/88

 ð635ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

 ð636ðð DETACH-EXIT. ð9/3ð/87

 ð637ðð EXIT. ð9/3ð/87

 ð638ðð\ ð9/3ð/87

 ð639ðð\\ ð3/16/89

 ð64ððð\ \ ð3/16/89

ð641ðð\ THIS ROUTINE IS CALLED TO RELEASE THE PROGRAM DEVICES, END \ ð3/16/89

ð642ðð\ THE SESSIONS, AND END THE PROGRAM. \ ð3/16/89

 ð643ðð\ \ ð3/16/89

 ð644ðð\\ ð3/16/89

 ð645ðð\.19/ 1ð/ð8/9ð

 ð646ðð\ ð9/3ð/87

 419 ð647ðð END-JOB. ð9/3ð/87

42ð ð648ðð DROP "ICFðð " FROM INTFIL. 11/21/88

421 ð649ðð DROP "ICFð1 " FROM INTFIL. 11/21/88

422 ð65ððð CLOSE INTFIL DSPFIL QPRINT. 11/21/88

 423 ð651ðð STOP RUN. ð9/3ð/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Messages INTLIB/CSDINT RCH38321 1ð/ð8/9ð 11:ð9:19 Page 18

 STMT

\ 25 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð47ðð

Message : No INPUT fields found for format DETACH.

\ 25 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð47ðð

Message : No OUTPUT fields found for format DETACH.

\ 25 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð47ðð

Message : No INPUT fields found for format EOS.

\ 25 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð47ðð

Message : No OUTPUT fields found for format EOS.

\ 25 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð47ðð

Message : No INPUT fields found for format EVKREQ.

\ 25 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð47ðð

Message : No INPUT fields found for format TIMER.

\ 25 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð47ðð

Message : No OUTPUT fields found for format TIMER.

\ 1ð3 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð51ðð

Message : No OUTPUT fields found for format CIMENU.

\ 1ð3 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð51ðð

Message : No OUTPUT fields found for format DTLMNU.

\ 1ð3 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð51ðð

Message : No OUTPUT fields found for format ITMMNU.

\ 1ð3 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð51ðð

Message : No OUTPUT fields found for format TIMOUT.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

11 ð 11 ð ð ð

 Source records read : 629

 Copy records read : 212

 Copy members processed : 2

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program CSDINT created in library INTLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure D-10 (Part 13 of 13). Source Program Example — CSDINT

D-32 Intrasystem Communications Programming V4R1

COBOL/400 Target Program for a
Two-Session Inquiry

The following describes the COBOL/400 target program for a
two-session inquiry.

Program Files: The COBOL/400 two-session target
program uses the following files:

CFILE An ICF file used to send records to and
receive records from the source program. It is
done with the file-level INDARA DDS keyword,
indicating a separate indicator area.

PFILE A database file used to retrieve the record for
the item requested from the source program.

QPRINT An AS/400 printer file used to print records,
both sent and received, as well as major and
minor ICF return codes.

DDS Source: The DDS for the ICF file (CFILE) is illustrated
in Figure D-11 on page D-34.

The DDS source for the database file (PFILE) is illustrated in
Figure D-12 on page D-34.

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:

CRTICFF FILE(INTLIB/CFILE)

 SRCFILE(INTLIB/QINTSRC) SRCMBR(CFILE)

 ACQPGMDEV(RQSDEV)

TEXT("TARGET ICF FILE FOR TWO SESSION

 PROGRAM")

The command needed to define the program device entry is:

OVRICFDEVE PGMDEV(RQSDEV)

 RMTLOCNAME(\REQUESTER)

Program Explanation: The following explains the structure
of the program example illustrated in Figure D-13 on
page D-35. The ICF file used in the example is defined by
the user, and uses externally described data formats (DDS).
The reference letters in the example below correspond to
those in the following program example.

.1/ This section defines the ICF file (CFILE) and the
database file (PFILE) used in the program.

CFILE is the ICF file used to send records to and
receive records from the remote program.

MAJ-MIN is the variable name used to check for the
ICF file return codes.

CMNF-INDIC-AREA is the indicator area used with
the ICF file to choose options on DDS keywords and

operations, and receive response indicators on input
operations.

.2/ This section defines the error handling for the
program. The CFILE routine first checks the
major/minor return code to determine if the error is
recoverable.

If any other error has occurred, the program prints a
message saying that the program ended abnormally
and then ends.

.3/ This routine opens all the files.

Because the ICF file was created using the
ACQPGMDEV parameter, the session associated
with the target program is automatically acquired
when the file is opened.

.4/ The RECEIVE-DATA routine reads data from the
program device (CFILE) through a perform statement
until a turnaround indication is received. The
program then goes to section 5 to read the database
file. When a turnaround indication is received, indi-
cator 40 is set on, as defined by the RCVTRNRND
DDS keyword in the DDS source file for the ICF file.

.5/ The program uses the requested number received
from the source program to access the record from
the database. The information retrieved from the
database file (PFILE) is moved to the work area for
the ICF file. A write operation is issued to the
program device using record format SNDPART. The
write operation sends the requested information back
to the source program.

If the requested number is not found, a fail indication
is sent to the requesting program using a write opera-
tion with a fail operation.

If an error occurs on the write operation, control
passes to section 2.

If no error occurs on the write, control goes back to
section 4.

.6/ A read operation is issued to the program device.

If a detach indication is received, the program goes to
section 8 to end the program. When a detach is
received, indicator 44 is set on, as defined by the
RCVDETACH keyword in the DDS for the ICF file.

.7/ This routine is called to end the program.

The following message is written to the printer file:

CTDINT HAS COMPLETED NORMALLY

The files are closed. The program device is automat-
ically released as a result of the close operation and
the program ends.

 Appendix D. Program Examples D-33

5714PW1 Rð1Mðð 88ð3ð1 SEU SOURCE LISTING 1ð/14/87 17:2ð:35 PAGE 1

SOURCE FILE QINTSRC/INTLIB

 MEMBER PFILE

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 A\\

 A\ \

 A\ ICF FILE \

A\ USED IN TARGET TWO SESSION PROGRAM \

 A\ \

 A\\

 A INDARA

 A ð5 RQSWRT

 A 1ð ALWWRT

A INDTXT(1ð '1ð END TRANS.')

 A 15 EOS

 A 2ð FAIL

A INDTXT(2ð '2ð F ABORT ST')

A RCVFAIL(25 'RECEIVED FAIL')

 A 3ð DETACH

A INDTXT(3ð '3ð>DETACH TGT')

A RCVDETACH(44 'RECV DETACH')

A RCVTRNRND(4ð 'END OF TRN')

 A R SNDPART

 A INVITE

 A RECTYP 1

 A ITEMNO 6

 A EDATA 13ð

 A FILL1 13

 A R RCVPART

 A RECID2 6

 A PARTDS 8ð

 A FILL4 64

Figure D-11. DDS Source for a Two-Session Target Program Using CFILE

5714PW1 Rð1Mðð 88ð3ð1 SEU SOURCE LISTING 1ð/16/87 ð7:43:14 PAGE 1

SOURCE FILE QINTSRC/INTLIB

 MEMBER PFILE

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 1ðð A LIFO ð7/ð2/87

 2ðð A R DBREC ð5/ð6/87

 3ðð A RECCUS 1 1ð/ð1/87

 4ðð A DBSEQ 6 ð8/18/87

 5ðð A DBDATA 13ð ð7/ð2/87

 6ðð A DBFILL 13 1ð/ð1/87

 7ðð A K DBSEQ ð7/ð4/87

\ \ \ \ E N D O F S O U R C E \ \ \ \

Figure D-12. DDS Source for a Two-Session Target Program Using PFILE

D-34 Intrasystem Communications Programming V4R1

 5738CB1 V2R1Mð 91ð524 IBM AS/4ðð COBOL/4ðð INTLIB/CTDINT RCH38321 1ð/ð5/9ð 16:14:43 Page 1

 Program : CTDINT

Library : INTLIB

 Source file : QINTSRC

Library : INTLIB

 Source member : CTDINT 1ð/ð5/9ð 15:28:14

 Generation severity level : 29

 Text 'description' : COBOL Target Intra Example Program

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL Source INTLIB/CTDINT RCH38321 1ð/ð5/9ð 16:14:43 Page 2

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

1 ððð1ðð IDENTIFICATION DIVISION. 1ð/ð1/87

 2 ððð2ðð PROGRAM-ID. CTDINT. 11/15/88

 ððð3ðð\\ 1ð/ð1/87

ððð4ðð\ THIS PROGRAM WILL HANDLE THE REQUEST FOR EITHER A BUYER \ 11/16/88

ððð5ðð\ NUMBER OR AN ITEM NUMBER. THIS IS ACCOMPLISHED BY MAKING \ 1ð/ð1/87

ððð6ðð\ THE DATABASE FILE STRUCTURE (KEY LENGTH, KEY POSITION, RECORD \ 1ð/ð5/9ð

ððð7ðð\ LENGTH, RECORD SIZE, ETC.) THE SAME FOR BOTH FILES WITH ONLY \ 1ð/ð1/87

ððð8ðð\ THE RECORD CONTENTS DIFFERENT. \ 1ð/ð1/87

 ððð9ðð\ \ 1ð/ð1/87

ðð1ððð\ THIS PROGRAM ENDS WHEN A DETACH REQUEST IS RECEIVED FROM \ 1ð/ð1/87

ðð11ðð\ THE SOURCE PROGRAM. \ 1ð/ð1/87

 ðð12ðð\ \ 1ð/ð1/87

ðð13ðð\ INDICATORS ASSOCIATED WITH THE ICF FILE I/O OPERATION \ 1ð/ð5/9ð

ðð14ðð\ ARE DECLARED IN THE WORKING-STORAGE SECTION AND ARE REFERENCED \ 1ð/15/87

ðð15ðð\ FOR EVERY I/O OPERATION ISSUED. \ 1ð/15/87

 ðð16ðð\\ 1ð/ð1/87

3 ðð17ðð ENVIRONMENT DIVISION. 1ð/ð1/87

4 ðð18ðð CONFIGURATION SECTION. 1ð/ð1/87

 5 ðð19ðð SOURCE-COMPUTER. IBM-AS4ðð. ð1/15/88

 6 ðð2ððð OBJECT-COMPUTER. IBM-AS4ðð. ð1/15/88

7 ðð21ðð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FBA 1ð/ð1/87

8 ðð22ðð OPEN-FEEDBACK IS OPEN-FBA. 1ð/ð1/87

9 ðð23ðð INPUT-OUTPUT SECTION. 1ð/ð1/87

 ðð24ðð\.1/ ð3/17/89

 1ð ðð25ðð FILE-CONTROL. 1ð/ð1/87

11 ðð26ðð SELECT PFILE ASSIGN TO DATABASE-PFILE 1ð/ð1/87

12 ðð27ðð ORGANIZATION IS INDEXED 1ð/ð1/87

13 ðð28ðð ACCESS IS RANDOM 1ð/ð1/87

14 ðð29ðð RECORD KEY IS EXTERNALLY-DESCRIBED-KEY 1ð/ð1/87

 15 ðð3ððð WITH DUPLICATES. 1ð/ð1/87

16 ðð31ðð SELECT CFILE ASSIGN TO WORKSTATION-CFILE-SI 1ð/ð1/87

17 ðð32ðð ORGANIZATION IS TRANSACTION 1ð/ð1/87

18 ðð33ðð FILE STATUS IS STATUS-IND MAJ-MIN. 1ð/ð1/87

19 ðð34ðð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. 1ð/ð1/87

2ð ðð35ðð DATA DIVISION. 1ð/ð1/87

21 ðð36ðð FILE SECTION. 1ð/ð1/87

 22 ðð37ðð FD PFILE 1ð/ð1/87

23 ðð38ðð LABEL RECORDS ARE STANDARD. 1ð/ð1/87

 24 ðð39ðð ð1 PREC. 1ð/ð1/87

25 ðð4ððð COPY DDS-ALL-FORMATS OF PFILE. 1ð/ð1/87

26 +ððððð1 ð5 PFILE-RECORD PIC X(15ð). <-ALL-FMTS

+ððððð2\ I-O FORMAT:DBREC FROM FILE PFILE OF LIBRARY INTLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

Figure D-13 (Part 1 of 4). Target Program Example — CTDINT (User-Defined Formats)

 Appendix D. Program Examples D-35

+ððððð4\THE KEY DEFINITIONS FOR RECORD FORMAT DBREC <-ALL-FMTS

+ððððð5\ NUMBER NAME RETRIEVAL TYPE ALTSEQ <-ALL-FMTS

+ððððð6\ ððð1 DBSEQ ASCENDING AN NO <-ALL-FMTS

 27 +ððððð7 ð5 DBREC REDEFINES PFILE-RECORD. <-ALL-FMTS

 28 +ððððð8 ð6 RECCUS PIC X(1). <-ALL-FMTS

 29 +ððððð9 ð6 DBSEQ PIC X(6). <-ALL-FMTS

 3ð +ðððð1ð ð6 DBDATA PIC X(13ð). <-ALL-FMTS

 31 +ðððð11 ð6 DBFILL PIC X(13). <-ALL-FMTS

 32 ðð41ðð FD CFILE 1ð/ð1/87

33 ðð42ðð LABEL RECORDS ARE STANDARD. 1ð/ð1/87

 34 ðð43ðð ð1 ICFREC. 1ð/ð1/87

35 ðð44ðð COPY DDS-ALL-FORMATS-I-O OF CFILE. 1ð/ð1/87

 5738CB1 V2R1Mð 91ð524 IBM AS/4ðð COBOL Source INTLIB/CTDINT RCH38321 1ð/ð5/9ð 16:14:43 Page 3

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

36 +ððððð1 ð5 CFILE-RECORD PIC X(15ð). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:SNDPART FROM FILE CFILE OF LIBRARY INTLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 37 +ððððð4 ð5 SNDPART-I REDEFINES CFILE-RECORD. <-ALL-FMTS

 38 +ððððð5 ð6 RECTYP PIC X(1). <-ALL-FMTS

 39 +ððððð6 ð6 ITEMNO PIC X(6). <-ALL-FMTS

 4ð +ððððð7 ð6 EDATA PIC X(13ð). <-ALL-FMTS

 41 +ððððð8 ð6 FILL1 PIC X(13). <-ALL-FMTS

+ððððð9\ OUTPUT FORMAT:SNDPART FROM FILE CFILE OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð1ð\ <-ALL-FMTS

 42 +ðððð11 ð5 SNDPART-O REDEFINES CFILE-RECORD. <-ALL-FMTS

 43 +ðððð12 ð6 RECTYP PIC X(1). <-ALL-FMTS

 44 +ðððð13 ð6 ITEMNO PIC X(6). <-ALL-FMTS

 45 +ðððð14 ð6 EDATA PIC X(13ð). <-ALL-FMTS

 46 +ðððð15 ð6 FILL1 PIC X(13). <-ALL-FMTS

+ðððð16\ INPUT FORMAT:RCVPART FROM FILE CFILE OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð17\ <-ALL-FMTS

 47 +ðððð18 ð5 RCVPART-I REDEFINES CFILE-RECORD. <-ALL-FMTS

 48 +ðððð19 ð6 RECID2 PIC X(6). <-ALL-FMTS

 49 +ðððð2ð ð6 PARTDS PIC X(8ð). <-ALL-FMTS

 5ð +ðððð21 ð6 FILL4 PIC X(64). <-ALL-FMTS

+ðððð22\ OUTPUT FORMAT:RCVPART FROM FILE CFILE OF LIBRARY INTLIB <-ALL-FMTS

 +ðððð23\ <-ALL-FMTS

 51 +ðððð24 ð5 RCVPART-O REDEFINES CFILE-RECORD. <-ALL-FMTS

 52 +ðððð25 ð6 RECID2 PIC X(6). <-ALL-FMTS

 53 +ðððð26 ð6 PARTDS PIC X(8ð). <-ALL-FMTS

 54 +ðððð27 ð6 FILL4 PIC X(64). <-ALL-FMTS

 55 ðð45ðð FD QPRINT 1ð/ð1/87

56 ðð46ðð LABEL RECORDS ARE OMITTED. 1ð/ð1/87

 57 ðð47ðð ð1 PRINTREC. ð1/14/88

 58 ðð48ðð ð5 RC PIC 9999. ð1/15/88

 59 ðð49ðð ð5 ERRMSG PIC X(128). ð1/14/88

6ð ðð5ððð WORKING-STORAGE SECTION. 1ð/ð1/87

 61 ðð51ðð 77 MAJ-MIN-SAV PIC X(4). 1ð/ð1/87

 62 ðð52ðð 77 STATUS-IND PIC X(2). 1ð/ð1/87

63 ðð53ðð 77 INDON PIC 1 VALUE B"1". 1ð/ð1/87

64 ðð54ðð 77 INDOFF PIC 1 VALUE B"ð". 1ð/ð1/87

65 ðð55ðð 77 LEN PIC 9(1ð)V9(5) COMP 1ð/ð1/87

 66 ðð56ðð VALUE ð. 1ð/ð1/87

 67 ðð57ðð 77 CMD2 PIC X(31) 1ð/ð1/87

68 ðð58ðð VALUE "CPYF HEXDUMP \LIST PRTFMT(\HEX)". 1ð/ð1/87

 69 ðð59ðð ð1 CMNF-INDIC-AREA. 1ð/ð1/87

ðð6ððð\ ALLOW WRITE (ALWWRT) INDICATOR 1ð/ð1/87

7ð ðð61ðð ð5 IN1ð PIC 1 INDIC 1ð. 1ð/ð1/87

 71 ðð62ðð 88 IN1ð-ON VALUE B"1". 1ð/ð1/87

 72 ðð63ðð 88 IN1ð-OFF VALUE B"ð". 1ð/ð1/87

ðð64ðð\ FAIL (FAIL) INDICATOR 11/16/88

73 ðð65ðð ð5 IN2ð PIC 1 INDIC 2ð. 11/21/88

 74 ðð66ðð 88 IN2ð-ON VALUE B"1". 11/16/88

 75 ðð67ðð 88 IN2ð-OFF VALUE B"ð". 11/16/88

ðð68ðð\ RECEIVE FAIL (RCVFAL) INDICATOR 11/16/88

76 ðð69ðð ð5 IN25 PIC 1 INDIC 25. 11/21/88

 77 ðð7ððð 88 IN25-ON VALUE B"1". 11/16/88

 78 ðð71ðð 88 IN25-OFF VALUE B"ð". 11/16/88

ðð72ðð\ RECEIVE TURNAROUND (RCVTRNRND) INDICATOR 11/16/88

Figure D-13 (Part 2 of 4). Target Program Example — CTDINT (User-Defined Formats)

D-36 Intrasystem Communications Programming V4R1

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL Source INTLIB/CTDINT RCH38321 1ð/ð5/9ð 16:14:43 Page 4

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

79 ðð73ðð ð5 IN4ð PIC 1 INDIC 4ð. 11/16/88

 8ð ðð74ðð 88 IN4ð-ON VALUE B"1". 11/16/88

 81 ðð75ðð 88 IN4ð-OFF VALUE B"ð". 11/16/88

ðð76ðð\ RECEIVE DETACH (RCVDETACH) INDICATOR 1ð/ð1/87

82 ðð77ðð ð5 IN44 PIC 1 INDIC 44. 1ð/ð1/87

 83 ðð78ðð 88 IN44-ON VALUE B"1". 1ð/ð1/87

 84 ðð79ðð 88 IN44-OFF VALUE B"ð". 1ð/ð1/87

 85 ðð8ððð ð1 MAJ-MIN. 1ð/ð1/87

 86 ðð81ðð ð5 MAJ PIC X(2). 1ð/ð1/87

 87 ðð82ðð ð5 MIN PIC X(2). 1ð/ð1/87

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL Source INTLIB/CTDINT RCH38321 1ð/ð5/9ð 16:14:43 Page 5

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ðð83ðð/ 1ð/ð1/87

88 ðð84ðð PROCEDURE DIVISION. 1ð/ð1/87

 ðð85ðð DECLARATIVES. 1ð/ð1/87

ðð86ðð ERR-SECTION SECTION. 1ð/ð1/87

 ðð87ðð\\ 1ð/ð1/87

 ðð88ðð\.2/ ð3/17/89

 ðð89ðð\ 1ð/ð1/87

ðð9ððð USE AFTER STANDARD ERROR PROCEDURE ON CFILE. 1ð/ð1/87

 ðð91ðð CFILE-EXCEPTION. 1ð/ð1/87

 ðð92ðð\\ 1ð/ð1/87

 ðð93ðð\ \ ð3/16/89

ðð94ðð\ PRINT A MESSAGE SAYING CTDINT PROGRAM ENDED ABNORMALLY. \ ð3/16/89

ðð95ðð\ CLOSE ALL THE FILES AND END THE PROGRAM. THIS ROUTINE IS CALLED \ ð3/16/89

ðð96ðð\ WHEN A NON-RECOVERABLE ERROR OCCURS IN ICF FILE. \ 1ð/ð5/9ð

 ðð97ðð\ \ ð3/16/89

 ðð98ðð\\ 1ð/ð1/87

 ðð99ðð GETFBA. 1ð/ð1/87

89 ð1ðððð MOVE MAJ-MIN TO RC. ð1/14/88

9ð ð1ð1ðð MOVE "CTDINT HAS COMPLETED ABNORMALLY" TO ERRMSG. 11/15/88

 91 ð1ð2ðð WRITE PRINTREC. 1ð/ð1/87

 92 ð1ð3ðð CLOSE PFILE 1ð/ð1/87

 ð1ð4ðð CFILE 1ð/ð1/87

 ð1ð5ðð QPRINT. 1ð/ð1/87

 93 ð1ð6ðð STOP RUN. 1ð/ð1/87

 ð1ð7ðð\ 1ð/ð1/87

 ð1ð8ðð EXIT-DECLARATIVES. 1ð/ð1/87

 ð1ð9ðð EXIT. 1ð/ð1/87

 ð11ððð\ 1ð/ð1/87

94 ð111ðð END DECLARATIVES. 1ð/ð1/87

 ð112ðð\\ 1ð/ð1/87

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL Source INTLIB/CTDINT RCH38321 1ð/ð5/9ð 16:14:43 Page 6

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ð113ðð/ 1ð/ð1/87

 ð114ðð START-PROGRAM SECTION. 1ð/ð1/87

 ð115ðð START-PROGRAM-PARAGRAPH. 1ð/ð1/87

 ð116ðð\.3/ ð3/17/89

95 ð117ðð OPEN OUTPUT QPRINT 1ð/ð1/87

 ð118ðð I-O CFILE 1ð/ð1/87

 ð119ðð INPUT PFILE. 1ð/ð1/87

 ð12ððð\\ 1ð/ð1/87

 ð121ðð\ \ 1ð/ð1/87

ð122ðð\ READ THE REQUEST FROM THE SOURCE PROGRAM. INDICATOR 4ð \ 1ð/ð1/87

ð123ðð\ INDICATES RCVTRNRND OCCURRED. INDICATOR 44 INDICATES THAT \ 1ð/ð5/9ð

ð124ðð\ DETACH INDICATOR HAS BEEN RECEIVED FROM THE OTHER PROGRAM. \ ð3/16/89

 ð125ðð\ \ 1ð/ð1/87

ð126ðð\ THIS PROGRAM CHECKS FOR ERRORS ON EVERY ICF FILE \ 1ð/ð5/9ð

ð127ðð\ OPERATION. A MAJOR CODE GREATER THAN ð3 INDICATES AN ERROR. \ ð3/16/89

 ð128ðð\ \ 1ð/ð1/87

 ð129ðð\\ 1ð/ð1/87

 ð13ððð\.4/ ð3/17/89

 ð131ðð RECEIVE-DATA. 1ð/ð1/87

96 ð132ðð PERFORM READ-CFILE THRU READ-CFILE-EXIT. 1ð/ð1/87

97 ð133ðð GO TO SEND-DATA. 1ð/ð5/9ð

98 ð134ðð GO TO RECEIVE-DATA. ð3/17/89

Figure D-13 (Part 3 of 4). Target Program Example — CTDINT (User-Defined Formats)

 Appendix D. Program Examples D-37

 ð135ðð\\ 1ð/ð1/87

 ð136ðð\ \ 1ð/ð1/87

ð137ðð\ A REQUEST FROM THE SOURCE PROGRAM RESULTS IN READING A SINGLE \ 1ð/ð1/87

ð138ðð\ RECORD CONTAINING THE REQUESTED BUYER OR ORDER NUMBER. THE \ ð3/16/89

ð139ðð\ RESPONSE WILL BE RETURNED IN A SINGLE RECORD CONTAINING EITHER \ 1ð/ð1/87

ð14ððð\ THE ITEM OR BUYER INFORMATION, DEPENDING ON THE DATA BASE \ ð3/16/89

 ð141ðð\ CONTENT. \ 1ð/ð1/87

 ð142ðð\ \ 1ð/ð1/87

ð143ðð\ THE RESPONSE IS SENT TO THE SOURCE PROGRAM BY WRITING TO THE \ 1ð/ð1/87

ð144ðð\ PROGRAM DEVICE FILE USING FORMAT SNDPART. \ 1ð/15/87

 ð145ðð\ \ 11/21/88

ð146ðð\ WHEN THE REQUESTED BUYER OR ITEM NUMBER IS NOT FOUND, \ ð3/16/89

ð147ðð\ OR WHEN A DISK ERROR OCCURRED WHILE READING THE DATABASE, \ ð3/16/89

ð148ðð\ A FAIL INDICATION IS SENT TO THE SOURCE PROGRAM. \ ð3/16/89

 ð149ðð\ \ 11/21/88

 ð15ððð\\ 1ð/ð1/87

 ð151ðð\ 1ð/ð1/87

 ð152ðð\.5/ ð3/17/89

 ð153ðð SEND-DATA. 1ð/ð1/87

99 ð154ðð MOVE RECID2 OF RCVPART-I TO DBSEQ. 1ð/ð1/87

1ðð ð155ðð READ PFILE INVALID KEY 11/16/88

1ð1 ð156ðð SET IN2ð-ON TO TRUE. 11/16/88

1ð2 ð157ðð MOVE RECCUS TO RECTYP OF SNDPART-O. 1ð/ð1/87

1ð3 ð158ðð MOVE DBSEQ TO ITEMNO OF SNDPART-O. 1ð/ð1/87

1ð4 ð159ðð MOVE DBDATA TO EDATA OF SNDPART-O 1ð/ð1/87

1ð5 ð16ððð WRITE ICFREC FROM PREC FORMAT IS "SNDPART" 1ð/ð1/87

 ð161ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/ð1/87

1ð6 ð162ðð GO TO RECEIVE-DATA. 1ð/ð1/87

 ð163ðð\\ 1ð/ð1/87

 ð164ðð\ \ 1ð/ð1/87

ð165ðð\ THIS ROUTINE ISSUES READ OPERATIONS TO THE PROGRAM DEVICE. \ ð3/16/89

ð166ðð\ DETACH INDICATION IS CHECKED AND IF IT IS SET, THE PROGRAM \ ð3/16/89

ð167ðð\ IS ENDED (IN44-ON). \ ð3/16/89

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL Source INTLIB/CTDINT RCH38321 1ð/ð5/9ð 16:14:43 Page 7

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ð168ðð\ \ 1ð/ð1/87

 ð169ðð\\ 1ð/ð1/87

 ð17ððð\.6/ ð3/17/89

 ð171ðð READ-CFILE. 1ð/ð1/87

1ð7 ð172ðð MOVE ZEROS TO CMNF-INDIC-AREA. 1ð/ð1/87

1ð8 ð173ðð READ CFILE FORMAT IS "RCVPART" 1ð/ð1/87

 ð174ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/ð1/87

 1ð9 ð175ðð IF IN44-ON 1ð/ð1/87

11ð ð176ðð GO TO END-PROGRAM. 1ð/ð1/87

 ð177ðð READ-CFILE-EXIT. 1ð/ð1/87

 ð178ðð EXIT. ð3/15/89

 ð179ðð\ 1ð/ð1/87

 ð18ððð\\ 1ð/ð1/87

 ð181ðð\ \ ð3/16/89

ð182ðð\ ROUTINE TO END THE JOB AND CLOSE THE FILES. \ ð3/16/89

 ð183ðð\ \ ð3/16/89

 ð184ðð\\ 1ð/ð1/87

 ð185ðð\ 1ð/ð1/87

 ð186ðð\.7/ ð3/17/89

 111 ð187ðð END-PROGRAM. 1ð/ð1/87

112 ð188ðð MOVE MAJ-MIN TO RC. ð1/14/88

113 ð189ðð MOVE "CTDINT HAS COMPLETED NORMALLY" TO ERRMSG. 11/15/88

 114 ð19ððð WRITE PRINTREC. 1ð/ð1/87

 115 ð191ðð CLOSE PFILE 1ð/ð1/87

 ð192ðð CFILE 1ð/ð1/87

 ð193ðð QPRINT. 1ð/ð1/87

 116 ð194ðð STOP RUN. 1ð/ð1/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL Messages INTLIB/CTDINT RCH38321 1ð/ð5/9ð 16:14:43 Page 8

 STMT

\ 89 MSGID: LBLð335 SEVERITY: ðð SEQNBR: ðð99ðð

Message : Empty paragraph or section precedes 'GETFBA'

paragraph or section.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

1 1 ð ð ð ð

 Source records read : 194

 Copy records read : 38

 Copy members processed : 2

 Sequence errors : ð

 Highest severity message issued . . : ð

LBLð9ð1 ðð Program CTDINT created in library INTLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure D-13 (Part 4 of 4). Target Program Example — CTDINT (User-Defined Formats)

D-38 Intrasystem Communications Programming V4R1

RPG/400 Source Program for a
Two-Session Inquiry

The following describes an RPG/400 source program for a
two-session inquiry.

Program Files: The RPG/400 two-session source program
uses the following files:

INTFIL An ICF file used to send records to and receive
records from the target program.

DSPFIL A display file used to enter requests to be sent to
the target program.

QPRINT An AS/400 printer file used to print records, both
sent and received, as well as major and minor
ICF return codes.

DDS Source: The DDS for the ICF file (INTFIL) is illus-
trated in Figure D-14.

5714PW1 Rð1Mðð 88ð3ð1 SEU SOURCE LISTING 1ð/14/87 17:2ð:41 PAGE 1

SOURCE FILE QINTSRC/INTLIB

 MEMBER INTFIL

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 A\\

 A\ \

 A\ ICF FILE \

A\ USED IN SOURCE TWO SESSION PROGRAM \

 A\ \

 A\\

 A INDARA

A RCVFAIL(25 'RECEIVED FAIL')

 A RCVTRNRND(9ð)

 A R ITMRSP

 A RECID(1 'I')

 A RECITM 1

 A ITEMNO 6 ð

 A DESC 3ð

 A QTYLST 7 ð

 A QTYOH 7 ð

 A QTYOO 7 ð

 A QTYBO 7 ð

 A UNITQ 2

 A PRð1 7 2

 A PRð5 7 ð

 A UFRT 5 2

 A SLSTM 9 2

 A SLSTY 11 2

 A CSTTM 9 2

 A CSTTY 11 2

A PRO 5 2

A LOS 9 2

 A FILL1 56

 A R DTLRSP

 A RECID(1 'C')

 A RECCUS 1

 A CUSTNO 6 ð

 A DNAME 3ð

 A DLSTOR 6 ð

 A DSLSTM 9 ð

 A DSPMð1 9 ð

 A DSPMð2 9 ð

 A DSPMð3 9 ð

 A DSTTYD 11 ð

 A IDEPT 3 ð

 A FILL2 57

 A R DETACH

 A DETACH

 A R EOS

 A EOS

 A R EVKREQ

 A EVOKE(&LIB/&PGMID)

 A PGMID 1ðA P

 A LIB 1ðA P

 A R ITMREQ

 A INVITE

 A ITEMNO 6 ð

 A R DTLREQ

 A INVITE

 A CUSTNO 6 ð

 A R TIMER

 A TIMER(ðððð3ð)

Figure D-14. DDS Source for a Two-Session Source Program Using INTFIL

 Appendix D. Program Examples D-39

The DDS source file for the display file (DSPFIL) is shown in Figure D-15.

5714PW1 Rð1Mðð 88ð3ð1 SEU SOURCE LISTING 1ð/14/87 16:59:5ð PAGE 1

SOURCE FILE QINTSRC/INTLIB

MEMBER DSPFIL

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 A\\

 A\ \

 A\ DISPLAY FILE \

A\ USED IN SOURCE TWO SESSION PROGRAM \

 A\ \

 A\\

 A\ BEGINNING MENU

 A\\\\\\\\\\\\\\\\\\\\

 A DSPSIZ(\DS3)

A CFð1(99) CFð2(98) CFð3(97)

A R CIMENU TEXT('MENU FOR INQUIRY')

A 1 34'INQUIRY MENU'

A 3 1'Select one of the following:'

A 4 3'1. Order inquiry'

A 5 3'2. Buyer inquiry'

 A 11 1'Option:'

 A OPTION 1N I 11 9VALUES('1' '2')

A 19 5DFT('CMD KEY 1 - END ')

A R DTLMNU TEXT(' BUYER INQUIRY SCREEN 1')

 A 2 2DFT('ENTER BUYER')

 A CUSTNO 6N ðI 2 2ð

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\ CUSTOMER INQUIRY SCREEN

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A R DTLSCR TEXT(' BUYER INQUIRY SCR. #2')

A 1 3DFT('BUYER DPT LAST ORD & THIS +

 A $MTH1 &MTH2 $MTH3 THIS+

 A YTD CNAME')

 A CUSTN 6N 2 2

 A DEPT 3N ð 2 9

 A DLSTR 6N ð 2 13

 A DSLSM 9N ð 2 22

 A DSPM1 9N ð 2 32

 A DSPM2 9N ð 2 42

 A DSPM3 9N ð 2 52

 A DSTYD 11N ð 2 62

 A CNAME 5 2 74

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\

 A\\\\\\\\\\\\\\\\\\\\\\\\

A\ ITEM INQUIRY SCREEN

 A\\\\\\\\\\\\\\\\\\\\\\\\

A R ITMMNU TEXT('ITEM INQUIRY SCREEN ONE')

A 2 2DFT('ENTER ITEM NUMBER')

 A ITEMNO 6N ðI 2 2ð

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\\\\\\\\\\\\\\\\\\\\\\\\

 A\ ITEM DISPLAY

 A\\\\\\\\\\\\\\\\\\\\\\\\

A R ITMSC2 TEXT('ITEM INQUIRY SCREEN TWO') OVE+

 A RLAY

 A 4 2DFT('DESC-')

 A DSC 3ð 4 8

 A 5 2DFT('QUANTITY AVAILABLE')

 A QAVAIL 7N ð 5 25

A 6 11DFT('ON HAND')

 A QTYH 7N ð 6 25

A 7 11DFT('ON ORDER')

 A QTYO 7N ð 7 25

Figure D-15 (Part 1 of 2). DDS Source for Source Program Two-Session Inquiry Using DSPFIL

D-40 Intrasystem Communications Programming V4R1

A 8 11DFT('BACK ORDER')

 A QTYB 7N ð 8 25

A 9 2DFT('UNIT OF MEASURE')

A UNT 2 9 3ð

A 1ð 2DFT('PRICE PER UNIT')

A PR1 7Y 2 1ð 24EDTCDE(3)

 A 11 8DFT('QUANTITY')

A PR5 7Y ð 11 25EDTCDE(3)

 A 12 8DFT('FREIGHT')

A UFR 5Y 2 12 26EDTCDE(3)

A 13 32DFT('MORE... ')

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

A 19 4ðDFT(' 3 - BUYER MENU')

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\ ITEM ADDITIONAL DISPLAY

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A R ITMSC3 TEXT('ITEM INQUIRY SCREEN 3 ') OVE+

 A RLAY

 A 5 2DFT('SALES MONTH')

 A SLSM 9Y 2 5 16EDTCDE(1)

 A 6 8DFT('Y-T-D')

 A SLSY 11Y 2 6 14EDTCDE(1)

 A 7 2DFT('COSTS MONTH')

 A CSTM 9Y 2 7 16EDTCDE(1)

 A 8 8DFT('Y-T-D')

 A CSTY 11Y 2 8 14EDTCDE(1)

 A 9 2DFT('PROFIT PCT')

 A PROFIT 5Y 2 9 22EDTCDE(1)

 A 1ð 2DFT('LOST SALES')

 A LOSTS 9Y 2 1ð 16EDTCDE(1)

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\\\\\\\\\\\\\\\\\\\\\\\\

 A\ TIMOUT SCREEN.

 A\\\\\\\\\\\\\\\\\\\\\\\\

A R TIMOUT TEXT('TIME OUT SCREEN') OVE+

 A RLAY

A 2ð 2DFT('TARGET PROGRAM TIMED OUT. ENTE-

A R 1 TO TRY AGAIN OR 2 TO END.')

A TIMRSP 1 I 2ð 61

Figure D-15 (Part 2 of 2). DDS Source for Source Program Two-Session Inquiry Using DSPFIL

Configuration: The following command is needed to create
the intrasystem communications device associated with the
ICF file:

CRTDEVINTR DEVD(INTRADEV)

 RMTLOCNAME(INTRARMT) ONLINE(\NO)

TEXT("THIS IS AN INTRASYSTEM DEVICE

 DESCRIPTION")

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:

CRTICFF FILE(INTLIB/INTFIL)

 SRCFILE(INTLIB/QINTSRC)

 SRCMBR(INTFIL) ACQPGMDEV(\NONE)

 MAXPGMDEV(2) WAITRCD(3ð)

TEXT("SOURCE ICF FILE FOR TWO SESSION

 PROGRAM")

It is not necessary to add a communications entry to the sub-
system since the system automatically defines an entry for
the device created above at run time. However, if you
decided to have one, the following is an example:

ADDCMNE SBSD(QCMN) DEV(INTRADEV)

The commands needed to define the two program device
entries are:

OVRICFDEVE PGMDEV(ICFðð)

 RMTLOCNAME(INTRARMT)

 FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð1)

 RMTLOCNAME(INTRARMT)

 FMTSLT(\RECID)

The following is an example of a CL program that might be
used to run the source program shown in the example
above:

RSDINTCL: PGM PARM(&RMT1 &RMT2)

DCL VAR(&RMT1) TYPE(\CHAR)

 LEN(8)

DCL VAR(&RMT2) TYPE(\CHAR)

 LEN(8)

 CHGJOB OUTQ(INTLIB/INTOUTQ)

LOG(4 ðð \SECLVL)

 LOGCLPGM(\YES)

 OVRICFDEVE PGMDEV(ICFðð)

 RMTLOCNAME(&RMT1)

 FMTSLT(\RECID)

 OVRICFDEVE PGMDEV(ICFð1)

 RMTLOCNAME(&RMT2)

 FMTSLT(\RECID)

 CALL INTLIB/RSDINT

ENDRSDINTCL: ENDPGM

 Appendix D. Program Examples D-41

The following is an example of a CL program that might be
used as the target program that your source program evokes
(which calls the program RTDINT shown in the example):

RTDINTCL: PGM

 CHGJOB OUTQ(INTLIB/INTOUTQ)

LOG(4 ðð \SECLVL)

 LOGCLPGM(\YES)

 ADDLIBLE INTLIB

 OVRICFDEVE PGMDEV(RQSDEV)

 RMTLOCNAME(\REQUESTER)

 CALL INTLIB/RTDINT

 RMVLIBLE INTLIB

ENDRTDINTCL: ENDPGM

Program Explanation: The following explains the structure
of the program example illustrated in Figure D-16 on
page D-44. The ICF file used in the example is defined by
the user, and uses externally described data formats (DDS).
The reference numbers in the explanation below correspond
to the numbers in the following program example.

The ICF file used in the example is externally described.

All output operations to the ICF file in the example are done
using the WRITE statement.

.1/ The file specifications define the ICF file (INTFIL) and
the display file (DSPFIL) used in the program.

INTFIL is the ICF file used to send records to and
receive records from each of the two target programs.

DSPFIL is the display file used to receive user’s
requests and to report the information received based
on the request.

The files used in the program are opened at the
beginning of the RPG/400 cycle.

Note: The continuation lines on the file specification
define the following:

� The data structure names, IOFB and IODS, used
for the feedback area (INFDS) for INTFIL and
DSPFIL respectively.

� The number of program devices that can be
attached to the files (two for INTFIL).

� The program device name in the CMID field to
which it issues the I/O operation.

.2/ The file information data structure (IOFB) is provided
to receive the I/O feedback area following an ICF file
I/O operation.

For the display file, the file information data structure
(IODS) is used by the program to determine the
record format used for the last display file I/O opera-
tion. The field name referred to in the program is
RECID, found in positions 261 through 268 of the
feedback area.

.3/ The two ICF program devices used by the program
are explicitly acquired.

The work station is implicitly acquired when the
DSPFIL file opens.

Also, the evoke requests are issued to the remote
systems by the subroutine EVKSR in section 13.

When control returns from the EVKSR subroutine, the
main menu (record format CIMENU) is written to the
work station.

.4/ A read operation is issued to the display program
device and the program waits for an input request
from the user. When a record is returned, the last
record format used (as specified in the RECID field in
the I/O feedback area) is checked. The program
branches to the appropriate routine according to the
value in RECID.

.5/ The request entered by the user from the main menu
(CIMENU) is checked. If indicator 99 is set to 1, indi-
cating that the operator pressed function key 1, the
two transactions and sessions end and the program
ends. If the operator entered option 1, the program
writes the item inquiry menu (ITMMNU) to the work
station and returns to the read to the display program
device section (4).

If the option is not 1, the Buyer Inquiry menu
(DTLMNU) is written to the work station and control is
passed to section 4.

.6/ The item number requested by the user from the
Order Inquiry Display (record format ITMMNU) is pro-
cessed here. If function key 1 is pressed (indicator
99), control passes to the I/O operation error section
(section 12), the two transactions and sessions are
ended, and the program ends. If function key 2 is
pressed, the inquiry request is canceled, the main
menu (CIMENU) is written to the work station, and
the program returns to section 4.

The item number is read from the work station and
then the request is sent to the target program on
program device ICF01.

The request is sent to the appropriate target program
by writing data to the program device using format
ITMREQ. The INVITE keyword is specified as part of
the ITMREQ format to give the target program per-
mission to send.

A timer is issued for 30 seconds before the read
operation. This is provided to allow the local program
to have a time-out when no response is received from
the target program.

A read-from-invited-program-devices operation is
issued to the invited program device to receive the
response to the inquiry. The operation is interpreted
as a read-from-invited-program-devices because the
program device name field (CMID) is blank. Indicator
89 is set on after I/O operation, if the operation does

D-42 Intrasystem Communications Programming V4R1

not complete. The subroutine ERRCHK in section 14
gets control, and further checks are made.

The return codes are checked after an I/O request. If
there are any errors, control is passed to section 12.
If not, the program returns to section 4.

.7/ The information received from the target program is
processed. If the information received is a fail indi-
cation, it means the requested item number was not
found and the request is not valid. A new Item
Inquiry menu (ITMMNU) is written to the work station,
and control goes to section 4.

The program then performs the calculations to set the
quantity fields and writes the result to the requesting
work station using record format ITMSC2.

The program then returns to section 4.

.8/ This section processes the user requests for addi-
tional information (record format ITMSC2). If function
key 2 (indicator 98) is pressed, the main menu
(record format CIMENU) writes to the work station
and control goes to section 4.

If the Enter key is pressed, the profit and loss figures
are calculated. Those values are then written to the
work station using format ITMSC3 (item inquiry work
station 3). The program then returns to section 4. If
function key 1 (indicator 99) was pressed, control
goes to section 12.

If function key 3 (indicator 97) is pressed, the Order
Inquiry menu (ITMMNU) is written to the work station
and the program returns to section 4.

.9/ This section processes inquiry read requests from the
Buyer menu (DTLMNU). If function key 2 (indicator
98) is pressed, the main menu (CIMENU) is written to
the work station and the program returns to section 4.
If function key 1 (indicator 99) is pressed, control
goes to section 12.

The buyer inquiry request is sent to the target
program by writing data to the program device
(ICF00) using format DTLREQ. The INVITE keyword
is specified as part of the DLTREQ format to give the
target program permission to send.

A read operation is issued to the invited program
device to receive the response to the inquiry. This is
accomplished by blanking out CMID. Indicator 88 is
set on if the I/O operation did not complete.

Note: A timer operation is issued before the above
read is issued to ensure that the operation will finish
even if the target program is unable to respond.

If the information received is a fail indication (indicator
25) from the target program, it means the requested
item was not found and the request is not valid. The

main menu (record format CIMENU) is written to the
work station. The program then returns to section 4.

The return codes (or indicators) are checked after an
I/O request. If there are any errors, control is passed
to section 12.

.1ð/ The information supplied by the target program in
response to a request for a buyer detail is processed.

The detail information is written to the work station
using record format DTLSCR.

The program then returns to section 4.

.11/ Control is passed here if the buyer detail record
format (DLTSCR) is displayed. If function key 1 (indi-
cator 99) is pressed, control goes to section 12. If
function key 2 (indicator 98) is pressed, the main
menu (CIMENU) is written to the work station and
control is returned to section 4.

.12/ If the record format name is not found on a read
operation, an error message prints. If an error occurs
on any ICF operation, control is passed here and an
error message is printed containing the program
device and error that occurred.

For each of the two sessions, the transaction is
ended by issuing a detach request to the appropriate
program device using format DETACH, and the
session is ended by the release operation. The last
record indicator is turned on to end the program. The
ICF file is implicitly closed at the end of the RPG/400
cycle.

.13/ The EVKSR subroutine in this section builds the
evoke requests to send to the remote programs.
Because the DDS keyword for the record format only
specifies the field identifiers with the record, this code
moves the literal value RTDINTCL to the field
PGMID, and INTLIB to the field LIB.

When the program start request is received at the
remote program, INTLIB is searched for RTDINTCL
and that program is then started. RTDINTCL is a CL
program that contains CL statements as illustrated on
D-41.

.14/ The subroutine ERRCHK is called when the read
operation to the program device does not complete.
The indication that the timer has ended is checked
(RC=0310) and if it is set, a message is displayed to
the user. The message asks whether you want to try
the read operation again or end the job. In this
example, the time interval is specified in section 9.

.15/ The subroutine *PSSR is called if there are I/O opera-
tion errors that are not handled by the subroutine
ERRCHK in section 14. It checks to see whether the
program device is already acquired when an acquire
operation is requested and if it is, the second acquire
is ignored. Otherwise, the program ends.

 Appendix D. Program Examples D-43

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 1

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : INTLIB/RSDINT

Source file : INTLIB/QINTSRC

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RSDINT

File : QINTSRC

Library : INTLIB

Last Change : 1ð/ð5/9ð 15:22:18

Description : RPG Source Intra Program Example

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 2

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

S o u r c e L i s t i n g

 1ðð H 1 1ð/13/87

 2ðð H\\ 1ð/13/87

3ðð H\ THIS PROGRAM ASSIGNS TWO SESSIONS AS FOLLOWS: \ 11/15/88

4ðð H\ 'ICFðð' TO INQUIRE ABOUT A BUYER'S CREDIT STANDING \ 11/15/88

5ðð H\ BEFORE AN ORDER IS PROCESSED. \ 11/15/88

6ðð H\ 'ICFð1' TO INQUIRE ABOUT THE AVAILABILITY OF AN ITEM \ 11/15/88

7ðð H\ BEING ORDERED (ITEM ððððð1 THRU 999999). \ 11/15/88

8ðð H\ A DISPLAY DEVICE IS USED TO ENTER THE REQUEST (USING A \ 1ð/13/87

9ðð H\ BUYER AND AN ITEM MENU) THAT IS SENT TO THE TARGET \ 1ð/ð5/9ð

1ððð H\ PROGRAM. \ 1ð/ð5/9ð

 11ðð H\\ 1ð/13/87

 12ðð F\\ 1ð/13/87

 13ðð F\ \ ð3/17/89

14ðð F\ F I L E S P E C I F I C A T I O N S \ ð3/17/89

 15ðð F\ \ ð3/17/89

16ðð F\ INTFIL : ICF FILE USED TO SEND A REQUEST TO ONE \ 1ð/ð5/9ð

17ðð F\ OF TWO DIFFERENT TARGET PROGRAMS. TWO \ 1ð/ð5/9ð

18ðð F\ SESSIONS ARE ACTIVE AT THE SAME TIME. \ 1ð/ð5/9ð

 19ðð F\ \ ð3/17/89

2ððð F\ DSPFIL : DISPLAY FILE USED TO ENTER A REQUEST TO BE \ ð3/17/89

21ðð F\ SENT TO A TARGET PROGRAM. \ 1ð/ð5/9ð

 22ðð F\ \ ð3/17/89

23ðð F\ THE FOLLOWING INFORMATION IS SPECIFIED AS PART OF THE \ ð3/17/89

 24ðð F\ FILE SPECIFICATION: \ ð3/17/89

25ðð F\ INFDS : I/O FEEDBACK AREA \ ð3/17/89

26ðð F\ NUM : SPECIFIES THE MAXIMUM NUMBER OF \ ð3/17/89

27ðð F\ PROGRAM DEVICES THAT CAN BE ATTACHED \ ð3/17/89

28ðð F\ TO THIS FILE. A VALUE OF 2 IS \ ð3/17/89

29ðð F\ SPECIFIED FOR THE ICF FILE. \ 1ð/ð5/9ð

3ððð F\ THIS DEFINES THE FILE AS A \ ð3/17/89

31ðð F\ MULTIPLE DEVICE FILE. \ ð3/17/89

32ðð F\ ID : 1ð CHARACTER PROGRAM DEVICE NAME \ ð3/17/89

33ðð F\ FIELD WHICH SPECIFIES WHICH PROGRAM \ ð3/17/89

34ðð F\ DEVICE TO DIRECT THE OPERATION. \ ð3/17/89

 35ðð F\ \ ð3/17/89

 36ðð F\ \ ð3/17/89

 37ðð F\\ 1ð/13/87

 38ðð \.1/ 1ð/13/87

39ðð FINTFIL CF E WORKSTN 11/21/88

 4ððð F KINFDS IOFB 1ð/13/87

 41ðð F KINFSR \PSSR 1ð/14/87

 42ðð F KNUM 2 11/15/88

 43ðð F KID CMID 1ð/13/87

RECORD FORMAT(S): LIBRARY INTLIB FILE INTFIL.

EXTERNAL FORMAT ITMRSP RPG NAME ITMRSP

EXTERNAL FORMAT DTLRSP RPG NAME DTLRSP

EXTERNAL FORMAT DETACH RPG NAME DETACH

EXTERNAL FORMAT EOS RPG NAME EOS

EXTERNAL FORMAT EVKREQ RPG NAME EVKREQ

Figure D-16 (Part 1 of 13). Source Program Example — RSDINT

D-44 Intrasystem Communications Programming V4R1

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 3

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

EXTERNAL FORMAT ITMREQ RPG NAME ITMREQ

EXTERNAL FORMAT DTLREQ RPG NAME DTLREQ

EXTERNAL FORMAT TIMER RPG NAME TIMER

44ðð FDSPFIL CF E WORKSTN 1ð/13/87

 45ðð F KINFDS IODS 1ð/13/87

RECORD FORMAT(S): LIBRARY INTLIB FILE DSPFIL.

EXTERNAL FORMAT CIMENU RPG NAME CIMENU

EXTERNAL FORMAT DTLMNU RPG NAME DTLMNU

EXTERNAL FORMAT DTLSCR RPG NAME DTLSCR

EXTERNAL FORMAT ITMMNU RPG NAME ITMMNU

EXTERNAL FORMAT ITMSC2 RPG NAME ITMSC2

EXTERNAL FORMAT ITMSC3 RPG NAME ITMSC3

EXTERNAL FORMAT TIMOUT RPG NAME TIMOUT

46ðð FQPRINT O F 132 PRINTER ð2/13/89

 47ðð I\\ 1ð/13/87

 48ðð I\ \ ð3/17/89

49ðð I\ I N P U T S P E C I F I C A T I O N S \ ð3/17/89

 5ððð I\ \ ð3/17/89

51ðð I\ IODS : REDEFINES THE I/O FEEDBACK AREA OF THE DISPLAY \ ð3/17/89

52ðð I\ FILE. THIS AREA CONTAINS THE NAME OF THE LAST \ ð3/17/89

53ðð I\ RECORD PROCESSED. THIS FIELD IS CALLED RECID. \ ð3/17/89

54ðð I\ IOFB : REDEFINES THE I/O FEEDBACK AREA FOR THE ICF FILE. \ 1ð/ð5/9ð

 55ðð I\ \ ð3/17/89

 56ðð I\\ 1ð/13/87

 57ðð I\.2/ 1ð/13/87

Aðððððð INPUT FIELDS FOR RECORD ITMRSP FILE INTFIL FORMAT ITMRSP.

 Aððððð1 1 1 RECITM

 Aððððð2 2 7ðITEMNO

 Aððððð3 8 37 DESC

 Aððððð4 38 44ðQTYLST

 Aððððð5 45 51ðQTYOH

 Aððððð6 52 58ðQTYOO

 Aððððð7 59 65ðQTYBO

 Aððððð8 66 67 UNITQ

 Aððððð9 68 742PRð1

 Aðððð1ð 75 81ðPRð5

 Aðððð11 82 862UFRT

 Aðððð12 87 952SLSTM

 Aðððð13 96 1ð62SLSTY

 Aðððð14 1ð7 1152CSTTM

 Aðððð15 116 1262CSTTY

 Aðððð16 127 1312PRO

 Aðððð17 132 14ð2LOS

Aðððð18 141 196 FILL1

Bðððððð INPUT FIELDS FOR RECORD DTLRSP FILE INTFIL FORMAT DTLRSP.

 Bððððð1 1 1 RECCUS

 Bððððð2 2 7ðCUSTNO

 Bððððð3 8 37 DNAME

 Bððððð4 38 43ðDLSTOR

 Bððððð5 44 52ðDSLSTM

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 4

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 Bððððð6 53 61ðDSPMð1

 Bððððð7 62 7ððDSPMð2

 Bððððð8 71 79ðDSPMð3

 Bððððð9 8ð 9ððDSTTYD

 Bðððð1ð 91 93ðIDEPT

Bðððð11 94 15ð FILL2

Cðððððð INPUT FIELDS FOR RECORD DETACH FILE INTFIL FORMAT DETACH.

Dðððððð INPUT FIELDS FOR RECORD EOS FILE INTFIL FORMAT EOS.

Eðððððð INPUT FIELDS FOR RECORD EVKREQ FILE INTFIL FORMAT EVKREQ.

Fðððððð INPUT FIELDS FOR RECORD ITMREQ FILE INTFIL FORMAT ITMREQ.

 Fððððð1 1 6ðITEMNO

Gðððððð INPUT FIELDS FOR RECORD DTLREQ FILE INTFIL FORMAT DTLREQ.

 Gððððð1 1 6ðCUSTNO

Hðððððð INPUT FIELDS FOR RECORD TIMER FILE INTFIL FORMAT TIMER.

Iðððððð INPUT FIELDS FOR RECORD CIMENU FILE DSPFIL FORMAT CIMENU.

Iðððððð MENU FOR INQUIRY

 Iððððð1 3 3 \IN97

 Iððððð2 2 2 \IN98

 Iððððð3 1 1 \IN99

 Iððððð4 4 4 OPTION

Figure D-16 (Part 2 of 13). Source Program Example — RSDINT

 Appendix D. Program Examples D-45

Jðððððð INPUT FIELDS FOR RECORD DTLMNU FILE DSPFIL FORMAT DTLMNU.

Jðððððð BUYER INQUIRY SCREEN 1

 Jððððð1 3 3 \IN97

 Jððððð2 2 2 \IN98

 Jððððð3 1 1 \IN99

 Jððððð4 4 9ðCUSTNO

Kðððððð INPUT FIELDS FOR RECORD DTLSCR FILE DSPFIL FORMAT DTLSCR.

Kðððððð BUYER INQUIRY SCR. #2

 Kððððð1 3 3 \IN97

 Kððððð2 2 2 \IN98

 Kððððð3 1 1 \IN99

Lðððððð INPUT FIELDS FOR RECORD ITMMNU FILE DSPFIL FORMAT ITMMNU.

Lðððððð ITEM INQUIRY SCREEN ONE

 Lððððð1 3 3 \IN97

 Lððððð2 2 2 \IN98

 Lððððð3 1 1 \IN99

 Lððððð4 4 9ðITEMNO

Mðððððð INPUT FIELDS FOR RECORD ITMSC2 FILE DSPFIL FORMAT ITMSC2.

Mðððððð ITEM INQUIRY SCREEN TWO

 Mððððð1 3 3 \IN97

 Mððððð2 2 2 \IN98

 Mððððð3 1 1 \IN99

Nðððððð INPUT FIELDS FOR RECORD ITMSC3 FILE DSPFIL FORMAT ITMSC3.

Nðððððð ITEM INQUIRY SCREEN 3

 Nððððð1 3 3 \IN97

 Nððððð2 2 2 \IN98

 Nððððð3 1 1 \IN99

Oðððððð INPUT FIELDS FOR RECORD TIMOUT FILE DSPFIL FORMAT TIMOUT.

Oðððððð TIME OUT SCREEN

 Oððððð1 3 3 \IN97

 Oððððð2 2 2 \IN98

 Oððððð3 1 1 \IN99

 Oððððð4 4 4 TIMRSP

 58ðð IIODS DS 1ð/13/87

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 5

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

59ðð I 1 24ð FILLð1 1ð/13/87

6ððð I 261 268 RECID 1ð/13/87

61ðð I 271 415 FILLð2 1ð/13/87

 62ðð IIOFB DS 1ð/13/87

 63ðð I \ROUTINE LOC 1ð/14/87

 64ðð I \STATUS ERR 1ð/14/87

65ðð I 1 24ð FILLð3 1ð/13/87

 66ðð I 38 47 FMTNM 1ð/ð5/9ð

67ðð I 273 282 CMID 1ð/13/87

68ðð I 4ð1 4ð4 MAJMIN 1ð/13/87

69ðð I 4ð1 4ð2 MAJCOD 1ð/13/87

7ððð I 4ð3 4ð4 MINCOD 1ð/13/87

71ðð I 261 268 RECID2 1ð/13/87

72ðð I 271 415 FILLð4 1ð/13/87

 73ðð C\\ 1ð/13/87

 74ðð C\ \ ð3/17/89

75ðð C\ C A L C U L A T I O N S P E C I F I C A T I O N S \ ð3/17/89

 76ðð C\ \ ð3/17/89

77ðð C\ THE DISPLAY PROGRAM DEVICE IS IMPLICITLY ACQUIRED WHEN THE \ ð3/17/89

78ðð C\ FILE IS OPENED. \ ð3/17/89

 79ðð C\ \ ð3/17/89

8ððð C\ ALL OF THE ICF PROGRAM DEVICES ARE EXPLICITLY ACQUIRED. \ 1ð/ð5/9ð

 81ðð C\ \ ð3/17/89

82ðð C\ THE TARGET PROGRAM IS EVOKED TWICE TO ESTABLISH TWO \ 1ð/ð5/9ð

 83ðð C\ DIFFERENT TRANSACTIONS. \ 1ð/ð5/9ð

 84ðð C\ \ ð3/17/89

85ðð C\ THE MAIN INQUIRY MENU (CIMENU) IS WRITTEN TO THE USER'S \ ð3/17/89

 86ðð C\ DISPLAY. \ ð3/17/89

 87ðð C\ \ ð3/17/89

 88ðð C\\ 1ð/13/87

 89ðð \.3/ 1ð/13/87

 9ððð C ENTRY TAG 1ð/13/87

 91ðð C 'ICFðð 'ACQ INTFIL 1ST SESSION 11/21/88

 92ðð C 'ICFð1 'ACQ INTFIL 2ND SESSION 11/21/88

 93ðð C MOVEL'ICFðð 'CMID 1ST PROGRAM 1ð/13/87

 94ðð C EXSR EVKSR CALL EVOKE 1ð/13/87

 95ðð C MOVEL'ICFð1 'CMID 2ND PROGRAM 1ð/13/87

 96ðð C EXSR EVKSR CALL EVOKE 1ð/13/87

 97ðð C MAIN TAG 1ð/13/87

 98ðð C WRITECIMENU 1ð/13/87

Figure D-16 (Part 3 of 13). Source Program Example — RSDINT

D-46 Intrasystem Communications Programming V4R1

 99ðð C\\ 1ð/13/87

 1ðððð C\ \ ð3/17/89

1ð1ðð C\ DETERMINE USER'S REQUEST \ ð3/17/89

 1ð2ðð C\ \ ð3/17/89

1ð3ðð C\ A READ TO THE DISPLAY DEVICE IS ISSUED TO RECEIVE THE \ ð3/17/89

1ð4ðð C\ USER'S REQUEST. THE TYPE OF REQUEST MADE IS BASED ON THE \ ð3/17/89

1ð5ðð C\ DISPLAY FORMAT CURRENTLY ON THE SCREEN. THE RECORD FORMAT \ ð3/17/89

1ð6ðð C\ NAME IS EXTRACTED FROM THE I/O FEEDBACK AREA AND USED TO \ ð3/17/89

1ð7ðð C\ DETERMINE WHAT ACTION SHOULD BE TAKEN NEXT. \ ð3/17/89

 1ð8ðð C\ \ ð3/17/89

 1ð9ðð C\\ 1ð/13/87

 11ððð \.4/ 1ð/13/87

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 6

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 111ðð C READRQ TAG 1ð/13/87

112ðð C SETOF 8889 TIMEOUT IND 1 2 1ð/13/87

 113ðð C READ DSPFIL 87 3 1ð/13/87

114ðð C RECID CABEQ'CIMENU 'MENU MAIN MENU ? 1ð/13/87

115ðð C RECID CABEQ'ITMMNU 'ITMIN ITEM MENU ? 1ð/13/87

 116ðð C RECID CABEQ'ITMSC2 'ITMRTN ITM SCR? 1ð/13/87

 117ðð C RECID CABEQ'ITMSC3 'ITMRTN ITM SCR? 1ð/13/87

 118ðð C RECID CABEQ'DTLMNU 'DTLIN DETAIL SCR? 1ð/13/87

 119ðð C RECID CABEQ'DTLSCR 'DTLRTN CUST SCR? 1ð/13/87

12ððð C WRITECIMENU MAIN MENU IF 1ð/13/87

121ðð C GOTO READRQ THERE IS ERR 1ð/13/87

 122ðð C\\ 1ð/13/87

 123ðð C\ \ ð3/17/89

 124ðð C\ MAIN MENU \ ð3/17/89

 125ðð C\ \ ð3/17/89

126ðð C\ THE MAIN MENU IS READ TO DETERMINE THE REQUEST ENTERED \ ð3/17/89

127ðð C\ BY THE USER. IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM \ ð3/17/89

128ðð C\ IS ENDED. IF OPTION = 1, AN ITEM INQUIRY MENU IS WRITTEN \ ð3/17/89

129ðð C\ TO SCREEN. IF OPTION = 2, A BUYER'S INQUIRY MENU IS \ ð3/17/89

13ððð C\ WRITTEN TO THE SCREEN. \ ð3/17/89

 131ðð C\ \ ð3/17/89

 132ðð C\\ 1ð/13/87

 133ðð \.5/ 1ð/13/87

 134ðð C MENU TAG 1ð/13/87

 135ðð C \IN99 CABEQ'1' END JOB ENDS 1ð/13/87

 136ðð C OPTION IFEQ '1' Bðð1 1ð/13/87

137ðð C WRITEITMMNU ITEM MENU ðð1 1ð/13/87

 138ðð C ELSE Xðð1 1ð/13/87

139ðð C WRITEDTLMNU CUST MENU ðð1 1ð/13/87

 14ððð C END Eðð1 1ð/13/87

 141ðð C GOTO READRQ 1ð/13/87

 142ðð C\\ ð3/17/89

 143ðð C\ \ ð3/17/89

 144ðð C\ ITEM INQUIRY \ ð3/17/89

 145ðð C\ \ ð3/17/89

146ðð C\ THE ITEM NUMBER REQUESTED BY THE USER ON THE ITEM INQUIRY \ ð3/17/89

147ðð C\ SCREEN IS CHECKED. THIS IS DETERMINED BY THE \ ð3/17/89

148ðð C\ DISPLAY RECORD FORMAT BEING PROCESSED - IN THIS CASE \ ð3/17/89

 149ðð C\ ITMMNU. \ ð3/17/89

 15ððð C\ \ ð3/17/89

151ðð C\ IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM IS ENDED. IF \ ð3/17/89

152ðð C\ CMD 2 IS PRESSED, THE ITEM INQUIRY REQUEST IS CANCELED, \ ð3/17/89

153ðð C\ AND THE MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. \ ð3/17/89

 154ðð C\ \ ð3/17/89

155ðð C\ IF AN ITEM NUMBER IS ENTERED, AN ITEM INQUIRY REQUEST IS \ ð3/17/89

156ðð C\ SENT TO THE APPROPRIATE TARGET PROGRAM. \ ð3/17/89

 157ðð C\ \ ð3/17/89

158ðð C\ IF A FAIL INDICATION IS RECEIVED, A FRESH ITEM MENU IS \ ð3/17/89

159ðð C\ WRITTEN TO THE DISPLAY DEVICE. \ ð3/17/89

 16ððð C\ \ ð3/17/89

161ðð C\ IF AN ERROR OCCURS, THE ERROR IS PRINTED AND THE JOB \ ð3/17/89

 162ðð C\ IS ENDED. \ ð3/17/89

 163ðð C\ \ ð3/17/89

 164ðð C\\ 1ð/13/87

Figure D-16 (Part 4 of 13). Source Program Example — RSDINT

 Appendix D. Program Examples D-47

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 7

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 165ðð \.6/ 1ð/13/87

 166ðð C ITMIN TAG 1ð/13/87

167ðð C \IN99 CABEQ'1' END EXIT ON CMD3 1ð/13/87

 168ðð C \IN98 IFEQ '1' Bðð1 1ð/13/87

169ðð C WRITECIMENU MAIN MENU ðð1 1ð/13/87

 17ððð C GOTO READRQ ðð1 1ð/13/87

 171ðð C END Eðð1 1ð/13/87

 172ðð C MOVEL'ICFð1 'CMID 1ð/13/87

 173ðð C XITMIN TAG 1ð/13/87

174ðð C WRITEITMREQ INQ W/INVITE 11/28/88

 175ðð C MAJCOD CABGE'ð4' ERROR ERROR RTN 1ð/13/87

 176ðð C TRY89 TAG 1ð/13/87

 177ðð C SETOF 89 3 1ð/13/87 OQ

 178ðð C WRITETIMER START TIMER 11/28/88

 179ðð C MOVEL' 'CMID 12/ð1/88

18ððð C READ INTFIL 891ðRECV ITM INFO 2 3 11/3ð/88

181ðð C 89 EXSR ERRCHK CHCK ERR INFO 1ð/13/87

 182ðð C \IN25 IFEQ '1' RECEIVE FAIL Bðð1 11/16/88

183ðð C WRITEITMMNU ITEM MENU ðð1 11/16/88

 184ðð C GOTO READRQ ðð1 11/16/88

 185ðð C END Eðð1 11/16/88

 186ðð C MAJMIN CABGE'ð3ðð' ITMIN NODATATRYAGN 1ð/13/87

 187ðð C MAJCOD CABGE'ð4' ERROR ERROR RTN 1ð/13/87

 188ðð C RECID2 CABNE'ITMRSP' RECERR PRINT MSG 1ð/13/87

 189ðð C\\ ð3/17/89

 19ððð C\ \ ð3/17/89

191ðð C\ PROCESS ITEM INFORMATION \ ð3/17/89

 192ðð C\ \ ð3/17/89

193ðð C\ THE ITEM RECORD RECEIVED FROM THE TARGET PROGRAM AND THE \ ð3/17/89

194ðð C\ INFORMATION ABOUT THE ITEM IS PROCESSED AND DISPLAYED. \ ð3/17/89

195ðð C\ IF A FAIL INDICATION IS RECEIVED FROM THE TARGET PROGRAM, \ 1ð/ð5/9ð

196ðð C\ ITEM REQUESTED WAS NOT FOUND, AND A FRESH ITEM MENU \ ð3/17/89

197ðð C\ IS DISPLAYED IF ITEMNO IS ð OR LESS, IT IS AN INVALID \ ð3/17/89

198ðð C\ REQUEST AND A FRESH ITEM MENU IS WRITTEN TO THE SCREEN. \ ð3/17/89

199ðð C\ IF THE REQUEST IS VALID, VALUES ARE CALCULATED BASED ON \ ð3/17/89

2ðððð C\ THE INFORMATION RECEIVED. \ ð3/17/89

 2ð1ðð C\ \ ð3/17/89

 2ð2ðð C\\ ð3/17/89

 2ð3ðð \.7/ 1ð/13/87

 2ð4ðð C ITMOUT TAG 1ð/13/87

 2ð5ðð C ITEMNO IFLE ðððððð Bðð1 1ð/13/87

2ð6ðð C WRITEITMMNU ITEM MENU ðð1 1ð/13/87

 2ð7ðð C GOTO READRQ READ DISPLY ðð1 1ð/13/87

 2ð8ðð C ELSE Xðð1 1ð/13/87

 2ð9ðð C Z-ADDð QAVAIL 7ð QTY AVAIL. ðð1 1ð/13/87

 21ððð C ADD QTYOH QAVAIL ðð1 1ð/13/87

 211ðð C SUB QTYOO QAVAIL ðð1 1ð/13/87

 212ðð C ADD QTYBO QAVAIL ðð1 1ð/13/87

 213ðð C MOVELDESC DSC ðð1 1ð/13/87

 214ðð C MOVE QTYOO QTYO ðð1 1ð/13/87

 215ðð C MOVE QTYOH QTYH ðð1 1ð/13/87

 216ðð C MOVE QTYBO QTYB ðð1 1ð/13/87

 217ðð C MOVE UNITQ UNT ðð1 1ð/13/87

 218ðð C MOVE PRð1 PR1 ðð1 1ð/13/87

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 8

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 219ðð C MOVE PRð5 PR5 ðð1 1ð/13/87

 22ððð C MOVE UFRT UFR ðð1 1ð/13/87

221ðð C WRITEITMSC2 DSP DETAIL ðð1 1ð/13/87

 222ðð C GOTO READRQ ðð1 1ð/13/87

 223ðð C\ END 1ð/13/87

Figure D-16 (Part 5 of 13). Source Program Example — RSDINT

D-48 Intrasystem Communications Programming V4R1

 224ðð C\\ 1ð/13/87

 225ðð C\ \ ð3/17/89

226ðð C\ ADDITIONAL ITEM INFORMATION \ ð3/17/89

 227ðð C\ \ ð3/17/89

228ðð C\ ADDITIONAL ITEM INFORMATION IS PROCESSED AND THE RESULT \ ð3/17/89

229ðð C\ DISPLAYED ON THE SCREEN WHEN A RESPONSE IS READ \ ð3/17/89

23ððð C\ FROM THE DISPLAY STATION WITH AN ITEM SCREEN RECORD \ ð3/17/89

 231ðð C\ FORMAT. \ ð3/17/89

 232ðð C\ \ ð3/17/89

233ðð C\ IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM IS ENDED. \ ð3/17/89

 234ðð C\ \ ð3/17/89

235ðð C\ IF CMD 2 (\IN98) IS PRESSED, THE ITEM INQUIRY IS \ ð3/17/89

236ðð C\ ENDED, AND THE MAIN MENU (CIMENU) IS WRITTEN TO THE \ ð3/17/89

 237ðð C\ SCREEN. \ ð3/17/89

 238ðð C\ \ ð3/17/89

239ðð C\ IF CMD 3 (\IN97) IS PRESSED, THE ITEM INQUIRY MENU IS \ ð3/17/89

24ððð C\ WRITTEN ON THE SCREEN. \ ð3/17/89

 241ðð C\ \ ð3/17/89

242ðð C\ IF 'ENTER' IS PRESSED WHILE SCREEN 2 FOR ITEM REQUESTED IS\ ð3/17/89

243ðð C\ CURRENTLY DISPLAYED, MORE INFORMATION IS CALCULATED AND \ ð3/17/89

 244ðð C\ DISPLAYED. \ ð3/17/89

 245ðð C\ \ ð3/17/89

246ðð C\ IF 'ENTER' IS PRESSED WHILE SCREEN 3 FOR ITEM REQUESTED IS\ ð3/17/89

247ðð C\ CURRENTLY DISPLAYED, THEN THE ITEM INQUIRY MENU \ ð3/17/89

248ðð C\ IS WRITTEN TO THE SCREEN. \ ð3/17/89

 249ðð C\ \ ð3/17/89

 25ððð C\\ ð3/17/89

 251ðð \.8/ 1ð/13/87

 252ðð C ITMRTN TAG ðð1 1ð/13/87

 253ðð C \IN99 CABEQ'1' END JOB ENDS ðð1 1ð/13/87

 254ðð C \IN98 IFEQ '1' Bðð2 1ð/13/87

255ðð C WRITECIMENU MAIN MENU ðð2 1ð/13/87

 256ðð C GOTO READRQ ðð2 1ð/13/87

 257ðð C END Eðð2 1ð/13/87

258ðð C \IN97 IFEQ '1' CMD 3 ? Bðð2 1ð/13/87

259ðð C RECID IFEQ 'ITMSC2 ' ITM SCR 2 ? Bðð3 1ð/13/87

26ððð C WRITEITMMNU YES,THEN ITS ðð3 1ð/13/87

 261ðð C GOTO READRQ ITEM MENU ðð3 1ð/13/87

 262ðð C END Eðð3 1ð/13/87

 263ðð C END Eðð2 1ð/13/87

264ðð C RECID IFEQ 'ITMSC3 ' ITM SCR 3 ? Bðð2 1ð/13/87

265ðð C WRITEITMMNU YES,THEN ITS ðð2 1ð/13/87

 266ðð C GOTO READRQ ITEM MENU ðð2 1ð/13/87

 267ðð C END Eðð2 1ð/13/87

 268ðð C SLSTM SUB CSTTM PROFM 92 PROF MONTH ðð1 1ð/13/87

 269ðð C MULT 1ðð PROFM ðð1 1ð/13/87

27ððð C SLSTM COMP ð 46 3 ðð1 1ð/13/87

 271ðð C N46 PROFM DIV SLSTM PROFM PROF PCT ðð1 1ð/13/87

 272ðð C QTYLST MULT PRð1 LOSTS LOST SALES ðð1 1ð/13/87

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 9

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 273ðð C MOVE SLSTM SLSM ðð1 1ð/13/87

 274ðð C MOVE SLSTY SLSY ðð1 1ð/13/87

 275ðð C MOVE CSTTM CSTM ðð1 1ð/13/87

 276ðð C MOVE PROFM PROFIT ðð1 1ð/13/87

 277ðð C MOVE CSTTY CSTY ðð1 1ð/13/87

278ðð C WRITEITMSC3 DET ITM INF ðð1 1ð/13/87

 279ðð C GOTO READRQ ðð1 1ð/13/87

 28ððð C\\ 1ð/13/87

 281ðð C\ \ ð3/17/89

 282ðð C\ BUYER INQUIRY \ ð3/17/89

 283ðð C\ \ ð3/17/89

284ðð C\ THE REQUEST FROM THE BUYER INQUIRY MENU IS PROCESSED. \ ð3/17/89

 285ðð C\ \ ð3/17/89

286ðð C\ IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM IS ENDED. \ ð3/17/89

 287ðð C\ \ ð3/17/89

288ðð C\ IF CMD 2 (\IN98) IS PRESSED, THE BUYER INQUIRY IS ENDED, \ ð3/17/89

289ðð C\ AND THE MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. \ ð3/17/89

 29ððð C\ \ ð3/17/89

291ðð C\ IF A BUYER NUMBER IS ENTERED, THE BUYER INQUIRY \ ð3/17/89

292ðð C\ REQUEST IS SENT TO THE TARGET PROGRAM. \ ð3/17/89

 293ðð C\ \ ð3/17/89

294ðð C\ A READ TO THE ICF PROGRAM DEVICE IS ISSUED TO RECEIVE \ 1ð/ð5/9ð

295ðð C\ THE INFORMATION FROM THE TARGET PROGRAM. \ ð3/17/89

 296ðð C\ \ ð3/17/89

297ðð C\ IF A FAIL INDICATION IS RECEIVED, A FRESH MAIN MENU IS \ ð3/17/89

298ðð C\ WRITTEN TO THE DISPLAY DEVICE. \ ð3/17/89

 299ðð C\ \ ð3/17/89

Figure D-16 (Part 6 of 13). Source Program Example — RSDINT

 Appendix D. Program Examples D-49

3ðððð C\ IF AN ERROR OCCURS, THE ERROR IS PRINTED AND THE JOB IS \ ð3/17/89

 3ð1ðð C\ ENDED. \ ð3/17/89

 3ð2ðð C\ \ ð3/17/89

 3ð3ðð C\\ 1ð/13/87

 3ð4ðð \.9/ 1ð/13/87

 3ð5ðð C DTLIN TAG ðð1 1ð/13/87

 3ð6ðð C \IN99 CABEQ'1' END JOB ENDS ðð1 1ð/13/87

 3ð7ðð C \IN98 IFEQ '1' Bðð2 1ð/13/87

3ð8ðð C WRITECIMENU MAIN MENU ðð2 1ð/13/87

 3ð9ðð C GOTO READRQ ðð2 1ð/13/87

 31ððð C END Eðð2 1ð/13/87

 311ðð C EVDTL TAG ðð1 1ð/13/87

 312ðð C MOVEL'ICFðð 'CMID ðð1 1ð/13/87

313ðð C WRITEDTLREQ CUST INQ ðð1 1ð/13/87

 314ðð C MAJCOD CABGE'ð4' ERROR ERROR RTN ðð1 1ð/13/87

 315ðð C TRY88 TAG ðð1 1ð/13/87

316ðð C SETOF 88 3 ðð1 1ð/13/87

 317ðð C WRITETIMER START TIMER ðð1 11/28/88

 318ðð C MOVEL' 'CMID ðð1 12/ð1/88

319ðð C READ INTFIL 881ðRCV CUS INF 2 3 ðð1 12/ð1/88

 32ððð C 88 EXSR ERRCHK CHECK ERR ðð1 1ð/13/87

 321ðð C \IN25 IFEQ '1' RECEIVE FAIL Bðð2 11/16/88

322ðð C SETOF 66 3 ðð2 ð3/17/89

323ðð C WRITECIMENU MAIN MENU ðð2 11/16/88

 324ðð C GOTO READRQ ðð2 11/16/88

 325ðð C END Eðð2 11/16/88

 326ðð C MAJMIN CABGE'ð3ðð' EVDTL NODATATRYAGN ðð1 1ð/13/87

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 1ð

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 327ðð C MAJCOD CABGE'ð4' ERROR ERROR RTN ðð1 1ð/13/87

 328ðð C RECID2 CABNE'DTLRSP' RECERR PRINT MSG ðð1 1ð/13/87

 329ðð C\\ 1ð/13/87

 33ððð C\ \ ð3/17/89

331ðð C\ PROCESS BUYER INFORMATION \ ð3/17/89

 332ðð C\ \ ð3/17/89

333ðð C\ THE BUYER DATA RECEIVED FROM THE TARGET PROGRAM \ ð3/17/89

334ðð C\ IS PROCESSED AND THE INFORMATION IS WRITTEN TO THE \ ð3/17/89

 335ðð C\ SCREEN. \ ð3/17/89

 336ðð C\ \ ð3/17/89

 337ðð C\\ 1ð/13/87

 338ðð \.1ð/ 1ð/13/87

 339ðð C DTOUT TAG ðð1 1ð/13/87

 34ððð C MOVE CUSTNO CUSTN ðð1 1ð/13/87

 341ðð C MOVELDNAME CNAME ðð1 ð3/17/89

 342ðð C MOVE DLSTOR DLSTR ðð1 1ð/13/87

 343ðð C MOVE DSLSTM DSLSM ðð1 1ð/13/87

 344ðð C MOVE DSPMð1 DSPM1 ðð1 1ð/13/87

 345ðð C MOVE DSPMð2 DSPM2 ðð1 1ð/13/87

 346ðð C MOVE DSTTYD DSTYD ðð1 1ð/13/87

 347ðð C MOVE IDEPT DEPT ðð1 1ð/13/87

348ðð C WRITEDTLSCR BLD CUS SCR ðð1 1ð/13/87

 349ðð C GOTO READRQ ðð1 1ð/13/87

 35ððð C\\ 1ð/13/87

 351ðð C\ \ ð3/17/89

352ðð C\ THIS ROUTINE HANDLES THE USER'S REQUEST FOLLOWING THE \ ð3/17/89

353ðð C\ DISPLAY OF THE BUYER INFORMATION. CMD KEY 1 WILL \ ð3/17/89

354ðð C\ EXIT THE JOB, CMD KEY 2 WILL DISPLAY THE MAIN MENU, AND \ ð3/17/89

355ðð C\ "ENTER" WILL BRING UP THE BUYER INQUIRY MENU. \ ð3/17/89

 356ðð C\ \ ð3/17/89

 357ðð C\\ 1ð/13/87

 358ðð \.11/ 1ð/13/87

 359ðð C DTLRTN TAG ðð1 1ð/13/87

 36ððð C \IN99 CABEQ'1' END JOB ENDS ðð1 1ð/13/87

 361ðð C \IN98 IFEQ '1' Bðð2 1ð/13/87

362ðð C WRITECIMENU MAIN MENU ðð2 1ð/13/87

 363ðð C GOTO READRQ ðð2 1ð/13/87

 364ðð C END Eðð2 1ð/13/87

365ðð C WRITEDTLMNU BUYER INQ ðð1 11/21/88

 366ðð C GOTO READRQ ðð1 1ð/13/87

 367ðð C\ 1ð/13/87

 368ðð C\\ 1ð/13/87

 369ðð C\ \ ð3/17/89

37ððð C\ WHEN AN I/O OPERATION ERROR IS DETECTED, A MESSAGE IS \ ð3/17/89

371ðð C\ PRINTED AND THE TRANSACTION AND SESSION ARE ENDED \ ð3/17/89

372ðð C\ WITH EACH OF THE TARGET PROGRAMS. \ ð3/17/89

 373ðð C\ \ ð3/17/89

Figure D-16 (Part 7 of 13). Source Program Example — RSDINT

D-50 Intrasystem Communications Programming V4R1

 374ðð C\\ 1ð/13/87

 375ðð \.12/ 1ð/13/87

 376ðð C RECERR TAG ðð1 1ð/13/87

 377ðð C EXCPTRECER WRONG RECID ðð1 ð3/17/89

 378ðð C GOTO END END PROGRAM ðð1 1ð/13/87

 379ðð C ERROR TAG ðð1 1ð/13/87

 38ððð C EXCPTMMERR ðð1 ð3/17/89

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 11

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 381ðð C END TAG ðð1 1ð/13/87

 382ðð C MOVEL'ICFðð 'CMID ðð1 1ð/13/87

383ðð C WRITEDETACH DET 1ST SES ðð1 ð3/17/89

 384ðð C MOVEL'ICFð1 'CMID ðð1 1ð/13/87

385ðð C WRITEDETACH DET 2ND SES ðð1 ð3/17/89

 386ðð C ABORT TAG ðð1 1ð/13/87

387ðð C 'ICFðð 'REL INTFIL 86 REL 1ST SES 2 ðð1 11/21/88

388ðð C 'ICFð1 'REL INTFIL 86 REL 2ND SES 2 ðð1 11/21/88

 389ðð C FORCE TAG ðð1 1ð/13/87

39ððð C SETON LR 1 ðð1 1ð/13/87

 391ðð C RETRN ðð1 1ð/13/87

 392ðð C END Eðð1 1ð/13/87

 393ðð C\\ 1ð/13/87

 394ðð C\ \ ð3/17/89

395ðð C\ THIS SUBROUTINE IS CALLED TO EVOKE THE TARGET PROGRAM. \ ð3/17/89

396ðð C\ THE SAME TARGET PROGRAM (ICFLIB/RTDMULCL) IS EVOKED \ ð3/17/89

397ðð C\ TWO DIFFERENT TIMES CREATING TWO JOBS. THE PROGRAM DEVICE \ ð3/17/89

398ðð C\ IDENTIFIES WHICH SESSION SHOULD BE EVOKED. THE PROGRAM \ ð3/17/89

399ðð C\ DEVICE WAS SPECIFIED IN CMID PRIOR TO CALLING THIS \ ð3/17/89

 4ðððð C\ ROUTINE. \ ð3/17/89

 4ð1ðð C\ \ ð3/17/89

 4ð2ðð C\\ 1ð/13/87

 4ð3ðð \.13/ 1ð/13/87

 4ð4ðð C EVKSR BEGSR 1ð/13/87

 4ð5ðð C MOVE \BLANK PGMID BLANK OUT 1ð/13/87

 4ð6ðð C MOVE \BLANK LIB BLANK OUT 1ð/13/87

 4ð7ðð C MOVEL'RTDINTCL'PGMID PROGR NAME 12/12/88

 4ð8ðð C MOVEL'INTLIB 'LIB LIBRARY ð2/13/89

 4ð9ðð C WRITEEVKREQ 1ð/13/87

41ððð C MAJCOD CABGE'ð4' END TO END PGM 1ð/13/87

 411ðð C ENDSR 1ð/13/87

 412ðð C\\ 1ð/13/87

 413ðð C\ \ ð3/17/89

414ðð C\ THIS SUBROUTINE IS CALLED TO PERFORM FURTHER CHECKS ON \ ð3/17/89

415ðð C\ FILE ERRORS RESULTING FROM THE READ OPERATION ISSUED TO \ ð3/17/89

416ðð C\ THE PROGRAM DEVICE. THIS ROUTINE CHECKS FOR THE TIME \ ð3/17/89

417ðð C\ OUT INDICATION. IF IT IS, A MESSAGE IS SENT TO THE USER \ ð3/17/89

418ðð C\ DISPLAY SCREEN REQUESTING ACTION, OTHERWISE PROGRAM ENDS. \ ð3/17/89

419ðð C\ ALSO, IF A FAIL INDICATION IS RECEIVED, A FRESH MAIN MENU \ ð3/17/89

42ððð C\ IS WRITTEN TO THE DISPLAY DEVICE. \ ð3/17/89

 421ðð C\ \ ð3/17/89

 422ðð C\\ 1ð/13/87

 423ðð \.14/ 1ð/13/87

 424ðð C ERRCHK BEGSR 1ð/13/87

 425ðð C MAJMIN IFEQ 'ð31ð' TIMER EXPD? Bðð1 1ð/13/87

 426ðð C CHKAGN TAG ðð1 1ð/13/87

427ðð C WRITETIMOUT DISPLAY MSG ðð1 1ð/13/87

428ðð C READ DSPFIL 86READ REPLY 3 ðð1 1ð/13/87

 429ðð C 88 TIMRSP CABEQ'1' TRY88 CUST INQUIR ðð1 1ð/13/87

 43ððð C 89 TIMRSP CABEQ'1' TRY89 ITEM INQUIR ðð1 1ð/13/87

 431ðð C TIMRSP IFEQ '2' END PROGRAM Bðð2 1ð/13/87

 432ðð C WRITEEOS END SESSION ðð2 1ð/13/87

 433ðð C GOTO FORCE END PROGRAM ðð2 1ð/13/87

 434ðð C END Eðð2 1ð/13/87

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 12

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 435ðð C GOTO CHKAGN ASK AGAIN ðð1 1ð/13/87

 436ðð C END Eðð1 1ð/13/87

 437ðð C \IN25 IFEQ '1' RECEIVE FAIL Bðð1 11/16/88

438ðð C WRITECIMENU MAIN MENU ðð1 11/16/88

 439ðð C GOTO READRQ ðð1 11/16/88

 44ððð C END Eðð1 11/16/88

 441ðð C GOTO ERROR ABEND 1ð/13/87

 442ðð C ENDSR 1ð/13/87

Figure D-16 (Part 8 of 13). Source Program Example — RSDINT

 Appendix D. Program Examples D-51

 443ðð C\\ 1ð/14/87

 444ðð C\ \ ð3/17/89

445ðð C\ THIS IS THE PROGRAM ERROR SUBROUTINE THAT RECEIVES \ ð3/17/89

446ðð C\ CONTROL WHEN AN ERROR OCCURS AFTER AN I/O OPERATION \ ð3/17/89

447ðð C\ IS ISSUED TO THE PROGRAM DEVICE AND THERE IS A NON- \ ð3/17/89

448ðð C\ ZERO VALUE IN THE RPG STATUS FIELD (ERR). \ ð3/17/89

449ðð C\ THIS ROUTINE CHECKS FOR STATUS VALUES THAT RELATE TO \ ð3/17/89

 45ððð C\ ICF OPERATIONS. \ 1ð/ð5/9ð

451ðð C\ IF THE PROGRAM DEVICE IS ALREADY ACQUIRED, THE ERROR IS \ ð3/17/89

452ðð C\ IGNORED, OTHERWISE, THE PROGRAM IS TERMINATED. \ ð3/17/89

 453ðð C\ \ ð3/17/89

 454ðð C\\ 1ð/14/87

 455ðð \.15/ 1ð/14/87

 456ðð C \PSSR BEGSR 1ð/14/87

457ðð C MOVE ' ' RETURN 6 DEFAULT 1ð/14/87

 458ðð C ERR CABEQð1285 ENDPSR ALREADY ACQ? 1ð/14/87

 459ðð C MOVE '\CANCL' RETURN JOB ENDS 1ð/14/87

46ððð C ENDPSR ENDSRRETURN BACK TO MAIN ð2/13/89

 461ðð C\\ 1ð/13/87

462ðð OQPRINT E 1 MMERR 1ð/13/87

463ðð O 21 'COMMUNICATION ERROR.' 1ð/13/87

 464ðð O 34 'MAJOR/MINOR:' 1ð/13/87

 465ðð O MAJCOD 37 1ð/13/87

 466ðð O 38 '/' 1ð/13/87

 467ðð O MINCOD 4ð 1ð/13/87

 468ðð O 49 'FORMAT:' 1ð/13/87

 469ðð O FMTNM 6ð 1ð/13/87

 47ððð O 69 'PGMDEV:' 1ð/13/87

 471ðð O CMID 8ð 1ð/13/87

 472ðð O E 1 RECER 1ð/13/87

473ðð O 2ð 'UNMATCH RECD FORMAT' 1ð/13/87

474ðð O 31 '-JOB ENDS.' 1ð/13/87

 475ðð O MAJCOD 37 1ð/13/87

 476ðð O 38 '/' 1ð/13/87

 477ðð O MINCOD 4ð 1ð/13/87

 478ðð O 49 'FORMAT:' 1ð/13/87

 479ðð O RECID2 6ð 1ð/13/87

 48ððð O 69 'PGMDEV:' 1ð/13/87

 481ðð O CMID 8ð 1ð/13/87

\ 61ð3 481ð1 OVERFLOW INDICATOR OA ASSIGNED TO FILE QPRINT.

Pðððððð OUTPUT FIELDS FOR RECORD DETACH FILE INTFIL FORMAT DETACH.

Qðððððð OUTPUT FIELDS FOR RECORD EOS FILE INTFIL FORMAT EOS.

Rðððððð OUTPUT FIELDS FOR RECORD EVKREQ FILE INTFIL FORMAT EVKREQ.

 Rððððð1 PGMID 1ð CHAR 1ð

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 13

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 Rððððð2 LIB 2ð CHAR 1ð

Sðððððð OUTPUT FIELDS FOR RECORD ITMREQ FILE INTFIL FORMAT ITMREQ.

 Sððððð1 ITEMNO 6 ZONE 6,ð

Tðððððð OUTPUT FIELDS FOR RECORD DTLREQ FILE INTFIL FORMAT DTLREQ.

 Tððððð1 CUSTNO 6 ZONE 6,ð

Uðððððð OUTPUT FIELDS FOR RECORD TIMER FILE INTFIL FORMAT TIMER.

Vðððððð OUTPUT FIELDS FOR RECORD CIMENU FILE DSPFIL FORMAT CIMENU.

Vðððððð MENU FOR INQUIRY

Wðððððð OUTPUT FIELDS FOR RECORD DTLMNU FILE DSPFIL FORMAT DTLMNU.

Wðððððð BUYER INQUIRY SCREEN 1

Xðððððð OUTPUT FIELDS FOR RECORD DTLSCR FILE DSPFIL FORMAT DTLSCR.

Xðððððð BUYER INQUIRY SCR. #2

 Xððððð1 CUSTN 6 CHAR 6

 Xððððð2 DEPT 9 ZONE 3,ð

 Xððððð3 DLSTR 15 ZONE 6,ð

 Xððððð4 DSLSM 24 ZONE 9,ð

 Xððððð5 DSPM1 33 ZONE 9,ð

 Xððððð6 DSPM2 42 ZONE 9,ð

 Xððððð7 DSPM3 51 ZONE 9,ð

 Xððððð8 DSTYD 62 ZONE 11,ð

 Xððððð9 CNAME 67 CHAR 5

Yðððððð OUTPUT FIELDS FOR RECORD ITMMNU FILE DSPFIL FORMAT ITMMNU.

Yðððððð ITEM INQUIRY SCREEN ONE

Zðððððð OUTPUT FIELDS FOR RECORD ITMSC2 FILE DSPFIL FORMAT ITMSC2.

Zðððððð ITEM INQUIRY SCREEN TWO

 Zððððð1 DSC 3ð CHAR 3ð

 Zððððð2 QAVAIL 37 ZONE 7,ð

 Zððððð3 QTYH 44 ZONE 7,ð

 Zððððð4 QTYO 51 ZONE 7,ð

 Zððððð5 QTYB 58 ZONE 7,ð

 Zððððð6 UNT 6ð CHAR 2

 Zððððð7 PR1 67 ZONE 7,2

 Zððððð8 PR5 74 ZONE 7,ð

 Zððððð9 UFR 79 ZONE 5,2

Figure D-16 (Part 9 of 13). Source Program Example — RSDINT

D-52 Intrasystem Communications Programming V4R1

1ðððððð OUTPUT FIELDS FOR RECORD ITMSC3 FILE DSPFIL FORMAT ITMSC3.

1ðððððð ITEM INQUIRY SCREEN 3

 1ððððð1 SLSM 9 ZONE 9,2

 1ððððð2 SLSY 2ð ZONE 11,2

 1ððððð3 CSTM 29 ZONE 9,2

 1ððððð4 CSTY 4ð ZONE 11,2

 1ððððð5 PROFIT 45 ZONE 5,2

 1ððððð6 LOSTS 54 ZONE 9,2

2ðððððð OUTPUT FIELDS FOR RECORD TIMOUT FILE DSPFIL FORMAT TIMOUT.

2ðððððð TIME OUT SCREEN

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð89 39ðð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE INTFIL.

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 14

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð2 DSPFIL WORKSTN 44ððD 113ðð 428ðð

CIMENU 44ððD Iðððððð 98ðð 12ððð 169ðð

255ðð 3ð8ðð 323ðð 362ðð 438ðð

 Vðððððð

DTLMNU 44ððD Jðððððð 139ðð 365ðð Wðððððð

 DTLSCR 44ððD Kðððððð 348ðð Xðððððð

ITMMNU 44ððD Lðððððð 137ðð 183ðð 2ð6ðð

 26ððð 265ðð Yðððððð

 ITMSC2 44ððD Mðððððð 221ðð Zðððððð

 ITMSC3 44ððD Nðððððð 278ðð 1ðððððð

 TIMOUT 44ððD Oðððððð 427ðð 2ðððððð

 ð1 INTFIL WORKSTN 39ððD 91ðð 92ðð 18ððð 319ðð

 387ðð 388ðð

DETACH 39ððD Cðððððð 383ðð 385ðð Pðððððð

 DTLREQ 39ððD Gðððððð 313ðð Tðððððð

 DTLRSP 39ððD Bðððððð

 EOS 39ððD Dðððððð 432ðð Qðððððð

 EVKREQ 39ððD Eðððððð 4ð9ðð Rðððððð

 ITMREQ 39ððD Fðððððð 174ðð Sðððððð

 ITMRSP 39ððD Aðððððð

TIMER 39ððD Hðððððð 178ðð 317ðð Uðððððð

 ð3 QPRINT PRINTER 46ððD 462ðð 472ðð 481ð1

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

\IN25 A(1) 182ðð 321ðð 437ðð

\IN97 A(1) Iððððð1 Jððððð1 Kððððð1 Lððððð1 Mððððð1

 Nððððð1 Oððððð1 258ðð

\IN98 A(1) Iððððð2 Jððððð2 Kððððð2 Lððððð2 Mððððð2

Nððððð2 Oððððð2 168ðð 254ðð 3ð7ðð

 361ðð

\IN99 A(1) Iððððð3 Jððððð3 Kððððð3 Lððððð3 Mððððð3

Nððððð3 Oððððð3 135ðð 167ðð 253ðð

 3ð6ðð 36ððð

 \PSSR BEGSR 39ðð 456ððD

\ 7ð31 ABORT TAG 386ððD

 CHKAGN TAG 426ððD 435ðð

 CMID A(1ð) 67ððD 93ððM 95ððM 172ððM 179ððM

312ððM 318ððM 382ððM 384ððM 471ðð

 481ðð

 CNAME A(5) 341ððM Xððððð9D

 CSTM P(9,2) 275ððM 1ððððð3D

 CSTTM P(9,2) Aðððð14D 268ðð 275ðð

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 15

 CSTTY P(11,2) Aðððð15D 277ðð

 CSTY P(11,2) 277ððM 1ððððð4D

 CUSTN A(6) 34ðððM Xððððð1D

CUSTNO P(6,ð) Bððððð2D Gððððð1D Jððððð4D 34ððð Tððððð1D

 DEPT P(3,ð) 347ððM Xððððð2D

 DESC A(3ð) Aððððð3D 213ðð

 DLSTOR P(6,ð) Bððððð4D 342ðð

 DLSTR P(6,ð) 342ððM Xððððð3D

DNAME A(3ð) Bððððð3D 341ðð

 DSC A(3ð) 213ððM Zððððð1D

 DSLSM P(9,ð) 343ððM Xððððð4D

 DSLSTM P(9,ð) Bððððð5D 343ðð

 DSPMð1 P(9,ð) Bððððð6D 344ðð

 DSPMð2 P(9,ð) Bððððð7D 345ðð

\ 7ð31 DSPMð3 P(9,ð) Bððððð8D

 DSPM1 P(9,ð) 344ððM Xððððð5D

 DSPM2 P(9,ð) 345ððM Xððððð6D

 DSPM3 P(9,ð) Xððððð7D

 DSTTYD P(11,ð) Bððððð9D 346ðð

 DSTYD P(11,ð) 346ððM Xððððð8D

Figure D-16 (Part 10 of 13). Source Program Example — RSDINT

 Appendix D. Program Examples D-53

DTLIN TAG 118ðð 3ð5ððD

 DTLRTN TAG 119ðð 359ððD

\ 7ð31 DTOUT TAG 339ððD

END TAG 135ðð 167ðð 253ðð 3ð6ðð 36ððð

 378ðð 381ððD 41ððð

 ENDPSR ENDSR 458ðð 46ðððD

\ 7ð31 ENTRY TAG 9ðððD

 ERR Z(5,ð) 64ððD 458ðð

ERRCHK BEGSR 181ðð 32ððð 424ððD

ERROR TAG 175ðð 187ðð 314ðð 327ðð 379ððD

 441ðð

EVDTL TAG 311ððD 326ðð

 EVKSR BEGSR 94ðð 96ðð 4ð4ððD

\ 7ð31 FILLð1 A(24ð) 59ððD

\ 7ð31 FILLð2 A(145) 61ððD

\ 7ð31 FILLð3 A(24ð) 65ððD

\ 7ð31 FILLð4 A(145) 72ððD

\ 7ð31 FILL1 A(56) Aðððð18D

\ 7ð31 FILL2 A(57) Bðððð11D

 FMTNM A(1ð) 66ððD 469ðð

FORCE TAG 389ððD 433ðð

 IDEPT P(3,ð) Bðððð1ðD 347ðð

 IODS DS(415) 44ðð 58ððD

 IOFB DS(415) 39ðð 62ððD

ITEMNO P(6,ð) Aððððð2D Fððððð1D Lððððð4D 2ð5ðð Sððððð1D

ITMIN TAG 115ðð 166ððD 186ðð

\ 7ð31 ITMOUT TAG 2ð4ððD

ITMRTN TAG 116ðð 117ðð 252ððD

 LIB A(1ð) 4ð6ððM 4ð8ððM Rððððð2D

\ 7ð31 LOC A(8) 63ððD

\ 7ð31 LOS P(9,2) Aðððð17D

 LOSTS P(9,2) 272ððM 1ððððð6D

\ 7ð31 MAIN TAG 97ððD

MAJCOD A(2) 69ððD 175ðð 187ðð 314ðð 327ðð

41ððð 465ðð 475ðð

MAJMIN A(4) 68ððD 186ðð 326ðð 425ðð

 MENU TAG 114ðð 134ððD

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 16

 MINCOD A(2) 7ðððD 467ðð 477ðð

 MMERR EXCPT 38ððð 462ðð

 OPTION A(1) Iððððð4D 136ðð

 PGMID A(1ð) 4ð5ððM 4ð7ððM Rððððð1D

\ 7ð31 PRO P(5,2) Aðððð16D

 PROFIT P(5,2) 276ððM 1ððððð5D

PROFM P(9,2) 268ððD 269ððM 271ðð 271ððM 276ðð

 PRð1 P(7,2) Aððððð9D 218ðð 272ðð

 PRð5 P(7,ð) Aðððð1ðD 219ðð

 PR1 P(7,2) 218ððM Zððððð7D

 PR5 P(7,ð) 219ððM Zððððð8D

QAVAIL P(7,ð) 2ð9ððD 21ðððM 211ððM 212ððM Zððððð2D

 QTYB P(7,ð) 216ððM Zððððð5D

 QTYBO P(7,ð) Aððððð7D 212ðð 216ðð

 QTYH P(7,ð) 215ððM Zððððð3D

 QTYLST P(7,ð) Aððððð4D 272ðð

 QTYO P(7,ð) 214ððM Zððððð4D

 QTYOH P(7,ð) Aððððð5D 21ððð 215ðð

 QTYOO P(7,ð) Aððððð6D 211ðð 214ðð

READRQ TAG 111ððD 121ðð 141ðð 17ððð 184ðð

2ð7ðð 222ðð 256ðð 261ðð 266ðð

279ðð 3ð9ðð 324ðð 349ðð 363ðð

 366ðð 439ðð

\ 7ð31 RECCUS A(1) Bððððð1D

 RECER EXCPT 377ðð 472ðð

RECERR TAG 188ðð 328ðð 376ððD

RECID A(8) 6ðððD 114ðð 115ðð 116ðð 117ðð

118ðð 119ðð 259ðð 264ðð

RECID2 A(8) 71ððD 188ðð 328ðð 479ðð

\ 7ð31 RECITM A(1) Aððððð1D

RETURN A(6) 457ððD 459ððM 46ððð

 SLSM P(9,2) 273ððM 1ððððð1D

SLSTM P(9,2) Aðððð12D 268ðð 27ððð 271ðð 273ðð

 SLSTY P(11,2) Aðððð13D 274ðð

 SLSY P(11,2) 274ððM 1ððððð2D

TIMRSP A(1) Oððððð4D 429ðð 43ððð 431ðð

TRY88 TAG 315ððD 429ðð

TRY89 TAG 176ððD 43ððð

 UFR P(5,2) 22ðððM Zððððð9D

 UFRT P(5,2) Aðððð11D 22ððð

 UNITQ A(2) Aððððð8D 217ðð

 UNT A(2) 217ððM Zððððð6D

Figure D-16 (Part 11 of 13). Source Program Example — RSDINT

D-54 Intrasystem Communications Programming V4R1

\ 7ð31 XITMIN TAG 173ððD

 \BLANK LITERAL 4ð5ðð 4ð6ðð

 ' ' LITERAL 179ðð 318ðð

 ' ' LITERAL 457ðð

 '\CANCL' LITERAL 459ðð

'CIMENU ' LITERAL 114ðð

'DTLMNU ' LITERAL 118ðð

 'DTLRSP' LITERAL 328ðð

'DTLSCR ' LITERAL 119ðð

'ICFðð ' LITERAL 91ðð 93ðð 312ðð 382ðð 387ðð

'ICFð1 ' LITERAL 92ðð 95ðð 172ðð 384ðð 388ðð

'INTLIB ' LITERAL 4ð8ðð

'ITMMNU ' LITERAL 115ðð

 'ITMRSP' LITERAL 188ðð

'ITMSC2 ' LITERAL 116ðð 259ðð

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 17

'ITMSC3 ' LITERAL 117ðð 264ðð

 'RTDINTCL' LITERAL 4ð7ðð

 'ð3ðð' LITERAL 186ðð 326ðð

 'ð31ð' LITERAL 425ðð

 'ð4' LITERAL 175ðð 187ðð 314ðð 327ðð 41ððð

'1' LITERAL 135ðð 136ðð 167ðð 168ðð 182ðð

253ðð 254ðð 258ðð 3ð6ðð 3ð7ðð

321ðð 36ððð 361ðð 429ðð 43ððð

 437ðð

 '2' LITERAL 431ðð

 ð LITERAL 2ð9ðð 27ððð

 ðððððð LITERAL 2ð5ðð

 ð1285 LITERAL 458ðð

 1ðð LITERAL 269ðð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 \IN Iððððð1 Iððððð2 Iððððð3 Jððððð1 Jððððð2 Jððððð3

Kððððð1 Kððððð2 Kððððð3 Lððððð1 Lððððð2 Lððððð3

Mððððð1 Mððððð2 Mððððð3 Nððððð1 Nððððð2 Nððððð3

Oððððð1 Oððððð2 Oððððð3 135ðð 167ðð 168ðð

182ðð 253ðð 254ðð 258ðð 3ð6ðð 3ð7ðð

321ðð 36ððð 361ðð 437ðð

 LR 39ðððM

 OA 46ððD 481ð1

\ 7ð31 1ð 18ðððM 319ððM

25 182ðð 321ðð 437ðð

 46 27ðððM 271ðð

\ 7ð31 66 322ððM

\ 7ð31 86 387ððM 388ððM 428ððM

\ 7ð31 87 113ððM

88 112ððM 316ððM 319ððM 32ððð 429ðð

89 112ððM 177ððM 18ðððM 181ðð 43ððð

\ 7ð31 9ð

97 Iððððð1 Jððððð1 Kððððð1 Lððððð1 Mððððð1 Nððððð1

 Oððððð1 258ðð

98 Iððððð2 Jððððð2 Kððððð2 Lððððð2 Mððððð2 Nððððð2

Oððððð2 168ðð 254ðð 3ð7ðð 361ðð

99 Iððððð3 Jððððð3 Kððððð3 Lððððð3 Mððððð3 Nððððð3

Oððððð3 135ðð 167ðð 253ðð 3ð6ðð 36ððð

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 18

M e s s a g e S u m m a r y

\ QRG61ð3 Severity: ðð Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

\ QRG7ð31 Severity: ðð Number: 23

Message : The Name or indicator is not referenced.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

Figure D-16 (Part 12 of 13). Source Program Example — RSDINT

 Appendix D. Program Examples D-55

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RSDINT 1ð/ð5/9ð 16:12:28 Page 19

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

25 25 ð ð ð ð ð

 Program Source Totals:

Records : 481

Specifications : 234

Table Records : ð

Comments : 247

 PRM has been called.

 Program RSDINT is placed in library INTLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure D-16 (Part 13 of 13). Source Program Example — RSDINT

RPG/400 Target Program for a
Two-Session Inquiry

The following describes an RPG/400 target program for a
two-session inquiry.

Program Files: The RPG/400 two-session target program
uses the following files:

CFILE An ICF file used to send records to and receive
records from the source program.

PFILE A database file used to retrieve the requested
information to send to the source program.

QPRINT An AS/400 printer file used to print records, both
sent and received, as well as major and minor
ICF return codes.

DDS Source: The DDS source for the ICF file (CFILE) is
illustrated in Figure D-17.

 5714PW1 Rð1Mðð 88ð3ð1 SEU SOURCE LISTING 1ð/14/87 17:2ð:35 PAGE 1

 SOURCE FILE QINTSRC/INTLIB

 MEMBER CFILE

 SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 A\\

 A\ \

 A\ ICF FILE \

A\ USED IN TARGET TWO SESSION PROGRAM \

 A\ \

 A\\

 A INDARA

 A ð5 RQSWRT

 A 1ð ALWWRT

A INDTXT(1ð '1ð END TRANS.')

 A 15 EOS

 A 2ð FAIL

A INDTXT(2ð '2ð F ABORT ST')

A RCVFAIL(25 'RECEIVED FAIL')

 A 3ð DETACH

A INDTXT(3ð '3ð>DETACH TGT')

A RCVDETACH(44 'RECV DETACH')

A RCVTRNRND(4ð 'END OF TRN')

 A R SNDPART

 A INVITE

 A RECTYP 1

 A ITEMNO 6

 A EDATA 13ð

 A FILL1 13

 A R RCVPART

 A RECID2 6

 A PARTDS 8ð

 A FILL4 64

Figure D-17. DDS Source for an ICF File Used by a Target Program

D-56 Intrasystem Communications Programming V4R1

The DDS for the database file (PFILE) is illustrated in
Figure D-18.

 5714PW1 Rð1Mðð 88ð3ð1 SEU SOURCE LISTING 1ð/16/87 ð7:43:14 PAGE 1

 SOURCE FILE QINTSRC/INTLIB

 MEMBER PFILE

 SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 1ðð A LIFO ð7/ð2/87

 2ðð A R DBREC ð5/ð6/87

 3ðð A RECCUS 1 1ð/ð1/87

 4ðð A DBSEQ 6 ð8/18/87

 5ðð A DBDATA 13ð ð7/ð2/87

 6ðð A DBFILL 13 1ð/ð1/87

 7ðð A K DBSEQ ð7/ð4/87

\ \ \ \ E N D O F S O U R C E \ \ \ \

Figure D-18. DDS Source for a Database File Used by a Target Program

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:

CRTICFF FILE(INTLIB/CFILE)

 SRCFILE(INTLIB/QINTSRC)

 SRCMBR(CFILE)

 ACQPGMDEV(RQSDEV)

TEXT("TARGET ICF FILE FOR TWO SESSION PROGRAM")

The command needed to define the program device entry is:

OVRICFDEVE PGMDEV(RQSDEV)

 RMTLOCNAME(\REQUESTER)

Program Explanation: The following explains the structure
of the program example illustrated in Figure D-19 on
page D-58. The ICF file used in the example is defined by
the user, and uses externally described data formats. The
reference numbers in the explanation below correspond to
the numbers in the program example.

All output operations to the ICF file in the example are done
using the write operation.

.1/ The file specification defines the files used in the
program.

CFILE is the ICF file used to send records to and
receive records from the source program.

The files used in the program are implicitly opened at
the beginning of the RPG/400 cycle when the
program starts.

Note: The continuation lines on the file specification
for CFILE define the data structure name; for
example, FEEDBK for the feedback area (INFDS).
FEEDBK contains the following information, which is
used to monitor for error conditions after an I/O oper-
ation is issued to CFILE:

� Record format name (FMTNM)

� Program device name (PGMDEV)

� Major/minor return code (MAJMIN)

.2/ A read operation is issued to the program device to
receive an inquiry request from the source program.
If an error occurs on the read operation (a major code
greater than 03), control passes to the error section
(section 5).

If a detach indication is received, control goes to
section 6 of the program. Otherwise, the program
goes to section 3. When a detach is received, indi-
cator 44 is set on, as defined by the RCVDETACH
DDS keyword in the ICF file.

.3/ If an error occurs (a major return code greater than
03 is returned from the read operation), the program
goes to section 5. Otherwise, the program goes to
section 4.

The program also tests to see whether the receive
detach indicator (indicator 44) is set. If it is, the
program goes to section 6.

.4/ The program uses the requested number received
from the source program to access the record from
the database. The information retrieved from the
database file (PFILE) is moved into the work area for
the ICF file. A write operation is issued to the ICF
program device using record format SNDPART. The
write operation sends the requested information back
to the source program.

If the requested number is not found, a fail indication
is sent to the remote program using a write operation
in combination with a fail.

If an error occurs on the write operation (a major
return code greater than 03), control passes to
section 5.

If no error occurs on the write operation, the program
returns to section 2.

.5/ When an error in an I/O operation is detected, an
EXCPT operation is issued to print an error message
saying that an error has occurred on the ICF file.
The major/minor return code is also printed.

The program then goes to section 6.

.6/ Control passes to this section whenever the program
has detected a communication error or has received
a detach indication from the source program. The
last record indicator is set on, which ends the
program. CFILE is implicitly closed.

.7/ The subroutine *PSSR is called for I/O operation
errors that are not handled by the subroutine in
section 6. This subroutine checks to see whether the
program device is already acquired when an acquire

 Appendix D. Program Examples D-57

operation is requested and if so, the second acquire
is ignored. Otherwise, the program ends.

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RTDINT 1ð/ð5/9ð 16:13:ð8 Page 1

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : INTLIB/RTDINT

Source file : INTLIB/QINTSRC

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RTDINT

File : QINTSRC

Library : INTLIB

Last Change : 1ð/ð5/9ð 15:27:19

Description : RPG Target Intra Program Example

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RTDINT 1ð/ð5/9ð 16:13:ð8 Page 2

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

S o u r c e L i s t i n g

 1ðð H\\ 1ð/13/87

2ðð H\ THIS PROGRAM WILL HANDLE THE REQUEST FOR EITHER A BUYER \ ð3/17/89

3ðð H\ NUMBER OR AN ITEM NUMBER. THIS IS ACCOMPLISHED BY MAKING \ ð3/17/89

4ðð H\ THE DATA BASE FILE STRUCTURE (KEY LENGTH, KEY POSITION, \ ð3/17/89

5ðð H\ RECORD LENGTH, RECORD SIZE, ETC.) THE SAME FOR BOTH FILES \ ð3/17/89

6ðð H\ WITH ONLY THE RECORD CONTENTS DIFFERENT. \ ð3/17/89

 7ðð H\ \ ð3/17/89

8ðð H\ THIS PROGRAM ENDS WHEN A DETACH REQUEST IS RECEIVED FROM \ ð3/17/89

9ðð H\ THE SOURCE PROGRAM. \ ð3/17/89

 1ððð H\\ 1ð/13/87

 11ðð \.1/ ð3/17/89

 H \\\\\

 12ðð FCFILE CF E WORKSTN 1ð/13/87

 13ðð F KINFDS FEEDBK 1ð/13/87

 14ðð F KINFSR \PSSR 1ð/14/87

RECORD FORMAT(S): LIBRARY INTLIB FILE CFILE.

EXTERNAL FORMAT SNDPART RPG NAME SNDPART

EXTERNAL FORMAT RCVPART RPG NAME RCVPART

 15ðð FPFILE IF E K DISK 1ð/13/87

RECORD FORMAT(S): LIBRARY INTLIB FILE PFILE.

EXTERNAL FORMAT DBREC RPG NAME DBREC

16ðð FQPRINT O F 132 PRINTER ð3/17/89

Aðððððð INPUT FIELDS FOR RECORD SNDPART FILE CFILE FORMAT SNDPART.

 Aððððð1 1 1 RECTYP

 Aððððð2 2 7 ITEMNO

Aððððð3 8 137 EDATA

Aððððð4 138 15ð FILL1

Bðððððð INPUT FIELDS FOR RECORD RCVPART FILE CFILE FORMAT RCVPART.

 Bððððð1 1 6 RECID2

 Bððððð2 7 86 PARTDS

Bððððð3 87 15ð FILL4

Cðððððð INPUT FIELDS FOR RECORD DBREC FILE PFILE FORMAT DBREC.

 Cððððð1 1 1 RECCUS

 Cððððð2 2 7 DBSEQ

Cððððð3 8 137 DBDATA

Cððððð4 138 15ð DBFILL

Figure D-19 (Part 1 of 5). Target Program Example —RTDINT

D-58 Intrasystem Communications Programming V4R1

 17ðð IFEEDBK DS 1ð/13/87

 18ðð I \ROUTINE LOC 1ð/14/87

 19ðð I \STATUS ERR 1ð/14/87

 2ððð I 38 47 FMTNM 1ð/ð5/9ð

21ðð I 273 282 PGMDEV 1ð/13/87

22ðð I 4ð1 4ð4 MAJMIN 1ð/13/87

23ðð I 4ð1 4ð2 MAJCOD 1ð/13/87

24ðð I 4ð3 4ð4 MINCOD 1ð/13/87

 25ðð C\\ ð3/17/89

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RTDINT 1ð/ð5/9ð 16:13:ð8 Page 3

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 26ðð C\ \ ð3/17/89

27ðð C\ READ THE REQUEST FROM THE SOURCE PROGRAM. INDICATOR 4ð \ ð3/17/89

28ðð C\ INDICATES RCVTRNRND OCCURRED. INDICATOR 44 INDICATES THAT \ 1ð/ð5/9ð

29ðð C\ DETACH HAS BEEN RECEIVED. \ ð3/17/89

 3ððð C\ \ ð3/17/89

31ðð C\ INDICATOR 99 WILL BE TURNED ON FOR "I/O ERRORS" THEREBY \ ð3/17/89

32ðð C\ PREVENTING THE RPG DEFAULT ERROR HANDLER FROM BEING CALLED. \ ð3/17/89

33ðð C\ THIS IS NECESSARY TO ALLOW THE PROGRAM TO PROCESS THE \ ð3/17/89

34ðð C\ ICF MAJOR/MINOR RETURN CODE. THIS PROGRAM CHECKS \ 1ð/ð5/9ð

35ðð C\ FOR ERRORS ON EVERY ICF FILE OPERATION. A MAJOR \ 1ð/ð5/9ð

36ðð C\ CODE GREATER THAN ð3 INDICATES AN ERROR. \ ð3/17/89

 37ðð C\ \ ð3/17/89

 38ðð C\\ ð3/17/89

 39ðð \.2/ ð3/17/89

 4ððð C READ TAG 1ð/13/87

 41ðð C READ RCVPART 995ð 2 3 1ð/13/87

 42ðð C MAJCOD CABGT'ð3' ERROR 1ð/13/87

 43ðð C \IN44 CABEQ'1' END DET RECV? 1ð/13/87

 44ðð C MOVE RECID2 DBSEQ 1ð/13/87

45ðð C MAJMIN CABEQ'ðððð' XMIT RCVTRNRND? 1ð/13/87

 46ðð C \IN4ð CABEQ'1' XMIT RCVTRNRND? 1ð/13/87

 47ðð C GOTO READ NO,TRY AGAIN ð3/17/89

 48ðð C\\ ð3/17/89

 49ðð C\ \ ð3/17/89

5ððð C\ A REQUEST FROM THE SOURCE PROGRAM RESULTS IN READING A \ ð3/17/89

51ðð C\ SINGLE RECORD CONTAINING THE REQUESTED BUYER OR ORDER \ ð3/17/89

52ðð C\ NUMBER. THE RESPONSE WILL BE RETURNED IN A SINGLE RECORD \ ð3/17/89

53ðð C\ CONTAINING EITHER THE ITEM OR BUYER INFORMATION, DEPENDING \ ð3/17/89

54ðð C\ ON THE DATA BASE CONTENT. \ ð3/17/89

 55ðð C\ \ ð3/17/89

56ðð C\ THE RESPONSE IS SENT TO THE SOURCE PROGRAM BY WRITING TO \ ð3/17/89

57ðð C\ THE ICF FILE USING FORMAT SNDPART. \ 1ð/ð5/9ð

 58ðð C\ \ ð3/17/89

 59ðð C\\ ð3/17/89

 6ððð \.3/ ð3/17/89

 61ðð C XMIT TAG 1ð/13/87

62ðð C DBSEQ CHAINPFILE 9897 98 IF NOT FD 1 2 11/21/88

 63ðð C MOVE DBSEQ ITEMNO 1ð/13/87

64ðð C MOVE RECCUS RECTYP RECD FMT ID 1ð/13/87

 65ðð C\\ ð3/17/89

 66ðð C\ \ ð3/17/89

67ðð C\ WHEN THE REQUESTED BUYER OR ITEM NUMBER IS NOT FOUND, \ ð3/17/89

68ðð C\ ðððððð IS PROPAGATED TO THE KEY FIELD BEFORE THE RESPONSE \ ð3/17/89

69ðð C\ IS SENT BACK TO THE SOURCE PROGRAM. \ ð3/17/89

7ððð C\ WHEN A DISK I/O OPERATION COMPLETES UNSUCCESSFULLY, A FAIL \ ð3/17/89

71ðð C\ INDICATION IS SENT. \ ð3/17/89

 72ðð C\ \ ð3/17/89

 73ðð C\\ ð3/17/89

 74ðð \.4/ ð3/17/89

 75ðð C 98 MOVE 'ðððððð' ITEMNO 1ð/13/87

 76ðð C 98 MOVE '1' \IN2ð SEND FAIL 11/21/88

 77ðð C MOVELDBDATA EDATA MOVE DATA 1ð/13/87

Figure D-19 (Part 2 of 5). Target Program Example —RTDINT

 Appendix D. Program Examples D-59

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RTDINT 1ð/ð5/9ð 16:13:ð8 Page 4

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 78ðð C 97 MOVE '1' \IN2ð SEND FAIL 11/21/88

 79ðð C WRITESNDPART DATA W/DET 1ð/13/87

 8ððð C MAJCOD CABGT'ð3' ERROR 1ð/13/87

 81ðð C MOVE 'ð' \IN2ð RESET IND 11/21/88

 82ðð C GOTO READ 1ð/13/87

 83ðð C\ 1ð/13/87

 84ðð C\\ ð3/17/89

 85ðð C\ \ ð3/17/89

86ðð C\ IF ANY ICF FILE ERROR OCCURS, PRINT THE ERROR MESSAGE, AND \ 1ð/ð5/9ð

87ðð C\ THEN END THE JOB. \ 1ð/ð5/9ð

 88ðð C\ \ ð3/17/89

 89ðð C\\ ð3/17/89

 9ððð \.5/ ð3/17/89

 91ðð C ERROR TAG 1ð/13/87

 92ðð C EXCPTMMERR ð3/17/89

 93ðð C END TAG 1ð/13/87

 94ðð \.6/ ð3/17/89

95ðð C SETON LR 1 1ð/13/87

 96ðð C RETRN 1ð/13/87

 97ðð C\\ 1ð/14/87

 98ðð C\ \ ð3/17/89

99ðð C\ THIS IS THE PROGRAM EXCEPTION/ERROR SUBROUTINE THAT \ ð3/17/89

1ðððð C\ RECEIVES CONTROL WHEN AN EXCEPTION OR ERROR OCCURS \ ð3/17/89

1ð1ðð C\ AFTER AN I/O IS ISSUED TO AN ICF PROGRAM DEVICE AND \ ð3/17/89

1ð2ðð C\ THERE IS A NON-ZERO VALUE UPDATED IN THE RPG STATUS \ ð3/17/89

1ð3ðð C\ FIELD (ERR). THIS ROUTINE CHECKS FOR STATUS VALUES THAT \ ð3/17/89

1ð4ðð C\ RELATE TO ICF OPERATION. \ ð3/17/89

1ð5ðð C\ IF THE PROGRAM DEVICE IS ALREADY ACQUIRED, THE EXCEPTION \ ð3/17/89

1ð6ðð C\ IS IGNORED, OTHERWISE THE PROGRAM IS TERMINATED. \ ð3/17/89

 1ð7ðð C\ \ ð3/17/89

 1ð8ðð C\\ 1ð/14/87

 1ð9ðð \.7/ ð3/17/89

 11ððð C \PSSR BEGSR 1ð/14/87

111ðð C MOVE ' ' RETURN 6 DEFAULT 1ð/14/87

 112ðð C ERR CABEQð1285 ENDPSR ALREADY ACQ? 1ð/14/87

 113ðð C MOVE '\CANCL' RETURN JOB ENDS 1ð/14/87

114ðð C ENDPSR ENDSRRETURN BACK TO MAIN 1ð/14/87

 115ðð C\\ 1ð/13/87

116ðð OQPRINT E 1 MMERR 1ð/13/87

117ðð O 21 'ERROR ON ICF FILE' 1ð/ð5/9ð

 118ðð O 34 'MAJOR/MINOR:' 1ð/13/87

 119ðð O MAJCOD 37 1ð/13/87

 12ððð O 38 '/' 1ð/13/87

 121ðð O MINCOD 4ð 1ð/13/87

 122ðð O 49 'FORMAT:' 1ð/13/87

 123ðð O FMTNM 6ð 1ð/13/87

 124ðð O 69 'PGMDEV:' 1ð/13/87

 125ðð O PGMDEV 8ð 1ð/13/87

\ 61ð3 125ð1 OVERFLOW INDICATOR OA ASSIGNED TO FILE QPRINT.

Dðððððð OUTPUT FIELDS FOR RECORD SNDPART FILE CFILE FORMAT SNDPART.

 Dððððð1 RECTYP 1 CHAR 1

 Dððððð2 ITEMNO 7 CHAR 6

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RTDINT 1ð/ð5/9ð 16:13:ð8 Page 5

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 Dððððð3 EDATA 137 CHAR 13ð

 Dððððð4 FILL1 15ð CHAR 13

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð89 12ðð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE CFILE.

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RTDINT 1ð/ð5/9ð 16:13:ð8 Page 6

K e y F i e l d I n f o r m a t i o n

 PHYSICAL LOGICAL

FILE/RCD FIELD FIELD ATTRIBUTES

 ð2 PFILE

 DBREC

 DBSEQ CHAR 6

Figure D-19 (Part 3 of 5). Target Program Example —RTDINT

D-60 Intrasystem Communications Programming V4R1

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RTDINT 1ð/ð5/9ð 16:13:ð8 Page 7

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð1 CFILE WORKSTN 12ððD

 RCVPART 12ððD Bðððððð 41ðð

 SNDPART 12ððD Aðððððð 79ðð Dðððððð

 ð2 PFILE DISK 15ððD 62ðð

 DBREC 15ððD Cðððððð

 ð3 QPRINT PRINTER 16ððD 116ðð 125ð1

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

\IN2ð A(1) 76ððM 78ððM 81ððM

\IN4ð A(1) 46ðð

\IN44 A(1) 43ðð

 \PSSR BEGSR 12ðð 11ðððD

 DBDATA A(13ð) Cððððð3D 77ðð

\ 7ð31 DBFILL A(13) Cððððð4D

DBSEQ A(6) Cððððð2D 44ððM 62ðð 63ðð

 EDATA A(13ð) Aððððð3D 77ððM Dððððð3D

 END TAG 43ðð 93ððD

 ENDPSR ENDSR 112ðð 114ððD

 ERR Z(5,ð) 19ððD 112ðð

ERROR TAG 42ðð 8ððð 91ððD

 FEEDBK DS(4ð4) 12ðð 17ððD

 FILL1 A(13) Aððððð4D Dððððð4D

\ 7ð31 FILL4 A(64) Bððððð3D

 FMTNM A(1ð) 2ðððD 123ðð

ITEMNO A(6) Aððððð2D 63ððM 75ððM Dððððð2D

\ 7ð31 LOC A(8) 18ððD

 MAJCOD A(2) 23ððD 42ðð 8ððð 119ðð

 MAJMIN A(4) 22ððD 45ðð

 MINCOD A(2) 24ððD 121ðð

 MMERR EXCPT 92ðð 116ðð

\ 7ð31 PARTDS A(8ð) Bððððð2D

PGMDEV A(1ð) 21ððD 125ðð

 READ TAG 4ðððD 47ðð 82ðð

RECCUS A(1) Cððððð1D 64ðð

RECID2 A(6) Bððððð1D 44ðð

RECTYP A(1) Aððððð1D 64ððM Dððððð1D

RETURN A(6) 111ððD 113ððM 114ðð

 XMIT TAG 45ðð 46ðð 61ððD

 ' ' LITERAL 111ðð

 '\CANCL' LITERAL 113ðð

 'ð' LITERAL 81ðð

 'ðððð' LITERAL 45ðð

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RTDINT 1ð/ð5/9ð 16:13:ð8 Page 8

'ðððððð' LITERAL 75ðð

 'ð3' LITERAL 42ðð 8ððð

'1' LITERAL 43ðð 46ðð 76ðð 78ðð

 ð1285 LITERAL 112ðð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

\IN 43ðð 46ðð 76ððM 78ððM 81ððM

 LR 95ððM

 OA 16ððD 125ð1

\ 7ð31 ð5

\ 7ð31 1ð

\ 7ð31 15

2ð 76ððM 78ððM 81ððM

\ 7ð31 25

\ 7ð31 3ð

 4ð 46ðð

 44 43ðð

\ 7ð31 5ð 41ððM

 97 62ððM 78ðð

 98 62ððM 75ðð 76ðð

\ 7ð31 99 41ððM

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

Figure D-19 (Part 4 of 5). Target Program Example —RTDINT

 Appendix D. Program Examples D-61

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RTDINT 1ð/ð5/9ð 16:13:ð8 Page 9

M e s s a g e S u m m a r y

\ QRG61ð3 Severity: ðð Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

\ QRG7ð31 Severity: ðð Number: 11

Message : The Name or indicator is not referenced.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð INTLIB/RTDINT 1ð/ð5/9ð 16:13:ð8 Page 1ð

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

13 13 ð ð ð ð ð

 Program Source Totals:

Records : 125

Specifications : 53

Table Records : ð

Comments : 72

 PRM has been called.

 Program RTDINT is placed in library INTLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure D-19 (Part 5 of 5). Target Program Example —RTDINT

D-62 Intrasystem Communications Programming V4R1

 Bibliography

The publications listed here provide additional information
about topics described or referred to in this book. These
books are listed with their full title and order number.

 AS/400 Books
The following AS/400 books contain additional information
you may need when developing application programs that
use intrasystem communications support.

� ICF Programming, SC41-5442, provides the application
programmer with information needed to write programs
that use AS/400 communications and the OS/400 inter-
system communications function (OS/400-ICF).

� Communications Configuration, SC41-5401, contains
general configuration information, including detailed
descriptions of network interface, line, controller, device,
mode, and class-of-service descriptions, configuration
lists and connection lists.

� DDS Reference, SC41-5712, contains information about
coding data description specifications for files.

� C/400* User's Guide, SC09-1347, provides the informa-
tion needed to write, test, and maintain C/400 programs
for the AS/400 system.

� COBOL/400 User’s Guide, SC09-1812, provides the
information needed to write, test, and maintain
COBOL/400 programs for the AS/400 system.

� RPG/400 User’s Guide, SC09-1816, provides the infor-
mation needed to write, test, and maintain RPG/400 pro-
grams for the AS/400 system.

� CL Reference, SC41-5722, contains the commands,
command parameters, and syntax for the commands
used in this book.

� Work Management, SC41-5306, contains information
about how to create an initial work management environ-
ment and how to change it.

� System Operation, SC41-4203, provides information on
how to use the system unit operator display.

System/36 Communications Books

The following book provides a description of the Intra Sub-
system on the System/36, and information about setting up
and configuring the Intra Subsystem, communications oper-
ations, and return codes:

� Interactive Communications Feature: Programming for
Subsystems and Intra Subsystem Reference,
SC21-9533.

The following two books provide information and examples
about the interactive communications feature, a feature of the
System Support Program Product on the System/36 that
allows a program to communicate interactively with another
program or system:

� Interactive Communications Feature: Base Subsystems
Reference, SC21-9530.

� Interactive Communications Feature: Guide and Exam-
ples, SC21-7911.

The following book provides an overview for programming in
the System/36 environment:

� System/36 Environment Programming, SC41-4730.

 Copyright IBM Corp. 1997 H-1

H-2 Intrasystem Communications Programming V4R1

 Index

A
acquire operation 4-3
Add ICF Device Entry (ADDICFDEVE) command 4-1
ADDICFDEVE command 4-1
advanced program-to-program communications (APPC)

definition C-1
allow-write function

definition 4-6
using C-3

APPC (advanced program-to-program
communications) C-1

application
communications 1-2
considerations

close 5-2
confirm 5-2
general 5-1
input 5-1
open/acquire 5-1

programs 4-1
testing 1-2, C-1

AS/400 manuals H-1
ASCVRYOFF parameter 3-1
asynchronous communications

definition C-2
AUT parameter 2-1
authority (AUT) parameter 2-1

B
BATCH parameter 4-2
bibliography H-1
binary synchronous communications (BSC)

definition C-2
binary synchronous communications equivalence link

(BSCEL)
definition C-2

BSC (binary synchronous communications)
definition C-2

BSCEL (binary synchronous communications equiv-
alence link)

definition C-2

C
C Set ++ programming language
cancel function

definition 4-5
cancel-invite function

definition 4-6
CFGOBJ parameter 3-1

CFGTYPE parameter 3-1
Change Device Description (Intrasystem) (CHGDEVINTR)

command 2-1
Change ICF Device Entry (CHGICFDEVE) command 4-1
Change ICF File (CHGICFF) command 4-1
CHGDEVINTR command 2-1
CHGICFDEVE command 4-1
CHGICFF command 4-1
close operation

considerations 5-2
definition 4-7

CMNTYPE parameter 4-2
COBOL/400 programming language

source program D-14
target program D-33

command prompt 2-1
commands

Add ICF Device Entry (ADDICFDEVE) 4-1
Change Device Description (Intrasystem)

(CHGDEVINTR) 2-1
Change ICF Device Entry (CHGICFDEVE) 4-1
Change ICF File (CHGICFF) 4-1
command prompt 2-1
Create Device Description (Intrasystem)

(CRTDEVINTR) 2-1
Create ICF File (CRTICFF) 4-1
Delete File (DLTF) 4-1
direct entry 2-1
Display Field Description (DSPFFD) 4-1
Display File Description (DSPFD) 4-1
entry 2-1
Override ICF Device Entry (OVRICFDEVE) 4-1
Override ICF File (OVRICFF) 4-1
Remove ICF Device Entry (RMVICFDEVE) 4-1
Vary Configuration (VRYCFG) 3-1

communications
application testing 1-2
intrasystem

configuration 2-1
considerations 5-1

operations 4-3
communications type (CMNTYPE) parameter 4-2
configuring intrasystem communications 2-1
confirm function

advanced program-to-program communications
(APPC) C-1

considerations 5-2
definition 4-4
finance communications C-3
retail communications C-4
sending data 4-4

 Copyright IBM Corp. 1997 X-1

considerations
applications 5-1
close operation 5-2
confirm function 5-2
general 5-1
input 5-1
intrasystem communications 5-1
open/acquire 5-1
performance 5-2

conversation types C-1
Create Device Description (Intrasystem) (CRTDEVINTR)

command 2-1
Create ICF File (CRTICFF) command 4-1
CRTDEVINTR command 2-1
CRTICFF command 4-1

D
data

management 1-1
queue 4-5
receiving 4-4, C-3, C-4
sending 4-4, C-4
sense C-4, C-5

data description specifications (DDS) keywords A-2
DDS keywords A-2
Delete File (DLTF) command 4-1
detach function

asynchronous communications C-2
binary synchronous communications equivalence link

(BSCEL) C-2
definition 4-6
ending transactions 4-6
retail communications C-4

DEVD parameter 2-1
device description (DEVD) parameter 2-1
direct entry of commands 2-1
Display Field Description (DSPFFD) command 4-1
display file 4-5
Display File Description (DSPFD) command 4-1
DLTF command 4-1
DSPFD command 4-1
DSPFFD command 4-1

E
end-of-group function

binary synchronous communications equivalence link
(BSCEL) C-2

definition 4-4
finance communications C-3
retail communications C-4
sending data 4-4
Systems Network Architecture Uplink Facility

(SNUF) C-5

end-of-session
considerations 5-2

end-of-session function
definition 4-7

ending
sessions 4-7
transactions 4-6

entry of commands
command prompt 2-1
direct 2-1

evoke function
advanced program-to-program communications

(APPC) C-1
asynchronous communications C-2
binary synchronous communications equivalence link

(BSCEL) C-2
definition 4-3
retail communications C-4
starting transactions 4-3
Systems Network Architecture Uplink Facility

(SNUF) C-5
examples

COBOL/400 source program D-14
COBOL/400 target program D-33
commands

Create Device Description (Intrasystem)
(CRTDEVINTR) command 2-1

Vary Configuration (VRYCFG) 3-1
VRYCFG 3-1

device description 2-1
ILE C/400 source program D-1
ILE C/400 target program D-9
intrasystem communications configuration 2-1
performance condideration 5-1
program D-1
return code usage 4-8, 4-9
RPG/400 source program D-39
RPG/400 target program D-56
single-session inquiry program D-1
two-session inquiry program D-14

F
fail function

advanced program-to-program communications
(APPC) C-1

asynchronous communications C-2
binary synchronous communications equivalence link

(BSCEL) C-3
definition 4-5
problem notification 4-5
Systems Network Architecture Uplink Facility

(SNUF) C-5
failed program start requests B-24
feedback area 4-8

return code usage
error condition 4-9

X-2 Intrasystem Communications Programming V4R1

feedback area (continued)
using

error condition 4-9
file commands

Add ICF Device Entry (ADDICFDEVE) 4-1
Change ICF Device Entry (CHGICFDEVE) 4-1
Change ICF File (CHGICFF) 4-1
Create ICF File (CRTICFF) 4-1
Delete File (DLTF) 4-1
Display Field Descriptions (DSPFFD) 4-1
Display File Descriptions (DSPFD) 4-1
Override ICF Device Entry (OVRICFDEVE) 4-1
Override ICF File (OVRICFF) 4-1
Remove ICF Device Entry (RMVICFDEVE) 4-1

FILE parameter 4-2
finance communications

definition C-3
FMTSLT parameter 4-2
force-data function

advanced program-to-program communications
(APPC) C-1

definition 4-4
finance communications C-3
retail communications C-4
sending data 4-4

format-name function 4-4
definition 4-4

function-management-header data C-5
function-management-header function

definition 4-4
using C-2

functions
allow-write 4-6, C-3
cancel 4-5
cancel-invite 4-6
detach

asynchronous communications C-2
binary synchronous communications equivalence link

(BSCEL) C-2
ending transactions 4-6
retail communications C-4

end-of-group
binary synchronous communications equivalence link

(BSCEL) C-2
finance communications C-3
retail communications C-4
sending data 4-4
Systems Network Architecture Uplink Facility

(SNUF) C-5
end-of-session 4-7
evoke

advanced program-to-program communications
(APPC) C-1

asynchronous communications C-2
binary synchronous communications equivalence link

(BSCEL) C-2
retail communications C-4

functions (continued)
evoke (continued)

starting transactions 4-3
Systems Network Architecture Uplink Facility

(SNUF) C-5
fail

advanced program-to-program communications
(APPC) C-1

asynchronous communications C-2
binary synchronous communications equivalence link

(BSCEL) C-3
problem notification 4-5
Systems Network Architecture Uplink Facility

(SNUF) C-5
force-data

advanced program-to-program communications
(APPC) C-1

finance communications C-3
retail communications C-4
sending data 4-4

format-name 4-4
function-management-header 4-4, C-2
invite

finance communications C-3
receiving data 4-4
retail communications C-4

keyword A-2
negative-response 4-5
request-to-write 4-6, C-3
respond-to-confirm 4-6
subdevice selection 4-4
timer 4-6

G
general considerations of intrasystem communications

applications 5-1
get-attributes operation

definition 4-6

I
ICF (intersystem communications function)
ILE C/400 programming language

functions A-1
source program D-1
target program D-9

ILE COBOL/400 programming language
procedure statements A-1

ILE RPG/400 programming language
operation codes A-1

indicators
receive-cancel 4-8
receive-confirm 4-7
receive-detach 4-8
receive-end-of-group 4-7

 Index X-3

indicators (continued)
receive-fail 4-8
receive-function-management-header 4-8
receive-negative-response 4-8
receive-turnaround 4-8

input considerations 5-1
input/output feedback area 4-8
intersystem communications function (ICF)

data management 1-1
definition 1-1
file 4-1, 4-5
file commands

Add ICF Device Entry (ADDICFDEVE) 4-1
Change ICF Device Entry (CHGICFDEVE) 4-1
Change ICF File (CHGICFF) 4-1
Create ICF File (CRTICFF) 4-1
Delete File (DLTF) 4-1
Display Field Description (DSPFFD) 4-1
Display File Description (DSPFD) 4-1
Override ICF Device Entry (OVRICFDEVE) 4-1
Override ICF File (OVRICFF) 4-1
Remove ICF Device Entry (RMVICFDEVE) 4-1

language operations A-1
intrasystem

application programs 4-1
communications

application considerations 5-1
configuration 2-1
definition 1-1
device description 2-1
overview 1-1
performance considerations 5-2
support 1-1, 3-1
testing communications applications 1-2

invite function
definition 4-4
finance communications C-3
receiving data 4-4
retail communications C-4

J
jobs 5-2

K
keyword functions A-2
keywords A-2

L
language operations A-1

M
manuals

AS/400 H-1

manuals (continued)
System/36 H-1

messages B-1

N
name of device description (CFGOBJ) parameter 3-1
negative-response function

definition 4-5
number of sessions

asynchronous communications C-2
binary synchronous communications equivalence link

(BSCEL) C-3
finance communications C-4
retail communications C-5
Systems Network Architecture Uplink Facility

(SNUF) C-5

O
online messages C-3
ONLINE parameter 2-1
open operation 4-3
open/acquire

considerations 5-1
operation 4-3

operations
acquire 4-3
close 4-7
communications 4-3
get-attributes 4-6
open 4-3
open/acquire 4-3
output C-1
read

asynchronous communications C-2
finance communications C-4
receiving data 4-4
retail communications C-5

read-from-invited-program-devices 4-5
release 4-7
write

asynchronous communications C-2
finance communications C-3
retail communications C-4
sending data 4-4

output operations C-1
Override ICF Device Entry (OVRICFDEVE) command 4-1
Override ICF File (OVRICFF) command 4-1
overview of intrasystem communications 1-1
OVRICFF command 4-1

P
parameters

ADDICFDEVE command
BATCH 4-2

X-4 Intrasystem Communications Programming V4R1

parameters (continued)
ADDICFDEVE command (continued)

CMNTYPE 4-2
FILE 4-2
FMTSLT 4-2
PGMDEV 4-2
RMTLOCNAME 4-2

ASCVRYOFF 3-1
authority (AUT) 2-1
BATCH 4-2
CHGDEVINTR command

AUT 2-1
DEVD 2-1
ONLINE 2-1
TEXT 2-1

CHGICFDEVE command
BATCH 4-2
CMNTYPE 4-2
FILE 4-2
FMTSLT 4-2
PGMDEV 4-2
RMTLOCNAME 4-2

communications type (CMNTYPE) 4-2
CRTDEVINTR command

AUT 2-1
DEVD 2-1
ONLINE 2-1
RMTLOCNAME 2-1
TEXT 2-1

device description (DEVD) 2-1
FILE 4-2
name of device description (CFGOBJ) 3-1
ONLINE 2-1
OVRICFDEVE command

BATCH 4-2
CMNTYPE 4-2
FMTSLT 4-2
PGMDEV 4-2
RMTLOCNAME 4-2
SECURE 4-2

program device name (PGMDEV) 4-2
RANGE 3-1
record format selection (FMTSLT) 4-2
remote location name (RMTLOCNAME) 2-1, 4-2
SECURE 4-2
STATUS 3-1
TEXT 2-1
type of configuration description (CFGTYPE) 3-1
VRYCFG command

ASCVRYOFF 3-1
CFGOBJ 3-1
CFGTYPE 3-1
RANGE 3-1
STATUS 3-1
VRYWAIT 3-1

VRYWAIT 3-1

performance considerations 5-2
PGMDEV parameter 4-2
PIP (program initialization procedure)

definition 4-3
prestarting jobs for program start requests 5-2
problem notification 4-5
program

device entry commands 4-2
examples D-1
start requests 5-2, C-3
testing C-1

program device name (PGMDEV) parameter 4-2
program initialization procedure (PIP)

definition 4-3

R
RANGE parameter 3-1
read

function
finance communications C-3
retail communications C-4

operation
asynchronous communications C-2
finance communications C-4
receiving data 4-4
retail communications C-5

read operation function
definition 4-4

read-from-invited-program-devices operation
definition 4-5

receive-cancel response indicator
definition 4-8

receive-confirm response indicator
definition 4-7

receive-detach response indicator
definition 4-8

receive-end-of-group response indicator
definition 4-7

receive-fail response indicator
definition 4-8

receive-function-management-header response indicator
definition 4-8

receive-negative-response response indicator
definition 4-8

receive-turnaround indication C-3
receive-turnaround response indicator

definition 4-8
receiving data 4-4, C-3, C-4
record

blocking C-3
length C-1, C-3

record format selection (FMTSLT) parameter 4-2
related printed information H-1
release function

considerations 5-2

 Index X-5

release operation
definition 4-7

remote location name (RMTLOCNAME) parameter 2-1,
4-2

Remove ICF Device Entry (RMVICFDEVE) command 4-1
request-to-write function

definition 4-6
using C-3

respond-to-confirm function
definition 4-6

response indicator
definition 4-7

response indicators
receive-cancel 4-8
receive-confirm 4-7
receive-detach 4-8
receive-end-of-group 4-7
receive-fail 4-8
receive-function-management-header 4-8
receive-negative-response 4-8
receive-turnaround 4-8
using 4-7

retail communications
definition C-4

return codes
detailed descriptions of B-1
using 4-8, 4-9

RMTLOCNAME parameter 2-1, 4-2
RMVICFDEVE command 4-1
RPG/400 programming language

source program D-39
target program D-56

S
SECURE parameter 4-2
sending data 4-4, C-4
sense data

definition 4-6
finance communications C-4
retail communications C-5

sessions
ending 4-7
starting 4-3

single-session inquiry program
ILE C/400 source program example D-1
ILE C/400 target program example D-9

SNUF (Systems Network Architecture Uplink Facility)
definition C-5

source program
COBOL/400 two-session inquiry example D-14
ILE C/400 single-session inquiry example D-1
RPG/400 two-session inquiry example D-39

starting
sessions 4-3
transactions 4-3

STATUS parameter 3-1
subdevice selection function

definition 4-4
system messages C-5
system-supplied formats A-2
System/36 manuals H-1
Systems Network Architecture Uplink Facility (SNUF)

definition C-5

T
target program

COBOL/400 two-session inquiry example D-33
ILE C/400 single-session inquiry example D-9
RPG/400 two-session inquiry example D-56

testing application programs
advanced program-to-program communications

(APPC) C-1
asynchronous communications C-2
binary synchronous communications (BSC) C-2
binary synchronous communications equivalence link

(BSCEL) C-2
communications applications 1-2
finance communications C-3
retail communications C-4
using intrasystem communications C-1

TEXT parameter 2-1
timer function

definition 4-6
transactions

definition 4-3
ending 4-6
starting 4-3

translation C-2
two-session inquiry program

COBOL/400 source program example D-14
COBOL/400 target program example D-33
RPG/400 source program example D-39
RPG/400 target program example D-56

type of configuration description (CFGTYPE)
parameter 3-1

V
variable buffer management (VARBUFMGT) C-1
Vary Configuration (VRYCFG) command 3-1
vary off 3-1
vary on 3-1
VRYCFG command 3-1
VRYWAIT parameter 3-1

W
what you should know vii
who should use this book vii

X-6 Intrasystem Communications Programming V4R1

write operation
asynchronous communications C-2
definition 4-4
finance communications C-3
retail communications C-4
sending data 4-4

 writing application programs 4-1

 Index X-7

Reader Comments—We'd Like to Hear from You!

AS/400
Intrasystem Communications
Programming
Version 4

Publication No. SC41-5447-00

Overall, how would you rate this manual?

Very
Satisfied Satisfied Dissatis-

fied

Very
Dissatis-

fied

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

T H A N K Y O U !

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes __ No
Phone: (____) ___________ Fax: (____) ___________ Internet: ___________

To return this form:

 � Mail it
 � Fax it

United States and Canada: 800+937-3430
 Other countries: (+1)+507+253-5192
� Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader Comments—We'd Like to Hear from You!
SC41-5447-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 542 IDCLERK
IBM CORPORATION
3605 HWY 52 N
ROCHESTER MN 55901-9986

Fold and Tape Please do not staple Fold and Tape

SC41-5447-00

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC41-5447-ðð

Spine information:

IBM AS/400 Programming
Intrasystem Communications

Version 4

