
AIX Version 7.2

Security

IBM

AIX Version 7.2

Security

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 495.

This edition applies to AIX Version 7.2 and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Copyright IBM Corporation 2015, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Highlighting v
Case-sensitivity in AIX v
ISO 9000. v

Security 1
What's new in Security 1
Securing the base operating system 1

Secure system installation and configuration . . . 1
Users, groups, and passwords 46
Role-based access control 77
Access Control Lists 118
Auditing overview 130
Lightweight Directory Access Protocol 149
EFS Encrypted File System 168
Public Key Cryptography Standards #11 . . . 175
Pluggable Authentication Modules 189
OpenSSH and Kerberos Version 5 support . . . 198

Securing the network. 201
TCP/IP security 201
Network services 209
Internet Protocol security 212
Network File System security 272
Enterprise identity mapping 280
Kerberos 281
Remote authentication dial-in user service
server 309
AIX Intrusion prevention 342

AIX Security Expert 345
AIX Security Expert security hardening. . . . 346
Secure by default 346
Distributing security policy through LDAP . . 348
Customizable security policy with user-defined
AIX Security Expert XML rules 349
Stringent check for weak passwords 350
COBIT control objectives supported by AIX
Security Expert 350
Applying COBIT control objectives using AIX
Security Expert 352
SOX-COBIT compliance checking, audit, and
pre-audit feature 352
AIX Security Expert Password Policy Rules
group 353
AIX Security Expert User Group System and
Password definitions group 355

AIX Security Expert Login Policy
Recommendations group 356
AIX Security Expert Audit Policy
Recommendations group 358
AIX Security Expert /etc/inittab Entries group 360
AIX Security Expert /etc/rc.tcpip Settings group 361
AIX Security Expert /etc/inetd.conf Settings
group 364
AIX Security Expert Disable SUID of
Commands group 372
AIX Security Expert Disable Remote Services
group 372
AIX Security Expert Remove access that does
not require Authentication group 374
AIX Security Expert Tuning Network Options
group 375
AIX Security Expert IPsec filter rules group . . 379
AIX Security Expert Miscellaneous group . . . 380
AIX Security Expert Undo Security 383
AIX Security Expert Check Security 383
AIX Security Expert files 384
AIX Security Expert High level security scenario 384
AIX Security Expert Medium level security
scenario 385
AIX Security Expert Low level security scenario 385

Security checklist 385
Summary of common AIX system services . . . 386
Summary of network service options 395
Trusted AIX 397

Introduction to Trusted AIX 398
Multi-level security 400
Trusted AIX administration. 414
Trusted AIX programming 445
Troubleshooting Trusted AIX 490
File security flags 492
Trusted AIX commands 493

Notices 495
Privacy policy considerations 497
Trademarks 497

Index 499

© Copyright IBM Corp. 2015, 2018 iii

iv AIX Version 7.2: Security

About this document

This topic collection provides system administrators with complete information on file, system, and
network security. This topic collection contains information about how to perform such tasks as
hardening a system, changing permissions, setting up authentication methods, and configuring the
Common Criteria Security Evaluation features. This topic collection is also available on the
documentation CD that is shipped with the operating system.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are
predefined by the system. Also identifies graphical objects such as buttons, labels, and icons that the user
selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see displayed,
examples of portions of program code similar to what you might write as a programmer, messages from
the system, or information you should actually type.

Case-sensitivity in AIX
Everything in the AIX® operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2015, 2018 v

vi AIX Version 7.2: Security

Security

The AIX operating system allows you to perform tasks such as hardening a system, changing
permissions, setting up authentication methods, and configuring the Common Criteria Security
Evaluation features. This topic collection is also available on the documentation CD that is shipped with
the operating system.
Related information:

Computer Emergency Response Team, at Carnegie Mellon University (CERT)

Forum of Incident Response and Security Teams (FIRST)

Center for Education and Research in Information Assurance and Security (CERIAS)

What's new in Security
Read about new or significantly changed information for the Security topic collection.

How to see what's new or changed

In this PDF file, you might see revision bars (|) in the left margin that identify new and changed
information.

January 2018

The following information is a summary of the updates made to this topic collection:
v Updated information about the tcpip kernel level system call in the “Audit events” on page 137

topic.

January 2017

The following information is a summary of the updates made to this topic collection:
v Added information about the audit events in the “Audit events” on page 137 topic.
v Added information about the OpenSSH images in the “OpenSSH images” on page 198 topic.

Securing the base operating system
Securing the base operating system provides information about how to protect the system regardless of
network connectivity.

This section describes how to install your system with security options turned on, and how to secure AIX
against nonprivileged users gaining access to the system.

Secure system installation and configuration
Several factors are involved in the secure installation and configuration of AIX.

Trusted Computing Base
The system administrator must determine how much trust can be given to a particular program. This
determination includes considering the value of the information resources on the system in deciding how
much trust is required for a program to be installed with privilege.

© Copyright IBM Corp. 2015, 2018 1

http://www.cert.org/
http://www.first.org/
http://csrc.nist.gov/

The Trusted Computing Base (TCB) is the part of the system that is responsible for enforcing system-wide
information security policies. By installing and using the TCB, you can define user access to the trusted
communication path, which permits secure communication between users and the TCB. TCB features can
only be enabled when the operating system is installed. To install TCB on an already installed machine,
you will have to perform a Preservation installation. Enabling TCB permits you to access the trusted
shell, trusted processes, and the Secure Attention Key (SAK).

Checking the TCB:

The security of the operating system is jeopardized when the Trusted Computing Base (TCB) files are not
correctly protected or when configuration files have unsafe values.

The tcbck command audits the security state of the Trusted Computing Base. The tcbck command audits
this information by reading the /etc/security/sysck.cfg file. This file includes a description of all TCB
files, configuration files, and trusted commands.

The /etc/security/sysck.cfg file is not offline and, could therefore be altered by a hacker. Make sure
you create an offline read-only copy after each TCB update. Also, copy this file from the archival media
to disk before doing any checks.

Structure of the sysck.cfg file:

The tcbck command reads the /etc/security/sysck.cfg file to determine which files to check. Each
trusted program on the system is described by a stanza in the /etc/security/sysck.cfg file.

Each stanza has the following attributes:

Attribute Description
acl Text string representing the access control list for the file. It must be of the same format as the

output of the aclget command. If this does not match the actual file ACL (access control list), the
sysck command applies this value using the aclput command.

Note: The SUID, SGID, and SVTX attributes must match those specified for the mode, if present.
class Name of a group of files. This attribute permits several files with the same class name to be

checked by specifying a single argument to the tcbck command. More than one class can be
specified, with each class being separated by a comma.

group Group ID or name of the file group. If this does not match the file group, the tcbck command
sets the group ID of the file to this value.

links Comma-separated list of path names linked to this file. If any path name in this list is not linked
to the file, the tcbck command creates the link. If used without the tree parameter, the
tcbckcommand prints a message that there are extra links but does not determine their names. If
used with the tree parameter, the tcbck command also prints any additional path names linked to
this file.

mode Comma-separated list of values. The permissible values are SUID, SGID, SVTX, and TCB. The file
permissions must be the last value and can be specified either as an octal value or as a
9-character string. For example, either 755 or rwxr-xr-x are valid file permissions. If this does not
match the actual file mode, the tcbck command applies the correct value.

owner User ID or name of the file owner. If this does not match the file owner, the tcbck command sets
the owner ID of the file to this value.

program Comma-separated list of values. The first value is the path name of a checking program.
Additional values are passed as arguments to the program when the program is run.

Note: The first argument is always one of -y, -n, -p, or -t, depending on which flag the tcbck
command was used with.

source Name of a file this source file is to be copied from prior to checking. If the value is blank, and
this is either a regular file, directory, or a named pipe, a new empty version of this file is created
if it does not already exist. For device files, a new special file is created for the same type device.

symlinks Comma-separated list of path names symbolically linked to this file. If any path name in this list
is not a symbolic link to the file, the tcbck command creates the symbolic link. If used with the
tree argument, the tcbck command also prints any additional path names that are symbolic links
to this file.

2 AIX Version 7.2: Security

If a stanza in the /etc/security/sysck.cfg file does not specify an attribute, the corresponding check is
not performed.

Using the tcbck command:

The tcbck command is used to ensure the proper installation of security-relevant file; to ensure the file
system tree contains no files that clearly violate system security; and to update, add, or delete trusted
files.

The tcbck command is normally used for the following tasks:
v Ensure the proper installation of security-relevant files
v Ensure that the file system tree contains no files that clearly violate system security
v Update, add, or delete trusted files

The tcbck command can be used in the following ways:
v Normal use

– Noninteractive at system initialization
– With the cron command

v Interactive use
– Check out individual files and classes of files

v Paranoid use
– Store the sysck.cfg file offline and restore it periodically to check out the machine

Although not cryptographically secure, the TCB uses the sum command for checksums. The TCB
database can be set up manually with a different checksum command, for example, the md5sum
command that is shipped in the textutils RPM Package Manager package with AIX Toolbox for Linux
Applications CD.

Checking trusted files:

Use the tcbck command to check and fix all the files in the tcbck database, and fix and produce a log of
all errors.

To check all the files in the tcbck database, and fix and report all errors, type:
tcbck -y ALL

This causes the tcbck command to check the installation of each file in the tcbck database described by
the /etc/security/sysck.cfg file.

To perform this automatically during system initialization, and produce a log of what was in error, add
the previous command string to the /etc/rc command.

Checking the file system tree:

Whenever you suspect the integrity of the system might have been compromised, run the tcbck
command to check the file system tree.

To check the file system tree, type:
tcbck -t tree

When the tcbck command is used with the tree value, all files on the system are checked for correct
installation (this could take a long time). If the tcbck command discovers any files that are potential

Security 3

threats to system security, you can alter the suspected file to remove the offending attributes. In addition,
the following checks are performed on all other files in the file system:
v If the file owner is root and the file has the SetUID bit set, the SetUID bit is cleared.
v If the file group is an administrative group, the file is executable, and the file has the SetGID bit set,

the SetGID bit is cleared.
v If the file has the tcb attribute set, this attribute is cleared.
v If the file is a device (character or block special file), it is removed.
v If the file is an additional link to a path name described in /etc/security/sysck.cfg file, the link is

removed.
v If the file is an additional symbolic link to a path name described in /etc/security/sysck.cfg file, the

symbolic link is removed.

Note: All device entries must have been added to the /etc/security/sysck.cfg file prior to
execution of the tcbck command or the system is rendered unusable. To add trusted devices to the
/etc/security/sysck.cfg file, use the -l flag.

Attention: Do not run the tcbck -y tree command option. This option deletes and disables devices that
are not properly listed in the TCB, and might disable your system.

Adding a trusted program:

Use the tcbck command to add a specific program to the /etc/security/sysck.cfg file.

To add a specific program to the /etc/security/sysck.cfg file, type:
tcbck -a PathName [Attribute=Value]

Only attributes whose values are not deduced from the current state of the file need be specified on the
command line. All attribute names are contained in the /etc/security/sysck.cfg file.

For example, the following command registers a new SetUID root program named /usr/bin/setgroups,
which has a link named /usr/bin/getgroups:
tcbck -a /usr/bin/setgroups links=/usr/bin/getgroups

To add jfh and jsl as administrative users and to add developers as an administrative group to be
verified during a security audit of the /usr/bin/abc file, type:
tcbck -a /usr/bin/abc setuids=jfh,jsl setgids=developers

After installing a program, you might not know which new files are registered in the
/etc/security/sysck.cfg file. These files can be found and added with the following command:
tcbck -t tree

This command string displays the name of any file that is to be registered in the /etc/security/
sysck.cfg file.

Deleting a trusted program:

If you remove a file from the system that is described in the /etc/security/sysck.cfg file, you must also
remove the description of this file from the /etc/security/sysck.cfg file.

For example, if you have deleted the /etc/cvid program, the following command string produces an
error message:
tcbck -t ALL

The resulting error message is as follows:

4 AIX Version 7.2: Security

3001-020 The file /etc/cvid was not found.

The description for this program remains in the /etc/security/sysck.cfg file. To remove the description
of this program, type the following command:
tcbck -d /etc/cvid

Configuring additional trusted options:

You can configure additional options for the Trusted Computing Base (TCB).

Restricting access to a terminal:

You can configure the operating system to restrict terminal access.

The getty and shell commands change the owner and mode of a terminal to prevent untrusted programs
from accessing the terminal. The operating system provides a way to configure exclusive terminal access.

Using the Secure Attention Key:

A trusted communication path is established by pressing the Secure Attention Key (SAK) reserved key
sequence (Ctrl-X, and then Ctrl-R).

Note: Use caution when using SAK because it stops all processes that attempt to access the terminal and
any links to it (for example, /dev/console can be linked to /dev/tty0).

A trusted communication path is established under the following conditions:
v When logging in to the system

After you press the SAK:
– If a new login screen displays, you have a secure path.
– If the trusted shell prompt displays, the initial login screen was an unauthorized program that might

have been trying to steal your password. Determine who is currently using this terminal by using
the who command and then log off.

v When you want the command you enter to result in a trusted program running. Some examples of this
include:
– Running as root user. Run as root user only after establishing a trusted communication path. This

ensures that no untrusted programs are run with root-user authority.
– Running the su, passwd, and newgrp commands. Run these commands only after establishing a

trusted communication path.

Configuring the Secure Attention Key:

Configure the Secure Attention Key to create a trusted communication path.

Each terminal can be independently configured so that pressing the Secure Attention Key (SAK) at that
terminal creates a trusted communication path. This is specified by the sak_enabled attribute in
/etc/security/login.cfg file. If the value of this attribute is True, the SAK is enabled.

If a port is to be used for communications, (for example, by the uucp command), the specific port used
has the following line in its stanza of the /etc/security/login.cfg file:
sak_enabled = false

This line (or no entry in that stanza) disables the SAK for that terminal.

To enable the SAK on a terminal, add the following line to the stanza for that terminal:

Security 5

sak_enabled = true

Trusted Execution
Trusted Execution (TE) refers to a collection of features that are used to verify the integrity of the system
and implement advance security policies, which together can be used to enhance the trust level of the
complete system.

The usual way for a malicious user to harm the system is to get access to the system and then install
Trojans, rootkits or tamper some security critical files, resulting in the system becoming vulnerable and
exploitable. The central idea behind the set of features under Trusted Execution is prevention of such
activities or in worst case be able to identify if any such incident happens to the system. Using the
functionality provided by Trusted Execution, the system administrator can decide upon the actual set of
executables that are allowed to execute or the set of kernel extensions that are allowed to be loaded. It
can also be used to audit the security state of the system and identify files that have changed, thereby
increasing the trusted level of the system and making it more difficult for the malicious user to do harm
to the system. The set of features under TE can be grouped into the following:
v Managing Trusted Signature Database
v Auditing integrity of the Trusted Signature Database
v Configuring Security Policies
v Trusted Execution Path and Trusted Library Path

Note: A TCB functionality already exists in the AIX operating system. TE is a more powerful and
enhanced mechanism that overlaps some of the TCB functionality and provides advance security policies
to better control the integrity of the system. While the Trusted Computing Base is still available, Trusted
Execution introduces a new and more advanced concept of verifying and guarding the system integrity.

Trusted Signature Database Management:

Similar to that of Trusted Computing Base (TCB) there exists a database which is used to store critical
security parameters of trusted files present on the system. This database, called Trusted Signature
Database (TSD), resides in the /etc/security/tsd/tsd.dat.

A trusted file is a file that is critical from the security perspective of the system, and if compromised, can
jeopardize the security of the entire system. Typically the files that match this description are the
following:
v Kernel (operating system)
v All setuid root programs
v All setgid root programs
v Any program that is exclusively run by the root user or by a member of the system group
v Any program that must be run by the administrator while on the trusted communication path (for

example, the ls command)
v The configuration files that control system operation
v Any program that is run with the privilege or access rights to alter the kernel or the system

configuration files

Every trusted file should ideally have an associated stanza or a file definition stored in the Trusted
Signature Database (TSD). A file can be marked as trusted by adding its definition in the TSD using the
trustchk command. The trustchk command can be used to add, delete, or list entries from the TSD.

Trusted Signature Database:

The Trusted Signature Database is a database that is used to store critical security parameters of trusted
files present on the system. This database resides in the /etc/security/tsd/tsd.dat directory.

6 AIX Version 7.2: Security

Every trusted file must ideally have an associated stanza or a file definition stored in the Trusted
Signature Database (TSD). Every trusted file is associated with a unique cryptographic hash and a digital
signature. The cryptographic hash of the default set of trusted files is generated by using the SHA-256
algorithm and the digital signature that is generated by using RSA by the AIX build environment and
packaged as part of AIX installation filesets. These hash values and the signatures are shipped as part of
respective AIX installation images and stored in the Trusted Software Database (/etc/security/tsd/
tsd.dat) on the destination machine, in the sample stanza format that follows:
/usr/bin/ps:

owner = bin
group = system
mode = 555
type = FILE
hardlinks = /usr/sbin/ps
symlinks =
size = 1024
cert_tag = bbe21b795c550ab243
signature =

f7167eb9ba3b63478793c635fc991c7e9663365b2c238411d24c2a8a
hash_value = c550ab2436792256b4846a8d0dc448fc45
minslabel = SLSL
maxslabel = SLSL
intlabel = SHTL
accessauths = aix.mls.pdir, aix.mls.config
innateprivs = PV_LEF
proxyprivs = PV_DAC
authprivs =

aix.security.cmds:PV_DAC,aix.ras.audit:PV_AU_ADMIN
secflags = FSF_EPS
t_accessauths =
t_innateprivs =
t_proxyprivs =
t_authprivs =
t_secflags =

owner Owner of the file. This value is computed by the trustchk command when the file is being added
to TSD.

group Group of the file. This value is computed by the trustchk command.

mode Comma-separated list of values. The permissible values are SUID (SUID set bit), SGID (SGID set
bit), SVTX (SVTX set bit), and TCB (Trusted Computing Base). The file permissions must be the
last value and can be specified as an octal value. For example, for a file that is set with uid and
has permission bits as rwxr-xr-x, the value for mode is SUID, 755. The value is computed by the
trustchk command.

type Type of the file. This value is computed by the trustchk command. The possible values are FILE,
DIRECTORY, MPX_DEV, CHAR_DEV, BLK_DEV, and FIFO.

hardlinks
List of hardlinks to the file. This value cannot be computed by the trustchk command. It must be
supplied by the user when adding a file to the database.

symlinks
List of symbolic links to the file. This value cannot be computed by the trustchk command. It
must be supplied by the user when adding a file to the database.

size Defines size of the file. The VOLATILE value means that the file gets changed frequently.

cert_tag
This field maps the digital signature of the file with the associated certificate that can be used to
verify the signature of the file. This field stores the certificate ID and is computed by the trustchk
command at the time of addition of the file to the TSD. The certificates are stored in
/etc/security/certificates directory.

Security 7

signature
Digital signature of the file. The VOLATILE value means that the file gets changed frequently.
This field is computed by the trustchk command.

hash_value
Cryptographic hash of the file. The VOLATILE value means that the file gets changed frequently.
This field is computed by the trustchk command.

minslabel
Defines the minimum sensitivity label for the object.

maxslabel
Defines the maximum sensitivity label for the object (valid on Trusted AIX system). This attribute
is not applicable to regular files and fifo.

intlabel
Defines the integrity label for the object (valid on Trusted AIX system).

accessauths
Defines the access authorization on the object (valid on Trusted AIX system).

innateprivs
Defines the innate privileges for the file.

proxyprivs
Defines the proxy privileges for the file.

authprivs
Defines the privileges that are assigned to the user after given authorizations.

secflags
Defines the file security flags associated with the object.

t_accessauth
Defines the additional Trusted AIX with Multi-Level Security (MLS) specific access authorizations
(valid on Trusted AIX system).

t_innateprivs
Defines the additional Trusted AIX with MLS-specific innate privileges for the file (valid on
Trusted AIX system).

t_proxyprivs
Defines the additional Trusted AIX with MLS-specific proxy privileges for the file (valid on
Trusted AIX system).

t_authprivs
Defines the additional Trusted AIX with MLS-specific privileges that are assigned to the user after
given authorizations (valid on Trusted AIX system).

t_secflags
Defines the additional Trusted AIX with MLS-specific file security flags associated with the object
(valid on Trusted AIX system).

When you add a new entry to TSD, if a trusted file has some symbolic or hard links pointing to it, then
these links can be added to the TSD by using symlinks and hardlinks attributes at the command line,
along with the trustchk command. If the file being added is expected to change frequently, then use
VOLATILE keyword at the command line. Then the trustchk command would not calculate the
hash_value and signature fields when it generates the file definition for addition into the TSD. During
integrity verification of this file, the hash_value and signature fields are ignored.

During addition of regular file definitions to the TSD, it is necessary to provide a private key
(ASN.1/DER format). Use the -s flag and digital certificate with the corresponding public key by using
the -v flag. The private key is used to generate the signature of the file and then discarded. It is up to the

8 AIX Version 7.2: Security

user to store this key securely. The certificate is stored into a certificate store in the/etc/security/
certificates file for the signatures to be verified whenever you request integrity verification. Since
signature calculation is not possible for non-regular files like directory and device files, it is not
mandatory to supply the private key and certificate while adding such files to TSD.

You can also supply the pre-computed file definition through a file by using the -f option to be added to
the TSD. In this case the trustchk command does not compute any of the values and stores the
definitions into TSD without any verification. The user is responsible for sanity of the file definitions in
this case.

Supporting library verification

To support the library verification, the tsd.dat file is added in the /etc/security/tsd/lib/directory. The
name of the database is /etc/security/tsd/lib/lib.tsd.dat. This database is specifically for libraries
that include the stanzas for the .o files of a corresponding trusted library. The stanza for every.o file of a
library is in the format as specified in the following example.

For library libc.a if the strcmp.o file is one of the.o file type, then the stanza for strcmp.o file in
/etc/security/tsd/lib/lib.tsd.dat is similar to the following example:
/usr/lib/libc.a/strcmp.o:

Type = OBJ
Size = 2345
Hash value
Signature =
Cert_tag =

This database has the entries corresponding to type, size hash, cert tag, and signature of the .o file. The
hash of the library is updated in the /etc/security/tsd/tsd.dat file for the corresponding stanza. These
attribute values are dynamically generated during the build, and the values are moved into the
/etc/security/tsd/lib/lib.tsd.dat database during installation.

In the /etc/security/tsd/tsd.dat file, the stanzas for the libraries are modified to reflect the type
attribute as LIB and the size and signature attributes are empty. Currently the values for the dynamica
attributes size, hash, signature are maintained as a VOLATILE value. Therefore, the library verification is
skipped during system boot. Beginning with the release of AIX 6.1.0, the size, hash, and signature of the
trusted library stanzas are computed with the .o files of a library. During installation, the tsd.dat
database is populated to reflect the computed values and the corresponding .o file stanza for a trusted
library is stored in the /etc/security/tsd/lib/lib.tsd.dat database.

Remote TE data base access:

Centralized Trusted Signature Database (TSD) policies and Trusted Execution (TE) policies can be
implemented in your system environment by storing them in LDAP.

The database that controls the TSD policies and TE policies are stored independently of each system. AIX
The centralized TSD policies and TE policies are stored in LDAP so that they can be centrally managed.
Using centralized TSD policies and TE policies allow you to verify that the policies in LDAP are the
master copy, and that the policies can update the clients whenever the client is reinstalled, updated, or
security is breached. Centralized TE policies allow one location to enforce the TE policies without
needing to update each client separately. Centralized TSD policies are much easier to manage than TDS
polices that are not centralized.

AIX Utilities can be used to export local TSD policies and TE policies data to LDAP, configure clients to
use TSD policies and TE policies data in LDAP, control the lookup of TSD policies and TE policies data,
and manage the LDAP data from a client system. The following sections provide more information about
these features.

Security 9

Exporting TSD policies and TE policies data to LDAP:

To use LDAP as a centralized repository for TSD policies and TE policies, the LDAP server must be
populated with the policy data.

The LDAP server must have the TSD policies and the TE policies schema for LDAP installed, before
LDAP clients can use the server for policy data. The TSD policies and the TE policies schema for LDAP is
available on an AIX system in the /etc/security/ldap/sec.ldif file. The schema for the LDAP server must
be updated with this file by using the ldapmodify command.

To identify a version the TE databases on the LDAP server and make LDAP clients aware of the
particular version, you must set the databasename attribute in the /etc/nscontrol.conf file. The
databasename attribute takes any name as the value, and it is used by the tetoldif command while
generating the ldif format.

Use the tetoldif command to read the data in the local TSD policies and TE policies files, and output the
policies in a format that can be used for LDAP. The output generated by the tetoldif command can be
saved to a file in ldif format, and then used to populate the LDAP server with the data with the ldapadd
command. The following databases on the local system are used by the tetoldif command to generate the
TSD policies and TE policies data for LDAP:
v /etc/security/tsd/tsd.dat
v /etc/security/tsd/tepolicies.dat

LDAP client configuration for TSD policies and TE policies:

A system must be configured as an LDAP client to use TSD policies and TE policies data stored in LDAP.

Use the AIX /usr/sbin/mksecldap command to configure a system as an LDAP client. The mksecldap
command dynamically searches the specified LDAP server to determine the location of the TSD policies
and TE policies data, and saves the results to the /etc/security/ldap/ldap.cfg file.

After successfully configuring the system as an LDAP client with the mksecldap command, the system
must be further configured to enable LDAP as a lookup domain for TSD policies and TE policies data by
configuring the secorder of the /etc/nscontrol.conf file.

Once the system has been configured as a LDAP client and as a lookup domain for TSD policies and TE
policies data, the /usr/sbin/secldapclntd client daemon retrieves the TSD policies and TE policies data
from the LDAP server whenever any trustchk commands are performed on the LDAP client.

Enabling LDAP with the trustchk command:

All of the TSD policies and TE policies database management commands are enabled to use the LDAP
TSD policies and TE policies database.

Use the trustchk command with the –R flag, to perform the initial setup of LDAP database. The initial
setup involves the addition of TSD policies, TE policies, base DNs, and the creation of the local database
/etc/security/tsd/ldap/tsd.dat file and /etc/security/tsd/ldap/tepolicies.dat file.

If the trustchk command is run with the –R flag using the LDAP option, the operations are based on the
LDAP server data. If the trustchk command is run with the –R flag using the files option, the operations
are based on the local database data. The default for the –R flag is to use the files option.
Related information:
mksecldap command
trustchk command

10 AIX Version 7.2: Security

Auditing the integrity of Trusted Signature Database:

The trustchk command can be used to audit the integrity state of the file definitions in the Trusted
Signature Database (TSD) against the actual files.

If the trustchk command identifies an anomaly, then it can be made to automatically correct it or prompt
the user before attempting correction. If anomalies like size, signature, cert_tag or hash_value mismatch,
the correction is not possible. In such cases, the trustchk command would make the file inaccessible,
thereby rendering it useless and containing any damage.

Following corrective actions shall be taken for different mismatching attributes:

owner Owner of the file shall be reset to the value in TSD.

group Group of the file shall be reset to the value in TSD.

mode Mode bits of the file be reset to the value in TSD.

hardlinks
If the link points to some other file, it is modified to point to this file. If the link does not exist, a
new link is created to point to this file.

symlinks
Same as hardlinks.

type File is made inaccessible.

size File is made inaccessible, except in case of VOLATILE file.

cert_tag
File is made inaccessible.

signature
File is made inaccessible, except in case of VOLATILE file.

hash_value
File is made inaccessible, except in case of VOLATILE file.

minslabel
On a Trusted AIX system, the minimum sensitivity label is reset to the value in the TSD.

maxslabel
On a Trusted AIX system, the maximum sensitivity label is reset to the value in the TSD.

intlabel
On a Trusted AIX system, the integrity label is reset to the value in the TSD.

accessauths
The access authorizations are reset to the value in TSD. On Trusted AIX, the t_accessauths values
are considered part of the accessauths attribute.

innateprivs
The innate privileges are reset to the value in TSD. On Trusted AIX, the t_innateprivs values are
considered part of the innateprivs attribute.

inheritprivs
The inheritable privileges are reset to the value in TSD. On Trusted AIX, the t_inheritprivs values
are considered part of the inherit attribute.

authprivs
The authorized privileges are reset to the value in TSD. On Trusted AIX, the t_authprivs values
are considered part of the authprivs attribute.

Security 11

aecflags
The security flags are reset to the value in TSD. On Trusted AIX, the t_secglags values are
considered as part of the secflags attribute.

You can also validate file definitions against an alternate database using the -F option. The system
administrator should avoid storing the TSD on the same system and backup the database to some
alternate location. This file integrity can be made to match against this backed up version of TSD using
the -F option.

Security policies configuration:

The Trusted Execution (TE) feature provides you with a run-time file integrity verification mechanism.
Using this mechanism, the system can be configured to check the integrity of the trusted files before
every request to access those file, effectively allowing only the trusted files that pass the integrity check to
be accessed on the system.

When a file is marked as trusted (by adding its definition to Trusted Signature Database), the TE feature
can be made to monitor its integrity on every access. TE can continuously monitor the system and is
capable of detecting tampering of any trusted file (by a malicious user or application) present on the
system at run-time (for example, at load time). If the file is found to be tampered, TE can take corrective
actions based on pre-configured policies, such as disallow execution, access to the file, or logging error. If
a file being opened or executed, and has an entry in the Trusted Signature Database (TSD), the TE
performs as follows:
v Before loading the binary, the component responsible for loading the file (system loader) invokes the

Trusted Execution subsystem, and calculates the hash value using the SHA-256 algorithm
(configurable).

v This run-time calculated hash value is matched with the one stored in the TSD.
v If the values match, the file opening or execution is permitted.
v If the values do not match, either the binary is tampered, or somehow compromised. It is up to the

user to decide the action to be taken. The TE mechanism provides options for users to configure their
own policies for the actions to be taken if the hash values do not match.

v Based on these configured policies, a relevant action is taken.

The following policies can be configured:

CHKEXEC
Check hash value of only the trusted executables before loading them in memory for execution.

CHKSHLIBS
Check the hash value of only the trusted shared libraries before loading them in memory for
execution.

CHKSCRIPTS
Check the hash value of only the trusted shell scripts before loading them in memory.

CHKKERNEXT
Check the hash value of only the kernel extension before loading it in memory.

STOP_UNTRUSTD
Stop loading of files that are not trusted. Only files belonging to TSD are loaded. This policy only
works in combination with any of the CHK* policies mentioned above. For example, if
CHKEXEC=ON and STOP_UNTRUSTD=ON, then any executable binary that does not belong
to TSD is blocked from execution.

STOP_ON_CHKFAIL
Stop loading of trusted files that fail hash value check. This policy also works in combination
with CHK* policies. For example, if CHKSHLIBS=ON and STOP_ON_CHKFAIL=ON, then any
shared library not belonging to the TSD is blocked from being loaded into memory for use.

12 AIX Version 7.2: Security

TSD_LOCK
Lock TSD so it is not available for editing.

TSD_FILES_LOCK
Lock trusted files. This does not allow opening of trusted files in write mode.

TE Enable/Disable Trusted Execution functionality. Only when this is enabled, the above mentioned
policies are in effect.

The following table gives the interaction between different CHK* policies and STOP* policies when
enabled:

Policy STOP_UNTRUSTD STOP_ON_CHKFAIL

CHKEXEC Stop loading of executables that do not
belong to TSD.

Stop loading of executables whose hash values do
not match the TSD values.

CHKSHLIBS Stop loading of shared libraries that do
not belong to TSD.

Stop loading of shared libraries whose hash values
do not match the TSD values.

CHKSCRIPTS Stop loading of shell scripts that do not
belong to TSD.

Stop loading of shell scripts whose hash values do
not match the TSD values.

CHKKERNEXT Stop loading of kernel extensions that do
not belong to TSD.

Stop loading of kernel extensions whose hash
values do not match the TSD values.

Note: A policy can be enabled or disabled at any time until the TE is turned on to bring the policies into
effect. Once a policy is in effect, disabling that policy becomes effective only on next boot cycle. All the
information messages are logged into syslog.
Related information:
TE_verify_reg kernel service
TE_verify_unreg Kernel Service

Trusted Execution Path and Trusted Library Path:

Trusted Execution Path (TEP) defines a list of directories that contain the trusted executables. Once TEP
verification is enabled, the system loader allows only binaries in the specified paths to execute. Trusted
Library Path (TLP) has the same functionality, except that it is used to define the directories that contain
trusted libraries of the system.

Once TLP is enabled, the system loader allows only the libraries from this path to be linked to the
binaries. The trustchk command can be used to enable or disable the TEP or TLP, as well as set the colon
separated path list for both, using TEP and TLP command line attributes of the trustchk command.

Trusted Shell and Secure Attention Key:

Trusted Shell and Secure Attention Key (SAK) perform similarly to the Trusted Computing Base (TCB),
except that if Trusted Execution is enabled on the system instead of TCB, the Trusted Shell executes files
belonging only to the Trusted Signature Database.

For more information about TCB and SAK, see Trusted Computing Base, Using the Secure Attention Key,
and Configuring the Secure Attention Key.

Trusted Execution (TE) policies Database:

The Trusted Execution (TE) policies are stored in the /etc/security/tsd/tepolicies.dat file. The path for the
TE policies are listed with the TLP directories and TEP directories.

Security 13

Security Profile Evaluation Assurance Level 4+ and Labeled AIX Security and
Evaluation Assurance Level 4+
System administrators can install a system with the Base AIX Security (BAS) and Evaluation Assurance
Level 4+ (EAL4+) option or Labeled AIX Security (LAS) and Evaluation Assurance Level 4+ (EAL4+)
during a base operating system (BOS) installation. A system with these options has restrictions on the
software that is installed during BOS installation, plus network access is restricted.

Note: Evaluations are currently ongoing for AIX Version 7.1. Please refer to the AIX Version 7.1 release
notes for the latest information.

Security profile overview:

Security profile is a product that specifies security requirements for general-purpose operating systems in
networked environments. This profile establishes the requirements necessary to achieve the security
objectives of the Target of evaluation (TOE) security function and its environment.

Security profile contains a base package and several extended packages. Products that are related to
Security profile base package support are Identification and Authentication, Discretionary Access Control
(DAC), Auditing, Cryptographic Services, Management of Security Mechanisms, and Trusted Channel
communications. Security profile includes additional, optional packages for Labeled Security, Integrity
Verification, Advanced Audit, General Purpose Cryptography, Advanced Management, Extended
Identification and Authentication, Trusted Boot, and Virtualization.

Assumptions

v Environment to use for the TOE:
All assumptions in the section refer to Base AIX Security (BAS mode) and Labeled AIX Security (LAS
mode) unless otherwise stated. All assumptions related to Virtual input output server (VIOS) are
explicitly marked as VIOS only. VIOS does not share assumptions with either the AIX operating system
or Trusted AIX.

v Physical:
The IT environment provides the TOE with appropriate physical security that is commensurate with
the value of the IT assets protected by the TOE.

Note: VIOS only: The operational environment provides the TOE with appropriate physical security
that is commensurate with the value of the IT assets protected by the TOE.

v Administration:
– The TOE security function is managed by one or more competent individuals. The system

administrative personnel are not careless, willfully negligent, or hostile, and they abide by the
instructions provided by the guidance documentation.

– Authorized users can access some information managed by the TOE and are expected to act in a
cooperating manner.

– Users are sufficiently trained and trusted to accomplish some task or group of tasks within a secure
IT environment. They must exercise complete control over their user data.

– VIOS only: The TOE security function is managed by one or more competent individuals. The
system administrative personnel are not careless, willfully negligent, or hostile, and they abide by
the instructions provided by the guidance documentation.

– VIOS only: Authorized users possess the necessary authorization to access at least some of the
information managed by the TOE and are expected to act in a cooperating manner.

– VIOS only: Users are sufficiently trained and trusted to accomplish some task or group of tasks
within a secure operational environment. They must exercise complete control over their user data.

v Procedural:

14 AIX Version 7.2: Security

– Any modification or corruption of security-enforcing or security-relevant files of the TOE that the
user, or the underlying platform caused either intentionally or accidentally must be detected by an
administrative user.

– All remote trusted IT systems that are trusted by the Target Security Function (TSF) to provide TSF
data or services to the TOE, or to support the TSF in the enforcement of security policy decisions,
are assumed to be under the same management control and operate under security policy
constraints that are compatible with the security policy of the TOE.

– All remote trusted IT systems that are trusted by the TSF to provide TSF data or services to the
TOE, or to support the TSF in the enforcement of security policy decisions, are assumed to correctly
implement the functions that are used by the TSF consistent with the assumptions defined for this
function.

– The integrity of the following information is ensured:
- All TSF code, including the integrity verification function that is loaded and run before starting

the integrity verification mechanism
- All TSF data, including TSF data to perform integrity verification that is used by the TSF code

loaded and run before starting the integrity verification mechanism
– VIOS only: Any modification or corruption of security-enforcing or security-relevant files of the TOE

that the user, or the underlying platform caused either intentionally or accidentally must be detected
by an administrative user.

v Connectivity: All connections to and from remote trusted IT systems and between physically-separate
parts of the TSF not protected by the TSF itself are physically or logically protected within the TOE
environment to ensure the integrity and confidentiality of the data transmitted and to ensure the
authenticity of the communication end points.

Obtaining the software

The obtain the software, complete the following steps:
1. Download the product.
2. Click on Help from the Entitled software support menu on the left pane. The Common Criteria

evaluated configuration requires the product and any updates to be obtained on physical media or
using download director.

For information on installing the product, see Installing a BAS /EAL4+ system.

Installing a BAS /EAL4+ system:

RBAC is automatically enabled when this option is selected.

To set the BAS/EAL4+ option during a BOS installation, do the following:
1. In the Installation and Settings screen, select More Options.
2. Under More Options, select Yes for the BAS/EAL4+ option, and if you are using WPAR, select No for

the TCB option. If you are using a customized bosinst.data file for a nonprompted installation, the
TCB option can be set to Yes.

Disable remote root login for a BAS installation. To disable remote root login, run the following command
after installation:
/usr/bin/chuser rlogin=false subgroups=SUADMIN root

Add administrative users to the SUADMIN group so they can su to root.

The Enable BAS and EAL4+ Technology option is available only under the following conditions:
v The installation method is set to new and complete overwrite installation.
v The English language is selected.

Security 15

v The 64-bit kernel is enabled.
v The enhanced journaled file system (JFS2) is enabled.

When the Enable BAS and EAL4+ Technology option is set to Yes, the Trusted Computing Base option
is also set to Yes, and the only valid Desktop choices are NONE or CDE.

If you are performing a non-prompted installation using a customized bosinst.data file, the
INSTALL_TYPE field must be set to CC_EVAL and the following fields must be set as follows:
control_flow:
CONSOLE = ???
PROMPT = yes
INSTALL_TYPE = CC_EVAL
INSTALL_METHOD = overwrite
TCB = yes
DESKTOP = NONE or CDE
ENABLE_64BIT_KERNEL = yes
CREATE_JFS2_FS = yes
ALL_DEVICES_KERNELS = no
HTTP_SERVER_BUNDLE = no
KERBEROS_5_BUNDLE = no
SERVER_BUNDLE = no
ALT_DISK_INSTALL_BUNDLE = no

locale:
CULTURAL_CONVENTION = en_US or C
MESSAGES = en_US or C

For more information about RBAC, see Role Based Access Control (RBAC).

Network Installation Management environment for BAS/EAL4+:

Installation of BAS/EAL4+ technology clients can be performed using the Network Installation
Management (NIM) environment.

The NIM master is configured to provide the resources needed to install the appropriate BAS/EAL4+
level of AIX 7.1. NIM clients may then be installed using the resources located on the NIM master. You
can perform a non-prompted NIM installation of the client by setting the following fields in the
bosinst_data resource:
control_flow:
CONSOLE = ???
PROMPT = no
INSTALL_TYPE = CC_EVAL
INSTALL_METHOD = overwrite
TCB = yes
DESKTOP = NONE or CDE
ENABLE_64BIT_KERNEL = yes
CREATE_JFS2_FS = yes
ALL_DEVICES_KERNELS = no
HTTP_SERVER_BUNDLE = no
KERBEROS_5_BUNDLE = no
SERVER_BUNDLE = no
ALT_DISK_INSTALL_BUNDLE = no

locale:
CULTURAL_CONVENTION = en_US or C
MESSAGES = en_US or C

The NIM master cannot be configured as a BAS/EAL4+ system and cannot be connected to the same
network with other BAS/EAL4+ systems. When initiating the installation from the NIM master, the
Remain NIM client after install SMIT menu option must be set to No. After a NIM client is installed as
a BAS/EAL4+ system, the NIM client must be removed from the NIM master's network, and additional
software installations and updates cannot be performed using the NIM master.

16 AIX Version 7.2: Security

An example situation is to have two network environments; the first network consists of the NIM master
and the non-BAS/EAL4+ systems; the second network consists only of BAS/EAL4+ systems. Perform the
NIM installation on the NIM client. After the installation has completed, disconnect the newly installed
BAS/EAL4+ system from the NIM master's network and connect the system to the evaluated network.

A second example consists of one network. The NIM master is not connected to the network when other
systems are operating in the evaluated configuration, and BAS/EAL4+ systems are not connected to the
network during NIM installation.

BAS/EAL4+ software bundle:

When the BAS/EAL4+ option is selected, the contents of the /usr/sys/inst.data/sys_bundles/
CC_EVAL.BOS.autoi installation bundle are installed.

You can optionally select to install the graphics software bundle and the documentation services software
bundle with the BAS/EAL4+ option selected. If you select the Graphics Software option with the
BAS/EAL4+ option, the contents of the /usr/sys/inst.data/sys_bundles/CC_EVAL.Graphics.bnd software
bundle are installed. If you select the Documentation Services Software option with the BAS/EAL4+
option, the contents of the /usr/sys/inst.data/sys_bundles/CC_EVAL.DocServices.bnd software bundle
are installed.

After the Licensed Program Products (LPPs) is installed, the system changes the default configuration to
comply with the BAS/EAL4+ requirements. The following changes are made to the default configuration:
v Remove /dev/echo from the /etc/pse.conf file.
v Instantiate streams devices.
v Allow only root to access removable media.
v Remove non-CC entries from the inetd.conf file.
v Change various file permissions.
v Register symbolic links in the sysck.cfg file.
v Register devices in the sysck.cfg file.
v Set default user and port attributes.
v Configure the doc_search application for browser use.
v Remove httpdlite from the inittab file.
v Remove writesrv from the inittab file.
v Remove mkatmpvc from the inittab file.
v Remove atmsvcd from the inittab file.
v Disable snmpd in the /etc/rc.tcpip file.
v Disable hostmibd in the /etc/rc.tcpip file.
v Disable snmpmibd in the /etc/rc.tcpip file.
v Disable aixmibd in the /etc/rc.tcpip file.
v Disable muxatmd in the /etc/rc.tcpip file.
v NFS port (2049) is a privileged port.
v Add missing events to the /etc/security/audit/events file.
v Ensure that the loopback interface is running.
v Create synonyms for /dev/console.
v Enforce default X-server connection permissions.
v Change the /var/docsearch directory so that all files are world-readable.
v Add Object Data Manager (ODM) stanzas to set the console permissions.
v Set permissions on BSD-style ptys to 000.

Security 17

v Disable .netrc files.
v Add patch directory processing.

Graphical user interface:

The BAS/EAL4+ compliant system includes the X Windows System as a graphical user interface.

X Windows provides a mechanism for displaying graphical clients, such as clocks, calculators, and other
graphical applications, as well as multiple terminal sessions using the aixterm command. The X Windows
System is started with the xinit command from the initial command line after a user has logged in at the
host's console.

To start an X Windows session, type:
xinit

This command starts the X Windows server with local access mechanisms enabled for the invoker only. X
Windows clients that are set-UID to root will be able to access the X Windows server via the UNIX
domain socket using the root override on the access restrictions. X Windows clients that are set-UID to
other users or that are started by other users will not be able to access the X Windows server. This
restriction prevents other users of a host from gaining unauthorized access to the X Windows server.

Installing a LAS/EAL4+ system:

RBAC is automatically enabled when this option is selected.

To set the LAS/EAL4+ option during a BOS installation, do the following:

The installation options are available by typing 3 to change the Security Model and typing 4 to view the
More Options field in the Installation and Settings window. These options vary based on installation type
(overwrite, preservation, or migration) and security options. For LAS, the installation method is new or
complete overwrite. Choose LAS/EAL4+ configuration install.

For more information about RBAC, see Role Based Access Control (RBAC).

LAS/EAL4+ configuration installation (only available with Trusted AIX):

The LAS/EAL4+ configuration install option installs Trusted AIX in LAS/EAL4+ configured mode.
LAS/EAL4+ configured mode provides for further restrictive security as compared to the Trusted AIX
installation.

If you are performing a nonprompted installation using a customized bosinst.data file, the
INSTALL_TYPE field must be blank and the TRUSTED_AIX field should be set to yes and the following
fields must be set as follows:
control_flow:
CONSOLE = ???
PROMPT = yes
INSTALL_TYPE =
TRUSTED_AIX = yes
INSTALL_METHOD = overwrite
TCB = yes
DESKTOP = NONE
ENABLE_64BIT_KERNEL = yes
CREATE_JFS2_FS = yes
ALL_DEVICES_KERNELS = no
HTTP_SERVER_BUNDLE = no
KERBEROS_5_BUNDLE = no
SERVER_BUNDLE = no
ALT_DISK_INSTALL_BUNDLE = no

18 AIX Version 7.2: Security

locale:
CULTURAL_CONVENTION = en_US or C
MESSAGES = en_US or C

For more information about Trusted AIX, see Trusted AIX.

Network Installation Management environment for the LAS/EAL4+:

Installation of LAS/EAL4+ technology clients can be performed using the Network Installation
Management (NIM) environment.

The NIM master is configured to provide the resources needed to install the appropriate LAS/EAL4+
level of AIX 7.1. NIM clients may then be installed using the resources located on the NIM master. You
can perform a non-prompted NIM installation of the client by setting the following fields in the
bosinst_data resource:
control_flow:
CONSOLE = ???
PROMPT = no
INSTALL_TYPE =
TRUSTED_AIX = yes
INSTALL_METHOD = overwrite
TCB = yes
DESKTOP = NONE
ENABLE_64BIT_KERNEL = yes
CREATE_JFS2_FS = yes
ALL_DEVICES_KERNELS = no
HTTP_SERVER_BUNDLE = no
KERBEROS_5_BUNDLE = no
SERVER_BUNDLE = no
ALT_DISK_INSTALL_BUNDLE = no

locale:
CULTURAL_CONVENTION = en_US or C
MESSAGES = en_US or C

The NIM master cannot be configured as a LAS/EAL4+ system and cannot be connected to the same
network with other LAS/EAL4+ systems. When initiating the installation from the NIM master, the
Remain NIM client after install SMIT menu option must be set to No. After a NIM client is installed as
a LAS/EAL4+ system, the NIM client must be removed from the NIM master's network, and additional
software installations and updates cannot be performed using the NIM master.

An example situation is to have two network environments; the first network consists of the NIM master
and the non-LAS/EAL4+ systems; the second network consists only of LAS/EAL4+ systems. Perform the
NIM installation on the NIM client. After the installation has completed, disconnect the newly installed
LAS/EAL4+ system from the NIM master's network and connect the system to the evaluated network.

A second example consists of one network. The NIM master is not connected to the network when other
systems are operating in the evaluated configuration, and LAS/EAL4+ systems are not connected to the
network during NIM installation.

BAS/EAL4+ and LAS/EAL4+ systems physical environment:

The BAS/EAL4+ and LAS/EAL4+ systems have specific requirements for the environment in which they
are run.

The requirements are as follows:
v Physical access to the systems must be restricted so that only authorized administrators can use the

system consoles.

Security 19

v The Service Processor is not connected to a modem.
v Physical access to the terminals is restricted to authorized users.
v The physical network is secure against eavesdropping and spoofing programs (also called Trojan horse

programs). When communicating over insecure lines, additional security measures, such as encryption,
are needed.

v Communication with other systems that are not AIX 7.1 BAS/EAL4+ or LAS/EAL4+ systems, or are
not under the same management control, is not permitted.

v Only IPv4 is to be used when communicating with other BAS/EAL4+ and LAS/EAL4+ systems. IPv6
is included in the evaluated configuration, but only the functional capabilities of IPv6 that are also
supported by IPv4 are included.

v Users must not be allowed to change the system time.
v Systems in an LPAR environment cannot share PHBs.

BAS/EAL4+ and LAS/EAL4+ systems organizational environment:

Certain procedural and organizational requirements must be met for a BAS/EAL4+ and LAS/EAL4+
systems.

The following requirements must be met:
v Administrators must be trustworthy and well trained.
v Only users authorized to work with the information on the systems are granted user IDs on the

system.
v Users must use high-quality passwords (as random as possible and not affiliated with the user or the

organization). For information about setting up password rules, see “Passwords” on page 62.
v Users must not disclose their passwords to others.
v Administrators must have sufficient knowledge to manage security critical systems.
v Administrators must work in accordance with the guidance provided by the system documentation.
v Administrators must log in with their personal ID and use the su command to switch to superuser

mode for administration.
v Passwords generated for system users by administrators must be transmitted securely to the users.
v Those who are responsible for the system must establish and implement the necessary procedures for

the secure operation of the systems.
v Administrators must ensure that the access to security-critical system resources is protected by

appropriate settings of permission bits and ACLs.
v The physical network must be approved by the organization to carry the most sensitive data held by

the systems.
v Maintenance procedures must include regular diagnostics of the systems.
v Administrators must have procedures in place that ensure a secure operation and recovery after a

system failure.
v The LIBPATH environment variable should not be changed, because this might result in a trusted

process loading an untrusted library.
v Wiretapping and trace software (tcpdump, trace) must not be used on an operational system.
v Anonymous protocols such as HTTP may only be used for public information (for example, the online

documentation).
v Only TCP-based NFS can be used.
v Access to removable media is not to be given to users. The device files are to be protected by

appropriate permission bits or ACLs.
v Administrators must not use dynamic partitioning to allocate and deallocate resources. Partition

configuration may only be performed while no partitions at all are running.

20 AIX Version 7.2: Security

BAS/EAL4+ and LAS/EAL4+ system operational environment:

Certain operational requirements and procedures must be met for a BAS/EAL4+ and LAS/EAL4+system.

The following requirements and procedures must be met:
v If using a Hardware Management Console (HMC), the HMC is located in a physically controlled

environment.
v Only authorized personnel can access to the operational environment and the HMC.
v If using an HMC, the HMC can only be used for the following tasks:

– Initial configuration of the partitions. A partition cannot be active during the configuration process.
– Restarting of "hanging" partitions

v The HMC must not be used throughout operation of the configured system.
v The system's "call home" feature must be disabled.
v Remote modem access to the system must be disabled.
v If AIX runs in an LPAR-enabled environment, the administrator should check with the LPAR

documentation for requirements on the EAL4+ operation of logical partitions.
v The service authority feature must be disabled on logical partitions.

BAS/EAL4+ system configuration:

You can configure the Base AIX Security (BAS) and Evaluation Assurance Level 4+ (EAL4+) system.

The system, sys, adm, uucp, mail, security, cron, printq, audit and shutdown groups are considered
administrative groups. Only trusted users should be added to this group.

Administration:

Administrators must log in with their personal user account and use the su command to become the root
user for the administration of the system.

To effectively prevent guessing the root account's password, allow only authorized administrators to use
the su command on the root account. To ensure this, do the following:
1. Add an entry to the root stanza of the /etc/security/user file as follows:

root:
admin = true
.
.
.
sugroups = SUADMIN

2. Define group in the /etc/group file containing only the user IDs of authorized administrators as
follows:
system:!:0:root,paul
staff:!:1:invscout,julie
bin:!:2:root,bin
.
.
.
SUADMIN:!:13:paul

Administrators must also adhere to the following procedures:
v Establish and implement procedures to ensure that the hardware, software and firmware components

that comprise the distributed system are distributed, installed, and configured in a secure manner.
v Ensure that the system is configured so that only an administrator can introduce new trusted software

into the system.

Security 21

v Implement procedures to ensure that users clear the screen before logging off from serial login devices
(for example, IBM® 3151 terminals).

User and port configuration:

AIX configuration options for users and ports must be set to satisfy the requirements of the evaluation.
The actual requirement is that the TSF provides a mechanism of correctly guessing a password that meets
the metric quality. The probability of correctly guessing a password that can be obtained from an attacker
during the life time of the password must be less than 2^-20.

The /etc/security/user file shown in the following example uses the /usr/share/dict/words dictionary
list. The /usr/share/dict/words file is contained in the bos.data fileset. You must install the bos.data
fileset prior to configuring the /etc/security/user file. The recommended values for the
/etc/security/user file are the following:
default:

admin = false
login = true
su = true
daemon = true
rlogin = true
sugroups = ALL
admgroups =
ttys = ALL
auth1 = SYSTEM
auth2 = NONE
tpath = nosak
umask = 077
expires = 0
SYSTEM = "compat"
logintimes =
pwdwarntime = 5
account_locked = false
loginretries = 3
histexpire = 52
histsize = 20
minage = 0
maxage = 8
maxexpired = 1
minalpha = 2
minother = 2
minlen = 8
mindiff = 4
maxrepeats = 2
dictionlist = /usr/share/dict/words
pwdchecks =
dce_export = false

root:
rlogin = false
login = false

The default settings in the /etc/security/user file should not be overwritten by specific settings for
single users.

Note: Setting login = false in the root stanza prevents direct root login. Only user accounts that have
su privileges for the root account will be able to log in as the root account. If a Denial of Service attack is
launched against the system that sends incorrect passwords to the user accounts, it could lock all the user
accounts. This attack might prevent any user (including administrative users) from logging into the
system. Once a user's account is locked, the user will not be able to log in until the system administrator
resets the user's unsuccessful_login_count attribute in the /etc/security/lastlog file to be less than the
value of the loginretries user attribute. If all the administrative accounts become locked, you might

22 AIX Version 7.2: Security

need to reboot the system into maintenance mode and run the chsec command. For more information
about using the chsec command, see “User account control” on page 51.

The suggested values for the /etc/security/login.cfg file are the following:
default:

sak_enabled = false
logintimes =
logindisable = 4
logininterval = 60
loginreenable = 30
logindelay = 5

List of setuid/setgid programs:

A list of trusted applications is created for BAS-enabled AIX systems.

The suid/sgid bits are turned off for all non-trusted programs that are owned by root or a trusted group.
The only programs on the system after a BAS install that are either suid and owned by root or sgid and
owned by one of these trusted groups are system, sys, adm, uucp, mail, security, cron, printq, audit, and
shutdown. Only add trusted users to these groups.

The list of trusted applications is created by considering all applications that fall into at least one of the
following categories:
v SUID root bit for the corresponding application is enabled
v SGID bit to one of the trusted groups is enabled
v Applications that access any of the trusted databases according to the administrator guidance

document

Note: The setuid bit for the ipcs command should be removed by the system administrator. The system
administrator should run the chmod u-s /usr/bin/ipcs and chmod u-s /usr/bin/ipcs64 commands.

Changing the audit filesystem:

RBAC is automatically enabled when this option is selected.

The/audit filesystem is a jfs filesystem. It must be changed to a jfs2 filesystem. In addition, BAS
systems require additional commands. To make the changes to the filesystem, complete these steps:
1. Change the filesystem for BAS systems, enter the command:

audit shutdown
lsvg -l rootvg

For LAS systems, go to step 3.
2. If the TYPE field contains a question mark (?) symbol, enter the command:

synclvodm -v rootvg

3. Remove the jfs filesystem and create a jfs2 filesystem by entering the command:
umount/audit
rmfs /audit
crfs -v jfs2 -m /audit -g rootvg -A yes -p rw -a size=100M

Updating the trusted signature database (TSD):

this section describes the procedure to update the TSD.

The BAS/LAS configuration changes the system mode bits, TSD integrity errors occurs.

During system reboot, select the Ignore All option.

Security 23

To update the TSD, enter the command:
trustchk -u ALL mode

Using a LAS system:

This section provides guidelines for using the LAS system.

Set the automatic reboot option to false after the system is installed as isso, by entering the command:
chdev -l sys0 -a autorestart=false

If TSD continues to generate intlabel errors, delete the errors using isso with PV_ROOT privilege, by
entering the commands:
cp /etc/security/tsd/tsd.dat /etc/security/tsd/tsd.dat.org
trustchk -q /usr/sbin/format /usr/sbin/fdformat /usr/sbin/mount /usr/sbin/unmount \
/usr/sbin/umount /usr/sbin/tsm /usr/sbin/getty /usr/sbin/login /usr/sbin/mkvg \
/usr/sbin/extendvg /usr/bin/w /usr/bin/uptime >/tmp/list.dat
grep -p SLTL /tmp/list.dat |sed ’s/SLTL/SHTL/’ >/tmp/new.dat
trustchk -w -a -f /tmp/new.dat
trustchk -y ALL

If error messages related to audit are displayed on the console, with isso privilege restart the audit
system by entering the commands:
audit shutdown
audit start

After three failed login attempts, the isso/so login is blocked by the network. However, the administrator
can continue to access these accounts on the local console.

The output of commands executed by cron/at are not forwarded to the mail spool of the user.

World-writeable directories which have label ranges (for example: /tmp) are not partitioned. To prevent
the possibility of information flowing between labels, the administrator must partition these directories
immediately after the initial configuration.

Network interface:

This section describes the procedure to use network interface.

On Trusted AIX, the default network interface has a label range of minSL=impl_lo and maxSL=ts_all. For
LAS/EAL4+ systems, there is no label range. The default rule is automatically changed to impl_lo when
the LAS/EAL4+ install option is selected. To change the default rule as an isso, use the
netrulecommand.

For example:
/usr/sbin/netrule i+u default +impl_lo +impl_lo +impl_lo

Updating WPAR:

This section describes the procedure for making the workload partitions (WPAR) for AIX complaint to
EAL4+.

Create the WPAR on a BAS system, and run the following command in WPAR to make it EAL4+
compliant:
/usr/lib/security/CC_EVALify.sh

24 AIX Version 7.2: Security

When you run clogin on a LAS system for the first time , the firstboot scripts run (that includes
CC_EVALify.sh).

The firstboot scripts cause clogin to run longer than usual when clogin calls TSM to login. However
WPAR is still in configuration mode, so the login is denied. You must wait approximately for 10 minutes
for WPAR to complete the configuration before attempting another clogin. For newly created WPAR
systems, the default user options must be set to meet the evaluation requirements that includes:
v root in BAS mode
v isso/sa/so in LAS mode

The root and isso users have no password or require weak passwords. The passwords must be updated
before allowing untrusted users access to the global environment or the respective WPAR.

The evaluation password requirement is that the probability of correctly guessing a password must be at
least one in 1,000,000, and the probability of correctly guessing a password during repeated attempts
within one minute must be at least one in 100,000. To comply with the requirement, the user parameters
in /etc/security/user file is changed to:
default:
maxage = 8
maxexpired = 1
minother = 2
minlen = 8
maxrepeats = 2
loginretries = 3
histexpire = 52
histsize = 20

Updating EFS:

This section describes the procedure to set the security attributes of the EFS that was evaluated as a
cryptographic file system.

The evaluation does not include the aspects of root guard mode against the full access to root. On
enabling EFS, set the security attributes for the efsmgr and egskeymgr commands by running the
command:
setsecattr -c accessauths=ALLOW_ALL
innateprivs=PV_DEV_QUERY,PV_DEV_CONFIG,PV_AU_ADD,PV_DAC_R,PV_DAC_W,PV_DAC_X /usr/sbin/efsmgr

setsecattr -c accessauths=ALLOW_ALL
innateprivs=PV_DEV_QUERY,PV_DEV_CONFIG,PV_AU_ADD,PV_DAC_R,PV_DAC_W,PV_DAC_X /usr/sbin/efskeymgr

setkst -t cmd

Hard disk erasure:

AIX permits hdisks to be erased using the Format media service aid in the AIX diagnostic package. The
diagnostic package is fully documented in the Diagnostic Information for Multiple Bus Systems book, and in
your hardware user's guide.

To erase a hard disk, run the following command:
diag -T "format"

This command starts the Format media service aid in a menu driven interface. If prompted, select your
terminal.

A resource selection list is displayed. Select the hdisk devices you want to erase from this list and commit
your changes according to the instructions on the screen.

Security 25

After committing your selections, select Erase Disk from the menu. You are then asked to confirm your
selection. Choose Yes.

You are then asked if you want to Read data from drive or Write patterns to drive. Select Write patterns
to drive.

You then have the opportunity to modify the disk erasure options. After you specify the options you
prefer, select Commit Your Changes . The disk is erased.

Note: It can take a long time for this process to complete.

Resource limits:

When you set resource limits in the /etc/security/limits file, make sure that the limits correspond to
the needs of the processes on the system.

In particular, never set the stack size to unlimited. An unlimited stack might overwrite other segments of
the running process. The stack_hard size must also be limited.

Audit subsystem:

There are several procedures to help protect the audit subsystem.
v Configure the audit subsystem to record all the relevant security activities of the users. To ensure that

the file space needed for auditing is available and is not impaired by other consumers of file system
space, set up a dedicated file system for audit data.

v Protect audit records (such as audit trails, bin files, and all other data stored in /audit) from non-root
users.

v For the BAS/EAL4+ system, bin mode auditing must be set up when the audit subsystem is used. For
information about how to set up the audit subsystem, refer to “Setting up auditing” on page 143.

v At least 20 percent of the available disk space in a system should be dedicated to the audit trail.
v If auditing is enabled, the binmode parameter in the start stanza in the /etc/security/audit/config file

should be set to panic. The freespace parameter in the bin stanza should be configured at minimum to a
value that equals 25 percent of the disk space dedicated to the storage of the audit trails. The
bytethreshold and binsize parameters should each be set to 65 536 bytes.

v Copy audit records from the system to permanent storage for archival.

Nonshared files in the distributed system:

The following files in the /etc/security directory are not to be shared in the distributed system, but are
to remain host-specific:

/etc/security/failedlogin
Log file for failed logins per host

/etc/security/lastlog
Per-user information about the last successful and unsuccessful logins on this host

/etc/security/login.cfg
Host-specific login characteristics for trusted path, login shells, and other login-related
information

/etc/security/portlog
Per-port information for locked ports on this host

The automatically generated backup files of the shared files are also nonshared. Backup files have the
same name as the original file, but have a lowercase letter o prepended.

26 AIX Version 7.2: Security

Using the DACinet feature for user-based and port-based network access control:

The DACinet feature can be used to restrict the access of users to TCP ports.

For more information about DACinet, see “User based TCP port access control with discretionary access
control for internet ports” on page 207. For example, when using DACinet to restrict access to port
TCP/25 inbound to root only with the DACinet feature, only root users from BAS/EAL4+ compliant
hosts can access this port. This situation limits the possibility of regular users spoofing email by using
telnet to connect to port TCP/25 on the victim.

To activate the ACLs for TCP connections at boot time, the /etc/rc.dacinet script is run from
/etc/inittab. It will read the definitions in the /etc/security/acl file and load ACLs into the kernel.
Ports which should not be protected by ACLs should be listed in the /etc/security/services file, which
uses the same format as the /etc/services file.

Assuming a subnet of 10.1.1.0/24 for all the connected systems, the ACL entries to restrict access to the
root user only for X (TCP/6000) in the /etc/security/acl file would be as follows:

6000 10.1.1.0/24 u:root

Installing additional software on a BAS/EAL4+ compliant system:

The administrator can install additional software on the BAS/EAL4+ compliant system. If the software is
not run by the root user or with root-user privileges, this will not invalidate the BAS/EAL4+ compliance.
Typical examples include office applications that are run only by regular users and have no SUID
components.

Additionally, installed software that runs with root-user privileges invalidates the BAS/EAL4+
compliance. This means, for example, drivers for the older JFS should not be installed, as they are
running in kernel mode. Any applications granted with one or more privileges through the
/etc/security/privcmds is not acceptable. Additional daemons that are run as root (for example, an
SNMP daemon) also invalidates the BAS/EAL4+ compliance. A BAS/EAL4+ enabled system cannot be
upgraded (normally).

A BAS/EAL4+ compliant system is rarely used in the evaluated configuration, especially in a commercial
environment. Typically, additional services are needed, so that the production system is based on an
evaluated system, but does not comply with the exact specification of the evaluated system.

NSF v4 Access Control Lists and contents policy:

An NFS v4 Access Control List (ACL) contains the Type, Mask, and Flags fields.

The following is a description of these fields:
v The Type field contains one of the following values:

– ALLOW – Grants the subject, specified in the Who field, the permission(s) specified in the Mask field.
– DENY – Denies the subject, specified in the Who field, the permission(s) specified in the Mask field.

v The Mask field contains one or more of the following fine grained permission values:
– READ_DATA / LIST_DIRECTORY – Read the data from a non-directory object or list the objects in a

directory.
– WRITE_DATA / ADD_FILE – Write data into a non-directory object or add a non-directory object to a

directory.
– APPEND_DATA / ADD_SUBDIRECTORY – Append data into a non-directory object or add a subdirectory to

a directory.
– READ_NAMED_ATTRS – Read the named attributes of an object.
– WRITE_NAMED_ATTRS – Write the named attributes of an object.

Security 27

– EXECUTE – Execute a file or traverse/search a directory.
– DELETE_CHILD – Delete a file or directory within a directory.
– READ_ATTRIBUTES – Read the basic (non-ACL) attributes of a file.
– WRITE_ATTRIBUTES – Change the times associated with a file or directory.
– DELETE – Delete a file or directory.
– READ_ACL – Read the ACL.
– WRITE_ACL – Write the ACL.
– WRITE_OWNER – Change the owner and group.
– SYNCHRONIZE – Synchronize access (exists for compatibility with other NFS v4 clients, but has no

implemented function).
v Flags field – This field defines the inheritance capabilities of directory ACLs and indicates whether the

Who field contains a group or not. This field contains zero or more of the following flags:
– FILE_INHERIT – Specifies that, in this directory, newly created non-directory objects inherit this

entry.
– DIRECTORY_INHERIT – Specifies that, in this directory, newly created subdirectories inherit this

entry.
– NO_PROPAGATE_INHERIT – Specifies that, in this directory, newly created subdirectories inherit

this entry, but these subdirectories do not pass this entry to their newly created subdirectories.
– INHERIT_ONLY – Specifies that this entry does not apply to this directory, only to the newly

created objects that inherit this entry.
– IDENTIFIER_GROUP – Specifies that the Who field represents a group; otherwise, the Who field

represents a user or a special Who value.
v Who field – This field contains one of the following values:

– User – Specifies the user to whom this entry applies.
– Group – Specifies the group to which this entry applies.
– Special – This attribute can be one of the following values:

- OWNER@ – Specifies that this entry applies to the owner of the object.
- GROUP@ – Specifies that this entry applies to the owning group of the object.
- EVERYONE@ – Specifies that this entry applies to all users of the system including the owner and

group.

If the ACL is empty, only a subject with an effective UID of 0 can access the object. The owner of an
object implicitly has the following mask values regardless of what the ACL might or might not contain:
v READ_ACL

v WRITE_ACL

v READ_ATTRIBUTES

v WRITE_ATTRIBUTES

The APPEND_DATA value is implemented as WRITE_DATA . Effectively, there's no functional distinction
between the WRITE_DATA value and the APPEND_DATA value. Both values must be set or unset in unison.

Object ownership can be modified through the use of the WRITE_OWNER value. When the owner or group is
changed, the setuid bit is turned off. The inheritance flags only have meaning in a directory's ACL and
only apply to objects that are created in the directory after the inheritance flags have been set (for
example, existing objects are not affected by inheritance changes to the parent directory's ACL). The
entries in an NFS v4 ACL are order dependent. To determine if the requested access is allowed, each
entry is processed in order. Only entries that have the following values are considered:
v A Who field that matches the effective UID
v A user that is specified in the entry or effective GID

28 AIX Version 7.2: Security

v A group that is specified in the entry of the subject

Each entry is processed until all of the bits of the requester's access have been ALLOWED. After an
access type has been ALLOWED by an entry, it is no longer considered in the processing of later entries.
If a DENY entry is encountered where the requester's access for that mask value is necessary and
undetermined, the request is denied. If the evaluation reaches the end of the ACL, the request is denied.

The maximum supported ACL size is 64 KB. Each entry in an ACL is of variable length and 64 KB is the
only limit on an entry.

The WRITE OWNER value:

The NFS v4 policy provides control over who can read and write the attributes of an object.

A subject with an effective UID 0 can always override the NFS v4 policy. The object owner can allow
others to read and write the attributes of an object using the READ_ATTRIBUTES, WRITE_ATTRIBUTES ,
READ_NAMED_ATTRS, and WRITE_NAME_ATTRS attributes of the ACL mask. The owner can control who can
read and write the ACL using the READ_ACL and WRITE_ACL values of the ACL mask. The object owner
always has READ_ATTRIBUTES, WRITE_ATTRIBUTES, READ_ACL, and WRITE_ACL access. The object owner can
also allow others to change the owner and group of the object using the WRITE_OWNER attribute. An object
owner cannot change the owner or group of the object by default, but the object owner can add a
WRITE_OWNER entry to the ACL specifying themselves, or the object can inherit an ACL entry that specifies
a WRITE_OWNER entry with a Who value of OWNER@. When the owner or group is changed, the setuid bit is
turned off.

The following are some exceptions to the rules:
v If the object is owned by UID 0, only UID 0 can change the owner, but the group can still be changed

by a subject with the WRITE_OWNER attribute.
v Assuming the object has the WRITE_OWNER attribute for the subject, in versions of AIX 5.3 prior to

Technology Level 5300-05, if the object has a non-UID 0 owner, the owner can only be changed to
another non-UID 0 user. In AIX with 5300-05 and later, if the object has a non-UID 0 owner, the owner
can only be changed to the EUID of the subject attempting to change the owner.

v The group can be changed to any group in the subject's concurrent group set with the exception that it
can never be changed to GID 0 or GID 7 (system or security), even if these two groups are in the
concurrent group set of the subject.

LDAP-based and file-based administrative database supported:

The evaluation does not support NFS administrative database. Authentication methods such as DCE and
NIS are not supported.

The evaluation supports only the following:
v File-based authentication (default)
v UNIX-style LDAP-based authentication (use LDAP server IBM Tivoli® Directory Server v 6.0)

For more information about file-based authentication, see the User Authentication.

LDAP authentication:

LDAP-based I&A is configured in the "UNIX-type" authentication mode. In this mode, the administrative
data (including user names, IDs, and passwords) are stored in LDAP where access to the data is limited
to the LDAP administrator.

When a user logs into the system, the system binds to the LDAP server using the LDAP administrator
account over an SSL connection, retrieves the necessary data for the user (including the password) from
LDAP, and then performs authentication using the data retrieved from LDAP. The system maintains an

Security 29

administrative database on an LDAP server. The remaining hosts import the administrative data from the
same LDAP server through the same mechanism previously described. The system maintains a consistent
administrative database by making all administrative changes on the designated LDAP server. A user ID
on any computer refers to the same individual on all other computers. In addition, the password
configuration, name-to-UID mappings, and other data are identical on all hosts in the distributed system.

For more information on LDAP authentication setup, see Light Directory Access Protocol. For more
information in setting up SSL on LDAP, see Setting up SSL on the LDAP server and Setting up SSL on
the LDAP client.

LDAP server:

The mksecldap -s command sets up an AIX system as an LDAP server for security authentication and
data management.

Perform the following tasks:
v Use the RFC2307AIX schema with the -S option.
v Set the server to use Secure Sockets Layer (SSL) by using the -k option. This action requires installing

the GSKit V8 fileset and the idsldap.clt_max_crypto32bit63.rte fileset for 32-bit systems or the
idsldap.clt_max_crypto64bit63.rte fileset for 64-bit systems. Use the ikeyman utility to generate the key
pairs for the directory server.

The LDAP user options must be set to satisfy the requirements of the evaluation. The RFC2370AIX
schema defines the user attributes. Use the same values as described in BAS/EAL4+ system
configuration. The Tivoli Directory Server administrators are not forced to periodically change their
passwords (for example, there is no MaxAge value for administrative passwords). Because of this, the
LDAP administrative password must be changed as often as an AIX user (MaxAge = 8 (in weeks)).

In Tivoli Directory Server 6.3, the authentication failure handling does not apply to Directory
Administrator or to the members of the administrative group. Password composition rules also do not
apply to administrative accounts. These rules need to be enforced if Tivoli Directory Server 6.3 is used.

If the administrator does not use a common LDAP database back-end for user management, the
administrator must ensure that the database that contains users credentials is maintained consistently
among the different TCP Offload Engine (TOE) systems part of one network. Examples include the
following:
v /etc/group

v /etc/passwd

v /etc/security/.ids

v /etc/security/.profile

v /etc/security/environ

v /etc/security/group

v /etc/security/limits

v /etc/security/passwd

v /etc/security/user

Related information:

IBM Tivoli Directory Server information about Packages, filesets, and prerequisites

LDAP client:

The mksecldap -c command sets up an AIX system as an LDAP client for security authentication and
data management.

30 AIX Version 7.2: Security

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDS.doc/install69.htm?path=8_3_10_1%23aixfsord

Perform the following tasks:
v Using the mksecldap -c command, specify unix_auth for the authType with the -A option.
v Set the client to use SSL by using the -k option in the mksecldap -c command. Specifying the client

SSL key requires installing the GSKit fileset and ldap.max_crypto_client fileset. Use the gsk7ikm
utility to generate the key pairs for the directory server.

NFS v4 Client/Server and Kerberos:

The NFS v4 Client/Server environment includes LDAP for maintaining authentication data and Kerberos
for establishing trusted channel between NFS v4 clients and servers. The evaluated configuration
supports NAS v1.4 for Kerberos and IBM Tivoli Directory Server v6.0 (LDAP server) for the user
database.

NAS v1.4 (Kerberos Version 5 Server) must be configured to use LDAP for its database. Kerberos tickets
previously granted by the Kerberos server are valid until they expire.

When you are using Kerberos authentication, the credential used in remote procedure calls initiated by a
user are associated with the current Kerberos ticket held by the user and is not influenced by the real or
effective UID of the process. When you are accessing an NFS remote file system using Kerberos
authentication while running a setuid program, the UID seen at the server is based on the Kerberos
identity, not the UID that owns the setuid program being run.

The evaluated configuration involves setting up NFS to use RPCSEC-GSS security. For more information,
see Network File System, Configuring an NFS server, and Configuring an NFS client. When setting up
the server, choose Kerberos authentication and enable enhanced security on the server. You can enable
this through SMIT using the chnfs command. The chnfs command has the option to enable RPCSEC_GSS
security. When you are setting up the client, follow the instructions to use Kerberos in Configuring an
NFS client. See Setting up a network for RPCSEC-GSS for the instructions to set up the Kerberos data
server with DES3 encryption for security. The evaluated configuration supports only des3 encryption.

Password rules:

The evaluated configuration should have these values for password rules when you are using the
Kerberos server with LDAP as the database.

For more information about password rules, see "Chapter 9. Managing Network Authentication Service
passwords" in the IBM Network Authentication Service Version 1.4 for AIX, Linux and Solaris Administrator's
and User's Guide.

The list of the values follow:

mindiff
4

maxrepeats
2

minalpha
2

minother
2

minlen
8

minage
0

Security 31

histsize
10

To have the AIX NFS v4 client and AIX NFS v4 server securely communicate explicitly using only DES3
enctypes, create the "nfs/hostname" server principal with DES3 enctype (such as des3-cbc-sha1), along
with the corresponding entry in the keytab file (using kadmin interface) and have DES3 (such as
des3-cbc-sha1) as the first entry in the default_tgs_enctypes section of the /etc/krb5/krb5.conf file on
the NFS v4 client machine.

Virtual I/O Server:

The Virtual I/O Server (VIOS) resides in a separate LPAR partition and provides basic discretionary
access control between VIOS SCSI device drivers acting on behalf of LPAR partitions and SCSI-based
logical volumes and physical volumes through mappings.

An LPAR partition (through a VIOS SCSI device driver) may be mapped to 0 or more logical and
physical volumes, but a volume can only be mapped to one LPAR partition. This mapping limits an
LPAR partition to only the volumes assigned to it. VIOS also controls the mapping of VIOS Ethernet
adapter device drivers to VIOS Ethernet device drivers acting on behalf of groups of LPAR partitions
sharing a virtual network. In the evaluated configuration, only a one-to-one mapping of an Ethernet
adapter device driver to an Ethernet device driver acting on behalf of a group of LPAR partitions is
allowed. The one-to-one mapping is configured by the administrator and enforced by the device drivers.
Also, the Ethernet packets must not be tagged with a VLAN tag in the evaluated configuration. This
mechanism can be used to limit which LPAR partitions see certain Ethernet packets.

The VIOS interface should be protected from access by unprivileged users. The VIOS user options must
be set to satisfy the requirements of the evaluation. The actual requirement is that the TSF shall provide a
mechanism to verify that secrets meet the following quality metric: the probability that a secret can be
obtained by an attacker during the lifetime of the secret is less than 2^-20. The following parameters
should be changed for the user in the /etc/security/user directory:

maxage
8

maxexpired
1

minother
2

minlen
8

maxrepeats
2

loginretries
3

histexpire
52

histsize
20

To change the defaults, use the following commands:
type oem_setup_env

chsec -f /etc/security/user -s default -a maxage=8 -a maxexpired=1 -a minother=2
-a minlen=8 -a maxrepeats=2 -a loginretries=3 -a histexpire=52 -a histsize=20

32 AIX Version 7.2: Security

When the prime administrator (padmin) creates a new user, the user attributes must be specified
explicitly for that user. For example, to create a user with name davis, the padmin would use the
following command:
mkuser maxage=8 maxexpired=1 minother=2 minlen=8 maxrepeats=2 loginretries=3

histexpire=52 histsize=20 davis

The padmin should also stop the following daemons and then reboot:
v To remove writesrv and ctrmc from the /etc/inittab file:

sshd: stopsrc -s sshd

v To prevent the daemon from starting at boot time, remove the /etc/rc.d/rc2.d/Ksshd and
/etc/rc.d/rc2.d/Ssshd files. After reboot stop the RSCT daemons:
stopsrc -g rsct_rm stopsrc -g rsct

All users, regardless of their roles, are to be considered as administrative users.

The system administrator can run all of the commands except those in the following list that are limited
to prime admin (padmin):
v chdate

v chuser

v cleargcl

v de_access

v diagmenu

v invscout

v loginmsg

v lsfailedlogin

v lsgcl

v mirrorios

v mkuser

v motd

v oem_platform_level

v oem_setup_env

v redefvg

v rmuser

v shutdown

v unmirrorios

Login control
You can change the login screen defaults for security reasons after a system installation.

Potential hackers can get valuable information from the default AIX login screen, such as the host name
and the version of the operating system. This information would allow them to determine which
exploitation methods to attempt. For security reasons, you may want to change the login screen defaults
as soon as possible after a system installation.

The KDE and GNOME desktops share some of the same security issues. For more information about
KDE and GNOME, refer to the Installation and migration.

For information about users, groups, and passwords, see “Users, groups, and passwords” on page 46.

Security 33

Setting up login controls:

You can set up login controls in the /etc/security/login.cfg file.

To make it harder to attack a system with password guessing, set up login controls in the
/etc/security/login.cfg file as follows:

Table 1. Attributes and Recommended Values for Login Control.

Attribute Applies to PtYs
(Network)

Applies to TTYs Recommended
Value

Comments

sak_enabled Y Y false The Secure Attention key is rarely needed. See
“Using the Secure Attention Key” on page 5.

logintimes N Y Specify allowed login times here.

logindisable N Y 4 Disable login on this terminal after 4
consecutive failed attempts.

logininterval N Y 60 Terminal will be disabled when the specified
invalid attempts have been made within 60
seconds.

loginreenable N Y 30 Re-enable the terminal after it was
automatically disabled after 30 minutes.

logindelay Y Y 5 The time in seconds between login prompts.
This will be multiplied with the number of
failed attempts; for example, 5,10,15,20 seconds
when 5 is the initial value.

These port restrictions work mostly on attached serial terminals, not on pseudo-terminals used by
network logins. You can specify explicit terminals in this file, for example:
/dev/tty0:

logintimes = 0600-2200
logindisable = 5
logininterval = 80
loginreenable = 20

Changing the welcome message on the login screen:

To prevent displaying certain information on login screens, edit the herald parameter in the
/etc/security/login.cfg file.

The default herald contains the welcome message that displays with your login prompt. To change this
parameter, you can either use the chsec command or edit the file directly.

The following example uses the chsec command to change the default herald parameter:
chsec -f /etc/security/login.cfg -s default
-a herald="Unauthorized use of this system is prohibited.\n\nlogin:"

For more information about the chsec command, see the Commands Reference, Volume 1.

To edit the file directly, open the /etc/security/login.cfg file and update the herald parameter as
follows:
default:
herald ="Unauthorized use of this system is prohibited\n\nlogin:"
sak_enable = false
logintimes =
logindisable = 0
logininterval = 0
loginreenable = 0
logindelay = 0

34 AIX Version 7.2: Security

Note: To make the system more secure, set the logindisable and logindelay variables to a number greater
than 0 (# > 0).

Changing the login screen for the common desktop environment:

This security issue also affects the Common Desktop Environment (CDE) users. The CDE login screen
also displays, by default, the host name and the operating system version. To prevent this information
from being displayed, edit the /usr/dt/config/$LANG/Xresources file, where $LANG refers to the local
language installed on your machine.

In our example, assuming that $LANG is set to C, copy this file into the /etc/dt/config/C/Xresources
directory. Next, open the /usr/dt/config/C/Xresources file and edit it to remove welcome messages that
include the host name and operating system version.

For more information about CDE security issues, see “Managing X11 and CDE concerns” on page 39.

Disabling the display of the user name and changing the password prompt:

In a secure environment, it might be necessary to hide the display of the login user name or to provide a
custom password prompt that differs from the default.

The default message behavior for the login and password prompt is shown below:
login: foo
foo’s Password:

To disable the display of the user name from prompts and system error messages, edit the usernameecho
parameter in the /etc/security/login.cfg file. The default value for usernameecho is true which results in
the user name being displayed. To change this parameter, you can either use the chsec command or edit
the file directly.

The following example uses the chsec command to change the default usernameecho parameter to false:
chsec -f /etc/security/login.cfg -s default -a usernameecho=false

For more information about the chsec command, see the Commands Reference, Volume 1.

To edit the file directly, open the /etc/security/login.cfg file and add or modify the usernameecho
parameter as follows:
default:
usernamecho = false

Setting the usernameecho parameter to false will result in the user name not being displayed at the login
prompt. Instead, the user name is masked out with '*' characters for system prompts and error messages
as show below:
login:
***’s Password:

The password prompt may be separately modified to be a custom string by setting the pwdprompt
parameter in the /etc/security/login.cfg file. The default value is a string "user's Password: " where
user is replaced with the authenticating user name.

To change this parameter, you can either use the chsec command or edit the file directly.

The following example uses the chsec command to change the default pwdprompt parameter to
"Password: ":
chsec -f /etc/security/login.cfg -s default -a pwdprompt="Password: "

Security 35

To edit the file directly, open the /etc/security/login.cfg file and add or modify the pwdprompt
parameter as follows:
default:
pwdprompt = "Password: "

Setting the pwdprompt parameter to "Password: " will result in the specified prompt being displayed by
login as well as by other applications that use the system password prompt. The prompt behavior for the
login when the a custom prompt has been configured is as follows:
login: foo
Password:

Setting up system default login parameters:

Edit the /etc/security/login.cfg file to set up system default login parameters.

To set up base defaults for many login parameters, such as those you might set up for a new user
(number of login retries, login re-enable, and login internal), edit the /etc/security/login.cfg file.

Securing unattended terminals:

Use the lock and xlock commands to secure your terminal.

All systems are vulnerable if terminals are left logged in and unattended. The most serious problem
occurs when a system manager leaves a terminal unattended that has been enabled with root authority.
In general, users should log out any time they leave their terminals. Leaving system terminals unsecure
poses a potential security hazard. To lock your terminal, use the lock command. If your interface is
AIXwindows, use the xlock command.

Enabling automatic logoff:

Enable automatic logoff to prevent an intruder from compromising the security of the system.

Another valid security concern results from users leaving their accounts unattended for a lengthy period
of time. This situation allows an intruder to take control of the user's terminal, potentially compromising
the security of the system.

To prevent this type of potential security hazard, you can enable automatic logoff on the system. To do
this, set the TMOUT and TIMEOUT environment variables to the number of seconds of inactivity. After
the inactive time is elapsed, you are logged off automatically, as in the following example:
TMOUT=600; TIMEOUT=600; export TMOUT TIMEOUT

In the above example, the number 600 is in seconds, which is equal to 10 minutes. This method works
solely from the shell application. The variables can be protected from accidental overwriting by making
them read only, as follows:
readonly TMOUT TIMEOUT

The TMOUT and TIMEOUT environment variables are set in the .profile files of users or in the
/etc/security/.profile file. This allows the file to be added in the .profile file of a user when the user is
created.

Stack Execution Disable protection
Keeping computer systems secure forms an important aspect of an On Demand business. In today's
world of highly networked environments, it has become an extreme challenge to ward off attacks from a
variety of sources.

36 AIX Version 7.2: Security

There is increasing likelihood of computer systems falling prey to sophisticated attacks, resulting in
disruption to the daily operations of businesses and government agencies. While no security measure can
provide foolproof protection against attacks, you should deploy multiple security mechanisms to thwart
security attacks. This section covers a security mechanism that is used with AIX to thwart attacks due to
buffer overflow based execution.

Security breaches occur in many forms, but one of the most common methods is to monitor the
system-provided administrative tools, look for, and exploit buffer overflows. Buffer overflow attacks
occur when an internal program buffer is overwritten because data was not properly validated (such as
command line, environmental variable, disk or terminal I/O). Attack code is inserted into a running
process through the buffer overflow, changing the execution path of the running process. The return
address is overwritten and redirected to the inserted-code location. Common causes of breaches include
improper or nonexistent bounds checking, or incorrect assumptions about the validity of data sources.
For example, a buffer overflow can occur when a data object is large enough to hold 1 KB of data, but
the program does not check the bounds of the input and hence can be made to copy more than 1 KB into
that data object.

The intruder's goal is to attack a command and/or tool that provides root privileges to a regular user.
Control of the program is gained with all the privileges enabled, permitting overflow of the buffers.
Attacks are typically focused on a root owned UID set or programs leading to the execution of a shell,
thereby gaining root-based shell access to the system.

You can prevent these attacks by blocking execution of attack code entering through the buffer overflow.
Disable execution on the memory areas of a process where execution commonly does not take place
(stack and heap memory areas).

SED buffer overflow protection mechanism:

AIX has enabled the stack execution disable (SED) mechanism to disable the execution of code on a stack
and select data areas of a process.

By disabling the execution and then terminating, an infringing program, the attacker is prevented from
gaining root user privileges through a buffer overflow attack. While this feature does not stop buffer
overflows, it provides protection by disabling the execution of attacks on buffers that have been
overflowed.

Beginning with the POWER4 family of processors, you can use a page-level execution enable and/or
disable feature for the memory. The AIX SED mechanism uses this underlying hardware support for
implementing a no-execution feature on select memory areas. Once this feature is enabled, the operating
system checks and flags various files during the executable programs. It then alerts the operating system
memory manager and the process managers that the SED is enabled for the process being created. The
select memory areas are marked for no-execution. If any execution occurs on these marked areas, the
hardware raises an exception flag and the operating system stops the corresponding process. The
exception and application termination details are captured through the AIX error log events.

SED is implemented mainly through the sedmgr command. The sedmgr command permits control of the
systemwide SED mode of operation as well as setting the executable file based SED flags.

SED modes and monitoring:

The stack execution disable (SED) mechanism in AIX is implemented through systemwide mode flags, as
well as individual executable file-based header flags.

While systemwide flags control the systemwide operation of the SED, file level flags indicate how files
should be treated in SED. The buffer overflow protection (BOP) mechanism provides for four systemwide
modes of operation:

Security 37

off The SED mechanism is turned off and no process is marked for SED protection.

select Only a select set of files are enabled and monitored for SED protection. The select set of files are
chosen by reviewing the SED related flags in the executable program binary headers. The
executable program header enables SED related flags to request to be included in the select
mode.

setidfiles
Permits you to enable SED, not only for the files requesting such a mechanism, but all the
important setuid and setgid system files. In this mode, the operating system not only provides
SED for the files with the request SED flag set, but also enables SED for the executable files with
the following characteristics (except the files marked for exempt in their file headers):
v SETUID files owned by root
v SETGID files with primary group as system or security

all All executable programs loaded on the system are SED protected except for the files requesting
an exemption from SED mode. Exemption related flags are part of the executable program
headers.

The SED feature on AIX also provides the ability to monitor instead of stopping the process when an
exception happens. This systemwide control permits a system administrator to check for breakdowns and
issues in the system environment by monitoring it before the SED is deployed in the production systems.

The sedmgr command provides an option that permits you to enable SED to monitor files instead of
stopping the processes when exceptions occur. The system administrator can evaluate whether an
executable program is doing any legitimate stack execution. This setting works in conjunction with the
systemwide mode set using the -c option. When the monitor mode is turned on, the system permits the
process to continue operating even if an SED-related exception occurs. Instead of stopping the process,
the operating system logs the exception in the AIX error log. If SED monitoring is off, the operating
system stops any process that violates and raises an exception per SED facility.

Any changes to the SED mode systemwide flags requires that you restart the system for the changes to
take effect. All of these types of events are audited.

SED flags for executables:

In AIX, you can use the sedmgr command to flag executables from the SE mechanism.

Linker has been enhanced to support two new SED related flags to enable select and exempt options in
the executable's headers. The select flag permits an executable to request and be part of SED protection
during the select mode of systemwide SED operation, whereas the exempt flag permits an executable to
request for an exemption from the SED mechanism. These executables are not enabled for execution
disable on any of the process memory areas.

The exemption flag permits a system administrator to monitor the SED mechanism, and evaluate the
situation. The system administrator can enable execution on stack and data areas as necessary for the
application, with the associated risks understood.

The following table shows how the systemwide settings and file settings affect the SED mode of
operation:

38 AIX Version 7.2: Security

Table 2. Systemwide settings and file settings affecting the SED mode

Executable file SED flags

System SED mode request exempt system
Setuid-root or setgid-system/security

files

off – – – –

select enabled – – –

setgidfiles enabled – – enabled

all enabled – enabled enabled

SED issues and considerations:

By default, AIX SED is shipped in select mode. A number of setuid and setgid programs are
select-enabled for SED and operate in protected mode by default.

SED enablement might cause older binary files to break if they are not capable of handling the
no-execution feature on the stack heap areas. These applications must run on stack data areas. The system
administrator can evaluate the situation and flag the file for an exemption using the bopmgr command.
AIX Java™ 1.3.1 and AIX Java 1.4.2 have Just-In-Time (JIT) compilers that dynamically generate and run
native object code while running Java applications (the Java Virtual Machine decides which code to
compile based on the execution profile of the application). This object code is stored in data buffers
allocated by the JIT. Consequently, if AIX is configured to run in the SED ALL mode, the system
administrator must set the Java binary file's exemption flag.

When SED-related flags in an executable file are changed, they apply only to a future load and execution
of the file. This change does not apply to currently operating processes based on this file. The SED facility
controls and monitors both 32- and 64-bit executable programs for the systemwide and file-level settings.
The SED facility is available only when the AIX operating system is used with the 64-bit kernel.

Related information

sedmgr command

AIX Error-Logging Facility

Managing X11 and CDE concerns
There are potential security vulnerabilities involved with the X11 X server and the Common Desktop
Environment (CDE).

Removing the /etc/rc.dt file:

Remove the /etc/rc.dt file on systems that require a high level of security.

Although running the CDE interface is convenient for users, security issues are associated with it. For this
reason, do not run CDE on servers that require a high level of security. The best solution is to avoid
installing CDE (dt) file sets. If you have installed these file sets on your system, consider uninstalling
them, especially the /etc/rc.dt script, which starts CDE.

For more information about CDE, see the Operating system and device management.

Preventing unauthorized monitoring of remote X server:

An important security issue associated with the X11 server is unauthorized silent monitoring of a remote
server.

Security 39

The xwd and xwud commands can be used to monitor X server activity because they have the ability to
capture keystrokes, which can expose passwords and other sensitive data. To solve this problem, remove
these executable files unless they are necessary under your configuration, or, as an alternative, change
access to these commands to be root only.

The xwd and xwud commands are located in the X11.apps.clients fileset.

If you do need to retain the xwd and xwud commands, consider using OpenSSH or MIT Magic Cookies.
These third-party applications help prevent the risks that are created by running the xwd and xwud
commands.

For more information about OpenSSH and MIT Magic Cookies, refer to each application's respective
documentation.

Enabling and disabling access control:

The X server permits remote hosts to use the xhost + command to connect to your system.

Ensure that you specify a host name with the xhost + command, because it disables access control for the
X server. This permits you to grant access to specific hosts, which eases monitoring for potential attacks
to the X server. To grant access to a specific host, run the xhost command as follows:
xhost + hostname

If you do not specify a host name, access will be granted to all hosts.

For more information about the xhost command, see the Commands Reference

Disabling user permissions to run the xhost command:

You can prevent the unauthorized execution of the xhost command by using the chmod command.

Another way to ensure that the xhost command is being used appropriately is to restrict execution of this
command to root-user authority only. To do this, use the chmod command to change the permissions of
/usr/bin/X11/xhost to 744, as follows:
chmod 744/usr/bin/X11/xhost

List of setuid/setgid programs
There are various setuid/setgid programs on an AIX system. You can remove these privileges on
commands that do nto need to be available to regular users.

The following programs are included in a normal AIX installation. In a CC-configured AIX system, this
list is pruned and includes fewer programs.
v /opt/IBMinvscout/bin/invscoutClient_VPD_Survey

v /opt/IBMinvscout/bin/invscoutClient_PartitionID

v /usr/lpp/diagnostics/bin/diagsetrto

v /usr/lpp/diagnostics/bin/Dctrl

v /usr/lpp/diagnostics/bin/diagela

v /usr/lpp/diagnostics/bin/diagela_exec

v /usr/lpp/diagnostics/bin/diagrpt

v /usr/lpp/diagnostics/bin/diagrto

v /usr/lpp/diagnostics/bin/diaggetrto

v /usr/lpp/diagnostics/bin/update_manage_flash

v /usr/lpp/diagnostics/bin/utape

40 AIX Version 7.2: Security

v /usr/lpp/diagnostics/bin/uspchrp

v /usr/lpp/diagnostics/bin/update_flash

v /usr/lpp/diagnostics/bin/uesensor

v /usr/lpp/diagnostics/bin/usysident

v /usr/lpp/diagnostics/bin/usysfault

v /usr/lpp/X11/bin/xlock

v /usr/lpp/X11/bin/aixterm

v /usr/lpp/X11/bin/xterm

v /usr/lpp/X11/bin/msmitpasswd

v /usr/lib/boot/tftp

v /usr/lib/lpd/digest

v /usr/lib/lpd/rembak

v /usr/lib/lpd/pio/etc/piodmgrsu

v /usr/lib/lpd/pio/etc/piomkpq

v /usr/lib/lpd/pio/etc/pioout

v /usr/lib/mh/slocal

v /usr/lib/perf/libperfstat_updt_dictionary

v /usr/lib/sa/sadc

v /usr/lib/semutil

v /usr/lib/trcload

v /usr/sbin/allocp

v /usr/sbin/audit

v /usr/sbin/auditbin

v /usr/sbin/auditcat

v /usr/sbin/auditconv

v /usr/sbin/auditmerge

v /usr/sbin/auditpr

v /usr/sbin/auditselect

v /usr/sbin/auditstream

v /usr/sbin/backbyinode

v /usr/sbin/cfgmgr

v /usr/sbin/chcod

v /usr/sbin/chcons

v /usr/sbin/chdev

v /usr/sbin/chpath

v /usr/sbin/chtcb

v /usr/sbin/cron

v /usr/sbin/acct/accton

v /usr/sbin/arp64

v /usr/sbin/arp

v /usr/sbin/devinstall

v /usr/sbin/diag_exec

v /usr/sbin/entstat

v /usr/sbin/entstat.ethchan

v /usr/sbin/entstat.scent

Security 41

v /usr/sbin/diskusg

v /usr/sbin/exec_shutdown

v /usr/sbin/fdformat

v /usr/sbin/format

v /usr/sbin/fuser

v /usr/sbin/fuser64

v /usr/sbin/getlvcb

v /usr/sbin/getlvname

v /usr/sbin/getvgname

v /usr/sbin/grpck

v /usr/sbin/getty

v /usr/sbin/extendvg

v /usr/sbin/fastboot

v /usr/sbin/frcactrl64

v /usr/sbin/frcactrl

v /usr/sbin/inetd

v /usr/sbin/invscout

v /usr/sbin/invscoutd

v /usr/sbin/ipl_varyon

v /usr/sbin/keyenvoy

v /usr/sbin/krlogind

v /usr/sbin/krshd

v /usr/sbin/lchangelv

v /usr/sbin/lchangepv

v /usr/sbin/lchangevg

v /usr/sbin/lchlvcopy

v /usr/sbin/lcreatelv

v /usr/sbin/ldeletelv

v /usr/sbin/ldeletepv

v /usr/sbin/lextendlv

v /usr/sbin/lmigratelv

v /usr/sbin/lmigratepp

v /usr/sbin/lparsetres

v /usr/sbin/lpd

v /usr/sbin/lquerylv

v /usr/sbin/lquerypv

v /usr/sbin/lqueryvg

v /usr/sbin/lqueryvgs

v /usr/sbin/lreducelv

v /usr/sbin/lresynclp

v /usr/sbin/lresynclv

v /usr/sbin/lsaudit

v /usr/sbin/lscfg

v /usr/sbin/lscons

v /usr/sbin/lslv

42 AIX Version 7.2: Security

v /usr/sbin/lspath

v /usr/sbin/lspv

v /usr/sbin/lsresource

v /usr/sbin/lsrset

v /usr/sbin/lsslot

v /usr/sbin/lsuser

v /usr/sbin/lsvg

v /usr/sbin/lsvgfs

v /usr/sbin/login

v /usr/sbin/lvaryoffvg

v /usr/sbin/lvaryonvg

v /usr/sbin/lvgenmajor

v /usr/sbin/lvgenminor

v /usr/sbin/lvrelmajor

v /usr/sbin/lvrelminor

v /usr/sbin/lsmcode

v /usr/sbin/mailq

v /usr/sbin/mkdev

v /usr/sbin/mklvcopy

v /usr/sbin/mknod

v /usr/sbin/mkpasswd

v /usr/sbin/mkpath

v /usr/sbin/mkvg

v /usr/sbin/mount

v /usr/sbin/netstat64

v /usr/sbin/mtrace

v /usr/sbin/ndp

v /usr/sbin/newaliases

v /usr/sbin/named9

v /usr/sbin/named8

v /usr/sbin/netstat

v /usr/sbin/nfsstat

v /usr/sbin/pdelay

v /usr/sbin/pdisable

v /usr/sbin/penable

v /usr/sbin/perf/diag_tool/getschedparms

v /usr/sbin/perf/diag_tool/getvmparms

v /usr/sbin/phold

v /usr/sbin/portmir

v /usr/sbin/pshare

v /usr/sbin/pstart

v /usr/sbin/putlvcb

v /usr/sbin/putlvodm

v /usr/sbin/qdaemon

v /usr/sbin/quota

Security 43

v /usr/sbin/reboot

v /usr/sbin/redefinevg

v /usr/sbin/repquota

v /usr/sbin/restbyinode

v /usr/sbin/rmdev

v /usr/sbin/ping

v /usr/sbin/rmgroup

v /usr/sbin/rmpath

v /usr/sbin/rmrole

v /usr/sbin/rmuser

v /opt/rsct/bin/ctstrtcasd

v /usr/sbin/srcd

v /usr/sbin/srcmstr

v /usr/sbin/rmsock64

v /usr/sbin/sendmail_ssl

v /usr/sbin/sendmail_nonssl

v /usr/sbin/rmsock

v /usr/sbin/sliplogin

v /usr/sbin/sendmail

v /usr/sbin/rwhod

v /usr/sbin/route

v /usr/sbin/snappd

v /usr/sbin/swap

v /usr/sbin/swapoff

v /usr/sbin/swapon

v /usr/sbin/swcons

v /usr/sbin/switch.prt

v /usr/sbin/synclvodm

v /usr/sbin/tsm

v /usr/sbin/umount

v /usr/sbin/umountall

v /usr/sbin/unmount

v /usr/sbin/varyonvg

v /usr/sbin/watch

v /usr/sbin/talkd

v /usr/sbin/timedc

v /usr/sbin/uucpd

v /usr/bin/bellmail

v /usr/bin/at

v /usr/bin/capture

v /usr/bin/chcore

v /usr/bin/acctras

v /usr/bin/acctctl

v /usr/bin/chgroup

v /usr/bin/chkey

44 AIX Version 7.2: Security

v /usr/bin/chque

v /usr/bin/chquedev

v /usr/bin/chrole

v /usr/bin/chsec

v /usr/bin/chuser

v /usr/bin/confsrc

v /usr/bin/crontab

v /usr/bin/enq

v /usr/bin/filemon

v /usr/bin/errpt

v /usr/bin/fileplace

v /usr/bin/fileplacej2

v /usr/bin/fileplacej2_64

v /usr/bin/ftp

v /usr/bin/getconf

v /usr/bin/ipcs

v /usr/bin/ipcs64

v /usr/bin/iostat

v /usr/bin/logout

v /usr/bin/lscore

v /usr/bin/lssec

v /usr/bin/mesg

v /usr/bin/mkgroup

v /usr/bin/mkque

v /usr/bin/mkquedev

v /usr/bin/mkrole

v /usr/bin/mkuser

v /usr/bin/netpmon

v /usr/bin/newgrp

v /usr/bin/pagdel

v /usr/bin/paginit

v /usr/bin/paglist

v /usr/bin/passwd

v /usr/bin/pwck

v /usr/bin/pwdadm

v /usr/bin/pwdck

v /usr/bin/rm_mlcache_file

v /usr/bin/rdist

v /usr/bin/remsh

v /usr/bin/rlogin

v /usr/bin/rexec

v /usr/bin/rcp

v /usr/bin/rmque

v /usr/bin/rmquedev

v /usr/bin/rsh

Security 45

v /usr/bin/ruptime

v /usr/bin/rwho

v /usr/bin/script

v /usr/bin/setgroups

v /usr/bin/setsenv

v /usr/bin/shell

v /usr/bin/su

v /usr/bin/sysck

v /usr/bin/tcbck

v /usr/bin/sysck_r

v /usr/bin/telnet

v /usr/bin/tftp

v /usr/bin/traceroute

v /usr/bin/tn

v /usr/bin/tn3270

v /usr/bin/usrck

v /usr/bin/utftp

v /usr/bin/vmstat

v /usr/bin/vmstat64

v /usr/bin/yppasswd

v /sbin/helpers/jfs2/backbyinode

v /sbin/helpers/jfs2/diskusg

v /sbin/helpers/jfs2/restbyinode

Users, groups, and passwords
You can manage AIX users and groups.

Automatic home directory creation at login
The AIX operating system can automatically create a home directory at user login.

This feature is useful for remotely defined users (for example, users defined in an LDAP server) who
may not have a home directory in the local system. The AIX operating system provides two mechanisms
to automatically create a home directory at user login: a standard AIX mechanism and a PAM
mechanism. These mechanisms can be enabled together.

AIX mechanism
The AIX mechanism covers login through the following commands: getty, login, rlogin, rsh,
telnet, and tsm. The AIX mechanism supports STD_AUTH authentication and PAM_AUTH
authentication using the pam_aix module. Enable the AIX mechanism in the
/etc/security/login.cfg file by setting the mkhomeatlogin attribute of the usw stanza to true (see
the /etc/security/login.cfg file for additional information about the file). Use the chsec
command to enable or disable the automatic-home-directory-creation-at-login feature. For
example, to enable the feature, run the following command:
chsec -f /etc/security/login.cfg -s usw -a mkhomeatlogin=true

When enabled, the login process checks for the user's home directory after successful
authentication. If a user's home directory does not exist, one is created.

Note: The mkhomeatlogin attribute is only supported on AIX Version 6.1 with the 6100-02
Technology Level or later.

46 AIX Version 7.2: Security

PAM mechanism
AIX also provides a pam_mkuserhome module for creating home directories for PAM
mechanisms. The pam_mkuserhome module can be stacked with other session modules for login
services. To enable this PAM module for a service, an entry must be added to that service. For
example, to enable home directory creation through the telnet command using PAM, add the
following entry to the /etc/pam.cfg file:
telnet session optional pam_mkuserhome

Account ID
Each user account has a numeric ID which uniquely identifies the account. The AIX operating system
grants authorization according to Account ID.

It is important to understand that accounts with the same ID are virtually the same account. When
creating users and groups, the AIX mkuser and mkgroup commands always check for the target registry
to make sure that the account to be created has no ID collision with existing accounts.

The system can also be configured to check all user (group) registries during account creation using the
dist_uniqid system attribute. The dist_uniqid attribute of the usw stanza in the /etc/security/login.cfg
file can be managed using the chsec command. To configure the system to always check for id collision
against all registries, run:
chsec -f /etc/security/login.cfg -s usw -a dist_uniqid=always

There are three valid values for the dist_uniqid attribute:

never This value does not check for ID collision against the non-target registries (default).

always
This value checks for ID collision against all other registries. If collision detected between the
target registry and any other registry, the mkuser (mkgroup) command picks a unique ID which
is not used by any registry. It only fails if the ID value is specified from the command line (for
example, mkuser id=234 foo, and ID 234 is already taken by a user in any of the registries).

uniqbyname
This value checks for ID collision against all other registries. Collision between registries is
permitted only if the account to be created has the same name as the existing account for a
mkuser id=123 foo type of command. If the ID is not specified from the command line, the new
account might not have the same ID value as an existing account with the same name in another
registry. For example, acct1 with ID 234 is a local account. When creating an LDAP account acct1,
mkuser -R LDAP acct1 might pick a unique ID of 235 for the LDAP account. The result is acct1
with ID 234 on local, and acct1 with 235 on LDAP.

Note: ID collision detection in the target registry is always enforced regardless of the dist_uniqid
attribute.

The uniqbyname value works well against two registries. With more than two registries, and when ID
collision already exists between two registries, the behavior of mkuser (mkgroup) is unspecified when
creating a new account in a third registry using the colliding ID values. The new account creation might
succeed or fail depending the order the registries are checked.

For example: Suppose a system is configured with three registries: local, LDAP and DCE. An acct1
account exists in LDAP and an acct2 account in DCE, both with ID 234. When the system administrator
runs the mkuser -R files id=234 acct1 (mkgroup -R files id=234 acct1) command to create the local
account with the uniqbyname value, the mkuser (mkgroup) command checks against the LDAP registry
first, and finds that ID 234 is taken by LDAP account acct1. Since the account to be created has the same
account name, the mkuser (mkgroup) command successfully creates the local account acct1 with ID 234.
If the DCE registry is checked first, the mkuser (mkgroup) command finds that ID 234 is taken by DCE
account acct2, and creation of local account acct1 fails. The check for ID collision enforces ID uniqueness

Security 47

between the local registry and remote registries or between remote registries. There is no guarantee of ID
uniqueness between the newly created account on the remote registry and existing local users on other
systems which use the same remote registry. The mkuser (mkgroup) command bypasses the remote
registry if it is not reachable at the time the command is run.

Root account
The root account has virtually unlimited access to all programs, files, and resources on a system.

The root account is the special user in the /etc/passwd file with the user ID (UID) of 0 and is commonly
given the user name, root. It is not the user name that makes the root account so special, but the UID
value of 0. This means that any user that has a UID of 0 also has the same privileges as the root user.
Also, the root account is always authenticated by means of the local security files.

The root account should always have a password, which should never be shared. The root account
should be given a password immediately after the system is installed. Only the system administrator
should know the root password. System administrators should only operate as the root user to perform
system administration functions that require root privileges. For all other operations, they should return
to their normal user account.

Attention: Routinely operating as the root user can result in damage to the system because the root
account overrides many safeguards in the system.

Disabling direct root login:

A common attack method of potential hackers is to obtain the root password.

To avoid this type of attack, you can disable direct access to your root ID and then require your system
administrators to obtain root privileges by using the su - command. In addition to permitting you to
remove the root user as a point of attack, restricting direct root access permits you to monitor which
users gained root access, as well as the time of their action. You can do this by viewing the
/var/adm/sulog file. Another alternative is to enable system auditing, which will report this type of
activity.

To disable remote login access for your root user, edit the /etc/security/user file. Specify False as the
rlogin value on the entry for root.

Before you disable the remote root login, examine and plan for situations that would prevent a system
administrator from logging in under a non-root user ID. For example, if a user's home file system is full,
the user would not be able to log in. If the remote root login were disabled and the user who could use
the su - command to change to root had a full home file system, root could never take control of the
system. This issue can be bypassed by system administrators creating home file systems for themselves
that are larger than the average user's file system.

User accounts
There are several security administrative tasks for user accounts.

Recommended user attributes:

User administration consists of creating users and groups and defining their attributes.

A major attribute of users is how they are authenticated. Users are the primary agents on the system.
Their attributes control their access rights, environment, how they are authenticated, as well as how,
when, and where their accounts can be accessed.

48 AIX Version 7.2: Security

Groups are collections of users who can share the same access permissions for protected resources. A
group has an ID and is composed of members and administrators. The creator of the group is usually the
first administrator.

Many attributes can be set for each user account, including password and login attributes. For a list of
configurable attributes, refer to “Disk quota system overview” on page 74. The following attributes are
recommended:
v Each user should have a user ID that is not shared with any other user. All of the security safeguards

and accountability tools work only if each user has a unique ID.
v Give user names that are meaningful to the users on the system. Actual names are best, because most

electronic mail systems use the user ID to label incoming mail.
v Add, change, and delete users using the SMIT interface. Although you can perform all of these tasks

from the command line, the SMIT interface helps to reduce small errors.
v Do not give an initial password to a user account until the user is ready to log in to the system. If the

password field is defined as an * (asterisk) in the /etc/passwd file, account information is kept, but no
one can log in to that account.

v Do not change the system-defined user IDs that are needed by the system to function correctly. The
system-defined user IDs are listed in the /etc/passwd file.

v In general, do not set the admin parameter to true for any user IDs. Only the root user can change
attributes for users with admin=true set in the /etc/security/user file.

The operating system supports the standard user attributes usually found in the /etc/passwd and
/etc/system/group files, such as:

Authentication Information
Specifies the password

Credentials
Specifies the user identifier, principal group, and the supplementary group ID

Environment
Specifies the home or shell environment.

User and group name length limit:

You can configure and retrieve the user and group name length limit.

The user and group name length limit parameter default value is 9 characters. For AIX 5.3 and later, you
can increase the user and group name length limit from 9 characters to 256 characters. Because the user
and group name length limit parameter includes the terminating NULL character, the actual valid name
lengths are from 8 characters to 255 characters.

The user and group name length limit is specified with the v_max_logname system configuration
parameter for the sys0 device. You can change or retrieve the v_max_logname parameter value from the
kernel or ODM database. The parameter value in the kernel is the value the system uses while running.
The parameter value in the ODM database is the value the system uses after the next restart.

Note: Unexpected behavior might occur if you decrease the user and group name length limit after
increasing it. User and group names that you created with the larger limitation might still exist on the
system.

Retrieving the user and group name length limit from the ODM database:

You can use commands or subroutines to retrieve the v_max_logname parameter.

Security 49

You can use the lsattr command to retrieve the v_max_logname parameter in the ODM database. The
lsattr command displays the v_max_logname parameter as the max_logname attribute.

For more information, see the lsattr command in Commands Reference, Volume 3.

The following example shows how to use the lsattr command to retrieve the max_logname attribute:
$ lsattr -El sys0
SW_dist_intr false Enable SW distribution of interrupts True
autorestart true Automatically REBOOT system after a crash True
boottype disk N/A False
capacity_inc 1.00 Processor capacity increment False
capped true Partition is capped False
conslogin enable System Console Login False
cpuguard enable CPU Guard True
dedicated true Partition is dedicated False
ent_capacity 4.00 Entitled processor capacity False
frequency 93750000 System Bus Frequency False
fullcore false Enable full CORE dump True
fwversion IBM,SPH01316 Firmware version and revision levels False
iostat false Continuously maintain DISK I/O history True
keylock normal State of system keylock at boot time False
max_capacity 4.00 Maximum potential processor capacity False
max_logname 20 Maximum login name length at boot time True
maxbuf 20 Maximum number of pages in block I/O BUFFER CACHE True
maxmbuf 0 Maximum Kbytes of real memory allowed for MBUFS True
maxpout 0 HIGH water mark for pending write I/Os per file True
maxuproc 128 Maximum number of PROCESSES allowed per user True
min_capacity 1.00 Minimum potential processor capacity False
minpout 0 LOW water mark for pending write I/Os per file True
modelname IBM,7044-270 Machine name False
ncargs 6 ARG/ENV list size in 4K byte blocks True
pre430core false Use pre-430 style CORE dump True
pre520tune disable Pre-520 tuning compatibility mode True
realmem 3145728 Amount of usable physical memory in Kbytes False
rtasversion 1 Open Firmware RTAS version False
sec_flags 0 Security Flags True
sed_config select Stack Execution Disable (SED) Mode True
systemid IBM,0110B5F5F Hardware system identifier False
variable_weight 0 Variable processor capacity weight False
$

Retrieving the user and group name length limit from the kernel:

You can use commands and subroutines to retrieve the v_max_logname parameter from the kernel.

Using the getconf command

You can use the getconf command with the LOGIN_NAME_MAX parameter to retrieve the user and group
name length limit in the kernel. The getconf command output includes the terminating NULL character.

The following example shows how to use getconf command to retrieve the current user and group name
limit from the kernel:
$ getconf LOGIN_NAME_MAX
20
$

Using the sysconf subroutine

You can use the sysconf subroutine with the _SC_LOGIN_NAME_MAX parameter to retrieve the user and
group name length limit in the kernel.

50 AIX Version 7.2: Security

The following example shows how to use the sysconf subroutine to retrieve the user and group name
length limit from the kernel:
#include <unistd.h>
main()
{

long len;

len = sysconf(_SC_LOGIN_NAME_MAX);

printf("The name length limit is %d\n", len);
}

Using the sys_parm subroutine

You can use the sys_parm subroutine with the SYSP_V_MAX_LOGNAME parameter to retrieve the current user
name length limit in the kernel.

The following example shows how to use the sys_parm subroutine to retrieve the user name length limit
from the kernel:
#include <sys/types.h>
#include <sys/var.h>
#include <errno.h>
main()
{

int rc;
struct vario myvar;

rc = sys_parm (SYSP_GET, SYSP_V_MAX_LOGNAME, &myvar);

if (!rc)
printf("Max_login_name = %d\n", myvar.v.v_max_logname.value);

else
printf("sys_parm() failed rc = %d, errno = %d\n", rc, errno);

}

Changing the user group and name length limit in the ODM database:

You can configure the user and group name length limit value in the kernel only during the system boot
phase. You can change the value in the ODM database using the chdev command. The change takes
effect after the next system restart.

The following example shows how to use the chdev command to change the v_max_logname parameter in
the ODM database:
$ chdev -l sys0 -a max_logname=30
sys0 changed
$

User account control:

User accounts have attributes that can be altered.

Each user account has a set of associated attributes. These attributes are created from default values when
a user is created by using the mkuser command. The attributes can be altered by using the chuser
command. The following are the user attributes that control login and are not related to password
quality:

account_locked
If an account must be explicitly locked, this attribute can be set to True; the default is False.

admin If set to True, this user can not change the password. Only the administrator can change it.

Security 51

admgroups
Lists groups for which this user has administrative rights. For those groups, the user can add or
delete members.

auth1 The authentication method that is used to grant the user access. Typically, it is set to SYSTEM,
which will then use newer methods.

Note: The auth1 attribute is deprecated and should not be used.

auth2 Method that runs after the user has been authenticated by whatever was specified in auth1. It
cannot block access to the system. Typically, it is set to NONE.

Note: The auth2 attribute is deprecated and should not be used.

daemon
This boolean parameter specifies whether the user is allowed to start daemons or subsystems
with the startsrc command. It also restricts the use of the cron and at facilities.

login Specifies whether this user is allowed to log in. A successful login resets the
unsuccessful_login_count attribute to a value of 0 (from the loginsuccess subroutine).

logintimes
Restricts when a user can log in. For example, a user might be restricted to accessing the system
only during normal business hours.

registry
Specifies the user registry. It can be used to tell the system about alternate registries for user
information, such as NIS, LDAP, or Kerberos.

rlogin Specifies whether the specified user can log in by using the rlogin or the telnet command. The
rlogin attribute only controls remote login. For information about controlling the ability to run
individual remote commands, see rcmds.

su Specifies whether other users can switch to this ID with the su command.

sugroups
Specifies which groups are allowed to switch to this user ID.

ttys Limits certain accounts to physically secure areas.

expires
Manages student or guest accounts; also can be used to turn off accounts temporarily.

loginretries
Specifies the maximum number of consecutive failed login attempts before the user ID is locked
by the system. The failed attempts are recorded in the /etc/security/lastlog file.

umask
Specifies the initial umask for the user.

rcmds Specifies whether the specified user can run individual commands by using the rsh command or
the rexec command. The value allow indicates that you can run commands remotely by using the
rsh and rexec commands. A value deny indicates that you cannot run commands remotely. The
value hostlogincontrol indicates that running remote commands is controlled by the
hostallowedlogin and hostsdeniedlogin attributes. For information about controlling remote
login, see the rlogin attribute.

hostallowedlogin
Specifies the hosts which permit the user to login. This attribute is intended to be used in a
networked environment where user attributes are shared by multiple hosts.

hostsdeniedlogin
Specifies the hosts which do not permit the user to login. This attribute is intended to be used in
a networked environment where user attributes are shared by multiple hosts.

52 AIX Version 7.2: Security

maxulogs
Specifies the maximum number of logins per user. If the user has reached the maximum number
of allowed logins, login will be denied.

The complete set of user attributes is defined in the /etc/security/user, /etc/security/limits,
/etc/security/audit/config and /etc/security/lastlog files. The default for user creation with the
mkuser command is specified in the /usr/lib/security/mkuser.default file. Only options that override
the general defaults in the default stanzas of the /etc/security/user and /etc/security/limits files, as
well as audit classes, must be specified in the mkuser.default file. Several of these attributes control how
a user can log in, and they can be configured to lock the user account (prevent further logins)
automatically under specified conditions.

After the user account has been locked by the system due to the number of unsuccessful login attempts,
the user is not able to log in until the system administrator resets the user unsuccessful_login_count
attribute in the /etc/security/lastlog file to be less than the value of login retries. This can be done
using the following chsec command, as follows:
chsec -f /etc/security/lastlog -s username -a
unsuccessful_login_count=0

The defaults can be changed by using the chsec command to edit the default stanza in the appropriate
security file, such as the /etc/security/user or /etc/security/limits files. Many of the defaults are
defined to be the standard behavior. To explicitly specify attributes that are set every time that a new user
is created, change the user entry in /usr/lib/security/mkuser.default.

For information on extended user password attributes, refer to “Passwords” on page 62.

Login-related commands affected by user attributes

The following table lists the attributes that control login and the affected commands.

User attribute Commands

account_locked rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login

login Only affects login from a console. The value of the login attribute
does not affect remote login commands, remote shell commands, or
remote copy commands rexec, rsh, rcp, ssh, scp, rlogin, telnet, and
ftp).

logintimes rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login

rlogin Only affects remote login commands, certain remote shell
commands, and certain remote copy commands (ssh, scp, rlogin,
and telnet).

loginretries rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login

/etc/nologin rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login

rcmds=deny rexec, rsh, rcp, ssh, scp

rcmds=hostlogincontrol and
hostsdeniedlogin=<target_hosts>

rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login

ttys = !REXEC, !RSH rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login

ttys = !REXEC, !RSH, /dev/pts rexec, rsh

ttys = !REXEC, !RSH, ALL rexec, rsh

expires rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login

Note: rsh only disallows execution of remote commands. Remote logins are still permitted.
Related information:
loginsuccess subroutine
rexec command

Security 53

rsh command
startsrc command
su command

Login user IDs:

The operating system identifies users by their login user ID.

The login user ID allows the system to trace all user actions to their source. After a user logs in to the
system but before running the initial user program, the system sets the login ID of the process to the user
ID found in the user database. All subsequent processes during the login session are tagged with this ID.
These tags provide a trail of all activities performed by the login user ID. The user can reset the effective
user ID, real user ID, effective group ID, real group ID, and supplementary group ID during the session,
but cannot change the login user ID.

Strengthening user security with Access Control Lists:

To achieve an appropriate level of security in your system, develop a consistent security policy to manage
user accounts. The most commonly used security mechanism is the access control list (ACL).

For information about ACLs and developing a security policy, see “Access Control Lists” on page 118.

PATH environment variable:

The PATH environment variable is an important security control. It specifies the directories to be
searched to find a command.

The default systemwide PATH value is specified in the /etc/profile file, and each user normally has a
PATH value in the user's $HOME/.profile file. The PATH value in the .profile file either overrides the
systemwide PATH value or adds extra directories to it.

Unauthorized changes to the PATH environment variable can enable a user on the system to "spoof"
other users (including root users). Spoofing programs (also called Trojan horse programs) replace system
commands and then capture information meant for that command, such as user passwords.

For example, suppose a user changes the PATH value so that the system searches the /tmp directory first
when a command is run. Then the user places in the /tmp directory a program called su that asks for the
root password just like the su command. Then the /tmp/su program mails the root password to the user
and calls the real su command before exiting. In this scenario, any root user who used the su command
would reveal the root password and not even be aware of it.

To prevent any problems with the PATH environment variable for system administrators and users, do
the following:
v When in doubt, specify full path names. If a full path name is specified, the PATH environment

variable is ignored.
v Never put the current directory (specified by . (period)) in the PATH value specified for the root user.

Never allow the current directory to be specified in /etc/profile.
v The root user should have its own PATH specification in his private .profile file. Typically, the

specification in /etc/profile lists the minimal standard for all users, whereas the root user might need
more or fewer directories than the default.

v Warn other users not to change their .profile files without consulting the system administrator.
Otherwise, an unsuspecting user could make changes that allow unintended access. A user .profile
file should have permissions set to 740.

54 AIX Version 7.2: Security

v System administrators should not use the su command to gain root privilege from a user session,
because the user's PATH value specified in the .profile file is in effect. Users can set their own
.profile files. System administrators should log in to the user's machine as root user or preferably,
using their own ID and then use the following command:
/usr/bin/su - root

This ensures that the root environment is used during the session. If a system administrator does
operate as root in another user session, the system administrator should specify full path names
throughout the session.

v Protect the input field separator (IFS) environment variable from being changed in the /etc/profile
file. The IFS environment variable in the .profile file can be used to alter the PATH value.

Using the secldapclntd daemon:

The secldapclntd daemon dynamically manages connections to a LDAP server.

At start up, the secldapclntd daemon connects to the servers defined in the /etc/security/ldap/ldap.cfg
file (one connection per LDAP server). Later, if the secldapclntd daemon determines that the LDAP
connection is restricting LDAP processing requests, the daemon will automatically establish another
connection to the current LDAP server. This process continues until the predefined maximum number of
connections is reached. After the maximum number of connections is reached, no new connections are
added.

The secldapclntd daemon periodically checks all the connections to the current LDAP server. If any
connection other than the first connection is idle for a predefined period, the daemon will close that
connection.

The connectionsperserver variable in the /etc/security/ldap/ldap.cfg file is used as the maximum number
of connections. However, if the connectionsperserver variable is greater than the numberofthread variable,
the secldapclntd daemon sets the connectionsperserver value to numberofthread value. The valid values
for the connectionsperserver variable are 1 to 100. The default value is 10 (connectionsperserver: 10).

The connectionmissratio variable in the /etc/security/ldap/ldap.cfg file sets the criteria for establishing
new LDAP connections. The connectionmissratio variable is the percentage of operations that failed to
obtain LDAP connections (handle-miss) during first attempts. If the number of missed attempts is greater
than the connectionmissratio variable, the secldapclntd daemon enhances the LDAP queries by
establishing new LDAP connections (not to exceed the number of connections defined in the
connectionsperserver variable). The valid values for the connectionmissratio variable are 10 to 90. The
default value is 50 (connectionmissratio: 50).

The connectiontimeout variable in the /etc/security/ldap/ldap.cfg file is used as the period that
connections can remain idle before they are closed by the secldapclntd daemon. The valid values for the
connectiontimeout variable are 5 seconds or more (no maximum limit). The default value is 300 seconds
(connectiontimeout: 300).

Anonymous FTP with a secure user account setup
You can set up anonymous FTP with a secure user account.

This scenario sets up an anonymous FTP with a secure user account, using the command line interface
and a script.
1. Verify that the bos.net.tcp.client fileset is installed on your system, by typing the following

command:
lslpp -L | grep bos.net.tcp.client

If you receive no output, the fileset is not installed. For instructions on how to install it, see the
Installation and migration.

Security 55

2. With root authority, change to the /usr/samples/tcpip directory. For example:
cd /usr/samples/tcpip

3. To set up the account, run the following script:
./anon.ftp

4. When prompted with Are you sure you want to modify /home/ftp?, type yes. Output similar to the
following displays:
Added user anonymous.
Made /home/ftp/bin directory.
Made /home/ftp/etc directory.
Made /home/ftp/pub directory.
Made /home/ftp/lib directory.
Made /home/ftp/dev/null entry.
Made /home/ftp/usr/lpp/msg/en_US directory.

5. Change to the /home/ftp directory. For example:
cd /home/ftp

6. Create a home subdirectory, by typing:
mkdir home

7. Change the permissions of the /home/ftp/home directory to drwxr-xr-x, by typing:
chmod 755 home

8. Change to the /home/ftp/etc directory, by typing:
cd /home/ftp/etc

9. Create the objrepos subdirectory, by typing:
mkdir objrepos

10. Change the permissions of the /home/ftp/etc/objrepos directory to drwxrwxr-x, by typing:
chmod 775 objrepos

11. Change the owner and group of the /home/ftp/etc/objrepos directory to the root user and the
system group, by typing:
chown root:system objrepos

12. Create a security subdirectory, by typing
mkdir security

13. Change the permissions of the /home/ftp/etc/security directory to drwxr-x---, by typing:
chmod 750 security

14. Change the owner and group of the /home/ftp/etc/security directory to the root user and the
security group, by typing:
chown root:security security

15. Change to the /home/ftp/etc/security directory, by typing:
cd security

16. Add a user by typing the following SMIT fast path:
smit mkuser

In this scenario, we are adding a user named test.
17. In the SMIT fields, enter the following values:

User NAME [test]
ADMINISTRATIVE USER? true
Primary GROUP [staff]
Group SET [staff]
Another user can SU TO USER? true
HOME directory [/home/test]

After you enter your changes, press Enter to create the user. After the SMIT process completes, exit
SMIT.

56 AIX Version 7.2: Security

18. Create a password for this user with the following command:
passwd test

When prompted, enter the desired password. You must enter the new password a second time for
confirmation.

19. Change to the /home/ftp/etc directory, by typing
cd /home/ftp/etc

20. Copy the /etc/passwd file to the /home/ftp/etc/passwd file, using the following command:
cp /etc/passwd /home/ftp/etc/passwd

21. Using your favorite editor, edit the /home/ftp/etc/passwd file. For example:
vi passwd

22. Remove all lines from the copied content except those for the root, ftp, and test users. After your
edit, the content should look similar to the following:
root:!:0:0::/:/bin/ksh
ftp:*:226:1::/home/ftp:/usr/bin/ksh
test:!:228:1::/home/test:/usr/bin/ksh

23. Save your changes and exit the editor.
24. Change the permissions of the /home/ftp/etc/passwd file to -rw-r--r--, by typing:

chmod 644 passwd

25. Change the owner and group of the /home/ftp/etc/passwd file to the root user and the security
group, by typing:
chown root:security passwd

26. Copy the contents of the /etc/security/passwd file to the /home/ftp/etc/security/passwd file, using
the following command:
cp /etc/security/passwd /home/ftp/etc/security/passwd

27. Using your favorite editor, edit the /home/ftp/etc/security/passwd file. For example:
vi ./security/passwd

28. Remove all stanzas from the copied content except the stanza for the test user.
29. Remove the flags = ADMCHG line from the test user stanza. After your edits, the content should look

similar to the following:
test:

password = 2HaAYgpDZX3Tw
lastupdate = 990633278

30. Save your changes and exit the editor.
31. Change the permissions of the /home/ftp/etc/security/passwd file to -rw-------, by typing:

chmod 600 ./security/passwd

32. Change the owner and group of the /home/ftp/etc/security/passwd file to the root user and the
security group, by typing:
chown root:security ./security/passwd

33. Using your favorite editor, create and edit the /home/ftp/etc/group file. For example:
vi group

34. Add the following lines to the file:
system:*:0:
staff:*:1:test

35. Save your changes and exit the editor.
36. Change the permissions of the /home/ftp/etc/group file to -rw-r--r-–, by typing:

chmod 644 group

37. Change the owner and group of the /home/ftp/etc/group file to the root user and the security
group, by typing:

Security 57

chown root:security group

38. Using your favorite editor, create and edit the /home/ftp/etc/security/group file. For example:
vi ./security/group

39. Add the following lines to the file:
system:
admin = true

staff
admin = false

40. Save your changes and exit the editor. To do this, perform the following steps:
a. Copy the /etc/security/user file to the /home/ftp/etc/security directory, by typing:

cp /etc/security/user /home/ftp/etc/security
cd /home/ftp/etc/

b. Remove all stanzas from the copied content, except the stanza for the test user, using the editor
by typing:
vi ./security/user

c. Save and exit the editor.
41. Change the permissions of the /home/ftp/etc/security/group file to -rw-r-----, by typing:

chmod 640 ./security/group

42. Change the owner and group of the /home/ftp/etc/security/group file to the root user and the
security, by typing:
chown root:security ./security/group

43. Use the following commands to copy the appropriate content into the /home/ftp/etc/objrepos
directory:
cp /etc/objrepos/CuAt ./objrepos
cp /etc/objrepos/CuAt.vc ./objrepos
cp /etc/objrepos/CuDep ./objrepos
cp /etc/objrepos/CuDv ./objrepos
cp /etc/objrepos/CuDvDr ./objrepos
cp /etc/objrepos/CuVPD ./objrepos
cp /etc/objrepos/Pd* ./objrepos

44. Change to the /home/ftp/home directory, by typing:
cd ../home

45. Make a new home directory for your user, by typing:
mkdir test

This will be the home directory for the new ftp user.
46. Change the owner and group of the /home/ftp/home/test directory to the test user and the staff

group, by typing:
chown test:staff test

47. Change the permissions of the /home/ftp/home/test file to -rwx------, by typing:
chmod 700 test

48. Disable the remote login and the console login for the test user, by typing:
chuser login=false rlogin=false test

At this point, you have ftp sublogin set up on your machine. You can test this with the following
procedure:
1. Using ftp, connect to the host on which you created the test user. For example:

ftp MyHost

2. Log in as anonymous. When prompted for a password, press Enter.
3. Switch to the newly created test user, by using the following command:

user test

58 AIX Version 7.2: Security

When prompted for a password, use the password you created in step 18 on page 57
4. Use the pwd command to verify the user's home directory exists. For example:

ftp> pwd
/home/test

The output shows /home/test as an ftp subdirectory. The full path name on the host is actually
/home/ftp/home/test.

Notes:

v You can switch users only with ftp sub users. For example, test is an ftp sub user.
v When you create ftp anonymous users, with the script anon.users.ftp, you can assign the user any

name by replacing username in the script.
v For anonymous users, because the server performs the chroot command in the home directory of the

user account, any configuration-related file, such as fileftpaccess.ctl, should be in the home directory,
such as ~/etc/, of the respective anonymous user. 'Writeonly,' 'readonly,' and 'readwrite,' restrictions in
the /etc/ftpaccess.ctl file must have a path relative to the chrooted path.

For more information:
v "TCP/IP Security" in Security

v "ftp Command" in Commands Reference

System special user accounts
AIX provides a default set of system special user accounts that prevents the root and system accounts
from owning all operating system files and file systems.

Attention: Use caution when removing a system special user account. You can disable a specific account
by inserting an asterisk (*) at the beginning of its corresponding line of the /etc/security/passwd file.
However, be careful not to disable the root user account. If you remove system special user accounts or
disable the root account, the operating system will not function.

The following accounts are predefined in the operating system:

adm The adm user account owns the following basic system functions:
v Diagnostics, the tools for which are stored in the /usr/sbin/perf/diag_tool directory.
v Accounting, the tools for which are stored in the following directories:

– /usr/sbin/acct

– /usr/lib/acct

– /var/adm

– /var/adm/acct/fiscal

– /var/adm/acct/nite

– /var/adm/acct/sum

bin The bin user account typically owns the executable files for most user commands. This account's
primary purpose is to help distribute the ownership of important system directories and files so
that everything is not owned solely by the root and sys user accounts.

daemon
The daemon user account exists only to own and run system server processes and their
associated files. This account guarantees that such processes run with the appropriate file access
permissions.

nobody
The nobody user account is used by the Network File System (NFS) to enable remote printing.
This account exists so that a program can permit temporary root access to root users. For
example, before enabling Secure RPC or Secure NFS, check the /etc/public key on the master

Security 59

NIS server to find a user who has not been assigned a public key and a secret key. As root user,
you can create an entry in the database for each unassigned user by entering:
newkey -u username

Or, you can create an entry in the database for the nobody user account, and then any user can
run the chkey program to create their own entries in the database without logging in as root.

root The root user account, UID 0, through which you can perform system maintenance tasks and
troubleshoot system problems.

sys The sys user owns the default mounting point for the Distributed File Service (DFS) cache, which
must exist before you can install or configure DFS on a client. The /usr/sys directory can also
store installation images.

system
System group is a system-defined group for system administrators. Users of the system group
have the privilege to perform some system maintenance tasks without requiring root authority.

Removing unnecessary default user accounts:

During installation of the operating system, a number of default user and group IDs are created.
Depending on the applications you are running on your system and where your system is located in the
network, some of these user and group IDs can become security weaknesses, vulnerable to exploitation.

The following table lists the most common default user IDs that you might be able to remove:

Table 3. Common default user IDs that you might be able to remove.

User ID Description

uucp, nuucp Owner of hidden files used by uucp protocol. The uucp user account is used for
the UNIX-to-UNIX Copy Program, which is a group of commands, programs,
and files, present on most AIX systems, that allows the user to communicate
with another AIX system over a dedicated line or a telephone line.

lpd Owner of files used by printing subsystem

guest Allows access to users who do not have access to accounts

The following table lists common group IDs that might not be needed:

Table 4. Common group IDs that might not be needed.

Group ID Description

uucp Group to which uucp and nuucp users belong

printq Group to which lpd user belongs

Analyze your system to determine which IDs are indeed not needed. There might also be additional user
and group IDs that you might not need. Before your system goes into production, perform a thorough
evaluation of available IDs.

Note: Instead of removing the printq group because of the dependency on printer filesets, disable the lp
user ID, the piobe command, and the qdaemon program in the /etc/inittab entry to minimize the
security risks. This prevents the user from running print commands.

Accounts created by security components:

When security components such as LDAP and OpenSSH are installed or configured, user and group
accounts are created.

The user and group accounts created include:

60 AIX Version 7.2: Security

v Internet Protocol (IP) Security: IP Security adds the user ipsec and the group ipsec during its
installation. These IDs are used by the key management service. Note that the group ID in
/usr/lpp/group.id.keymgt cannot be customized before the installation.

v Kerberos and Public Key Infrastructure (PKI): These components do not create any new user or
group accounts.

v LDAP: When the LDAP client or server is installed, the ldap user account is created. The user ID of
ldap is not fixed. When the LDAP server is installed, it automatically installs the DB2® database. The
DB2 installation creates the group account dbsysadm. The default group ID of dbsysadm is 400. During
the configuration of the LDAP server, the mksecldap command creates the ldapdb2 user account.

v OpenSSH: During the installation of OpenSSH, the user sshd and group sshd are added to the system.
The corresponding user and group IDs must not be changed. The privilege separation feature in SSH
requires IDs.

Domainless groups
The domainless groups feature allows you to assign users that are defined in one domain to groups that
are defined in another domain. This feature supports only Lightweight Database Access Protocol (LDAP)
and local domains.

You can create users and groups on the LDAP server by using the LDAP Authentication Load Module
(LDAP module). You can also create users and groups on the local system by using the Local
Authentication Load Module (local module). When the domainlessgroups feature is not enabled, users
and user groups that are created on either the LDAP or the Local system cannot be assigned to groups
outside of the load domain on which it was created. For example, a user that is created in the LDAP
domain cannot be assigned to a group associated with the local domain.

You can overcome this restriction and assign users to both the LDAP and local groups by enabling the
domainlessgroups system property. The domainlessgroups property is defined in the /etc/secvars.cfg
file. It is only supported for the LDAP and local modules. The possible values for this property follow:

false (default value)
The group attribute is not merged from the LDAP modules and local modules.

true The group attribute is merged from the LDAP and local modules. For example, the LDAP users
can be assigned to the local groups.

To view the value of the domainlessgroups property, run the following command:
lssec -f /etc/secvars.cfg -s groups -a domainlessgroups

To set the domainlessgroups property to true, run the following command:
chsec -f /etc/secvars.cfg -s groups -a domainlessgroups=true

The following table explains how the results of the user and group commands are different, depending
on the setting of the domainlessgroups property.

Table 5. Results of selected commands that are affected by the domainlessgroups property

Command Results when the domainlessgroups property is set to true

chgroup -R ldap|files Updates the group in the specified domain. You can add the
user to either an LDAP or local group.

chuser -R ldap|files Changes the settings for a user in the specified domain. If the
groups that are defined in the other domain are specified, those
groups are also updated with the user information.

login username or su Retrieves the user attributes from the user registry, except the
group ID attribute. The user attributes for the group ID are
merged from both the LDAP and local domains.

Security 61

Table 5. Results of selected commands that are affected by the domainlessgroups property (continued)

Command Results when the domainlessgroups property is set to true

lsgroup -R ldap|files Lists all of the group attributes for the specified domain. If it
does not find the specified group in the specified domain, the
command fails.

lsuser -R ldap|files Lists the attributes of the user after the information is merged
from all of the groups in the domain where the user is defined
and the other domain. If the primary group of the user is not
defined in the domain where the user is defined, it is resolved
from the other domain.

mkgroup -R ldap|files Creates a group in the specified domain. After you create the
group, you assign the user (whether LDAP or local) to the
group in the group database for that domain. You can add the
user to either the LDAP or local groups.

mkuser -R ldap|files Creates a user in the specified domain. If the groups that are
defined in the other domain are specified, those groups are also
updated with the user information.

rmgroup -R ldap|files Deletes the specified group from the specified domain. If the
group is assigned as a primary group for any user that is
defined in any domain, the command fails.

rmuser -R ldap|files Deletes the specified user from the specified domain. It also
removes the user from any groups that are defined in the other
domain and has this user as a member.

Related concepts:
“LDAP authentication load module” on page 150
The LDAP exploitation of the security subsystem is implemented as the LDAP authentication load
module. It is conceptually similar to the other load modules such as NIS, DCE, and KRB5. Load modules
are defined in the /usr/lib/security/methods.cfg file.
Related information:
chgroup command
chuser command
login command
lsgroup command
lsuser command
mkgroup command
mkuser command
rmgroup command
rmuser command
su command

Passwords
Guessing passwords is one of the most common attack methods that a system experiences. Therefore,
controlling and monitoring your password-restriction policy is essential.

AIX provides mechanisms to help you enforce a stronger password policy, such as establishing values for
the following:
v Minimum and maximum number of weeks that can elapse before and after a password can be changed
v Minimum length of a password
v Minimum number of alphabetic characters that can be used when selecting a password

62 AIX Version 7.2: Security

Establishing good passwords:

Good passwords are effective first lines of defense against unauthorized entry into a system.

Passwords are effective if they are:
v A mixture of both uppercase and lowercase letters
v A combination of alphabetic, numeric, or punctuation characters. Also, they may have special

characters such as ~!@#$%^&*()-_=+[]{}|\;:’",.<>?/<space>
v Are not written down anywhere
v Are at least 7 to a maximum of PW_PASSLEN characters in length, if using the /etc/security/passwd

file (authentication implementations that use registries, such as LDAP, can have passwords that exceed
this maximum length)

v Are not real words that can be found in any dictionary
v Are not patterns of letters on the keyboard, like qwerty

v Are not real words or known patterns spelled backwards
v Do not contain any personal information about yourself, family, or friends
v Do not follow the same pattern as a previous password
v Can be typed relatively quickly so someone nearby cannot determine your password

In addition to these mechanisms, you can further enforce stricter rules by restricting passwords so that
they cannot include standard UNIX words, which can be guessed. This feature uses the dictionlist, which
requires that you first have the bos.data and bos.txt file sets installed.

To implement the previously defined dictionlist, edit the following line in the /etc/security/users file:
dictionlist = /usr/share/dict/words

The /usr/share/dict/words file uses the dictionlist to prevent standard UNIX words from being used as
passwords.

Using the /etc/passwd file:

Traditionally, the /etc/passwd file is used to keep track of every registered user that has access to a
system.

The /etc/passwd file is a colon-separated file that contains the following information:
v User name
v Encrypted password
v User ID number (UID)
v User's group ID number (GID)
v Full name of the user (GECOS)
v User home directory
v Login shell

The following is an example of an /etc/passwd file:
root:!:0:0::/:/usr/bin/ksh
daemon:!:1:1::/etc:
bin:!:2:2::/bin:
sys:!:3:3::/usr/sys:
adm:!:4:4::/var/adm:
uucp:!:5:5::/usr/lib/uucp:
guest:!:100:100::/home/guest:
nobody:!:4294967294:4294967294::/:
lpd:!:9:4294967294::/:

Security 63

lp:*:11:11::/var/spool/lp:/bin/false
invscout:*:200:1::/var/adm/invscout:/usr/bin/ksh
nuucp:*:6:5:uucp login user:/var/spool/uucppublic:/usr/sbin/uucp/uucico
paul:!:201:1::/home/paul:/usr/bin/ksh
jdoe:*:202:1:John Doe:/home/jdoe:/usr/bin/ksh

AIX does not store encrypted passwords in the /etc/password file in the way that UNIX systems do, but
in the /etc/security/password 1 file by default, which is only readable by the root user. The password
filed in /etc/passwd is used by AIX to signify if there is a password or whether the account is blocked.

The /etc/passwd file is owned by the root user and must be readable by all the users, but only the root
user has writable permissions, which is shown as -rw-r--r--. If a user ID has a password, then the
password field will have an ! (exclamation point). If the user ID does not have a password, then the
password field will have an * (asterisk). The encrypted passwords are stored in the /etc/security/passwd
file. The following example contains the last four entries in the /etc/security/passwd file based on the
entries from the /etc/passwd file shown previously.
guest:

password = *

nobody:
password = *

lpd:
password = *

paul:
password = eacVScDKri4s6
lastupdate = 1026394230
flags = ADMCHG

The user ID jdoe does not have an entry in the /etc/security/passwd file because it does not have a
password set in the /etc/passwd file.

The consistency of the /etc/passwd file can be checked using the pwdck command. The pwdck command
verifies the correctness of the password information in the user database files by checking the definitions
for all of the users or for specified users.

Using the /etc/passwd file and network environments:

In a traditional networked environment, a user must have had an account on each system to gain access
to that system.

That typically meant that the user would have an entry in each of the /etc/passwd files on each system.
However, in a distributed environment, there is no easy way to ensure that every system had the same
/etc/passwd file. To solve this problem, several methods make the information in the /etc/passwd file
available over the network, including Network Information System (NIS).

Hiding user names and passwords:

To achieve a higher level of security, ensure that user IDs and passwords are not visible within the
system.

The .netrc files contain user IDs and passwords. This file is not protected by encryption or encoding,
thus its contents are clearly shown as plain text. To find these files, run the following command:
find `awk -F: ’{print $6}’ /etc/passwd` -name .netrc -ls

1. /etc/security/password

64 AIX Version 7.2: Security

After you locate these files, delete them. A more effective way to save passwords is by setting up
Kerberos. For more information about Kerberos, see “Kerberos” on page 281.

Setting recommended password options:

Proper password management can only be accomplished through user education. To provide some
additional security, the operating system provides configurable password restrictions. These allow the
administrator to constrain the passwords chosen by users and to force passwords to be changed regularly.

Password options and extended user attributes are located in the /etc/security/user file, an ASCII file
that contains attribute stanzas for users. These restrictions are enforced whenever a new password is
defined for a user. All password restrictions are defined per user. By keeping restrictions in the default
stanza of the /etc/security/user file, the same restrictions are enforced on all users. To maintain
password security, all passwords must be similarly protected.

Administrators can also extend the password restrictions. Using the pwdchecks attribute of the
/etc/security/user file, an administrator can add new subroutines (known as methods) to the password
restrictions code. Thus, local site policies can be added to and enforced by the operating system. For more
information, see “Extending password restrictions” on page 69.

Apply password restrictions sensibly. Attempts to be too restrictive, such as limiting the password space,
which makes guessing the password easier, or forcing the user to select passwords that are difficult to
remember, which might then be written down, can jeopardize password security. Ultimately, password
security rests with the user. Simple password restrictions, coupled with sensible guidelines and an
occasional audit to verify that current passwords are unique, are the best policy.

The following table lists recommended values for some security attributes related to user passwords in
the /etc/security/user file.

Table 6. Recommended security attribute values for user passwords.

Attribute Description Recommended Value Default Value Maximum Value

dictionlist Verifies passwords do
not include standard
UNIX words.

/usr/share/dict/words Not applicable Not applicable

histexpire Number of weeks
before password can
be reused.

26 0 260*

histsize Number of password
iterations allowed.

20 0 50

maxage Maximum number of
weeks before
password must be
changed.

8 0 52

maxexpired Maximum number of
weeks beyond maxage
that an expired
password can be
changed by the user.
(Root is exempt.)

2 -1 52

maxrepeats Maximum number of
characters that can be
repeated in
passwords.

2 8 8

Security 65

Table 6. Recommended security attribute values for user passwords. (continued)

Attribute Description Recommended Value Default Value Maximum Value

minage Minimum number of
weeks before a
password can be
changed. This should
not be set to a
nonzero value unless
administrators are
always easy to reach
to reset an
accidentally
compromised
password that was
recently changed.

0 0 52

minalpha Minimum number of
alphabetic characters
required on
passwords.

2 0 PW_PASSLEN**

mindiff Minimum number of
unique characters that
passwords must
contain.

4 0 PW_PASSLEN**

minlen Minimum length of
password.

6 (8 for root user) 0 PW_PASSLEN**

minother Minimum number of
non-alphabetic
characters required on
passwords.

2 0 PW_PASSLEN**

pwdwarntime Number of days
before the system
issues a warning that
a password change is
required.

5 Not applicable Not applicable

pwdchecks This entry can be used
to augment the
passwd command
with a custom code
that checks the
password quality.

For more information, see
“Extending password

restrictions” on page 69.

Not applicable Not applicable

* A maximum of 50 passwords retained.

** PW_PASSLEN is defined in the userpw.h file.

If text processing is installed on the system, the administrator can use the /usr/share/dict/words file as a
dictionlist dictionary file. In such a case, the administrator can set the minother attribute to 0. Because
most words in the dictionary file do not contain characters that fall into the minother attribute category,
setting the minother attribute to 1 or more eliminates the need for the vast majority of words in this
dictionary file.

The minimum length of a password on the system is set by the value of the minlen attribute or the value
of the minalpha attribute added to the value of the minother attribute, whichever is greater.

The maximum length of a password is the number of characters that is specified by the PW_PASSLEN
attribute. The number of characters used when generating the stored password value is dependent on the
password algorithm in use on the system. Password algorithms are defined in the /etc/security/
pwdalg.cfg file and the default password algorithm to use can be configured through the pwd_algorithm
attribute in the /etc/security/login.cfg file. The value of the minalpha attribute added to the value of

66 AIX Version 7.2: Security

the minother attribute must never be greater than the PW_PASSLEN attribute. If the value of the
minalpha attribute added to the value of the minother attribute is greater than the PW_PASSLEN
attribute, the value of the minother attribute is reduced to the value of the PW_PASSLEN attribute less
the value of the minalpha attribute.

If the values of both the histexpire attribute and the histsize attribute are set, the system retains the
number of passwords required to satisfy both conditions, up to the system limit of 50 passwords per user.
Null passwords are not retained.

You can edit the /etc/security/user file to include any defaults you want to use to administer user
passwords. Alternatively, you can change attribute values by using the chuser command.

Other commands that can be used with this file are the mkuser, lsuser, and rmuser commands. The
mkuser command creates an entry for each new user in the /etc/security/user file and initializes its
attributes with the attributes defined in the /usr/lib/security/mkuser.default file. To display the
attributes and their values, use the lsuser command. To remove a user, use the rmuser command.

Support for passwords with more than 8 characters and Loadable Password Algorithm:

Recent advancements in computer hardware make traditional UNIX password encryption vulnerable to
brute-force password guessing attacks. A cryptographically weak algorithm can lead to recovery of even
strong passwords. AIX supports Loadable Password Algorithm (LPA), which provides secure password
hash mechanisms.

Traditional password crypt function:

The standard AIX authentication mechanism uses a one-way hash function called crypt to authenticate
users. The crypt function is a modified DES algorithm. It performs a one-way encryption of a fixed data
array with the supplied password and a Salt.

The crypt function uses only the first eight characters from the password string; the user's password is
truncated to eight characters. If the password contains less than eight characters, it is padded with zero
bits on the right. The 56-bit DES key is derived by using the 7 bits from each character.

Salt is a two-character string (the 12 bits of the Salt is used to perturb the DES algorithm) chosen from
the character set "A-Z", "a-z","0-9","."(period) and "/". Salt is used to vary the hashing algorithm, so that
the same clear text password can produce 4,096 possible password encryptions. A modification to the
DES algorithm, swapping bits i and i+24 in the DES E-Box output when bit i is set in the Salt, achieves
this while also making DES encryption hardware useless for password guessing.

The 64-bit all-bits-zero block is encrypted 25 times with the DES key. The final output is the 12-bit salt
concatenated with the encrypted 64-bit value. The resulting 76-bit value is recoded into 13 printable
ASCII characters in the form of base64.

Password hashing algorithms:

Hashing algorithms such as MD5 are harder to break than the crypt function. This provides a strong
mechanism against brute-force password guessing attacks. Since the whole password is used for
generating the hash, there is no password length limitation when password hashing algorithms are used
to encrypt the password.

Loadable Password Algorithm:

AIX 6.1 and later implemented a Loadable Password Algorithm (LPA) mechanism that can easily deploy
new password encryption algorithms.

Security 67

Each supported password encryption algorithm is implemented as a LPA load module that is loaded at
runtime when the algorithm is needed. The supported LPAs and their attributes are defined in the
/etc/security/pwdalg.cfg system configuration file.

An administrator can set up a system-wide password encryption mechanism that uses a specific LPA to
encrypt the passwords. After the system-wide password mechanism is changed, passwords that are
encrypted by the previous selected password encryption mechanisms (such as the crypt function) are still
supported.

Support for passwords longer than eight characters:

All of the LPAs implemented for AIX 6.1 and later support passwords longer than eight characters. The
password length limitations vary for different LPAs. The supported maximum password length is 255
characters.

LPA configuration file:

The LPA configuration file is /etc/security/pwdalg.cfg. It is a stanza file that defines the attributes of
the supported LPAs.

The following LPA attributes are defined in the config file:
v The path to the LPA module
v The optional flags that is passed to the LPA module at runtime

The LPA attributes defined in the configuration file can be accessed with the getconfattr and setconfattr
interfaces.

The following example stanza in /etc/security/pwdalg.cfg defines a LPA named ssha256:
ssha256:

lpa_module = /usr/lib/security/ssha
lpa_options = algorithm=sha256

System password algorithm:

A system administrator can set a system-wide password algorithm by selecting an LPA as the password
hashing algorithm. There can only be one active system password algorithm at a time. The system
password algorithm is defined by the pwd_algorithm system attribute in the usw stanza in the
/etc/security/login.cfg file.

The valid values for the pwd_algorithm attribute in the /etc/security/login.cfg file are LPA stanza
names that are defined in the /etc/security/pwdalg.cfg file. Another valid value for the pwd_algorithm
attribute is crypt, which refers to traditional crypt encryption. If the pwd_algorithm attribute is omitted
from the config file, crypt is used as the default value.

The following example of the /etc/security/login.cfg file uses ssha256 LPA as the system-wide
password encryption algorithm.
... ...
usw:

shells = /bin/sh,/bin/bsh,/bin/csh,/bin/ksh,/bin/tsh,/bin/ksh93
maxlogins = 32767
logintimeout = 60
maxroles = 8
auth_type = STD_AUTH
pwd_algorithm = ssha256

... ...

68 AIX Version 7.2: Security

The system password algorithm takes effect only for newly created passwords and changed passwords.
After the migration, all subsequent new passwords or password changes use the system password
algorithm. The passwords that existed before the system password algorithm is chosen, either generated
by the standard crypt function or by other supported LPA modules, still work on the system. Therefore,
mixed passwords that were generated by different LPAs can coexist on the system.

Setting up the system password algorithm:

A system administrator can use the chsec command to set up the system password algorithm or use an
editor such as vi to manually modify the pwd_algorithm attribute in the /etc/security/login.cfg file.

It is recommended that you use the chsec command to set the system password algorithm, as the chsec
command automatically checks the definition of the specified LPA.

Using the chsec command

Run the following command to set the smd5 LPA as the system-wide password encryption module:
chsec -f /etc/security/login.cfg -s usw -a pwd_algorithm=smd5

When you use the chsec command to modify the pwd_algorithm attribute, the chsec command checks
the /etc/security/pwdalg.cfg file to verify the specified LPA. The chsec command fails if this check fails.

Using an editor

If you use an editor to manually change the pwd_algorithm attribute value in the /etc/security/
login.cfg file, ensure that the specified value is the name of a stanza that is defined in the
/etc/security/pwdalg.cfg file.

Extending password restrictions:

The rules used by the password program to accept or reject passwords (the password composition
restrictions) can be extended by system administrators to provide site-specific restrictions.

Restrictions are extended by adding methods, which are called during a password change. The
pwdchecks attribute in the /etc/security/user file specifies the methods called.

Beginning with the AIX Version 6.1 Technical Reference contains a description of the pwdrestrict_method,
the subroutine interface to which specified password restriction methods must conform. To correctly
extend the password composition restrictions, the system administrator must program this interface when
writing a password-restriction method. Use caution in extending the password-composition restrictions.
These extensions directly affect the login command, the passwd command, the su command, and other
programs. The security of the system could easily be subverted by malicious or defective code.

User authentication
Identification and authentication are used to establish a user's identity.

Each user is required to log in to the system. The user supplies the user name of an account and a
password if the account has one (in a secure system, all accounts must either have passwords or be
invalidated). If the password is correct, the user is logged in to that account; the user acquires the access
rights and privileges of the account. The /etc/passwd and /etc/security/passwd files maintain user
passwords.

By default users are defined in the Files registry. This means that user account and group information is
stored in the flat-ASCII files. With the introduction of plug-in load modules, users can be defined in other
registries too. For example, when the LDAP plug-in module is used for user administration, then the user
definitions are stored in the LDAP repository. In this case there will be no entry for users in the

Security 69

/etc/security/user file (there is an exception to this for the user attributes SYSTEM and registry). When
a compound load module (i.e. load modules with an authentication and database part) is used for user
administration, the database half determines how AIX user account information is administrated, and the
authentication half describes the authentication and password related administration. The authentication
half may also describe authentication-specific user account administration attributes by implementing
certain load module interfaces (newuser, getentry, putentry etc).

The method of authentication is controlled by the SYSTEM and registry attributes that are defined in the
/etc/security/user file. A system administrator can define the authcontroldomain attribute to the
/etc/security/login.cfg file to force the SYSTEM and registry attributes to be retrieved from the
authcontroldomain. For instance, authcontroldomain=LDAP forces the system to look for user's SYSTEM
and registry from LDAP to determine the authentication method that was used for the user. There is an
exception for locally defined users where the authcontroldomain setting is ignored , and the SYSTEM
and registry are always retrieved from /etc/security/user file.

The acceptable token for the authcontroldomain attribute is files or a stanza name from the
/usr/lib/security/methods.cfg file.

The value of the SYSTEM attribute is defined through a grammar. By using this grammar, the system
administrators can combine one or more methods to authenticate a particular user to the system. The
well known method tokens are compat, DCE, files and NONE.

The system default is compat. The default SYSTEM=compat tells the system to use the local database for
authentication and, if no resolution is found, the Network Information Services (NIS) database is tried.
The files token specifies that only local files are to be used during authentication, whereas SYSTEM=DCE
results in a DCE authentication flow.

The NONE token turns off method authentication. To turn off all authentication, the NONE token must
appear in the SYSTEM and auth1 lines of the user's stanza.

You can specify two or more methods and combine them with the logical constructors AND and OR. For
instance SYSTEM=DCE OR compat indicates that the user is allowed to login if either DCE or local
authentication (crypt()) succeeds in this given order.

In a similar fashion a system administrator can use authentication load module names for the SYSTEM
attribute. For instance when SYSTEM attribute is set to SYSTEM=KRB5files OR compat, the AIX host will
first try a Kerberos flow for authentication and if it fails, then it will try standard AIX authentication.

SYSTEM and registry attributes are always stored on the local file system in the /etc/security/user file.
If an AIX user is defined in LDAP and the SYSTEM and registry attributes are set accordingly, then the
user will have an entry in the /etc/security/user file.

The SYSTEM and registry attributes of a user can be changed using the chuser command.

Acceptable tokens for the SYSTEM attribute can be defined in the /usr/lib/security/methods.cfg file.

Note: The root user is always authenticated by means of the local system security file. The SYSTEM
attribute entry for the root user is specifically set to SYSTEM=compat in the/etc/security/user file.

Alternative methods of authentication are integrated into the system by means of the SYSTEM attribute
that appears in /etc/security/user. For instance, the Distributed Computing Environment (DCE)
requires password authentication but validates these passwords in a manner different from the
encryption model used in etc/passwd and /etc/security/passwd. Users who authenticate by means of
DCE can have their stanza in /etc/security/user set to SYSTEM=DCE.

70 AIX Version 7.2: Security

Other SYSTEM attribute values are compat, files, and NONE. The compat token is used when name
resolution (and subsequent authentication) follows the local database, and if no resolution is found, the
Network Information Services (NIS) database is tried. The files token specifies that only local files are to
be used during authentication. Finally, the NONE token turns off method authentication. To turn off all
authentication, the NONE token must appear in the SYSTEM and auth1 lines of the user's stanza.

Other acceptable tokens for the SYSTEM attribute can be defined in /usr/lib/security/methods.cfg.

Note: The root user is always authenticated by means of the local system security file. The SYSTEM
attribute entry for the root user is specifically set to SYSTEM = "compat" in /etc/security/user.

See Operating system and device management for more information on protecting passwords.

Login user IDs

All audit events recorded for this user are labeled with this ID and can be examined when you generate
audit records. SeeOperating system and device management for more information about login user IDs.

User and Group attributes supported by the Authentication Load Modules
A set of user-related and group-related attributes are used to achieve identification and authentication in
AIX.

The following tables list most of these user and group attributes as a list and also indicate the support
from the various load modules for these attributes. Each row of the table corresponds to an attribute and
each column represents a load module. Attributes supported by a load module are indicated with a Yes
in the load module column.

Note: PKI and Kerberos are authentication-only modules and must be combined with a database model
(such as LOCAL or LDAP). They support certain additional (extended) attributes other than those
provided by LOCAL or LDAP. Markings are shown against only these extended attributes for these
modules, even though other attributes could be functionally achieved using LOCAL or LDAP.

Table 7. User attributes and Authentication Load Module support

User attribute Local NIS LDAP PKI Kerberos

account_locked Yes No Yes No No

admgroups Yes No Yes No No

admin Yes No Yes No No

auditclasses Yes No Yes No No

auth_cert No No No Yes No

auth_domain Yes No Yes No No

auth_name Yes No Yes No No

auth1
Note: The auth1 attribute is deprecated and should
not be used.

Yes No Yes No No

auth2
Note: The auth2 attribute is deprecated and should
not be used.

Yes No Yes No No

capabilities Yes No Yes No No

core Yes No Yes No No

core_compress Yes No No No No

core_hard Yes No Yes No No

core_naming Yes No No No No

core_path Yes No No No No

core_pathname Yes No No No No

Security 71

Table 7. User attributes and Authentication Load Module support (continued)

User attribute Local NIS LDAP PKI Kerberos

cpu Yes No Yes No No

daemon Yes No Yes No No

data Yes No Yes No No

data_hard Yes No Yes No No

dce_export Yes No Yes No No

dictionlist Yes No Yes No No

expires Yes No Yes No Yes

flags Yes No Yes No Yes

fsize Yes No Yes No No

fsize_hard Yes No Yes No No

funcmode Yes No Yes No No

gecos Yes Yes Yes No No

groups Yes Yes Yes No No

groupsids Yes Yes Yes No No

histexpire Yes No Yes No No

home Yes Yes Yes No No

host_last_login Yes No Yes No No

host_last_unsuccessful_login Yes Yes Yes No No

hostsallowedlogin Yes No Yes No No

hostsdeniedlogin Yes No Yes No No

id Yes Yes Yes No No

krb5_attributes No No No No Yes

krb5_kvno No No No No Yes

krb5_last_pwd_change No No No No Yes

krb5_max_renewable_life No No No No Yes

krb5_mknvo No No No No Yes

krb5_mod_date No No No No Yes

krb5_mod_name No No No No Yes

krb5_names No No No No Yes

krb5_principal No No No No Yes

krb5_principal_name No No No No Yes

krb5_realm No No No No Yes

lastupdate Yes Yes Yes No No

login Yes No Yes No No

loginretries Yes No Yes No No

logintimes Yes No Yes No No

maxage Yes Yes Yes No Yes

maxexpired Yes Yes Yes No No

maxrepeats Yes No Yes No No

maxulogs Yes No Yes No No

minage Yes Yes Yes No No

minalpha Yes No Yes No No

mindiff Yes No Yes No No

mindigit Yes No Yes No No

minlen Yes No Yes No No

72 AIX Version 7.2: Security

Table 7. User attributes and Authentication Load Module support (continued)

User attribute Local NIS LDAP PKI Kerberos

minloweralpha Yes No Yes No No

minother Yes No Yes No No

minspecialchar Yes No Yes No No

minupperalpha Yes No Yes No No

nofiles Yes No Yes No No

nofiles_hard Yes No Yes No No

password Yes Yes Yes No No

pgid Yes Yes No No No

pgrp Yes Yes Yes No No

projects Yes No Yes No No

pwdchecks Yes No Yes No No

pwdwarntime Yes No Yes No No

rcmds Yes No Yes No No

registry Yes No No No No

rlogin Yes No Yes No No

roles Yes No Yes No No

rss Yes No Yes No No

rss_hard Yes No Yes No No

screens Yes No Yes No No

shell Yes Yes Yes No No

spassword Yes Yes Yes No No

stack Yes No Yes No No

stack_hard Yes No Yes No No

su Yes No Yes No No

sugroups Yes No Yes No No

sysenv Yes No Yes No No

SYSTEM Yes No No No No

time_last_login Yes No Yes No No

time_last_unsuccessful_login Yes No Yes No No

tpath Yes No Yes No No

tty_last_login Yes No Yes No No

tty_last_unsuccessful_login Yes No Yes No No

ttys Yes No Yes No No

umask Yes No Yes No No

unsuccessful_login_count Yes No Yes No No

unsuccessful_login_times Yes No Yes No No

usrenv Yes No Yes No No

Security 73

Table 8. Group attributes and Authentication Load Module support

User attribute Local NIS LDAP PKI Kerberos

admin Yes No Yes No No

adms Yes No Yes No No

dce_export Yes No Yes No No

id Yes Yes Yes No No

primary Yes No Yes No No

projects Yes No Yes No No

screens Yes No Yes No No

users Yes Yes Yes No No

Disk quota system overview
The disk quota system allows system administrators to control the number of files and data blocks that
can be allocated to users or groups.

Disk quota system concept:

The disk quota system, based on the Berkeley Disk Quota System, provides an effective way to control
the use of disk space. The quota system can be defined for individual users or groups, and is maintained
for each journaled file system (JFS and JFS2).

The disk quota system establishes limits based on the following parameters that can be changed with the
edquota command for JFS file systems and the j2edlimit command for JFS2 file systems:
v User's or group's soft limits
v User's or group's hard limits
v Quota grace period

The soft limit defines the number of 1 KB disk blocks or files the user or group will be allowed to use
during normal operations. The hard limit defines the maximum amount of disk blocks or files the user
can accumulate under the established disk quotas. The quota grace period allows the user to exceed the soft
limit for a short period of time (the default value is one week). If the user fails to reduce usage below the
soft limit during the specified time, the system will interpret the soft limit as the maximum allocation
allowed, and no further storage is allocated to the user. The user can reset this condition by removing
enough files to reduce usage below the soft limit.

The disk quota system tracks user and group quotas in the quota.user and quota.group files that reside
in the root directories of file systems enabled with quotas. These files are created with the quotacheck
and edquota commands and are readable with the quota commands.

Recovering from over-quota conditions:

You can recover from over-quota conditions by reducing file system usage.

To reduce file system usage when you have exceeded quota limits, you can use the following methods:
v Stop the current process that caused the file system to reach its limit, remove surplus files to bring the

limit below quota, and retry the failed program.
v If you are running an editor such as vi, use the shell escape sequence to check your file space, remove

surplus files, and return without losing your edited file. Alternatively, if you are using the C or Korn
shells, you can suspend the editor with the Ctrl-Z key sequence, issue the file system commands, and
then return with the fg (foreground) command.

v Temporarily write the file to a file system where quota limits have not been exceeded, delete surplus
files, and then return the file to the correct file system.

74 AIX Version 7.2: Security

Setting up the disk quota system:

Typically, only those file systems that contain user home directories and files require disk quotas.

Consider implementing the disk quota system under the following conditions:
v Your system has limited disk space.
v You require more file-system security.
v Your disk-usage levels are large, such as at many universities.

If these conditions do not apply to your environment, you might not want to create disk-usage limits by
implementing the disk quota system.

The disk quota system can be used only with the journaled file system.

Note: Do not establish disk quotas for the /tmp file system.

To set up the disk quota system, use the following procedure:
1. Log in with root authority.
2. Determine which file systems require quotas.

Note: Because many editors and system utilities create temporary files in the /tmp file system, it
must be free of quotas.

3. Use the chfs command to include the userquota and groupquota quota configuration attributes in the
/etc/filesystems file. The following example uses the chfs command to enable user quotas on the
/home file system:
chfs -a "quota = userquota" /home

To enable both user and group quotas on the /home file system, type:
chfs -a "quota = userquota,groupquota" /home

The corresponding entry in the /etc/filesystems file is displayed as follows:
/home:
dev = /dev/hd1
vfs = jfs
log = /dev/hd8
mount = true
check = true
quota = userquota,groupquota
options = rw

4. Optionally, specify alternate disk quota file names. The quota.user and quota.group file names are the
default names located at the root directories of the file systems enabled with quotas. You can specify
alternate names or directories for these quota files with the userquota and groupquota attributes in
the /etc/filesystems file.
The following example uses the chfs command to establish user and group quotas for the /home file
system, and names the myquota.user and myquota.group quota files:
chfs -a "userquota = /home/myquota.user" -a "groupquota = /home

/myquota.group" /home

The corresponding entry in the /etc/filesystems file is displayed as follows:
/home:
dev = /dev/hd1
vfs = jfs
log = /dev/hd8
mount = true
check = true

Security 75

quota = userquota,groupquota
userquota = /home/myquota.user
groupquota = /home/myquota.group
options = rw

5. If they are not previously mounted, mount the specified file systems.
6. Set the desired quota limits for each user or group. Use the edquota command to create each user or

group's soft and hard limits for allowable disk space and maximum number of files.
The following example entry shows quota limits for the davec user:
Quotas for user davec:
/home: blocks in use: 30, limits (soft = 100, hard = 150)

inodes in use: 73, limits (soft = 200, hard = 250)

This user has used 30 KB of the maximum 100 KB of disk space. Of the maximum 200 files, davec has
created 73. This user has buffers of 50 KB of disk space and 50 files that can be allocated to temporary
storage.
When establishing disk quotas for multiple users, use the -p flag with the edquota command to
duplicate a user's quotas for another user.
To duplicate the quotas established for user davec for user nanc, type:
edquota -p davec nanc

7. Enable the quota system with the quotaon command. The quotaon command enables quotas for a
specified file system, or for all file systems with quotas (as indicated in the /etc/filesystems file)
when used with the -a flag.

8. Use the quotacheck command to check the consistency of the quota files against actual disk usage.

Note: Do this each time you first enable quotas on a file system and after you reboot the system. The
quotacheck command takes longer to run on a JFS filesystem than on a JFS2 filesystem of the same
size. If quotas are enabled all the time prior to reboot, it is not necessary to run the quotacheck
command on the filesystem during reboot.
To enable this check and to turn on quotas during system startup, add the following lines at the end
of the /etc/rc file:
echo " Enabling filesystem quotas "
/usr/sbin/quotacheck -a
/usr/sbin/quotaon -a

Number of Groups allowed
You can configure and retrieve the Number of Groups allowed value for AIX 7.1. It defines the Number
of Groups that users can be members of.

The default value for the Number of Groups allowed is 128. It can be tuned in the range of 128 and 2048.
The Number of Groups allowed is specified with the v_ngroups_allowed system configuration parameter
for the sys0 device. You can change or retrieve the v_ngroups_allowed parameter value from the kernel or
ODM database. The parameter value in the kernel is used by the system while running. The parameter
value in the ODM database is effective after the system is restarted.

Retrieving the Number of Groups allowed value from the ODM database: You must use commands
or subroutines to retrieve the v_ngroups_allowed parameter. You must use the lsattr command to retrieve
the v_ngroups_allowed parameter in the ODM database.

The lsattr command displays the v_ngroups_allowed parameter as the ngroups_allowed attribute. The
following example shows how to use the lsattr command to retrieve the ngroups_allowed attribute:
$lsattr -El sys0
SW_dist_intr false Enable SW distribution of interrupts True
autorestart true Automatically REBOOT system after a crash True
boottype disk N/A False
capacity_inc 1.00 Processor capacity increment False
capped true Partition is capped False

76 AIX Version 7.2: Security

conslogin enable System Console Login False
cpuguard enable CPU Guard True
dedicated true Partition is dedicated False
ent_capacity 4.00 Entitled processor capacity False
frequency 93750000 System Bus Frequency False
fullcore false Enable full CORE dump True
fwversion IBM,SPH01316 Firmware version and revision levels False
iostat false Continuously maintain DISK I/O history True
keylock normal State of system keylock at boot time False
max_capacity 4.00 Maximum potential processor capacity False
max_logname 20 Maximum login name length at boot time True
maxbuf 20 Maximum number of pages in block I/O BUFFER CACHE True
maxmbuf 0 Maximum Kbytes of real memory allowed for MBUFS True
maxpout 0 HIGH water mark for pending write I/Os per file True
maxuproc 128 Maximum number of PROCESSES allowed per user True
min_capacity 1.00 Minimum potential processor capacity False
minpout 0 LOW water mark for pending write I/Os per file True
modelname IBM,7044-270 Machine name False
ncargs 6 ARG/ENV list size in 4K byte blocks True
pre430core false Use pre-430 style CORE dump True
pre520tune disable Pre-520 tuning compatibility mode True
realmem 3145728 Amount of usable physical memory in Kbytes False
rtasversion 1 Open Firmware RTAS version False
sec_flags 0 Security Flags True
sed_config select Stack Execution Disable (SED) Mode True
systemid IBM,0110B5F5F Hardware system identifier False
variable_weight 0 Variable processor capacity weight False
ngroups_allowed 128 Number of Groups Allowed at boot time True
$

Retrieving the number of groups allowed from the kernel: You must use the sys_param subroutine to
retrieve the v_ngroups_allowed parameter from the kernel.
#include<sys/types.h>
#include<sys/var.h>
#include<errno.h>
main()
{
int rc;
struct vario myvar;

rc = sys_parm (SYSP_GET, SYSP_V_NGROUPS_ALLOWED, &myvar);

if (!rc)
printf("Number of Groups Allowed = %d\n",
myvar.v.v_ngroups_allowed.value);
else
printf("sys_parm() failed rc = %d, errno = %d\n", rc, errno);
}

Changing the Number of Groups Allowed in the ODM database: You must configure the Number of
Groups Allowed value in the kernel during the system boot phase. Use the chdev command to change
the value in the ODM database. This change takes effect when the system is restarted.

To change the v_ngroups_allowed parameter in the ODM database by using the chdev command, type:
$ chdev -l sys0 -a ngroups_allowed=2048
sys0 changed
$

Role-based access control
System administration is an important aspect of daily operations, and security is an inherent part of most
system administration functions. Also, in addition to securing the operating environment, it is necessary
to closely monitor daily system activities.

Security 77

Most environments require that different users manage different system administration duties. It is
necessary to maintain separation of these duties so that no single system management user can
accidentally or maliciously bypass system security. While traditional UNIX system administration cannot
achieve these goals, role-based access control (RBAC) can.

Traditional UNIX administration limitations
RBAC resolves some traditional UNIX system administration issues. These issues include the following:

root administrative account

Traditionally, AIX and other UNIX operating systems have defined a single system administrator account
named root (normally designated with a UID of 0) that can perform all privileged system administration
tasks on the system. Reliance on a single user for all system administration tasks is a problem in regard
to the separation of duties. While a single administrative account is acceptable in certain environments,
many environments require multiple administrators, with each administrator responsible for different
system administration tasks.

In order to share the administration responsibilities with multiple users of the system, the historical
practice was to either share the password of the root user or create another user with the same UID as
the root user. This method of sharing system administration duties presents security issues, since each
administrator has complete system control and there is no method to limit the operations that an
administrator can perform. Since the root user is the most privileged user, root users can perform
unauthorized operations and can also erase any audits of these activities, making it impossible to track
these administrative actions.

Privilege escalation through SUID

Access control in UNIX operating systems has historically been performed by using the UID associated
with the process to determine access. However, the root UID of 0 has traditionally been allowed to
bypass permission checks. Therefore, a process that is running as the root user can pass any access checks
and perform any operation. This is a security issue for the UNIX concept of setuid applications.

The setuid concept allows a command to run under a different identity then the user who invoked the
command. This is necessary when a normal user needs to accomplish a privileged task. An example of
this is the AIX passwd command. Since a normal user does not have access to the file that stores user
passwords, an additional privilege is needed to change the user's password, so the passwd command is
setuid to the root user. When a normal user runs the passwd command, it appears to the operating
system that the root user is accessing the file and the access is granted.

While this concept does provide the desired functionality, it carries with it an inherent risk. Since the
setuid program is effectively running in the root context, if an attacker successfully takes over the
program before it exits, then the attacker has all of the powers of root and can then bypass all operating
system access checks and perform all operations. A better solution is to only assign a subset of the root
user privileges to the program so that the “Least privilege principle” on page 80 is followed and the
threat is mitigated.

Elements of RBAC
RBAC allows the creation of roles for system administration and the delegation of administrative tasks
across a set of trusted system users. In AIX, RBAC provides a mechanism through which the
administrative functions typically reserved for the root user can be assigned to regular system users.

RBAC accomplishes this by defining job functions (roles) within an organization and assigning those roles
to specific users. RBAC is essentially a framework that allows for system administration through the use
of roles. Roles are typically defined with the scope of managing one or more administrative aspects of the

78 AIX Version 7.2: Security

environment. Assigning a role to a user effectively confers a set of permissions or privileges and powers
to the user. For example, one management role might be to manage the filesystems, while another role
might be to enable the creation of user accounts.

RBAC administration has the following advantages as compared to traditional UNIX administration:
v System administration can be performed by multiple users without sharing account access.
v Security isolation through granular administration since each administrator does not need to be

granted more power than is required.
v Allows for enforcing a least-privilege security model. Users and applications are only granted

necessary privileges when required, thereby reducing the impact a system attacker can have.
v Allows for implementing and enforcing company-wide security policies consistently in regard to

system management and access control.
v A role definition can be created once and then assigned to users or removed as needed when users

change job functions.

The RBAC framework is centered on the following three core concepts:
v Authorizations
v Roles
v Privileges

Together, these concepts allow an RBAC system to enforce the least-privilege principle.

Authorizations:

An authorization is a text string associated with security-related functions or commands. Authorizations
provide a mechanism to grant rights to users to perform privileged actions and to provide different levels
of functionality to different classes of users.

When a command governed by an authorization is run, access is granted only if the invoking user has
the required authorization. An authorization can be thought of as a key that is able to unlock access to
one or more commands. Authorizations are not directly assigned to users. Users are assigned roles, which
are a collection of authorizations.

Roles:

Roles allow a set of management functions in the system to be grouped together. Using the analogy that
an authorization is a key, a role can be thought of as a key ring that can hold multiple authorizations.
Authorizations may be directly assigned to a role or indirectly assigned through a sub-role. A sub-role is
simply another role that a given role inherits the authorizations from.

A role by itself does not grant the user any additional powers, but instead serves as a collection
mechanism for authorizations and a facility for assigning authorizations to a user. Defining a role and
assigning the role to a user determines the system administration tasks that can be performed by the
user. After a role has been defined, the role administrator can assign the role to one or more users to
manage the privileged operations that are represented by the role. Additionally, a user can be assigned
multiple roles. Once a role has been assigned to a user, the user can use the authorizations assigned to
the role to unlock access to administrative commands on the system.

Organizational policies and procedures determine how to allocate roles to users. Do not assign too many
authorizations to a role or assign a role to too many users. Most roles should only be assigned to
members of the administrative staff. Just as the powers of root have historically only been given to
trusted users, roles should only be assigned to trusted users. Grant roles only to users with legitimate
needs and only for the duration of the need. This practice reduces the chances that an unauthorized user
can acquire or abuse authorizations.

Security 79

Privileges:

A privilege is a process attribute that allows the process to bypass specific system restrictions and
limitations.

The privilege mechanism provides trusted applications with capabilities that are not permitted to
untrusted applications. For example, privileges can be used to override security constraints, to permit the
expanded use of certain system resources such as memory and disk space, and to adjust the performance
and priority of a process. A privilege can be thought of as an ability that allows a process to overcome a
specific security constraint in the system.

Authorizations and roles are user-level tools that configure a user’s ability to access privileged operations.
On the other hand, privileges are the restriction mechanism used in the kernel to determine if a process is
allowed to perform a particular action.

Privileges are associated with a process and are typically acquired through the invocation of a privileged
command. Because of these associated privileges, the process is eligible to perform the related privileged
operation. For example, if a user uses a role that has an authorization to run a command, a set of
privileges is assigned to the process when the command is run.

Least privilege principle:

In an operating system, some operations are privileged and permission to perform these operations is
restricted to authorized users. These privileged operations usually include tasks such as rebooting the
system, adding and modifying filesystems, adding and deleting users, and modifying the system date
and time.

In traditional UNIX systems, a process or user can be in normal mode or privileged mode (also called
superuser or root). A process running as root can execute any command and perform any system
operation, while a normal user cannot perform privileged operations. A traditional UNIX system has a
very coarse all-or-nothing concept of privilege and faces the security threat of the overprivileged
administrator.

The traditional UNIX approach where a single privileged mode grants all access to the system is too
coarse to meet the requirements of highly secured systems. A system designed to be secure requires that
each process be granted the most restrictive set of privileges needed to perform a task. Privileges provide
the advantage that only processes that require certain privileges need to be granted these privileges. This
restriction of privileges is known as the principle of least privilege and is useful in limiting damage to the
system due to careless or malicious administrators and operators.

For example, changing a password requires certain privileges in order to access files that are not typically
accessible by a normal user. If users always had these privileges, they could also perform other actions
that are undesirable from a security standpoint. Therefore, the required privileges are granted only to the
passwd command and not to all users.

In an RBAC environment, users themselves do not have any inherent privileges. Users are simply
allowed to run certain commands which are then granted privileges. If a user was instead directly
granted privileges, they could use the privileges at any time and in any manner wanted. Limiting
privileges to individual commands allows the context in which the privileges are applied to be
constrained. This leads to enhanced security because if a trusted application is exploited by an attacker,
the attacker will have a limited set of privileges instead of the whole powers of root with all privileges.

Trusted applications must be carefully inspected before they are granted privileges. In addition, privileges
should be granted when and where necessary for the application. Trusted applications are just like any
other program, the only difference being that trusted applications are allowed to perform actions that are
denied to untrusted applications.

80 AIX Version 7.2: Security

AIX RBAC
AIX provided a limited RBAC implementation prior to AIX 6.1.

Beginning with AIX 6.1, a new implementation of RBAC provides for a very fine granular mechanism to
segment system administration tasks. Since these two RBAC implementations differ greatly in
functionality, the following terms are used:

Legacy RBAC Mode
The historic behavior of AIX roles that apply to versions before AIX 6.1

Enhanced RBAC Mode
The new implementation introduced with AIX 6.1

Both modes of operation are supported. However, Enhanced RBAC Mode is the default on a newly
installed AIX 6.1 system. The following sections provide a brief discussion of the two modes and their
differences, and information on configuring the system to operate in the desired RBAC mode.

Legacy RBAC Mode:

Prior to AIX 6.1, AIX provided limited RBAC functionality that allowed non-root users to perform certain
system administration tasks.

In this RBAC implementation, when a given administrative command is invoked by a non-root user, the
code in the command determines if the user is assigned a role with the required authorization. If a match
is found, the command execution continues. If not, the command fails with an error. It is often required
that the command being controlled by an authorization be setuid to the root user for an authorized
invoker to have the necessary privilege to accomplish the operation.

This RBAC implementation also introduced a predefined but user-expandable set of authorizations that
can be used to determine access to administrative commands. Additionally, a framework of
administrative commands and interfaces to create roles, assign authorizations to roles, and assign roles to
users is also provided.

While this implementation provides the ability to partially segment system administration responsibilities,
it functions with the following constraints:
1. The framework requires changes to commands and applications to be RBAC-enabled.
2. Predefined authorizations are not granular and the mechanisms to create authorizations are not

robust.
3. Membership in a certain group is often required as well as having a role with a given authorization in

order to run a command.
4. Separation of duties is difficult to implement. If a user is assigned multiple roles, there is no way to

act under a single role. The user always has all of the authorizations for all of their roles.
5. The least privilege principle is not adopted in the operating system. Commands must typically be

SUID to the root user.

Legacy RBAC Mode is supported for compatibility, but Enhanced RBAC Mode is the default RBAC
mode. Enhanced RBAC Mode is preferred on AIX.

Enhanced RBAC Mode:

A more powerful implementation of RBAC is provided with AIX 6.1. Applications that require
administrative privileges for certain operations have new integration options with the enhanced AIX
RBAC infrastructure.

Security 81

These integration options center on the use of granular privileges and authorizations and the ability to
configure any command on the system as a privileged command. Features of the enhanced RBAC mode
will be installed and enabled by default on all installations of AIX beginning with AIX 6.1.

The enhanced RBAC mode provides a configurable set of authorizations, roles, privileged commands,
devices and files through the following RBAC databases listed below. With enhanced RBAC, the
databases can reside either in the local filesystem or can be managed remotely through LDAP.
v Authorization database
v Role database
v Privileged command database
v Privileged device database
v Privileged file database

Enhanced RBAC mode introduces a new naming convention for authorizations that allows a hierarchy of
authorizations to be created. AIX provides a granular set of system-defined authorizations and an
administrator is free to create additional user-defined authorizations as necessary.

The behavior of roles has been enhanced to provide separation of duty functionality. Enhanced RBAC
introduces the concept of role sessions. A role session is a process with one or more associated roles. A
user can create a role session for any roles that they have been assigned, thus activating a single role or
several selected roles at a time. By default, a new system process does not have any associated roles.
Roles have further been enhanced to support the requirement that the user must authenticate before
activating the role to protect against an attacker taking over a user session since the attacker would then
need to authenticate to activate the user’s roles.

The introduction of the privileged command database implements the least privilege principle. The
granularity of system privileges has been increased, and explicit privileges can be granted to a command
and the execution of the command can be governed by an authorization. This provides the functionality
to enforce authorization checks for command execution without requiring a code change to the command
itself. Use of the privileged command database eliminates the requirement of SUID and SGID
applications since the capability of only assigning required privileges is possible.

The privileged device database allows access to devices to be governed by privileges, while the
privileged file database allows unprivileged users access to restricted files based on authorizations. These
databases increase the granularity of system administrative tasks that can be assigned to users who are
otherwise unprivileged.

The information in the RBAC databases is gathered and verified and then sent to an area of the kernel
designated as the Kernel Security Tables (KST). It is important to note that the state of the data in the
KST determines the security policy for the system. Entries that are modified in the user-level RBAC
databases are not used for security decisions until this information has been sent to the KST with the
setkst command.

Configuring the RBAC mode:

The RBAC mode is controlled by a system-wide configuration variable in the kernel. This variable
specifies whether Enhanced RBAC Mode is enabled or disabled.

Enhanced RBAC mode is enabled by default on AIX 6.1 and later. You can run the chdev command on
the sys0 device and specify a value of false for the enhanced_RBAC attribute to disable enhanced RBAC
mode and revert to legacy RBAC mode. You must reboot the system for the change to the
enhanced_RBAC attribute to take affect. To enable the enhanced RBAC mode, the enhanced_RBAC
attribute should be set to true. Programmatically, the mode can also be set or queried through the
sys_parm() system call.

82 AIX Version 7.2: Security

Run the following command on the system to retrieve the current RBAC mode:
lsattr -E -l sys0 -a enhanced_RBAC

You can disable the enhanced RBAC mode by running the following command and then rebooting the
system:
chdev -l sys0 -a enhanced_RBAC=false

In a WPAR environment, the RBAC mode can only be configured from the global system and will
uniformly affect the global as well as all of the WPARs on the system.

Legacy RBAC mode and enhanced RBAC mode comparison:

Existing and new interfaces have been modified to check the system configuration and run the new code
or follow the old behavior.

In legacy RBAC mode, only authorizations that are checked within the code of the command itself are
enforced. The Kernel Security Tables (KST) do not have any affect on command execution or
authorization checks. Determination of whether a user has an authorization follows the legacy RBAC
mode behavior of retrieving all the user's authorizations and checking for a match. New features such as
the swrole command and the default_roles and auth_mode attributes are not available in legacy RBAC
mode. However, the new privileges, authorizations, and management commands for authorizations are
supported in legacy RBAC mode.

The following table lists some of the differences between the legacy and enhanced RBAC modes.

Table 9. differences between the legacy and enhanced RBAC modes

Feature Legacy RBAC Enhanced RBAC

Role activation All of a user's roles are always active By default, roles are not active until
assumed explicitly via the swrole
command

default_roles attribute Not available Supported

swrole command Not available Supported

Role management commands Supported Supported

Authorization management commands Supported Supported

Authorization hierarchy Each authorization is independent. No
hierarchy functionality.

Supports concept of authorization
hierarchy where authorizations can be
parents of other authorizations

Authorization checks Only enforced if command itself checks
for authorization

Enforced through Privileged Command
Database and/or by the command itself

Granular Privileges Supported Supported

pvi command Not available Supported

Kernel Security Tables Not available Supported

RBAC Database Location Local files Local files or LDAP

Using Enhanced RBAC
System administrators should be knowledgeable in the following areas in order to effectively use
Enhanced RBAC.

RBAC Authorizations:

Authorizations are an important part of Role Based Access Control (RBAC). The operating system uses
authorization strings to determine eligibility before performing a privileged operation. Related checks can
be performed from within the code explicitly or can be done by the loader when running protected
privileged executables.

Security 83

The naming of authorization strings indicates the privileged operation that they represent and control.
The AIX naming convention for authorizations supports a hierarchical structure that is denoted by the
authorization's textual name. AIX authorization strings use a dotted notation format to describe the
authorization hierarchy. For example, the authorization to create new file systems is aix.fs.manage.create.
If this authorization is included in a role, then a user who is assigned this role can create AIX filesystems.
If the parent authorization aix.fs.manage is included in a role, then a user who is assigned this role can
perform other file system management tasks as well as create filesystems.

AIX RBAC differentiates between system-provided authorizations (system-defined authorizations) and
authorizations that are created after installation (user-defined authorizations).

System-defined authorizations:

AIX provides a predefined and non-modifiable set of authorizations. These are known as System-Defined
Authorizations. These authorizations are associated with various privileged AIX operations; the
association is specified in the Privileged Command Database.

At the top of the system-defined authorization hierarchy is the aix authorization. This authorization is the
parent of all other system-defined authorizations. Granting this authorization to a role grants every
system-defined authorization to the role. To display the complete set of AIX system-defined
authorizations and a brief description of each authorization, run the following command:
lsauth –f –a description ALL_SYS

The output of the above command shows that the list of system-defined authorizations is a multi-level
hierarchy. For example, the aix authorization has several immediate children. Each of those children is
then a parent of another hierarchy. The aix.fs authorization includes multiple child authorizations,
including aix.fs.manage, which in turn includes multiple authorizations such as aix.fs.manage.change,
and aix.fs.manage.create.

User-defined authorizations:

In addition to system-defined authorizations, AIX RBAC allows system administrators to define their
own custom authorizations in the authorization database (/etc/security/authorizations). These are
known as user-defined authorizations.

A system administrator can add, modify, or delete user-defined authorizations. For example, a system
administrator can allow some users to run a privileged command by creating a user-defined
authorization and then associating this authorization with the command and granting the authorization
to a role that is assigned to these users.

User-defined authorizations support the same hierarchy concept as system-defined authorizations.
However, there are restrictions placed on the naming of AIX user-defined authorizations.
v User-defined authorizations must be defined beneath a new top-level parent. In other words,

user-defined authorizations cannot be children of system-defined authorizations (aix).
v An authorization name can contain a maximum of 63 printable characters.
v An authorization's parent hierarchy can contain a maximum of eight levels.
v An authorization can have any number of immediate children, but can only have one immediate

parent. Two independent authorizations cannot have the same immediate child.

Since the hierarchy does not allow an element to have multiple direct parents, you cannot create a
user-defined authorization that is a parent of an existing system-defined authorization. Therefore, an
attempt to create an authorization named aix.custom will fail and the creation of an authorization named
custom.aix will result in a brand new authorization and does not function as the parent of the aix
system-defined authorization.

84 AIX Version 7.2: Security

The following syntax is suggested when creating user-defined authorizations to avoid conflicts between
authorization names across multiple software components:

vendor_name.product_name.function.function1.function2...

vendor_name
Identifies the name of the vendor of the software module.

product_name
High-level product name of the product that is managed with RBAC.

function, function1, function2 ...
These strings represent the functions that are being managed with RBAC. These strings also
provide a hierarchical representation of how these functions are organized.

For example, ibm.db2.manage could potentially represent the management aspects of the IBM DB2
database suite. As mentioned previously, the vendor_name string aix is reserved for AIX use and is not
allowed for user-defined authorizations.

There are several authorization management commands that system administrators can use to list, create,
modify, and remove user-defined authorizations. User-defined authorizations can be created with the
mkauth command, modified with the chauth command, removed by the rmauth command, and
displayed with the lsauth command. To display all of the user-defined system authorizations and a brief
description of each, run the following command:
lsauth –f –a description ALL_USR

Before creating a user-defined authorization, consider the following issues:
v Would it be appropriate to use an existing system-defined authorization instead of creating a new

user-defined authorization?
v Does the new authorization belong beneath an existing user-defined authorization hierarchy or is it the

first authorization of a new hierarchy?
v If this is a new hierarchy, what is the structure?
v What is the text description of the authorization?
v Is language translation of the authorization description required?
v Is there any reason to specify a certain authorization ID when creating the authorization? It is

recommended that the mkauth command be used to generate the authorization ID.

After considering these issues, perform the following steps to create the authorization:
1. If language translation is required, create or add the description to a message catalog.
2. Use the mkauth command to create all parent authorizations in the hierarchy if these do not already

exist.
3. Use the mkauth command to create the desired authorization. Specify the id attribute with the

command if a specific value is required.

Legacy authorization migration:

Prior to AIX Version 6.1 the operating system had a limited, predefined set of authorizations that were
recognized by the operating system. These authorizations were not defined in any file on the system, but
could be readily assigned to roles. To support these legacy authorizations within the new AIX Version 6.1
and later RBAC framework, these legacy authorizations are defined as user-defined authorizations and
are provided by default in the authorization database.

Since the AIX operating system is moving to a new authorization naming convention, any checks for old
authorization names in the AIX operating system have been modified to additionally check for the new

Security 85

corresponding authorization and allow access if either authorization exists for the process. The following
table lists the legacy predefined authorizations and the corresponding new system-defined authorizations.

Existing AIX Authorization Corresponding New Authorization

Backup aix.fs.manage.backup

Diagnostics aix.system.config.diag

DiskQuotaAdmin aix.fs.manage.quota

GroupAdmin aix.security.group

ListAuditClasses aix.security.audit.list

PasswdAdmin aix.security.passwd

PasswdManage aix.security.passwd.normal

UserAdmin aix.security.user

UserAudit aix.security.user.change

RoleAdmin aix.security.role

Restore aix.fs.manage.restore

RBAC roles:

Roles are the mechanism used to assign authorizations to a user and to group a set of system
administration tasks together. An AIX role is primarily a container for a collection of authorizations.

AIX supports the direct assignment of authorizations to a role or the indirect assignment of
authorizations through a sub-role. A sub-role can be specified for a role in the rolelist attribute of a role.
Configuring a role to have a designated sub-role effectively assigns all of the authorizations in the
sub-role to the role.

Assigning a role to a user allows the user to access the role and use the authorizations that are contained
in the role. A system administrator can assign a role to multiple users and can assign multiple roles to a
user. A user who has been assigned multiple roles can activate more than one role (up to a maximum of
eight roles) simultaneously if necessary to perform system management functions.

AIX provides a set of predefined roles for system management. However it is expected that customers
will need to create their own custom roles or modify the existing predefined roles. Several
role-management commands are available to list, create, modify, and remove AIX roles. Roles can be
created with the mkrole command, modified with the chrole command, removed with the rmrole
command, and displayed with the lsrole command.

When creating a new AIX role, consider the following issues:
v What will be the name of the role?
v The role name is a text string, but should provide some insight into the role's capabilities. Role names

can contain a maximum of 63 printable characters.
v What authorizations are required for the role? Consider whether authorizations should be directly

assigned to the role or indirectly assigned to the role through a sub-role.
v Should the user be required to authenticate when activating the role?

Activating a role:

By default in AIX Version 6.1 and later with enhanced RBAC, when a user authenticates to the system,
the user’s session does not have any associated roles or authorizations. In order to associate roles to the
session, the user must invoke a separate authentication command (the swrole command) to switch to the
role or roles.

86 AIX Version 7.2: Security

The user can only activate roles that have previously been assigned to the user. By default, a user is
required to authenticate as themselves when entering a role session or when adding a role to their
session. Roles can optionally be designated to not require authentication with the auth_mode role
attribute.

Switching to a new role session creates a new shell (session) without inheriting roles from the prior
session. This is accomplished by creating a new process shell for the role and assigning the new role ID
(RID) to the process. Creation of the new session is similar to using the su command except in this case
only the role ID of the process is changed and not characteristics such as the UID or GID. The swrole
command allows the user to create a role session composed of a single role or multiple roles. There is no
restriction to prevent a user from switching to a new role session from the current role session. Since the
new session is a new process, the new session will not inherit any roles from the prior session. In order
to restore the previous session, the user must exit the current role session. The roles assumed in a session
(the active role set) can be listed by running the rolelist command in the session. An administrator can
also use the rolelist command to list the active role set for a given system process.

A user can optionally be assigned a default set of roles with the new default_roles user attribute. This
attribute is intended for situations where processes that are created on behalf of a user always need to be
associated with a given set of roles, for example, the cron command. The cron facility runs in the
background and runs commands as the defined user. It is possible that some of the commands that are
run may require authorizations. This requires the ability to designate that a set of roles always be active
for a user ID since there is no mechanism for the cron command to later acquire these roles. The
default_roles attribute can be set to include up to eight role names or the special value of ALL. Setting
default_roles=ALL assigns all of the user's roles to the session. If the user has been assigned more then
eight roles, then only the first eight roles will be enabled for the session.

Maximum number of roles per session:

In enhanced RBAC, a system administrator can configure on a system-wide basis the maximum number
of roles that a user can activate in a given role session. By default, a user can activate up to eight roles in
a session.

Certain environments may require a greater separation of duties in which a user can only activate a
single role at a time. In these environments, the maxroles attribute of the usw stanza in the
/etc/security/login.cfg file can be modified to restrict the maximum allowed number of roles per
session. The maxroles attribute can be set to a value in the range of 1 to 8 to specify the maximum
allowable number of roles per session.

To display the current value of the restriction on the number of roles per session, run the following
command:
lssec –f /etc/security/login.cfg –s usw –a maxroles

To modify the system to allow a user to only activate a single role at a time, run the following command:
chsec –f /etc/security/login.cfg –s usw –a maxroles=1

Modification of the maxroles attribute value is effective immediately for any new role sessions that are
created and does not require a system reboot. Role sessions that existed prior to the modification of the
value are not affected by the change. The enforcement of the maximum number of roles per session is
performed at session initiation.

Predefined roles:

A predefined set of roles is defined in the local role database (/etc/security/roles) on the new AIX
Version 6.1 and later installation. This set of roles is intended to group typical administrative
responsibilities.

Security 87

This set of roles serves as a suggested means of dividing administrative duties. Role administrators can
modify or remove these roles or create new roles as needed for their environment. The following lists the
provided roles and a brief description of each role's abilities.

Role name Role description

auditadm Audit Administrator. The auditadm role is responsible
for configuring the auditing and logging policies of the
system, including system-wide, single-user, and
single-role attributes. This role has access to viewing the
audit trail.

fsadm File System Administrator. The fsadm role creates file
systems and makes them available to users on the
system. Some of the fsadm role responsibilities include:

v Specifying mount policies

v Sharing policies

v Assigning quotas

v Determining the level of compression

v Establishing file system formats

v Performing backup and restore activities

isso Information System Security Officer. An ISSO is
responsible for creating and assigning roles and is
therefore the most powerful role on the system. Some
ISSO responsibilities include:

v Establishing and maintaining security policy

v Setting passwords for users

v Network configuration

v Device administration

pkgadm Software Package Administrator. The pkgadm role is
responsible for the software that is installed on the
system, and has default permissions to install, update,
and remove system software.

sa System Administrator. The SA role provides functionality
for daily administration and is responsible for:

v User administration (except password setting)

v File system administration

v Software installation update

v Network daemon management

v Device allocation

secadm Security Administrator. The secadm role maintains the
security settings on the system. The secadm assigns
attributes like memberships in groups, roles,
authorizations, and clearances to users and assigns roles
that are not already specified with their roles. The
secadm role also assigns security attributes to system
objects, including RBAC settings, access control lists,
ownership, and membership. Some of the responsibilities
of the secadm role include the following:

v Assigning passwords for new user accounts

v Unlocking locked accounts

88 AIX Version 7.2: Security

Role name Role description

so System Operator. The SO role provides functionality for
day to day operations and is responsible for:

v System shutdown and reboot

v File system backup, restore and quotas

v System error logging, trace and statistics

v Workload administration

svcadm Service Administrator. The svcadm role enables,
configures, and disables system services. This role allows
the configuring of networking attributes such as IP
addresses, routes, host names, and firewall policies.

sysop System Operator. The sysop role maintains the overall
system with permissions that include running system
diagnostics and performing routine system maintenance.
Some of the tasks that the sysop is responsible for
include:

v Purging log files and print queues

v Stopping and restarting systems

useradm User Administrator. The useradm role is responsible for
the higher level tasks related to user maintenance
without managing passwords. The useradm creates,
modifies, and deletes user accounts as defined by default
security settings. This role also creates additional roles
and groups with default security settings.

Role migration:

If an AIX system prior to AIX Version 6.1 is being updated to an AIX enhanced RBAC level via a
migration install, migration of the /etc/security/roles file attempts to update the file for the new
functionality while maintaining the current role abilities.

Role definitions in the file are preserved and are simply modified to include a unique role ID to allow the
role to function properly in the new framework. Any authorizations in the /etc/security/roles file that
are not known predefined authorizations are considered user-defined authorizations. During migration,
these authorization names are added as entries in the local /etc/security/authorizations authorization
database. In addition to migration of the old role definitions, the new predefined roles are appended to
the file. After migration, the system administrator must verify that the authorizations and roles are
defined as needed for the environment.

RBAC privileges:

The enhanced RBAC framework relies heavily on system privileges to allow non-privileged users to
perform privileged tasks. A privilege is a mechanism used to grant a process augmented functionality in
system calls.

The concept of privileges is primarily a kernel-level construct since the definition and most of the
checking occurs in the kernel. However, user-level interfaces are provided to handle the assignment of
privileges to commands, devices, and processes.

It is important to note the difference between privileges and authorizations. Both privileges and
authorizations are used to control certain allowable exceptions to system security policy. The defining
difference between privileges and authorizations is that privileges are associated with specific processes,
while authorizations are associated with users through roles. Authorizations reside with a role and the
user who has the role, and do not depend on the program that is being run. Privileges reside with the

Security 89

program and provide the mechanism to fine tune the system security policy. Because of these associated
privileges, the process is eligible to perform the related privileged operation.

Privileges are defined in the AIX kernel as individual bits of a bit-mask which enforce access control over
privileged operations. Over 100 privileges are provided with AIX, providing for a very fine granular
control of privileged operations. When determining access in a system call, the kernel determines if the
process has the required associated privilege bit and then grants or denies the request.

Privileges are assigned to command invocations through the privileged command database and privileges
are used to control access to devices through the privileged device database.

Privilege naming and hierarchy:

AIX privileges cannot be created, modified or deleted by a system administrator.

The list of available privileges and a brief description of the privilege can be displayed on a system by
running the following command:
lspriv -v

The privileges provided on AIX are listed in AIX privileges. All AIX privileges have a textual
representation of the privilege bit that begins with PV_. The naming convention used after the PV_ prefix
denotes the hierarchical relationship between privileges. For example, the auditing privilege PV_AU_ is
the parent of privileges PV_AU_ADD, PV_AU_ADMIN, PV_AU_READ, PV_AU_WRITE and
PV_AU_PROC. When checking for privilege, the system first determines if the process has the lowest
privilege needed and then proceeds up the hierarchy, checking for the presence of a more powerful
privilege. The PV_ROOT privilege is a special privilege that represents the parent of all privileges except
PV_SU_. A process that is assigned the PV_ROOT privilege behaves as if it has been assigned every
privilege on the system except PV_SU_.

Process privilege sets:

Multiple sets of privileges are defined in the kernel to provide varied controls for privileged operations.
Multiple privilege sets allow the operating system to enforce dynamic privilege controls and allow
applications to manage least-privilege principles.

Privileges are associated with a process through the following privilege sets:

Limiting Privilege Set (LPS)
Defines the hard limit on privileges for a given process. No privilege escalation in the system can
raise process privileges beyond this value. This means that a process cannot acquire any more
privileges than this value using any of the defined system interfaces. In other words, the process
is restricted to these privileges at any point in time. This also means that the rest of the privilege
sets will always be subsets of LPS. Even though LPS cannot be expanded, every process will have
the right to reduce the LPS. However, once the LPS is reduced, it cannot be expanded back to its
original value. The lowering of the LPS allows a process to restrict the boundaries in regard to
associated privileges. For example, a process might reduce the LPS just before running a custom
user-provided program. By default, all of the privileges available on the system are set in the LPS
for a process.

Maximum Privilege Set (MPS)
The full set of privileges that the process is authorized to use. The MPS can include any privilege
in the LPS, but cannot exceed the LPS. The MPS can change during the lifetime of a process for
many reasons. The following are some of the reasons:
v When the current process executes another privileged command and then gains related

additional privileges

90 AIX Version 7.2: Security

rbac_aix_privs.htm

v If the process has the right privilege, then it can expand the MPS programmatically in a
dynamic manner

Effective Privilege Set (EPS)
The list of privileges which are currently active for the process. The EPS is always a subset of the
process' MPS and is used by the kernel to perform access checks in regard to privileged
operations. The EPS can be manipulated by the process and can equal the MPS, but cannot
exceed the MPS. Dynamic manipulation of the EPS can be performed by the process to enforce
least-privilege principles. For example, user-space code can potentially raise the audit privilege
bit in the EPS using the priv_raise API before making an audit-related system call or kernel call.
The privilege can then be lowered with the priv_lower API when the audit call returns.

Inheritable Privilege Set (IPS)
Privileges which are passed from a parent process to its child processes' MPS and EPS. The IPS
can include any privilege in the LPS, but cannot exceed the LPS. The IPS can be set in a process
in the following ways:
v If the process has the proper privilege, it can expand the IPS programmatically through the

setppriv system call
v When a privileged command is run, the privileges specified in the inheritprivs attribute that is

associated with the command are assigned into the IPS.

Used Privilege Set (UPS)
Denotes the privileges that have been used for access checks during the life of the process. The
UPS can be used to determine the privileges required by the process. When the kernel checks if a
process has a given privilege, it stores a successful check in the UPS for the privilege.

Workload Partition Privilege Set (WPS)
A system WPAR can be restricted to not allow all of the privileged operations that are allowed in
a global WPAR. The privileged operations allowed in a system WPAR can be controlled through
the WPS. The global root can assign a limited set of privileges to a WPAR using WPS. The WPS
can be specified in the /etc/wpar/secattrs configuration file or during the start of a WPAR using
the /usr/sbin/startwpar command. All processes running in a WPAR have their LPS equal to their
WPS.

A system administrator can use administrative commands to list and modify the various privilege sets of
a process. The lssecattr command can be used to list the LPS, MPS, EPS, IPS, and UPS. The setsecattr
command can be used to modify the LPS, MPS, EPS, and IPS. The UPS cannot be modified with the
setsecattr command since the UPS is a read-only attribute.

Privileged command database:

Authorizations, roles, and privileges allow granular security controls to be implemented. However, the
exploitation of RBAC by various system operations allows an RBAC security policy to be enforced.

While historically some AIX commands directly checked for authorizations, it required that the executable
code itself be modified to perform these checks. The enhanced RBAC mode provides a framework to
enforce authorization checks and grant associated privileges through the privileged command database
without requiring changes to system executables.

The privileged command database grants access and powers to users for commands they would not
otherwise be able to run or for which they would not have the proper privilege to perform the task. The
database saves the authorization information for a particular command as well as the privileges that are
granted to the process if authorization checks succeed. When the database is stored locally, it exists in the
/etc/security/privcmds file and contains stanzas of information in the form of command-versus-security
attributes. The following are a few of the key attributes in this database (for a full description of all of the
attributes, see the /etc/security/privcmds file).

Security 91

accessauths
List of access authorizations that protect the execution of the command. A user with any one of
the listed authorizations is allowed to run the command and perform some or all of the
privileged operations that are contained in the command.

innateprivs
Innate privileges are privileges assigned to the process if the invoker succeeds the access
authorization checks.

authprivs
Authorized privileges are additional privileges assigned to the process if the user has the
associated authorization. This attribute allows more granular control of the command to allow a
restricted set of users to perform additional privileged operations.

inheritprivs
Inheritable privileges are privileges that the process passes on to child processes.

secflags
List of security flags. FSF_EPS is a flag which causes the maximum privilege set (MPS) to be
loaded into the effective privilege set (EPS) when the command is run.

When a user on an enhanced RBAC mode system attempts to run a command, the command is first
checked in the privileged command database. If the command exists in the database, a check is
performed against the authorizations associated with the user’s session and the value of the accessauths
attribute for the command. If the session has one of the authorizations listed, the user can run the
command regardless of whether the user passes the DAC execution checks for the command. Upon
invocation, the command process has the privileges listed in the innateprivs attribute assigned into its
maximum privilege set (MPS). Additional authorization checks are performed with the
authorization-privilege pairs listed in the authprivs attribute. If the session has one of the listed
authorizations, the associated privilege(s) are also added to the MPS of the command process. A
command entry in the privileged command database that has the FSF_EPS value set in the secflags
attribute assigns all of the privileges in the MPS to the effective privilege set (EPS) upon when the
command is invoked.

A command is known as a privileged command when it is included in the privileged command database.
While setuid programs that are not listed in the database are still technically privileged commands, they
are not referred to as privileged commands when describing RBAC behavior. If a command does not
have an entry in the privileged commands database, then it is not a privileged command and access to it
is enforced by DAC and the command itself. Additionally, if a command is listed in the privileged
command database, but the user's session does not have an authorization that allows invocation of the
command, the system reverts to checking DAC access and allows the command to be run if these checks
succeed.

Several management commands have been created to manipulate and query the privileged command
database. Entries in the privileged command database can be created or modified with the setsecattr
command, displayed with the lssecattr command, and removed with the rmsecattr command.

Determining the required authorizations for a command:

Many system administrative applications require authorizations to run properly. While a set of predefined
commands is provided in the privileged command database, system administrators might need to add
entries that are specific to their environment. The privileged command database allows entries to be
added to the database. Proper authorization must be listed in the accessauths attribute in order to gain
access to the command.

There are two ways an authorization can be used and checked in the AIX operating system using the
enhanced RBAC framework:

92 AIX Version 7.2: Security

v Access Auths (Access Authorization): An attribute specified in the privileged command database and
contains a comma-separated list of authorization names. A user whose current session has one of the
authorizations in the list is allowed to run the command. This is being checked by the system loader
while running protected privileged executables.

v Check Auths (checkauths()): A specific authorization or a list of authorizations can be checked
programmatically using the checkauths() API. The specified authorizations are checked against the
authorizations present in a role within the current session. Based on the outcome of this check, a
program might perform privileged operations.

Prior to adding a command to the privileged command database, authorization sets must be determined
to ensure that command execution is allowed. A program or application might perform additional
authorization checks internally. It is necessary to determine a list of authorizations used in a process that
can be assigned while creating a custom role.

The following is the basic strategy to determine the required authorizations for a command:
1. Assign the PV_ROOT privilege to the invoking shell, or assume a role with aix authorization.

Important: In a global-WPAR, the PV_ROOT privilege must be assigned to an effective and
maximum privilege set of an invoking shell process. Within a system-WPAR, this privilege also has to
be added to the inherit privilege set of a process.

2. Run the command.
3. Record the authorizations used for the process.
4. Store the authorization reported under Access Auths in the accessauths attribute of the command in

the privileged command database. The authorizations reported under Check Auths can be used while
creating roles in a system.

These steps should be performed in a controlled environment because the PV_ROOT privilege is
assigned to a shell, or it is assuming a role with aix authorization, and because both of these methods are
extremely powerful. In addition, running the command might have some system impact that can affect
other users. In practice, this is likely to be a trial-and-error procedure. In order to obtain the full set of
authorizations, the command will likely need to be run repeatedly with different flags and options, and
possibly for a long period of time for long-running applications. The required authorization set of the
process can be easily gathered using one of the following procedures, which can be performed by an
administrator with proper authority:

traceauth
Specify an argument that is the command to execute. The traceauth command runs the command
and records both types of authorizations used during the lifetime of the process. When the
command finishes, the traceauth command displays the authorizations that were used on stdout.

lssecattr
If the command is a long-running process, the lssecattr command can be used to display the
authorizations used by the process. In order to enable the authorization tracing in a system, run
the following command:

setrunmode –c; setsecconf –o traceauth=enableTo display the used authorization for a process,
run the lssecattr command as follows, substituting the PID of the process that is being monitored:

lssecattr –p –A PID

After the required authorizations have been determined, perform the steps in “Adding a command to the
privileged command database” on page 95 to add the command to the privileged command database.
The command should then be run by an authorized user to verify that it runs properly.

Security 93

Determining required privileges for a command:

Many applications require specific privileges in order to execute properly. While a set of predefined
commands is provided in the privileged command database, a system administrator may need to add
entries that are specific to their application or environment. The privileged command database allows
entries to be added for commands and their associated privileges.

Prior to adding a command to the privileged command database, the minimum set of required privileges
must be determined to ensure that command execution is as secure as possible. Any privileges granted
beyond those necessary for proper execution violate the least-privilege principle. Therefore, an important
step in adding a privileged command to the system is determining the minimum required privileges.

The following is the basic strategy to determine the minimum required privileges for a command:
1. The Information System Security Officer (ISSO) or a user with the isso role can assign PV_ROOT

privilege to the system administrator executing the command to be assigned to the privileged
database. The assignment of the PV_ROOT privilege to the invoking shell will be done using the
setsecattr command. For example:
setsecattr -p eprivs=PV_ROOT mprivs=PV_ROOT $$

2. Run the command to collect the set of privileges.
3. Record the privilege set used for the process.
4. Store the necessary privileges in the innateprivs attribute of the command in the privileged command

database.

These steps should be performed in a controlled environment since the PV_ROOT privilege is assigned
to a shell and the PV_ROOT privilege is extremely powerful. In addition, running the command may
have some system impact that can affect other users. In practice, this is likely to be a trial-and-error
procedure. In order to obtain the full set of privileges, the command will likely need to be run repeatedly
with different flags and options, and possibly for a long period of time for long-running applications. The
required privilege set of the process can be easily gathered using one of the following procedures, which
can be performed by an administrator with proper authority:

tracepriv
Takes an argument that is the command to execute. The tracepriv command runs the command
and records the privileges used during the lifetime of the process. When the command finishes,
the tracepriv command displays the privileges that were used on stdout.

lssecattr
If the command is a long-running process, the lssecattr command can be used to display the
privileges used by the process. To display the used privilege set for a process, run the command
as follows, substituting the PID of the process that is being monitored:

lssecattr –p –a uprivs PID

After the minimum required privileges have been determined, perform the steps in “Adding a command
to the privileged command database” on page 95 to add the command to the privileged command
database. The command should then be run by an authorized user to verify that it runs properly.

Privilege escalation:

When a new process is created by the fork system call, fork grants the process the same privileges as the
parent process (the process that called the fork system call). When a process does an exec system call on
an executable file, exec recalculates the privileges for the executable file based on the privileges that exec
currently possesses and the privileges possessed by the executable file.

Escalated privileges are calculated as follows:

94 AIX Version 7.2: Security

1. First, the union (bitwise-OR operation) of inheritable privileges possessed by the old (parent) process
and the set of innate privileges possessed by the executable file is calculated.

2. If the user is appropriately authorized, the union (bitwise-OR) of the result from the previous step
and the authorized privileges is calculated.

3. If the limiting privileges exist, then the intersection of the result from the previous step and the
limiting privileges is calculated. Limiting privileges, if any, are inherited across an exec system call.

4. The set of privileges resulting from that union become the set of maximum privileges for the new
process.

5. If the inherited privileges exist in the executable file, they are assigned to inheritable privileges set in
the new process. Otherwise, the set of inheritable privileges possessed by the old (parent) process is
carried forward in the new process’s inheritable privilege set.

If the executable file has its FSF_EPS file security flag set, the set of effective privileges for the new
process is the same as its set of maximum privileges. Otherwise, the effective privileges for the new
process are same as the inheritable privileges possessed by the old (parent) process.

Adding a command to the privileged command database:

You should consider carefully before adding a command to the privileged command database to ensure
that the proper authorizations and privileges are assigned.

See the /etc/security/privcmds file for a full description of the attributes that are valid for a command.
The following questions can be used as a guide to determine the entry required for a command:
1. Should an authorization control access to run the command?

YES If the authorization does not exist, create it with the mkauth command. Specify the
authorization in the accessauths attribute.

NO If all users should be allowed to run the command, specify the ALLOW_ALL authorization in
the accessauths attribute.

2. Should the owner or group of the command be allowed to run the command even if they do not have
the proper authorization?

YES Add the ALLOW_OWNER or ALLOW_GROUP authorization to the list of authorizations in
the accessauths attribute.

3. When the command is executed, does it require an explicit set of privileges?

YES Run the command with various options as the root user with the tracepriv command to
determine the required privileges for the innateprivs attribute.

4. Should users with a specific authorization be granted additional privileges?

YES Specify the additional authorization-privilege pairs in the authprivs attribute.
5. Does the command need to behave like a SUID or SGID program?

YES Specify the EUID or EGID as appropriate.
6. Do privileges assigned to the command need to be passed on to child processes?

YES Specify the privileges in the inheritprivs attribute.
7. Should the effective privilege set of the command be equal to the maximum privilege set at the time

the command is invoked?

YES Specify the FSF_EPS flag for the secflags attribute.

NO Do not specify the secflags attribute. The command code is expected to raise and lower its
privileges as required when the FSF_EPS flag is not specified.

8. Does the command need to run with the special real user ID 0?

YES Specify the RUID attribute.

Security 95

9. Is the command highly critical and requires to be controlled and mandates the presence of more than
one person before it can be invoked?

YES Specify the authroles attribute and assign the value with a list of roles. Users of each role will
have to be authenticated before the command can be executed.

After answering these questions, run the setsecattr command with the appropriate parameters to add the
command to the database. If the command is an existing command and is an SUID or SGID command,
then consideration should be given to remove the SUID and SGID bits from the file so that the
least-privilege model is enforced.

Privileged device database:

The privileged device database stores the list of privileges that are allowed to read from or write to a
device. This database provides a mechanism for an administrator to further control access to a device
than can be managed through traditional device access controls.

When this database is stored locally, it is contained in the /etc/security/privdevs file. The database
stores the privileges required to access a given device for read or write operations in the following
attributes:

readprivs
Lists privileges which are allowed to read from the device

writeprivs
Lists privileges which are allowed to write to the device

When a privileged device is requested to be opened in read mode, the open is only allowed if one of the
privileges specified in the readprivs attribute exists in the effective privilege set (EPS) for the process.
Similarly, if the device is opened for write mode, a privilege in the writeprivs attribute must exist in the
EPS.

The process of adding a device to the privileged device database is normally not a common operation.
The lssecattr and setsecattr commands can be used to list and manipulate the database, but adding or
modifying entries in the database requires considerable investigation. Since the read and write permission
for a device is controlled through privileges, a thorough investigation of the commands and applications
that need to access the device must be performed to ensure that the proper privileges are specified.

Privileged file database:

Many system configuration files in traditional UNIX systems are owned by the root user and are not
directly modifiable by other users. RBAC allows a user to modify these system configuration files by
activating a role and running a command to gain the privileges needed to modify the file.

There are some AIX configuration files that do not have command interfaces to allow modification of the
file. In these cases, it is necessary to have a tool that allows an administrator with the appropriate
authorization to directly edit and save a file to which they otherwise would not have access.

The privileged file database provides a method to use authorizations to determine access to system
configuration files. When the database is stored locally, it is contained in the /etc/security/privfiles
file. This database maps configuration files to the authorizations required to view or modify these files.
Access to a configuration file is controlled in this database with the following attributes:

readauths
List of authorizations allowed to read from the file

writeauths
List of authorizations allowed to write to the file (read authorization is implied in this case)

96 AIX Version 7.2: Security

Entries in the privileged file database can be listed with the lssecattr command and can be created or
modified with the setsecattr command. Files defined in the privileged file database can be accessed by
authorized users with the /usr/bin/pvi command. The pvi command is a privileged and restricted version
of the vi editor based on the /usr/bin/tvi command. The pvi command imposes all of the same security
precautions as the tvi command (for example, no –r or -t flags, no shell escapes, no user defined macros)
and also enforces the following restrictions:
v The system must be in Enhanced RBAC Mode.
v Only files defined in the privileged file database can be opened.
v Only one file can be opened at a time.
v Writing to a different filename then the one specified on the command line is disabled.
v The /etc/security/privfiles file cannot be edited with the pvi command.
v Attempts to open links will fail. Only regular files can be edited.

The authorization checks are performed prior to opening the file. If the authorization matches, the
privilege set of the process is raised to include PV_DAC_R or PV_DAC_W (depending on whether the
file is being opened for reading or writing). If the authorization does not match, an error message is
displayed and the user is denied access to the file with the pvi command.

Kernel security tables:

The information contained in the authorization, role, privileged command, and privileged device
databases is not used for security considerations until the data has been loaded into an area of the kernel
designated as the kernel security tables (KST). In the enhanced RBAC mode, authorization and privilege
checks are performed in the kernel, so the databases must be sent to the kernel before they can be used.

The KST is composed of the following sub-tables:
v Kernel Authorization Table (KAT)
v Kernel Role Table (KRT)
v Kernel Command Table (KCT)
v Kernel Device Table (KDT)

All of the tables or select tables can be sent to the kernel from the user space with the setkst command.
The KRT and KCT are dependent on the KAT, so if the KAT is selected to be updated, the KRT and KCT
are also updated to verify that the tables are in sync. The preferred method for adding updates to the
KST is to create or modify all of the necessary databases at the user level (with commands such as
mkauth, chauth, mkrole, and setsecattr) and then use the setkst command to send the tables to the
kernel. Once the tables have been loaded in the kernel, the lskst command can be used to display the
information contained in each table.

A given table in the KST is always sent as a complete table. In other words, the KST does not allow for
individual entry modifications; the entire table must be replaced. Prior to sending the tables to the kernel,
the setkst command validates the tables and the relationships between them. The setkst command is also
placed in the inittab file to ensure that the databases are sent to the KST early in the boot process.

If for some reason the tables cannot be created or cannot be loaded into the kernel and no tables have
previously been loaded, the system operates as if there are no authorizations or roles. Commands, APIs,
and system calls for authorization and role checking return failure in this scenario since no match is
found. System operation in this state is very similar to the legacy RBAC mode, except that no user can
access sections of code in commands that enforce authorizations.

Disabling the root user:

In enhanced RBAC mode, it is possible to configure the system so that the root user has no associated
special powers and is treated by the system as a normal user.

Security 97

Historically, the root user’s ID value of 0 has been treated as a privileged ID by the operating system and
is allowed to bypass enforced security checks. Disabling the root user effectively removes the checks in
the operating system which allow the user ID of 0 to bypass security checks and instead requires the
process to have privileges to pass the security checks. Disabling the root user minimizes the damage an
attacker can cause since there is no longer a single all-powerful user identity on the system. After
disabling the root user, system administration must be performed by users who have been assigned
privileged roles.

The root powers can be disabled with the /usr/sbin/setsecconf command. Run the following command
and then reboot the system to disable the powers of the root user:
setsecconf –o root=disable

After running this command the root user account cannot be accessed through remote or local login or
through the su command. However, since the root user account remains the owner of files on the file
system, if the account is acquired, the user would have access to privileged files.

On a system where root has been disabled, processes owned by root are no longer assigned any special
powers or privileges. This should be considered if the system has setuid applications owned by root that
have not been added to the privileged command database. These setuid applications will probably fail in
a root-disabled environment since the process cannot perform privileged operations. In a root-disabled
system, any command that needs to perform privileged operations should be added to the privileged
command database and assigned the appropriate privileges. Therefore, a careful analysis of the system
and the applications used on the system should be performed before disabling the powers of the root
user.

Remote RBAC database support:

In an enterprise environment, it is desirable to be able to implement and enforce a common security
policy across all systems in the environment. If the databases that control the policy are stored
independently on each system, management of the security policy becomes a burden for the designated
system administrator. AIX enhanced RBAC mode allows the RBAC databases to be stored in LDAP so
that the security policy for all systems in the environment can be centrally managed.

Support has been added in AIX for all of the RBAC-relevant databases to be stored in LDAP. The
following are the relevant RBAC databases:
v Authorization database
v Role database
v Privileged command database
v Privileged device database
v Privileged file database

Note: The authorization database stored in LDAP contains only the user-defined authorizations.
System-defined authorizations cannot be stored in LDAP and remain local to each client system.

AIX provides utilities to easily export local RBAC data to LDAP, to configure the client to use RBAC data
in LDAP, to control the lookup of RBAC data, and to manage the LDAP data from a client system. The
following sections provide more information on the LDAP features that are provided in enhanced RBAC.

Exporting RBAC data to LDAP:

Initial preparation for using LDAP as an RBAC database repository requires populating the LDAP server
with the RBAC data.

98 AIX Version 7.2: Security

The LDAP server must have the RBAC schema for LDAP installed on it before LDAP clients can use the
server for RBAC data. The RBAC schema for LDAP is available on an AIX system in the
/etc/security/ldap/sec.ldif file. The schema of the LDAP server should be updated with this file by
using the ldapmodify command.

The /usr/sbin/rbactoldif file can be used to read the data in the local RBAC databases and output them in
a format suitable for LDAP. The output generated by the rbactoldif command can be saved to a file and
then used to populate the LDAP server with the data with the ldapadd command. The following
databases on the local system are used by the rbactoldif command to generate the RBAC data for LDAP:
v /etc/security/authorizations

v /etc/security/privcmds

v /etc/security/privdevs

v /etc/security/privfiles

v /etc/security/roles

The LDAP storage location for the RBAC data should be given some consideration. It is recommended
that the RBAC data in LDAP be placed under the same parent DN as the user and group data. The ACLs
on the data should then be adjusted as needed for the chosen security policy.

LDAP client configuration for RBAC:

A system must be configured as an LDAP client to use RBAC data stored in LDAP.

You can use the AIX /usr/sbin/mksecldap command to configure a system as an LDAP client. The
mksecldap command dynamically searches the specified LDAP server to determine the location of the
authorization, role, privileged command, device, and file data, and saves the results to the
/etc/security/ldap/ldap.cfg file.

After successfully configuring the system as an LDAP client with the mksecldap command, the system
must be further configured to enable LDAP as a lookup domain for RBAC data. The
/etc/nscontrol.conf file must be modified to include LDAP in the secorder attribute for databases that
are stored in LDAP.

Once the system has been configured as both an LDAP client and as a lookup domain for RBAC data, the
/usr/sbin/secldapclntd client daemon periodically retrieves the RBAC data from LDAP and sends the
data to the Kernel Security Tables (KST) with the setkst command. You can configure the time period
used by the daemon to retrieve the RBAC data from LDAP with the rbacinterval attribute in the
/etc/security/ldap/ldap.cfg file. The default value of this attribute is 3600, which specifies to retrieve
the RBAC data from LDAP and update the KST once every hour. The KST can also be manually updated
when an administrator runs the setkst command.

Name service control file:

The RBAC data can reside strictly in local files, strictly in LDAP, or can be merged in local files and
LDAP by configuring a given database in the /etc/nscontrol.conf name service control file.

The search order for the authorization, role, privileged command, device, and file databases is specified
individually in the /etc/nscontrol.conf file. The search order for a database is specified in the file with
the secorder attribute, which is a comma-separated list of domains. The following is an example of a
configuration for the authorization database:
authorizations:

secorder = LDAP,files

This example specifies that queries on authorizations should search in LDAP first and then in the local
files if the authorization is not found in LDAP. The collection of authorizations available to the system is

Security 99

the merge of the authorizations provided by LDAP and those provided in the local files. The merge is not
a simple combination of the values from the two domains, but rather a union of the values. For the
configuration above, all LDAP authorizations are included and then only unique authorizations from
local files are added to the result.

Modifications and deletions are attempted on the first domain listed and are only attempted on
subsequent domains if the entity is not found in the first domain. In this case, LDAP is attempted first
and local files are only attempted if the authorization is not found in LDAP. New entries are always
created in the first domain listed in the secorder attribute. In the example above, a creation of a new
authorization occurs in the LDAP database.

If there is no entry for a database in the /etc/nscontrol.conf file or if the file does not exist, queries and
modifications on the database are only performed in the local files database. The configuration for a
database in the file can be set with the chsec command and listed through the lssec command. To
configure authorization data to be retrieved from LDAP first and then from the local files, run the
following command:
chsec –f /etc/nscontrol.conf –s authorizations –a secorder=LDAP,files

The configuration in the /etc/nscontrol.conf file controls both the library and command line interfaces.
Applications can retrieve the current value of the secorder attribute for a database with the getsecorder
interface. The value of the secorder attribute can be overridden for the process with the setsecorder
interface.

RBAC command enablement for LDAP:

All of the RBAC database management commands are enabled to use the configuration in the
/etc/nscontrol.conf file and to query, modify, create, or remove the entity in the domain or domains
defined for a given database.

By default, the domains are processed as defined in the secorder attribute for a database, but this can be
overridden by using the –R option on the command line. Specifying the –R option for a command forces
the operation to occur on the specified domain and overrides the configuration in the
/etc/nscontrol.conf file. The following RBAC database management commands are enabled for remote
domain support:
v mkauth, chauth, lsauth, and rmauth

v mkrole, chrole, lsrole, and rmrole

v setsecattr, lssecattr, and rmsecattr

In addition, the setkst command is enabled to use the configuration contained in the
/etc/nscontrol.conf file. The setkst command retrieves a merged copy of the entries for a given
database as defined in the file and then loads the resulting data into the Kernel Security Tables.

Cross-domain assignment:

When designing an environment where RBAC data is provided by two domains such as local files and
LDAP, consideration must be given to the issue of cross-domain assignment of entities. Examples of
cross-domain assignment include assigning an LDAP-defined role to a local user or assigning a
local-defined role to an LDAP user.

The assignment of a remote entity (LDAP role) to a local entity (local user) is not much of a concern since
it has no impact on other systems in the environment. However, assigning a local entity (local role) to a
remote entity (LDAP user) should only be done with great care. Since the remote entity (LDAP user) is
visible on multiple clients, there is no guarantee that the local entity (local role) assigned to it is defined
or has the same definition on each client system. For example, a role may be defined locally on each

100 AIX Version 7.2: Security

client but have different associated authorizations. A remote user that is assigned this local role would
therefore have different authorizations on each of these clients and this can have undesirable security
consequences.

To prevent possible security issues with assigning a local entity to LDAP entity, it is recommended that
the LDAP server implement access control to the RBAC databases to prevent each client from modifying
entries. Only clients connecting to the LDAP server through a privileged account should be allowed to
modify LDAP RBAC entities. Other clients should only have read access to the LDAP RBAC databases.

Size limits in enhanced RBAC:

The following table lists the various limits for the RBAC-related elements:

Table 10. various limits for the RBAC-related elements

Description Maximum size

Role name 63 printable characters

Maximum roles per session 8

Maximum authorization name size 63 printable characters

Maximum number of levels in authorization hierarchy 9

Maximum number of access authorizations per command 8

Maximum authorized privileged sets per command 8

Administering enhanced RBAC:

This section describes common command line usage scenarios for administering RBAC. These examples
illustrate major aspects of the functionality. SMIT interfaces are also provided for RBAC administration.
The fastpath to RBAC SMIT menus is smit rbac.

Creating a user-defined authorization:

You can create user-defined authorizations that can be used to control execution of commands.

You can use the mkauth command to create user-defined authorizations. Changes to the authorization
database are effective after the changes are downloaded to the kernel with the setkst command.
v Run the following command to create a user-defined authorization:

mkauth auth_name

Creating and modifying roles:

You can create a role with the mkrole command.

Roles are created with the mkrole command. Changes to the roles database are effective after they are
downloaded to the kernel with the setkst command. You can modify roles with the chrole command.
v Run the following command to create a role:

mkrole dflt_msg=”My Role” role_name

v To create a role and inherit the authorizations from existing roles, run the following command:
mkrole rolelist=child_role1,child_role2 role_name

v To modify a role definition, run the following command:
chrole rolelist=child_role3 role_name

Assigning authorizations to roles:

You can use the mkrole or chrole commands to assign authorizations to a role.

Security 101

v Run the mkrole command to assign the auth_name1 and auth_name2 authorizations to the role_name
role:
mkrole authorizations=auth_name1,auth_name2 role_name

v Run the chrole command to assign the auth_name1 and auth_name2 authorizations to the role_name
role:
chrole authorizations=auth_name1,auth_name2 role_name

Setting the authentication mode for a role:

You can control the activation of roles with the role's auth_mode attribute.

Valid values for the auth_mode attribute are:

NONE
No authentication necessary

INVOKER
Invokers must enter their own password. This is the default.

Enter the following command to force users to authenticate as themselves when assuming a given role:

chrole auth_mod=INVOKER role_name

Assigning roles to a user:

You can use the chuser command to assign roles to users.

Run the following command to assign the role_name1 and role_name2 roles to the user user_name:
chuser roles=role_name1,role_name2 user_name

Activating roles:

By default, a user must activate the role in the session in order to execute privileged commands.
v To activate the role_name1 and role_name2 roles, run the following command:

swrole role_name1,role_name2

v Some of the roles that are assigned to users are classified as default roles. These roles are activated
automatically when the user logs in. These roles are active during the entire login session. To assign
role_name1 as a default role for a user, run the following command:
chuser roles=role_name1,role_name2 default_roles=role_name1 user_name

Listing the active role set:

You can use the rolelist command with the -e option to display information about the effective active role
set for a session.
v To display the effective active role set for a session, run the following command:

rolelist -e

Listing the roles for a user:

The rolelist command provides role and authorization information about a user's current roles or the
roles that have been assigned to them.

By default, the rolelist command displays the list of roles that have been assigned to the user. This is
basically the same information displayed by the lsuser -a roles user1 command except that it also
includes the text description of the role if one has been provided.

102 AIX Version 7.2: Security

v To list your assigned roles and associated authorizations, run the following command:
rolelist -a

Auditing session roles:

The roles that are active in a login session are audited along with other attributes such as UID and GID.
You can list these roles with the auditpr command.

To display the roles from the audit trail, run the following command:
auditpr -h eli -i /audit/trail

Assigning privileges to a running process:

You can use the setsecattr command to modify the privileges of a running process.
v To update the effective privilege set associated with a process, run the following command:

setsecattr –p eprivs=privileges pid

v Before adding any privilege to the effective privilege set of a process, you should ensure that the
privilege already exists in the maximum privilege set. To modify maximum privilege set, run the
following command:
setsecattr –p mprivs=privileges pid

Administering WPAR privileges:

Each WPAR is associated with a set of privileges that determine its powers. This is referred to as WPAR
privilege set (WPS).

Processes running within a given WPAR can use only those privileges that are available in the WPS.
v To modify the WPS from the global WPAR, run the following command:

chwpar –S privs+=privileges wpar_name

Determining the privileges required for a command:

Some commands require special privileges to perform privileged operations. Privileges are used in the
kernel to bypass security restrictions.

You can use the tracepriv command to profile a command to determine the privileges that are required
for the command to run successfully. The tracepriv command records the privileges that are used by
another command when the command is run. The command should be run with the PV_ROOT privilege
so that any attempts to use privileges will succeed. When the command completes, the set of privileges
that have been used are sent to stdout.
v To profile a given command, run the following command:

tracepriv –ef command_name

Using authorizations to control commands:

Authorizations can be used to control the running of commands.

You can use the setsecattr command to associate authorizations with a command. The setsecattr
command adds a stanza to the privileged commands database (/etc/security/privcmds). Modifications
to this database must be downloaded to the kernel with the setkst command.
v To associate authorizations with a command, run the following command:

setsecattr –c accessauths=auth_names innateprivs=privileges proxyprivs=privileges
authprivs=auth_name=privileges command_name

Security 103

Controlling access to devices:

RBAC provides a mechanism to further control access to devices. A system administrator can specify the
privileges that are required to open a device in read mode or write mode.

For example, write access to a DVD writer can be controlled with the PV_DEV_CONFIG privilege so
that only processes which have this privilege can create DVDs.
v To add a device to the device database, run the following command:

setsecattr –d readprivs=privileges writeprivs=privileges device_name

Updating RBAC Kernel Security Tables:

The setkst command reads the security databases and loads the information from the databases in the
Kernel Security Tables (KST).

By default, all of the security databases are sent to the KST. Alternatively, a specific database can be
specified with the -t option. However, specifying that only the authorization database should be sent to
the KST also updates the role and privileged command databases in the KST since the role and privileged
command database are dependent on the authorization database.
v To send all the latest RBAC databases to the kernel, run the following command:

setkst

Using the enhanced RBAC mode switch:

A system-wide configuration switch is provided to disable the enhanced RBAC capabilities and revert to
legacy RBAC behavior.

A system administrator can disable enhanced RBAC mode by running the chdev command on the sys0
device and specifying the enhanced_RBAC attribute with a value of false and then rebooting the system.
The mode can be switched back to enhanced RBAC mode by setting the enhanced_RBAC attribute to
true and then rebooting the system.
v To revert to legacy RBAC mode, run the following command:

chdev -l sys0 -a enhanced_RBAC=false

v To list the value of the enhanced_RBAC attribute, run the following command:
lsattr -E -l sys0 -a enhanced_RBAC

In a WPAR environment, the RBAC mode can only be configured from the global system and affects the
global as well as all WPARs.

Note: Disabling the enhanced RBAC mode may lower the security threshold of your system, especially in
a WPAR.

RBAC-related commands
The following table lists the RBAC-related commands that are provided in the AIX operating system to
manage and use the RBAC framework.

Command Description

chauth Modify user-defined authorization attributes

chrole Modify role attributes

ckauth Check the current process for an authorization

lsauth Display user- and system-defined authorization attributes

lskst List the entries in the Kernel Security Tables

104 AIX Version 7.2: Security

Command Description

lspriv Display the privileges available on the system

lsrole Display role attributes

lssecattr Display security attributes of a command, device,
process, or file

mkauth Create a new user-defined authorization

mkrole Create a new role

pvi Privileged file editor

rbacqry Enables RBAC for applications

rbactoldif Output RBAC user-level databases in LDAP-compatible
format

rmauth Remove user-defined authorizations

rmrole Remove a role

rmsecattr Remove the definition of security attributes for a
command, device, or file

rolelist Display role information for a user or process

setkst Send the entries in the RBAC user-level databases to the
Kernel Security Tables

setsecattr Set the security attributes of a command, device, process,
or file

setsecconf Modify kernel security flags

swrole Create a new role session

tracepriv Trace the privileges needed by a command to
successfully run

RBAC-related files
The following table lists the RBAC-related files provided in AIX to configure and store database
information.

File Description

/etc/nscontrol.conf Name service control file for certain security databases

/etc/security/authorizations User-defined authorization database

/etc/security/privcmds Privileged command database

/etc/security/privfiles Privileged file database

/etc/security/privdevs Privileged device database

/etc/security/roles Role database

Using enhanced RBAC in applications
Many applications do not require any modifications to run successfully in the enhanced RBAC
environment. Simply defining the application's access authorizations and associated privileges and then
assigning the application to the privileged command database may be sufficient.

However, an application can use enhanced RBAC by calling RBAC interfaces to control the application's
execution at a granular level and thereby result in a more secure application. Applications that might
benefit from integration with enhanced RBAC include the following:

Security 105

v Applications that restrict use to either the root user or members of a specific group. These applications
typically check for effective user identity or group membership and can be modified to check for an
authorization instead.

v Applications that utilize setuid or setgid mode bits to allow unprivileged users to gain privileges
during the command invocation. These applications would usually be more secure by using privilege
bracketing so that less privilege is used to accomplish their task.

Authorization checking:

Applications that currently use the user ID or group ID of the invoking user to determine the ability to
perform privileged operations should be modified to check for an authorization instead.

For example, consider an application which performs filesystem configuration tasks and currently allows
the root user (UID = 0) to perform some privileged operations:
if (getuid() == 0) {

/* allow privileged operation to continue */
}

To enable this application to instead allow users with a specific authorization (aix.fs.config) to perform
the privileged operation, the code can be modified to use the checkauths API to perform the
authorization check:
if (checkauths(“aix.fs.config", CHECK_ALL)) {

/* allow privileged operation to continue */
}

The checkauths API is enabled for both the legacy and enhanced RBAC modes and will return a 0
success code if the invoking process has the specified authorization. The checkauths API also determines
if the root user powers are enabled or disabled and then allows or disallows the root user to bypass
authorization checks as appropriate. Prior to AIX Version 6.1, the MatchAllAuths, MatchAnyAuths,
MatchAllAuthsList, and MatchAnyAuthsList APIs were normally used to perform authorization checks.
Applications provided on AIX Version 6.1 and later should use the checkauths API instead due to its
support for legacy and enhanced RBAC modes and root disablement.

As in the example above, applications that call getuid, getgid, or a similar function to only allow certain
users to perform specific tasks can be modified to use the checkauths API to perform an authorization
check instead. If the user ID or group ID being checked is not that of the root user, the sys_parm system
call can be used first to query whether enhanced RBAC is enabled or not. If enhanced RBAC is not
enabled, the code can perform the checks that are already in place. Otherwise, if enhanced RBAC is
enabled, the code can check for the relevant system or user-defined authorizations.

Privilege bracketing:

Once applications have been modified to check for authorizations, they can be further modified to utilize
fine-grained privilege bracketing during operation.

Applications can use the priv_raise API to raise the privileges required to perform an operation and
lower the privilege with the priv_lower API. Raising privileges immediately before a privileged operation
is attempted and lowering privileges after the operation has completed is known as privileged bracketing
and is the preferred method for applications to use privileges. To raise a privilege, the privilege needs to
be available in the maximum privilege set of the application in the privileged commands database.
Raising a privilege causes the privilege to be placed in the effective privilege set (EPS) of the process.
Lowering a privilege removes the privilege from the EPS. The following code sample shows privilege
bracketing around the auditproc API.
priv_raise(PV_AU_ADMIN, -1); /* raise privilege when needed */
auditproc(); /* call auditing system call */
priv_lower(PV_AU_ADMIN, -1); /* lower privilege */

106 AIX Version 7.2: Security

RBAC-aware applications:

Traditionally, in AIX and on root-enabled enhanced RBAC systems, a root or root-owned setuid program
(with UID=0) that does not appear in the privileged command database is always granted all privileges
in the kernel. Privilege checks in the kernel will therefore always return success even when a requested
privilege is not present in the process effective privilege set (EPS).

This behavior is still needed to support existing setuid applications, but this can be a security risk
because a setuid program will have all of the powers of root.

To allow proper privilege bracketing in a process on a root-enabled enhanced RBAC system, a new bit in
the process structure has been introduced. If this bit is set, then the process becomes an RBAC-aware
process and an effective UID of 0 does not provide any extra privileges. This bit can be set in a program
with the proc_rbac_op system call. Any setuid programs which are not listed in the privileged command
database can use this functionality to reduce security vulnerability by lowering the available privileges.
Note that programs that are defined in the privileged command database are automatically marked as
RBAC-aware processes and are only assigned the privileges listed in the database.

The following code demonstrates how an application can mark itself as RBAC-aware and then perform
proper privilege bracketing:
#include <userpriv.h
#include <sys/priv.h>

privg_t effpriv;

int rbac_flags = SEC_RBACAWARE;

/* Mark the process as RBAC-aware. */
proc_rbac_op(-1, PROC_RBAC_SET, &rbac_flags);

/* Set the effective privilege set as empty. */
priv_clrall(effpriv);
setppriv(-1, &effpriv, NULL, NULL, NULL);

/* Raise privilege when required. */
priv_raise(PV_AU_ADMIN, -1);
auditproc();

/* Lower privilege when no longer needed. */
priv_lower(PV_AU_ADMIN, -1);

RBAC APIs:

The RBAC-related APIs available on the system are listed in the following table. Please see the specific
APIs for more information.

API Description

checkauths Compares the passed in list of authorizations to the
authorizations associated with the current process.

GetUserAuths Retrieves the set of authorizations assigned to the current
process.

MatchAllAuths, MatchAllAuthsList, MatchAnyAuths,
MatchAnyAuthsList

Compares authorizations. The checkauths API is
preferred to these APIs.

getauthattr, putauthattr Queries or modifies authorizations defined in the
authorization database.

getauthattrs Retrieves multiple authorization attributes from the
authorization database.

Security 107

API Description

putauthattrs Updates multiple authorization attributes in the
authorization database.

getcmdattr, putcmdattr Queries or modifies the command security information
in the privileged command database.

getcmdattrs Retrieves multiple command attributes from the
privileged command database.

putcmdattrs Updates multiple command attributes in the privileged
command database.

getdevattr, putdevattr Queries or modifies the device security information in
the privileged device database.

getdevattrs Retrieves multiple device attributes from the privileged
device database.

putdevattrs Updates multiple device attributes in the privileged
device database.

getpfileattr, putpfileattr Queries or modifies the file security information in the
privileged file database

getpfileattrs Retrieves multiple file attributes from the privileged file
database.

putpfileattrs Updates multiple file attributes in the privileged file
database.

getroleattr, putroleattr Queries or modifies roles defined in the role database.

getroleattrs Retrieves multiple role attributes from the role database.

putroleattrs Updates multiple role attributes in the role database.

getsecorder Retrieves the ordering of domains for certain security
databases.

setsecorder Sets the ordering of domains for certain security
databases.

AIX privileges
The privileges that are available in AIX are listed in the following table. A description of each privilege
and its related system calls is provided. Some privileges form a hierarchy where one privilege can grant
all of the rights that are associated with another privilege.

When checking for privileges, the system first determines if the process has the lowest privilege needed,
and then proceeds up the hierarchy checking for the presence of a more powerful privilege. For example,
a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privileges, and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except for the PV_SU_ privileges.

Privilege Description System call reference

PV_ROOT Grants a process the equivalent of all
privileges listed below except
PV_SU_ (and the privileges it
dominates)

PV_AU_ADD Allows a process to record/add an
audit record

auditlog

PV_AU_ADMIN Allows a process to configure and
query the audit system

audit, auditbin, auditevents, auditobj

108 AIX Version 7.2: Security

Privilege Description System call reference

PV_AU_PROC Allows a process to get or set an
audit state of a process

auditproc

PV_AU_READ Allows a process to read a file
marked as an audit file in Trusted
AIX

PV_AU_WRITE Allows a process to write or delete a
file marked as an audit file, or to
mark a file as an audit file in Trusted
AIX

PV_AU_ Equivalent to all above auditing
privileges (PV_AU_*) combined

PV_AZ_ADMIN Allows a process to modify the
kernel security tables

sec_setkst

PV_AZ_READ Allows a process to retrieve the
kernel security tables

sec_getkat, sec_getkpct, sec_getkpdt,
sec_getkrt, etc.

PV_AZ_ROOT Causes a process to pass
authorization checks during exec()
(used for inheritance purposes)

PV_AZ_CHECK Causes a process to pass all
authorization checks

sec_checkauth

PV_DAC_R Allows a process to override DAC
read restrictions

access, creat, accessx, open, read,
faccessx, mkdir, getea, rename, statx,
_sched_getparam,
_sched_getscheduler, statea, listea

PV_DAC_W Allows a process to override DAC
write restrictions

Many of the above and setea, write,
symlink, _setpri, _sched_setparam,
_sched_setscheduler, fsetea, rmdir,
removeea

PV_DAC_X Allows a process to override DAC
execute restrictions

Many of the above and execve,
symlink, rmdir, chdir, fchdir,
ra_execve

PV_DAC_O Allows a process to override DAC
ownership restrictions

chmod, utimes, setacl, revoke,
mprotect

PV_DAC_UID Allows a process to change its user
ID

setuid, seteuid, setuidx, setreuid,
ptrace64

PV_DAC_GID Allows a process to set a new or
change its group ID

setgid, setgidx, setgroups, ptrace64

PV_DAC_RID Allows a process to set a new or
change its role ID

setroles, getroles

PV_DAC_ Equivalent to all above DAC
privileges (PV_DAC_*) combined

PV_FS_MOUNT Allows a process to mount and
unmount a filesystem

vmount, umount

PV_FS_MKNOD Allows a process to create a file of
any type or to perform the mknod
system call

mknod

PV_FS_CHOWN Allows a process to change the
ownership of a file

chown, chownx, fchownx, lchown

PV_FS_QUOTA Allows a process to manage disk
quotas related operations

quotactl

Security 109

Privilege Description System call reference

PV_FS_LINKDIR Allows a process to make a hard link
to a directory

link, unlink, remove

PV_FS_CNTL Allows a process to perform various
control operations except extend and
shrink on a filesystem

fscntl

PV_FS_RESIZE Allows a process to perform extend
and shrink type of operations on a
filesystem

fscntl

PV_FS_CHROOT Allows a process to change its root
directory

chroot

PV_FS_PDMODE Allows a process to make or set
partitioned type directory

pdmkdir

PV_FS_ Equivalent to all above filesystem
privileges (PV_FS_*) combined

PV_PROC_PRIV Allows a process to modify or view
privilege sets associated with a
process

setppriv, getppriv

PV_PROC_PRIO Allows a process/thread to change
priority, policy and other scheduling
parameters

_prio_requeue, _setpri, _setpriority,
_getpri, _sched_setparam,
_sched_setscheduler,
_thread_setsched,
thread_boostceiling,
thread_setmystate, thread_setstate

PV_PROC_CORE Allows a process to dump core gencore

PV_PROC_RAC Allows a process create more
processes than the per-user limit

appsetrlimit, setrlimit64, mlock,
mlockall, munlock, munlockall, plock,
upfget, upfput, restart, brk, sbrk

PV_PROC_RSET Allow to attach resource set (rset) to
a process or thread

bindprocessor, ra_attachrset,
ra_detachrset, rs_registername,
rs_setnameattr, rs_discardname,
rs_setpartition, rs_getassociativity,
kra_mmapv

PV_PROC_ENV Allows a process to set user
information in the user structure

ue_proc_register, ue_proc_unregister,
usrinfo

PV_PROC_CKPT Allows a process to checkpoint or
restart another process

setcrid, restart

PV_PROC_CRED Allows a process to set credential
attributes

__pag_setvalue, __pag_setvalue64,
__pag_genpagvalue

PV_PROC_SIG Allows a process to send signal to an
unrelated process

_sigqueue, kill, signohup, gencore,
thread_post, thread_post_many

PV_PROC_TIMER Allows a process to submit and use
fine-granularity timers

appresabs, appresinc, absinterval,
incinterval, _poll, _select
_timer_settime

PV_PROC_RTCLK Allows a process to access the
CPU-time clock

_clock_getres, _clock_gettime,
_clock_settime, _clock_getcpuclockid

PV_PROC_VARS Allows a process to retrieve and
update process tunable parameters

smttune

PV_PROC_PDMODE Allows a process to change REAL
mode of partitioned directory

setppdmode

110 AIX Version 7.2: Security

Privilege Description System call reference

PV_PROC_ Equivalent to all above process
privileges (PV_PROC_*) combined

PV_TCB Allows a process to modify the
kernel trusted library path

chpriv, fchpriv

PV_TP Indicates a process is a trusted path
process and allows actions limited to
trusted path processes. (note: same as
old AIX BYPASS_TPATH privilege)

PV_WPAR_CKPT Allows a process to perform
checkpoint/restart operation in
WPAR

smcr_proc_info, smcr_exec_info,
smcr_mapinfo, smcr_net_oper,
smcr_procattr, aio_suspend_io,
aio_resume_io

PV_KER_ACCT Allows a process to perform
restricted operations pertaining to the
accounting subsystem

acct, _acctctl, projctl

PV_KER_DR Allows a process to invoke dynamic
reconfiguration operations

_dr_register, _dr_notify,
_dr_unregister, dr_reconfig

PV_KER_TIME Allows a process to modify the
system clock and system time

adjtime, appsettimer, _clock_settime

PV_KER_RAC Allows a process to use large
(non-pageable) pages for the shared
memory segments

shmctl, vmgetinfo

PV_KER_WLM Allows a process to initialize and
modify WLM configuration

_wlm_set, _wlm_tune, _wlm_assign

PV_KER_EWLM Allows a process to initialize or
query the eWLM environment

PV_KER_VARS Allows a process to examine or set
kernel runtime tunable parameters

sys_parm, getkerninfo,
__pag_setname, sysconfig, kunload64

PV_KER_REBOOT Allows a process to shut down the
system

reboot

PV_KER_RAS Allows a process to configure or
write RAS records, error logging,
tracing, dumps functions

mtrace_set, mtrace_ctl

PV_KER_LVM Allows a process to configure the
LVM subsystem

PV_KER_NFS Allows a process to configure the
NFS subsystem

PV_KER_VMM Allows a process to modify swap
parameters and other VMM tunable
parameters in the kernel

swapoff, _swapon_ext, vmgetinfo

PV_KER_WPAR Allows a process to configure a
workload partition

brand, corral_config, corral_delete,
corral_modify, wpar_mkdevexport,
wpar_rmdevexport,
wpar_lsdevexport

PV_KER_CONF Allows a process to perform various
system-configuration operations

sethostname, sethostid, unameu,
setdomainname

PV_KER_EXTCONF Allows a process to perform various
configuration tasks in kernel
extensions (for kernel extension
services)

Security 111

Privilege Description System call reference

PV_KER_IPC Allows a process to raise the value of
IPC message queue buffer and allow
shmget with ranges to attach

msgctl, shm_open, shmget,
ra_shmget, ra_shmgetv, shmctl

PV_KER_IPC_R Allows a process to read a IPC
message queue, semaphore set, or
shared memory segment

msgctl, __msgrcv, _mq_open, semctl,
shmat, shm_open, __semop, shmctl,
__semtimedop, sem_post, _sem_wait,
__msgrcv, __msgxrcv

PV_KER_IPC_W Allows a process to write a IPC
message queue, semaphore set, or
shared memory segment

_mq_open, shmat, _sem_open,
semctl, shm_open, shmctl,
mq_unlink, sem_unlink, shm_unlink,
msgctl, __msgsnd

PV_KER_IPC_O Allows a process to override DAC
ownership on all IPC objects

msgctl, semctl, shmctl, fchmod,
fchown

PV_KER_SECCONFIG Allows a process to set kernel
security flags

sec_setsecconf, sec_setrunmode,
sec_setsyslab, sec_getsyslab

PV_KER_PATCH Allows a process to patch kernel
extensions

PV_KER_ Equivalent to all above kernel
privileges (PV_KER_*) combined

PV_DEV_CONFIG Allows a process to configure kernel
extensions and devices in the system

sysconfig

PV_DEV_LOAD Allows a process to load and unload
kernel extensions and devices in the
system

sysconfig

PV_DEV_QUERY Allows a process to query kernel
modules

sysconfig

PV_SU_ROOT Grants the process all privileges
associated with the standard AIX
superuser

PV_SU_EMUL Grants the process all privileges
associated with the standard AIX
super user if the UID is 0

PV_SU_UID Causes the getuid system call to
return 0

getuidx

PV_SU_ Equivalent to all of the above
superuser privileges (PV_SU_*)
combined

PV_NET_CNTL Allows a process to modify network
tables

socket, bind, listen, _naccept,
econnect, ioctl, rmsock, setsockopt

PV_NET_PORT Allows a process to bind to
privileged ports

bind

PV_NET_RAWSOCK Allows a process to have direct
access to the network layer

socket, _send, _sendto, sendmsg,
_nsendmsg

PV_NET_CONFIG Allows a process to configure
networking parameters

PV_NET_ Equivalent to all above networking
privileges (PV_NET_*) combined

The privileges listed in the following table are specific to Trusted AIX:

112 AIX Version 7.2: Security

Trusted AIX privilege Description System call reference

PV_LAB_CL Allows a process to modify subject
SCLs, subject to the process's
clearance

PV_LAB_CLTL Allows a process to modify subject
TCLs, subject to the process’s
clearance

PV_LAB_LEF Allows a process to read the label
encoding file

PV_LAB_SLDG Allows a process to downgrade SLs,
subject to the process's clearance

PV_LAB_SLDG_STR Allows a process to downgrade the
SL of a packet, subject to the
process's clearance

PV_LAB_SL_FILE Allows a process to change object
SLs, subject to the process's clearance

PV_LAB_SL_PROC Allows a process to change subject
SL, subject to the process's clearance

PV_LAB_SL_SELF Allows a process to change its own
SL, subject to the process's clearance

PV_LAB_SLUG Allows a process to upgrade SLs,
subject to the process's clearance

PV_LAB_SLUG_STR Allows a process to upgrade the SL
of a packet, subject to the process's
clearance

PV_LAB_TL Allows a process to modify subject
and object TLs

PV_LAB_ Equivalent to all above label
privileges (PV_LAB_*) combined

PV_MAC_CL Allows a process to bypass sensitivity
clearance restrictions

PV_MAC_R_PROC Allows a process to bypass MAC
read restrictions when getting
information about a process,
provided that the target process's
label is within the acting process's
clearance

PV_MAC_W_PROC Allows a process to bypass MAC
write restrictions when sending a
signal to a process, provided that the
target process's label is within the
acting process's clearance

PV_MAC_R Allows a process to bypass MAC
read restrictions

PV_MAC_R_CL Allows a process to bypass MAC
read restrictions when the object's
label is within the process's clearance

PV_MAC_R_STR Allows a process to bypass MAC
read restrictions when reading a
message from a STREAM, provided
that the message's label is within the
process's clearance

Security 113

Trusted AIX privilege Description System call reference

PV_MAC_W Allows a process to bypass MAC
write restrictions

PV_MAC_W_CL Allows a process to bypass MAC
write restrictions when the object's
label is within the process's clearance

PV_MAC_W_DN Allows a process to bypass MAC
write restrictions when the process
label dominates the object's label and
the object's label is within the
process's clearance

PV_MAC_W_UP Allows a process to bypass MAC
write restrictions when the process
label is dominated by the object's
label and the object's label is within
the process's clearance

PV_MAC_OVRRD Bypasses MAC restrictions for files
flagged as being exempt from MAC

PV_MAC_ Equivalent to all above MAC
privileges (PV_MAC_*) combined

PV_MIC Allows a process to bypass integrity
restrictions

PV_MIC_CL Allows a process to bypass integrity
clearance restrictions

Domain RBAC
Role-based access control (RBAC), introduced in AIX 6.1, provides a mechanism to split the various
functions of the super user root into roles, which can be delegated to other users on the system. RBAC
provides the facility to delegate duties and improves the security of the system because the auditing and
tracking of activities on the system is easier. RBAC provide delegation of responsibility to another user
(referred as an authorized user), but it does not provide a mechanism to limit the administrative rights of
an authorized user to specific resources of the system. For example, a user that has network
administrative rights can manage every network interface on the system. You cannot restrict the
authorized user to modify a set of interfaces.

The domain feature for RBAC is used to restrict access to authorized users. The users and resources of
the system are labeled by attaching tags called domains, and the specific access rules determine access to
resources by the users.

Definitions
The following definitions are related to access rules:

subject: A subject is an entity that requests access to an object. An example of a subject is a
process.

object: An object is an entity that holds information of value. Examples of objects are files,
devices, and network ports.

domain: A domain is defined as a category to which an entity belongs. When an entity belongs to
a domain, access control to the entity is governed by the access rules as follows:

Access rules

v A subject can access an object when it has all the domains to which the object belongs. This
specifies that the list of domains the subject belongs to is a super set of an object's domains.
This is the default behavior.

114 AIX Version 7.2: Security

v A subject can access an object when it has at least one domain of the object. That is, the subject
and object have one domain in common. This behaviour depends on the security flags of the
object.

v An object can deny access to certain domains. If an object defines a set of domains called
conflict sets and if one of the domains of the subject is part of the conflict set, the object can
deny access to the subject.

Domains Database

The domains supported by the system must be stored in a configuration file under /etc/security/
domains. The format of a stanza in the file is as shown:
domain-name:
id = <number>
dfltmsg = <Message>
msgcat = <Message catalog>
msgset = <Message set in catalog>
msgnum = <Message id in catalog>

The database can be manipulated using the mkdom and chdom commands. Use the lsdom command to
view the database. To delete the entries use the rmdom command.

The entries in the database are not effective until it is downloaded to the kernel by using the setkst
command.

A maximum of 1024 domains are supported on the system and the highest possible value of the domain
identifier (ID attribute) is 1024.

Domain-Assigned Objects

To assign a domain to an object, it must be defined in the Domain-Assigned Objects database. The
domains for all the entities on the system are stored in the configuration file under /etc/security/
domobjs. The format of a stanza in the file is as shown, which is an example to assign a domain to an
object.
/dev/hrvg:
domains=HR,IT
conflictsets=payroll
objtype=device
secflags=FSF_DOM_ANY

domains: Specifies the domains that are allowed to access the object. Examples of the domains
are IT, HR, and Payroll.

objtype: Indicates the type of object that gets assigned to a domain. The different kind of objtypes
are device, file, netint, and netport.

conflict sets: Indicates that if the subject belongs to any domain listed in this attribute in this set,
it is not allowed access to the object.

secflags: This flag specifies the special properties of the object. The flags can be set to
FSF_DOM_ANY or FSF_DOM_ALL. If the flag is set to FSF_DOM_ANY, a subject can access
the object if it contains any one of the domain specified in the domains attribute listing. If the
flag is set to FSF_DOM_ALL, all the domains in the listing must be satisfied by the subject to
access the object. If no value is specified, the default value of FSF_DOM_ALL is used. The
secflag affects only the behavior of the domains attribute of the object.

Domains can be assigned to the files in the file systems. By default, all domains of the object must be a
subset of domains of the process to enable the process to access the object.
1. Devices: All devices (including file systems) can be assigned to a domain. The domain checks are

done during management activities, such as configuring the device.

Security 115

/dev/hrvg:
domains=HR,IT
conflictsets=payroll
objtype=device
secflags=FSF_DOM_ANY

2. Network interfaces: When network interfaces (for example: en0) are assigned to the domain, the
management activities, such as shutting down the interface will require the interface to undergo
domain checks.
en0:
domains=NETIF,ADMIN
objtype=netint
flags=FSF_DOM_ALL

3. Network ports: The TCP and UDP ports can be assigned to the domain. Domain checks are enforced
when an application tries to bind to a port.
TCP_<port#>:
domains=NETIF,ADMIN
type=netport
flags=FSF_DOM_ALL

4. Processes: A process inherits domains of the user on whose behalf the process is running. When a
user logs in, the user shell process has the domains of the user. When the domains are set, these
domains of the process remain through their lifetime. The domains of a process cannot be changed by
any user interface or system call. The only process that can set the domains is the login process. The
processes do not have the conflict set and secflags attributes.

Current Limitations

The following items are limitations with the current domain RBAC facility:
v The domain configuration is currently supported on the local system and on lightweight directory

access protocol (LDAP) server.
v RBAC domains are not supported within AIX workload partitions (WPARs).
v You cannot apply RBAC domains to transient files.

Enhanced RBAC Requirement

The domain RBAC is created on Enhanced RBAC and requires Enhanced RBAC to be enabled on the
system to be effective.

Kernel Security Tables

The domains and Domain-Assigned Objects as defined in the domain database and Domain-Object
database are effective after they are downloaded to the kernel by using the setkst command. The two
tables are referred as Kernel Domain Table (KDOMT) and Kernel Domain Object Table (KDOT).

For additional details on kernel security tables and setkst, see the topic role based access control (RBAC)
in AIX Security Guide.

Domain Commands

The following table lists the domain RBAC-related commands that are provided in the AIX operating to
manage and use the domain-RBAC framework:

116 AIX Version 7.2: Security

Command Description

mkdom Creates a new domain

lsdom Displays domain attributes

rmdom Removes the domain

chdom Changes the domain attributes

setsecattr Sets the security attributes of a Domain-Object database

lssecattr Displays the security attributes of a Domain-Object database

rmsecattr Removes the definition of a Domain-Object database

setkst Sends the entries in the domain RBAC user-level databases
to the Kernel Security Tables

Domain RBAC-related files

The following table lists the RBAC-related files that are provided in the AIX operating system to
configure and store the database information:

File Description

/etc/security/domains Domain database

/etc/security/domobjs Domain-Object database

Using Domains

Defining domains: The domains are defined in the Domain database by using the mkdom command.
mkdom id=24 HR

Assigning domains: The domains can be assigned to entities, such as users, files, devices, network ports,
and interfaces. All entities other than users support conflict sets and security flags (secflags).

Users: Users are assigned to domains by using the chuser, and chsec commands.

Syntax:
chuser domains = <comma-separated list of domains> username

Example:
chuser domains=INET john

During login, the domains assigned to the user are activated. You must login again in case the domains
were changed while your session was active, for the new domains to be effective.

Objects: To restrict access to objects through domains, the object must be defined in the Domain-Object
database by using the setsecattr command.

Syntax:
setsecattr -o domains=<comma-separated list of allowed domains>
conflictsets=<comma-separated list of restricted domains>
secflags=<FSF_DOM_ALL or FSF_DOM_ANY>
objtype=<file or device or netint or netport>
object-path

Example:
setsecattr -o domains=INET,WEB conflictsets=DB secflags=FSF_DOM_ANY objtype=netint en0

Security 117

Access Control Lists
Typically an ACL consists of series of entries called an Access Control Entry (ACE). Each ACE defines the
access rights for a user in relationship to the object.

When an access is attempted, the operating system will use the ACL associated with the object to see
whether the user has the rights to do so. These ACLs and the related access checks form the core of the
Discretionary Access Control (DAC) mechanism supported by AIX.

The operating system supports several types of system objects that allow user processes to store or
communicate information. The most important types of access controlled objects are as follows:
v Files and directories
v Named pipes
v IPC objects such as message queues, shared memory segments, and semaphores

All access permission checks for these objects are made at the system call level when the object is first
accessed. Because System V Interprocess Communication (SVIPC) objects are accessed statelessly, checks
are made for every access. For objects with file system names, it is necessary to be able to resolve the
name of the actual object. Names are resolved either relatively (to the process' working directory) or
absolutely (to the process' root directory). All name resolution begins by searching one of these
directories.

The discretionary access control mechanism allows for effective access control of information resources
and provides for separate protection of the confidentiality and integrity of the information.
Owner-controlled access control mechanisms are only as effective as users make them. All users must
understand how access permissions are granted and denied, and how these are set.

For example, an ACL associated with a file system object (file or directory) could enforce the access rights
for various users in regards to access of the object. It is possible that such an ACL could enforce different
levels of access rights, such as read or write, for different users.

Typically, each object will have a defined owner and, in some cases, be associated to a primary group .
The owner of a specific object controls its discretionary access attributes. The owner's attributes are set to
the creating process's effective user ID.

The following list contains direct access control attributes for the different types of objects:

Owner
For System V Interprocess Communication (SVIPC) objects, the creator or owner can change the
object's ownership. SVIPC objects have an associated creator that has all the rights of the owner
(including access authorization). The creator cannot be changed, even with root authority.

SVIPC objects are initialized to the effective group ID of the creating process. For file system
objects, the direct access control attributes are initialized to either the effective group ID of the
creating process or the group ID of the parent directory (this is determined by the group
inheritance flag of the parent directory).

Group The owner of an object can change the group. The new group must be either, the effective group
ID of the creating process, or the group ID of the parent directory. (As above, SVIPC objects have
an associated creating group that cannot be changed, and share the access authorization of the
object group.)

Mode The chmod command (in numeric mode with octal notations) can set base permissions and
attributes. The chmod subroutine that is called by the command, disables extended permissions.
The extended permissions are disabled if you use the numeric mode of the chmod command on
a file that has an ACL. The symbolic mode of the chmod command disables extended ACLs for
NSF4 ACL type but does not disable extended permissions for AIXC type ACLs. For information
about numeric and symbolic mode, see chmod.

118 AIX Version 7.2: Security

Many objects in the operating system, such as sockets and file system objects, have ACLs associated for
different subjects. Details of ACLs for these object types could vary from one to another.

Traditionally, AIX has supported mode bits for controlling access to the file system objects. It has also
supported a unique form of ACL around mode bits. This ACL consisted of base mode bits and also
allowed for the definition of multiple ACE entries; each ACE entry defining access rights for a user or
group around the mode bits. This classic type of ACL behavior will continue to be supported, and is
named AIXC ACL type.

Note that support of an ACL on file system objects depends on the underlying physical file system (PFS).
The PFS must understand the ACL data and be able to store, retrieve, and enforce the accesses for
various users. It is possible that some of the physical file systems do not support any ACLs at all (may
just support the base mode bits) as compared to a physical file system that supported multiple types of
ACLs. Few of the file systems under AIX have been enhanced to support multiple ACL types. JFS2 and
GPFS™ will have the capability to support NFS version 4 protocol based ACL type too. This ACL has
been named NFS4 ACL type on AIX. This ACL type adheres to most of the ACL definition in the NFS
version 4 protocol specifications. It also supports more granular access controls as compared to the AIXC
ACL type and provides for capabilities such as inheritance.

Multiple Access Control List type framework support
Beginning with version 5.3.0, the AIX operating system supports an infrastructure for different Access
Control List (ACL) types to exist for different file system objects within the operating system.

This infrastructure allows for uniform methods to manage ACLs irrespective of the ACL type associated
with the object. The framework includes the following components:

ACL administration commands
These are commands, such as aclget, aclput, acledit, aclconvert, aclgetttypes. These commands
call library interfaces that invoke ACL-type-specific modules.

ACL library interfaces
ACL Library interfaces act as front-ends to the applications that need to access ACLs.

ACL-type-specific dynamically loadable ACL modules
The AIX operating system provides a set of ACL-type-specific modules for AIX Classic ACLs
(AIXC) and NFS4 ACLs (nfs4).

Binary compatibility:

There are no compatibility issues for applications that run on the existing JFS2 file systems, with or
without the existing AIX ACLs.

However, note that applications might find that access to files might fail if they encounter file system
objects with much stricter ACLs (such as NFS4) associated. Simple checks to see whether the file exists
will require level of read permission in NFS4 ACL.

Access Control List types supported on the AIX operating system
The AIX operating system currently supports AIXC and NFS4 ACL types.

As mentioned, it also supports an infrastructure for the addition of any other ACL type supported by the
underlying physical file system. Note that the JFS2 PFS supports NFS4 ACL natively if the file system
instance is created with Extended Attributes Version 2 capability.

AIXC Access Control List:

The AIXC Access Control List type represents the behavior of the ACL type supported on AIX releases
prior to 5.3.0. AIXC ACLs include base permissions and extended permissions.

Security 119

The AIXC Access Control List (ACL) type represents the behavior of the ACL type supported on AIX
releases prior to 5.3.0. AIXC ACLs include base permissions and extended permissions. The JFS2 file
system allows a maximum size of 4 KB for AIXC ACLs.

Setting base permissions for AIXC ACL

Base permissions are the traditional file-access modes assigned to the file owner, file group, and other
users. The access modes are: read (r), write (w), and execute/search (x).

In an ACL, base permissions are in the following format, with the Mode parameter expressed as rwx
(with a hyphen (-) replacing each unspecified permission):
base permissions:

owner(name): Mode
group(group): Mode
others: Mode

Setting attributes for AIXC ACL

The following attributes can be added to an AIXC ACL:

setuid (SUID)
Set-user-ID mode bit. This attribute sets the effective and saved user IDs of the process to the
owner ID of the file at run time.

setgid (SGID)
Set-group-ID mode bit. This attribute sets the effective and saved group IDs of the process to the
group ID of the file at run time.

savetext (SVTX)
For directories, indicates that only file owners can link or unlink files in the specified directory.

These attributes are added in the following format:
attributes: SUID, SGID, SVTX

Setting extended permissions for AIXC Access ACL

Extended permissions allow the owner of a file to more precisely define access to that file. Extended
permissions modify the base file permissions (owner, group, others) by permitting, denying, or specifying
access modes for specific individuals, groups, or user and group combinations. Permissions are modified
through the use of keywords.

The permit, deny, and specify keywords are defined as follows:

permit
Grants the user or group the specified access to the file

deny Restricts the user or group from using the specified access to the file

specify
Precisely defines the file access for the user or group

If a user is denied a particular access by either a deny or a specify keyword, no other entry can override
that access denial.

The enabled keyword must be specified in the ACL for the extended permissions to take effect. The
default value is the disabled keyword.

In an ACL, extended permissions are in the following format:

120 AIX Version 7.2: Security

extended permissions:
enabled | disabled

permit Mode UserInfo...
deny Mode UserInfo...
specify Mode UserInfo...

Use a separate line for each permit, deny, or specify entry. The Mode parameter is expressed as rwx (with
a hyphen (-) replacing each unspecified permission). The UserInfo parameter is expressed as u:UserName,
or g:GroupName, or a comma-separated combination of u:UserName and g:GroupName.

Note: Because a process has only one user ID, if more than one user name is specified in an entry, that
entry cannot be used in an access control decision.

Textual representation of AIXC ACL

The following stanza shows the textual representation of an AIXC ACL:
Attributes: { SUID | SGID | SVTX }
Base Permissions:

owner(name): Mode
group(group): Mode
others: Mode

Extended Permissions:
enabled | disabled

permit Mode UserInfo...
deny Mode UserInfo...
specify Mode UserInfo...

Binary format of AIXC ACL

The AIXC ACL binary format is defined in /usr/include/sys/acl.h and is implemented in the current
AIX release.

AIXC ACL example

The following is an example of an AIXC ACL:
attributes: SUID
base permissions:

owner(frank): rw-
group(system): r-x
others: ---

extended permissions:
enabled

permit rw- u:dhs
deny r-- u:chas, g:system
specify r-- u:john, g:gateway, g:mail
permit rw- g:account, g:finance

The ACL entries are described as follows:
v The first line indicates that the setuid bit is turned on.
v The next line, which introduces the base permissions, is optional.
v The next three lines specify the base permissions. The owner and group names in parentheses are for

information only. Changing these names does not alter the file owner or file group. Only the chown
command and the chgrp command can change these file attributes.

v The next line, which introduces the extended permissions, is optional.
v The next line indicates that the extended permissions that follow are enabled.
v The last four lines are the extended entries. The first extended entry grants user dhs read (r) and write

(w) permission on the file.

Security 121

v The second extended entry denies read (r) access to user chas only when he is a member of the system
group.

v The third extended entry specifies that as long as user john is a member of both the gateway group and
the mail group, he has read (r) access. If user john is not a member of both groups, this extended
permission does not apply.

v The last extended entry grants any user in both the account group and the finance group read (r) and
write (w) permission.

Note: More than one extended entry can apply to a process that is requesting access to a
controlled object, with restrictive entries taking precedence over permissive modes.

For the complete syntax, see the acledit command in the Commands Reference.

NFS4 Access Control List:

AIX also supports the NFS4 Access Control List (ACL) type.

The NFS4 ACL type implements access control as specified in the Network File System (NFS) version 4
Protocol RFC 3530. The JFS2 file system allows a maximum size of 64KB for NFS4 ACLs.

Only NFS V4 client supports NFS V4 ACLs. Both, Cachefs and Proxy do not support NFS V4 ACLs.

Textual representation of NFS4 ACL

A textual NFS V4 ACL is a list of ACEs (Access Control Entries) each ACE per line. An ACE has four
elements in the following format.
IDENTITY ACE_TYPE ACE_MASK ACE_FLAGS

where:
IDENTITY => Has format of ’IDENTITY_type:(IDENTITY_name or IDENTITY_ID or IDENTITY_who):’

where:
IDENTITY_type => One of the following Identity type:

u : user
g : group
s : special who string (IDENTITY_who must be a special who)

IDENTITY_name => user/group name
IDENTITY_ID => user/group ID
IDENTITY_who => special who string (e.g. OWNER@, GROUP@, EVERYONE@)

ACE_TYPE => One of the following ACE Type:
a : allow
d : deny
l : alarm
u : audit

ACE MASK => One or more of the following Mask value Key without separator:
r : READ_DATA or LIST_DIRECTORY
w : WRITE_DATA or ADD_FILE
p : APPEND_DATA or ADD_SUBDIRECTORY
R : READ_NAMED_ATTRS
W : WRITE_NAMED_ATTRS
x : EXECUTE or SEARCH_DIRECTORY
D : DELETE_CHILD
a : READ_ATTRIBUTES
A : WRITE_ATTRIBUTES
d : DELETE
c : READ_ACL
C : WRITE_ACL
o : WRITE_OWNER
s : SYNCHRONIZE

ACE_FLAGS (Optional) => One or more of the following Attribute Key without separater:
fi : FILE_INHERIT
di : DIRECTORY_INHERIT

122 AIX Version 7.2: Security

oi : INHERIT_ONLY
ni : NO_PROPAGATE_INHERIT
sf : SUCCESSFUL_ACCESS_ACE_FLAG
ff : FAILED_ACCESS_ACE_FLAG

Note: Concerning the SYNCHRONIZE Ace_Mask value key, s, AIX does not take any action concerning
this value key. The AIX operating system stores and preserves the s value key but this value key does not
have any meaning to AIX.

When the WRITE_OWNER Ace_Mask is set to Ace_Type allow, users can change ownership of the file to
themselves only.

Deleting a file depends on two ACEs, the DELETE entry of the object to be deleted and the
DELETE_CHILD entry of its parent directory. The AIX operating system provides the user with two
modes of behavior. In the secure mode, DELETE behaves similar to AIXC ACLs. In the compatibility mode,
DELETE behaves like other major implementations of NFS4 ACLs. To turn on the compatibility mode,
use the chdev command as follows:
chdev -l sys0 -a nfs4_acl_compat=compatible

You must reboot the system after running the chdev command before the configuration change will take
place.

If you switch your system back and forth between the two modes, you need to be aware that NFS4 ACLs
generated by the AIX operating system in secure mode might not be accepted by other platforms even if
the system was changed back to compatibility mode.
Example:

u:user1(aa@ibm.com): a rwp fidi
*s:(OWNER@): d x dini * This line is a comment
g:staff(jj@jj.com): a rx
s:(GROUP@): a rwpx fioi
u:2: d r di * This line shows user bin (uid=2)
g:7: a ac fi * This line shows group security (gid=7)
s:(EVERYONE@): a rca ni

Binary format for NFS4 ACL

The NFS4 ACL binary format is defined in /usr/include/sys/acl.h and is implemented in the current
AIX release.

NFS4 ACL example

The following example shows an NFS4 ACL applied on a directory (such as, j2eav2/d0):
s:(OWNER@): a rwpRWxDdo difi * 1st ACE
s:(OWNER@): d D difi * 2nd ACE
s:(GROUP@): d x ni * 3rd ACE
s:(GROUP@): a rx difi * 4th ACE
s:(EVERYONE@): a c difi * 5th ACE
s:(EVERYONE@): d C difi * 6th ACE
u:user1: a wp oi * 7th ACE
g:grp1: d wp * 8th ACE
u:101: a C * 9th ACE
g:100: d c * 10th ACE

The ACL entries are described as follows:
v The first ACE indicates that the owner has the following privileges on /j2eav2/d0 and all its offspring

created after this ACL is applied:
– READ_DATA (= LIST_DIRECTORY)

– WRITE_DATA (=ADD_FILE)

Security 123

– APPEND_DATA (= ADD_SUBDIRECTORY)

– READ_NAMED_ATTR

– WRITE_NAMED_ATTR

– EXECUTE (=SEARCH_DIRECTORY)

– DELETE_CHILD

– DELETE

– WRITE_OWNER

v The second ACE indicates the owner is denied the privilege for DELETE_CHILD (deleting the files or
subdirectories created under /j2eav2), but owner can still delete them because of the first ACE, which
allows owner the privilege for DELETE_CHILD.

v The third ACE indicates all members of the group for the object (/j2eav2/d0) are denied the privilege
for EXECUTE (=SEARCH_DIRECTORY), but the owner is still allowed that privilege by the first ACE. This
ACE can not be propagated to all of its offsprings because the NO_PROPAGATE_INHERIT flag is specified.
This ACE is applied only to the directory /j2eav2/d0 and its immediate child files and subdirectories.

v The fourth ACE indicates that every member of the group of the object (/j2eav2/d0) is allowed the
privilege for READ_DATA (= LIST_DIRECTORY) and EXECUTE (=SEARCH_DIRECTORY) on /j2eav2/d0 and all
its offsprings. However, because of third ACE group members (except the owner) are not allowed the
privilege for EXECUTE (=SEARCH_DIRECTORY) on the /j2eav2/d0 directory and its immediate child files
and subdirectories.

v The fifth ACE indicates that everyone is allowed the privilege for READ_ACL on the /j2eav2/d0 directory
and any offspring that are created after this ACL is applied.

v The sixth ACE indicates that everyone is denied the privilege for WRITE_ACL on the /j2eav2/d0
directory and any offspring. The owner always has the privilege for WRITE_ACL on files and directories
with NFS4 ACLs.

v The seventh ACE indicates that user1 has the privilege for WRITE_DATA (=ADD_FILE) and APPEND_DATA
(= ADD_SUBDIRECTORY) on all the offspring of the /j2eav2/d0 directory but not on the /j2eav2/d0
directory itself.

v The eighth ACE indicates that all the members of grp1 are denied the privilege for WRITE_DATA
(=ADD_FILE) and APPEND_DATA (= ADD_SUBDIRECTORY). This ACE does not apply to the owner even it
belongs to grp1 because of the first ACE.

v The ninth ACE indicates that the user with UID 101 has the privilege for WRITE_ACL, but no one, except
the owner has the privilege for WRITE_ACL because of the sixth ACE.

v The tenth ACE indicates that all the members of the group with GID 100 are denied for READ_ACL, but
they will have this privilege because of the fifth ACE.

Access Control List Management
You can use commands to view and set ACLs.

Applications programmers and other subsystem developers can use the ACL library interfaces and ACL
conversion routines described in this section.

ACL administration commands

You can use the following commands to work with ACLs for a file system object:

aclget Writes to standard output the ACL of the file object named FileObject, presented in readable
format or writes the same to the output file named outAclFile.

aclput Sets the ACL of FileObject on the file system using the input specified through standard input or
inAclFile.

acledit
Opens an editor for editing the ACL of the specified FileObject.

124 AIX Version 7.2: Security

aclconvert
Converts an ACL from one type to another type. This command fails if the conversion is not
supported.

aclgettypes
Gets ACL types supported by a file system path.

ACL library interfaces

ACL Library interfaces act as front-ends to the applications that need to access ACLs. The applications
(including the generic ACL administration commands given above) do not directly invoke the
undocumented ACL syscalls; instead, they access the generic syscalls and the type-specific loadable
modules via the library interfaces. This will shield the customer application programmers from the
complexity of using loadable modules, and reduces the backward binary compatibility issues for future
AIX releases.

The following library interfaces call syscalls.

aclx_fget and aclx_get
The aclx_get and aclx_fget functions retrieve the access control information for a file system
object, and put it into the memory region specified by acl. The size and type information for the
acl are stored in *acl_sz and *acl_type.

aclx_fput and aclx_put
The aclx_put and aclx_fput functions store the access control information specified in acl for the
input file object. These functions do not do ACL type conversions; for doing ACL type
conversion, the caller has to explicitly call the aclx_convert function.

aclx_gettypes
The aclx_gettypes function gets the list of ACL types supported on the particular file system. A
file system type can support more than one ACL type simultaneously. Each file system object is
associated with an unique ACL type belonging to the list of ACL types supported by the file
system.

aclx_gettypeinfo
The aclx_gettypeinfo function gets the characteristics and capabilities of an ACL type on the file
system specified by path. Note that the ACL characteristics will normally be of a data structure
type, which is specific for each particular ACL type. The data structures used for AIXC and NFS4
ACLs will be described in a separate document.

aclx_print and aclx_printStr
These two functions convert the ACL given in binary format into textual representation. These
functions are called by the aclget and acledit commands.

aclx_scan and aclx_scanStr
These two functions convert the given textual representation of the ACL into binary format.

aclx_convert
Converts an ACL from one type to another. This function is used for implicit conversion by
commands, such as cp, mv, or tar.

ACL conversion

ACL conversion allows you to convert one ACL type to another. Support of multiple ACL types is
dependent upon what ACL types are support on a specific physical file system. All file systems do not
support all ACL types. For example, file system one might support only AIXC ACL types, and file system
two might support AIXC and NFS4 ACL types. You can copy AIXC ACLs between the two file systems,
but you must use ACL conversion to copy the NFS ACLs from file system two to file system one. ACL
conversion preserves the access control information as much as possible.

Security 125

Note: The conversion process is approximate and could result in loss of access control information. You
should consider this when planning your ACL conversions.

ACL conversion in the AIX operating system is supported with the following infrastructure:

Library routines
These routines and user level ACL framework enable ACL conversion from one ACL type to
another.

aclconvert command
This command converts ACLs.

aclput and acledit commands
These commands are used to modify ACL types.

cp and mv commands
These commands have been enabled to handle multiple ACL types and perform any internal ACL
conversion, as necessary.

backup command
This command converts the ACL information to a known type and form (AIXC ACL type), if
requested to backup in the legacy format. To retrieve the ACL in its native format, specifiy the -U
option. See backup for more information.

Each ACL type is unique, and refinement of access control masks varies widely from one ACL type to
another. The conversion algorithms are approximate and are not equivalent to manually converting an
ACL. In some cases, the conversion will not be exact. For example, NFS4 ACLs cannot truly be converted
to AIXC ACLs because NFS4 ACLs provides up to 16 access masks and has inheritance features that are
not supported in the AIXC ACL type). You should not use the ACL conversion facilities and interfaces if
you are concerned about the loss of access control information.

Note: The ACL conversion algorithms are proprietary in nature and are subject to change.

S bits and Access Control Lists
You can use setuid and setgid programs and applying S bits to ACLs.

Using setuid and setgid programs

The permission bits mechanism allows effective access control for resources in most situations. But for
more precise access control, the operating system provides the setuid and setgid programs.

The AIX operating system defines identity only in terms of uids and gids. ACL types that do not define
identity with uids and gids are mapped to the AIX identity model. For example, the NFS4 ACL type
defines user identity as strings of the form user@domain, and this string is mapped to numeric UIDs and
GIDs.

Most programs run with the user and group access rights of the user who invoked them. Program
owners can associate the access rights of the user who invoked them by making the program a setuid or
setgid program; that is, a program with the setuid or setgid bit set in its permissions field. When that
program is run by a process, the process acquires the access rights of the owner of the program. A setuid
program runs with the access rights of its owner, while a setgid program has the access rights of its
group, and both bits can be set according to the permission mechanism.

Although the process is assigned the additional access rights, these rights are controlled by the program
bearing the rights. Thus, the setuid and setgid programs allow for user-programmed access controls in
which access rights are granted indirectly. The program acts as a trusted subsystem, guarding the user's
access rights.

126 AIX Version 7.2: Security

Although these programs can be used with great effectiveness, there is a security risk if they are not
designed carefully. In particular, the program must never return control to the user while it still has the
access rights of its owner, because this would allow a user to make unrestricted use of the owner's rights.

Note: For security reasons, the operating system does not support setuid or setgid program calls within
a shell script.

Applying S bits to ACLs

ACLs such as NFS4 do not directly deal with the S bits. NFS4 ACL does not specify how these bits could
be accommodated as part of the ACL. The AIX operating system has approached the problem such that S
bits will be used while performing access checks and will compliment any NFS4 ACL related access
checks. The chmod command that is provided with the AIX operating system can be used to set or reset
S bits on file system objects with ACLs such as NFS4.

Administrative access rights
The operating system provides privileged access rights for system administration.

System privilege is based on user and group IDs. Users with effective user or group IDs of 0 are
recognized as privileged.

Processes with effective user IDs of 0 are known as root-user processes and can:
v Read or write any object
v Call any system function
v Perform certain subsystem control operations by executing setuid-root programs.

You can manage the system using two types of privilege: the su command privilege and setuid-root
program privilege. The su command allows all programs you invoke to function as root-user processes.
The su command is a flexible way to manage the system, but it is not very secure.

Making a program into a setuid-root program means the program is a root-user-owned program with the
setuid bit set. A setuid-root program provides administrative functions that ordinary users can perform
without compromising security; the privilege is encapsulated in the program rather than granted directly
to the user. It can be difficult to encapsulate all necessary administrative functions in setuid-root
programs, but it provides more security to system managers.

Access authorization
When a user logs in to an account (using the login or su commands), the user IDs and group IDs
assigned to that account are associated with the user's processes. These IDs determine the access rights of
the process.

A process with a user ID of 0 is known as a root user process. These processes are generally allowed all
access permissions. But if a root user process requests execute permission for a program, access is granted
only if execute permission is granted to at least one user.

Access Authorization for AIXC ACLs

The owner of the information resource is responsible for managing access rights. Resources are protected
by permission bits, which are included in the mode of the object. The permission bits define the access
permissions granted to the owner of the object, the group of the object, and for the others default class.
The operating system supports three different modes of access (read, write, and execute) that can be
granted separately.

For files, directories, named pipes, and devices (special files), access is authorized as follows:

Security 127

v For each access control entry (ACE) in the ACL, the identifier list is compared to the identifiers of the
process. If there is a match, the process receives the permissions and restrictions defined for that entry.
The logical unions for both permissions and restrictions are computed for each matching entry in the
ACL. If the requesting process does not match any of the entries in the ACL, it receives the
permissions and restrictions of the default entry.

v If the requested access mode is permitted (included in the union of the permissions) and is not
restricted (included in the union of the restrictions), access is granted. Otherwise, access is denied.

The identifier list of an ACL matches a process if all identifiers in the list match the corresponding type
of effective identifier for the requesting process. A USER-type identifier matches if it is equal to the
effective user ID of the process, and a GROUP-type identifier matches if it is equal to the effective group
ID of the process or to one of the supplementary group IDs. For instance, an ACE with an identifier list
such as the following:
USER:fred, GROUP:philosophers, GROUP:software_programmer

would match a process with an effective user ID of fred and a group set of:
philosophers, philanthropists, software_programmer, doc_design

but would not match for a process with an effective user ID of fred and a group set of:
philosophers, iconoclasts, hardware_developer, graphic_design

Note that an ACE with an identifier list of the following would match for both processes:
USER:fred, GROUP:philosophers

In other words, the identifier list in the ACE functions is a set of conditions that must hold for the
specified access to be granted.

All access permission checks for these objects are made at the system call level when the object is first
accessed. Because System V Interprocess Communication (SVIPC) objects are accessed statelessly, checks
are made for every access. For objects with file system names, it is necessary to be able to resolve the
name of the actual object. Names are resolved either relatively (to the process' working directory) or
absolutely (to the process' root directory). All name resolution begins by searching one of these
directories.

The discretionary access control mechanism allows for effective access control of information resources
and provides for separate protection of the confidentiality and integrity of the information.
Owner-controlled access control mechanisms are only as effective as users make them. All users must
understand how access permissions are granted and denied, and how these are set.

Access Authorization for NFS4 ACLs

Any user who has the privilege for WRITE_ACL can control the access rights. The owner of the information
resource is always has the privilege for WRITE_ACL. For files and directories with NFS4 ACLs, access is
authorized as follows:
v The list of ACEs is processed in order and only those ACEs which have a "who" (i.e. Identity) that

matches the requester are considered for processing. The credentials of the requester is not checked
while processing the ACE with special who EVERYONE@.

v Each ACE is processed until all of the bits of requester's access have been allowed. Once a bit is has
been allowed, it is no longer considered in the processing of later ACEs.

v If any bit corresponding to the requester's access is denied, access is denied and the remaining ACEs
are not processed.

v If all of the bits of requester's access have not been allowed, and there is no ACE left for processing,
access is denied.

128 AIX Version 7.2: Security

If the access requested is denied by the ACEs and the requesting user is superuser or root, access is
generally allowed. Note that the object owner is always permitted for READ_ACL, WRITE_ACL,
READ_ATTRIBUTES, and WRITE_ATTRIBUTES. For more information on the algorithm for access authorization,
see “NFS4 Access Control List” on page 122.

Access Control List Troubleshooting
The following information can be used for troubleshooting the Access Control List (ACL).

NFS4 Access Control List on an object failed application

You can use the return code or the trace facility to troubleshoot problems with setting an NFS4 ACL on
an object, such as a file or directory. Both methods use command the aclput command and the acledit
command to find the cause of the problem.

Using the Return Code for troubleshooting

To display the return code, use the echo $? command after you run the aclput command. The following
lists shows the return codes and their explanations:

22 (EINVAL, defined in /usr/include/sys/errno.h)
The following are possible causes for this code:
v Invalid textual format in any field of the 4 fields.
v The size of the input NFS4 ACL is more than 64 KB.
v The ACL is applied on a file that already has at least one ACE with ACE mask set to w

(WRITE_DATA) but not p (APPEND_DATA) or p (APPEND_DATA) but not w (WRITE_DATA).
v The ACL is applied on a directory that already has at least one ACE with ACE mask set to w

(WRITE_DATA) but not p (APPEND_DATA) or p (APPEND_DATA) but not w (WRITE_DATA), and the ACE
flag fi (FILE_INHERIT).

v There is at least one ACE with OWNER@ set as a special who (Identity) and one or more of
the ACE masks c (READ_ACL), C (WRITE_ACL), a (READ_ATTRIBUTE) and A (WRITE_ATTRIBUTE) are
being denied by ACE type d.

124 (ENOTSUP, defined in /usr/include/sys/errno.h)
The following are possible causes for this code:
v The special who might not be any one of the three values (OWNER@, GROUP@, or EVERYONE@) in one

of the ACEs.
v There is at least one ACE with ACE type u (AUDIT) or l (ALARM).

13 (EACCES, defined in /usr/include/sys/errno.h)
The following are possible causes for this code:
v You are not allowed to read the input file containing NFS4 ACEs.
v You are not allowed to search the parent directory of the target object because you do not have

x (EXECUTE) permission on the parent directory of the target object.
v You might not be allowed to write or change the ACL. If the object is already associated with

an NFS4 ACL ensure that you are have the privilege for the ACE mask C (WRITE_ACL).

Using the Trace facility for troubleshooting

You can also generate a trace report to find the cause of the problem. The following scenario shows how
to use trace to find the cause of the problem applying an NFS4 ACL. If you have a file, /j2v2/file1 with
the following NFS4 ACL:
s:(EVERYONE@): a acC

And, the following ACL is contained in the input_acl_file input file:
s:(EVERYONE@): a rwxacC

Security 129

Complete the following steps to troubleshoot with the trace facility:
1. Run the trace, aclput and trcrpt using the following commands:

$ trace -j 478 -o trc.raw
$->!aclput -i input_acl_file -t NFS4 /j2v2/file1
$ ->quit
$ trcrpt trc.raw > trc.rpt

2. Analyze the trace report. When the ACL is applied on a file or directory, it checks for the access to
write or change the ACL, and then applies the ACL. The file contains lines similar to the following:
478 xxx xxx ACL ENGINE: chk_access entry: type=NFS4 obj_mode=33587200 size=68 ops=16384 uid=100

478 xxx xxx ACL ENGINE: chk_access exit: type=NFS4 rc=0 ops=16384 priv=0 against=0
478 xxx xxx ACL ENGINE: set_acl entry: type=NFS4 ctl_flg=2 obj_mode=33587200 mode=0 size=48

478 xxx xxx ACL ENGINE: validate_acl: type=NFS4 rc=22 ace_cnt=1 acl_len=48 size=12
478 xxx xxx ACL ENGINE: set_acl exit: type=NFS4 rc=22 obj_mode=33587200 size=68 cmd=536878912

The second line containing, chk_access exit, indicates access is allowed (rc = 0) to write the ACL.
The fourth line, containing validate_acl, and the fifth line, containing set_acl exit, indicate that the
ACL is not applied successfully (rc=22 indicates EINVAL). The fourth line, containing validate_acl,
indicates there is problem in the first line of the ACE (ace_cnt=1). If you refer to the first ACE,
s:(EVERYONE@): a rwxacC), there is no p as the access mask. The p is needed in addition to the w
when applying the ACL.

Troubleshooting access denies

A filesystem operation (for example, read or write) might fail on an object associated with an NFS4 ACL.
Usually, an error message is displayed, but that message might not contain enough information to
determine the access problem. You can use the trace facility to find the access problem. For example, if
you have a file, /j2v2/file2 with the following NFS4 ACL:
s:(EVERYONE@): a rwpx

The following command reports a "Permission denied" error:
ls -l /j2v2/file2

Complete the following steps to troubleshoot this problem:
1. Run the trace, ls -l /j2v2/file2 and trcrpt using the following commands:

$ trace -j 478 -o trc.raw
$->!ls -l /j2v2/file2
$ ->quit
$ trcrpt trc.raw > trc.rpt

2. Analyze the trace report. The file contains lines similar to the following:
478 xxx xxx ACL ENGINE: chk_access entry: type=NFS4 obj_mode=33587711 size=68 ops=1024 uid=100
478 xxx xxx ACL ENGINE: nfs4_chk_access_self: type=NFS4 aceN=1 aceCnt=1 req=128 deny=0
478 xxx xxx ACL ENGINE: nfs4_mask_privcheck: type=NFS4 deny=128 priv=128
478 xxx xxx ACL ENGINE: chk_access exit: type=NFS4 rc=13 ops=1024 priv=0 against=0

The third line indicates the access is denied for access mask = 128 (0x80) which is only
READ_ATTRIBUTES (see the /usr/include/sys/acl.h file).

Auditing overview
The auditing subsystem enables the system administrator to record security-relevant information, which
can be analyzed to detect potential and actual violations of the system security policy.

Auditing subsystem
The auditing subsystem has detection, collection, and processing functions.
v “Auditing event detection” on page 131

130 AIX Version 7.2: Security

v “Event information collection”
v “Audit trail information processing”

The system administrator can configure each of these functions.

Auditing event detection

Event detection is distributed throughout the Trusted Computing Base (TCB), both in the kernel
(supervisor state code) and the trusted programs (user state code). An auditable event is any
security-relevant occurrence in the system. A security-relevant occurrence is any change to the security
state of the system, any attempted or actual violation of the system access control or accountability
security policies, or both. The programs and kernel modules that detect auditable events are responsible
for reporting these events to the system audit logger, that runs as part of the kernel and can be accessed
either with a subroutine (for trusted program auditing) or within a kernel procedure call (for supervisor
state auditing). The information reported includes the name of the auditable event, the success or failure
of the event, and any additional event-specific information that is relevant to security auditing.

Event detection configuration consists of turning event detection on or off, and specifiying which events
are to be audited for which users. To activate event detection use the audit command to enable or disable
the audit subsystem. The /etc/security/audit/config file contains the events and users that are
processed by the audit subsystem.

Event information collection

Information collection encompasses logging the selected auditable events. This function is performed by
the kernel audit logger, which provides both a system call and an intra-kernel procedure call interface
that records auditable events.

The audit logger is responsible for constructing the complete audit record, consisting of the audit header,
that contains information common to all events (such as the name of the event, the user responsible, the
time and return status of the event), and the audit trail, which contains event-specific information. The
audit logger appends each successive record to the kernel audit trail, which can be written in either (or
both) of two modes:

BIN mode
The trail is written into alternating files, providing for safety and long-term storage.

STREAM mode
The trail is written to a circular buffer that is read synchronously through an audit
pseudo-device. STREAM mode offers immediate response.

Information collection can be configured at both the front end (event recording) and at the back end (trail
processing). Event recording is selectable on a per-user basis. Each user has a defined set of audit events
that are logged in the audit trail when they occur. At the back end, the modes are individually
configurable, so that the administrator can employ the back-end processing best suited for a particular
environment. In addition, BIN mode auditing can be configured to generate an alert in case the file
system space available for the trail is getting too low.

Audit trail information processing

The operating system provides several options for processing the kernel audit trail. The BIN mode trail
can be compressed, filtered, or formatted for output, or any reasonable combination of these before
archival storage of the audit trail, if any. Compression is done through Huffman encoding. Filtering is
done with standard query language (SQL)-like audit record selection (using the auditselect command),
which provides for both selective viewing and selective retention of the audit trail. Formatting of audit
trail records can be used to examine the audit trail, to generate periodic security reports, and to print a
paper audit trail.

Security 131

The STREAM mode audit trail can be monitored in real time, to provide immediate threat-monitoring
capability. Configuration of these options is handled by separate programs that can be invoked as
daemon processes to filter either BIN or STREAM mode trails, although some of the filter programs are
more naturally suited to one mode or the other.

Auditing subsystem configuration
The auditing subsystem has a global state variable that indicates whether the auditing subsystem is on. In
addition, each process has a local state variable that indicates whether the auditing subsystem should
record information about this process.

Both of these variables determine whether events are detected by the Trusted Computing Base (TCB)
modules and programs. Turning TCB auditing off for a specific process allows that process to do its own
auditing and not to bypass the system accountability policy. Permitting a trusted program to audit itself
allows for more efficient and effective collection of information.

Auditing subsystem information collection

Information collection addresses event selection and kernel audit trail modes. It is done by a kernel
routine that provides interfaces to log information, used by the TCB components that detect auditable
events, and configuration interfaces, used by the auditing subsystem to control the audit logging routine.

Audit logging

Auditable events are logged by the following interfaces: the user state and supervisor state. The user state
portion of the TCB uses the auditlog or auditwrite subroutine, while the supervisor state portion of the
TCB uses a set of kernel procedure calls.

For each record, the audit event logger prefixes an audit header to the event-specific information. This
header identifies the user and process for which this event is being audited, as well as the time of the
event. The code that detects the event supplies the event type and return code or status and optionally,
additional event-specific information (the event tail). Event-specific information consists of object names
(for example, files that are refused access or tty used in failed login attempts), subroutine parameters, and
other modified information.

Events are defined symbolically, rather than numerically. This lessens the chances of name collisions,
without using an event registration scheme. Because subroutines are auditable and the extendable kernel
definition has no fixed switched virtual circuit (SVC) numbers, it is difficult to record events by number.
The number mapping would have to be revised and logged every time that the kernel interface was
extended or redefined.

Audit record format

The audit records consist of a common header, followed by audit trails specific to the audit event of the
record. The structures for the headers are defined in the /usr/include/sys/audit.h file. The format of the
information in the audit trails is specific to each base event and is shown in the /etc/security/audit/
events file.

The information in the audit header is generally collected by the logging routine to ensure its accuracy,
while the information in the audit trails is supplied by the code that detects the event. The audit logger
has no knowledge of the structure or semantics of the audit trails. For example, when the login
command detects a failed login, it records the specific event with the terminal on which it occurred and
writes the record into the audit trail using the auditlog subroutine. The audit logger kernel component
records the subject-specific information (user IDs, process IDs, time) in a header and appends this to the
other information. The caller supplies only the event name and result fields in the header.

132 AIX Version 7.2: Security

Audit logger configuration
The audit logger is responsible for constructing the complete audit record. You must select the audit
events that you want to be logged.

Audit events selection

Audit event selection has the following types:

Per-Process Auditing
To select process events efficiently, the system administrator can define audit classes. An audit
class is a subset of the base auditing events in the system. Auditing classes provide for
convenient logical groupings of the base auditing events.

For each user on the system, the system administrator defines a set of audit classes that
determine the base events that could be recorded for that user. Each process run by the user is
tagged with its audit classes.

Per-Object Auditing
The operating system provides for the auditing of object accesses by name; that is, the auditing of
specific objects (normally files). By-name object auditing prevents having to cover all object
accesses to audit the few pertinent objects. In addition, the auditing mode can be specified, so
that only accesses of the specified mode (read/write/execute) are recorded.

Kernel audit trail modes

Kernel logging can be set to BIN or STREAM modes to define where the kernel audit trail is to be
written. If the BIN mode is used, the kernel audit logger must be given (before audit startup) at least one
file descriptor to which records are to be appended.

BIN mode consists of writing the audit records into alternating files. At auditing startup, the kernel is
passed two file descriptors and an advisory maximum bin size. It suspends the calling process and starts
writing audit records into the first file descriptor. When the size of the first bin reaches the maximum bin
size, and if the second file descriptor is valid, it switches to the second bin and reactivates the calling
process. The kernel continues writing into the second bin until it is called again with another valid file
descriptor. If at that point the second bin is full, it switches back to the first bin, and the calling process
returns immediately. Otherwise, the calling process is suspended, and the kernel continues writing
records into the second bin until it is full. Processing continues this way until auditing is turned off. See
the following figure for an illustration of audit BIN mode:

Security 133

The alternating bin mechanism is used to ensure that the audit susbsystem always has something to write
to while the audit records are processed. When the audit subsystem switches to the other bin, it empties
the first bin content to the trace file. When time comes to switch the bin again, the first bin is available.
It decouples the storage and analysis of the data from the data generation. Typically, the auditcat
program is used to read the data from the bin that the kernel is not writing to at the moment. To make
sure that the system never runs out of space for the audit trail (the output of the auditcat program), the
freespace parameter can be specified in the /etc/security/audit/config file. If the system has less than
the amount of 512-byte blocks specified here, it generates a syslog message.

If auditing is enabled, the binmode parameter in the start stanza in /etc/security/audit/config should
be set to panic. The freespace parameter in the bin stanza should be configured at minimum to a value
that equals 25 percent of the disk space dedicated to the storage of the audit trails. The bytethreshold and
binsize parameters should each be set to 65536 bytes.

In the STREAM mode, the kernel writes records into a circular buffer. When the kernel reaches the end of
the buffer, it simply wraps to the beginning. Processes read the information through a pseudo-device
called /dev/audit. When a process opens this device, a channel is created for that process. Optionally, the
events to be read on the channel can be specified as a list of audit classes. See the following figure for an
illustration of audit STREAM mode:

Figure 1. Process of the audit BIN mode.. This illustration shows the process of the audit BIN mode.

134 AIX Version 7.2: Security

The main purpose of the STREAM mode is to allow for timely reading of the audit trail, which is
desirable for real-time threat monitoring. Another use is to create a trail that is written immediately,
preventing any possible tampering with the audit trail, as is possible if the trail is stored on some
writable media.

Yet another method to use the STREAM mode is to write the audit stream into a program that stores the
audit information on a remote system, which allows central near-time processing, while at the same time
protecting the audit information from tampering at the originating host.

Audit records processing

The auditselect, auditpr, and auditmerge commands are available to process BIN or STREAM mode
audit records. Both utilities operate as filters so that they can be easily used on pipes, which is especially
handy for STREAM mode auditing.

auditselect
Can be used to select only specific audit records with SQL-like statements. For example, to select
only exec() events that were generated by user afx, type the following:
auditselect -e "login==afx && event==PROC_Execute"

auditpr
Used to convert the binary audit records into a human-readable form. The amount of information

Figure 2. Process of the audit STREAM mode. This illustration shows the process of the audit STREAM mode.

Security 135

displayed depends on the flags specified on the command line. To get all the available
information, run the auditpr command as follows:
auditpr -v -hhelrtRpPTc

When the -v flag is specified, the audit tail which is an event specific string (see the
/etc/security/audit/events file) is displayed in addition to the standard audit information that
the kernel delivers for every event.

auditmerge
Used to merge binary audit trails. This is especially useful if there are audit trails from several
systems that need to be combined. The auditmerge command takes the names of the trails on the
command line and sends the merged binary trail to standard output, so you still need to use the
auditpr command to make it readable. For example, the auditmerge and auditptr commands
could be run as follows:
auditmerge trail.system1 trail.system2 | auditpr -v -hhelrRtpc

Using the audit subsystem for a quick security check:

To monitor a single suspicious program without setting up the audit subsystem, the watch command can
be used. It will record either the requested or all events that are generated by the specified program.

For example, to see all FILE_Open events when running vi /etc/hosts, type the following:
watch -eFILE_Open -o /tmp/vi.watch vi /etc/hosts

The /tmp/vi.watch file displays all FILE_Open events for the editor session.

Event selection
Event selection must maintain a balance between insufficient to too much detail.

The set of auditable events on the system defines which occurrences can actually be audited and the
granularity of the auditing provided. The auditable events must cover the security-relevant events on the
system, as defined previously. The level of detail you use for auditable event definition must maintain a
balance between insufficient detail, which makes it difficult for the administrator to understand the
selected information, and too much detail, which leads to excessive information collection. The definition
of events takes advantage of similarities in detected events. For the purpose of this discussion, a detected
event is any single instance of an auditable event; for instance, a given event might be detected in various
places. The underlying principle is that detected events with similar security properties are selected as the
same auditable event. The following list shows a classification of security policy events:
v Subject Events

– Process creation
– Process deletion
– Setting subject security attributes: user IDs, group IDs
– Process group, control terminal

v Object Events
– Object creation
– Object deletion
– Object open (including processes as objects)
– Object close (including processes as objects)
– Setting object security attributes: owner, group, ACL

v Import/Export Events
– Importing or exporting an object

v Accountability Events

136 AIX Version 7.2: Security

– Adding a user, changing user attributes in the password database
– Adding a group, changing group attributes in the group database
– User login
– User logoff
– Changing user authentication information
– Trusted path terminal configuration
– Authentication configuration
– Auditing administration: selecting events and audit trails, switching on or off, defining user auditing

classes
v General System Administration Events

– Use of privilege
– File system configuration
– Device definition and configuration
– System configuration parameter definition
– Normal system IPL and shutdown
– RAS configuration
– Other system configuration
– Starting the audit subsystem
– Stopping the audit subsystem
– Querying the audit subsystem
– Resetting the audit subsystem

v Security Violations (potential)
– Access permission refusals
– Privilege failures
– Diagnostically detected faults and system errors
– Attempted alteration of the TCB

Audit events:

An audit event is any security-relevant occurrence in the system. A security-relevant occurrence can be a
change to the security state of the system, an attempted or actual violation of the system access control or
accountability security policies, or both. The programs and kernel modules that detect audit events report
these events to the system audit logger that runs as part of the kernel and can be accessed either by using
a subroutine (for trusted program auditing) or within a kernel procedure call (for supervisor state
auditing). The information that is reported in an audit event includes the name of the event, the success
or failure of the event, and any additional event-specific information that is related to security auditing.

To audit an activity, you must identify the command or process that initiates the audit event and ensure
that the event is listed in the /etc/security/audit/events file for your system. You can facilitate the
assignment of audit events to users by combining similar events into audit classes. These audit classes are
defined in the classes stanza of the /etc/security/audit/config file.

The following table lists some of the commonly used audit events that occur in the AIX operation system:

Security 137

Table 11. Audit events

User or system call Audit event Description

fork PROC_Create Specifies that a process is created.

exit PROC_Delete Specifies that the calling process has
ended.

exec PROC_Execute Runs a new program.

setuidx PROC_RealUID Sets the user ID of the process.

PROC_AuditID

PROC_SetUserIDs

setgidx PROC_RealGID Sets the process group ID.

accessx FILE_Accessx Determines the accessibility of a file.

statacl FILE_StatAcl Retrieves the access control information of
a file.

revoke FILE_Revoke Revokes access to a file by all processes.

frevoke FILE_Frevoke Revokes access to a file by other
processes.

usrinfo PROC_Environ Changes a part of user information data.

sigaction PROC_SetSignal Specifies the action to be performed when
a specific signal is delivered to the process
that issued this subroutine.

setrlimit PROC_Limits Controls consumption of maximum
system resources.

nice PROC_SetPri Specifies the use of the nice function.

setpri PROC_Setpri Sets fixed priority for processes.

setpriv PROC_Privilege Changes one or more privilege vectors for
processes.

settimer PROC_Settimer Sets current value for a specified
system-wide timer.

adjtime PROC_Adjtime Changes the system clock.

ptrace PROC_Debug Traces the execution of another process.

kill PROC_Kill Sends a signal to a process or a group of
processes.

setpgid PROC_setpgid Sets the process group ID.

ld_loadmodule PROC_Load Loads a new object module into the
process address space.

PROC_LoadError Indicates that the object loading failed.

setgroups PROC_SetGroups Changes the process concurrent group set.

sysconfig PROC_Sysconfig Captures the action on kernel or system
configuration.

audit AUD_It Starts and stops the auditing operation. It
also queries the audit status.

auditbin AUD_Bin_Def Modifies the auditbin system call.

auditevents AUD_Events Modifies events.

auditobj AUD_Objects Modifies the auditobj system call.

auditproc AUD_Proc Gets or sets the audit state of a process.

acct ACCT_Disable Disables system accounting.

ACCT_Enable Enables system accounting.

open and create FILE_Open Calls the open subroutine.

read FILE_Read Reads data from the file descriptor.

write FILE_Write Writes data to the file descriptor.

close FILE_Close Closes the open file descriptor.

138 AIX Version 7.2: Security

Table 11. Audit events (continued)

User or system call Audit event Description

link FILE_Link Creates new directory entry for a file
system object.

unlink FILE_Unlink Removes a file system object.

rename FILE_Rename Changes the name of a file system object.

chown FILE_Owner Changes file ownership.

chmod FILE_Mode Changes file mode.

fchmod FILE_Fchmod Changes file permission of a file
descriptor.

fchown FILE_Fchown Changes ownership of a file descriptor.

truncate FILE_Truncate Changes the length of regular files or
shared memory object.

symlink FILE_Symlink Creates a symbolic link.

pipe FILE_Pipe Creates an unnamed pipe.

mknod FILE_Mknod Creates a device special file or a
first-in-first-out (FIFO) special file.

fcntl FILE_Dupfd Duplicates the file descriptor.

fscntl FS_Extend Extends the file system.

mount FS_Mount Connects file system to a named directory.

umount FS_Umount Disconnects the mounted file system.

chacl FILE_Acl Changes the access control list (ACL) of a
file.

fchacl FILE_Facl Changes ACL of a file descriptor.

chpriv FILE_Privilege Sets the privilege control list (PCL) of a
file path name.

FILE_Chpriv Changes the PCL.

FILE_Fchpriv Changes the PCL of a file descriptor.

chdir FS_Chdir Changes the current working directory.

fchdir FS_Fchdir Changes the current working directory by
using a file descriptor.

chroot FS_Chroot Changes meaning of the root directory (/)
for the current process.

rmdir FS_Rmdir Removes the directory object.

mkdir FS_Mkdir Creates a directory.

utimes FILE_Utimes Calls the utimes subroutine.

stat FILE_Stat Calls the stat subroutine.

msgget MSG_Create Creates a message queue.

msgrcv MSG_Read Receives message from a message queue.

msgsnd MSG_Write Sends message to a message queue.

msgctl MSG_Delete Removes a message queue.

MSG_Owner Changes ownership and access right of a
message queue.

MSG_Mode Queries access rights of a message queue.

semget SEM_Create Creates a semaphore set.

semop SEM_Op Increases or decreases one or more
semaphores.

Security 139

Table 11. Audit events (continued)

User or system call Audit event Description

semctl SEM_Delete Deletes a semaphore set.

SEM_Owner Changes ownership and access rights of a
semaphore set.

SEM_Mode Queries semaphore set access rights.

shmget SHM_Create Creates a new shared memory segment.

shmat SHM_Open Calls the shmat subroutine by using the
Open option.

shmat SHM_Detach Calls the shmat subroutine by using the
Detach option.

shmctl SHM_Close Closes shared memory segment.

SHM_Owner Changes ownership and access rights for
shared memory segment.

SHM_Mode Queries access rights of shared memory
segment.

tcpip user level TCPIP_connect Calls the connect subroutine.

TCPIP_data_out Data sent.

TCPIP_data_in Data received.

TCPIP_set_time Logs the attempt to change system time
through network.

tcpip kernel level TCP_ksocket Specifies that a socket is created.

TCP_ksocketpair Specifies that a pair of connected sockets
is created.

TCP_kclose Specifies that the socket is closed.

TCP_ksetopt Specifies that the socket options are set.

TCP_kbind Specifies that a name is bound to a socket.

TCP_klisten Listens for a socket connection.

TCP_kconnect Specifies that a connection between two
sockets is created.

TCP_kaccept Accepts a new socket and specifies that a
connection on a socket is created.

TCP_kshutdown Specifies that all send and receive
operations of sockets are shut down.

TCP_ksend Specifies that messages are sent from a
connected socket.

TCP_kreceive Specifies that messages are received from
a connected socket.

tsm USER_Login Logs in the user to the system.

PORT_Locked Indicates that the port is locked because
of invalid login attempts.

TERM_Logout Logs the user out of the system.

rlogind or telnetd USER_Exit Indicates that the user is logged out.

usrck USER_Check Verifies the accuracy of a user definition.

USRCK_Error

logout USER_Logout Stops all processes on a port.

chsec PORT_Change Indicates a change in port attribute values.

chuser USER_Change Changes user attributes.

rmuser USER_Remove Removes a user.

mkuser USER_Create Creates a user.

140 AIX Version 7.2: Security

|

|
|

|

|

|

|

|
|

|
|

|
|

|
|

|
|

Table 11. Audit events (continued)

User or system call Audit event Description

setgroups USER_SetGroups Sets the supplementary group ID of the
current process.

setsenv USER_SetEnv Sets the environment variable.

su USER_SU Changes the user ID that is associated
with a session.

grpck GROUP_User Removes non-existent users from the
group.

GROUP_Adms Removes non-existent administrative users
from the group.

chgroup GROUP_Change Changes the group attributes.

mkgroup GROUP_Create Creates a group.

rmgroup GROUP_Remove Removes a group.

passwd PASSWORD_Change Changes a user password.

pwdadm PASSWORD_Flags Changes an administrator password.

pwdck PASSWORD_Check Verifies the accuracy of local
authentication information.PASWORD_Ckerr

startsrc SRC_Start Starts a system resource controller.

stopsrc SRC_Stop Stops a system resource controller.

addssys SRC_Addssys Adds the SRCsubsys definition to the
subsystem object class.

chssys SRC_Chssys Changes a subsystem definition in the
subsystem object class.

addserver SRC_Addserver Adds a subserver definition to the
subserver object class.

chserver SRC_Chserver Changes a subserver definition in the
subserver object class.

rmsys SRC_Delssys Removes a subsystem definition from the
subsystem object class.

rmserver SRC_Delserver Removes a subserver definition from the
Subserver type object class.

enq ENQUE_admin Queues a file.

qdaemon ENQUE_exec Schedules queued jobs.

sendmail SENDMAIL_Config Routes the mail for local or network
delivery.SENDMAIL_ToFile

at AT_JobAdd Removes or adds the commands that are
scheduled to be run by using the at
command.

At_JobRemove

cron CRON_JobRemove Removes or adds the commands that are
scheduled to be run by using the cron
command.

CRON_JobAdd

CRON_Start Indicates start of a cron job.

CRON_Finish Indicates end of a cron job.

nvload NVRAM_Config Specifies access to the non-volatile
random-access memory (NVRAM).

cfgmgr DEV_Configure Configures devices.

chdev and mkdev DEV_Change Specifies a change in device.

mkdev DEV_Create Specifies that the device is created.

DEV_Start Specifies that the device is started.

Security 141

Table 11. Audit events (continued)

User or system call Audit event Description

installp INSTALLP_Inst Installs available software products in a
compatible installation package.INSTALLP_Exec

rmdev DEV_Stop Specifies that the device is stopped.

DEV_Unconfigure Specifies that the device is unconfigured.

DEV_Remove Specifies that the device has been
removed.

lchangelv, lextendlv, and lreducelv LVM_ChangeLV Specifies that the logical volume has been
changed.

lchangepv, ldeletepv, and linstallpv LVM_ChangeVG Specifies that the volume group has been
changed.

lcreatelv LVM_CreateLV Specifies that a logical volume has been
added to the system.

lcreatevg LVM_CreateVG Specifies that a volume group has been
created in the system.

ldeletepv LVM_DeleteVG Specifies that the volume group has been
removed from the system.

rmlv LVM_DeleteLV Specifies that the logical volume has been
removed from the system.

lvaryoffvg LVM_VaryoffVG Deactivates a volume group.

lvaryonvg LVM_VaryonVG Activates a volume group.

Logical volume operations LVM_AddLV Adds a logical volume to an existing
volume group.

LVM_KDeleteLV Removes a logical volume from an
existing volume group.

LVM_ExtendLV Increases the size of a logical volume by
adding deallocated physical partitions
from the volume group.

LVM_ReduceLV Decreases the size of a logical volume.

LVM_KChangeLV Changes existing logical volume.

LVM_AvoidLV Does not allow a logical volume to
perform specific operations.

Physical volume operations LVM_MissingPV Adds a missing physical volume to an
existing volume group.

LVM_AddPV Adds a physical volume to an existing
volume group

LVM_AddMissPV Adds a missing physical volume to an
existing volume group.

LVM_DeletePV Deletes a physical volume from an
existing volume group.

LVM_RemovePV Removes a physical volume from an
existing volume group.

LVM_AddVGSA Adds a volume group status area (VGSA)
to an existing physical volume.

LVM_DeleteVGSA Removes a VGSA from an existing
physical volume.

Volume group operations LVM_SetupVG Sets up the volume group by defining
logical volumes and by specifying
information about the VGSA and mirror
write consistency cache (MWCC).

LVM_DefineVG Defines the volume group to the kernel.

LVM_KDeleteVG Deletes a volume group from the kernel.

142 AIX Version 7.2: Security

Table 11. Audit events (continued)

User or system call Audit event Description

Backup and restore operations BACKUP_Export Captures the progress of the backup
operation.

RESTORE_Import Captures the progress of the restore
operation.

shell USER_Shell Captures the user tty information.

reboot USER_Reboot Captures the event of system reboot.

PROC_Reboot Captures the event of process reboot. The
reboot subroutine restarts the system or
repeats the initial program load (IPL)
operation on the system.

Setting up auditing
This procedure shows you how to set up an auditing subsystem. For more specific information, refer to
the configuration files noted in these steps.
1. Select system activities (events) to audit from the list in the /etc/security/audit/events file. If you

have added new audit events to applications or kernel extensions, you must edit the file to add the
new events.
v You add an event to this file if you have included code to log that event in an application program

(using the auditwrite or auditlog subroutine) or in a kernel extension (using the audit_svcstart,
audit_svcbcopy, and audit_svcfinis kernel services).

v Ensure that formatting instructions for any new audit events are included in the
/etc/security/audit/events file. These specifications enable the auditpr command to write an
audit trail when it formats audit records.

2. Group your selected audit events into sets of similar items called audit classes. Define these audit
classes in the classes stanza of the /etc/security/audit/config file.

3. Assign the audit classes to the individual users and assign audit events to the files (objects) that you
want to audit, as follows:
v To assign audit classes to an individual user, add a line to the users stanza of the

/etc/security/audit/config file. To assign audit classes to a user, you can use the chuser
command.

v To assign audit events to an object (data or executable file), add a stanza for that file to the
/etc/security/audit/objects file.

v You can also specify default audit classes for new users by editing the /usr/lib/security/
mkuser.default file. This file holds user attributes that will be used when generating new user IDs.
For example, use the general audit class for all new user IDs, as follows:
user:

auditclasses = general
pgrp = staff
groups = staff
shell = /usr/bin/ksh
home = /home/$USER

To get all audit events, specify the ALL class. When doing so on even a moderately busy system, a
huge amount of data will be generated. It is typically more practical to limit the number of events
that are recorded.

4. In the /etc/security/audit/config file, configure the type of data collection that you want using BIN
collection, STREAM collection, or both methods. Make sure that audit data does not compete with
other data about file space by using a separate file system for audit data. This ensures that there is
enough space for the audit data. Configure the type of data collection as follows:
v To configure BIN collection:

a. Enable the BIN mode collection by setting binmode = on in the start stanza.

Security 143

b. Edit the binmode stanza to configure the bins and trail, and specify the path of the file
containing the BIN mode back-end processing commands. The default file for back-end
commands is the /etc/security/audit/bincmds file.

c. Make sure that the audit bins are large enough for your needs and set the freespace parameter
accordingly to get an alert if the file system is filling up.

d. Include the shell commands that process the audit bins in an audit pipe in the
/etc/security/audit/bincmds file.

v To configure STREAM collection:
a. Enable the STREAM mode collection by setting streammode = on in the start stanza.
b. Edit the streammode stanza to specify the path to the file containing the streammode processing

commands. The default file containing this information is the /etc/security/audit/streamcmds
file.

c. Include the shell commands that process the stream records in an audit pipe in the
/etc/security/audit/streamcmds file.

5. When you have finished making any necessary changes to the configuration files, you are ready to
use the audit start command to enable the audit subsystem. This will generate the AUD_It event with
a value of 1.

6. Use the audit query command to see which events and objects are audited. This will generate the
AUD_It event with a value of 2.

7. Use the audit shutdown command to deactivate the audit subsystem again. This will generate the
AUD_It event with a value of 4.

Generating a generic audit log:

The following are examples of generating a generic audit log.

In this example, assume that a system administrator wants to use the audit subsystem to monitor a large
multi-user server system. No direct integration into an IDS is performed, all audit records will be
inspected manually for irregularities. Only a few essential audit events are recorded, to keep the amount
of generated data to a manageable size.

The audit events that are considered for event detection are the following:

FILE_Write
We want to know about file writes to configuration files, so this event will be used with all files
in the /etc tree.

PROC_SetUserIDs
All changes of user IDs

AUD_Bin_Def
Audit bin configuration

USER_SU
The su command

PASSWORD_Change
passwd command

AUD_Lost_Rec
Notification in case there where lost records

CRON_JobAdd
new cron jobs

AT_JobAdd
new at jobs

144 AIX Version 7.2: Security

USER_Login
All logins

PORT_Locked
All locks on terminals because of too many invalid attempts

The following is an example of how to generate a generic audit log:
1. Set up a list of critical files to be monitored for changes, such as, all files in /etc and configure them

for FILE_Write events in the objects file as follows:
find /etc -type f | awk ’{printf("%s:\n\tw = FILE_Write\n\n",$1)}’ >> /etc/security/audit/objects

2. Use the auditcat command to set up BIN mode auditing. The /etc/security/audit/bincmds file is
similar to the following:
/usr/sbin/auditcat -p -o $trail $bin

3. Edit the /etc/security/audit/config file and add a class for the events we have interest. List all
existing users and specify the custom class for them.
start:

binmode = on
streammode = off

bin:
cmds = /etc/security/audit/bincmds
trail = /audit/trail
bin1 = /audit/bin1
bin2 = /audit/bin2
binsize = 100000
freespace = 100000

classes:
custom = FILE_Write,PROC_SetUser,AUD_Bin_Def,AUD_Lost_Rec,USER_SU, \

PASSWORD_Change,CRON_JobAdd,AT_JobAdd,USER_Login,PORT_Locked

users:
root = custom
afx = custom
...

4. Add the custom audit class to the /usr/lib/security/mkuser.default file, so that new IDs will
automatically have the correct audit call associated:
user:

auditclasses = custom
pgrp = staff
groups = staff
shell = /usr/bin/ksh
home = /home/$USER

5. Create a new file system named /audit by using SMIT or the crfs command. The file system should
be large enough to hold the two bins and a large audit trail.

6. Run the audit start command option and examine the /audit file. You should see the two bin files
and an empty trail file initially. After you have used the system for a while, you should have audit
records in the trail file that can be read with:
auditpr -hhelpPRtTc -v | more

This example uses only a few events. To see all events, you could specify the classname ALL for all users.
This action will generate large amounts of data. You might want to add all events related to user changes
and privilege changes to your custom class.

Security 145

Monitoring file access to critical files in real time:

These steps can be used to monitor file access to critical files in real time.

Perform these steps:
1. Set up a list of critical files to be monitored for changes, for example all files in /etc and configure

them for FILE_Write events in the objects file:
find /etc -type f | awk ’{printf("%s:\n\tw = FILE_Write\n\n",$1)}’ >> /etc/security/audit/objects

2. Set up stream auditing to list all file writes. (This example lists all file writes to the console, but in a
production environment you might want to have a backend that sends the events into an Intrusion
Detection System.) The /etc/security/audit/streamcmds file is similar to the following:
/usr/sbin/auditstream | /usr/sbin/auditselect -e "event == FILE_Write" |
auditpr -hhelpPRtTc -v > /dev/console &

3. Set up STREAM mode auditing in /etc/security/audit/config, add a class for the file write events
and configure all users that should be audited with that class:
start:

binmode = off
streammode = on

stream:
cmds = /etc/security/audit/streamcmds

classes:
filemon = FILE_write

users:
root = filemon
afx = filemon
...

4. Now run audit start. All FILE_Write events are displayed on the console.

Audit events selection:

The purpose of an audit is to detect activities that might compromise the security of your system.

When performed by an unauthorized user, the following activities violate system security and are
candidates for an audit:
v Engaging in activities in the Trusted Computing Base
v Authenticating users
v Accessing the system
v Changing the configuration of the system
v Circumventing the auditing system
v Initializing the system
v Installing programs
v Modifying accounts
v Transferring information into or out of the system

The audit system does not have a default set of events to be audited. You must select events or event
classes according to your needs.

To audit an activity, you must identify the command or process that initiates the audit event and ensure
that the event is listed in the /etc/security/audit/events file for your system. Then you must add the
event either to an appropriate class in the /etc/security/audit/config file, or to an object stanza in the

146 AIX Version 7.2: Security

/etc/security/audit/objects file. See the /etc/security/audit/events file on your system for the list of
audit events and trail formatting instructions. For a description of how audit event formats are written
and used, see the auditpr command.

After you have selected the events to audit, you must combine similar events into audit classes. Audit
classes are then assigned to users.

Audit classes selection

You can facilitate the assignment of audit events to users by combining similar events into audit classes.
These audit classes are defined in the classes stanza of the /etc/security/audit/config file.

Some typical audit classes might be as follows:

general
Events that alter the state of the system and change user authentication. Audit attempts to
circumvent system access controls.

objects
Write access to security configuration files.

kernel Events in the kernel class are generated by the process management functions of the kernel.

An example of a stanza in the /etc/security/audit/config file is as follows:
classes:

general = USER_SU,PASSWORD_Change,FILE_Unlink,FILE_Link,FILE_Rename
system = USER_Change,GROUP_Change,USER_Create,GROUP_Create
init = USER_Login,USER_Logout

Audit data-collection method selection

Your selection of a data-collection method depends on how you intend to use the audit data. If you need
long-term storage of a large amount of data, select BIN collection. If you want to process the data as it is
collected, select STREAM collection. If you need both long-term storage and immediate processing, select
both methods. A description of each of these methods follows:

Bin collection
Allows storage of a large audit trail for a long time. Audit records are written to a file that serves
as a temporary bin. After the file is filled, the data is processed by the auditbin daemon while
the audit subsystem writes to the other bin file, and records are written to an audit trail file for
storage.

Stream collection
Allows processing of audit data as it is collected. Audit records are written into a circular buffer
within the kernel, and are retrieved by reading /dev/audit. The audit records can be displayed,
printed to provide a paper audit trail, or converted into bin records by the auditcat command.

Workload partition auditing
Three types of auditing are available in a WPAR environment: global, system, and auditing from global.

You can enable auditing in a global WPAR, inside a WPAR, or both. The audit configuration for system
WPAR and global WPAR is similar to the configuration in a non-wpar environment. You can initiate
global WPAR auditing for system and application WPARs.

Note: Auditing for application WPARs cannot be initiated from inside a WPAR, but it can be initiated by
using global WPAR auditing.

Security 147

Global WPAR auditing helps global system administrators audit WPARs from a global system. A global
system administrator can control the level of auditing for each WPAR from a single location by specifying
the classes to be audited for each WPAR in the global /etc/security/audit/config file.

By adding a WPARS stanza to the /etc/security/audit/config file, the global-system administrator can
provide the list of classes to be audited for a WPAR. For example:
WPARS:
<wpar_name> = <auditclass>, ... <auditclass>

In the preceding example, <wpar_name> must be the WPAR name of a system, and each auditclass
parameter should be defined in the classes stanza.

To configure auditing of the testwpar WPAR with the general, tcpip, and lvm classes, add the following
stanza to the /etc/security/audit/config file:
WPARS:
testwpar = general,tcpip,lvm

A global-system administrator can start and stop auditing on a WPAR by using the audit command and
specifying the WPAR name as follows:
audit start -@ <wparname1> -@ <wparname2> ...
audit shutdown -@ <wparname1> -@ <wparname2> ...

You can audit WPAR objects from the global environment by specifying the absolute paths to the objects
that you want to audit. For example, to define the audit events for the /wpars/wpar1/etc/security/
passwd file, add the following stanza to the /etc/security/audit/objects file in the AIX system that is
hosting the WPAR:
/wpars/wpar1/etc/security/passwd:

r = "WPAR1_PASSWD_RD"
w = "WPAR1_PASSWD_WR"

This preceding stanza is parsed at audit start (-@ <wpar1>) time to enable object auditing for the
/etc/security/passwd object of wpar1. These attributes generate a WPAR1_PASSWD_RD audit event
each time the /wpars/wpar1/etc/security/passwd file is read. These attributes also generate a
WPAR1_PASSWD_WR audit event each time the file is opened for writing.

Note: You must enable auditing for the global environment before you enable WPAR auditing from the
global environment.

The auditpr command can be used to generate an audit report that displays the WPAR name. For
example:
auditpr -v < /audit/trail

Auditing in the NFS environment
The AIX audit subsystem supports the auditing of the mounted file systems. The configuration of the
mounted file system on the client is similar to the local file system. The auditing operations on auditable
mounted objects are similar to the local objects as described in Auditing overview. The auditing behavior
on the client and the server for the mounted file systems are described in the information later in this
topic.

Auditing on the NFS client

All operations run on the auditable objects that are on the mounted file systems by the client are logged
on the client. This is valid provided there are no operations on the objects by the NFS server, or any other
NFS clients or the fullpath auditing must be enabled on the client.

148 AIX Version 7.2: Security

Refer to audit command man page for more information. If the fullpath auditing is not enabled and the
file is modified by server or by other clients, the consecutive auditing will be unpredictable. This
behavior can be rectified by restarting audit on client. If a file system is mounted on multiple clients, it is
recommended that you audit the operations on the server to get the exact log of the events or enable the
fullpath auditing on the client.

Note: The audit subsystem configuration does not support using the audit log file system as a mounted
NFS file system.

Auditing on the NFS server

All of the operations carried on the mounted file system by both the client and the server are logged on
the NFS server.

Limitations on the server side
v If any operations carried by the NFS client are not sent to the server, either due to the NFS caching or

due to the inherent NFS architecture, that operation will not be audited by the server.
For example: After mounting the file system, only the first read operation performed on a file is
audited by the server. Consecutive read operations are not logged on the server . This applies to the
read operations on files, links, and directories.

v The operations carried out by the client are logged on the server as nfsd, and have root user as the
user name.

Example

A file system named File_System is mounted on the client with the command mount server:/File_system
/mnt. If the file named A in the File_System file system needs to be audited on the server, then the
/File_system/A must be configured in audit configuration files.

If you decide to audit the A file in the File_System file system on the client, then /mnt/A must be
configured to be audited on the client.

If the A file is configured to be audited on both the server and the client, then the operations carried by
both the server and the client on the A file are audited and logged on the server and the operations
carried by the client are logged on the client.

Any operation carried by the client on A file is logged on the server as the nfsd daemon instead of the
operation or command name.

Lightweight Directory Access Protocol
The Lightweight Directory Access Protocol (LDAP) defines a standard method for accessing and updating
information in a directory (a database) either locally or remotely in a client-server model.

The protocol is optimized for reading, browsing, and searching directories, and was originally developed
as a lightweight front-end to the X.500 Directory Access Protocol. The LDAP method is used by a cluster
of hosts to allow centralized security authentication as well as access to user and group information. This
functionality is intended to be used in a clustering environment to keep authentication, user, and group
information common across the cluster.

Objects in LDAP are stored in a hierarchical structure known as a Directory Information Tree (DIT). A
good directory starts with the structural design of the DIT. The DIT should be designed carefully before
implementing LDAP as a means of authentication.

Security 149

LDAP authentication load module
The LDAP exploitation of the security subsystem is implemented as the LDAP authentication load
module. It is conceptually similar to the other load modules such as NIS, DCE, and KRB5. Load modules
are defined in the /usr/lib/security/methods.cfg file.

The LDAP loadmodule provides user authentication and centralized user and group management
functionality through the LDAP protocol. A user defined on a LDAP server can be configured to log in to
an LDAP client even if that user is not defined locally.

The AIX LDAP load module is fully integrated within the AIX operating system. After the LDAP
authentication load module is enabled to serve user and group information, high-level APIs, commands,
and system-management tools work in their usual manner. An -R flag is introduced for most high-level
commands to work through different load modules. For example, to create an LDAP user named joe from
a client machine, use the following command:
mkuser -R LDAP joe

Note: Even though the LDAP infrastructure can support an unlimited number of users in a group, up to
25 000 users have been created in a single group and various operations tested against that group. Some
of the historical POSIX interfaces might not return the complete information for the group. Refer to the
individual API's documentation for such limitations.

LDAP based authentication:

There are limits on the various entities as part of LDAP based authentication on AIX.

Note that LDAP infrastructure itself does not specify any limits on the database contents. However, this
section documents the results based on test configurations as to limits. The following limits have been
tested with respect to the LDAP based authentication on the AIX operating system:

Total number of users: Up to 500 000 users have been created on a single system and simultaneous
authentication has been tested for hundreds of users.

Total number of groups: Up to 500 groups have been created on a single system and tested.

Maximum number of users per group: Up to 25 000 users have been created in a single group and
various operations tested against that group.

Some of the historical POSIX interfaces might not return the complete information for the group. Refer to
the individual API's documentation for such limitations. Also, the above values are based on the testing
done. They do not preclude the possibility that one can configure systems with much larger users and
groups provided necessary resources exist.

Setting up an IBM Tivoli Directory Server security information server:

To set up a system as an LDAP security information server that serves authentication, user, and group
information through LDAP, you must first install the LDAP server and client packages.

If the Secure Sockets Layer (SSL) is required, you must also install the GSKitV7 package for IBM Tivoli
Directory Server version 6.2, or earlier, or the GSKitV8 for IBM Tivoli Directory Server version 6.3, or
later. The system administrator must create a key by using the GSKit key management command. This
command is gsk7ikm in GSKitV7 or the ikeyman command with GSKitV8. For more information about
configuring the server to use SSL, see Secure Communication with SSL.

Run the mksecldap command to configure the server. The mksecldap command establishes the LDAP
server and its back-end database named ldapdb2, populates the LDAP server with the user and group
information from the local host, and sets the LDAP server administrator DN (distinguished name) and

150 AIX Version 7.2: Security

password. Optionally, it can set up SSL for client/server communication. The mksecldap command also
adds an entry into the /etc/inittab file to start the LDAP server at every reboot.

AIX users and groups are stored in the LDAP server by using one of the following schemas:

AIX schema
Includes aixAccount and aixAccessGroup object class. This schema offers a full set of attributes for
AIX users and groups.

RFC 2307 schema
Includes posixAccount, shadowAccount, and posixGroup object class and is used by the directory
products of several vendors. The RFC 2307 schema defines only a small subset of attributes that
AIX uses.

RFC2307AIX schema
Includes posixAccount, shadowAccount, and posixGroup object classes plus the aixAuxAccount and
aixAuxGroup object classes. The aixAuxAccount and aixAuxGroup object classes provide the
attributes which are used by AIX but not defined by the RFC 2307 schema.

Using the RFC2307AIX schema type for users and groups is highly recommended. The RFC2037AIX
schema type is fully compliant to RFC 2307 with extra attributes to support more AIX user management
functionality. An IBM Tivoli Directory Server server with RFC2307AIX schema configuration not only
supports AIX LDAP clients, but also other RFC 2307 compliant UNIX and Linux LDAP clients.

All of the user and group information is stored under a common AIX tree (suffix). The default suffix is
"cn=aixdata". The mksecldap command accepts a user-supplied suffix through the -d flag. The name for
the subtrees to be created for the user, group, ID, and so on, is controlled by the sectoldif.cfg
configuration file. Refer to the sectoldif.cfg file for more information.

The AIX tree is ACL (Access Control List) protected. The default ACL grants administrative privilege only
to the entity specified as the administrator with the -a command option. Additional privilege can be
granted to a proxy identity if the -x and -X command options are used. Use of these options creates the
proxy identity and configure access privilege as defined in the /etc/security/ldap/proxy.ldif.template
file. Creating a proxy identity allows LDAP clients to bind to the server without the use of the
administrator identity, which restricts client administrator privileges on the LDAP server.

You can run the mksecldap command on an LDAP server that is set up for other purposes; for example,
for user ID lookup information. In this example, mksecldap adds the AIX tree and populates it with the
AIX security information to the existing LDAP server. This tree is ACL-protected independently from
other existing trees.

Note: You should back up the existing LDAP server before you run the mksecldap command and
expand the server to an AIX security information server.

After the LDAP security information server is successfully set up, you can set up the same host as a
client to manage the LDAP users and groups and allow LDAP users to log on to this server.

If the LDAP security information server setup is not successful, you can undo the setup by running the
mksecldap command with the -U flag. This restores the ibmslapd.conf (or slapd.conf or slapd32.conf)
file to its pre-setup state. Run the mksecldap command with the -U flag after any unsuccessful setup
attempt before trying to run the mksecldap command again. Otherwise, residual setup information might
remain in the configuration file and cause a subsequent setup to fail. As a safety precaution, the undo
option does not do anything to the database or to its data, because the database could have existed before
the mksecldap command was run. Remove any database manually if it was created by the mksecldap
command. If the mksecldap command has added data to a pre-existing database, decide what steps to
take to recover from a failed setup attempt.
Related concepts:

Security 151

Secure communication with SSL
Depending on the authentication type being used between the LDAP client and server, passwords are
sent in either crypted format (unix_auth) or in clear text (ldap_auth). Use Secure Socket Layer (SSL) to
protect against security exposure when you send even encrypted passwords over the network, or, in
some cases, the Internet. AIX provides packages for SSL that can provide secure communication between
directory servers and clients.
Related information:
mksecldap command

Setting up an LDAP client:

To set up a client to use LDAP for authentication and user/group information, make sure that each client
has the LDAP client package installed. If the Secure Sockets Layer (SSL) is required, the GSKit must be
installed, a key must be created, and the LDAP server SSL key certificate must be added to this key.

Similar to LDAP server setup, client setup can be done using the mksecldap command. To have this
client contact the LDAP security information server, the server name must be supplied during setup. The
bind DN and password of the server are also needed for client access to the AIX tree on the server. The
mksecldap command saves the server bind DN, password, server name, AIX tree DN on the server, the
SSL key path and password, and other configuration attributes to the /etc/security/ldap/ldap.cfg file.

The mksecldap command saves the bind password and SSL key password (if you are configuring SSL) to
the /etc/security/ldap/ldap.cfg file in encrypted format. The encrypted passwords are system specific,
and can only be used by the secldapclntd daemon on the system where they are generated. The
secldapcIntd daemon can make use of clear text or encrypted password from the /etc/security/ldap/
ldap.cfg file.

Multiple servers can be supplied to the mksecldap command during client setup. In this case, the client
contacts the servers in the supplied order and establishes connection to the first server that the client can
successfully bind to. If a connection error occurs between the client and the server, a reconnection request
is tried using the same logic. The Security LDAP exploitation model does not support referral. It is
important that the replicate servers are kept synchronized.

The client communicates to the LDAP security information server through a client side daemon
(secldapcIntd). If the LDAP load module is enabled on the client, high-level commands are routed to the
daemon through the library APIs for users defined in LDAP. The daemon maintains a cache of requested
LDAP entries. If a request is not satisfied from the cache, the daemon queries the server, updates the
cache, and returns the information back to the caller.

Other fine-tuning options can be supplied to the mksecldap command during client setup, such as
settings for the number of threads used by the daemon, the cache entry size, and the cache expiration
timeout. These options are for experienced users only. For most environments, the default values are
sufficient.

In the final steps of the client setup, the mksecldap command starts the client-side daemon and adds an
entry in the /etc/inittab file so the daemon starts at every reboot. You can check whether the setup is
successful by checking the secldapcIntd daemon process through the ls-secldapclntd command. Provided
that the LDAP security information server is setup and running, this daemon will be running if the setup
was successful.

The server must be set up before the client. Client setup depends on the migrated data being on the
server. Follow these steps to set up the client:
1. Install the IBM Tivoli Directory Server client fileset on the AIX operating system.
v On IBM Tivoli Directory Server 5.2, install the ldap.client fileset.
v On IBM Tivoli Directory Server 7.1, install the idsldap fileset.

152 AIX Version 7.2: Security

2. To configure the LDAP client, run the following command:
mksecldap -c -h server1.ibm.com -a cn=admindn -p adminpwd -d cn=basedn

Replace the values above as appropriate for your environment.
Related information:
mksecldap command
secldapclntd command

Client enablement for LDAP netgroups:

You can use netgroups as part of NIS-LDAP (the name-resolution method).

Perform the following steps for client enablement for LDAP netgroups:
1. Install and set up LDAP based user group management as detailed in “Setting up an LDAP client” on

page 152.
If the netgroup setup is not completed, any LDAP-defined user will be listed by the system. For
example, if nguser is a netgroup user belonging to netgroup mygroup already defined in the LDAP
server, lsuser -R LDAP nguser will list the user.

2. To enable the netgroup function, the module definition for LDAP in the /usr/lib/security/
methods.cfg file needs to include an options attribute with a netgroup value. Edit the
/usr/lib/security/methods.cfg file and add the line options = netgroup to the LDAP stanza. This
marks the LDAP load module as a netgroup-capable load module. For example:
LDAP:

program = /usr/lib/security/LDAP
program_64 =/usr/lib/security/LDAP64
options = netgroup

Now the commands lsuser -R LDAP nguser, or lsuser nguser or lsuser -R LDAP -a ALL do not list
any users. LDAP is now considered a netgroup-only database from this client and no netgroups have
been enabled for access to this client yet.

3. Edit the /etc/passwd file, and append a line for the netgroup that should have access to the system.
For example if mygroup is a netgroup on the LDAP server that contains the desired user, append the
following:
+@mygroup

4. Edit the /etc/group file and append a +: line to enable NIS lookups for groups:
+:

Running the command lsuser nguser now returns the user because nguser is in the netgroup
mygroup.
The lsuser -R LDAP nguser command does not find the user, but the command lsuser -R compat
nguser does because the user is considered a compat user now.

5. In order for netgroup users to authenticate to the system, the AIX authentication mechanism must
know the method to use. If the default stanza in the /etc/security/user file includes SYSTEM =
compat, then all netgroup users in the netgroup added to the /etc/passwd file can authenticate.
Another option would be to individually configure users by manually adding stanzas to the
/etc/security/user file for the desired users. An example stanza for nguser is:
nguser:

SYSTEM = compat
registry = compat

Netgroup users in the allowed netgroups can now authenticate to the system.
Enabling the netgroup feature also activates the following conditions:

Security 153

v Users defined in the /etc/security/user file as members of the LDAP registry (having
registry=LDAP and SYSTEM="LDAP") cannot authenticate as LDAP users. These users are now
nis_ldap users and require native NIS netgroup membership.

v The meaning of registry compat is expanded to include modules that use netgroup. For example, if
LDAP module is netgroup enabled, compat includes the files, NIS, and LDAP registries. Users
retrieved from those modules have a registry value of compat.

Related information

v The exports File for NFS document
v The .rhosts File Format for TCP/IP document
v The hosts.equiv File Format for TCP/IP document

Supported LDAP servers:

AIX LDAP-based user and group management supports IBM Tivoli Directory Servers, non IBM servers
with RFC 2307 compliant schema, and Microsoft active directory servers.

IBM Tivoli Directory Server

It is highly recommended that AIX user/group management be configured using IBM Tivoli Directory
Servers. For more information about setting up an IBM Tivoli Directory Server for user and group
management, see Setting up an IBM Tivoli Directory Server security information server.

Non IBM Directory Servers

AIX supports a variety of directory servers whose users and groups are defined using the RFC 2307
schema. When configured as an LDAP client to such servers, AIX uses the severs the same way as an
IBM Tivoli Directory Server with RFC 2037 schema. These servers must support LDAP Version 3 protocol.

Because the RFC 2307 schema only defines a subset of user and group attributes that AIX can use, some
AIX user and group management functionality could not be done if AIX is configured to use such an
LDAP server (for example, user password reset enforcement, password history, per user resource limit,
login control to certain systems through the AIX hostsallowedlogin and hostsdeniedlogin attributes,
capability, and so on).

AIX does not support non-RFC 2307 compliant directory servers. However, AIX may be made to work
with such servers that are not RFC 2307 compliant, but whose users and groups are defined with all the
required UNIX attributes. The minimal set of user and group attributes required by AIX is the set defined
in RFC 2307. Support for such directory servers requires manual configuration. AIX provides a schema
mapping mechanism for this purpose. For more information on schema file format and schema file usage,
see LDAP Attribute Mapping File Format.

Microsoft Active Directory

AIX supports Microsoft Active Directory (AD) as an LDAP server for user and group management. The
AD server must have the UNIX supporting schema installed. The UNIX support schema of AD comes
from the Microsoft Service For UNIX (SFU) package. Each SFU version has slightly different user and
group schema definitions from its predecessors. AIX supports AD running on Windows 2000 and 2003
with SFU schema Version 3.0 and 3.5, and AD running on Windows 2003 R2 with its built in UNIX
schema.

Due to the difference in user and group management between UNIX systems and Windows systems, not
all AIX commands may work on LDAP users if the server is AD. Commands that do not work include
mkuser and mkgroup. Most user and group management commands do work, depending on the access

154 AIX Version 7.2: Security

rights given to the identity with which AIX binds to AD. These commands include lsuser, chuser,
rmuser, lsgroup, chgroup, rmgroup, id, groups, passwd, and chpasswd.

AIX supports two user authentication mechanisms against Windows servers: LDAP authentication and
Kerberos authentication. With either mechanism, AIX supports user identification through LDAP protocol
against AD, with no requirement for a corresponding user account on AIX.

Configuring the AIX operating system to work with Active Directory through LDAP:

AIX supports Microsoft Active Directory (AD) as an LDAP server for user and group management. It is
required that the AD server has the UNIX supporting schema installed.

An administrator can use the mksecldap command to configure AIX on the AD server in the same
manner as an IBM Tivoli Directory Server. The mksecldap command hides all the details of configuration
to simplify the process. Before running the mksecldap command to configure AIX on the AD server:
1. The AD server must have the UNIX support schema installed.
2. The AD server must contain users which are UNIX enabled.

For more information about installing UNIX schema to AD and enabling AD users with UNIX support,
see the related Microsoft documentation.

The AD schema often has multiple attribute definitions for the same UNIX attribute (for example, there
are multiple user password and group member definitions). Although AIX supports most of them,
consideration and planning should be done carefully when selecting the definitions to use. It is
recommended that AIX systems and other non-AIX systems sharing the same AD use the same definition
to avoid conflicts.

Active Directory password attribute selection:

AIX supports two authentication mechanisms, unix_auth and ldap_auth.

With unix_auth, the password in Microsoft Active Directory (AD) is required to be in encrypted format.
During authentication, the encrypted password is retrieved from AD and compared to the encrypted
format of the user-entered password. Authentication is successful if they match. In ldap_auth mode, AIX
authenticates a user by an LDAP bind operation to the server with the user's identity and the supplied
password. The user is authenticated if the bind operation is successful. AD supports multiple user
password attributes. A different AIX authentication mode requires a different AD user password attribute.

unix_auth mode

The following AD password attributes can be used for unix_auth mode:
v userPassword

v unixUserPassword

v msSFU30Password

Password management on AIX can be difficult due to AD's multiple password attributes. Knowing which
password management attributes should be used by the UNIX clients can be confusing. AIX LDAP
attribute mapping capability enables you to customize the password management according to your
needs.

By default, AIX uses the msSFU30Password attribute for AD running on Windows 2000 and 2003, and
the userPassword attribute on Windows 2003 R2. If a different password is used, you need to modify the
/etc/security/ldap/sfu30user.map file (or the /etc/security/ldap/sfur2user.map file if AD is running
on Windows 2003 R2). Find the line that starts with the word spassword and change the third field of the
line to the desired AD password attribute name. For more information, see LDAP Attribute Mapping File

Security 155

Format. Run the mksecldap command to configure the AIX LDAP client after the change. If the AIX
LDAP client is already configured, run the restart-secldapclntd command to restart the secldapclntd
daemon to absorb the change.

In unix_auth mode, the password might be out of sync between Windows and UNIX, resulting in a
different password for each system. This occurs when you change a password from AIX to Windows,
because Windows uses the uncodepwd password attribute. The AIX passwd command can reset the
UNIX password to be the same as a Windows password, but AIX does not support automatically
changing the Window's password when you change your UNIX password from AIX.

ldap_auth mode

Active Directory also has the unicodepwd password attribute. This password attribute is used by
Windows systems to authenticate Windows users. In a bind operation to AD, the unicodePwd password
must be used. None of the passwords mentioned under unix_auth mode works for a bind operation. If
the ldap_auth option is specified from the command line, the mksecldap command maps the password
attribute to AD's unicodePwd attribute at client configuration with no manual step required.

By mapping AIX passwords with the unicodePwd attribute, users defined in AD can login to Windows
and AIX systems using the same password. A password reset from either a AIX or Windows system is in
effect for both AIX and Windows systems.

Active Directory group member attribute selection:

Microsoft's Service for UNIX defines the memberUid, msSFU30MemberUid, and msSFU30PosixMember
group member attributes.

The memberUid and msSFU30MemeberUid attributes accept user account names, while the
msSFU30PosixMember accepts only full DN. For example, for a user account foo (with last name bar)
defined in AD:
v memberUid: foo

v msSFU30MemberUid: foo

v msSFU30PosixMember: CN=foo bar,CN=Users,DC=austin,DC=ibm,DC=com

The AIX operating system supports all of these attributes. Consult with your AD administrator to
determine which attribute to use. By default, the mksecldap command configures the AIX operating
system to use the msSFU30PosixMember attribute against AD running on Windows 2000 and 2003, and
the uidMember attribute against AD running on Windows 2003 R2. Such selection is due to the AD
behavior as AD selects that attribute when adding a user to a group from Windows. Your business
strategy might require the use of a non-default group member attribute for supporting multiple
platforms.

If a different group member attribute is needed, you can change the mapping by editing the group
mapping file. The group mapping file for AD is /etc/security/ldap/sfu30group.map running on
Windows 2000 and 2003, and /etc/security/ldap/sfur2group.map for Windows 2003 R2. Find the line
that starts with the word users, and replace the third field with the desired attribute name for group
members. For more information, see LDAP Attribute Mapping File Format. Run the mksecldap command
to configure the AIX LDAP client after the change, or if the AIX client is already configured, run the
restart-secldapclntd command to restart the secldapclntd daemon to absorb the change.

Multiple organizational units:

Your AD server might have multiple organizational units defined, with each containing a set of users.

156 AIX Version 7.2: Security

Most Windows AD users are defined in the cn=users,... subtree, but some may be defined elsewhere. The
AIX multiple base DN feature can be used for such an AD server. For more information, see Multiple
base DN support.

Kerberos authentication for Windows servers:

In addition to the LDAP authentication mechanisms, the AIX operating system also supports user
authentication through the Kerberos protocol for Windows servers.

The AIX operating system supports Kerberos authentication for Windows KDC and LDAP identification
for Windows Active Directory by creating a KRB5ALDAP compound loadmodule. Because user
identification information is pulled from Microsoft Active Directory, you do not need to create the
corresponding user accounts on the AIX operating system.

LDAP user management:

You can manage users and groups on an LDAP security information server from any LDAP client by
using high-level commands.

An -R flag added to most of the high-level commands can manage users and groups using LDAP as well
as other authentication load modules such as DCE, NIS, and KRB5. For more information concerning the
use of the -R flag, refer to each of the user or group management commands.

To enable a user to authenticate through LDAP, run the chuser command to change the user's SYSTEM
attribute value to LDAP. By setting the SYSTEM attribute value according to the defined syntax, a user
can be authenticated through more than one load module (for example, compat and LDAP). For more
information on setting users' authentication methods, see “User authentication” on page 69 and the
SYSTEM attribute syntax defined in the /etc/security/user file.

A user can become an LDAP user at client setup time by running the mksecldap command with the -u
flag in either of the following forms:
1. Run the command:

mksecldap -c -u user1,user2,...

where user1,user2,... is a list of users. The users in this list can be either locally defined or remote
LDAP-defined users. The SYSTEM attribute is set to LDAP in each of the above users' stanzas in the
/etc/security/user file. Such users are only authenticated through LDAP. The users in this list must
exist on the LDAP security information server; otherwise, they can not log in from this host. Run the
chuser command to modify the SYSTEM attribute and allow authentication through multiple
methods (for example, both local and LDAP).

2. Run
mksecldap -c -u ALL

This command sets the SYSTEM attribute to LDAP in each user's stanza in the /etc/security/user
file for all locally defined users. All such users only authenticate through LDAP. The locally defined
users must exist on the LDAP security information server; otherwise they can not log in from this
host. A user that is defined on the LDAP server but not defined locally cannot log in from this host.
To allow a remote LDAP-defined user to log in from this host, run the chuser command to set the
SYSTEM attribute to LDAP for that user.

Alternatively, you can enable all LDAP users, whether they are defined locally or not, to authenticate
through LDAP on a local host by modifying the "default" stanza of the /etc/security/user file to use
"LDAP" as its value. All users that do not have a value defined for their SYSTEM attribute must follow
what is defined in the default stanza. For example, if the default stanza has "SYSTEM = "compat"" ,
changing it to "SYSTEM = "compat OR LDAP"" allows authentication of these users either through AIX or

Security 157

multiple_base_dn_support.htm
multiple_base_dn_support.htm

LDAP. Changing the default stanza to "SYSTEM = "LDAP"" enables these users to authenticate exclusively
through LDAP. Those users who have a SYSTEM attribute value defined are not affected by the default
stanza.

Multiple base DN support:

AIX supports multiple base DNs. Up to 10 base DNs for each entity can be specified in the
/etc/security/ldap/ldap.cfg file.

The base DNs are prioritized in the order they appear in the /etc/security/ldap/ldap.cfg file. An
operation by AIX commands in case of multiple base DNs is done according to the base DN priority with
the following behavior:
v A query operation (for example, by the lsuser command), is done to the base DNs according to their

priority until a matching account is found, or failure is returned if all of the base DNs are searched
without finding a match. Querying for ALL results in all of the accounts from every base DN being
returned.

v A modification operation (for example, by the chuser command), is done to the first matching account.
v A delete operation (for example, by the rmuser command), is done to the first matching account.
v A creation operation (for example, the mkuser command), is done only to the first base DN. AIX does

not support creating accounts to other base DNs.

It is the directory server administrator's responsibility to maintain a collision-free account database. If
there are multiple definitions of the same account, each under a different subtree, only the first account is
visible to AIX. An search operation returns only the first matching account. Similarly, a modification or a
delete operation is done only to the first matching account.

The mksecldap command, when used to configure a LDAP client, will find the base DN for each entity
and save it to the /etc/security/ldap/ldap.cfg file. When multiple base DNs are available on the LDAP
server for a entity, the mksecldap command randomly uses any one of them. To have AIX work with
multiple base DNs, you need to edit the /etc/security/ldap/ldap.cfg file after the mksecldap command
has completed successfully. Find the appropriate base DN definition and add additional base DNs
needed. AIX supports up to 10 base DNs for each entity, any additional base DNs are ignored.

AIX also supports user defined filter and search scope for each base DN. A base DN can have its own
filter and scope that might be different from its peer base DNs. Filters can be used to define the set of
accounts that are visible to AIX.

Only those accounts that satisfy the filter are visible to AIX.

Setting up SSL on the LDAP server:

To set up Secure Sockets Layer (SSL) on the LDAP server, install the LDAP crypto filesets and GSKit
filesets to enable server encryption support. These file sets can be found on the AIX expansion pack.

Follow these steps to enable SSL support for IBM Directory server authentication.
1. Install the IBM Tivoli Directory Server GSKit for IBM Tivoli Directory Server Version 6.2, or GSKitv8

for IBM Tivoli Directory Server Version 6.3, if it is not installed.
2. Generate the IBM Directory server private key and server certificate using the correct GSKit key

management utility. Use the gsk7ikm utility with IBM Tivoli Directory Server version 6.2, and use the
ikeyman tool for IBM Tivoli Directory Server version 6.3, or later. The certificate of the server might
be signed by a commercial Certification Authority (CA), such as VeriSign, or it might be self-signed
with the GSKit key management tool. The public certificate (or the self-signed certificate) of the CA
must also be distributed to the key database file of the client application.

158 AIX Version 7.2: Security

3. Store the key database file of the server and its associated password stash file on the server. The
default path for the key database, /usr/ldap/etc directory, is a typical location.

4. Run the following command to set up the server, where mykey.kdb is the key database and keypwd is
the password to the key database:
mksecldap -s -a cn=admin -p pwd -S rfc2307aix -k /usr/ldap/etc/mykey.kdb -w keypwd

Setting up SSL on the LDAP client:

To use SSL on an LDAP client, install the ldap.max_crypto_client and GSKit filesets off of the AIX
expansion pack.

Follow these steps to enable SSL support for LDAP after the server has been enabled for SSL.
1. Run gsk7ikm to generate the key database on each client.
2. Copy the server certificate to each of the clients. If the server SSL uses a self-signed certificate, the

certificate must be exported first.
3. On each client system, run gsk7ikm to import the server certificate to the key database.
4. Enable SSL for each client:

mksecldap -c -h servername -a adminDN -p pwd -k /usr/ldap/etc/mykey.kdb -p keypwd

Where /usr/ldap/etc/mykey.kdb is the full path to the key database and keypwd is the password to
the key. If the key password is not entered from the command line, a stashed password file from the
same directory is used. The stashed file needs to have the same name as the key database with an
extension of .sth (for example, mykey.sth).

LDAP host access control:

AIX provides user-level host access (login) control for a system. Administrators can configure LDAP users
to log in to an AIX system by setting their SYSTEM attribute to LDAP.

The SYSTEM attribute is in the /etc/security/user file. The chuser command can be used to set its
value, similar to the following:
chuser -R LDAP SYSTEM=LDAP registry=LDAP foo

Note: With this type of control, do not set the default SYSTEM attribute to LDAP, which allows all
LDAP users to login to the system.

This sets the LDAP attribute to allow user foo to log in to this system. It also sets the registry to LDAP,
which allows the login process to log foo's login attempts to LDAP, and also allows any user management
tasks done on LDAP.

The administrator needs to run such setup on each of the client systems to enable login by certain users.

AIX has a feature to limit a LDAP user only to log in to certain LDAP client systems. This feature allows
centralized host access control management. Administrators can specify two host access control lists for a
user account: an allow list and a deny list. These two user attributes are stored in the LDAP server with
the user account. A user is allowed access to systems or networks that are specified in the allow list,
while he is denied access to systems or networks in the deny list. If a system is specified in both the
allow list and the deny list, the user is denied access to the system. There are two ways to specify the
access lists for a user: with the mkuser command when the user is created or with the chuser command
for a existing user. For backward compatibility, if both the allow list and deny list do not exist for a user,
the user is allowed to login to any LDAP client systems by default.

Examples of setting allow and deny permission lists for users are the following:
mkuser -R LDAP hostsallowedlogin=host1,host2 foo

Security 159

This creates a user foo, and user foo is only allowed to log in to host1 and host2.
mkuser -R LDAP hostsdeniedlogin=host2 foo

This create user foo, and user foo can log in to any LDAP client systems except host2.
chuser -R LDAP hostsallowedlogin=192.9.200.1 foo

This sets user foo with permission to log in to the client system at address 192.9.200.1.
chuser -R LDAP hostsallowedlogin=192.9.200/24 hostsdeniedlogin=192.9.200.1 foo

This sets user foo with permission to log in to any client system within the 192.9.200/24 subnet , except
the client system at address 192.9.200.1.

For more information, see the chuser command.

Secure communication with SSL:

Depending on the authentication type being used between the LDAP client and server, passwords are
sent in either crypted format (unix_auth) or in clear text (ldap_auth). Use Secure Socket Layer (SSL) to
protect against security exposure when you send even encrypted passwords over the network, or, in
some cases, the Internet. AIX provides packages for SSL that can provide secure communication between
directory servers and clients.

For more information, see:
v “Setting up SSL on the LDAP server” on page 158
v “Setting up SSL on the LDAP client” on page 159

Using LDAPA authentication-only mode:

The LDAP module is a full-function module that supports both user authentication and user
identification. The LDAPA module provides authentication-only mode. The LDAPA module is like the
LDAP module, but you can specify to use the authentication-only mode.

In authentication-only mode, the LDAPA module must be combined with another database module to
form a compound module rather than a stand-alone module. The LDAPA module performs user
authentication while the second module performs identification. This combined module is called a
compound module. You must define users in both the LDAP server and the database server for this
compound module.

With the LDAPA module, the group information comes from the database server. For example, in the case
of the LDAPA files, the group information comes from the local /etc/group file. If some of your LDAP
users belong only to LDAP groups, you must create corresponding LDAP groups on the database server
before you configure the LDAPA files module. By creating this corresponding group, you can avoid the
case where an LDAPA files user cannot resolve its group setting because the group setting does not exist
on the database server.

Note: The LDAPA module does not support creating and removing users. To create an LDAPA files user,
the system administrator must create an LDAP user using the LDAP module and then create the same
user locally. Then make the user an LDAPA files user by setting the user's SYSTEM and registry to
LDAPAfiles using the chuser command.

To configure LDAP in authentication-only mode using the LDAPA module, use the mksecldap command
with the -i <databaseModule> option. This command creates an LDAPA module with options =
authonly set and an LDAPA <databaseModule> compound load module.

160 AIX Version 7.2: Security

For example, to configure LDAP in authentication-only mode and to use local files for the database
module, use the following example:
mksecldap -c –h <ldap server> -a <binddn> -p <bind password> -i files

The /usr/lib/security/methods.cfg file is updated with the following:
LDAPA:

program = /usr/lib/security/LDAP
program_64 =/usr/lib/security/LDAP64
options = authonly

LDAP:
program = /usr/lib/security/LDAP
program_64 =/usr/lib/security/LDAP64

LDAPAfiles:
options = db=BUILTIN,auth=LDAPA

In the LDAPA stanza, the options = authonly setting indicates to set the LDAPA module to
authentication-only mode. The LDAPAfiles stanza defines the compound load module.

The LDAP module is retained for resolving non-user/group data, like RBAC. The LDAP module can still
be used as a stand-alone authentication module independent of the LDAPA module.
Related information:
mksecldap command

LDAPA supported attributes:

The LDAPA module in authentication-only mode supports a limited number of AIX password policy
attributes. The rest of the AIX attributes are satisfied by the database module.

The authentication-only LDAPA module supports the following attributes:
v maxage
v minage
v minlen
v lastupdate
v flags
v maxrepeats
v minalpha
v mindiff
v minother
v pwdwarntime
v pwdchecks
v histsize
v histexpire
v time_last_login
v time_last_unsuccessful_login
v tty_last_login
v tty_last_unsuccessful_login
v host_last_login
v host_last_unsuccessful_login
v unsuccessful_login_count
v account_locked

Security 161

v loginretries
v logintimes

Not all LDAP servers support these attributes. When an LDAP server does not support all the listed
attributes, the supported attributes are only the attributes that are common in both this list and in the
user-attribute mapping file. The mapping file is in the /etc/security/ldap directory.

For an RFC2307 compliant server without AIX schema support, the following AIX attributes are
supported:
v maxage
v minage
v lastupdate
v pwdwarntime
v lastupdate

Kerberos bind:

In addition to a simple bind using a bind DN and a bind password, the secldapclntd daemon also
supports a bind using Kerberos V credentials.

The keys of the bind principal are stored in a keytab file and need to be made available to the
secldapclntd daemon in order to use Kerberos bind. With Kerberos bind enabled, the secldapclntd
daemon does Kerberos authentication to the LDAP server using the principal name and keytab specified
in the /etc/security/ldap/ldap.cfg client configuration file. Using Kerberos bind makes the
secldapclntd daemon ignore the bind DN and the bind password specified in /etc/security/ldap/
ldap.cfg file.

When Kerberos authentication is successful, the secldapclntd daemon saves the bind credentials to the
/etc/security/ldap/krb5cc_secldapclntd directory. The saved credentials are used for a later rebind. If
credentials are more than one hour old at the time that the secldapclntd daemon tries to rebind to a
LDAP server, the secldapclntd daemon will reinitialize to renew credentials.

To configure the LDAP client system to use Kerberos bind, you must configure the client using the
mksecldap command using a bind DN and a bind password. If the configuration is successful, edit the
/etc/security/ldap/ldap.cfg file with the correct values for Kerberos related attributes. The
secldapclntd daemon uses the Kerberos bind at restart. After successful configuration, the bind DN and
the bind password are not used any more. They can be safely removed or commented out of the
/etc/security/ldap/ldap.cfg file.

Creating a Kerberos principal:

You need to create at least two principals on the Key Distribution Center (KDC) for use by the IDS server
and client in order to support Kerberos bind. The first principal is the LDAP server principal and the
second one is the principal used by client systems to bind to the server.

Each of the principal keys need to be placed in a keytab file so that they can be used to start the server
process or the client daemon process.

The following example is based on the IBM Network Authentication Service. If you install Kerberos
software from other sources, the actual commands may be different than what is shown here.
v Start the kadmin tool on the KDC server as the root user.

#/usr/krb5/sbin/kadmin.local
kadmin.local:

162 AIX Version 7.2: Security

v Create the ldap/serverhostname principal for the LDAP server. The serverhostname is the fully qualified
DNS host that will run the LDAP server.
kadmin.local: addprinc ldap/plankton.austin.ibm.com
WARNING: no policy specified for "ldap/plankton.austin.ibm.com@ud3a.austin.ibm.com":
Re-enter password for principal "ldap/plankton.austin.ibm.com@ud3a.austin.ibm.com":
Principal "ldap/plankton.austin.ibm.com@ud3a.austin.ibm.com" created.
kadmin.local:

v Create a keytab for the created server principal. This key will be used by the LDAP server during
server startup. To create a keytab called slapd_krb5.keytab:
kadmin.local: ktadd -k /etc/security/slapd_krb5.keytab ldap/plankton.austin.ibm.com
Entry for principal ldap/plankton.austin.ibm.com with kvno 2,
encryption type Triple DES cbc mode with HMAC/sha1 added to keytab
WRFILE:/etc/security/slapd_krb5.keytab.
Entry for principal ldap/plankton.austin.ibm.com with kvno 2,
encryption type ArcFour with HMAC/md5 added to keytab WRFILE:/etc/security/slapd_krb5.keytab.
Entry for principal ldap/plankton.austin.ibm.com with kvno 2,
encryption type AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab
WRFILE:/etc/security/slapd_krb5.keytab.
Entry for principal ldap/plankton.austin.ibm.com with kvno 2,
encryption type DES cbc mode with RSA-MD5 added to keytab WRFILE:/etc/security/slapd_krb5.keytab.
kadmin.local:

v Create a principal named ldapadmin for the IDS administrator.
kadmin.local: addprinc ldapadmin
WARNING: no policy specified for ldapadmin@ud3a.austin.ibm.com; defaulting to no policy.
Note that policy may be overridden by ACL restrictions.
Enter password for principal "ldapadmin@ud3a.austin.ibm.com":
Re-enter password for principal "ldapadmin@ud3a.austin.ibm.com":
Principal "ldapadmin@ud3a.austin.ibm.com" created.
kadmin.local:

v Create a keytab for the bind principal kdapadmin.keytab. This key can be used by the secldapclntd
client daemon.
kadmin.local: ktadd -k /etc/security/ldapadmin.keytab ldapadmin
Entry for principal ldapadmin with kvno 2, encryption type
Triple DES cbc mode with HMCA/sha1 added to keytab WRFILE:/etc/security/ldapadmin.keytab.
Entry for principal ldapadmin with kvno 2, encryption type
ArcFour with HMAC/md5 added to keytab WRFILE:/etc/security/ldapadmin.keytab.
Entry for principal ldapadmin with kvno 2, encryption type
AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/security/ldapadmin.keytab.
Entry for principal ldapadmin with kvno 2, encryption type
DES cbc mode with RSA-MD5 added to keytab WRFILE:/etc/security/ldapadmin.keytab.
kadmin.local

v Create a principal named ldapproxy for clients to bind to the LDAP server.
kadmin.local: addprinc ldapproxy
WARNING: no policy specified for ldapproxy @ud3a.austin.ibm.com; defaulting to no policy.
Note that policy may be overridden by ACL restriction
Enter password for principal "ldapproxy@ud3a.austin.ibm.com":
Re-enter password for principal "ldapproxy@ud3a.austin.ibm.com":
Principal "ldapproxy@ud3a.austin.ibm.com" created.
kadmin.local:

v Create a keytab called ldapproxy.keytab for the bind principal ldapproxy. This key can be used by the
secldapclntd client daemon.
kadmin.local: ktadd -k /etc/security/ldapproxy.keytab ldapproxy
Entry for principal ldapproxy with kvno 2, encryption type
Triple DES cbc mode with HMAC/sh1 added to keytab WRFILE:/etc/security/ldapproxy.keytab.
Entry for principal ldapproxy with kvno 2, encryption type
ArcFour with HMAC/md5 added to keytab WRFILE:/etc/security/ldapproxy.keytab
Entry for principal ldapproxy with kvno 2, encryption type
AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/security/ldapproxy.keytab
Entry for principal ldapproxy with kvno 2,
encryption type DES cbc mode with RSA-MD5 added to keytab WRFILE:/etc/security/ldapproxy.keytab.
kadmin.local:

Security 163

Enabling the IDS server Kerberos bind:

The following procedure enables the IDS server for Kerberos bind.

The following example shows how to configure an IDS server for Kerberos bind.

This example was tested using IDS v5.1:
1. Install the krb5.client fileset.
2. Make sure the /etc/krb5/krb5.conf file exists and is configured properly. If you need to configure it,

you can run the /usr/sbin/config.krb5 command.
config.krb5 -r ud3a.austin.ibm.com -d austin.ibm.com -c KDC -s alyssa.austin.ibm.com
Initializing configuration...
Creating /etc/krb5/krb5_cfg_type...
Creating /etc/krb5/krb5.conf...
The command completed successfully.
cat /etc/krb5/krb5.conf
[libdefaults]

default_realm = ud3a.austin.ibm.com
default_keytab_name = FILE:/etc/krb5/krb5.keytab
default_tkt_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts des-cbc-md5 des-cbc-crc
defaut_tgs_enctypes = des3-cbc-shal1 arcfour-hmac aes256-cts des-cbc-md5 des-cbc-crc

[realms]
ud3a.austin.ibm.com = {

kdc = alyssa.austin.ibm.com:88
admin_server = alyssa.austin.ibm.com:749
default_domain = austin.ibm.com

}

[domain_realm]
.austin.ibm.com = ud3a.austin.ibm.com
alyssa.austin.ibm.com = ud3a.austin.ibm.com

[logging]
kdc = FILE:/var/krb5/log/krb5
admin_server = FILE:/var/krb5/log/kadmin.log
default = FILE:/var/krb5/log/krb5lib.log

3. Get the keytab file of the ldap:/serverhostname principal, and place it in the /usr/ldap/etc directory.
For example: /usr/ldap/etc/slapd_krb5.keytab.

4. Set the permission to allow the server process to access the file.
chown ldap:ldap/usr/ldap/etc/slapd_krb5.keytab
#

5. To enable the IDS server for Kerberos bind, edit the /etc/ibmslapd.conf file and append the
following entry:
dn: cn=Kerberos, cn-Configuration
cn: Kerberos
ibm-slapdKrbAdminDN: ldapadmin
ibm-slapdKrbEnable: true
ibm-slapdKrbIdentityMap: true
ibm-slapdKrbKeyTab: /usr/ldap/etc/slapd_krb5.keytab
ibm-slapdKrbRealm: ud3a.austin.ibm.com
objectclass: ibm-slapdKerberos
objectclass: ibm-slapdconfigEntry
objectclass: top

6. Map the ldapproxy principal to a bind DN named cn-proxyuser,cn=aixdata.
a. If the bind DN entry exists in the IDS server, create a file named ldapproxy.ldif with the

following content:
dn: cn=proxyuser,cn=aixdata
changetype: modify
add: objectclass
objectclass: ibm-securityidentities

164 AIX Version 7.2: Security

-
add:altsecurityidentities
altsecurityidentities: Kerberos:ldapproxy@ud3a.austin.ibm.com

OR
b. If the bind DN entry is not yet added to the server, create a file named proxyuser.ldif with the

following content:

Note: You will need to replace proxyuserpwd with your password.
dn: cn=proxyuser,cn=mytest
cn: proxyuser
sn: proxyuser
userpassword: proxyuserpwd
objectclass: person
objectclass: top
objectclass: ibm-securityidentities
altsecurityidentities: Kerberos:ldapproxy@ud3a.austin.ibm.com

Add the bind DN entry that is created to the IDS server using the ldapmodify command.
ldapmodify -D cn-admin -w adminPwd -f /tmp/proxyuser.ldif modifying entry cn=proxyuser,cn=mytest
#

7. Restart the IDS server.

Enabling the AIX LDAP client Kerberos bind:

You can configure an AIX LDAP client system to use Kerberos in its initial bind to an LDAP server.

The IDS server must be configured in this manner for the server host to be a client to itself.

This example was tested using IDS v 5.1:
1. Install the krb5.client fileset.
2. Make sure the /etc/krb.conf file exists and is configured properly. If it is not properly configured,

you can run the /usr/sbin/config.krb5 command to configure it.
3. Get the keytab file of the bind principal, and place it in the /etc/security/ldap directory.
4. Set the permission to 600.
5. Configure the client using the mksecldap command using the bind DN and the bind password. Make

sure that AIX commands work on LDAP users.
6. Edit the /etc/security/ldap/ldap.cfg file to set the Kerberos related attributes. In the following

example, the bind principal is ldapproxy and the keytab file is ldapproxy.keytab. If you want IDS
server administrator privileges, replace the ldapproxy with ldapadmin and replace the ldapproxy.keytab
with ldapadmin.keytab.
useKRB5:yes
krbprincipal:ldapproxy
krbkeypath:/etc/security/ldap/ldapproxy.keytab
krbcmddir:/usr/krb5/bin/

Now the bind DN and bind password can be removed or commented out of the ldap.cfg file because
the secldapclntd daemon now uses Kerberos bind.

7. Restart the secldapclntd daemon.
8. The /etc/security/ldap/ldap.cfg file can now be propagated to other client systems.

LDAP security information server auditing:

SecureWay Directory version 3.2 (and later) provides a default server audit logging function. Once
enabled, this default audit plug-in logs LDAP server activities to a log file. See the LDAP documentation
in Packaging Guide for LPP Installation for more information on this default audit plug-in.

Security 165

The LDAP security information server auditing function that is provided with the AIX operating system
is called the LDAP security audit plug-in. It is independent of the SecureWay Directory default auditing
service, so that either one or both of these auditing subsystems can be enabled. The AIX audit plug-in
records only those events that update or query the AIX security information about an LDAP server. It
works within the framework of AIX system auditing.

To accommodate LDAP, the following audit events are contained in the /etc/security/audit/event file:
v LDAP_Bind

v LDAP_Unbind

v LDAP_Add

v LDAP_Delete

v LDAP_Modify

v LDAP_Modifydn

v LDAP_Search

An ldapserver audit class definition is also created in the /etc/security/audit/config file that contains
all of the above events.

To audit the LDAP security information server, add the following line to each user's stanza in the
/etc/security/audit/config file:
ldap = ldapserver

Because the LDAP security information server audit plug-in is implemented within the frame of the AIX
system auditing, it is part of the AIX system auditing subsystem. Enable or disable the LDAP security
information server audit by using system audit commands, such as audit start or audit shutdown. All
audit records are added to the system audit trails, which can be reviewed with the auditpr command. For
more information, see “Auditing overview” on page 130.

LDAP commands:

There are several LDAP commands.

lsldap command

The lsldap command can be used to display naming service entities from the configured LDAP server.
These entities are aliases, automount, bootparams, ethers, groups, hosts, netgroups, networks, passwd,
protocols, rpc and services.

mksecldap command

The mksecldap command can be used to set up IBM SecureWay Directory servers and clients for security
authentication and data management. This command must be run on the server and all clients.

secldapclntd daemon

The secldapclntd daemon accepts requests from the LDAP load module, forwards the request to the
LDAP Security Information Server, and passes the result from the server back to the LDAP load module.

LDAP management commands:

Several commands are used for LDAP management.

166 AIX Version 7.2: Security

start-secldapclntd command

The start-secldapclntd command starts the secldapclntd daemon if it is not running.

stop-secldapclntd command

The stop-secldapclntd command terminates the running secldapclntd daemon process.

restart-secldapclntd command

The restart-secldapclntd script stops the secldapclntd daemon if it is running, and then restarts it. If the
secldapclntd daemon is not running, it simply starts it.

ls-secldapclntd command

The ls-secldapclntd command lists the secldapclntd daemon status.

flush-secldapclntd command

The flush-secldapclntd command clears the cache for the secldapclntd daemon process.

sectoldif command

The sectoldif command reads users and groups defined locally, and prints the result to standard output
in ldif format.

Mapping file format for LDAP attributes:

These map files are used by the /usr/lib/security/LDAP module and the secldapclntd daemon for
translation between AIX attribute names to LDAP attribute names.

Each entry in a mapping file represents a translation for an attribute. An entry has four space-separated
fields:
AIX_Attribute_Name AIX_Attribute_Type LDAP_Attribute_Name LDAP_Value_Type

The descriptions for these fields follow:

AIX_Attribute_Name
Specifies the AIX attribute name.

AIX_Attribute_Type
Specifies the AIX attribute type. Values are SEC_CHAR, SEC_INT, SEC_LIST, and SEC_BOOL.

LDAP_Attribute_Name
Specifies the LDAP attribute name.

LDAP_Value_Type
Specifies the LDAP value type. Values are s for single value and m for multi-value.

LDAP and KRB5LDAP in a single client
If LDAP is part of a compound module, such as KRB5LDAP, then only read operations are possible, not
write operations. However, with the below configuration changes in the/usr/lib/security/methods.cfg file,
both LDAP and compound load modules such as KRB5LDAP are accommodated in a single file by
completing the following steps:
1. Configure the LDAP client and the KRB5LDAP clients as usual.
2. Edit the/usr/lib/security/methods.cfg file as follows:

Security 167

LXAP: program = /usr/lib/security/LDAP program_64

=/usr/lib/security/LDAP64

LDAP: program = /usr/lib/security/LDAP program_64

=/usr/lib/security/LDAP64

NIS: program = /usr/lib/security/NIS program_64 =

/usr/lib/security/NIS_64

DCE: program = /usr/lib/security/DCE

KRB5: program = /usr/lib/security/KRB5

KRB5LXAP: options = db=LXAP,auth=KRB5

3. Edit the/etc/security/user file for the default stanza as follows:
SYSTEM = "KRB5LXAP OR LDAP OR compat"

LDAP users can be processed as usual. The following examples show the processing of KRB5LDAP
users:
mkuser -R KRB5LXAP <user_name>

rmuser -R KRB5LXAP <user_name>

lsuser -R KRB5LXAP <user_name>

passwd -R KRB5LXAP <user_name>

EFS Encrypted File System
The Encrypted Files System enables individual users on the system to encrypt their data on J2 file system
through their individual key stores.

A key is associated to each user. These keys are stored in cryptographically protected key store and upon
successful login, the user's keys are loaded into the kernel and associated with the processes credentials.
Later on, when the process needs to open an EFS-protected file, these credentials are tested and if a key
matching the file protection is found, the process is able to decrypt the file key and therefore the file
content. Group based key management are supported too.

Note: EFS is part of an overall security strategy. It is designed to work in conjunction with sound
computer security practices and controls.

Encrypted File System usability
Encrypted File System (EFS) key management, file encryption, and file decryption are transparent to
users in normal operations.

EFS is part of the base AIX operating system. To enable EFS, root (or any user with the RBAC
aix.security.efs authorization, see EFS actors for more information) must use the efsenable command to

168 AIX Version 7.2: Security

efs_actors.htm

activate EFS and create the EFS environment. This is a one time system enablement. After EFS is enabled,
when the user logs in, its key and keystore are silently created and protected or encrypted with the user
login password. The users keys are then used sliently by the J2 file system when encrypting or
decrypting EFS files. Every EFS file is protected with its own unique file key, and this file key is in turn
protected or encrypted with the file owner or group key depending on the file permissions.

By default, a J2 File System is not EFS-enabled. When it is EFS-enabled, the J2 File System transparently
manages encryption and decryption in the kernel for read and write requests. Users and groups
administration commands (such as mkgroup, chuser, and chgroup) transparently manage the users' and
groups' keystores.

The following EFS commands are provided to allow users to manage their keys and file encryption:

efskeymgr
Manages and administers the keys

efsmgr
Manages the encryption of files/directories/file system

Encrypted File System actors
There are three types of users who can manage and use EFS keys:

Full or restricted access as root:

The root access to the keys can be unlimited or limited. In either mode, it is not possible for root to
simply su to a user and gain access to the user's encrypted file or keystore.

In one mode, root can reset the user’s keystore password, and might gain access to the user’s keys within
this keystore. This mode provides greater system administration flexibility.

In the other mode, root can reset the user's logon password, cannot reset the user's keystore password. It
is not possible for root to substitute user (with the su command) and inherit an open keystore. While root
can create and delete users and groups. along with their associated keystores, cannot gain access to the
keys within these keystores. This mode provides a greater degree of protection against an attack from
malicious root.

There are two modes for managing and using keystores, Root Admin and Root Guard. An EFS
administration key is also provided.

The EFS administration key enables access to rest the password to all keystores in Root Admin mode.
This key is located in the efs_admin special keystore. Access to the efs_admin special keystore is granted
only to authorized users (root user and security group at installation, or the RBAC aix.security.efs
authorization).

When a keystore is in Root Guard mode, the keys contained in this keystore cannot be retrieved without
the correct keystore password. This provides strong security against a malicious root, but can also cause
problems if a user forgets their password, as there is no way to regenerate the password without loosing
the keys in the keystore, and the user can no longer access their data as a result. In this keystore mode,
some operations cannot be treated immediately and are scheduled as pending operations. These pending
operations are generated in cases such adding or suppressing a group access key in a user keystore or
regenerating a private key. These are managed by the keystore owner.

efs_admin administration key:

The efs_admin keystore contains a special key which can open any user or group keystore in root admin
mode (the default mode).

Security 169

The password to open this special keystore is stored in root user and security group keystores when EFS
is activated. This password can be given to other groups and users or removed with the efskeymgr
command. This key, in conjunction with the RBAC aix.security.efsauthorization, allows an user to
administrate EFS (that is,, access keystores in root admin mode).

efs_admin RBAC considerations

On systems with Role Based Access Control enabled, the efs_admin command is protected with the
aix.security.efs authorization.

User keystore:

The user keystore is managed automatically for most common operations. The efskeymgr command is
used for maintenance tasks and advanced EFS use. Users can create encrypted files and directories with
the efsmgr command. Key store management is integrated into most user admin commands. If a user is
added to a group, then the user will automatically have access to the group keystore.

A file owner with EFS access to the file use the efsmgr command to grant EFS access to other users and
groups (similar to the control that file owners have with ACLs in UNIX). Users can change their
passwords without effecting separate processes running under the same UID with an open keystore.

Encrypted File System keystore
Keystores are protected with a password. Users can choose an alternate keystore password other than
their login password. In this case, the keystore is not opened and available during the user’s standard
login. Instead, the user must manually load the keystore by using the efskey command to provide the
keystore password.

The keystore format is PKCS # 12. The keystores are stored in the following files:

user keystore
/var/efs/users//keystore

group keystore
/var/efs/groups//keystore

efsadmin keystore
/var/efs/efs_admin/keystore

If a user sets their logon password and their keystore password to the same password, their keystore is
opened and enabled when they log in.

A user can use the EFS efskeymgr command to select the type of encryption algorithm and the key
length.

Access to the keystore is inherited by any child process.

Group- based key management is also supported. Only group members can add or remove group keys to
member’s keystores if the group keystore is in guard mode. A user keystore contains the user’s private
key and also the password to open the user’s groups keystores, which contain the group's private keys.

Note: The EFS keystore is opened automatically as part of the standard AIX login only when the user’s
keystore password matches their login password. This is set up by default during the initial creation of
the user’s keystore. Login methods other than the standard AIX login, such as loadable authentication
modules and pluggable authentication modules may not automatically open the keystore.

Encryption and inheritance
EFS is a feature of J2. The filesystem's efs option must be set to yes (see the mkfs and chfs commands).

170 AIX Version 7.2: Security

J2 EFS automatically encrypts and decrypts user data. However, if a user has read access to an
EFS-activated file but does not have the right key, then the user cannot read the file in the normal
manner; if the user does not have a valid key, it is impossible to decrypt the data.

All cryptographic functions come from the CLiC kernel services and CLiC user libraries.

By default, a J2 File System is not EFS-enabled. A J2 File System must be EFS-enabled before File System
EFS inheritance can be activated or any EFS encryption of user data can take place. A file is created as an
encrypted file either explicitly with the efsmgr command or implicitly via EFS inheritance. EFS
inheritance can be activated either at the File System level, at a Directory level, or both.

The ls command lists entries of an encrypted file with a preceeding e.

The cp and mv commands can handle metadata and encrypted data seamlessly across EFS-to-EFS and
EFS-to-non-EFS scenarios.

The backup, restore, and tar commands and related commands can back up and restore encrypted data,
including EFS meta-data used for encryption and decryption.

Backup and restore
It is important to properly manage the archiving or backup of the keystores associated with the archived
EFS files. You must also manage and maintain the keystore passwords associated with the archived or
backup keystores. Failure to do either of these tasks may result in data loss.

When backing up EFS encrypted files, you can use the –Z option with the backup command to back up
the encrypted form of the file, along with the file’s cryptographic meta-data. Both the file data and
meta-data are protected with strong encryption. This has the security advantage of protecting the
backed-up file through strong encryption. It is necessary to back up the keystore of the file owner and
group associated with the file that is being backed up. These key stores are located in the following files:

users keystores
/var/efs/users/user_login/*

group keystore
/var/efs/groups//keystore

efsadmin keystore
/var/efs/efs_admin/keystore

Use the restore command to restore an EFS backup (made with the backup command and –Z option).
The restore command ensures that the crypto-meta data is also restored. During the restore process, it is
not necessary to restore the backed-up keystores if the user has not changed the keys in their individual
keystore. When a user changes their password to open their keystore, their keystore internal key is not
changed. Use the efskeymgr command to change the keystore internal keys.

If the user’s internal, keystore key remains the same, the user can immediately open and decrypt the
restored file using their current keystore. However, if the key internal to the user’s keystore has changed,
the user must open the keystore that was backed up in association with the backed-up file. This keystore
can be opened with the efskeymgr –o command. The efskeymgr command prompts the user for a
password to open the keystore. This password is the one used in association with the keystore at time of
the backup.

For example, assume that the user Bob’s keystore was protected with the password foo (the password
‘foo’ is not a secure password and only used in this example for simplicities sake) and a backup of Bob’s
encrypted files was performed in January along with Bob’s keystore. In this example, Bob also uses foo
for his AIX login password. In February, Bob changed his password to bar, which also had the effect of

Security 171

changing his keystore access password to bar. If, in March, Bob’s EFS files were restored, then Bob would
be able to open and view these files with his current key store and password, because he did not change
the keystore's internal key.

If however, it was necessary to change Bob’s keystore’s internal key (with the efskeymgr command), then
by default the old keystore internal key is deprecated and left in Bob's keystore. When the user accesses
the file, EFS will automatically recognize that the restored file used the old internal key, and EFS will
then use the deprecated key to decrypt it. During this same access instance, EFS will convert the file over
to using the new internal key. There is not a significant performance impact in the process, because it is
all handled via the key store and file's crypto meta-data, and does not require that the file data is
re-encrypted.

If the deprecated internal key is removed through efskeymgr, then the old keystore containing the old
internal key must be restored and used in conjunction with the files encrypted with this internal key.

This raises the question of how to securely maintain and archive old passwords. There are methods and
tools to archive passwords. Generally, these methods involve having a file which contains a list of all old
passwords, and then encrypting this file and protecting it with the current keystore, which in turn is
protected by the current passwords. However, IT environments and security policies vary from
organization to organization, and consideration and thought should be given to the specific security
needs of your organization to develop security policy and practices that are best suited to your
environment.

J2 EFS internal mechanism
Each J2 EFS-activated file is associated with a special extended attribute which contains EFS meta-data
used to validate crypto authority and information used to encrypt and decrypt files (keys, crypto
algorithm, etc).

The EA content is opaque for J2. Both user credentials and EFS meta-data are required to determine a
crypto authority (access control) for any given EFS-activated file.

Note: Special attention should be given to situations where a file or data may be lost (for example,
removal of the file's EA).

EFS Protection Inheritance
After a directory is EFS-activated, any newly created immediate children are automatically EFS-activated
if not manually overridden. The EFS attributes of the parent directory take precedence over the EFS
attributes of the file system.

The scope of the inheritance of a directory is exactly one level. Any newly created child also inherits the
EFS attributes of its parent if its parent directory is EFS-activated. Existing children maintain their current
encrypted or non-encrypted state. The logical inheritance chain is broken if the parent changes its EFS
attributes. These changes do not propagate down to the existing children of the directory and must be
applied to those directories separately.

Workload Partition considerations
Before enabling or using Encrypted File System within a Workload Partition, EFS must first be enabled
on the global system with the efsenable command. This enablement only needs to be performed once.
Additionally, all filesystems, including EFS-enabled filesystems, must be created from the global system.

Setting up the Encrypted File System

You need to do this first.

The stage needs to be set just so.

172 AIX Version 7.2: Security

1. Install the clic.rte fileset. This fileset contains the cryptographic libraries and kernel extension required
by EFS. The clic.rte fileset can be found on the AIX Expansion Pack.

2. Enable EFS on the system with the efsenable command (for example >efsenable –a). When prompted
for a password, it is reasonable to use the root password. Users keystores are created automatically,
then the user logs in, or re-logs in, after the efsenable command has been run. Once efsenable –a has
been run on a system, then the system is EFS-enabled and the efsenable command does not need to
be run again.

3. Create an EFS-enabled filesystem with the –a efs=yes option. For example, crfs -v jfs2 -m /foo –A
yes -a efs=yes -g rootvg -a size=20000

4. After mounting the filesystem, turn on the cryptographic inheritance on the EFS-enabled filesystem.
This can be done with the efsmgr command. To continue the previous example where the filesystem
/foo was created, run the following command: efsmgr –s –E /foo. This allows every file created and
used in this filesystem to be an encrypted file.

From this point forward, when a user or process with an open keystore creates a file on this filesystem,
the file will be encrypted. When the user or file reads the file, the file is automatically decrypted for users
who are authorized to access the file.

See the following for more information:
v chfs, chgroup, chuser, cp, efsenable, efskeymgr, efsmgr, lsuser, ls, mkgroup, mkuser, and mv

commands
v /etc/security/group and /etc/security/user files

Remote access to Encrypted File System keystores
In an enterprise environment, you can centralize your Encrypted File System (EFS) keystores. When you
store the databases that control the keystores on each system independently, it can be difficult to manage
the keystores. AIX Centralized EFS Keystore allows you to store the user and group keystore databases in
Lightweight Directory Access Protocol (LDAP) so that you can centrally manage the EFS keystore.
Related concepts:
“Lightweight Directory Access Protocol” on page 149
The Lightweight Directory Access Protocol (LDAP) defines a standard method for accessing and updating
information in a directory (a database) either locally or remotely in a client-server model.

Overview of remote access to Encrypted File System keystores:

Learn about the Encrypted File System (EFS) databases, LDAP enablement for EFS commands, and
unique keystore access.

You can store all of the AIX EFS keystore databases in LDAP, which includes the following EFS
databases:
v User Keystore
v Group Keystore
v Admin Keystore
v Cookies

The AIX operating system provides utilities to help you perform the following management tasks:
v Export local keystore data to an LDAP server
v Configure the client to use EFS keystore data in LDAP
v Control access to EFS keystore data
v Manage LDAP data from a client system

Security 173

All of the EFS keystore database management commands are enabled to use the LDAP keystore database.
If the system-wide search order is not specified in the /etc/nscontrol.conf file, keystore operations are
dependent on the user and group efs_keystore_access attribute. If you set the efs_keystore_access to ldap,
the EFS commands perform keystore operations on the LDAP keystore.

The following table describes changes to EFS commands for LDAP.

Table 12. EFS command enablement for LDAP

Command LDAP information

Any EFS command When you set the efs_keystore_access attribute to ldap, you do
not need to use the special option -L domain with any command
in order to perform keystore operations on LDAP.

efskeymgr Includes the -L load_module option so that you can perform
explicit keystore operations on LDAP.

efsenable Includes the -d Basedn option so that you can perform the
initial setup on LDAP for accommodating the EFS keystore. The
initial setup includes adding base distinguished names (DNs)
for the EFS keystore and creating the local directory structure
(/var/efs/).

efskstoldif Generates the EFS keystore data for LDAP from the following
databases on the local system:

v /var/efs/users/username/keystore

v /var/efs/groups/groupname/keystore

v /var/efs/efs_admin/keystore

v Cookies, if they exist, for all the keystores

All of the keystore entries must be unique. Each keystore entry directly corresponds to the DN of the
entry that contains the user and group name. The system queries the user IDs (uidNumber), group IDs
(gidNumber), and the DNs. The query succeeds when the user and group names match the
corresponding DNs. Before you create or migrate EFS keystore entries on LDAP, ensure that the user and
group names and IDs on the system are unique.
Related tasks:
“Exporting Encrypted File System keystore data to LDAP”
You must populate the LDAP server with the keystore data to use LDAP as a centralized repository for
the Encrypted File System (EFS) keystore.
“Configuring an LDAP client for Encrypted File System keystore” on page 175
To use Encrypted File System (EFS) keystore data that is stored in LDAP, you must configure a system as
an LDAP client.

Exporting Encrypted File System keystore data to LDAP:

You must populate the LDAP server with the keystore data to use LDAP as a centralized repository for
the Encrypted File System (EFS) keystore.

Before you create or migrate EFS keystore entries on LDAP, ensure that the user and group names and
IDs on the system are unique.

To populate the LDAP server with the EFS keystore data, complete the following steps:
1. Install the EFS keystore schema for LDAP on to the LDAP server:

a. Retrieve the EFS keystore schema for LDAP from the /etc/security/ldap/sec.ldif file on the
AIX system.

b. Run the ldapmodify command to update the schema of the LDAP server with the EFS keystore
schema for LDAP.

174 AIX Version 7.2: Security

2. Run the efskstoldif command to read the data in the local EFS keystore files and output the data in a
format that is suitable for LDAP. To maintain unique keystore access, consider placing the EFS
keystore data that resides in LDAP under the same parent distinguished name (DN) as the user and
group data.

3. Save the data to a file.
4. Run the ldapadd -b command to populate the LDAP server with the keystore data.
Related concepts:
“Overview of remote access to Encrypted File System keystores” on page 173
Learn about the Encrypted File System (EFS) databases, LDAP enablement for EFS commands, and
unique keystore access.

Configuring an LDAP client for Encrypted File System keystore:

To use Encrypted File System (EFS) keystore data that is stored in LDAP, you must configure a system as
an LDAP client.

To configure an LDAP client for EFS keystore, complete the following steps:
1. Run the /usr/sbin/mksecldap command to configure a system as an LDAP client. The mksecldap

command dynamically searches the specified LDAP server to determine the location of the EFS
keystore data. Then, it saves the results to the /etc/security/ldap/ldap.cfg file. The mksecldap
command determines the location for user, group, admin, and efscookies keystore data.

2. Complete one of the following steps to enable LDAP as a lookup domain for EFS keystore data:
v Set the user and group efs_keystore_access attribute to file or ldap.
v Define the search order for the keystore at the system level by using the /etc/nscontrol.conf file.

The following table shows an example.

Table 13. Example configuration for the /etc/nscontrol.conf file

Attribute Description Search order (secorder)

efsusrkeystore This search order is common for all users. LDAP, files

efsgrpkeystore This search order is common for all
groups.

files, LDAP

efsadmkeystore This search order locates the admin
keystore for any target keystore.

LDAP, files

Attention: The configuration defined in the /etc/nscontrol.conf file overrides any values set for
the user and group efs_keystore_access attribute. The same is true for the user
efs_adminks_access attribute.

After you configure a system as an LDAP client and enable LDAP as a lookup domain for EFS keystore
data, the /usr/sbin/secldapclntd client daemon retrieves the EFS keystore data from the LDAP server
whenever you perform LDAP keystore operations.
Related concepts:
“Overview of remote access to Encrypted File System keystores” on page 173
Learn about the Encrypted File System (EFS) databases, LDAP enablement for EFS commands, and
unique keystore access.

Public Key Cryptography Standards #11
The Public Key Cryptography Standards #11 (PKCS #11) subsystem provides applications with a method
for accessing hardware devices (tokens) regardless of the type of device.

The content in this section conforms to Version 2.20 of the PKCS #11 standard.

The PKCS #11 subsystem uses the following components:

Security 175

v An API shared object (/usr/lib/pkcs11/ibm_pks11.so) is provided as a generic interface to a device
driver that supports the PKCS #11 standard. This tiered design enables new PKCS #11 devices when
they are available without recompiling existing applications.

v A PKCS #11 device driver that provides capabilities to applications that are similar to the capabilities
provided to other kernel components, such as Encrypted File System (EFS) or IP Security (IPSec).

v When the platform supports the cryptography coprocessor facility, the PKCS #11 device driver uses the
hardware acceleration that is available with Advanced Encryption Standard (AES), Secure Hash
Algorithm (SHA), and hash message authentication code (HMAC) operations. For improved
performance, you can enable network memory affinity.

Related information:
AIX memory affinity support

IBM 4758 Model 2 Cryptographic Coprocessor
The IBM 4758 Model 2 Cryptographic Coprocessor provides a secure computing environment.

Before attempting to configure the PKCS #11 subsystem, verify that the adapter has been properly
configured with a supported microcode.

IBM 4960 Cryptographic Accelerator

The IBM 4960 Cryptographic Accelerator provides a means of offloading cryptographic transactions.
Before attempting to configure the PKCS #11 subsystem, verify that the adapter has been properly
configured.

Verifying the IBM 4758 Model 2 Cryptographic Coprocessor for use with the Public Key Cryptography
Standards #11 subsystem:

The PKCS #11 subsystem is designed to automatically detect adapters capable of supporting PKCS #11
calls during installation and at reboot. For this reason, any IBM 4758 Model 2 Cryptographic Coprocessor
that is not properly configured will not be accessible from the PKCS #11 interface and calls sent to the
adapter will fail.

To verify that your adapter is set up correctly, complete the following:
1. Ensure that the software for the adapter is properly installed by typing the following command:

lsdev -Cc adapter | grep crypt

If the IBM 4758 Model 2 Cryptographic Coprocessor is not included in the resulting list, check that
the card is seated properly and that the supporting software is correctly installed.

2. Determine that the proper firmware has been loaded onto the card by typing the following:
csufclu /tmp/l ST device_number_minor

Verify that the Segment 3 Image has the PKCS #11 application loaded. If it is not loaded refer to the
adapter specific documentation to obtain the latest microcode and installation instructions.

Note: If this utility is not available, then the supporting software has not been installed.

Verifying the IBM 4960 Model 2 Cryptographic Accelerator for use with the Public Key Cryptography
Standards #11 subsystem:

The PKCS #11 subsystem is designed to automatically detect adapters capable of supporting PKCS #11
calls during installation and at reboot. For this reason, any IBM 4960 Cryptographic Accelerator that is
not properly configured will not be accessible from the PKCS #11 interface and calls sent to the adapter
will fail.

176 AIX Version 7.2: Security

To ensure that the software for the adapter is properly installed, type the following command:
lsdev -Cc adapter | grep ica

If the IBM 4960 Cryptographic Accelerator is not included in the resulting list, check that the card is
seated properly and that the supporting device driver is correctly installed.

Public Key Cryptography Standards #11 subsystem configuration
The PKCS #11 subsystem automatically detects devices supporting PKCS #11. However, in order for some
applications to use these devices, some initial setup is necessary.

These tasks can be performed through the API (by writing a PKCS #11 application) or by using the SMIT
interface. The PKCS #11 SMIT options are accessed either through Manage the PKCS11 subsystem from
the main SMIT menu, or by using the smit pkcs11 fast path.

Initializing the token:

Each adapter or PKCS #11 token must be initialized before it can be used successfully.

This initialization procedure involves setting a unique label to the token. This label allows applications to
uniquely identify the token. Therefore, the labels should not be repeated. However; the API does not
verify that labels are not re-used. This initialization can be done through a PKCS #11 application or by
the system administrator using SMIT. If your token has a Security Officer PIN, the default value is set to
87654321. To ensure the security of the PKCS #11 subsystem, this value should be changed after
initialization.

To initialize the token:
1. Enter the token management screen by typing smit pkcs11.
2. Select Initialize a Token.
3. Select a PKCS #11 adapter from the list of supported adapters.
4. Confirm your selection by pressing Enter.

Note: This will erase all information on the token.
5. Enter the Security Officer PIN (SO PIN) and a unique token label.

If the correct PIN is entered, the adapter will be initialized or reinitialized after the command has finished
running.

Setting the security officer PIN:

Follow these steps to change an SO PIN from its default value.

To change the PIN from its default value:
1. Type smit pkcs11.
2. Select Set the Security Officer PIN.
3. Select the initialized adapter for which you want to set the PIN.
4. Enter the current PIN and a new PIN.
5. Verify the new PIN.

Initializing the user PIN:

After the token has been initialized, it might be necessary to set the user PIN to allow applications to
access token objects.

Security 177

Refer to your device specific documentation to determine if the device requires a user to log in before
accessing objects.

To initialize the user PIN:
1. Enter the token management screen typing smit pkcs11.
2. Select Initialize the User PIN.
3. Select a PKCS #11 adapter from the list of supported adapters.
4. Enter the SO PIN and the User PIN.
5. Verify the User PIN.
6. Upon verification, the User PIN must be changed.

Resetting the user PIN:

To reset the user PIN, you can either reinitialize the PIN using the SO PIN or set the user PIN by using
the existing user PIN.

To reset the PIN:
1. Enter the token management screen by typing smit pkcs11.
2. Select Set the User PIN.
3. Select the initialized adapter for which you want to set the user PIN.
4. Enter the current user PIN and a new PIN.
5. Verify the new user PIN.

Public Key Cryptography Standards #11 usage
For an application to use the PKCS #11 subsystem, the subsystem's slot manager daemon must be
running and the application must load in the API's shared object.

The slot manager is normally started at boot time by inittab calling the /etc/rc.pkcs11 script. This script
verifies the adapters in the system before starting the slot manager daemon. As a result, the slot manager
daemon is not available before the user logs on to the system. After the daemon starts, the subsystem
incorporates any changes to the number and types of supported adapters without intervention from the
systems administrator.

The API can be loaded either by linking in the object at runtime or by using deferred symbol resolution.
For example, an application can get the PKCS #11 function list in the following manner:
d CK_RV (*pf_init)();
void *d;
CK_FUNCTION_LIST *functs;

d = dlopen(e, RTLD_NOW);
if (d == NULL) {

return FALSE;
}

pfoo = (CK_RV (*)())dlsym(d, “C_GetFunctionList”);
if (pfoo == NULL) {

return FALSE;
}

rc = pf_init(&functs);

Public Key Cryptography Standards #11 tools
Two tools are available for managing cryptographic systems within the AIX operating system: the PKCS
#11 Key Management tool, and the PKCS #11 Administration tool. You can access these tools by using
either the Curses-based GUI or command line interface.

178 AIX Version 7.2: Security

Note: Accessibility for the AIX cryptographic framework tools requires the use of the batch processing
capabilities. For detailed information about using the batch processing capabilities for Accessibility, see
“Batch processing” on page 180.

The PKCS #11 Key Management tool is the centralized tool for managing keys, certificates, and PKCS #11
data on the AIX operating system. The objects managed by this tool are stored either within supported
PKCS #11 providers, such as the IBM family of cryptographic adapters (for example, IBM 4758, 4960, and
4764), or the AIX Cryptographic Framework. You can perform various operations by using the PKCS #11
Key Management tool. These operations include creating a PKCS #10 Certificate Signing Request (CSR) or
generating self-signed certificates. In addition, you can use this tool to search, view, delete, import,
export, and backup PKCS #11 object data as well as transport PKCS #11 object data between PKCS #11
tokens. You can start the GUI version of the tool by running the p11km command. The tool loads all of
the available PKCS #11 tokens. You can view details about these tokens by using the arrow keys to scroll
up and down the list of tokens. To select a token, use the arrow keys to highlight the token and press the
Enter key. You can start the command line version of the tool by running the following command:
p11km -b <batchfile>

The PKCS #11 Administration tool is the centralized tool for managing the AIX PKCS #11 Cryptographic
Framework. This tool allows an administrator or security officer to manage the tokens controlled by the
AIX Cryptographic Framework. You can use this tool to initialize, create, and destroy PKCS #11 tokens,
manage slots, reset user passwords, confirm object deletions, specify object trust, and perform AIX
Cryptographic Framework tuning for performance and general administration. You can start the GUI
version of the tool by running the p11admin command. The tool loads all of the available PKCS #11
tokens. You can view details about these tokens by using the arrow keys to scroll up and down the list of
tokens. To select a token, use the arrow keys to highlight the token and press the Enter key. You can start
the command line version of the tool by running the following command:
p11admin -b <batchfile>

Command Profiles:

The AIX Cryptographic Framework tools use the OpenSSL library to parse configuration files that are
used to create custom profiles. You can use these profiles to set tool attributes such as the GUI colors for
the p11km command and the p11admin command.

By using the file format that is specified in “Batch processing” on page 180, you can create and edit the
following profile files to customize the GUI.

Note: After you create your profile files, name them and store them in your home directory as follows:
$HOME/.p11km

$HOME/.p11admin

The following GUI color attributes are supported:
action_name = “GUI_COLORS”
gui_fg_color = “<color name>” ## Foreground Color
gui_bg_color = “<color name>” ## Background Color
gui_vc_color = “<color name>” ## View Content Color

Where <color name> is one of the following values:
LIGHT GRAY
WHITE
BLACK
DARK GRAY
RED
LIGHT RED

Security 179

YELLOW
ORANGE or BROWN
GREEN
LIGHT GREEN
BLUE
LIGHT BLUE
CYAN
LIGHT CYAN
MAGENTA
LIGHT MAGENTA

Example: p11km profile ($HOME/.p11km)
[p11km_cmd]
gui_fg_color = “RED”
gui_bg_color = “BLACK”
gui_vc_color = “WHITE”

Example: p11admin Profile ($HOME/.p11admin)
[p11admin_cmd]
gui_fg_color = “BLUE”
gui_bg_color = “LIGHT GRAY”
gui_vc_color = “BLACK”

Batch processing:

You can run the batch processing commands from the command line to perform the same tasks that are
available in the GUI versions of the PKCS #11 tools.

The command format for the PKCS #11 Key Management tool (p11km) is as follows:
p11km -b <batchfile>

The command format for the PKCS #11 Key Administration tool (p11admin) is as follows:
p11admin -b <batchfile>

Because these tools use the OpenSSL library to parse the batch files, the format of the batch files follows
the typical OpenSSL configuration file format. Each section is a separate command, and the attribute
value pairs provide the information that is required for processing. Each section command is batch
processed in order from top to bottom. If an individual batch command fails, an error is printed and
batch processing terminates without processing the subsequent section commands.

The following is an example of the OpenSSL configuration file format.
[section1]
attribute1 = “value1”
attribute2 = “value2”
...
attributeN = “valueN”
[section2]
attribute1 = “value1”
attribute2 = “value2”
...
attributeN = “valueN”
...
...
[sectionN]

180 AIX Version 7.2: Security

attribute1 = “value1”
attribute2 = “value2”
...
attributeN = “valueN”

To ensure that the PKCS #11 tool command sections coexist with the OpenSSL configuration file sections,
use the following prefixes for the PKCS #11 sections:

p11km tool
p11km_cmd

p11admin tool
p11admin_cmd

Each p11km_cmd or p11admin_cmd section must contain only one action_name attribute with a string
value that identifies a specific command associated with the section. The simplest example is a file that
contains one command section that describes a command that does not have additional parameters. The
following is an example of how to use the p11km tool to run a batch command that lists available PKCS
#11 tokens on a system:
[p11km_cmd_list_my_tokens]
action_name=”LIST_TOKENS”

Each batch command supports an optional boolean attribute:
start_gui=”<boolean>”

If you run a batch command that contains the boolean attribute with a value of TRUE, the batch
processing terminates after that command completes, and the GUI starts.

Note: If a batch file contains a command that includes the optional start_gui attribute, none of the batch
commands that are listed after it are processed.

Batch commands:

Batch commands provide command line access to the PKCS #11 tools.

The following batch commands are available in the PKCS #11 Key Management tool (p11km).

Note: To use the batch commands, do the following:
1. Create and edit a batch file as described in “Batch processing” on page 180.
2. Create new p11km_cmd sections that contain the attributes for the batch commands that you want to

use.

List available PKCS #11 tokens
Generates a report and displays token and slot information for the available PKCS #11 tokens.

Required attributes
action_name = “LIST_TOKENS”

Optional attributes
start_gui = “<boolean>”

Where <boolean> is eitherTRUE or FALSE

Example
[p11km_cmd_list_tokens]
action_name = “LIST_TOKENS”

List available PKCS#11 mechanisms
Generates a report and displays available PKCS #11 mechanisms that are supported by a specific
PKCS #11 token (matched by specifying the driver and slot attribute values).

Security 181

Required attributes
action_name = “LIST_MECHANISMS”
p11_driver = “<driver name>”
p11_slot = “<slot number>”

Where <slot number> is a positive integer value, and <driver name> is one of the following
values:

Value Description

AIX AIX OS Cryptographic Framework

IBM_4758_4960 IBM 4758/4960 Cryptographic Hardware Adapters

IBM_4764 IBM 4764 Cryptographic Hardware Adapter

Other If you specify OTHER, you must also specifying the p11_driver_path attribute.

Optional attributes
start_gui = “<boolean>”

Supplemental attributes
p11_driver_path = “<path to PKCS#11 driver>”

Where <path to PKCS#11 driver> is the full UNIX path and filename of the PKCS #11
library that is used for the command. This attribute can be specified only when the
p11_driver attribute is set to OTHER.

Example
[p11km_cmd_list_4764_slot_0_mechs]
action_name = “LIST_MECHANISMS”
p11_driver = “IBM_4764”
p11_slot = “0”
start_gui = “TRUE”

List available PKCS #11 objects
Generates a report and displays available PKCS #11 objects that are supported by a PKCS #11
token (matched by specifying the driver and slot attribute values).

Required attributes
action_name = “LIST_OBJECTS”
p11_driver = “<driver name>”
p11_slot = “<slot number>”

Optional attributes
p11_login = “<boolean>”
p11_label = “<string>”
p11_class = “<PKCS#11 Object Class>”
p11_private = “<boolean>”
p11_trusted = “<boolean>”
p11_sensitive = “<boolean>”
start_gui = “<boolean>”

Where <PKCS#11 Object Class> is one of the following values as defined in the PKCS #11
specification from RSA:
CKO_DATA
CKO_CERTIFICATE
CKO_PUBLIC_KEY
CKO_PRIVATE_KEY
CKO_SECRET_KEY
CKO_HW_FEATURE
CKO_DOMAIN_PARAMETERS
CKO_MECHANISM
CKO_VENDOR_DEFINED

182 AIX Version 7.2: Security

Example
[p11km_cmd_list_private_objs]
action_name = “LIST_OBJECTS”
p11_login = “TRUE”
p11_private = “TRUE”
p11_driver = “AIX”
p11_slot = “5”

Change PKCS #11 token user's PIN:
Changes a PKCS #11 token user's PIN that is used when logging into the token.

Required attributes
action_name = “CHANGE_USER_PIN”
p11_driver = “<driver name>”
p11_slot = “<slot number>”

Optional attributes
start_gui = “<boolean>”

Example
[p11km_cmd_change_my_pin]
action_name = “CHANGE_USER_PIN”
p11_slot = “1337”
p11_driver = “IBM_4764”

Delete PKCS #11 Objects
Deletes PKCS #11 objects. Objects are deleted based on the numbered list of the objects that result
from running a LIST_OBJECTS command and using the same template with the following
attributes:
p11_label = “<string>”
p11_class = “<PKCS#11 Object Class>”
p11_private = “<boolean>”
p11_trusted = “<boolean>”
p11_sensitive = “<boolean>”
p11_login = “<boolean>”

Attention: Because the token state and consistency are not maintained between batch processes,
objects can be inadvertently deleted. The listed order of the objects changes if objects are added
or deleted by other processes that are running against the same token between the time that an
object is originally listed and the time that it is deleted.

Required attributes
action_name = “DELETE_OBJECTS”
p11_driver = “<driver name>”
p11_slot = “<slot number>”
p11_objects = “<CSV>”

Where <CSV> is either the word ALL (all of the token objects) or a comma-separated list
of positive integer values that corresponds to the objects in numbered order of
appearance by using the following optional attributes.

Optional attributes
p11_label = “<string>”
p11_class = “<PKCS#11 Object Class>”
p11_private = “<boolean>”
p11_trusted = “<boolean>”
p11_sensitive = “<boolean>”
p11_login = “<boolean>”
start_gui = “<boolean>”

Security 183

Example
[p11km_cmd_delete_seven_objects]
action_name = “DELETE_OBJECTS”
p11_slot = “0”
p11_driver = “AIX”
p11_objects = “1,5,10,11,12,27,33”
p11_login = “TRUE”

Move PKCS #11 objects:
Moves PKCS #11 objects. Objects are moved based on the numbered list of the objects that result
from running a LIST_OBJECTS command and using the same template.

Attention: Because the token state and consistency are not maintained between batch processes,
objects can be inadvertently moved. The listed order of the objects changes if objects are added or
deleted by other processes that are running against the same token between the time that an
object is originally listed and the time that it is moved.

Required attributes
action_name = “MOVE_OBJECTS”
##
Source Token Identification:
p11_driver = “<driver name>”
p11_slot = “<slot number>”
##
Target Token Identification:
p11_driver_target = “<driver name>”
p11_slot_target = “<slot number>”
##
Objects being moved to target:
p11_objects = “<CSV>”

Optional attributes
p11_label = “<string>”
p11_class = “<PKCS#11 Object Class>”
p11_private = “<boolean>”
p11_trusted = “<boolean>”
p11_sensitive = “<boolean>”
p11_login = “<boolean>”
start_gui = “<boolean>”

Example
[p11km_cmd_move_three_objects]
action_name = “MOVE_OBJECTS”
p11_slot = “0”
p11_slot_target = “1”
p11_driver = “AIX”
p11_driver_target = “AIX”
p11_objects = “15,20,60”
p11_login = “FALSE”

Copy PKCS #11 objects
Copies PKCS #11 objects. Objects are copied based on the numbered list of the objects that result
from running a LIST_OBJECTS command and using the same template.

Attention: Because the token state and consistency are not maintained between batch processes,
objects can be inadvertently copied. The listed order of the objects changes if objects are added or
deleted by other processes that are running against the same token between the time that an
object is originally listed and the time that it is copied.

184 AIX Version 7.2: Security

Required attributes
action_name = “COPY_OBJECTS”
p11_driver = “<driver name>”
p11_slot = “<slot number>”
p11_driver_target = “<driver name>”
p11_slot_target = “<slot number>”
p11_objects = “<CSV>”

Optional attributes
p11_label = “<string>”
p11_class = “<PKCS#11 Object Class>”
p11_private = “<boolean>”
p11_trusted = “<boolean>”
p11_sensitive = “<boolean>”
p11_login = “<boolean>”
start_gui = “<boolean>”

Example
[p11km_cmd_copy_one_private_object]
action_name = “COPY_OBJECTS”
p11_slot = “0”
p11_slot_target = “1”
p11_driver = “AIX”
p11_driver_target = “AIX”
p11_objects = “3”
p11_login = “TRUE” ## REQUIRED FOR PRIVATE OBJECT MGT.

Export and backup PKCS #11 objects to a file
Exports and backs up PKCS #11 objects. Objects are exported and backed up based on the
numbered list of the objects that result from running a LIST_OBJECTS command and using the
same template.

Attention: Because the token state and consistency are not maintained between batch processes,
objects can be inadvertently exported. The listed order of the objects changes if objects are added
or deleted by other processes that are running against the same token between the time that an
object is originally listed and the time that it is exported.

Required attributes
action_name = “EXPORT_OBJECTS”
p11_driver = “<driver name>”
p11_slot = “<slot number>”
p11_object_file = “<file name>”
p11_objects = “<CSV>”

Optional attributes
p11_label = “<string>”
p11_class = “<PKCS#11 Object Class>”
p11_private = “<boolean>”
p11_trusted = “<boolean>”
p11_sensitive = “<boolean>”
p11_login = “<boolean>”
start_gui = “<boolean>”

Example
[p11km_cmd_backup_objects]
action_name = “EXPORT_OBJECTS”
p11_slot = “0”
p11_driver = “AIX”
p11_objects = “ALL”
p11_login = “TRUE”
p11_object_file = “/home/user1/p11km.backup”

Import PKCS #11 objects from a file
Imports the PKCS #11 objects that were created from a PKCS #11 export file.

Security 185

Required attributes
action_name = “IMPORT_OBJECTS”
p11_driver = “<driver name>”
p11_slot = “<slot number>”
p11_object_file = “<file name>”

Optional attributes
p11_login = “<boolean>” # REQUIRED TO IMPORT ANY PRIVATE OBJECTS
start_gui = “<boolean>”

Example
[p11km_cmd_import_my_backed_up_objects]
action_name = “IMPORT_OBJECTS”
p11_slot = “0”
p11_driver = “AIX”
p11_login = “TRUE”
p11_object_file = “/home/user1/p11km.backup”

Create a self-signed certificate
Creates a self-signed X.509 certificate and the associated PKCS #11 objects on a PKCS #11 token.

Required attributes
action_name = “CREATE_SSC”
p11_driver = “<driver name>”
p11_slot = “<slot number>”
p11_login = “TRUE”
p11_ssc_label = “<string>”
p11_ssc_config = “<openssl configuration file>”

Where <openssl configuration file> is the full UNIX path and filename of an OpenSSL
configuration file that is populated with values that are used in creating the self-signed
certificate.

Optional attributes
start_gui = “<boolean>”

Example
[p11km_cmd_self_signed_certificate]
action_name = “CREATE_SSC”
p11_slot = “0”
p11_driver = “AIX”
p11_login = “TRUE”
p11_ssc_label = “Lab RADIUS Server”
p11_ssc_config = “/etc/radius/EAP-TLS/openssl.cnf”

Create a PKCS #10 certificate signing request
Creates a PKCS #10 certification request or certificate signing request (CSR).

Required attributes
action_name = “CREATE_CSR”
p11_driver = “<driver name>”
p11_slot = “<slot number>”
p11_login = “TRUE”
p11_csr_label = “<string>”
p11_csr_file = “<path to CSR output file>”
p11_csr_type = “<DER or Base64>’
p11_csr_config = “<openssl configuration file>”

Where <DER or Base64> either generates an ASN.1 (DER) encoded CSR output file or a
Base64-encoded CSR output file and <path to CSR output file> refers to the full UNIX path
and filename to the CSR output.

Optional attributes
start_gui = “<boolean>”

186 AIX Version 7.2: Security

Example
[p11km_cmd_my_pkcs10_base64]
action_name = “CREATE_SSC”
p11_slot = “0”
p11_driver = “AIX”
p11_login = “TRUE”
p11_csr_label = “Lab RADIUS Server”
p11_csr_type = “Base64”
p11_csr_file = “/etc/radius/EAP-TLS/certreq.b64”
p11_csr_config = “/etc/radius/EAP-TLS/openssl.cnf”

The following batch commands are available in the PKCS #11 Administration tool (p11admin).

Note: To use the batch commands, do the following:
1. Create and edit a batch file as described in “Batch processing” on page 180.
2. Create new p11km_cmd sections that contain the attributes for the batch commands that you want to

use.

List available PKCS #11 tokens
Generates a report and displays the token and slot information for the available PKCS #11 tokens.

Required attributes
action_name = “ADM_LIST_TOKENS”

Optional attributes
start_gui = “<boolean>”

Where <boolean> is eitherTRUE or FALSE

Example
[p11admin_cmd_list_tokens]
action_name = “ADM_LIST_TOKENS”

List available PKCS #11 mechanisms
Generates a report and displays the available PKCS #11 mechanisms that are supported by a
PKCS #11 token (matched by specifying the driver and slot attribute values).

Required attributes
action_name = “ADM_LIST_MECHANISMS”
p11_driver = “<driver name>”
p11_slot = “<slot number>”

Where <slot number> is a positive integer value, and <driver name> is one of the following
values:

Value Description

AIX AIX OS Cryptographic Framework

IBM_4758_4960 IBM 4758/4960 Cryptographic Hardware Adapters

IBM_4764 IBM 4764 Cryptographic Hardware Adapter

Other If you specify OTHER, you must also specifying the p11_driver_path attribute.

Optional attributes
start_gui = “<boolean>”

Supplemental attributes
p11_driver_path = “<path to PKCS#11 driver>”

Where <path to PKCS#11 driver> is the full UNIX path and filename of the PKCS #11
library that is used for the command. This attribute can be specified only when the
p11_driver attribute is set to OTHER.

Security 187

Example
[p11admin_cmd_list_4764_slot_0_mechs]
action_name = “ADM_LIST_MECHANISMS”
p11_driver = “IBM_4764”
p11_slot = “0”
start_gui = “TRUE”

Display information for a PKCS #11 token
Displays the PKCS #11 token and slot information for a PKCS #11 token.

Required attributes
action_name = “ADM_SHOW_TOKEN_INFO”
p11_driver = “<driver name>”
p11_slot = “<slot number>”

Optional attributes
start_gui = “<boolean>”

Example
[p11admin_cmd]
action_name = “ADM_SHOW_TOKEN_INFO”
p11_slot = “411”
p11_driver = “IBM_4764”

Initialize a PKCS #11 token:
Initializes a PKCS #11 token. Initialization resets the token, erases all of the stored PKCS#11
objects and data, and allows the token to be relabeled.

Attention: Because all of the PKCS #11 objects and data are erased during the initialization
process, ensure that you do not need the objects and data before you initialize a PKCS #11 token.

Required attributes
action_name = “ADM_INIT_TOKEN”
p11_driver = “<driver name>”
p11_slot = “<slot number>” ## SAME AS ’p11_init_slot’
p11_init_slot = “<slot number>” ## SAME AS ’p11_slot’
p11_init_label = “<string>” ## NEW TOKEN LABEL

Optional attributes
start_gui = “<boolean>”

Example
[p11admin_cmd]
action_name = “ADM_INIT_TOKEN”
p11_slot = “1”
p11_driver = “IBM_4764”
p11_init_slot = “1”
p11_init_label = “ABC Token”

View the clock for a PKCS #11 token
Displays the hardware clock for a PKCS #11 token if that token has a clock.

Required attributes
action_name = “ADM_CLOCK_VIEW”
p11_driver = “<driver name>”
p11_slot = “<slot number>”

Optional attributes
start_gui = “<boolean>”

Example
[p11admin_cmd]
action_name = “ADM_CLOCK_VIEW”
p11_slot = “1”
p11_driver = “IBM_4764”

188 AIX Version 7.2: Security

Set the clock for a PKCS #11 token
Sets the hardware clock for a PKCS #11 token if that token has a clock.

Required attributes
action_name = “ADM_CLOCK_SET”
p11_driver = “<driver name>”
p11_slot = “<slot number>”
p11_clock_set = “<clock data>”

Where <clock data> is the current UTC date and time with the following format:
HH:MM:SS mm-dd-YYYY.

Optional attributes
start_gui = “<boolean>”

Example
[p11admin_cmd]
action_name = “ADM_CLOCK_SET”
p11_slot = “1”
p11_driver = “IBM_4764”
p11_clock_set = “23:59:59 12-31-1999”

Reset the PIN for a PKCS #11 token user
Resets the PIN for a PKCS #11 token user.

Required attributes
action_name = “ADM_RESET_USER_PIN”
p11_driver = “<driver name>”
p11_slot = “<slot number>”

Optional attributes
start_gui = “<boolean>”

Example
[p11admin_cmd_change_so_pin]
action_name = “ADM_RESET_USER_PIN”
p11_driver = “AIX”
p11_slot = “0”

Change the PIN for PKCS #11 token security officer
Changes the PIN for a PKCS #11 token security officer. This PIN is used when token
administration is performed.

Required attributes
action_name = “ADM_CHANGE_SO_PIN”
p11_driver = “<driver name>”
p11_slot = “<slot number>”

Optional attributes
start_gui = “<boolean>”

Example
[p11admin_cmd_change_so_pin]
action_name = “ADM_CHANGE_SO_PIN”
p11_slot = “888”
p11_driver = “IBM_4764”

Pluggable Authentication Modules
The pluggable authentication module (PAM) framework provides system administrators with the ability
to incorporate multiple authentication mechanisms into an existing system through the use of pluggable
modules.

Applications enabled to make use of PAM can be plugged-in to new technologies without modifying the
existing applications. This flexibility allows administrators to do the following:

Security 189

v Select any authentication service on the system for an application
v Use multiple authentication mechanisms for a given service
v Add new authentication service modules without modifying existing applications
v Use a previously entered password for authentication with multiple modules

The PAM framework consists of a library, pluggable modules, and a configuration file. The PAM library
implements the PAM application programming interface (API) and serves to manage PAM transactions
and invoke the PAM service programming interface (SPI) defined in the pluggable modules. Pluggable
modules are dynamically loaded by the library based on the invoking service and its entry in the
configuration file. Success is determined not only by the pluggable module but also by the behavior
defined for the service. Through the concept of stacking, a service can be configured to authenticate
through multiple authentication methods. If supported, modules can also be configured to use a
previously submitted password rather than prompting for additional input.

The system administrator can configure an AIX system to use PAM through modification of the
auth_type attribute in the usw stanza of the/etc/security/login.cfg file. Setting auth_type = PAM_AUTH
configures PAM-enabled commands to invoke the PAM API directly for authentication rather than use
the historic AIX authentication routines. This configuration is a run-time decision and does not require a
reboot of the system to take affect. For further information about the auth_type attribute, see the
/etc/security/login.cfg file reference. The following native AIX commands and applications have been
modified to recognize the auth_type attribute and enabled for PAM authentication:
v login

v passwd

v su

v ftp

v telnet

v rlogin

v rexec

v rsh

v snappd

v imapd

v dtaction

v dtlogin

v dtsession

The following illustration shows the interaction between PAM-enabled applications, PAM library,
configuration file, and PAM modules on a system that has been configured to use PAM. PAM enabled
applications invoke the PAM API in the PAM library. The library determines the appropriate module to
load based on the application entry in the configuration file and calls the PAM SPI in the module.
Communication occurs between the PAM module and the application through the use of a conversation
function implemented in the application. Success or failure from the module and the behavior defined in
the configuration file then determine if another module needs to be loaded. If so, the process continues;
otherwise, the result is passed back to the application.

190 AIX Version 7.2: Security

PAM library
The PAM library,/usr/lib/libpam.a, contains the PAM API that serves as a common interface to all
PAM applications and also controls module loading.

Modules are loaded by the PAM library based on the stacking behavior defined in the /etc/pam.conf file.

The following PAM API functions invoke the corresponding PAM SPI provided by a PAM module. For
example, the pam_authenticate API invokes the pam_sm_authenticate SPI in a PAM module.
v pam_authenticate

v pam_setcred

v pam_acct_mgmt

v pam_open_session

v pam_close_session

v pam_chauthtok

The PAM library also includes several framework APIs that enable an application to invoke PAM
modules and pass information to PAM modules. The following table shows the PAM framework APIs
that are implemented in AIX and their functions:

PAM framework API Function
pam_start Establish a PAM session
pam_end Terminate a PAM session
pam_get_data Retrieve module-specific data
pam_set_data Set module-specific data
pam_getenv Retrieve the value of a defined PAM environment variable
pam_getenvlist Retrieve a list of all of the defined PAM environment variables

and their values
pam_putenv Set a PAM environment variable
pam_get_item Retrieve common PAM information
pam_set_item Set common PAM information
pam_get_user Retrieve user name
pam_strerror Get PAM standard error message

Figure 3. PAM Framework and Entities. This illustration shows how PAM enabled commands use the PAM library to
access the appropriate PAM module.

Security 191

PAM modules
PAM modules allow multiple authentication mechanisms to be used collectively or independently on a
system.

A given PAM module must implement at least one of four module types. The module types are described
as follows, along with the corresponding PAM SPIs that are required to conform to the module type.

Authentication Modules
Authenticate users and set, refresh, or destroy credentials. These modules identify user based on
their authentication and credentials.

Authentication module functions:
v pam_sm_authenticate
v pam_sm_setcred

Account Management Modules
Determine validity of the user account and subsequent access after identification from
authentication module. Checks performed by these modules typically include account expiration
and password restrictions.

Account management module function:
v pam_sm_acct_mgmt

Session Management Modules
Initiate and terminate user sessions. Additionally, support for session auditing may be provided.

Session management module functions:
v pam_sm_open_session
v pam_sm_close_session

Password Management Modules
Perform password modification and related attribute management.

Password management module functions:
v pam_sm_chauthtok

PAM configuration file
The /etc/pam.conf configuration file consists of service entries for each PAM module type and serves to
route services through a defined module path.

Entries in the file are composed of the following whitespace-delimited fields:
service_name module_type control_flag module_path module_options

The descriptions of these fields follow:

service_name
Specifies the name of the service. The keyword OTHER is used to define the default module to
use for applications that are not specified in an entry.

module_type
Specifies the module type for the service. Valid module types are auth, account, session, or
password. A given module will provide support for one or more module types.

control_flag
Specifies the stacking behavior for the module. Supported control flags are required, requisite,
sufficient, or optional.

module_path

Specifies the module to load for the service. Valid values for module_path can be specified as
either the full path to the module or just the module name. If the full path to the module is

192 AIX Version 7.2: Security

specified, the PAM library uses that module_path to load for 32-bit services or uses 64
subdirectory for 64-bit services. If the full path to the module is not specified, the PAM library
adds the prefix /usr/lib/security (for 32-bit services) or /usr/lib/security/64 (for 64-bit
services) to the module name.

module_options
Specifies a space-delimited list of options that can be passed to the service modules. Values for
this field are dependent on the options supported by the module defined in the module_path
field. This field is optional.

Malformed entries or entries with incorrect values for the module_type or control_flag fields are ignored
by the PAM library. Entries beginning with a number sign (#) character at the beginning of the line are
also ignored because this denotes a comment.

PAM supports a concept typically referred to as "stacking", allowing multiple mechanisms to be used for
each service. Stacking is implemented in the configuration file by creating multiple entries for a service
with the same module_type field. The modules are invoked in the order in which they are listed in the
file for a given service, with the final result determined by the control_flag field specified for each entry.
Valid values for the control_flag field and the corresponding behavior in the stack are as follows:

Value for the control_flag field Behavior
required All required modules in a stack must pass for a successful result. If one or more of the

required modules fail, all of the required modules in the stack will be attempted, but the
error from the first failed required module is returned.

requisite Similar to required except that if a requisite module fails, no further modules in the stack
are processed and it immediately returns the first failure code from a required or requisite
module.

sufficient If a module flagged as sufficient succeeds and no previous required or sufficient modules
have failed, all remaining modules in the stack are ignored and success is returned.

optional If none of the modules in the stack are required and no sufficient modules have succeeded,
then at least one optional module for the service must succeed. If another module in the
stack is successful, a failure in an optional module is ignored.

The following /etc/pam.conf subset is an example of stacking in the auth module type for the login
service.
#
PAM configuration file /etc/pam.conf
#

Authentication Management
login auth required /usr/lib/security/pam_ckfile file=/etc/nologin
login auth required /usr/lib/security/pam_aix
login auth optional /usr/lib/security/pam_test use_first_pass
OTHER auth required /usr/lib/security/pam_prohibit

The example of configuration file contains three entries for the login service. Having specified both
pam_ckfile and pam_aix as required, both modules will be run and both must be successful for the
overall result to be successful. The third entry for the fictitious pam_test module is optional and its
success or failure will not affect whether the user is able to login. The option use_first_pass to the
pam_test module requires that a previously entered password be used instead of prompting for a new
one.

Use of the OTHER keyword as a service name enables a default to be set for any other services that are
not explicitly declared in the configuration file. Setting up a default ensures that all cases for a given
module type will be covered by at least one module. In the case of this example, all services other than
login will always fail since the pam_prohibit module returns a PAM failure for all invocations.

Security 193

pam_aix module
The pam_aix module is a PAM module that provides PAM-enabled applications access to AIX security
services by providing interfaces that call the equivalent AIX services where they exist.

These services are in turn performed by a loadable authentication module or the AIX built-in function
based on the user's definition and the corresponding setup in the methods.cfg file. Any error codes
generated during execution of an AIX service are mapped to the corresponding PAM error code.

This illustration shows the path that a PAM application API call will follow if the /etc/pam.conf file is
configured to make use of the pam_aix module. As shown in the diagram, the integration allows users to
be authenticated by any of the loadable authentication modules (DCE, LDAP, or KRB5) or in AIX files
(compat).

The pam_aix module is installed in the /usr/lib/security directory. Integration of the pam_aix module
requires that the /etc/pam.conf file be configured to make use of the module. Stacking is still available
but is not shown in the following example of the /etc/pam.conf file:
#
Authentication management
#
OTHER auth required /usr/lib/security/pam_aix

#
Account management
#
OTHER account required /usr/lib/security/pam_aix

#
Session management
#
OTHER session required /usr/lib/security/pam_aix

#
Password management
#
OTHER password required /usr/lib/security/pam_aix

Figure 4. PAM Application to AIX Security Subsystem Path

194 AIX Version 7.2: Security

The pam_aix module has implementations for the pam_sm_authenticate, pam_sm_chauthok and
pam_sm_acct_mgmt SPI functions. The pam_sm_setcred, pam_sm_open_session, and
pam_sm_close_session SPI are also implemented in the pam_aix module, but these SPI functions return
PAM_SUCCESS invocations.

The following is an approximate mapping of PAM SPI calls to the AIX security subsystem:
PAM SPI AIX

========= =====
pam_sm_authenticate --> authenticate
pam_sm_chauthtok --> passwdexpired, chpass

Note: passwdexpired is only checked if the
PAM_CHANGE_EXPIRED_AUTHTOK flag is passed in.

pam_sm_acct_mgmt --> loginrestrictions, passwdexpired
pam_sm_setcred --> No comparable mapping exists, PAM_SUCCESS returned
pam_sm_open_session --> No comparable mapping exists, PAM_SUCCESS returned
pam_sm_close_session --> No comparable mapping exists, PAM_SUCCESS returned

Data intended to be passed to the AIX security subsystem can be set using either the pam_set_item
function prior to module use, or the pam_aix module for data if it does not already exist.

PAM loadable authentication module
AIX security services can be configured to call PAM modules through the use of the existing AIX
loadable authentication module framework.

Note: Before AIX 5.3, the PAM loadable authentication module was used to provide PAM authentication
to native AIX applications. Due to differences in the behavior between this solution and a true PAM
solution, the PAM loadable authentication module is no longer the recommended means to provide PAM
authentication to native AIX applications. Instead, the auth_type attribute in the usw stanza of
/etc/security/login.cfg should be set to PAM_AUTH to enable PAM authentication in AIX. For more
information on the auth_type attribute, see /etc/security/login.cfg. Use of the PAM loadable
authentication module is still supported, but it is deprecated. You should use the auth_type attribute to
enable PAM authentication.

When the /usr/lib/security/methods.cfg file is set up correctly, the PAM load module routes AIX
security services (passwd, login, and so on) to the PAM library. The PAM library checks the
/etc/pam.conf file to determine which PAM module to use and then makes the corresponding PAM SPI
call. Return values from PAM are mapped to AIX error codes and returned to the calling program.

Security 195

This illustration shows the path that an AIX security service call takes when PAM is configured correctly.
The PAM modules shown (pam_krb, pam_ldap, and pam_dce) are listed as examples of third-party
solutions.

The PAM load module is installed in the /usr/lib/security directory and is an authentication-only
module. The PAM module must be combined with a database to form a compound load module. The
following example shows the stanzas that could be added to the methods.cfg file to form a compound
PAM module with a database called files. The BUILTIN keyword for the db attribute designates the
database as UNIX files.
PAM:

program = /usr/lib/security/PAM

PAMfiles:
options = auth=PAM,db=BUILTIN

Creating and modifying users is then performed by using the -R option with the administration
commands and by setting the SYSTEM attribute when a user is created. For example:
mkuser -R PAMfiles SYSTEM=PAMfiles registry=PAMfiles pamuser

This action informs further calls to AIX security services (login, passwd, and so on) to use the PAM load
module for authentication. While the files database was used for the compound module in this example,
other databases, such as LDAP, can also be used if they are installed. Creating users as previously
described will result in the following mapping of AIX security to PAM API calls:

AIX PAM API
===== =========
authenticate --> pam_authenticate
chpass --> pam_chauthtok
passwdexpired --> pam_acct_mgmt
passwdrestrictions --> No comparable mapping exists, success returned

Customizing the /etc/pam.conf file allows the PAM API calls to be directed to the desired PAM module
for authentication. To further refine the authentication mechanism, stacking can be implemented.

Data prompted for by an AIX security service is passed to PAM through the pam_set_item function
because it is not possible to accommodate user dialog from PAM. PAM modules written for integration

Figure 5. AIX Security Service to PAM Module Path

196 AIX Version 7.2: Security

with the PAM module should retrieve all data with pam_get_item calls and should not attempt to
prompt the user to input data because this is handled by the security service.

Loop detection is provided to catch possible configuration errors in which an AIX security service is
routed to PAM and then a PAM module in turn attempts to call the AIX security service to perform the
operation. Detection of this loop event will result in an immediate failure of the intended operation.

Note: The/etc/pam.conf file should not be written to make use of the pam_aix module when using PAM
integration from an AIX security service to a PAM module because this will result in a loop condition.

Adding a PAM module
You can add a PAM module to enable multiple authentication mechanisms.
1. Place the 32-bit version of the module in the /usr/lib/security directory and the 64-bit version of the

module in /usr/lib/security/64 directory.
2. Set file ownership to root and permissions to 555. The PAM library does not load any module not

owned by the root user.
3. Update the /etc/pam.conf configuration file to include the module in entries for the desired service

names.
4. Test the affected services to ensure their functionality. Do not log off the system until a login test has

been performed.

Changing the /etc/pam.conf file
There are a few thing you should consider before changing the /etc/pam.conf file.

When changing the /etc/pam.conf configuration file, consider the following requirements:
v The file should always be owned by the root user and group security. Permission on the file needs to

be 644 to allow everyone read access but only allow root to modify.
v For greater security, consider explicitly configuring each PAM-enabled service and then using the

pam_prohibit module for the OTHER service keyword.
v Read any documentation supplied for a chosen module, and determine which control flags and options

are supported and what their impact will be.
v Select the ordering of modules and control flags carefully, keeping in mind the behavior of required,

requisite, sufficient, and optional control flags in stacked modules.

Note: Incorrect configuration of the PAM configuration file can result in a system that cannot be logged
in to since the configuration applies to all users including root. After making changes to the file, always
test the affected applications before logging out of the system. A system that cannot be logged in to can
be recovered by booting the system in maintenance mode and correcting the /etc/pam.conf configuration
file.

Enabling PAM debug
The Pluggable Authentication Modules (PAM) library can provide debug information during execution.
After enabling the system to collect debug output, the information gathered can be used to track PAM
API calls and determine failure points in the current PAM setup.

To enable PAM debug output, complete the following steps:
1. Create an empty file named pam_debug in the /etc/pam_debug directory by using the touch command,

if the file does not exist. The PAM library checks for the /etc/pam_debug file and enables syslog
output if it is found.

2. Edit the /etc/syslog.conf file to identify a file where it will log the auth syslog messages at the
priority level you want. For example, to send PAM debug-level messages to the /var/log/auth.log
file, add the following text as a new line in the syslog.conf file:
*.debug /var/log/auth.log

Security 197

3. Create the output file that was referred to in step 2 on page 197, /var/log/auth.log, by using the
touch command, if it does not exist.

4. To restart the syslogd daemon so that configuration changes are recognized, complete the following
steps:
a. Stop the syslog daemon by entering the following command:

stopsrc -s syslogd

b. Start the syslog daemon by entering the following command:
startsrc -s syslogd

When the PAM application is restarted, debug messages are collected in the output file that is defined in
the /etc/syslog.conf configuration file.

OpenSSH and Kerberos Version 5 support
Kerberos is an authentication mechanism that provides a secure means of authentication for network
users. It prevents transmission of clear text passwords over the network by encrypting authentication
messages between clients and servers. In addition, Kerberos provides a system for authorization in the
form of administering tokens, or credentials.

To authenticate a user using Kerberos, the user runs the kinit command to gain initial credentials from a
central Kerberos server known as the KDC (Key Distribution Center). The KDC verifies the user and
passes back to the user his initial credentials, known as a TGT (Ticket-Granting Ticket). The user can then
start a remote login session using a service such as a Kerberos-enabled Telnet or OpenSSH, and Kerberos
authenticates the user by gaining user credentials from the KDC. Kerberos performs this authentication
without any need for user interaction, therefore users do not need to enter passwords to login. IBM's
version of Kerberos is known as Network Authentication Service (NAS). NAS can be installed from the
AIX Expansion Pack CDs. It is available in the krb5.client.rte and krb5.server.rte packages.
Beginning in the July 2003 release of OpenSSH 3.6, OpenSSH supports Kerberos 5 authentication and
authorization through NAS version 1.3.

OpenSSH version 3.8 and later supports Kerberos 5 authentication and authorization through NAS
Version 1.4. Any migration from previous versions of NAS (Kerberos) needs to happen before updating
OpenSSH. OpenSSH version 3.8.x will only work with NAS version 1.4 or later.

AIX has created OpenSSH with Kerberos authentication as an optional method. If the Kerberos libraries
are not installed on the system, when OpenSSH runs Kerberos authentication is skipped and OpenSSH
tries the next configured authentication method (such as AIX authentication).

After you install Kerberos, it is recommended that you read the Kerberos documentation before
configuring the Kerberos servers. For more information about how to install and administer Kerberos,
refer to the IBM Network Authentication Service Version 1.3 for AIX : Administrator's and User's Guide located
in the /usr/lpp/krb5/doc/html/lang/ADMINGD.htm path.
Related information:

OpenSSH

OpenSSH images
Use the following steps to install the OpenSSH images:
1. Go to the AIX Web Download Pack Programs website.

Note: The OpenSSH image is shipped as part of the AIX base media but the image is not installed
by default.

2. Click Downloads in the Additional information section.
3. Log in by using your ID and password to access the available packages.
4. Select OpenSSH and click Continue.

198 AIX Version 7.2: Security

http://www.openssh.com/
https://www.ibm.com/marketing/iwm/iwm/web/preLogin.do?source=aixbp

5. Accept the license agreement to download the package.
6. Extract the image package using the uncompress packagename command. For example:

uncompress OpenSSH_6.0.0.6203.tar.Z

7. Untar the package with the tar -xvf packagename command. For example:
tar -xvf OpenSSH_6.0.0.6203.tar

8. Run the inutoc command.
9. Run the smitty install command.

10. Select Install and Update Software.
11. Select Update Installed Software to Latest Level (Update All).
12. Type a dot (.) in the field for INPUT device / directory for software and press Enter.
13. Scroll down to ACCEPT new license agreements and press the Tab key to change the field to Yes.
14. Press the Enter key twice to start the installation.

The OpenSSH images are base level images, not Program Temporary Fixes (PTFs). Upon installation, all
of the previous code of the previous version is overwritten with the images of the new version.

Configuration of OpenSSH compilation
The following information discusses how the OpenSSH code is compiled for AIX.

When configuring OpenSSH for AIX Version 6.1 the output is similar to the following:
OpenSSH has been configured with the following options:

User binaries: /usr/bin
System binaries: /usr/sbin

Configuration files: /etc/ssh
Askpass program: /usr/sbin/ssh-askpass

Manual pages: /usr/man
PID file: /etc/ssh

Privilege separation chroot path: /var/empty
sshd default user PATH: /usr/bin:/bin:/usr/sbin:/sbin:/usr/

local/bin

Manpage format: man
PAM support: yes

OSF SIA support: no
KerberosV support: yes
Smartcard support: no
SELinux support: no
S/KEY support: no

TCP Wrappers support: yes
MD5 password support: no

libedit support: no
Solaris process contract support: no

Solaris project support: no
IP address in $DISPLAY hack: no

Translate v4 in v6 hack: no
BSD Auth support: no

Random number source: OpenSSL internal ONLY

Host: powerpc-ibm-aix6.1.0.0
Compiler: cc

Compiler flags: -bloadmap:file -qnostdinc -qnolm -qlist -qsource -qattr=full
Preprocessor flags: -I/gsa/ausgsa/projects/o/openssh/freeware5/openssl-0.9.8r/

include -I/gsa/ausgsa/projects/o/openssh/zlib -I/usr/include

Linker flags: -L/gsa/ausgsa/projects/o/openssh/freeware5/
lib -L/gsa/ausgsa/projects/o/openssh/zlib -L/usr/include
-Wl,-blibpath:/usr/lib:/lib

Libraries: -lcrypto -lz -lc -lcrypt -lefs -lwrap -lpam -ldl

Note: The compilation option for AIX Version 6.1 and AIX Version 7.1 are similar because the binary for
both the versions are the same.

Security 199

Using OpenSSH with Kerberos
Some initial setup is required to use OpenSSH with Kerberos.

The following steps provide information on the initial setup that is required in order to use OpenSSH
with Kerberos:
1. On your OpenSSH clients and servers, the /etc/krb5.conf file must exist. This file tells Kerberos

which KDC to use, how long of a lifetime to give each ticket, and so on. The following is an example
krb5.conf file:
[libdefaults]
ticket_lifetime = 600
default_realm = OPENSSH.AUSTIN.XYZ.COM
default_tkt_enctypes = des3-hmac-sha1 des-cbc-crc
default_tgs_enctypes = des3-hmac-sha1 des-cbc-crc

[realms]
OPENSSH.AUSTIN.xyz.COM = {

kdc = kerberos.austin.xyz.com:88
kdc = kerberos-1.austin.xyz.com:88
kdc = kerberos-2.austin.xyz.com:88
admin_server = kerberos.austin.xyz.com:749
default_domain = austin.xyz.com

}

[domain_realm]
.austin.xyz.com = OPENSSH.AUSTIN.XYZ.COM
kdc.austin.xyz.com = OPENSSH.AUSTIN.XYZ.COM

2. Also, you must add the following Kerberos services to each client machine's /etc/services file:
kerberos 88/udp kdc # Kerberos V5 KDC
kerberos 88/tcp kdc # Kerberos V5 KDC
kerberos-adm 749/tcp # Kerberos 5 admin/changepw
kerberos-adm 749/udp # Kerberos 5 admin/changepw
krb5_prop 754/tcp # Kerberos slave

propagation

3. If your KDC is using LDAP as the registry to store user information, read “LDAP authentication load
module” on page 150, and the Kerberos publications. Furthermore, make sure the following actions
are performed:
v KDC is running the LDAP client. You can start the LDAP client daemon with the secldapclntd

command.
v LDAP server is running the slapd LDAP server daemon.

4. On the OpenSSH server, edit the /etc/ssh/sshd_config file to contain the lines:
KerberosAuthentication yes
KerberosTicketCleanup yes
GSSAPIAuthentication yes
GSSAPICleanupCredentials yes
UseDNS yes

If UseDNS is set to Yes, the ssh server does a reverse host lookup to find the name of the connecting
client. This is necessary when host-based authentication is used or when you want last login
information to display host names rather than IP addresses.

Note: Some ssh sessions stall when performing reverse name lookups because the DNS servers are
unreachable. If this happens, you can skip the DNS lookups by setting UseDNS to no. If UseDNS is
not explicitly set in the /etc/ssh/sshd_config file, the default value is UseDNS yes.

5. On the SSH server, run the startsrc -g ssh command to start the ssh server daemon.
6. On the SSH client machine, run the kinit command to gain initial credentials (a TGT). You can verify

that you received a TGT by running the klist command. This shows all credentials belonging to you.
7. Connect to the server by running the ssh username@servername command.

200 AIX Version 7.2: Security

8. If Kerberos is properly configured to authenticate the user, a prompt for a password will not display,
and the user will be automatically logged into the SSH server.

Securing the network
The following sections describe how to install and configure IP Security; how to identify necessary and
unnecessary network services; and auditing and monitoring network security.

TCP/IP security
If you installed the Transmission Control Protocol/Internet Protocol (TCP/IP) and Network File System
(NFS) software, you can configure your system to communicate over a network.

This guide does not describe the basic concepts of TCP/IP, but rather describes security-related concerns
of TCP/IP. For information on installing and the initial configuration of TCP/IP, refer to the Transmission
Control Protocol/Internet Protocol section in Networks and communication management.

For any number of reasons, the person who administers your system might have to meet a certain level
of security. For instance, the security level might be a matter of corporate policy. Or a system might need
access to government systems and thus be required to communicate at a certain security level. These
security standards might be applied to the network, the operating system, application software, even
programs written by the person who administers your system.

This section describes the security features provided with TCP/IP, both in standard mode and as a secure
system, and discusses some security considerations that are appropriate in a network environment.

After you install TCP/IP and NFS software, use the System Management Interface Tool (SMIT) tcpip fast
path to configure your system.

For more information on the dacinet command, refer to the Commands Reference.

Operating system-specific security
Many of the security features, such as network access control and network auditing, available for TCP/IP
are based on those available through the operating system.

The following sections outline TCP/IP security.

Network access control:

The security policy for networking is an extension of the security policy for the operating system and
consists of user authentication, connection authentication, and data security.

It consists of the following major components:
v User authentication is provided at the remote host by a user name and password in the same way as

when a user logs in to the local system. Trusted TCP/IP commands, such as ftp, rexec, and telnet,
have the same requirements and undergo the same verification process as trusted commands in the
operating system.

v Connection authentication is provided to ensure that the remote host has the expected Internet Protocol
(IP) address and name. This prevents a remote host from masquerading as another remote host.

v Data import and export security permits data at a specified security level to flow to and from network
interface adapters at the same security and authority levels. For example, top-secret data can flow only
between adapters that are set to the top-secret security level.

Network auditing:

Network auditing is provided by TCP/IP, using the audit subsystem to audit application programs.

Security 201

The purpose of auditing is to record those actions that affect the security of the system and the user
responsible for those actions.

The following application events are audited:
v Access the network
v Connection
v Export data
v Import data

Creation and deletion of objects are audited by the operating system. Application audit records suspend
and resume auditing to avoid redundant auditing by the kernel.

Trusted path, trusted shell, and Secure Attention Key:

The operating system provides the trusted path to prevent unauthorized programs from reading data from
a user terminal. This path is used when a secure communication path with the system is required, such
as when you are changing passwords or logging in to the system.

The operating system also provides the trusted shell (tsh), which runs only trusted programs that have
been tested and verified as secure. TCP/IP supports both of these features, along with the secure attention
key (SAK), which establishes the environment necessary for secure communication between you and the
system. The local SAK is available whenever you are using TCP/IP. A remote SAK is available through
the telnet command.

The local SAK has the same function in telnet that it has in other operating system application programs:
it ends the telnet process and all other processes associated with the terminal in which telnet was
running. Inside the telnet program, however, you can send a request for a trusted path to the remote
system using the telnet send sak command (while in telnet command mode). You can also define a
single key to initiate the SAK request using the telnet set sak command.

For more information about the Trusted Computing Base, see “Trusted Computing Base” on page 1.

TCP/IP command security
Some commands in TCP/IP provide a secure environment during operation. These commands are ftp,
rexec, and telnet.

The ftp function provides security during file transfer. The rexec command provides a secure
environment for running commands on a foreign host. The telnet function provides security for login to a
foreign host.

The ftp, rexec, and telnet commands provide security during their operation only. That is, they do not set
up a secure environment for use with other commands. For securing your system for other operations,
use the securetcpip command. This command gives you the ability to secure your system by disabling
the nontrusted daemons and applications, and by giving you the option of securing your IP layer
network protocol as well.

The ftp, rexec, securetcpip, and telnet commands provide the following forms of system and data
security:

ftp The ftp command provides a secure environment for transferring files. When a user invokes the
ftp command to a foreign host, the user is prompted for a login ID. A default login ID is shown:
the user's current login ID on the local host. The user is prompted for a password for the remote
host.

202 AIX Version 7.2: Security

The automatic login process searches the local user's $HOME/.netrc file for the user's ID and
password to use at the foreign host. For security, the permissions on the $HOME/.netrc file must
be set to 600 (read and write by owner only). Otherwise, automatic login fails.

Note: Because use of the .netrc file requires storage of passwords in a nonencrypted file, the
automatic login feature of the ftp command is not available when your system has been
configured with the securetcpip command. This feature can be reenabled by removing the ftp
command from the tcpip stanza in the /etc/security/config file.

To use the file transfer function, the ftp command requires two TCP/IP connections, one for the
File Transfer Protocol (FTP) and one for data transfer. The protocol connection is primary and is
secure because it is established on reliable communicating ports. The secondary connection is
needed for the actual transfer of data, and both the local and remote host verify that the other
end of this connection is established with the same host as the primary connection. If the primary
and secondary connections are not established with the same host, the ftp command first displays
an error message stating that the data connection was not authenticated, and then it exits. This
verification of the secondary connection prevents a third host from intercepting data intended for
another host.

rexec The rexec command provides a secure environment for executing commands on a foreign host.
The user is prompted for both a login ID and a password.

An automatic login feature causes the rexec command to search the local user's $HOME/.netrc file
for the user's ID and password on a foreign host. For security, the permissions on the
$HOME/.netrc file must be set to 600 (read and write by owner only). Otherwise, automatic login
fails.

Note: Because use of the .netrc file requires storage of passwords in a nonencrypted file, the
automatic login feature of rexec command is not available when your system is operating in
secure. This feature can be reenabled by removing the entry from the tcpip stanza in the
/etc/security/config file.

securetcpip
The securetcpip command enables TCP/IP security features. Access to commands that are not
trusted is removed from the system when this command is issued. Each of the following
commands is removed by running the securetcpip command:
v rlogin and rlogind

v rcp, rsh, and rshd

v tftp and tftpd

v trpt

The securetcpip command is used to convert a system from the standard level of security to a
higher security level. After your system has been converted, you need not issue the securetcpip
command again unless you reinstall TCP/IP.

telnet or tn
The telnet (TELNET) command provides a secure environment for login to a foreign host. The
user is prompted for both a login ID and a password. The user's terminal is treated just like a
terminal connected directly to the host. That is, access to the terminal is controlled by permission
bits. Other users (group and other) do not have read access to the terminal, but they can write
messages to it if the owner gives them write permission. The telnet command also provides
access to a trusted shell on the remote system through the SAK. This key sequence differs from
the sequence that invokes the local trusted path and can be defined within the telnet command.

Remote command execution access:

Users on the hosts listed in the /etc/hosts.equiv file can run certain commands on your system without
supplying a password.

Security 203

The following table provides information about how to list, add, and remove remote hosts using the
SMIT interface or the command line interface.

Table 14. Remote command execution access tasks

Task SMIT fast path Command or file

List Remote Hosts That
Have Command Execution
Access

smit lshostsequiv view /etc/hosts.equiv file

Add a Remote Host for
Command Execution Access

smit mkhostsequiv edit /etc/hosts.equiv filenote

Remove a Remote Host
from Command Execution
Access

smit rmhostsequiv edit /etc/hosts.equiv filenote

Note: For more information about these file procedures, see the "hosts.equiv File Format for TCP/IP" in
the Files Reference.

Restricted file transfer program users:

Users listed in the /etc/ftpusers file are protected from remote FTP access. For example, suppose that
user A is logged into a remote system, and he knows the password of user B on your system. If user B is
listed in the /etc/ftpusers file, user A cannot FTP files to or from user B's account, even though user A
knows user B's password.

The following table provides information about how to list, add, and remove restricted users using SMIT
or the command line.

Remote FTP user tasks

Task SMIT fast path Command or file

List Restricted FTP Users smit lsftpusers view /etc/ftpusers file

Add a Restricted User smit mkftpusers edit /etc/ftpusers fileNote

Remove a Restricted User smit rmftpusers edit /etc/ftpusers fileNote

Note: For more information about these file procedures, see the "ftpusers File Format for TCP/IP" in the
Files Reference.

Trusted processes
A trusted program, or trusted process, is a shell script, a daemon, or a program that meets a particular
standard of security. These security standards are set and maintained by the U.S. Department of Defense,
which also certifies some trusted programs.

Trusted programs are trusted at different levels. Security levels include A1, B1, B2, B3, C1, C2, and D,
with level A1 providing the highest security level. Each security level must meet certain requirements.
For example, the C2 level of security incorporates the following standards:

program integrity
Ensures that the process performs exactly as intended.

modularity
Process source code is separated into modules that cannot be directly affected or accessed by
other modules.

principle of least privilege
States that at all times a user is operating at the lowest level of privilege authorized. That is, if a
user has access only to view a certain file, then the user does not inadvertently also have access
to alter that file.

204 AIX Version 7.2: Security

limitation of object reuse
Keeps a user from, for example, accidentally finding a section of memory that has been flagged
for overwriting but not yet cleared, and which might contain sensitive material.

TCP/IP contains several trusted daemons and many nontrusted daemons.

Examples of trusted daemons are as follows:
v ftpd

v rexecd

v telnetd

Examples of nontrusted daemons are as follows:
v rshd

v rlogind

v tftpd

For a system to be trusted, it must operate with a trusted computing base; that is, for a single host, the
machine must be secure. For a network, all file servers, gateways, and other hosts must be secure.

Network Trusted Computing Base
The Network Trusted Computing Base (NTCB) consists of hardware and software for ensuring network
security. This section defines the components of the NTCB as they relate to TCP/IP.

The hardware security features for the network are provided by the network adapters used with TCP/IP.
These adapters control incoming data by receiving only data destined for the local system and broadcast
data receivable by all systems.

The software component of the NTCB consists of only those programs that are considered as trusted. The
programs and associated files that are part of a secure system are listed in the following tables on a
directory-by-directory basis.

/etc directory

Name Owner Group Mode Permissions

gated.conf root system 0664 rw-rw-r—

gateways root system 0664 rw-rw-r—

hosts root system 0664 rw-rw-r—

hosts.equiv root system 0664 rw-rw-r—

inetd.conf root system 0644 rw-r—r—

named.conf root system 0644 rw-r—r—

named.data root system 0664 rw-rw-r—

networks root system 0664 rw-rw-r—

protocols root system 0644 rw-r—r—

rc.tcpip root system 0774 rwxrwxr—

resolv.conf root system 0644 rw-rw-r—

services root system 0644 rw-r—r—

3270.keys root system 0664 rw-rw-r—

3270keys.rt root system 0664 rw-rw-r—

Security 205

/usr/bin directory

Name Owner Group Mode Permissions

host root system 4555 r-sr-xr-x

hostid bin bin 0555 r-xr-xr-x

hostname bin bin 0555 r-xr-xr-x

finger root system 0755 rwxr-xr-x

ftp root system 4555 r-sr-xr-x

netstat root bin 4555 r-sr-xr-x

rexec root bin 4555 r-sr-xr-x

ruptime root system 4555 r-sr-xr-x

rwho root system 4555 r-sr-xr-x

talk bin bin 0555 r-xr-xr-x

telnet root system 4555 r-sr-xr-x

/usr/sbin directory

Name Owner Group Mode Permissions

arp root system 4555 r-sr-xr-x

fingerd root system 0554 r-xr-xr—

ftpd root system 4554 r-sr-xr—

gated root system 4554 r-sr-xr—

ifconfig bin bin 0555 r-xr-xr-x

inetd root system 4554 r-sr-xr—

named root system 4554 r-sr-x—

ping root system 4555 r-sr-xr-x

rexecd root system 4554 r-sr-xr—

route root system 4554 r-sr-xr—

routed root system 0554 r-xr-x—-

rwhod root system 4554 r-sr-xr—

securetcpip root system 0554 r-xr-xr—

setclock root system 4555 r-sr-xr-x

syslogd root system 0554 r-xr-xr—

talkd root system 4554 r-sr-xr—

telnetd root system 4554 r-sr-xr—

/usr/ucb directory

Name Owner Group Mode Permissions

tn root system 4555 r-sr-xr-x

206 AIX Version 7.2: Security

/var/spool/rwho directory

Name Owner Group Mode Permissions

rwho (directory) root system 0755 drwxr-xr-x

Data security and information protection
The security feature for TCP/IP does not encrypt user data transmitted through the network.

Identify any risk in communication that could result in the disclosure of passwords and other sensitive
information, and based on that risk, apply appropriate countermeasures.

Using the TCP/IP security feature in a Department of Defense (DOD) environment might require
adherence to DOD 5200.5 and NCSD-11 for communications security.

User based TCP port access control with discretionary access control for internet
ports
Discretionary Access Control for Internet Ports (DACinet) features user-based access control for TCP ports
for communication between AIX hosts.

AIX can use an additional TCP header to transport user and group information between systems. The
DACinet feature allows the administrator on the destination system to control access based on the
destination port, the originating user id and host.

In addition, the DACinet feature allows the administrator to restrict local ports for root only usage. UNIX
systems like AIX treat ports below 1024 as privileged ports which can only be opened by root. AIX allows
you to specify additional ports above 1024 which can be opened only by root, therefore preventing users
from running servers on well known ports.

Depending on the settings a non-DACinet system may or may not be able to connect to a DACinet
system. Access is denied in the initial state of the DACinet feature. Once DACinet has been enabled, there
is no way to disable DACinet.

The dacinet command accepts addresses which are specified as hostnames, dotted decimal host
addresses, or network addresses followed by the length of the network prefix.

The following example specifies a single host which is known by the fully qualified host name
host.domain.org:
host.domain.org

The following example specifies a single host which is known by the IP address 10.0.0.1:
10.0.0.1

The following example specifies the entire network which has the first 24 bits (the length of the network
prefix) with a value of 10.0.0.0:
10.0.0.0/24

This network includes all IP addresses between 10.0.0.1 and 10.0.0.254.

Access control for TCP based services:

DACinet uses the /etc/rc.dacinet startup file, and the configuration files it uses are /etc/security/priv,
/etc/security/services, and /etc/security/acl.

Ports listed in /etc/security/services are considered exempt from the ACL checks. The file has the
same format as /etc/services. The easiest way to initialize it is to copy the file from /etc to

Security 207

/etc/security and then delete all the ports for which ACLs should be applied. The ACLs are stored in
two places. The currently active ACLs are stored in the kernel and can be read by running dacinet aclls.
ACLs that will be reactivated at the next system boot by /etc/rc.tcpip are stored in /etc/security/acl.
The following format is used:
service host/prefix-length [user|group]

Where the service can be specified either numerically or as listed in /etc/services, the host can be given
either as a host name or a network address with a subnet mask specification and the user or group is
specified with the u: or g: prefix. When no user or group is specified, then the ACL takes only the
sending host into account. Prefixing the service with a - will disable access explicitly. ACLs are evaluated
according to the first match. So you could specify access for a group of users, but explicitly deny it for a
user in the group by placing the rule for this user in front of the group rule.

The /etc/services file includes two entries with port number values which are not supported in AIX.
The system administrator must remove both lines from that file prior to executing the mkCCadmin
command. Remove the following lines from the /etc/services file:
sco_printer 70000/tcp sco_spooler # For System V print IPC
sco_s5_port 70001/tcp lpNet_s5_port # For future use

DACinet usage examples:

For example, when using DACinet to restrict access to port TCP/25 inbound to root only with the
DACinet feature, then only root users from other AIX hosts can access this port, therefore limiting the
possibilities of regular users to spoof e-mail by just telneting to port TCP/25 on the victim.

The following example shows how to configure the X protocol (X11) for root only access. Make sure that
the X11 entry in /etc/security/services is removed, so that the ACLs will apply for this service.

Assuming a subnet of 10.1.1.0/24 for all the connected systems, the ACL entries to restrict access to the
root user only for X (TCP/6000) in /etc/security/acl would be as follows:

6000 10.1.1.0/24 u:root

When limiting Telnet service to users in the group friends, no matter from which system they are coming
from, use the following ACL entry after having removed the telnet entry from /etc/security/services:
telnet 0.0.0.0/0 g:friends

Disallow user fred access to the web server, but allow everyone else access:
-80 0.0.0.0/0 u:fred
80 0.0.0.0/0

Privileged ports for running local services:

To prevent regular users from running servers at specific ports, these ports can be designated as
privileged.

Normally any user can open any port above 1024. For example, a user could place a server at port 8080,
which is quite often used to run Web proxies or at 1080 where one typically finds a SOCKS server. The
dacinet setpriv command can be used to add privileged ports to the running system. Ports that are to be
designated as privileged when the system starts have to be listed in /etc/security/priv.

Ports can be listed in this file either with their symbolic name as defined in /etc/services or by
specifying the port number. The following entries would disallow non-root users to run SOCKS servers
or Lotus Notes® servers on their usual ports:
1080
lotusnote

208 AIX Version 7.2: Security

Note: This feature does not prevent the user from running the programs. It will only prevent the user
from running the services at the well known ports where those services are typically expected.

Network services
Information about identifying and securing network services with open communication ports is shown.

Ports usage
The following table describes known port usage on the AIX operating system.

Note: This list has been established by reviewing multiple AIX systems with different configurations of
software installed.

The following list might not include port usage for all software existing on the AIX operating system:

Port/Protocol ServiceName Aliases

13/tcp daytime Daytime (RFC 867)

13/udp daytime Daytime (RFC 867)

21/tcp ftp File Transfer [Control]

21/udp ftp File Transfer [Control]

23/udp telnet Telnet

23/udp telnet Telnet

25/tcp smtp Simple Mail Transfer

25/udp smtp Simple Mail Transfer

37/tcp time Time

37/udp time Time

111/tcp sunrpc SUN Remote Procedure Call

111/udp sunrpc SUN Remote Procedure Call

161/tcp snmp SNMP

161/udp snmp SNMP

199/tcp smux SMUX

199/udp smux SMUX

512/tcp exec remote process execution;

513/tcp login remote login a la telnet;

514/tcp shell cmd

514/udp syslog Syslog

518/tcp ntalk Talk

518/udp ntalk Talk

657/tcp rmc RMC

657/udp rmc RMC

1334/tcp writesrv writesrv

1334/udp writesrv writesrv

2279/tcp xmquery xmquery

2279/udp xmquery xmquery

32768/tcp filenet-tms FileNet® TMS

32768/udp filenet-tms FileNet TMS

32769/tcp filenet-rpc FileNet RPC

32769/udp filenet-rpc FileNet RPC

32770/tcp filenet-nch FileNet NCH

32770/udp filenet-nch FileNet NCH

Security 209

Port/Protocol ServiceName Aliases

32771/tcp filenet-rmi FileNet RMI

32771/udp filenet-rmi FileNet RMI

32772/tcp filenet-pa FileNet Process Analyzer

32772/udp filenet-pa FileNet Process Analyzer

32773/tcp filenet-cm FileNet Component Manager

32773/udp filenet-cm FileNet Component Manager

32774/tcp filenet-re FileNet Rules Engine

32774/udp filenet-re FileNET Rules Engine FileNet Rules Engine

32775/tcp filenet-pch Performance Clearinghouse

32775/udp filenet-pch Performance Clearinghouse

32776/tcp filenet-peior FileNet BPM IOR

32776/udp filenet-peior FileNet BPM IOR

32777/tcp filenet-obrok FileNet BPM CORBA

32777/udp filenet-obrok FileNet BPM CORBA

Identifying network services with open communication ports
Client-server applications open communication ports on the server, allowing the applications to listen to
incoming client requests.

Because open ports are vulnerable to potential security attacks, identify which applications have open
ports and close those ports that are open unnecessarily. This practice is useful because it allows you to
understand what systems are being made available to anyone who has access to the Internet.

To determine which ports are open, follow these steps:
1. Identify the services by using the netstat command as follows:

netstat -af inet

The following is an example of this command output. The last column of the netstat command output
indicates the state of each service. Services that are waiting for incoming connections are in the
LISTEN state.

This is an example of the command output when running the netstat command.

Active Internet connection (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp4 0 0 *.echo *.* LISTEN

tcp4 0 0 *.discard *.* LISTEN

tcp4 0 0 *.daytime *.* LISTEN

tcp 0 0 *.chargen *.* LISTEN

tcp 0 0 *.ftp *.* LISTEN

tcp4 0 0 *.telnet *.* LISTEN

tcp4 0 0 *.smtp *.* LISTEN

tcp4 0 0 *.time *.* LISTEN

tcp4 0 0 *.www *.* LISTEN

tcp4 0 0 *.sunrpc *.* LISTEN

tcp 0 0 *.smux *.* LISTEN

tcp 0 0 *.exec *.* LISTEN

210 AIX Version 7.2: Security

This is an example of the command output when running the netstat command.

Active Internet connection (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 *.login *.* LISTEN

tcp4 0 0 *.shell *.* LISTEN

tcp4 0 0 *.klogin *.* LISTEN

udp4 0 0 *.kshell *.* LISTEN

udp4 0 0 *.echo *.*

udp4 0 0 *.discard *.*

udp4 0 0 *.daytime *.*

udp4 0 0 *.chargen *.*

udp4 0 0 *.time *.*

udp4 0 0 *.bootpc *.*

udp4 0 0 *.sunrpc *.*

udp4 0 0 255.255.255.255.ntp *.*

udp4 0 0 1.23.123.234.ntp *.*

udp4 0 0 localhost.domain.ntp *.*

udp4 0 0 name.domain..ntp *.*

....................................

2. Open the /etc/services file and check the Internet Assigned Numbers Authority (IANA) services to
map the service to port numbers within the operating system.
The following is a sample fragment of the /etc/services file:
tcpmux 1/tcp # TCP Port Service Multiplexer
tcpmux 1/tcp # TCP Port Service Multiplexer
Compressnet 2/tcp # Management Utility
Compressnet 2/udp # Management Utility
Compressnet 3/tcp # Compression Process
Compressnet 3/udp Compression Process
Echo 7/tcp
Echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
..............
rfe 5002/tcp # Radio Free Ethernet
rfe 5002/udp # Radio Free Ethernet
rmonitor_secure 5145/tcp
rmonitor_secure 5145/udp
pad12sim 5236/tcp
pad12sim 5236/udp
sub-process 6111/tcp # HP SoftBench Sub-Process Cntl.
sub-process 6111/udp # HP SoftBench Sub-Process Cntl.
xdsxdm 6558/ucp
xdsxdm 6558/tcp
afs3-fileserver 7000/tcp # File Server Itself
afs3-fileserver 7000/udp # File Server Itself
af3-callback 7001/tcp # Callbacks to Cache Managers
af3-callback 7001/udp # Callbacks to Cache Managers

3. Close the unnecessary ports by removing the running services.

Note: Port 657 is used by Resource Monitoring and Control (RMC) for communication between nodes.
You cannot block or otherwise restrict this port.

Security 211

Identifying TCP and UDP sockets
Use the lsof command, a variant of the netstat -af command to identify TCP sockets that are in the
LISTEN state and idle UDP sockets that are waiting for data to arrive.

For example, to display the TCP sockets in the LISTEN state and the UDP sockets in the IDLE state, run
the lsof command as follows:
lsof -i | egrep "COMMAND|LISTEN|UDP"

The output produced is similar to the following:

Command PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

dtlogin 2122 root 5u IPv4 0x70053c00 0t0 UDP *:xdmcp

dtlogin 2122 root 6u IPv4 0x70054adc 0t0 TCP *:32768(LISTEN)

syslogd 2730 root 4u IPv4 0x70053600 0t0 UDP *:syslog

X 2880 root 6u IPv4 0x70054adc 0t0 TCP *:32768(LISTEN)

X 2880 root 8u IPv4 0x700546dc 0t0 TCP *:6000(LISTEN)

dtlogin 3882 root 6u IPv4 0x70054adc 0t0 TCP *:32768(LISTEN)

dtgreet 4656 root 6u IPv4 0x70054adc 0t0 TCP *:32768(LISTEN)

After identifying the process ID, you can obtain more information about the program by running the
following command:
" # ps -fp PID#"

The output contains the path to the command name, which you can use to access the program's man
page.

Internet Protocol security
IP Security enables secure communications over the Internet and within company networks by securing
data traffic at the IP layer.

IP security overview
IP security allows individual users or organizations to secure traffic for all applications, without having to
make any modifications to the applications. Therefore, the transmission of any data, such as e-mail or
application-specific company data, can be made secure.

IP security and the operating system:

The operating system uses IP Security (IPsec), which is an open, standard security technology developed
by the Internet Engineering Task Force (IETF).

IPsec provides cryptography-based protection of all data at the IP layer of the communications stack. No
changes are needed for existing applications. IPsec is the industry-standard network-security framework
chosen by the IETF for both the IP Version 4 and 6 environments.

IPsec protects your data traffic using the following cryptographic techniques:

Authentication
Process by which the identity of a host or end point is verified

Integrity Checking
Process of ensuring that no modifications were made to the data while in transit across the
network

212 AIX Version 7.2: Security

Encryption
Process of ensuring privacy by "hiding" data and private IP addresses while in transit across the
network

Authentication algorithms prove the identity of the sender and data integrity by using a cryptographic
hash function to process a packet of data (with the fixed IP header fields included) using a secret key to
produce a unique digest. On the receiver side, the data is processed using the same function and key. If
either the data has been altered or the sender key is not valid, the datagram is discarded.

Encryption uses a cryptographic algorithm to modify and randomize the data using a certain algorithm
and key to produce encrypted data known as cyphertext. Encryption makes the data unreadable while in
transit. After it is received, the data is recovered using the same algorithm and key (with symmetric
encryption algorithms). Encryption must occur with authentication to verify the data integrity of the
encrypted data.

These basic services are implemented in IPsec by the use of the Encapsulating Security Payload (ESP) and
the Authentication Header (AH). ESP provides confidentiality by encrypting the original IP packet,
building an ESP header, and putting the cyphertext in the ESP payload.

The AH can be used alone for authentication and integrity-checking if confidentiality is not an issue. With
AH, the static fields of the IP header and the data have a hash algorithm applied to compute a keyed
digest. The receiver uses its key to compute and compare the digest to make sure the packet is unaltered
and the sender's identity is authenticated.

IP security features:

The following are features of IP Security.

The following features are available with Internet Key Exchange for the AIX operating system:
v Supports AES 128-bit, 192-bit, and 256-bit algorithms.
v Hardware acceleration with the 10/100 Mbps Ethernet PCI Adapter II.
v AH support by using RFC 2402, and ESP support by using RFC 2406.
v Manual tunnels can be configured to provide interoperability with other systems that do not support

the automatic IKE key refreshment method, and for use of IP Version 6 tunnels.
v Tunnel mode and transport mode of encapsulation for host or gateway tunnels.
v Authentication algorithms of HMAC (Hashed Message Authentication Code) MD5 (Message Digest 5)

and HMAC SHA (Secure Hash Algorithm).
v Encryption algorithms include 56-bit Data Encryption Standard (DES) Cipher Block Chaining (CBC)

with 64-bit initial vector (IV), Triple DES, DES CBC 4 (32-bit IV), and AES CBC.
v Dual IP Stack Support (IP version 4 and IP version 6).
v Both IP Version 4 and IP Version 6 traffic can be encapsulated and filtered. Because the IP stacks are

separate, the IP Security function for each stack can be configured independently.
v Filtering of secure and nonsecure traffic by various IP characteristics such as source and destination IP

addresses, interface, protocol, port numbers, and more.
v Automatic filter-rule creation and deletion with most tunnel types.
v Use of host names for the destination address when you define tunnels and filter rules. The host names

are converted to IP addresses automatically (when DNS is available).
v Logging of IP Security events to syslog.
v Use of system traces and statistics for problem determination.
v User-defined default action allows the user to specify whether traffic that does not match defined

tunnels is allowed.

Security 213

The following additional features are available with Internet Key Exchange for AIX 6.1 TL 05, or later:
v IPSec support by using RFC 4301, AH support by using RFC 4302, and ESP support by using RFC 4303
v Authentication algorithms of Cipher-based Message Authentication Code (CMAC) AES XCBC
v Encryption algorithms include AES 128-bit, 192-bit, 256-bit GCM (16-bit IV), AES-128-GMAC,

AES-192-GMAC, and AES-256-GMAC
v Port range support for filter rules
v Extended Sequence Numbers

Internet Key Exchange features:

The following are features that are available with Internet Key Exchange for AIX.

The following additional features are available with Internet Key Exchange for AIX 6.1, or later:
v AH support for HMAC SHA2 256-bit hash (TL 04, or later).
v ESP encryption support GCM AES 128-bit, 192-bit, 256-bit with (16 bit IV), GMAC AES 128-bit, 192-bit,

256-bit algorithms; ESP authentication support with HMAC MD5 and HMAC SHA1 (TL 04, or later).
v IKEv1 (RFC2409) and IKEv2 (RFC4306) are supported (TL 02, or later). IKEv1 is supported by the

isakmpd daemon and IKEv2 is supported by the ikev2d daemon (TL 02, or later). The IKEv1 and
IKEv2 tunnels can co-exist.

v Support for integrity algorithms CMAC_AES_XCBC and HMAC_SHA2_256 (TL 04, or later).
v Support for PRF algorithm PRF_SHA2_256 (TL 04, or later).
v Support for Diffie Hellman groups 14, 19 and 24 (TL 04, or later).

Security associations:

The building block on which secure communications is built is a concept known as a security association.
Security associations relate a specific set of security parameters to a type of traffic.

With data protected by IP Security, a separate security association exists for each direction and for each
header type, AH or ESP. The information contained in the security association includes the IP addresses
of the communicating parties, a unique identifier known as the Security Parameters Index (SPI), the
algorithms selected for authentication or encryption, the authentication and encryption keys, and the key
lifetimes. The following figure shows the security associations between Host A and Host B.

Figure 6. Establishment of a Secure Tunnel Between Hosts A and B

214 AIX Version 7.2: Security

This illustration shows a virtual tunnel running between Host A and Host B. Security association A is an
arrow directed from Host A to Host B. Security association B is an arrow directed from Host B to Host A.
A Security association consists of the Destination Address, SPI, Key, Crypto Algorithm and Format,
Authentication Algorithm, and Key Lifetime.

The goal of key management is to negotiate and compute the security associations that protect IP traffic.

Tunnels and key management:

Use a tunnel to negotiate and manage the security associations that are required to set up secure
communication between two hosts.

The following types of tunnels are supported, each using a different key management technique:
v IKE tunnels (dynamically changing keys, IETF standard)
v Manual tunnels (static, persistent keys, IETF standard)

Internet Key Exchange tunnel support:

IKE Tunnels are based on the Internet Security Association and Key Management Protocol
(ISAKMP)/Oakley standards developed by the IETF. With this protocol, security parameters are
negotiated and refreshed, and keys are exchanged securely.

The following types of authentication are supported:
v Preshared key.
v X.509v3 digital certificate signatures.
v On AIX 6.1 TL 04, or later, IKEv2 supports ECDSA-256 digital certificate signatures as part of the

X509v3 authentication method that is based on digital certificates.

The negotiation uses a two-phase approach. Phase 1 authenticates the communicating parties, and
specifies the algorithms to be used for securely communicating in phase 2. During phase 2, IP Security
parameters to be used during data transfer are negotiated, and security associations and keys are created
and exchanged.

The following table shows the authentication algorithms that can be used with the AH and ESP security
protocols for IKE tunnel support.

Table 15. Authentication algorithms for IKE tunnel support

Algorithm AH IP Version 4 & 6 ESP IP Version 4 & 6

HMAC MD5 X X

HMAC SHA1 X X

DES CBC 8 X

Triple DES CBC X

AES CBC (128, 192, 256) X

ESP Null X

AES-XCBC-MAC-96 X X

AES GCM (128, 192, 256) X

AES GMAC (128, 192, 256) X

ESP_ENCR_NULL_
AUTH_AES_GMAC

X

Security 215

Manual tunnel support:

Manual tunnels provide backward compatibility, and they interoperate with machines that do not support
IKE key management protocols. The disadvantage of manual tunnels is that the key values are static. The
encryption and authentication keys are the same for the life of the tunnel and must be manually updated.

The following table shows the authentication algorithms that can be used with the AH and ESP security
protocols for manual tunnel support.

Algorithm AH IP Version 4 AH IP Version 6 ESP IP Version 4 ESP IP Version 6

HMAC MD5 X X X X

HMAC SHA1 X X X X

AES CBC (128, 192,
256)

X X

Triple DES CBC X X

DES CBC 8 X X

DES CBC 4 X X

Because IKE tunnels offer more effective security, IKE is the preferred key management method.

Native filtering capability:

Filtering is a basic function in which incoming and outgoing packets can be accepted or denied based on
a variety of characteristics. This allows a user or system administrator to configure the host to control the
traffic between this host and other hosts.

Filtering is done on a variety of packet properties, such as source and destination addresses, IP version (4
or 6), subnet masks, protocol, port, routing characteristics, fragmentation, interface, and tunnel definition.

Rules, known as filter rules, are used to associate certain kinds of traffic with a particular tunnel. In a
basic configuration for manual tunnels, when a user defines a host-to-host tunnel, filter rules are
autogenerated to direct all traffic from that host through the secure tunnel. If more specific types of traffic
are desired (for instance, subnet to subnet), the filter rules can be edited or replaced to allow precise
control of the traffic using a particular tunnel.

For IKE tunnels, the filter rules are also automatically generated and inserted in the filter table once the
tunnel is activated.

Similarly, when the tunnel is modified or deleted, the filter rules for that tunnel are automatically deleted,
which simplifies IP Security configuration and helps reduce human error. Tunnel definitions can be
propagated and shared among machines and firewalls using import and export utilities, which is helpful
in the administration of a large number of machines.

Filter rules associate particular types of traffic with a tunnel, but data being filtered does not necessarily
need to travel in a tunnel. This aspect of filter rules lets the operating system provide basic firewall
functionality to those who want to restrict traffic to or from their machine in an intranet or in a network
that does not have the protection of a true firewall. In this scenario, filter rules provide a second barrier
of protection around a group of machines.

After the filter rules are generated, they are stored in a table and loaded into the kernel. When packets
are ready to be sent or received from the network, the filter rules are checked in the list from top to
bottom to determine whether the packet should be permitted, denied, or sent through a tunnel. The
criteria of the rule is compared to the packet characteristics until a match is found or the default rule is
reached.

216 AIX Version 7.2: Security

The IP Security function also implements filtering of non-secure packets based on very granular,
user-defined criteria, which allows the control of IP traffic between networks and machines that do not
require the authentication or encryption properties of IP Security.

Digital certificate support:

IP Security supports the use of X.509 Version 3 digital certificates.

The Key Manager tool manages certificate requests, maintains the key database, and performs other
administrative functions.

Digital certificates are described in Digital Certificate Configuration. The Key Manager and its functions
are described in Using the IBM Key Manager Tool

Virtual private networks and IP security:

A virtual private network (VPN) securely extends a private intranet across a public network such as the
Internet.

VPNs convey information across what is essentially a private tunnel through the Internet to and from
remote users, branch offices, and business partners/suppliers. Companies can opt for Internet access
through Internet service providers (ISPs) using direct lines or local telephone numbers and eliminate
more expensive leased lines, long-distance calls, and toll-free telephone numbers. A VPN solution can use
the IPsec security standard because IPsec is the IETF-chosen industry standard network security
framework for both the IP Version 4 and 6 environments, and no changes are needed for existing
applications.

A recommended resource for planning the implementation of a VPN in the AIX operating system is
Chapter 9 of A Comprehensive Guide to Virtual Private Networks, Volume III: Cross-Platform Key and Policy
Management, ISBN SG24-5309-00. This guide is also available on the Internet World Wide Web at
http://www.redbooks.ibm.com/redbooks/SG245309.html.

Installing the IP security feature
The IP Security feature in AIX is separately installable and loadable.

The file sets that must be installed are as follows:
v bos.net.ipsec.rte (The runtime environment for the kernel IP Security environment and commands)
v bos.msg.LANG.net.ipsec (where LANG is the specified language, such as en_US)
v bos.net.ipsec.keymgt

v clic.rte (CryptoLite for C, fileset for DES, triple DES and AES encryption)

For IKE digital signature support, you must also install the gskit.rte fileset or gskkm.rte from the
Expansion Pack.

After it is installed, IP Security can be separately loaded for IP Version 4 and IP Version 6, either by using
the recommended procedure that is provided in “Loading IP security” or by using the mkdev command.

Loading IP security:

Use SMIT to automatically load the IP security modules when IP Security is started. Also, SMIT ensures
that the kernel extensions and IKE daemons are loaded in the correct order.

Note: Loading IP Security enables the filtering function. Before loading, it is important to ensure the
correct filter rules are created. Otherwise, all outside communication might be blocked.

Security 217

If the loading completes successfully, the lsdev command shows the IP Security devices as Available.
lsdev -C -c ipsec

ipsec_v4 Available IP Version 4 Security Extension
ipsec_v6 Available IP Version 6 Security Extension

After the IP Security kernel extension has been loaded, tunnels and filters are ready to be configured.

Planning IP security configuration
To configure IP Security, plan to configure the tunnels and filters first.

When a simple tunnel is defined for all traffic to use, the filter rules can be automatically generated. If
more complex filtering is desired, filter rules can be configured separately.

You can configure IP Security using the Virtual Private Network plug-in or the System Management
Interface Tool (SMIT). If using SMIT, the following fast paths are available:

smit ips4_basic
Basic configuration for IP version 4

smit ips6_basic
Basic configuration for IP version 6

Before configuring IP Security for your site, you must decide what method you intend to use; for
example, whether you prefer to use tunnels or filters (or both), which type of tunnel best suits your
needs, and so on. The following sections provide information you must understand before making these
decisions:

Hardware acceleration:

The 10/100 Mbps Ethernet PCI Adapter II (Feature code 4962) offers standards-based IP Security and is
designed to offload IP Security functions from the AIX operating system.

When the 10/100 Mbps Ethernet PCI Adapter II is present in the AIX system, the IP Security stack uses
the following capabilities of the adapter:
v Encryption and decryption using DES or Triple DES algorithms
v Authentication using the MD5 or SHA-1 algorithms
v Storage of the security-association information

The functions on the adapter are used instead of the software algorithms. The 10/100 Mbps Ethernet PCI
Adapter II is available for manual and IKE tunnels.

The IP Security hardware acceleration feature is available in the 5.1.0.25 or later level of the
bos.net.ipsec.rte and devices.pci.1410ff01.rte file sets.

There is a limit on the number of security associations that can be offloaded to the network adapter on
the receive side (inbound traffic). On the transmit side (outbound traffic), all packets that use a supported
configuration are offloaded to the adapter. Some tunnel configurations can not be offloaded to the
adapter.

The 10/100 Mbps Ethernet PCI Adapter II supports the following features:
v DES, 3DES, or NULL encryption through ESP
v HMAC-MD5 or HMAC-SHA-1 authentication through ESP or AH, but not both. (If ESP and AH both

used, ESP must be performed first. This is always true for IKE tunnels, but the user can select the
order for manual tunnels.)

v Transport and Tunnel mode

218 AIX Version 7.2: Security

v Offload of IPV4 packets

Note: The 10/100 Mbps Ethernet PCI Adapter II cannot handle packets with IP options.

To enable the 10/100 Mbps Ethernet PCI Adapter II for IP Security, you may have to detach the network
interface and then enable the IPsec Offload feature.

To detach the network interface, perform the following steps using the SMIT interface:

To enable the IPsec Offload feature, do the following using the SMIT interface:
1. Login as the root user.
2. Type smitty eadap at the command line and press Enter.
3. Select the Change / Show Characteristics of an Ethernet Adapter option and press Enter.
4. Select the 10/100 Mbps Ethernet PCI Adapter II and press Enter.
5. Change the IPsec Offload field to yes and press Enter.

To detach the network interface, from the command line, type the following:
ifconfig enX detach

To enable the IPsec offload attribute, from the command line, type the following:
chdev -l entX -a ipsec_offload=yes

To verify that the IPsec offload attribute has been enabled, from the command line, type the following:
lsattr -El entX detach

To disable the IPsec offload attribute, from the command line, type the following:
chdev -l entX -a ipsec_offload=no

Use the enstat command to ensure that your tunnel configuration is taking advantage of the IPsec offload
attribute. The enstat command shows all the statistics of transmit and receive IPsec packets when the
IPsec offload attribute is enabled. For example, if the Ethernet interface is ent1, type the following:
entstat -d ent1

The output will be similar to the following example:
.
.
.
10/100 Mbps Ethernet PCI Adapter II (1410ff01) Specific Statistics:
--
.
.
.
Transmit IPsec packets: 3
Transmit IPsec packets dropped: 0
Receive IPsec packets: 2
Receive IPsec packets dropped: 0

Network tunable parameter:

Depending on the number of tunnels in your configuration, you can increase the maximum buffer size
for a socket.

If a large number of tunnels are running in your environment and the sb_max tunable parameter remains
at the default value, the IKE daemon process and the Tunnel Manager daemon process might stop
responding because of the heavy load in the network.

Security 219

You might want to use the following values for the sb_max tunable parameter:
v 10 MB for 500 tunnels
v 20 MB for 1000 tunnels
Related information:
The sb_max tunable

Tunnels versus filters:

Two distinct parts of IP Security are tunnels and filters. Tunnels require filters, but filters do not require
tunnels.

Filtering is a function in which incoming and outgoing packets can be accepted or denied based on a
variety of characteristics called rules. This function allows a system administrator to configure the host to
control the traffic between this host and other hosts. Filtering is done on a variety of packet properties,
such as source and destination addresses, IP Version (4 or 6), subnet masks, protocol, port, routing
characteristics, fragmentation, interface, and tunnel definition. This filtering is done at the IP layer, so no
changes are required to the applications.

Tunnels define a security association between two hosts. These security associations involve specific
security parameters that are shared between end points of the tunnel.

The following illustration indicates how a packet comes in from the network adapter to the IP stack.
From there, the filter module is called to determine if the packet is permitted or denied. If a tunnel ID is
specified, the packet is checked against the existing tunnel definitions. If the decapsulation from the
tunnel is successful, the packet is passed to the upper-layer protocol. This function occurs in reverse
order for outgoing packets. The tunnel relies on a filter rule to associate the packet with a particular
tunnel, but the filtering function can occur without passing the packet to the tunnel.

The illustration shows the route a network packet takes. Inbound from the network, the packet enters the
network adapter. from there it goes to the IP stack where it is sent to the filter module. From the filter
module, the packet is either sent to tunnel definitions or it is returned to the IP stack where it is
forwarded to the upper-layer protocols.

Tunnels and security associations:

Tunnels are used whenever you need to have data authenticated, or authenticated and encrypted. Tunnels
are defined by specifying a security association between two hosts. The security association defines the
parameters for the encryption and authentication algorithms and characteristics of the tunnel.

The following illustration shows a virtual tunnel between Host A and Host B.

Figure 7. Network Packet Routing

220 AIX Version 7.2: Security

The illustration shows a virtual tunnel running between Host A and Host B. Security association A is an
arrow directed from Host A to Host B. Security association B is an arrow directed from Host B to Host A.
A security association consists of the Destination Address, SPI, Key, Crypto Algorithm and Format,
Authentication Algorithm, and Key Lifetime.

The Security Parameter Index (SPI) and the destination address identify a unique security association.
These parameters are required for uniquely specifying a tunnel. Other parameters such as cryptographic
algorithm, authentication algorithm, keys, and lifetime can be specified or defaults can be used.

Tunnel considerations:

You should consider several things before deciding which type of tunnel to use for IP security.

IKE tunnels differ from manual tunnels because the configuration of security policies is a separate process
from defining tunnel endpoints.

In IKE, there is a two-step negotiation process. Each step of the negotiation process is called a phase, and
each phase can have separate security policies.

When the Internet Key negotiation starts, it must set up a secure channel for the negotiations. This is
known as the key management phase or phase 1. During this phase, each party uses preshared keys or
digital certificates to authenticate the other and pass ID information. This phase sets up a security
association during which the two parties determine how they plan to communicate securely and then
which protections are to be used to communicate during the second phase. The result of this phase is an
IKE or phase 1 tunnel.

The second phase is known as the data management phase or phase 2 and uses the IKE tunnel to create the
security associations for AH and ESP that actually protect traffic. The second phase also determines the
data that will be using the IP Security tunnel. For example, it can specify the following:
v A subnet mask
v An address range
v A protocol and port number combination

Figure 8. Establishment of a Secure Tunnel Between Hosts A and B

Security 221

This illustration shows the two-step, two-phase process for setting up an IKE tunnel.

Note: IKEv2 also has two phases. The first phase is known as the IKE SA phase or phase 1. The second
phase is known as the CHILD SA phase or phase 2 . Unlike the way tunnels are established in IKEv1,
when a phase 1 tunnel is established in IKEv2, a phase 2 tunnel is automatically activated. The
configuration of IKEv2 tunnels is similar to configuration of IKEv1 tunnels.

In many cases, the endpoints of the key management (IKE) tunnel will be the same as the endpoints of
the data management (IP Security) tunnel. The IKE tunnel endpoints are the IDs of the machines carrying
out the negotiation. The IP Security tunnel endpoints describe the type of traffic that will use the IP
Security tunnel. For simple host-to-host tunnels, in which all traffic between two tunnels is protected with
the same tunnel, the phase 1 and phase 2 tunnel endpoints are the same. When negotiating parties are
two gateways, the IKE tunnel endpoints are the two gateways, and the IP Security tunnel endpoints are
the machines or subnets (behind the gateways) or the range of addresses (behind the gateways) of the
tunnel users.

Key management parameters and policy:

You can customize key-management policy by specifying the parameters to be used during IKE
negotiation. For example, there are key-management policies for pre-shared key or signature mode
authentication. For Phase 1, the user must determine certain key-management security properties with
which to carry out the exchange.

Phase 1 (the key management phase) sets the following parameters of an IKE tunnel configuration:

Key Management (Phase 1) Tunnel
Name of this IKE tunnel. For each tunnel, the endpoints of the negotiation must be specified. These

Figure 9. IKE Tunnel Setup Process

222 AIX Version 7.2: Security

are the two machines that plan to send and validate IKE messages. The name of the tunnel may
describe the tunnel endpoints such as VPN Boston or VPN Acme.

Host Identity Type
ID type that will be used in the IKE exchange. The ID type and value must match the value for the
preshared key to ensure that proper key lookup is performed. If a separate ID is used to search a
preshared key value, the host ID is the key's ID and its type is KEY_ID. The KEY_ID type is useful if a
single host has more than one preshared key value.

Host Identity
Value of the host ID represented as an IP address, a fully qualified domain name (FQDN), or a user
at the fully qualified domain name (user@FQDN). For example, jdoe@studentmail.ut.edu.

IP Address
IP address of the remote host. This value is required when the host ID type is KEY_ID or whenever
the host ID type cannot be resolved to an IP address. For example, if the user name cannot be
resolved with a local name server, the IP address for the remote side must be entered.

Data management parameters and policy:

The data management proposal parameters are set during phase 1 of an IKE tunnel configuration. They
are the same IP Security parameters used in manual tunnels and describe the type of protection to be
used for protecting data traffic in the tunnel. You can start more than one phase 2 tunnel under the same
phase 1 tunnel.

The following endpoint ID types describe the type of data that uses the IP Security Data tunnel:

Host, Subnet, or Range
Describes whether the data traffic traveling in the tunnel will be for a particular host, subnet, or
address range.

Host/Subnet ID
Contains the host or subnet identity of the local and remote systems passing traffic over this
tunnel. Determines the IDs sent in the phase 2 negotiation and the filter rules that will be built if
the negotiation is successful.

Subnet mask
Describes all IP addresses within the subnet (for example, host 9.53.250.96 and mask
255.255.255.0).

Starting IP Address Range
Provides the starting IP address for the range of addresses that will be using the tunnel (for
example, 9.53.250.96 of 9.53.250.96 to 9.53.250.93).

Ending IP Address Range
Provides the ending IP address for the range of addresses that will be using the tunnel (for
example, 9.53.250.93 of 9.53.250.96 to 9.53.250.93).

Port Describes data using a specific port number (for example, 21 or 23).

Protocol
Describes data being transported with a specific protocol (for example, TCP or UDP). Determines
the protocol sent in the phase 2 negotiation and the filter rules that will be built if the negotiation
is successful. The protocol for the local endpoint must match the protocol for the remote end
point.

End Port
Describes the end port for the data transmission (for example, 100 or 500). By default, 65355 is
the end port.

Restriction: For IKEv2, only use IPv4 or IPv6 address ranges as traffic selectors. End Port is applicable
only for IKEv2 and AIX 6.1 TL 04, or later.

Security 223

Choosing a tunnel type:

The decision to use manual tunnels or IKE tunnels depends on the tunnel support of the remote end and
the type of key management desired.

When available, use IKE tunnels because they offer industry-standard secure key negotiation and key
refreshment. They also take advantage of the IETF ESP and AH header types and support anti-replay
protection. You can optionally configure signature mode to allow digital certificates.

If the remote end uses one of the algorithms requiring manual tunnels, manual tunnels should be used.
Manual tunnels ensure interoperability with a large number of hosts. Because the keys are static and
difficult to change and might be cumbersome to update, they are not as secure. Manual tunnels can be
used between a host running this operating system and any other machine running IP Security and
having a common set of cryptographic and authentication algorithms. Most vendors offer Keyed MD5
with DES, or HMAC MD5 with DES. This subset works with almost all implementations of IP Security.

The procedure used in setting up manual tunnels, depends on whether you are setting up the first host
of the tunnel or setting up the second host, which must have parameters matching the first host setup.
When setting up the first host, the keys can be autogenerated, and the algorithms can be defaulted. When
setting up the second host, import the tunnel information from the remote end, if possible.

Another important consideration is determining whether the remote system is behind a firewall. If it is,
the setup must include information about the intervening firewall.

Using IKE with DHCP or dynamically assigned addresses:

One common scenario for using IP Security with an operating system is when remote systems are
initiating IKE sessions with a server, and their identity cannot be tied to a particular IP address.

This case can occur in a Local Area Network (LAN) environment such as using IP Security to connect to
a server on a LAN and wanting to encrypt the data. Other common uses involve remote clients dialing
into a server and using either a fully qualified domain name (FQDN), or e-mail address (user@FQDN) to
identify the remote ID.

In the Key Management phase (Phase 1), an RSA Signature is the only authentication mode supported if
you use main mode with non-IP address IDs. In another words, if you want use pre-shared key
authentication, you must use aggressive mode or main mode with IP addresses as IDs. In fact, when the
number of DHCP clients with whom you want establish IPsec tunnels is large, it becomes impractical to
define unique, pre-shared keys for each DHCP client, so it is recommend you use RSA Signature
authentication in this scenario. You also can use Group ID as a remote ID in tunnel definition so that you
only define the tunnel once with all DHCP clients (see tunnel definition sample file /usr/samples/ipsec/
group_aix_responder.xml). Group ID is a unique feature of AIX IPsec. You can define a group ID to
include any IKE IDs (like a single IP address), FQDN, User FQDN, a range or set of IP addresses, and so
on, and then use this Group ID as the phase 1 or phase 2 remote ID in your tunnel definitions.

Note: When Group ID is used, tunnel should be defined as Responder role only. That means you must
activate this tunnel from the DHCP client side.

For the Data Management phase (Phase 2), when the IP Security associations are being created to encrypt
TCP or UDP traffic, a generic data management tunnel can be configured. Therefore, any request that was
authenticated during phase 1, will use the generic tunnel for defined Data Management phase if the IP
address is not explicitly configured in the database. This allows any address to match the generic tunnel
and can be used as long as the rigorous public key-based security validation was successful in phase 1.

224 AIX Version 7.2: Security

Using XML to define a generic data management tunnel:

You can define a generic Data Management tunnel using the XML format understood by ikedb.

See the section entitled “Command-line interface for IKE tunnel configuration” on page 226 for more
information on the IKE XML interface and the ikedb command. Generic Data Management tunnels are
used with DHCP. The XML format uses the tag name IPSecTunnel. This is also referred to as a phase 2
tunnel in other contexts. A generic Data Management tunnel is not a true tunnel, but an IPSecProtection that
is used if an incoming Data Management message (under a specific Key Management tunnel) does not
match any Data Management tunnel defined for that Key Management tunnel. It is only used in the case
where the AIX system is the responder. Specifying a generic Data Management tunnel IPSecProtection is
optional.

The generic Data Management tunnel is defined in the IKEProtection element. There are two XML
attributes, called IKE_IPSecDefaultProtectionRef and IKE_IPSecDefaultAllowedTypes, that are used for this.

First, you need to define an IPSecProtection that you would like to use as the default if no IPSecTunnels
(Data Management tunnels) match. An IPSecProtection that is to be used as a default must have an
IPSec_ProtectionName that begins with _defIPSprot_.

Now go to the IKEProtection that you would like to use this default IPSecProtection. Specify an
IKE_IPSecDefaultProtectionRef attribute that contains the name of the default IPSec_Protection.

You must also specify a value for the IKE_IPSecDefaultAllowedTypes attribute in this IKEProtection. It
can have one or more of the following values (if multiple values, they should be space-separated):

Local_IPV4_Address
Local_IPV6_Address
Local_IPV4_Subnet
Local_IPV6_Subnet
Local_IPV4_Address_Range
Local_IPV6_Address_Range
Remote_IPV4_Address
Remote_IPV6_Address
Remote_IPV4_Subnet
Remote_IPV6_Subnet
Remote_IPV4_Address_Range
Remote_IPV6_Address_Range

These values correspond to the ID types specified by the initiator. In the IKE negotiation, the actual IDs
are ignored. The specified IPSecProtection is used if the IKE_IPSecDefaultAllowedTypes attribute
contains a string beginning with Local_ that corresponds to the initiator's local ID type, and contains a
string beginning with Remote_ that corresponds to the initiator's remote ID type. In other words, you
must have at least one Local_ value and at least one Remote_ value in any
IKE_IPSecDefaultAllowedTypes attribute in order for the corresponding IPSec_Protection to be used.

General data management tunnel example:

A Data Management tunnel can be used to send a message to the system.

An initiator sends the following to the AIX system in a phase 2 (Data Management) message:
local ID type: IPV4_Address
local ID: 192.168.100.104

remote ID type: IPV4_Subnet
remote ID: 10.10.10.2
remote netmask: 255.255.255.192

Security 225

The AIX system does not have a Data Management tunnel matching these IDs. But it does have an
IPSecProtection with the following attributes defined:

IKE_IPSecDefaultProtectionRef="_defIPSprot_protection4"
IKE_IPSecDefaultAllowedTypes="Local_IPV4_Address

Remote_IPV4_Address
Remote_IPV4_Subnet
Remote_IPV4_Address_Range"

The local ID type of the incoming message, IPV4_Address, matches one of the Local_ values of the
allowed types, Local_IPV4_Address. Also, the remote ID of the message, IPV4_Subnet, matches the value
Remote_IPV4_Subnet. Therefore the Data Management tunnel negotiation will proceed with
_defIPSprot_protection4 as the IPSecProtection.

The /usr/samples/ipsec/default_p2_policy.xml file is a full XML file defining a generic IPSecProtection
that can be used as an example.

Configuring Internet key exchange tunnels
You can configure Internet Key Exchange (IKE) tunnels using the System Management Interface Tool
(SMIT) or the command line.

Using the SMIT interface for IKE tunnel configuration:

You can use the SMIT interface to configure IKE tunnels and perform basic IKE database functions.

SMIT uses underlying XML command functions to perform additions, deletions, and modifications to the
IKE tunnel definitions. IKE SMIT is used in configuring IKE tunnels quickly and provides examples of
the XML syntax used to create IKE tunnel definitions. The IKE SMIT menus also allow you to back up,
restore, and initialize the IKE database.

To configure an IPv4 IKE tunnel, use the smitty ike4 fast path. To configure an IPv6 IKE tunnel, use the
smitty ike6 fast path. The IKE database functions can be found in the Advanced IP Security
Configuration menu.

Command-line interface for IKE tunnel configuration:

The ikedb command allows a user to retrieve, update, delete, import, and export information in the IKE
database using an XML interface.

The ikedb command allows the user to write to (put) or read from (get) the IKE database. The input and
output format is an Extensible Markup Language (XML) file. The format of an XML file is specified by its
Document Type Definition (DTD). The ikedb command allows the user to see the DTD that is used to
validate the XML file when doing a put. While entity declarations can be added to the DTD using the -e
flag, this is the only modification to the DTD that can be made. Any external DOCTYPE declaration in
the input XML file will be ignored and any internal DOCTYPE declaration might result in an error. The
rules followed to parse the XML file using the DTD are specified in the XML standard. The
/usr/samples/ipsec file has a sample of a typical XML file that defines common tunnel scenarios. See the
ikedb command description in the Commands Reference for syntax details.

You can use the ike command to start, stop, and monitor IKE tunnels. The ike command can also be
used to activate, remove, or list IKE and IP Security tunnels. See the ike command description in the
Commands Reference for syntax details.

The following examples show how to use ike, ikedb, and several other commands to configure and
check the status of your IKE tunnel:
1. To start a tunnel negotiation (activate a tunnel) or to allow the incoming system to act as a responder

(depending on the role that is specified), use the ike command with a tunnel number, as follows:

226 AIX Version 7.2: Security

ike cmd=activate numlist=1

You can also use remote id or IP addresses, as shown in the following examples:
ike cmd=activate remid=9.3.97.256
ike cmd=activate ipaddr=9.3.97.100, 9.3.97.256

Because it might take several seconds for the commands to complete, the command returns after the
negotiation is started.

2. To display the tunnel status, use the ike command, as follows:
ike cmd=list

The output looks similar to the following:
Phase 1 Tunnel ID [1]
Phase 2 Tunnel ID [1]

The output shows phase 1 and phase 2 tunnels that are currently active.
3. To get a verbose listing of the tunnel, use the ike command, as follows:

ike cmd=list verbose

The output looks similar to the following:
Phase 1 Tunnel ID 1
Local ID Type: Fully_Qualified_Domain_Name
Local ID: bee.austin.ibm.com
Remote ID Type: Fully_Qualified_Domain_Name
Remote ID: ipsec.austin.ibm.com
Mode: Aggressive
Security Policy: BOTH_AGGR_3DES_MD5
Role: Initiator
Encryption Alg: 3DES-CBC
Auth Alg: Preshared Key
Hash Alg: MD5
Key Lifetime: 28800 Seconds
Key Lifesize: 0 Kbytes
Key Rem Lifetime: 28737 Seconds
Key Rem Lifesize: 0 Kbytes
Key Refresh Overlap: 5%
Tunnel Lifetime: 2592000 Seconds
Tunnel Lifesize: 0 Kbytes
Tun Rem Lifetime: 2591937 Seconds
Status: Active

Phase 2 Tunnel ID 1
Local ID Type: IPv4_Address
Local ID: 10.10.10.1
Local Subnet Mask: N/A
Local Port: any
Local Protocol: all
Remote ID Type: IPv4_Address
Remote ID: 10.10.10.4
Remote Subnet Mask: N/A
Remote Port: any
Remote Portocol: all
Mode: Oakley_quick
Security Policy: ESP_3DES_MD5_SHA_TUNNEL_NO_PFS
Role: Initiator
Encryption Alg: ESP_3DES
AH Transform: N/A
Auth Alg: HMAC-MD5
PFS: No
SA Lifetime: 600 Seconds
SA Lifesize: 0 Kbytes
SA Rem Lifetime: 562 Seconds
SA Rem Lifesize: 0 Kbytes
Key Refresh Overlap: 15%
Tunnel Lifetime: 2592000 Seconds
Tunnel Lifesize: 0 Kbytes

Security 227

Tun Rem Lifetime: 2591962 Seconds
Assoc P1 Tunnel: 0
Encap Mode: ESP_tunnel
Status: Active

4. To display the filter rules in the dynamic filter table for the newly activated IKE tunnel, use the lsfilt
command as follows:
lsfilt -d

The output looks similar to the following example:
1 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 no udp eq 4001 eq 4001 both both no all

packets 0 all
2 *** Dynamic filter placement rule *** no
0 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 yes all any 0 any 0 both both no all

packets 0 all

*** Dynamic table ***

0 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 no udp eq 500 eq 500 local both no all
packets 0

0 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 no ah any 0 any 0 both inbound no all
packets 0

0 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 no esp any 0 any 0 both inbound no all
packets 0

1 permit 10.10.10.1 255.255.255.255 10.10.10.4 255.255.255.255 no all any 0 any
0 both outbound yes all packets 1

1 permit 10.10.10.4 255.255.255.255 10.10.10.1 255.255.255.255 no all any 0 any
0 both inbound yes all packets 1

This example shows a machine that has one IKE tunnel and no other tunnels. The dynamic filter
placement rule (rule #2 in this example output of the static table) can be moved by the user to
control placement relative to all other user-defined rules. The rules in the dynamic table are
constructed automatically as tunnels are negotiated and corresponding rules are inserted into the
filter table. These rules can be displayed, but not edited.

5. To turn on logging of the dynamic filter rules, set the logging option for rule #2 to Yes, use the chfilt
command, as shown in the following example:
chfilt -v 4 -n 2 -l y

For more details on logging IKE traffic, see “Logging facilities” on page 252.
6. To deactivate the tunnel, use the ike command as follows:

ike cmd=remove numlist=1

7. To view tunnel definitions, use the ikedb command as follows:
ikedb -g

8. To put definitions to the IKE database from an XML file that has been generated on a peer machine
and overwrite any existing objects in the database with the same name, use the ikedb command as
follows:
ikedb -pFs peer_tunnel_conf.xml

The peer_tunnel_conf.xml is the XML file generated on a peer machine.
9. To get the definition of the phase 1 tunnel named tunnel_sys1_and_sys2 and all dependent phase 2

tunnels with respective proposals and protections, use the ikedb command, as follows:
ikedb -gr -t IKETunnel -n tunnel_sys1_and_sys2

10. To delete all preshared keys from the database, use the ikedb command, as follows:
ikedb -d -t IKEPresharedKey

For general information on IKE tunnel group support, see “Group support” on page 229. You can use the
ikedb command to define groups from the command line.

228 AIX Version 7.2: Security

AIX IKE and Linux affinity:

It is possible to configure an AIX IKE tunnel using Linux configuration files.

To configure an AIX IKE tunnel using Linux configuration files, use the ikedb command with the -c flag
(conversion option), which lets you use the /etc/ipsec.conf and /etc/ipsec.secrets Linux configuration
files as IKE tunnel definitions. The ikedb command parses the Linux configuration files, creates an XML
file, and optionally adds the XML tunnel definitions to the IKE database. You can then view the tunnel
definitions by using the ikedb -g command.

Group support:

IP security supports grouping IKE IDs in a tunnel definition to associate multiple IDs with a single
security policy without having to create separate tunnel definitions.

Grouping is especially useful when setting up connections to several remote hosts, because you can avoid
setting up or managing multiple tunnel definitions. Also, if changes must be made to a security policy,
you do not need to change multiple tunnel definitions.

A group must be defined before using that group name in a tunnel definition. The group's size is limited
to 1 KB. On the initiator's side of the negotiation, you can use groups as a remote ID in data management
tunnel definitions only. On the responders side of the negotiation, you can use groups as a remote ID in
key management and data management tunnel definitions.

A group is composed of a group name and a list of IKE IDs and ID types. IDs can be the same type or a
mix of the following:
v IPv4 addresses
v IPv6 addresses
v FQDN
v user@FQDN
v X500 DN types

During a Security Association negotiation, the IDs in a group are searched linearly for the first match.

Refer to “Command-line interface for IKE tunnel configuration” on page 226 for information about
defining groups from the command line.

IKE tunnel configuration scenarios:

The following scenarios describe the type of situations most customers encounter when trying to set up
tunnels. These scenarios can be described as the branch office, business partner, and remote access cases.
v In the branch office case, the customer has two trusted networks that they want to connect

together—the engineering group of one location to the engineering group of another. In this example,
there are gateways that connect to each other and all the traffic passing between the gateways use the
same tunnel. The traffic at either end of the tunnel is decapsulated and passes in the clear within the
company intranet.
In the first phase of the IKE negotiation, the IKE security association is created between the two
gateways. The traffic that passes in the IP Security tunnel is the traffic between the two subnets, and
the subnet IDs are used in the phase 2 negotiation. After the security policy and tunnel parameters are
entered for the tunnel, a tunnel number is created. Use the ike command to start the tunnel.

v In the business partner scenario, the networks are not trusted, and the network administrator may
want to restrict access to a smaller number of hosts behind the security gateway. In this case, the

Security 229

tunnel between the hosts carries traffic protected by IP Security for use between two particular hosts.
The protocol of the phase 2 tunnel is AH or ESP. This host-to-host tunnel is secured within a
gateway-to-gateway tunnel.

v In the remote access case, the tunnels are set up on demand and a high level of security is applied. The
IP addresses may not be meaningful, therefore, fully qualified domain names or user@ fully qualified
domain names are preferred. Optionally, you can use KEYID to relate a key to a host ID.

Digital certificates and the key manager concepts
Digital certificates bind an identity to a public key, through which you can verify the sender or the
recipient of an encrypted transfer.

IP Security uses digital certificates to enable public-key cryptography, also known as asymmetric
cryptography, which encrypts data using a private key known only to the user and decrypts it using an
associated public (shared) key from a given public-private key pair. Key pairs are long strings of data that
act as keys to a user's encryption scheme.

In public-key cryptography, the public key is given to anyone with whom the user wants to
communicate. The sender digitally signs all secure communications with the corresponding private key
for their assigned key pair. The recipient uses the public key to verify the sender's signature. If the
message is successfully decrypted with the public key, the receiver can verify that the sender was
authenticated.

Public-key cryptography relies on trusted, third parties, known as a certification authorities (CAs), to issue
reliable digital certificates. The recipient specifies which issuing organizations or authorities are deemed
trusted. A certificate is issued for a specific amount of time; when its expiration date has passed, it must
be replaced.

AIX provides the Key Manager tool, which manages digital certificates. The following sections provide
conceptual information about the certificates themselves.

Format of digital certificates:

The digital certificate contains specific pieces of information about the identity of the certificate owner
and about the certification authority. See the following figure for an illustration of a digital certificate.

230 AIX Version 7.2: Security

This illustration shows the four entities of a digital certificate. From the top they are, Owner's
Distinguished Name, Owners Public Key, Issuer's (CA) Distinguished Name, and Issuer's Signature.

The following list further describes the contents of the digital certificate:

Owner's Distinguished Name
Combination of the owner's common name and context (position) in the directory tree. In the
following figure of a simple directory tree, for example, Prasad is the owner's common name and
the context is country=US, organization=ABC, lower organization=SERV; therefore, the
distinguished name is:
/C=US/O=ABC/OU=SERV/CN=prasad.austin.ibm.com

Figure 10. Contents of a Digital Certificate

Figure 11. Example of Deriving Distinguished Name from Directory Tree

Security 231

This illustration is a directory tree with O=ABC at the top level and branching to two entities on
the second level. Level two contains OU=AIX and OU=Acctg on separate branches; each has a
branch leading to a single entity on the last level. The last level contains CN=Prasad and
CN=Peltier respectively.

Owner's Public Key
Used by the recipients to decrypt data.

Subject Alternate Name
Can be an identifier such as an IP address, e-mail address, fully qualified domain name, and so
on.

Issue Date
Date the digital certificate was issued.

Expiration Date
Date the digital certificate expires.

Issuer's Distinguished Name
Distinguished name of the Certification Authority.

Issuer's Digital Signature
Digital signature used to validate a certificate.

Security considerations for digital certificates:

A digital certificate alone cannot prove identity.

The digital certificate only allows you to verify the identity of the digital certificate owner by providing
the public key that is needed to check the owner's digital signature. You can safely send your public key
to another because your data cannot be decrypted without the other part of the key pair, your private
key. Therefore, the owner must protect the private key that belongs to the public key in the digital
certificate. All communications of the owner of a digital certificate can be deciphered, if the private key is
known. Without the private key, a digital certificate cannot be misused.

Certification authorities and trust hierarchies:

A digital certificate is only as trustworthy as the certification authority (CA) that issued it.

As part of this trust, the policies under which certificates are issued should be understood. Each
organization or user must determine which certification authorities can be accepted as trustworthy.

The Key Manager tool also allows organizations to create self-signed certificates, which can be useful for
testing or in environments with a small number of users or machines.

As a user of a security service, you need to know its public key to obtain and validate any digital
certificates. Also, simply receiving a digital certificate does not assure its authenticity. To verify its
authenticity, you need the public key of the certification authority that issued that digital certificate. If
you do not already hold an assured copy of the CA's public key, then you might need an additional
digital certificate to obtain the CA's public key.

Certificate revocation lists:

A digital certificate is expected to be used for its entire validity period. If needed, however, a certificate
can be invalidated before its actual date of expiration.

Invalidating the certificate might be necessary, for example, if an employee leaves the company or if the
certificate's private key has been compromised. To invalidate a certificate, you must notify the

232 AIX Version 7.2: Security

appropriate Certificate Authority (CA) of the circumstances. When a CA revokes a certificate, it adds the
invalid certificate serial number to a Certificate Revocation List (CRL).

CRLs are signed data structures that are issued periodically and made available in a public repository.
CRLs can be retrieved from HTTP or LDAP servers. Each CRL contains a current time stamp and a
nextUpdate time stamp. Each revoked certificate in the list is identified by its certificate serial number.

When configuring an IKE tunnel and using digital certificates as your authentication method, you can
confirm the certificate has not been revoked by selecting RSA Signature with CRL Checking. If CRL
Checking is enabled, the list is located and checked during the negotiation process to establish the key
management tunnel.

Note: To use this feature of IP Security, your system must be configured to use a SOCKS server
(version 4 for HTTP servers), an LDAP server, or both. If you know which SOCKS or LDAP server
you are using to obtain CRLs, you can add them to the /etc/isakmpd.conf file

Uses for digital certificates in Internet applications:

Internet applications that use public-key cryptography systems must use digital certificates to obtain the
public keys.

There are many applications that use public-key cryptography, including the following ones:

Virtual Private Networks (VPN)
Virtual Private Networks, also called secure tunnels, can be set up between systems such as
firewalls to enable protected connections between secure networks over unsecured
communication links. All traffic destined to these networks is encrypted between the participating
systems.

The protocols used in tunneling follow the IP Security and IKE standards, which allow for a
secure, encrypted connection between a remote client (for example, an employee working from
home) and a secure host or network.

Secure Sockets Layer (SSL)
SSL is a protocol that provides privacy and integrity for communications. It is used by Web
servers for secure connections between Web servers and Web browsers, by the Lightweight
Directory Access Protocol (LDAP) for secure connections between LDAP clients and LDAP
servers, and by Host-on-Demand V.2 for connections between the client and the host system. SSL
uses digital certificates for key exchange, server authentication, and, optionally, client
authentication.

Secure Electronic Mail
Many electronic mail systems, using standards such as PEM or S/MIME for secure electronic
mail, use digital certificates for digital signatures and for the exchange of keys to encrypt and
decrypt mail messages.

Digital certificates and certificate requests:

A certificate request must be created and sent to a CA to request a digital certificate.

A signed digital certificate contains fields for the owner's distinguished name, the owner's public key, the
CA's distinguished name and the CA's signature. A self-signed digital certificate contains its owner's
distinguished name, public key, and signature.

The certificate request contains fields for the requester's distinguished name, public key, and signature.
The CA verifies the requester's signature with the public key in the digital certificate to ensure that:
v The certificate request was not modified in transit between the requester and the CA.

Security 233

v The requester possesses the corresponding private key for the public key that is in the certificate
request.

The CA is also responsible for verifying to some level the identity of the requester. Requirements for this
verification can range from very little proof to absolute assurance of the owner's identity.

Key Manager tool:

The Key Manager tool manages digital certificates, and is located in the gskkm.rte file set on the
expansion pack.

To set up digital certificates and signature support, at minimum you must do tasks 1, 2, 3, 4, 6, and 7.
Then create an IKE tunnel and associate a policy with the tunnel that uses RSA Signature as the
authentication method.

You can create and configure a key database by using the certmgr command to open the Key Manager
tool from the command line.

This section describes how to use Key Manager to do the following tasks:

Creating a key database:

A key database enables VPN endpoints to connect using valid digital certificates. The key database
(*.kdb) format is used with IP Security VPNs.

The following types of CA digital certificates are provided with Key Manager:
v RSA Secure Server Certification Authority
v Thawte Personal Premium Certification Authority
v Thawte Personal Freemail Certification Authority
v Thawte Personal Basic Certification Authority
v Thawte Personal Server Certification Authority
v Thawte Server Certification Authority
v Verisign Class 1 Public Primary Certification Authority
v Verisign Class 2 Public Primary Certification Authority
v Verisign Class 3 Public Primary Certification Authority
v Verisign Class 4 Public Primary Certification Authority

These signature digital certificates enable clients to attach to servers that have valid digital certificates
from these signers. After you create a key database, you can use it as created to attach to a server that
has a valid digital certificate from one of the signers.

To use a signature digital certificate that is not on this list, you must request it from the CA and add it to
your key database. See “Adding a CA root digital certificate” on page 235.

To create a key database using the certmgr command, use the following procedure:
1. Start the Key Manager tool by typing:

certmgr

2. Select New from the Key Database File list.
3. Accept the default value, CMS key database file, for the Key database type field.
4. Enter the following file name in the File Name field:

ikekey.kdb

5. Enter the following location of the database in the Location field:

234 AIX Version 7.2: Security

/etc/security

Note: The key database must be named ikekey.kbd and it must be placed in the /etc/security
directory. Otherwise, IP Security cannot function correctly.

6. Click OK. The Password Prompt screen is displayed.
7. Enter a password in the Password field, and enter it again in the Confirm Password field.
8. If you want to change the number of days until the password expires, enter the desired number of

days in the Set expiration time? field. The default value for this field is 60 days. If you do not want
the password to expire, clear the Set expiration time? field.

9. To save an encrypted version of the password in a stash file, select the Stash the password to a file?
field and enter Yes.

Note: You must stash the password to enable the use of digital certificates with IP Security.
10. Click OK. A confirmation screen displays, verifying that you have created a key database.
11. Click OK again and you return to the IBM Key Management screen. You can either perform other

tasks or exit the tool.

Adding a CA root digital certificate:

After you have requested and received a root digital certificate from a CA, you can add it to your
database.

Most root digital certificates are of the form *.arm, such as the following example:
cert.arm

To add a CA root digital certificate to a database, use the following procedure:
1. Unless you are already using Key Manager, start the tool by typing:

certmgr

2. From the main screen, select Open from the Key Database File list.
3. Highlight the key database file to which you want to add a CA root digital certificate and click

Open.
4. Enter the password and click OK. When your password is accepted, you are returned to the IBM

Key Management screen. The title bar now shows the name of the key database file you selected,
indicating that the file is now open and ready to be worked with.

5. Select Signer Certificates from the Personal/Signer Certificates list.
6. Click Add.
7. Select a data type from the Data type list, such as:

Base64-encoded ASCII data

8. Enter a certificate file name and location for the CA root digital certificate, or click Browse to select
the name and location.

9. Click OK.
10. Enter a label for the CA root digital certificate, such as Test CA Root Certificate, and click OK. You

are returned to the Key Management screen. The Signer Certificates field now shows the label of
the CA root digital certificate you just added. You can either perform more tasks or exit the tool.

Establishing trust settings:

Installed CA certificates are set to trusted by default. You can change the trust setting if needed.

To change the trust setting, do the following steps:
1. Unless you are already using Key Manager, start the tool by typing:

Security 235

certmgr

2. From the main screen, select Open from the Key Database File list.
3. Highlight the key database file in which you want to change the default digital certificate and click

Open.
4. Enter the password and click OK. After your password is accepted, you are returned to the IBM Key

Management screen. The title bar shows the name of the key database file you selected, indicating
that the file is now open.

5. Select Signer Certificates from the Personal/Signer Certificates list.
6. Highlight the certificate you want to change and click View/Edit, or double-click on the entry. The

Key Information screen is displayed for the certificate entry.
7. To make this certificate a trusted root certificate, select the check box next to Set the certificate as a

trusted root and click OK. If the certificate is not trusted, clear the check box instead and click OK.
8. Click OK from the Signer Certificates screen. You are returned to the IBM Key Management screen.

You can either perform other tasks or exit the tool.

Deleting a CA root digital certificate:

If you no longer want to use one of the CAs in your signature digital certificate list, you must delete the
CA root digital certificate.

Note: Before deleting a CA root digital certificate, create a backup copy in case you later want to recreate
the CA root.

To delete a CA root digital certificate from a database, use the following procedure:
1. Unless you are already using Key Manager, start the tool by typing:

certmgr

2. From the main screen, select Open from the Key Database File list.
3. Highlight the key database file from which you want to delete a CA root digital certificate and click

Open.
4. Enter the password and click OK. After your password is accepted, you are returned to the Key

Management screen. The title bar shows the name of the key database file you selected, indicating
that the file is now open and ready to be edited.

5. Select Signer Certificates from the Personal/Signer Certificates list.
6. Highlight the certificate you want to delete and click Delete. The Confirm screen is displayed.
7. Click Yes. You are returned to the IBM Key Management screen. The label of the CA root digital

certificate no longer appears in the Signer Certificates field. You can either perform other tasks or exit
the tool.

Requesting a digital certificate:

To acquire a digital certificate, generate a request using Key Manager and submit the request to a CA.
The request file you generate is in the PKCS#10 format. The CA then verifies your identity and sends you
a digital certificate.

To request a digital certificate, use the following procedure:
1. Unless you are already using Key Manager, start the tool by typing:

certmgr

2. From the main screen, select Open from the Key Database File list.
3. Highlight the /etc/security/ikekey.kdb key database file from which you want to generate the

request and click Open.

236 AIX Version 7.2: Security

4. Enter the password and click OK. After your password is accepted, you are returned to the IBM
Key Management screen. The title bar shows the name of the key database file you selected,
indicating that the file is now open and ready to be edited.

5. Select Create > New Certificate Request.
6. Click New.
7. From the following screen, enter a Key Label for the self-signed digital certificate, such as:

keytest

8. Enter a common name (the default is the host name) and organization, and then select a country. For
the remaining fields, either accept the default values, or choose new values.

9. Define the subject alternate name. The optional fields associated with subject alternate are e-mail
address, IP address, and DNS name. For a tunnel type of IP address, type the same IP address that is
configured in the IKE tunnel into the IP address field. For a tunnel ID type of user@FQDN, complete
the e-mail address field. For a tunnel ID type of FQDN, type a fully qualified domain name (for
example, hostname.companyname.com) in the DNS name field.

10. At the bottom of the screen, enter a name for the file, such as:
certreq.arm

11. Click OK. A confirmation screen is displayed, verifying that you have created a request for a new
digital certificate.

12. Click OK. You are returned to the IBM Key Management screen. The Personal Certificate Requests
field now shows the key label of the new digital certificate request (PKCS#10) created.

13. Send the file to a CA to request a new digital certificate. You can either perform other tasks or exit
the tool.

Adding (Receiving) a new digital certificate:

After you receive a new digital certificate from a CA, you must add it to the key database from which
you generated the request.

To add (receive) a new digital certificate, use the following procedure:
1. Unless you are already using Key Manager, start the tool by typing:

certmgr

2. From the main screen, select Open from the Key Database File list.
3. Highlight the key database file from which you generated the certificate request and click Open.
4. Enter the password and click OK. After your password is accepted, you are returned to the IBM Key

Management screen. The title bar shows the name of the key database file you selected, indicating
that the file is now open and ready to be edited.

5. Select Personal Certificate Requests from the Personal/Signer Certificates list.
6. Click Receive to add the newly received digital certificate to your database.
7. Select the data type of the new digital certificate from the Data type list. The default is

Base64-encoded ASCII data.
8. Enter the certificate file name and location for the new digital certificate, or click Browse to select the

name and location.
9. Click OK.

10. Enter a descriptive label for the new digital certificate, such as:
VPN Branch Certificate

11. Click OK. You are returned to the IBM Key Management screen. The Personal Certificates field
now shows the label of the new digital certificate you just added. You can either perform other tasks
or exit the tool. If there is an error loading the certificate, check that the certificate file begins with
the text ——-BEGIN CERTIFICATE——- and ends with the text ——-END CERTIFICATE——-.
For example:

Security 237

-----BEGIN CERTIFICATE-----
ajdkfjaldfwwwwwwwwwwadafdw
kajf;kdsajkflasasfkjafdaff
akdjf;ldasjkf;safdfdasfdas
kaj;fdljk98dafdas43adfadfa
-----END CERTIFICATE-----

If the text does not match, edit the certificate file so that it starts and ends appropriately.

Deleting a digital certificate:

At times it will be necessary to delete a digital certificate.

Note: Before deleting a digital certificate, create a backup copy in case you later want to re-create it.

To delete a digital certificate from your database, use the following procedure:
1. Unless you are already using Key Manager, start the tool by typing:

certmgr

2. From the main screen, select Open from the Key Database File list.
3. Highlight the key database file from which you want to delete the digital certificate and click Open.
4. Enter the password and click OK. After your password is accepted, you are returned to the IBM Key

Management screen. The title bar shows the name of the key database file you selected, indicating
that the file is now open and ready to be edited.

5. Select Personal Certificate Requests from the Personal/Signer Certificates list.
6. Highlight the digital certificate you want to delete and click Delete. The Confirm screen is displayed.
7. Click Yes. You are returned to the IBM Key Management screen. The label of the digital certificate

you just deleted no longer appears in the Personal Certificates field. You can either perform other
tasks or exit the tool.

Changing a database password:

At times it will be necessary to change a database password.

To change the key database, use the following procedure:
1. Unless you are already using Key Manager, start the tool by typing:

certmgr

2. From the main screen, select Change Password from the Key Database File list.
3. Enter a new password in the Password field, and enter it again in the Confirm Password field.
4. If you want to change the number of days until the password expires, enter the desired number of

days in the Set expiration time? field. The default value for this field is 60 days. If you do not want
the password to expire, clear the Set expiration time? field.

5. To save an encrypted version of the password in a stash file, select the Stash the password to a file?
field and enter Yes.

Note: You must stash the password to enable the use of digital certificates with IP Security.
6. Click OK. A message in the status bar indicates that the request completed successfully.
7. Click OK again and you return to the IBM Key Management screen. You can either perform other

tasks or exit the tool.

Creating IKE tunnels using digital certificates:

To create IKE tunnels that use digital certificates, you must specify RSA signatures as the authentication
mode in the IKE tunnel transform policy file.

238 AIX Version 7.2: Security

The following example shows an example of the XML policy file that specifies RSA signatures:
<!-- define the policy for IKE tunnel -->
<IKEProtection
IKE ProtectionName="ike_3des_sha">
<IKETTransform
IKE AuthenticationMethod="RSA_signatures"
IKE Encryption="3DES-CBC"
IKE Hash="SHA"
IKE DHGroup="1"/>

</IKEProtection>

IP Security supports the following IKE tunnel host identity types:
v IP address
v Fully Qualified Domain Name (FQDN)
v user@FQDN

v X.500 Distinguished Name
v Key identifier

When the IKE tunnel uses the RSA signature mode, the X.500 Distinguished Names are typically used in
the IKE tunnel definition. For example, if the local and remote hosts of your tunnel are identified as
/C=US/O=ABC/OU=SERV/CN=localname.austin.ibm.com and /C=US/O=ABC/OU=SERV/
CN=remotename.austin.ibm.com, the IKE tunnel definition in the XML file reads like the following
sample contents:
<IKETunnel>
IKE TunnelName="Key_Tunnel"
IKE ProtectionRef="ike_3des_sha">

<IKELocalIdentity>
<ASN1_DN Value="/C=US/O=ABC/OU=SERV/CN=localname.austin.ibm.com">
</ASN1_DN>

</IKELocalIdentity>
<IKERemoteIdentity>
<ASN1_DN Value="/C=US/O=ABC/OU=SERV/CN=remotename.austin.ibm.com">
</ASN1_DN>

</IKERemoteIdentity>
</IKETunnel>

To obtain the required certificate from the certificate authority (CA), use the Key Manager tool to
generate the certificate request. For example, if you use /C=US/O=ABC/OU=SERV/
CN=name.austin.ibm.com as the Subject Distinguished Name in your certificate, you must enter the
following values in the Key Manager tool when you create a digital certificate request:

Common name
name.austin.ibm.com

Organization
ABC

Organizational unit
SERV

Country
US

The X.500 Distinguished Name that is entered is the name that is typically set up by your system or
LDAP administrator. The organizational unit value is optional.

IP Security also supports entering other identity types as Subject Alternate Names in a digital certificate.
For example, if you use IP address 10.10.10.1 as the alternate host identity, the following values must be
entered in the digital certificate request:

Security 239

Common name
name.austin.ibm.com

Organization
ABC

Organizational unit
SERV

Country
US

Subject alternate IP address field
10.10.10.1

After you create the digital certificate request with this information, the CA uses this information to
create the personal digital certificate.

When requesting a personal digital certificate, the CA needs the following information:
v You are requesting an X.509 certificate.
v The signature format is MD5 with RSA encryption.
v Whether you are specifying Subject Alternate Name. Alternate name types are provided in the

following list:
– IP address
– Fully qualified domain name (FQDN)
– user@FQDN

The following subject alternate-name information is included in the certificate request file.
v Your planned key use (the digital signature bit must be selected).
v The Key Manager digital certificate request file (in PKCS#10 format).

For specific steps that explain how to use the Key Manager tool to create a certificate request, see
“Requesting a digital certificate” on page 236.

Before you activate the IKE tunnel, you must add the personal digital certificate that you received from
the CA into the Key Manager database, ikekey.kdb. For more information, see “Adding (Receiving) a
new digital certificate” on page 237.

IP Security supports the following types of personal digital certificates:

Subject DN
The Subject Distinguished Name must be in the following format and order:
/C=US/O=ABC/OU=SERV/CN=name.austin.ibm.com

The Key Manager tool allows only one OU value.

Subject DN and Subject Alternate Name as an IP address
The Subject Distinguished Name and Subject Alternate Name can be designated as an IP address,
as shown in the following:

/C=US/O=ABC/OU=SERV/CN=name.austin.ibm.com and 10.10.10.1

Subject DN and Subject Alternate Name as FQDN
The Subject Distinguished Name and Subject Alternate Name can be designated as a fully
qualified domain name, as shown in the following:

/C=US/O=ABC/OU=SERV/CN=name.austin.ibm.com and bell.austin.ibm.com.

240 AIX Version 7.2: Security

Subject DN and Subject Alternate Name as user@FQDN
The Subject Distinguished Name and Subject Alternate Name can be designated as a user address
(user_ID@fully_qualified_domain_name), as shown in the following:

/C=US/O=ABC/OU=SERV/CN=name.austin.ibm.com and name@austin.ibm.com.

Subject DN and multiple Subject Alternate Names
The Subject Distinguished Name can be associated with multiple Subject Alternate Names, as
shown in the following:

/C=US/O=ABC/OU=SERV/CN=name.austin.ibm.com and bell.austin.ibm.com, 10.10.10.1, and
user@name.austin.ibm.com.

Network address translation
IP Security can use devices whose addresses undergo network address translation (NAT).

NAT is widely used as part of firewall technology for Internet-connection sharing, and it is a standard
feature on routers and edge devices. The IP Security protocol depends on identifying remote endpoints
and their policy based on the remote IP address. When intermediate devices such as routers and firewalls
translate a private address to a public address, the required authentication processing in IP Security
might fail because the address in the IP packet has been modified after the authentication digest was
calculated. With the new IP Security NAT support, devices that are configured behind a node that
performs network address translation are able to establish an IP Security Tunnel. The IP Security code is
able to detect when a remote address has been translated. Using the new IP Security implementation
with support for NAT allows a VPN client to connect from home or on the road to the office through an
internet connection with NAT enabled.

This diagram shows the difference between a NAT-enabled IP Security implementation, with UDP
encapsulated traffic and an implementation that is not NAT-enabled.

Configuring IP security to work with NAT:

In order to use NAT in IP Security, you must set the ENABLE_IPSEC_NAT_TRAVERSAL variable in the
/etc/isakmpd.conf file. When this variable is set, filter rules are added to send and receive traffic on port
4500.

The following example shows the filter rules when the ENABLE_IPSEC_NAT_TRAVERSAL variable is set.
Dynamic rule 2:
Rule action : permit
Source Address : 0.0.0.0 (any)
Source Mask : 0.0.0.0 (any)
Destination Address : 0.0.0.0 (any)
Destination Mask : 0.0.0.0 (any)
Source Routing : no
Protocol : udp
Source Port : 0 (any)
Destination Port : 4500

Figure 12. NAT-enabled IP Security

Security 241

Scope : local
Direction : inbound
Fragment control : all packets
Tunnel ID number : 0

Dynamic rule 3:
Rule action : permit
Source Address : 0.0.0.0 (any)
Source Mask : 0.0.0.0 (any)
Destination Address : 0.0.0.0 (any)
Destination Mask : 0.0.0.0 (any)
Source Routing : no
Protocol : udp
Source Port : 4500
Destination Port : 0 (any)
Scope : local
Direction : outbound
Fragment control : all packets
Tunnel ID number : 0

Setting the ENABLE_IPSEC_NAT_TRAVERSAL variable also adds some additional filter rules in the filter
table. Special IPSEC NAT messages use UDP encapsulation and filter rules must be added to allow this
traffic to flow. In addition, in phase 1 signature mode is required. If IP Address is used as the identifier in
the certificate, it should contain the private ip address.

IP Security also needs to send NAT keep alive messages to maintain the mapping of the original IP
Address and the NAT address. The interval is specified by the NAT_KEEPALIVE_INTERVAL variable in
/etc/isakmpd.conf file. This variable specifies how frequently NAT keepalive packets are sent in seconds.
If you do not specify a value for NAT_KEEPALIVE_INTERVAL, a default value of 20 seconds is used.

Limitations when using NAT exchanges:

Endpoints behind NAT devices must protect their traffic using the ESP protocol.

ESP is the predominate header selected for IP Security, and will be usable for most customer applications.
ESP includes hashing of the user data, but not of the IP Header. The integrity checking in the AH header
incorporates the IP source and destination addresses in the keyed message integrity check. NAT or
reverse NAT devices that make changes to the address fields invalidate the message integrity check.
Therefore, if only the AH protocol is defined in the phase 2 policy for a tunnel, and NAT is detected in a
phase 1 exchange, a Notify Payload saying NO_PROPOSAL_CHOSEN is sent.

Additionally, a connection using NAT must select tunnel mode so that the original IP address is
encapsulated in the packet. Transport mode and addresses with NAT are not compatible. If a NAT is
detected and only transport mode is proposed in phase 2, a Notify Payload saying NO_PROPOSAL_CHOSEN is
sent.

Avoiding tunnel mode conflicts:

Remote peers might negotiate entries that overlap in a gateway. This overlap causes a tunnel mode
conflict.

The following figure shows a tunnel mode conflict.

242 AIX Version 7.2: Security

The gateway has two possible Security Associations (SAs) for the 10.1.2.3 IP address. These duplicate
remote addresses cause confusion over where to send packets coming from the server. When a tunnel is
configured between Suzy's server and Ari's laptop, the IP address is used, and Suzy cannot configure a
tunnel with Bob with the same IP address. To avoid a tunnel mode conflict, you should not define a
tunnel with the same IP address. Because the remote address is not under the control of the remote user,
other ID types should be used to identify the remote host such as fully qualified domain name or user at
fully qualified domain name.

Configuring manual tunnels
You can configure IP Security manual tunnels if the devices do not support an automatic keying method.

Manual tunnels and filters:

The process of setting up a tunnel is to define the tunnel on one end, import the definition on the other
end, and activate the tunnel and filter rules on both ends. The tunnel is then ready to use.

To set up a manual tunnel, it is not necessary to separately configure the filter rules. As long as all traffic
between two hosts goes through the tunnel, the necessary filter rules are automatically generated.

Information about the tunnel must be made to match on both sides if it is not explicitly supplied. For
instance, the encryption and authentication algorithms specified for the source will be used for the
destination if the destination values are not specified.

Creating a manual tunnel on the first host:

You can configure a tunnel using the SMITips4_basic fast path (for IP Version 4), the SMIT ips6_basic
fast path (for IP version 6) or you can create the tunnel manually using the following procedure.

The following is a sample of the gentun command used to create a manual tunnel:
gentun -v 4 -t manual -s 5.5.5.19 -d 5.5.5.8 \

-a HMAC_MD5 -e DES_CBC_8 -N 23567

You can use the lstun -v 4 command to list the characteristics of the manual tunnel created by the
previous example. The output looks similar to the following example:
Tunnel ID : 1
IP Version : IP Version 4
Source : 5.5.5.19
Destination : 5.5.5.8
Policy : auth/encr
Tunnel Mode : Tunnel
Send AH Algo : HMAC_MD5
Send ESP Algo : DES_CBC_8
Receive AH Algo : HMAC_MD5
Receive ESP Algo : DES_CBC_8
Source AH SPI : 300
Source ESP SPI : 300

Figure 13. Tunnel Mode Conflict

Security 243

Dest AH SPI : 23576
Dest ESP SPI : 23576
Tunnel Life Time : 480
Status : Inactive
Target : -
Target Mask : -
Replay : No
New Header : Yes
Snd ENC-MAC Algo : -
Rcv ENC-MAC Algo : -

To activate the tunnel, type the following code:
mktun -v 4 -t1

The filter rules associated with the tunnel are automatically generated.

To view the filter rules, use the lsfilt -v 4 command. The output looks similar to the following example:
Rule 4:
Rule action : permit
Source Address : 5.5.5.19
Source Mask : 255.255.255.255
Destination Address : 5.5.5.8
Destination Mask : 255.255.255.255
Source Routing : yes
Protocol : all
Source Port : any 0
Destination Port : any 0
Scope : both
Direction : outbound
Logging control : no
Fragment control : all packets
Tunnel ID number : 1
Interface : all
Auto-Generated : yes

Rule 5:
Rule action : permit
Source Address : 5.5.5.8
Source Mask : 255.255.255.255
Destination Address : 5.5.5.19
Destination Mask : 255.255.255.255
Source Routing : yes
Protocol : all
Source Port : any 0
Destination Port : any 0
Scope : both
Direction : inbound
Logging control : no
Fragment control : all packets
Tunnel ID number : 1
Interface : all
Auto-Generated : yes

To activate the filter rules, including the default filter rules, use the mktun -v 4 -t 1 command.

To set up the other side (when it is another machine using this operating system), the tunnel definition
can be exported on host A and then imported to host B.

The following command exports the tunnel definition into a file named ipsec_tun_manu.exp and any
associated filter rules to the file ipsec_fltr_rule.exp in the directory indicated by the -f flag:
exptun -v 4 -t 1 -f /tmp

244 AIX Version 7.2: Security

Creating a manual tunnel on the second host:

To create the matching end of the tunnel, the export files are copied and imported into the remote
machine.

Use the following command to create the matching end of the tunnel:
imptun -v 4 -t 1 -f /tmp

where

1 Is the tunnel to be imported

/tmp Is the directory where the import files reside

The tunnel number is generated by the system. You can obtain it from the output of the gentun
command or by using the lstun command to list the tunnels and determine the correct tunnel number to
import. If there is only one tunnel in the import file, or if all the tunnels are to be imported, the -t option
is not needed.

If the remote machine is not running this operating system, the export file can be used as a reference for
setting up the algorithm, keys, and security parameters index (SPI) values for the other end of the tunnel.

Export files from a firewall product can be imported to create tunnels. To do this, use the -n option when
importing the file, as follows:
imptun -v 4 -f /tmp -n

Removing filters:

To completely remove filters and stop IP security, use the rmdev command.

The default filter rule is still active even if filtering is turned off with the mkfilt -d command. This
command allows you to suspend or remove all filters rules and load new rules while the protection of
the default rule remains. The default filter rule is DENY. If you deactivate filtering with the mkfilt -d
command, reports from the lsfilt command will show that filtering is turned off, but no packets being
allowed in or out. If you want to stop IP security entirely, use the rmdev command.

IP security filter configuration
Filtering can be set up to be simple, using mostly autogenerated filter rules, or can be customized by
defining very specific filter functions based on the properties of the IP packets.

Each line in a filter table is known as a rule. A collection of rules determine what packets are accepted in
and out of the machine and how they are directed. Matches to filter rules on incoming packets are done
by comparing the source address and SPI value to those listed in the filter table. Therefore, this pair must
be unique. Filter rules can control many aspects of communications, including source and destination
addresses and masks, protocol, port number, direction, fragment control, source routing, tunnel, and
interface type.

The types of filter rules are as follows:
v Static filter rules are created in the filter table to be used for the general filtering of traffic or for

associating with manual tunnels. They can be added, deleted, modified, and moved. An optional
description text field can be added to identify a specific rule.

v Autogenerated filter rules and user-specified filter rules (also called autogenerated filter rules) are a
specific set of rules created for use of IKE tunnels. Both static and dynamic filter rules are created
based on data management tunnel information and on data management tunnel negotiation.

v Predefined filter rules are generic filter rules that cannot be modified, moved, or deleted, such as the
all traffic rule, the ah rule, and the esp rule. They pertain to all traffic.

Security 245

The direction flag (-w) of the genfilt command is used to specify when the specified rule should be used
either during input packet processing or output packet processing. When the both value for this flag is
used, it specifies that this rule is used during both input and output processing. In AIX IPsec, when
filtering is turned on, at least one rule determines the fate of any network packet (be it incoming or
outgoing). If you want a rule to be used only during processing of an incoming packet (or outgoing
packet), you can choose to do so by using the -w switch of the genfilt command. For example, when a
packet is sent out from host A to host B, the outgoing IP packet has the source address of A and the
destination address of B. On host A, this packet is processed by the IPsec filter during the outbound
processing and during the inbound processing on host B. Assume there is a gateway G between host A
and host B. On gateway G, this same packet (all the immutable fields having the same value) is
processed twice: once for the inbound processing and once for the outbound processing (if the
ipforwarding option is set). For the packet to travel from host A to host B through gateway G, you need
a permit rule with:
v On host A – src addr set to A, dest addr to B, direction to outbound
v On host B – src addr set to A, dest addr to B, direction to inbound

But on the gateway G, you will be requiring two rules:
1. src addr set to A, dest addr to B, direction to outbound
2. src addr set to A, dest addr to B, direction to inbound

The above rules can be replaced by: src addr set to A, dest addr to B and direction to both. Therefore, the
value of both for direction is typically used in gateways that have the ipforwarding option set to no. The
above configuration is only for the packets travelling from host A to host B through the gateway G. If
you want the packets to travel in the reverse direction (from host B to host A through the gateway G),
then you need another rule for that.

Note: Direction both implies that the associated rule is used for both incoming and outgoing packets.
However, it doesn't mean that the rule is applied when the source and destination addresses are reversed.
For instance, if server A has a rule with A as source address and B as destination address and the
direction is set to both, then A as incoming packet with B as source address and A as destination does
not match this rule. Typically the both option is used in gateways that forward the packets.

Associated with these filter rules are Subnet masks, which group IDs that are associated with a filter rule,
and the host-firewall-host configuration option. The following sections describe the different types of
filter rules and their associated features.

IP filters for AIX:

IPFilter is a software package that can be used to provide network address translation (NAT) or firewall
services.

IPFilter version 4.1.13 open source software has been ported to AIX, consistent with the licensing
presented on the IP Filter website (http://coombs.anu.edu.au/~avalon/). The IPFilter software is shipped
on the AIX expansion pack. The installp package, ipfl, includes the man page and license.

On the AIX operating system, the IPFilter product loads as a kernel extension, /usr/lib/drivers/ipf. The
ipf, ipfs, ipfstat, ipmon, and ipnat binaries are also shipped with this package.

After installing the package, run the following command to load the kernel extension:
/usr/lib/methods/cfg_ipf -l

Run the following command to unload the kernel extension:
/usr/lib/methods/cfg_ipf -u

246 AIX Version 7.2: Security

Remember to enable ipforwarding (network option) if packet forwarding is needed. For more information
about IPFilter, including man pages and an FAQ, check the IPFilter website (http://coombs.anu.edu.au/
~avalon/).

Static filter rules:

Each static filter rule contains space-separated fields.

The following list provides the name of each field in a static filter rule followed by an example from rule
1 in parentheses:
v Rule_number (1)
v Action (permit)
v Source_addr (0.0.0.0)
v Source_mask (0.0.0.0)
v Dest_addr (0.0.0.0)
v Dest_mask (0.0.0.0)
v Source_routing (no)
v Protocol (udp)
v Src_prt_operator (eq)
v Src_prt_value (4001)
v Dst_prt_operator (eq)
v Dst_prt_value (4001)
v Scope (both)
v Direction (both)
v Logging (no)
v Fragment (all packets)
v Tunnel (0)
v Interface (all).

Example of static filter rules
1 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 no udp eq 4001 eq 4001 both both no all

packets 0 all

2 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 no ah any 0 any 0 both both no all packets
0 all

3 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 no esp any 0 any 0 both both no all packets
0 all

4 permit 10.0.0.1 255.255.255.255 10.0.0.2 255.255.255.255 no all any 0 any 0 both
outbound no all packets 1 all outbound traffic

5 permit 10.0.0.2 255.255.255.255 10.0.0.1 255.255.255.255 no all any 0 any 0 both
inbound no all packets 1 all

6 permit 10.0.0.1 255.255.255.255 10.0.0.3 255.255.255.255 no tcp lt 1024 eq 514 local
outbound yes all packets 2 all

7 permit 10.0.0.3 255.255.255.255 10.0.0.1 255.255.255.255 no tcp/ack eq 514 lt 1024
local inbound yes all packets 2 all

8 permit 10.0.0.1 255.255.255.255 10.0.0.3 255.255.255.255 no tcp/ack lt 1024 lt 1024
local outbound yes all packets 2 all

Security 247

9 permit 10.0.0.3 255.255.255.255 10.0.0.1 255.255.255.255 no tcp lt 1024 lt 1024 local
inbound yes all packets 2 all

10 permit 10.0.0.1 255.255.255.255 10.0.0.4 255.255.255.255 no icmp any 0 any 0 local
outbound yes all packets 3 all

11 permit 10.0.0.4 255.255.255.255 10.0.0.1 255.255.255.255 no icmp any 0 any 0 local
inbound yes all packets 3 all

12 permit 10.0.0.1 255.255.255.255 10.0.0.5 255.255.255.255 no tcp gt 1023 eq 21 local
outbound yes all packets 4 all

13 permit 10.0.0.5 255.255.255.255 10.0.0.1 255.255.255.255 no tcp/ack eq 21 gt 1023 local
inbound yes all packets 4 all

14 permit 10.0.0.5 255.255.255.255 10.0.0.1 255.255.255.255 no tcp eq 20 gt 1023 local
inbound yes all packets 4 all

15 permit 10.0.0.1 255.255.255.255 10.0.0.5 255.255.255.255 no tcp/ack gt 1023 eq 20 local
outbound yes all packets 4 all

16 permit 10.0.0.1 255.255.255.255 10.0.0.5 255.255.255.255 no tcp gt 1023 gt 1023 local
outbound yes all packets 4 all

17 permit 10.0.0.5 255.255.255.255 10.0.0.1 255.255.255.255 no tcp/ack gt 1023 gt 1023 local
inbound yes all packets 4 all

18 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 no all any 0 any 0 both both yes all
packets

Each rule in the previous example is described as follows:

Rule 1 For the Session Key daemon. This rule only appears in IP Version 4 filter tables. It uses port
number 4001 to control packets for refreshing the session key. Rule 1 an example of how the port
number can be used for a specific purpose.

Note: Do not modify this filter rule, except for logging purposes.

Rules 2 and 3
Allow processing of authentication headers (AH) and encapsulating security payload (ESP)
headers.

Note: Do not modify Rules 2 and 3, except for logging purposes.

Rules 4 and 5
Set of autogenerated rules that filter traffic between addresses 10.0.0.1 and 10.0.0.2 through tunnel
1. Rule 4 is for outbound traffic, and rule 5 is for inbound traffic.

Note: Rule 4 has a user-defined description of outbound traffic.

Rules 6 through 9
Set of user-defined rules that filter outbound rsh, rcp, rdump, rrestore, and rdist services between
addresses 10.0.0.1 and 10.0.0.3 through tunnel 2. In this example, logging is set to Yes, so that the
administrator can monitor this type of traffic.

248 AIX Version 7.2: Security

Rules 10 and 11
Set of user-defined rules that filter both inbound and outbound icmp services of any type
between addresses 10.0.0.1 and 10.0.0.4 through tunnel 3.

Rules 12 through 17
User-defined filter rules that filter outbound file transfer protocol (FTP) service from 10.0.0.1 and
10.0.0.5 through tunnel 4.

Rule 18
Autogenerated rule always placed at the end of the table. In this example, it permits all packets
that do not match the other filter rules. It can be set to deny all traffic not matching the other
filter rules.

Each rule can be viewed separately (using lsfilt) to list each field with its value. For example:
Rule 1:
Rule action : permit
Source Address : 0.0.0.0
Source Mask : 0.0.0.0
Destination Address : 0.0.0.0
Destination Mask : 0.0.0.0
Source Routing : yes
Protocol : udp
Source Port : eq 4001
Destination Port : eq 4001
Scope : both
Direction : both
Logging control : no
Fragment control : all packets
Tunnel ID number : 0
Interface : all
Auto-Generated : yes

The following list contains all the parameters that can be specified in a filter rule:

-v IP Version: 4 or 6.

-a Action:

d Deny

p Permit

-s Source address. Can be an IP address or hostname.

-m Source subnet mask.

-d Destination address. Can be an IP address or hostname.

-M Destination subnet mask.

-g Source routing control: y or n.

-c Protocol. Values can be udp, icmp, tcp, tcp/ack, ospf, pip, esp, ah and all.

-o Source port or ICMP type operation.

-p Source port or ICMP type value.

-O Destination port or ICMP code operation.

-P Destination port or ICMP code value.

-r Routing:

r Forwarded packets.

l Local destined/originated packets.

Security 249

b Both.

-l Log control.

y Include in log.

n Do not include in log.

-f Fragmentation.

y Applies to fragments headers, fragments, and non-fragments.

o Applies only to fragments and fragment headers.

n Applies only to non-fragments.

h Applies only to non-fragments and fragment headers.

-t Tunnel ID.

-i Interface, such as tr0 or en0.

For more information, see the genfilt and chfilt command descriptions.

Autogenerated filter rules and user-specified filter rules:

Certain rules are autogenerated for the use of the IP Security filter and tunnel code.

Autogenerated rules include the following rule sets:
v Rules for the session key daemon that refresh the IP version 4 keys in IKE
v Rules for the processing of AH and ESP packets.

Filter rules are also autogenerated when you define tunnels. For manual tunnels, autogenerated rules
specify the source and destination addresses and the mask values, as well as the tunnel ID. All traffic
between those addresses flow through the tunnel.

For IKE tunnels, autogenerated filter rules determine protocol and port numbers during IKE negotiation.
The IKE filter rules are kept in a separate table, which is searched after the static filter rules and before
the autogenerated rules. IKE filter rules are inserted in a default position within the static filter table, but
they can be moved by the user.

Autogenerated rules permit all traffic over the tunnel. User-defined rules can place restrictions on certain
types of traffic. Place these user-defined rules before the autogenerated rules, because IP Security uses the
first rule it finds that applies to the packet. The following is an example of user-defined filter rules that
filter traffic based on ICMP operation.
1 permit 10.0.0.1 255.255.255.255 10.0.0.4 255.255.255.255 no icmp any 8 any 0

local outbound no all packets 3 all
2 permit 10.0.0.4 255.255.255.255 10.0.0.1 255.255.255.255 no icmp any 0 any 0 local

inbound no all packets 3 all
3 permit 10.0.0.4 255.255.255.255 10.0.0.1 255.255.255.255 no icmp any 8 any 0 local

inbound no all packets 3 all
4 permit 10.0.0.1 255.255.255.255 10.0.0.4 255.255.255.255 no icmp any 0 any 0 local

outbound no all packets 3 all

To simplify the configuration of a single tunnel, filter rules are autogenerated when tunnels are defined.
This function can be suppressed by specifying the -g flag in the gentun. You can find a sample filter file
with genfilt commands to generate filter rules for different TCP/IP services in /usr/samples/ipsec/
filter.sample.

Predefined filter rules:

Several predefined filter rules are autogenerated with certain events.

250 AIX Version 7.2: Security

When the ipsec_v4 or ipsec_v6 device is loaded, a predefined rule is inserted into the filter table and
then activated. By default, this predefined rule is to permit all packets, but it is user-configurable and you
can set it to deny all packets.

Note: When configuring remotely, ensure that the deny rule is not enabled before the configuration is
complete, to prevent your session from getting locked out of the machine. The situation can be avoided
either by setting the default action to permit or by configuring a tunnel to the remote machine before
activating IP Security.

Both IP Version 4 and IP Version 6 filter tables have a predefined rule. Either may be independently
changed to deny all. This will keep traffic from passing unless that traffic is specifically defined by
additional filter rules. The only other option to change on the predefined rules is chfilt with the -l option,
which allows packets matching that rule to be logged.

To support IKE tunnels, a dynamic filter rule is placed in the IP Version 4 filter table. This is the position
at which dynamic filter rules are inserted into the filter table. This position can be controlled by the user
by moving its position up and down the filter table. After the tunnel manager daemon and isakmpd
daemon are initialized to allow IKE tunnels to be negotiated, rules are automatically created in the
dynamic filter table to handle IKE messages as well as AH and ESP packets.

Subnet masks:

Subnet masks are used to group a set of IDs that are associated with a filter rule. The mask value is
ANDed with the ID in the filter rules and compared to the ID specified in the packet.

For example, a filter rule with a source IP address of 10.10.10.4 and a subnet mask of 255.255.255.255
specified that an exact match must occur of the decimal IP address, as shown in the following:

Binary Decimal

Source IP address 1010.1010.1010.0100 10.10.10.4

Subnet mask 11111111.11111111.11111111.11111111 255.255.255.255

A 10.10.10.x subnet is specified as 11111111.11111111.11111111.0 or 255.255.255.0. An incoming
address would have the subnet mask applied to it, then the combination would be compared to the ID in
the filter rule. For example, an address of 10.10.10.100 becomes 10.10.10.0 after the subnet mask is
applied, which matches the filter rule.

A subnet mask of 255.255.255.240 allows any value for the last four bits in the address.

Host-firewall-host configuration:

The host-firewall-host configuration option for tunnels allows you to create a tunnel between your host
and a firewall, then automatically generate the necessary filter rules for correct communication between
your host and a host behind the firewall.

The autogenerated filter rules permit all rules between the two non-firewall hosts over the tunnel
specified. The default rules—for user datagram protocol (UDP), Authentication Headers (AH), and
Encapsulating Security Payload (ESP) headers—should already handle the host to firewall
communication. The firewall will have to be configured appropriately to complete the setup. You should
use the export file from the tunnel you created to enter the SPI values and keys that the firewall needs.

Security 251

This illustration shows a Host-Firewall-Host configuration. Host A has a tunnel running through a local
firewall and out to the internet. Then it goes to Remote Firewall B, and then on to Remote Host C.

Logging facilities
As hosts communicate with each other, the transferred packets may be logged to the system log daemon,
syslogd. Other important messages about IP Security also display.

An administrator may choose to monitor this logging information for traffic analysis and debugging
assistance. The following are the steps for setting up the logging facilities.
1. Edit the /etc/syslog.conf file to add the following entry:

local4.debug var/adm/ipsec.log

Use the local4 facility to record traffic and IP Security events. Standard operating system priority
levels apply. You should set the priority level of debug until traffic through IP Security tunnels and
filters show stability and proper movement.

Note: The logging of filter events can create significant activity at the IP Security host and can
consume large amounts of storage.

2. Save the /etc/syslog.conf file.
3. Go to the directory you specified for the log file and create an empty file with the same name. In the

case above, you would change to /var/adm directory and issue the command:
touch ipsec.log

4. Issue a refresh command to the syslogd subsystem:
refresh -s syslogd

5. If you are using IKE tunnels, ensure the /etc/isakmpd.conf file specifies the desired isakmpd logging
level. (See “Internet Protocol security problem diagnosis” on page 257 for more information on IKE
logging.)

6. While creating filter rules for your host, if you would like packets matching a specific rule to be
logged, set the -l parameter for the rule to Y (Yes) using the genfilt or the chfilt commands.

7. Turn on packet logging and start the ipsec_logd daemon using the command:
mkfilt -g start

You can stop packet logging by issuing the following command:
mkfilt -g stop

The following sample log file contains traffic entries and other IP Security log entries:
1. Aug 27 08:08:40 host1 : Filter logging daemon ipsec_logd (level 2.20)

initialized at 08:08:40 on 08/27/97A
2. Aug 27 08:08:46 host1 : mkfilt: Status of packet logging set to Start

at 08:08:46 on 08/27/97
3. Aug 27 08:08:47 host1 : mktun: Manual tunnel 2 for IPv4, 9.3.97.244, 9.3.97.130

activated.
4. Aug 27 08:08:47 host1 : mkfilt: #:1 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0

udp eq 4001 eq 4001 both both l=n f=y t=0 e= a=
5. Aug 27 08:08:47 host1 : mkfilt: #:2 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0

ah any 0 any 0 both both l=n f=y t=0 e= a=
6. Aug 27 08:08:47 host1 : mkfilt: #:3 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0

Figure 14. Host-Firewall-Host

252 AIX Version 7.2: Security

esp any 0 any 0 both both l=n f=y t=0 e= a=
7. Aug 27 08:08:47 host1 : mkfilt: #:4 permit 10.0.0.1 255.255.255.255 10.0.0.2

255.255.255.255 icmp any 0 any 0 local outbound l=y f=y t=1 e= a=
8. Aug 27 08:08:47 host1 : mkfilt: #:4 permit 10.0.0.2 255.255.255.255 10.0.0.1

255.255.255.255 icmp any 0 any 0 local inbound l=y f=y t=1 e= a=
9. Aug 27 08:08:47 host1 : mkfilt: #:6 permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0

all any 0 any 0 both both l=y f=y t=0 e= a=
10. Aug 27 08:08:47 host1 : mkfilt: Filter support (level 1.00) initialized at

08:08:47 on 08/27/97
11. Aug 27 08:08:48 host1 : #:6 R:p o:10.0.0.1 s:10.0.0.1 d:10.0.0.20 p:udp

sp:3327 dp:53 r:l a:n f:n T:0 e:n l:67
12. Aug 27 08:08:48 host1 : #:6 R:p i:10.0.0.1 s:10.0.0.20 d:10.0.0.1 p:udp

sp:53 dp:3327 r:l a:n f:n T:0 e:n l:133
13. Aug 27 08:08:48 host1 : #:6 R:p i:10.0.0.1 s:10.0.0.15 d:10.0.0.1 p:tcp

sp:4649 dp:23 r:l a:n f:n T:0 e:n l:43
14. Aug 27 08:08:48 host1 : #:6 R:p o:10.0.0.1 s:10.0.0.1 d:10.0.0.15 p:tcp

sp:23 dp:4649 r:l a:n f:n T:0 e:n l:41
15. Aug 27 08:08:48 host1 : #:6 R:p i:10.0.0.1 s:10.0.0.15 d:10.0.0.1 p:tcp

sp:4649 dp:23 r:l a:n f:n T:0 e:n l:40
16. Aug 27 08:08:51 host1 : #:4 R:p o:10.0.0.1 s:10.0.0.1 d:10.0.0.2 p:icmp

t:8 c:0 r:l a:n f:n T:1 e:n l:84
17. Aug 27 08:08:51 host1 : #:5 R:p i:10.0.0.1 s:10.0.0.2 d:10.0.0.1 p:icmp

t:0 c:0 r:l a:n f:n T:1 e:n l:84
18. Aug 27 08:08:52 host1 : #:4 R:p o:10.0.0.1 s:10.0.0.1 d:10.0.0.2 p:icmp

t:8 c:0 r:l a:n f:n T:1 e:n l:84
19. Aug 27 08:08:52 host1 : #:5 R:p i:10.0.0.1 s:10.0.0.2 d:10.0.0.1 p:icmp

t:0 c:0 r:l a:n f:n T:1 e:n l:84
20. Aug 27 08:32:27 host1 : Filter logging daemon terminating at 08:32:27 on

08/27/97l

The following paragraphs explain the log entries.

1 Filter logging daemon activated.

2 Filter packet logging set to on with the mkfilt -g start command.

3 Tunnel activation, showing tunnel ID, source address, destination address, and time stamp.

4-9 Filters have been activated. Logging shows all loaded filter rules.

10 Message showing activation of filters.

11-12 These entries show a DNS lookup for a host.

13-15 These entries show a partial Telnet connection (the other entries have been removed from this
example for space reasons).

16-19 These entries show two pings.

20 Filter logging daemon shutting down.

The following example shows two hosts negotiating a phase 1 and a phase 2 tunnel from the initiating
host's point of view. (The isakmpd logging level has been specified as isakmp_events.)
1. Dec 6 14:34:42 host1 Tunnel Manager: 0: TM is processing a

Connection_request_msg
2. Dec 6 14:34:42 host1 Tunnel Manager: 1: Creating new P1 tunnel object (tid)
3. Dec 6 14:34:42 host1 isakmpd: 192.168.100.103 >>> 192.168.100.104 (SA PROPOSAL

TRANSFORM)
4. Dec 6 14:34:42 host1 isakmpd: ::ffff:192.168.100.103 <<< 192.168.100.104 (SA

PROPOSAL TRANSFORM)
5. Dec 6 14:34:42 host1 isakmpd: Phase I SA Negotiated
6. Dec 6 14:34:42 host1 isakmpd: 192.168.100.103 >>> 192.168.100.104 (KE NONCE)
7. Dec 6 14:34:42 host1 isakmpd: ::ffff:192.168.100.103 <<< 192.168.100.104 (KE

NONCE)
8. Dec 6 14:34:42 host1 isakmpd: Encrypting the following msg to send: (ID HASH

)
9. Dec 6 14:34:42 host1 isakmpd: 192.168.100.103 >>> 192.168.100.104 (Encrypted

Security 253

Payloads)
10. Dec 6 14:34:42 host1 isakmpd: ::ffff:192.168.100.103 <<< 192.168.100.104 (

Encrypted Payloads)
11. Dec 6 14:34:42 host1 Tunnel Manager: 1: TM is processing a P1_sa_created_msg

(tid)
12. Dec 6 14:34:42 host1 Tunnel Manager: 1: Received good P1 SA, updating P1

tunnel (tid)
13. Dec 6 14:34:42 host1 Tunnel Manager: 0: Checking to see if any P2 tunnels need

to start
14. Dec 6 14:34:42 host1 isakmpd: Decrypted the following received msg: (ID HASH

)
15. Dec 6 14:34:42 host1 isakmpd: Phase I Done !!!
16. Dec 6 14:34:42 host1 isakmpd: Phase I negotiation authenticated
17. Dec 6 14:34:44 host1 Tunnel Manager: 0: TM is processing a

Connection_request_msg
18. Dec 6 14:34:44 host1 Tunnel Manager: 0: Received a connection object for an

active P1 tunnel
19. Dec 6 14:34:44 host1 Tunnel Manager: 1: Created blank P2 tunnel (tid)
20. Dec 6 14:34:44 host1 Tunnel Manager: 0: Checking to see if any P2 tunnels need

to start
21. Dec 6 14:34:44 host1 Tunnel Manager: 1: Starting negotiations for P2 (P2 tid)
22. Dec 6 14:34:45 host1 isakmpd: Encrypting the following msg to send: (HASH SA

PROPOSAL TRANSFORM NONCE ID ID)
23. Dec 6 14:34:45 host1 isakmpd: 192.168.100.103 >>> 192.168.100.104 (Encrypted

Payloads)
24. Dec 6 14:34:45 host1 isakmpd: ::ffff:192.168.100.103 <<< 192.168.100.104 (

Encrypted Payloads)
25. Dec 6 14:34:45 host1 isakmpd: Decrypted the following received msg: (HASH SA

PROPOSAL TRANSFORM NONCE ID ID)
26. Dec 6 14:34:45 host1 isakmpd: Encrypting the following msg to send: (HASH)
27. Dec 6 14:34:45 host1 isakmpd: 192.168.100.103 >>> 192.168.100.104 (Encrypted

Payloads)
28. Dec 6 14:34:45 host1 isakmpd: Phase II SA Negotiated
29. Dec 6 14:34:45 host1 isakmpd: PhaseII negotiation complete.
30. Dec 6 14:34:45 host1 Tunnel Manager: 0: TM is processing a P2_sa_created_msg
31. Dec 6 14:34:45 host1 Tunnel Manager: 1: received p2_sa_created for an existing

tunnel as initiator (tid)
32. Dec 6 14:34:45 host1 Tunnel Manager: 1: Filter::AddFilterRules: Created filter

rules for tunnel
33. Dec 6 14:34:45 host1 Tunnel Manager: 0: TM is processing a List_tunnels_msg

The following paragraphs explain the log entries.

1-2 The ike cmd=activate phase=1 command initiates a connection.

3-10 The isakmpd daemon negotiates a phase 1 tunnel.

11-12 The Tunnel Manager receives a valid phase 1 security association from the responder.

13 The Tunnel Manager checks whether ike cmd=activate has a phase 2 value for more work. It
does not.

14-16 The isakmpd daemon finishes the phase 1 negotiation.

17-21 The ike cmd=activate phase=2 command initiates a phase 2 tunnel.

22-29 The isakmpd daemon negotiates a phase 2 tunnel.

30-31 The Tunnel Manager receives a valid phase 2 security association from responder.

32 The Tunnel Manager writes the dynamic filter rules.

33 The ike cmd=list command views the IKE tunnels.

Labels in field entries:

The fields in the log entries are abbreviated to reduce DASD space requirements.

254 AIX Version 7.2: Security

Field Meaning
The rule number that caused this packet to be logged.
R Rule Type

p Permit

d Deny
i/o Direction the packet was traveling when it was intercepted by the filter support code. Identifies IP address of the adapter

associated with the packet:

v For inbound (i) packets, this is the adapter that the packet arrived on.

v For outbound (o) packets, this is the adapter that the IP layer has determined should handle the transmission of the
packet.

s Specifies the IP address of the sender of the packet (extracted from the IP header).
d Specifies the IP address of the intended recipient of the packet (extracted from the IP header).
p Specifies the high-level protocol that was used to create the message in the data portion of the packet. May be a number

or name, for example: udp, icmp, tcp, tcp/ack, ospf, pip, esp, ah, or all.
sp/t Specifies the protocol port number associated with the sender of the packet (extracted from the TCP/UDP header). When

the protocol is ICMP or OSPF, this field is replaced with t, which specifies the IP type.
dp/c Specifies the protocol port number associated with the intended recipient of the packet (extracted from the TCP/UDP

header). When the protocol is ICMP, this field is replaced with c, which specifies the IP code.
- Specifies that no information is available
r Indicates whether the packet had any local affiliation.

f Forwarded packets

l Local packets

o Outgoing

b Both
l Specifies the length of a particular packet in bytes.
f Identifies if the packet is a fragment.
T Indicates the tunnel ID.
i Specifies what interface the packet came in on.

Internet Key-Exchange logging:

You can enable logging of Internet Key-Exchange events to the SYSLOG facility with the isakmpd
daemon.

For the isakmpd daemon, you enable logging using the ike cmd=log command. You can set the logging
level in the /etc/isakmpd.conf configuration file with the log_level parameter. Depending on the
amount of information that you want to log, you can set the level to none, errors, isakmp_events, or
information.

For example, to specify that you want to log protocol information and implementation information,
specify the following parameter:
log_level=INFORMATION

The isakmpd daemon starts one of two processes: it sends a proposal, or it evaluates a proposal. If the
proposal is accepted, a security association is created and the tunnel is set up. If the proposal is not
accepted or the connection ends before the negotiation completes, the isakmpd daemon indicates an
error. The entries in the SYSLOG facility from tmd indicate whether the negotiation succeeded. A failure
caused by a certificate that was not valid is logged to the SYSLOG facility. To determine the exact cause
of a failed negotiation, review the data in the logging file that is specified in /etc/syslog.conf.

The SYSLOG facility adds a prefix to each line of the log, noting the date and time, the machine, and the
program. The following example uses googly as the machine name and isakmpd as the program name:

Security 255

Nov 20 09:53:50 googly isakmpd: ISAKMP_MSG_HEADER
Nov 20 09:53:50 googly isakmpd: Icookie : 0xef06a77488f25315, Rcookie :0x0000000000000000
Nov 20 09:53:51 googly isakmpd: Next Payload : 1(SA), Maj Ver : 1, Min Ver : 0
Nov 20 09:53:51 googly isakmpd: Xchg Type : 2 (ID protected), Flag= 0, Encr : No,COMMIT : No
Nov 20 09:53:51 googly isakmpd: Msg ID : 0x00000000

To improve clarity, use the grep command to extract log lines of interest (such as all isakmpd logging)
and the cut command to remove the prefix from each line.

The /etc/isakmpd.conf file:

You can configure options for the isakmpd daemon in the /etc/isakmpd.conf file.

The following options are available in the /etc/isakmpd.conf file.

Log configuration
Determine the amount of information that you want to log. Then set the level. The IKE daemons
use this option to specify the level of logging.

Syntax: none | error | isakmp_events | information

where the level has the following meaning:

none No logging. This is the default.

error Log protocol errors or appliation programming interface (API) errors.

isakmp_events
Log IKE protocol events or errors. Use this level when debugging a problem.

information
Log protocol information and implementation information.

Unrecognized IP address negotiation
You can set this option to YES or NO. When you set this option to YES, the local IKE database
must contain an IP address for both phase-1 tunnel endpoints. You must specify YES for the host
to accept an incoming main-mode tunnel. The IP address can be the primary ID or an optional IP
address that is associated with some other ID type.

Set this option to NO to accept an incoming main-mode connection. When you set the option to
NO, the host might accept the connection even when the IKE database does not specify IP
addresses for the phase 1 endpoints. However, in order for the host to accept the connection, you
must use certificate-based authentication. This allows a host with a dynamically assigned IP
address to initiate a main mode tunnel to the machine.

If you do not specify this parameter, the default is NO.

Syntax: MAIN_MODE_REQUIRES_IP= YES | NO

SOCKS4 server configuration
The SOCKS4_PORTNUM option is optional. If you do not specify it, the default SOCKS-server port
value of 1080 is used. The port value is used when the SOCKS server communicates with the
HTTP server.

Syntax: mnemonic = value
where mneumonic and value can be the following values:

SOCKS4_SERVER= specifies the server name
SOCKS4_PORTNUM= specifies the SOCKS-server port number
SOCKS4_USERID= user ID

LDAP server configuration

Syntax: mnemonic = value
where mnemonic and value can be the following values:

256 AIX Version 7.2: Security

LDAP_SERVER= specifies the LDAP server name
LDAP_VERSION= the version of the LDAP server (can be 2 or 3)
LDAP_SERVERPORT= the LDAP-server port number
LDAP_SEARCHTIME=client-search timeout value

CRL fetch order
This option defines whether the HTTP or LDAP server is queried first, when both servers are
configured. The CRL_FETCH_ORDER option is optional. The default fetch order is HTTP first, then
LDAP, depending on whether both HTTP and LDAP servers are configured.

Syntax: CRL_FETCH_ORDER= protocol#, protocol#
where protocol# can be HTTP or LDAP.

IKEv1 and IKEv2 port specification
This string specifies the ports used by the isakmpd daemon (IKEv1) and the ikev2d daemon
(IKEv2). The iked daemon (the IKE message broker daemon) looks up this entry and starts the
isakmpd daemon and the ikev2d daemon on their respective ports.

Syntax: v1=port-natport,v2=port-natport

Internet Protocol security problem diagnosis
The following are some hints and tips that might assist you when you encounter a problem.

Set up logging when IPSec is first configured. Logs are very useful in determining what occurs with the
filters and tunnels. (For detailed log information, see “Logging facilities” on page 252.)

To determine which IP security daemons are running, enter the following command:
ps -ef

The following daemons are associated with IP security: tmd, iked, isakmpd, ikev2d, cpsd.

Note: If both IKEv1 and IKEv2 are configured, the iked daemon runs. Otherwise, either the iskmpd
daemon runs or the ikev2d daemon runs. This configuration is in the /etc/isakmpd.conf file.

Troubleshooting manual tunnel errors:

The following are descriptions of several possible tunnel errors, along with their solutions.

Error Possible problem and solution

Issuing mktun command results in the
following error:

insert_tun_man4(): write failed : The
requested resource is busy.

Problem: The tunnel you requested to activate is already active or you have colliding
SPI values.

To fix: Issue the rmtun command to deactivate, then issue the mktun command to
activate. Check to see if the SPI values for the failing tunnel match any other active
tunnel. Each tunnel should have its own unique SPI values.

Issuing mktun command results in the
following error:

Device ipsec_v4 is in Defined status.

Tunnel activation for IP Version 4 not
performed.

Problem: You have not made the IP Security device available.

To fix: Issue the following command:

mkdev -l ipsec -t 4

You might have to change -t option to 6 if you are getting the same error for IP
Version 6 tunnel activation. The devices must be in available state. To check the IP
Security device state, issue the following command:

lsdev -Cc ipsec

Security 257

Error Possible problem and solution

Issuing a gentun command results in the
following error:

Invalid Source IP address

Problem: You have not entered a valid IP address for the source address.

To fix: For IP Version 4 tunnels, check to see that you have entered an available IP
Version 4 address for the local machine. You cannot use host names for the source
when generating tunnels, you might only use host names for the destination.

For IP Version 6 tunnels, check to see that you entered an available IP Version 6
address. If you type netstat -in and no IP Version 6 addresses exist, run
/usr/sbin/autoconf6 (interface) for a link local autogenerated address (using MAC
address) or use the ifconfig command to manually assign an address.

Issuing a gentun command results in the
following error:

Invalid Source IP address

Problem: You have not entered a valid IP address for the source address.

To fix: For IP Version 4 tunnels, check to see that you have entered an available IP
Version 4 address for the local machine. You cannot use host names for the source
when generating tunnels, you may only use host names for the destination.

For IP Version 6 tunnels, check to see that you entered an available IP Version 6
address. If you type netstat -in and no IP Version 6 addresses exist, run
/usr/sbin/autoconf6 (interface) for a link local auto-generated address (using MAC
address) or use ifconfig to manually assign an address.

Issuing mktun command results in the
following error:

insert_tun_man4(): write failed : A
system call received a parameter that
is not valid.

Problem: Tunnel generation occurred with invalid ESP and AH combination or
without the use of the new header format when necessary.

To fix: Check to see which authentication algorithms are in use by the particular
tunnel in question. Remember that the HMAC_MD5 and HMAC_SHA algorithms
require the new header format. The new header format can be changed using the
SMIT fast path ips4_basic or the -z parameter with the chtun command. Also,
remember that DES_CBC_4 cannot be used with the new header format.

Trying to use IP Security results in the
following error:

The installed bos.crypto is back level
and must be updated.

Problem: The bos.net.ipsec.* files have been updated to a newer version, but the
corresponding bos.crypto.* files have not.

To fix: Update the bos.crypto.* files to the version that corresponds with the
updated bos.net.ipsec.* files.

Troubleshooting Internet Key Exchange tunnel errors:

The following sections describe errors that can occur when using Internet Key Exchange (IKE) tunnels.

Internet Key Exchange tunnel process flow:

This section describes the process flow for the internet key exchange tunnel.

The IKE tunnels are set up by the communication of the ike command with the following daemons:

tmd Tunnel Manager daemon

iked IKE broker daemon (active only when both IKEv1 and IKEv2 daemons are configured on a
system)

isakmpd
IKEv1 daemon

ikev2d
IKEv2 daemon

cpsd Certificate proxy daemon

For IKE tunnels to be correctly set up, the tmd and isakmpd daemons must be running. If IP Security is
set to start at reboot, these daemons start automatically. Otherwise, they must be started by entering the
following command:
startsrc -g ike

258 AIX Version 7.2: Security

The Tunnel Manager gives requests to the isakmpd command to start a tunnel. If the tunnel already
exists or is not valid (for instance, has an invalid remote address), it reports an error. If negotiation has
started, it may take some time, depending on network latency, for the negotiation to complete. The ike
cmd=list command can list the state of the tunnel to determine if the negotiation was successful. Also,
the Tunnel Manager logs events to syslog to the levels of debug, event, and information, which can be
used to monitor the progress of the negotiation.

The sequence is as follows:
1. Use the ike command to initiate a tunnel.
2. The tmd daemon gives the isakmpd daemon a connection request for key management (phase 1).
3. The isakmpd daemon responds with SA created or an error message.
4. The tmd daemon gives the isakmpd daemon a connection request for a data management tunnel

(phase 2).
5. The isakmpd daemon responds with SA created or an error message.
6. Tunnel parameters are inserted into the kernel tunnel cache.
7. Filter rules are added to the kernel dynamic filter table.

When the machine is acting as a responder, the isakmpd daemon notifies the Tunnel Manager tmd
daemon that a tunnel has been negotiated successfully and a new tunnel is inserted into the kernel. In
such cases, the process starts with step 3 and continues until step 7, without the tmd daemon issuing
connection requests.

Parse payload logging function:

The security association (SA) between two end points is established by exchanging IKE messages. The
Parse Payload function parses the messages in a human-readable format.

Parse payload logging can be enabled by editing the /etc/isakmpd.conf file. The logging entry in the
/etc/isakmpd.conf file looks similar to the following:
information

The type of IKE payloads that Parse Payload logs depends on the content of the IKE message. Examples
include SA Payload, Key Exchange Payload, Certificate Request Payload, Certificate Payload, and
Signature Payload. The following is an example of a Parse Payload log in which an
ISAKMP_MSG_HEADER is followed by five payloads:
ISAKMP_MSG_HEADER

Icookie : 0x9e539a6fd4540990, Rcookie : 0x0000000000000000
Next Payload : 1(SA), Maj Ver : 1, Min Ver : 0
Xchg Type : 4 (Aggressive), Flag= 0, Encr : No,COMMIT : No
Msg ID : 0x00000000
len : 0x10e(270)

SA Payload:
Next Payload : 4(Key Exchange), Payload len : 0x34(52)
DOI : 0x1(INTERNET)
bitmask : 1(SIT_IDENTITY_ONLY

Proposal Payload:
Next Payload : 0(NONE), Payload len : 0x28(40)
Proposal # : 0x1(1), Protocol-ID : 1(ISAKMP)
SPI size : 0x0(0), # of Trans : 0x1(1)

Transform Payload:
Next Payload : 0(NONE), Payload len : 0x20(32)
Trans # : 0x1(1), Trans.ID : 1(KEY_IKE)
Attr : 1(Encr.Alg), len=0x2(2)
Value=0x1(1),(DES-cbc)
Attr : 2(Hash Alg), len=0x2(2)
Value=0x1(1),(MD5)
Attr : 3(Auth Method), len=0x2(2)
Value=0x3(3),(RSA Signature)

Security 259

Attr : 4(Group Desc), len=0x2(2)
Value=0x1(1),(default 768-bit MODP group)
Attr : 11(Life Type), len=0x2(2)
Value=0x1(1),(seconds)
Attr : 12(Life Duration), len=0x2(2)
Value=0x7080(28800)

Key Payload:
Next Payload : 10(Nonce), Payload len : 0x64(100)

Key Data :
33 17 68 10 91 1f ea da 38 a0 22 2d 84 a3 5d 5d
a0 e1 1f 42 c2 10 aa 8d 9d 14 0f 58 3e c4 ec a3
9f 13 62 aa 27 d8 e5 52 8d 5c c3 cf d5 45 1a 79
8a 59 97 1f 3b 1c 08 3e 2a 55 9b 3c 50 cc 82 2c
d9 8b 39 d1 cb 39 c2 a4 05 8d 2d a1 98 74 7d 95
ab d3 5a 39 7d 67 5b a6 2e 37 d3 07 e6 98 1a 6b

Nonce Payload:
Next Payload : 5(ID), Payload len : 0xc(12)

Nonce Data:
6d 21 73 1d dc 60 49 93

ID Payload:
Next Payload : 7(Cert.Req), Payload len : 0x49(73)
ID type : 9(DER_DN), Protocol : 0, Port = 0x0(0)

Certificate Request Payload:
Next Payload : 0(NONE), Payload len : 0x5(5)
Certificate Encoding Type: 4(X.509 Certificate - Signature)

Within each payload, a Next Payload field points to the payload following the current payload. If the
current payload is the last one in the IKE message, the Next Payload field has the value of zero (None).

Each Payload in the example has information pertaining to the negotiations that are going on. For
example, the SA payload has the Proposal and Transform Payloads, which in turn show the encryption
algorithm, authentication mode, hash algorithm, SA life type, and SA duration that the initiator is
proposing to the responder.

Also, the SA Payload consists of one or more Proposal Payloads and one or more Transform Payloads.
The Next Payload field for Proposal Payload has a value of either 0 if it is the only Proposal Payload or a
value of 2 if it is followed by one more Proposal Payloads. Similarly, the Next Payload field for a
Transform Payload has a value of 0 if it is the only Transform Payload, or a value of 3 if it is followed by
one more Transform Payloads, as shown in the following example:
ISAKMP_MSG_HEADER

Icookie : 0xa764fab442b463c6, Rcookie : 0x0000000000000000
Next Payload : 1(SA), Maj Ver : 1, Min Ver : 0
Xchg Type : 2 (ID protected), Flag= 0, Encr : No,COMMIT : No
Msg ID : 0x00000000
len : 0x70(112)

SA Payload:
Next Payload : 0(NONE), Payload len : 0x54(84)
DOI : 0x1(INTERNET)
bitmask : 1(SIT_IDENTITY_ONLY

Proposal Payload:
Next Payload : 0(NONE), Payload len : 0x48(72)
Proposal # : 0x1(1), Protocol-ID : 1(ISAKMP)
SPI size : 0x0(0), # of Trans : 0x2(2)

Transform Payload:
Next Payload : 3(Transform), Payload len : 0x20(32)
Trans # : 0x1(1), Trans.ID : 1(KEY_IKE)
Attr : 1(Encr.Alg), len=0x2(2)
Value=0x5(5),(3DES-cbc)
Attr : 2(Hash Alg), len=0x2(2)
Value=0x1(1),(MD5)
Attr : 3(Auth Method), len=0x2(2)

260 AIX Version 7.2: Security

Value=0x1(1),(Pre-shared Key)
Attr : 4(Group Desc), len=0x2(2)
Value=0x1(1),(default 768-bit MODP group)
Attr : 11(Life Type), len=0x2(2)
Value=0x1(1),(seconds)
Attr : 12(Life Duration), len=0x2(2)
Value=0x7080(28800)

Transform Payload:
Next Payload : 0(NONE), Payload len : 0x20(32)
Trans # : 0x2(2), Trans.ID : 1(KEY_IKE)
Attr : 1(Encr.Alg), len=0x2(2)
Value=0x1(1),(DES-cbc)
Attr : 2(Hash Alg), len=0x2(2)
Value=0x1(1),(MD5)
Attr : 3(Auth Method), len=0x2(2)
Value=0x1(1),(Pre-shared Key)
Attr : 4(Group Desc), len=0x2(2)
Value=0x1(1),(default 768-bit MODP group)
Attr : 11(Life Type), len=0x2(2)
Value=0x1(1),(seconds)
Attr : 12(Life Duration), len=0x2(2)
Value=0x7080(28800)

The IKE message header of a Parse Payload log shows the exchange type (Main Mode or Aggressive
Mode), the length of the entire message, the message identifier, and so on.

The Certificate Request Payload requests a certificate from the responder. The responder sends the
certificate in a separate message. The following example shows the Certificate Payload and Signature
Payload that are sent to a peer as a part of an SA negotiation. The certificate data and the signature data
are printed in hex format.
ISAKMP_MSG_HEADER

Icookie : 0x9e539a6fd4540990, Rcookie : 0xc7e0a8d937a8f13e
Next Payload : 6(Certificate), Maj Ver : 1, Min Ver : 0
Xchg Type : 4 (Aggressive), Flag= 0, Encr : No,COMMIT : No
Msg ID : 0x00000000
len : 0x2cd(717)

Certificate Payload:

Next Payload : 9(Signature), Payload len : 0x22d(557)
Certificate Encoding Type: 4(X.509 Certificate - Signature)
Certificate: (len 0x227(551) in bytes
82 02 24 30 82 01 8d a0 03 02 01 02 02 05 05 8e
fb 3e ce 30 0d 06 09 2a 86 48 86 f7 0d 01 01 04
05 00 30 5c 31 0b 30 09 06 03 55 04 06 13 02 46
49 31 24 30 22 06 03 55 04 0a 13 1b 53 53 48 20
43 6f 6d 6d 75 6e 69 63 61 74 69 6f 6e 73 20 53
65 63 75 72 69 74 79 31 11 30 0f 06 03 55 04 0b
13 08 57 65 62 20 74 65 73 74 31 14 30 12 06 03
55 04 03 13 0b 54 65 73 74 20 52 53 41 20 43 41
30 1e 17 0d 39 39 30 39 32 31 30 30 30 30 30 30
5a 17 0d 39 39 31 30 32 31 32 33 35 39 35 39 5a
30 3f 31 0b 30 09 06 03 55 04 06 13 02 55 53 31
10 30 0e 06 03 55 04 0a 13 07 49 42 4d 2f 41 49
58 31 1e 30 1c 06 03 55 04 03 13 15 62 61 72 6e
65 79 2e 61 75 73 74 69 6e 2e 69 62 6d 2e 63 6f
6d 30 81 9f 30 0d 06 09 2a 86 48 86 f7 0d 01 01
01 05 00 03 81 8d 00 30 81 89 02 81 81 00 b2 ef
48 16 86 04 7e ed ba 4c 14 d7 83 cb 18 40 0a 3f
55 e9 ad 8f 0f be c5 b6 6d 19 ec de 9b f5 01 a6
b9 dd 64 52 34 ad 3d cd 0d 8e 82 6a 85 a3 a8 1c
37 e4 00 59 ce aa 62 24 b5 a2 ea 8d 82 a3 0c 6f
b4 07 ad 8a 02 3b 19 92 51 88 fb 2c 44 29 da 72
41 ef 35 72 79 d3 e9 67 02 b2 71 fa 1b 78 13 be
f3 05 6d 10 4a c7 d5 fc fe f4 c0 b8 b8 fb 23 70
a6 4e 16 5f d4 b1 9e 21 18 82 64 6d 17 3b 02 03

Security 261

01 00 01 a3 0f 30 0d 30 0b 06 03 55 1d 0f 04 04
03 02 07 80 30 0d 06 09 2a 86 48 86 f7 0d 01 01
04 05 00 03 81 81 00 75 a4 ee 9c 3a 18 f2 de 5d
67 d4 1c e4 04 b4 e5 b8 5e 9f 56 e4 ea f0 76 4a
d0 e4 ee 20 42 3f 20 19 d4 25 57 25 70 0a ea 41
81 3b 0b 50 79 b5 fd 1e b6 0f bc 2f 3f 73 7d dd
90 d4 08 17 85 d6 da e7 c5 a4 d6 9a 2e 8a e8 51
7e 59 68 21 55 4c 96 4d 5a 70 7a 50 c1 68 b0 cf
5f 1f 85 d0 12 a4 c2 d3 97 bf a5 42 59 37 be fe
9e 75 23 84 19 14 28 ae c4 c0 63 22 89 47 b1 b6
f4 c7 5d 79 9d ca d0

Signature Payload:
Next Payload : 0(NONE), Payload len : 0x84(132)

Signature: len 0x80(128) in bytes
9d 1b 0d 90 be aa dc 43 95 ba 65 09 b9 00 6d 67
b4 ca a2 85 0f 15 9e 3e 8d 5f e1 f0 43 98 69 d8
5c b6 9c e2 a5 64 f4 ef 0b 31 c3 cb 48 7c d8 30
e3 a2 87 f4 7c 9d 20 49 b2 39 00 fa 8e bf d9 b0
7d b4 8c 4e 19 3a b8 70 90 88 2c cf 89 69 5d 07
f0 5a 81 58 2e 15 40 37 b7 c8 d6 8c 5c e2 50 c3
4d 19 7e e0 e7 c7 c2 93 42 89 46 6b 5f f8 8b 7d
5b cb 07 ea 36 e5 82 9d 70 79 9a fe bd 6c 86 36

Digital certificate and signature mode problems:

The following are solutions to possible digital certificate and signature mode problems you can
encounter:

Error Possible problem and solution

Error: The cpsd (Certificate Proxy
Server daemon) does not start. An
entry similar to the following
appears in the log file:

Sep 21 6:02:00 ripple CPS[19950]:
Init():Lo adCaCerts() failed, rc
=-12

Problem: The certificate database has not opened or has not been found.

To Fix: Ensure that the Key Manager certificate databases are present in /etc/security. The
following files make up the database: ikekey.crl, ikekey.kdb, ikekey.rdb, ikekey.sth.

If only the ikekey.sth file is missing, the stash password option was not selected when the
Key Manager database was created. The password must be stashed to enable using digital
certificates with IP Security. (See Creating a Key Database for more information.)

Error: Key Manager gives the
following error when receiving a
certificate:

Invalid Base64-encoded data was
found

Problem: Superfluous data has been found in the certificate file or else data was lost or
corrupted.

To Fix: The 'DER' Encoded Certificate should be contained within the following strings
(shown below). No other characters should precede or follow other than the BEGIN and
END CERTIFICATE strings.

-----BEGIN CERTIFICATE-----
MIICMTCCAZqgAwIBAgIFFKZtANowDQYJKoZIhvcNAQEFBQAwXDELMAkGA1UEBhMC
RkkxJDAiBgNVBAoTG1NTSCBDb21tdW5pY2F0aW9ucyBTZWN1cml0eTERMA8GA1UE
CxMIV2ViIHRlc3QxFDASBgNVBAMTC1Rlc3QgUlNBIENBMB4XDTk5MDkyMTAwMDAw
MFoXDTk5MTAyMTIzNTk1OVowOzELMAkGA1UEBhMCVVMxDDAKBgNVBAoTA0lCTTEe
MBwGA1UEAxMVcmlwcGxlLmF1c3Rpbi5pYm0uY29tMIGfMA0GCSqGSIb3DQEBAQUA
A4GNADCBiQKBgQC5EZqo6n7tZrpAL6X4L7mf4yXQSm+m/NsJLhp6afbFpPvXgYWC
wq4pvOtvxgum+FHrE0gysNjbKkE4Y6ixC9PGGAKHnhM3vrmvFjnl1G6KtyEz58Lz
BWW39QS6NJ1LqqP1nT+y3+Xzvfv8Eonqzno8mglCWMX09SguLmWoU1PcZQIDAQAB
oyAwHjALBgNVHQ8EBAMCBaAwDwYDVR0RBAgwBocECQNhhzANBgkqhkiG9w0BAQUF
AOBgQA6bgp4Zay34/fyAlyCkNNAYJRrN3Vc4NHN7IGjUziN6jK5UyB5zL37FERW
hT9ArPLzK7yEZs+MDNvB0bosyGWEDYPZr7EZHhYcoBP4/cd0V5rBFmA8Y2gUthPi
Ioxpi4+KZGHYyLqTrm+8Is/DVJaQmCGRPynHK35xjT6WuQtiYg==
-----END CERTIFICATE-----

The following options can help you diagnose and solve this problem.

v If data was lost or corrupted, recreate the Certificate

v Use an ASN.1 parser (available on the Internet World Wide Web) to check whether the
certificate is valid by parsing the certificate successfully.

262 AIX Version 7.2: Security

Error Possible problem and solution

Error: Key Manager gives the
following error when receiving a
personal certificate:

No request key was found for
the certificate

Problem: A Personal Certificate Request does not exist for the personal certificate being
received.

To Fix: Create the Personal Certificate Request again and request a new certificate.

Error: An IKE negotiation fails and
an entry similar to the following
appears in the log file:

inet_cert_service::
channelOpen():
clientInitIPC():error,rc =2 (No
such file or directory)

Problem: The cpsd is not running or has stopped.

To Fix: Start IP Security, which starts the appropriate daemons.

Error: An IKE negotiation fails and
an entry similar to the following
appears in the log file:

CertRepo::GetCertObj: DN Does Not
Match: ("/C=US/O=IBM/CN=
ripple.austin.ibm.com")

Problem: The X.500 Distinguished Name (DN) entered while defining the IKE tunnel does
not match the X.500 DN in the personal certificate.

To Fix: Change the IKE tunnel definition to match the distinguished name in the certificate.

Tracing facilities:

Tracing is a debugging facility for tracing kernel events. Traces can be used to get more specific
information about events or errors occurring in the kernel filter and tunnel code.

The SMIT IP Security trace facility is available through the Advanced IP Security Configuration menu.
The information captured by this trace facility includes information about Error, Filter, Filter Information,
Tunnel, Tunnel Information, Capsulation/Decapsulation, Capsulation Information, Crypto, and Crypto
Information. By design, the error trace hook provides the most critical information. The info trace hook
can generate critical information and may have an impact on system performance. This tracing provides
clues about the problem and is also required when explaining the problem to a service technician.

To enable tracing, configure the IPSec devices and set the trace level of each IPSec subcomponent to a
trace level of 7 to generate useful kernel trace data. If IPSec devices are not configured, then the
component trace control command does not list the IPSec related entries. To start IPSec tracing, use the
SMIT fast path smit ips4_start (for IP Version 4) or smit ips6_start (for IP Version 6).

Note: If IPSec component tracing is not set correctly, the captured traces will be empty.

To capture kernel trace data, follow these steps:
1. Query all the components to view the current trace level settings:

ctctrl -q

2. Check the IPSec component and subcomponents. The components initially appear as follows with the
default trace level 3. To view the initial default trace level of the components, enter:
ctctrl -q -c ipsec -r

Security 263

Component Name Have Alias Memory Trace/Level System Track/Level Buffer Size/Allocated

ipsec NO ON/3 ON/3 40960/YES

.capsulate NO ON/3 ON/3 10240/YES

.filter NO ON/3 ON/3 10240/YES

.tunnel NO ON/3 ON/3 10240/YES

3. Increase the trace level of IPSec and the subcomponents to 7 to support kernel tracing, enter:
ctctrl systracelevel=7 -c ipsec -r

4. Query to confirm that the trace levels for IPSec and its subcomponents are changed, enter:
ctctrl -q -c ipsec -r

Component Name Have Alias Memory Trace/Level System Track/Level Buffer Size/Allocated

ipsec NO ON/3 ON/7 40960/YES

.capsulate NO ON/3 ON/7 10240/YES

.filter NO ON/3 ON/7 10240/YES

.tunnel NO ON/3 ON/7 10240/YES

To access the tracing facility, use the SMIT fast path smit ips4_tracing (for IP Version 4) or smit
ips6_tracing (for IP Version 6). Kernel traces taken through smit ips4_tracing, smit ips6_tracing, or
through the command-line trace facility generates valid IPSec trace data.

ipsecstat command:

You can use the ipsecstat command to list the status of IP Security devices, IP Security crypto algorithms,
and statistics of IP Security packets.

Issuing the ipsecstat command will generate the following sample report, which shows that the IP
Security devices are in the available state, that there are three authentication algorithms installed, three
encryption algorithms installed, and that there is a current report of packet activity. This information
could be useful to you in determining where a problem exists if you are troubleshooting your IP Security
traffic.
IP Security Devices:
ipsec_v4 Available
ipsec_v6 Available

Authentication Algorithm:
HMAC_MD5 -- Hashed MAC MD5 Authentication Module
HMAC_SHA -- Hashed MAC SHA Hash Authentication Module
KEYED_MD5 -- Keyed MD5 Hash Authentication Module

Encryption Algorithm:
CDMF -- CDMF Encryption Module
DES_CBC_4 -- DES CBC 4 Encryption Module
DES_CBC_8 -- DES CBC 8 Encryption Module
3DES_CBC -- Triple DES CBC Encryption Module

IP Security Statistics -
Total incoming packets: 1106
Incoming AH packets:326
Incoming ESP packets: 326
Srcrte packets allowed: 0
Total outgoing packets:844
Outgoing AH packets:527
Outgoing ESP packets: 527
Total incoming packets dropped: 12

Filter denies on input: 12
AH did not compute: 0
ESP did not compute:0

264 AIX Version 7.2: Security

AH replay violation:0
ESP replay violation: 0

Total outgoing packets dropped:0
Filter denies on input:0

Tunnel cache entries added: 7
Tunnel cache entries expired: 0
Tunnel cache entries deleted: 6

Note: There is no need to use CDMF because DES is now available worldwide. Reconfigure any tunnels
that use CDMF to use DES or Triple DES.

IP security reference
There are commands and methods for IP security. You can also migrate IKE tunnels, filters, and
pre-shared keys.

List of commands:

The following table provides a list of commands.

Command Purpose
ike cmd=activate Starts an Internet Key Exchange (IKE) negotiation.
ike cmd=remove Deactivates IKE tunnels
ike cmd=list Lists IKE tunnels
ikedb Provides the interface to the IKE tunnel database
gentun Creates a tunnel definition
mktun Activates tunnel definition(s)
chtun Changes a tunnel definition
rmtun Removes a tunnel definition
lstun Lists tunnel definition(s)
exptun Exports tunnel definition(s)
imptun Imports tunnel definition(s)
genfilt Creates a filter definition
mkfilt Activates filter definition(s)
mvfilt Moves a filter rule
chfilt Changes a filter definition
rmfilt Removes a filter definition
lsfilt Lists filter definition(s)
expfilt Exports filter definition(s)
impfilt Imports filter definition(s)
ipsec_convert Lists status of IP security
ipsecstat Lists status of IP security
ipsectrcbuf Lists the contents of IP security tracing buffer
unloadipsec Unloads a crypto module

List of methods:

The following provides a list of methods.

defipsec
Defines an instance of IP Security for IP Version 4 or IP Version 6

cfgipsec
Configures and loads ipsec_v4 or ipsec_v6

ucfgipsec
Unconfigures ipsec_v4 or ipsec_v6

Security 265

IP security migration:

You can migrate your IKE tunnels, filters and pre-shared keys from earlier versions of the AIX operating
system.

Migrating IKE tunnels:

To migrate your tunnels, complete the following steps:
1. Run the bos.net.ipsec.keymgt.pre_rm.sh script. When you run this script, the following files are

created in the /tmp directory:
a. p2proposal.bos.net.ipsec.keymgt

b. p1proposal.bos.net.ipsec.keymgt

c. p1policy.bos.net.ipsec.keymgt

d. p2policy.bos.net.ipsec.keymgt

e. p1tunnel.bos.net.ipsec.keymgt

f. p2tunnel.bos.net.ipsec.keymgt

Attention: Run this script only once. If you update the database and run the script again, you will
lose all of the files, and you can not retrieve them. Read the script in “The
bos.net.ipsec.keymgt.pre_rm.sh script” on page 267 before you migrate your tunnels.

2. Save the files created by the script and the /tmp/lpplevel file to some external media, such as a CD
or floppy disk.

Migrating pre-shared keys:

Perform the following steps to update the pre-shared key format.

The IKE tunnel pre-shared key database is also corrupted during migration. To update the pre-shared key
format, complete the following steps on the system that has been migrated:
1. Save the output of the ikedb -g command by running the following command:

ikedb -g > out.keys

2. Edit the out.keys file to replace FORMAT=ASCII with FORMAT=HEX for the pre-shared key format.
3. Input the XML file by running the following command:

ikedb -pF out.keys

Migrating filters:

Perform the following steps to migrate filters.
1. Export the filter rules files to the /tmp directory using SMIT by completing the following steps:

a. Run the smitty ipsec4 command.
b. Select Advanced IP Security Configuration—>Configure IP Security Filter Rules—>Export IP

Security filter rules.
c. Enter /tmp for the directory name.
d. Under the Filter Rules option press F4 and select all from the list.
e. Press enter to save the filter rules in the /tmp/ipsec_fltr_rule.exp file on the external media.
Complete this process for all of the systems you are migrating from prior versions of the AIX
operating system.

2. Copy the six tunnel files created by the script, the /tmp/lpplevel file, and the /tmp/
ipsec_fltr_rule.exp file to the /tmp directory on the migrated system.

3. Run the bos.net.ipsec.keymgt.post_i.sh script to repopulate the tunnel configurations into the
database.

266 AIX Version 7.2: Security

4. Run the ikedb -g command to verify that the tunnels are in the database.

Note: If you do not see the tunnel information in the database, run the script again, but rename all
the *.loaded files in /tmp directory to their original names.

On a system that has been migrated, the filter database is corrupted after migration. If you run the lsfilt
command on the migrated system, you will get the following error:
Cannot get ipv4 default filter rule

To update the filter database, complete the following steps:
1. Replace the ipsec_filter file and the ipsec_filter.vc file in the /etc/security directory with the

uncorrupted files from a newly migrated system. If you do not have these files, you can request them
from IBM Service.

2. Import the filter rules files to the /tmp directory using SMIT by completing the following steps:
a. Run the smitty ipsec4 command.
b. Select Advanced IP Security Configuration—>Configure IP Security Filter Rules—>Import IP

Security filter rules.
c. Enter /tmp for the directory name.
d. Under the Filter Rules option press F4 and select all from the list.
e. Press Enter to recreate the filter rules. You can list the filter rules through SMIT or with the lsfilt

command.

The bos.net.ipsec.keymgt.pre_rm.sh script:

The bos.net.ipsec.keymgt.pre_rm.sh script saves the contents of the tunnel database on a system
running the AIX operating system.
#!/usr/bin/ksh
keymgt_installed=`lslpp -Lqc bos.net.ipsec.keymgt 2>/dev/null | awk -F: ’{print $6}’ | head -1`

if [! "$keymgt_installed"]
then

exit 0
fi

Copy the database to a save directory in case changes fail
if [-d /etc/ipsec/inet/DB]
then

cp -R /etc/ipsec/inet/DB /etc/ipsec/inet/DB.sav || exit $?
fi

Remember the level you are migrating from
VRM=$(LANG=C lslpp -Lqc bos.net.ipsec.keymgt 2>/dev/null | awk -F: ’{print $3}’ | \
awk -F. ’{print $1"."$2"."$3}’)
VR=${VRM%.*}
echo $VRM > /tmp/lpplevel

IKEDB=$(which ikedb) || IKEDB=/usr/sbin/ikedb

XMLFILE=/tmp/full_ike_database.bos.net.ipsec.keymgt
PSKXMLFILE=/tmp/psk_ike_database.bos.net.ipsec.keymgt

See if ikedb exists.
if [-f $IKEDB]
then

If either of the ikedb calls below fails, that’s OK. Just remove the
resulting file (which may contain garbage) and continue. The post_i
script will simply not import the file if it doesn’t exist, which will

Security 267

mean part or all of the IKE database is lost, but this is preferable
to exiting the script with an error code, which causes the entire
migration to fail.

$IKEDB -g > $XMLFILE
if [$? -ne 0]
then

rm -f $XMLFILE || exit $?
fi

if [[$VR = "5.1"]]; then
This is a special case. The 5.1 version of ikedb is the only
one that does not include preshared keys in the full database
output. So we have to retrieve those separately.
$IKEDB -g -t IKEPresharedKey > $PSKXMLFILE
if [$? -ne 0]
then
rm -f $PSKXMLFILE || exit $?

fi
fi

Make sure ikegui command is installed
elif [-f /usr/sbin/ikegui]
then

Get database information and save to /tmp
/usr/sbin/ikegui 0 1 0 0 > /tmp/p1proposal.bos.net.ipsec.keymgt 2>/dev/null
RC=$?
if [[$RC -ne 0]]
then

rm -f /tmp/p1proposal.bos.net.ipsec.keymgt || exit $?
fi

/usr/sbin/ikegui 0 1 1 0 > /tmp/p1policy.bos.net.ipsec.keymgt 2>/dev/null
RC=$?
if [[$RC -ne 0]]
then

rm -f /tmp/p1policy.bos.net.ipsec.keymgt || exit $?
fi

/usr/sbin/ikegui 0 2 0 0 > /tmp/p2proposal.bos.net.ipsec.keymgt 2>/dev/null
RC=$?
if [[$RC -ne 0]]
then

rm -f /tmp/p2proposal.bos.net.ipsec.keymgt || exit $?
fi

/usr/sbin/ikegui 0 2 1 0 > /tmp/p2policy.bos.net.ipsec.keymgt 2>/dev/null
RC=$?
if [[$RC -ne 0]]
then

rm -f /tmp/p2policy.bos.net.ipsec.keymgt || exit $?
fi

/usr/sbin/ikegui 0 1 2 0 > /tmp/p1tunnel.bos.net.ipsec.keymgt 2>/dev/null
RC=$?
if [[$RC -ne 0]]
then

rm -f /tmp/p1tunnel.bos.net.ipsec.keymgt || exit $?
fi

/usr/sbin/ikegui 0 2 2 0 > /tmp/p2tunnel.bos.net.ipsec.keymgt 2>/dev/null
RC=$?
if [[$RC -ne 0]]
then

268 AIX Version 7.2: Security

rm -f /tmp/p2tunnel.bos.net.ipsec.keymgt || exit $?
fi

fi

The bos.net.ipsec.keymgt.post_i.sh script:

The bos.net.ipsec.keymgt.post_i.sh script loads the contents of the tunnel database on to a migrated
system running the AIX operating system.
#!/usr/bin/ksh

function PrintDot {
echo "echo \c"
echo "\".\c"
echo "\\\c\c"
echo "\"\c"
echo

}

function P1PropRestore {
while :
do

read NAME
read MODE
if [[$? = 0]]; then

echo "ikegui 1 1 0 $NAME $MODE \c"
MORE=1
while [[$MORE = 1]];
do

read AUTH
read HASH
read ENCRYPT
read GROUP
read TIME
read SIZE
read MORE
echo "$AUTH $HASH $ENCRYPT $GROUP $TIME $SIZE $MORE \c"

done
echo " > /dev/null 2>&1"
PrintDot

else
return 0

fi
done

}

function P2PropRestore {
while :
do

read NAME
FIRST=yes
MORE=1
while [[$MORE = 1]];
do

read PROT
if [[$? = 0]]; then

read AH_AUTH
read ESP_ENCR
read ESP_AUTH
read ENCAP
read TIME
read SIZE
read MORE
if [[$FIRST = "yes"]]; then

echo "ikegui 1 2 0 $NAME $MODE \c"
fi

Security 269

echo "$PROT $AH_AUTH $ESP_ENCR $ESP_AUTH $ENCAP $TIME $SIZE $MORE \c"
FIRST=no

else
return 0

fi
done
echo " > /dev/null 2>&1"
PrintDot

done
}

function P1PolRestore {
while :
do

read NAME
read ROLE
if [[$? = 0]]; then

read TIME
read SIZE
read OVERLAP
read TTIME
read TSIZE
read MIN
read MAX
read PROPOSAL
echo "ikegui 1 1 1 $NAME $ROLE $OVERLAP $TTIME $TSIZE $MIN $MAX 1 0 0 $PROPOSAL > \

/dev/null 2>&1"
PrintDot

else
return 0

fi
done

}

function P2PolRestore {
while :
do

read NAME
read ROLE
if [[$? = 0]]; then

read IPFS
read RPFS
read TIME
read SIZE
read OVERLAP
read TTIME
read TSIZE
read MIN
read MAX
echo "ikegui 1 2 1 $NAME $ROLE $IPFS $RPFS $OVERLAP $TTIME $TSIZE $MIN $MAX 1 0 0 \c"
MORE=1
while [[$MORE = 1]];
do

read PROPOSAL
read MORE
echo "$PROPOSAL $MORE \c"
FIRST=no

done
else

return 0
fi
echo " > /dev/null 2>&1"
PrintDot

done
}

function P1TunRestore {

270 AIX Version 7.2: Security

while :
do

read TUNID
read NAME
if [[$? = 0]]; then

read LID_TYPE
read LID
if [[$LPPLEVEL = "4.3.3"]]; then

read LIP
fi
read RID_TYPE
read RID
read RIP
read POLICY
read KEY
read AUTOSTART
echo "ikegui 1 1 2 0 $NAME $LID_TYPE \"$LID\" $LIP $RID_TYPE \"$RID\" \

$RIP $POLICY $KEY $AUTOSTART > /dev/null 2>&1"
PrintDot

else
return 0

fi
done

}

function P2TunRestore {
while :
do

read TUNID
read NAME
if [[$? = 0]]; then

read P1TUN
read LTYPE
read LID
read LMASK
read LPROT
read LPORT
read RTYPE
read RID
read RMASK
read RPROT
read RPORT
read POLICY
read AUTOSTART
echo "ikegui 1 2 2 0 $NAME $P1TUN $LTYPE $LID $LMASK $LPROT $LPORT $RTYPE

\$RID $RMASK $RPROT $RPORT $POLICY $AUTOSTART > /dev/null 2>&1"
PrintDot

else
return 0

fi
done

}

function allRestoreWithIkedb {

ERRORS=/tmp/ikedb_msgs.bos.net.ipsec.keymgt
echo > $ERRORS
$IKEDB -p $XMLFILE 2>> $ERRORS
if [-f $PSKXMLFILE]
then

$IKEDB -p $PSKXMLFILE 2>> $ERRORS
fi

}

P1PROPFILE=/tmp/p1proposal.bos.net.ipsec.keymgt
P2PROPFILE=/tmp/p2proposal.bos.net.ipsec.keymgt

Security 271

P1POLFILE=/tmp/p1policy.bos.net.ipsec.keymgt
P2POLFILE=/tmp/p2policy.bos.net.ipsec.keymgt
P1TUNFILE=/tmp/p1tunnel.bos.net.ipsec.keymgt
P2TUNFILE=/tmp/p2tunnel.bos.net.ipsec.keymgt
XMLFILE=/tmp/full_ike_database.bos.net.ipsec.keymgt
PSKXMLFILE=/tmp/psk_ike_database.bos.net.ipsec.keymgt
CMD_FILE=/tmp/commands
IKEDB=$(which ikedb) || IKEDB=/usr/sbin/ikedb

echo "building ISAKMP database \n"
$IKEDB -x || exit $?

if [-f $XMLFILE]; then
echo "\nRestoring database entries\c"
allRestoreWithIkedb
echo "\ndone\n"

elif [-f /tmp/*.bos.net.ipsec.keymgt]; then
echo "\nRestoring database entries\c"

LPPLEVEL=`cat /tmp/lpplevel`

echo > $CMD_FILE
touch $P1PROPFILE; P1PropRestore < $P1PROPFILE >> $CMD_FILE
touch $P2PROPFILE; P2PropRestore < $P2PROPFILE >> $CMD_FILE
touch $P1POLFILE; P1PolRestore < $P1POLFILE >> $CMD_FILE
touch $P2POLFILE; P2PolRestore < $P2POLFILE >> $CMD_FILE
touch $P1TUNFILE; P1TunRestore < $P1TUNFILE >> $CMD_FILE
touch $P2TUNFILE; P2TunRestore < $P2TUNFILE >> $CMD_FILE

mv $P1PROPFILE ${P1PROPFILE}.loaded
mv $P2PROPFILE ${P2PROPFILE}.loaded
mv $P1POLFILE ${P1POLFILE}.loaded
mv $P2POLFILE ${P2POLFILE}.loaded
mv $P1TUNFILE ${P1TUNFILE}.loaded
mv $P2TUNFILE ${P2TUNFILE}.loaded

ksh $CMD_FILE

echo "done\n"
fi

Network File System security
The Network File System (NFS) is a widely available technology that allows data to be shared between
various hosts on a network.

NFS also supports the use of Kerberos 5 authentication in addition to DES. Kerberos 5 security is
provided under a protocol mechanism called RPCSEC_GSS.

In addition to the standard UNIX authentication system, NFS provides a means to authenticate users and
machines in networks on a message-by-message basis. This additional authentication system uses Data
Encryption Standard (DES) encryption and public key cryptography.

NFS also supports the use of Kerberos 5 authentication in addition to DES. Kerberos 5 security is
provided under a protocol mechanism called RPCSEC_GSS. For a description of how to administer and
use Kerberos authentication with NFS, see the NFS Administration Guide.

General guidelines for securing Network File System
There are several guidelines that help you secure the Network File System (NFS).
v Ensure that the latest software patches are installed. Patches that address security issues should be

considered especially important. All software in a given infrastructure should be maintained. For
example, installing patches in an operating system but failing to install patches on a Web server may

272 AIX Version 7.2: Security

provide an attacker with a way to attach your environment that could have been avoided if the Web
server been updated as well. To subscribe to IBM System p Security Alerts for information about the
latest available security information, visit the following Web address: http://
www14.software.ibm.com/webapp/set2/subscriptions/pqvcmjd.

v Configure the NFS server to export file systems with the least amount of privileges necessary. If users
only need to read from a file system, they should not be able to write to the file system. This can
mitigate an attempt to overwrite important data, modify configuration files, or write malicious
executable code to an exported file system. Specify privileges using SMIT or by directly editing the
/etc/exports file.

v Configure the NFS server to export file systems explicitly for the users who should have access to it.
Most implementations of NFS will allow you to specify which NFS clients should have access to a
given file system. This will mitigate attempts by unauthorized users to access file systems. In
particular, do not configure an NFS server to export a file system to itself.

v Exported file systems should be in their own partitions. An attacker could cause system degradation by
writing to an exported file system until it is full. This may make the file system unavailable to other
applications or users that needed it.

v Do not allow NFS clients to access the file system with root user credentials or unknown user
credentials. Most implementations of NFS can be configured to map requests from a privileged or
unknown user to an unprivileged user. This will avert scenarios where an attacker tries to access files
and perform file operations as a privileged user.

v Do not allow NFS clients to run suid and sgid programs on exported file systems. This will prevent
NFS clients from executing malicious code with privileges. If the attacker is able to make the
executable owned by a privileged owner or group, significant harm can be done to the NFS server.
This can be done by specifying the mknfsmnt -y command option.

v Use Secure NFS. Secure NFS uses DES encryption to authenticate hosts involved in RPC transactions.
RPC is a protocol used by NFS to communicate requests between hosts. Secure NFS will mitigates
attempts by an attacker to spoof RPC requests by encrypting the time stamp in the RPC requests. A
receiver successfully decrypting the time stamp and confirm that it is correct serves as confirmation
that the RPC request came from a trusted host.

v If NFS is not needed, turn it off. This will reduce the number of possible attack vectors available to an
intruder.

NFS also supports the use of the AES encryption type with Kerberos 5 authentication in addition to
Triple DES and Single DES. For a description of how to configure Kerberos 5 to use the AES encryption
type, see the NFS System Management guide.
Related concepts:
“Network File System security” on page 272

Related information:
Checklist for configuring NFS
Start the NFS daemons at system startup
Configuring an NFS server
Configuring an NFS client
Identity mapping
Exporting an NFS file system
Setting up a network for RPCSEC-GSS
Unexporting an NFS file system
Changing an exported file system
Root user access to an exported file system
Mounting an NFS file system explicitly

Security 273

Automount subsystem
Establishing predefined NFS mounts
Removing predefined NFS mounts
exports file for NFS
mknfsmnt commnad

Network File System authentication
NFS uses the DES algorithm for different purposes. NFS uses DES to encrypt a time stamp in the remote
procedure call (RPC) messages sent between NFS servers and clients. This encrypted time stamp
authenticates machines just as the token authenticates the sender.

Because NFS can authenticate every RPC message exchanged between NFS clients and servers, this
provides an additional, optional level of security for each file system. By default, file systems are
exported with the standard UNIX authentication. To take advantage of this additional level of security,
you can specify the secure option when you export a file system.

Public key cryptography for secure Network File System:

Both the public key and the secret key of the user are stored and indexed by the net name in the
publickey.byname map.

The secret key is DES-encrypted with the user login password. The keylogin command uses the
encrypted secret key, decrypts it with the login password, then gives it to a secure local key server to
save for use in future RPC transactions. Users are not aware of their public and secret keys because the
yppasswd command, in addition to changing the login password, generates the public and secret keys
automatically.

The keyserv daemon is an RPC service that runs on each NIS machine. Within NIS, keyserv runs the
following public key subroutines:
v key_setsecret subroutine
v key_encryptsession subroutine
v key_decryptsession subroutine

The key_setsecret subroutine tells the key server to store the secret key of the user (SKA) for future use; it
is normally called by the keylogin command. The client program calls the key_encryptsession subroutine
to generate the encrypted conversation key, which is passed in the first RPC transaction to a server. The
key server looks up the server public key and combines it with the secret key of the client (set up by a
previous key_setsecret subroutine) to generate the common key. The server asks the key server to
decrypt the conversation key by calling the key_decryptsession subroutine.

Implicit in these subroutine calls is the name of the caller, which must be authenticated in some manner.
The key server cannot use DES authentication to do this, because it would create a deadlock. The key
server solves this problem by storing the secret keys by the user ID (UID) and only granting requests to
local root processes. The client process then runs a root-user-owned setuid subroutine that makes the
request on the part of the client, telling the key server the real UID of the client.

Network File System authentication requirements:

Secure NFS authentication is based on the ability of a sender to encrypt the current time, which the
receiver can then decrypt and check against its own clock.

This process has the following requirements:
v The two agents must agree on the current time.
v The sender and receiver must be using the same DES encryption key.

274 AIX Version 7.2: Security

Agreeing on the current time:

If the network uses time synchronization, the timed daemon keeps the client and server clocks
synchronized. If not, the client computes the proper time stamps based on the server clock.

To do this, the client determines the server time before starting the RPC session, and then computes the
time difference between its own clock and that of the server. The client then adjusts its time stamp
accordingly. If, during the course of an RPC session, the client and server clocks become unsynchronized
to the point where the server begins rejecting the client requests, the client will redetermine the server
time.

Using the same DES key:

The client and server compute the same DES encryption key by using public key cryptography.

For any client A and server B, a key called the common key can only be deduced by A and B. This key is .
The client derives the common key by computing the following formula:

KAB = PKB
SKA

where K is the common Key, PK is the Public Key, and SK is the Secret Key, and each of these keys is a
128-bit number. The server derives the same common key by computing the following formula:

KAB = PKA
SKB

Only the server and client can calculate this common key since doing so requires knowing one secret key
or the other. Because the common key has 128 bits, and DES uses a 56-bit key, the client and server
extract 56 bits from the common key to form the DES key.

Network File System authentication process:

When a client wants to talk to a server, it randomly generates a key used for encrypting the time stamps.
This key is known as the conversation key (CK).

The client encrypts the conversation key using the DES common key (described in Authentication
Requirements) and sends it to the server in the first RPC transaction. This process is illustrated in the
following figure.

Security 275

This figure shows client A connecting to server B. The term K(CK) means CK is encrypted with the DES
common key K. In its first request, the client RPC credential contains the client name (A), the
conversation key (CK), and the variable called win (window) encrypted with CK. (The default window
size is 30 minutes.) The client verifier in the first request contains the encrypted time stamp and an
encrypted verifier of the specified window, win + 1. The window verifier makes guessing the right
credential much more difficult, and increases security.

After authenticating the client, the server stores the following items in a credential table:
v Client name, A
v Conversation key, CK

v Window
v Time stamp

The server only accepts time stamps that are chronologically greater than the last one seen, so any
replayed transactions are guaranteed to be rejected. The server returns to the client in the verifier an
index ID into the credential table, plus the client time stamp minus 1, encrypted by CK. The client knows
that only the server could have sent such a verifier, because only the server knows what time stamp the
client sent. The reason for subtracting 1 from the time stamp is to ensure that it is not valid and cannot
be reused as a client verifier. After the first RPC transaction, the client sends just its ID and an encrypted
time stamp to the server, and the server sends back the client time stamp minus 1, encrypted by CK.

Naming network entities for DES authentication
DES authentication does its naming by using net names.

A net name is a string of printable characters to authenticate. The public and secret keys are stored on a
per-net-name rather than a per-user-name basis. The netid.byname NIS map maps the net name into a
local UID and group-access list.

User names are unique within each domain. Net names are assigned by concatenating the operating
system and user ID with the NIS and Internet domain names. A good convention for naming domains is
to append the Internet domain name (com, edu, gov, mil) to the local domain name.

Network names are assigned to machines as well as to users. A net name of a machine is formed much
like that of a user. For example, a machine named hal in the eng.xyz.com domain has the net name

Figure 15. Authentication Process. This figure illustrates the authentication process.

276 AIX Version 7.2: Security

unix.hal@eng.xyz.com. Correct authentication of machines is important for diskless machines that need
full access to their home directories over the network.

To authenticate users from any remote domain, make entries for them in two NIS databases. One is an
entry for their public and secret keys; the other is for their local UID and group-access list mapping.
Users in the remote domain can then access all of the local network services, such as the NFS and remote
logins.

The /etc/publickey file
The /etc/publickey file contains names and public keys, which NIS uses to create the publickey map.

The publickey map is used for secure networking. Each entry in the file consists of a network user name
(which refers to either a user or a host name), followed by the user public key (in hexadecimal notation),
a colon, and the user-encrypted secret key (also in hexadecimal notation). By default, the only user in the
/etc/publickey file is the user nobody.

Do not use a text editor to alter the /etc/publickey file because the file contains encryption keys. To alter
the /etc/publickey file, use either the chkey or newkey commands.

Public key systems booting considerations
When restarting a machine after a power failure, all of the stored secret keys are lost, and no process can
access secure network services, such as mounting an NFS. Root processes could continue if there were
someone to enter the password that decrypts the secret key of the root user. The solution is to store the
root-user decrypted secret key in a file that the key server can read.

Not all setuid subroutine calls operate correctly. For example, if a setuid subroutine is called by owner A,
and owner A has not logged into the machine since it started, the subroutine cannot access any secure
network services as A. However, most setuid subroutine calls are owned by the root user, and the root
user secret key is always stored at startup time.

Secure Network File System performance considerations
There are several ways that secure NFS affects system performance.
v Both the client and server must compute the common key. The time it takes to compute the common

key is about one second. As a result, it takes about two seconds to establish the initial RPC connection,
because both client and server have to perform this operation. After the initial RPC connection, the key
server caches the results of previous computations, and so it does not have to recompute the common
key every time.

v Each RPC transaction requires the following DES encryption operations:
1. The client encrypts the request time stamp.
2. The server decrypts it.
3. The server encrypts the reply time stamp.
4. The client decrypts it.

Because system performance can be reduced by secure NFS, weigh the benefits of increased security
against system-performance requirements.

Secure Network File System checklist
This checklist helps ensure that secure NFS operates correctly.
v When mounting a file system with the -secure option on a client, the server name must match the

server host name in the /etc/hosts file. If a name server is being used for host-name resolution, make
sure the host information returned by the name server matches the entry in the /etc/hosts file.
Authentication errors result if these names do not match because the net names for machines are based
on the primary entries in the /etc/hosts file and keys in the publickey map are accessed by net name.

Security 277

v Do not mix secure and nonsecure exports and mounts. Otherwise, file access might be determined
incorrectly. For example, if a client machine mounts a secure file system without the -secure option or
mounts an nonsecure system with the -secure option, users have access as nobody, rather than as
themselves. This condition also occurs if a user unknown to NIS and that user attempts to create or
modify files on a secure file system.

v Because NIS must propagate a new map after each use of the chkey and newkey commands, use these
commands only when the network is lightly loaded.

v Do not delete the /etc/keystore file or the /etc/.rootkey file. If you reinstall, move, or upgrade a
machine, save the /etc/keystore and /etc/.rootkey files.

v Instruct users to use the yppasswd command rather than the passwd command to change passwords.
Doing so keeps passwords and private keys synchronized.

v Because the login command does not retrieve keys out of the publickey map for the keyserv daemon,
the user must run the keylogin command. You may want to place the keylogin command in each user
profile file to run the command automatically during login. The keylogin command requires users to
enter their password again.

v When you generate keys for the root user at each host with either the newkey -h or chkey command,
you must run the keylogin command to pass the new keys to the keyserv daemon. The keys are
stored in the /etc/.rootkey file, which is read by the keyserv daemon each time the daemon is started.

v Periodically verify that the yppasswdd and ypupdated daemons are running on the NIS master server.
These daemons are necessary for maintaining the publickey map.

v Periodically verify that the keyserv daemon is running on all machines using secure NFS.

Configuring secure Network File System
To configure secure NFS on NIS master and slave servers, complete the following procedure.
1. On the NIS master server, create an entry for each user in the NIS /etc/publickey file by using the

newkey command as follows:
v For a regular user, type:

smit newkey

OR
newkey -u username

For a root user on a host machine, type:
newkey -h hostname

v Alternatively, users can establish their own public keys by using the chkey or newkey commands.
2. Create the NIS publickey map. The corresponding NIS publickey.byname map resides only on the

NIS servers.
3. Uncomment the following stanzas in the /etc/rc.nfs file:

#if [-x /usr/sbin/keyserv]; then
startsrc -s keyserv
#fi
#if [-x /usr/lib/netsvc/yp/rpc.ypupdated -a -d /etc/yp/`domainname`]; then
startsrc -s ypupdated
#fi
#DIR=/etc/passwd
#if [-x /usr/lib/netsvc/yp/rpc.yppasswdd -a -f $DIR/passwd]; then
startsrc -s yppasswdd
#fi

4. Start the keyserv, ypupdated, and yppasswdd daemons by using the startsrc command.

To configure secure NFS on NIS clients, start the keyserv daemon by using the startsrc command.

278 AIX Version 7.2: Security

Exporting a file system using Secure Network File System
You can export a secure NFS by using one of the following procedures.
v To export a secure NFS file system using SMIT, perform the following steps:

1. Verify that NFS is already running by running the lssrc -g nfs command. The output indicates that
the nfsd and the rpc.mountd daemons are active.

2. Verify that the publickey map exists and that the keyserv daemon is running. For more information,
see “Configuring secure Network File System” on page 278.

3. Run the smit mknfsexp fast path.
4. Specify the appropriate values for the PATHNAME of directory to export, MODE to export

directory, and EXPORT directory now, system restart or both fields. Specify yes for the Use
SECURE option field.

5. Specify any other optional characteristics, or accept the default values.
6. Exit SMIT. If the /etc/exports file does not exist, it will be created.
7. Repeat steps 3 through 6 for each directory you want to export.

v To export a secure NFS file system by using a text editor, perform the following steps:
1. Open the /etc/exports file with your favorite text editor.
2. Create an entry for each directory to be exported, using the full path name of the directory. List

each directory to be exported starting in the left margin. No directory should include any other
directory that is already exported. See the /etc/exports file documentation for a description of the
full syntax for entries in the /etc/exports file, including how to specify the secure option.

3. Save and close the /etc/exports file.
4. If NFS is currently running, type:

/usr/sbin/exportfs -a

Using the -a option with the exportfs command sends all information in the /etc/exports file to
the kernel.

v To export an NFS file system temporarily (that is, without changing the /etc/exports file), type:
exportfs -i -o secure /dirname

where dirname is the name of the file system you want to export. The exportfs -i command specifies
that the /etc/exports file is not to be checked for the specified directory, and all options are taken
directly from the command line.

Mounting a file system using Secure Network File system
You can explicitly mount a secure NFS directory.

To mount a secure NFS directory explicitly, perform the following steps:
1. Verify that the NFS server has exported the directory by running the command:

showmount -e ServerName

where ServerName is the name of the NFS server. This command displays the names of the directories
currently exported from the NFS server. If the directory you want to mount is not listed, export the
directory from the server.

2. Establish the local mount point by using the mkdir command. For NFS to complete a mount
successfully, a directory that acts as the mount point (or placeholder) of an NFS mount must be
present. This directory should be empty. This mount point can be created like any other directory, and
no special attributes are needed.

3. Verify that the publickey map exists and that the keyserv daemon is running. For more information,
see “Configuring secure Network File System” on page 278.

4. Type
mount -o secure ServerName:/remote/directory /local/directory

Security 279

where ServerName is the name of the NFS server, /remote/directory is the directory on the NFS
server you want to mount, and /local/directory is the mount point on the NFS client.

Note: Only the root user can mount a secure NFS.

Enterprise identity mapping
Today's network environments are made up of a complex group of systems and applications, resulting in
the need to manage multiple user registries. Dealing with multiple user registries quickly grows into a
large administrative problem that affects users, administrators, and application developers. Enterprise
Identity Mapping (EIM) allows administrators and application developers to address this problem.

This section describes the problems, outlines current industry approaches, and explains the EIM
approach.

Managing multiple user registries
Many administrators manage networks that include different systems and servers, each with a unique
way of managing users through various user registries.

In these complex networks, administrators are responsible for managing each user's identities and
passwords across multiple systems. Additionally, administrators often must synchronize these identities
and passwords. Users are burdened with remembering multiple identities and passwords and with
keeping them synchronized. Because user and administrator overhead in this environment is expensive,
administrators often spend valuable time troubleshooting failed login attempts and resetting forgotten
passwords instead of managing the enterprise.

The problem of managing multiple user registries also affects application developers who want to
provide multiple-tier or heterogeneous applications. Customers have important business data spread
across many different types of systems, with each system possessing its own user registries.
Consequently, developers must create proprietary user registries and associated security semantics for
their applications. Although this solves the problem for the application developer, it increases the
overhead for users and administrators.

Current approaches to enterprise identity mapping
Several current industry approaches for solving the problem of managing multiple user registries are
available, but they all provide incomplete solutions. For example, Lightweight Directory Access Protocol
(LDAP) provides a distributed user registry solution. However, to use solutions such as LDAP,
administrators must manage yet another user registry and security semantics or replace existing
applications that are built to use those registries.

Using this type of solution, administrators must manage multiple security mechanisms for individual
resources, thereby increasing administrative overhead and potentially increasing the likelihood of security
exposures. When multiple mechanisms support a single resource, the chances of changing the authority
through one mechanism and forgetting to change the authority for one or more of the other mechanisms
is much higher. For example, a security exposure can result when a user is appropriately denied access
through one interface, but allowed access through one or more other interfaces.

After completing this work, administrators find that they have not completely solved the problem.
Generally, enterprises have invested too much money in current user registries and in their associated
security semantics to make using this type of solution practical. Creating another user registry and
associated security semantics solves the problem for the application provider, but not the problems for
users or administrators.

Another solution is to use a single sign-on approach. Several products are available that allow
administrators to manage files that contain all of a user's identities and passwords. However, this
approach has several weaknesses:

280 AIX Version 7.2: Security

v It addresses only one of the problems that users face. Although it allows users to sign on to multiple
systems by supplying one identity and password, the user is still required to have passwords on other
systems, or the need to manage these passwords.

v It introduces a new problem by creating a security exposure because clear-text or decryptable
passwords are stored in these files. Passwords should never be stored in clear-text files or be easily
accessible by anyone, including administrators.

v It does not solve the problems of third-party application developers that provide heterogeneous,
multiple-tier applications. They must still provide proprietary user registries for their applications.

Despite these weaknesses, some enterprises use these solutions because they provide some relief for the
multiple user registry problems.

Enterprise identity mapping usage
The EIM architecture describes the relationships between individuals or entities (such as file servers and
print servers) in the enterprise and the many identities that represent them within an enterprise. In
addition, EIM provides a set of APIs that allow applications to ask questions about these relationships.

For example, given a person's user identity in one user registry, you can determine which identity in
another user registry represents that same person. If the user has authenticated with one identity and you
can map that identity to the appropriate identity in another user registry, the user does not need to
provide credentials for authentication again. You need only know which identity represents that user in
another user registry. Therefore, EIM provides a generalized identity-mapping function for the enterprise.

The ability to map between a user's identities in different registries provides many benefits. Primarily,
applications can have the flexibility of using one registry for authentication while using an entirely
different registry for authorization. For example, an administrator could map an SAP identity to access
SAP resources.

Identity mapping requires that administrators perform the following steps:
1. Create EIM identifiers that represent people or entities in their enterprise.
2. Create EIM registry definitions that describe the existing user registries in their enterprise.
3. Define the relationship between the user identities in those registries to the EIM identifiers that they

created.

No code changes are required to existing registries. Mappings are not required for all identities in a user
registry. EIM allows one-to-many mappings (in other words, a single user with more than one identity in
a single user registry). EIM also allows many-to-one mappings (in other words, multiple users sharing a
single identity in a single user registry, which although supported is not advised for security reasons). An
administrator can represent any user registry of any type in EIM.

EIM does not require copying existing data to a new repository and trying to keep both copies
synchronized. The only new data that EIM introduces is the relationship information. Administrators
manage this data in an LDAP directory, which provides the flexibility of managing the data in one place
and having replicas wherever the information is used.

Kerberos
Kerberos is a network authentication service that provides a means of verifying the identities of
principals on physically insecure networks. Kerberos provides mutual authentication, data integrity, and
privacy under the assumption that network traffic is vulnerable to capture, examination, and substitution.

A Kerberos principal is a unique identity that uses Kerberos authentication services. Kerberos verifies
identities without relying on authentication by the host operating system, basing trust on host addresses
or requiring physical security of all the hosts on the network.

Security 281

Kerberos tickets are credentials that verify your identity. There are two types of tickets: a ticket-granting
ticket and a service ticket. The ticket-granting ticket is for your initial identity request. When logging into a
host system, you need something that verifies your identity, such as a password or a token. After you
have the ticket-granting ticket, you can then use your ticket-granting ticket to request service tickets for
specific services. This two-ticket method is called the trusted third-party of Kerberos. Your ticket-granting
ticket authenticates you to the Kerberos server, and your service ticket is your secure introduction to the
service.

The trusted third-party or intermediary in Kerberos is called the Key Distribution Center (KDC). The KDC
issues all of the Kerberos tickets to the clients.

Secure remote commands overview
The following information provides details about secure remote commands.

Notes:

1. Beginning with Distributed Computing Environment (DCE) version 2.2, the DCE security server can
return Kerberos Version 5 tickets.

2. All of the secure remote commands (rcmds) use the Kerberos Version 5 library provided by IBM
Network Authentication Service (NAS) that is available on the Expansion Pack DVD. You must install
the krb5.client.rte fileset, which is also available on the Expansion Pack DVD.

3. If you are migrating your AIX operating system by using DVD media and Kerberos is already
installed, the installation scripts prompt you to install krb5.client.rte from the Expansion Pack
DVD.

4. If you are migrating your AIX operating system by using NIM resources and Kerberos is already
installed, add krb5 to your lpp_source directory.

The secure remote commands (rcmds) are rlogin, rcp, rsh, telnet, and ftp. These commands are known
collectively as the standard AIX authentication method. The additional methods provided are Kerberos.

When using the Kerberos Version 5 authentication method, the client gets a Kerberos Version 5 ticket
from the DCE security server or Kerberos server. The ticket is a portion of the user's current DCE or local
credentials encrypted for the TCP/IP server with which they want to connect. The daemon on the
TCP/IP server decrypts the ticket. This action allows the TCP/IP server to absolutely identify the user. If
the DCE or local principal described in the ticket is allowed access to the operating system user's account,
the connection proceeds. The secure rcmds support Kerberos clients and servers from both Kerberos
Version 5 and DCE.

In addition to authenticating the client, Kerberos Version 5 forwards the current user's credentials to the
TCP/IP server. If the credentials are marked as forwardable, the client sends them to the server as a
Kerberos ticket-granting ticket. On the TCP/IP server side, if a user is communicating with a DCE
security server, the daemon upgrades the ticket-granting ticket to full DCE credentials using the
k5dcecreds command.

The ftp command uses a different authentication method than the other secure rcmds. It uses the GSSAPI
security mechanism to pass the authentication between the ftp command and the ftpd daemon. Using the
clear, safe, and private subcommands, the ftp client supports data encryption.

Between operating system clients and servers, the ftp command allows multiple byte transfers for
encrypted data connections. The standards define only single byte transfers for encrypted data
connections. When connected to third-party machines and using data encryption, the ftp command
follows the single byte transfer limit.

282 AIX Version 7.2: Security

System configuration:

For all of the secure rcmds, a system-level configuration mechanism determines which authentication
methods are allowed for that system. The configuration controls both outgoing and incoming
connections.

The authentication configuration consists of the libauthm.a library and the lsauthent and chauthent
commands, that provide command line access to the get_auth_methods and set_auth_methods library
routines.

The authentication method defines which method is used to authenticate a user across a network. The
system supports the following authentication methods:
v Kerberos Version 5 is the most common method, as it is the basis for DCE.
v Kerberos Version 4 is used only by the rlogin, rsh, and rcp secure rcmds. It is provided to support

compatibility with earlier versions only on SP systems. A Kerberos Version 4 ticket is not upgraded to
DCE credentials.

If more than one authentication method is configured and the first method fails to connect, the client
attempts to authenticate using the next authentication method configured.

Authentication methods can be configured in any order. The only exception is that standard AIX must be
the final authentication method configured, because there is no fallback option. If standard AIX is not a
configured authentication method, password authentication is not attempted and any connection attempt
using this method is rejected.

You can also configure the system without any authentication methods. In this case, the system refuses all
connections from and to any system using secure rcmds. Also, because Kerberos Version 4 is only
supported with the rlogin, rsh, and rcp commands, a system configured to use only Kerberos Version 4
does not allow connections using telnet or FTP.

Kerberos Version 5 user validation:

The Kerberos Version 5 authentication method can be used to validate a user.

When using the Kerberos Version 5 authentication method, the TCP/IP client gets a service ticket
encrypted for the TCP/IP server. When the server decrypts the ticket, it has a secure method of
identifying the user (by DCE or local principal). However, the server must determine if this DCE or local
principal is allowed access to the local account. Mapping the DCE or local principal to the local operating
system account is handled by a shared library, libvaliduser.a, which has a single subroutine, called
kvalid_user. If a different method of mapping is preferred, the system administrator must provide an
alternative for the libvaliduser.a library.

DCE configuration:

To use the secure rcmds, two DCE principals must exist for every network interface to which they can be
connected.

The two DCE principals are:
host/FullInterfaceName
ftp/FullInterfaceName

where FullInterfaceName is the interface name and domain name

Security 283

Local configuration:

To use the secure rcmds, two local principals must exist for every network interface to which they can be
connected.

The two local principals are:
host/FullInterfaceName@Realmname
ftp/FullInterfaceName@Realmname

where FullInterfaceName is the interface name and domain name and RealmName is he name of the local
Kerberos Version 5 realm.

See the following sources for related information:
v The get_auth_method and set_auth_method subroutines in Technical Reference: Communications, Volume 2

v The chauthent command in Commands Reference, Volume 1

v The lsauthent command in Commands Reference, Volume 3

Authenticating to the AIX operating system using the Network Authentication
Service or non-AIX services
Prior to AIX 6.1, the KRB5 load module handled the Kerberos authentication against the Network
Authentication Service (NAS) environment and the KRB5A load module handled the Kerberos
authentication against non-AIX systems environment. Starting with AIX 6.1, the KRB5 load module
handles the Kerberos authentication of both the Network Authentication Service (NAS) environment and
the non-AIX systems environment. The is_kadmind_compat attribute in the etc/security/methods.cfg
file specifies either the KRB5 environment or the KRB5A environment. From AIX 7.1 onwards, the KRB5A
load module is not available. Therefore, is_kadmind_compat attribute must be used in the
etc/security/methods.cfgfile to specify either the KRB5 environment or the KRB5A environment.

When the Kerberos client is configured to authenticate against NAS, the KRB5 load module performs
Kerberos authentication and Kerberos principal management. The module enables a system administrator
to manage Kerberos principals by using AIX user-administration commands. To use principal
management, the Kerberos server must support the kadmin administration protocol. NAS provides this
support through the kadmind daemon (the Kerberos server that runs on the AIX operating system).

Note: When you configure the Kerberos client, you must specify that authentication is against NAS;
otherwise, the client is configured to authenticate against non-AIX services and principal management is
unavailable.

When you use Kerberos against a non-AIX system, Kerberos principals are stored on a non-AIX system
and cannot be managed from the AIX operating system by using the kadmin Kerberos database interface.
In this case, principal management must be performed separately by using the Kerberos
principal-management tools. These tools might be part of a Kerberos product, or they might be integrated
into an OS (for example, Windows 2000). The original goal of using Kerberos against non-AIX systems
was to provide authentication against Windows 2000 Active Directory servers where Kerberos principal
management is performed using the Active Directory account management tools and APIs. However,
Kerberos against non-AIX systems can be used against other compliant KDCs where the Kerberos
administration interface is not supported.

Installing and configuring the system for Kerberos integrated login using IBM NAS:

The IBM Kerberos implementation of Network Authentication Services (NAS) is shipped on the
expansion pack.

To install the Kerberos Version 5 server package, install the krb5.server.rte fileset by running the
following command:

284 AIX Version 7.2: Security

installp –aqXYgd . krb5.server

If the machine being configured as a Kerberos server will also be used as a Kerberos client, install the
entire Kerberos KRB5 package.

DCE also has a set of Kerberos client utilities with the same names as the Kerberos utilities. To avoid
namespace collisions between DCE and Kerberos commands (that is, between the klist, kinit, and
kdestroy commands), the Kerberos commands are installed in the /usr/krb5/bin and the /usr/krb5/sbin
directories.

To run the Kerberos commands, you must specify fully qualified command path names unless you add
the Kerberos directories to your PATH definition as follows:
export PATH=$PATH:/usr/krb5/sbin:/usr/krb5/bin

Note: The Java14 SDK also installs a kinit command, and it may precede other kinit commands in the
PATH environment variable. If Network Authentication Service commands are needed instead of the
Java14 kinit program, move the Java14 kinit program to another location in your PATH definition.

Network Authentication Services documentation is provided in the krb5.doc.lang.pdf|html package,
where lang represents the supported language.

The AIX operating system has two database modules available to form a compound load module: LDAP
and BUILTIN. The LDAP module is used to access information stored on an LDAP registry (directory)
and the BUILTIN module is used to access information stored on a files registry (local file system). The
compound load module that is created is typically named KRB5files or KRB5LDAP. These names indicate
that KRB5 is used either for authentication and local files or for LDAP.

Network Authentication Service also supports storing Kerberos information in either a local file system
(Kerberos Legacy database) or LDAP. There are four possible configurations:
v KRB5files with Kerberos server information stored in Kerberos Legacy database
v KRB5files with Kerberos server information stored in Kerberos LDAP database
v KRB5LDAP with Kerberos server information stored in Kerberos Legacy database
v KRB5LDAP with Kerberos server information stored in Kerberos LDAP database

When LDAP is the storage mechanism for storing Kerberos principals or AIX user and group
information, configure LDAP before you invoke the Kerberos configuration commands. After you
configure LDAP, use the mkkrb5srv command to configure the Kerberos servers.

Configuring the Network Authentication Service server with legacy database storage:

You can set up Network Authentication Service KDC and administration servers with a legacy Kerberos
database and configure Network Authentication Service servers using the mkkrb5srv command.

For additional information about using the mkkrb5srv command, see the mkkrb5srv command.

Note: Do not install both DCE and Kerberos server software on the same physical system. If you must
do so, the default operational internet port numbers must be changed for either the DCE clients and
server, or for the Kerberos clients and server. In either case, such a change can affect interoperability with
existing DCE and Kerberos deployments in your environment. For information about coexistence of DCE
and Kerberos, refer to Network Authentication Services documentation.

Kerberos Version 5 is set up to reject ticket requests from any host whose clock is not within the specified
maximum clock skew of the KDC. The default value for maximum clock skew is 300 seconds (five

Security 285

minutes). Kerberos requires that some form of time synchronization is configured between the servers
and the clients. It is recommended that you use the xntpd or timed daemons for time synchronization. To
use the timed daemon, do the following:
1. Set up the KDC server as a time server by starting the timed daemon, as follows:

timed -M

2. Start the timed daemon on each Kerberos client as follows:
timed -t

3. To configure the Kerberos KDC and kadmin servers, run the mkkrb5srv command. For example, to
configure Kerberos for the MYREALM realm, the sundial server, and the xyz.com domain, run the
following command:
mkkrb5srv -r MYREALM -s sundial.xyz.com -d xyz.com -a admin/admin

Wait a few minutes for the kadmind and krb5kdc commands to start from the/etc/inittab file.

Network Authentication Service uses space in the /var filesystem to store information. This information
includes database, log, and credential cache files of the authenticated users. The size of these files can
increase over time. Ensure that the /var filesystem has sufficient free space to hold this information by
regularly monitoring the amount of free space.

The following is a typical mkkrb5srv command:
mkkrb5srv –r Realm_Name –s KDC_Server –d Domain_Name –a Admin_Name

The variable values in Table 16 are used in the following example of how to configure Network
Authentication Service servers with legacy database.

Table 16. The mkkrb5srv command variable names

Variable Name Variable Value

Realm Name MYREALM

KDC Server kdcsrv.austin.ibm.com

Domain Name austin.ibm.com

Administrator Name admin/admin

If there is an existing Kerberos server configuration, you can remove it by using either the mkkrb5srv –U
or unconfig.krb5 command.

Attention: If you need to keep an existing Kerberos server configuration, do not be perform the
following steps.

The following procedure is an example of how to configure Network Authentication Service servers with
legacy database.
1. Enter the following command:

mkkrb5srv -r MYREALM -s kdcsrv.austin.ibm.com -d austin.ibm.com -a admin/admin

After entering this command, you are prompted for a master database password.
Because Network Authentication Service does not support configurations where KDC and the
administrative server are on different hosts, the local host is used for both the KDC and
administrative server. Ignore the following error message if it is displayed: The -s option is not
supported.

2. Enter the master database password when you are prompted.
3. Enter the administrative-principal password when you are prompted.

After you enter the administrative-principal password, the mkkrb5srv command starts the kadmind
and krb5kdc daemons from the /etc/inittab file path. This process can last several minutes.

286 AIX Version 7.2: Security

4. Verify the entries in the /etc/inittab file by running the following commands:
lsitab krb5kdc
lsitab kadm

5. Verify that the KDC and kadmind servers have started by entering the following command:
ps -ef | grep -v grep | grep krb5

The mkkrb5srv command creates the master KDC and the kadmind administrative servers for the
Kerberos realm (MYREALM). It also creates the configuration files, initializes the principal database, and
starts the KDC and kadmind servers.

Running the mkkrb5srv command results in the following actions:
1. Creates the /etc/krb5/krb5.conf file. Values for realm name, Kerberos admin server, and domain

name are set as specified on the command line. The /etc/krb5/krb5.conf file also sets the paths for
the default_keytab_name, kdc, and admin_server log files.

2. Creates the /var/krb5/krb5kdc/kdc.conf file. The /var/krb5/krb5kdc/kdc.conf file sets the values for
the kdc_ports, kadmin_port, max_life, max_renewable_life, master_key_type, and supported_enctypes
variables. This file also sets the paths for the database_name, admin_keytab, acl_file, dict_file, and
key_stash_file variables.

3. Creates the /var/krb5/krb5kdc/kadm5.acl file. Sets up the access control for admin, root, and host
principals.

4. Creates the database and one admin principal. You are asked to set a Kerberos master key and to
name and set the password for a Kerberos administrative principal identity. For disaster-recovery
purposes, it is critical that the master key and administrative principal identity and password are
securely stored.

For more information, see “Sample runs” on page 291 and “Error messages and recovery actions” on
page 289.

Configuring the Kerberos server with LDAP storage:

You can setup Network Authentication Service kadmin and KDC servers for Kerberos integrated login
using the mkkrb5srv command.

The variable values in Table 17 are used in the following example of how to configure Network
Authentication Service server components with LDAP storage by using the mkkrb5srv command.

Table 17. The mkrb5srv command variable names

Variable Name Variable Value

Realm_Name MYREALM

KDC_Server kdcsrv.austin.ibm.com

Domain_Name austin.ibm.com

Admin_Name admin/admin

LDAP server kdcsrv.austin.ibm.com

LDAP administrator name cn=root

LDAP administrator password secret

The following procedure is an example of how to configure Network Authentication Service server
components with LDAP storage by using the mkkrb5srv command.
1. Run the following command:

mkkrb5srv -r MYREALM -s kdcsrv.austin.ibm.com -d austin.ibm.com\
-a admin/admin -l kdcsrv.austin.ibm.com -u cn=root -p secret

2. Verify that the KDC and kadmind servers have started by running the following command:
ps -ef | grep -v grep | grep krb5

Security 287

Running the mkkrb5srv command with LDAP produces results that are similar to running the command
with the legacy database configuration. However, when LDAP is used, databases are not created on the
local file system. Instead, a .kdc_ldap_data file is created in the /var/krb5/krb5kdc file to hold
information about LDAP.

For additional information about usage, see the mkkrb5srv command.

Configuring the Kerberos integrated login:

After Kerberos installation is complete, you must configure the system to use Kerberos as the primary
means of user authentication.

To configure systems to use Kerberos as the primary means of user authentication, run the mkkrb5clnt
command with the following parameters:
mkkrb5clnt -c KDC -r realm -a admin -s server -d domain -A -i database -K -T

The variable values in Table 18 are used in the following example of how to configure a system for
Kerberos integrated login with a local file system as the AIX user/group repository.

Table 18. The mkkrb5clnt command variable names

Variable Name Variable Value

Realm Name MYREALM

KDC Server kdcsrv.austin.ibm.com

Domain Name austin.ibm.com

Administration Server kdcsrv.austin.ibm.com

Administrator Name admin/admin

AIX User/Group Database files

The following command is an example of how to configure a system for Kerberos integrated login with a
local file system as the AIX user/group repository.

Run the following command:
mkkrb5clnt -r MYREALM -c kdcsrv.austin.ibm.com -s kdcsrv.austin.ibm.com\
-a admin/admin -d austin.ibm.com -A -i files -K -T

The previous example results in the following actions:
1. The command creates the /etc/krb5/krb5.conf file. Values for realm name, Kerberos administration

server, and domain name are set as specified on the command line. The paths for
default_keytab_name, kdc, and kadmin log files are also updated.

2. The -i flag configures a fully integrated login. The database entered is the location where AIX user
identification information is stored. This is different than the Kerberos principal storage. The storage
where Kerberos principals are stored is set during the Kerberos configuration.

3. The -K flag configures Kerberos as the default authentication scheme. This allows the users to become
authenticated with Kerberos at login time.

4. The -A flag adds an entry in the Kerberos Database to make root an admin user for Kerberos.
5. The -T flag acquires the server admin ticket-granting ticket.

Note: Do not use the -D option in the mkkrb5clnt command to configure the Kerberos client
environment for authentication against the IBM Network Authentication Service (NAS). If you do not
specify the -D option in the mkkrb5clnt command, the is_kadmind_compat attribute is not included in
the /usr/lib/security/methods.cfg file and the Kerberos client environment is configured for
authentication against the IBM NAS.

288 AIX Version 7.2: Security

Verify the configuration by examining the /etc/krb5/krb5.conf file. The following is an example of a
/etc/krb5/krb5.conf file on a client machine:
[libdefaults]

default_realm = MYREALM
default_keytab_name = FILE:/etc/krb5/krb5.keytab
default_tkt_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts des-cbc-md5 des-cbc-crc
default_tgs_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts des-cbc-md5 des-cbc-crc

[realms]
MYREALM = {

kdc = kdcsrv.austin.ibm.com:88
admin_server = kdcsrv.austin.ibm.com:749
default_domain = austin.ibm.com

}
[domain_realm]

.austin.ibm.com = MYREALM
kdcsrv.austin.ibm.com = MYREALM

[logging]
kdc = FILE:/var/krb5/log/krb5kdc.log
admin_server = FILE:/var/krb5/log/kadmin.log
default = FILE:/var/krb5/log/krb5lib.log

Note: If LDAP is used for Kerberos principal storage, then the krb5.conf file will contain the following
line under the [realms] stanza:
vdb_plugin_lib = /usr/lib/libkrb5ldplug.a

If a system is installed that is located in a different DNS domain than the KDC, the following additional
actions must be performed:
1. Edit the /etc/krb5/krb5.conf file and add another entry after [domain realm].
2. Map the different domain to your realm.

For example, if you want to include a client that is in the abc.xyz.com domain into your MYREALM realm,
modify the /etc/krb5/krb5.conf file as follows:
[domain realm]

.austin.ibm.com = MYREALM

.raleigh.ibm.com = MYREALM

When the Network Authentication Service configuration is complete, the login process to the operating
system remains unchanged. After a successful login, users will have Kerberos ticket-granting tickets
associated with their running processes. The user's $KRB5CCNAME environment variable points to that
ticket-granting ticket. To verify that the login is successful and the user has a ticket-granting ticket, use
the klist command.

Note: When you run the mkkrb5clnt command, the following stanza is added to the methods.cfg file.
KRB5:

program = /usr/lib/security/KRB5
program_64 = /usr/lib/security/KRB5_64
options = is_kadmind_compat=yes

KRB5files:
options = db=BUILTIN,auth=KRB5

For additional information about:
v the mkkrb5clnt command, see the mkkrb5clnt command.
v the methods.cfg file, see the methods.cfg file.

Error messages and recovery actions:

Errors that can occur when using the mkkrb5srv command include the following:

Security 289

v If the krb5.conf, kdc.conf, or kadm5.acl files already exist, the mkkrb5srv command does not modify
the values. You will receive a message that the file already exists. Any of the configuration values can
be changed by editing the krb5.conf, kdc.conf, or kadm5.acl files.

v If you mistype something and no database is created, remove the configuration files that are created
and run the command again.

v If there is inconsistency between the database and configuration values, remove the database from the
/var/krb5/krb5kdc/* directory and rerun the command.

v Make sure the kadmind and the krb5kdc daemons are started on your machine. Use the ps command
to verify that the daemons are running. If these daemons have not started, check the log file.

Errors that can occur when using the mkkrb5clnt command include the following:
v Incorrect values for krb5.conf can be fixed by editing the /etc/krb5/krb5.conf file.
v Incorrect values for the -i flag can be fixed by editing the /usr/lib/security/methods.cfg file.

Eliminating Dependency on kadmind Daemon during non-KRB5 Authentication: The KRB5 load module
causes delay when the kadmind daemon is unavailable and when using a non-KRB5 authentication
mechanism, for example, single sign-on (SSO). This dependency is eliminated by setting the
kadmind_timeout parameter in the methods.cfg file.

Possible values are kadmind_timeout=<seconds>, where seconds must be greater than 0.

When the KRB5 load module attempts to connect to a kadmind server that is down, a transmission
control protocol (TCP) timeout occurs. The kadmind_timeout parameter prevents further delay after the
initial TCP timeout. The kadmind_timeout parameter specifies the time window for the KRB5 load module
to attempt another kadmind connection after the initial tcp timeout. When the kadmind server is running,
the default behavior is still in effect.

By default, kadmind_timeout is disabled. To enable thekadmind_timeout parameter, change the
methods.cfg file as follows:
KRB5:

program = /usr/lib/security/KRB5
options = kadmind_timeout=300

KRB5files:
options = db=BUILTIN,auth=KRB5

Files created:

The mkkrb5srv command creates the following files:
v /etc/krb5/krb5.conf

v /var/krb5/krb5kdc/kadm5.acl

v /var/krb5/krb5kdc/kdc.conf

The mkkrb5clnt command creates the following file:
v /etc/krb5/krb5.conf

The mkkrb5clnt -i files option adds the following stanza to the /usr/lib/security/methods.cfg file:
KRB5:

program =
options =

KRB5files:
options =

290 AIX Version 7.2: Security

Sample runs:

This section provides examples from sample runs.

The following is an example of the mkkrb5srv command:
mkkrb5srv -r MYREALM -s sundial.xyz.com -d xyz.com -a admin/admin

Output similar to the following displays:
Fileset Level State Description
--

Path: /usr/lib/objrepos
krb5.server.rte 1.3.0.0 COMMITTED Network Authentication Service

Server

Path: /etc/objrepos
krb5.server.rte 1.3.0.0 COMMITTED Network Authentication Service

Server

The -s option is not supported.
The administration server will be the local host.
Initializing configuration...
Creating /etc/krb5/krb5.conf...
Creating /var/krb5/krb5kdc/kdc.conf...
Creating database files...
Initializing database ’/var/krb5/krb5kdc/principal’ for realm ’MYREALM’
master key name ’K/M@MYREALM’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter database Master Password:
Re-enter database Master Password to verify:
WARNING: no policy specified for admin/admin@MYREALM;

defaulting to no policy. Note that policy may be overridden by
ACL restrictions.

Enter password for principal "admin/admin@MYREALM":
Re-enter password for principal "admin/admin@MYREALM":
Principal "admin/admin@MYREALM" created.
Creating keytable...
Creating /var/krb5/krb5kdc/kadm5.acl...
Starting krb5kdc...
krb5kdc was started successfully.
Starting kadmind...
kadmind was started successfully.
The command completed successfully.
Restarting kadmind and krb5kdc

The following is an example of the mkkrb5clnt command:
mkkrb5clnt -r MYREALM -c sundial.xyz.com -s sundial.xyz.com \

-a admin/admin -d xyz.com -i files -K -T -A

Output similar to the following displays:
Initializing configuration...
Creating /etc/krb5/krb5.conf...
The command completed successfully.
Password for admin/admin@MYREALM:
Configuring fully integrated login
Authenticating as principal admin/admin with existing credentials.
WARNING: no policy specified for host/diana.xyz.com@MYREALM;

defaulting to no policy. Note that policy may be overridden by
ACL restrictions.

Principal "host/diana.xyz.com@MYREALM" created.

Administration credentials NOT DESTROYED.
Authenticating as principal admin/admin with existing credentials.

Security 291

Administration credentials NOT DESTROYED.
Authenticating as principal admin/admin with existing credentials.
Principal "kadmin/admin@MYREALM" modified.

Administration credentials NOT DESTROYED.
Configuring Kerberos as the default authentication scheme
Making root a Kerberos administrator
Authenticating as principal admin/admin with existing credentials.
WARNING: no policy specified for root/diana.xyz.com@MYREALM;

defaulting to no policy. Note that policy may be overridden by
ACL restrictions.

Enter password for principal "root/diana.xyz.com@MYREALM":
Re-enter password for principal "root/diana.xyz.com@MYREALM":
Principal "root/diana.xyz.com@MYREALM" created.

Administration credentials NOT DESTROYED.
Cleaning administrator credentials and exiting.

Eliminating the dependency on the kadmind daemon during authentication:

The KRB5 load module may fail authentication when the kadmind daemon is not available. This
dependency can be eliminated by setting the kadmind parameter in the methods.cfg file.

The possible values are kadmind=no or kadmind=false for disabling the kadmind lookups and kadmind=yes
or kadmind=true for enabling kadmind lookups (the default value is yes). When this option is set to no,
the kadmind daemon is not contacted during authentication. Therefore, users can log into the system
regardless of the status of the kadmind daemon provided that the user enters the correct password when
the system prompts for one. However, AIX user administration commands such as mkuser, chuser, or
rmuser will not work to administrate Kerberos integrated users if the daemon is not available (for
example, either the daemon is down or the machine is not accessible).

The default value for the kadmind parameter is yes. This means that kadmind lookups are performed
during authentication. In the default case, if the daemon is not available, the authentication might take
longer.

To disable the checking of the kadmind daemon during authentication, modify the stanzas in the
methods.cfg file as follows:
KRB5:

program = /usr/lib/security/KRB5
options = kadmind=no

KRB5files:
options = db=BUILTIN,auth=KRB5

When the kadmind daemon is not available, the root user will not be able to change user passwords. In a
situation such as a forgotten password, you must make the kadmind daemon available. Also, if a user
chooses to enter a Kerberos principal name at the login prompt, the primary name of the principal name
will be truncated according to the AIX user name length limitation. This truncated name will be used for
AIX user identification information retrieval (for example, to retrieve your home directory value).

If the kadmind daemon is not available (the daemon is down or not reachable), the mkuser command
gives the following error:
3004-694 Error adding "krb5user": You do not have permission.

If the kadmind parameter is set to no or the kadmind daemon is not accessible, the system cannot validate
the principal’s existence in the Kerberos database, so it will not retrieve Kerberos related attributes. This
situation causes incomplete or inaccurate results. For example, the lsuser command might not report any
users for the ALL query.

292 AIX Version 7.2: Security

Additionally, the chuser command will manage only AIX-related attributes and not Kerberos-related
attributes. The rmuser command will not delete the Kerberos principal, and the passwd command will
fail for Kerberos authenticated users.

If the network where the kadmind daemon resides is not accessible, response time is delayed. Setting the
kadmind option to no in the methods.cfg file eliminates the delays during authentication when the
machine is not accessible.

When the kadmind daemon is down, users who have expired passwords cannot log in or change their
passwords.

When you set kadmind=no but the kadmind daemon is running, you can run the following commands:
login, su, passwd, mkuser, chuser, and rmuser.

Kerberos against Network Authentication Service: troubleshooting information:

This provides troubleshooting information about Kerberos clients which are using a Kerberos server on
the AIX operating system.

The LDAP module writes error and debug information to the syslog subsystem.

The IBM Network Authentication Service uses its own log files to log requests made to the KDC and
kadmind daemons. The log files are specified in the [logging] stanza of the krb5.conf file. The default
locations of these files are the /var/krb5/log/krb5kdc.log file and the /var/krb5/log/kadmin.log file.

If a problem is related to the IBM Tivoli Directory Server, check the log files generated by IBM Tivoli
Directory Server. By default, the log files are located in the /var/ldap/ibmslapd.log file and the
/var/ldap/db2cli.log file.
v How do I create AIX Kerberos authenticated users?

The root user must obtain Kerberos credentials that grant the required privilege to perform
administrative tasks. Administrative tasks are performed on the following KDC server:
kdcsrv.austin.ibm.com.
Create an AIX user account (foo) and Kerberos principal (foo@MYREALM) on the Kerberos database
by entering the following commands:
kinit root/kdcsrv.austin.ibm.com
mkuser –R KRB5files SYSTEM=KRB5files registry=KRB5files foo

These commands also authenticate the user to the KRB5files files.
If you configured LDAP by using the mksecldap command, you can create AIX Kerberos authenticated
users by entering the following command:
mkuser –R KRB5LDAP SYSTEM=KRB5LDAP registry=KRB5LDAP foo

v How do I remove a Kerberos authenticated user?

To remove a Kerberos authenticated user, enter the following command :
rmuser –R KRB5files foo

If you configured LDAP by using the mksecldap command, you can remove a Kerberos authenticated
user by entering the following command:
rmuser –R KRB5LDAP foo

v How do I change the password of a Kerberos authenticated user?

To change the password of a Kerberos authenticated user, enter the following command:
passwd –R KRB5files foo

v What are AIX Kerberos extended attributes?

Kerberos principal information is manipulated by using AIX extended attributes through the AIX
lsuser and chuser commands. Only attributes that have the GET access mode can be displayed.

Security 293

Attributes that have the SET access mode can be assigned values by a privileged user (root on the AIX
operating system). An AIX Kerberos authenticated user can display his own Kerberos extended
attributes and other allowed AIX attributes such as id, pgrp, groups, gecos, home, and shell.
Table 19 lists the AIX Kerberos extended attributes and their access modes.

Table 19. AIX Kerberos extended attributes and access modes

Extended attribute name Description Access mode

krb5_principal_name The principal name associated with the
AIX user name.

GET

krb5_principal The same as the krb5_principal_name
attribute.

GET

krb5_realm The Kerberos realm name that the
principal belongs to.

GET

krb5_last_pwd_change The time when the password for the
principal was last changed.

GET

krb5_attributes The set of attributes used by the KDC. GET/SET

krb5_mod_name The name of the principal who most
recently modified the principal.

GET

krb5_mod_date The time that the principal was last
modified.

GET

krb5_kvno The version of the principal’s current key
(password).

GET/SET

krb5_mkvno The database master key version number.
This is provided for compatibility with
other implementations. This field is 0.

GET

krb5_max_renewable_life The maximum renewable lifetime of any
ticket issued for the principal.

GET/SET

krb5_names A list of name:hostname pairs. This field
is for future use. Do not modify this
attribute.

GET/SET

The krb5_attributes extended attribute, represents the set of Kerberos principal attributes available for
use by the KDC. A privileged user can use the chuser command to modify these Kerberos attributes.
chuser –R KRB5files krb5_attributes=+requires_preauth krb5user

To set a flag, add a plus (+) in front of the flag. To reset a flag, add a minus (-) in front of the flag. For
example:
+attribute_name sets the flag
-attribute_name resets the flag

Note: When a user is created, all of the attributes except for the following are set: requires_hwauth,
needchange, password_changing_service, and support_desmd5
The following list contains the attributes for the krb5_attributes extended attribute:

allow_postdated
If set, postdated tickets can be issued for the principal.

allow_forwardable
If set, forwardable tickets can be issued for the principal.

allow_tgs_req
If set, service tickets for the principal are issued using a ticket-granting ticket.

allow_renewable
If set, renewable tickets can be issued for the principal.

allow_proxiable
If set, proxiable tickets can be issued for the principal.

294 AIX Version 7.2: Security

allow_dup_skey
If set, user-to-user authentication is enabled for the principal.

allow_tix
If set, tickets are issued for the principal.

requires_preauth
If set, software preauthentication is required before a ticket is issued.

requires_hwauth
If set, hardware preauthentication by the software is required before a ticket is issued for the
principal.

needchange
If set, the key (password) for the principal must be changed before tickets are issued.

Note: If the needchange flag is set, the user is prompted to change the password during the
next login attempt. In this case, the user is authenticated (using Kerberos) but does not have a
ticket-granting ticket. To get a ticket-granting ticket, the user must invoke the kinit command.
The needchange flag applies only to Kerberos that is using the Network Authentication
Services module.

allow_svr
If set, service tickets can be issued for the principal.

password_changing_service
If set, the principal is the special principal for the password changing service

support_desmd5
If set, the KDC might issue tickets that use the RSA MD5 checksum algorithm.

Note: Setting this attribute might cause interoperability problems.
v How do I list the AIX Kerberos extended attributes?

To list the AIX Kerberos extended attributes, runr the following command:
lsuser –R KRB5files foo

You can also list specific extended attributes by using the –a option. For example:
lsuser -R KRB5files -f -a krb5_principal krb5_principal_name krb5_realm

v How do I modify the AIX Kerberos extended attributes?

Only a privileged user can modify the following extended attributes with a SET access mode:
krb5_kvno, krb5_max_renewable_life, krb5_attributes and krb5_names.
– To change the maximum renewable lifetime to five days for any ticket issued to foo, enter the

following command:
chuser -R KRB5files krb5_max_renewable_life=432000 foo

– To change the key (password) version number of the principal associated with foo, enter the
following command:
chuser -R KRB5files krb5_kvno=4 foo

– To set all of the Kerberos principal attributes listed in Table 19 on page 294, enter the following
commands:
chuser -R KRB5files krb5_attributes=+allow_postdated,+allow_forwardable,\
+allow_tgs_req,+allow_renewble,+allow_proxiable,+allow_dup_skey,+allow_tix,\
+requires_preauth,+requires_hwath,+needchange,+allow_svr,\
+password_changing_service,+support_desmd5 foo

lsuser -R KRB5files -a krb5_attributes foo

– To reset all of the Kerberos principal attributes listed in Table 19 on page 294, enter the following
commands:

Security 295

chuser -R KRB5files krb5_attributes=-allow_postdated,-allow_forwardable,\
-allow_tgs_req,-allow_renewable,-allow_proxiable,-allow_dup_skey,\
-allow_tix,-requires_preauth,-requires_hwauth,-needchange,-allow_svr,\
-password_changing_service,-support_desmd5 foo

lsuser -R KRB5files -a krb5_attributes foo

– To change the krb5_names and add an AIX user name/host name pair, enter the following
commands:
lsuser -R KRB5files -a krb5_names foo

chuser -R KRB5files krb5_names=bar:greenjeans.austin.ibm.com foo

lsuser -R KRB5files -a krb5_names foo

v How do I list all of the users that are defined in KRB5files?

To list all of the Kerberos authenticated users, enter the following command:
lsuser -R KRB5files -a registry ALL

v How do I convert an AIX user to a Kerberos authenticated user?

Use the mkseckrb5 command to convert an AIX user to a Kerberos authenticated user. The mkseckrb5
command converts non-administrative users (users with user IDs that are greater than 201) to Kerberos
authenticated users. When you invoke the mkseckrb5 command, you are prompted for the Network
Authentication Service administrative-principal name and password. If you do not use the randomize
option, you are also prompted for the password of each user that you are converting.

Note: The mkseckrb5 command converts only local users. The users in remote domains, such as
LDAP, cannot be converted using this command.
The following example does not use the randomize option during the conversion of an AIX user to a
Kerberos authenticated user.
1. Enter the following command:

mkseckrb5 foo

2. Before you log in a user with Kerberos, set the user’s SYSTEM and registry attributes as follows:
chuser -R KRB5files SYSTEM=KRB5files registry=KRB5files foo

The following example uses the randomize option during the conversion of an AIX user to a Kerberos
authenticated user.
1. Enter the following command:

mkseckrb5 -r user1

2. After the conversion completes, set the user’s SYSTEM, registry attributes, and password as
follows:
chuser -R KRB5files SYSTEM=KRB5files registry=KRB5files user1

passwd -R KRB5files user1

v How do I change the password for a Kerberos principal?

A root user can set the password of a Kerberos principal by entering the following passwd command:
passwd -R KRB5files foo

The following messages display after you enter the passwd command:
Changing password for "foo"
foo’s Old password:
foo’s New password:
Enter the new password again:

When you enter the passwd command as a root user, the old password is ignored. You can disable the
prompt for the old password, by using the rootpwdrequired option in the methods.cfg file. To disable
the prompt for the old password, edit the /usr/lib/security/methods.cfg file as follows:
KRB5files:

options = db=BUILTIN,auth=KRB5,rootrequiresopw=false

v How do I get a ticket-granting ticket after a successful login when the needchange attribute is set?

296 AIX Version 7.2: Security

To get a ticket-granting ticket after a successful login when the needchange flag is set, invoke the kinit
command. For more information about this subject, see the needhange attribute.

v Why is my password not accepted by the AIX operating system?

If your password is not accepted, do the following:
– Verify that the KDC and kadmind servers are running.
– Verify that the password meets the requirements of both the AIX operating system and the Network

Authentication Service.
v How do I change the password rules?

You can change the password rules on the AIX operating system by modifying the password-policy
attributes. You can use the Network Authentication Server kadmin tool to change the password policy
on the Kerberos database.

v Can a Kerberos-authenticated user become authenticated by using only Standard AIX authentication?

A Kerberos-authenticated user (foo) can become authenticated by using AIX crypt() authentication as
follows:
1. Set the AIX password of user foo (/etc/security/passwd) using the passwd command.
2. Choose a different password for testing purposes. For example:

passwd -R files foo

3. Change the SYSTEM attribute of the user, as follows:
chuser -R KRB5files SYSTEM=compat foo

Changing the SYSTEM attribute changes the method of authentication from Kerberos to crypt().

Note: Because the user in this example logged in using local authentication, the AUTHSTATE value
is compat and no ticket-granting ticket is issued. If you want to use crypt() authentication as a
backup mechanism, go to step 4.

4. To use crypt() authentication as a backup mechanism, change the SYSTEM attribute as follows:
chuser -R KRB5files SYSTEM="KRB5files or compat" foo

v How do I change the client kadmind port?

The kadmind daemon is used to perform Kerberos principal management on Kerberos authenticated
systems that are using NAS. The following example illustrates how to change the client kadmind port.
In this example, the kadmind daemon runs on the kdcsrv.austin.ibm.com server and uses port 812.
1. Use the config.krb5 command to configure the client:

config.krb5 –C –r MYREALM –c kdcsrv.austin.ibm.com –s \
kdcsrv.austin.ibm.com –d austin.ibm.com

2. Edit the krb5.conf file and change the port number:
admin_server = kdcsrv.austin.ibm.com:812

v How do I remove Kerberos credentials?

Each time a user logs in, the previous Kerberos credentials are overwritten. However, when a user logs
out, these credentials are not removed. To remove these credentials, enter the following NAS kdestroy
command:
/usr/krb5/bin/kdestroy

v How do I change the ticket-life time on KDC?

To change the ticket-life time on KDC, do the following:
1. Change the max_life attribute in the kdc.conf file. For example:

max_life = 8h 0m 0s

2. Stop and then start the krb5kdc and kadmind daemons.
3. Change the max_life value of the krbtgt/MYREALM and kadmin/admin principals to the value

that you entered in step 1. For example:
kadmin.local
kadmin.local: modify_principal -maxlife "8 hours" krbtgt/MYREALM

Security 297

v What happens if the kadmind daemon is not available?

If the kadmind daemon is not available, authentication might take longer or fail. The authentication
might fail if the part of the nextwork where the kadmind daemon is located is not accessible or the
system that is hosting the kadmind server is down. When the system is not accessible, setting the
kadmind option in the methods.cfg file to no eliminates delays during authentication.
When the kadmind daemon is down, users cannot log in if their passwords are expired. If the kadmind
daemon is not available (the daemon is down or not reachable) and a user enters the mkuser
command, the following error is displayed:
3004-694 Error adding "krb5user": You do not have permission

In addition, the chuser and lsuser commands manage only AIX-related attributes, not Kerberos-related
attributes. The rmuser command does not delete the Kerberos principal and the passwd command fails
for Kerberos authenticated users.
When the kadmind daemon is not available, the root user cannot change user passwords. In a situation
such as a forgotten password, you must make the kadmind daemon available. Also, if a user chooses
to enter a Kerberos principal name at the login prompt, the primary name of the principal name is
truncated (according to the AIX user name length limitation). This truncated name is used for AIX
user-identification information retrieval (for example, to retrieve your home directory value).

v How do I configure the AIX operating system for Kerberos integrated login with LDAP AIX user/group
management?

If you plan to use LDAP to store AIX user/group information, use the mksecldap command to
configure the LDAP server and client before you run the mkkrb5srv and mkkrb5clnt commands. To
configure the Kerberos servers, use the mkkrb5srv command. To configure the Kerberos client, use the
mkkrb5clnt command with the –i LDAP option. For example:
mkkrb5clnt -r MYREALM -c kdcsrv.ustin.ibm.com\
–s kdcsrv.austin.ibm.com -a admin/admin -d austin.ibm.com -A -i LDAP -K –T

v How do I use Kerberos-enabled remote commands after a successful login?

When an AIX user authenticates to a system by using Kerberos, the ticket-granting ticket can be used
for Kerberos-enabled remote commands.
In the following example, the NAS server is configured on kdcsrv.austin.ibm.com by using the
mkkrb5srv command. This system is also configured for Kerberos-based logins by using the
mkkrb5clnt command. A second system, tx3d.austin.ibm.com, is configured as a client by using the
mkkrb5clnt command.
1. Save the keys for the host principal, host/tx3d.austin.ibm.com, to the /etc/krb5/krb5.keytab file

on the tx3d system.
2. Because you used the mkkrb5clnt to configure the client machine, these keys were extracted to the

/var/krb5/security/keytab/tx3d.austin.ibm.com.keytab file. Link this file to the
/etc/krb5/krb5.keytab file as follows:
ln -s /var/krb5/security/keytab/tx3d.austin.ibm.com.keytab /etc/krb5/krb5.keytab

3. If the tx3d.austin.ibm.com system is configured with a non-AIX Kerberos server, then explicitly
create a host principal and extract the keys. For example:
kadmin -p admin/admin

kadmin: addprinc -randkey host/tx3d.austin.ibm.com
kadmin: ktadd -k /etc/krb5/krb5.keytab host/tx3d.austin.ibm.com
kadmin:

Because the kadmin tool is invoked from the tx3d.austin.ibm.com system, the keys are extracted to
the /etc/krb5/krb5.keytab file on the tx3d.austin.ibm.com system. You can also do this step on the
machine that hosts the Kerberos admin server (for example, kdcsrv). After you extract the keys into
a keytab file, the file is transferred and merged with the /etc/krb5/krb5.keytab file on tx3d.

4. Enable remote commands to use Kerberos Version 5 authentication on the tx3d.austin.ibm.com
system:

298 AIX Version 7.2: Security

lsauthent
Standard Aix
chauthent -k5 -std
lsauthent
Kerberos 5
Standard Aix

5. Enable remote commands to use Kerberos Version 5 authentication on the kdcsrv.austin.ibm.com
system:
chauthent -k5 -std
lsauthent
Kerberos 5
Standard Aix

6. Create a Kerberos authenticated user (foo) on kdcsrv, and set the password.
mkuser -R KRB5files SYSTEM=KRB5files registry=KRB5files foo
passwd -R KRB5files foo

7. Create user foo on tx3d:
mkuser -R files foo

8. Telnet to the kdcsrv.austin.ibm.com system using Kerberos authentication.
9. To ensure that a ticket-granting ticket was issued, enter the klist command.

/usr/krb5/bin/klist

The following are examples of Kerberos-enabled remote commands.

Note: Before you run the commands in the following examples, remove the .klogin, .rhost or
hosts.equiv files.
– Enter the date command on the remote tx3d.austin.ibm.com host system with the rsh command:

rsh tx3d date

– Log in to the remote tx3d.austin.ibm.com system with the rlogin command:
hostname
kdcsrv.austin.ibm.com
rlogin tx3d -l foo

* Welcome to AIX Version 6.1! *

hostname
tx3d.austin.ibm.com
id
uid=234(foo) gid=1(staff)

– Transfer a file to the remote tx3d.austin.ibm.com system with the rcp command:
rsh tx3d "ls -l /home/foo"
total 0
echo "Testing Kerberize-d rcp" >> xfile
rcp xfile tx3d:/home/foo
rsh tx3d "ls -l /home/foo"
total 0
-rw-r--r-- 1 foo staff 0 Apr 28 14:30 xfile
rsh tx3d "more /home/foo/xfile"
Testing Kerberize-d rcp

– Telnet to the remote tx3d.austin.ibm.com system with Kerberos credentials:
telnet tx3d
Trying...
Connected to tx3d.austin.ibm.com.
Escape character is ’^]’.
[Kerberos V5 accepts you as "foo@MYREALM"]

– Telnet to the tx3d.austin.ibm.com system, and then enter the host name and ID when prompted:

Security 299

hostname
tx3d.austin.ibm.com
id
uid=234(foo) gid=1(staff)

– Before you can use the Kerberos-enabled ftp command, you must use the kadmin command (from
tx3d.austin.ibm.com) to create the FTP service principal ftp/tx3d.austin.ibm.com, and extract it into
the /etc/krb5/krb5.keytab file:
kadmin: addprinc -randkey ftp/tx3d.austin.ibm.com@MYREALM
kadmin: ktadd -k /etc/krb5/krb5.keytab ftp/tx3d.austin.ibm.com@MYREALM
kadmin:

The following is an example of how FTP to the tx3d.austin.ibm.com remote system with Kerberos
credentials.
ftp tx3d
Name (tx3d:foo): foo
232 GSSAPI user foo@MYREALM is authorized as foo
230-Last login: Thu May 19 17:58:57 CDT 2005 on ftp from kdcsrv.austin.ibm.com
230 User foo logged in.
ftp> ftp> ls -la

Configuring a Kerberos client against a Kerberos sever on a non-AIX system:

An AIX Kerberos client can be configured against a Kerberos server on the following non-AIX systems:
Windows Active Directory, Solaris, and HP.

Configuring Kerberos against Windows Server Kerberos Service:

Several methods are available for configuring Kerberos against Windows Server Kerberos Service.

The Kerberos authentication-only module in KRB5 can be used in the authentication part of a
compound-load module. During configuration, the user specifies the Kerberos environment for the load
module. The KRB5 load module enables Kerberos as an alternative method for authenticating against
Windows 2000 or Windows 2003 Server Kerberos Service. The AIX BUILTIN pseudo-load module
provides access to the security library functions. The BUILTIN load module can be combined with
authentication-only load modules to provide the database part of a compound-load module. It also
provides legacy-user-and-group storage and file-system access. The LDAP load module can also be used
as the database part of a compound-load module.

Unlike the other Kerberos environment against NAS on an AIX system, this environment does not
provide Kerberos principal management. The KRB5 load module can be used in an environment where
Kerberos principals are stored on a non-AIX system and cannot be managed from the AIX operating
system by using the kadmin Kerberos-database interface. The Kerberos principal management is
performed separately with Kerberos principal-management tools. These tools might be part of a Kerberos
product developed by software vendors or integrated into an OS like Windows 2000.

Configuring Windows Server 2000 Kerberos Service:

The Windows Server 2000 Kerberos Service and NAS client are interoperable at the Kerberos protocol
level (RFC1510). Because Windows Server 2000 does not support the kadmin interface, include the –D
flag in the mkkrb5clnt command during configuration of AIX clients. Use Windows tools to manage
principals on Windows systems.

Use the following procedure to configure an AIX client for Kerberos-based authentication against
Windows Server 2000 Kerberos Service.
1. Set up Windows Server 2000. Refer to the Microsoft documentation for configuring a Microsoft

Active Directory Server.
2. If the NAS client is not installed on the AIX client, install the krb5.client.rte file set from the AIX

Expansion Pack.

300 AIX Version 7.2: Security

3. Use the mkkrb5clnt command with the following configuration information to configure an AIX
Kerberos client:

realm Windows Active Directory Domain name

domain
Domain name of the machine that hosts the Active Directory server

KDC Host name of the Windows server

server Host name of the Windows server
The following is an example of the mkkrb5clnt command:
mkkrb5clnt -r MYREALM -d austin.ibm.com -c w2k.austin.ibm.com -s w2k.austin.ibm.com -D

The -D option in the mkkrb5clnt command creates the is_kadmind_compat=no option in the
/etc/methods.cfg file and configures the Kerberos client environment for authentication against
non-AIX systems. Do not use the -D option in the mkkrb5clnt command to configure the Kerberos
client environment for authentication against the IBM Network Authentication Service (NAS).

Note: When you run the mkkrb5clnt command, the following stanza is added to the methods.cfg
file.
KRB5:

program = /usr/lib/security/KRB5
program_64 = /usr/lib/security/KRB5_64
options = authonly,is_kadmind_compat=no

KRB5files:
options = db=BUILTIN,auth=KRB5

For more information about:
v the mkkrb5clnt command and allowable flags, see the mkkrb5clnt command.
v the methods.cfg file, see the methods.cfg file.

4. Because Windows supports DES-CBC-MD5 and DES-CBC-CRC encryption types, change the
krb5.conf file information to be similar to the following:
[libdefaults]

default_realm = MYREALM
default_keytab_name = FILE:/etc/krb5/krb5.keytab
default_tkt_enctypes = des-cbc-md5 des-cbc-crc
default_tgs_enctypes = des-cbc-md5 des-cbc-crc

5. Create a host principal.
Because Windows account names do not have multiple parts like NAS principal names, you cannot
directly create an account by using the fully qualified host name (host/
<fully_qualified_host_name>). Instead, a principal instance is created through service-principal-
name mapping. In this case, an account is created that corresponds to the host principal, and
principal-name mapping is added.
On the Active Directory server, use the Active Directory Management tool to create a new user
account that corresponds to the tx3d.austin.ibm.com AIX client as follows:
a. Select the User folder.
b. Right-click to select New.
c. Select User.
d. Enter tx3d in the First name field, and then click Next.
e. Create a password, and then click Next.
f. Click Finish to create a host principal.

6. On the Windows Server 2000 machine, enter the Ktpass command from the command line to create
a tx3d.keytab file and set up an AIX host account as follows:
Ktpass -princ host/tx3d.austin.ibm.com@MYREALM -mapuser tx3d -pass password -out tx3d.keytab

7. Copy the tx3d.keytab file to the AIX host system.

Security 301

8. Merge the tx3d.keytab file into the /etc/krb5/krb5.keytab file on the AIX system as follows:
ktutil
rkt tx3d.keytab
wkt /etc/krb5/krb5.keytab
q

9. Create Windows domain accounts using the Active Directory user management tools.
10. To create AIX accounts that correspond to the Windows-domain accounts and use Kerberos

authentication, run the following command:
mkuser registry=KRB5files SYSTEM=KRB5files foo

11. To log into the AIX system and verify the configuration, run the telnet command.
The following is an example of a Kerberos integrated login session that uses KRB5 against the
Windows Active Directory:
telnet tx3d

Trying...
Connected to tx3d.austin.ibm.com.
Escape character is ’^]’.

telnet (tx3d.austin.ibm.com)
login: foo
foo’s Password:

* Welcome to AIX Version 6.1! *

echo $AUTHSTATE
KRB5files

/usr/krb5/bin/klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_foo@AUSTIN.IBM.COM_203
Default principal: foo@AUSTIN.IBM.COM

Valid starting Expires Service principal
04/29/05 14:37:28 04/30/05 00:39:22 krbtgt/AUSTIN.IBM.COM@AUSTIN.IBM.COM

Renew until 04/30/05 14:37:28

04/29/05 14:39:22 04/30/05 00:39:22 host/tx3d.austin.ibm.com@AUSTIN.IBM.COM

Configuring Windows Server 2003 Kerberos Service:

A Kerberos client can be configured against Windows Server 2003 Kerberos Service.

To configure an AIX client against Windows Server 2003 Kerberos Service, use the steps in “Configuring
Windows Server 2000 Kerberos Service” on page 300.

Note: The NAS kpasswd client utility cannot change the password of a Kerberos principal on Windows
Server 2003 Kerberos Service. Therefore, after successfully logging into an AIX system that is using
Kerberos, the user cannot change the password on the Windows Server 2003.

Configuring Kerberos against Sun Solaris and HP-UX Kerberos Domain Controllers:

A Kerberos client can be configured against Sun Solaris and HP-UX Kerberos Domain Controllers.

Unlike the Kerberos environment against NAS on an AIX system, this environment does not provide
Kerberos principal management. The KRB5 load module can be used in an environment where Kerberos
principals are stored on a non-AIX system and cannot be managed from the AIX operating system by
using the kadmin Kerberos database interface. The Kerberos principal management is performed
separately by using Kerberos principal-management tools. These tools might be part of a Kerberos
product developed by software vendors or integrated into an OS.

302 AIX Version 7.2: Security

Configuring Sun Solaris:

A Kerberos client can be configured against Sun Solaris.

The Sun Enterprise Authentication Mechanism (SEAM) and AIX NAS client are interoperable at the
Kerberos protocol level (RFC1510). Because the Solaris kadmind daemon interface is not compatible with
the AIX NAS client kadmin interface, include the –D flag in the mkkrb5clnt command when you
configure AIX clients. Use Solaris tools to do principal management on Solaris systems. Because the
protocol for changing passwords is different between SEAM Kerberos servers and AIX NAS clients,
changing the password of a principal causes the configuration to fail.

Solaris is used in the following example.

Use the following procedure to configure an AIX client for Kerberos-based authentication against SEAM.
1. Configure SEAM by using the Sun documentation.
2. If the NAS client is not installed on the AIX client, install the krb5.client.rte file set from the AIX

Expansion Pack.
3. To configure an AIX Kerberos client, use the mkkrb5clnt command with the following configuration

information:

realm Solaris Kerberos realm name: AUSTIN.IBM.COM

domain
Domain name of the machine that hosts the Kerberos servers: Austin.ibm.com

KDC Host name of the Solaris system that hosts the KDC: sunsys.austin.ibm.com

server Host name of the Solaris system that hosts the kadmin daemon (usually the same as KDC):
sunsys.austin.ibm.com

Note: Because the Solaris and AIX NAS client kadmin interfaces are different, the server name is not
used by the NAS clients, and you must use the –D flag with the mkkrb5clnt command.
The following is an example of the mkkrb5clnt command:
mkkrb5clnt -r AUSTIN.IBM.COM -d austin.ibm.com\
-c sunsys.austin.ibm.com -s sunsys.austin.ibm.com -D

The -D option in the mkkrb5clnt command creates the is_kadmind_compat=no option in the
/etc/security/methods.cfg file and configures the Kerberos client environment for authentication
against non-AIX systems. Do not use the -D option in the mkkrb5clnt command to configure the
Kerberos client environment for authentication against the IBM Network Authentication Service
(NAS).

Note: When you run the mkkrb5clnt command, the following stanza is added to the methods.cfg file.
KRB5:

program = /usr/lib/security/KRB5
program_64 = /usr/lib/security/KRB5_64
options = authonly,is_kadmind_compat=no

KRB5files:
options = db=BUILTIN,auth=KRB5

For more information about:
v the mkkrb5clnt command and allowable flags, see the mkkrb5clnt command.
v the methods.cfg file, see the methods.cfg file.

4. Use the Solaris kadmin tool to create a host/tx3d.austin.ibm.com@MYREALM host principal and save it
to a file, similar to the following:
kadmin: add_principal -randkey host/tx3d.austin.ibm.com
Principal "host/tx3d.austin.ibm.com@AUSTIN.IBM.COM" created.

Security 303

kadmin:ktadd -k /tmp/tx3d.keytab host/tx3d.austin.ibm.com
Entry for principal host/tx3d.austin.ibm.com with kvno 3,

encryption type DES-CBC-CRC added to keytab WRFILE:/tmp/tx3d.keytab.

kadmin: quit

5. Copy the tx3d.keytab file to the AIX host system.
6. Merge the tx3d.keytab file into the /etc/krb5/krb5.keytab file on the AIX system as follows:

ktutil
rkt tx3d.keytab
l
slot KVNO Principal
wkt /etc/krb5/krb5.keytab
q

7. To create a Kerberos principal, use the Solaris kadmin tool .
add_principal sunuser

8. To create AIX accounts that correspond to the Solaris Kerberos principal and use Kerberos
authentication, enter the following command:
mkuser registry=KRB5files SYSTEM=KRB5files sunuser

9. Use the telnet command to log into the AIX system with the sunuser user name and password, and
verify the configuration.
The following is an example of a Kerberos integrated login session that uses KRB5 against the Solaris
KDC:
telnet tx3d

echo $AUTHSTATE
KRB5files

echo $KRB5CCNAME
FILE:/var/krb5/security/creds/krb5cc_sunuser@AUSTIN.IBM.COM_207

View credentials:
/usr/krb5/bin/klist

Configuring HP-UX:

A Kerberos client can be configured against HP-UX.

The steps to authenticate against HP-UX 11i are similar to the steps in “Configuring Sun Solaris” on page
303. The HP-UX KDC and AIX NAS client are interoperable at the Kerberos protocol level (RFC1510).
Password change protocol is also compatible. Because the HP-UX kadmind daemon interface is not
compatible with the AIX NAS client kadmin interface, you must include the –D flag with the mkkrb5clnt
command when you configure AIX clients.

Use the following procedure to configure an AIX client for Kerberos-based authentication against HP-UX
11i Kerberos Version 2.1.
1. Configure HP-UX 11i Kerberos Version 2.1 using the HP documentation.
2. If the NAS client is not installed on the AIX client, install the krb5.client.rte file set from the AIX

Expansion Pack.
3. Use the mkkrb5clnt command with the following configuration information to configure an AIX

Kerberos client:

realm HP Kerberos realm name: HPSYS.AUSTIN.IBM.COM

domain
Domain name of the machine that hosts the HP-UX Kerberos servers: austin.ibm.com

KDC Host name of the HP-UX system that hosts the KDC: hpsys.austin.ibm.com

304 AIX Version 7.2: Security

server Host name of the HP-UX server: hpsys.austin.ibm.com

Note: Because the HP-UX and AIX NAS client kadmin interfaces are different, the server name is
not used by the NAS clients, and the –D flag must be used in the mkkrb5clnt command.
The following is an example of the mkkrb5clnt command:
mkkrb5clnt -r AUSTIN.IBM.COM -d austin.ibm.com\
-c hpsys.austin.ibm.com -s hpsys.austin.ibm.com -D

The -D option in the mkkrb5clnt command creates the is_kadmind_compat=no option in the
/etc/security/methods.cfg file and configures the Kerberos client environment for authentication
against non-AIX systems. Do not use the -D option in the mkkrb5clnt command to configure the
Kerberos client environment for authentication against the IBM Network Authentication Service
(NAS).

Note: When you run the mkkrb5clnt command, the following stanza is added to the methods.cfg
file.
KRB5:

program = /usr/lib/security/KRB5
program_64 = /usr/lib/security/KRB5_64
options = authonly,is_kadmind_compat=no

KRB5files:
options = db=BUILTIN,auth=KRB5

For more information about:
v the mkkrb5clnt command and allowable flags, see the mkkrb5clnt command.
v the methods.cfg file, see the methods.cfg file.

4. Modify the krb5.conf file so that the encryption type matches the value used during the HP-UX
Kerberos setup (krbsetup). If a DES-CRC value is used, edit the [libdefaults] stanza in krb5.conf file
on the AIX client as follows:
default_tkt_enctypes = des-cbc-crc

default_tgs_enctypes = des-cbc-crc

5. Use the HP-UX kadmin_ui tool to create a host/tx3d.austin.ibm.com host principal.
6. Extract the key and save it to a file. From the Edit menu in Principal Information window, select

Extract Service Key to extract the keys.
7. Copy the tx3d.keytab file to the AIX host system.
8. Merge the tx3d.keytab file into the /etc/krb5/krb5.keytab file on the AIX system as follows:

ktutil
rkt tx3d.keytab
l
slot KVNO Principal
wkt /etc/krb5/krb5.keytab
q

9. Use the HP-UX kadmin_ui tool to create an hpuser Kerberos principal, then click the
Edit/Attribute tab to clear the pw_require flag.

10. Create an AIX account that corresponds to the Kerberos principal on HP-UX, as follows:
mkuser registry=KRB5files SYSTEM=KRB5files hpuser

11. Use the telnet command to log into the AIX system with the hpuser user name and password, and
verify the configuration.
The following is an example of a Kerberos integrated login session that uses KRB5 against HP-UX:
telnet tx3d

echo $AUTHSTATE

Security 305

KRB5files

View credentials:
/usr/krb5/bin/klist

12. Use the passwd command to change the password.

Note: The HP-UX password policy is enforced while changing the password. Refer to HP-UX
documentation to determine how to set the password policy.

Kerberos against non-AIX systems: questions and troubleshooting information:

This provides answers to questions about Kerberos clients that are using a Kerberos server on non-AIX
systems.

Note: The Microsoft Active Directory Server is used in the following examples. However, these examples
can also be applied to Solaris and HP systems.

As a first step in troubleshooting, make sure all of the servers and daemons are running.

Kerberos against non-AIX systems uses the syslog subsystem to write information about errors and
debugging. To learn more about syslog logging, see the syslogd daemon.
v How do I create an AIX user?

Create an AIX user account (foo) by running the following command:
mkuser registry=KRB5files SYSTEM=KRB5files foo

The mkuser command creates a user on AIX. You must also create an account for the user on Windows
Server Active Directory that corresponds to the AIX account. Creating a user account on Windows
Server Active Directory implicitly creates the principals.

v How do I remove a Kerberos authenticated user?

To remove a Kerberos authenticated user, run the following command:
rmuser –R KRB5files foo

The rmuser command removes a user from AIX. You must also remove the user from the Windows
Server Active Directory by using the Windows Server user management tools.

v How do I change the password of a Kerberos authenticated user?

To change the password of a Kerberos authenticated user, run the following command:
passwd –R KRB5files foo

If the KDC supports the kpasswd command, the passwd command changes the password of the
Kerberos principal foo@MYREALM on the Kerberos Server.

v How do I allow users to change expired passwords on the client?

To allow users to change expired passwords on the client, add the allow_expired_pwd=yes option to
the methods.cfg file. When this option is set to yes, users with expired passwords are prompted to
change their expired passwords. If the option is set to no or not present, the users cannot be
authenticated.
KRB5:

program = /usr/lib/security/KRB5
options = authonly,allow_expired_pwd=yes

v How do I convert an AIX user to a Kerberos authenticated user?

To convert an AIX user to a Kerberos authenticated user, do the following:
1. Verify that the user has an account on the Windows Server Active Directory by running the

following command:
chuser registry=KRB5files SYSTEM=KRB5files foo

2. If the user does not have an account on Active Directory, create an account on Active Directory and
set the SYSTEM and registry attributes by using the chuser command. The Active Directory account

306 AIX Version 7.2: Security

might not have the same user name as the AIX user name. If a different name is used for the AIX
user name, use the auth_name attribute to map it to the Active Directory name.
chuser registry=KRB5files SYSTEM=KRB5files auth_name=Christopher chris

v What do I do if the Password is forgotten?

If the password is forgotten, it must be changed by the Active Directory administrator. An AIX root
user cannot set the password of an Active Directory Kerberos principal.

v What is the purpose of the auth_name and auth_domain attributes?

Note: These attributes are optional. If an AIX system supports user names that are greater than eight
characters long, the auth_name attribute might not be needed.
The auth_name and auth_domain attributes map AIX user names to Kerberos principal names on the
KDC. For example, if the AIX user, chris, has the attributes auth_name=christopher and
auth_domain=SOMEREALM, then the Kerberos principal name is christopher@SOMEREALM. By using
the auth_domain attribute, requests are sent to the SOMEREALM realm name instead of the default
realm name. This allows the user chris to authenticate to the SOMEREALM realm instead of to the
MYREALM realm. In this example, the krb5.conf file must also be modified to include the
SOMEREALM realm name.

v Can a Kerberos-authenticated user be authenticated by using standard AIX authentication?

Yes, a Kerberos-authenticated user can be authenticated with standard AIX authentication by doing the
following:
1. Set the AIX password (/etc/security/passwd) using the passwd command:

passwd -R files foo

2. Change the user's registry and SYSTEM attributes, as follows:
chuser -R KRB5files registry=files SYSTEM=compat foo

This command changes authentication from Kerberos to compat (which uses the crypt subroutine).
The next time a login is attempted by user foo, the local password from the /etc/security/passwd
file is used.
You can also use crypt authentication as a backup mechanism by changing the SYSTEM attribute to
allow local authentication when Kerberos authentication fails, as follows:
chuser -R KRB5files SYSTEM="KRB5files or compat" foo

v Do I Need to set up a Kerberos server on AIX when I use Windows Server 2000 Kerberos Service?

No, you do not need to configure the a Kerberos server (KDC) on an AIX client because users are
authenticating against an Active Directory KDC. If you plan to use AIX Network Authentication
Service KDC as the Kerberos server for some other purpose, then the Kerberos server must be
configured.

v What should I do if AIX does not accept my password?

If AIX does not accept your password, do the following:
– Ensure that the client is communicating with the Windows 2000 Active Directory Server
– Ensure that the password meets the requirements of both AIX and Windows Server 2000 Active

Directory. Refer to Change Show Policy for information about changing password policy rules on
AIX.

Note: You cannot change the password for Windows Server 2003 Kerberos Service.
v What should I do if I cannot log into the system?

If you cannot log into the system, do the following:
– On a Windows system, verify that the KDC is running by doing the following:

1. In the Control Panel, select Administrative Tools icon.
2. Select the Services icon.
3. Verify that the Kerberos Key Distribution Center is in the started state.

Security 307

– On an AIX system, verify that the /etc/krb5/krb5.conf file points to the correct KDC, and that it
has valid parameters.

– On an AIX system, verify that client-keytab file contains the host key. For example, if the default
keytab file is /etc/krb5/krb5.keytab, run the following:
ktutil
rkt /etc/krb5/krb5.keytab
l

– Verify that the output of the kvno command that is in the keytab file matches the output from the
Ktpass command.

– Verify that, if auth_name and auth_domain attributes are set, they refer to a valid principal name on
the Active Directory KDC.

– Verify that the SYSTEM attribute is set for Kerberos login.
– Verify that the password is not expired.

v How can I disable ticket-granting ticket verification?

You can disable ticket-granting ticket verification by specifying an option in the /usr/lib/security/
methods.cfg file under the KRB5 stanza as follows:
KRB5:

program = /usr/lib/security/KRB5
options = tgt_verify=no

KRB5files:
options = db=BUILTIN,auth=KRB5

The possible values for the tgt_verify option are no or false for disabling ticket-granting ticket
verification, and yes or true for enabling ticket-granting ticket verification. By default, the
ticket-granting ticket verification is enabled. When you set the tgt_verify option to no, the
ticket-granting ticket verification is disabled, and you do not need to transfer the host-principal keys.
This change only eliminates the need of the keytab file for authentication purposes. Other
Kerberos-enabled applications may require the keytab file for host and service principals.

v What should I do if I cannot log in because a host name does not resolve and the fully-qualified host
name fails?

The ticket-granting ticket verification requires that a host/<host_name> principal is created on the KDC.
This host name is the fully qualified name of the client where authentication is performed. The client
system requests a service ticket by using the host principal name host/<host_name>. In some
configurations, the client machine is unable to obtain the fully-qualified host name and instead, it gets
a short name. In such instances, a mismatch occurs, the ticket-granting ticket verification fails, and the
login fails. For example, if /etc/hosts has only the short name and the /etc/netsvc.conf file specifies
hosts=local,bind, then the name resolution returns the short name.
To correct name-resolution problems, do one of the following:
– Modify the name-resolution order in the /etc/netsvc.conf file so that the fully-qualified host name

is returned. The netsvc.conf file specifies the sequential order for resolving host names and aliases.
In the following example, the resolver uses the BIND service to resolve the host name. If BIND
service fails, the resolver uses the /etc/hosts file. If both methods fail, the resolvers use nis.
hosts=bind,local,nis

If the first method used in the search order must be local, change the short name (myhost) in the
/etc/hosts file to a fully-qualified host name (myhost.austin.ibm.com).

– If the ticket-granting ticket verification is not required, you can find instructions for disabling
ticket-granting ticket verification in How can I disable ticket-granting ticket verification?.

v Why does the passwdexpired subroutine return 0 when the kerberos user password is expired on the
non-AIX kerberos server?

The passwdexpired subroutine returns 0 because the password expiration information cannot be
obtained directly from the non-AIX kerberos server due to incompatibility or unavailability of the
kadmin interfaces.

308 AIX Version 7.2: Security

The allow_expired_pwd flag in the methods.cfg file enables AIX to get the password expiration
information using the kerberos authentication interfaces. The actual status of the password expiration
information is obtained either during the login or by calling the authenticate subroutine and the
passwdexpired subroutine.

Kerberos module
The Kerberos module is a kernel extension used by the NFS client and server code. It allows the NFS
client and server code to process Kerberos message integrity and privacy functions without making calls
to the gss daemon.

The Kerberos module is loaded by the gss daemon. The methods used are based on Network
Authentication Service version 1.2, which is, in turn, based on MIT Kerberos.

The location of the Kerberos module is: /usr/lib/drivers/krb5.ext.

For related information, see the gss daemon.
Related information:

IBM developerWorks Resources on the IBM Network Authentication Service and related technologies
for AIX

Remote authentication dial-in user service server
IBM's Remote Authentication Dial-In User Service (RADIUS) is a network access protocol designed to do
authentication, authorization, and accounting. It is a port-based protocol that defines the communications
between Network Access Servers (NAS) and authentication and accounting servers.

A NAS operates as a client of RADIUS. Transactions between the client and the RADIUS server are
authenticated through the use of a shared secret, which is not sent over the network. Any user passwords
sent between the client and the RADIUS server are encrypted.

The client is responsible for passing user information to designated RADIUS servers and then acting on
the response that is returned. RADIUS servers are responsible for receiving user connection requests,
authenticating the user, and then returning all configuration information necessary for the client to
deliver service to the user. A RADIUS server can act as a proxy client to other RADIUS servers when
advanced proxy information is configured. RADIUS uses User Datagram Protocol (UDP) as the transport
protocol.

The RADIUS authentication and authorization protocol is based on the IETF RFC 2865 standard. The
server also provides the accounting protocol defined in RFC 2866. Other standards supported are RFC
2284 (EAP), parts of RFC 2869, the password expiration messages of RFC 2882, MD5-Challenge, and TLS.
For more information on these RFCs, see the following links:

IETF RFC 2865
http://www.ietf.org/rfc/rfc2865.txt

RFC 2866
http://www.ietf.org/rfc/rfc2866.txt

RFC 2284
http://www.ietf.org/rfc/rfc2284.txt

RFC 2869
http://www.ietf.org/rfc/rfc2869.txt

RFC 2882
http://www.ietf.org/rfc/rfc2882.txt

You can also view all of these RFC standards at http://www.ietf.org.

Security 309

http://www.ibm.com/developerworks/aix/library/au-nas_relatedtech/?S_TACT=105AGY06
http://www.ibm.com/developerworks/aix/library/au-nas_relatedtech/?S_TACT=105AGY06
http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc2866.txt
http://www.ietf.org/rfc/rfc2284.txt
http://www.ietf.org/rfc/rfc2869.txt
http://www.ietf.org/rfc/rfc2882.txt
http://www.ietf.org

Installing the RADIUS server
You can install the RADIUS server using either the installp command or SMIT. The RADIUS software is
on the AIX base media, and the image names are radius.base and bos.msg.<lang>.rte.

If you plan to use the LDAP directory as your information database to store user names and passwords,
you must install the ldap.server. The installp software must be installed on each RADIUS server
installation.

If you plan to use EAP-TLS authentication (for example, for authenticating digital certificates on a
wireless network), you must also install OpenSSL 0.9.7 or later and supply the full path to the libssl.a
library in the /etc/radius/radiusd.conf configuration file.

The RADIUS daemons can be started using the radiusctl command. When started, there are multiple
radiusd processes running, one each for the following:
v authorization
v accounting
v monitoring other daemons

Upon reboot, the daemons are automatically started at run level 2 unless RADIUS is configured for
EAP-TLS..

To change this routine, modify the /etc/rc.d/rc2.d/Sradiusd file.

Note: If RADIUS is configured to authenticate digital certificates using EAP-TLS, the daemons cannot be
configured to start automatically because the certificate passphrase must be entered by an administrator,
which requires a manual start and restart of RADIUS using the radiusctl command.

Stopping and restarting RADIUS
You must stop and restart the radiusd daemons whenever changes are made to the RADIUS server's
/etc/radius/radiusd.conf configuration file, or to the default authorization files, /etc/radius/
authorization/default.policy or /etc/radius/authorization/default.auth. This can be handled from
SMIT or from a command line.

To start, restart, and stop the RADIUS server, use the following commands:
radiusctl start
radiusctl restart
radiusctl stop

Stopping and starting RADIUS is necessary because the daemon must build a memory table of all default
attributes contained in the above configuration files. Shared memory is used for each local user and the
local user table only gets built at daemon initialization time for performance reasons.

On-demand feature:

You can start multiple RADIUS authentication and accounting server daemons as needed.

Each server listens on a separate port. The radiusd.conf file is shipped with a default port number of
1812 for authentication and 1813 for accounting. These are IANA assigned port numbers. By updating
radiusd.conf, these port numbers, along with other ports (multiples) as needed, can be used. Be sure to
use port numbers that are not assigned to existing services. When multiple port numbers are entered in
the Authentication_Ports and Accounting_Ports fields in the radiusd.conf file, a radiusd daemon is
started for each port. The daemons will listen on their respective port number.

310 AIX Version 7.2: Security

RADIUS configuration files
The RADIUS daemon uses several configuration files. Sample versions of these files are shipped in the
RADIUS package.

All configuration files are owned by the root user and the security group. You can edit all of the
configuration files, except the dictionary file, with the System Management Interface Tool (SMIT). The
server must be restarted before any modifications to the configuration files will take effect.

radiusd.conf file:

The radiusd.conf file contains the configuration parameters for RADIUS.

By default, RADIUS searches for the radiusd.conf file in the /etc/radius directory. Configuration file
entries must be in the formats as shown in the file. RADIUS accepts only valid keywords and values, and
uses the default if a valid keyword or value is not used. When you launch the RADIUS daemons, check
the SYSLOG output for configuration parameter errors. Not all configuration errors lead to the server
stopping.

This file should be appropriately read-protected and write-protected because it affects the behavior of
authentication and accounting servers. Also, confidential data might exist in the file.

Important: If you edit the radiusd.conf file, do not change the order of the entries. SMIT panels rely on
the order.

The following is an example of the radiusd.conf file:
#--#
CONFIGURATION FILE
#
By default RADIUS will search for radiusd.conf in the
/etc/radius directory.
#
Configuration file entries need to be in the below
formats. RADIUS will accept only valid "Keyword : value(s)",
and will use defaults, if "Keyword : value(s)" are not
present or are in error.
#
It is important to check the syslog output when launching
the radius daemons to check for configuration parameter
errors. Once again, not all configuration errors will lead to
the server stopping.
#
Lastly, this file should be appropriately read/write protected,
because it will affect the behavior of authentication and
accounting, and confidential or secretive material may
exist in this file.
#
IF YOU ARE EDITING THIS FILE, DO NOT CHANGE THE ORDER OF THE
ENTRIES IN THIS FILE. SMIT PANELS DEPEND ON THE ORDER.
#
#
#--#

#--#
Global Configuration
#
RADIUSdirectory : This is the base directory for the RADIUS
daemon. The daemon will search this
directory for further configuration files.
#
Database_location : This is the value of where the
authentication (user ids & passwords)
will be stored and retrieved.

Security 311

Valid values: Local, LDAP, UNIX
UNIX - User defined in AIX system
Local - Local AVL Database using raddbm
LDAP - Central Database
#
Local_Database : This indicates the name of the local
database file to be used.
This field must be completed if the
Database location is Local.
#
Debug_Level : This pair sets the debug level at which
the RADIUS server will run. Appropriate
values are 0,3 or 9. The default is 3.
Output is directed to location specified
by *.debug stanza in /etc/syslog.conf
#
Each level increases the amount of messages#
sent to syslog. For example "9" includes
the new messages provided by "9" as well
as all messages generated by level 0 and 3.#
#
0 : provides the minimal output to the
syslogd log. It sends start up
and end messages for each RADIUS
process. It also logs error
conditions.
#
3 : includes general ACCESS ACCEPT, REJECT
and DISCARD messages for each packet.
This level provides a general audit
trail for authentication.
#
9 : Maximum amount of log data. Specific
values of attributes while a
transaction is passing thru
processing and more.
[NOT advised under normal operations]
#
#--#
RADIUSdirectory : /etc/radius
Database_location : UNIX
Local_Database : dbdata.bin
Debug_Level : 3
#--#
Accounting Configuration
#
Local_Accounting : When this flag is set to ON or TRUE a file
will contain a record of ACCOUNTING START
and STOP packets received from the Network
Access Server(NAS). The default log file
is:
/var/radius/data/accounting
#
Local_accounting_loc : /var/radius/data/accounting
path and file name of the local
accounting data file. Used only if Local_
Accounting=ON. If the default is
changed, then the path and file need to
to be created (with proper permissions)
by the admin.
#
#--#
Local_Accounting : ON
Local_Accounting_loc : /var/radius/data/accounting
#--#
Reply Message Attributes
#

312 AIX Version 7.2: Security

Accept_Reply-Message : Sent when the RADIUS server
replies with an Access-Accept packet
#
Reject_Reply-Message : Sent when the RADIUS server
replies with an Access-Reject packet
#
Challenge_Reply-Message : Sent when the RADIUS server
replies with an Access-Challenge
packet
#--#
Accept_Reply-Message :
Reject_Reply-Message :
Challenge_Reply-Message :
Password_Expired_Reply-Message :
#--#
Support Renewal of Expired Password
#
Allow_Password_Renewal: YES or NO
Setting this attribute to YES allows
users to update their expired password#
via the RADIUS protocol. This requires#
the hardware support of
Access-Password-Request packets.
#--#
Allow_Password_Renewal : NO
#--#
Require Message Authenticator in Access-Request
#
Require_Message_Authenticator: YES or NO
Setting this attribute to YES
checks message authenticator
in Access-Request packet.If not#
present, it will discard the
packet.
#--#
Require_Message_Authenticator : NO
#--#
Servers (Authentication and Accounting)
#
Authentication_Ports : This field indicates on which port(s)
the authentication server(s) will listen#
on. If the field is blank an
authentication daemon will not be
started.
The value field may contain more than
one value. Each value is REQUIRED to
be separated by a comma ’,’.
#
The value field must contain a numeric
value, like "6666". In this case a
server daemon will listen on "6666".
#
Accounting_Ports : The same as authentication_Ports. See
above definitions.
#
[NOTE] There is no check for port conflicts. If a server is
currently running on the specified port the deamon will
error and not run. Be sure to check the syslog output
insure that all servers have started without incident.
#
#
[Example]
Authentication_Ports : 1812,6666 (No Space between commas)
#
In the above example a sever will be start for each port
specified. In the case
#

Security 313

6666 : port 6666
#
#--#
Authentication_Ports : 1812
Accounting_Ports : 1813
#--#
LDAP Directory User Information
#
Required if RADIUS is to connect to a LDAP Version 3 Directory
and the Database_location field=LDAP
#
LDAP_User : User ID which has admin permission to connect
to the remote (LDAP) database. This is the
the LDAP administrator’s DN.
#
LDAP_User_Pwd : Password associated with the above User Id
which is required to authenticate to the LDAP
directory.
#
#--#
LDAP_User : cn=root
LDAP_User_Pwd :
#--#
LDAP Directory Information
#
If the Database_location field is set to "LDAP" then the
following fields need to be completed.
#
LDAP_Server_name : This field specifies the fully qualified#
host name where the LDAP Version 3
Server is located.
LDAP_Server_Port : The TCP port number for the LDAP server
The standard LDAP port is 389.
LDP_Base_DN : The distinguished name for search start
LDAP_Timeout : # seconds to wait for a response from
the LDAP server
LDAP_Hoplimit : maximum number of referrals to follow
in a sequence
LDAP_Sizelimit : size limit (in entries) for search
LDAP_Debug_level : 0=OFF 1=Trace ON
#
#--#
LDAP_Server_name :
LDAP_Server_port : 389
LDAP_Base_DN : cn=aixradius
LDAP_Timeout : 10
LDAP_Hoplimit : 0
LDAP_Sizelimit : 0
LDAP_Debug_level : 0
#--#
PROXY RADIUS Information
#
#
Proxy_Allow : ON or OFF. If ON, then the server
can proxy packets to realms it
knows of and the following
fields must also be configured.
Proxy_Use_Table : ON or OFF. If ON, then the server
can use table for faster
processing of duplicate requests
Can be used without proxy ON, but
it is required to be ON if
Proxy_Use_Table is set to ON.
Proxy_Realm_name : This field specifies the realm
this server services.
Proxy_Prefix_delim : A list of separators for parsing
realm names added as a prefix to

314 AIX Version 7.2: Security

the username. This list must be
mutually exclusive to the Suffix
delimiters.
Proxy_Suffix_delim : A list of separators for parsing
realm names added as a suffix to
the username. This list must be
mutually exclusive to the Prefix
delimiters.
Proxy_Remove_Hops : YES or NO. If YES then the
will remove its realm name, the
realm names of any previous hops
and the realm name of the next
server the packet will proxy to.
#
Proxy_Retry_count : The number of times to attempt
to send the request packet.
#
Proxy_Time_Out : The number of seconds to wait
in between send attempts.
#
#--#
Proxy_Allow : OFF
Proxy_Use_Table : OFF
Proxy_Realm_name :
Proxy_Prefix_delim : $/
Proxy_Suffix_delim : @.
Proxy_Remove_Hops : NO
Proxy_Retry_count : 2
Proxy_Time_Out : 30
#--#
Local Operating System Authentication Configuration
#
UNIX_Check_Login_Restrictions : ON or OFF. If ON, during
local operating system authen-
tication, a call to
loginrestrictions() will be
made to verify the user has
no local login restrictions.
#
#--#
UNIX_Check_Login_Restrictions : OFF
#--#
Global IP Pooling Flag
#
Enable_IP_Pool : ON or OFF. If ON, then RADIUS Server will do
IP address assignment from a pool of addresses
defined to the RADIUS server.
#
#--#
Enable_IP_Pool : OFF
#--#
Send Accept MA: ON or OFF. Some NAS’s dislike it if Message
Authenticators (MA’s) are present in an ACCEPT
message. Use this option to disable sending MA
when sending an ACCEPT.
#
NOTE: Sometimes these same NAS’s do not like custom ACCEPT
messages either.
#
#--#
Send_Accept_MA : ON
#--#
#
Maximum_Threads : The number of threads that will get
spawned to handle authentication
requests. If nothing is specified
RADIUS defaults to 10.

Security 315

#
#--#
Maximum_Threads : 99
#--#
#
EAP_Conversation_Timeout : The number of seconds to wait
before a conversation becomes
stale and gets deleted.
#
NOTE: This prevents Denial-of-Service (DoS) attacks on the
RADIUS Authentication Server. You may need to increase
the value of this timeout if your network has high
latency.
#
#--#
EAP_Conversation_Timeout : 30
#--#
Global EAP-TLS (eap-tls) Configuration Settings:
#
Examples:
#
Enable_EAP-TLS : ON or OFF. If ON, then the server
can use OpenSSL to authenticate users
using EAP-TLS. These users must first
have an EAP authentication type of 13
(or EAP-TLS). This setting is found in
smitty, using: ’smitty rad_conf_users’
#
NOTE: The following attributes below are completely ignored
if the above ’Enable_EAP’ attribute is not ’ON’.
#
OpenSSL_Library : /opt/freeware/lib/libssl.a(libssl.so.0.9.7)
OpenSSL_Ciphers : ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH
RootCA_Dir : /etc/radius/tls
RootCA_File : /etc/radius/tls/cacert.pem
Server_Cert_File : /etc/radius/tls/cert-srv.pem
Server_PrivKey_File : /etc/radius/tls/cert-srv.pem
Server_CRL_File : /etc/radius/tls/crl.pem
#
NOTE: Server_Cert_File and Server_PrivKey_File can be the
same file if the file is of the following format (but
in any order):
#
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
<rsa private key data here>
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
<certificate data here>
-----END CERTIFICATE-----
#
#--#
Enable_EAP-TLS : ON
OpenSSL_Library : /opt/freeware/lib/libssl.a(libssl.so.0.9.7)
OpenSSL_Ciphers : ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH
RootCA_Dir : /etc/radius/tls
RootCA_File : /etc/radius/tls/radiusdcacert.pem
Server_Cert_File : /etc/radius/tls/cert-srv.pem
Server_PrivKey_File : /etc/radius/tls/cert-srv.pem
Server_CRL_File :

The EAP authentication methods for each user can be set with SMIT. To set the EAP methods for each
user, perform the following steps:
Radius Server

-> Configure users
-> Local Database

316 AIX Version 7.2: Security

LDAP Directory
-> Add a user

Change/Show Characteristics of a user
->
Login User ID []
EAP Type [0 2 4]
Password Max Age

When EAP Type is selected, the following choices are available:

0 None

2 MD5 - Challenge

4 TLS

The selected EAP method is compared with the authentication method sequence that is set in the
radiusd.conf file to perform authentication.

/etc/radius/clients file:

The clients file contains a list of clients that are allowed to make requests of the RADIUS server.

Typically, for each client, NAS or AP, you must enter the client IP address along with the shared secret
between the RADIUS server and the client and an optional poolname for IP pooling.

The file consists of entries in the following form:
<Client IP Address> <Shared Secret> <Pool Name>

A sample entry list appears as follows:
10.10.10.1 mysecret1 floor6
10.10.10.2 mysecret2 floor5

A shared secret is a character string that is configured on both the client hardware and on the RADIUS
server. The maximum length of the shared secret is 256 bytes and is case sensitive. The shared secret is
not sent in any of the RADIUS packets and is never sent over the network. System administrators must
make sure the exact secret is configured on both sides (client and RADIUS server). The shared secret is
used for encrypting the user password information and can be used for verifying message integrity by
the use of a Message Authentication attribute.

Each client's shared secret should be unique in the /etc/radius/clients file and, like any good
password, it is best to use a mixture of uppercase/lowercase letters, numbers, and symbols in the secret.
To keep a shared secret secure, make it at least 16 characters in length. The /etc/radius/clients file can
be modified using SMIT. The shared secret should be changed often to prevent dictionary attacks.

The poolname is the name of the pool from which global IP addresses are allocated during dynamic
translation. The system administrator creates the poolname when setting up the RADIUS server. Using a
SMIT panel, the poolname is added from Configure Proxy Rules > IP Pool > Create an IP Pool. It is used
during server side IP pooling.

/etc/radius/dictionary file:

The dictionary file contains descriptions of the attributes that are defined by the RADIUS protocol and
supported by the AIX RADIUS Server.

It is used by the RADIUS daemon when validating and creating packet data. Vendor-specific attributes
should also be added here. The dictionary file can be modified using any editor. There is no SMIT
interface.

Security 317

The following is part of a sample dictionary file:
##
#
This file contains dictionary translations for parsing
requests and generating responses. All transactions are
composed of Attribute/Value Pairs. The value of each attribute
is specified as one of 4 data types. Valid data types are:
#
string - 0-253 octets
ipaddr - 4 octets in network byte order
integer - 32 bit value in big endian order (high byte first)
date - 32 bit value in big endian order - seconds since
00:00:00 GMT, Jan. 1, 1970
#
Enumerated values are stored in the user file with dictionary
VALUE translations for easy administration.
#
Example:
#
ATTRIBUTE VALUE
--------------- -----
Framed-Protocol = PPP
7 = 1 (integer encoding)
#
##
ATTRIBUTE User-Name 1 string
ATTRIBUTE User-Password 2 string
ATTRIBUTE CHAP-Password 3 string
ATTRIBUTE NAS-IP-Address 4 ipaddr
ATTRIBUTE NAS-Port 5 integer
ATTRIBUTE Service-Type 6 integer
ATTRIBUTE Framed-Protocol 7 integer
ATTRIBUTE Framed-IP-Address 8 ipaddr
ATTRIBUTE Framed-IP-Netmask 9 ipaddr
ATTRIBUTE Framed-Routing 10 integer
ATTRIBUTE Filter-Id 11 string
.
.
.

Note: Any attribute that is defined in the default.policy file or the default.auth file (or for a specific
user_id.policy or user_id.auth file), must be a valid RADIUS attribute as defined in the local AIX
dictionary configuration file. If an attribute is not found in the dictionary, the radiusd daemon does not
load and an error message is logged.

Note: If the dictionary, the default.policy file and the default.auth file, for the system is modified, you
must restart the RADIUS daemons by running the stopsrc command and the startsrc command or by
using SMIT.

/etc/radius/proxy file:

The /etc/radius/proxy file is a configuration file that supports the proxy feature. This file maps known
realms that the proxy server can forward packets to.

The /etc/radius/proxy file uses the IP address of the server that handles packets for that realm and the
shared secret between the two servers.

The file contains the following fields that you can modify with SMIT:
v Realm Name

v Next Hop IP address

v Shared Secret

318 AIX Version 7.2: Security

The following is an example of a /etc/radius/proxy file:

Note:

The shared secret should be 16 characters in length. The same shared secret must be configured on the
RADIUS server next hop.
@(#)91 1.3 src/rad/usr/sbin/config_files/proxy, radconfig, radius530 1/23/04 13:11:14
###
#
This file contains a list of proxy realms which are
authorized to send/receive proxy requests/responses to/from
this RADIUS server and their Shared secret used in encryption.#
#
The first field is the name of the realm of the remote RADIUS
Server.
#
The second field is a valid IP address for the remote RADIUS
Server.
#
The third column is the shared secret associated with this
realm.
#
NOTE: This file contains sensative security information and
precautions should be taken to secure access to this
file.
#
###
REALM NAME REALM IP SHARED SECRET
#---------------- ------------------- ----------------------
myRealm 10.10.10.10 sharedsec

Authentication
Traditional authentication uses a name and a fixed password and generally takes place when the user
first logs in to a machine or requests a service. RADIUS relies on an authentication database to store user
IDs, passwords, and other information.

For user authentication, the server can use a local database, UNIX passwords or LDAP. Database location
is configured in the server's /etc/radius/radiusd.conf file during setup, or by updating the file through
SMIT. See “RADIUS configuration files” on page 311 for more information on RADIUS configuration files.

User databases:

The RADIUS software can use different databases to store user information.

You can use a local, UNIX, or LDAP database to store user information.

UNIX:

The UNIX authentication option allows RADIUS to use the local system authentication method to
authenticate the user.

To use local UNIX authentication, edit the radiusd.conf file's database_location field, or select UNIX in
SMIT's Database Location field. This authentication method calls the UNIX authenticate() application
program interface (API) to authenticate a user ID and password. Passwords are saved in the same data
file that UNIX uses, such as /etc/passwords. User IDs and passwords are created using the mkuser
command or through SMIT.

To use the UNIX database, select UNIX in the Database Location field as shown below:

Security 319

Configure Server

RADIUS Directory /etc/radius
*Database Location [UNIX]
Local AVL Database File Name [dbdata.bin]
Local Accounting [ON]

Debug Level [3]
.
.
.

Local:

If either the radiusd.conf file's database_location field or SMIT's Database Location entry contains the
word Local, then the RADIUS Server will use /etc/radius/dbdata.bin as the location for all of the user
IDs and passwords.

The local user database is flat file that contains the user ID and password information. Passwords are
saved in a hashed format. Hashing is a fast addressing technique for directly accessing data in the
memory space. To add, delete, or modify user passwords, run the raddbm command or use SMIT. When
the radiusd daemon starts, it reads the radiusd.conf file and loads the user IDs and passwords into
memory.

Note: The maximum user ID length is 253 characters and the maximum password length is 128
characters.

To use the local user database, select Local in the Database Location field as shown below:

Configure Server

RADIUS Directory /etc/radius
*Database Location [Local]
Local AVL Database File Name [dbdata.bin]
Local Accounting [ON]

Debug Level [3]
.
.
.

LDAP:

RADIUS can use LDAP Version 3 to store remote user data.

RADIUS will use LDAP Version 3 API calls to access user data remotely. LDAP Version 3 access occurs if
the database_location field in the /etc/radiusd.conf file is set to LDAP and the server name, the LDAP
administrator user ID, and LDAP administrator password are configured.

AIX uses the LDAP Version 3 client libraries that are supported and packaged in the IBM Tivoli Directory
Server. LDAP is a scalable protocol and the benefit of using LDAP is that user and in-process data can be
located in a centralized location, easing administration of the RADIUS server. You can use the command
line utility, ldapsearch, to view any of the RADIUS data.

Also, LDAP must be configured and administered before it can be used for RADIUS.

The RADIUS server provides LDAP ldif files to add the RADIUS schema, including object classes and
attributes, to a directory, but you must set up and configure LDAP.

320 AIX Version 7.2: Security

A separate suffix is created specifically for RADIUS to use the RADIUS LDAP objects. This suffix is a
container with the name cn=aixradius, and it contains two object classes as described in “RADIUS LDAP
server configuration.” You apply a RADIUS-supplied ldif file that creates the suffix and RADIUS
schema.

When you use LDAP as the authentication database you get the following features:
1. A user database that can be seen and accessed from all RADIUS servers
2. A list of active users
3. The feature of allowing a maximum number of logins per user ID
4. An EAP type that can be configured per user
5. A password expiration date.

To use the LDAP database, select LDAP in the Database Location field as shown below:

Configure Server

RADIUS Directory /etc/radius
*Database Location [LDAP]
Local AVL Database File Name [dbdata.bin]
Local Accounting [ON]

Debug Level [3]
.
.
.

Related information:

IBM Directory Server

RADIUS LDAP server configuration:

When LDAP user authentication is configured, the LDAP server schema must be updated. The LDAP
system administrator must add AIX RADIUS defined attributes and objectclasses to the LDAP directory
before defining LDAP RADIUS users.

You must add a suffix to the LDAP server. The suffix for RADIUS is named cn=aixradius. A suffix is a
distinguished name that identifies the top entry in a directory hierarchy.

When a suffix is added, the LDAP directory has an empty container. A container is an empty entry that
can be used to partition the namespace. A container is similar to a file system directory, where it can have
directory entries beneath it. User profile information can then be added to the LDAP directory through
SMIT. The LDAP administrator ID and password are stored in the /etc/radius/radiusd.conf file and can
be configured through SMIT on a RADIUS server.

To organize the information stored in LDAP directory entries, the schema defines object classes. An object
class consists of a set of required and optional attributes. Attributes are in the form of type=value pairs,
in which the type is defined by a unique object identifier (OID) and the value has a defined syntax. Every
entry in the LDAP directory is an instance of an object.

Note: The object class, by itself, does not define a directory information tree or namespace. This only
occurs when entries are created and the specific instance of object classes are given unique distinguished
names. For example, when a container object class is given a unique DN, it can then be associated with
two other entries which are instances of the object class organizational unit. The result is a tree-like
structure or namespace.

Security 321

http://www.ibm.com/support/knowledgecenter/SSVJJU/welcome

Object classes are specific to the RADIUS server and are applied from an ldif file. Some of the attributes
are existing LDAP schema attributes and some are specific to RADIUS. The new RADIUS object classes
are structural and abstract.

For security purposes, the binds to the LDAP server use the SASL API call, ldap_bind_s which will
include the DN and, CRAM-MD5 as the authentication method, and the LDAP administrator password.
This will transmit message digests rather than the password themselves over the network. CRAM-MD5 is
a security mechanism where there is not special configuration necessary on either side (client or server).

Note: All of the attributes in the object classes are single-value.

RADIUS LDAP namespace:

The RADIUS LDAP namespace has the cn=aixradius container as the top of its hierarchy. Below
cn=aixradius, there are two organizational units (OUs). These OUs are containers that help make the
entries unique.

The following figure graphically depicts the RADIUS LDAP schema. This figure shows containers and
organizational units all represented by circles and connected by lines or branches. The aixradius
container, in the center, branches down to two organizational units: ibm-radiususer and
ibm-radiusactiveusers. Below the ibm-radiususer container are implied userid, password and maxLogin
containers. Below the ibmradiusactiveusers container are implied userid +, login number, login status
and session_id containers. Above the aixradius container is the aixsecurity container and the root
container is at the top.

LDAP namespace schema files:

The LDAP schema files define object classes and RADIUS-specific attributes for the LDAP namespace.

The following LDAP schema files are located in the /etc/radius/ldap directory:

Figure 16. RADIUS LDAP Namespace

322 AIX Version 7.2: Security

IBM.V3.radiusbase.schema.ldif

This file defines top level object class for the RADIUS server (cn=aixradius). The file also creates
the following branches under the cn=aixradius object class:
ou=ibm-radiususer
ou=ibm-radiusactiveusers

You can add the required information by using the following command:
ldapadd -D ldap_admin_id -w password -i /etc/radius/ldap/IBM.V3.radiusbase.schema.ldif

You can run this command on the LDAP server system, or you can run it remotely with the -h
(host system name) option.

IBM.V3.radius.schema.ldif

This file defines the RADIUS-specific attributes and object classes.

You can add the new RADIUS attributes and object classes by typing the following command:
ldapmodify -D ldap_admin_id -w password -i /etc/radius/ldap/IBM.V3.radius.schema.ldif

You must also specify LDAP as the database location through SMIT and enter the LDAP server
name and administrator password. After you do this, you can add RADIUS LDAP users to the
directory through SMIT.

User profile object class:

LDAP user profiles must be entered into the system before the RADIUS server can authenticate a user to
the system. Profiles contain the user ID and password.

User profile objects provide the data about the specific individuals that have access to the network and
contain authentication information. The ibm-radiusUserInstance object class is accessed synchronously
with the LDAP API calls from the daemon. The unique field, which is the start of the DN is the user ID.
The MaxLoginCount field limits the number of times the LDAP user can log in.

Active login list object class:

The LDAP active login list represents the data that contains information about the users currently logged
in.

There are multiple records per user with a starting record of login_number = 1, up to the MaxLoginCount
number of 5. The session ID is taken from the RADIUS start_accounting message. The partially
completed records are created when an ibm-radiusUserInstance object is created. This means that most
of the fields are empty before RADIUS accounting packets are received. After a RADIUS
start_accounting message is received, the ibm-radiusactiveusers object updates to specify that the user
is now currently logged in, and the unique session information is written to the correct login number.
After the stop_accounting message is received, the information in the active login list record is cleared.
The active login record is updated to reflect that the user is now logged off. The session numbers in the
start and stop accounting messages are the same unique number. The object class will be accessed
synchronously in the LDAP API calls.

Password authentication protocol:

Password Authentication Protocol (PAP) provides security by coding the user's password with an MD5
hash algorithm of a value that both the client and server can construct.

It works as follows:
1. In packets that have the user password, the Authentication field contains a 16 octet random number

called the Request Authenticator.

Security 323

2. The Request Authenticator and the client's shared secret are put into an MD5 hash. The result is a 16
octet hash.

3. The user-provided password is padded to 16 octets with nulls.
4. The hash from step 2 is XORed (Exclusive-OR) with the padded password. This is the data sent in the

packet as the user_password attribute.
5. The RADIUS server calculates the same hash as that in Step 2.
6. This hash is XORed with the packet data from Step 4, thus recovering the password.

Challenge handshake authentication protocol:

RADIUS also supports the use of the PPP's CHAP for password protection.

With CHAP, the user's password is not sent across the network. Instead, an MD5 hash of the password is
sent, and the RADIUS server reconstructs the hash from the user's information, including the stored
password, then compares this with the value sent by the client.

Extensible authentication protocol:

The Extensible Authentication Protocol (EAP) is a protocol designed to support multiple authentication
methods.

EAP specifies the structure of an authentication communication between a client and an authentication
server, without defining the content of the authentication data. This content is defined by the specific
EAP method that is used for authentication. Common EAP methods include:
v MD5-challenge
v One-time password
v Generic token card
v Transport layer security (TLS)

RADIUS takes advantage of EAP by specifying RADIUS attributes that are used to transfer EAP data
between the RADIUS server and its clients. This EAP data can then be sent by the RADIUS server
directly to back-end servers that implement the various EAP authentication methods.

The AIX RADIUS server supports only the EAP-TLS and MD5-challenge EAP methods.

You can set the EAP method used to authenticate a user, at the user level, by setting a value in the user's
entry in either the local database or LDAP.

By default, EAP is turned off for each user.

Authorization
RADIUS allows authorization attributes per user as defined in the authorization policy files,
default.auth and default.policy.

Authorization attributes are valid RADIUS protocol attributes that are specified in the RFC and defined
in the /etc/radius/dictionary file. Authorization is optional and depends on how the hardware NAS or
access point is configured. You must configure authorization attributes if they are needed. Authorization
only happens after a successful authentication occurs.

Policies are configurable user attribute-value pairs that can control how the user accesses the network.
Policies can be defined as being global to the RADIUS server, or user-specific.

Two authorization configuration files are shipped: /etc/radius/authorization/default.auth and
default.policy. The default.policy file is used to match the incoming access request packets. The file

324 AIX Version 7.2: Security

contains attribute-value pairs that are initially blank and must be configured to the desired settings. After
authentication, the policy will determine if an access accept or access reject packet is returned to the
client.

Each user can also have a user_id.policy file. If a user has a unique policy file created for their specific
user ID, then that files' attributes are checked first. If the attribute-value pairs in the user_id.policy file do
not exactly match, then the default.policy file is checked. If the attribute pairs from the access request
packet do not match in either file, then an access reject packet is sent. If a match is found in one or the
other file, an access accept packet is sent to the client. This effectively establishes two levels of policy.

The default.auth file is used as the list of attribute-value pairs to return to the client once the policy has
been checked. The default.auth file also contains attribute-value pairs that are initially blank and must
be configured to the desired settings. You must edit the default.auth file or use SMIT to configure the
desired authorization attribute settings. Each attribute that contains a value will automatically be returned
to the NAS in an access accept packet.

You can also define user-specific return authorization attributes by creating a file based on the unique
user name with the .auth extension, such as user_id.auth. This custom file must reside in the
/etc/radius/authorization directory. There is a SMIT panel that allows you create and edit each user
file.

Each user's authorization attributes are sent back in an access-accept packet along with any default
authorization attributes found in the default.auth file or the global.auth file..

If the values are common in the default.auth file and the user_id.auth file, then the user's values
override the default values. This allows for some global authorization attributes (services or resources) to
all users and then for more specific, per user, level of authorization.

Note: Use the global.auth file to combine authorization attributes with user-specific authorization
attributes instead of using the default.auth file, unless some other combination behavior is desired.

Beginning with AIX Version 6.1 with the 6100-02 Technology Level, RADIUS supports a global.auth
authorization file. This file replaces and enhances the original intention of combining user-specific
authorization attributes (as defined in user_id.auth files) with a set of global authorization attributes.

The user_id.auth file, unlike the default.auth file, is overridden by similar attributes found in the
user-specific authorization files, but instead will combine with them allowing for more flexibility in
maintaining authorizations for users.

If the attributes are common in the default.auth file and the user_id.auth file, then the user's values
override the default values. This overriding of default values allows for some default authorization
attributes (services or resources) to all users and then for more specific, per-user level of authorization.

The same is true for attributes in the global.auth file, except that they do not get overridden by the
user_id.auth attributes. Instead, the attributes in the two files are combined. This is useful when you are
specifying vender-specific attributes (VSA).

The authorization process is as follows:
1. At daemon startup time, the default policy and authorization lists from the /etc/radius/

authorization/default.policy file, default.auth file, and default.auth file are read into memory.
2. Authenticate the user ID and password.
3. The incoming packet is checked for attribute-value pairs.

a. Check the custom user_id.auth file.
b. If no match is found, then check the default.policy file.

Security 325

c. If no match is found, then send an access reject packet.
4. Apply the user's authorization attributes if there are any.

a. Read the /etc/radius/authorization/user_id.auth file and the default.auth file, and compare the
two entries.

b. Use the entry that is in the user's file above the default entry.
c. Combine the resultant attributes with the attributes that are found in the global.auth file.

5. Return the authorization attributes in an access accept packet.

Accounting
The RADIUS accounting server is responsible for receiving accounting requests from a client and
returning responses to the client indicating that it has successfully received the request and written the
accounting data.

You can enable local accounting in the radiusd.conf file.

When a client is configured to use RADIUS accounting, it will generate an ACCOUNTING_START packet
describing the type of service being delivered and the user to whom it is being delivered at the start of
service delivery. The client will send the packet to the RADIUS accounting server, which returns an
acknowledgment that the packet has been received. At the end of service delivery, the client generates an
ACCOUNTING_STOP packet describing the type of service that was delivered and, optionally, statistics
such as elapsed time, input and output octets, or input and output packet numbers. When the
ACCOUNTING_STOP packet is received by the RADIUS accounting server, it returns an
acknowledgment to the accounting client that the packet has been received.

The ACCOUNTING_REQUEST, whether for START or STOP, is submitted to the RADIUS accounting
server via the network. It is recommended that the client continue attempting to send the
ACCOUNTING_REQUEST packet until it receives an acknowledgment. The client can also forward
requests to an alternate server or servers in the event that the primary server is down or unreachable
through the use of proxy configuration. For more information on proxy services, see “Proxy services” on
page 327.

Accounting data is written in standard RADIUS format of attribute=value to the local
/etc/var/radius/data/accounting file. The data written is the accounting data in the packet, with a time
stamp. If the RADIUS accounting server is unable to successfully record the accounting packet, it will not
send an Accounting_Response acknowledgment to the client and error information will be logged to the
syslog file.

/var/radius/data/accounting file:

The /var/radius/data/accounting captures what the client sends in the ACCOUNTING START and
ACCOUNTING STOP packets.

The /var/radius/data/accounting file is empty when first installed. Data is written to the file based on
what the client sends in the ACCOUNTING START and ACCOUNTING STOP packets.

The following is a sample of the type of data the AIX RADIUS server writes to the /var/radius/data/
accounting file. Your information will differ depending on how your system is set up.

Note:

v Be sure the /var filesystem is large enough to handle all the accounting data.
v Third-party Perl scripts can be used to parse the data in this file. Examples of scripts that generate

reports from the accounting data can be found at http://www.pgregg.com/projects/radiusreport
v The accounting packets can also be proxied.

326 AIX Version 7.2: Security

http://www.pgregg.com/projects/radiusreport/

Thu May 27 14:43:19 2004
NAS-IP-Address = 10.10.10.1
NAS-Port = 1
NAS-Port-Type = Async
User-Name = "rod"
Acct-Status-Type = Start
Acct-Authentic = RADIUS
Service-Type = Framed-User
Acct-Session-Id = "0000000C"
Framed-Protocol = PPP
Acct-Delay-Time = 0
Timestamp = 1085686999

Thu May 27 14:45:19 2004
NAS-IP-Address = 10.10.10.1
NAS-Port = 1 <-- rod was physically connected to port #1 on the hardware
NAS-Port-Type = Async
User-Name = "rod"
Acct-Status-Type = Stop
Acct-Authentic = RADIUS
Service-Type = Framed-User
Acct-Session-Id = "0000000C" <-- note the session id’s are the same so can match up start with stops
Framed-Protocol = PPP
Framed-IP-Address = 10.10.10.2 <-- IP address of user rod
Acct-Terminate-Cause = User-Request <-- user cancelled the session
Acct-Input-Octets = 4016
Acct-Output-Octets = 142
Acct-Input-Packets = 35
Acct-Output-Packets = 7
Acct-Session-Time = 120 <--- seconds
Acct-Delay-Time = 0
Timestamp = 1085687119 <--- note "rod" was only logged on for 120 seconds (2 minutes)

Proxy services
Proxy services allow the RADIUS server to forward requests from a NAS to another RADIUS server and
then return a reply message to the NAS. Proxy services are based on a realm name.

The RADIUS server can act as both a proxy server and a back-end server simultaneously. This
mechanism is applicable for both accounting and authentication packets. Proxy is disabled by default in
the radiusd.conf file.

Realms:

Realms are identifiers that are placed before or after the values normally contained in the User-Name
attribute that a RADIUS server can use to identify the server to contact to start the authentication and
accounting process.

The following example illustrates how realms are used with RADIUS:

User, Joe, is employed by company XYZ in Sacramento. The realm for this area is SAC. However, Joe is
currently in New York City on a remote assignment. The realm for New York City is NYC. When Joe dials
into the NYC realm, the User-Name passed is SAC/Joe. This notifies the NYC RADIUS realm server that
this packet needs to be forwarded to the server that does the authenticating and accounting for SAC
realm users.

Realm user-name attribute:

Authentication and accounting packets are routed through the realm is based on the User-Name attribute.
This attribute defines the order of realms the packet goes through in order to route it to the final server
that does the authentication or accounting.

Security 327

Packets are routed by stringing realms together in the User-Name attribute. The actual realms that are
inserted into the User-Name attribute, which ultimately determines the path of the packet, is a decision
left up to the administrator deploying the RADIUS layout. It is possible to put the names of the realm
hops in front of the User-Name attribute, as well as behind it. The most popular characters to delineate
the different realms are the slash (/) as the prefix delineator in front of the User-Name attribute, and
ampersand (&) as the suffix delineator behind the User-Name attribute. Delineators are configured in the
radiusd.conf file. The User-Name attribute is parsed from left to right.

An example of a User-Name attribute using only the prefix method is the following:
USA/TEXAS/AUSTIN/joe

An example of a User-Name attribute using only the suffix method is the following:
joe@USA@TEXAS@AUSTIN

It is possible to use both prefix and suffix methods. It is important to remember when specifying the
realm hops a packet will go through that the order of hops is parsed left to right, and all prefix hops are
processed before processing suffix hops. The user must be authenticated, or the accounting data written,
at a single node.

The following example, using both methods, yields the same result as the previous examples:
USA/joe@TEXAS@AUSTIN

Configuring proxy services:

RADIUS proxy configuration information is located in the proxy file in the /etc/radius directory.

The initial proxy file contains example entries. There are three fields in the proxy file: Realm Name, Next
Hop IP address, and Shared Secret.

To configure proxy rules, select from the following::

Configure Proxy Rules

List all Proxy
Add a Proxy
Change / Show Characteristics of a Proxy
Remove a Proxy

Select the List all Proxy option to read the /etc/radius/proxy file and display the three fields in column
format. The following are the column headers:
realm_name next_hop_address shared_secret

Select Add a Proxy to display the following screen. Information is retrieved from the panel and the data
is appended to the bottom of the /etc/radius/proxy file.

Each hop of the proxy chain uses the shared secret between the two RADIUS servers. The shared secret is
contained in the /etc/radius/proxy_file. The shared secret should be unique per proxy hop in the chain.

For more information about creating shared secrets, see “/etc/radius/clients file” on page 317.

To add a proxy, select from the fields as shown below:

Add a Proxy
*Realm Name [] (max 64 chars)
*Next Hop IP address (dotted decimal) [xx.xx.xx.xx]
*Shared Secret [] (minimum 6, maximum 256 chars)

328 AIX Version 7.2: Security

Selecting the Change/Show option displays a list of the realm names. The list is displayed in a pop-up
screen and you must select a realm name.

The Remove a Proxy option displays a list of the realm names. The list is displayed in a pop-up screen
and the user must select a realm name. After a name is selected, a verification pop-up screen is displayed
before the realm is removed.

The following example is the proxy configuration information section of a radiusd.conf file:
#--#
PROXY RADIUS Information
#
#
Proxy_Allow : ON or OFF. If ON, then the server
can proxy packets to realms it
knows of and the following
fields must also be configured.
Proxy_Use_Table : ON or OFF. If ON, then the server
can use table for faster
processing of duplicate requests
Can be used without proxy ON, but
it is required to be ON if
Proxy_Use_Table is set to ON.
Proxy_Realm_name : This field specifies the realm
this server services.
Proxy_Prefix_delim : A list of separators for parsing
realm names added as a prefix to
the username. This list must be
mutually exclusive to the Suffix
delimiters.
Proxy_Suffix_delim : A list of separators for parsing
realm names added as a suffix to
the username. This list must be
mutually exclusive to the Prefix
delimiters.
Proxy_Remove_Hops : YES or NO. If YES then the
will remove its realm name, the
realm names of any previous hops
and the realm name of the next
server the packet will proxy to.
#
Proxy_Retry_count : The number of times to attempt
to send the request packet.
#
Proxy_Time_Out : The number of seconds to wait
in between send attempts.
#
#--#
Proxy_Allow : OFF
Proxy_Use_Table : OFF
Proxy_Realm_name :
Proxy_Prefix_delim : $/
Proxy_Suffix_delim : @.
Proxy_Remove_Hops : NO
Proxy_Retry_count : 2
Proxy_Time_Out : 3

Configuring the RADIUS server:

The RADIUS server daemon uses several configuration files. Server configuration information is saved in
the /etc/radius/radiusd.conf file. The packaged server configuration file is shipped with default values.

Note: The following is a sample RADIUS Configure Server SMIT panel:

Security 329

Configure Server

RADIUS Directory /etc/radius
*Database Location [UNIX]
Local AVL Database File Name [dbdata.bin]
Local Accounting [ON]
Local Accounting Directory []

Debug Level [3]
Accept Reply-Message []
Reject Reply-Message []
Challenge Reply-Message []
Password Expired Reply Message []
Support Renewal of Expired Passwords [NO]
Require Message Authenticator [NO]

*Authentication Port Number [1812]
*Accounting Port Number [1813]

LDAP Server Name []
LDAP Server Port Number [389]
LDAP Server Admin Distinguished Name []
LDAP Server Admin Password []
LDAP Base Distinguished Name [cn=aixradius]
LDAP Size Limit [0]
LDAP Hop Limit [0]
LDAP wait time limit [10]
LDAP debug level [0]

Proxy Allowed [OFF]
Proxy Use table [OFF]
Proxy Realm Name []
Proxy Prefix Delimiters [$/]
Proxy Suffix Delimiters [@.]

NOTE: prefix & suffix are mutually exclusive
Proxy Remove Hops [NO]
Proxy Retry Count [2]
Proxy Timeout [30]
UNIX Check Login Restrictions [OFF]
Enable IP Pool [ON]
Authentication Method Sequence [TLS, MD5]
OpenSSL Configuration File []

Logging utilities
The RADIUS server uses SYSLOG to log activity and error information.

There are three levels of log information:

0 Only problems or errors and the starting of daemons are logged.

3 Logs an audit trail of access_accept, access_reject*, discard, and error messages.

Note: discard messages are logged when an incoming packet is invalid and a response packet is
not generated.

9 Includes 0 and 3 level logging information and much more. Only run level 9 logging to debug.

The default level of logging is level 3. Logging at level 3 is used to improve the level of auditing of the
RADIUS server. Depending on what level the server is logging, you can use the activities stored in the
log to check for suspicious patterns of activity. If security is violated, the SYSLOG output can be used to
determine how and when the violation occurred and perhaps the amount of access gained. This
information is useful in the development of better security measures to prevent future problems.
Related information:

IBM Directory Server

330 AIX Version 7.2: Security

http://www.ibm.com/support/knowledgecenter/SSVJJU/welcome

Configuring RADIUS to use the syslogd daemon:

In order to use SYSLOG to view activity and error information, you must enable the syslogd daemon.

To enable the syslogd daemon, complete the following steps.
1. Edit the /etc/syslog.conf file to add the following entry:local4.debug var/adm/ipsec.log. Use the

local4 facility to record traffic and IP Security events. Standard operating system priority levels apply.
You should set the priority level of debug until traffic through IP Security tunnels and filters show
stability and proper movement.

Note: The logging of filter events can create significant activity at the IP Security host and can
consume large amounts of storage.

2. Save the /etc/syslog.conf file.
3. Go to the directory you specified for the log file and create an empty file with the same name. In the

case above, you would change to /var/adm directory and run the touch command as follows:
touch ipsec.log

4. Run the refresh command to the syslogd subsystem as follows:
refresh -s syslogd

Configuring SYSLOG output settings:

You can set a Debug_Level of 0, 3, or 9 is set in the radiusd.conf file, depending on how much
debugging information you want included in the SYSLOG output.

The default setting is 3. The debug section of the radiusd.conf file looks similar to the following:
#.
#.
#.
Debug_Level : This pair sets the debug level at which
the RADIUS server will run. Appropriate
values are 0,3 or 9. The default is 3.
Output is directed to location specified
by *.debug stanza in /etc/syslog.conf
#
Each level increases the amount of messages#
sent to syslog. For example "9" includes
the new messages provided by "9" as well
as all messages generated by level 0 and 3.#
#
0 : provides the minimal output to the
syslogd log. It sends start up
and end messages for each RADIUS
process. It also logs error
conditions.
#
3 : includes general ACCESS ACCEPT, REJECT
and DISCARD messages for each packet.
This level provides a general audit
trail for authentication.
#
9 : Maximum amount of log data. Specific
values of attributes while a
transaction is passing thru
processing and more.
[NOT advised under normal operations]
#
#--#

The following examples show sample output for various debug levels.

Security 331

Accounting packet with debug level 3
Aug 18 10:23:57 server1 syslog: [0]:Monitor process [389288] has started
Aug 18 10:23:57 server1 radiusd[389288]: [0]:Local database (AVL) built.
Aug 18 10:23:57 server1 radiusd[389288]: [0]:Authentication process started : Pid= 549082 Port = 1812
Aug 18 10:23:57 server1 radiusd[389288]: [0]:Accounting process started : Pid= 643188 Port = 1813
Aug 18 10:23:57 server1 radiusd[643188]: [0]:Socket created [15]
Aug 18 10:23:57 server1 radiusd[643188]: [0]:Bound Accounting socket [15]
Aug 18 10:23:57 server1 radiusd[549082]: [0]:Socket created [15]
Aug 18 10:23:57 server1 radiusd[549082]: [0]:Bound Authentication socket [15]
Aug 18 10:24:07 server1 radiusd[643188]: [1]:*** Start Process_Packet() ***
Aug 18 10:24:07 server1 radiusd[643188]: [1]:Code 4, ID = 96, Port = 41639 Host = 10.10.10.10
Aug 18 10:24:07 server1 radiusd[643188]: [1]:ACCOUNTING-START - sending Accounting Ack to User [user_id1]
Aug 18 10:24:07 server1 radiusd[643188]: [1]:Sending Accounting Ack of id 96 to 10.10.10.10 (client1.ibm.com)
Aug 18 10:24:07 server1 radiusd[643188]: [1]:send_acct_reply() Outgoing Packet:
Aug 18 10:24:07 server1 radiusd[643188]: [1]: Code = 5, Id = 96, Length = 20
Aug 18 10:24:07 server1 radiusd[643188]: [1]:*** Leave Process_Packet() ***
Aug 18 10:24:13 server1 radiusd[643188]: [2]:*** Start Process_Packet() ***
Aug 18 10:24:13 server1 radiusd[643188]: [2]:Code 4, ID = 97, Port = 41639 Host = 10.10.10.10
Aug 18 10:24:13 server1 radiusd[643188]: [2]:ACCOUNTING-STOP - sending Accounting Ack to User [user_id1]
Aug 18 10:24:14 server1 radiusd[643188]: [2]:Sending Accounting Ack of id 97 to 10.10.10.10 (client1.ibm.com)
Aug 18 10:24:14 server1 radiusd[643188]: [2]:send_acct_reply() Outgoing Packet:
Aug 18 10:24:14 server1 radiusd[643188]: [2]: Code = 5, Id = 97, Length = 20
Aug 18 10:24:14 server1 radiusd[643188]: [2]:*** Leave Process_Packet() **

Accounting packets at level 9
Aug 18 10:21:18 server1 syslog: [0]:Monitor process [643170] has started
Aug 18 10:21:18 server1 radiusd[643170]: [0]:Local database (AVL) built.
Aug 18 10:21:18 server1 radiusd[643170]: [0]:Authentication process started : Pid= 389284 Port = 1812
Aug 18 10:21:18 server1 radiusd[643170]: [0]:Accounting process started : Pid= 549078 Port = 1813
Aug 18 10:22:03 server1 radiusd[643170]: [0]:PID = [389284] dead
Aug 18 10:22:03 server1 radiusd[643170]: [0]:PID = [549078] dead
Aug 18 10:22:03 server1 radiusd[643170]: [0]:All child processes stopped. radiusd parent stopping
Aug 18 10:22:09 server1 syslog: [0]:Monitor process [1081472] has started
Aug 18 10:22:09 server1 radiusd[1081472]: [0]:Local database (AVL) built.
Aug 18 10:22:09 server1 radiusd[1081472]: [0]:Inside client_init()
Aug 18 10:22:09 server1 radiusd[1081472]: [0]:Number of client entries read: 1
Aug 18 10:22:09 server1 radiusd[1081472]: [0]:Inside read_authorize_policy routine for file:
/etc/radius/authorization/default.policy.

Aug 18 10:22:09 server1 radiusd[1081472]: [0]:Inside read_authorize_file routine for file:
/etc/radius/authorization/default.policy.

Aug 18 10:22:09 server1 radiusd[1081472]: [0]:read_authorize_file() routine complete.
Aug 18 10:22:09 server1 radiusd[1081472]: [0]:Inside read_authorize_file routine for file:
/etc/radius/authorization/default.auth.

Aug 18 10:22:09 server1 radiusd[1081472]: [0]:read_authorize_file() routine complete.
Aug 18 10:22:09 server1 radiusd[549080]: [0]:connect_to_LDAP_server:Database Location (where the data
resides)=LDAP.

Aug 18 10:22:09 server1 radiusd[549080]: [0]:connect_to_LDAP_server:LDAP Server name= server1.austin.ibm.com.
Aug 18 10:22:09 server1 radiusd[549080]: [0]:connect_to_LDAP_server:LDAP Server port= 389.
Aug 18 10:22:09 server1 radiusd[1081472]: [0]:Authentication process started : Pid= 549080 Port = 1812
Aug 18 10:22:09 server1 radiusd[389286]: [0]:connect_to_LDAP_server:Database Location (where the data
resides)=LDAP.
Aug 18 10:22:09 server1 radiusd[389286]: [0]:connect_to_LDAP_server:LDAP Server name= server1.austin.ibm.com.
Aug 18 10:22:09 server1 radiusd[389286]: [0]:connect_to_LDAP_server:LDAP Server port= 389.
Aug 18 10:22:09 server1 radiusd[1081472]: [0]:Accounting process started : Pid= 389286 Port = 1813
Aug 18 10:22:10 server1 radiusd[549080]: [0]:Socket created [15]
Aug 18 10:22:10 server1 radiusd[549080]: [0]:Bound Authentication socket [15]
Aug 18 10:22:10 server1 radiusd[389286]: [0]:Socket created [15]
Aug 18 10:22:10 server1 radiusd[389286]: [0]:Bound Accounting socket [15]
Aug 18 10:22:15 server1 radiusd[389286]: [1]:*** Start Process_Packet() ***
Aug 18 10:22:15 server1 radiusd[389286]: [1]:Incoming Packet:
Aug 18 10:22:15 server1 radiusd[389286]: [1]: Code = 4, Id = 94, Length = 80
Aug 18 10:22:15 server1 radiusd[389286]: [1]: Authenticator = 0xC5DBDDFE6EFFFDBD6AE64CA35947DD0F
Aug 18 10:22:15 server1 radiusd[389286]: [1]: Type = 40, Length = 6, Value = 0x00000001
Aug 18 10:22:15 server1 radiusd[389286]: [1]: Type = 1, Length = 8, Value = 0x67656E747931
Aug 18 10:22:15 server1 radiusd[389286]: [1]: Type = 4, Length = 6, Value = 0x00000000
Aug 18 10:22:15 server1 radiusd[389286]: [1]: Type = 8, Length = 6, Value = 0x0A0A0A01
Aug 18 10:22:15 server1 radiusd[389286]: [1]: Type = 44, Length = 8, Value = 0x303030303062
Aug 18 10:22:15 server1 radiusd[389286]: [1]: Type = 30, Length = 10, Value = 0x3132332D34353638
Aug 18 10:22:15 server1 radiusd[389286]: [1]: Type = 31, Length = 10, Value = 0x3435362D31323335
Aug 18 10:22:15 server1 radiusd[389286]: [1]: Type = 85, Length = 6, Value = 0x00000259

332 AIX Version 7.2: Security

Aug 18 10:22:15 server1 radiusd[389286]: [1]:Starting parse_packet()
Aug 18 10:22:15 server1 radiusd[389286]: [1]:Code 4, ID = 94, Port = 41639 Host = 10.10.10.10
Aug 18 10:22:15 server1 radiusd[389286]: [1]:Acct-Status-Type = Sta

Level 0 authentication packet
Aug 18 10:06:11 server1 syslog: [0]:Monitor process [1081460] has started
Aug 18 10:06:11 server1 radiusd[1081460]: [0]:Local database (AVL) built.
Aug 18 10:06:11 server1 radiusd[1081460]: [0]:Authentication process started : Pid= 549076 Port = 1812
Aug 18 10:06:11 server1 radiusd[1081460]: [0]:Accounting process started : Pid= 389282 Port = 18

Level 3 authentication packet
Aug 18 10:01:32 server2 radiusd[389276]: [3]:*** Start Process_Packet() ***
Aug 18 10:01:32 server2 radiusd[389276]: [3]:Code 1, ID = 72, Port = 41638 Host = 10.10.10.10
Aug 18 10:01:32 server2 radiusd[389276]: [3]:authenticate_password_PAP: Passwords do not match, user is rejected
Aug 18 10:01:32 server2 radiusd[389276]: [3]:Authentication failed for user [user_id1] using IP [10.10.10.10]
Aug 18 10:01:32 server2 radiusd[389276]: [3]:ACCESS-REJECT - sending reject for id 72 to 10.10.10.10
(client1.ibm.com)

Aug 18 10:01:32 server2 radiusd[389276]: [3]:send_reject() Outgoing Packet:
Aug 18 10:01:32 server2 radiusd[389276]: [3]: Code = 3, Id = 72, Length = 30
Aug 18 10:01:32 server2 radiusd[389276]: [3]:*** Leave Process_Packet() ***
Aug 18 10:01:53 server2 radiusd[389276]: [4]:*** Start Process_Packet() ***
Aug 18 10:01:53 server2 radiusd[389276]: [4]:Code 1, ID = 74, Port = 41638 Host = 10.10.10.10
Aug 18 10:01:53 server2 radiusd[389276]: [4]:authenticate_password_PAP: Passwords Match, user is authenticated
Aug 18 10:01:53 server2 radiusd[389276]: [4]:Authentication successful for user [user_id1] using IP [10.10.10.10]
Aug 18 10:01:53 server2 radiusd[389276]: [4]:Authorization successful for user [user_id1] using IP [10.10.10.10]
Aug 18 10:01:53 server2 radiusd[389276]: [4]:ACCESS-ACCEPT - sending accept for id 74 to 10.10.10.10
(client1.ibm.com)

Aug 18 10:01:53 server2 radiusd[389276]: [4]:send_accept() Outgoing Packet:
Aug 18 10:01:53 server2 radiusd[389276]: [4]: Code = 2, Id = 74, Length = 31
Aug 18 10:01:53 server2 radiusd[389276]: [4]:*** Leave Process_Packet() **

Level 9 authentication packet
Aug 18 10:03:56 server1 radiusd[389278]: [1]:*** Start Process_Packet() ***
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Incoming Packet:
Aug 18 10:03:56 server1 radiusd[389278]: [1]: Code = 1, Id = 77, Length = 58
Aug 18 10:03:56 server1 radiusd[389278]: [1]: Authenticator = 0xE6CB0F9C22BB4E799854E734104FB2D5
Aug 18 10:03:56 server1 radiusd[389278]: [1]: Type = 1, Length = 8, Value = 0x67656E747931
Aug 18 10:03:56 server1 radiusd[389278]: [1]: Type = 4, Length = 6, Value = 0x00000000
Aug 18 10:03:56 server1 radiusd[389278]: [1]: Type = 2, Length = 18, Value = 0x**********

Aug 18 10:03:56 server1 radiusd[389278]: [1]: Type = 7, Length = 6, Value = 0x00000001
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Starting parse_packet()
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Code 1, ID = 77, Port = 41638 Host = 10.10.10.10
Aug 18 10:03:56 server1 radiusd[389278]: [1]:User-Name = "user_id1"
Aug 18 10:03:56 server1 radiusd[389278]: [1]:NAS-IP-Address = 10.10.10.10
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Framed-Protocol = PPP
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Leaving parse_packet()
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Verifying Message-Authenticator
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Message-Authenticator successfully verified
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Inside proxy_request_needed() function
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Proxy is not turned on
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Username = [user_id1]
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Client IP = [10.10.10.10]
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Inside parse_for_login(user_id1)
Aug 18 10:03:56 server1 radiusd[389278]: [1]:User_id remaining after prefix removal = [user_id1]
Aug 18 10:03:56 server1 radiusd[389278]: [1]:User_id remaining after suffix removal = [user_id1]
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Inside rad_authenticate() function
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Authentication request received for [client1.austin.ibm.com]
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Calling get_ldap_user() to get LDAP user data
Aug 18 10:03:56 server1 radiusd[389278]: [1]:get_ldap_user:LDAP user id: user_id1.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:get_ldap_user:LDAP max_login_cnt:2.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:get_ldap_user:LDAP EAP_type: 4.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:get_ldap_user:LDAP passwordexpiredweeks: 9.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:get_ldap_active_sessions:number of free entries= 2.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:get_ldap_active_session:dn retrieved=
radiusuniqueidentifier=user_id11,ou=radiusActiveUsers,cn=aixradius.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Inside get_client_secret routine for ip:10.10.10.10
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Found NAS-IP = [10.10.10.10]
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Found shared secret.

Security 333

Aug 18 10:03:56 server1 radiusd[389278]: [1]:authenticate_password_PAP: Passwords Match, user is authenticated
Aug 18 10:03:56 server1 radiusd[389278]: [1]:is_ldap_pw:password for user has NOT expired
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Authentication successful for user [user_id1] using IP [10.10.10.10]
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Inside rad_authorize() routine.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Inside read_authorize_policy routine for file:
/etc/radius/authorization/user_id1.policy.

Aug 18 10:03:56 server1 radiusd[389278]: [1]:Inside read_authorize_file routine for file:
/etc/radius/authorization/user_id1.policy.

Aug 18 10:03:56 server1 radiusd[389278]: [1]:Did not open /etc/radius/authorization/user_id1.policy file.
File may not be found.

Aug 18 10:03:56 server1 radiusd[389278]: [1]:Error reading policy file: /etc/radius/authorization/user_id1.policy.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:rad_authorize:default policy list and userpolicy list were empty.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:In create_def_copy() routine.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Successfully made a copy of the master authorization list.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Inside read_authorize_file routine for file:
/etc/radius/authorization/user_id1.auth.

Aug 18 10:03:56 server1 radiusd[389278]: [1]:Did not open /etc/radius/authorization/user_id1.auth file.
File may not be found.

Aug 18 10:03:56 server1 radiusd[389278]: [1]:rad_authorize:copy authorization list and user list were empty.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Authorization successful for user [user_id1] using IP [10.10.10.10]
Aug 18 10:03:56 server1 radiusd[389278]: [1]:ACCESS-ACCEPT - sending accept for id 77 to 10.10.10.10
(client1.austin.ibm.com)

Aug 18 10:03:56 server1 radiusd[389278]: [1]:Inside proxy_response_needed() function
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Proxy is not turned on
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Inside get_client_secret routine for ip:10.10.10.10
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Found NAS-IP = [10.10.10.10]
Aug 18 10:03:56 server1 radiusd[389278]: [1]:Found shared secret.
Aug 18 10:03:56 server1 radiusd[389278]: [1]:send_accept() Outgoing Packet:
Aug 18 10:03:56 server1 radiusd[389278]: [1]: Code = 2, Id = 77, Length = 31
Aug 18 10:03:56 server1 radiusd[389278]: [1]:send_accept() Outgoing Packet:
Aug 18 10:03:56 server1 radiusd[389278]: [1]: Code = 2, Id = 77, Length = 31
Aug 18 10:03:56 server1 radiusd[389278]: [1]: Authenticator = 0xCCB2B645BBEE86F5E4FC5BE24E904B2A
Aug 18 10:03:56 server1 radiusd[389278]: [1]: Type = 18, Length = 11, Value = 0x476F6F646E65737321
Aug 18 10:03:56 server1 radiusd[389278]: [1]:*** Leave Process_Packet() ***
Aug 18 10:04:18 server1 radiusd[389278]: [2]:*** Start Process_Packet() ***
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Incoming Packet:
Aug 18 10:04:18 server1 radiusd[389278]: [2]: Code = 1, Id = 79, Length = 58
Aug 18 10:04:18 server1 radiusd[389278]: [2]: Authenticator = 0x774298A2B6DD90D7C33B3C10C4787D41
Aug 18 10:04:18 server1 radiusd[389278]: [2]: Type = 1, Length = 8, Value = 0x67656E747931
Aug 18 10:04:18 server1 radiusd[389278]: [2]: Type = 4, Length = 6, Value = 0x00000000
Aug 18 10:04:18 server1 radiusd[389278]: [2]: Type = 2, Length = 18, Value = 0x*******

Aug 18 10:04:18 server1 radiusd[389278]: [2]: Type = 7, Length = 6, Value = 0x00000001
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Starting parse_packet()
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Code 1, ID = 79, Port = 41638 Host = 10.10.10.10
Aug 18 10:04:18 server1 radiusd[389278]: [2]:User-Name = "user_id1"
Aug 18 10:04:18 server1 radiusd[389278]: [2]:NAS-IP-Address = 10.10.10.10
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Framed-Protocol = PPP
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Leaving parse_packet()
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Verifying Message-Authenticator
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Message-Authenticator successfully verified
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Inside proxy_request_needed() function
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Proxy is not turned on
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Username = [user_id1]
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Client IP = [10.10.10.10]
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Inside parse_for_login(user_id1)
Aug 18 10:04:18 server1 radiusd[389278]: [2]:User_id remaining after prefix removal = [user_id1]
Aug 18 10:04:18 server1 radiusd[389278]: [2]:User_id remaining after suffix removal = [user_id1]
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Inside rad_authenticate() function
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Authentication request received for [client1.austin.ibm.com]
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Calling get_ldap_user() to get LDAP user data
Aug 18 10:04:18 server1 radiusd[389278]: [2]:get_ldap_user:LDAP user id: user_id1.
Aug 18 10:04:18 server1 radiusd[389278]: [2]:get_ldap_user:LDAP max_login_cnt:2.
Aug 18 10:04:18 server1 radiusd[389278]: [2]:get_ldap_user:LDAP EAP_type: 4.
Aug 18 10:04:18 server1 radiusd[389278]: [2]:get_ldap_user:LDAP passwordexpiredweeks: 9.
Aug 18 10:04:18 server1 radiusd[389278]: [2]:get_ldap_active_sessions:number of free entries= 2.
Aug 18 10:04:18 server1 radiusd[389278]: [2]:get_ldap_active_session:dn retrieved=
radiusuniqueidentifier=user_id11, ou=radiusActiveUsers, cn=aixradius.

Aug 18 10:04:18 server1 radiusd[389278]: [2]:Inside get_client_secret routine for ip:10.10.10.10
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Found NAS-IP = [10.10.10.10]
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Found shared secret.
Aug 18 10:04:18 server1 radiusd[389278]: [2]:authenticate_password_PAP: Passwords do not match, user is rejected

334 AIX Version 7.2: Security

Aug 18 10:04:18 server1 radiusd[389278]: [2]:Authentication failed for user [user_id1] using IP [10.10.10.10]
Aug 18 10:04:18 server1 radiusd[389278]: [2]:ACCESS-REJECT - sending reject for id 79 to 10.10.10.10
(client1.austin.ibm.com)
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Inside proxy_response_needed() function
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Proxy is not turned on
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Inside get_client_secret routine for ip:10.10.10.10
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Found NAS-IP = [10.10.10.10]
Aug 18 10:04:18 server1 radiusd[389278]: [2]:Found shared secret.
Aug 18 10:04:18 server1 radiusd[389278]: [2]:send_reject() Outgoing Packet:
Aug 18 10:04:18 server1 radiusd[389278]: [2]: Code = 3, Id = 79, Length = 30
Aug 18 10:04:18 server1 radiusd[389278]: [2]:send_reject() Outgoing Packet:
Aug 18 10:04:18 server1 radiusd[389278]: [2]: Code = 3, Id = 79, Length = 30
Aug 18 10:04:18 server1 radiusd[389278]: [2]: Authenticator = 0x05D4865C6EBEFC1A9300D2DC66F3DBE9
Aug 18 10:04:18 server1 radiusd[389278]: [2]: Type = 18, Length = 10, Value = 0x4261646E65737321
Aug 18 10:04:18 server1 radiusd[389278]: [2]:*** Leave Process_Packet() **

Password expiration
Password expiration allows the RADIUS client to be notified when a user's password has expired, and to
update the user's password through the RADIUS protocol.

Password expiration involves supporting four more packet types and a new attribute. The new packet
types are shipped in the AIX dictionary and the password expiration feature must be turned on.

It may not be desirable in every RADIUS installation to allow expired password updating through
RADIUS. An entry in the radiusd.conf file gives you the option to allow or disallow support for expired
password changing through RADIUS. The default for this option is to disallow. You can add a
Password_Expired_Reply_Message user reply message and this is returned in the password-expired packet.
Password attributes, both old and new, must be encrypted and decrypted with the PAP method.

Vendor-specific attributes
Vendor-specific attributes (VSA) are defined by remote-access server vendors, usually hardware vendors,
to customize how RADIUS works on their servers.

The vendor-specific attributes are necessary if you want to give users permission for more than one type
of access. The VSAs may be used in combination with RADIUS-defined attributes.

VSAs are optional, but if the NAS hardware requires additional attributes to be configured in order to
function properly, you must add the VSAs to the dictionary file.

VSAs can also be used for further authorization. Along with User-Name and Password, you can use
VSAs for authorization. On the server side, the user authorization policy file contains the list of attributes
to be checked in the Access-Request packet for a particular user. If the packet does not contain the
attributes listed in the users file, then an access_reject is sent back to NAS. VSAs can also be used as an
attribute=value pair list in the user_id.policy file.

The following is a sample VSA section taken from the dictionary:
##
#
This section contains examples of dictionary translations for
parsing vendor specific attributes (vsa). The example below is for
"Cisco." Before defining an Attribute/Value pair for a
vendor a "VENDOR" definition is needed.
#
Example:
#
VENDOR Cisco 9
#
VENDOR: This specifies that the Attributes after this entry are
specific to Cisco.
Cisco : Denotes the Vendor name
9 : Vendor Id defined in the "Assigned Numbers" RFC
#

Security 335

##

#VENDOR Cisco 9

#ATTRIBUTE Cisco-AVPair 1 string
#ATTRIBUTE Cisco-NAS-Port 2 string
#ATTRIBUTE Cisco-Disconnect-Cause 195 integer
#
#----------------Cisco-Disconnect-Cause---------------------------------#
#
#VALUE Cisco-Disconnect-Cause Unknown 2
#VALUE Cisco-Disconnect-Cause CLID-Authentication-Failure 4
#VALUE Cisco-Disconnect-Cause No-Carrier 10
#VALUE Cisco-Disconnect-Cause Lost-Carrier 11
#VALUE Cisco-Disconnect-Cause No-Detected-Result-Codes 12
#VALUE Cisco-Disconnect-Cause User-Ends-Session 20
#VALUE Cisco-Disconnect-Cause Idle-Timeout 21
#VALUE Cisco-Disconnect-Cause Exit-Telnet-Session 22
#VALUE Cisco-Disconnect-Cause No-Remote-IP-Addr 23

RADIUS reply-message support
A reply-message is text that you create and configure in the radiusd.conf file.

It is intended for the NAS or AP to return as a string to the user. These can be a success, failure or
challenge message. They are readable text fields and their contents are implementation-dependent and
configured at server configuration time. The default for these attributes is no text. You may configure all,
none, or one, two, or three attributes.

RADIUS supports the following Reply-Message Attributes:
v Accept Reply-Message
v Reject Reply-Message
v CHAP Reply-Message
v Password Expired Reply-Message

These attributes are added to the radiusd.conf configuration file and read into a global configuration
structure at daemon start time. Set these values using SMIT RADIUS Panels as part of the Configure
Server option. The maximum number of characters in each string is 256 bytes.

The function is implemented as follows:
1. When the radiusd daemon starts, it will read the radiusd.conf file and set the Reply-Message

attributes.
2. When an access request packet is received, the user is authenticated.
3. If the authentication response is an access accept, then the Accept Reply-Message text is checked. If

the text is present, the string is returned in the access accept packet.
4. If the authentication is rejected, then the Reject Reply-Message text is checked and returned in the

access reject packet.
5. If the Authentication is challenged, then the CHAP Reply-Message attribute is checked and sent as

part of the Access-Challenge packet.

RADIUS server IP pool configuration
With the RADIUS server you can assign an IP address dynamically from an IP address pool.

IP address allocation is part of the authorization process and is done after authentication. The system
administrator must assign a unique IP per user. To provide the user with an IP address dynamically, the
RADIUS server provides three options:
v Framed Pool Attribute

336 AIX Version 7.2: Security

v Using the Vendor Specific Attribute
v RADIUS Server Side IP pooling

Framed Pool Attribute

The IP pool poolname must be defined on the Network Access Server (NAS). The NAS must be
RFC2869-compliant for the RADIUS server to send an Framed-Pool attribute in an Access-Accept pack
(type 88 attribute). The system administrator must configure the NAS and update the authorization
attributes for the user by including the Framed-Pool attribute in either the global default.auth file or the
user.auth file on the RADIUS server. The dictionary file in the RADIUS server includes this attribute:
ATTRIBUTE Framed-Pool 88 string

If the NAS cannot use multiple address pools, the NAS ignores this attribute. The address pool on the
NAS contains a list of IP addresses. The NAS dynamically picks one of the IP addresses defined in the
specified pool and assigns it to the user.

Vendor Specific Attributes

Some independent software vendors (ISV) cannot use the Framed-Pool attribute, but do have the ability
to define IP address pools. The RADIUS server can utilize these address pools by using the
Vendor-Specific Attribute (VSA) model. For example, a Cisco NAS provides an attribute called
Cisco-AVPair. The dictionary file in the RADIUS server includes this attribute:
VENDOR Cisco 9
ATTRIBUTE Cisco-AVPair 1 string

When the NAS sends an Access-Request packet, it includes this attribute with Cisco-AVPair=”ip:addr-
pool=poolname” where poolname is the name of the address pool defined on the NAS. After the request is
authenticated and authorized, the RADIUS server returns the attribute in the Access-Accept packet. The
NAS can then use the defined pool to allocate the IP address to the user. The system administrator must
configure the NAS and update the authorization attributes for the user by including the VSA attribute in
either the global default.auth file or the user.auth file on the RADIUS server.

Radius Server Side IP Pooling

The RADIUS server can be configured to generate an IP address from a pool of IP addresses. The IP
address is returned in the Framed-IP-Address attribute of the Access-Accept packet.

The system administrator can define a pool of IP addresses using the SMIT interface. The addresses are
maintained in the /etc/radius/ippool_def file. Poolnames are defined in the etc/radius/clients file. The
system administrator must also configure the NAS-Port number. The RADIUS server daemon uses
information from the etc/radius/clients and /etc/radius/ippool_def files to create data files. Once the
daemon starts, the system administrator cannot change or add the poolnames or IP address ranges until
the RADIUS servers have stopped. When the RADIUS server daemon is started, it reads the
configuration file (/etc/radius/radius.conf) and if IP Allocation is enabled (Enable_IP_Pooling=YES), sets
the global IP allocation flag (IP_pool_flag) to On. The daemon then checks to see if the poolname.data
file exists. If it does, it reads the file and keeps that information in shared memory. It then updates the
file and shared memory based on the requests coming in from the clients. If the file does not exist, then
the daemon creates a new file using information from the etc/radius/clients and the
/etc/radius/ippool_def files. The poolname.data file has a maximum size limit of 256 MB (AIX segment
size limit). If the poolname.data file is more than 256 MB, the RADIUS server logs an error message and
exits.

The daemon gets IP-pool details from the /etc/radius/ippool_def file and maintains a table of IP
addresses for each pool name in shared memory. The table has entries for NAS-IP-address, NAS-port and
IN USE flag. The daemon maintains a hash table that is keyed by the NAS-IP NAS-port. When requests
come in from multiple users, the UDP queues the requests, and the daemon retrieves the NAS-IP and

Security 337

NAS-port data from the request. Using that information, it checks to see whether a poolname has been
defined for that NAS by checking the information read from the etc/radius/clients file.

The daemon attempts to get an unused address from the pool. If an unused address is available, it is
marked as “in use” by the NAS-IP and NAS-port flags, and is returned to the RADIUS server. The IP
address is put into the Framed-IP-Address attribute by the daemon, and returned to the NAS in the
accept packet. The poolname.data file is also updated to be in sync with the information in shared
memory.

If the pool does not exist, or exists but does not have any more unused addresses, an error is returned to
the RADIUS server. The error Could not allocate IP address is logged in the log file and an
Access-Reject packet is sent to the NAS by the RADIUS server.

The error codes are:
v NOT_POOLED – There is no pool defined for the nas_ip.
v POOL_EXHAUSTED – The pool is defined for the nas_ip, but all of the addresses in the pool are

currently in use.

When the authentication request comes from a NAS and NAS-port combination that already has an IP
address allocated, the daemon returns the previous allocation to the pool, by marking the IN USE flag to
Off, and clearing the NAS-IP-address and NAS-port entries in the table. It then allocates a new IP address
from the pool.

The IP address is also returned to the pool when the RADIUS server receives an Accounting-Stop packet
from the NAS. The Accounting-Stop packet must contain the NAS-IP-address and NAS-port entries. The
daemon accesses the ippool_mem file for the following cases:
v The request comes in to get a new IP address. Sets the IN USE flag to true.
v An Accounting-Stop packet is received. It releases the IP address by setting the “in use” flag to false.

In each case, the shared memory system calls ensure that the data in shared memory and the
poolname.data files are in sync. The system administer can turn IP allocation ON or OFF using the
Enable_IP_Pooling parameter in the RADIUS server configuration file (radiusd.conf). This is useful in
cases where the system admin has an assigned IP address in either the global default.auth or user.auth
file. To use that assigned IP address, the system administrator must set Enable_IP_Pool = NO.

An example of an /etc/radius/ippool_def file created through SMIT:

Pool Name Start Range End Range

Floor5 192.165.1.1 192.165.1.125

Floor6 192.165.1.200 192.165.1.253

The following is an example of an /etc/radiusclients file created through SMIT:

NAS-IP Shared Secret Pool Name

1.2.3.4 Secret1 Floor5

1.2.3.5 Secret2 Floor6

1.2.3.6 Secret3 Floor5

1.2.3.7 Secret4

In the example above for the NAS-IP-Address 1.2.3.7, the pool name is blank. In this case, IP pooling is
not done for this NAS (even if the global IP_pool_flag = True). When the Access-Request packet comes
in, the RADIUS server does the authentication and authorization. If successful, it sends the static IP
address defined in the request, or from the global default.auth file or user.auth file, in the
Access-Accept packet. In this case, the NAS-Port attribute is not required.

338 AIX Version 7.2: Security

If IP pooling is True, the system administrator has also defined a static IP address as part of the global
default.auth or user.auth, or as part of the Access-Request packet. The RADIUS server replaces that IP
address with the IP address allocated from the defined pool name for that NAS. If all IP addresses in the
pool are in use, the server logs the error (pool is full) and sends an Access-Reject packet. The server
ignores any static IP address defined in the auth files.

If IP pooling is True and a valid pool name is defined for the NAS, when an Access-Request packet
comes in from that NAS-IP, and it does not have the NAS-Port defined, the server sends a Access-Reject
packet.

The following is an example of theFloor5.data file created by the daemon:

IP Address NAS-IP NAS-Port In Use

192.165.1.1 1.2.3.4 2 1

192.165.1.2 1.2.3.4 3 0

............

192.165.1.124 1.2.3.6 1 1

192.165.1.125 1.2.3.6 6 1

The following is an example of theFloor6.data file created by the daemon:

IP Address NAS-IP NAS-Port In Use

192.165.200 1.2.3.4 1 1

192.165.201 1.2.3.4 4 1

............

192.165.1.252 1.2.3.4 5 0

192.165.1.253 1.2.3.4 6 1

When it is necessary to release all allocated IP addresses for a specified NAS (for example, when a NAS
stops), it might be necessary to release all the IP addresses from all the pools to initialize the
poolname.data file. The system administrator can do with the following menu actions using SMIT:
v Clear IP Pool for a Client
v Clear entire IP Pool

SMIT Panels for IP Pool

In Client Configuration, Add a Client, you can enter the optional Pool Name. The name can be a
maximum of 64 characters. When the Pool Name is blank, IP pooling is not done and the RADIUS server
assigns the IP address defined by the system administrator through the Framed-IP-Address authorization
attribute.

When IP Pool is selected, the following options display:
v List all IP Pools
v Create an IP Pool
v Change/Show Characteristics of an IP Pool
v Delete an IP Pool
v Clear IP Pool for a Client
v Clear entire IP Pool

List all IP Pools: Use this option to list the Pool Name, Start Range IP address and Stop Range IP
address.

Security 339

Create an IP Pool: Use this option to add the pool name, start range, and end range. This data is
appended to the bottom of the ippool_def file. Checks are made to ensure there are no duplicate pool
names and that the IP address ranges are disjoint. This action can only be performed when the RADIUS
server daemons are not running.

Change/Show Characteristics of an IP Pool: This option shows a list of the pool names in a pop-up
panel. From this panel, you must select a specific pool name. When you select a pool name, a panel with
the selected name displays. When you press Enter, the data for that pool name is updated in the
ippool_def file. This action can only be performed when the RADIUS server daemons are not running.

Delete an IP Pool: Selecting this option displays a list of pool names that you can select. When you select
the pool name, the Are You Sure pop-up panel displays to provide a confirmation before the selected
pool name is deleted. The rmippool script is invoked to delete the selected pool name from the
ippool_def file. This action can only be performed when the RADIUS server daemons are not running.

Clear IP Pool for a Client: This option marks the IN-USE entry to 0 for the IP addresses that belong to
the NAS, which means that all IP addresses for this NAS are now available. This action can only be done
when the RADIUS server daemons are not running.

Clear Entire IP Pool: When this option is selected, an Are You Sure pop-up panel displays to provide a
confirmation before the entire ippool_mem file is cleared. This action can only be performed when the
RADIUS server daemons are not running.

RADIUS SMIT panels
When using SMIT to configure the RADIUS server, fields marked with an asterisk (*) are required fields.

The SMIT fast-path is:
smitty radius

The RADIUS Main Menu is as follows:

RADIUS Server

Configure Server
Configure Clients
Configure Users
Configure Proxy Rules
Advanced Server Configuration
Start RADIUS Server daemons
Stop RADIUS Server daemons

The following screen capture shows a sample RADIUS Configure Server SMIT panel:

340 AIX Version 7.2: Security

Configure Server
RADIUS Directory /etc/radius

* Database Location [Local] +
Local AVL Database File Name [dbdata.bin]
Debug Level [9] +#
Local Accounting [ON] +
Local Accounting Directory [/var/radius/data/accou>
Accept Reply-Message []
Reject Reply-Message []
Challenge Reply-Mesage []
Password Expired Reply-Message []
Support Renewal of Expired Password [NO] +
Require Message Authenticator [NO] +

* Authentication Port Number [1812]
* Accounting Port Number [1813]

LDAP Server Name []
LDAP Server Port Number [389] #
LDAP Server Admin Distinguished Name [cn=root]
LDAP Server Admin Password []
LDAP Base Distinguished Name [cn=aixradius]
LDAP Size Limit [0] #
LDAP Hop Limit [0] #
LDAP wait time limit [10] #
LDAP debug level [0] +#
Proxy Allowed [OFF] +
Proxy Use Table [OFF] +
Proxy Realm Name []
Proxy Prefix Delimiters [$/]
Proxy Suffix Delimiters [@.]
Proxy Remove Hops [NO] +
Proxy Retry Count [2] #
Proxy Timeout [30] #
UNIX Check Login Restrictions [OFF] +
Enable IP Pool [OFF] +
Send Message Authenticator for ACCEPT [ON] +
Maximum RADIUS Server Threads [15] #
EAP Conversation Timeout (Seconds) [30] #
Enable EAP-TLS [ON] +
Required Options for EAP-TLS

Path to OpenSSL Library [/opt/freeware/lib/libs>
OpenSSL Cipher List [ALL:!ADH:RC4+RSA:+SSLv>
Root CA Directory (Full Path) [/etc/radius/tls]
Root CA Certificate (Full Path) [/etc/radius/tls/radius>
RADIUS Server Certificate (Full Path) [/etc/radius/tls/cert-s>
RADIUS Server Private Key (Full Path) [/etc/radius/tls/cert-s>
RADIUS Server CRL (Full Path) []

Detailed SMIT help information is available for all fields and menu options by pressing the F1 key.

Random number generator
Random numbers are required when generating the Authenticator field of a RADIUS packet.

It is important to provide the best possible generator because an intruder could try to trick the RADIUS
server into responding to a predicted request and then use the response to masquerade as that RADIUS
server to a future access-request. The AIX RADIUS Server uses the /dev/urandom kernel extension to
generate pseudo random numbers. This kernel extension collects entropy samples from hardware sources
by way of the pseudo device driver. This device has been through NIST testing to ensure proper
randomness.

Globalization enablement
The RADIUS raddbm command and the SMIT panels are globalization enabled and each uses the
standard AIX globalization API calls to provide this function.

Related information

Commands: installp,mkuser and raddbm

Security 341

AIX Intrusion prevention
AIX intrusion prevention detects inappropriate, unauthorized or other data that might be considered
harmful to a system.

The following section describes the various types of intrusion detection provided by AIX.

Related information

Commands: chfilt, ckfilt, expfilt, genfilt, impfilt, lsfilt, mkfilt, mvfilt, rmfilt.

Intrusion detection
Intrusion detection is the action of monitoring and analyzing system events in order to intercept and
reject any attempt of unauthorized system access. In AIX, this detection of unauthorized access or
attempted unauthorized access is done by observing certain actions, and then applying filter rules to
these actions

Note: You must install the bos.net.ipsec filesets on the host system to enable intrusion detection. The
detection technologies are built upon the existing AIX Internet Protocol Security (IPsec) features.

Pattern matching filter rules:

Pattern matching is the use of an IPsec filter rule for filtering networking packets. A filter pattern can be
a text string, a hexadecimal string, or a file containing more than one pattern. After a pattern filter rule is
established and that pattern is detected in the body of any network packet, then the predefined action of
the filter rule will result.

Pattern matching filter rules only apply to inbound network packets. Use the genfilt command to add a
filter rule to the filter rule table. The filter rules generated by this command are called manual filter rules.
Use the mkfilt command to activate or deactivate the filter rules. The mkfilt command can also be used
to control the filter logging function.

A pattern file can contain a list, one per line, of text patterns or hexadecimal patterns. Pattern matching
filter rules can be used to guard against viruses, buffer overflows, and other network security attacks.

Pattern matching filter rules can have a negative impact on system performance if they are used too
broadly, and with a high number of patterns. It is best to keep the scope of their application as narrow as
possible. For example, if a known virus pattern applies to sendmail, then specify the sendmail SMTP
destination port 25 in the filter rule. This allows all other traffic to pass without incurring a performance
impact from pattern matching.

The genfilt command recognizes and understands the pattern format used in some versions of ClamAV.
Related information:
genfilt command
mkfilt command

ClamAV website

Types of patterns:

There are three basic types of patterns: text, hexadecimal, and file. Pattern matching filter rules apply to
incoming packets only.

342 AIX Version 7.2: Security

http://www.clamav.net

Text pattern

A text filter pattern is an ASCII string that looks similar to the following:
GET /../../../../../../../../

Hexadecimal pattern

A hexadecimal pattern looks similar to the following:
0x33c0b805e0cd16b807e0cd1650558becc7460200f05d0733ffb8c800b9fffff3abb00150
e670e47132c0e67158fec03c8075f033c033c9b002fa99cd26fb4183f90575f5c3

Note: A hexadecimal pattern is differentiated from a text pattern by the leading 0x.

Files that contain text patterns

A file can contain a list, one per line, of text patterns or hexadecimal patterns. Sample pattern files can be
found at http://www.clamav.net.

Shun port and shun host filter rules:

By setting a shun filter rule, you can affect a remote host or the remote host and port pair from accessing
the local machine.

A shun filter rule dynamically creates an effect rule that denies the remote host or the remote host and
port pair from accessing the local machine when the rule's specified criteria are met.

Because it is common for an attack to be preceded by a port scan, shun port filter rules are especially
useful in preventing an intrusion by detecting this attack behavior.

For example, if the local host does not use the server port 37, which is the time server, then the remote
host should not be accessing port 37, unless it is running a port scan. Place a shun port filter rule on port
37 so that if the remote host attempts to access that port, the shun filter rule creates an effective rule that
blocks that host from further access for the amount of time specified shun rule expiration time field.

If a shun rule's expiration time field is set to 0, then the dynamically created effective shun rule does not
expire.

Note:

1. An expiration time specified by the shun port filter rule applies only to the dynamically created effect
rule.

2. Dynamically created effect rules can only be viewed with the lsfilt -a command.

Shun host filter rules

When the criteria of a shun host filter rule is met, then the dynamically created effective rule will block
or shun all network traffic from the remote host for the specified expiration time.

Shun port filter rules

When the criteria of a shun port filter rule is met, then the dynamically created effective rule will only
block or shun network traffic from this remote host's particular port, until the expiration time is
exceeded.

Security 343

http://www.clamav.net

Stateful filter rules:

Stateful filters examine information such as source and destination addresses, port numbers, and status.
Then, by applying IF, ELSE or ENDIF filter rules to these header flags, stateful systems can make filtering
decisions in the context of an entire session rather than that of an individual packet and its header
information.

Stateful inspection examines incoming and outgoing communication packets. When stateful filter rules
are activated with the mkfilt -u command, the rules in the ELSE block are always examined until the IF
rule is satisfied. After the IF rule or condition is satisfied, the rules in the IF block are used until the filter
rules are reactivated with the mkfilt -u command.

The ckfilt command will check the syntax of the stateful filter rules and display them in a display in a
illustrative manner such as the following:
%ckfilt -v4
Beginning of IPv4 filter rules.
Rule 2
IF Rule 3

IF Rule 4
Rule 5

ELSE Rule 6
Rule 7

ENDIF Rule 8
ELSE Rule 9

Rule 10
ENDIF Rule 11
Rule 0

Timed rules:

Timed rules specify the amount of time, in seconds, that the filter rule is applied after it is made effective
with the mkfilt -v [4|6] -u command.

The expiration time is specified with the genfilt -e command. For more information, see the mkfilt and
genfilt commands.

Note: Timers have no effect on IF, ELSE or ENDIF rules. If an expiration time is specified in a shun host
or shun port rule, the time applies only to the effect rule that is initiated by the shun rule. Shun rules
have no expiration time.

Accessing filter rules from SMIT
You can configure rules from SMIT.

To configure filter rules from SMIT, complete the following steps.
1. From a command line, enter the following command:smitty ipsec4
2. Select Advanced IP Security Configuration.
3. Select Configure IP Security Filter Rules.
4. Select Add an IP Security Filter Rule.

344 AIX Version 7.2: Security

Add an IP Security Filter Rule

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Rule Action [permit] +
* IP Source Address []
* IP Source Mask []

IP Destination Address []
IP Destination Mask []

* Apply to Source Routing? (PERMIT/inbound only) [yes] +
* Protocol [all] +
* Source Port / ICMP Type Operation [any] +
* Source Port Number / ICMP Type [0] #
* Destination Port / ICMP Code Operation [any] +
* Destination Port Number / ICMP Type [0] #
* Routing [both] +
* Direction [both] +
* Log Control [no] +
* Fragmentation Control [0] +
* Interface [] +

Expiration Time (sec) [] #
Pattern Type [none] +
Pattern / Pattern File []
Description []

Where "Pattern Type" may be one of the following
x none x#
x pattern x
x file x
x Anti-Virus patterns

The choices for the action field are: permit, deny, shun_host, shun_port, if, else, endif.

If a pattern file is specified, then it must be readable when the filter rules are activated with the mkfilt -a
command. The filter rules are stored in the /etc/security/ipsec_filter database.

AIX Security Expert
AIX Security Expert provides a center for all security settings (TCP, NET, IPSEC, system, and auditing).

AIX Security Expert is a system security hardening tool. It is part of the bos.aixpert fileset. AIX Security
Expert provides simple menu settings for High Level Security, Medium Level Security, Low Level
Security, and AIX Standard Settings security that integrate over 300 security configuration settings while
still providing control over each security element for advanced administrators. AIX Security Expert can be
used to implement the appropriate level of security, without the necessity of reading a large number of
papers on security hardening and then individually implementing each security element.

AIX Security Expert can be used to take a security configuration snapshot. This snapshot can be used to
set up the same security configuration on other systems. This saves time and ensures that all systems
have the proper security configuration in an enterprise environment.

AIX Security Expert can be run from SMIT, or you can use the aixpert command.

AIX Security Expert settings

The following coarse-grain security settings are available:

High Level Security
High-level security

Security 345

Medium Level Security
Medium-level security

Low Level Security
Low-level security

Advanced Security
Custom user-specified security

AIX Standard Settings
Original system default security

Undo Security
Some AIX Security Expert configuration settings can be undone

Check Security
Provides a detailed report of current security settings

AIX Security Expert security hardening
Security hardening protects all elements of a system by tightening security or implementing a higher
level of security.

Security hardening helps ensure that all security configuration decisions and settings are adequate and
appropriate. Hundreds of security configuration settings might have to be changed to harden the security
of an AIX system.

AIX Security Expert provides a menu to centralize effective common security configuration settings.
These settings are based on extensive research on properly securing UNIX systems. Default security
settings for broad security environment needs (High Level Security, Medium Level Security, and Low
Level Security) are provided, and advanced administrators can set each security configuration setting
independently.

Configuring a system at too high a security level might deny services that are needed. For example,
telnet and rlogin are disabled for High Level Security because the login password is sent over the
network unencrypted. If a system is configured at too low a security level, the system can be vulnerable
to security threats. Since each enterprise has its own unique set of security requirements, the predefined
High Level Security, Medium Level Security, and Low Level Security configuration settings are best
suited as a starting point for security configuration rather than an exact match for the security
requirements of a particular enterprise.

The practical approach to using AIX Security Expert, is to establish a test system (in a realistic test
environment) similar to the production environment in which it will be deployed. Install necessary
business applications and run AIX Security Expert via the GUI. The AIX Security Expert will analysis this
running system in this trusted state. Depending on the security options you chose, AIX Security Expert
will enable port scan protection will be enabled, turn on auditing, block network ports that are not in use
by the business applications or other services, along with many other security settings. After re-testing
with these security configurations in place, the system is ready to be deployed in a production
environment. Also, the AIX Security Expert XMLfile defining the security policy or configuration of this
system can be easily be used to implement the exact same configuration on similar systems in your
enterprise.

For more information on security hardening, see NIST Special Publication 800-70, NIST Security
Configurations Checklist Program for IT Products.

Secure by default
Secure By Default (SbD) is the concept of installing a minimal set of software in a secure configuration.

346 AIX Version 7.2: Security

The AIX Secure by Default (SbD) installation option installs a lighter version of the TCP client and server
filesets, that excludes vulnerable commands and files. The bos.net.tcp.client and bos.net.tcp.server
filesets are part of the SbD installation and contain all commands and files except for any applications
that allow for the transmission of passwords over the network in clear text format such as telnet and ftp.
In addition, applications that might be used, such as rsh, rcp, and sendmail, are excluded from the SbD
filesets.

The final automated process of the SbD install is to impose the AIX Security Expert high-level security
configuration settings. You can do this by running the aixpert command from /etc/firstboot script:
/usr/sbin/aixpert -f /etc/security/aixpert/core/SbD.xml -p 2>/etc/security/aixpert/log/
firstboot.log

It is possible to move the machine out of SbD mode by changing the ODM variable SbD_STATE to
sbd_disable, installing the bos.net.tcp.client and bos.net.tcp.server filesets again, and using the AIX
Security Expert to bring the system to its default security level.

It is not possible to use migration install or preservation install to achieve a SbD installed system. SbD is
a separate install menu path.

Note: When you update a system that is in SbD mode with a service pack, the updated system is not in
SbD mode following the upgrade.

It is possible to have a securely configured system without using the SbD install option. For example, the
AIX Security Expert High, Medium, or Low level security options can be configured on a regular
installation.

The differences between an SbD-installed system and a regular installation with an AIX Security Expert
High Level Security configuration is best illustrated by examining the telnet command. In both cases, the
telnet command is disabled. In an SbD installation, the telnet binary or application is never even
installed on the system.

When the SbD installation is used, the following services are either not installed on the system at install
time or are disabled. With some of these services not installed on the system, it is not possible to access
or run these commands from the system. If these commands and programs are needed, do not use the
SbD install option. In addition, if any scripts, remote programs, or dependent filesets require these
commands and programs, do not use the SbD install option.

Service Program Arguments

bootps /usr/sbin/bootpd bootpd /etc/bootp

comsat /usr/sbin/comsat comsat

exec /usr/sbin/rexecd rexecd

finger /usr/sbin/fingerd fingerd

ftp /usr/sbin/ftpd ftpd

instsrv /u/netinst/bin/instsrv instsrv -r /tmp/netinstalllog
/u/netinst/scripts

login /usr/sbin/rlogind rlogind

netstat /usr/bin/netstat netstat -f inet

ntalk /usr/sbin/talkd talkd

pcnfsd /usr/sbin/rpc.pcnfsd pcnfsd

rexd /usr/sbin/rpc.rexd rexd

rquotad /usr/sbin/rpc.rquotad rquotad

rstatd /usr/sbin/rpc.rstatd rstatd

Security 347

Service Program Arguments

rusersd /usr/lib/netsvc/rusers/rpc.rusersd rusersd

rwalld /usr/lib/netsvc/rwall/rpc.rwalld rwalld

shell /usr/sbin/rshd rshd

sprayd /usr/lib/netsvc/spray/rpc.sprayd sprayd

systat /usr/bin/ps ps -ef

talk /usr/sbin/talkd talkd

telnet /usr/sbin/telnetd telnetd -a

tftp /usr/sbin/tftpd tftpd -n

uucp /usr/sbin/uucpd uucpd

Distributing security policy through LDAP
LDAP can be used to distribute AIX Security Expert XML configuration files. You can use AIX Security
Expert to copy a security configuration from one system to another. This allows for similar systems to
have the same security configuration. This consistency can reduce security vulnerabilities.

The recommended practice is to use AIX Security Expert to configure a single system and set the security
level in accordance with corporate security polices and the environment in which the system will operate.
This configuration is captured in the /etc/security/aixpert/core/appliedaixpert.xml file. This file can
then be moved to a configured and trusted LDAP server. Other systems with connectivity to this LDAP
server will automatically discover this XML configuration file via the aixpertldap command.

Any existing LDAP Server can be updated with the aixpert schema to distribute the aixpert configuration
XML files onto each client connected. If the LDAP server does not have the aixpert schema updated,
update the aixpert schema onto LDAP with the following command: ldapmodify -c -D <bindDN> -w
<bindPwd> -i /etc/security/ldap/sec.ldif Once the LDAP server is updated with aixpert schema,
clients can place their XML configuration files on LDAP using the -u option of the aixpertldap command.
These configuration files needs to be updated manually.

Note: This feature relies on the trust model LDAP has in place. Users who have privileges to write to
LDAP can modify the data uploaded by users of a different machine. Similarly, if an LDAP client has a
security vulnerability, then this can be exploited to read and understand the security status of other
LDAP clients by reading the AIX Security Expert XML configuration files associated with the client.

For example, an appliedaixpert.xml file can be saved on the LDAP server under the name
BranchOfficeSecurityProfile. Or a differently configured appliedaixpert.xml file might be saved under
the name InternetDirectAttachedSystemsProfile. As other systems with LDAP connectivity are
configured with AIX Security Expert, these security profiles are automatically presented as menu options.
This allows the system administer to select the security profile which best suites their environment within
the guidelines of their corporate security policies.

Then AIX Security Expert is used to secure a system. The complete list of security configuration settings
implemented on the system is captured in the file /etc/security/aixpert/core/appliedaixpert.xml. This
file is the security policy for this system. The security policy is compared when the AIX Security Expert
Check Security option is used. This security policy can also be copied and applied to other systems,
which provides consistency in the security of systems throughout your IT environment. There are two
ways to copy a security policy onto other systems, manually or through LDAP.

AIX Security Expert security policy copy
You can use AIX Security Expert to copy a security policy from one system to another.

348 AIX Version 7.2: Security

ldap_overview.htm

You can run AIX Security Expert on one system and apply the same security policy on other systems. For
example, Bob wishes to apply AIX Security Expert on his six AIX systems. He applies the security
settings on one system (Alpha) with High, Medium, Low, Advanced, or AIX Standard Settings security.
He tests this system for compatibility issues within his environment. If he is satisfied with these settings,
he can apply the same settings on the other AIX systems by name. He copies the settings from the system
Alpha to the system where he wants to apply the same security settings by copying the
/etc/security/aixpert/core/appliedaixpert.xml file from Alpha to the other system.

Note: Do not copy this file to the same directory and filename on the other system, because the aixpert
command will write over /etc/security/aixpert/core/appliedaixpert.xml as it implements the security
policy.

Instead, copy Alpha's security policy to the /etc/security/aixpert/custom/ directory. This allows the
other system to view and apply Alpha's security policy through the AIX Security Expert system
management GUI, or directly with the aixpert command.

For example, if the Alpha's appliedaixpert.xml security policy was placed on the other systems as
/etc/security/aixpert/custom/AlphaPolicy, then the command aixpert -f /etc/security/aixpert/
custom/AlphaPolicy would immediately apply this security policy and this system would have the same
security configuration as machine Alpha. Additionaly, when Alpha's security policy is in this directory, it
is visible and can be applied through the other systems system management console via the path of Aix
Security Expert -> Overview and Tasks -> Customized Options -> AlphaPolicy.

Customizable security policy with user-defined AIX Security Expert
XML rules
You can use XML files to configure unique security policies.

AIX Security Expert dynamically recognizes these XML files. Any custom XMLsecurity policy files created
should be placed in the directory /etc/security/aixpert/custom/ with a descriptive file. Therefore, when
AIX Security Expert is accessed via a console graphical interface, the rich set of graphical XML features in
the aixpert DTD will be fully realized.

The DTD is as follows:
<?xml version=’1.0’?>

<!--START-->

<!ELEMENT AIXPertSecurityHardening (AIXPertEntry+)>

<!-- AIXPertEntry should contain only one instance of the following elements. -->

<!ELEMENT AIXPertEntry (AIXPertRuleType,
AIXPertDescription, AIXPertPrereqList, AIXPertCommand,
AIXPertArgs,AIXPertGroup)>

<!-- AIXPertEntry’s name should be unique. -->

<!ATTLIST AIXPertEntry
name ID #REQUIRED
function CDATA ""

>

<!ELEMENT AIXPertRuleType EMPTY>
<!ATTLIST AIXPertRuleType type (LLS|MLS|HLS|DLS|SCBPS|Prereq) "DLS">
<!ELEMENT AIXPertDescription (#PCDATA)>
<!ELEMENT AIXPertPrereqList (#PCDATA)>
<!ELEMENT AIXPertCommand (#PCDATA)>
<!ELEMENT AIXPertArgs (#PCDATA)*>
<!ELEMENT AIXPertGroup (#PCDATA)*>

Security 349

The AIXPertEntry name is a unique name within the XMLfile. This name will be the name of the
selectable graphic button when this file is viewed via a system console via the path Aix Security Expert
-> Overview and Tasks -> Customized Options -> <xml file=""></xml>.

<!ELEMENT AIXPertRuleType EMPTY>
This XML file should be specified as custom.

<!ATTLIST AIXPertRuleType type (LLS|MLS|HLS|DLS|SCBPS|Prereq|Custom) "DLS"
This XML file should be specified as custom.

<!ELEMENT AIXPertDescription (#PCDATA)>
When viewed via the above mentioned graphical interface, the description text is displayed as a
pop-up window then the mouse is placed on this button.

<!ELEMENT AIXPertPrereqList (#PCDATA)>
It is possible to select a prerequisite rule to this rule. The prerequisite rule must return 0, before
aixpert will implement this rule. If this XML file is viewed through a graphical interface, thisrule
will be grayed-out if the prerequisite rule is not satisfied. If you are creating a prerequisite rule,
the AIXPertRuleType must be 'Prereq'.

The AIXPertDescription field of the prerequisite rule should describe what should be done to
satisfy the prereq rule. If the Custom rules is grayed-out because one of its Prereq rules is not
satisfied, then the user is shown the description pop-up window of the Prereq rule, which
explains what the user must do to correct the prerequisite condition.

<!ELEMENT AIXPertCommand (#PCDATA)>
This element must be the full path and command which aixpert will execute for this security rule,
e.g. /usr/bin/ls.

<!ELEMENT AIXPertArgs (#PCDATA)*>
This element must contain any arguments to the above command, e.g. -l

<!ELEMENT AIXPertGroup (#PCDATA)*>
It is possible to group a set of aixpert rules when they are displayed via a graphical interfaces.
For example, a common set of rules might all specify a AIXPertGroup name of "Network
Security".

Stringent check for weak passwords
This AIX feature checks for weak passwords when passwords are changed. If this option is selected with
AIX Security Expert, this additional password check is performed when a user selects or changes their
password. This check guards against the use of English dictionary words and the 1000 most common US
first names based on a recent US Census.

COBIT control objectives supported by AIX Security Expert
AIX Security Expert supports the SOB-COBIT Best Practices Security level in addition to the High,
Medium, Low, AIX Default and Advanced Security settings.

The United States Congress enacted the 'Sarbanes-Oxley Act of 2002' to protect investors by improving
the accuracy and reliability of financial information disclosed by corporations. The COBIT control
objectives feature will help System Administrators to configure, maintain, and audit their IT systems for
compliance with this law. The SOX Configuration Assistant is accessed through the aixpert command
line. The feature assists with the SOX section 404 of the Sarbanes-Oxley Act, but The AIX Security Expert
SOX Configuration Assistant automatically implements security settings commonly associated with
COBIT best practices for SOX Section 404, Internal Controls. Additionally, the AIX Security Expert
provides a SOX audit feature which reports to the auditor whether the system is currently configured in
this manner. The feature allows for the automation of system configuration to aid in IT SOX compliance
and in the automation of the audit process.

350 AIX Version 7.2: Security

Since SOX does not offer guidance on how IT must comply with section 404, the IT industry has focused
on the existing governance detailed by www.isaca.org/. More specifically, the IT governance covered by
Control Objectives for Information and related Technology (COBIT).

AIX Security Expert supports the following control objectives:
v Password policy enforcement
v Violation and Security Activity Reports
v Malicious software prevention, detection and correction, and unauthorized software
v Firewall architecture and connections with public networks

AIX Security Expert does not support all of the attributes specified under each control objective. The
supported attributes and their respective control objectives are summarized in the following tables:

Password policy enforcement

Description Security setting

Maximum password age maxage=13

Enforce password history histsize=20

Minimum password age minage=1

Minimum password length minlen=8

Contains at least 6 characters Minalpha=6

Similarity to old password mindiff=4

Password expiration warning days pwdwarntime=14

Security violations and activity report

Description Security setting Remarks

Auditing Enabled yes

No direct root logins yes

Enable auditing for priviledge
escalation

yes AIXpert leverages the USER_SU
audit event. Please ensure this event
is turned on.

Malicious software detection and correction

AIX Security Expert leverages the AIX trusted software execution feature to ensure that the software is
not tampered with by anyone. The trustchk command checks the consistency of the objects that are
registered in the Trusted Software database.

Firewall setup

AIX Security Expert turns on IPSec and enables filter rules to avoid port scans. The ports that are
shunned are listed in the following table:

Service Description

Tcp/11, udp/11 Systat

Tcp/13, udp/13 Daytime

(RFC 867) Tcp/19, udp/19 Character Generator

Tcp/25 Simple Mail Transfer (SMTP)

Security 351

Service Description

Tcp/43, udp/43 Who Is (nickname)

Tcp/63, udp/63 Whois++

Tcp/67, udp/67 Bootstrap protocol server (bootps)

Tcp/68, udp/68 Bootstrap protocol client (bootpc)

Tcp/69, udp/69 Trivial file transfer

(tftp) Tcp/79, udp/79 Finger

Tcp/87 Private Terminal Link

Tcp/110 Post office protocol – version 3 (POP3)

Udp/111 SUN Remote Procedure Call

Tcp/113 Authentication Service (auth)

Udp/123 Network Time Protocol

Udp/161 SNMP

Udp/162 SNMPTRAP

Tcp/194 Internet Relay chat Protocol

Tcp/443 http protocol over TLS/SSL

Tcp/511 PassGo

Tcp/514 Cmd (shell)

Tcp/520 Extended file name server (efs)

Tcp/540 Uucpd (uucp)

Tcp/546 DHCPv6 Client

Tcp/547 DHCPv6 Server

Tcp/555 Dsf

tcp/559 TEEDTAP

tcp/593 HTTP RPC Ep Map

udp/635 RLS Dbase

tcp/666 Mdqs

tcp/777 Multiling HTTP

tcp/901 SNMPNSMERES

tcp/902 IDEAFARM-CHAT

tcp/903 IDEAFARM-CATCH

tcp/1024 Reserved

Applying COBIT control objectives using AIX Security Expert
You can use the aixpert –l s command to apply the SCBPS level to the system. The audit log for this can
be generated by turning on the AIXpert_apply event. Any failures (either a prerequisite failure or an
apply failure) are reported to stderr and the audit subsystem if enabled.

SOX-COBIT compliance checking, audit, and pre-audit feature
You can use the aixpert –c –l s command to check a system's SOX-COBIT compliance. AIX Security
Expert only checks for the supported control objectives compliance. Any violations found during the
checking are reported. By default, any violations are sent to stderr.

352 AIX Version 7.2: Security

You can also use the same command (aixpert –c –l s) to generate the SOX-COBIT compliance audit
report. To generate an audit report, set up and enable the audit subsystem. Ensure that the
AIXpert_check audit event is turned on. After setting up the audit subsystem, rerun the aixpert –c –l s
command. The command generates the audit log for every failed control objective. The Status field of the
audit log will be marked as failed. The log also contains the reason for the failure, which can be viewied
using the -v option of auditpr command.

Adding –p option to the aixpert –c –l s command also includes successful control objectives also in the
audit report. Those log entries have Ok in the status field.

The aixpert -c -l s -p command can be used to generate a detailed SOX-COBIT compliance audit report.

Whether or not the –p option is specified, there will be a summary record. The summary record includes
information about the number of rules processed, the number of failed rules (instances of non-compliance
found), and the security level that the system is checked for (in this instance, this would be SCBPS).

AIX Security Expert Password Policy Rules group
AIX Security Expert provides specific rules for password policy.

Strong password policies are one of the building blocks for achieving system security. Password policies
ensure that passwords are difficult to guess (passwords have a proper mix of alphanumeric characters,
digits, and special characters), expire regularly, and are not reusable after expiration. The following table
lists the password policy rules for each security setting.

Table 20. AIX Security Expert Password Policy Rules

Action button name Definition
Value set by AIX Security
Expert Undo

Minimum number of
characters

Sets appropriate value to mindiff attribute of
/etc/security/user, which specifies the minimum number
of characters required in a new password that were not in
the old password.

High Level Security
4

Medium Level Security
3

Low Level Security
No effect

AIX Standard Settings
No limit

Yes

Minimum age for
password

Sets appropriate value to minage attribute of
/etc/security/user, which specifies the minimum number
of weeks before a password can be changed.

High Level Security
1

Medium Level Security
4

Low Level Security
No effect

AIX Standard Settings
No limit

Yes

Maximum age for
password

Sets appropriate value to maxage attribute of
/etc/security/user, which specifies the maximum number
of weeks before a password can be changed.

High Level Security
13

Medium Level Security
13

Low Level Security
52

AIX Standard Settings
No limit

Yes

Security 353

Table 20. AIX Security Expert Password Policy Rules (continued)

Action button name Definition
Value set by AIX Security
Expert Undo

Minimum length for
password

Sets appropriate value to minlen attribute of
/etc/security/user, which specifies the minimum length of
a password.

High Level Security
8

Medium Level Security
8

Low Level Security
8

AIX Standard Settings
No limit

Yes

Minimum number of
alphabetic characters

Sets appropriate value to minalpha attribute of
/etc/security/user, which specifies the minimum number
of alphabetic characters in a password.

High Level Security
2

Medium Level Security
2

Low Level Security
2

AIX Standard Settings
No limit

Yes

Password reset time Sets appropriate value to histexpire attribute of
/etc/security/user, which specifies the number of weeks
before a password can be reset.

High Level Security
13

Medium Level Security
13

Low Level Security
26

AIX Standard Settings
No limit

Yes

Maximum times a
char can appear in a
password

Sets appropriate value to maxrepeats attribute of
/etc/security/user, which specifies the maximum number
of times a character can appear in a password.

High Level Security
2

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
8

Yes

Password reuse time Sets appropriate value to histsize attribute of
/etc/security/user, which specifies the number of previous
passwords that a user cannot reuse.

High Level Security
20

Medium Level Security
4

Low Level Security
4

AIX Standard Settings
No limit

Yes

354 AIX Version 7.2: Security

Table 20. AIX Security Expert Password Policy Rules (continued)

Action button name Definition
Value set by AIX Security
Expert Undo

Time to change
password after the
expiration

Sets appropriate value to maxexpired attribute of
/etc/security/user, which specifies the maximum number
of weeks after maxage that an expired password can be
changed by the user.

High Level Security
2

Medium Level Security
4

Low Level Security
8

AIX Standard Settings
-1

Yes

Minimum number of
non-alphabetic
characters

Sets appropriate value to minother attribute of
/etc/security/user, which specifies the minimum of
non-alphabetic characters in a password.

High Level Security
2

Medium Level Security
2

Low Level Security
2

AIX Standard Settings
No limit

Yes

Password expiration
warning time

Sets appropriate value to pwdwarntime attribute of
/etc/security/user, which specifies the number of days
before the system issues a warning that a password change
is required.

High Level Security
5

Medium Level Security
14

Low Level Security
5

AIX Standard Settings
No limit

Yes

AIX Security Expert User Group System and Password definitions
group
AIX Security Expert performs specific actions for user, group, and password definitions.

Table 21. AIX Security Expert User Group System and Password Definitions

Action button name Description Value set by AIX Security Expert Undo

Check group
definitions

Verifies the correctness of group definitions. Runs the
following command to fix and report errors:

% grpck -y ALL

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
No effect

No

Security 355

Table 21. AIX Security Expert User Group System and Password Definitions (continued)

Action button name Description Value set by AIX Security Expert Undo

TCB update Uses the tcbck command to verify and update TCB.
Runs the following command:

% tcbck -y ALL

Note: If TCB is required on your system, this rule will
fail if TCB is not enabled. The prerequisite rule
(prereqtcb) will also fail with a warning.

Prerequisite: TCB must be selected when the system is
installed.

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
Yes

No

Check file
definitions

Uses the sysck command to check and fix the file base
of /etc/objrepos/inventory:

% sysck -i -f \
/etc/security/sysck.cfg.rte

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
No effect

No

Check password
definitions

Verifies the correctness of password definitions. Runs
the following command to fix and report errors:

% pwdck -y ALL

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
No effect

No

Check user
definitions

Verifies correctness of user definitions. Runs the
following command to fix and report errors:

% usrck -y ALL

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
No effect

No

AIX Security Expert Login Policy Recommendations group
AIX Security Expert provides specific settings for login policy.

Note: To ensure better accountability of security-related activities that are performed by root, it is
recommended that users first log in using their normal user ID and then run the su command to run
commands as root, rather than logging in as root. The system can then associate different users to
activities performed using the root account when multiple users know and use the root password.

356 AIX Version 7.2: Security

Table 22. AIX Security Expert Login Policy Recommendations

Action button name Description
Value set by AIX Security
Expert Undo

Interval between
unsuccessful logins

Sets appropriate value to logininterval attribute of
/etc/security/login.cfg, which specifies the time interval
(in seconds) during which the unsuccessful login attempts
for a port must occur before the port is disabled. For
example, if logininterval is set to 60 and logindisable is
set to 4, the account is disabled if there are four unsuccessful
login attempts within one minute.

High Level Security
300

Medium Level Security
60

Low Level Security
No effect

AIX Standard Settings
No limit

Yes

Number of login
attempts before
locking the account

Sets appropriate value to loginretries attribute of
/etc/security/user, which specifies the number of
consecutive login attempts per account before the account is
disabled. Do not set on root.

High Level Security
3

Medium Level Security
4

Low Level Security
5

AIX Standard Settings
No limit

Yes

Remote root login Changes the value of rlogin attribute of
/etc/security/user, which specifies whether remote login is
allowed or not on the system for root account.

High Level Security
False

Medium Level Security
False

Low Level Security
No effect

AIX Standard Settings
True

Yes

Re-enable login after
locking

Sets appropriate value to loginreenable attribute of
/etc/security/login.cfg, which specifies the time interval
(in seconds) after which a port is unlocked after the port is
disabled by logindisable.

High Level Security
360

Medium Level Security
30

Low Level Security
No effect

AIX Standard Settings
No limit

Yes

Disable login after
unsuccessful login
attempts

Sets appropriate value to logindisable attribute of
/etc/security/login.cfg, which specifies the number of
unsuccessful login attempts on a port before the port is
locked.

High Level Security
10

Medium Level Security
10

Low Level Security
No effect

AIX Standard Settings
No limit

Yes

Security 357

Table 22. AIX Security Expert Login Policy Recommendations (continued)

Action button name Description
Value set by AIX Security
Expert Undo

Login timeout Sets appropriate value to logintimeout attribute of
/etc/security/login.cfg, which specifies the time interval
allowed to type in a password.

High Level Security
30

Medium Level Security
60

Low Level Security
60

AIX Standard Settings
60

Yes

Delay between
unsuccessful logins

Sets appropriate value to logindelay attribute of
/etc/security/login.cfg, which specifies the delay (in
seconds) between unsuccessful logins. An additional delay
period is added after each failed login. For example, if
logindelay is set to 5, the terminal will wait five seconds
after the first failed login until the next request. After a
second failed login, the terminal will wait 10 seconds (2*5),
and after a third failed login, the terminal will wait 15
seconds (3*5).

High Level Security
10

Medium Level Security
4

Low Level Security
5

AIX Standard Settings
No limit

Yes

Local login Changes the value of login attribute of /etc/security/user,
which specifies whether console login is allowed or not on
the system for root account.

High Level Security
False

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
True

Yes

AIX Security Expert Audit Policy Recommendations group
AIX Security Expert provides specific audit policy settings.

As with other security settings, bin auditing also needs the analysis (prerequisite) rules to be satisfied
before applying any audit rules for High, Medium, or Low Level Security. The following analysis rules
need to be satisfied for bin auditing:
1. The prerequisite rule to audit must check to see that audit is not currently running. If auditing is

already running, then audit has been previously configured and AIX Security Expert must not alter
the existing audit configuration and procedure.

2. There must be at least 100 megabytes of free space in a volume group that is automatically varied on
or the /audit filesystem must currently exist with a size of 100 megabytes or more.

If the above prerequisite conditions are met, and the audit options is selected with in AIX Security Expert,
then AIX Security Expert will configure and enable auditing on the system in the following manner. The
AIX Security Expert Enable binaudit action button sets audit policy. Auditing must be enabled on the
system.
1. The /audit JFS file system must be created and mounted before starting audit. The file system must

have a size of at least 100 megabytes.
2. Audit must be run in bin mode. The /etc/security/audit/config file must be configured as follows:

start:
binmode = on
streammode = off

bin:

358 AIX Version 7.2: Security

trail = /audit/trail
bin1 = /audit/bin1
bin2 = /audit/bin2
binsize = 10240
cmds

= /etc/security/audit/bincmds
.
.
etc

3. Add the auditing entries for root and normal user for High, Medium, and Low Level Security.
4. Audit must be enabled on reboot for High, Medium, and Low Level Security.
5. New users created must have audit enabled for High, Medium, and Low Level Security. This can be

done by adding an auditclasses entry to the user stanza in the /usr/lib/security/mkuser.default
file.

6. A cronjob must be added to avoid filling up the /audit filesystem.

The audit undo rule must shut down audit and remove its enablement on reboot.

The following tables lists the values set by AIX Security Expert for Enable binaudit:

Table 23. Values set by AIX Security Expert for Enable binaudit

High Level Security Medium Level Security Low Level Security AIX Standard Settings

Add the following auditing entries
for root and normal user:

Root:
General
Src
Mail
Cron
Tcpip
Ipsec
Lvm

User:
General
Src
Cron
Tcpip

Add the following entry in the user
stanza of the /usr/lib/security/
mkuser.default file for enabling
auditing for newly created users:

auditclasses=general,SRC,\
cron,tcpip

Add the following auditing
entries for root and normal
user:

Root:
General
Src
Tcpip

User:
General
Tcpip

Add the following entry in
the user stanza of the
/usr/lib/security/
mkuser.default file for
enabling auditing for newly
created users:

auditclasses=general,
tcpip

Add the following auditing
entries for root and normal
user:

Root:
General
Tcpip

User:
General

Add the following entry in
the user stanza of the
/usr/lib/security/
mkuser.default file for
enabling auditing for newly
created users:

auditclasses=general

The /etc/security/audit/
config file contains the
following entry:

default=login

Audit class login is defined
as follows:

login = USER_SU,
USER_Login,
USER_Logout,
TERM_Logout,
USER_Exit

Note: The standard settings
feature disables auditing.

Security 359

Table 23. Values set by AIX Security Expert for Enable binaudit (continued)

High Level Security Medium Level Security Low Level Security AIX Standard Settings

Add the following auditing entries
for root and normal user:
root: general

src

mail

cron

tcpip

ipsec

lvm

aixpert
User: general

src

cron

tcpip

Add the following entry in the user
stanza of the /usr/lib/security/
mkuser.default file for enabling
auditing for newly created users:

auditclasses=general,SRC,
cron,tcpip

Add the following auditing
entries for root and normal
user:
root: general

src

tcpip

aixpert
User: general

tcpip

Add the following entry in
the user stanza of the
/usr/lib/security/
mkuser.default file for
enabling auditing for newly
created users:

auditclasses=general,
tcpip

Add the following auditing
entries for root and normal
user:
root: general

tcpip

aixpert
User: general

Add the following entry in
the user stanza of the
/usr/lib/security/
mkuser.default file for
enabling auditing for newly
created users:
auditclasses=general

Yes

The cronjob must run every hour and check the size of /audit. If the Audit Freespace Equation is true
then the Audit Trail Copy Actions must be performed. The Audit Freespace Equation is defined to ensure
that the /audit filesystem is not full; if the /audit filesystem is full, the Audit Trail Copy Actions are
done (disabling auditing, taking backup of /audit/trail to /audit/trailOneLevelBack, and re-enabling
auditing).

AIX Security Expert /etc/inittab Entries group
AIX Security Expert comments out specific entries in /etc/inittab so that they do not start when the
system boots.

Table 24. AIX Security Expert /etc/inittab Entries

Action button
name Description

Value set by AIX
Security Expert Undo

Disable
qdaemon/Enable
qdaemon

Comments out or uncomments the following entry in /etc/inittab:

qdaemon:2:wait:/usr/bin/startsrc –sqdaemon
High Level Security

Comment

Medium Level Security
Comment

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

360 AIX Version 7.2: Security

Table 24. AIX Security Expert /etc/inittab Entries (continued)

Action button
name Description

Value set by AIX
Security Expert Undo

Disable lpd
daemon/Enable lpd
daemon

Comments out or uncomments the following entry in /etc/inittab:

lpd:2:once:/usr/bin/startsrc -s lpd
High Level Security

Comment

Medium Level Security
Comment

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable
CDE/Enable CDE

If the system does not have an LFT configured, comments out or
uncomments the following entry in /etc/inittab:

dt:2:wait:/etc/rc.dt

High Level Security
Comment

Medium Level Security
Comment

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable piobe
daemon/Enable
piobe daemon

Comments out or uncomments the following entry in /etc/inittab:

piobe:2:wait:/usr/lib/lpd/pio/etc/pioinit >/dev/null 2>&1
High Level Security

Comment

Medium Level Security
Comment

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

AIX Security Expert /etc/rc.tcpip Settings group
AIX Security Expert comments out specific entries in /etc/rc.tcpip so that they do not start when the
system boots.

The following table lists entries that are commented out in /etc/rc.tcpip so that they do not start when
the system boots.

Table 25. AIX Security Expert /etc/rc.tcpip Settings

Action button
name Description

Value set by AIX
Security Expert Undo

Disable mail
client/Enable mail
client

Comments out or uncomments the following entry from
/etc/rc.tcpip:

start /usr/lib/sendmail "$src_running"

High Level Security
Comment

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Security 361

Table 25. AIX Security Expert /etc/rc.tcpip Settings (continued)

Action button
name Description

Value set by AIX
Security Expert Undo

Disable routing
daemon

Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/routed "$src_running" -q
High Level Security

Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable mrouted
daemon

Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/mrouted "$src_running"
High Level Security

Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable timed
daemon

Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/timed
High Level Security

Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
Yes

Yes

Disable rwhod
daemon

Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/rwhod "$src_running"
High Level Security

Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable print
daemon

Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/lpd "$src_running"
High Level Security

Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

362 AIX Version 7.2: Security

Table 25. AIX Security Expert /etc/rc.tcpip Settings (continued)

Action button
name Description

Value set by AIX
Security Expert Undo

Disable SNMP
daemon/Enable
SNMP daemon

Comments out or uncomments the following entry from
/etc/rc.tcpip:

start /usr/sbin/snmpd "$src_running"

High Level Security
Comment

Medium Level Security
Comment

Low Level Security
Disables the
SNMP daemon

AIX Standard Settings
Uncomment

Yes

Stop DHCP Agent Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/dhcprd "$src_running"
High Level Security

Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Stop DHCP
Server

Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/dhcpsd "$src_running"
High Level Security

Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Stop autoconf6 Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/autoconf6 “"
High Level Security

Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable DNS
daemon

Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/named "$src_running"
High Level Security

Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Security 363

Table 25. AIX Security Expert /etc/rc.tcpip Settings (continued)

Action button
name Description

Value set by AIX
Security Expert Undo

Disable gated
daemon

Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/gated "$src_running"
High Level Security

Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
Yes

Yes

Stop DHCP Client Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/dhcpd "$src_running"
High Level Security

Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable DPID2
daemon

Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/dpid2 "$src_running"
High Level Security

Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable NTP
daemon

Comments out the following entry from /etc/rc.tcpip:

start /usr/sbin/xntpd "$src_running"
High Level Security

Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

AIX Security Expert /etc/inetd.conf Settings group
AIX Security Expert comments out specific entries in /etc/inetd.conf.

Default installation of AIX enables a number of network services that can possibly compromise the
security of the system. AIX Security Expert disables unnecessary and unsecure services by commenting
out their respective entries from the /etc/inetd.conf file. For AIX Standard Settings, these entries are
uncommented. The following table lists entries that are commented out or uncommented in
/etc/inetd.conf.

364 AIX Version 7.2: Security

Table 26. AIX Security Expert /etc/inetd.conf Settings

Action button
name Description

Value set by AIX Security
Expert Undo

Disable sprayd in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

sprayd sunrpc_udp udp wait root \
/usr/lib/netsvc/

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable UDP
chargen service in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

chargen dgram udp wait root internal
High Level Security

Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable telnet /
Enable telnet

Comments out or uncomments the following entry from
/etc/inetd.conf:

telnet stream tcp6 nowait root \
/usr/sbin/telnetd telnetd

High Level Security
Comment

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable UDP
Echo service in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

echo dgram udp wait root internal
High Level Security

Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable tftp in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

tftp dgram udp6 SRC nobody \
/usr/sbin/tftpd tftpd -n

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Security 365

Table 26. AIX Security Expert /etc/inetd.conf Settings (continued)

Action button
name Description

Value set by AIX Security
Expert Undo

Disable krshd
daemon

Comments out the following entry from /etc/inetd.conf:

kshell stream tcp nowait root \
/usr/sbin/krshd krshd

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable rusersd
in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

rusersd sunrpc_udp udp wait root \
/usr/lib/netsvc/

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable rexecd in
/etc/inetd.conf
/ Enable rexecd
in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

exec stream tcp6 nowait root \
/usr/sbin/rexecd rexecd

High Level Security
Comment

Medium Level Security
Comment

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable POP3D Comments out the following entry from /etc/inetd.conf:

pop3 stream tcp nowait root \
/usr/sbin/pop3d pop3d

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable pcnfsd in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

pcnfsd sunrpc_udp udp wait root \
/usr/sbin/rpc.pcnfsd pcnfsd

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

366 AIX Version 7.2: Security

Table 26. AIX Security Expert /etc/inetd.conf Settings (continued)

Action button
name Description

Value set by AIX Security
Expert Undo

Disable bootpd in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

bootps dgram udp wait root \
/usr/sbin/bootpd

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable rwalld in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

rwalld sunrpc_udp udp wait root \
/usr/lib/netsvc/

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable UDP
discard service in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

discard dgram udp wait root \
internal

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable TCP
daytime service
in
/etc/inetd.conf
/ Enable TCP
daytime service
in
/etc/inetd.conf

Commentsout or uncomments the following entry from
/etc/inetd.conf:

daytime stream tcp nowait root \
internal

High Level Security
Comment

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable netstat in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

netstat stream tcp nowait nobody \
/usr/bin/netstat

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Security 367

Table 26. AIX Security Expert /etc/inetd.conf Settings (continued)

Action button
name Description

Value set by AIX Security
Expert Undo

Disable rshd
daemon/Enable
rshd daemon

Comments out or uncomments the following entry from
/etc/inetd.conf:

shell stream tcp6 nowait root \
/usr/sbin/rshd rshd rshd

High Level Security
Comment

Medium Level Security
Comment

Low Level Security
Comment

AIX Standard Settings
Uncomment

Yes

Disable cmsd
service in
/etc/inetd.conf
/ Enable cmsd
service in
/etc/inetd.conf

Comments out or uncomments the following entry from
/etc/inetd.conf:

cmsd sunrpc_udp udp wait root \
/usr/dt/bin/rpc.cms cmsd

High Level Security
Comment

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable
ttdbserver service
in
/etc/inetd.conf
/ Enable
ttdbserver service
in
/etc/inetd.conf

Comments out or uncomments the following entry from
/etc/inetd.conf:

ttdbserver sunrpc_tcp tcp wait \
root /usr/dt/bin/

High Level Security
Comment

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable uucpd in
/etc/inetd.conf
/ Enable uucpd
in
/etc/inetd.conf

Commentsout or uncomments the following entry from
/etc/inetd.conf:

uucp stream tcp nowait root \
/usr/sbin/uucpd uucpd

High Level Security
Comment

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable UDP time
service in
/etc/inetd.conf
/ Enable UDP
time service in
/etc/inetd.conf

Comments out or uncomments the following entry from
/etc/inetd.conf:

time dgram udp wait root internal

High Level Security
Comment

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

368 AIX Version 7.2: Security

Table 26. AIX Security Expert /etc/inetd.conf Settings (continued)

Action button
name Description

Value set by AIX Security
Expert Undo

Disable TCP time
service in
/etc/inetd.conf
/ Enable TCP
time service in
/etc/inetd.conf

Comments out or uncomments the following entry from
/etc/inetd.conf:

time stream tcp nowait root \
internal

High Level Security
Comment

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable rexd in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

rexd sunrpc_tcp tcp wait root \
/usr/sbin/tpc.rexd.rexd rexd

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
Yes

Yes

Disable TCP
chargen service in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

chargen stream tcp nowait root \
internal

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable rlogin in
/etc/inetd.conf
/ Enable rlogin
in
/etc/inetd.conf

Comments out or uncomments the following entry from
/etc/inetd.conf:

login stream tcp6 nowait root \
/usr/sbin/rlogind rlogind

High Level Security
Comment

Medium Level Security
Comment

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable talk in
/etc/inetd.conf

Comments out or uncomments the following entry from
/etc/inetd.conf:

talk dgram udp wait root \
/usr/sbin/talkd talkd

High Level Security
Comment

Medium Level Security
Comment

Low Level Security
Comment

AIX Standard Settings
Uncomment

Yes

Security 369

Table 26. AIX Security Expert /etc/inetd.conf Settings (continued)

Action button
name Description

Value set by AIX Security
Expert Undo

Disable fingerd
in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

finger stream tcp nowait nobody \
/usr/sbin/fingerd fingerd

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable FTP /
Enable FTP

Comments out or uncomments the following entry from
/etc/inetd.conf:

ftp stream tcp6 nowait root \
/usr/sbin/ftpd ftpd

High Level Security
Comment

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable IMAPD Comments out the following entry from /etc/inetd.conf:

imap2 stream tcp nowait root \
/usr/sbin/imapd imapd

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable comsat in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

comsat dgram udp wait root \
/usr/sbin/comsat comsat

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable rquotad
in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

rquotad sunrpc_udp udp wait root \
/usr/sbin/rpc.rquotad

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
Yes

Yes

370 AIX Version 7.2: Security

Table 26. AIX Security Expert /etc/inetd.conf Settings (continued)

Action button
name Description

Value set by AIX Security
Expert Undo

Disable UDP
daytime service
in
/etc/inetd.conf
/ Enable UDP
daytime service
in
/etc/inetd.conf

Comments out or uncomments the following entry from
/etc/inetd.conf:

daytime dgram udp wait root internal

High Level Security
Comment

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Uncomment

Yes

Disable krlogind
in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

klogin stream tcp nowait root \
/usr/sbin/krlogind krlogind

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable TCP
Discard service in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

discard stream tcp nowait root \
internal

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable TCP echo
service in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

echo stream tcp nowait root internal
High Level Security

Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable sysstat in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

systat stream tcp nowait nodby \
/usr/bin/ps ps -ef

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Security 371

Table 26. AIX Security Expert /etc/inetd.conf Settings (continued)

Action button
name Description

Value set by AIX Security
Expert Undo

Disable rstatd in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

rstatd sunrpc_udp udp wait root \
/usr/sbin/rpc.rstatd rstatd

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable dtspc in
/etc/inetd.conf

Comments out the following entry from /etc/inetd.conf:

dtspc stream tcp nowait root \
/usr/dt/bin/dtspcd

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

AIX Security Expert Disable SUID of Commands group
By default, the following commands are installed with the SUID bit set. For High, Medium, and Low
security, this bit is unset. For AIX Standard Settings, the SUID bit is restored on these commands.

Table 27. AIX Security Expert Disable SUID of Commands

Action button name Description
Value set by AIX Security
Expert Undo

hls_filepermgr File Permissions Manager: Runs fpm command with
high option to remove setuid, setgid from privileged
commands

High Level Security Yes

mls_filepermgr File Permissions Manager: Runs fpm command with
medium option to remove setuid, setgid from
privileged commands

Medium Level Security Yes

lls_filepermgr File Permissions Manager: Runs fpm command with
low option to remove setuid, setgid from privileged
commands

Low Level Security Yes

AIX Security Expert Disable Remote Services group
AIX Security Expert disables unsecure commands for High Level Security and Medium Level Security.

The following commands and daemons are exploited frequently for finding security loopholes. For High
Level Security and Medium Level Security, these unsecure commands are denied execute permissions and
the daemons are disabled. For Low Level Security, these commands and daemons are not affected. For
AIX Standard Settings, these commands and daemons are enabled for use.
v rcp

v rlogin

v rsh

v tftp

v rlogind

v rshd

372 AIX Version 7.2: Security

v tftpd

Table 28. AIX Security Expert Disable Remote Services

Action button name Description
Value set by AIX Security
Expert Undo

Enable unsecure daemons If TCB is enabled, sets execute permissions of the rlogind,
rshd, and tftpd daemons, updates the sysck database
with the mode bit changes for these daemons. If TCB is
not enabled, execute permissions on the rlogind, rshd,
and tftpd daemons are set.

High Level Security
No effect

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No effect

Yes

Disable unsecure
commands

1. If TCB is enabled, removes the execute permissions of
the rcp, rlogin, rsh commands and tftp, and updates
the sysck database with the mode bit changes of these
commands. If TCB is not enabled, removes the
execute permissions on the rcp, rlogin, and rsh
commands.

2. Stops the current instances of rcp, rlogin, rsh, tftp,
and uftp commands, unless one of these commands is
the parent process of AIX Security Expert.

3. Adds tcpip: stanza to /etc/security/config to
restrict .netrc usage in ftp and rexec.

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No effect

Yes

Enable unsecure
commands

1. If TCB is enabled, sets the execute permissions of the
rcp, rlogin, rsh, and tftp commands and updates the
sysck database with the mode bit changes of these
commands. If TCB is not enabled, sets the execute
permissions on the rcp, rlogin, and rsh commands.

2. Removes the /etc/security/config file.

High Level Security
No effect

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Disable unsecure
daemons

1. If TCB is enabled, removes execute permissions of the
rlogind, rshd, and tftpd daemons and updates the
sysck database with the mode bit changes of these
daemons. If TCB is not enabled, removes the execute
permissions of the rlogind, rshd, and tftpd daemons.

2. Stops the current instances of the rlogind, rshd, and
tftpd daemons, unless one of these daemons is the
parent process of AIX Security Expert.

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No effect

Yes

Stop NFS daemon v Removes all NFS mounts

v Disables NFS

v Removes NFS startup script from /etc/inittab

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No effect

Yes

Security 373

Table 28. AIX Security Expert Disable Remote Services (continued)

Action button name Description
Value set by AIX Security
Expert Undo

Enable NFS daemon v Exports all entries listed in /etc/exports

v Adds an entry to /etc/inittab to run /etc/rc.nfs on
system restart

v Runs /etc/rc.nfs immediately

High Level Security
No effect

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

AIX Security Expert Remove access that does not require
Authentication group
AIX supports few services that do not require user authentication to log into the network.

The /etc/hosts.equiv file and any local $HOME/.rhosts files define hosts and user accounts that can run
remote commands on a local host without a password. Unless this capability is explicitly required, these
files should be cleared.

Table 29. AIX Security Expert Remove access that does not require Authentication

Action button name Description Value set by AIX Security Expert Undo

Remove rhosts and
netrc services

.rhosts and .netrc files store usernames
and passwords in plain text format, which
can be exploited.

High Level Security
Remove .rhosts and .netrc files from
home directories of all users, including
root.

Medium Level Security
Remove .rhosts and .netrc files from
home directories of all users, including
root.

Low Level Security
Remove .rhosts and .netrc files from
home directory of root.

AIX Standard Settings
Remove .rhosts and .netrc files from
home directories of all users, including
root.

Yes

Remove entries from
/etc/hosts.equiv file

The /etc/hosts.equiv file, along with a
local user's $HOME/.rhosts file, defines
which users on foreign hosts are
permitted to remotely run commands on
the local host. If someone on the foreign
host learns the details of the username
and hostname, they can find ways to run
remote commands on the local host
without any authentication.

High Level Security
Remove all entries from
/etc/hosts.equiv.

Medium Level Security
Remove all entries from
/etc/hosts.equiv.

Low Level Security
Remove all entries from
/etc/hosts.equiv.

AIX Standard Settings
Remove all entries from
/etc/hosts.equiv.

Yes

374 AIX Version 7.2: Security

AIX Security Expert Tuning Network Options group
Tuning network options to the proper values is a large part of security. Setting a network attribute to 0
disables the option and setting the network attribute to 1 enables the option.

The following table lists the network attribute settings for High, Medium, and Low Level Security. This
table also provides a description of how the proposed value of any particular network option helps
ensure the security of the network.

Table 30. AIX Security Expert Tuning Network Options for network security

Action button name Description
Value set by AIX Security
Expert Undo

Network option
ipsrcrouteforward

Specifies whether or not the system forwards
source-routed packets. Disabling ipsrcrouteforward
prevents access through source routing attacks.

High Level Security
0

Medium Level Security
0

Low Level Security
No effect

AIX Standard Settings
1

Yes

Network option
ipignoreredirects

Specifies whether or not to process received redirects.
High Level Security

1

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No limit

Yes

Network option
clean_partial_conns

Specifies whether or not to avoid synchronization
character (SYN) attacks. High Level Security

1

Medium Level Security
1

Low Level Security
1

AIX Standard Settings
No limit

Yes

Network option
ipsrcrouterecv

Specifies whether or not the system accepts source-routed
packets. Disabling ipsrcrouterecv prevents access through
source routing attacks.

High Level Security
0

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No limit

Yes

Security 375

Table 30. AIX Security Expert Tuning Network Options for network security (continued)

Action button name Description
Value set by AIX Security
Expert Undo

Network option
ipforwarding

Specifies whether or not the kernel should forward
packets. Disabling ipforwarding prevents redirected
packets from reaching a remote network.

High Level Security
0

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No limit

Yes

Network option
ipsendredirects

Specifies whether or not the kernel should send redirect
signals. Disabling ipsendredirects prevents redirected
packets from reaching a remote network.

High Level Security
0

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
1

Yes

Network option
ip6srcrouteforward

Specifies whether or not the system forwards
source-routed IPv6 packets. Disabling ip6srcrouteforward
prevents access through source routing attacks.

High Level Security
0

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
1

Yes

Network option
directed_broadcast

Specifies whether or not to permit a directed broadcast to
a gateway. Disabling directed_broadcast helps prevent
directed packets from reaching a remote network.

High Level Security
0

Medium Level Security
0

Low Level Security
0

AIX Standard Settings
No limit

Yes

Network option
tcp_pmtu_discover

Enables or disables path MTU discovery for TCP
applications. Disabling tcp_pmtu_discover prevents access
through source routing attacks.

High Level Security
0

Medium Level Security
0

Low Level Security
0

AIX Standard Settings
1

Yes

376 AIX Version 7.2: Security

Table 30. AIX Security Expert Tuning Network Options for network security (continued)

Action button name Description
Value set by AIX Security
Expert Undo

Network option bcastping Permits response to ICMP echo packets sent to the
broadcast address. Disabling bcastping prevents smurf
attacks.

High Level Security
0

Medium Level Security
0

Low Level Security
0

AIX Standard Settings
No limit

Yes

Network option
icmpaddressmask

Specifies whether or not the system responds to an ICMP
address mask request. Disabling icmpaddressmask
prevents access through source routing attacks.

High Level Security
0

Medium Level Security
0

Low Level Security
0

AIX Standard Settings
No limit

Yes

Network option
udp_pmtu_discover

Enables or disables path maximum transfer unit (MTU)
discovery for UDP applications. Disabling
udp_pmtu_discover prevents access through source
routing attacks.

High Level Security
0

Medium Level Security
0

Low Level Security
0

AIX Standard Settings
1

Yes

Network option
ipsrcroutesend

Specifies whether or not applications can send
source-routed packets. Disabling ipsrcroutesend prevents
access through source routing attacks.

High Level Security
0

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
1

Yes

Network option
nonlocsrcroute

Specifies to the Internet Protocol whether or not strictly
source-routed packets can be addressed to hosts outside
the local network. Disabling nonlocsrcroute prevents
access through source routing attacks.

High Level Security
0

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No limit

Yes

Security 377

Table 30. AIX Security Expert Tuning Network Options for network security (continued)

Action button name Description
Value set by AIX Security
Expert Undo

Network option
tcp_tcpsecure

Protects TCP connections against vulnerabilities.

Values:

v 0 = no protection

v 1 = sending a fake SYN to an established connection

v 2 = sending a fake RST to an established connection

v 3 = injecting data in an established TCP connection

v 5-7 = combination of the above vulnerabilities

High Level Security
7

Medium Level Security
7

Low Level Security
5

AIX Standard Settings
No limit

Yes

Network option
sockthresh

Specifies the network memory usage limit. No new socket
connections are allowed to exceed the value of the
sockthresh tunable.

Specifies the maximum amount of network memory that
can be allocated for sockets.

High Level Security
60

Medium Level Security
70

Low Level Security
85

AIX Standard Settings
No limit

Yes

The following network options are related to network performance rather than network security.

Table 31. AIX Security Expert Tuning Network Options for network performance

Action button name Description
Value set by AIX Security
Expert Undo

Network option rfc1323 The rfc1323 tunable enables the TCP window scaling
option. High Level Security

1

Medium Level Security
1

Low Level Security
1

AIX Standard Settings
No limit

Yes

Network option
tcp_sendspace

The tcp_sendspace tunable specifies how much data the
sending application can buffer in the kernel before the
application is blocked on a send call.

High Level Security
262144

Medium Level Security
262144

Low Level Security
262144

AIX Standard Settings
16384

Yes

Network option
tcp_mssdflt

Default maximum segment size used in communicating
with remote networks. High Level Security

1448

Medium Level Security
1448

Low Level Security
1448

AIX Standard Settings
1460

Yes

378 AIX Version 7.2: Security

Table 31. AIX Security Expert Tuning Network Options for network performance (continued)

Action button name Description
Value set by AIX Security
Expert Undo

Network option
extendednetstats

Enables more-extensive statistics for network memory
services. High Level Security

1

Medium Level Security
1

Low Level Security
1

AIX Standard Settings
No limit

Yes

Network option
tcp_recvspace

The tcp_recvspace tunable specifies how many bytes of
data the receiving system can buffer in the kernel on the
receiving sockets queue.

High Level Security
262144

Medium Level Security
262144

Low Level Security
262144

AIX Standard Settings
16384

Yes

Network option sb_max The sb_max tunable sets an upper limit on the number of
socket buffers queued to an individual socket, which
controls how much buffer space is consumed by buffers
that are queued to a sender's socket or to a receiver's
socket.

High Level Security
1048576

Medium Level Security
1048576

Low Level Security
1048576

AIX Standard Settings
1048576

Yes

AIX Security Expert IPsec filter rules group
AIX Security Expert provides the following IPsec filters.

Table 32. AIX Security Expert IPsec filter rules

Action button name Description
Value set by AIX Security
Expert Undo

Shun host for 5 minutes Shuns or blocks packets intended for several tcp and udp
ports with known vulnerabilities on the host for five
minutes. The host will not accept any packets destined
for these ports for five minutes.

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No effect

Yes

Security 379

Table 32. AIX Security Expert IPsec filter rules (continued)

Action button name Description
Value set by AIX Security
Expert Undo

Guard host against port
scans

Guards against port scans. Any remote host performing a
port scan is shunned or blocked for five minutes. All
packets from this remote host are not accepted for five
minutes.

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
No effect

Yes

AIX Security Expert Miscellaneous group
AIX Security Expert provides miscellaneous security settings for High, Medium, and Low Level Security.

Table 33. AIX Security Expert Miscellaneous group

Action button name Description Value set by AIX Security Expert Undo

Remove dot from
path root

Checks the $HOME/.profile, $HOME/.kshrc, $HOME/.cshrc,
and $HOME/.login files for dots (.) in the PATH
environment variable, and removes them if they exist.
Note: Removing the dots occurs only when the entry in
the file begins with the PATH environment variable and
contains dots (.). The file is not changed if the PATH
environment variable contains other variables or is set to
the value returned from a program that is called from a
script. An example of a path that would not be changed
follows, where pathprog is a program that returns a path
string:

PATH="$(pathprog)"

In this path, the dots are removed from the path before
the content of the variable pathprog is resolved, so any
dots that exist in the returned path are not removed.

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
Yes

Yes

Limit system access Ensures that root is the only user permitted to run cron
jobs. High Level Security

Makes root the only user
in the cron.allow file and
removes the cron.deny
file.

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Removes the cron.allow
file and deletes all entries
in the cron.deny file.

Yes

Remove dot from
/etc/environment

Removes dots (.) from PATH environment variable in
/etc/environment file. High Level Security

Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
Yes

Yes

380 AIX Version 7.2: Security

Table 33. AIX Security Expert Miscellaneous group (continued)

Action button name Description Value set by AIX Security Expert Undo

Remove dot from
non-root path

Removes dots (.) from the PATH environment variable
from the $HOME/.profile, $HOME/.kshrc, $HOME/.cshrc,
and $HOME/.login files of all non-root users.
Note: Removing the dots occurs only when the entry in
the file begins with the PATH environment variable and
contains dots (.). The file is not changed if the PATH
environment variable contains other variables or is set to
the value returned from a program that is called from a
script. An example of a path that would not be changed
follows, where pathprog is a program that returns a path
string:

PATH="$(pathprog)"

In this path, the dots are removed from the path before
the content of the variable pathprog is resolved, so any
dots that exist in the returned path are not removed.

High Level Security
Yes

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No effect

No

Add root user in
/etc/ftpusers file

Add root user name to /etc/ftpusers file to disable
remote root ftp. High Level Security

Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Remove root user in
/etc/ftpusers file

Remove root entry from /etc/ftpusers to enable remote
root ftp. High Level Security

No effect

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
Yes

Yes

Set login herald Checks /etc/security/login.cfg to ensure that a herald
value is not specified. If the default herald is being used,
the herald should be changed. The herald can be changed
only if the system's locale is en_US or another English
locale. If this criteria is met, the herald attribute’s value in
the default stanza of /etc/security/login.cfg file is set
to the following:

Unauthorized use of this \
system is prohibited.\nlogin:

Note: The security setting takes effect only for new
sessions. The security setting does not take effect in the
session where the configuration was set.

High Level Security
herald="Unauthorized use
of this system is
prohibited.\nlogin:"

Medium Level Security
herald="Unauthorized use
of this system is
prohibited.\nlogin:"

Low Level Security
herald="Unauthorized use
of this system is
prohibited.\nlogin:"

AIX Standard Settings
herald=

Yes

Security 381

Table 33. AIX Security Expert Miscellaneous group (continued)

Action button name Description Value set by AIX Security Expert Undo

Remove guest
account

For High, Medium, and Low security, removes the guest
account as well as guest's data on the machine. For AIX
Standard Settings, the guest account is created on the
system.
Note: A system administrator must set the password for
this account explicitly, as AIX Security Expert is not
designed to handle such user interactive tasks.

High Level Security
Remove guest account and
data

Medium Level Security
Remove guest account and
data

Low Level Security
Remove guest account and
data

AIX Standard Settings
Adds the guest account on
the machine.

Yes

Crontab permissions Ensures that root's crontab jobs are owned and writeable
only by root. High Level Security

Yes

Medium Level Security
Yes

Low Level Security
Yes

AIX Standard Settings
No effect

Yes

Enable X-Server
access

Mandates authentication for access to the X-Server.
High Level Security

Authentication required

Medium Level Security
Authentication required

Low Level Security
No effect

AIX Standard Settings
Not needed

No

Object creation
permissions

Sets appropriate value to umask attribute of
/etc/security/user, which specifies default object
creation permissions.

High Level Security
077

Medium Level Security
027

Low Level Security
No effect

AIX Standard Settings
022

Yes

Set core file size Sets appropriate value to core attribute of
/etc/security/limits, which specifies the core file size
for root.
Note: The security setting takes effect only for new
sessions. The security setting does not take effect in the
session where the configuration was set.

High Level Security
0

Medium Level Security
0

Low Level Security
0

AIX Standard Settings
2097151

Yes

382 AIX Version 7.2: Security

Table 33. AIX Security Expert Miscellaneous group (continued)

Action button name Description Value set by AIX Security Expert Undo

Enable SED feature Enables the Stack Execution Disable feature and runs the
sedmgr command on the files specified.
Note: System reboot is needed for the rule to take affect.

High Level Security
setidfiles

Medium Level Security
No effect

Low Level Security
No effect

AIX Standard Settings
No effect

Root Password
Integrity Check

Ensures that the root password is not weak. The
dictionlist attribute of root is set to /etc/security/
aixpert/dictionary/English, so that passwd command
can ensure that the root password being set is not weak.

High Level Security
Yes

Medium Level Security
Yes

Low Level Security
No effect

AIX Standard Settings
No effect

Yes

AIX Security Expert Undo Security
You can undo some AIX Security Expert security settings and rules.

The following AIX Security Expert security settings and rules cannot be undone:
v Check password definitions for High Level Security, Medium Level Security, and Low Level Security
v Check user definitions for High Level Security, Medium Level Security, and Low Level Security
v Check group definitions for High Level Security, Medium Level Security, and Low Level Security
v TCB update for High Level Security, Medium Level Security, and Low Level Security
v Enable X-Server access for High Level Security, Medium Level Security, and Low Level Security
v Remove dot from non-root path for High Level Security and AIX Standard Settings
v Remove guest account for High Level Security, Medium Level Security, and Low Level Security

AIX Security Expert Check Security
AIX Security Expert can generate reports of current system and network security settings.

After AIX Security Expert (aixpert command) is used to configure a system, the Check Security option
can be used to report the various configuration settings. If any of these settings have been changed
outside the control of AIX Security Expert, the AIX Security Expert Check Security option logs these
differences in the /etc/security/aixpert/check_report.txt file.

For example, the talkd daemon is disabled in /etc/inetd.conf when you apply Low Level Security. If
the talkd daemon is later enabled and then Check Security is run, this information will be logged in the
check_report.txt file as follows:
coninetdconf.ksh: Service talk using protocol udp should be disabled, however it is enabled now.

If the applied security settings have not been changed, the check_report.txt file will be empty.

The Check Security option should be run periodically and the resulting report should be reviewed to see
if any settings have been changed since AIX Security Expert security settings were applied. The Check
Security option should also be run as part of any major system change such as the installation or
updating of software.

Security 383

Related information:
aixpert command

AIX Security Expert files
AIX Security Expert creates and uses several files.

/etc/security/aixpert/core/aixpertall.xml
Contains an XML listing of all possible security settings.

/etc/security/aixpert/core/appliedaixpert.xml
Contains an XML list of applied security settings.

/etc/security/aixpert/core/secaixpert.xml
Contains an XML listing of selected security settings when processed by the AIX Security Expert
GUI.

/etc/security/aixpert/log/aixpert.log
Contains a trace log of applied security settings. AIX Security Expert does not use syslog; AIX
Security Expert writes directly to /etc/security/aixpert/log/aixpert.log.

Note: The AIX Security Expert XML and log files are created with the following permissions:

/etc/security/aixpert/
drwx------

/etc/security/aixpert/core/
drwx------

/etc/security/aixpert/core/aixpertall.xml
r--------

/etc/security/aixpert/core/appliedaixpert.xml

/etc/security/aixpert/core/secaixpert.xml

/etc/security/aixpert/log
drwx------

/etc/security/aixpert/log/aixpert.log
-rw-------

/etc/security/aixpert/core/secundoaixpert.xml
rw-------

/etc/security/aixpert/check_report.txt
rw-------

AIX Security Expert High level security scenario
This is a scenario for AIX Security Expert High level security.

The AIX Security Expert view of security levels is derived in part from the National Institute of Standards
and Technology document Security Configuration Checklists Progarm for IT Pruducts - Guidance for CheckLists
Users and Developers (search for the publication name on the NIS Web site: http://www.nist.gov/
index.html). However, High, Medium, and Low level security mean different things to different people. It
is important to understand the environment in which your system operates. If you chose a security level
that too high, you could lock yourself out of your computer. If you chose a security level that is too low,
your computer might be vulnerable to a cyber attack.

This is an example of an environment that requires High Level Security. Bob will be colocating his system
with an Internet service provider. The system will be connected directly to the Internet, will run as a

384 AIX Version 7.2: Security

http://www.nist.gov/index.html
http://www.nist.gov/index.html

HTTP server, will contain sensitive user data, and needs to be administered remotely by Bob. The system
should be set up and tested on an isolated local network before the system is put online with the ISP.

High level security is the correct security level for this environment, but Bob needs remote access to the
system. High level security does not permit telnet, rlogin, ftp, and other common connections that
transmit passwords over the network in the clear. These passwords can easily be snooped by someone on
the Internet. Bob needs a secure method to log in remotely, such as openssh. Bob can read the complete
AIX Security Expert documentation to see if there is anything unique to his environment that might be
inhibited by High level security. If so, he can deselect this when the detailed High level security panel is
displayed. Bob should also configure and start the HTTP server or any other services he intends to offer
on his system.

When Bob then selects High level security, AIX Security Expert will recognize that the running services
are required and will not block access to their ports. Access to all other ports could be a vulnerability and
High level security will block these ports. After testing this configuration, Bob's machine is now ready to
go live on the Internet.

AIX Security Expert Medium level security scenario
This is a scenario for AIX Security Expert Medium level security.

Alice needs to security harden a system that will be connected to the corporate network, which resides
behind the corporate firewall. The network is secure and well-administered. This system will be used by
a large number of users who need to access the system telnet and ftp. Alice wants the common security
settings in place, such as port scan protection and password expirations, but the system must also be
open to most remote access methods. In this scenario, Medium level security is the most appropriate
security setting for Alice's system.

AIX Security Expert Low level security scenario
This is a scenario for AIX Security Expert Low level security.

Bruce has been administering a system for some time. The system resides on an isolated secure local
network. This system is used for a wide variety of people and services. He wants to bring the system up
from the minimal level of security, but cannot interrupt any form of access to the system. Low level
security is the correct security level for Bruce's machine.

Security checklist
The following is a checklist of security actions to perform on a newly installed or existing system.

Although this list is not a complete security checklist, it can be used as a foundation to build a security
checklist for your environment.
v When installing a new system, install AIX from secure base media. Perform the following procedures

at installation time:
– Do not install desktop software, such as CDE, GNOME, or KDE, on servers.
– Install required security fixes and any recommended maintenance and technology level fixes. See the

IBM System p eServer™ Support Fixes website (http://www.ibm.com/support/fixcentral) for the
newest service bulletins, security advisories, and fix information.

– Back up the system after the initial installation and store the system backup in a secure location.
v Establish access control lists for restricted files and directories.
v Disable unnecessary user accounts and system accounts, such as daemon, bin, sys, adm, lp, and uucp.

Deleting accounts is not recommended because it deletes account information, such as user IDs and

Security 385

user names, which may still be associated with data on system backups. If a user is created with a
previously deleted user ID and the system backup is restored on the system, the new user might have
unexpected access to the restored system.

v Review the /etc/inetd.conf, /etc/inittab, /etc/rc.nfs, and /etc/rc.tcpip files on a regular basis
and remove all unnecessary daemons and services.

v Verify that the permissions for the following files are set correctly:
-rw-rw-r-- root system /etc/filesystems
-rw-rw-r-- root system /etc/hosts
-rw------- root system /etc/inittab
-rw-r--r-- root system /etc/vfs
-rw-r--r-- root system /etc/security/failedlogin
-rw-rw---- root audit /etc/security/audit/hosts

v Disable the root account from being able to remotely log in. The root account should be able to log in
only from the system console.

v Enable system auditing. For more information, see “Auditing overview” on page 130.
v Enable a login control policy. For more information, see “Login control” on page 33.
v Disable user permissions to run the xhost command. For more information, see “Managing X11 and

CDE concerns” on page 39.
v Prevent unauthorized changes to the PATH environment variable. For more information, see “PATH

environment variable” on page 54.
v Disable telnet, rlogin, and rsh. For more information, see “TCP/IP security” on page 201.
v Establish user account controls. For more information, see “User account control” on page 51.
v Enforce a strict password policy. For more information, see “Passwords” on page 62.
v Establish disk quotas for user accounts. For more information, see “Recovering from over-quota

conditions” on page 74.
v Allow only administrative accounts to use the su command. Monitor the su command's logs in the

/var/adm/sulog file.
v Enable screen locking when using X-Windows.
v Restrict access to the cron and at commands to only the accounts that need access to them.
v Use an alias for the ls command to show hidden files and characters in a file name.
v Use an alias for the rm command to avoid accidentally deleting files from the system.
v Disable unnecessary network services. For more information, see “Network services” on page 209.
v Perform frequent system backups and verify the integrity of backups.
v Subscribe to security-related e-mail distribution lists.

Summary of common AIX system services
The following table lists the more common system services within AIX. Use this table to recognize a
starting point for securing your system.

Before you secure your system, back up all your original configuration files, especially the following:
v /etc/inetd.conf

v /etc/inittab

v /etc/rc.nfs

v /etc/rc.tcpip

386 AIX Version 7.2: Security

Service Daemon Started by Function Comments

inetd/bootps inetd /etc/inetd.conf bootp services to
diskless clients

v Necessary for Network Installation
Management (NIM) and remote
booting of systems

v Works concurrently with tftp

v Disable in most cases

inetd/chargen inetd /etc/inetd.conf character
generator (testing
only)

v Available as a TCP and UDP service

v Provides opportunity for Denial of
Service attacks

v Disable unless you are testing your
network

inetd/cmsd inetd /etc/inetd.conf calendar service
(as used by CDE)

v Runs as root, therefore a security
concern

v Disable unless you require this
service with CDE

v Disable on back room database
servers

inetd/comsat inetd /etc/inetd.conf Notifies incoming
electronic mail

v Runs as root, therefore a security
concern

v Seldom required

v Disable

inetd/daytime inetd /etc/inetd.conf obsolete time
service (testing
only)

v Runs as root

v Available as a TCP and UDP service

v Provides opportunity for a Denial of
Service PING attacks

v Service is obsolete and used for
testing only

v Disable

inetd/discard inetd /etc/inetd.conf /dev/null service
(testing only)

v Available as TCP and UDP service

v Used in Denial of Service Attacks

v Service is obsolete and used for
testing only

v Disable

inetd/dtspc inetd /etc/inetd.conf CDE Subprocess
Control

v This service is started automatically
by the inetd daemon in response to
a CDE client requesting a process to
be started on the daemon's host.
This makes it vulnerable to attacks

v Disable on back room servers with
no CDE

v CDE might be able to function
without this service

v Disable unless absolutely needed

inetd/echo inetd etc/inetd.conf echo service
(testing only)

v Available as UDP and TCP service

v Could be used in Denial of Service
or Smurf attacks

v Used to echo at someone else to get
through a firewall or start a
datastorm

v Disable

Security 387

Service Daemon Started by Function Comments

inetd/exec inetd /etc/inetd.conf remote execution
service

v Runs as root user

v Requires that you enter a user ID
and password, which are passed
unprotected

v This service is highly susceptible to
being snooped

v Disable

inetd/finger inetd /etc/inetd.conf finger peeking at
users

v Runs as root user

v Gives out information about your
systems and users

v Disable

inetd/ftp inetd /etc/inetd.conf file transfer
protocol

v Runs as root user

v User id and password are
transferred unprotected, thus
allowing them to be snooped

v Disable this service and use a public
domain secure shell suite

inetd/imap2 inetd /etc/inetd.conf Internet Mail
Access Protocol

v Ensure that you are using the latest
version of this server

v Only necessary if you are running a
mail server. Otherwise, disable

v User ID and password are passed
unprotected

inetd/klogin inetd /etc/inetd.conf Kerberos login v Enabled if your site uses Kerberos
authentication

inetd/kshell inetd /etc/inetd.conf Kerberos shell v Enabled if your site uses Kerberos
authentication

inetd/login inetd /etc/inetd.conf rlogin service v Susceptible to IP spoofing, DNS
spoofing

v Data, including User IDs and
passwords, is passed unprotected

v Runs as root user

v Use a secure shell instead of this
service

inetd/netstat inetd /etc/inetd.conf reporting of
current network
status

v Could potentially give network
information to hackers if run on
your system

v Disable

inetd/ntalk inetd /etc/inetd.conf Allows users to
talk with each
other

v Runs as root user

v Not required on production or back
room servers

v Disable unless absolutely needed

inetd/pcnfsd inetd /etc/inetd.conf PC NFS file
services

v Disable service if not currently in
use

v If you need a service similar to this,
consider Samba, as the pcnfsd
daemon predates Microsoft's release
of SMB specifications

388 AIX Version 7.2: Security

Service Daemon Started by Function Comments

inetd/pop3 inetd /etc/linetd.conf Post Office
Protocol

v User IDs and passwords are sent
unprotected

v Only needed if your system is a
mail server and you have clients
who are using applications that
only support POP3

v If your clients use IMAP, use that
instead, or use the POP3s service.
This service has a Secure Socket
Layer (SSL) tunnel

v Disable if you are not running a
mail server or have clients who
need POP services

inetd/rexd inetd /etc/inetd.conf remote execution v Runs as root user

v Peers with the on command

v Disable service

v Use rshand rshd instead

inetd/quotad inetd /etc/inetd.conf reports of file
quotas (for NFS
clients)

v Only needed if you are running
NFS file services

v Disable this service unless required
to provide an answer for the quota
command

v If you need to use this service, keep
all patches and fixes for this service
up to date

inetd/rstatd inetd /etc/inetd.conf Kernel Statistics
Server

v If you need to monitor systems, use
SNMP and disable this service

v Required for use of the rup
command

inetd/rusersd inetd /etc/inetd.conf info about user
logged in

v This is not an essential service.
Disable

v Runs as root user

v Gives out a list of current users on
your system and peers with rusers

inetd/rwalld inetd /etc/inetd.conf write to all users v Runs as root user

v If your systems have interactive
users, you might need to keep this
service

v If your systems are production or
database servers, this is not needed

v Disable

inetd/shell inetd /etc/inetd.conf rsh service v Disable this service if possible. Use
Secure Shell instead

v If you must use this service, use the
TCP Wrapper to stop spoofing and
limit exposures

v Required for theXhier software
ditribution program

inetd/sprayd inetd /etc/inetd.conf RPC spray tests v Runs as root user

v Might be required for diagnosis of
NFS network problems

v Disable if you are not running NFS

Security 389

Service Daemon Started by Function Comments

inetd/systat inetd /etc/inted.conf "ps -ef" status
report

v Allows for remote sites to see the
process status on your system

v This service is disabled by default.
You must check periodically to
ensure that the service has not been
enabled

inetd/talk inetd /etc/inetd.conf establish split
screen between 2
users on the net

v Not a required service

v Used with the talk command

v Provides UDP service at Port 517

v Disable unless you need multiple
interactive chat sessions for UNIX
user

inetd/ntalk inetd /etc/inetd.conf "new talk"
establish split
screen between 2
users on the net

v Not a required service

v Used with the talk command

v Provides UDP service at Port 517

v Disable unless you need multiple
interactive chat sessions for UNIX
user

inetd/telnet inetd /etc/inetd.conf telnet service v Supports remote login sessions, but
the password and ID are passed
unprotected

v If possible, disable this service and
use Secure Shell for remote access
instead

inetd/tftp inetd /etc/inetd.conf trivial file
transfer

v Provides UDP service at port 69

v Runs as root user and might be
compromised

v Used by NIM

v Disable unless you are using NIM
or have to boot a diskless
workstation

inetd/time inetd /etc/inetd.conf obsolete time
service

v Internal function of inetd that is
used by rdate command.

v Available as TCP and UDP service

v Sometimes used to synchronize
clocks at boot time

v Service is outdated. Use ntpdate
instead

v Disable this only after you have
tested your systems (boot/reboot)
with this service disabled and have
observed no problems

inetd/ttdbserver inetd /etc/inetd.conf tool-talk database
server (for CDE)

v The rpc.ttdbserverd runs as root
user and might be compromised

v Stated as a required service for
CDE, but CDE is able to work
without it

v Should not be run on back room
servers or any systems where
security is a concern

inetd/uucp inetd /etc/inetd.conf UUCP network v Disable unless you have an
application that uses UUCP

390 AIX Version 7.2: Security

Service Daemon Started by Function Comments

inittab/dt init /etc/rc.dt script in the
/etc/inittab

desktop login to
CDE environment

v Starts the X11 server on the console

v Supports the X11 Display Manager
Control Protocol (xdcmp) so that
other X11 stations can log into the
same machine

v Service should be used on personal
workstations only. Avoid using it for
back room systems

inittab/dt_nogb init /etc/inittab desktop login to
CDE environment
(NO graphic
boot)

v No graphical display until the
system is up fully

v Same concerns as inittab/dt

inittab/httpdlite init /etc/inittab web server for
the docsearch
command

v Default web server for the
docsearch engine

v Disable unless your machine is a
documentation server

inittab/i4ls init /etc/inittab license manager
servers

v Enable for development machines

v Disable for production machines

v Enable for back room database
machines that have license
requirements

v Provides support for compilers,
database software, or any other
licensed products

inittab/imqss init /etc/inittab search engine for
"docsearch"

v Part of the default web server for
the docsearch engine

v Disable unless your machine is a
documentation server

inittab/lpd init /etc/inittab BSD line printer
interface

v Accepts print jobs from other
systems

v You can disable this service and still
send jobs to the print server

v Disable this after you confirm that
printing is not affected

inittab/nfs init /etc/inittab Network File
System/Net
Information
Services

v NFS and NIS services based which
were built on UDP/RPC

v Authentication is minimal

v Disable this for back room machines

inittab/piobe init /etc/inittab printer IO Back
End (for printing)

v Handles the scheduling, spooling
and printing of jobs submitted by
the qdaemon daemon

v Disable if you are not printing from
your system because you are
sending print job to a server

inittab/qdaemon init /etc/inittab queue daemon
(for printing

v Submits print jobs to the piobe
daemon

v If you are not printing from your
system, then disable

inittab/uprintfd init /etc/inittab kernel messages v Generally not required

v Disable

Security 391

Service Daemon Started by Function Comments

inittab/writesrv init /etc/inittab writing notes to
ttys

v Only used by interactive UNIX
workstation users

v Disable this service for servers, back
room databases, and development
machines

v Enable this service for workstations

inittab/xdm init /etc/inittab traditional X11
Display
Management

v Do not run on back room
production or database servers

v Do not run on development systems
unless X11 display management is
needed

v Acceptable to run on workstations if
graphics are needed

rc.nfs/automountd /etc/rc.nfs automatic file
systems

v If you use NFS, enable this for
workstations

v Do not use the automounter for
development or back room servers

rc.nfs/biod /etc/rc.nfs Block IO Daemon
(required for NFS
server)

v Enabled for NFS server only

v If not an NFS server, then disable
this along with nfsd and
rpc.mountd

rc.nfs/keyserv /etc/rc.nfs Secure RPC Key
server

v Manages the keys required for
secure RPC

v Disable this if you are not using
NFS and NIS

rc.nfs/nfsd /etc/rc.nfs NFS Services
(required for NFS
Server)

v Authentication is weak

v Can lend itself to stack frame
crashing

v Enable if on NFS file servers

v If you disable this, then disable
biod, nfsd, and rpc.mountd as well

rc.nfs/rpc.lockd /etc/rc.nfs NFS file locks v Disable if you are not using NFS

v Disable this if you are not using file
locks across the network

v lockd daemon is mentioned in the
SANS Top Ten Security Threats

rc.nfs/rpc.mountd /etc/rc.nfs NFS file mounts
(required for NFS
Server)

v Authentication is weak

v Can lend itself to stack frame
crashing

v Should be enabled only on NFS file
servers

v If you disable this, then disable
biod and nfsd as well

rc.nfs/rpc.statd /etc/rc.nfs NFS file locks (to
recover them)

v Implements file locks across NFS

v Disable unless you are using NFS

rc.nfs/rpc.yppasswdd /etc/rc.nfs NIS password
daemon (for NIS
master)

v Used to manipulate the local
password file

v Only required when the machine in
question is the NIS master; disable
in all other cases

392 AIX Version 7.2: Security

Service Daemon Started by Function Comments

rc.nfs/ypupdated /etc/rc.nfs NIS Update
daemon (for NIS
slave)

v Receives NIS database maps pushed
from the NIS Master

v Only required when the machine in
question is a NIS slave to a Master
NIS Server

rc.tcpip/autoconf6 /etc/rc.tcpip IPv6 interfaces v Disable unless you are running IP
Version 6

rc.tcpip/dhcpcd /etc/rc.tcpip Dynamic Host
Configure
Protocol (client)

v Back room servers should not rely
on DHCP. Disable this service

v If your host is not using DHCP,
disable

rc.tcpip/dhcprd /etc/rc.tcpip Dynamic Host
Configure
Protocol (relay

v Grabs DHCP broadcasts and sends
them to a server on another
network

v Duplicate of a service found on
routers

v Disable this if you are not using
DHCP or rely on passing
information between networks

rc.tcpip/dhcpsd /etc/rc.tcpip Dynamic Host
Configure
Protocol (server

v Answers DHCP requests from
clients at boot time; gives client
information, such as IP name,
number, netmask, router, and
broadcast address

v Disable this if you are not using
DHCP

v Disabled on production and back
room servers along with hosts not
using DHCP

rc.tcpip/dpid2 /etc/rc.tcpip outdated SNMP
service

v Disable unless you need SNMP

rc.tcpip/gated /etc.rc.tcpip gated routing
between
interfaces

v Emulates router function

v Disable this service and use RIP or
a router instead

rc.tcpip/inetd /etc/rc.tcpip inetd services v A thoroughly secured system
should have this disabled, but is
often not practical

v Disabling this will disable remote
shell services which are required for
some mail and web servers

rc.tcpip/mrouted /etc/rc.tcpip multi-cast routing v Emulates router function of sending
multi-cast packets between network
segments

v Disable this service. Use a router
instead

rc.tcpip/names /etc/rc.tcpip DNS name server v Use this only if your machine is a
DNS name server

v Disable for workstation,
development and production
machines

rc.tcpip/ndp-host /etc/rc.tcpip IPv6 host v Disable unless you use IP Version 6

rc.tcpip/ndp-router /etc/rc.tcpip IPv6 routing v Disable this unless you use IP
Version 6. Consider using a router
instead of IP Version 6

Security 393

Service Daemon Started by Function Comments

rc.tcpip/portmap /etc/rc.tcpip RPC services v Required service

v RPC servers register with portmap
daemon. Clients who need to locate
RPC services ask the portmap
daemon to tell them where a
particular service is located

v Disable only if you have managed
to reduce RPC service so that the
only one remaining is portmap

rc.tcpip/routed /etc/rc.tcpip RIP routing
between
interfaces

v Emulates router function

v Disable if you have a router for
packets between networks

rc.tcpip/rwhod /etc/rc.tcpip Remote "who"
daemon

v Collects and broadcasts data to peer
servers on the same network

v Disable this service

rc.tcpip/sendmail /etc/rc.tcpip mail services v Runs as root user

v Disable this service unless the
machine is used as a mail server

v If disabled, then do one of the
following:

– Place an entry in crontab to clear
the queue. Use the
/usr/lib/sendmail -q command

– Configure DNS services so that
the mail for your server is
delivered to some other system

rc.tcpip/snmpd /etc/rc.tcpip Simple Network
Management
Protocol

v Disable if you are not monitoring
the system via SNMP tools

v SNMP may be required on critical
servers

rc.tcpip/syslogd /etc/rc.tcpip system log of
events

v Disabling this service is not
recommended

v Prone to denial of service attacks

v Required in any system

rc.tcpip/timed /etc/rc.tcpip Old Time
Daemon

v Disable this service and use xntp
instead

rc.tcpip/xntpd /etc/rc.tcpip New Time
Daemon

v Keeps clocks on systems in sync

v Disable this service.

v Configure other systems as time
servers and let other systems
synchronize to them with a cron job
that calls ntpdate

dt login /usr/dt/config/Xaccess unrestricted CDE v If you are not providing CDE login
to a group of X11 stations, you can
restrict dtlogin to the console.

anonymous FTP service user rmuser -p <username> anonymous ftp v Anonymous FTP ability prevents
you from tracing FTP usage to a
specific user

v Remove user ftp if that user account
exists, as follows: rmuser -p ftp

v Further security can be obtained by
populating the /etc/ftpusers file
with a list of those who should not
be able to ftp to your system

394 AIX Version 7.2: Security

Service Daemon Started by Function Comments

anonymous FTP writes anonymous ftp
uploads

v No file should belong to ftp.

v FTP anonymous uploads allow the
potential for misbehaving code to
be placed on your system.

v Put the names of those users you
want to disallow into the
/etc/ftpusers file

v Some examples of system-created
users you might want to disallow
from anonymously uploading via
FTP to your system are: root,
daemon, bin.sys, admin.uucp, guest,
nobody, lpd, nuucp, ladp

v Change the owner and group rights
to the ftpusers files as follows:
chown root:system /etc/ftpusers

v Change the permissions to the
ftpusers files to a stricter setting as
follows: chmod 644 /etc/ftpusers

ftp.restrict ftp to system
accounts

v No user from the outside should be
allowed to replace root files using
ftpusers file

root.access /etc/security/user rlogin/telnet to
root account

v Set the rlogin option in the
etc/security/user file to false

v Anyone logging in as root should
first log in under their own name
and then su to root; this provides
an audit trail

snmpd.readWrite /etc/snmpd.conf SNMP readWrite
communities

v If you are not using SNMP, disable
the SNMP daemon.

v Disable community private and
community system in the
/etc/snmpd.conf file

v Restrict 'public' community to those
IP addresses that are monitoring
your system

syslog.conf configure syslogd v If you have not configured
/etc/syslog.conf, then disable this
daemon

v If you are using syslog.conf to log
system messages, then keep enabled

Summary of network service options
To achieve a higher level of system security, there are several network options that you can change using
0 to disable and 1 to enable. The following list identifies these parameters you can use with the no
command.

Security 395

Parameter Command Purpose

bcastping /usr/sbin/no -o bcastping=0 Allows response to ICMP echo packets to
the broadcast address. Disabling this
prevents Smurf attacks.

clean_partial_conns /usr/sbin/no -o clean_partial_conns=1 Specifies whether or not SYN
(synchronizes the sequence number)
attacks are being avoided.

directed_broadcast /usr/sbin/no -o directed_broadcast=0 Specifies whether to allow a directed
broadcast to a gateway. Setting to 0 helps
prevent directed packets from reaching a
remote network.

icmpaddressmask /usr/sbin/no -o icmpaddressmask=0 Specifies whether the system responds to
an ICMP address mask request. Disabling
this prevents access through source
routing attacks.

ipforwarding /usr/sbin/no -o ipforwarding=0 Specifies whether the kernel should
forward packets. Disabling this prevents
redirected packets from reaching remote
network.

ipignoreredirects /usr/sbin/no -o ipignoreredirects=1 Specifies whether to process redirects that
are received.

ipsendredirects /usr/sbin/no -o ipsendredirects=0 Specifies whether the kernel should send
redirect signals. Disabling this prevents
redirected packets from reaching remote
network.

ip6srcrouteforward /usr/sbin/no -o ip6srcrouteforward=0 Specifies whether the system forwards
source-routed IPv6 packets. Disabling this
prevents access through source routing
attacks.

ipsrcrouteforward /usr/sbin/no -o ipsrcrouteforward=0 Specifies whether the system forwards
source-routed packets. Disabling this
prevents access through source routing
attacks.

ipsrcrouterecv /usr/sbin/no -o ipsrcrouterecv=0 Specifies whether the system accepts
source-routed packets. Disabling this
prevents access through source routing
attacks

ipsrcroutesend /usr/sbin/no -o ipsrcroutesend=0 Specifies whether applications can send
source-routed packets. Disabling this
prevents access through source routing
attacks.

nonlocsroute /usr/sbin/no -o nonlocsrcroute=0 Tells the Internet Protocol that strictly
source-routed packets may be addressed
to hosts outside the local network.
Disabling this prevents access through
source routing attacks.

tcp_icmpsecure /usr/sbin/no -o tcp_icmpsecurer=1 Protects TCP connections against ICMP
(Internet Control Message Protocol) source
quench and PMTUD (Path MTU
Discovery) attacks. Checks the payload of
the ICMP message to test the sequence
number of the TCP header is within the
range of acceptable sequence numbers.
Values: 0=off (default); 1=on.

ip_nfrag /usr/sbin/no -o ip_nfrag=200 Specifies the maximum number of
fragments of an IP packet that can be kept
on the IP reassembly queue at a time
(default value of 200 keeps up to 200
fragments of an IP packet in the IP
reassembly queue).

396 AIX Version 7.2: Security

Parameter Command Purpose

tcp_pmtu_discover /usr/sbin/no -o tcp_pmtu_discover=0 Disabling this prevents access through
source routing attacks.

tcp_tcpsecure /usr/sbin/no -o tcp_tcpsecure=7 Protects TCP connections against
vulnerabilities. Values: 0=no protection;
1=sending a fake SYN to an established
connection; 2=sending a fake RST to an
established connection; 3=injecting data in
an established TCP connection;
5–7=combination of the above
vulnerabilities.

udp_pmtu_discover /usr/sbin/no -o udp_pmtu_discover=0 Enables or disables path MTU discovery
for TCP applications. Disabling this
prevents access through source routing
attacks.

For more information about network-tunable options, see Performance management.

Trusted AIX
Trusted AIX enables Multi Level Security (MLS) capabilities in AIX.

Note: MLS is also referred to as label-based security.

As compared to regular AIX, Trusted AIX label-based security implements labels for all subjects and
objects in the system.

Note: The Trusted AIX install option enables the Labeled Security AIX environment. Access controls in
the system are based on labels that provide for a Multi Level Security (MLS) environment and includes
support for the following:
v Labeled objects: Files, IPC objects, network packets, and other labeled objects
v Labeled printers
v Trusted Network: Support for RIPSO and CIPSO in IPv4 and IPv6

Please note that once you choose this mode of installation, you will not be able to go back to a regular
AIX environment without performing an overwrite install of regular AIX. Evaluate your need for a
Trusted AIX environment before choosing this mode of install. More details about Trusted AIX can be
found in the AIX publicly available documentation.

Standard AIX provides a set of security features to allow information managers and administrators to
provide a basic level of system and network security. The primary AIX security features include the
following:
v login and password controlled system and network access
v user, group, and world file access permissions
v access control lists (ACLs)
v Audit subsystem
v Role Based Access Control (RBAC)

Trusted AIX builds upon these primary AIX operating system security features to further enhance and
extend AIX security into the networking subsystems.

Security 397

Trusted AIX is compatible with the AIX application programming interface (API). Any application that
runs on AIX can also run on Trusted AIX. However, due to additional security restrictions, MLS-unaware
applications may need privileges to operate in a Trusted AIX environment. The tracepriv command can
be used to profile applications in such scenarios.

Trusted AIX extends the AIX API to support additional security functionality. This allows customers to
develop their own secure applications can be developed using the AIX API and new Trusted AIX
extensions.

Trusted AIX enables AIX systems to process information at multiple security levels. It is designed to meet
the US Department of Defense (DoD) TCSEC and European ITSEC criteria for enhanced B1 security.

See Securing the Base Operating System and Securing the Network for information on standard AIX
security.

Introduction to Trusted AIX
Trusted AIX enhances the security of the standard AIX operating system by providing for
label-based-security capabilities within the operating system.

Trusted AIX label-based environment can be installed by choosing the install time options. If you install
Trusted AIX, you will not be able to go back to a regular AIX environment without performing an
overwrite install of regular AIX. Once installed, Trusted AIX environment will apply to the entire AIX
system, including any WPARs created within the AIX environment. While label based security (also
termed as Multi Level Security, or MLS) is often used in the defence and intelligence industries, it can
also be used in the commercial industries. This can be achieved by customizing the labels available on
Trusted AIX. A fresh install of Trusted AIX provides for labels that adhere to standard MLS
implementations.

Trusted AIX environment consists of regular AIX with some additional packages and file sets.
Additionally, kernel switches will force the kernel to operate in Trusted AIX mode. When booted through
a CD or DVD, the system boots in the regular AIX environment. When install menus are displayed, the
installer can choose the Trusted AIX option and start installing the MLS-related files. When installation is
complete, the installer must initiate the first boot resequence. During the first boot sequence, Config
Assistant provides menus for the various users and ISSO, SA, and SO users are set up; then, the system
completes the boot operation and the MLS is established.

Trusted AIX enhances system security through four primary elements of information security:
v Confidentiality
v Integrity
v Availability
v Accountability

In addition to the security features provided by AIX, Trusted AIX adds the following capabilities:

Sensitivity labels (SLs)
All processes and files are labeled according to their security level. Processes can only access
objects that are within the process' security range.

Integrity labels (TLs)
All processes and files are labeled according to their integrity level. Files cannot be written by
processes that have a lower integrity level label than the file. Processes cannot read from files that
have a lower integrity level label than the process.

File security flags
Individual files can have additional flags to control security related operations.

398 AIX Version 7.2: Security

system_security_part.htm
network_internet_security_part.htm

Kernel security flags
The entire system can have different security features enabled or disabled.

Privileges
Many commands and system calls are only available to processes with specific privileges.

Authorizations
Each user can be granted a unique set of authorizations. Each authorization allows the user to
perform specific security-related functions. Authorizations are assigned to users through roles.

Roles Role Based Access Control function, as part of Trusted AIX, provides for selective delegation of
administrative duties to non-root users. This delegation is achieved by collecting the relevant
authorizations into a Role and then assigning the role to a non-root user.

Confidentiality

Threats centered around disclosure of information to unauthorized parties are a confidentiality issue.

Trusted AIX provides object reuse and access control mechanisms for protecting all data resources. The
operating system ensures that protected data resources can only be accessed by specifically authorized
users and that those users cannot make the protected resources available to unauthorized users either
deliberately or accidentally.

Administrators can prevent sensitive files from being written to floppy disks or other removable media,
from being printed on unprotected printers, or from being transferred over a network to unauthorized
remote systems. This security protection is enforced by the operating system and cannot be bypassed by
malicious users or rogue processes.

Integrity

Threats centered around modification of information by unauthorized parties are an integrity issue.

Trusted AIX offers numerous security mechanisms which ensure the integrity of trusted computing base
and protected data, whether the data is generated on the system or imported via network resources.
Various access control security mechanisms ensure that only authorized individuals can modify
information. To prevent malicious users or rogue processes from seizing or disabling system resources,
Trusted AIX eliminates the root privilege. Special administrative authorizations and roles allow the
separation of administration duties, rather than giving a user root privileges.

Availability

Threats centered around accessibility of services on a host machine are an availability issue. For example,
if a malicious program fills up file space so that a new file cannot be created, there is still access, but no
availability.

Trusted AIX protects the system from attacks by unauthorized users and processes that can create a
denial of service. Unprivileged processes are not allowed to read or write protected files and directories.

Accountability

Threats centered around not knowing which processes performed which actions on a system are an
accountability issue. For example, if the user or process that altered a system file cannot be traced, you
cannot determine how to stop such actions in the future.

This enhanced security feature ensures identification and authentication of all users prior to allowing user
access to the system. The audit services provide the administrator a set of auditable events and an audit
trail of all security-related system events.

Security 399

Properties ofTrusted AIX
v Trusted AIX is installed through the AIX install menus. Additional options can be chosen during

installation of Trusted AIX.
v Trusted AIX environment cannot revert to regular AIX environment without performing an overwrite

install of regular AIX.
v Root is disabled from logging in a Trusted AIX environment.
v In a Trusted AIX environment, any WPARs created will also operate in the Labeled Security

environment.
v Trusted AIX supports both MAC (Mandatory Access Control) and MIC (Mandatory Integrity Control).

Customer can define separate sets of labels for MAC and MIC.
v Label Encodings file is located in the /etc/security/enc directory and captures the label-to-binary

translation information. The default Label Encodings file adheres to the Compartmented Mode
Workstations (CMW) labels-related naming requirements.

v NIM installs are supported when initiated from Client. NIM install push from Server is not possible
because root is disabled for logins on MLS systems.

v The JFS2 (J2) file system (using Extended Attributes version 2) has been enabled for storing Labels in
AIX. Other file systems (such as J1 or NFS) can only be mounted in a Trusted AIX environment as
single-level file systems (label assigned to the mount point).

v X environment is disabled for Trusted AIX.
v Trusted AIX supports CIPSO and RIPSO protocols for netowork-based label-based communication.

These protocols are supported for both IPv4 and IPv6.
v Some AIX security mechanisms are common between regular AIX and Trusted AIX. Two of these

common security mechanisms are Role Based Access Control (RBAC) and Trusted Execution for
integrity verification.

v Since root is disabled when Trusted AIX is installed, the installer must set up passwords for ISSO, SA,
and SO users during the first boot after install. The system remains unusable until these passwords are
created.

v The AIX 6 security features Redbooks® publication contains use cases and examples for Trusted AIX.

Multi-level security
The main goal of a secure system is to enforce a site security policy to provide accountability and
availability.

The Trusted AIX security policy provides a defined set of rules that determine the types of allowable
system access. This includes holding users accountable for their actions and preventing changes to the
operating system.

Trusted AIX uses access control and specific need-to-know criteria to control access to files, directories,
processes, and devices.

Trusted AIX maintains an audit trail of all security-relevant events. This audit trail allows for individual
accountability, even with programs which modify effective and real user IDs, such as the su command.
Trusted AIX also restricts administrative functions to specific individuals with authorizations and least
privilege (the granting of the most restrictive set of privileges that will permit a user or process to
perform an operation).

Identification and authentication
Identification and authentication (I&A) security mechanisms are responsible for assuring that each
individual requesting access to the system is properly identified and authenticated. Identification requires
a user name and authentication requires a password

400 AIX Version 7.2: Security

All Trusted AIX accounts are password protected. The ISSO (Information Systems Security Officer) can
configure the system to allow a user to select his/her own password, subject to password length and
complexity constraints. The ISSO can also specify minimum and maximum password aging parameters
(expiration periods) on a per-user basis, including warning periods prior to password expiration.

The identification and authentication security mechanisms require that all usernames and user IDs be
unique. Accounts without valid passwords cannot be used for login. A user with the ISSO role must add
the initial password for all new users. Each user is assigned an additional unique identifier that is used
for auditing purposes.

Only the encrypted form of the password is stored. Passwords are not stored on the system in plain text
form. The encrypted passwords are stored in a shadow password file, which is protected against access
except by privileged processes. For more information, see the passwd command.

Trusted AIX systems recognize two types of accounts: system accounts and user accounts. System
accounts are those with a user ID less than 128. Although system accounts may have associated
passwords, they cannot be used for logging on to the system.

Discretionary access control
Discretionary access controls (DAC) are the security aspects that are under the control of the file or
directory owner.

UNIX permissions

A user with owner access to a resource can do the following:
v Directly grant access to other users
v Grant access to a copy to other users
v Provide a program to allow access to the original resource (for example, using SUID programs)

The traditional UNIX permission bit method (owner/group/other and read/write/execute) is an example
of this DAC functionality.

Permission bits enable users to grant or deny access to the data in a file to users and groups (based on
the need-to-know criterion). This type of access is based on the user ID and the groups to which the user
belongs. All file system objects have associated permissions to describe access for the owner, group, and
world.

The owner of a file can also grant access privileges to other users by changing the ownership or group of
the file with the chown and chgrp commands

umask

When a file is created, all permission bits are initially turned on. The file then has certain permission bits
removed by the umask process, which has been set during the login process. The default umask applies
to every file created by the user's shell and every command run from the user's shell.

By default, the umask setting for kernel items is 000 (which leaves all permissions available to all users).
AIX sets the kernel umask to 022 (which turns off group and world write permission bits). However,
users may override this setting if needed.

Note: Be very cautious about changing the umask to a setting more permissive than 022. If more
permissions are available on files and processes, the system as a whole becomes less secure.
There are two methods to override the default umask setting:
v You can change the umask values in your .profile, .login, or .chsrc files. These changes will affect

any file that is created during your login session.

Security 401

v You can set the umask levels for individual processes with the umask command. After running the
umask command, all new files that are created will be affected by the new umask value until one of
the following two events occur:
– You run the umask command again

OR
– You exit the shell in which the umask command was issued

If you run the umask command with no arguments, the umask command returns the current umask
value for your session.

You should allow the login session to inherit the kernel's 022 umask value by not specifying a umask in
your profiles. Umask values less restrictive than 022 should only be used with great caution.

If additional permissions are needed for certain files, these permissions should be set with judicious use
of the chmod command after the files have been created.

Access Control Lists

In addition to the standard UNIX permission bits and umask value, AIX also supports access control lists
(ACLs).

UNIX permission bits only control access for the file owner, one group, and everyone on the system. With
an ACL, a file owner can specify access rights for additional specific users and groups. Like permission
bits, ACLs are associated with individual system objects, such as file or directory.

setuid and setgid permission bits

The setuid and setgid permission bits (set user ID and set group ID) allow a program file to run with the
user ID or group ID of the file owner rather than the user ID or group ID of the person who is running
the program, This is accomplished by setting the setuid and setgid bits that are associated with the file.
This permits the development of protected subsystems, where users can access and run certain files
without having to own the files.

If the setgid bit is set on a parent directory when an object is created, the new object will have the same
group as the parent directory, rather than the group of the object's creator. However, objects created in a
directory with the setuid bit set are owned by the object's creator, not the directory owner. The
setuid/setgid bits of the parent directory are inherited by subdirectories when subdirectories are created.

The setuid and setgid permission bits represent a potential security risk. A program that is set to run with
root as the owner could have essentially unlimited access to the system. On Trusted AIX systems,
however, the use of privileges and other access controls significantly reduces this security risk.

Role Based Access Control elements
Trusted AIX supports Role Based Access Control (RBAC). RBAC an operating system mechanism through
which the root/system super user specific system functions can also be performed by regular users using
the roles that are assigned to them.

The core elements of AIX RBAC are:

Authorizations
These strings indicate the privilege operation that they represent and control by name directly.
For example an authorization string aix.network.manage defines the network management
function in the AIX operating system.

402 AIX Version 7.2: Security

Privileges
A privilege is an attribute of a process that allows the process to bypass specific system
restrictions and limitations. Privileges are associated with a process and are typically acquired
through the execution of a privileged command.

Roles Role elements in AIX RBAC allow users to combine a set of management functions in the system
and assign these functions to be managed by a regular user. Roles in AIX consist of a collection of
authorizations (these can be both system authorizations as well as custom authorizations) and
any other roles (as sub roles).

See RBAC for more information on Role Based Access Control.

Mandatory Access Control
Mandatory access control is a system-enforced method of restricting access to objects based on the
sensitivity of the object and the clearance of the user. By contrast, Discretionary Access Control is
enforced by individual file owners rather than by the system.

Use of labels for MAC

Trusted AIX uses a system of labels to enforce MAC. On a Trusted AIX system, all named objects have
sensitivity labels (SLs) to identify the object's sensitivity level. Processes also have SLs. Process SLs
indicate which levels of sensitive information the processes are allowed to access. In general, a process
must have a sensitivity level equal to or greater than that of an object in order to access the object. The
SLs can be used to make files read-only accessible or to completely prevent files from being accessed by
regular users.

All system objects such as files, IPC objects, network connections, and processes, have SLs. SLs are
automatically placed on objects when the objects are created. All core dumps are considered objects and
are automatically labeled by the system.

Objects that exist prior to the installation of Trusted AIX receive the default SYSTEM_LOW SLs (SLSL) when
these objects are accessed after Trusted AIX installation. The SLs are not set permanently on these objects.
The settxattr command must be run on the object to set the SLs. For objects that are created after Trusted
AIX installation, the object's SLs are set to the SL of the creating process.

Users and labels

The system assigns each user account a range of valid SLs, either by system default or by a user-specific
setting, and the user can only operate within this range. A process or user can only create files and
directories at the current sensitivity label of the process or user and can only read and write files subject
to the system-imposed MAC restrictions.

MAC enforcement

Mandatory Access Control is enforced any time a process attempts to open a file system object, retrieve
the attributes of a file system object, send a signal to a process, transfer data through a STREAM, or send
or receive a packet through a network interface. Access to any file system object is only possible if both
MAC and DAC criteria are met. When a user attempts to access a file, MAC restrictions are enforced
before DAC restrictions, such as permission bits or ACLs, are checked.

Access to file system objects is restricted not only by the SL of the object but also by the SL of the
directory in which the object resides. Thus, a file system object can be protected at a different sensitivity
level (the directory's SL) than the SL of the object itself. A file system object can have multiple names
(links) located in one or more directories. Although each name (link) is protected at the same SL as the
file to which the link points, the effective protection of the various links may differ because the links are
in directories with different levels of protection.

Security 403

The name of an object is stored in the directory where the object resides. Thus, any process with access to
that directory is able to view the names of all objects in the directory. However, only processes with
proper access may read from or write to one of the objects.

Listing and changing SLs

The SLs of objects and processes on the system can be viewed with the lstxattr command and can be
modified using the settxattr commands.

Only users with proper authorizations and processes with the proper privileges can change the SL of a
file or process.

With the settxattr command, to change a filesystem object SL to a lower-level SL the user should have the
aix.mls.label.sl.downgrade authorization. To upgrade a filesystem object SL the user should have the
aix.mls.label.sl.upgrade authorization. To alter the SL of processes, to upgrade the user should have
aix.mls.proc.sl.upgrade authorization and to downgrade the user should have
aix.mls.proc.sl.downgrade authorization.

MAC on open file descriptors

For read/write and simple file accesses, MAC checks are performed when a process accesses a file. Once
a process has a file descriptor for the file, it can read and write the file even if the process SL changes to
a level lower than the SL of the file. However, some operations, such as setting file owner, permissions,
labels, and privileges, perform access checks after a process has obtained a file descriptor.

This means that MAC checks and partitioned directory path resolutions are not performed when a
process accesses a file using a file descriptor. The SL of the file and/or process may change and access is
still permitted.

Mandatory Integrity Control
Mandatory Integrity Control is a system-enforced method of restricting access to and modification of
objects based on the integrity of the object and the clearance of the user. While MAC is concerned with
the sensitivity of an object, MIC is concerned with the object's trustworthiness.

Use of labels for MIC

Trusted AIX uses a system of labels to enforce MIC. On a Trusted AIX system, all named objects have
integrity labels (TLs) to identify the object's integrity level. Processes also have TLs. Process TLs indicate
which level of information integrity the process is allowed to access. The higher the TL, the more
trustworthy the object or process is.

A process must be at least as trustworthy as an object in order to modify the object. Therefore, a process
must have a TL equal to or greater than the TL of the object. Therefore, integrity labels can be used to
make files accessible for read-only.

In addition, a process cannot use data from an object that is less trustworthy than the process itself.
Therefore, an object must have a TL equal to or greater than that of the process.

All system objects, such as files and processes, have TLs. TLs are automatically placed on objects when
the objects are created. All core dumps are considered objects and are automatically labeled by the
system.

Objects that exist on the system prior to the installation of Trusted AIX receive the default SYSTEM_LOW TL
(SLTL) whenever the objects are accessed after Trusted AIX installation. The TLs are not set permanently
on these objects. The settxattr command must be run on these objects to set the TLs. For objects that are

404 AIX Version 7.2: Security

created after Trusted AIX installation, the TLs of these objects are set to the integrity level of the process
that created the objects.

Users and labels

The system assigns each user account a range of valid TLs, either by system default or by a user-specific
setting, and the user can only operate within this range. A process or user can only create files and
directories at the current TL of the process or user, and can only read and write files subject to the
system-imposed MIC restrictions.

MIC enforcement

Mandatory Integrity Control is enforced whenever MAC is enforced. Additionally, MIC is enforced when
a file or directory is deleted or renamed.

Changing TLs

The TLs of objects and processes can be viewed with the lstxattr command and modified with the
settxattr command.

Only users with proper authorizations and processes with the proper privileges can change the TL of a
file or process. With the settxattr command, to change a filesystem object TL to a lower-level TL, the user
should have the aix.mls.label.tl.downgrade authorization. To upgrade a filesystem object TL the user
should have the aix.mls.label.tl.upgrade authorization. To alter the TL of processes, to upgrade the
user should have aix.mls.proc.tl.upgrade authorization and to downgrade the user should have
aix.mls.proc.tl.downgrade authorization.

NOTL

There is a special TL, NOTL, that can be applied on file systems, ipc objects, or processes. When an object
or process has an NOTL TL, no MIC checks are performed on the object or process. Only privileged users
can set a TL to NOTL or change a TL if the TL is currently NOTL.

MIC on open file descriptors

For read/write and simple file accesses, MIC checks are performed when a process accesses a file. Once a
process has a file descriptor for a file, it can read and write the file even if the process TL changes to a
level lower than the file's TL. However, some operations, such as setting file owner, permissions, labels,
and privileges, perform access checks after a process has obtained a file descriptor. This means that MIC
checks are not performed when a process accesses a file using a file descriptor. The TL of the file and/or
process may change and access will still be permitted.

Labels
Labels are used to represent security levels for subjects and objects on Trusted AIX systems. The labels to
be used in a system and the relationship between labels are defined by the ISSO.

Sensitivity labels (SLs):

The SLs associated with each subject and object are used to enforce a mandatory access control policy
based on the Bell-LaPadula Model of access control.

An SL consists of two parts:
v A hierarchical classification
v A set of one or more compartments

Security 405

Each installation site can define the names and relationships of the labels on that system. A system
administrator can set up these names and relationships as required by site policies in the label encodings
file.

SL classifications:

Classifications have a hierarchical order and represent a level of sensitivity.

For example, if Top Secret, Secret, and Unclassified are valid classifications at a site, Top Secret is
more sensitive than Secret and Secret is more sensitive than Unclassified. Trusted AIX supports up to
32,000 hierarchical classifications.

SL compartments:

Compartments represent topics or work groups. Each compartment has a name, such as NATO or CRYPTO.

Compartments have no intrinsic ordering, but the ISSO can impose constraints on which compartments
and classifications can be combined. Trusted AIX supports up to 1,024 compartments.

SL components:

In human-readable form, an SL is represented by a string of elements. The first element represents the
classification; the remaining elements represent the compartments. The elements are separated by a space.

For example, if a file contains top secret information regarding the Brazilian economy, the hierarchical
classification of the file could be top secret (TS), and the compartments might be Brazil (B) and economy
(e). The human-readable form of the SL would be TS B e or Top Secret Brazil economy.

SL relationships:

As a system user, it is important to understand the relationships between labels and how labels are used.

There are three types of relationships between MAC labels:
v Dominance
v Equality
v Non-Comparable

Dominance

One SL (L1) is said to dominate another (L2) only if both of the following conditions are true:
v The classification in L1 equals or exceeds the classification in L2
v The set of compartments in L1 completely contains the set of compartments in L2

For example, if we assume one SL L1 of top secret information on the compartments A and B (TS A B),
and another SL L2 of secret information on the compartment A but not B (S A), then TS A B would
dominate S A because the classification TS dominates classification S and the set of compartments in L1
completely contains the set of compartments in L2. L2 would not dominate L1 in this example.

406 AIX Version 7.2: Security

Table 34. SL dominance

L1 L2 Dominance

Label Compartment Label Compartment

TOP SECRET A,B SECRET A L1 > L2

Equality

One SL (L1) is said to equal another SL (L2) only if both of the following conditions are true:
v The classification in L1 equals the classification in L2
v The set of compartments in L1 is identical to the set of compartments in L2

If two labels are equal, then each label dominates the other. For example, if we assume the SL for a file
with top secret information on compartment A (TS A) and another file with top secret information on the
compartment A (also TS A), then the SLs would be equal and would dominate each other.

Table 35. SL equality

L1 L2 Dominance

Label Compartment Label Compartment

TOP SECRET A TOP SECRET A L1 = L2

Non-comparable

Two SLs can be disjoint (L1 is not equal to L2, L1 does not dominate L2, and L2 does not dominate L1).
One SL (L1) is said to be non-comparable to another (L2) only if the following condition is true:
v The set of compartments in L1 does not completely contain the set in L2 and L2 does not completely

contain the set in L1. Therefore, L1 and L2 are considered disjoint

For example, if we assume that a file with label L1 has top secret information on the compartments A and
B (TS A B), and L2 is the label for a file with classified information on the compartment C (C C), then L1 is
non-comparable to L2.

Table 36. Non-comparable SLs

L1 L2 Dominance

Label Compartment Label Compartment

TOP SECRET A, B CLASSIFIED C -

Integrity labels (TLs):

TLs represent the level of trust in a system object or process. The structure of TLs is the same as that of
SLs, except that TLs have only hierarchical classifications and no compartments.

A process can modify or delete an object only if the TL of the process dominates the TL of the object. A
process can delete or rename an object only if the TL of the process dominates both the TL of the object
and the TL of the directory where the object resides. A process can access an object only if the TL of the
object dominates the TL of the process.

To determine the TL of an object or process, use the lstxattr command. To change the TL of an object or
process, use the settxattr command.

Labels on subjects and objects:

In Trusted AIX, processes are identified as subjects and each process has SLs.

Security 407

The SL used for MAC checks is called the Effective SL (ESL). An ESL must lie within the process
clearance ranges. The clearance range has an upper bound and a lower bound. The upper bound is called
the Maximum clearance (Max CL) and the lower bound is called the Minimum clearance (Min CL). The
ESL, Max CL, and Min CL are stored in the process credential structure and are assigned during process
creation. The Max CL must dominate Min CL and ESL and the ESL must dominate Min CL. The settxattr
and lstxattr commands can be used to list and set the SLs of processes.

Access to various objects in the system need to be controlled. An object could be any one of the
following:
v process
v files (Data files or binaries)
v IPC objects, network packets, etc.

All objects and subjects on a MLS system are labeled.

Directory
Directories are associated with a SL range; minimum SL and maximum SL. The maximum SL
should dominate or equal the minimum SL. All files in a directory lie within this range.

Files Regular files are associated with two SLs but their values are always the same. So effectively they
have only one SL. Symbolic links could have different values for the SLs.

Special Files
Special files like devices, ttys, and fifos are associated with a maximum and minimum SL.
Directory, files, and special files have only one integrity label (TL) where as processes are
associated with a minimum and maximum TLs.

Process
All processes are associated with maximum and minimum sensitivity cleareance range as well as
a maximum and minimum integrity clearance range. These values are inherited from the user's
clearance values. The sensitivity and integrity level at which the process is executing is known as
the effective sensitivity and effective integrity levels.

User clearance labels:

Users have maximum and minimum sensitivity clearance labels (SCLs) and maximum and minimum
integrity clearance labels (TCLs)

Maximum and minimum sensitivity clearance labels

Each user has a maximum sensitivity clearance label (max SCL). The user's effective SL must be
dominated by the max SCL. The max SCL is used to restrict certain users from viewing highly sensitive
data. The min SCL is used to prevent users at a high security level from transmitting data to users at a
lower security level.

For example, assume that user A has a max SCL and min SCL both of PUBLIC_A, and user B has a max
SCL and min SCL both of PUBLIC_B. Without a min SCL, user A could communicate information to user B
by logging in with an effective SL of IMPL_LO and writing to a file that user B could then read. With the
min SCL, however, user A must log in at PUBLIC_A and can only write files at PUBLIC_A. Any files written
at PUBLIC_A are not readable by user B.

Maximum and minimum integrity clearance labels

Each user also has a maximum integrity clearance label (max TCL). The user's effective TL must be
dominated by the max TCL. The max TCL is used to restrict certain users from viewing highly sensitive
data. The min TCL is also used to prevent users at a high security level from transmitting data to users at
a lower security level.

408 AIX Version 7.2: Security

Labels on file system objects:

All files include specific security information. When a new file is created, it has the same SL as the
process that created the file. The SL of the information in a file can be upgraded or downgraded by
raising or lowering the file's SL.

Directories are assigned a minimum and maximum SL when the directories are created. On creation, both
are set equal to the effective SL of the creating process, essentially creating a single-level directory. Only
users with the proper privileges and authorizations can changes these SLs. New objects can be created in
this directory only if the effective SL of the process creating the new object falls within the range of the
directory's SLs.

A window is normally created as a separate child process with an SL equal to the user's effective SL.
Devices (for example, the pseudo-terminals associated with windows) also have SLs associated with
them. A named pipe, which is a device used for interprocess communication, inherits the effective SL of
the process that created the named pipe. A stream, which is a device used to provide a bidirectional data
channel for interprocess communications, also inherits the effective SL of the process that created the
stream.

All devices have a minimum SL and a maximum SL. The maximum SL must dominate the minimum SL.
By default, the minimum SL and maximum SL are set equal. A process can only access such a device in
read mode if the process's SL dominates the minimum SL of the device or directory. A process may only
access such a device in write mode if the process's SL is within the range defined by the minimum and
maximum SLs of the device or directory.

File security flags

Objects can be marked with file security flags (FSFs) that affect the way processes deal with the objects.
See File Security Flags for a list of FSFs and the privileges required to set each FSF. Processes do not have
file security flags.

Removing files:

You can only remove an object from a file system if the following are true:
v The process attempting to remove the object must be able to see the filename in the directory that

contains the file. That is, the process must have search access in each directory in the path down to the
directory from which the object is to be removed, and the process must have an effective SL that
dominates each of these directories. Use the ls command to see file name.

v The process must have write access to the directory from which the object is to be removed.

Printing files:

The printer subsystem automatically labels all output with the appropriate sensitivity labels. Each print
job is automatically provided a banner page and a trailer page that show all security relevant labels and
markings.

Backing up and restoring files:

When writing to disks or tapes on AIX with the backup command, SLs are included with the data.

SO authorization is required to use the backup or restore commands to import or export unlabeled data
from tapes or disks. When unlabeled data is written, the data is assigned a default SL of SYSTEM_LOW for
files and an SL range of SYSTEM_LOW to SYSTEM_HIGH for directories.

Security 409

taix_file_sec_flags.htm

Labels on IPC objects:

All AIX IPC facilities involve the creation and access of intermediary objects.

There are three different IPC facilities defined in AIX:
v Message queues
v Semaphores
v Shared memory

All of these involve creating and accessing intermediary objects, called IPC objects, for interprocess
communication. Each IPC object is protected by a set of attributes similar to the attributes that protect
files. These attributes are:
v The user ID and group ID of the object owner
v The user ID and group ID of the object creator
v The resource access mode, which is analogous to file access permission bits. Each object has read,

write, and execute access for world, group, and object owner.
v A sequence number to track resource usage
v A key to identify the resource

As with other system objects, Trusted AIX extends these attributes with additional security attributes. On
a Trusted AIX system, all IPC objects also have the following attributes:
v A sensitivity label (SL)
v An integrity label (TL)

You can use the settxattr command to view all of the security attributes of an IPC object. Reading an IPC
object's attributes requires DAC READ and MAC READ access to the object.

Access to IPC objects:

IPC objects are created, deleted, and accessed via several system calls that are discussed in the Trusted
AIX Programming topic. Typical users do not perform these operations. This topic presents a general
overview of the rules for the creation, deletion, and access of IPC objects.

To access an IPC object, a process must pass DAC, MIC, and MAC access checks.

DAC access checks are based on the mode (owner, group, or world) of the object and the user and group
IDs of the process. A process has DAC owner access to an IPC object if the process effective UID is the
same as either the object owner UID or object creator UID. This also applies to DAC group access.

MAC access is based on the SLs of the process and object. MIC access is based on the TLs of the process
and object.

Access rules for IPC object contents are the same as for IPC object attributes. To read either the contents
or attributes of an IPC object, DAC READ, MIC READ, and MAC READ access are required. To write to an IPC
object, DAC WRITE, MIC WRITE, and MAC WRITE access is required.

IPC object attributes are more tightly restricted than IPC object contents. Changing IPC object attributes
therefore requires greater privilege. To modify standard AIX attributes such as mode, a process needs DAC
OWNER and MAC WRITE access to the object. To change the SL of an IPC object, the process must have all of
the following:
v PV_SL_PROC privilege
v DAC OWNER (downgrade only)
v DAC WRITE

410 AIX Version 7.2: Security

v MAC WRITE

v PV_SL_UG privilege to upgrade SL, or PV_SL_DG privilege to downgrade SL
v PV_MAC_CL if existing or new SL outside clearance of process
v MIC WRITE

To change the TL of an IPC object, the process must have all of the following:
v PV_TL privilege
v DAC OWNER

v MAC WRITE

v MIC WRITE

Additionally, in order to lock or unlock a shared memory segment in memory, a process must have the
PV_KER_IPC_O privilege. A process also requires the PV_KER_IPC privilege to change msg qbytes of a
message queue in the msgctl subroutine.
Related concepts:
“Trusted AIX programming” on page 445
System security depends on the trusted computing base (TCB) software, hardware, and firmware. This
includes the entire operating system kernel, all device drivers and System V STREAMS modules, kernel
extensions, and all trusted programs. All files used by these programs in making security decisions are
also considered a part of the TCB.

IPC object creation and deletion:

There are no restrictions on IPC object creation. When a process creates an IPC object, the object inherits
the process SL and TL.

The IPC object's access mode must be specified by the system call that creates the object.

To delete an IPC object, the process must have DAC OWNER, MIC WRITE and MAC WRITE access to the object.

Trusted Networking:

A set of secure networking requirements are needed for the extended security attributes of enhanced
security systems. AIX Trusted Network supports several recognized secure networking standards,
including U.S. DoD RFC1108 Revised Internet Protocol Security Option (RIPSO) and the Commercial
Internet Protocol Security Option (CIPSO).

AIX includes Trusted Network support for both IPv4 and IPv6. When communicating with other trusted
systems, the SL is encapsulated in the IP options according to CIPSO/RIPSO standards. MAC checks are
enforced at the IP layer for SLs that are sent or received on the packets. The allowed label range is
configured with network rules. Network rules consist of host rules and interface rules. AIX Trusted
Network installs only default interface rules (one rule per configured interface). You can configure host
rules to allow more granular filtering. You can use the netrule command to configure both host and
interface rules. Operations supported by the netrule command include adding, deleting, listing, and
querying rules.

You can also use the tninit command to initialize the Trusted Network subsystem and maintain the
Trusted Network rules database.

Root disablement:

The root user account is disabled on Trusted AIX systems. This is primarily to minimize the damages that
can be caused to the system by a single user with all privileges.

Security 411

All types of system logins as root user are disabled. Only the su command allows root user logins.
Processes owned by root are not assigned any special privileges. The root-owned setuid and non-setuid
programs work as before when invoked by authorized users. For unauthorized users, the program will
run if the DAC modebits or ACLs allow execution, but the program will not be assigned any privileges,
so the program may not be able to perform privileged operations when run by unauthorized users.
Therefore, it is necessary to assign proper privileges to newly installed applications if the applications are
expected to perform privileged operations.

System administration tasks can be performed by users who have been assigned Information System
Security Officer (ISSO), System Administrator (SA), or System Officer (SO) roles. These roles allow any
user to perform system administration tasks.

Note: During installation of Trusted AIX the su attribute of the root account is set to false. To allow
access to the root account to other administrative users, the ISSO authorized user will need to reset this
attribute to true using the chuser command and assign a password to this account.

Label support in auditing:

The primary purpose of the audit subsystem is to monitor and record security-relevant events.

The information provided by the audit subsystem enables the following types of information to be
recorded:
v Attempts to violate the security policy
v Successful completion of security-relevant actions

The audit subsystem provides the following capabilities:
v Determine which events to audit
v Turn auditing on and off while the system is running
v Switch audit trail files seamlessly (with no loss of information)
v Convert audit information into human-readable form
v Select and process subsets of audit information

When setting up the audit subsystem, the ISSO should understand what is to be audited, the conditions
under which auditing occurs, and how to initiate and stop auditing. See Auditing overview for detailed
information on configuring, starting and stopping, administering, and reviewing audit.

The audit subsystem maintains its current state and is automatically restarted in that state after a
power-down, system crash, power failure, or other interruption. The audit subsystem can automatically
shut itself off, shut down the system, or change audit files if a condition occurs where it can no longer
store audit records in the existing audit file. Audit files can be automatically switched when the file
system fills to a specified level. However, in the event of a catastrophic power failure, a small number of
audit records may be lost.

Multilevel and partitioned directories:

A multilevel directory is a standard directory that is assigned an SL range rather than a single SL. A
partitioned directory appears as a single directory to the user. However, the files shown to the user
actually reside in a hidden subdirectory of the partitioned directory.

Multilevel directories:

A multilevel directory is a standard directory that is assigned an SL range rather than a single SL.

412 AIX Version 7.2: Security

auditing.htm

To view the filenames in a multilevel directory, the process must be operating at a security level that is
higher than the minimum SL of the directory. To create or delete the actual files, the process must be
operating within the SL range of the multilevel directory.

Each file in a multilevel directory has its own SL and is protected by the standard MAC restrictions.
However, any process with access to the directory is able to view the names of all objects in the directory.
Thus, a process could have MAC read and write capabilities in a directory, but be unable to read and/or
write some files in the directory, even though the process can view the names of all files in the directory.

Partitioned directories:

A partitioned directory appears as a single directory to the user. However, the files shown to the user
actually reside in a hidden subdirectory of the partitioned directory.

Multilevel directories pose a security risk. A process operating at a high security level can read a file at a
lower security level and then create files at the same high security level. While MAC features prevent
lower-security processes from reading the new files, lower-security processes can still see the names of
the new files. If the high security process gave the new files names based on the content of the original
high security file, then lower-security processes could gain access to higher-security information by
reading the new file names.

When a partitioned directory is created and a process addresses the directory, the system creates a hidden
subdirectory with the same SL as the addressing process. If the process then creates a file, the file is
actually created in the hidden subdirectory. A partitioned directory may have several such hidden
subdirectories in it, but a process addressing the partitioned directory will only see the files in the hidden
subdirectory with the same SL as that of the addressing process. When a process creates a child directory
of a partitioned subdirectory, that child directory is a partitioned sub-subdirectory.

A partitioned directory is assigned an SL range from SYSTEM_LOW to SYSTEM_HIGH. Thus, any
process can access the partitioned directories.

Users with aix.mls.pdir.mkdir authorization can create partitioned directories with the pdmkdir
command. Empty partitioned directories can be removed with the pdrmdir command. The pdset
command can be used to change a regular directory into a partitioned directory type. There is no
command to change a partitioned directory into a regular directory.

Within a partitioned directory, you can link a file in one partitioned subdirectory to all other existing
partitioned subdirectories with a higher SL in the same partitioned directory. This allows access to a file
within a partitioned directory by all processes with access to that partitioned subdirectory or to
higher-level partitioned subdirectories in the same partitioned directory. You can use the pdlink
command for this file linking.

Partitioned directory access modes:

A process is assigned one of two modes on creation, real mode or virtual mode. The mode determines
how the process views partitioned directories.

A real-mode process treats partitioned directories as standard multilevel directories. All partitioned
subdirectories can be accessed as standard directories, subject to normal DAC, MIC, and MAC
restrictions. A real-mode process can enter a partitioned directory and view all subdirectories, subject to
DAC, MIC, and MAC restrictions.

A virtual-mode process never enters a partitioned directory, but is instead redirected to the partitioned
subdirectory whose maximum and minimum SLs are both equal to the effective SL of the process.

Security 413

A real-mode process can run a command in virtual mode with the pdmode command (for example,
pdmode ls). Similarly, a virtual-mode process can run a command in real mode, also with the pdmode
command (for example, pdmode -r ls). However, this requires aix.mls.pdir.mode authorization. With this
authorization, you can also switch from a shell running in virtual mode to a shell running in real mode
by running pdmode -r sh. No authorization is required to launch a program in virtual mode while
running in real mode.

Viewing and changing directory types:

You can use the lstxattr command to display the directory type as part of the secflags attribute. FSF_PDIR
indicates a partitioned directory, FSF_PSDIR indicates a partitioned subdirectory, and FSF_PSSDIR indicates
a partitioned sub-subdirectory. To change a regular directory type to a partitioned directory type, use the
pdset command.

Trusted AIX administration
Managing a Trusted AIX system involves a number of factors that are specific to Trusted AIX.

Trusted AIX installation
Trusted AIX can be enabled only during base operating system installation using the Security Model
option of the install menu.

The migration option for Trusted AIX is not supported. For preservation installation the file systems must
be JFS2. For a promptless network install, see Table 37 for the passwords associated with default
administrative users.

Table 37. Passwords for default administrative users

User Password

isso isso

sa sa

so so

Run modes
Two run modes, configuration mode and operational mode, are available to allow for system
configuration and maintenance and for daily operations.

When the system boots up, it initially runs in configuration mode. After initialization is complete, the run
mode is changed to operational.

Configuration mode is used to maintain and recover the system. When the system is booted in
single-user mode, the system is minimally configured and networking is disabled. Configuration mode is
used for administration of critical, security-relevant parts of the system.

Operational mode is the standard system operating mode. The system changes to this mode after all tasks
required to enter the default run level have been completed.

The system run mode can be displayed with the getrunmode command and can be modified with the
setrunmode command.

Kernel security flags
Kernel security flags are used to enable/disable certain security features such as label check enforcement,
checking for integrity labels during read operations, and other purposes.

The kernel checks for kernel security flags before enforcing security checks. These flags are supported
only when Trusted AIX is enabled. In the user space, these flags are stored in the ODM database.
Depending upon the run mode of the system, the kernel checks for the corresponding kernel security

414 AIX Version 7.2: Security

flags.

Table 38. Kernel security flags and default values

Kernel security flag Enabled Disabled
Operational mode
default

Configuration mode
default

tnet_enabled Trusted network
functionality available

Trusted network
functionality cannot be
configured or used

Disabled Disabled

tl_write_enforced MIC enforced on write,
delete and rename
operations

Configuration set so that
TLs are not used for
write checks

Enabled Enabled

tl_read_enforced MIC enforced on read
operations

Configuration set so that
TLs are not used for
read checks

Disabled Disabled

sl_enforced MAC enforced Configuration set so that
SLs are not used for
access control

Enabled Disabled

trustedlib_enabled FSF_TLIB flag on file
system objects is
honored

FSF_TLIB flags are not
honored

Disabled Disabled

Setting kernel parameters
The Trusted AIX kernel can be configured to enforce security constraints as required by site policies.

The security configuration viewed using the getsecconf command and can be changed using the
setsecconf command. The configurable kernel parameters are:
v Sensitivity label enforcement
v Integrity read enforcement
v Integrity write enforcement
v Trusted Network
v Trusted library

These parameters can only be configured while the system is in the configuration run mode.

Customizing the /etc/security/enc/LabelEncodings file
The labels for a system are defined in the /etc/security/enc/LabelEncodings file and can be customized
for each site.

Labels can be customized after Trusted AIX is installed.

A Trusted AIX system has a defined SYSTEM LOW SL (SLSL) that is dominated by all other sensitivity labels
on the system, and a defined SYSTEM HIGH SL (SHSL) that dominates all other sensitivity labels. Similarly,
the SYSTEM LOW TL (SLTL) is dominated by all other integrity labels on the system and SYSTEM HIGH TL
(SHTL) dominates all other integrity labels. These definitions take the values of the highest and lowest SLs
and TLs as defined in the /etc/security/enc/LabelEncodings file.

When a Trusted AIX system is booted, the system labels from the /etc/security/enc/LabelEncodings file
are downloaded to the kernel. The labels can also be downloaded to the kernel with the setsyslab
command. The system labels as defined in the kernel can be listed with the getsyslab command. It is
recommended that the system be rebooted after modifying the /etc/security/enc/LabelEncodings file.

Comments can be placed in the /etc/security/enc/LabelEncodings file any place where a keyword can
start. Comments begin with a * and continue to the end of the line.

The /etc/security/enc/LabelEncodings file contains version information and the following mandatory
sections. Each section should start with one of these section keywords followed by a colon (:).

Security 415

v classifications
v information labels
v sensitivity labels
v clearances
v channels
v printer banners
v accreditation range

The /etc/security/enc/LabelEncodings file begins with the VERSION entry. This entry is a sequence of
characters and can contain white spaces.

Each of the following keywords can be present in a section. These keywords terminate with a semicolon
(;):

name=name
Keyword to define the full name of the classification or compartment

sname=name
Keyword to define to abbreviated name. Optional.

aname=name
Alternate keyword for the classification. Optional.

value=value
Keyword to specify the internal integer value of the classification or compartment

compartments=bit
Keyword to specify which compartment bit must be 0 or 1 if the word is present in the label

Trusted AIX enhancements to the label encoding format

The label encoding as prescribed by the Defense Intelligence Agency Document DDS-2600-6216-93 does
not support the integrity labels.

By default, sensitivity labels are used as integrity labels. Trusted AIX provides support for an optional
integrity labels section which can be different from the sensitivity labels sections. This provides flexibility
of having different classification names and values for sensitivity and integrity labels. For example, the
sensitivity labels can be prefixed with SL, and integrity labels with TL as follows:

Table 39. Sensitivity labels classification names and values

name sname value

name= SL IMPLEMENTATION LOW sname= SL_IMPL_LO value= 0

name= SL UNCLASSIFIED sname= SL_U value= 20

name= SL PUBLIC sname= SL_PUB value= 40

name= SL SENSITIVE sname= SL_SEN value= 60

name= SL RESTRICTED sname= SL_RES value= 80

name= SL CONFIDENTIAL sname= SL_CON value= 100

name= SL SECRET sname= SL_SEC value= 120

name= SL TOP SECRET sname= SL_TS value= 140

416 AIX Version 7.2: Security

Table 40. Integrity labels classification names and values

name sname value

name= TL IMPLEMENTATION LOW sname= TL_IMPL_LO value= 0

name= TL UNCLASSIFIED sname= TL_U value= 20

name= TL PUBLIC sname= TL_PUB value= 40

name= TL SENSITIVE sname= TL_SEN value= 60

name= TL RESTRICTED sname= TL_RES value= 80

name= TL CONFIDENTIAL sname= TL_CON value= 100

name= TL SECRET sname= TL_SEC value= 120

name= TL TOP SECRET sname= TL_TS value= 140

The following rules apply to the integrity labels section:
v The "INTEGRITY LABELS" section should be added only after the "NAME INFORMATION LABELS"

section. In cases where the administrator has not defined the optional "NAME INFORMATION
LABELS" section, the "INTEGRITY LABELS" section should be added next to the "ACCREDITATION
RANGE" section.

v There should be only one "INTEGRITY LABELS" section in the label encoding file. The same section
applies to both objects and subjects.

v The new "INTEGRITY LABELS" section is an optional section. In case this section is not present, the
classifications as given in the mandatory "CLASSIFICATIONS" section should be used.

v The "INTEGRITY LABELS" section would be similar to the "CLASSIFICATIONS" section. It would
contain the following keywords: "name=", "sname=", "aname=", and "value=". The keywords "initial
compartments=" and"initial markings=", which are part of "CLASSIFICATIONS" section, would not be
valid in "INTEGRITY LABELS" section.

v The data range for "value=" would be the same as that for the "CLASSIFICATIONS" section –
minimum of 0 to maximum of 32,000.

Starting up the system
System security is automatically invoked during the system startup sequence. You should verify that the
security parameters displayed during the startup sequence are correct for the system.

Configuration startup mode:

Configuration mode is used to maintain and recover the system.

When the system is booted in single-user mode, the system is minimally configured and networking is
disabled.

Operational startup mode:

Operational mode is used for daily operation.

Normally, the system should be booted directly into multiuser mode. If the boot authorization program
receives a valid username and password, the system enters operational mode, a console login
authentication screen is displayed, and valid users can then log in.

Security mechanisms such as sensitivity labels, discretionary access controls, mandatory access controls,
privilege checks, identification and authentication, and authorizations, are active in both configuration
mode and operational modes, as dictated by the relevant security configuration flags. For more
information, see the getsecconf command.

Security 417

It is recommended that the system be operated only in operational mode to ensure that all expected
system functionality is available.

Boot process:

New boot scripts added to the /etc/inittab file on Trusted AIX systems. The new boot scripts are
rc.mls.boot, rc.mls.net, and rc.mls, and are executed in that order.

The steps executed in the rc.mls.boot script are:
1. An interactive integrity check is run to prompt the user for information on how to handle each

discrepancy (using the trustchk command)
2. Set the configuration mode kernel security flags (using the setsecconf command)
3. Set the system labels (Minimum and Maximum Sensitivity Labels and Integrity Labels)
4. The configuration mode kernel security flags are displayed on the screen

The steps executed in the rc.mls.net script are:
1. Initialize the Trusted AIX sub-system.
2. If the /etc/security/rules.int file exists, it will load the rules database into the kernel.

The steps executed in the rc.mls script are:
1. Initialize the Trusted AIX sub-system.
2. If the /etc/security/rules.int file exists, it will load the rules database into the kernel.

Note: Any change to the boot scripts can result in a system malfunction.

Customizing system startup:

Although not recommended, boot authentication and system integrity checking at system startup can be
disabled.

An operator must be physically present at the system console to start up the system unless boot
authentication and system integrity checking are disabled.

Disabling BOOT authentication:

BOOT authentication can be disabled by running the rmitab bootauth command or using the SMIT
menu.

Disabling system integrity check:

You can disable the automatic system boot integrity check by removing the trustchk line from the
rc.mls.boot script.

Shutting down the system
System shutdown is a privileged operation and is protected by the aix.system.boot.shutdown
authorization.

Any user with the SO role or another role that has this authorization can shut down the system.

Trusted recovery
There may be times when the system powers off in an unclean state. This can be the result of a power
outage, an accidental power off, or a hardware failure. Trusted AIX can recover from these circumstances
without special reboot procedures.

418 AIX Version 7.2: Security

When the system reboots, all protection mechanisms are active, regardless of how the system was
powered off. During the system startup procedure, all file systems are automatically checked for damage
before users can log on. The startup scripts run the fsck command to secure or make inaccessible to
unauthorized users any damaged or compromised files.

The trustchk command reports any inconsistencies in the security attributes of files or directories and
interactively prompts the user to repair these attributes. The trustchk command should be run whenever
there is a possibility that the integrity of the file system may have been compromised. See the trustchk
command for more information.

Login
Every Trusted AIX user should have the proper sensitivity and integrity clearances assigned so that they
can log in to the system.

The user’s clearances are defined as user attributes in the /etc/security/user file. The minsl and maxsl
attributes define the sensitivity clearance of the user. The mintl and maxtl attributes define the integrity
clearance for the user. The defsl and deftl attributes define the effective sensitivity and integrity levels
of the user at login.

User clearance attributes can be modified with the chuser and chsec commands and can be listed with
the lsuser and lssec commands.

Users can list their own labels but cannot change them. To list the clearance levels of other users, a user
must have the aix.mls.clear.read authorization. To modify clearances, a user must have the
aix.mls.clear.write authorization.

To log in, all of the following dominance rules must be true:
v The minsl value must be dominated by the defsl value
v The defsl value must be dominated by the maxsl value
v The mintl value must be dominated by the deftl value
v The deftl value must be dominated by the maxtl value

You can specify the desired effective sensitivity and integrity levels during login using the –e and –t
options of the login command. See the login command for more information.

To log in at a sensitivity level that is not in the accreditation range of the system, you must have the
aix.mls.label.outsideaccred authorization.

Trusted AIX does not allow system users (users with a uid less than 128) to log in.

Reasons for login failures
A login attempt can fail for a number of reasons.

A login attempt will fail if any of the following are true:
v An invalid login ID was entered
v An invalid password was entered
v The account is marked as locked because the number of previous bad login attempts for this account

exceeds the system limit
v The login port is marked as locked because the number of previous bad login attempts for the port

exceeds the system limit
v The login ID does not have a valid clearance
v The specified label (or the default sensitivity or integrity label for the login ID if no label was specified)

is not valid, is not within the clearance for the login ID, is not within the clearance of the login device,
or is not within the accreditation range of the system

Security 419

v The user does not have DAC access to the pathname of the login shell program, or the user account
does not have DAC exec access to the login shell program

v The user does not have MAC or MIC read access to the pathname of the login shell program or does
not have MAC or MIC read access to the login shell program

v The uid of the login ID was less than 128

Switching user with the su command
On a Trusted AIX system, when the su command with the - option is invoked, the current user’s
clearances must dominate the new user’s clearance level.

The following conditions must be met for both sensitivity and integrity labels:
v the current user's maximum clearance must dominate the new user's maximum clearance.
v the new user's minimum clearance must dominate the current user's minimum clearance
v the current user's effective clearance must be dominated by the new user maximum clearance and

must dominate the new user's minimum clearance.

User security responsibilities
There are certain responsibilities which users must be aware of, understand, and follow. Users must keep
passwords private, report changes in their user status, report suspected security violations, and more.

Passwords

Passwords should be memorized and should not be written down on any medium. If a password is
obtained by another user, this can compromise the security of information on the system.

The most obvious threat to password security is the compromise of passwords. The simplest way to
protect an account from an unauthorized attack by a user who may have discovered a password is to
periodically change the password. Passwords should be changed frequently enough to reduce the
probability of compromise during the lifetime of the individual password. The longer any single
password is used, the more opportunities there are for compromise.

If users are allowed to select their own passwords, the new password must be at least six characters long
and must contain at least two alphabetic characters and one numeric character. The password should not
reflect any personal or professional aspect of the user (for example, friends, user's name, pet's name, or
job title) and should not be a common word that might be found in a dictionary. Password-guessing
schemes often scan one or more dictionaries and a substantial list of personal items, such as the user's
name, the names of children or pets, and birthdays.

Passwords can have a finite lifetime, determined by the ISSO. If a password has expired and the user
attempts to log in, the user is notified that the password must be changed and the user is allowed to log
in unless the password is changed. It is recommended that user passwords be changed more frequently
than the specified password lifetime. If there is any suspicion that a user's password has been
compromised, the password should be changed immediately.

Leaving your system unattended

You should never leave a system unattended while any user is logged into an active session. If you must
be away from the machine for even a short period of time, it is strongly recommended that you log off
the system before leaving.

Secure system management
Management of a secure computer system involves the creation and enforcement of security policies and
regular system monitoring.

420 AIX Version 7.2: Security

The following list should serve as a starting point for the development of a secure facilities management
policy for your site:
v The maximum security level in the system's accreditation range should not be greater than the

maximum security level for the site in which the system is located.
v The system hardware should be in a secure location. The most secure locations are generally interior

rooms that are not on the ground floor.
v Physical access to the system hardware should be restricted, monitored, and documented.
v System backups and archival media should be stored in a secure location, separate from the system

hardware site. Physical access to this location should be restricted in the same manner as access to the
system hardware.

v Access to operating manuals and administrative documentation should be restricted to a valid
need-to-know basis.

v System reboots, power failures, and shutdowns should be recorded. File system damage should be
documented and all affected files should be analyzed for potential security policy violations.

v Installation of new programs, whether imported or created, should be restricted and monitored. New
programs should be carefully scrutinized and tested before being run.

v Unusual or unexpected behavior of any system software should be documented and reported, and the
cause of the behavior determined.

v Whenever possible, at least two people should administer a system. One person should have the isso
role and the other should have the sa role.

v The PV_ROOT privilege should not be used. To administer the system, the execution of privileged
programs by ISSO, SA, or SO users should be sufficient.

v Audit information should be collected in logs and reviewed regularly. Irregular or unusual events
should be noted and their cause investigated.

v The number of logins with the isso, sa, and so roles should be minimized.
v The number of setuid and setgid programs should be minimized and should only be used in protected

subsystems.
v Privileges assigned to new programs should be determined and minimized by reviewing those

assigned to existing programs.
v Security attributes of files and directories should be verified regularly with the trustchk command.
v All passwords should contain at least 8 characters. This should be regularly verified by an ISSO user.
v All users should have a valid default login shell. This should be regularly verified by an SA user.
v The user IDs of normal users should not be system IDs. This should be regularly verified by an SA

user. A system id is one which has a uid lesser than 128.

System configuration:

Certain steps must be taken by the ISSO and SA to properly configure the system. The ISSO is primarily
responsible for managing security, while the SA is primarily responsible for daily administration.

The ISSO performs the following tasks:
v Installs and configures the basic security functionality, including system auditing, accounting, and

security for allocatable devices.
v Edits the system startup scripts in the /etc/rc.mls and /etc/rc.mls.boot files to meet the site security

policy.

Note: Any changes made to the system startup scripts are not part of the evaluated configuration and
must be addressed before accrediting the system.

v Configures the system-wide login parameters.
v Configures the system-wide password parameters.

Security 421

v Configures the SL range for tty devices that allow users to log in to the SL ranges specified for the tty
port. See the chsec command for more information.

v Configures system device SLs for tape drives and floppy disk drives. See the setsecattr command for
more information.

v Configures the site-configurable security features of the system.

Note: Any changes made to the configurable security features are not part of the evaluated
configuration and must be addressed before accrediting the system. Changing the default configuration
settings can result in the system operating in a less-secure mode.

v Configures the trusted security database for trusted boot and trusted recovery. See the trustchk
command for more information.

v Configures the user groups on the system.

The ISSO and SA work together to configure printers. The SA configures the printers for the system and
the ISSO configures the SL range for the printers.

Network configuration:

The ISSO is primarily responsible for network security and the SA is primarily responsible for daily
network administration. The ISSO and the SA work together to properly configure the network.

Network security is configured with default settings during Trusted AIX installation. It can also pass
sensitivity labels to other Trusted AIX hosts on the network. The ISSO installs and configures the basic
network functionality provided with the system. The ISSO configures the network tables and then runs
the tninit command to save the databases.

Network access:

When connecting to a non-Trusted AIX system via a network or to a Trusted AIX system that not using
the Trusted Networking feature, some security attributes may not be transmitted by the non-Trusted AIX
system. In this case, the Trusted AIX system applies default security mechanisms. The default security
mechanisms are established by a system administrator.

User account configuration:

The ISSO and SA work together to configure user accounts on the system. The ISSO is primarily
responsible for managing security-related user attributes and the SA is primarily responsible for other
user attributes.

The ISSO performs the following tasks for each user:
v Configures clearance. See the chsec and chuser commands for more information
v Configures roles and authorizations
v Configures user groups
v Sets the home directory clearance level. See the settxattr command for more information
v Sets the password
v Sets the audit masks

The SA performs the following tasks:
v Configures user accounts
v Informs the ISSO of new user accounts that require security attributes

422 AIX Version 7.2: Security

Filesystem configuration:

Most file systems are supported on Trusted AIX, however, the support for Trusted AIX security related
extended attributes on file system objects is available only on JFS2 with EAv2.

A JFS2 with EAv1 filesystem is converted to EAv2 when it is mounted on a Trusted AIX system. Files on
these JFS2 filesystems do not have security attributes. The system uses the default SYSTEM_LOW attributes
to access these files. The security attributes can be set on the files by the settxattr command.

In a network environment, a directory on one system can be marked as shared, meaning that the
directory can be mounted and accessed on other systems in the network as if it were the root directory of
a filesystem on a local disk partition.

A file system can be either a multilevel filesystem (MLFS) or a single-level filesystem (SLFS). Each file
object in MLFS has its own labels, whereas all objects in SLFS have the same labels as the mount point.
SLFS does not support multilevel directories and partitioned directories.

Filesystem access:

When a process attempts to access a filesystem object, the system verifies access to each pathname
component.

If a process does not have search access to all of the directories in the pathname, this process cannot
access the object. When a relative pathname is used, access to the current directory is checked whether or
not the current directory is explicitly referenced using a period (.) at the beginning of the pathname.

Trusted Network management:

There are a number of considerations for managing a Trusted Network, including configuration and the
configuration database, netrule syntax and rule specification, Trusted Network flags, and RIPSO/CIPSO
options.

Default configuration warning:

The networking capabilities of AIX Trusted Network have been carefully designed to allow any
conceivably desired configuration. However, changing the configuration from the default values without
understanding AIX Trusted Network can be dangerous.

It is possible, by improperly configuring a machine, to automatically downgrade, upgrade, or remove
security information altogether. Therefore, you should not change the default values in the networking
tables unless you are familiar with AIX Trusted Network.

AIX Trusted Network configuration database:

The network configuration at boot time is established by the rules.host and rules.int files.

After a default Trusted AIX installation, there are no host rules or rule files. The netrule command can be
used with the -u flag to save the new or updated rules to files. The files are binary databases that can be
manipulated with the tninit command. A user must have the aix.mls.network.init authorization to use
the tninit command.

Displaying the AIX Trusted Network rules database:

The contents of an AIX Trusted Network rules database set can be displayed with the disp action of the
tninit command.

Security 423

Enter the following command to append the extensions of .host and .int to filename to generate the
filenames of the host rules database and the interface rules database. The contents of both files will be
sent to the standard out stream in human-readable form.
tninit disp filename

Enter the following command to display the boot default configuration:
tninit disp /etc/security/rules

Loading the AIX Trusted Network rules database:

The tninit command reads a set of AIX Trusted Network rules databases and loads them into the kernel
to become the active set. The filenames of the host and interface accreditation tables are specified in the
same method as the tninit disp action.

The optional -m flag specifies that the system should maintain the existing host rules. If the -m flag is not
specified, all existing host rules are removed before the new active set is loaded. If the -m flag is
specified, the existing and new host rule sets are aggregated, with the new rules overwriting the existing
rules if there is a conflict. All interface rules are overwritten whether or not the -m flag is specified.

The following command loads new rules while maintaining the old rules set:
tninit -m load /dir/dir/filename

This command used the file specified by the filename parameter and appends the .host and .int extensions
to create the two files that comprise the database.

Saving the AIX Trusted Network rules database:

Similar semantics are used for loading and saving the rules database.

Any specified filename is appended with .int and .host to create the two files used to store the database.
The tninit command's save action stores all of the rules that are currently active in the kernel.

To create the default rule set, you must use the netrule command to tailor the kernel rules to fit the
desired site security policy, and then run the tninit command. The following command creates the
/etc/security/rules.int and /etc/security/rules.host files:
tninit save /etc/security/rules

AIX Trusted Network kernel configuration:

You can use the netrule command to completely configure the kernel's AIX Trusted Network rule set to
fit the site's security policy if you have the aix.mls.network.config authorization.

The netrule command can be used to manipulate both host and network interface rules in the kernel. See
the netrule command for more information.

Each interface in a system must have a rule associated with it. If you attempt to delete an interface rule,
it reverts to its default state. If you add another interface rule, the new interface rule overwrites the
current rule. The default interface rule can be viewed by querying the interface rule with the interface
name as “default.” For example: # netrule iq default

netrule syntax:

There are host and interface syntax rules for the netrule command.

The netrule command has the following syntax rules when used for hosts:

424 AIX Version 7.2: Security

netrule h l [i | o | io]

netrule h q { i | o } src_host_rule_specification dst_host_rule_rule_specification

netrule h - [{ i | o } [u] [src_host_rule_specification dst_host_rule_specification]

netrule h + { i | o } [u] src_host_rule_specification dst_host_rule_specification [flags] [RIPSO/
CIPSO_options] security

The netrule command has the following syntax rules when used for interfaces:

netrule i l

netrule i q interface

netrule i + [u] interface [flags] [RIPSO/CIPSO_options] security

The first element, h or i, indicates a host or network interface operation.

The desired action is listed next. There are four distinct actions available:

l List all rules

q Query a particular rule

- Remove a host rule or revert an interface rule to its default state

+ Add or overwrite a rule

The third element in host rules identifies the rule type. For host rules, there is a distinction between
incoming and outgoing rules. The in rules apply to all incoming packets while out rules apply to all
outgoing packets; i indicates an in rule, o indicates an out rule, and, when applicable, io or nothing
indicates both in and out rules. If the last element u is specified when adding or removing a host or
interface rule, the /etc/security/rules.host and /etc/security/rules.int files are updated after the
host or interface rule is successfully added or removed.

AIX Trusted Network rule specification:

Interface rules require that you enter the name of the network interface. Host rules are much more
flexible and therefore require a more complex rule specification.

To specify an interface, enter the name of the network interface the rule should apply to. Network
interface names are names such en0. You can use the ifconfig -a command to see the network interface
names. You must specify a particular interface by name only. You cannot specify a port, protocol, or
subnet mask.

Host rules require a more complex rule specification. The AIX Trusted Network system uses the most
specific applicable rule. For example, a site policy can be configured so that a host rule with a mask of 24
applies to all hosts on a subnet, but a more specific rule can apply to a single host on the net, and this
host uses the more-specific rule. Another more specific rule can also apply to one specific TCP port on
this host. The flexibility of AIX Trusted Network configuration gives you the ability to implement
whatever site security policy is needed for the application. The exact syntax is:

source_host [/mask] [= proto] [:start_port_range [:end_port_range]]

destination_host [/mask] [= proto] [:start_port_range [:end_port_range]]

source_host
The host name, IPv4 address, or IPv6 address of the source host.

Security 425

destination_host
The host name, IPv4 address, or IPv6 address of the destination host.

mask The subnet mask. The number indicates how many bits from the MSB are relevant. When an IPv4
address/subnet pair is written a.b.c.d/e, e is a number from 0 to 32. This number specifies the
number of ones at the beginning of the subnet mask. For example, for an IPv4 address, /24
specifies a netmask of 255.255.255.0, which, when seen as 32 bits, is
11111111.11111111.11111111.00000000. This is 24 ones followed by eight zeros.

proto The protocol number or name as recorded in the /etc/protocols file (for example, =tcp).

start_port_range
Either the TCP or UDP port to which the rule applies, or the beginning of the range if the rule
applies to a range of ports. This can be either the port number or the name of the UDP or TCP
service as recorded in the /etc/services file.

end_port_range
The upper bound of the port range.

AIX Trusted Network flag description:

The AIX Trusted Network system has two flag clusters. If these are not specified, the default values are
used.

The -d and -r flags are used as follows:

-d drop

drop AIX Trusted Network can be configured to drop all packets

r Drop all packets on this interface

n Do not automatically drop all packets on this interface (interface default)

i Use interface default (host default, host only)

-frflag:tflag

rflag Security option requirement on incoming (received) packets

r RIPSO only

c CIPSO only

e Either CIPSO or RIPSO

n Neither CIPSO or RIPSO (system default)

a No restrictions

i Use interface/system default (default)

tflag Security option handling on outgoing (transmitted) packets

r RIPSO placed on all outgoing packet IP headers

c CIPSO placed on all outgoing packet IP headers

i Use interface default (host default, host only)

RIPSO/CIPSO options:

The AIX Trusted Network subsystem supports options for the configuration of CIPSO and RIPSO packet
labeling.

-rpafs=PAF_field [, PAF_field ...]

426 AIX Version 7.2: Security

Specifies each PAF_field that is accepted when IPSO packets are received. There can be up to 256 of these
fields.

-epaf=PAF_field

Specifies the PAF_field that is attached to error responses when error packets are sent using IPSO on
transmitted packets.

-tpaf=PAF_field

Specifies the PAF_field that is applied to outgoing packets when IPSO is used on transmitted packets.

PAF_field:NONE | PAF [+ PAF ...]

A PAF_field is a collection of PAFs. There are five individual PAFs that can be included in a single
PAF_field. These are GENSER, SIOP-ESI, SCI, NSA, and DOE. A PAF_field is a combinations of these
values separated by a plus sign (+). For example a PAF_field containing both GENSER and SCI is
represented as GENSER+SCI. The special PAF_field NONE can be used; this specifies the PAF_field
without any PAFs set.

-DOI=doi

Specifies the domain of interpretation for CIPSO packets. Incoming CIPSO packets must have this DOI
and outgoing CIPSO packets will be labeled with this DOI.

-tags=tag[,tag ...]

tag=1 | 2 | 5

Specifies the set of tags that are accepted and available to be transmitted by CIPSO options. This is a
combination of 1, 2, and 5 separated by commas. For example 1,2 would enable tags 1 and 2.

AIX Trusted Network security policy:

The minimum SL allowed, the maximum SL allowed, and the default SL must be specified.

The implicit or default SL is applied to all packets that do not carry any information about their own SL.
The levels are entered in the following syntax:

+min +max +default

Any label that is valid according to the label encodings file can be used. Quotes are not required for
labels that include spaces.

netrule examples:

The following are examples of the netrule command.

Enter the following to configure en0 to pass no security options and to allow all packets through:
netrule i+ en0 +impl_lo +ts all +impl_lo

Enter the following to configure the host 185.0.0.62 to accept only CIPSO packets within the range of
CONFIDENTIAL A to TOP SECRET ALL:
netrule h+i 192.168.0.0 /24 185.0.0.62 -fc:c +confidential a +top secret all +confidential a

Enter the following to drop all telnet packets from a subnet:

Security 427

netrule h+i 192.168.0.0 /24 =tcp :telnet 192.0.0.5 -dr +impl_lo +impl_lo +impl_lo

See the netrule command for more information and examples.

Managing user accounts:

Identification and authentication (I&A) information about each user is protected and is used to uniquely
identify the user and verify the user's access permissions within the system.

User identity information includes the user's name, login ID text name, user ID, group ID, home
directory, password, password aging parameters, shell, clearances, authorizations, and audit mask. Most
user-related information is stored in the following files:

/etc/passwd
User names, user IDs, primary group assignments, and home directories

/etc/group
Secondary group assignments and home directories

/etc/security/passwd
User passwords in encrypted form

/etc/security/user
Login restrictions, password parameters (such as minimum length), umask, etc.

The /etc/security/passwd and /etc/security/user files are not readable by normal users. The
/etc/security/passwd fie is protected with no discretionary access bits turned on and an SL of
SYSTEM_HIGH. Preventing normal users from reading the encrypted password eliminates sequential
encryption/comparison routines that attempt to match the encrypted password.

Authorized users can edit these files directly, but it is often more convenient to use the smit command to
edit user parameters. The smit command invokes the System Management Interface Tool (SMIT), which
displays menus with choices for system management tasks such as user maintenance.

User and group IDs:

There are two classes of user IDs: system IDs and normal user IDs. System IDs are reserved for
ownership of protected subsystems and special system administration functions. Normal user IDs are
assigned to individuals who use the system interactively.

Each user has a unique user ID used to identify the user on the system. Each user can also be assigned
one or more group IDs, Group IDs are shared by users in the same group and are not necessarily unique.
There are range limits on the numeric values used for IDs. The following table defines the ID range
limits. The values have been defined to allow for a sufficient number of system and normal user and
group IDs.

System user ID
0 to 127

Normal user ID
128 to MAXUID

Normal group ID
0 to MAXUID-1

The MAXUID value is defined in the /usr/include/sys/param.h file

Care should be taken when assigning user ID values for new users. If a normal user is inadvertently
assigned a user ID value less than 128, the user will not be able to log onto the system.

428 AIX Version 7.2: Security

User ID values should not be reused. When a user is deleted, it is recommended that the entries remain
in the /etc/passwd and /etc/security/passwd files and the account be locked. You can do this with the
smit command. This prevents a user from logging in and the ID from being reused. Not reusing the ID
prevents a new user from accessing files that belong to the previous user and that may not have been
removed. This also allows the audit trail to be reconstructed with no ambiguity.

The /etc/passwd, /etc/security/passwd, and /etc/group files can be managed with the mkuser, chuser,
rmuser, pwdadm, and passwd commands. These commands enforce all of the above precautions as well
as all other system security considerations. The mkuser command can only add normal users to the
system.

Note: Carefully enforce the following standards:
v Never reassign a previous used user ID to a new user
v Never assign duplicate user IDs
v Never assign a system ID to a normal user
v Never assign MAXUID as a user ID or group ID

Passwords:

A password is a character string that is associated with a user and is used to authenticate the user at the
start of a session.

The password is stored in encrypted form in the shadow file. The unencrypted password is not stored
anywhere on the system.

Note: The passwords for role users are extremely important to the security of a system and should be
protected at all times.

Password aging:

Users can change their passwords as long as password aging criteria are satisfied.

Password aging requires users to change their password if the password has existed on the system for a
defined time period. Password aging includes a minimum age and a maximum age time period. A
password cannot be changed before the passage of this minimum age time period. The password must be
changed after the maximum age time period.

Password aging parameters can be set in the /etc/security/user file. The following parameters are
related to password aging:

maxage
Maximum number of weeks a password is valid

maxexpired
Maximum number of weeks after maxage that an expired password can be changed by a user

minage
Minimum number of weeks between password changes

minlen
Minimum length of a password

Other parameters can be set to specify the characters that are allowed in a password. See the passwd
command for a complete list of password parameters.

Security 429

Shell:

While working in an application, such as a word processor or a spreadsheet, users do not generally need
to interact directly with the operating system, since the application manages that interaction. However,
some users need to interact directly with the operating system, without another application's interface.

When direct interaction with the operating system is needed, users must use a shell program. A shell
program allows users to enter AIX commands and directly access files and directories and perform other
operations. Every user must have a default shell program specified in their /etc/passwd file. The user's
default shell program (such as /bin/sh, /bin/csh, or /bin/ksh) is run by the login or xterm command
when the user needs to use a shell.

Login effective SL and TL:

Users are assigned a default login SL and TL. The default login SL and TL are the effective SL and
effective TL of the user's process after a successful login.

If a user does not want to log in at their default login SL, they can choose a different SL at login time by
using the -e option of the login command. The SL supplied by the user must be dominated by the user's
clearance and contained in the system accreditation range. The TL can be specified by the user at login
time by using the -t option of the login command.

The default login SL and TL are defined in the /etc/security/user file, along with the username and
clearance for each user. The effective SL of the user must be lie between the tty SL range as specified in
the /etc/security/login.cfg file. The user's effective SL must be dominated by the tty's maximum SL
and dominate the minimum SL. The effective TL of the user must be same as the tty's TL.

Clearances:

A user's process shell is assigned six labels during login.

The effective SL is used by the system in MAC checks. The minimum SL clearance and maximum SL
clearance limit the effective SL; the effective SL cannot dominate the maximum SL clearance, and it must
dominate the minimum SL. The effective TL is used by the system in MIC checks. The minimum TL
clearance and maximum TL clearance limit the effective TL; the effective TL cannot dominate the
maximum TL clearance, and it must dominate the minimum TL.

An ISSO-authorized user can modify any user's SL clearance, TL clearance, default longin SL, and default
login TL. These values are defined in the /etc/security/user file.

Division of responsibility for user information:

A single user cannot add a user to the system. Users are added to the system by the combined actions of
SA- and ISSO-authorized users.

An SA-authorized user can add non-security related user information, which includes the user's name,
user ID, group ID, login ID text name, shell, and home directory. An ISSO-authorized user can add
security-related user information, which includes the user's password, clearance, audit mask, and roles.
The requirement for two people to add a user prevents a single user with authorization from granting
system-wide authorization to any other user.

Enhanced auditing:

Trusted AIX has enhanced the auditing subsystem to capture additional security details.

430 AIX Version 7.2: Security

New audit record fields:

The following fields have been added to all of the AIX audit records for Trusted AIX. These new fields
can be used with the auditselect command as select criteria.
v Roles of the audited process
v Effective TL of the audited process or object
v Effective SL of the audited process or object
v Effective privileges of the audited process

Trusted AIX also audits the following security attributes in some audit trails:
v TL of the audited process or object
v SL of the audited process or object
v Trusted AIX-related security flags

You can display these new security attributes with the auditpr -v command.

Audit ranges:

Trusted AIX includes a mechanism that allows administrators to specify a set of auditing ranges based on
the TL and/or SL of the audited processes or objects. All objects and subjects whose TL or SL is out of
the auditing ranges are ignored.

To set the audit ranges for processes and objects, add a war stanza in the /etc/security/audit/config
file:
war:

obj_min_sl = "impl_lo a,b"
obj_max_sl = "TS a,c"
sub_min_sl = "impl_lo a,b"
sub_max_sl = "TS a,c"
obj_min_tl = impl_lo
obj_max_tl = TS
sub_min_tl = impl_lo
sub_max_tl = TS

The obj_min_sl and obj_max_sl define the SL audit range for objects. The sub_min_sl and sub_max_sl
define the SL audit range for subjects (processes). The obj_min_tl and obj_max_tl define the TL audit
range for objects. The sub_min_tl and sub_max_tl define the TL audit range for subjects (processes).

The war stanza is read by the audit start command and is uploaded to kernel before the audit subsystem
is started. If the war stanza is omitted, the current audit ranges in the kernel are removed. The kernel
does not perform any TL or SL audit range checks if there is no TL SL audit range in the kernel.

Trusted AIX kernel flag:

When a system is configured as aTrusted AIX system at install time, a global kernel flag is enabled in the
_system_configuration variable. The __MLS_KERNEL() macro is provided in the kernel to determine
whether the system is configured as a Trusted AIX system. This macro can be called by user-space
applications or kernel routines. A return value of 1 from the __MLS_KERNEL() macro indicates that the
system is configured as Trusted AIX. Any other return value indicates that the system is not configured
as a Trusted AIX system.

Updating existing programs:

Existing privileged or trusted programs generally function correctly on a trusted system without change.

Security 431

However, certain changes can be made to enhance the level of trust and/or upward compatibility of
these programs. Many of the recommendations for creating new programs also apply to updating existing
programs. The following recommendations particularly apply:
v Programs that test to determine whether they are privileged processes (that is, whether the effective

user ID is 0) should be modified in accordance with the guidelines in Direct Privilege Checking
v Code that manipulates the standard UNIX system permission bits (the mode bits) should be changed

to reflect the possible existence of ACLs
v Code that used to run as setuid-to-root should be examined for the use of privileges and should have

the appropriate privileges assigned

Backup and restore:

Import and export of data on Trusted AIX systems uses trusted versions of the backup and restore
commands.

The backup and restore commands have been extended to handle labels. These extensions are
transparent to the user and, aside from the labeling extensions, these commands function identically to
the standard AIX backup and restore commands. To disable the backup or restore of the extended
security information, the -O flag can be used.

The import/export system is protected by a combination of privilege and authorization mechanisms.

cron restrictions:

The cron command is disabled and will not run any jobs when the system is in configuration mode. If
the system is in operational mode, the cron command runs jobs at the sensitivity label at which the job
was submitted and the user's default integrity label.

There are restrictions such as the user's minimum clearance and maximum clearance. Depending on
which is more recent, the clearance is taken from either the settings of the time that the job was
submitted or the last time the cron command restarted. Only an SA user can administer the cron
command.

Mounting and accessing filesystems:

Trusted AIX supports labeling (SLs, and TLs) on JFS2 with EAv2 file systems. An SA or SO can mount a
file system that does not support labeling (CDFS or HSFS) if necessary. In this case, all of the files on the
mounted file system do not have individual SLs, TLs, or FSFs, but instead inherit the security attributes
of the mount point.

Trusted AIX system management
Guidelines for proper management of a Trusted AIX system must be followed to ensure system security.

Trusted AIX system management is performed by certain users whose accounts are associated with
administrative roles. These users are called the Information System Security Officer (ISSO), the System
Administrator (SA), and the System Officer (SO), and each of these users has authorizations that allow
them to perform a specific subset of administrative tasks. These users are associated with the system
defined roles isso, sa, and so, respectively. The terms ISSO, SA, and SO are used to refer to users having
the isso, sa, and so roles, respectively. Some administrative duties can only be carried out by two of the
three system managers working together, because one manager acting alone does not possess sufficient
authorizations to complete these duties. For example, when adding a new user to the system, only the SA
can add a new user account and only the ISSO can establish the user's password, clearance, and audit
mask. This division of labor is known as the two-man rule.

432 AIX Version 7.2: Security

Note: The effectiveness of the two-man rule depends on the authorizations that are assigned to the
administrative roles. Associating more authorizations to the administrative roles than are needed can
make the system susceptible to insider attacks. See RBAC for more information on associating
authorizations to roles.

The system defined roles isso, sa, and so are associated with the following Trusted AIX authorizations by
default. Proper care should be taken if these associations are changed as this could make the system
vulnerable.

Table 41. Roles and authorizations

isso sa so

aix.mls.login

aix.mls.printer

aix.mls.network.config

aix.mls.network.init

aix.mls.network.config

aix.mls.login

aix.mls.pdir

aix.mls.system.label

aix.mls.tpath

aix.mls.label

aix.mls.system.config

aix.mls.proc

aix.mls.clear

aix.mls.lef

aix.mls.stat

aix.mls.printer

Managing the system for Information System Security Officers:

A Trusted AIX system is managed by the coordinated activities of ISSO, SA, and SO users.

During Trusted AIX installation, three default user accounts of isso, sa, and so are created (if these
accounts are not already present in the case of migration from regular AIX to Trusted AIX). These users
are associated with the isso, sa and so respectively.

Note: The default accounts are only intended for the initial setup and configuration of a Trusted AIX
system. It is recommended that these roles be assigned to other regular users. After these roles have been
assigned to other users, the default user account can be removed. See Installation and migration for more
information on Trusted AIX installation.

ISSO activities

The primary responsibility of the Information System Security Officer (ISSO) is security administration of
the system. Only a user with ISSO authorization can perform ISSO activities. These activities include:
v Planning, implementing, and enforcing site security policy
v Establishing system-wide defaults for user clearance, authorizations, privileges, login controls, and

password parameters
v Setting up user authentication profiles reflecting the level of trust placed in users when user accounts

are created by the system administrator

Security 433

rback_assign_auth_roles.htm

v Assigning security attributes, SLs, and TLs to devices such as terminals, printers, removable disk
drives, and magnetic tape drives

v Assigning security flags, labels, privileges, and authorization sets to files
v Recovering the system to a trusted state in the event of a system failure

Managing the audit system:

Access to the auditing commands is limited to users with the AUDITSYS authorization. For more
information, refer to the audit, auditselect, and auditpr commands.

The following example shows:
1. How to create a filesystem to be used for the audit trail files
2. How to start the audit system
3. How to cause some records to be generated
4. How to parse the audit trail to retrieve various types of records.

Run the following commands as a user with FSADMIN authorization:
/usr/sbin/crfs -v jfs -g rootvg -m /audit -a size=32M -A yes

mount /audit

Use the /tbin/auctlmod -e command to add the following entry to the users section of the
/etc/security/audit/config file:
username = ALL

Replace username with the name of a real user who can log onto the system.

As an ISSO user, create a file called /tmp/top_secret and change the SL of the file to TS ALL.
touch /tmp/top_secret

/usr/sbin/settxattr -f sl= "TS ALL" /tmp/top_secret

Run the following command as a user with AUDITSYS authorization:
/usr/sbin/audit start

The audit system has now been set up and started so that it will record the actions of the user specified
by username when this user logs on to the system.

Log on to the system with the user specified by username in the /etc/security/audit/config file and run
the following commands:
ls -l /tmp/top_secret

exit

As a user with AUDITSYS authorization, run the following commands:
audit shutdown

$ /usr/sbin/auditselect -e “mac_fail==WILDCARD” /audit/trail | \
/usr/sbin/auditpr -v -APSV > /tmp/audit_trail-mac_failure

Examine the audit trail that was redirected to the /tmp/audit_trail-mac_failure file and search for
mac_fail. The auditselect has been modified to accept the following options:
v subj_sl

v obj_sl

v mac_fail

v mac_pass

434 AIX Version 7.2: Security

v mic_fail

v mic_pass

v priv_fail

v priv_pass

v auth_pass

v fsf_fail

v fsf_pass

These options all use the word WILDCARD as the matched value.

Managing object and processes labels:

Every filesystem object and system process have associated labels.

All filesystem objects other than regular files have a range of sensitivity labels and an integrity label.
Processes have a range of both sensitivity and integrity labels. In addition to the ranges, processes have
an effective SL and effective TL. This label indicates the current SL or TL at which the process is running.
You can view the labels with the lstxattr command. You can set the labels of the filesystem objects and
processes with the settxattr command.

Managing network security:

AIX Trusted Network requires that several tables be defined by the ISSO. These tables are stored in the
/etc/security directory. The tninit command is used to generate the binary version and then load it into
the kernel.

Host and network interface rules determine how the system deals with incoming and outgoing network
packets. Host rules apply to specific hosts. Network interface rules apply to interfaces through which
hosts connect to the network. If there are any conflicts between a host rule and an interface rule, the host
rule takes precedence.

Use the netrule command to add, edit, and query rules. In general, the rules pertain to protocols used,
ranges of addresses (both hosts and ports) to which to apply the rules, and which SLs to assign to the
packets. See the netrule command for more information.

Use the tninit command to initialize the AIX Trusted Network subsystem, to save the rules in binary
format, and to display the rules in text format.

Security configurable features:

The configurable feature settings are displayed during the boot sequence.

The configurable settings are stored in the ODM. These settings can be displayed with the getsecconf
command and can be modified by an ISSO user with the setsecconf command.

Managing labels:

An ISSO user can add, modify, or delete label encodings by modifying the /etc/security/enc/
LabelEncodings file. The /etc/security/enc/LabelEncodings file defines how human-readable names are
mapped to the binary representation of system sensitivity labels.

Note: Modifying the sensitivity label encodings file on a running system can result in invalid labels
unless extreme care is taken. Since objects can be labeled with single words or constrained combinations
of words, carelessly changing, adding, or deleting word combination constraints can result in invalid
labels.

Security 435

The /etc/security/enc/LabelEncodings file is translated into binary form by the l_init library routine
and stored in tables. These tables are used to convert SLs, printer banners, and clearances to and from
their internal binary encodings.

Trusted AIX uses the MITRE Compartmented Mode Workstation Labeling software as the basis for
labeling implementation. The document Compartmented Mode Workstation Labeling: Encodings Format,
DDS-2600-6216-93 (MTR 10649 revision 1), September 1993 explains the standard label encodings format.

The standard label encoding format treats the integrity labels and sensitivity labels the same as given in
the Sensitivity Labels section of the /etc/security/enc/LabelEncodings file.

Trusted AIX optionally supports an Integrity Labels section which allows the integrity labels to be
different from the sensitivity labels.

Managing partitioned directories:

To a normal user process, a partitioned directory appears and functions the same as a regular directory.
However, with a partitioned directory, different processes with different SLs see different contents of the
same directory.

For example, if a process running at the SECRET security label creates a file named foo in a partitioned
directory, then a second process running at the TOP SECRET security label cannot see or access the file
foo in that directory. Also, the second process can create its own foo file without interfering with the first
foo file.

This is accomplished using hidden subdirectories. For each unique SL with which a process accesses the
partitioned directory, there is a partitioned subdirectory. When a process accesses the partitioned
directory, the system automatically redirects the process to the hidden subdirectory. In the example above,
the two foo files are actually in different subdirectories, even though they appear to the user to be in the
same directory.

See “Partitioned directories” on page 413 for more information on partitioned directories.

Partitioned directories are supported in JFS2 with EAv2.

Creating a partitioned directory:

When a partitioned directory is created, the default SL range is System Low SL to System High SL. When
a partitioned directory is accessed, the kernel automatically creates a label-specific child directory (if one
does not already exist) and redirects the user process to this child directory.

Use the pdmkdir command to create a partitioned directory. The pdmkdir command requires
aix.mls.pdir.create authorization to override DAC, MAC, and MIC restrictions. Use the pdrmdir
command to remove an empty partitioned directory.

Partitioned subdirectories and sub-subdirectories

The label-specific child directories of a partitioned directory are partitioned subdirectories. When a
process creates a child directory under a partitioned subdirectory (with the mkdir command), the child
directory is a partitioned sub-subdirectory.

When a partitioned subdirectory is created, it inherits the security attributes of its parent partitioned
directory, except for the minimum SL and maximum SL. The minimum and maximum SL are set to the
effective SL of the virtual mode process that first accesses the partitioned subdirectory.

Trusted AIX recognizes four different types of directories:

436 AIX Version 7.2: Security

v regular directory (dir)
v partitioned directory (pdir)
v partitioned subdirectory (psdir)
v partitioned sub-subdirectory (pssdir)

Virtual mode and real mode:

There are two different partitioned directory access modes: virtual mode and real mode.

In virtual mode, a process accessing a partitioned directory can only see the contents of its label-specific
partitioned subdirectory. A partitioned directory is never visible to a process running in virtual mode. A
partitioned directory is visible to a process running in real mode. Processes running in real mode can see
all real contents of partitioned directories and partitioned subdirectories. For real-mode processes, the
system does not perform any redirection.

By default, processes run in virtual mode. Real mode is intended only for file system administration
purposes. Use the pdmode command to run commands in a mode other than that of the current process
shell or to switch to a shell in a different mode.

Although a real-mode user process can see and manipulate partitioned directories and subdirectories, this
type of access and manipulation should be performed with caution. For example, if a regular directory is
created or moved into a partitioned directory by a real-mode process, the directory will never be visible
to processes running in virtual mode.

Although a partitioned directory looks like a regular directory to a virtual-mode process, there are still
some restrictions on the partitioned directory.

Hierarchy:

There is a hierarchy of partitioned directories and subdirectories.

The following rules govern the hierarchy of partitioned directories and subdirectories:
v A directory must be one of four types:

– a regular directory
– a partitioned directory
– a partitioned subdirectory
– a partitioned sub-subdirectory

v A directory cannot be of more than one type at any time
v The parent of a partitioned subdirectory must be a partitioned directory
v Every child directory of a partitioned subdirectory must be a partitioned sub-subdirectory
v The parent of a partitioned sub-subdirectory must be a partitioned subdirectory

Any violation of these rules results in an invalid partitioned directory tree and an inconsistent file system
whose behavior is undefined.

Mounting filesystems:

A partitioned directory or subdirectory can be a mount point, but a partitioned sub-subdirectory cannot
be a mount point. Similarly, the root of a filesystem that is being mounted can be a partitioned directory
or subdirectory, but it cannot be a partitioned sub-subdirectory.

Security 437

Creating and deleting directories:

When a virtual-mode process running is in a partitioned sub-subdirectory, the mkdir command creates a
regular directory. If the same process is in a partitioned subdirectory and executes a mkdir command, a
partitioned sub-subdirectory is automatically created. Any empty directory can be deleted, subject to
MAC, MIC, and DAC restrictions.

Moving directories:

MAC, MIC, and DAC restrictions apply when directories are moved.

A regular directory can be moved anywhere. If its new parent directory is a partitioned subdirectory, the
regular directory that was moved become a partitioned sub-subdirectory. Otherwise, it will still be a
regular directory. If its new parent is a partitioned directory and its name clashes with the name of a
potential partitioned subdirectory, any later virtual-mode process redirection to that potential partitioned
subdirectory will fail.

A partitioned directory can be moved to another regular directory and it will still be a partitioned
directory after being moved. Nested partitioned directories are not supported in Trusted AIX because
they provide no additional advantage.

A partitioned subdirectory can only be moved into a partitioned directory and is still a partitioned
subdirectory after being moved. Moving a partitioned subdirectory into a regular directory, a partitioned
subdirectory, or a partitioned sub-subdirectory is prohibited.

A partitioned sub-subdirectory can be moved anywhere. If its new parent is a regular directory, a
partitioned directory, or a partitioned sub-subdirectory, it becomes a regular directory. Otherwise, it is still
a partitioned sub-subdirectory.

Table 42. Directory movement summary

Move directory of type To regular directory To partitioned directory
To partitioned
subdirectory

To partitioned
sub-subdirectory

Regular Allowed. Remains a
regular directory

Allowed1. Remains a
regular directory.

Allowed1. Becomes a
partitioned
sub-subdirectory.

Allowed. Remains a
regular directory.

Partitioned Allowed. Remains a
partitioned directory.

Allowed1. Remains a
partitioned directory.

Not allowed. Allowed. Remains a
partitioned directory.

Partitioned subdirectory Not allowed. Allowed. Remains a
partitioned subdirectory

Not allowed. Not allowed.

Partitioned
sub-subdirectory

Allowed. Becomes a
regular directory.

Allowed. Becomes a
regular directory.

Allowed. Remains a
sub-subdirectory.

Allowed. Becomes a
regular directory.

1 If the name clashes with the name of a potential (currently nonexistent) partitioned subdirectory, any
later virtual-mode process redirection to the partitioned subdirectory will fail.

Changing directory type:

The pdset command can be used to change a regular directory to a partitioned directory type. There is no
command to change a partitioned directory to a regular directory.

Replacing inode numbers:

When a partitioned subdirectory is accessed and its inode number or the inode number of its parent
partitioned directory (..) is needed, the inode number of its parent partitioned directory or the inode
number of the parent of its parent partitioned directory is returned, respectively. When a partitioned

438 AIX Version 7.2: Security

sub-subdirectory is accessed and the inode number of the parent of the partitioned sub-subdirectory(..) is
needed, the inode number of its grandparent partitioned directory is returned.

Partitioned directory commands:

These commands apply to partitioned directories.

pdmkdir
Create partitioned directories

pdrmdir
Remove partitioned directories and subdirectories

pdlink
Link files across partitioned subdirectories

pdset Set directories to partitioned directories

pdmode
Return current directory access mode

Run command with specified directory access mode

A regular directory that has been converted to a partitioned directory can be converted back to a regular
directory.

System security review:

It is the responsibility of the ISSO to review the security status of the system. A system security review
needs to be carried out immediately after installation and at any other time that the system integrity may
have been compromised, and system security reviews should also be conducted periodically.

The system integrity database directory, which is stored in the /etc/security/tsd/tsd.dat file, contains
security-related information of filesystem objects such as critical commands and system devices. This
database must be updated when a new device is added or the security information of the files is
modified. See the trustchk command for more information.

The trustchk command compares the current security settings of a file, directory, or device with the
corresponding entry in the system integrity database and repairs any security attribute inconsistencies.
The trustchk command can only be run by an ISSO-authorized user.

TTY management:

The minimum SL, maximum SL, and TL for tty devices are defined in the ttys database in the
/etc/login.cfg file. Refer to chsec command for more information.

The effective SL of the user logging in over the TTY port should be within the range defined for this port
in this file. If a TL other than NOTL is specified for the TTY port, then the effective TL of the user must
be the same as the specified TL.

Managing user clearances:

Each user, including the ISSO, SA, and SO users, must have labels to log in to the system. The user
clearance can be specified in the /etc/security/user file as part of the user’s stanza. The minsl, maxsl,
defsl, mintl, maxtl, and deftl attributes specify the minimum SL, maximum SL, default SL, minimum TL,
maximum TL, and default TL, respectively, for the user. If these attributes are specified in the user’s
stanza, the values specified in the default stanza of the file are assigned to the user.

Security 439

Only an ISSO user can modify the security clearance database. The user’s clearance can be listed with the
lsuser and lssec commands and can be modified using the chuser and chsec commands.

The default SL value must be dominated by the maximum SL value and must dominate the minimum
SL. Similarly, the default TL value must be dominated by the maximum TL value and must dominate the
minimum TL.

Note: For a user to successfully log in to the system, the above relation must hold true.

Managing the system for system administrators:

SA users are primarily responsible for the aspects of the system administration that are not related to
security.

The responsibilities of SA users include the following:
v Adding, removing, and maintaining user accounts
v Sharing with the ISSO user the task of ensuring the internal integrity of system software and

filesystems
v Creating and maintaining file systems. This includes planning disk layout, partitioning disks and

changing disk partition sizes, allocating swap space and space for system and user directories,
monitoring filesystem usage, detecting and handling bad disk blocks, and managing filesystem space
by moving, deleting, archiving, or compressing files and file systems.

v Identifying and reporting system problems by analyzing error data and testing system components
such as filesystems, system memory, and devices.

Managing user accounts:

The SA user is responsible for adding new users to the system. The ISSO user is responsible for enabling
new users to log on and execute commands on the system.

See Managing the system for Information System Security Officers for information on adding
authorizations to user accounts.

Once the SA user has added a user has been added to the system, an ISSO user must be notified so that
the initial password can be set up to enable the new user to access the system.

When it is determined that a user should no longer have access to the system, the user should be
immediately removed. Removing a user can only be done by an SA user. The user ID of a user removed
from the system should not be reused unless it is given back to the original user, and then only when
reinstating this user on the system.

See the mkuser, rmuser, chuser, and pwadm commands for information on establishing and modifying
user accounts

Managing printers:

Once a printer has been properly installed, it is added to the system by the combined actions of SA and
SO users. The SO user adds the printer to the system and the SA user establishes the printer's SL range.
An ISSO user has the authority to perform both of these tasks.

The printer's SL range must not be established until the printer has been added to the system. Use the
smit command to manage printers.

Note: Labeled printing of PostScript and ASCII files is only supported on PostScript printers.

440 AIX Version 7.2: Security

taix_isso_sys_man.htm

MAC access to a printer is determined by the SL of the process that is printing the file. This SL appears
on the banner, header/footer, and trailer pages. The process using the lp command must have MAC,
MIC, and DAC access to the file that is being printed. Otherwise, the lp command does not generate a
print request.

When a printer is removed from the system, the printer profile should be immediately deleted from the
system. This can only be done by a user with the SO authorization.

Managing filesystems:

A filesystem consists of directories, data files, executable files, and special files. A filesystem can reside on
various mass storage devices such as hard disk drives and floppy diskettes.

Although only an SA user can create and maintain filesystems, both SA and SO users can mount and
unmount filesystems.

Checking filesystems with the fsck command:

The internal integrity of a filesystem should be checked periodically with the fsck command. The fsck
command must be run on unmounted filesystems. The fsck command can only be executed by an SA
user.

By default, the fsck command runs interactively, prompting the user for the action to perform when an
orphaned file or directory is found. A user has an option to delete the file or attempt to recover the file. If
a user specifies that the file should be recovered, the fsck command attempts to store the file in the
/lost+found directory.

After the fsck command has completed and recovered files are stored in the /lost+found directory, an
ISSO user should review the files to determine their security level. It is recommended that the
/lost+found directory be assigned the SYSTEM_HIGH SL to prevent normal users from accessing
recovered files.

See the fsck command for more information.

Managing the system for System Officers:

S0 users are primarily responsible for the security-related aspects of the system administration.

Managing filesystems:

System Officers are responsible for filesystem management

Supported filesystems:

Trusted AIX supports all disk-based filesystems.

All filesystems except JFS2 are supported on Trusted AIX as single-level filesystems. These files systems
can be mounted on a Trusted AIX system, will automatically receive labels and other security attributes,
and will be subject to the security mechanisms enforced by Trusted AIX. All file objects in a single-level
filesystem have the same security attributes. These security attributes are inherited from the mount point.

JFS2 is implemented on Trusted AIX as multilevel filesystems. Each file object in a multilevel filesystem
has its own security attributes (security labels). For example, a JFS2 directory has independent minimum
and maximum SLs.

Security 441

In single-level filesystems, the minimum and maximum SLs of the mount point are equal and all
directories and files below the mount point must also equal those SLs.

Mounting and unmounting filesystems:

An SO user (with the aix.fs.manage.mount authorization) is allowed to mount or unmount a filesystem.
The mount command uses the device special file name and the mount directory as options.

When multilevel JFS2 filesystems are mounted, the mount directory is assigned the label of the root of
the file system. On a multilevel filesystem, each file has its own sensitivity and integrity labels. If a file is
modified, its label is updated accordingly.

Managing printers:

An SO user can use the lpadmin command to add and remove printers, modify printers, and exercise
certain other types of control over the printer subsystem. An SA user can use the lpadmin command to
add or modify the Sensitivity Labels (SLs) for a printer and can use the enable and disable commands to
enable and disable printers.

Printer subsystem:

The printer subsystem performs many tasks related to printer operation.

Printer subsystem tasks include the following:
v Administering printers and their attributes
v Receiving, storing, and scheduling user print jobs
v Scheduling print jobs for multiple printers
v Starting programs that interface with printers
v Keeping track of the status of printers and print jobs
v Reporting problems when they arise
v Restricting user print jobs to those that fall within the SL range of the printer
v Restricting access to user print jobs once submitted
v Restricting access to printer support files and directories
v Proper labeling of printer output

Printer security features:

The printer subsystem is modified in Trusted AIX to incorporate several security features.

The printer subsystem is a protected subsystem owned by the system ID lp. This prevents normal users
from accessing printer support files and directories, other than the user's own submitted print jobs, and
printer device special files.

The printer subsystem verifies that the user's submitted print job falls within the printer's SL range. This
verification is performed when a user submits a print job with the lp command and before the submitted
job is printed by the lpsched daemon. The administrator should be aware of the printer subsystem
security checks in case a user's print job is denied.

Banner pages are printed for all print jobs. The banner page includes the print job's human-readable SL.
A banner page appears at the front and rear of all print jobs. Any user can print without banners, but this
is an auditable action. You should always verify that the header and footer labels on each page are
correct and are dominated by the labels on the banner page.

442 AIX Version 7.2: Security

Note: The line printer administrator must establish the label range for each printer. To assign a single
label to a printer, run the following command:

lpadmin -d printer_name -Jlabel -Llabel This ensures that only information with the specified label can be
printed on the printer.

Printer command summary:

Some printer subsystem commands can be run by any user. However, some printer subsystem commands
can only be run by an SO, SA, or ISSO user.

The following table lists the printer subsystem commands can be run by any user:

lp Sends a file to a printer

lpstat Gives a status report of the printer subsystem

Printer subsystem administration commands require SO authorization, except that a user with SA or ISSO
authorization can run the lpadmin command to specify a label range of the printer and run the lpstat
command to display printer and job request SLs. The following table lists the printer subsystem
administration commands:

accept Allows jobs on a printer

cancel Cancels a print request of a file

disable
Deactivates a printer

enable
Activates a printer

lpadmin
Sets up or changes printer configuration

lpfilter
Sets up or changes a printer filter

lpforms
Sets up or changes a printer form

lpmove
Moves print requests

lpsched
Prints a request

lpshut stops the print service

lpusers
Sets up or changes print priority

reject Prevents jobs on a printer

Command line printer management:

You can use the accept, enable, disable, lpstat, and lp commands to manage a printer from the command
line.

You can use the accept command to allow jobs to be sent to a printer. Run the following command to
allow the printer laser to accept print jobs:
/usr/sbin/accept laser

Security 443

The printer specified by laser can now receive print job requests. However, the print jobs will not be
printed unless the printer is enabled. Run the enable command to enable a printer:
/usr/bin/enable laser

The enable and disable commands are administration commands and can only be run by a user with
ISSO or SA authorization.

To confirm that the printer was set up properly, run the following lpstat command:
lpstat -p laser -l

This command displays the long status report of the printer laser. If you run the lpstat command without
the -l option, a shorter status report displays. If the user is an SA or ISSO authorized and the -l option is
used, the SL range of the printer is also reported.

To determine the status of a print request, run the following lpstat command:
lpstat -o

This command lists all lp print requests. If the user is SA or ISSO authorized, the effective SL and
clearance of each request is reported.

To print the filename, run the following lp command:
lp -d laser filename

Otherwise, you must specify the print job destination when you run the lp command.

If a default destination printer has been set by the administrator, the -d destination_ptr option is not
necessary. For example, to print the file filename on the printer laser, the enter the following lp
command:
lp filename

Managing system shutdown:

An SO user can shut down the system either by either rebooting the system or halting the system
completely.

The following commands can be run by an SO user to reboot or halt the system or to change the init
state of the system:

reboot Automatically reboots the system

halt Halts all system operations

shutdown
Halts all system operations

init Changes the system's init state

File backup and restore:

Backups help prevent data loss in the event of a hardware failure or the accidental deletion of a file.
Backups should be made on a regular basis, with incremental backups made between complete backups.

The backup and restore commands include options to specify file backup names, locations, types, and
other options. You can use the mksysb command to creates a Trusted AIX installable image of the root
volume group, either in a file or on a bootable tape. You can run these commands using the smit
command. Filesystem backups should be properly labeled and stored in a secure location.

444 AIX Version 7.2: Security

Trusted AIX programming
System security depends on the trusted computing base (TCB) software, hardware, and firmware. This
includes the entire operating system kernel, all device drivers and System V STREAMS modules, kernel
extensions, and all trusted programs. All files used by these programs in making security decisions are
also considered a part of the TCB.

The creation of trusted software requires a thorough understanding of the basic system security principles
and features. Almost all security flaws in UNIX-based systems are due to poorly written trusted software.
However, with Trusted AIX kernel security checks, you can write applications that use enhanced security
features. An application written for Trusted AIX can be sensitive to files and processes at different
security levels and can behave differently depending on the level of process or file that the application is
using. Such an application is known as a multilevel-aware (MLS) application.

A trusted system programmer must be thoroughly versed in Trusted AIX security features and must
understand all new Trusted AIX system calls and security-relevant commands and libraries. This
information is intended for programmers who create or modify trusted software. It contains guidelines,
principles, and cautions for the modification and creation of trusted software. While this offers
introductory explanations to some security principles and methods, it is recommended that trusted
system programmers read other material on secure systems.

Principles of trusted software
There are several important principles involved in creating and modifying trusted software, including
trust and privileges, trusted software design, least privilege, programming conventions, and protection of
the TCB.

Trust and privilege:

A process can bypass basic security restrictions (MAC, MIC, DAC, and other restricted operations) only if
the process is adequately privileged. Any process that is running with a privilege or privileges is called a
privileged process and the program that the process is running is called a privileged (trusted) program.

The term privilege refers to an individual attribute that allows a process to perform a security-related
operation. Trusted AIX identifies and groups certain security operations and associates a distinct privilege
with each operation. This effectively removes the superuser (or root) privilege from the base system.
Privileges are associated with processes and executable files.

Programs must be trusted under the following circumstances:
v The program is configured or is intended to run as a privileged process. This applies to any program

that is intended to be run by a privileged process.
v The program is relied upon by another trusted program in making security decisions. For example, a

program that alters a sensitive database must be trusted if other programs rely on the data in the
database to make a security decision.

It is important to ensure that untrusted programs can never run as privileged processes. There are several
ways to prevent untrusted programs from running as privileged processes:
v Do not normally allow privileged processes to execute untrusted programs. For example, caution users

running privileged shell-like programs not to run untrusted programs in a privileged shell-like
program.

v Never allow innate, inherited, or authorized privileges for untrusted executable files.

All portions of the operating system kernel, including device drivers, STREAMS modules, and kernel
extensions, must be trusted. Data objects such as files and physical devices are also considered trusted if
they contain information relied on by a trusted program to make security decisions.

Security 445

Trusted software design:

The process of creating trusted software is similar to that for any critical software component. The
creation of trusted software should follow a carefully understood and documented specification, design,
implementation, testing, and configuration control cycle.

The most important aspects of trusted software design are the identification of the subjects and objects
and the definition of precise security actions at the proper level of abstraction. Most security policies are
restrictions on subjects, objects, and actions. When subjects request permission to read, alter, or create
objects, security policies monitor those requests and approve or deny these requests.

Subjects

A subject is normally represented by a user ID and group IDs. Normally the process's effective user
and/or group ID is used for this purpose, although it may be appropriate in some cases to use the real
user and/or group ID.

Objects

An object is any collection of data to which access should be controlled. In most cases, objects are files.
Although it is common for trusted programs to control access to logically distinct objects within the same
file, it is generally better practice to map objects one-to-one onto files.

In some cases, a subject can also be considered an object. For example, a process is normally considered a
subject. However, when one process attempts to affect a second process, the second process is normally
considered an object with respect to this operation.

Requests

Requests are sets of actions that a trusted module performs on behalf of a subject. Each request must be
clearly identified in terms of the request's inputs, possible outputs, and results, including all side effects.
The precise identification of all requests is an important prelude to the definition of security policies.

Security policies

Security policies include simple statements indicating when requests involving specified objects will be
performed on behalf of specified subjects. Subjects, objects, and requests should be carefully defined and
security policies should be concise and straightforward. It is important to specify the identity of the
requesting subject and the objects involved for the purposes of auditing.

Least privilege:

The principle of least privilege states that software modules should be given the minimal capabilities
needed to accomplish their intended task.

Least privilege includes the principle that trusted programs should voluntarily limit their own sensitive
capabilities to be usable in as few areas of the program as possible. Least privilege helps to reduce the
damage from software errors or from unexpected side effects. All trusted software should be designed
according to the principle of least privilege.

Assignment and removal of privilege:

One trusted software technique is for a program to perform all operations for which privilege is required
early in its execution and then to relinquish privilege for the remainder of the duration of its operation.
This is called privilege bracketing.

446 AIX Version 7.2: Security

Remember the following considerations related to the use of privileges:
v Each user's process is assigned a set of maximum privileges at process execution. This set of privileges

can always be reduced but can never be increased by the unprivileged user.
v It is the responsibility of the executing process to raise and lower the privileges of the maximum set

into and out of the effective set when performing privileged operations.
v Process privileges are modified when processes run executable files which have non-empty innate

privilege sets. See the exec command for more information.
v Processes are also given a limiting privilege set when the processes are run. With appropriate

privileges, a process can raise privileges in the maximum set up to those in the limiting set.

Short-lived MAC label changes:

When a process must change its MAC label from its normal operating label, the duration of the label
change should be as brief as possible. This can be accomplished with the use of library routines.

See “Trusted AIX system calls” on page 479 for more information on these library routines.

Short-lived opens of sensitive files:

A sensitive file is a file, such as the shadow password file that contains information that could
compromise system security. When sensitive files are opened for reading or writing, they should be kept
open only as long as necessary.

The close-on-exec attribute of the file descriptor should be set using the fcntl system call. This prevents
unauthorized processes from inheriting open file descriptors via the exec system call.

Centralization of sensitive operations:

A sensitive operation is an operation that requires privileges. If a sensitive operation is performed by an
unprivileged process, it can compromise the security of the system.

Sensitive operations should be restricted to distinct modules (subroutines or separate programs). By
breaking down a large program into separate programs, some of the programs will need fewer or no
privileges. This lessens the possibility of accidental compromise of the system's security

Use of effective root directories:

A program can be confined to a particular directory tree by setting the program's effective root directory
to the base directory of the tree (with the chroot system call) and setting the program's working directory
inside this same tree. In effect, this is a least-privilege mechanism because it limits the files that even a
privileged process can access to those within the tree. This can be particularly effective when the parent
(trusted) process so limits trusted or untrusted child processes.

While changing root directories provides protection to files outside of the new root tree, it does pose a
potential security problem. Changing the root directory can create a means of comprising the security of
the new root tree if this is not done cautiously. This occurs when the runtime linker and shared objects in
the new root tree can be forged. This procedure should be used carefully and sparingly.

Use of protected subsystems:

Protected subsystems provide integrity protection for special subsystems. A subsystem is a collection of
programs and/or data files, owned by the same user ID and/or group ID, that are used to implement a
specific function in the system.

Security 447

A subsystem can include setuid or setgid programs. A protected subsystem is a subsystem with a user ID
that is a system user ID.

A system user ID is a user ID with a value less than or equal to 127. Users cannot log in with system
user IDs. Using protected subsystems can significantly reduce the number of privileged processes.

Minimal access modes:

Trusted programs (actually all programs) should only open objects in read/write access modes that are
absolutely necessary. Basically, this means never opening an object for write-and-read when opening for
read is sufficient. For particularly sensitive situations, the process should open for write-only in the
specific locations where write is required.

These techniques are particularly important when a program creates other processes, since the passing of
privileges and other general capabilities (for example, open connections to sensitive files) is a critical
aspect of trusted software design. Privileges can override all restrictions. Careful design and consideration
should be applied when creating new commands that will have privileges.

Other trusted programming conventions:

Trusted AIX uses many other trusted programming conventions.

Redundancy:

Redundancy is a useful technique for security systems. Security is seldom absolute, but is instead almost
always a matter of placing a sufficient number of roadblocks in the path of anyone attempting to
improperly access a system.

The advantage of redundant security checks is that if one check fails or is compromised, other checks
may provide protection. The disadvantage of redundant checks is that the overall security checks are
separated or distributed through the system. Therefore, while redundant checks can be extremely useful,
they must be carefully designed, documented, and maintained.

Non-duplication of kernel checks:

It is rarely advisable for a process to perform a check that the kernel can perform. For example, a process
should never read the MAC label of a file and perform the mandatory access check itself. Whenever
possible, checking the kernel should perform a check.

There are two major reasons that the kernel should perform checks.
v Kernel operations are atomic with respect to other processes, whereas process checks can be effectively

concurrent with other processes.
v More importantly, the precise algorithms used can change with newer kernel versions. It is difficult to

track such changes for algorithms that are a part of end-user software.

Direct privilege checking:

Programs should not attempt to determine whether they are invoked as privileged processes (for
example, by examining their effective or maximum privilege vector). Instead, programs should assume
they are invoked as privileged where appropriate.

If the program is not a privileged process, the privileged system calls will fail and the program can take
the appropriate action. It is not usually an effective security measure for a program to itself refuse to
perform certain operations unless it is privileged. If the program is privileged, then the check is
meaningless. If the program is not privileged, then the program can do no more harm than any other
unprivileged process.

448 AIX Version 7.2: Security

However, this check can be used effectively as an aid to accidental misuse. A meaningful error message
can be given stating that the program was intended to be privileged but is not.

Propagation of sensitive capabilities:

A sensitive capability is a capability of a trusted program that could compromise the security of the
system if provided to an untrusted program.

Caution should be used when a privileged program propagates its privileges or general capabilities to
other programs via the fork and exec family of system calls. The exec system calls are the most important
since these pass privileges from one program to another. The fork system call creates a new process, but
the new process privileges are identical to those of the parent. The primary danger is that the executable
program file may not be trustable or may have been altered by an untrusted program. The following
cautions should be considered:
v Trusted programs should be careful to not pass open connections to objects (primarily files) to a child

process unless the child and its descendants can be trusted to properly access the file in the mode in
which the file is opened. It may be best for the process to pass a new connection to the object whose
modes are more restrictive than those that would otherwise exist.

v A trusted process that runs with an effective root directory other than absolute root should be
confident that its child processes will not be confused. For example, when the child program opens a
trusted file, such as the shadow password file, it can use an absolute pathname under the assumption
that its effective root is absolute.

v There may be cases in which the trusted program needs to impose a more restrictive umask on its
children.

v Many process attributes are inherited by child processes. If a trusted program knows that a child
process is untrusted and has a MAC label that does not dominate that of the trusted process and these
attributes were inherited by the trusted program from an untrusted ancestor, then these attributes can
be a source of potential covert channels.

v Be aware of the rules of privilege propagation for the fork and exec system calls. Privileges of the
parent process become the privileges of the child process when a fork system call occurs. Privileges are
modified during an exec system call.

In extremely sensitive situations, a trusted program can examine the access controls on a trusted file to
help ensure that the file is properly protected from modification by untrusted programs. For example, a
file can be required to be owned by root with at most DAC write permission allowed for the file's owner.

Effective root environments:

Trusted programs frequently rely on correct absolute pathnames. For example, the login program relies
on the /etc/security/passwd file to be the correct shadow password file.

This includes not only data files, but also the executable files for trusted programs. While an untrusted
program cannot use the chroot system call to directly change the program's effective root directory, there
may be situations in which the TCB allows untrusted programs to run under an effective root. There are
potential security problems if these untrusted programs can execute a trusted program that relies on an
absolute pathname.

Authentication with real and effective IDs:

Trusted programs may need to use several user and group IDs that are associated with a process. It is
important to understand the distinctions between these IDs and their appropriate use.

Security 449

Real user and group IDs

Real user and group IDs normally represent the login identity of the login session in which a process was
created. In some cases, real IDs (particularly the real user ID) can be used for security decisions. One
such instance is authorization checking. Real user IDs are used by commands as a form of identity
verification. This can be particularly useful in thwarting malicious or careless use of the setuid-on-exec or
setgid-on-exec control bits. However, checking real IDs departs from standard UNIX practice and should
only be done when necessary. The overall principle in UNIX systems is that effective IDs are used for
access and other related security checks. Departing from this accepted practice should not be done
without careful consideration and documentation.

Effective user and group IDs

Effective user and group IDs should be used in all access control decisions (DAC and MAC). System
users have user ID values between 0 and 127. Normal users have ID values of 128 and above.

Absolute pathnames for trusted commands:

Some security penetration schemes attempt to create a fake trusted program and place it in the search
path of a shell-like program that is being used by an administrative or even regular user. For example, a
fake copy of the passwd command can be used to capture an existing or new user password.

Proper administrative practice is for the current working directory to be removed from the search path to
guard against this. However, there may be other search paths that are not necessarily strongly protected,
and regular users must be allowed to put the current working directory in their search path. An effective
counter measure is for a trusted program to always be invoked by an absolute pathname (for example
/usr/bin/passwd). The trusted program itself checks its first invocation argument and invocation name. If
the appropriate absolute pathname is not used, the trusted program refuses to run. The trusted program
should also ensure that it does not have an effective root directory that is different from absolute root.

Note: This is effective only to the extent that users are trained to issue the absolute pathname. If a user
inadvertently uses the relative pathname instead and a fake program is invoked, the security penetration
scheme is not averted.

Directory tree structuring:

Directory trees should be carefully structured to enhance the protection of critical files. The basic
guideline is that directory search access should be as limiting as possible (for example, placing all
publicly accessible files into directories that close to the root of the file system).

It is also a good idea to place very sensitive directories as close to absolute root as possible, since this
minimizes the number of intermediate directories that need to be protected.

Read-only filesystems:

Perhaps the ultimate in directory tree structuring is where trusted files that are seldom changed are
placed on their own filesystem and mounted as read-only. This virtually ensures that their contents
cannot be modified during normal system operation. This technique is often used for large collections of
executable files for trusted programs.

If modification of a file is required, the filesystem can be remounted as writable in a more protected
context (for example in single-user mode or on a separate, more protected machine). It is recommended
that programs be used to scan the filesystem for correct configuration (for example, proper DAC, MIC
and MAC labels) after such updates.

450 AIX Version 7.2: Security

In addition, the DAC, MIC, and MAC information cannot be altered on a read-only filesystem. Once the
filesystem is properly configured, this should protect against security penetration schemes that attempt to
alter the DAC information and/or MIC and MAC labels.

Password handling:

It is generally not a good practice for programs other than the standard system utilities to query the user
for the login password. Passwords are extremely sensitive information and their handling should be
tightly restricted to the few existing well-trusted system utilities.

It may be appropriate for certain trusted subsystems to implement their own specific passwords.
However, it can be dangerous to rely on such private password schemes since these are not as secure as
the system-enforced mechanisms.

Protection of the Trusted Computing Base (TCB):

Files that hold elements of the TCB must be protected from modification, and in some cases disclosure
(reading), by untrusted programs.

Protection from modification is critical, and protection from disclosure can be critical. Files that must be
protected include the following:
v All files that contain data used by a trusted program in making a security decision (for example the

shadow password file)
v All executable files for trusted program
v Pseudofiles that allow access to portions of the TCB (for example /dev/kmem).

Note: System initialization files (the rc files) must especially be protected as a part of the TCB

Protection from modification:

Protection from unauthorized modification is primarily accomplished by setting the DAC information to
an appropriate value. Normally, these files would be owned by a system user ID with write access
allowed only to the owner of the file.

MIC is designed to protect against modification by protecting the integrity of objects. By placing a high
MIC label on a file, processes with a lower MIC label are prevented from modifying, deleting, or
renaming the file. This is the ideal method to prevent unwanted modification of files.

In some cases, MAC can be used to protect against unauthorized modification. However, MAC is
designed to protect only against disclosure (reading) and is not well suited for protecting against
modification. Basic MAC policy does not prohibit subjects from modifying higher-label objects. Although
not allowed for direct file writes, certain trusted subsystems may allow this. Also, many trusted files,
such as executable program files, need to be kept at a low MAC label so that they can be generally
accessed. Therefore, setting a high MAC label on a file is not always feasible.

File security flags also protect against file modification. some file security flags prevent modification of
objects by even privileged subjects. If the FSF_TLIB file security flag is set for a file, the file can only be
changed when the system is in configuration mode, assuming the trustedlib_enabled kernel security flag
is turned on. To set FSF_TLIB for a file, a process must have the PV_TCB privilege in its EPS. Another
relevant file security flag is the FSF_APPEND flag, which prevents the modification of previously written
data. A file with the FSF_APPEND flag set can only have data added to it. This can be useful for an
application that logs records to a file.

These flags are usually set for files by integrators rather than under program control. Programmers
should be aware of these flags and their functions.

Security 451

Protection from disclosure:

DAC and MAC can be used to protect TCB files from read access. The MAC labels on these files must
accurately reflect the sensitivity of the information in these files. For example, if a certain algorithm is
classified, then the MAC label on the executable file of a program that uses the algorithm must be
appropriately set.

It is acceptable practice to set the MAC label artificially high (that is, higher than the actual classification
of the data in the file) to protect the data from disclosure. However, such inflated classifications should be
used sparingly.

In almost all cases, the entire directory chain from absolute root must be protected in order for a file itself
to be adequately protected. Otherwise, a malicious program may be able to unlink a portion of the
directory chain and create a new subtree with a fake copy of the file.

For example, suppose a trusted file is stored at /A/B/foo. While foo is protected from modification, the
directory B is not. A malicious untrusted program could then remove the link in B to foo and create a
new file foo with a false copy of the old file foo. Trusted programs that open /A/B/foo will then open the
false file and will have been unwittingly fooled into using its false data.

Trusted programs rely on correct pathnames to access TCB files. For this reason, the symbolic link files
used in pathnames for TCB files should be protected as strongly as the files themselves.

In some cases, MIC can be used to protect against unauthorized disclosure. However, MIC is primarily
intended for protection only against modification (writing) and is not well suited for protection against
disclosure.

Sensitivity label operations:

There are trusted program guidelines for situations involving subjects or objects with different sensitivity
labels.

You should be familiar with the form of a sensitivity label and the dominance relationship between
labels. To be higher that means to dominate, and to be lower is to be dominated by, while to upgrade
means to raise the classification of data to a higher label, and to downgrade means to lower the
classification of data to a lower label..

Basic MAC constraint:

The basic mandatory access control constraint is that untrusted subjects cannot cause data labeled at
sensitivity label A to be labeled at B unless B dominates A.

The basic MAC constraint covers all classes of data. It includes restrictions on relabeling data (that is,
changing the label on a data container) and on the movement of labeled data between data containers.

At various levels of the system (system call, system service utilities, etc.), this basic constraint is cast into
more specific sets of rules, but always with the same basic philosophy, that data can, at most, be
upgraded. For example, a first level of expansion is that processes can open for reading any of a large
class of objects when the label of the process dominates the label of the object, and open for writing if the
label of the object dominates that of the process.

For a regular file, write operations are further restricted to files at the same label as the process. For
directories and devices, write operations are allowed if the subject SL dominates the object minimum SL
and the object maximum SL dominates the subject SL. For FIFO special files (named pipes), read
operations are also restricted to FIFO special files at the same label as the process for covert channel
reasons.

452 AIX Version 7.2: Security

While data can migrate to a higher sensitivity label, this capability is not required for a given object and
situation. For example, the operating system itself does not let an unprivileged process open a higher
label file for writing, although this is permitted under the basic MAC constraint. Whether to allow this
upgrading to untrusted subjects is a matter of design and philosophy. In some cases this is useful and in
some cases it is not. For example, the difficulty associated with direct writes to higher-label files is that
the process cannot read these files, and so the write to a higher-label file is less than useful. However, a
simple trusted utility that raised the label of a file at the request of an untrusted subject can be an
acceptable and useful utility.

At the system-call level, the restriction is only on unprivileged processes. This means that privileged
processes are not bound by this constraint. However, virtually all services that the trusted system
performs will be designed for untrusted users, and therefore at the user-service level the constraint
predominates.

The basic MAC constraint applies to all of the means that untrusted programs have at their disposal to
transfer data. However, the basic MAC constraint is often broken into two components. The first
component deals only with those operating system features intended for data transfer (or labeling). These
features include reading and writing files and interprocess data communication, for example. The second
component deals with means of communication not intended as such; these are called covert channels. It
is nearly impossible to completely enforce the basic MAC constraint with respect to covert channels. For
this reason, low data rate (for example, 0.1 bits per second) covert channels are allowed to exist, although
only when there is a reasonable trade-off against other factors.

The basic MAC restriction is straightforward and simple, and there are relatively few detailed guidelines
for dealing with multilevel data.

Multilevel operations:

The sec_setplab system call allows a privileged process to arbitrarily change its process label.

Since nearly all MAC and MIC constraints on unprivileged processes are also enforced for privileged
processes on preexisting system calls (that is, those that are defined in the base operating system),
privileged processes that need to perform multilevel operations must rely heavily on the sec_setplab
system call. However, trusted programs should only use sec_setplab() only in the following manner:
v All uses of the sec_setplab system call to perform multilevel operations (for example, opening higher

label files for reading) should be done only through library routines that reflect the semantics of the
actual, high-level operation performed and that hide the detailed use of the sec_setplab system call.

v The only exceptions are very simple process label changes that are not a part of a larger multilevel
operation. These simple operations can use the sec_setplab system call directly.

There are two reasons for these guidelines for the sec_setplab system call. First, a sensitive and
potentially dangerous feature such as the sec_setplab system call should only be used in a well-designed,
modular manner. Second, as standards for trusted systems evolve, low-level system calls may support
various mechanisms for multilevel operations.

Encapsulating high-level operations in library routines provides excellent upward compatibility and
adaptability to evolving versions of the operating system and helps ensure portability between trusted
versions of the UNIX system.

The trusted system provides a basic set of such routines. These routines should be used whenever
possible. This set of routines should be expanded with successive operating system versions. A trusted
system programmer can also create such library routines where needed.

Another exception to the MAC and MIC constraints is the use of one or more of the available MAC or
MIC privileges to bypass the MAC or MIC restraints. Care should be exercised when allowing the use of
any of these privileges.

Security 453

System V Interprocess Communication (IPC):

Interprocess Communication (IPC) mechanisms (message queues, semaphores, and shared memory) are
subject to DAC, MIC, and MAC restrictions. Normally, there are no commands for creating and using
System V IPC objects.

The AIX IPC-related system calls have been modified to be multilevel-aware for Trusted AIX. These
modified system calls are:.
v msgget

v msgsnd

v msgrcv

v msgctl

v semget

v semop

v semctl

v shmget

v shmctl

v shmat

v shmdt

In addition, the following system calls designed specifically for manipulating the MAC attributes of IPC
objects have been added toTrusted AIX:

sec_getmsgsec
Get security attributes of message queues

sec_getsemsec
Get security attributes of semaphores

sec_getshmsec
Get security attributes of shared memory segments

sec_setmsglab
Set security attributes of message queues

sec_setsemlab
Set security attributes of semaphores

sec_setshmlab
Set security attributes of shared memory segments

See Access to IPC objects for the privilege requirements for processes to manipulate IPC objects. The
settxattr command can be used to manipulate an IPC attribute.

Implementation of high and system high MIC and MAC labels:

It is often necessary for a trusted process to determine a MAC label that dominates all other labels on the
system. There are two different MAC labels that can be used, the implementation high MAC label or the
system high MAC label.

The implementation high MAC label is the highest MAC label supported by Trusted AIX. It is likely that
this label has a hierarchical classification and contains categories that are not in use for the site. This label
is easily generated, but the label must be used with care. No process should create objects at this label.

The system high MAC label is the highest MAC label that is in use for the site. This is defined by the
administrator in the LabelEncodings file.

454 AIX Version 7.2: Security

taix_access_ipc_objects.htm

The use of the system high MAC label is less efficient but is highly recommended since the administrator
can effectively constrain the actions of even privileged processes by properly setting the appropriate
parameter in the LabelEncodings file.

MIC has analogous implementation high and system high labels.

User and system login ranges:

Trusted programs that perform services for users may need to limit MIC and MAC labels involved in
those operations to values at which the user is allowed to log in and/or to the system-wide allowed login
labels.

The clearances that are assigned to users on the system are in the user database file /etc/security/user
and are accessed using the getuserattr and getuserattrs library routines.

Trusted AIX allows users to operate on the system at any label that is listed in the system accreditation
range and that is dominated by the user's maximum clearance and tjat dominates the user's minimum
clearance. All programs that allow users to operate at different labels should always ensure that the new
label is valid for the user.

For example, suppose a utility named upgrade was defined to raise the MAC label on a file at the
request of any user. The basic MAC restriction demands that upgrade only accept files whose MAC label
is dominated by that of the user. Further, it is deemed prudent (although not strictly necessary from the
basic MAC restriction) that the new label be one at which the user is allowed to log in, which includes
both per-user and system-wide label range restrictions. The upgrade utility would use both the sl_cmp
and accredrange interfaces for this purpose.

Directory tree structure:

The system calls function so that directory trees created by unprivileged processes follow a nondecreasing
label structure, where the label of a file equals that of its parent directory or is within the range of the
partitioned directory, and the label of a directory dominates that of its parent directory (note that
domination includes equivalence). This is a natural structure for untrusted programs.

However, privileged processes are not bound by this restriction and can create directory trees where the
parent directory MAC label relationships are arbitrary. Such configurations are useful because MAC
search access is restricted closer to the root of the tree. For example, aggregation protection, where the
MAC label of a collection of data objects is higher than any single label of the objects, can be
implemented by setting the MAC label of a directory higher than any of its elements. Untrusted processes
must then dominate the label of the directory to gain access to the aggregation of data.

Great care should be used in creating directory trees that have decreasing labels. It is not possible for an
unprivileged process to open a file for writing when the file does not dominate or equal its parent's label.

Partitioned directory manipulations:

There are several system calls that have different behavior as a result of the implementation of
partitioned directories.

The following system calls behave differently as a result of the implementation of partitioned directories:
v getdirents
v link
v mkdir
v mount
v rename

Security 455

v rmdir
v stat
v lstat
v fstat

Process mode:

The pdmode command can execute a command with a specified mode. A process can use the
setppdmode system call to set its own mode to real mode or virtual mode. The setppdmode system call
requires the PV_PROC_PDMODE privilege to succeed. There is no mechanism for a process to change
the mode of another process.

Directory type:

The pdset command can be used to change a regular directory into a partitioned directory, but there is no
command to change a partitioned directory (or partitioned subdirectory or sub-subdirectory) to a regular
directory.

The pdmkdir system call can also be used to create partitioned directories. The pdmkdir system call
requires the PV_FS_PDMODE privilege.

MIC and MAC label considerations:

All programs should use only the sl_cmp and tl_cmp functions to determine the relationship between
MIC and MAC labels.

This is extremely important since the internal label format can change with later system versions and
these library routines track the evolving formats. Similarly, there are many other library routines that
manipulate MIC and MAC labels that should be used wherever possible.

The setea, lsetea, and fsetea system calls change the MIC or MAC label of a file. The fsetea system call
accepts a file descriptor.

Device drivers:

There are some principles and guidelines that should be followed when creating device drivers for
Trusted AIX systems. You should be familiar with the mechanisms for creating device drivers for the base
system and with precautions regarding the use of these mechanisms.

Device management subsystem:

A device in an AIX system is an abstraction and is used to cover all data objects accessed by referencing
device special files. In some cases, these data objects represent actual physical devices and in some cases
they are quite different (including cases such as /dev/null where there is no data storage object at all).
The latter instances are often referred to as pseudo-devices.

Trusted AIX systems provide two types of devices: single-label and multilevel devices. A multilevel
device is trusted to process data at more than one sensitivity level at a time. A single-label device is
usually untrusted. The labels on the data are normally associated with the information that a multilevel
device handles in a way that ensures that the data is always properly labeled. A single-label device
normally relies on exterior labeling.

A hard disk is an example of a multilevel device. All of the data that is placed on a hard disk has
associated sensitivity labels. A printer is physically located in an environment which requires a security
clearance to enter is an example of a single-label device. Only data at that clearance can be sent to the
printer.

456 AIX Version 7.2: Security

Device driver development cautions:

Device drivers are part of the operating system kernel and as such are unrestricted in their actions. The
creation or modification of device drivers is as sensitive as modification of the kernel itself. Unfortunately,
users often need to create or modify device drivers. This should only be done with extreme caution.

It is impossible to list all of the specific cautions to be used when writing device drivers, since there are
so many ways that drivers (sometimes quite innocently) can subvert the security of the system. Therefore,
the creation of secure device drivers is left more to the judgment and experience of the designers.

Device drivers should perform nothing more than simple device management. Device drivers created
essentially for the purpose of adding new system calls to the system, including many pseudo-device
drivers such as those for /dev/kmem, should be considered new system calls and designed accordingly.
The guidelines in this section refer principally to those drivers that are legitimate device managers.

You should study standard device drivers before you attempt to create new ones. The principal security
actions of device drivers are those involved with the execution of the open and ioctl system calls.

Opening devices:

As with most system objects, most of the security checks associated with accessing a device are
performed when the device is opened with the open system call.

The kernel first performs a set of basic operations and then passes the processing of the open request to
the device driver. The kernel makes the following security checks before passing control to the device
driver:
v If the process does not have MAC access to the device special file, the open fails
v If the process does not have MIC access to the device special file, the open fails
v If the process does not have DAC access to the device special file, the open fails

With many devices, reading from the device (with the read system call) alters the state of the device in a
manner that can be detected by another process whose MAC label does not dominate the reading
process. This constitutes a potential covert channel. Devices that are first-in-first-out (FIFO) in nature are
subject to this problem. In these cases, it is common practice to restrict read access to processes that are at
the same MAC label as the device. This is done by a check within the device driver.

There are few specific rules or guidelines for the design of irregular devices. You must understand and
apply the basic principles of mandatory and discretionary access control. Fortunately, most device drivers
can be configured as regular devices and the eccentricities of irregular device drivers do not need to be
dealt with often.

Device driver open examples:

The following are examples of irregular device handling taken from standard system device drivers.
These are intended to illustrate the possible diversity of such device drivers.

/dev/null

/dev/null is a pseudo-device that has no data container. Data written to /dev/null is discarded and
end-of-file (EOF) is always returned in response to read requests. Therefore, no MAC device restriction on
open is required. For compatibility, DAC access on the /dev/null device file is required although this is
not strictly necessary.

Security 457

/dev/tty

When a process issues an open on /dev/tty, the device driver actually attempts to open the terminal that
is the controlling terminal of the requesting process. Therefore, MIC, MAC, and DAC access must be
checked for the process's controlling terminal process instead of for /dev/tty. For compatibility, DAC
access to /dev/tty is required, although this is not strictly necessary.

ioctl restrictions:

Although all device-driver interface functions must be trusted, the ioctl interface usually requires special
attention.

As a general rule, only processes with write access can alter a characteristic of a file that can be detected
by other processes who do not have write access. Having write access means either that the process has
the file open for writing or that the MAC label of the process is equal to the label of the device. This
restriction stems from the basic MAC restriction that no process can perform an action that can be
detected by processes at lower MAC labels.

If the purpose of the action is a user data read/write operation, then the restriction must be enforced as
stated. Otherwise, cases where the restriction is not enforced are considered covert channels, and should
be bandwidth limited and/or auditable.

Some device control actions may need to be limited to privileged processes even when the device is not
configured as a trusted device.

Other restrictions:

There are relatively few other cases where the device driver may need to enforce special security checks.

One example is when a read on a device alters the state of the device in a manner that can be detected
by a process whose MAC label is not dominated by that of the reading process. This presents a potential
covert channel that may need to be restricted or audited by the device driver itself.

Device driver programming summary:

The following guidelines should be considered when implementing device drivers.

Note: New system calls have been added to support extended security for each read/write on Streams
and FIFO devices. Two new library API's, eread() and ewrite() support this extended security attribute. If
it is an MLS Kernel, a security flag DEV_SEC_ERDWR is set on the device. Similarly for FIFO
GNF_SEC_ERDWR is set on the device. These flags enable additional security checks on each read/write.

General design techniques

All security checks within the device driver should be written in a modular fashion and should be easily
identifiable.

Checks within device drivers

It is always better to keep MIC, MAC, and DAC checks out of a device driver. Device drivers without
such checks can be easily ported to or from untrusted systems or other types of trusted systems.

In a regular device driver implementation, the kernel performs MIC, MAC, and DAC checks and the
driver performs any additional required privilege checks. In an irregular device driver implementation,
all checks (MIC, MAC, DAC, and privilege checks) are performed in the device driver. The choice of
whether to implement a regular or irregular device driver is a matter of design judgment.

458 AIX Version 7.2: Security

DAC

DAC is enforced for each device special file based on the filesystem entry point used to access the device.

Checking for correct installation

Any device driver that performs MAC checks should securely handle (within reasonable bounds) the
possibility that the device was defined incorrectly.

Privileged access

It may ne appropriate for a device driver to limit certain device operations to privileged processes.
However, there are a few specific recommendations for these situations.

You can use the refmon kernel function to determine if you have the necessary privileges.

Least privilege:

Trusted AIX introduces the least privilege concept. Least privilige separates the once-powerful root user
into a privilge mechanism with finer granularity.This division of privileges ensures that if there is a
programming error or other defect in the trusted software, very little damage to system security is
possible.

Privilege operations:

There are four privilege vectors associated with each process: effective, maximum, inheritable, and
limiting.

The maximum privilege vector defines the upper limit for the privileges that can be active for each
process. The effective privilege vector defines the privileges that are examined to make a privilege
decision. Note that the effective privilege set is always a subset of the maximum privilege set, which in
turn is always a subset of the limiting privilege set. The limiting privilege set defines the privileges that a
process may have in its maximum, inheritable, and effective privilege sets. The inheritable privilege set
represents the set of privileges that are inherited by the child processes across forks and execs.

When a new text image is executed, the privilege escalation is performed based on the following
algorithm. The special privileges mentioned are PV_ROOT, PV_SU_, PV_SU_EMUL, PV_SU_ROOT,
PV_AZ_ROOT and PV_SU_UID.

The following algorithm demonstrates two important concepts about the least privilege subsystem. The
first concept is that the special privileges (PV_ROOT, PV_SU_, PV_SU_EMUL, PV_SU_ROOT,
PV_AZ_ROOT, and PV_SU_UID) are the only privileges that are allowed to unconditionally propagate
across the execution of a new process image. The second concept is that the process's effective privilege
vector is cleared of all privileges unless the file has FSF_EPS set. This ensures backward compatibility
with applications that may need to run under the trusted system without being bracketed for the least
privilege system.
new_max_privs = old_inheritable_privs
new_max_privs = new_max_privs | file_innate_privs
IF (user was assigned some of authorizations in file PAS)
new_max_privs = new_max_privs | file_authorized_privs
new_max_privs = new_max_privs & old_limiting_privs
IF (old_max_privs contain one or more special privileges)
new_max_privs += same set of special privileges
IF (FSF_EPS is set for the executable)
new_eff_privs = new_max_privs
ELSE

Security 459

new_eff_privs = old_inheritable_privs
IF (old_eff_privs contain one or more special privileges)
new_eff_privs += same set of special privileges
new_limiting_privs = old_limiting_privs

Assignment and removal of privileges:

The following standard system library routines illustrate how privileges are manipulated on the system.
These routines are only useful to privileged programs on the system.

priv_raise
Changes the process's effective privilege vector by adding (or raising) the specified list of
privileges. The list of privileges must be in the process's maximum privilege vector or an error
indication is returned.

priv_remove
Changes the process's effective and maximum privilege vector by removing the specified list of
privileges. If the process cannot remove the effective or maximum privileges, an error indication
is returned.

priv_lower
Changes the process's effective privilege vector by removing (or lowering) the specified list of
privileges. If the process cannot lower the effective privileges, an error indication is returned.

Each of these routines accepts a comma-separated list of privileges that are terminated by a -1 (negative
one, an invalid privilege number). The technique for raising and lowering privileges around the smallest
section of code that may require these privileges is known as privilege bracketing. All trusted
applications should use privilege bracketing to reduce the likelihood of security violations by poorly
designed or implemented software.

setppriv
Changes the process's effective, maximum, inheritable, and limiting privilege vector by setting the
privilege sets. If the privilege sets passed are invalid or are not permitted, an error indication is
returned.

Authorizations:

Authorizations provide various sets of privileges to users with certain authorizations.

Typically, a command or utility checks for any relevant authorizations at the beginning of execution and
then sets its own privileges accordingly. Therefore, users with a specific authorization receive a different
set of privileges for each command performed, according to how the command is programmed.

To remove cumbersome privilege setting from the code itself, AIX provides authorization sets and
privilege sets external to a binary. With the Privileged Authorization Set (PAS) and Authorized Privilege
Set (APS), the system, rather than the command itself, performs privilege setting based on authorization.

checkauths
Compares the passed in list of authorizations to the authorizations associated with the current
process.

For more information about authorization checking, see “RBAC Authorizations” on page 83.

Auditing:

Trusted AIX includes a set of commands for managing the audit trail generation and information. It is
unlikely that a trusted system programmer will need to modify or add to these programs.

audit Controls the audit daemon

460 AIX Version 7.2: Security

auditbin
Controls audit trail files

auditselect
Merges and selects audit records from audit trail files

auditpr
Displays the selected audit events in human-readable form

The primary area where audit is of concern to the trusted system programmer is in the audit events that
are generated by trusted programs. Most trusted programs need to issue messages to the system audit
trail.

Situations to audit:

There are few precise guidelines for determining which situations should be detected and audited by a
trusted program. It is primarily a matter of judgment and audit strategy. The base system divides
situations into successes, failures, object accesses, and possible covert channels.

Successes:

It is importatn to audit successful operations to establish a basic usage history.

For example, it is important that a device allocation program records when a particular user allocates and
deallocates a device. This allows a program to trace the flow of information through the system and
determine responsibility if the device is later determined to have been misused. On the other hand, some
auditing philosophies have little concern about successful operations, because such operations were
determined to be legal and proper by the trusted software.

Failures:

Auditing failed operations can be useful to detect users who attempt to gain access to disallowed services
or data. The frequent occurrence of such failures can indicate malicious (if not particularly clever)
personnel.

The base system divides failures into five categories:
v Privilege failures (an attempt by an unprivileged process to perform an action that is restricted to

privileged processes)
v MAC failures (failure of an action because the action would violate MAC restrictions)
v MIC failures (failure of an action because the action would violate MIC restrictions)
v DAC failures (failure of an action because the action would violate DAC restrictions)
v Other failures (for example, an attempt to log in with an incorrect password)

Object accesses:

It is necessary to audit object access to monitor users who access a given object (for example, the shadow
password file).

Potential covert channels:

Auditing of potential covert channels is important since covert channels can be used for passing
information between processes at different MAC labels. The use of potential covert channels does not
mean that these channels were used for this purpose, only that such use is possible.

Security 461

Each entry written by the audit system includes the reason for the audit entry (success, MAC failure,
MIC failure, DAC failure, privilege failure, other failure, object access, or potential covert channel). This
includes both audit records written by the system itself and audit records written by user programs.

It can be useful to consider whether the user was trusted (that is, an administrator), but there is no
absolute method of determining whether trusted or untrusted user require stronger auditing. For
example, although administrators are assumed trusted and in this regard may require less auditing, their
actions can be far-reaching and it can be useful to record the actions of an unauthorized administrator.
Regular users can do less damage and in this sense require less auditing, but they are also less
trustworthy and therefore may need more auditing. System administrators often apply increased auditing
to their actions to demonstrate their innocence in the case of a security breach.

The following events should be auditable:
v Successful operations, especially those that involve the transfer of information or the changing of access

control parameters
v Operations that fail for security reasons
v Operations by administrators, whether successful or not
v The potential use of covert channels
v Operations that access a specific object
v Actions that affect the subsequent content of the actual audit trail

Audit information levels:

High-level audit information is more useful than low-level audit information. Trusted programs maintain
a high-level view of operations and can produce excellent audit messages.

Recording only that an administrator opened a security file for writing is much less useful than recording
the actual higher-level operation that was performed on the file (for example, recording that an
administrator created a new entry in the file, including the key information for the new entry). It is
highly recommended that audit information be at as high of a level as possible.

It is better to include information about a single event rather than include information about several
events. The principal reason for splitting an audit occurrence among more than one event is so that the
separate occurrences can be selectively enabled.

Audit classes and events:

Each trusted program must determine the audit class, audit event type, and reason that it uses when it
issues audit messages using the auditlog system call.

Each audit event belongs to an audit class. By assigning events into classes, you can more effectively deal
with a large numbers of events. Audit class definitions are defined in the /etc/security/audit/config
file.

The audit class is used to enable and disable the recording of events. If it is important for two events to
be separately enabled, these events should not be in the same audit class. However, it is generally a good
practice to group events into classes. Normally, each trusted program or set of related trusted programs
will reserve one audit class name (or in rare case, a few audit class names) for its own use.

The system actions that are auditable are defined as audit events in the /etc/security/audit/events file.

462 AIX Version 7.2: Security

Covert channels:

All trusted software is assumed to not participate in covert channel schemes. In addition, the software
must be designed so that it cannot be utilized by untrusted software to exploit covert channels. This
section defines covert channels and gives guidelines for their detection and limitation.

Definition of covert channels:

No process at a label A shall be able to perform an action that is detectable by another process at label B
except when label B dominates label A.

This definition can be broken down into two situations: direct data operations and incidental operations.
Direct data operations are intended for users as a direct means of storing or communicating user data,
such as reading and writing files. These operations must absolutely adhere to the basic MAC constraint.
All other operations are incidental operations. The use of an incidental operation to pass data contrary to
the basic MAC restriction is called a covert channel.

The exploitation of a covert channel requires two untrusted processes, which will be referred to as the
sender (at label X) and receiver (at label Y). It is assumed that the MAC label of the receiver does not
dominate that of the sender (if it did, data flow from the sender to the receiver would be a legal
upgrade). To exploit this channel, both the sender and receiver utilize certain conventions regarding the
use of agreed-upon resources in order to transmit data contrary to MAC.

The only criteria for covert exploitation is that the receiver's label of the receiver does not dominate the
sender's label and that both the sender and receiver are untrusted. Both the sender and receiver are
commonly used on behalf of the same user. It is assumed that the TCB itself upholds the basic MAC
restriction and is free of any code that violates this restriction by the malicious use of covert channels. (In
fact, privileged processes have many more effective ways to violate MAC without having to resort to
covert channels.) It is the ability of untrusted processes to exploit covert channels by using trusted
programs that is of concern.

In general, covert channels should be precluded from the system. However, there are some cases where
other system needs (for example, performance, reliability, or compatibility) are unacceptably constrained
without the presence of covert channels.

Bandwidth guidelines:

The base system uses the following guidelines for the limitation of covert channels based on bandwidth:

More than 100 bits/second
These channels are not allowed to exist

0.1 to 100 bits/second
Channels in this range can exist when absolutely necessary, but their use is detected and audited
whenever possible

Fewer than 0.1 bits/second
Channels in this range can exist where necessary but there is no special need to detect their use

It is highly recommended that all additional TCB programs follow these same guidelines. Furthermore,
consider that even relatively slow channels of 10 bits per second can transmit 4,500 bytes per hour, which
is a significant amount of data to be illegally downgraded. Therefore, every effort should be made to
limit covert channels to as low a bandwidth as possible.

The bandwidth of most covert channels is usually lowered by activities of processes other than those
processes that may be exploiting the channel. However, it is recommended this effect not be relied on to
limit the bandwidth of covert channels, since there are periods of low activity on all systems.

Security 463

Detection of covert channels:

Detection of covert channels is largely a matter of careful analysis and design. There are few specific
guidelines for the detection of covert channels.

The term module refers to the unit of TCB code that detects or limits covert channel use, whether in the
kernel or in a process. Detecting covert channels is primarily a matter of determining whether an
untrusted process (the sender) at a level A can use a module to perform an action that is detectable by
another process (the receiver) at level B, when level B does not dominate level A.

For example, a common covert channel is data that is written to a file by a trusted process on behalf of
an untrusted user when the MAC label of the file does not dominate the MAC label of the user.

Relatively few methodologies for detecting covert channels have been proposed. The most prominent is
the Shared Resource Matrix (SRM). Refer to the following for a description of this technique:
v v Kemmerer, R.A. "Shared Resource Matrix Methodology: An Approach to Identifying Storage and

Timing Channels," ACM Transactions on Computing Systems 1(3) 1983, 256-277.
v v Tsai, CR. "A Formal Method for the Identification of Covert Storage Channels in Source Code,"

Proceedings of the 1987 IEEE Symposium on Security and Privacy, 74-87.

Covert channel detection through auditing:

The ability to audit the potential use of a covert channel can be an effective counter to this threat.
However, in order for the auditing to be useful, the audit event must be relatively rare. The audit is of
little use if the ratio of actual exploitations to the incidental use of the event that causes the audit is low.

Limiting covert channels:

The best way to limit covert channels is to simply remove them.

Otherwise they should be limited according to the guidelines discussed in Bandwidth Guidelines. In
addition, whenever possible and effective, potential use of the channels should be audited.

In general, it is difficult for kernel or device driver code to confine covert channels, since the kernel and
device driver code are designed for efficiency and their channels are higher bandwidth. Trusted processes
can more easily limit covert channels.

Note: There is no reason to limit covert channel use by processes at the same label or when the receiver
dominates the sender. Therefore, most TCB modules can increase system performance by imposing no
limitations in these cases.

Per-label quotas:

Many covert channels involve the use of a resource pool that is shared among processes at different MAC
labels. These can be effectively limited by creating separate fixed-size resource pools for each MAC label,
so that a process can only modulate resource use from the pool for its MAC label.

Over time, unused resources can be moved from one pool to another to accommodate dynamic demand.
This resource migration is itself a covert channel, but one of much lower bandwidth that is easily limited.

Time delays:

One technique for limiting covert channels is for the TCB to ensure that a certain amount of time passes
when a service where channels exist is performed. This can be as simple as having the module sleep for a
specified time, which can be calculated based on the amount of information that is being passed.

464 AIX Version 7.2: Security

taix_audit_bandwidth.htm

However, unless properly done, time delays can often be thwarted by programs that are exploiting the
covert channel. For example, the exploiting processes can create many sets of sender/receiver processes.
While the TCB can easily limit each set to a certain bandwidth using delay techniques, the aggregate of
all sets is the bandwidth of this single channel.

It is better for a certain TCB service to ensure that time delays are applied in some manner to all
processes that might be using the service.

Time delays can be useful for confinement, but they are prone to relatively simple countermeasures by
malicious programs and must be carefully designed.

Data limitations:

The covert channel bandwidth can be lowered not only by increasing the time, but also by decreasing the
amount of information that is returned. Programs that return data as a series of operations can often
simply return fewer or smaller packets of information within the same time frame.

Approximate time:

Many of the techniques for exploiting covert channels require the exploiting processes to have an accurate
way to measure relative or absolute time. These channels can sometimes be limited by not allowing the
process to accurately determine time.

While it is relatively easy to ensure that TCB services that return time information make the time
approximate, processes sometimes have other ways of measuring the passage of time, such as counting
their own instruction times. Such techniques for limiting channels should be used with care.

Noisemakers:

The bandwidth of most covert channels is usually lowered, sometimes drastically, by the activities of
processes other than those that are exploiting the channel. It is possible, though not recommended, to
create trusted programs whose purpose is to ensure that a certain level of activity is always present.
These are sometimes known as noisemakers.

While the use of noisemakers may be conceptually appealing, it is usually difficult for noisemakers to
determine when they should be making noise and when they should not. Therefore, this is not a
recommended technique for covert channel limitation.

U-T-U chains:

There may be situations where an untrusted process, U1, invokes a privileged, trusted process, T, which
then invokes another untrusted process, U2 which is at a different label than U1. U1 and U2 represent
untrusted processes at different MAC labels with special covert channel potential by virtue of one being a
descendant of the other. (Actually, T and U can be sequences of trusted and/or untrusted processes.) We
refer to this situation as the U-T-U chain.

Trusted processes must ensure that information does not pass between two untrusted processes against
the basic MAC principle, which includes both the exclusion of disallowed direct data operations and also
covert channels. You should consider the following:
v File descriptors cannot be left open when U2 could not have opened the file in the read/write mode in

which it is open
v The environment variables must be cleared if the label of U2 does not dominate U1
v The working directory passed from U1 through to U2 can constitute a covert channel (probably small)

if the label of U2 does not dominate U1. Similarly, many of the process parameters that are
automatically inherited by the child process could constitute a covert channel.

Security 465

It is possible for U-T-U chains to be managed properly (that is, the covert channels can be sufficiently
constrained). However, this is difficult to ensure, and U-T-U chains should generally be avoided. Note,
however, that the concern is that U2 is not trusted--it might safely be trusted but unprivileged.

Examples of covert channels:

The following are examples of covert channels that might exist in modules created by a systems
programmer.

Printing service covert channel example:

This is an example of a printing service covert channe.

A trusted line printer service correctly tags each submitted job with the MAC label of the requesting
process and maintains that label with the queued jobs for use in eventual printing. Jobs with relatively
long names are allowed.

A status program allows the user to see all of the jobs that are queued for the user, including the
user-assigned job name, regardless of the label of the job. This can be used as a covert channel since the
sender process can then create jobs whose name contains data to be covertly passed to receivers that
operate on behalf of the same user.

Note: The only criteria for covert exploitation is that the receiver's label does not dominate the sender's
label and that both the sender and receiver are untrusted. Both sender and receiver will commonly be on
behalf of the same user.

This channel is closed by allowing the user to only view jobs that are dominated by the user's current
MAC label. This forces the MAC label of the receiver to dominate that of the sender and the channel can
only be used for a legal upgrade. As a matter of courtesy, the status program could give the user an
"other jobs exist" message if non-dominated jobs existed. This represents a much smaller channel with a
good operational reason for existence.

Note: Auditing the detection of higher-level jobs can be useful, since this detection will probably be rare
in normal operation.

This is a common example of a covert channel where multilevel named data objects (queued printing jobs
in this case) are accessible by processes at different MAC labels. The channel is effectively removed by
applying the MAC label of the object to the name also. Attributes other than name, such as size, can also
carry covert information.

Resource pools example:

When a trusted program performs a service for an untrusted client, the trusted program allocates a
specific type of resource (for example a buffer) from a pool of resources that is shared among processes at
different MAC labels.

One way to use this as a covert channel is for the sender and receiver to arrange to have all but one
resource allocated, possibly by other programs running at different or diverse MAC labels or under
different or diverse user IDs. The sender then causes the single remaining resource to be allocated or not
allocated, and the receiver detects this by also trying to allocate the resource.

This is a classic example of a shared resource channel. This can be confined by the allocation of per-label
resource pools as described above. It can also be detected by auditing.

466 AIX Version 7.2: Security

Databases example:

A trusted database system allows user programs to place data into a multilevel database. Direct access is
properly controlled via the basic MAC restrictions.

However, the time required to place an entry into a database is highly dependent on the current total size
of the database. Therefore, the sender can place or remove entries to affect the size of the database, and
the receiver can simply measure the time it takes to place an entry to detect this size. This channel is
likely to be low bandwidth unless the database access is quite efficient.

A guaranteed minimum access time can be imposed in an effort to limit the channel. The time delay can
be pseudorandom so that the average wasted time is lessened. However, this is still a time delay scheme
and should be carefully implemented.

The simple auditing of all accesses is not likely to be effective since it will be difficult to detect the
exploitation of the channel among the many non-malicious uses of the database.

Programming examples:

This section provides several trusted programming examples

Trusted program privilege check example:

This is a modular routine for a trusted program to check whether or not the calling process has a specific
privilege.
#include <sys/priv.h>
#include <sys/secattr.h>

int
priv_check (int priv)
{

/* the process’s security attributes */
secattr_t secattr;

/* get the calling process’s security attributes */
if (sec_getpsec(-1, &secattr;) != 0)
{

return (-1);
/* error retrieving the process’s cred structure */

}

/*
* return whether or not specified priv is in the
* calling process’s maximum privilege set
*/

return privbit_test(secattr.sc_maxpriv, priv);
}

Change effective Sensitivity Label example:

This program changes the effective sensitivity label of the current process to system high.

The following privileges are required in the program's innate privilege set:
v PV_LAB_LEF

v PV_LAB_SLUG

v PV_LAB_SL_SELF
#include <stdio.h>
#include <mls/mls.h>
#include <unistd.h>

Security 467

#include <sys/secattr.h>
#include <userpriv.h>
#include <sys/mac.h>
#include <sys/secconf.h>

#define SUCCESS 0
#define ERROR 1

int
main()
{
sl_t sl_syshi; /* System high SL */
secattr_t attr;
char *clBuffer = NULL;

/*
* Get the system high and low SLs.
*/

if ((sec_getsyslab(NULL, &sl_syshi, NULL, NULL)) != 0) {
fprintf (stderr, "Call to sec_getsyslab failed.\n");
exit(ERROR);

}

/*
* Initialize this process with initlabeldb() to access the
* system default Label database.
*/

priv_raise(PV_LAB_LEF , -1);
if (initlabeldb(NULL) != 0) {
fprintf(stderr, "Could not read the Label Encodings Database.\n");
exit(ERROR);

}
priv_remove(PV_LAB_LEF, -1);

/*
* Get the process clearance range and effective SL.
*/

priv_raise(PV_LAB_SLUG, PV_LAB_SL_SELF, -1);
if (sec_getpsec(-1, &attr) != 0) {
fprintf (stderr, "Problem getting Trusted AIX security attributes of program.\n");
exit(ERROR);

}

/* malloc for the maximum SL label length that can be formed for process */
if((clBuffer = (char *) malloc(maxlen_cl())) == NULL) {
perror("malloc");
exit(ERROR);

}
/* Convert the binary effective SL to human readable */
if (clbtohr(clBuffer, &attr.sc_sl, HR_LONG) != 0) {
fprintf(stderr, "Unable to convert SL to human readable form.\n");
exit(ERROR);

}
printf("Program’s intitial effective SL = %s.\n",clBuffer);

/*
* Set the process effective SL to system high.
* The process may not have its maximum SL at system high,
* so set it also to system high.
*/

attr.sc_sl = sl_syshi;
attr.sc_sl_cl_max = sl_syshi;

if (sec_setplab(-1, &attr.sc_sl, NULL, &attr.sc_sl_cl_max,
NULL, NULL, NULL) != 0) {
fprintf (stderr, "Problem setting the effective SL of program.\n");
exit(ERROR);

468 AIX Version 7.2: Security

}

priv_lower(PV_LAB_SLUG, PV_LAB_SL_SELF, -1);

if (sec_getpsec(-1, &attr) != 0) {
fprintf (stderr, "Problem getting Trusted AIX security attributes of program.\n");
exit(ERROR);
}

/* Convert the binary effective SL to human readable */
if (clbtohr(clBuffer, &attr.sc_sl, HR_LONG) != 0) {
fprintf(stderr, "Unable to convert to SL to human readable form.\n");
exit(ERROR);
}
printf("Program’s modified effective SL = %s.\n",clBuffer);
return(SUCCESS);

}

Setting sensitivity label classifications and comparing sensitivity labels examples:

This is an example of setting the classifications of sensitivity labels and using the library routines for
comparisons between the sensitivity labels.

The PV_LAB_LEF privilege is required in the program's proxy privilege set and in the calling process's
maximum privilege set.
#include <stdio.h>
#include <mls/mls.h>
#include <userpriv.h>
#include <errno.h>

#define SUCCESS 0
#define ERROR 1
int
main (int argc, char **argv)
{
/* Sensitivity labels */
sl_t sl1, sl2;

/* strings to hold labels’ names */
char *slBuffer1 = NULL;
char *slBuffer2 = NULL;

if (argc != 3) {
fprintf(stderr, "Usage: compare slabel1 slabel2\n");
exit(ERROR);
}
/*
* Initialize this process with initlabeldb() to access the
* system default Label database.
*/
priv_raise(PV_LAB_LEF , -1);
if (initlabeldb(NULL) != 0) {
fprintf(stderr, "Could not read the Label Encodings Database.\n");
exit(ERROR);
}
priv_remove(PV_LAB_LEF, -1);

/* Convert the passed SL to binary format */
if (slhrtob(&sl1, argv[1]) != 0) {
fprintf(stderr, "Unable to convert %s to binary form.\n", argv[1]);
exit(ERROR);
}
if (slhrtob(&sl2, argv[2]) != 0) {
fprintf(stderr, "Unable to convert %s to binary form.\n", argv[2]);
exit(ERROR);

Security 469

}

/* malloc for the maximum SL label length that can be formed */
slBuffer1 = (char *) malloc(maxlen_sl());
slBuffer2 = (char *) malloc(maxlen_sl());

if ((slBuffer1 == NULL) || (slBuffer2 == NULL)) {
perror("malloc");
exit(ERROR);
}

/*
* Translate the label back to human readable (long) form.
* This is not a necessary step. It is shown as an example
* usage of slbtohr() API.
*/
if (slbtohr(slBuffer1, &sl1, HR_LONG) != 0) {
fprintf(stderr, "Unable to convert to binary human readable form.\n");
exit(ERROR);
}

if (slbtohr(slBuffer2, &sl2, HR_LONG) != 0) {
fprintf(stderr,"Unable to convert to binary human readable form.\n");
exit(ERROR);
}

/*
* Use sl_cmp() to compare the dominance of the two labels.
*/
if (sl_cmp(&sl1, &sl2) == LAB_SAME) {
printf("label (%s) equals label (%s).\n",
slBuffer1, slBuffer2);
}
else if (sl_cmp(&sl1, &sl2) == LAB_DOM) {
printf("label (%s) dominates label (%s).\n",
slBuffer1, slBuffer2);
}
else if (sl_cmp(&sl2, &sl1) == LAB_DOM) {
printf("label (%s) dominates label (%s).\n",
slBuffer2, slBuffer1);
}
else {
printf("The two labels are disjoint.\n");
}

return (SUCCESS);
}

Setting audit information example:

This program retrieves and sets audit information.

The following privileges are required in the program's innate privilege set:
v PV_AU_ADMIN

v PV_DAC_GID
#include <sys/types.h>
#include <sys/priv.h>
#include <sys/audit.h>

char buf[1024];
int main(int argc, char *argv[])
{
int rc, len, p;
/* *Get process audit preseclection mask */
priv_raise(PV_AU_ADMIN, -1);

470 AIX Version 7.2: Security

rc = auditproc(0, AUDIT_QEVENTS, buf, sizeof (buf));
priv_lower(PV_AU_ADMIN, -1);
if (rc)
fprintf(stderr, "Failed to get audit info\n");

/* *Add the `kernel audit class to the preselection mask */
p = 0;
while ((len = strlen(&buf;[p])) > 0)
p += len +1;

strncat(&buf;[p], "kernel", (sizeof(buf)-p-1));
p += strlen("kernel") + 2;
buf[p] = 0;
priv_raise(PV_AU_ADMIN, -1);
rc = auditproc(0, AUDIT_EVENTS, buf, p);

priv_lower(PV_AU_ADMIN, -1);
if (rc)
fprintf(stderr, "Failed to set audit info\n");
/* *Set the GID of the process to generate an audit record */
priv_raise(PV_DAC_GID, -1);
rc = setgid(129);
priv_lower(PV_DAC_GID, -1);
if (rc)
fprintf(stderr, "Failed to setgid\n");
exit(0);

}

Client example:

This program sends two messages to the server, one using the standard write routine and the other using
the ewrite routine.

The secure message is sent at SECRET. Note that the insecure message sent using the write call is given a
default set of security attributes, which are configurable via netrule.

The following privileges are required in the program's innate privilege set:
v PV_LAB_LEF

v PV_MAC_CL

v PV_LAB_SLUG_STR
#include <sys/mac.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/priv.h>
#include <sys/secattr.h>
#include <errno.h>
#include <stdio.h>
#define SECURE 1
int
main(int argc, char *argv[])

{
int sockfd;
int uid, gid;
char buf[BUFSIZ];

struct sockaddr_in serv_addr;

#ifdef SECURE
int l_init_result = 0;

int ewrite_result = 0;

sec_labels_t seclab;

Security 471

#endif /*SECURE*/

uid = getuid();

gid = getgid();

if (argc != 3)

{
fprintf(stderr, "Usage:%s: ADDR PORT\n", argv[0]);

exit(1);
}
#ifdef SECURE
/*
* * Gain access to the Label Encodings Database
*
* */

priv_raise(PV_LAB_LEF,-1);
l_init_result = initlabeldb(NULL);
if (priv_remove(PV_LAB_LEF, -1) != 0)
{
fprintf(stderr, "Privilege Failure\n");
exit(1);

}
if (l_init_result != 0)
{
fprintf(stderr, "Could not read the Label Encodings Database\n");
exit(0);

}
#endif /*SECURE*/

/*
* * Fill in the structure "serv_addr" with the address
* of
* * the server that we want to connect with.
* */

memset ((char *) &serv_addr;, ’\0’, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(argv[1]);
serv_addr.sin_port = htons(atoi(argv[2]));
/* Open a TCP socket (an Internet stream socket). */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("tcpclient: ");
fprintf(stderr, "client: Cant open stream socket\n");
exit(0);

}
if (connect(sockfd, (struct sockaddr *) &serv_addr;,

sizeof(serv_addr)) < 0)
{
perror("tcpclient: ");
fprintf(stderr, "client: Cant connect to server\n");
exit(0);

}
/*
* * Send a normal write to the server, which will be
* * assigned default security attributes
* */

strcpy(buf, "This has the default security attributes.\n");
if (write(sockfd, buf, strlen(buf)+1) == -1)
{
perror("tcpclient: ");
fprintf(stderr, "write error\n");

472 AIX Version 7.2: Security

}
#ifdef SECURE

strcpy(buf, "This message is at SECRET\n");
/* Set up the SL and CLs */
slhrtob(&seclab.sl;, "SECRET");
slhrtob(&seclab.sl_cl_min;, "SECRET");
slhrtob(&seclab.sl_cl_max;, "SECRET A B");
seclab.sl.sl_format = STDSL_FORMAT;
seclab.sl_cl_min.sl_format = STDSL_FORMAT;
seclab.sl_cl_max.sl_format = STDSL_FORMAT;
/* This ewrite call needs PV_MAC_CL and PV_LAB_SLUG_STR */
priv_raise(PV_MAC_CL,PV_LAB_SLUG_STR,-1);
ewrite_result = ewrite(sockfd, buf,strlen(buf)+1, &seclab;);
priv_lower(PV_MAC_CL,PV_LAB_SLUG_STR,-1);

if (ewrite_result == -1)
{
perror("tcpclient call");
fprintf(stderr, "ewrite error\n");
}
fflush(stderr);

#endif /*SECURE*/
fprintf(stderr, "exiting \n");
sleep(3);
close(sockfd);
exit(0);

}

Server example:

This program acts as a server and uses the eread routine to receive messages that are sent to its port.
After successfully receiving a message, this program outputs the security attributes of the message.

The following privileges are required in the program's innate privilege set (without assigning FSF_EPS
secflags):
v PV_LAB_LEF

v PV_MAC_CL

v PV_MAC_R_STR
#include <sys/mac.h>
#include <sys/socket.h>
#include <sys/priv.h>
#include <sys/secattr.h>
#include <sys/stropts.h>
#include <netinet/in.h>
#include <errno.h>
#include <stropts.h>
#include <unistd.h>
#include <stdio.h>
#include <mls/mls.h>
#define MAX_HR_LABEL_LEN 2048
#define SECURE 1
int
main(int argc, char *argv[])
{
pid_t childpid;
uint clilen;
int sockfd, newsockfd;
struct sockaddr_in cli_addr, serv_addr;

#ifdef SECURE
int l_init_result;
char label_str[MAX_HR_LABEL_LEN];
sec_labels_t seclab;

Security 473

#endif /* SECURE */
if (argc != 2)
{
fprintf(stderr, "Usage:%s PORT\n", argv[0]);
exit(1);

}
#ifdef SECURE
priv_raise(PV_LAB_LEF, -1);
l_init_result = initlabeldb(NULL);
if (priv_remove(PV_LAB_LEF, -1) != 0)
{
fprintf(stderr, "Privilege Failure\n");
exit(1);

}

if (l_init_result != 0)
{
fprintf(stderr, "Could not read the Label Encodings Database\n");
exit(1);

}
#endif /* SECURE */
/* Open a TCP socket (an Internet stream socket). */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("tcpserver: ");
fprintf(stderr, "server: Cant open stream socket\n");
exit(1);

}
/*Bind our local address so that the client can send to us*/
memset((char *) &serv_addr;, ’\0’, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
serv_addr.sin_port = htons(atoi(argv[1]));
if (bind(sockfd, (struct sockaddr *) & serv_addr,

sizeof(serv_addr)) < 0)
{
perror("tcpserver: ");
fprintf(stderr, "server: Cant bind local address\n");
exit(0);

}
listen(sockfd, 5);
for (;;)
{
/*
* * Wait for a connection from a client process.
* */
fprintf(stdout, "Waiting for a connection from a client\n");
clilen = sizeof(cli_addr);
newsockfd = eaccept(sockfd, (struct sockaddr *) & cli_addr,

&clilen;, &seclab;);
if (newsockfd < 0)
{
perror("tcpserver: ");
fprintf(stderr, "server: accept error\n");
}
/* Print SL */
if (slbtohr(label_str, &seclab.sl;, HR_SHORT) != 0)
{
fprintf(stderr,"problem converting sl to string\n");
}
else
{
fprintf(stdout, "sl = %s.\n",label_str);
}
/* Print MIN CLEARANCE */
if (slbtohr(label_str, &seclab.sl_cl_min;, HR_SHORT) != 0)
{

474 AIX Version 7.2: Security

fprintf(stderr,"problem converting min clearance to string\n");
}
else
{
fprintf(stdout, "sl_cl_min = %s.\n",label_str);
}

/* Print MAX CLEARANCE */
if (slbtohr(label_str, &seclab.sl_cl_max;, HR_SHORT) != 0)
{
fprintf(stderr,"problem converting max clearance to string\n");
}
else
{
fprintf(stdout, "sl_cl_max = %s.\n",label_str);
}
if ((childpid = fork()) < 0)
{
perror("tcpserver: ");
fprintf(stderr, "server: fork error\n");
exit(0);
}
else if (childpid == 0) /* child process */
{
int i, j;
char buf[BUFSIZ];

#ifdef SECURE
sec_labels_t e_seclab;

#endif /* SECURE */
close(sockfd);
for (;;)
{

int ret, flag;
struct strbuf ctstr, dtstr;
char ctbuf[2048], dtbuf[2048];
ctstr.maxlen=2048;
ctstr.buf = ctbuf;
dtstr.maxlen=2048;
dtstr.buf = dtbuf;

#ifdef SECURE
fprintf(stdout, "Calling eread\n");
priv_raise(PV_MAC_CL,PV_MAC_R_STR,-1);
ret = eread(newsockfd, buf, sizeof(buf),&e_seclab;);
priv_lower(PV_MAC_CL,PV_MAC_R_STR,-1);
if (ret < 1)

{
if (ret == -1)

fprintf(stderr, "eread error\n");
else

fprintf(stderr, "eread no data\n");
close(newsockfd);
exit(ret);

}
fprintf(stdout, "\n%s", buf);
fprintf(stdout, "\n");
/* Print SL */
if (slbtohr(label_str, &e_seclab.sl;, HR_SHORT) != 0)
{

fprintf(stderr, "problem converting sl to string\n");
}

else
{

fprintf(stdout, "sl = %s.\n",label_str);
}
/* Print MIN CLEARANCE */
if (slbtohr(label_str,&e_seclab.sl_cl_min;,HR_SHORT)!= 0)

{

Security 475

fprintf(stderr,"problem converting min CL to string\n");
}

else
{

fprintf(stdout, "sl_cl_min = %s.\n",label_str);
}
/* Print MAX CLEARANCE */

if (slbtohr(label_str,&e_seclab.sl_cl_max;,HR_SHORT) !=0)
{

fprintf(stderr,"problem converting max CL to string\n");
}
else

{
fprintf(stdout, "sl_cl_max = %s.\n",label_str);

}
fflush(stdout);

#else /* NOT SECURE */
fprintf(stdout, "Calling read\n");
if (read(newsockfd, buf, sizeof(buf)) < 1)
{

if (ret == -1)
fprintf(stderr, "read error\n");

else
fprintf(stderr, "read no data\n");

close(newsockfd);
exit(ret);

}
fprintf(stdout, "%s\n", buf);
fflush(stdout);

#endif /* NOT SECURE */
}

}
/* parent process */
close(newsockfd);

}
}

Trusted AIX user and port security attributes:

User and port security attributes are used to retrieve the clearance attributes of users and ports and
compare the user's clearance attributes against the ports.

The following additional attributes are defined in the usersec.h file for Trusted AIX.

S_MINSL
Minimum sensitivity clearance label of the user. Type SEC_CHAR

S_MAXSL
Maximum sensitivity clearance label of the user. Type SEC_CHAR

S_DEFSL
Default sensitivity label of the user. Type SEC_CHAR

S_MINTL
Minimum integrity clearance label of the user. Type SEC_CHAR.

S_MAXTL
Maximum integrity clearance label of the user. Type SEC_CHAR.

S_DEFTL
Default integrity label of the user. Type SEC_CHAR

The following attributes are valid for ports.

476 AIX Version 7.2: Security

S_MINSL
Minimum sensitivity label assigned to the port. Type SEC_CHAR.

S_MAXSL
Maximum sensitivity label assigned to the port. Type SEC_CHAR

S_TL Integrity label assigned to the port. Type SEC_CHAR

The following example determines if a user can login on the specified port.
#include <mls/mls.h>
#include <usersec.h>
#include <stdio.h>
#include <errno.h>

struct userlabels {
sl_t minsl;
sl_t maxsl;
sl_t defsl;
tl_t mintl;
tl_t maxtl;
tl_t deftl;
};

struct portlabels {
sl_t minsl;
sl_t maxsl;
tl_t tl;
};

void getuserlabels(char * username, struct userlabels *usrlab);
void getportlabels (char * portname, struct portlabels *portlab);
void displayuseraccess (char * username, struct userlabels *usrlab,

struct portlabels *portlab);

int
main (int argc, char **argv)
{

struct userlabels usrlab;
struct portlabels portlab;
char *username = NULL;
char *portname = NULL;

if (argc != 3) {
fprintf (stderr, "Usage: %s <username> <portname>\n", argv[0]);
exit(1);
}
username = argv[1];
portname = argv[2];

initlabeldb(NULL);
getuserlabels(username, &usrlab;);
getportlabels(portname, &portlab;);
displayuseraccess(username , &usrlab;, &portlab;);
endlabeldb();
}

void getuserlabels(char *username, struct userlabels *userlab)
{

dbattr_t attributes[6];
memset (attributes, 0, sizeof(attributes));

attributes[0].attr_name = S_MINSL;
attributes[0].attr_type = SEC_CHAR;

Security 477

attributes[1].attr_name = S_MAXSL;
attributes[1].attr_type = SEC_CHAR;

attributes[2].attr_name = S_DEFSL;
attributes[2].attr_type = SEC_CHAR;

attributes[3].attr_name = S_MINTL;
attributes[3].attr_type = SEC_CHAR;

attributes[4].attr_name = S_MAXTL;
attributes[4].attr_type = SEC_CHAR;

attributes[5].attr_name = S_DEFTL;
attributes[5].attr_type = SEC_CHAR;

if (getuserattrs(username, attributes, 6)) {
fprintf(stderr,

"Error retriving attributes for user %s\n", username);
exit (1);
}

if (clhrtob (&(userlab->minsl), attributes[0].attr_char)) {
fprintf(stderr, "minsl conversion error\n");
exit (1);
}

if (clhrtob(&(userlab->maxsl), attributes[1].attr_char)) {
fprintf(stderr, "maxsl conversion error\n");
exit (1);
}

if (clhrtob(&(userlab->defsl), attributes[2].attr_char)) {
fprintf(stderr, "defsl conversion error\n");
exit (1);
}

if (tlhrtob(&(userlab->mintl), attributes[3].attr_char)) {
fprintf(stderr, "mintl conversion error\n");
exit (1);
}

if (tlhrtob(&(userlab->maxtl), attributes[4].attr_char)) {
fprintf(stderr, "maxtl conversion error\n");
exit (1);
}

if (tlhrtob(&(userlab->deftl), attributes[5].attr_char)) {
fprintf(stderr, "deftl conversion error\n");
exit (1);
}

printf("User %s has the following clearance values\n", username);
printf("minsl:%s\n", attributes[0].attr_char);
printf("maxsl:%s\n", attributes[1].attr_char);
printf("defsl:%s\n", attributes[2].attr_char);
printf("mintl:%s\n", attributes[3].attr_char);
printf("maxtl:%s\n", attributes[4].attr_char);
printf("deftl:%s\n", attributes[5].attr_char);

return;
}

void getportlabels(char *portname, struct portlabels *portlab)
{
int rc =0;
char *val = NULL;

478 AIX Version 7.2: Security

if ((rc = getportattr(portname,S_MINSL,(char*)&val;, SEC_CHAR)) != 0) {
perror ("Error retrieving port attributes");
exit(1);
}

if (slhrtob(&(portlab->minsl), val)) {
fprintf(stderr, "port minsl conversion error\n");
exit (1);
}

if ((rc = getportattr(portname,S_MAXSL, (char*)&val;, SEC_CHAR)) != 0) {
perror ("Error retrieving port attributes");
exit(1);
}

if (slhrtob(&(portlab->maxsl), val)) {
fprintf(stderr, "port maxsl conversion error\n");
exit (1);
}

if ((rc = getportattr(portname,S_TL, (char*)&val;, SEC_CHAR)) != 0) {
perror ("Error retrieving port attributes");
}

if (tlhrtob(&(portlab->tl), val)) {
fprintf(stderr, "port tl conversion error\n");
exit (1);
}

return;
}

void displayuseraccess (char *username, struct userlabels *usrlab, struct portlabels *portlab)
{
CMP_RES_T cmpres;
cmpres = sl_cmp(&(usrlab->defsl), &(portlab->minsl));
if (cmpres != LAB_DOM && cmpres != LAB_SAME) {
printf("Default SL of user does not dominate the minimum SL of tty \n");
exit(1);
}

cmpres = sl_cmp(&(portlab->maxsl), &(usrlab->defsl));
if (cmpres != LAB_DOM && cmpres != LAB_SAME) {
printf("Default SL of user is not dominated by maximum SL of tty \n");
exit(1);
}

cmpres = tl_cmp(&(portlab->tl), &(usrlab->deftl));
if (cmpres != LAB_SAME) {
printf("Default TL of user is not same as TL of tty \n");
exit(1);
}

printf("The user can login on the specified port\n");
return;

}

Trusted AIX system calls:

System calls are provided to manipulate additional Trusted AIX functionality.

eaccept
Accepts a connection on a socket

ebind Binds extended to handle security attributes

Security 479

econnect
Initiates a connection on a socket extended to handle security attributes

eread Reads from a stream and retrieve the message security attributes

ereadv
Reads from a stream and retrieve the message security attributes

erecv recv, recvfrom, recvmsg extended to handle security attributes

erecvfrom
recv, recvfrom, recvmsg extended to handle security attributes

erecvmsg
recv, recvfrom, recvmsg extended to handle security attributes

esend send, sendto, sendmsg extended to handle security attributes

esendmsg
send, sendto, sendmsg extended to handle security attributes

esendto
send, sendto, sendmsg extended to handle security attributes

ewrite Writes to a stream and set the message security attributes

ewritev
Writes to a stream and set the message security attributes

sec_getmsgsec
Gets security attributes of message queues

sec_getpsec
Gets the security information associated with a process

sec_getrunmode
Retrieves the kernel's mode of operation

sec_getsecconf
Returns the current security configuration flags

sec_getsemsec
Gets security attributes of semaphores

sec_getshmsec
Gets security attributes of shared memory segments

sec_getsyslab
Gets the default system sensitivity labels

sec_gettlibbufsize
Retrieves library path entries in kernel

sec_gettlibpath
Retrieves library path entries in kernel

pdmkdir
Makes/sets/unsets a partitioned directory or subdirectory

sec_setauditrange
Sets the system global audit label range

sec_setplab
Sets the effective sensitivity label, minimum sensitivity clearance, maximum sensitivity clearance,
and integrity label of the specified process

480 AIX Version 7.2: Security

setppdmode
Sets the partitioned directory mode (real or virtual) of the process

setppriv
Sets the privilege sets associated with a process

sec_setptlibmode
Sets the TLIB mode of the process

sec_setrunmode
Sets the kernel's mode of operation

sec_setsecconf
Sets the kernel security configuration flags

sec_setsemlab
Sets security attributes of semaphores

sec_setshmlab
Sets security attributes of shared memory segments

sec_setsyslab
Sets the default system sensitivity, information, and integrity labels

AIX C library functions:

Subroutines and macros are provided to manipulate additional Trusted AIX functionality.

accredrange
Determine if a sensitivity label is within accreditation range.

clbtohr
Convert the given binary clearance label to human readable format

clhrtob
Convert the given human readable clearance label to binary format

getfsfbitindex, getfsfbitstring
Routines to get the File Security flag Strings and indices

getmax_sl, getmax_tl
Retrieve maximum sensitivity and integrity labels from the Label Encoding file.

getmin_sl, getmin_tl
Retrieve minimum sensitivity and integrity labels from the Label Encoding file.

getsecconfig, setsecconfig
Routines to retrieve and set the kernel security configuration flags for the runmodes

initlabeldb, endlabeldb
Label Database initialization and termination routines.

maxlen_sl, maxlen_cl, maxlen_tl
Retrieve maximum length of Human readable labels based on the initialized Label Encoding file.

priv_isnull
Determines if any privileges are set in the given privilege set

priv_lower
Privilege set operations

priv_raise
Privilege set operations

priv_remove
Privilege set operations

Security 481

priv_subset
Privilege set operations

privbit_clr
Clears a specified privilege in the specified privilege set

priv_clrall
Clears all privileges in the specified privilege set

priv_comb
Combines the first two specified privilege sets and places the result in the third specified
privilege set

priv_copy
Copies the first specified privilege set into the second specified privilege set

priv_isnull
Determines if no privileges are set in the given privilege set

priv_mask
Computes the intersection of the first two specified privilege sets and places the result in the
third specified privilege set

priv_rem
Removes the privileges in the second specified privilege set from the first specified privilege set
and places the result in the third specified privilege set

privbit_set
Sets the specified privilege in the specified privilege set

priv_setall
Sets all privileges in the specified privilege set

priv_subset
Determines if the first specified privilege set is a subset of the second specified privilege set

privbit_test
Tests to see if the specified privilege is set in the specified privilege set

slbtohr, clbtohr, tlbtohr
Binary Label to Human readable conversion routines.

slhrtob, clhrtob, tlhrtob
Human readable to Binary Label conversion routines

sl_clr, tl_clr
Routines to reset the labels

sl_cmp, tl_cmp
Label comparison routines

tl_cmp
Compare integrity labels

Trusted AIX privileges
The following privileges are available on Trusted AIX. A synopsis and description of each privilege and
its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of the rights
associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

482 AIX Version 7.2: Security

Audit privileges:

The following audit privileges are available on Trusted AIX. A synopsis and description of each privilege
and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of the rights
associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_AU_
Equivalent to all of the other PV_AU_ privileges combined

PV_AU_ADD
Allows a process to record/add an audit record

PV_AU_ADMIN
Allows a process to configure and query the audit system

PV_AU_PROC
Allows a process to get and set an audit state of a process

PV_AU_READ
Allows a process to read a file marked as an audit file

PV_AU_WRITE
Allows a process to write or delete a file marked as an audit file, or to mark a file as an audit file

Authorization privileges:

The following authorization privileges are available on Trusted AIX. A synopsis and description of each
privilege and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of
the rights associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_AZ_ADMIN
Allows a process to modify the kernel security tables

PV_AZ_READ
Allows a process to retrieve the kernel security tables

PV_AZ_ROOT
Causes a process to pass authorization checks during an exec system call

PV_AZ_CHECK
Allows a process to pass all authorization checks

DAC privileges:

The following DAC privileges are available on Trusted AIX. A synopsis and description of each privilege
and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of the rights
associated with another privilege.

Security 483

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_DAC_
Equivalent to all of the other PV_DAC_ privileges combined

PV_DAC_O
Allows a process to override DAC ownership restrictions

PV_DAC_R
Allows a process to override DAC read restrictions

PV_DAC_W
Allows a process to override DAC write restrictions

PV_DAC_X
Allows a process to override DAC execute restriction

PV_DAC_UID
Allows a process to set or change its user ID (UID)

PV_DAC_GID
Allows a process to set or change its group ID (GID)

PV_DAC_RID
Allows a process to set or change its role ID (RID)

Filesystem privileges:

The following filesystem privileges are available on Trusted AIX. A synopsis and description of each
privilege and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of
the rights associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_FS_
Equivalent to all of the other PV_FS_ privileges combined

PV_FS_MKNOD
Allows a process to perform the mknod system call to create a file of any type.

PV_FS_MOUNT
Allows a process to mount and unmount a filesystem

PV_FS_CHOWN
Allows a process to change the ownership of a file

PV_FS_QUOTA
Allows a process to manage information related to disk quotas

PV_FS_LINKDIR
Allows a process to make a hard link to a directory

PV_FS_RESIZE
Allows a process to perform extend and shrink type operations on a filesystem

484 AIX Version 7.2: Security

PV_FS_CNTL
Allows a process to perform various control operations, except extend and shrink operations, on
filesystems

PV_FS_CHROOT
Allows a process to change its root directory

PV_FS_PDMODE
Allows a process to make or set a partitioned-type directory

Process privileges:

The following process privileges are available on Trusted AIX. A synopsis and description of each
privilege and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of
the rights associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_PROC_
Equivalent to all of the other PV_PROC_ privileges combined

PV_PROC_PRIO
Allows a process/thread to change priority, policy, and other scheduling parameters

PV_PROC_CORE
Allows a process to dump core

PV_PROC_RAC
Allows a process to create more processes than the per-user limit

PV_PROC_RSET
Allows to attach resource set (rset) to a process or thread

PV_PROC_ENV
Allows a process to set user information in the user structure

PV_PROC_CKPT
Allows a process to checkpoint or restart another process

PV_PROC_CRED
Allows a process to set process credential attributes

PV_PROC_SIG
Allows a process to send a signal to an unrelated process

PV_PROC_PRIV
Allows a process to modify or view privilege sets associated with a process

PV_PROC_TIMER
Allows a process to submit and use fine granularity timers

PV_PROC_RTCLK
Allows a process to access the CPU-time clock

PV_PROC_VARS
Allows a process to retrieve and update process tunable parameters

PV_PROC_PDMODE
Allows a process to change the REAL mode of partitioned directory

Security 485

Kernel privileges:

The following kernel privileges are available on Trusted AIX. A synopsis and description of each privilege
and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of the rights
associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_KER_
Equivalent to all of the other PV_KER_ privileges combined

PV_KER_ACCT
Allows a process to perform restricted operations related to the accounting subsystem

PV_KER_DR
Allows a process to invoke dynamic reconfiguration operations

PV_KER_TIME
Allows a process to modify the system clock and time

PV_KER_RAC
Allows a process to use large (non-pageable) pages for shared memory segments

PV_KER_WLM
Allows a process to initialize and modify WLM configuration

PV_KER_EWLM
Allows a process to initialize or query the eWLM environment

PV_KER_VARS
Allows a process to examine or set kernel run time tunable parameters

PV_KER_REBOOT
Allows a process to shut down the system

PV_KER_RAS
Allows a process to configure or write RAS records, error logging, tracing, and dump functions

PV_KER_LVM
Allows a process to configure the LVM subsystem

PV_KER_NFS
Allows a process to configure the NFS subsystem

PV_KER_VMM
Allows a process modify swap parameters and other VMM tunable parameters in the kernel

PV_KER_WPAR
Allows a process to configure a workload partition

PV_KER_CONF
Allows a process to perform various system configuration operations

PV_KER_EXTCONF
Allows a process to perform various configuration tasks in kernel extensions

PV_KER_IPC
Allows a process to raise the value of the IPC message queue buffer and allow shmget system
calls with ranges to attach

486 AIX Version 7.2: Security

PV_KER_IPC_R
Allows a process to read an IPC message queue, semaphore set, or shared memory segment

PV_KER_IPC_W
Allows a process to write an IPC message queue, semaphore set, or shared memory segment

PV_KER_IPC_O
Allows a process to read override DAC ownership on all IPC objects

PV_KER_SECCONFIG
Allows a process to set kernel security flags

PV_KER_PATCH
Allows a process to patch kernel extensions

Label privileges:

The following label privileges are available on Trusted AIX. A synopsis and description of each privilege
and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of the rights
associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_LAB_
Equivalent to all other label privileges (PV_LAB_*) combined

PV_LAB_CL
Allows a process to modify subject SCLs, subject to the clearance of the process

PV_LAB_CLTL
Allows a process to modify subject TCLs, subject to the clearance of the process

PV_LAB_LEF
Allows a process to read the labeling database

PV_LAB_SLDG
Allows a process to downgrade SLs, subject to the clearance of the process

PV_LAB_SLDG_STR
Allows a process to downgrade the SL of a packet, subject to the clearance of the process

PV_LAB_SL_FILE
Allows a process to change object SLs, subject to the clearance of the process

PV_LAB_SL_PROC
Allows a process to change subject SL, subject to the clearance of the process

PV_LAB_SL_SELF
Allows a process to change its own SL, subject to the clearance of the process

PV_LAB_SLUG
Allows a process to upgrade SLs, subject to the clearance of the process

PV_LAB_SLUG_STR
Allows a process to upgrade the SL of a packet, subject to the clearance of the process

PV_LAB_TL
Allows a process to modify subject and object TLs

Security 487

MAC privileges:

The following MAC privileges are available on Trusted AIX. A synopsis and description of each privilege
and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of the rights
associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_MAC_
Equivalent to all other MAC privileges (PV_MAC_*) combined

PV_MAC_CL
Allows a process to bypass sensitivity clearance restrictions

PV_MAC_R_PROC
Allows a process to bypass MAC read restrictions when getting information about a process,
provided that the target process's label is within the clearance of the acting process

PV_MAC_W_PROC
Allows a process to bypass MAC write restrictions when sending a signal to a process, provided
that the target process's label is within the clearance of the acting process

PV_MAC_R
Allows a process to bypass MAC read restrictions

PV_MAC_R_CL
Allows a process to bypass MAC read restrictions when the object's label is within the clearance
of the process

PV_MAC_R_STR
Allows a process to bypass MAC read restrictions when reading a message from a STREAM,
provided that the message's label is within the clearance of the process

PV_MAC_W
Allows a process to bypass MAC write restrictions

PV_MAC_W_CL
Allows a process to bypass MAC write restrictions when the object's label is within the clearance
of the process

PV_MAC_W_DN
Allows a process to bypass MAC write restrictions when the process label dominates the object's
label and the object's label is within the clearance of the process

PV_MAC_W_UP
Allows a process to bypass MAC write restrictions when the process label is dominated by the
object's label and the object's label is within the clearance of the process

PV_MAC_OVRRD
Bypass MAC restrictions for files flagged as being exempt from MAC

MIC privileges:

The following MIC privileges are available on Trusted AIX. A synopsis and description of each privilege
and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of the rights
associated with another privilege.

488 AIX Version 7.2: Security

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_MIC
Allows a process to bypass integrity restrictions

PV_MIC_CL
Allows a process to bypass integrity clearance restrictions

Network privileges:

The following network privileges are available on Trusted AIX. A synopsis and description of each
privilege and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of
the rights associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_NET_
Equivalent to all other network privileges (PV_NET_*) combined

PV_NET_CNTL
Allows a process to modify network tables

PV_NET_PORT
Allows a process to bind to a restricted port

PV_NET_RAWSOCK
Allows a process to have direct access to a network layer

PV_NET_CONFIG
Allows a process to configure networking parameters

Superuser privileges:

The following superuser privileges are available on Trusted AIX. A synopsis and description of each
privilege and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of
the rights associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_SU_
Equivalent to all other super user privileges (PV_SU_*) combined

PV_SU_ROOT
Grants a process the equivalent of all privileges associated with standard superuser

PV_SU_EMUL
Grants a process the equivalent of all privileges associated with the standard superuser when the
process UID is 0

Security 489

PV_SU_UID
Causes the getuid system call to return 0

Miscellaneous privileges:

The following miscellaneous privileges are available on Trusted AIX. A synopsis and description of each
privilege and its uses is provided. Some privileges form a hierarchy, where one privilege can grant all of
the rights associated with another privilege.

When checking for privileges, the system first checks to determine if the process has the lowest privilege
needed, and then proceeds up the hierarchy checking for the presence of more powerful privileges. For
example, a process with the PV_AU_ privilege automatically has the PV_AU_ADMIN, PV_AU_ADD,
PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privilege and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except the PV_SU_ privileges.

PV_ROOT
Grants a process the equivalent of all other privileges except PV_SU_ (and the privileges that
PV_SU_ dominates)

PV_TCB
Allows a process to modify the kernel trusted library paths

PV_TP
Indicates that a process is a trusted path process and allows actions that are limited to trusted
path processes

PV_TP_SET
Allows a process to set or clear the kernel trusted path flag

PV_WPAR_CKPT
Allows a process to perform checkpoint and restart operations in workload partitions

PV_DEV_CONFIG
Allows a process to configure system kernel extensions and devices

PV_DEV_LOAD
Allows a process to load and unload system kernel extensions and devices in the system

PV_DEV_QUERY
Allows a process to query kernel modules

Troubleshooting Trusted AIX
The answers to common questions may help you troubleshoot Trusted AIX.

How do I login to Trusted AIX?
Trusted AIX creates three administrative users during installation with appropriate roles as given
below.

The passwords to these accounts have to be set when the system boots up the first time after
Trusted AIX installation. If you installed the system in promptless mode from the network, the
password to these default accounts are as below.

490 AIX Version 7.2: Security

User Password

isso isso

sa sa

so so

How do I su to root?
At the time of Trusted AIX installation, the su attribute of root is set to false so that no user can
access this account. To access this account the default administrative users, isso and sa, will have
to change this attribute of the root account to true using the chuser command.

If su is enabled to root and password for root account is not set, then any user on the system can
access the root account. To avoid this, it is recommended that the password of the root account be
set before resetting the su attribute

Should I create administrative users of my own or use the default administrative users?
The default administrative users are only for setting up the system for customization purposes. It
is highly recommended, but not necessary, that these accounts be used only as for customizing
the system.

Create your own three administrative users with appropriate roles of isso, sa, and so, and delete
or disable these default users.

Why can't I login to the system?
If you try to login in as root (account with uid 0) or any account having uid less than 128, access
will be denied. These accounts are referred to as system accounts. To access system accounts, you
need to login as a non-system account user and su to the account.

Is any error related to the label encodings file displayed while logging in?
If the label encodings file is corrupted you will have to enter single user mode as root user. The
root account is accessible only in single user mode.

Verify that the label encodings file (/etc/security/enc/LabelEncodings) is proper with the labck
command. If the file is improper, modify the file and recheck with the labck command before
exiting the single user mode.

Run trustchk in interactive mode (trustchk -t ALL) to validate the state of the system.

Why can't I compile any program on Trusted AIX which uses Trusted AIX library APIs?
The development toolkit is not installed by default. You will need to install the bos.mls.adt
fileset from the installation media.

How do I correct changes that I made to privileges of commands that caused those commands to stop
working correctly?

Run trustchk in interactive mode (trustchk -t) for those commands to fix the privileges.

Why can't I access the /etc/security/enc directory?
To access the /etc/security/enc directory the shell requires the PV_LAB_LEF and PV_MAC_R
privileges. Assign these privileges to your shell.

How do I disable trustchk at boot.
Remove or comment the trustchk line in the /etc/rc.mls script.

How do I prevent the system from prompting for boot authentication at every boot?
You might have enabled boot authentication for your system. You can disable it using the SMIT
menu from the Trusted AIX sub menu.

Why doesn't my change work when I attempt to change the SL of a file system object?
There are several possibilities:

Did /usr/sbin/settxattr return any error messages?
If so, check those for further information. For example:

Security 491

Did you have permission to execute /usr/sbin/settxattr?
If not, check your privileges and authorizations.

Was the syntax correct?
Refer the settxattr man page for syntax.

Does the requested SL or its abbreviation exist?
Requesting "con a b" will work on a system with a default Label Encodings file
(/etc/security/enc/LabelEncodings), but requesting "conf a b" will not, even
though both would seem logical abbreviations for "confidential compartment A
compartment B."

Did you need to use quotes for a multiple-word label?
settxattr -f sl=con <filename> will work, settxattr -f -a sl="con a b"
<filename> will work, but settxattr -a sl=con a b <filename> will not work.

Did settxattr return any error messages?
If no error messages were returned, the file system object may be a symbolic link. If the
object you were trying to change is a symbolic link, first determine whether you wish to
change the SL of the link itself or the object that the link points to. settxattr does not
follow links but instead sets the labels of the link itself.

How do I install a third-party application so that it will work correctly on the system?
If you installed a third party application and it is not working correctly, it might be accessing
certain restricted files or directories which might require extra privileges. After evaluating the
need of the application to access these restricted objects, determine the privileges needed as
below.
v Assign PV_ROOT to your shell
v Run tracepriv -f -e <third party command>

This will list the privilege required by the application. Add these to the privileged command
database using the setsecattr command.

Why can't I execute certain commands?
Since most of the commands are protected by authorizations, execution of some of the privileged
commands will be allowed only if the invoking user has the corresponding authorization. It can
be verified by identifying whether the authorization required for the command's execution exists
in one of the roles activated for the current session.

Check your active authorizations with rolelist -ae and the authorization required by the
command using lssecattr -c <command>.

Why don't some commands display labels properly.
Most of these commands rely on the file /etc/security/enc/LabelEncodings for conversion of
labels to human readable form and vice-versa. If this file is corrupted, or has been modified, the
commands may not function as intended.

File security flags
The file security flags affect the way that files are accessed. These flags are stored as part of the extended
attributes (EA) of the file itself. The file security flags are defined in the header file.

FSF_APPEND
File can only be appended to and not altered in operational mode.

FSF_AUDIT
The file is marked as part of the audit subsystem. To read or write these files, the process must
have the PV_AU_READ or PV_AU_WRITE privileges respectively.

FSF_MAC_EXMPT
EPS with the PV_MAC_OVRRD privilege ignores MAC restrictions when attempting to access
the object.

492 AIX Version 7.2: Security

FSF_PDIR
The directory is a partitioned directory.

FSF_PSDIR
The directory is a partitioned subdirectory.

FSF_PSSDIR
The directory is a partitioned sub-subdirectory.

FSF_TLIB
The object is marked as part of the Trusted Library. The machine must be running in
configuration mode or the trustedlib_enabled kernel security flag must be OFF.

FSF_TLIB_PROC
Processes marked as TLIB processes can only link oto *.so libraries that have the TLIB flag set.
The system must be running in configuration mode or the trustedlib_enabled kernel security flag
must be OFF.

Trusted AIX commands
Security-related commands are provided to manage a Trusted AIX system:

labck Verifies a LabelEncodings file

getsecconf
Displays the kernel security flags

setsecconf
Changes the Trusted AIX kernel security flags

getsyslab
Shows the kernel maximum and minimum labels

setsyslab
Sets the kernel maximum and minimum labels

getrunmode
Displays the current running mode of the system

setrunmode
Switches the running mode of the system

pdlink
Links files across partitioned subdirectories

pdmkdir
Creates partitioned directories and subdirectories

pdmode
Returns the current partitioned directory access mode or runs a command with a specified
partitioned directory access mode

pdrmdir
Removes partitioned directories and associated subdirectories

pdset Sets/unsets partitioned (sub)directories

bootauth
Verifies that an authorized user is booting the system

chuser Changes the user's clearance attributes

lsuser Displays the user's clearance attributes

chsec Changes the user's clearance attributes and port labels

lssec Displays the user's clearance attributes and port labels

Security 493

trustchk
Checks the attributes of files

lstxattr
Displays the label and security flag attributes of files, processes, and IPC objects

settxattr
Changes the label and security flag attributes of files, processes, and IPC objects

494 AIX Version 7.2: Security

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 2015, 2018 495

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:

© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

496 AIX Version 7.2: Security

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at
http://www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other
Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 497

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

498 AIX Version 7.2: Security

Index

Special characters
/dev/urandom 341
/etc/publickey file 277
/etc/radius/dictionary file 317
/etc/radius/proxy file 318
/usr/lib/security/audit/config 202
/var/radius/data/accounting file 326
.netrc 202

A
access control

extended permissions 120
lists 118, 120

access modes
base permissions 120

Account ID 47
Active Directory 284

group member attribute selection 156
password attribute selection 155

Active Directory through LDAP
configuring AIX 155

adding a CA root digital certificate 235
AIX

configuring to work with Active Directory through
LDAP 155

AIX Security Expert 345, 346, 349, 353, 355, 356, 358, 360, 361,
364, 372, 374, 375, 379, 380, 383, 384, 385

/etc/inetd.conf settings 364
/etc/inittab entries 360
/etc/rc.tcpip settings 361
Audit Policy Recommendations 358
Check Security 383
Disable Remote Services 372
Disable SUID of Commands 372
files 384
High level security scenario 384
IPsec filter rules 379
login policy recommendations 356
Low level security scenario 385
Medium level security scenario 385
Miscellaneous 380
network security 345
password policy rules 353
Remove access that does not require Authentication 374
reports 345
security policy copy 349
settings 345, 346, 349, 353, 355, 356, 358, 360, 361, 364, 372,

374, 375, 379, 380, 383, 384, 385
system security 345, 346, 349, 353, 355, 356, 358, 360, 361,

364, 372, 374, 375, 379, 380, 383, 384, 385
Tuning Network Options 375
undo 345
Undo Security 383
user group system and password definitions group 355

AIX Standard Settings 345
aixpert command 345
assigning privileges to a running process 103
audit

record processing 133

audit (continued)
watch command 136

audit events 137
auditing

collecting event information 130
configuration of 132
detecting events 130
event selection 136
example, real-time file monitoring 146
kernel audit trail 130
kernel audit trail mode 133
logging

event selection 133
logging events

description of 132
overview 130
records format 132
setting up 143

auditing integrity 11
auditing session roles 103
auditing WPAR 147
authentication 69
authentication for Windows servers

Kerberos 157
Automatic home directory creation 46

B
BAS/EAL4+

see Base AIX Security also and Evaluation Assurance Level
4+ and Labeled AIX Security and Evaluation Assurance
Level 4+ 14

BAS/EAL4+ organizational environment 20
BAS/EAL4+ system physical environment 19
Base AIX Security and Evaluation Assurance Level 4+ and

Labeled AIX Security and Evaluation Assurance Level
4+ 14

base permissions 120

C
Certification Authority (CA)

adding root certificate to database 235
deleting root certificate from database 236
list of CAs 234
receiving certificate from 237
requesting certificate from 236
trust settings 235

changing key database password 238
Changing the audit filesystem 23
chsec command 47
commands

aixpert 345
commands, LDAP 166
Common Criteria

see also Base AIX Security and Evaluation Assurance Level
4+ and Labeled AIX Security and Evaluation Assurance
Level 4+ 14

configuration file, RADIUS 311
Configuring security policies 12

© Copyright IBM Corp. 2015, 2018 499

creating a key database 234
creating IKE tunnels with digital certificates 239

D
dacinet 207
deleting a CA root digital certificate 236
deleting a personal digital certificate 238
determining required authorizations for a command 92
determining required privileges for a command 94
digital certificates

adding root 235
creating IKE tunnels with 239
creating key database 234
deleting personal 238
deleting root 236
managing 234
receiving 237
requesting 236
trust settings 235

disk quota system
overview 74
recovering from over-quota conditions 74
setting up 75

dist_uniqid 47
Domain RBAC 114
domainless groups 61

E
EIM

see also Enterprise Identity Mapping 280
Enterprise Identity Mapping 280

current approach 281
extended permissions 120

F
files

/etc/radius/clients 317
default.auth 324
default.policy 324
ldap.client 310
ldap.server 310
radius.base 310
user_id.auth 324

filters
relationship to tunnels 220
rules 216

filters, setting up 245
flags 38
flags, SED 38
Framed Pool Attribute 336
ftp 282

G
generic data management tunnel

using XML 225
Globalization enablement 341
group member attribute selection

Active Directory 156

H
High Level Security 345

I
IBM Tivoli Directory Server 154

Security Information Server
Setting Up 150

identification 69
IKE

features 214
IKE tunnels

creating
using digital certificates 239

Installing a BAS/EAL+ system 15
Installing a LAS/EAL+ system 18
Internet Engineering Task Force (IETF) 212
Internet Key Exchange

see IKE 214
Internet Protocol

security 212
features 213
IKE features 214
operating system 212

Internet Protocol (IP) security 212
configuration 245

planning 218
installation 217
logging 252
predefined filter rules 251
problem determination 257
reference 265

intrusion detection 342
filter rules

SMIT 344
patterns

types 343
rules

pattern matching 342
shun filter 343
shun host 343
stateful filter 344

intrusion prevention 342
IP

see Internet Protocol 212
IP pooling 336
IP security

filters 216
and tunnels 220

SAs 220
security associations 214
tunnels

and filters 220
and SAs 220
choosing which type 221

tunnels and key management 215
IP Security

Digital Certificate Support 217
IPv4

also see Internet Protocol (IP) security 212
IPv6 212

K
kadmind daemon 292
Kerberos 281

500 AIX Version 7.2: Security

Kerberos (continued)
authenticating users to AIX 284
authentication for Windows servers 157
Installing and configuring a Kerberos client 300
installing and configuring for Kerberos integrated login

using KRB5 284
secure rcmds

ftp 282
rcp 282
rlogin 282
rsh 282
telnet 282

kerbos module 309
kernel extensions

kerbos 309
kernel security tables 97
key database, establishing trust settings for 235
key management

and tunnels 215
Key Manager 234
keylogin command

secure NFS 274
keys

changing database password 238
creating a database 234

KRB5 284

L
LAS and Evaluation Assurance Level 4+ 18, 19
LAS/EAL4+ configuration installation (only available with

Trusted AIX) 18
LAS/EAL4+ organizational environment 20
LAS/EAL4+ system physical environment 19
LDAP

Auditing
Security Information Server 166

Client
Setting Up 152

communicating with 158, 160
Exploitation of the Security Subsystem 150
KRB5LDAP

single client 167
mksecldap 166
overview 149
User Management 157

LDAP Attribute Mapping 167
LDAP commands 166
LDAP netgroups 153
LDAP servers 154
Light Directory Access Protocol (See LDAP) 150
logging IP Security 252
login control 33

changing the CDE login screen 35
changing the welcome message 34
enabling automatic logoff 36
securing unattended terminals 36
setting up 34
tightening system default login parameters 36

login user ID 54, 69
Low Level Security 345
lsldap command 166

M
mechanism 37
Medium Level Security 345
mgrsecurity 48, 62
mkgroup command 47
mkhomeatlogin attribute 46
mksecldap command 166
mkuser command 47
modes and monitoring 37
modes, SED 37
monitoring, SED 37
mount command

secure NFS
file systems 279

multiple base DN support 158
multiple organizational units 157

N
netgroups 153
network

security 345
Network Authentication Service 284
Network Authentication Service (NAS) 282
Network Installation Management (NIM) Environment for

LAS/EAL4+ 19
Network interface 24
network trusted computing base 205
NFS (Network File System)

/etc/publickey file 277
secure NFS 272

administering 277
authentication requirements 274
configuring 278
file systems 279
how to export a file system 279
net name 276
network entities 276
performance 277
public key cryptography 274

Number of Groups allowed
Retrieving Number of Groups allowed from kernel 77
Retrieving Number of Groups allowed from ODM

database 76
Number of Groups Allowed

Eliminating dependency on kadmind daemon during
non-KRB5 authentication 290

Retrieving Number of Groups Allowed from kernel 77

O
OpenSSH

configuration of compilation 199
Kerberos Version 5 support 198
using with Kerberos Version 5 200

P
PAM

adding a module 197
changing the /etc/pam.conf file 197
configuration file

/etc/pam.conf 192
debug 197
introduction 189

Index 501

PAM (continued)
library 191
modules 192

pam_mkuserhome module 46
password attribute selection

Active Directory 155
passwords 62

/etc/password file 63
establishing good passwords 63
extending restrictions 69
recommended password options 65

patterns
files 343
hexadecimal 343
text 343

permissions
base 120
extended 120

PKCS #11 175
batch commands 181
batch processing 180
subsystem configuration 177
tools 179

command profiles 179
usage 178

privilege naming and hierarchy 90
privileged command database 91
programs

setuid/setgid 40
proxy server, configure 328
proxy services, RADIUS 327
public key cryptography

secure NFS 274

Q
quota system

see disk quota system 74

R
RADIUS 309

accounting 326
server operation 326

authentication 319
user databases 319

Authentication Methods
CHAP 324
EAP 324
PAP 323

authorization 324
configuration files 311

accounting 326
clients 317
dictionary 317
proxy 318
radiusd.conf file 311

configuring 329
installing 310
IP pool configuration 336
LDAP

active call list object class 323
name space overview 322
schema 322
user profile object class 323

RADIUS (continued)
LDAP server

configuration 321
local UNIX authentication 319
password expiration 335
protocol

supported standards 309
proxy

prefixes and suffixes 328
realm example 327
services 327

proxy services
configuring 328

random number generator 341
Reply-Message support 336
SMIT panels 340
Starting and Stopping 310
utilities

logging 330
Vendor-Specific Attributes 335

RADIUS server 336
radiusd.conf file 311
RBAC-aware applications 107
rcp 282
Remote Authentication Dial-In User Service 309
rlogin 282
root account 48

disabling direct root login 48
root user processes

capabilities of 127
rsh 282

S
SAK 5
secldapclntd daemon 166
secure attention key

configuring 5
Secure Attention Key 13
secure NFS 272
security

account ID 47
configuration 345, 346, 353, 355, 356, 358, 360, 361, 364,

372, 374, 375, 379, 380, 383, 384, 385
Internet Protocol (IP) 212
introduction 1

administrative tasks 48, 62
network 345
policy 349
root account 48
system 345, 346, 349, 353, 355, 356, 358, 360, 361, 364, 372,

374, 375, 379, 380, 383, 384, 385
TCP/IP 201

security associations (SA) 214
relationship to tunnels 220

security authentication 69
security hardening 345, 346, 349, 353, 355, 356, 358, 360, 361,

364, 372, 374, 375, 379, 380, 383, 384, 385
Security Parameters Index (SPI)

and security associations 214
Security policies configuration 12
Security Profile and Evaluation Assurance Level 4+ 15, 24, 25
Security Profile and Evaluation Assurance Level 4+ compliant

system 14
Security Protection Profile and Evaluation Assurance Level

4+ 23, 24

502 AIX Version 7.2: Security

security tables
kernel 97

SED 37
SED mechanism 37
SED modes and monitoring 37
Server

Security Information
IBM Tivoli Directory Server 150

setgid program
use of 126

setgid programs 40
setuid program

use of 126
setuid programs 40
Stack Execution Disable 37, 38
supported LDAP servers 154
system security 345, 346, 349, 353, 355, 356, 358, 360, 361, 364,

372, 374, 375, 379, 380, 383, 384, 385
system-defined authorizations 84

T
TCB 2
tcbck command

configuring 5
using 3

TCP/IP
/etc/ftpusers 204
/etc/hosts.equiv 204
/usr/lib/security/audit/config 202
.netrc 202
IP security

IKE features 214
installation 217
planning configuration 218
predefined filter rules 251
problem determination 257
reference 265

IP Security 212
security 201

data 207
DOD 207
NTCB 205
operating system-specific 201, 202
remote command execution access 204
restricted FTP users 204
SAK 202
TCP/IP-specific 202, 204
trusted shell 202

see Internet Protocol 213
telnet 282
trust settings for key database, establishing 235
Trusted AIX

LAS/EAL4+ configuration installation 18
Trusted Communication Path

use of 5
Trusted Computing Base

auditing of 132
auditing the security state of 2
checking with tcbck command 3
file system

checking 3
overview 2
trusted files

checking 3
trusted program 4

Trusted Computing Base Set
trusted files 6

Trusted Execution 6
Trusted Execution Path 13
trusted file 7
Trusted Library Path 13
Trusted Shell 13
Trusted Signature Database 7

auditing integrity 11
tunnels

and key management 215
choosing which type 221
relationship to filters 220
relationship to SAs 220

U
Updating EFS 25
Updating the TSD 23
Updating WPAR 24
user account

control of 51
User and group name length limit

configuring and retrieving 49
v_max_logname 49

user authentication 69
User Management

LDAP 157
Users, groups, and password

Number of groups allowed concept 76
Using the LAS system 24

V
Vendor Specific Attribute 336
Virtual Private Network (VPN) 212
VPN

benefits 217

W
WPAR auditing 147

X
XML 225

Index 503

504 AIX Version 7.2: Security

IBM®

Printed in USA

	Contents
	About this document
	Highlighting
	Case-sensitivity in AIX
	ISO 9000

	Security
	What's new in Security
	Securing the base operating system
	Secure system installation and configuration
	Trusted Computing Base
	Trusted Execution
	Security Profile Evaluation Assurance Level 4+ and Labeled AIX Security and Evaluation Assurance Level 4+
	Login control
	Stack Execution Disable protection
	Managing X11 and CDE concerns
	List of setuid/setgid programs

	Users, groups, and passwords
	Automatic home directory creation at login
	Account ID
	Root account
	User accounts
	Anonymous FTP with a secure user account setup
	System special user accounts
	Domainless groups
	Passwords
	User authentication
	User and Group attributes supported by the Authentication Load Modules
	Disk quota system overview
	Number of Groups allowed

	Role-based access control
	Traditional UNIX administration limitations
	Elements of RBAC
	AIX RBAC
	Using Enhanced RBAC
	RBAC-related commands
	RBAC-related files
	Using enhanced RBAC in applications
	AIX privileges
	Domain RBAC

	Access Control Lists
	Multiple Access Control List type framework support
	Access Control List types supported on the AIX operating system
	Access Control List Management
	S bits and Access Control Lists
	Administrative access rights
	Access authorization
	Access Control List Troubleshooting

	Auditing overview
	Auditing subsystem
	Auditing subsystem configuration
	Audit logger configuration
	Event selection
	Setting up auditing
	Workload partition auditing
	Auditing in the NFS environment

	Lightweight Directory Access Protocol
	LDAP authentication load module
	LDAP and KRB5LDAP in a single client

	EFS Encrypted File System
	Encrypted File System usability
	Encrypted File System actors
	Encrypted File System keystore
	Encryption and inheritance
	Backup and restore
	J2 EFS internal mechanism
	EFS Protection Inheritance
	Workload Partition considerations
	Setting up the Encrypted File System
	Remote access to Encrypted File System keystores

	Public Key Cryptography Standards #11
	IBM 4758 Model 2 Cryptographic Coprocessor
	Public Key Cryptography Standards #11 subsystem configuration
	Public Key Cryptography Standards #11 usage
	Public Key Cryptography Standards #11 tools

	Pluggable Authentication Modules
	PAM library
	PAM modules
	PAM configuration file
	pam_aix module
	PAM loadable authentication module
	Adding a PAM module
	Changing the /etc/pam.conf file
	Enabling PAM debug

	OpenSSH and Kerberos Version 5 support
	OpenSSH images
	Configuration of OpenSSH compilation
	Using OpenSSH with Kerberos

	Securing the network
	TCP/IP security
	Operating system-specific security
	TCP/IP command security
	Trusted processes
	Network Trusted Computing Base
	Data security and information protection
	User based TCP port access control with discretionary access control for internet ports

	Network services
	Ports usage
	Identifying network services with open communication ports
	Identifying TCP and UDP sockets

	Internet Protocol security
	IP security overview
	Installing the IP security feature
	Planning IP security configuration
	Configuring Internet key exchange tunnels
	Digital certificates and the key manager concepts
	Network address translation
	Configuring manual tunnels
	IP security filter configuration
	Logging facilities
	Internet Protocol security problem diagnosis
	IP security reference

	Network File System security
	General guidelines for securing Network File System
	Network File System authentication
	Naming network entities for DES authentication
	The /etc/publickey file
	Public key systems booting considerations
	Secure Network File System performance considerations
	Secure Network File System checklist
	Configuring secure Network File System
	Exporting a file system using Secure Network File System
	Mounting a file system using Secure Network File system

	Enterprise identity mapping
	Managing multiple user registries
	Current approaches to enterprise identity mapping
	Enterprise identity mapping usage

	Kerberos
	Secure remote commands overview
	Authenticating to the AIX operating system using the Network Authentication Service or non-AIX services
	Kerberos module

	Remote authentication dial-in user service server
	Installing the RADIUS server
	Stopping and restarting RADIUS
	RADIUS configuration files
	Authentication
	Authorization
	Accounting
	Proxy services
	Logging utilities
	Password expiration
	Vendor-specific attributes
	RADIUS reply-message support
	RADIUS server IP pool configuration
	RADIUS SMIT panels
	Random number generator
	Globalization enablement

	AIX Intrusion prevention
	Intrusion detection
	Accessing filter rules from SMIT

	AIX Security Expert
	AIX Security Expert security hardening
	Secure by default
	Distributing security policy through LDAP
	AIX Security Expert security policy copy

	Customizable security policy with user-defined AIX Security Expert XML rules
	Stringent check for weak passwords
	COBIT control objectives supported by AIX Security Expert
	Applying COBIT control objectives using AIX Security Expert
	SOX-COBIT compliance checking, audit, and pre-audit feature
	AIX Security Expert Password Policy Rules group
	AIX Security Expert User Group System and Password definitions group
	AIX Security Expert Login Policy Recommendations group
	AIX Security Expert Audit Policy Recommendations group
	AIX Security Expert /etc/inittab Entries group
	AIX Security Expert /etc/rc.tcpip Settings group
	AIX Security Expert /etc/inetd.conf Settings group
	AIX Security Expert Disable SUID of Commands group
	AIX Security Expert Disable Remote Services group
	AIX Security Expert Remove access that does not require Authentication group
	AIX Security Expert Tuning Network Options group
	AIX Security Expert IPsec filter rules group
	AIX Security Expert Miscellaneous group
	AIX Security Expert Undo Security
	AIX Security Expert Check Security
	AIX Security Expert files
	AIX Security Expert High level security scenario
	AIX Security Expert Medium level security scenario
	AIX Security Expert Low level security scenario

	Security checklist
	Summary of common AIX system services
	Summary of network service options
	Trusted AIX
	Introduction to Trusted AIX
	Multi-level security
	Identification and authentication
	Discretionary access control
	Role Based Access Control elements
	Mandatory Access Control
	Mandatory Integrity Control
	Labels

	Trusted AIX administration
	Trusted AIX installation
	Run modes
	Kernel security flags
	Setting kernel parameters
	Customizing the /etc/security/enc/LabelEncodings file
	Starting up the system
	Shutting down the system
	Trusted recovery
	Login
	Reasons for login failures
	Switching user with the su command
	User security responsibilities
	Secure system management
	Trusted AIX system management

	Trusted AIX programming
	Principles of trusted software
	Trusted AIX privileges

	Troubleshooting Trusted AIX
	File security flags
	Trusted AIX commands

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

