AIX Version 7.2

Technical Reference: Kernel and
Subsystems, Vlolume 2

<||I

AIX Version 7.2

Technical Reference: Kernel and
Subsystems, Vlolume 2

..ll

Note
FBefore using this information and the product it supports, read the information in ["Notices” on page 289}

This edition applies to AIX Version 7.2 and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Copyright IBM Corporation 2015, 2016.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document vii CIO_HALT (Halt Device) tsioctl PCI MPQP
Highlighting . . . e T Device Handler Operation64
Case sensitivity in AIX N 4 o CIO_HALT ddioctl Commumcatlons PDH
ISO9000vii Operation . . . - 65
CIO_QUERY (Query Stat1st1cs) ts1octl PCI MPQP
Technical Reference: Kernel and EI"CV;CESEE?IS;OPS%“"“ SIS 66
Subsystems, Volume 21 Operation .+ ommunications 6
What's new in Technical Reference: Kernel and CIO_START (étart Dev1ce) ts10ctl PCI MPQP o
Subsystems, Volume21 Device Handler Operation . . 69
Configuration Subsystem . . . -1 CIO_START ddioctl Commumcat1ons PDH
Adapter-Specific Considerations for the Predefmed Operation73
Attribute (PdAt) Object Class. . . . -1 dd_fastwrt Communications PDH Entry Point. . 74
Adapter-Specific Considerations for the Predef1ned ddclose Communications PDH Entry Point. . . 75
Devices (PdDv) Object Class . : 4 ddopen (Kernel Mode) Communications PDH
attrval Device Configuration Subroutme . 5 Entry Point . . 7
busresolve Device Configuration Subroutine. . . 6 ddopen (User Mode) Commun1cat10ns PDH
Configuration Rules (Config_Rules) Object Class . 8 Entry Point . .)
Customlzed Attribute (CuAt) Object Class -9 ddread Commun1cat1ons PDH Entry Pomt . .79
Customized Dependency (CuDep) Object Class 11 ddselect Communications PDH Entry Point . . 81
Customized Device Driver (CuDvDr) Object ddwrite Communications PDH Entry Point. . . 82
Class . . . -1l MP_CHG_PARMS (Change Parameters) tsioctl
Customized DeV1ces (CuDV) Ob]ect Class o 12 PCI MPQP Device Handler Operation84
Custorruzed VPD (CuVPD) Object Class o1 tsclose Multiprotocol (PCI MPQP) Device
Device Methods for Adapter Cards: Guidelines 16 Handler Entry Point . . .84
genmajor Device Configuration Subroutine. . . 16 tsconfig Multiprotocol (PCI MPQP) Dev1ce
genminor Device Configuration Subroutine. . . 17 Handler Entry Point . . .86
genseq Dey1ce Cont1gurat1on Subroutme. e tsioctl Multiprotocol (PCI MPQP) Dev1ce Handler
getattr Device Configuration Subroutine. . . . 20 Entry Point . . .86
getminor Device Configuration Subroutine . . . 21 tsmpx Multlprotocol (PCI MPQP) Dev1ce
How Device Methods Return Errors22 Handler Entry Point88
loadext Device Configuration Subroutine . . .23 tsopen Multiprotocol (PCI MPQP) Dev1ce
Loading a Device Driver24 Handler Entry Point . . .89
Machine Device Driver . . coe 4 tsread Multiprotocol (PCI MPQP) Dev1ce Handler
ODM Device Configuration Ob]ect Classes .. 031 Entry Point . . 90
Predefined Attribute (PdAt) Object Class . . . 32 tsselect Mult1pr0t0col (PCI MPQP) DeV1ce
Predefined Attribute Extended (PdAtXtd) Object Handler Entry Point . . 9
Class . . . - - 36 tswrite Multiprotocol (PCI MPQP) Dev1ce
Predefined Connectlon (Pan) Ob]ect Class . .38 Handler Entry Point . . . 93
Predefined Devices (PdDv) Object Class. . . . 38 LFT Subsystem 95
putattr Device Configuration Subroutine. . . . 42 dd_close LFT Device Dr1ver Interface. .. .95
reldevno Device Configuration Subroutine . . . 43 dd ioctl LET Device Driver Interface 96
relmajor Device Configuration Subroutine . . . 44 d d_open LFT Device Driver Interface. 96
Writing a Change Method 45 DIALREGRING (Register Input Ring)97
Writing a Configure Method. 47 DIALRFLUSH (Flush Input Ring)97
Writing a Define Method5l DIALSETGRAND (Set Dial Granularity). . . . 98
Writing an Unconfigure Method 54 GIOQUERYID (Query Attached Devices) . . . 98
Writing an Undefine Method 256 Input Device Driver ioctl Operations 99
Writing Optional Start and Stop Methods . . . 57 IOCINFO (Return devinfo Structure) ioctl lnput
Communications Subsystem. . . . 58 Device Driver . . o 100
CIO_GET_FASTWRT ddioctl Commumcatlons KSALARM (Sound Alarm) o 100
PDH Operation . . . - 58 KSCFGCLICK (Enable/Disable Keyboard
CIO_GET_STAT (Get Status) ts1octl PCI MPQP Clicker) . . . 101
Device Handler Operation . . - 59 KSDIAGMODE (Enable / Dlsable D1agnost1cs
CIO_GET_STAT ddioctl Commun1cat1ons PDH Mode). . . 102
Operation.62 KSKAP (Enable/ Dlsable Keep Allve Poll) .. 102

© Copyright IBM Corp. 2015, 2016 iii

KSKAPACK (Acknowledge Keep Alive Poll) 103 SCIODIAG (Diagnostic) SCSI Adapter Device

KSLED (Illuminate/Darken Keyboard LEDs) 104 Driver ioctl Operation . . . 171
KSQUERYID (Query Keyboard Device SCIODNLD (Download) SCSI Adapter Dev1ce
Identifier) . . . 104 Driver ioctl Operation 172
KSQUERYSV (Query Keyboard Serv1ce Vector) 105 SCIOEVENT (Event) SCSI Adapter DeVlce
KSREGRING (Register Input Ring) 106 Driver ioctl Operation 173
KSRFLUSH (Flush Input Ring) 107 SCIOGTHW (Gathered Write) SCSI Adapter
KSTDELAY (Set Typematic Delay) 107 Device Driver ioctl Operation 175
KSTRATE (Set Typematic Rate) 108 SCIOHALT (Halt) SCSI Adapter Dev1ce Dr1ver
KSVOLUME (Set Alarm Volume) ioctl 108 ioctl Operation 175
Ift_dds_t Structure.109 SCIOINQU (Inquiry) SCSI Adapter Dev1ce
Ift_t Structure In Driver ioctl Operation . . . 176
LPFKLIGHT (Set/ Reset Key L1ghts) R] SCIOREAD (Read) SCSI Adapter DeV1ce Drlver
LPFKREGRING (Register Input Ring) 112 ioctl Operation 177
LPFKRFLUSH (Flush Input Ring). . . . 113 SCIORESET (Reset) SCSI Adapter Dev1ce Drlver
MQUERYID (Query Mouse Device Identlﬁer) 113 ioctl Operation 179
MREGRING (Register Input Ring) . . . 114 SCIOSTART (Start SCSI) Adapter DeV1ce Drlver
MREGRINGEXT (Register Extended Input Rlng) 114 ioctl Operation 180
MRESOLUTION (Set Mouse Resolution) . . . 115 SCIOSTARTTGT (Start Target) SCSI Adapter
MRFLUSH (Flush Input Ring) 115 Device Driver ioctl Operation 181
MSAMPLERATE (Set Mouse Sample Rate) . . 116 SCIOSTOP (Stop) Device SCSI Adapter Dev1ce
MSCALE (Set Mouse Scale Factor) 116 Driver ioctl Operation 183
MTHRESHOLD (Set Mouse Reportmg SCIOSTOPTGT (Stop Target) SCSI Adapter
Threshold) R § V4 Device Driver ioctl Operation 184
phys_displays Structure 17 SCIOSTUNIT (Start Unit) SCSI Adapter Devrce
TABCONVERSION (Set Tablet Conversron Driver ioctl Operation . . . 185
Mode). . . oL 121 SCIOTRAM (Diagnostic) SCSI Adapter Dev1ce
TABDEADZONE (Set Tablet Dead Zone) ..o 121 Driver ioctl Operation 186
TABORIGIN (Set Tablet Origin) . . . 122 SCIOTUR (Test Unit Ready) SCSI Adapter
TABQUERYID (Query Tablet Device Ident1f1er) Device Driver ioctl Operation 187
ioctl Tablet Device Driver Operation. 122 scsesdd SCSI Device Driver 188
TABREGRING (Register Input Ring). 123 scsidisk SAM Device Driver 190
TABRESOLUTION (Set Tablet Resolution). . . 123 scsisesdd SAM Device Driver 206
TABRFLUSH (Flush Input Ring) 124 sctape FC Device Driver.209
TABSAMPLERATE (Set Tablet Sample Rate) tape SCSI Device Driver. . . . 215
ioctl Tablet Device Driver Operation. 124 TMCHGIMPARM (Change Parameters) tmsc51
Virtual Display Driver (VDD) Interface (Iftvi) 125 Device Driver ioctl Operation 221
vtmstruct Structure127 TMGETSENS (Request Sense) tmscsi Dev1ce

Printer Subsystems128 Driver ioctl Operation . . . 222
passthru Subroutine128 TMIOASYNC (Async) tmscsi Dev1ce Dr1ver 1octl
piocmdout Subroutine129 Operation . . . 223
pioexit Subroutine.130 TMIOCMD (Dlrect) tmsc51 Dev1ce Drlver 1octl
piogetattrs Subroutine131 Operation . . . 223
piogetopt Subroutine.132 TMIOEVNT (Event) tmsc51 Dev1ce Drlver 1octl
piogetstatus Subroutine133 Operation 224
piogetstr Subroutine134 TMIORESET (Reset Dev1ce) tmsc51 Dev1ce
piogetvals Subroutine135 Driver ioctl Operation . . . 226
piomsgout Subroutine137 TMIOSTAT (Status) tmscsi Dev1ce Drlver 1octl
pioputattrs Subroutine 138 Operation 226
pioputstatus Subroutine.139 tmscsi SCSI Dev1ce Drlver o227
restore Subroutine.140 | NVMe subsystem 233
setup Subroutine . . . B I NVMe storage (hdisk) dev1ce drrver 234
Subroutines for Print Formatters oL 142 NVMe controller device driver 235
Subroutines for Writing a Print Formatter . . . 142 USB Subsystem. 236

SCSI Subsystem . . . 142 Extensible Host Controller Adapter Dev1ce
IOCINFO (Device Informatlon) tmsc51 DeV1ce Driver. 236
Driver ioctl Operation . . Lo 142 Enhanced Host Controller Adapter Devrce
Parallel SCSI Adapter Device Dr1ver B Driver. 240
scdisk SCSI Device Driver 151 Open Host Controller Adapter DeV1ce Dr1ver 242
SCIOCMD SCsSI Adapter Device Dr1ver 1octl HCD_REGISTER_HC Adapter Device Driver
Operation . . . e () ioctl Operation.245

1V AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

USB Audio Device Driver . ..
USB Keyboard Client Device Driver .
USB Mass Storage Client Device Driver
USB Mouse Client Device Driver .

USB Tape Client Device Driver

USBD Protocol Driver .
USBLIBDD Passthru Driver

. 245
. 246
. 248
. 264
. 265
. 276
. 284

Notices .

Privacy policy considerations .

Trademarks .

Index .

. 289
. 291
. 291

. 293

Contents

v

Vi AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

About this document

This topic collection is part of the six-volume technical reference set that provides information on system
calls, kernel extension calls, and subroutines.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are
predefined by the system. Bold highlighting also identifies graphical objects, such as buttons, labels, and
icons that the you select.

Italics Identifies parameters for actual names or values that you supply.

Identifies examples of specific data values, examples of text similar to what you might see displayed,
examples of portions of program code similar to what you might write as a programmer, messages from
the system, or text that you must type.

Monospace

Case sensitivity in AIX

Everything in the AIX® operating system is case sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the 1s command to list files. If you type LS, the
system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2015, 2016 vii

Vviil AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Technical Reference: Kernel and Subsystems, Volume 2

This topic collection provides information about subroutines in the Configuration Subsystem,
Communications Subsystem, Low function terminal (LFT) Subsystem, Printer Subsystems, Integrated
Device Electronics (IDE), and other Subsystems.

The AIX operating system is designed to support The Open Group's Single UNIX Specification Version 3
(UNIX 03) for portability of operating systems based on the UNIX operating system. Many new
interfaces, and some current ones, have been added or enhanced to meet this specification. To determine
the correct way to develop a UNIX 03 portable application, see The Open Group's UNIX 03 specification
on The UNIX System website (http://www.unix.org).

What's new in Technical Reference: Kernel and Subsystems, Volume 2

Read about new or significantly changed information for the Technical Reference: Kernel and Subsystems,
Volume 2 topic collection.

How to see what's new or changed

In this PDF file, you might see revision bars () in the left margin, which identify new and changed
information.

March 2018

The following information is a summary of the updates that are made to this topic collection:

+ Added information about ["NVMe subsystem” on page 233] topic.

+ Added information about ['NVMe storage (hdisk) device driver” on page 234| topic.

+ Added information about [“NVMe controller device driver” on page 235| topic.

Configuration Subsystem

System users cannot operate devices until device configuration occurs. To configure devices, the Device
Configuration Subsystem is available.

Adapter-Specific Considerations for the Predefined Attribute (PdAt)
Object Class
Description

The various bus resources required by an adapter card are represented as attributes in the
[Attribute (PdAt) object class} If the currently assigned values differ from the default values, they are
represented with other device attributes in the [Customized Attribute (CuAt) object class| To assign bus
resources, the Bus Configurator obtains the bus resource attributes for an adapter from both the PdAt and
CuAt object classes. It also updates the CuAt object class, as necessary, to resolve any bus resource
conflicts.

The following additional guidelines apply to bus resource attributes.

The Attribute Type descriptor must indicate the type of bus resource. The values are as follows:

© Copyright IBM Corp. 2015, 2016 1

http://www.unix.org

Value Description

Indicates a DMA arbitration level.

Indicates a bus memory address which is not associated with DMA transfers.
Indicates a bus memory address to be used for DMA transfers.

Indicates a bus interrupt level that can be shared with another device.
Indicates a bus interrupt level that cannot be shared with another device.
Indicates a bus I/O address.

Indicates an [interrupt-priority class}

Indicates an amount in bytes of bus memory or bus 1/O space.
Indicates a group.

PosSR0Z~Z2®>

Indicates an attribute that must be shared with another adapter.

For bus memory and bus I/O addresses, the amount of address space to be assigned must also be
specified. This value can be specified by either the attribute's Width descriptor or by a separate type W
attribute.

If the value is specified in the attribute's Width descriptor, it is fixed at that value and cannot be
customized. If a separate type W attribute is used, the bus memory or bus I/O attribute's Width
descriptor must be set to a null string. The type W attribute's Width descriptor must indicate the name of
the bus memory or bus I/0O attribute to which it applies.

Attribute types| G and S are special-purpose types that the Bus Configurator recognizes. If an adapter has
resources whose values cannot be assigned independently of each other, a Group attribute will identify

them to the Bus Configurator. For example, an adapter card might have an interrupt level that depends
on the bus memory address assigned. Suppose that interrupt level 3 must be used with bus memory
address 0x1000000, while interrupt level 4 must be used with bus memory address 0x2000000. This

relationship can be described using the Group attribute as discussed in |'Predefined Attribute (PdAt)|
:

Occasionally, all cards of a particular type or types must use the same bus resource when present in the
system. This is especially true of interrupt levels. Although most adapter's resources can be assigned
independently of other adapters, even those of the same type, it is not uncommon to find adapters that
must share an attribute value. An adapter card having a bus resource that must be shared with another
adapter needs a type S attribute to describe the relationship.

PdAt Descriptors for Type S Attributes

The PdAt descriptors for a type S attribute should be set as follows:

PdAt Descriptor Setting Description

Unique Type Indicates the unique type of the adapter.

Attribute Name Specifies the name assigned to this attribute.

Default Value Set to a null string.

Possible Values Contains the name of the attribute that must be shared with
another adapter or adapters.

Width Set to a null string.

Attribute Type Set to S.

Generic Attribute Flags Set to a null string. This attribute must neither be displayed nor

set by the user.

Attribute Representation Flags Set to s1, indicating an enumerated list of strings, even though
the list consists of only one item.

NLS Index Set to 0 since the attribute is not displayable.

The type S attribute identifies a bus resource attribute that must be shared. The other adapters are
identifiable by attributes of type S with the same attribute name. The attribute name for the type S
attribute serves as a key to identify all the adapters.

2 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

For example, suppose an adapter with unique type adapter/mca/X must share its interrupt level with an
adapter of unique type adapter/mca/Y. The following attributes describe such a relationship:

The Predefined Attribute object for X's interrupt level:

* Attribute Name = int_Tevel

* Default Value = 3

e Possible Values =2 - 9, 1

* Width = null string

* Unique Type = adapter/mca/X

* Attribute Type = I

* Generic Attribute Flags = D (displayable, but cannot be set by user)
* Attribute Representation Flags = nr

* NLS Index = 12 (message number for text description)

The predefined attribute object describing X's shared interrupt level:
* Unique Type = adapter/mca/X

» Attribute Name = shared_intr

* Default Value = null string

* Possible Values = "int_level"

* Width = null string

 Attribute Type = S

* Generic Attribute Flags = null string

* Attribute Representation Flags = s1

* NLS Index = 0

The Predefined Attribute object for Y's interrupt level:

* Unique Type = adapter/mca/Y

* Attribute Name = interrupt

* Default Value = 7

* DPossible Values = 2, 3, 4, 5, 7, 9

* Width = null string

* Attribute Type = I

* Generic Attribute Flags = D (displayed, but cannot be set by user)
* Attribute Representation Flags = nl

* NLS Index = 6 (message number for text description).

The Predefined Attribute object describing Y's shared interrupt level:
* Unique Type = adapter/mca/Y

» Attribute Name = shared_intr

* Default Value = null string

* Possible Values = "interrupt"

* Width = null string

* Attribute Type = S

* Generic Attribute Flags = null string

* Attribute Representation Flags = s1

* NLS Index =0

Technical Reference: Kernel and Subsystems, Volume 2

3

Note that the two adapters require different attributes to describe their interrupt levels. The attribute
name is also different. However, their attributes describing what must be shared have the same name:
shared_intr.

Adapter bus resource attributes except those of type W can be displayed but not set by the user. That is,
the Generic Attribute Flags descriptor can either be a null string or the character D, but cannot be U or DU.
The Bus Configurator has total control over the assignment of bus resources. These resources cannot be
changed to user-supplied values by the [Change method}

The Bus Configurator uses type W attributes to allocate bus memory address and bus I/O address
attributes but never changes the value of a type W attribute. Attributes of type W can be set by users by
setting the Generic Attribute flags descriptor to DU. This allows the Change method to change the type W
attribute values to a user-supplied value.

The Bus Configurator does not use or modify any other attribute the adapter may have with attribute
type R.

Related reference:

[‘Predefined Attribute (PdAt) Object Class” on page 32|

['Writing a Change Method” on page 45|

['Adapter-Specific Considerations for the Predefined Devices (PdDv) Object Class”|

Related information:

Understanding Interrupts|

Object Data Manager (ODM) Overview for Programmers|

Adapter-Specific Considerations for the Predefined Devices (PdDv)
Object Class
Description

The information to be populated into the Predefined Devices object class is described in the |Predefined
Devices (PdDv) Object Class| The following descriptors should be set as indicated:

Item Description
Device Class Set to adapter.
Device ID Must identify the values that are obtained from the POS(0) and POS(1) registers on the

adapter card. The format is O©xAABB, where AA is the hexadecimal value obtained from POS(0),
and BB the value from POS(1). This descriptor is used by the Bus Configurator to match up
the physical device with its corresponding information in the Configuration database.

Bus Extender Flag Usually set to FALSE, which indicates that the adapter card is not a bus extender. This
descriptor is set to TRUE for a multi-adapter card requiring different sets of bus resources
assigned to each adapter. The Standard I/O Planar is an example of such a card.

The Bus Configurator behaves slightly differently for cards that are bus extenders. Typically, it finds an
adapter card and returns the name of the adapter to the [Configuration Manager|so that it can be
configured.

However, for a bus extender, the Bus Configurator directly invokes the device's |Configure method| The
bus extender's Configure method defines the various adapters on the card as separate devices (each
needing its own predefined information and device methods), and writes the names to standard output
for the Bus Configurator to intercept. The Bus Configurator adds these names to the list of device names
for which it is to assign bus resources.

An example of a type of adapter card that would be a bus extender is one which allows an expansion
box with additional card slots to be connected to the system.

Related reference:

4 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

[‘Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class” on page 1
['Writing a Configure Method” on page 47]
[‘Predefined Devices (PdDv) Object Class” on page 38|

attrval Device Configuration Subroutine
Purpose

Verifies that attribute values are within range.
Syntax
#include <cf.h>

#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int attrval (uniquetype, pattr, errattr)

char * |uniquetypel;

char *

char *x

Parameters

Item Description

uniquetype Identifies the predefined device object, which is a pointer to a character string of the form
class/subclass/type.

pattr Points to a character string containing the attribute-value pairs to be validated, in the form
attrl=vall attr2=val2.

errattr Points a pointer to a null-terminated character string. On return from the attrval subroutine, this
string will contain the names of invalid attributes, if any are found. Each attribute name is separated
by spaces.

Description

The attrval subroutine is used to validate each of a list of input attribute values against the legal range. If
no illegal values are found, this subroutine returns a value of 0. Otherwise, it returns the number of
incorrect attributes.

If any attribute values are invalid, a pointer to a string containing a list of invalid attribute names is
returned in the errattr parameter. These attributes are separated by spaces.

Allocation of the error buffer is done in the attrval subroutine. However, a character pointer (for example,
char *errorb;) must be declared in the calling routine. Thereafter, the address of that pointer is passed to

the attrval subroutine (for example, attrval(...,&errorb);) as one of the parameters.

Return Values

Technical Reference: Kernel and Subsystems, Volume 2 5

Item Description

0 Indicates that all values are valid.

Nonzero Indicates the number of erroneous attributes.

Files

Item Description

lust/lib/libcfg.a Archive of device configuration subroutines.

Related reference:

[‘Predefined Attribute (PdAt) Object Class” on page 32|
[‘Customized Attribute (CuAt) Object Class” on page 9|
Related information:

List of Device Configuration Subroutines|

busresolve Device Configuration Subroutine
Purpose

Allocates bus resources for adapters on an I/O bus.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int busresolve
(logname, flag, conf list,
not_res_list, busname)

Parameters

Item Description

logname Specifies the device logical name.

flags Specifies either the boot phase or 0.
conf_list Points to an array of at least 512 characters.
not_res_list Points to an array of at least 512 characters.
busname Specifies the logical name of the bus.
Description

The busresolve device configuration subroutine is invoked by a device's configuration method to allocate
bus resources for all devices that have predefined bus resource attributes. It also is invoked by the bus
Configuration method to resolve attributes of all devices in the Defined state.

This subroutine first queries the Customized Attribute and Predefined Attribute object classes to retrieve
a list of current bus resource attribute settings and a list of possible settings for each attribute. To resolve
conflicts between the values assigned to an already available device and the current device, the
subroutine adjusts the values for attributes of devices in the Defined state. For example, the busresolve

6 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

subroutine makes sure that the current device is not assigned the same interrupt level as an already
available device when invoked at run time. These values are updated in the customized Attribute object
class.

The busresolve subroutine never modifies attributes of devices that are already in the Available state. It
ignores devices in the Defined state if their chgstatus field in the Customized Devices object class
indicates that they are missing.

When the logname parameter is set to the logical name of a device, the busresolve subroutine adjusts the
specified device's bus resource attributes if necessary to resolve any conflicts with devices that are already
in the Available state. A device's Configuration method must invoke the busresolve subroutine to ensure
that its bus resources are allocated properly when configuring the device at run time. The Configuration
method does not need to do it when run as part of system boot because the bus device's Configuration
method would have already performed it.

If the logname parameter is set to a null string, the busresolve subroutine allocates bus resources for all
devices that are not already in the Available state. The bus device's Configuration method invokes the
busresolve subroutine in this way during system boot.

The flags parameter is set to 1 for system boot phase 1; 2 for system boot phase 2; and 0 when the
busresolve subroutine is invoked during run time. The busresolve subroutine can be invoked only to
resolve a specific device's bus resources at run time. That is, the flags parameter must be 0 when the
logname parameter specifies a device logical name.

The E_BUSRESOURCE value indicates that the busresolve subroutine was not able to resolve all
conflicts. In this case, the conf_list parameter will contain a list of the logical names of the devices for
which it successfully resolved attributes. The not_res_list parameter also contains a list of the logical
names of the devices for which it can not successfully resolve all attributes. Devices whose names appear
in the not_res_list parameter must not be configured into the Available state.

When you write a Configure method for a device that has bus resources, make sure that it fails and
returns a value of E_BUSRESOURCE if the busresolve subroutine does not return an E_OK value.

Note: If the conf_list and not_res_list strings are not at least 512 characters, there might be insufficient
space to hold the device names.

Return Values

Item Description

E_OK Indicates that all bus resources were resolved and allocated successfully.

E_ARGS Indicates that the parameters to the busresolve subroutine were not valid. For example, the logname
parameter specifies a device logical name, but the flags parameter is not set to 0 for run time.

E_MALLOC Indicates that the malloc operation if necessary memory storage failed.

E_NOCuDv Indicates that there is no customized device data for the bus device whose logical name is specified by
the busname parameter.

E_ODMGET Indicates that an ODM error occurred while retrieving data from the Configuration database.

E_PARENTSTATE Indicates that the bus device whose name is specified by the busname parameter is not in the Available
state.

E_BUSRESOLVE Indicates that a bus resource for a device did not resolve. The logname parameter can identify the

particular device. However, if this parameter is null, then an E_BUSRESOLVE value indicates that the
bus resource for some unspecified device in the system did not resolve.

Files

Technical Reference: Kernel and Subsystems, Volume 2 7

Item Description
lust/lib/libcfg.a Archive of device configuration subroutines.

Related reference:

['ODM Device Configuration Object Classes” on page 31|

Related information:
Understanding ODM Object Classes and Objects|
List of Device Configuration Subroutines|

Configuration Rules (Config_Rules) Object Class
Description

The Configuration Rules (Config_Rules) object class contains the configuration rules used by the
Configuration Manager. The Configuration Manager runs in two phases during system boot. The first
phase is responsible for configuring the base devices so that the real root device can be configured and
made ready for operation. The second phase configures the rest of the devices in the system after the root
file system is up and running. The Configuration Manager can also be invoked at run time. The
Configuration Manager routine is driven by the rules in the Config_Rules object class.

The Config_Rules object class is preloaded with predefined configuration rules when the system is
delivered. There are three types of rules: phase 1, phase 2, and phase 2 service. You can use the ODM
commands to add, remove, change, and show new or existing configuration rules in this object class to
customize the behavior of the Configuration Manager. However, any changes to a phase 1 rule must be
written to the boot file system to be effective. This is done with the command.

All logical and physical devices in the system are organized in clusters of tree structures called nodes. For
information on nodes or tree structures, see the ['Device Configuration Manager Overview'|in Kernel
Extensions and Device Support Programming Concepts. The rules in the Config_Rules object class specify
program names that the Configuration Manager executes. Usually, these programs are the configuration
programs for the top of the nodes. When these programs are invoked, the names of the next lower-level
devices that need to be configured are returned in standard output.

The Configuration Manager configures the next lower-level devices by invoking the [Configure method|
for those devices. In turn, those devices return a list of device names to be configured. This process is
repeated until no more device names are returned. All devices in the same node are configured in a
transverse order.

The second phase of system boot requires two sets of rules: phase 2 and service. The position of the key
on the front panel determines which set of rules is used. The service rules are used when the key is in
the service position. If the key is in any other position, the phase 2 rules are used. Different types of rules
are indicated in the Configuration Manager Phase descriptor of this object class.

Each configuration rule has an associated boot mask. If this mask has a nonzero value, it represents the
type of boot to which the rule applies. For example, if the mask has a DISK_BOOT value, the rule
applies to system boots where disks are base devices. The type of boot masks are defined in the
lusr/include/sys/cfgdb.h file.

Descriptors

The Config Rules object class contains the following descriptors:

8 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

ODM Type Descriptor Name Description Descriptor Status
ODM_SHORT phase Configuration Manager | Required

Phase
ODM_SHORT seq Sequence Value Required
ODM_LONG boot_mask Type of boot Required
ODM_VCHAR rule_value[RULESIZE] Rule Value Required

These descriptors are described as follows:

Descriptor

Configuration Manager Phase

Sequence Value

Type of boot

Rule Value

Related reference:

[‘Writing a Configure Method” on page 47

Related information:

bosboot command|

Device Configuration Manager Overviewl|

Description

This descriptor indicates which phase a rule should be executed under phase 1,
phase 2, or phase 2 service.

1 Indicates that the rule should be executed in phase 1.
2 Indicates that the rule should be executed in phase 2.
3 Indicates that the rule should be executed in phase 2 service mode.

In relation to the other rules of this phase, the seq number indicates the order
in which to execute this program. In general, the lower the seq number, the
higher the priority. For example, a rule with a seq number of 2 is executed
before a rule with a seq number of 5. There is one exception to this: a value of
0 indicates a DONT_CARE condition, and any rule with a seq number of 0 is
executed last.

If the boot_mask field has a nonzero value, it represents the type of boot to
which the rule applies. If the -m flag is used when invoking the cfgmgr
command, the cfgmgr command applies the specified mask to this field to
determine whether to execute the rule. By default, the cfgmgr command
always executes a rule for which the boot_mask field has a 0 value.

This is the full path name of the program to be invoked. The rule value
descriptor may also contain any options that should be passed to that program.
However, options must follow the program name, as the whole string will be
executed as if it has been typed in on the command line.

Note: There is one rule for each program to execute. If multiple programs are
needed, then multiple rules must be added.

Rule Values

Phase Sequence Type of boot Rule Value

1 1 0 /usr/1ib/methods/defsys

1 10 0x0001 /usr/1ib/methods/deflvm

2 1 0 /usr/1ib/methods/defsys

2 5 0 /usr/1ib/methods/ptynode
2 10 0 /usr/1ib/methods/starthft
2 15 0 /usr/1ib/methods/starttty
2 20 0x0010 /usr/1ib/methods/rc.net

3 1 0 /usr/1ib/methods/defsys

3 5 0 /usr/1ib/methods/ptynode
3 10 0 /usr/1ib/methods/starthft
3 15 0 /usr/1ib/methods/starttty

Object Data Management (ODM) Overview for Programmers|

Eystem boot processing|

Customized Attribute (CuAt) Object Class

Description

The Customized Attribute (CuAt) object class contains customized device-specific attribute information.

Technical Reference: Kernel and Subsystems, Volume 2 9

Device instances represented in the [Customized Devices (CuDv)| object class have attributes found in

either the [Predefined Attribute (PdAt) object class or the CuAt object class. There is an entry in the CuAt
object class for attributes that take nondefault values. Attributes taking the default value are found in the
PdAt object class. Each entry describes the current value of the attribute.

When changing the value of an attribute, the Predefined Attribute object class must be referenced to

determine other possible attribute values.

Both attribute object classes must be queried to get a complete set of current values for a particular

device's attributes. Use the [getattr] and [putattr| subroutines to retrieve and modify, respectively,

customized attributes.

Descriptors

The Customized Attribute object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR name[NAMESIZE] Device Name Required
ODM_CHAR attribute[ATTRNAMESIZE] Attribute Name Required
ODM_VCHAR value[ATTRVALSIZE] Attribute Value Required
ODM_CHAR type[FLAGSIZE] Attribute Type Required
ODM_CHAR generic[FLAGSIZE] Generic Attribute Flags | Optional
ODM_CHAR rep[FLAGSIZE] Attribute Representation | Required
Flags
ODM_SHORT nls_index NLS Index Optional

These descriptors are described as follows:

Descriptor
Device Name

Attribute Name
Attribute Value

Attribute Type

Generic Attribute Flags

Attribute Representation Flags

NLS Index

Related reference:

Description

Identifies the logical name of the device instance to which this
attribute is associated.

Identifies the name of a customized device attribute.

Identifies a customized value associated with the corresponding
Attribute Name. This value is a nondefault value.

Identifies the attribute type associated with the Attribute Name.
This descriptor is copied from the |Attribute Type descriptor|in
the corresponding [PdAt object| when the CuAt object is created.
Identifies the Generic Attribute flag or flags associated with the
Attribute Name. This descriptor is copied from the |Generic|
|Attribute Flags descriptorin the corresponding [PdAt object]
when the CuAt object is created.

Identifies the Attribute Value's representation. This descriptor is
copied from the |Attribute Representation flags| descriptor in the
corresponding [Predefined Attribute object{ when the Customized
Attribute object is created.

Identifies the message number in the NLS message catalog that
contains a textual description of the attribute. This descriptor is
copied from the [NLS Index descriptor|in the corresponding
[Predefined Attribute object{ when the Customized Attribute
object is created.

['ODM Device Configuration Object Classes” on page 31|

[‘Customized Devices (CuDv) Object Class” on page 12|

[‘Predefined Attribute (PdAt) Object Class” on page 32|

['getattr Device Configuration Subroutine” on page 20|

10 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Customized Dependency (CuDep) Object Class
Description

The Customized Dependency (CuDep) object class describes device instances that depend on other device
instances. Dependency does not imply a physical connection. This object class describes the dependence
links between logical devices and physical devices as well as dependence links between logical devices,
exclusively. Physical dependencies of one device on another device are recorded in the
Device (CuDev)| object class.

Descriptors

The Customized Dependency object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR name[NAMESIZE] Device Name Required
ODM_CHAR dependency[NAMESIZE] Dependency (device Required

logical name)

These descriptors are described as follows:

Descriptor Description

Device Name Identifies the logical name of the device having a dependency.

Item Description

Dependency Identifies the logical name of the device instance on which there is a dependency. For example, a mouse,

keyboard, and display might all be dependencies of a device instance of 1ft0.

Related reference:

['ODM Device Configuration Object Classes” on page 31|

[‘Customized Devices (CuDv) Object Class” on page 12|

Customized Device Driver (CuDvDr) Object Class
Description

The Customized Device Driver (CuDvDr) object class stores information about critical resources that need
concurrence management through the use of the Device Configuration Library subroutines. You should
only access this object class through these five Device Configuration Library subroutines: the
genminor [relmajor} freldevno| and |getminor| subroutines.

These subroutines exclusively lock this class so that accesses to it are serialized. The genmajor and
genminor routines return the major and minor number, respectively, to the calling method. Similarly, the
reldevno and relmajor routines release the major or minor number, respectively, from this object class.

Descriptors

The Customized Device Driver object class contains the following descriptors:

Technical Reference: Kernel and Subsystems, Volume 2 11

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR resource] RESOURCESIZE] Resource Name Required
ODM_CHAR valuel[VALUESIZE] Valuel Required
ODM_CHAR value2[VALUESIZE] Value2 Required
ODM_CHAR value3[VALUESIZE] Value3 Required

The Resource descriptor determines the nature of the values in the Valuel, Value2, and Value3
descriptors. Possible values for the Resource Name descriptor are the strings devno and ddins.

The following table specifies the contents of the Valuel, Value2, and Value3 descriptors, depending on the
contents of the Resource Name descriptor.

Resource Valuel Value2 Value3
devno Major number Minor number Device instance name
ddins Dd instance name Major number Null string

When the Resource Name descriptor contains the devno string, the Valuel field contains the device major
number, Value?2 the device minor number, and Value3 the device instance name. These value descriptors
are filled in by the genminor subroutine, which takes a major number and device instance name as input
and generates the minor number and resulting devno Customized Device Driver object.

When the Resource Name descriptor contains the ddins string, the Valuel field contains the device driver
instance name. This is typically the device driver name obtained from the Device Driver Name descriptor
of the [Predefined Device| object. However, this name can be any unique string and is used by device
methods to obtain the device driver major number. The Value2 field contains the device major number
and the Value3 field is not used. These value descriptors are set by the genmajor subroutine, which takes
a device instance name as input and generates the corresponding major number and resulting ddins
Customized Device Driver object.

Related reference:

[‘genmajor Device Configuration Subroutine” on page 16|

['ODM Device Configuration Object Classes” on page 31|
[‘Predefined Devices (PdDv) Object Class” on page 38|

[‘getminor Device Configuration Subroutine” on page 21|

[‘reldevno Device Configuration Subroutine” on page 43|

Related information:

List of Device Configuration Subroutines|

Customized Devices (CuDv) Object Class
Description

The Customized Devices (CuDv) object class contains entries for all device instances defined in the
system. As the name implies, a defined device object is an object that a Define method has created in the
CuDv object class. A defined device instance may or may not have a corresponding actual device
attached to the system.

A CuDv object contains attributes and connections specific to the device instance. Each device instance,
distinguished by a unique logical name, is represented by an object in the CuDv object class. The
Customized database is updated twice, during system boot and at run time, to define new devices,
remove undefined devices, or update the information for a device whose attributes have been changed.

12 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Descriptors

The Customized Devices object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device Name Required

ODM_SHORT status Device Status Flag Required

ODM_SHORT chgstatus Change Status Flag Required

ODM_CHAR ddins[TYPESIZE] Device Driver Instance Optional

ODM_CHAR location[LOCSIZE] Location Code Optional

ODM_CHAR parent[NAMESIZE] Parent Device Logical Optional
Name

ODM_CHAR connwhere[LOCSIZE] Location Where Device Optional
Is Connected

ODM_LINK PdDvLn Link to Predefined Required
Devices Object Class

These descriptors are described as follows:

Descriptor Description

Device Name

A Customized Device object for a device instance is assigned a unique logical name to
distinguish the instance from other device instances. The device logical name of a device
instance is derived during Define method processing. The rules for deriving a device

logical name are:

* The name should start with a prefix name pre-assigned to the device instance's associated
device type. The prefix name can be retrieved from the Prefix Name descriptor in the
Predefined Device object associated with the device type.

* To complete the logical device name, a sequence number is usually appended to the prefix
name. This sequence number is unique among all defined device instances using the
same prefix name. Use the following subrules when generating sequence numbers:

— A sequence number is a non-negative integer represented in character format.
Therefore, the smallest available sequence number is 0.

— The next available sequence number relative to a given prefix name should be
allocated when deriving a device instance logical name.

— The next available sequence number relative to a given prefix name is defined to be
the smallest sequence number not yet allocated to defined device instances using the

same prefix name.

For example, if tty0, ttyl, tty3, tty5, and tty6 are currently assigned to defined
device instances, then the next available sequence number for a device instance with
the tty prefix name is 2. This results in a logical device name of tty2.

The subroutine can be used by a Define method to obtain the next available

sequence number.

Technical Reference: Kernel and Subsystems, Volume 2 13

Descriptor
Device Status Flag

Change Status Flag

Device Driver Instance

Location Code

Parent Device Logical Name

Description

Identifies the current status of the device instance. The device methods are responsible for
setting Device Status flags for device instances. When the Define method defines a device
instance, the device's status is set to defined. When the Configure method configures a
device instance, the device's status is typically set to available. The Configure method
takes a device to the Stopped state only if the device supports the Stopped state.

When the Start method starts a device instance, its device status is changed from the
Stopped state to the Available state. Applying a Stop method on a started device instance
changes the device status from the Available state to the Stopped state. Applying an
Unconfigure method on a configured device instance changes the device status from the
Available state to the Defined state. If the device supports the Stopped state, the
Unconfigure method takes the device from the Stopped state to the Defined state.

The possible status values are:

DEFINED
Identifies a device instance in the Defined state.

AVAILABLE
Identifies a device instance in the Available state.

STOPPED

Identifies a device instance in the Stopped state.
This flag tells whether the device instance has been altered since the last system boot. The
diagnostics facility uses this flag to validate system configuration. The flag can take these
values:

NEW Specifies whether the device instance is new to the current system boot.

DONT_CARE
Identifies the device as one whose presence or uniqueness cannot be determined.
For these devices, the new, same, and missing states have no meaning.

SAME Specifies whether the device instance was known to the system prior to the
current system boot.

MISSING
Specifies whether the device instance is missing. This is true if the device is in
the CuDv object class, but is not physically present.
This descriptor typically contains the same value as the Device Driver Name descriptor in
the Predefined Devices (PdDv) object class if the device driver supports only one major
number. For a driver that uses multiple major numbers (for example, the logical volume
device driver), unique instance names must be generated for each major number. Since the
logical volume uses a different major number for each volume group, the volume group
logical names would serve this purpose. This field is filled in with a null string if the
device instance does not have a corresponding device driver.
Identifies the location code of the device. This field provides a means of identifying
physical devices. The location code format is defined as AB-CD-EF-GH, where:

AB Identifies the CPU and Async drawers with a drawer ID.

CD Identifies the location of an adapter, memory card, or Serial Link Adapter (SLA)
with a slot ID.

EF Identifies the adapter connector that something is attached to with a connector
ID.

GH Identifies a port, device, or field replaceable unit (FRU), with a port or device or

FRU ID, respectively.
Identifies the logical name of the parent device instance. In the case of a real device, this
indicates the logical name of the parent device to which this device is connected. More
generally, the specified parent device is the device whose Configure method is responsible
for returning the logical name of this device to the Configuration Manager for configuring
this device. This field is filled in with a null string for a node device.

14 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Descriptor
Location Where Device Is Connected

Link to Predefined Devices Object
Class

Related reference:

Description

Identifies the specific location on the parent device instance where this device is connected.
The term location is used in a generic sense. For some device instances such as the
operating system bus, location indicates a slot on the bus. For device instances such as the
SCSI adapter, the term indicates a logical port (that is, a SCSI ID and Logical Unit Number

combination).

For example, for a bus device the location can refer to a specific slot on the bus, with

values 1, 2, 3 For a multiport serial adapter device, the location can refer to a specific

port on the adapter, with values 0, 1,

Provides a link to the device instance's predefined information through the Unique Type

descriptor in the PdDv object class.

[‘Predefined Devices (PdDv) Object Class” on page 38|

[‘Writing a Define Method” on page 51|

['Writing a Configure Method” on page 47

[‘Parallel SCSI Adapter Device Driver” on page 143|

Related information:

Device Configuration Manager Overviewl|

Customized VPD (CuVPD) Object Class

Description

The Customized Vital Product Data (CuVPD) object class contains the Vital Product Data (VPD) for
customized devices. VPD can be either machine-readable VPD or manually entered user VPD

information.

Descriptors

The Customized VPD object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR name[NAMESIZE] Device Name Required
ODM_SHORT vpd_type VPD Type Required
ODM_LONGCHAR vpd[VPDSIZE] VPD Required
These fields are described as follows:
Descriptor Description
Device Name Identifies the device logical name to which this VPD information belongs.
VPD Type Identifies the VPD as either machine-readable or manually-entered. The possible values:
HW_VPD
Identifies machine-readable VPD.
USER_VPD
Identifies manually entered VPD.
VPD Identifies the VPD for the device. For machine-readable VPD, an entry in this field might include such

information as serial numbers, engineering change levels, and part numbers.

Related reference:

['ODM Device Configuration Object Classes” on page 31|

Technical Reference: Kernel and Subsystems, Volume 2

15

Device Methods for Adapter Cards: Guidelines

The device methods for an adapter card are essentially the same as for any other device. They need to
perform roughly the same tasks as those described in ['Writing a Device Method'|in Kernel Extensions and
Device Support Programming Concepts. However, there is one additional important consideration. The Bus
Configure method, or Bus Configurator, is responsible for discovering the adapter cards present in the
system and for assigning bus resources to each of the adapters. These resources include

DMA arbitration levels, bus memory, and bus I/O space.

Adapters are typically defined and configured at boot time. However, if an adapter is not configured due
to unresolvable bus resource conflicts, or if an adapter is unconfigured at run time with the
command, an attempt to configure an adapter at run time may occur.

If an attempt is made, the [Configure method| for the adapter must take these steps to ensure system
integrity:

1. Ensure the card is present in the system by reading the POS(0) and POS(1) registers from the slot that
is supposed to contain the card and comparing these values with what they are supposed to be for
the card.

2. Invoke the subroutine to ensure that the adapter's bus resource attributes, as represented
in the database, do not conflict with any of the configured adapters.

Additional guidelines must be followed when adding support for a new adapter card. They are discussed
in:

+ |Adapter-Specific Considerations for the Predefined Attributes (PdAt) object class|

* [Writing a Configure Method|

+ |Adapter-Specific Considerations for the Predefined Devices (PdDv) object class|

Related reference:

['ODM Device Configuration Object Classes” on page 31|

Related information:

fmdev subroutine]
Understanding Direct Memory Access (DMA)|

genmajor Device Configuration Subroutine
Purpose

Generates the next available major number for a device driver instance.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int genmajor ([device driver instance namel)
char xdevice driver_instance_name;

Parameters

16 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description
device_driver_instance_name Points to a character string containing the device driver instance name.

Description

The genmajor device configuration subroutine is one of the routines designated for accessing the
[Customized Device Driver (CuDvDr) object class} If a major number already exists for the given device
driver instance, it is returned. Otherwise, a new major number is generated.

The genmajor subroutine creates an entry (object) in the CuDvDr object class for the major number
information. The lowest available major number or the major number that has already been allocated is
returned. The CuDvDr object class is locked exclusively by this routine until its completion.

Return Values
If the genmajor subroutine executes successfully, a major number is returned. This major number is either
the lowest available major number or the major number that has already been allocated to the device

instance.

A value of -1 is returned if the genmajor subroutine fails.

Files
Item Description
lusr/lib/libcfg.a Archive of device configuration subroutines.

Related reference:

[‘relmajor Device Configuration Subroutine” on page 44

[‘Customized Device Driver (CuDvDr) Object Class” on page 11|

Related information:
List of ODM Commands and Subroutines|

List of Device Configuration Subroutines|

genminor Device Configuration Subroutine
Purpose

Generates either the smallest unused minor number available for a device, a preferred minor number if it
is available, or a set of unused minor numbers for a device.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int *genminor (device instance, major_no, preferred minor,
minors_in grp, inc_within grp, inc_btwn _grp)

char * [device instancel;

int |major nol;

int |preferred minork

int minors in grpl;

int |inc within grpl

int [inc btwn grpls

Technical Reference: Kernel and Subsystems, Volume 2 17

Parameters

Item Description

device_instance Points to a character string containing the device instance name.

major_no Contains the major number of the device instance.

preferred_minor Contains a single preferred minor number or a starting minor number for generating a set

of numbers. In the latter case, the genminor subroutine can be used to get a set of minor
numbers in a single call.

minors_in_grp Indicates how many minor numbers are to be allocated.
inc_within_grp Indicates the interval between minor numbers.
inc_btwn_grp Indicates the interval between groups of minor numbers.
Description

The genminor device configuration subroutine is one of the designated routines for accessing the
[Customized Device Driver (CuDv) object class} To ensure that unique numbers are generated, the object
class is locked by this routine until its completion.

If a single preferred minor number needs to be allocated, it should be given in the preferred_minor
parameter. In this case, the other parameters should contain an integer value of 1. If the desired number
is available, it is returned. Otherwise, a null pointer is returned, indicating that the requested number is
in use.

If the caller has no preference and only requires one minor number, this should be indicated by passing a
value of -1 in the preferred_minor parameter. The other parameters should all contain the integer value of
1. In this case, the genminor subroutine returns the lowest available minor number.

If a set of numbers is desired, then every number in the designated set must be available. An unavailable
number is one that has already been assigned. To get a specific set of minor numbers allocated, the
preferred_minor parameter contains the starting minor number. If this set has a minor number that is
unavailable, then the genminor subroutine returns a null pointer indicating failure.

If the set of minor numbers needs to be allocated with the first number beginning on a particular
boundary (that is, a set beginning on a multiple of 8), then a value of -1 should be passed in the
preferred_minor parameter. The inc_btwn_grp parameter should be set to the multiple desired. The
genminor subroutine uses the inc_btwn_grp parameter to find the first complete set of available minor
numbers.

If a list of minor numbers is to be returned, the return value points to the first in a list of preferred minor
numbers. This pointer can then be incremented to move through the list to access each minor number.
The minor numbers are returned in ascending sorted order.

Return Values

In the case of failure, a null pointer is returned. If the genminor subroutine succeeds, a pointer is
returned to the lowest available minor number or to a list of minor numbers.

Files

18 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description
/ust/lib/libcfg.a Archive of device configuration subroutines.

Related reference:

['getminor Device Configuration Subroutine” on page 21|
[‘Customized Device Driver (CuDvDr) Object Class” on page 11
Related information:

List of ODM Commands and Subroutines|

List of Device Configuration Subroutines|

genseq Device Configuration Subroutine
Purpose

Generates a unique sequence number for creating a device's logical name.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int genseq (prefix)
char *prefix;

Parameters

Item Description

prefix Points to the character string containing the prefix name of the device.
Description

The genseq device configuration subroutine generates a unique sequence number to be concatenated
with the device's prefix name. The device name in the [Customized Devices (CuDv) object class|is the
concatenation of the prefix name and the sequence number. The rules for generating sequence numbers
are as follows:

* A sequence number is a nonnegative integer. The smallest sequence number is 0.

* When deriving a device instance logical name, the next available sequence number (relative to a given
prefix name) is allocated. This next available sequence number is defined to be the smallest sequence
number not yet allocated to device instances using the same prefix name.

* Whether a sequence number is allocated or not is determined by the device instances in the CuDv
object class. If an entry using the desired prefix exists in this class, then the sequence number for that
entry has already been allocated.

It is up to the application to convert this sequence number to character format so that it can be
concatenated to the prefix to form the device name.

Return Values

If the genseq subroutine succeeds, it returns the generated sequence number in integer format. If the
subroutine fails, it returns a value of -1.

Files

Technical Reference: Kernel and Subsystems, Volume 2 19

Item Description
lust/lib/libcfg.a Archive of device configuration subroutines.

Related reference:

['Customized Devices (CuDv) Object Class” on page 12|

Related information:
List of ODM Commands and Subroutines|
List of Device Configuration Subroutines|

getattr Device Configuration Subroutine
Purpose

Returns current values of an attribute object.
Library

Object Data Manager Library (libodm.a)
Syntax

#include <cf.h>

#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

struct CuAt *getattr (devname, attrname, getall, how_many)
char * [devnamel|;

char * |attrnamej;

int ;

int * H

Parameters

Item Description

devname Specifies the device logical name.

attrname Specifies the attribute name.

getall Specifies a Boolean flag that, when set to True, indicates that a list of attributes is to be returned to the
calling routine.

how_many Points to how many attributes the getattr subroutine has found.

Description

The getattr device configuration subroutine returns the current value of an attribute object or a list of
current values of attribute objects from either the Customized Attribute (CuAt) object class or the
Predefined Attribute (PdAt) object class. The getattr device configuration subroutine queries the
for the attribute object matching the device logical name and the attribute name. It is the
application's responsibility to [lock] the |[Device Configuration object classes]

The getattr subroutine allocates memory for CuAt object class structures that are returned. This memory
is automatically freed when the application exits. However, the application must free this memory if it
invokes getattr several times and runs for a long time.

To get a single attribute, the getall parameter should be set to False. If the object exists in the CuAt object
class, a pointer to this structure is returned to the calling routine.

However, if the object is not found, the getattr subroutine assumes that the attribute takes the default
value found in the [PdAt object class} In this case, the PdAt object class is queried for the attribute

20 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

information. If this information is found, the relevant attribute values (that is, default value, flag
information, and the NLS index) are copied into a CuAt structure. This structure is then returned to the
calling routine. Otherwise, a null pointer is returned indicating an error.

To get all the customized attributes for the device name, the getall parameter should be set to True. In this
case, the attrname parameter is ignored. The PdAt and CuAt object classes are queried and a list of CuAt

structures is returned. The PdAt objects are copied to CuAt structures so that one list may be returned.

Note: The getattr device configuration subroutine will fail unless you first call the odm_initialize
subroutine.

Return Values

Upon successful completion, the getattr subroutine returns a pointer to a list of CuAt structures. If the
operation is unsuccessful, a null pointer is returned.

Files
Item Description
/ust/lib/libcfg.a Archive of device configuration subroutines.

Related reference:

[‘putattr Device Configuration Subroutine” on page 42|
[‘Predefined Attribute (PdAt) Object Class” on page 32|
Related information:

Device Configuration Subsystem Programming Introduction|
Understanding ODM Object Classes and Objects|

getminor Device Configuration Subroutine
Purpose

Gets the minor numbers associated with a major number from the Customized Device Driver (CuDvDr)
object class.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int *getminor (major no, how many, device instance)
int fnajor_nojs

int * |how manyls

char * l|device instancel;

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 21

Item Description

major_no Specifies the major number for which the corresponding minor number or numbers is desired.
how_many Points to the number of minor numbers found corresponding to the major_no parameter.
device_instance Specifies a device instance name to use when searching for minor numbers. This parameter is

used in conjunction with the major_no parameter.

Description

The getminor device configuration subroutine is one of the designated routines for accessing the
—

bject class| This subroutine queries the CuDvDr object class for the minor numbers associated with the
given major number or device instance or both.

If the device_instance parameter is null, then only the major_no parameter is used to obtain the minor
numbers. Otherwise, both the major_no and device_instance parameters should be used. The number of
minor numbers found in the query is returned in the how_many parameter.

The CuDvDr object class is locked exclusively by the getminor subroutine for the duration of the routine.

The return value pointer points to a list that contains the minor numbers associated with the major
number. This pointer is then used to move through the list to access each minor number. The minor
numbers are returned in ascending sorted order.

The getminor subroutine also returns the number of minor numbers in the list to the calling routine in
the how_many parameter.

Return Values
If the getminor routine fails, a null pointer is returned.

If the getminor subroutine succeeds, one of two possible values is returned. If no minor numbers are
found, null is returned. In this case, the how_many parameter points to an integer value of 0. However, if
minor numbers are found, then a pointer to a list of minor numbers is returned. The minor numbers are
returned in ascending sorted order. In the latter case, the how_many parameter points to the number of
minor numbers found.

Files
Item Description
lusr/lib/libcfg.a Archive of device configuration subroutines.

Related reference:

['genminor Device Configuration Subroutine” on page 17|

[‘genmajor Device Configuration Subroutine” on page 16|

[‘Customized Device Driver (CuDvDr) Object Class” on page 11|

How Device Methods Return Errors

Device methods indicate errors to the [Configuration Manager| and run-time configuration commands by
exiting with a nonzero exit code. The Configuration Manager and configuration commands can
understand only the exit codes defined in the cf.h file.

More than one error code can describe a given error. This is because many exit codes correspond to
highly specific errors, while others are more general. Whenever possible, use the most specific error code
possible.

22 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

For example, if your Configure method obtains an attribute from the [Customized Attributes (CuAt)| object
class for filling in the [device-dependent structure (DDS),|but the value is invalid (possibly due to a
corrupted database), you might exit with an E_BADATTR error. Otherwise, you might choose the
E_DDS exit code, due to another error condition that occurred while building the DDS.

Related reference:

['Customized Attribute (CuAt) Object Class” on page 9|
Related information:

Device Dependent Structure (DDS) Overview|

loadext Device Configuration Subroutine
Purpose

Loads or unloads kernel extensions, or queries for kernel extensions in the kernel.

Syntax
#include <sys/types.h>

mid_t loadext (|dd name|, [load|, |query)
char *dd name;
int load, query;

Parameters

Item Description

dd_name Specifies the name of the kernel extension to be loaded, unloaded, or queried.
load Specifies whether the loadext subroutine should load the kernel extension.
query Specifies whether a query of the kernel extension should be performed.
Description

The loadext device configuration subroutine provides the capability to load or unload kernel extensions.
It can also be used to obtain the kernel module identifier (kmid) of a previously loaded object file. The
kernel extension name passed in the dd_name parameter is either the base name of the object file or
contains directory path information. If the kernel extension path name supplied in the dd_name parameter
has no leading ./ (dot, slash), ../ double-dot, slash), or / (slash) characters, then the loadext subroutine
concatenates the /ust/lib/drivers file and the base name passed in the dd_name parameter to arrive at an
absolute path name. Otherwise, the path name provided in the dd_name parameter is used unmodified.

If the load parameter has a value of True, the specified kernel extension and its kmid are loaded. If the
specified object file has already been loaded into the kernel, its load count is incremented and a new
copy is not loaded.

If the load parameter has a value of False, the action taken depends on the value of the query parameter. If
query is False, the loadext routine requests an unload of the specified kernel extension. This causes the
kernel to decrement the load count associated with the object file. If the load count and use count of the
object file become 0, the kernel unloads the object file. If the query parameter is True, then the loadext
subroutine queries the kernel for the kmid of the specified object file. This kmid is then returned to the
caller.

If both the load and query parameters have a value of True, the load function is performed.

Attention: Repeated loading and unloading of kernel extensions may cause a memory leak.

Technical Reference: Kernel and Subsystems, Volume 2 23

Files

Item Description
lusr/lib/libcfg.a Archive of device configuration subroutines.

Return Values

Upon successful completion, the loadext subroutine returns the kmid. If an error occurs or if the queried
object file is not loaded, the routine returns a null value.

Related information:

bysconfig subroutine|

List of Device Configuration Subroutines|

Understanding Kernel Extension Binding]

Loading a Device Driver

The subroutine is used to load and unload device drivers. The name of the device driver is
passed as a parameter to the loadext routine. If the device driver is located in the /usr/lib/drivers
directory, just the device driver name without path information can be specified to the loadext
subroutine. If the device driver is located in another directory, the fully qualified path name of the device
driver must be specified.

The Device Driver Name descriptor of [Predefined Devices (PdDv) object class| objects is intended to
contain only the device driver name and not the fully qualified path name. For device drivers located in
the /usr/lib/drivers directory, a [Configure method| can obtain the name of the driver from the Device
Driver Name descriptor to pass to the loadext routine. This is convenient since most drivers are located
in the /usr/lib/drivers directory.

If a device driver is located in a directory other than the /usr/lib/drivers directory, the path name must be
handled differently. The Configure method could be coded to assume a particular path name, or for more
flexibility the path name could be stored as an attribute in the [Predefined Attribute (PdAt) object class|
The Configure method is responsible for knowing how to obtain the fully qualified path name to pass to
the loadext subroutine.

Files
Item Description
/ust/lib/drivers directory Contains device drivers.

Related reference:

[‘loadext Device Configuration Subroutine” on page 23|
[‘Predefined Devices (PdDv) Object Class” on page 38|
[‘Predefined Attribute (PdAt) Object Class” on page 32|
['Writing a Configure Method” on page 47]

Machine Device Driver

The machine device driver provides an interface to platform-specific hardware for the system
configuration and reliability, availability, and serviceability (RAS) subsystems. The machine device driver
supports these or accessing this hardware from user mode: /dev/nvram and /dev/bus0 ...
/dev/busN where N is the bus number. The [/dev/nvram special file] provides access to special nonvolatile
random access memory (RAM) for the purposes of storing or retrieving error information and system
boot information. The special files provide access to the I/O buses for system configuration
and diagnostic purposes. The presence and use of this device driver and its associated special files are
platform-specific and must not be used by general applications.

24 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

A program must have the appropriate privilege to open special files /dev/nvram or /dev/busN. It must
also have the appropriate privilege to open Common Hardware Reference Platform (CHRP) bus special
files /dev/pciN, or /dev/isaN.

Driver Initialization and Termination

Special initialization and termination requirements do not exist for the machine device driver. This driver
is statically bound to the operating system kernel and is initialized during kernel initialization. This
device driver does not support termination and cannot be unloaded.

/dev/nvram Special File Support
open and close Subroutines

The machine device driver supports the /dev/nvram special file as a multiplexed character special file.
This special file and the support for NVRAM is provided exclusively on this hardware platform to
support the system configuration and RAS subsystems. These subsystems open the /dev/nvram/n special
file with a channel name, n, specifying the data area to be accessed. An exception is the /dev/nvram file
with no channel specified, which provides access to general NVRAM control functions and the LED
display on the front panel.

A special channel name of base can be used to read the base customize information that is stored as part
of the boot record. This information was originally copied to the disk by the command and is
only copied by the driver at boot time. The base customize information can be read only once. When the
/dev/nvram/base file is closed for the first time, the buffer that contains the base customize information is
freed. Subsequent opens return an ENOENT error code.

read and write Subroutines

The subroutine is not supported and returns an ENODEYV error code. The read subroutine is
supported after a successful open of the base channel only. The read subroutine transfers data from the
data area that is associated with the specified channel. The transfer starts at the offset (within the
channel's data area) specified by the offset field that is associated with the file pointer used on the
subroutine call.

On a read subroutine, if the end of the data area is reached before the transfer count is reached, the
number of bytes read before the end of the data area was reached is returned. If the read subroutine
starts at the end of the data area, zero bytes are read. If the read subroutine starts after the end of the
data area, an ENXIO error code is returned by the driver.

The subroutine can be used to change the starting data-area offset to be used on a subsequent read
call.

ioctl Operations

The following ﬁoctll operations can be issued to the machine device driver after a successful open of the
fdev/nvram/ special file}

Technical Reference: Kernel and Subsystems, Volume 2 25

Operation Description

IOCINFO Returns machine device driver information in the caller's devinfo structure (pointed to by the
arg parameter). This structure is defined in the /usr/include/sys/devinfo.h file. The device type
for this device driver is DD_PSEU.

MIOGETKEY Returns the status of the keylock. The arg parameter must point to a mach_dd_io structure.
The md_data field must point to an integer; this field contains the status of the keylock on
return.

Note: Not all platforms have a physical keylock that software can read. For these platforms,
status is established at boot time.

MIOGETPS Returns the power status. The arg parameter must point to a mach_dd_io structure. The
md_data field must point to an integer; this field contains the power status on return.

Note: Not all platforms provide power status.

MIOIPLCB Returns the contents of the boot control block. The arg parameter is set to point to a
mach_dd_io structure, which describes the data area where the boot control block is to be
placed. The format of this control block is specified in the /ust/include/sys/iplcb.h file and the
mach_dd_io structure is defined in the /ust/include/sys/mdio.h file. This ioctl operation uses
the following fields in the mach_dd_io structure:

md_data Points to a buffer at least the size of the value in the md_size field.

md_size Specifies the size (in bytes) of the buffer pointed to by the md_data field and is the
number of bytes to be returned from the boot control block.

md_addr Specifies an offset into the boot control block where data is to be obtained.
Note: Regions within this control block are platform-dependent.

MIONVGET Reads data from an NVRAM address and returns data in the buffer that is provided by the
caller. This operation is useful for reading the ROS area of NVRAM. A structure that defines
this area is in the /usr/include/sys/mdio.h file.

Use of this ioctl operation is not supported for systems that are compliant with the PowerPC
Reference Platform or the Common Hardware Reference Platform and, in AIX 4.2.1 and later,
cause the operation to fail with an EINVAL error code.

MIONVLED Writes the value found in the arg parameter to the system front panel LED display. On this
panel, three digits are available and the arg parameter value can range from 0 to hex FFE. An
explanation of the LED codes can be found in the /usr/include/sys/mdio.h file.

Note: Not all platforms have an LED.

MIONVPUT Writes data to an NVRAM address from the buffer that is provided by the caller. This
operation is used only to update the ROS area of NVRAM and only by system commands. Use
of this operation in other areas of NVRAM can cause unpredictable results to occur. If the
NVRAM address provided is within the ROS area, a new cyclic redundancy code (CRC) for
the ROS area is generated.

Use of this ioctl operation is not supported on systems that are compliant with the PowerPC
Reference Platform or the Common Hardware Reference Platform and cause the operation to
fail with an EINVAL error code.

ioctl Operations for Systems
The following four ioctl operations can be used only with the POWER® processor-based architecture. If
used with other systems, or if an invalid offset address, size, or slot number is supplied, these operations

return an EINVAL error code.

These ioctl operations can be called from user space or kernel space (by using the fp_ioctl kernel service),
but they are available only in the process environment.

The ioctl argument must be a pointer to a mach_dd_io structure.
The lock is obtained to serialize access to the bus slot configuration register.
MIOVPDGET

This ioctl operation allows read access to VPD/ROM address space.

26 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the offset into the feature or VPD address space to begin reading.
ulong md_size Specifies the number of bytes to be transferred.

char md_data Specifies a pointer to user buffer for data.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte access (MV_BYTE).

The read begins at base address 0OxFFA00000. The offset is added to the base address to obtain the
starting address for reading.

The buc_info structure for the selected bus slot is used to obtain the word increment value. This value
performs correct addressing when it reads the data.

MIOCFGGET
This ioctl operation allows read access to the architected configuration registers.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the offset into the configuration register address space.

ulong md_size Specifies a value of 1.

char md_data Specifies a pointer to user buffer for data.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte or word access (MV_BYTE, MV_SHORT, or MV_WORD).

The base address 0xFF200000 is added to the offset to obtain the address for the read.
MIOCFGPUT
This ioctl operation allows write access to the architected configuration registers.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the offset into the configuration register address space.

ulong md_size Specifies a value of 1.

char md_data Specifies a pointer to user buffer of data to write.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte or word access (MV_BYTE, MV_SHORT, or MV_WORD).

The base address 0xFF200000 is added to the offset to obtain the address for the read.
MIORESET
This ioctl operation allows access to the architected bus slot reset register.

The following structure members must be supplied:

Technical Reference: Kernel and Subsystems, Volume 2

27

Structure Member Description

ulong md_addr Specifies reset hold time (in nanoseconds).

ulong md_size Not used.

char md_data Not used.

int md_sla Specifies a slot number (bus slot configuration select).
int md_incr Not used.

The bus slot reset register bit corresponding to the specified bus slot is set to 0. After the specified delay,
the bit is set back to 1 and control returns to the calling program.

If a reset hold time of 0 is passed, the bus slot remains reset on return to the calling process.

ioctl Operations for the PowerPC® Reference Platform Specification and the Common Hardware
Reference Platform

The following four ioctl operations can be used only with the PowerPC Reference Platform and the
Common Hardware Reference Platform.

MIOGEARD

Scans for the variable name in the Global Environment Area, and, if found, the null terminated string is
returned to the caller. A global variable is of the form "variablename=". The returned string is of the form
"variablename=string". If the supplied global variable is "*=", all of the variable strings in the Global
Environment Area is returned.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Pointer to global variable string which is null terminated with an equal sign as the last
non-null character.

ulong md_size Number of bytes in data buffer.

int md_incr Not used.

char md_data Pointer to the data buffer.

int md_sla Not used.

ulong md_length It is a pointer to the length of the returned global variable strings including the null

terminators if md_length is non-zero.

MIOGEAUPD

The specified global variable is added to the Global Environment Area if it does not exist. If the specified
variable does exist in the Global Environment Area, the new contents replace the old after adjusting any
size deltas. Further, any information that is moved toward a lower address has the original area zeroed. If
there is no string that follows the variable name and equal sign, the specified variable is deleted. If the
variable to be deleted is not found, a successful return occurs. The new information is written to
NVRAM. Further, the header in the NVRAM operation is updated to include the update time of the
Global Environment Area and the CRC value are recomputed.

The following structure members must be supplied:

28 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Structure Member Description

ulong md_addr Pointer to global variable string which is null terminated.

ulong md_size Not used.

int md_incr Not used.

char md_data Not used.

int md_sla Not used.

ulong md_length It is a pointer to the amount of space that is left in the Global Environment Area after the

update. It is computed as the size of the area minus the length of all global variable
strings minus the threshold value.

MIOGEAST

The specified threshold is set so that any updates done do not exceed the Global Environment Area size
minus the threshold. In place of the mdio structure an integer value is used to specify the threshold. The
threshold does not persist across IPLs.

MIOGEARDA

The attributes of the Global Environment Area are returned to the data area specified by the caller. The
gea_attrib structure is added to mdio.h. It contains the following information:

Structure Member Description

long gea_length number of bytes in the Global Environment Area of NVRAM.
long gea_used number of bytes used in the Global Environment Area.

long gea_thresh Global Environment Area threshold value.

ulong md_addr Not used.

ulong md_size Size of the data buffer. It must be greater than or equal to the size of (gea_attrib).
int md_incr Not used.

char md_data Address of the buffer to copy the gea_attrib structure.

int md_sla Not used.

ulong md_length Not used.

MIONVPARTLEN

The length of the CHRP NVRAM partition is returned to the data area specified by the caller. The
following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_length Specifies a pointer to the name of the partition.

int md_incr Not used.

ulong md_size Specifies the data area for the returned partition length.
char *md_data Not used.

int md_sla Not used.

MIONVPARTRD

MIONVPARTRD performs read actions on CHRP NVRAM partitions. The following structure members
must be supplied:

Technical Reference: Kernel and Subsystems, Volume 2 29

Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_length Specifies a pointer to the name of the partition.

int md_incr Specifies the start offset into the partition.

ulong md_size Specifies the number of bytes to be read.

char *md_data Specifies a pointer to the user buffer where data is to be copied.
int md_sla Not used.

MIONVPARTUPD

MIONVPARTUPD performs write actions to CHRP NVRAM partitions. The following structure
members must be supplied:

Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_length Specifies a pointer to the name of the partition.

int md_incr Specifies the start offset into the partition.

ulong md_size Specifies the number of bytes to be read.

char *md_data Specifies a pointer to the user buffer for data to write.
int md_sla Not used.

Error Codes

The following error conditions might be returned when you access the machine device driver with the
/devinvram/n special file:

Error Condition Description

EACCES A write was requested to a file opened for read access only.

ENOENT An open of /dev/nvram/base was attempted after the first close.

EFAULT A bulffer that is specified by the caller was invalid on a read, write, or ioctl subroutine call.

EINVAL An invalid ioctl operation was issued.

ENXIO A read was attempted past the end of the data area that is specified by the channel.

ENODEV A write was attempted.

ENOMEM A request was made with a user-supplied buffer that is too small for the requested data or not enough

memory can be allocated to complete the request.

Bus Special File Support

All models have at least one bus. For non-CHRP systems, the names are of the form /dev/busN. CHRP
systems have the form /dev/pciN and /dev/isaN.

open and close Subroutines

The machine device driver supports the bus special files as character special files. These special files, and
support for access to the I/O buses and controllers, are provided on this hardware platform to support
the system configuration and diagnostic subsystems, exclusively. The configuration subsystem accesses
the I/O buses and controllers through the machine device driver to determine the I/O configuration of
the system. This driver can also be used to configure the I/O controllers and devices as required for
proper system operation. If the system diagnostic tests are unable to access a device through the
diagnostic functions that are provided by the device's own device driver, they might use the machine
device driver to attempt further failure isolation.

read and write Subroutines

The and subroutines are not supported by the machine device driver through the bus special
files and, if called, return an ENOENT return code in the errno global variable.

30 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

ioctl Operations

The bus ioctl operations allow transfers of data between the system I/O controller or the system I/O bus

and a caller-supplied data area. Because these ioctl operations use the mach_dd_io structure, the arg
parameter on the ioctl subroutine must point to such a structure. The bus address, the pointer to the
caller's buffer, and the number and length of the transfer are all specified in the mach_dd_io structure.
The mach_dd_io structure is defined in the /usr/include/sys/mdio.h file and provides the following
information:

* The md_addr field contains an I/O controller or I/O bus address.

* The md_data field points to a buffer at least the size of the value in the md_size field.

* The md_size field contains the number of items to be transferred.

* The md_incr field specifies the length of the transferred item. It must be set to MV_BYTE,
MV_SHORT, or MV_WORD.

The following commands can be issued to the machine device driver after a successful open of the bus
special file:

Command Description
IOCINFO Returns machine device driver information in the caller's devinfo structure, as specified by

the

arg parameter. This structure is defined in the /usr/include/sys/devinfo.h file. The device type

for this device driver is DD_PSEU.

MIOBUSGET Reads data from the bus I/O space and returns it in a caller-provided bulffer.
MIOBUSPUT Writes data that is supplied in the caller's buffer to the bus I/O space.

MIOMEMGET Reads data from the bus memory space and returns it to the caller-provided buffer.
MIOMEMPUT Writes data that is supplied in the caller-provided buffer to the bus memory space.
MIOPCFGET Reads data from the PCI bus configuration space and returns it in a caller-provided buffer.

The mach_dd_io structure field md_sla must contain the Device Number and Function
Number for the device to be accessed.

MIOPCFPUT Writes data that is supplied in the caller's buffer to the PCI bus configuration space. The
mach_dd_io structure field md_sla must contain the Device Number and Function Number
for the device to be accessed.

Error Codes

Item Description
EFAULT A buffer that is specified by the caller was invalid on an ioctl call.
EIO An unrecoverable I/O error occurred on the requested data transfer.

ENOMEM No memory can be allocated by the machine device driver for use in the data transfer.

Files

Item Description

/dev/pciN Provides access to the I/O bus (CHRP and the AIX operating system).

/dev/isaN Provides access to the I/O bus (CHRP and the AIX operating system).

/dev/nvram Provides access to platform-specific nonvolatile RAM.

/dev/nvram/base Allows read access to the base customize information that is stored as part of the boot record.

Related information:

ppen subroutine|

ead subroutine

bavebase command|

ODM Device Configuration Object Classes
A list of the ODM Device Configuration Object Classes follows:

Technical Reference: Kernel and Subsystems, Volume 2

31

Item Description

PdDv [Predefined Devices|

PdCn Predefined Connection|

PdAt [Predefined Attribute]
Config_Rules IConfiguration Rule:

CuDv ICustomized Devices|

CuDep Customized Dependency]|
CuAt [Customized Attribute]
CuDvDr Customized Device Driver]
CuVPD (Customized Vital Product Datal

Related reference:

[‘busresolve Device Configuration Subroutine” on page 6|

Related information:

Device Configuration Subsystem Programming Introduction|
Writing a Device Method|

Predefined Attribute (PdAt) Object Class
Description

The Predefined Attribute (PdAt) object class contains an entry for each existing attribute for each device
represented in the [Predefined Devices (PdDv)| object class. An attribute, in this sense, is any
device-dependent information not represented in the PdDv object class. This includes information such as
interrupt levels, bus I/O address ranges, baud rates, parity settings, block sizes, and microcode file
names.

Each object in this object class represents a particular attribute belonging to a particular device
class-subclass-type. Each object contains the attribute name, default value, list or range of all possible
values, width, flags, and an NLS description. The flags provide further information to describe an
attribute.

Note: For a device being defined or configured, only the attributes that take a nondefault value are
copied into the [Customized Attribute (CuAt)| object class. In other words, for a device being customized,
if its attribute value is the default value in the PdDv object class, then there will not be an entry for the
attribute in the CuAt object class.

Types of Attributes

There are three types of attributes. Most are regular attributes, which typically describe a specific attribute
of a device. The group attribute type provides a grouping of regular attributes. The shared attribute type
identifies devices that must all share a given attribute.

A shared attribute identifies another regular attribute as one that must be shared. This attribute is always
a bus resource. Other regular attributes (for example, bus interrupt levels) can be shared by devices but
are not themselves shared attributes. Shared attributes require that relevant devices have the same values
for this attribute. The Attribute Value descriptor for the shared attribute gives the name of the regular
attribute that must be shared.

A group attribute specifies a set of other attributes whose values are chosen as the group, as well as the
group attribute number used to choose default values. Each attribute listed within a group has an
associated list of possible values it can take. These values must be represented as a list, not as a range.
For each attribute within the group, the list of possible values must also have the same number of
choices. For example, if the possible number of values is 1, the group attribute number itself can range
from 0 to n-1. The particular value chosen for the group indicates the value to pick for each of the
attributes in the group. For example, if the group attribute number is 0, then the value for each of the

32 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

attributes in the group is the first value from their respective lists.

Predefined Attribute Object Class Descriptors

The Predefined Attribute object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required
ODM_CHAR attribute[ATTRNAMESIZE] Attribute Name Required
ODM_VCHAR deflt{ DEFAULTSIZE] Default Value Required
ODM_VCHAR values| ATTRVALSIZE] Attribute Values Required
ODM_CHAR width[WIDTHSIZE] Width Optional
ODM_CHAR type[FLAGSIZE] Attribute Type Flags Required
ODM_CHAR generic[FLAGSIZE] Generic Attribute Flags | Optional
ODM_CHAR rep[FLAGSIZE] Attribute Representation | Required
Flags
ODM_SHORT nls_index NLS index Optional

These descriptors are described as follows:

Descriptor
Unique Type

Attribute Name

Default Value

Description

Identifies the class-subclass-type name of the device to which this attribute is associated.
This descriptor is the same as the Unique Type descriptor in the
Identifies the name of the device attribute. This is the name that can be passed to the

and configuration commands and device methods in the attribute-name and
attribute-value pairs.

If there are several choices or even if there is only one choice for the attribute value, the
default is the value to which the attribute is normally set. For groups, the default value is
the group attribute number. For example, if the possible number of choices in a group is 7,
the group attribute number is a number between 0 and n-1. For shared attributes, the
default value is set to a null string.

When a device is defined in the system, attributes that take nondefault values are found in

the Attributes that take the default value are found in this object class;

these attributes are not copied over to the CuAt object class. Therefore, both attribute object
classes must be queried to get a complete set of customized attributes for a particular
device.

Technical Reference: Kernel and Subsystems, Volume 2 33

Descriptor
Attribute Values

Width

Attribute Type

Description

Identifies the possible values that can be associated with the attribute name. The format of
the value is determined by the attribute representation flags. For regular attributes, the
possible values can be represented as a string, hexadecimal, octal, or decimal. In addition,
they can be represented as either a range or an enumerated list. If there is only one
possible value, then the value can be represented either as a single value or as an
enumerated list with one entry. The latter is recommended, since the use of enumerated
lists allows the subroutine to check that a given value is in fact a possible choice.

If the value is hexadecimal, it is prefixed with the Ox notation. If the value is octal, the
value is prefixed with a leading zero. If the value is decimal, its value is represented by its
significant digits. If the value is a string, the string itself should not have embedded
commas, since commas are used to separate items in an enumerated list.

A range is represented as a triplet of values: lowerlimit, upperlimit, and increment value. The
lowerlimit variable indicates the value of the first possible choice. The upperlimit variable
indicates the value of the last possible choice. The lowerlimit and upperlimit values are
separated by a - (hyphen). Values between the lowerlimit and upperlimit values are obtained
by adding multiples of the increment value variable to the lowerlimit variable. The upperlimit
and increment value variables are separated by a comma.

Only numeric values are used for ranges. Also, discontinuous ranges (for example, 1-3, 6-8)
are disallowed. A combination of list and ranges is not allowed.

An enumerated list contains values that are comma-separated.

If the attribute is a group, the Possible Values descriptor contains a list of attributes
composing the group, separated by commas.

If the attribute is shared, the Possible Values descriptor contains the name of the bus
resource regular attribute that must be shared with another device.

For type T attributes, the Possible Values descriptor contains the message numbers in a
comma-separated list.

If the attribute is a regular attribute of type M for a bus memory address or of type O for a
bus I/O address, the Width descriptor can be used to identify the amount in bytes of the
bus memory or bus I/O space that must be allocated. Alternatively, the Width field can be
set to a null string, which indicates that the amount of bus memory or bus I/O space is
specified by a width attribute, that is, an attribute of type W.

If the attribute is a regular attribute of type W, the Width descriptor contains the name of
the bus memory address or bus I/O address attribute to which this attribute corresponds.
The use of a type W attribute allows the amount of bus memory or bus I/O space to be
configurable, whereas if the amount is specified in the bus memory address or bus I/O
address attribute's Width descriptor, it is fixed at that value and cannot be customized.

For all other attributes, a null string is used to fill in this field.
Identifies the attribute type. Only one attribute type must be specified. The characters A, B,
M, I, N, O, P, and W represent bus resources that are regular attributes.

For regular attributes that are not bus resources, the following attribute types are defined:

L Indicates the microcode file base name and the text from the label on the diskette
containing the microcode file. Only device's with downloadable microcode have
attributes of this type. The L attribute type is used by the chkmcode program to
determine whether a device which is present has any version of its microcode
installed. If none is installed, the user is prompted to insert the microcode
diskette with the label identified by this attribute. The base name is stored in the
Default Value field and is the portion of the microcode file name not consisting
of the level and version numbers. The label text is stored in the Possible Values
field.

34 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Descriptor

Generic Attribute Flags

Description

T

Indicates message numbers corresponding to possible text descriptions of the
device. These message numbers are within the catalog and set identified in the
device's PdDv object.

A single PdDv object can represent many device types. Normally, the message
number in a device's PdDv object also identifies its text description. However,
there are cases where a single PdDv object represents different device types. This
happens when the parent device which detects them cannot distinguish between
the types. For example, a single PdDv object is used for both the 120MB and
160MB Direct Attached Disk drives. For these devices, unique device descriptions
can be assigned by setting the message number in the device's PdDv object to 0
and having a T attribute type, indicating the set of possible message numbers.
The device's configure method determines the actual device type and creates a
corresponding CuAt object indicating the message number of the correct text
description.

Indicates any other regular attribute that is not a bus resource.

If the attribute name is 1ed, than this indicates the LED number for the device.
Normally, the LED number for a device is specified in the device's PdDv object.
However, in cases where the PADv object may be used to respresent multiple
device types, unique LED numbers can be assigned to each device type by
having a type Z attribute with an attribute name of led. In this case, the LED
number in the PdDv object is set to 0. The device's configure method determines
the actual LED number for the device, possibly by obtaining the value from the
device, and creates a corresponding CuAt object indicating the LED number. The
default value specified in the type Z PdAt object with the attribute name of Ted
is the LED number to be used until the device's configure method has
determined the LED number for the device.

The following are the bus resources types for regular attributes:

A

B

M

ot

N
o
P

W

Indicates DMA arbitration level.

Indicates a bus memory address which is not associated with DMA transfers.
Indicates a bus memory address to be used for DMA transfers.

Indicates bus interrupt level that can be shared with another device.
Indicates a bus interrupt level that cannot be shared with another device.
Indicates bus I/O address.

Indicates priority class.

Indicates an amount in bytes of bus memory or bus 1/0O space.

For non-regular attributes, the following attribute types are defined:

G
S

Indicates a group.

Indicates a shared attribute.

Identifies the flags that can apply to any regular attribute. Any combination (one, both, or
none) of these flags is valid. This descriptor should be a null string for group and shared
attributes. This descriptor is always set to a null string for type T attributes.

These are the defined generic attribute flags:

D

U

Indicates a displayable attribute. The command displays only attributes
with this flag.

Indicates an attribute whose value can be set by the user.

Technical Reference: Kernel and Subsystems, Volume 2 35

Descriptor Description

Attribute Representation Flags Indicates the representation of the regular attribute values. For group and shared attributes,
which have no associated attribute representation, this descriptor is set to a null string.
Either the n or s flag, both of which indicate value representation, must be specified.

The r, 1, and m flags indicate, respectively, a range, an enumerated list, and a multi-select
value list, and are optional. If neither the r flag nor the 1 flag is specified, the
subroutine will not verify that the value falls within the range or the list.

These are the defined attribute representation flags:

n Indicates that the attribute value is numeric: either decimal, hex, or octal.
s Indicates that the attribute value is a character string.
r Indicates that the attribute value is a range of the form: lowerlimit-

upperlimit,increment value.
1 Indicates that the attribute value is an enumerated list of values.

m Indicates that multiple values can be assigned to this attribute. Multiple values
for an attribute are represented as a comma separated list.

b Indicates that value is a boolean type, and can only have 2 values. Typical values
are yes,no, true,false, on,off, disable,enable or 0,1.

d Indicates that the default value for the attribute has been altered by the chdef
command.

The attribute representation flags are always set to nl (numeric list) for type T attributes.

NLS Index Identifies the message number in the NLS message catalog of the message containing a
textual description of the attribute. Only displayable attributes, as identified by the Generic
Attribute Flags descriptor, need an NLS message. If the attribute is not displayable, the

NLS index can be set to a value of 0. The catalog file name and the set number associated
with the message number are stored in the [PdDv object class|

Related reference:

['ODM Device Configuration Object Classes” on page 31|
[‘Predefined Devices (PdDv) Object Class” on page 38|
[‘Customized Attribute (CuAt) Object Class” on page 9|
Related information:

imkdev subroutine

Predefined Attribute Extended (PdAtXtd) Object Class

The Predefined Attribute Extended (PdAtXtd) object class is used to supplement existing device attributes
that are represented in the Predefined Attribute (PdAt) object class with information that can be used by
Device Management User Interface.

Types of attributes to represent in PdAtXtd

Not all existing device attributes in PdAt must be represented in the PdAtXtd object class.
Non-displayable attributes (that is, attributes with a null string in the 'generic’ field of the PdAt object
class) must not have a corresponding PdAtXtd entry, otherwise, it becomes displayable.

The PdAtXtd object class can also be used to override the current value or possible values of an attribute.

Predefined Attribute Extended Object Class Descriptors

The Predefined Attribute Extended object class contains the following descriptors:

36 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

ODM Type Descriptor Name Description Required
ODM_CHAR uniquetype Unique Type Yes
ODM_CHAR attribute Attribute Name No
ODM_CHAR classification Attribute Classification No
ODM_CHAR sequence Sequence number No
ODM_VCHAR operation Operation Name No
ODM_VCHAR operation_value Operation Value No
ODM_VCHAR description Attribute Description No
ODM_VCHAR list_cmd Command to list Attribute value No
ODM_VCHAR list_values_cmd Command to list Attribute values No
ODM_VCHAR change_cmd Command to change Attribute value |No
ODM_VCHAR help Help text NO
ODM_VCHAR nls_values Translated Attribute values No

These descriptors are described as follows:

Descriptor
uniquetype

attribute

classification

sequence

operation

operation_value

description
list_cmd

list_values_cmd

change_cmd
help

nls_values

Description
Identifies the class-subclass-type name of the device to which this attribute is associated. This
descriptor is the same as the Unique Type descriptor in the PdAt object class.

Identifies the device attribute. This name can be passed to mkdev and chdev configuration
commands and device methods in the attribute-name and attribute-value pairs.

Identifies the classification of the device attribute. The followings characters are valid values:

B Indicates a basic attribute.
A Indicates an advanced attribute.
R Indicates a required attribute.

Identifies the number that is used to position the attribute in relation to others on a panel or
menu. This field is identical to the id_seq_num currently in the sm_cmd_opt (SMIT Dialog/Selector
Command Option) object class.

Identifies the type of operation that is associated with the unique device type. Operation and
attribute name fields are mutually exclusive.

Identifies the value that is associated with the Operation field.

When the operation is add_device, the operation_value field can contain the command that is
used to make the device, if the mkdev command cannot be used.
Identifies the attribute description.

Identifies the command to override the current value of the attribute, except when the operation
field is set. If the operation field is set, it identifies the command to return information that is
associated with the operation.

For example, in the case of the add_ttyoperation, the 1ist_cmd field contains the following value:
1sdev -P -c tty -s rs232 -Fdescription

Identifies the command to obtain the possible values of an attribute. The values that are returned
override the values field in the Predefined Attribute object class.

Identifies the command to change the attribute value if the chdevcommand cannot be used.
Identifies the help text that is associated with the attribute. The help text format follows:

message file,set id,msg id,default text

OR

a numeric string equal to a SMIT identifier tag.

Identifies the text that is associated with the attribute values. These values are displayed in place
of the values that are stored in the Predefined Attribute object class. This field must be of the
following form:

message file,set id,msg id,default text

The ordering of values must match the ordering in the Predefined Attribute values field.

Technical Reference: Kernel and Subsystems, Volume 2 37

Predefined Connection (PdCn) Object Class
Description

The Predefined Connection (PdCn) object class contains connection information for intermediate devices.
This object class also includes predefined dependency information. For each connection location, there are
one or more objects describing the subclasses of devices that can be connected. This information is useful,
for example, in verifying whether a device instance to be defined and configured can be connected to a
given device.

Descriptors

The Predefined Connection object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required
ODM_CHAR connkey[KEYSIZE] Connection Key Required
ODM_CHAR connwhere[LOCSIZE] Connection Location Required

These fields are described as follows:

Field Description

Unique Type Identifies the intermediate device's class-subclass-type name. For a device with
dependency information, this descriptor identifies the unique type of the device on
which there is a dependency. This descriptor contains the same information as the
Unique Type descriptor in the [Predefined Devices (PdDv) object class]

Connection Key Identifies a subclass of devices that can connect to the intermediate device at the
specified location. For a device with dependency information, this descriptor serves to
identify the device indicated by the Unique Type field to the devices that depend on it.

Connection Location Identifies a specific location on the intermediate device where a child device can be
connected. For a device with dependency information, this descriptor is not always
required and consequently may be filled with a null string.

The term location is used in a generic sense. For example, for a bus device the location
can refer to a specific slot on the bus, with values 1, 2, 3,.... For a multiport serial
adapter device, the location can refer to a specific port on the adapter with values 0,
1,....

Related reference:

['ODM Device Configuration Object Classes” on page 31|
[‘Predefined Devices (PdDv) Obiject Class”

Predefined Devices (PdDv) Object Class
Description

The Predefined Devices (PdDv) object class contains entries for all device types currently on the system.
It can also contain additional device types if the user has specifically installed certain packages that
contain device support for devices that are not on the system. The term devices is used generally to mean
both intermediate devices (for example, adapters) and terminal devices (for example, disks, printers,
display terminals, and keyboards). Pseudo-devices (for example, pseudo terminals, logical volumes, and
TCP/IP) are also included there. Pseudo-devices can either be intermediate or terminal devices.

Each device type, as determined by class-subclass-type information, is represented by an object in the
PdDv object class. These objects contain basic information about the devices, such as device method
names and instructions for accessing information contained in other object classes. The PdDv object class
is referenced by the |[Customized Devices (CuDv)| object class using a link that keys into the Unique Type
descriptor. This descriptor is uniquely identified by the class-subclass-type information.

38 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Typically, the Predefined database is consulted but never modified during system boot or run time,

except when a new device is added to the Predefined database. In this case, the predefined information

for the new device must be added into the Predefined database. However, any new predefined
information for a new base device must be written to the boot file system to be effective. This is done
with the command.

You build a Predefined Device object by defining the

processing the file with the command or the

command or the odm_add_obj subroutine for information on creating the input file and compiling the
object definitions into objects.

Note: When coding an object in this object class, set unused empty strings to

"

marks with no separating space) and unused integer fields to 0 (zero).

Descriptors

Each Predefined Devices object corresponds to an instance of the PdDv object class. The descriptors for

the Predefined Devices object class are as follows:

Predefined Devices

objects in a file in stanza format and then

odm_add_obj|subroutine. See the odmadd

(two double-quotation

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR type[TYPESIZE] Device Type Required
ODM_CHAR class| CLASSIZE] Device Class Required
ODM_CHAR subclass| CLASSIZE] Device Subclass Required
ODM_CHAR prefix[PREFIXSIZE] Prefix Name Required
ODM_CHAR devid[DEVIDSIZE] Device ID Optional
ODM_SHORT base Base Device Flag Required
ODM_SHORT has_vpd VPD Flag Required
ODM_SHORT detectable Detectable/Non- Required
detectable Flag

ODM_SHORT chgstatus Change Status Flag Required
ODM_SHORT bus_ext Bus Extender Flag Required
ODM_SHORT inventory_only Inventory Only Flag Required
ODM_SHORT fru FRU Flag Required
ODM_SHORT led LED Value Required
ODM_SHORT setno Set Number Required
ODM_SHORT msgno Message Number Required
ODM_VCHAR catalog[CATSIZE] Catalog File Name Required
ODM_CHAR DvDi[DDNAMESIZE] Device Driver Name Optional
ODM_METHOD Define Define Method Required
ODM_METHOD Configure Configure Method Required
ODM_METHOD Change Change Method Required
ODM_METHOD Unconfigure Unconfigure Method Optional*
ODM_METHOD Undefine Undefine Method Optional*
ODM_METHOD Start Start Method Optional
ODM_METHOD Stop Stop Method Optional
ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required

These descriptors are described as follows:

Technical Reference: Kernel and Subsystems, Volume 2

39

Descriptor
Device Type

Device Class

Device Subclass

Prefix Name

Base Device Flag

VPD Flag

Detectable/Nondetectable Flag

Change Status Flag

Description

Specifies the product name or model number. For example, IBM®
3812-2 Model 2 Page printer and IBM 4201 Proprinter II are two
types of printer device types. Each device type supported by the
system should have an entry in the PdDv object class.

Specifies the functional class name. A functional class is a group of
device instances sharing the same high-level function. For example,
printer is a functional class name representing all devices that
generate hardcopy output.

Identifies the device subclass associated with the device type. A
device class can be partitioned into a set of device subclasses
whose members share the same interface and typically are
managed by the same device driver. For example, parallel and
serial printers form two subclasses within the class of printer
devices.

The configuration process uses the subclass to determine valid
parent-child connections. For example, an rs232 8-port adapter has
information that indicates that each of its eight ports only supports
devices whose subclass is rs232. Also, the subclass for one device
class can be a subclass for a different device class. In other words,
several device classes can have the same device subclass.

Specifies the Assigned Prefix in the Customized database, which is
used to derive the device instance name and /dev name. For
example, tty is a Prefix Name assigned to the tty port device type.
Names of tty port instances would then look like tty0, ttyl, or
tty2. The rules for generating device instance names are given in
the [Customized Devices object class|under the Device Name
descriptor.

A base device is any device that forms part of a minimal base
system. During the first phase of system boot, a minimal base
system is configured to permit access to the root volume group
and hence to the root file system. This minimal base system can
include, for example, the standard I/O diskette adapter and a SCSI
hard drive.

The Base Device flag is a bit mask representing the type of boot for
which the device is considered a base device. The

command uses this flag to determine what predefined device
information to save in the boot file system. The command
uses this flag to determine what customized device information to
save in the boot file system. Under certain conditions, the
command also uses the Base Device flag to determine whether to
configure a device.

Specifies whether device instances belonging to the device type
contain extractable vital product data (VPD). Certain devices
contain VPD that can be retrieved from the device itself. A value of
TRUE means that the device has extractable VPD, and a value of
FALSE that it does not. These values are defined in the
lusr/include/sys/cfgdb.h file.

Specifies whether the device instance is detectable or
nondetectable. A device whose presence and type can be
electronically determined, once it is actually powered on and
attached to the system, is said to be detectable. A value of TRUE
means that the device is detectable, and a value of FALSE that it is
not. These values are defined in the /usr/include/sys/cfgdb.h file.
Indicates the initial value of the Change Status flag used in the
|Customized Devices (CuDv) object class} Refer to the
corresponding descriptor in the CuDv object class for a complete
description of this flag. A value of NEW means that the device is
to be flagged as new, and a value of DONT_CARE means "it is not
important." These values are defined in the /ust/include/sys/
cfgdb.h file.

40 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Descriptor
Bus Extender Flag

Inventory Only Flag

FRU Flag

LED Value

Catalog File Name

Set Number

Message Number

Device Driver Name

Define Method
Configure Method
Change Method

Unconfigure Method

Description

Indicates that the device is a bus extender. The Bus Configurator
uses the Bus Extender flag descriptor to determine whether it
should directly invoke the device's A value of
TRUE means that the device is a bus extender, and a value of
FALSE that it is not. These values are defined in the
lusr/include/sys/cfgdb.h file.

This flag is further described in['Device Methods for Adapter]|
ards: Guidelines'|.

Distinguishes devices that are represented solely for their
replacement algorithm from those that actually manage the system.
There are several devices that are represented solely for inventory
or diagnostic purposes. Racks, drawers, and planars represent such
devices. A value of TRUE means that the device is used solely for
inventory or diagnostic purposes, and a value of FALSE that it is
not used solely for diagnostic or inventory purposes. These values
are defined in the /usr/include/sys/cfgdb.h file

Identifies the type of field replaceable unit (FRU) for the device.
The three possible values for this field are:

NO_FRU
Indicates that there is no FRU (for pseudo-devices).

SELF_FRU
Indicates that the device is its own FRU.

PARENT_FRU
Indicates that the FRU is the parent.

These values are defined in the /usr/include/sys/cfgdb.h file.
Indicates the hexadecimal value displayed on the LEDs when the
Configure method executes.

Identifies the file name of the NLS message catalog that contains
all messages pertaining to this device. This includes the device
description and its attribute descriptions. All NLS messages are
identified by a catalog file name, set number, and message number.
Identifies the set number that contains all the messages for this
device in the specified NLS message catalog. This includes the
device description and its attribute descriptions.

Identifies the message number in the specified set of the NLS
message catalog. The message corresponding to the message
number contains the textual description of the device.

Identifies the base name of the device driver associated with all
device instances belonging to the device type. For example, a
device driver name for a keyboard could be ktsdd. For the tape
device driver, the name could be tapedd. The Device Driver Name
descriptor can be passed as a parameter to the routine to
load the device driver, if the device driver is located in the
[usr/lib/drivers directory. If the driver is located in a different
directory, the full path must be appended in front of the Device
Driver Name descriptor before passing it as a parameter to the
loadext subroutine.

Names the associated with the device type. All

Define method names start with the def prefix.

Names the associated with the device type. All

Configure method names start with the cfg prefix.

Names the associated with the device type. All

Change method names start with the chg prefix.

Names the [Unconfigure method|associated with the device type.
All Unconfigure method names start with the ucfg prefix.

Note: The Optional* descriptor status indicates that this field is
optional for those devices (for example, the bus) that are never
unconfigured or undefined. For all other devices, this descriptor is
required.

Technical Reference: Kernel and Subsystems, Volume 2 41

Descriptor
Undefine Method

Start Method

Stop Method

Unique Type

Files

Item
lusr/lib/drivers directory

Related reference:

Description

Names the associated with the device type. All
Undefine method names start with the und prefix.

Note: The Optional* descriptor status indicates that this field is
optional for those devices (for example, the bus) that are never
unconfigured or undefined. For all other devices, this descriptor is
required.

Names the associated with the device type. All Start
method names start with the stt prefix. The Start method is
optional and only applies to devices that support the Stopped
device state.

Names the associated with the device type. All Stop
method names start with the stp prefix. The Stop method is
optional and only applies to devices that support the Stopped
device state.

A key that is referenced by the PADvLn link in
The key is a concatenation of the Device Class, Device Subclass,
and Device Type values with a / (slash) used as a separator. For
example, for a class of disk, a subclass of scsi, and a type of
670mb, the Unique Type is disk/scsi/670mb.

This descriptor is needed so that a device instance's object in the
CuDv object class can have a link to its corresponding PdDv object.
Other object classes in both the Predefined and Customized
databases also use the information contained in this descriptor.

Description
Contains device drivers.

['ODM Device Configuration Object Classes” on page 31|

[‘loadext Device Configuration Subroutine” on page 23|

['Writing a Define Method” on page 51|
Related information:

pdmadd command|

putattr Device Configuration Subroutine

Purpose

Updates, deletes, or creates an attribute object in the Customized Attribute (CuAt) object class.

Library

Object Data Manager Library (libodm.a)
Syntax

#include <cf.h>

#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int putattr (

struct CuAt *cuobj;

42 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Parameters

Item Description
cuobj Specifies the attribute object.
Description

The putattr device configuration subroutine either updates an old attribute object, creates a new object for

the attribute information, or deletes an existing object in the [CuAt object class} The putattr subroutine
queries the CuAt object class to determine whether an object already exists with the device name and
attribute name specified by the cuobj parameter.

If the attribute is found in the CuAt object class and its value (as given in the cuobj parameter) is to be
changed back to the default value for this attribute, the customized object is deleted. Otherwise, the
customized object is simply updated.

If the attribute object does not already exist and its attribute value is being changed to a non-default

value, a new object is added to the CuAt object class with the information given in the cuobj parameter.

Note: The putattr device configuration subroutine will fail unless you first call the odm_initialize
subroutine.

Return Values

Item Description

0 Indicates a successful operation.

-1 Indicates a failed operation.

Files

Item Description

lusr/lib/libcfg.a Archive of device configuration subroutines.

Related reference:

[‘getattr Device Configuration Subroutine” on page 20|

Related information:

bdm_initialize subroutine|

Object Data Manager (ODM) Overview for Programmers|

reldevno Device Configuration Subroutine
Purpose

Releases the minor or major number, or both, for a device instance.

Syntax

#include <cf.h> #include <sys/cfgodm.h> #include <sys/cfgdb.h> int reldevno (|device_instance_namel
char *device_instance_name; int release;

Parameters

Technical Reference: Kernel and Subsystems, Volume 2

43

Item Description
device_instance_name Points to the character string containing the device instance name.

release Specifies whether the major number should be released. A value of True releases
the major number; a value of False does not.

Description

The reldevno device configuration subroutine is one of the designated access routines to the
Device Driver (CuDvDr) object class| This object class is locked exclusively by this routine until its
completion. All minor numbers associated with the device instance name are deleted from the CuDvDr
object class. That is, each object is deleted from the class. This releases the minor numbers for reuse.

The major number is released for reuse if the following two conditions exist:
* The object to be deleted contains the last minor number for a major number.
* The release parameter is set to True.

If you prefer to release the major number yourself, then the [relmajor] device configuration subroutine can
be called. In this case, you should also set the release parameter to False. All [special files| including
symbolically linked special files, corresponding to the deleted objects are deleted from the file system.

Return Values

Item Description

0 Indicates successful completion.

-1 Indicates a failure to release the minor number or major number, or both.
Files

Item Description

/ust/lib/libcfg.a Archive of device configuration subroutines.

Related reference:

['genmajor Device Configuration Subroutine” on page 16|

['genminor Device Configuration Subroutine” on page 17|

[‘Customized Device Driver (CuDvDr) Object Class” on page 11|

Related information:

List of Device Configuration Subroutines|

relmajor Device Configuration Subroutine
Purpose

Releases the major number associated with the specified device driver instance name.
Syntax

#include <cf.h> #include <sys/cfgodm.h> #include <sys/cfgdb.h> int relmajor (
Hevice_driver_instunce_nameb char *device_driver_instance_name;

Parameter

44 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description
device_driver_instance_name Points to a character string containing the device driver instance name.

Description

The relmajor device configuration subroutine is one of the designated access routines to the
Device Driver (CuDvDr) object class} To ensure that unique major numbers are generated, the CuDvDr
object class is locked exclusively by this routine until the major number has been released.

The relmajor routine deletes the object containing the major number of the device driver instance name.

Return Values

Item Description

0 Indicates successful completion.

-1 Indicates a failure to release the major number.

Files

Item Description

lusr/lib/libcfg.a Archive of device configuration subroutines.

Related reference:

[‘reldevno Device Configuration Subroutine” on page 43|

[‘Customized Device Driver (CuDvDr) Object Class” on page 11|

Related information:

List of Device Configuration Subroutines|

Writing a Change Method

This article describes how a Change device method works. It also suggests guidelines for programmers
writing their own Change device configuration methods.

Syntax
cthevName[m Parent][@ Connection | [|] [EI Attr=Value [-a Attr=Value ...] ...]

Description

The Change method applies configuration changes to a device. If the device is in the Defined state, the
changes are simply recorded in the Customized database. If the device is in the Available state, the
Change method must also apply the changes to the actual device by reconfiguring it.

A Change method does not need to support all the flags described for Change methods. For example, if
your device is a pseudo-device with no parent, it need not support parent and connection changes. For
devices that have parents, it may be desirable to disallow parent and connection changes. For printers,
such changes are logical because they are easily moved from one port to another. By contrast, an adapter
card is not usually moved without first shutting off the system. It is then automatically configured at its
new location when the system is rebooted. Consequently, there may not be a need for a Change method
to support parent and connection changes.

Note: In deciding whether to support the -T and -P flags, remember that these options allow a device's
configuration to get out of sync with the Configuration database. The -P flag is useful for devices that are
typically kept open by the system. The Change methods for most supported devices do not support the
-T flag.

Technical Reference: Kernel and Subsystems, Volume 2 45

In applying changes to a device in the Available state, the Change method could terminate the device
from the driver, rebuild the device-dependent structure (DDS) using the new information, and redefine
the device to the driver using the new DDS. The method may also need to reload adapter software or
perform other device-specific operations. An alternative is to invoke the device's Unconfigure method,
update the Customized database, and invoke the device's Configure method.

By convention, the first three characters of the name of the Change method should be chg. The remainder
of the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify
the device or group of devices that use the method.

Flags

Item Description

-1 Name Identifies the logical name of the device to be changed.

-p Parent Identifies the logical name of a new parent for the device. This flag is used to move a device
from one parent to another.

-w Connection Identifies a new connection location for the device. This flag either identifies a new
connection location on the device's existing parent, or if the -p flag is also used, it identifies
the connection location on the new parent device.

-P Indicates that the changes are to be recorded in the Customized database without those
changes being applied to the actual device. This is a useful option for a device which is
usually kept open by the system such that it cannot be changed. Changes made to the
database with this flag are later applied to the device when it is configured at system reboot.

-T Indicates that the changes are to be applied only to the actual device and not recorded in the
database. This is a useful option for allowing temporary configuration changes that will not
apply once the system is rebooted.

-a Attr=Value Specifies the device attribute value pairs used for changing specific attribute values. The

Attr=Value parameter contains one or more attribute value pairs for the -a flag. If you use a
-a flag with multiple attribute value pairs, the list of pairs must be enclosed in quotes with
spaces between the pairs. For example, entering -a Attr=Value lists one attribute value pair,
while entering -a 'Attr1=Valuel Attr2=Value2' lists more than one attribute value pair.

Guidelines for Writing a Change Method

This list of tasks is intended as a guideline for writing a Change method. When writing for a specific
device, some tasks may be omitted. For example, if a device does not support the changing of a parent or
connection, there is no need to include those tasks. A device may have special needs that are not included
in these tasks.

If the Change method is written to invoke the Unconfigure and Configure methods, it must:

1. Validate the input parameters. The -1 flag must be supplied to identify the device that is to be
changed. If your method does not support the specified flag, exit with an error.

2. Initialize the Object Data Manager (ODM). Use the [odm_initialize| subroutine and lock the
H

Configuration database using the jodm_lock] subroutine. See ['Writing a Define Method'| for an
example.

3. Retrieve the Customized Device (CuDv) object for the device to be changed by getting the CuDv
object whose Device Name descriptor matches the name supplied with the -1 flag. If no object is
found with the specified name, exit with an error.

4. Validate all attributes being changed. Make certain that the attributes apply to the specified device,
that they can be set by the user, and that they are being set to valid values. The subroutine
can be used for this purpose. If some attributes have values that are dependent on each other, write
the code to cross check them. If invalid attributes are found, the method needs to write information
to standard error describing them.

5. Determine if a new parent device exists. If a new parent device has been specified, find out whether
it exists by querying the CuDv object class for an object whose Device Name descriptor matches the
new parent name. If no match is found, the method exits with an error.

46 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

10.

1.

If a new connection has been specified, validate that this device can be connected there. Do this by
querying the Predefined Connection (PdCn) object class for an object whose Unique Type descriptor
matches the link to the Predefined Devices (PdDv) object class descriptor of the parent's CuDv
object. The Connection Key descriptor of the CuDv object must match the subclass name of the
device being changed, and the Connection Location descriptor of the CuDv object must match the
new connection value. If no match is found, the method exits with an error.

If a match is found, the new connection is valid. If the device is in the Available state, then it should
still be available after being moved to the new connection. Since only one device can be available at
a particular connection, the Change method must check for other available devices at that
connection. If one is found, the method exits with an error.

If the device state is Available and the -P flag was not specified, invoke the device's Unconfigure
method using the [odm_run_method| command. This fails if the device has Available child devices,
which is why the Change method does not need to check explicitly for child devices.

. If any attribute settings were changed, update the database to reflect the new settings. If a parent or

connection changed, update the Parent Device Logical Name, Location Where Connected on Parent
Device, and Location Code descriptors of the device's CuDv object.

If the device state was in the Available state before being unconfigured, invoke the device's
Configure method using the odm_run_method command. If this returns an error, leaving the device
unconfigured, the Change method should restore the Customized database to its pre-change state.

Close all object classes and terminate the ODM. Exit with an exit code of 0 if there were no errors.

Handling Invalid Attributes

If the Change method detects attributes that are in error, it must write information to the stderr file to
identify them. This consists of writing the attribute name followed by the attribute description. Only one
attribute and its description is to be written per line. If an attribute name was mistyped so that it does
not match any of the device's attributes, write the attribute name supplied on a line by itself.

The [mkdev] and [chdev| configuration commands intercept the information written to the standard error
file by the Change method. These commands write out the information following an error message
describing that there were invalid attributes. Both the attribute name and attribute description are needed
to identify the attribute. By invoking the mkdev or chdev command directly, the attributes can be
identified by name. When using SMIT, these attributes can be identified by description.

The attribute description is obtained from the appropriate message catalog. A message is identified by
catalog name, set number, and message number. The catalog name and set number are obtained from the
device's PdDv object. The message number is obtained from the NLS Index descriptor in either the
Predefined Attribute (PdAt) or Customized Attribute (CuAt) object corresponding to the attribute.

Related reference:

[‘Writing an Unconfigure Method” on page 54|

[‘Predefined Devices (PdDv) Object Class” on page 38|

[‘Customized Attribute (CuAt) Object Class” on page 9|

Related information:

Device Dependent Structure (DDS) Overview|

Understanding Device Dependencies and Child Devices|

Writing a Configure Method

This article describes how a Configure device method works. It also suggests guidelines for programmers
writing their own Configure device configuration methods.

Technical Reference: Kernel and Subsystems, Volume 2 47

Syntax
cngevElName [|]

Description

The Configure method moves a device from Defined (not available for use in the system) to Available
(available for use in the system). If the device has a driver, the Configure method loads the device driver
into the kernel and describes the device characteristics to the driver. For an intermediate device (such as a
SCSI bus adapter), this method determines which attached child devices are to be configured and writes
their logical names to standard output.

The Configure method is invoked by either the configuration command or by the Configuration
Manager. Because the Configuration Manager runs a second time in phase 2 system boot and can also be
invoked repeatedly at run time, a device's Configure method can be invoked to configure an Available
device. This is not an error condition. In the case of an intermediate device, the Configure method checks
for the presence of child devices. If the device is not an intermediate device, the method simply returns.

In general, the Configure method obtains all the information it needs about the device from the
Configuration database. The options specifying the phase of system boot are used to limit certain
functions to specific phases.

If the device has a parent device, the parent must be configured first. The Configure method for a device
fails if the parent is not in the Available state.

By convention, the first three characters of the name of the Configure method are cfg. The remainder of
the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify the
device or group of devices that use the method.

Flags

Item Description

-1 Name Identifies the logical name of the device to be configured.

-1 Specifies that the device is being configured in phase 1 of the System boot processing. This option cannot
be specified with the -2 flag. If neither the -1 nor the -2 flags are specified, the Configure method is
invoked at runtime.

-2 Specifies that the device is being configured in phase 2 of the system boot. This option cannot be
specified with the -1 flag. If neither the -1 nor the -2 flags are specified, the Configure method is invoked
at runtime.

Handling Device Vital Product Data (VPD)

Devices that provide vital product data (VPD) are identified in the Predefined Device (PdDv) object class
by setting the VPD flag descriptor to TRUE in each of the device's PdDv objects. The Configure method

must obtain the VPD from the device and store it in the Customized VPD (CuVPD) object class. Consult
the appropriate hardware documentation to determine how to retrieve the device's VPD. In many cases,

VPD is obtained from the device driver using the subroutine.

Once the VPD is obtained from the device, the Configure method queries the CuVPD object class to see if
the device has hardware VPD stored there. If so, the method compares the VPD obtained from the device
with that from the CuVPD object class. If the VPD is the same in both cases, no further processing is
needed. If they are different, update the VPD in the CuVPD object class for the device. If there is no VPD
in the CuVPD object class for the device, add the device's VPD.

By first comparing the device's VPD with that in the CuVPD object class, modifications to the CuVPD
object class are reduced. This is because the VPD from a device typically does not change. Reducing the

48 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

number of database writes increases performance and minimizes possible data loss.
Understanding Configure Method Errors

For many of the errors detected, the Configure method exits with the appropriate exit code. In other
cases, the Configure method may need to undo some of the operations it has performed. For instance,
after loading the device driver and defining the device to the driver, the Configure method may
encounter an error while downloading microcode. If this happens, the method will terminate the device

from the driver using the subroutine and unload the driver using the subroutine.

The Configure method does not delete the special files or unassign the major and minor numbers if they
were successfully allocated and the special file created before the error was encountered. This is because
the operating system's configuration scheme allows both major and minor numbers and special files to be
maintained for a device even though the device is unconfigured.

If the device is configured again, the Configure method will recognize that the major and minor numbers
are allocated and that the special files exist.

By the time the Configure method checks for child devices, it has successfully configured the device.
Errors that occur while checking for child devices are indicated with the E_FINDCHILD exit code. The
mkdev command detects whether the Configure method completed successfully. If needed, it will display
a message indicating that an error occurred while looking for child devices.

Guidelines for Writing a Configure Method

The following tasks are guidelines for writing a Configure method. When writing for a specific device,
some tasks may be omitted. For example, if the device is not an intermediate device or does not have a
driver, the method is written accordingly. A device may also have special requirements not listed in these
tasks.

The Configure method must:

1. Validate the input parameters. The -1 logical name flag must be supplied to identify the device that
is to be configured. The -1 and -2 flags cannot be supplied at the same time.

2. Initialize the Object Data Manager (ODM). Use the [odm_initialize| subroutine and lock the
H

Configuration database using the jodm_lock| subroutine. See '|Writing a Define Method]|' for an
example.

3. Retrieve the Customized Device (CuDv) object for the device to be configured. The CuDv object's
Device Name descriptor must match the name supplied with the -1 logical name flag. If no object is
found with the specified name, the method exits with an error.

4. Retrieve the Predefined Device (PdDv) object for the device to be configured. The PdDv object's
Unique Type descriptor must match the link to PdDv object class descriptor of the device's CuDv
object.

5. Obtain the LED value descriptor of the device's PdDv object. Retrieve the LED Value descriptor of
the device's PdDv object and display this value on the system LEDs using the setleds subroutine if
either the -1 or -2 flag is specified. This specifies when the Configure method will execute at boot
time. If the system hangs during configuration at boot time, the displayed LED value indicates
which Configure method created the problem.

If the device is already configured (that is, the Device State descriptor of the device's CuDv object
indicates the Available state) and is an intermediate device, skip to the task of detecting child
devices. If the device is configured but is not an intermediate device, the Configure method will exit
with no error.

If the device is in the Defined state, the Configure Method must check the parent device, check for
the presence of a device, obtain the device VPD, and update the device's CuDv object.

Technical Reference: Kernel and Subsystems, Volume 2 49

6. If the device has a parent, the Configure method validates the parent's existence and verifies that the
parent is in the Available state. The method looks at the Parent Device Logical Name descriptor of
the device's CuDv object to obtain the parent name. If the device does not have a parent, the
descriptor will be a null string.

When the device has a parent, the Configure method will obtain the parent device's CuDv object and
check the Device State descriptor. If the object does not exist or is not in the Available state, the
method exits with an error.

Another check must be made if a parent device exists. The Configure method must verify that no
other device connected to the same parent (at the same connection location) has been configured. For
example, two printers can be connected to the same port using a switch box. While each printer has
the same parent and connection, only one can be configured at a time.

The Configure method performs this check by querying the CuDv object class. It queries for objects
whose Device State descriptor is set to the Available state and whose Parent Device Logical Name
and Location Where Connected on Parent Device descriptors match those for the device being
configured. If a match is found, the method exits with an error.

7. Check the presence of the device. If the device is an adapter card and the Configure method has
been invoked at run time (indicated by the absence of both the -1 and -2 flags), the Configure
method must verify the adapter card's presence. This is accomplished by reading POS registers from
the card. (The POS registers are obtained by opening and accessing the or /dev/busl
special file.) This is essential, because if the card is present, the Configure method must invoke the
library routine to assign bus resources to avoid conflict with other adapter cards in the
system. If the card is not present or the busresolve routine fails to resolve bus resources, the method
exits with an error.

8. Determine if the device has a device driver. The Configure method obtains the name of the device
driver from the Device Driver Name descriptor of the device's PdDv object. If this descriptor is a
null string, the device does not have a device driver.

If the device has a device driver, the Configure method must:
a. Load the device driver using the subroutine.
b. Determine the device's major number using the subroutine.

c. Determine the device's minor number using the [getminor] or [genminor| subroutine or by your
own device-dependent routine.

d. Create special files in the /dev directory if they do not already exist. Special files are created with
the subroutine.

e. Build the device-dependent structure (DDS). This structure contains information describing the
characteristics of the device to the device driver. The information is usually, but not necessarily,
obtained from the device's attributes in the Configuration database. Refer to the appropriate
device driver information to determine what the device driver expects the DDS to look like. The
['Device Dependent Structure (DDS) Overview'| topic describes the DDS structure.

f. Use the subroutine to pass the DDS to the device driver.

g. If code needs to be downloaded to the device, read in the required file and pass the code to the
device through the interface provided by the device driver. The file to be downloaded might be
identified by a Predefined Attribute (PdAt) or Customized Attribute (CuAt) object. By
convention, microcode files are in the /etc/microcode directory (which is a symbolic link to the
/ust/lib/microcode directory). Downloaded adapter software is in the /ust/lib/asw directory.

9. Obtain the device VPD. After the tasks relating to the device driver are complete, or if the device did
not have a device driver, the Configure method will determine if it needs to obtain vital product
data (VPD) from the device. The VPD Flag descriptor of the device's PdDv object specifies whether
or not it has VPD.

10. Update the CuDv object. At this point, if no errors have been encountered, the device is configured.
The Configure method will update the Device Status descriptor of the device's CuDv object to

50 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

indicate that it is in the Available state. Also, set the Change Status descriptor to SAME if it is
currently set to MISSING. This can occur if the device was not detected at system boot and is being
configured at run time.

11. Define detected child devices not currently represented in the CuDv object class. To accomplish this,
invoke the Define method for each new child device. For each detected child device already defined
in the CuDv object class, the Configure method looks at the child device's CuDv Change Status Flag
descriptor to see if it needs to be updated. If the descriptor's value is DONT_CARE, nothing needs
to be done. If it has any other value, it must be set to SAME and the child device's CuDv object must
be updated. The Change Status Flag descriptor is used by the system to indicate configuration
changes.

If the device is an intermediate device but cannot detect attached child devices, query the CuDv
object class about this information. The value of the Change Status Flag descriptor for these child
devices should be DONT_CARE because the parent device cannot detect them. Sometimes a child
device has an attribute specifying to the Configure method whether the child device is to be
configured. The autoconfig attribute of TTY devices is an example of this type of attribute.
Regardless of whether the child devices are detectable, the Configure method will write the device
logical names of the child devices to be configured to standard output, separated by space
characters. If the method was invoked by the Configuration Manager, the Manager invokes the
Configure method for each of the child device names written to standard output.

12. Close all object classes and terminate the ODM. Close all object classes and terminate the ODM. If
there are no errors, use a 0 (zero) code to exit.

Files

Item Description

/dev/bus0 Contains POS registers.

/dev/busl Contains POS registers.

/etc/microcode directory Contains microcode files. A symbolic link to the /usr/lib/microcode directory.
/ust/lib/asw directory Contains downloaded adapter software.

Related reference:

[‘Customized Devices (CuDv) Object Class” on page 12|

['Loading a Device Driver” on page 24|

Related information:

Object Data Manager (ODM) Overview for Programmers|

[Understanding Device Dependencies and Child Devices|

Configuration Manager Overview|

Bystem boot processing|

Writing a Define Method

This article describes how a Define device method works. It also suggests guidelines for programmers
writing their own Define device configuration methods.

Syntax
defDev ClassEl SubClass ype [El Parent @ Connection][El Name]
Description

The Define method is responsible for creating a customized device in the Customized database. It does
this by adding an object for the device into the Customized Devices (CuDv) object class. The Define
method is invoked either by the configuration command, by a node configuration program, or by
the |Configure method| of a device that is detecting and defining child devices.

Technical Reference: Kernel and Subsystems, Volume 2 51

The Define method uses information supplied as input, as well as information in the Predefined database,
for filling in the CuDv object. If the method is written to support a single device, it can ignore the class,
subclass, and type options. In contrast, if the method supports multiple devices, it may need to use these
options to obtain the [PdDv device object| for the type of device being customized.

By convention, the first three characters of the name of the Define method should be def. The remainder
of the name (Dev) can be any characters that identify the device or group of devices that use the method,
subject to operating system file-name restrictions.

Flags

Item Description

-c Class Specifies the class of the device being defined. Class, subclass, and type are required to
identify the Predefined Device object in the Predefined Device (PdDv) object class for
which a customized device instance is to be created.

-s SubClass Specifies the subclass of the device being defined. Class, subclass, and type are required to
identify the Predefined Device object in the PdDv object class for which a customized
device instance is to be created.

-t Type Specifies the type of the device being defined. Class, subclass, and type are required to
identify the predefined device object in the PdDv object class for which a customized
device instance is to be created.

-p Parent Specifies the logical name of the parent device. This logical name is required for devices
that connect to a parent device. This option does not apply to devices that do not have
parents; for example, most pseudo-devices.

-w Connection Specifies where the device connects to the parent. This option applies only to devices that
connect to a parent device.

-1 Name Passed by the mkdev command, specifies the name for the device if the user invoking the

command is defining a new device and wants to select the name for the device. The Define
method assigns this name as the logical name of the device in the Customized Devices
(CuDv) object, if the name is not already in use. If this option is not specified, the Define
method generates a name for the device. Not all devices support or need to support this
option.

Guidelines for Writing a Define Method

This list of tasks is meant to serve as a guideline for writing a Define method. In writing a method for a
specific device, some tasks may be omitted. For instance, if a device does not have a parent, there is no
need to include all of the parent and connection validation tasks. Additionally, a device may have special
needs that are not listed in these tasks.

The Define method must:

1. Validate the input parameters. Generally, a Configure method that invokes the child-device Define
method is coded to pass the options expected by the child-device Define method. However, the
mkdev command always passes the class, subclass, and type options, while only passing the other
options based on user input to the mkdev command. Thus, the Define method may need to ensure
that all of the options it requires have been supplied. For example, if the Define method expects
parent and connection options for the device being defined, it must ensure that the options are
supplied. Also, a Define method that does not support the -1 name specification option will exit with
an error if the option is supplied.

2. Initialize the Object Data Manager (ODM) using the subroutine and lock the
H

configuration database using the jodm_lock| subroutine. The following code fragment illustrates this
process:

#include <cf.h>

if (odm_initialize() < 0)
exit(E_ODMINIT); /* initialization failed */

52 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

if (odm_Tock("/etc/objrepos/config_lock",0) == -1) {

odm_terminate();

exit(E_ODMLOCK) ; /* database lock failed */
}
Retrieve the predefined PdDv object for the type of device being defined. This is done by obtaining
the object from the PdDv object class whose class, subclass, and type descriptors match the class,
subclass, and type options supplied to the Define method. If no match is found, the Define method
will exit with an error. Information will be taken from the PdDv device object in order to create the
CuDv device object.
Ensure that the parent device exists. If the device being defined connects to a parent device and the

name of the parent has been supplied, the Define method must ensure that the specified device
actually exists. It does this by retrieving the CuDv object whose Device Name descriptor matches the

name of the parent device supplied using the -p flag. If no match is found, the Define method will

exit with an error.

5. If the device has a parent and that parent device exists in the CuDv object class, validate that the
device being defined can be connected to the specified parent device. To do this, retrieve the
predefined connection object from the Predefined Connection (PdCn) object class whose Unique
Type, Connection Key, and Connection Location descriptors match the Link to Predefined Devices
Object Class descriptor of the parent's CuDv object obtained in the previous step and the subclass
and connection options input into the Define method, respectively. If no match is found, an invalid
connection is specified. This may occur because the specified parent is not an intermediate device,
does not accept the type of device being defined (as described by subclass), or does not have the
connection location identified by the connection option.

6. Assign a logical name to the device. Each newly assigned logical name must be unique to the
system. If a name has been supplied using the -1 flag, make certain it is unique before assigning it to
the device. This is done by checking the CuDv object class for any object whose Device Name
descriptor matches the desired name. If a match is found, the name is already used and the Define
method must exit with an error.

If the Define method is to generate a name, it can do so by obtaining the irefix name from the Prefix

Name descriptor of the device's PdDv device object and invoking the

g| subroutine to obtain a

unique sequence number for this prefix. Appending the sequence number to the prefix name results
in a unique name. The genseq routine looks in the CuDv object class to ensure that it assigns a
sequence number that has not been used with the specified prefix to form a device name.

In some cases, a Define method may need to ensure that only one device of a particular type has
been defined. For example, there can only be one pty device customized in the CuDv object class.
The pty Define method does this by querying the CuDv object class to see if a device by the name
pty0 exists. If it does, the pty device has already been defined. Otherwise, the Define method
proceeds to define the pty device using the name pty0.

7. Determine the device's location code. If the device being defined is a physical device, it has a

location code.

8. Create the new CuDv object.

Set the CuDv object descriptors as follows:

Descriptor

Device name
Device status flag
Change status flag

Device driver instance
Device location code
Parent device logical name

Location where connected on parent
device

Setting
Use the name as determined in step 6.
Set to the Defined state.

Set to the same value as that found in the Change Status Flag descriptor in the
device's PdDv object.

Set to the same value as the Device Driver Name descriptor in the device's PADv
object. This value may be used later by the Configure method.

Set to a null string if the device does not have a location code. Otherwise, set it to the
value computed.

Set to a null string if the device does not have a parent. Otherwise, set this descriptor
to the parent name as specified by the parent option.

Set to a null string if the device does not have a parent. Otherwise, set this descriptor
to the value specified by the connection option.

Technical Reference: Kernel and Subsystems, Volume 2 53

Descriptor Setting
Link to predefined devices object class Set to the value obtained from the Unique Type descriptor of the device's PdDv object.

9. Write the name of the device to standard output. A blank should be appended to the device name to
serve as a separator in case other methods write device names to standard output. Either the mkdev
command or the Configure method that invoked the Define method will intercept standard output
to obtain the device name assigned to the device.

10. Close all object classes and terminate the ODM. Exit with an exit code of 0 if there were no errors.
Related reference:

[‘Predefined Devices (PdDv) Object Class” on page 38|

[‘Predefined Attribute (PdAt) Object Class” on page 32|

Related information:

Understanding Device Classes, Subclasses, and Types|

Understanding Device Dependencies and Child Devices|

Device location codes|

Writing an Unconfigure Method

This article describes how an Unconfigure device method works. It also suggests guidelines for
programmers writing their own Unconfigure device configuration method.

Syntax
ucfgDev |-1| Name
Description

The Unconfigure method takes an Available device (available for use in the system) to a Defined state
(not available for use in the system). All the customized information about the device is retained in the
database so that the device can be configured again exactly as it was before.

The actual operations required to make a device defined depend on how the Configure method made the
device available in the first place. For example, if the device has a device driver, the Configure method
must have loaded a device driver in the kernel and described the device to the driver through a device
dependent structure (DDS). Then, the Unconfigure method must tell the driver to delete the device
instance and request an unload of the driver.

If the device is an intermediate device, the Unconfigure method must check the states of the child
devices. If any child device is in the Available state, the Unconfigure method fails and leaves the device
configured. To ensure proper system operation, all child devices must be unconfigured before the parent
can be unconfigured.

Although the Unconfigure method checks child devices, it does not check the device dependencies
recorded in the Customized Dependency (CuDep) object class.

The Unconfigure method also fails if the device is currently open. In this case, the device driver returns a
value for the errno global variable of EBUSY to the Unconfigure method when the method requests the
driver to delete the device. The device driver is the only component at that instant that knows the device
is open. As in the case of configured child devices, the Unconfigure method fails and leaves the device
configured.

When requesting the device driver to terminate the device, the errno global variable values other than

EBUSY can be returned. The driver should return ENODEYV if it does not know about the device. Under
the best circumstances, however, this case should not occur. If ENODEYV is returned, the Unconfigure

54 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

method should unconfigure the device so that the database and device driver are in agreement. If the
device driver returns any other errno global value, it deletes any stored characteristics for the specified
device instance. The Unconfigure method indicates that the device is unconfigured by setting the state to
Defined.

The Unconfigure method does not generally release the major and minor number assignments for a
device, or delete the device's special files in the /dev directory.

By convention, the first four characters of the name of the Unconfigure method should be ucfg. The
remainder of the name (Dev) can be any characters, subject to operating system file-name restrictions, that
identify the device or group of devices that use the method.

Flags
Item Description
-1 Name Identifies the logical name of the device to be unconfigured.

Guidelines for Writing an Unconfigure Method

This list of tasks is intended as a guideline for writing an Unconfigure method. When you write a
method for a specific device, some tasks may be omitted. For example, if a device is not an intermediate
device or does not have a driver, the method can be written accordingly. The device may have special
needs that are not listed in these tasks.

The Unconfigure method must:

1. Validate the input parameters. The -1 flag must be supplied to identify the device that is to be
unconfigured.

2. Initialize the Object Data Manager (ODM) using the [odm_initialize| subroutine and lock the
H

Configuration database using the jodm_lock| subroutine. See |'Writing a Define Method'| for an
example.

3. Retrieve the customized device (CuDv) object for the device to be unconfigured. Use the CuDv object
whose Device Name descriptor matches the name supplied with the -1 flag. If no object is found with
the specified name, the method exits with an error.

4. Check the state of the device. If the Device Status descriptor indicates that the device is in the Defined
state, then it is already unconfigured. In this case, exit.

5. Check for child devices in the available state. This can be done by querying the CuDv object class for
objects whose Parent Device Logical Name descriptor matches this device's name and whose Device
Status descriptor is not Defined. If a match is found, this method must exit with an error.

6. Retrieve the Predefined Device (PdDv) object for the device to be unconfigured by getting the PdDv
object whose Unique Type descriptor matches the Link to Predefined Devices Object Class descriptor
of the device's CuDv object. This object will be used to get the device driver name.

7. Delete device instance from driver and unload driver. Determine if the device has a driver. The
Unconfigure method obtains the name of the device from the Device Driver Name descriptor of the
PdDv object. If this descriptor is a null string, the device does not have a driver. In this situation, skip
to the task of updating the device's state.

If the device has a device driver, the Unconfigure method needs to include the following tasks:

a. Determine the device's major and minor numbers using the [genmajor and [getminor subroutines.
These are used to compute the device's devno, using the makedev macro defined in the
fusr/include/sysmacros.h file, in preparation for the next task.

b. Use the subroutine to tell the device driver to terminate the device. If a value of EBUSY
for the errno global variable is returned, this method exits with an error.

c. Use the routine to unload the device driver from the kernel. The loadext subroutine will
not actually unload the driver if there is another device still configured for the driver.

Technical Reference: Kernel and Subsystems, Volume 2 55

8. Set defined status. The device is now unconfigured. The Unconfigure method will update the Device
Status descriptor of the device's CuDv object to the Defined state.

9. Close all object classes and terminate the ODM. If there are no errors, exit with an exit code of 0

(zero).
Files
Item Description
/usr/include/sysmacros.h Contains macro definitions.

Related reference:

[‘Loading a Device Driver” on page 24|

['Customized Devices (CuDv) Object Class” on page 12|
[‘Predefined Devices (PdDv) Object Class” on page 38|
Related information:

[The Device Dependent Structure (DDS) Overview|

Writing an Undefine Method

This article describes how an Undefine device method works. It also suggests guidelines for
programmers writing their own Undefine device configuration methods.

Syntax
undDev || Name
Description

The Undefine method deletes a Defined device from the Customized database. Once a device is deleted,
it cannot be configured until it is once again defined by the Define method.

The Undefine method is also responsible for releasing the major and minor number assignments for the
device instance and deleting the device's special files from the /dev directory. If minor number
assignments are registered with the subroutine, the Undefine method can release the major and
minor number assignments and delete the special files by using the subroutine.

By convention, the first three characters of the name of the Undefine method are und. The remainder of
the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify the
device or group of devices that use the method.

Flags
Item Description
-1 Name Identifies the logical name of the device to be undefined.

Guidelines for Writing an Undefine Method

This list of tasks is intended as a guideline for writing an Undefine method. Some devices may have
specials needs that are not addressed in these tasks.

The Undefine method must:
1. Validate the input parameters. The -1 flag must be supplied to identify the device to be undefined.

56 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

11.
12.

Initialize the Object Data Manager (ODM) using the [odm_initialize| subroutine and lock the
H

configuration database using the jodm_lock| subroutine. See|'Writing a Device Method'| for an
example.

Retrieve the Customized Device (CuDv) object for the device to be undefined. This is done by
getting the CuDv object whose Device Name descriptor matches the name supplied with the -1 flag.
If no object is found with the specified name, this method exits with an error.

Check the device's current state. If the Device Status descriptor indicates that the device is not in the
Defined state, then it is not ready to be undefined. If this is the case, this method exits with an error.

Check for any child devices. This check is accomplished by querying the CuDv object class for any
objects whose Parent Device Logical Name descriptor matches this device's name. If the device has
child devices, regardless of the states they are in, the Undefine method will fail. All child devices
must be undefined before the parent can be undefined.

Check to see if this device is listed as a dependency of another device. This is done by querying the
Customized Dependency (CuDep) object class for objects whose Dependency descriptor matches this
device's logical name. If a match is found, the method exits with an error. A device may not be
undefined if it has been listed as a dependent of another device.

Delete Special Files and major and minor numbers. If no errors have been encountered, the method
can delete customized information. First, delete the special files from the /dev directory. Next, delete
all minor number assignments. If the last minor number has been deleted for a particular major
number, release the major number as well, using the subroutine. The Undefine method
should never delete objects from the Customized Device Driver (CuDvDr) object class directly, but
should always use the routines provided. If the minor number assignments are registered with the

subroutine, all of the above can be accomplished using the subroutine.

Delete all attributes for the device from the Customized Attribute (CuAt) object class. Simply delete
all CuAt objects whose Device Name descriptor matches this device's logical name. It is not an error
if the ODM routines used to delete the attributes indicate that no objects were deleted. This indicates
that the device has no attributes that have been changed from the default values.

Delete the Customized VPD (CuVPD) object for the device, if it has one.

. Delete the Customized Dependency (CuDep) objects that indicate other devices that are dependents

of this device.
Delete the Customized Device (CuDv) object for the device.

Close all object classes and terminate the ODM. Exit with an exit code of 0 (zero) if there are no
errors.

Files

[tem

Description

/dev directory Contains the device special files.

Related reference:

[‘Customized Devices (CuDv) Object Class” on page 12|

[‘Predefined Devices (PdDv) Object Class” on page 38|

Related information:

Understanding Device Dependencies and Child Devices|

Writing Optional Start and Stop Methods

This article describes how optional Start and Stop device methods work. It also suggests guidelines for
programmers writing their own optional Start and Stop device configuration methods.

Syntax

sttDev |-1| Name stpDev -1 Name

Technical Reference: Kernel and Subsystems, Volume 2 57

Description

The Start and Stop methods are optional. They allow a device to support the additional device state of
Stopped. The Start method takes the device from the Stopped state to the Available state. The Stop
method takes the device from the Available state to the Stopped state. Most devices do not have Start and
Stop methods.

The Stopped state keeps a configured device in the system, but renders it unusable by applications. In
this state, the device's driver is loaded and the device is defined to the driver. This might be implemented
by having the Stop method issue a command telling the device driver not to accept any normal I/O
requests. If an application subsequently issues a normal I/O request to the device, it will fail. The Start
method can then issue a command to the driver telling it to start accepting I/O requests once again.

If Start and Stop methods are written, the other device methods must be written to account for the
Stopped state. For example, if a method checks for a device state of Available, it might now need to check
for Available and Stopped states.

Additionally, write the Configure method so that it takes the device from the Defined state to the
Stopped state. Also, the Configure method may invoke the Start method, taking the device to the
Available state. The Unconfigure method must change the device to the Defined state from either the
Available or Stopped states.

When used, Start and Stop methods are usually device-specific.

By convention, the first three characters of the name of the Start method are stt. The first three characters
of the name of the Stop method are stp. The remainder of the names (Dev) can be any characters, subject
to operating system file-name restrictions, that identify the device or group of devices that use the
methods.

Flags
Item Description
-1 name Identifies the logical name of the device to be started or stopped.

Related reference:

[‘Writing an Unconfigure Method” on page 54|

['Writing a Configure Method” on page 47

Communications Subsystem

CIO_GET_FASTWRT ddioctl Communications PDH Operation
Purpose

Provides the parameters required to issue a kernel-mode fast-write call.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int

ddioct1 (devno, op, parmptr,
devflag, chan, ext)

dev_t |devnol;

int ;

58 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

struct status_block * ;
ulong_|devflagh

int |[chan], lextl;

Description
The CIO_GET_FASTWRT operation returns the parameters required to issue a kernel-mode fast write for
a particular device. Only a kernel-mode process can issue this entry point and use the fast-write function.

The parameters returned are located in the cio_get_fastwrt structure in the /usr/include/sys/comio.h file.

Note: This operation should not be called by user-mode processes.

Parameters

Item Description

devno Specifies major and minor device numbers.

op Indicates the entry point for the CIO_GET_FASTWRT operation.

parmptr Points to a cio_get_fastwrt structure. This structure is defined in the /usr/include/sys/comio.h file.
devflag Indicates the DKERNEL flag. This flag must be set, indicating a call by a kernel-mode process.
chan Specifies the channel number assigned by the device-handler entry point.

ext Specifies the extended subroutine parameter. This parameter is device-dependent.

Execution Environment

A CIO_GET_FASTWRT operation can be called from the process environment only.

Return Values

In general, communication device handlers use the common codes defined for an operation. However,

device handlers for specific communication devices may return device-specific codes. The common return
codes for the CIO_GET_FASTWRT operation are:

Item Description

ENXIO Indicates an attempt to use an unconfigured device.
EFAULT Indicates that the specified address is not valid.
EINVAL Indicates a parameter call that is not valid.

EPERM Indicates a call from a user-mode process is not valid.
EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related reference:

[‘ddwrite Communications PDH Entry Point” on page 82|

[‘dd_fastwrt Communications PDH Entry Point” on page 74

Related information:
ddioctl subroutine|

CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler
Operation
Purpose

Gets the status of the current IBM ARTIC960Hx PCI adapter (PCI MPQP) and device handler.
Description

Note: Only user-mode processes can use the CIO_GET_STAT operation.

Technical Reference: Kernel and Subsystems, Volume 2 59

The CIO_GET_STAT operation gets the status of the current PCI MPQP adapter and device handler. For
the PCI MPQP device handler, both solicited and unsolicited status can be returned.

Solicited status is status information that is returned as a completion status to a particular operation. The
[CIO_START] |CIO_HALT] and |tswrite| operations all have solicited status returned. However, for many
asynchronous events common to wide-area networks, these are considered unsolicited status. The
asynchronous events are divided into three classes:

e Hard failures
e Soft failures

* Informational (or status-related) messages

The CIO_GET_STAT operation functions with a 4-Port Multiprotocol Interface adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more
information on configuring the adapter and network qualifications.

Status Blocks for the Multiprotocol Device Handler

For the CIO_GET_STAT operation, the extptr parameter points to a status_block structure. When
returned, the device handler fills this structure with the appropriate information. The status_block
structure is defined in the /usr/include/sys/comio.h file and returns one of the possible status conditions:

Status blocks are used to communicate status and exception information to user-mode processes.

User-mode processes receive a status block whenever they request a CIO_GET_STAT operation. A

user-mode process can wait for the next available status block by issuing a entry point with the
specified [POLLPRI| event.

Status blocks contain a code field and possible options. The code field indicates the type of status block
code (for example, CIO_START_DONE). The following possible PCI MPQP status blocks exist:

+ |CIO_ASYNC_STATUS|
+ |CIO_HALT _DONE

+ |CIO_START _DONE]
[CIO_TX_DONE
[MP_THRESH_EXC|

CIO_ASYNC_STATUS Status Block

Asynchronous status notifies the data link control of asynchronous events such as network and adapter
failures.

Code CIO_ASYNC_STATUS
option[0] Can be one of the following:
MP_DSR_DROPPED, MP_RCV_TIMEOUT, MP_RELOAD_CMPL, MP_RESET_CMPL, MP_X21_CLEAR
option[1] Not used
option[2] Not used
option[3] Not used

Note: The MP_RELOAD_C and MPLMP_RESET_CMPL values are for diagnostic use only.

CIO_HALT_DONE Status Block

60 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

The [CIO_HALT]| operation ends a session with the PCI MPQP device handler. On a successfully
completed Halt Device operation, the following status block is provided:

Code CIO_HALT_DONE

option[0] CIO_OK

option[1] MP_FORCED_HALT or MP_NORMAL_HALT
option[2] MP_NETWORK_FAILURE or MP_HW_FAILURE

A forced halt is a halt completed successfully in terms of the data link control is concerned, but terminates
forcefully because of either an adapter error or a network error. This is significant for X.21 or other
switched networks where customers can be charged if the call does not disconnect properly.

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a
leased-circuit public data network is not supported.

CIO_START _DONE Status Block

On a successfully completed [CIO_START]| operation, the following status block is provided:

Code CIO_START_DONE
option[0] CIO_OK

option[1] Network ID
option[2] Not used

option[3] Not used

On an unsuccessful Start Device CIO_START tsioctl operation, the following status block is provided:

Code

CIO_START_DONE

option[0]

Can be one of the following:

MP_ADAP_NOT_FUNC
Adapter not functional

MP_TX_FAILSAFE_TIMEOUT
Transmit command did not complete.

MP_DSR_ON_TIMEOUT
DSR failed to come on.

MP_DSR_ALRDY_ON
DSR already on for a switched line.

MP_X21_CLEAR
Unexpected clear received from the DCE.

option[1]

If the option[0] field is set to MP_X21_TIMEOUT, the option[1] field contains the
specific X.21 timer that expired.

option[2]

Not used.

option[3]

Not used.

CIO_TX_DONE Status Block

On completion of a multiprotocol transmit, the following status block is provided:

Technical Reference: Kernel and Subsystems, Volume 2

61

Code CIO_TX_DONE

option[0] Can be one of the following:
CIO_OK
MP_TX_UNDERRUN
MP_X21_CLEAR

MP_TX_FAILSAFE_TIMEOUT
The transmit command did not complete.

MP_TX_ABORT
Transmit aborted due to CIO_HALT operation.

option[1] Identifies the write_id field supplied by the caller in the write command if TX_ACK
was selected.

option[2] Points to the buffer with transmit data.

option[3] Not used.

MP_THRESH_EXC Status Block

A threshold for one of the counters defined in the start profile has reached its threshold.

Code MP_THRESH_EXC

option[0] Indicates the expired threshold.

MP_TX_PERCENT, MP_RX_PERCENT

The following values are returned to indicate the threshold that
was exceeded: MP_TOTAL_TX_ERR, MP_TOTAL_RX_ERR,

option[1] Not used.
option[2] Not used.
option[3] Not used.

Execution Environment

The CIO_GET_STAT operation can be called from the Iprocess environmenﬂ only.

Return Values

The return codes for the CIO_GET_STAT operation are:

Item Description
ENOMEM Indicates no mbufs or mbuf clusters are available.
ENXIO Indicates the adapter number is out of range.

Related reference:

['CIO_QUERY (Query Statistics) tsioctl PCI MPQP Device Handler Operation” on page 66|
['MP_CHG_PARMS (Change Parameters) tsioctl PCI MPQP Device Handler Operation” on page 84|
[‘tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 86|

CIO_GET_STAT ddioctl Communications PDH Operation
Purpose

Returns the next status block in a status queue to user-mode process.

62 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl

(devno, op, parmptr,
devflag, chan, ext)
dev_t devnol;

int |opf;
struct status_block * ;
ulong_|devflagl;

int_[chan|,
extjs
Parameters
Item Description
devno Specifies major and minor device numbers.
op Indicates the entry point for the CIO_GET_STAT operation.
parmptr Points to a status_block structure. This structure is defined in the /ust/include/sys/comio.h file.
devflag Specifies the DKERNEL]|flag. This flag must be clear, indicating a call by a user-mode process.
chan Specifies the channel number assigned by the device-handler entry point.
ext Indicates device-dependent.
Description

Note: This entry point should not be called by kernel-mode processes.

The CIO_GET_STAT operation returns the next status block|in the status queue to a user-mode process.

Execution Environment

A CIO_GET_STAT operation can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common codes defined for an operation. However,

device handlers for specific communication devices may return device-specific codes. The common return

codes for the CIO_GET_STAT operation are the following:

Item Description

ENXIO Indicates an attempt to use an unconfigured device.
EFAULT Indicates the specified address is not valid.

EINVAL Indicates a parameter is not valid.

EACCES Indicates a call from a kernel process is not valid.
EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related information:
ddioctl subroutine|
ddmpx subroutine]

Technical Reference: Kernel and Subsystems, Volume 2

63

CIO_HALT (Halt Device) tsioctl PCI MPQP Device Handler Operation
Purpose

Ends a session with the IBM ARTIC960Hx PCI adapter (PCI MPQP) and device handler and terminates
the connection to the PCI MPQP link.

Description

The CIO_HALT operation terminates a session with the PCI MPQP device handler. The caller specifies
which network ID to halt. The CIO_HALT operation removes the network ID from the network ID table
and disconnects the physical link. A CIO_HALT operation must be issued for each
operation that completed successfully.

Data received for the specified network ID before the CIO_HALT operation is called can be retrieved by
the caller using the [tsselect| and [tsread| entry points.

If the CIO_HALT operation terminates abnormally, the status is returned either asynchronously or as part
of the CIO_HALT_DONE. Whatever the case, the |CIO_GET_STAT1 operation is used to get information
about the error. When a halt is terminated abnormally (for example, due to network failure), the
following occurs:

* The link is terminated.
* The drivers and receivers are disabled for the indicated port.

* The port can no longer transmit or receive data.

No recovery procedure is required by the caller; however, logging the error is required.

Errors are reported on halt operations because the user could continue to be charged for connect time if
the network does not recognize the halt. This error status permits a network application to be notified
about an abnormal link disconnection and then take corrective action, if necessary.

The CIO_HALT operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Parameter Block

For the PCI MPQP CIO_HALT operation, the extptr parameter points to a session_blk structure. This
structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

Item Description

status Specifies the status of the port. This field is set for immediately detectable errors. Possible values for the status filed
are:
* CIO_OK

* CIO_NETID_INV

If the calling process does not wish to sleep while the halt is in progress, the DNDELAY option can be used. In either
case, the status of the halt is retrieved using the CIO_GET_STAT operation and a CIO_HALT_DONE status block is
returned. The CIO_HALT_DONE status block should be used as an indication of completion.

netid Contains the network ID the caller wishes to halt. The network ID is placed in the least significant byte of the netid
field.

Execution Environment

The CIO_HALT operation can be called from the [process environment| only.

64 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Return Values

The CIO_HALT operation returns common communications return values. In addition, the following PCI
MPQP specific errors may be returned:

Item Description

EBUSY Indicates the device is not started or is not in a data transfer state.

ENOMEM Indicates there are no mbufs or mbuf clusters available.

ENXIO Indicates the adapter number is out of range.

Files

Item Description

/usr/include/sys/comio.h Contains the session_blk structure definition.

Related reference:

[‘tsselect Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 92|

[‘CIO_START (Start Device) tsioctl PCI MPQP Device Handler Operation” on page 69|
['MP_CHG_PARMS (Change Parameters) tsioctl PCI MPQP Device Handler Operation” on page 84|

CIO_HALT ddioctl Communications PDH Operation
Purpose

Removes the network ID of the calling process and cancels the results of the corresponding CIO_START
operation.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl

(devno, op, parmptr,
devflag, chan, ext)
dev_t [devnol;

int |opfs
struct session blk * ;
ulong_[devflagl

int |[chan|, lext];

Parameters

Item Description

devno Specifies major and minor device numbers.

op Specifies the entry point for the CIO_HALT operation.

parmptr Points to a session_blk structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Specifies the DKERNEL]|flag. This flag is set by kernel-mode processes and cleared by calling user-mode processes.
chan Specifies the channel number assigned by the device handler's ddmpx routine.

ext Indicates device-dependent.

Description

The CIO_HALT operation must be supported by each physical device handler in the communication I/O
subsystem. This operation should be issued once for each successfully issued CIO_START operation. The
CIO_HALT operation removes the caller's network ID and undoes all that was affected by the

corresponding |CIO_START] operation.

Technical Reference: Kernel and Subsystems, Volume 2 65

The CIO_HALT operation returns immediately to the caller, before the operation completes. If the return
indicates no error, the PDH builds a |CIO_HALT _DONE| status block upon completion. For kernel-mode
processes, the status block is passed to the associated status function (specified at open time). For
user-mode processes, the block is placed in the associated status or exception queue.

session_blk Parameter Block

For the CIO_HALT operation, the ext parameter can be a pointer to a session_blk structure. This
structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Indicates the status of the port. This field may contain additional information about the completion of the
CIO_HALT operation. Besides the status codes listed here, device-dependent codes can be returned:

CIO_OK
Indicates the operation was successful.

CIO_INV_CMD
Indicates an invalid command was issued.

CIO_NETID_INV
Indicates the network ID was not valid.

The status field is used for specifying immediately detectable errors. If the status is CIO_OK, the |[CIO_HAL
DONE] status block should be processed to determine whether the halt completed without errors.
netid Contains the network ID to halt.

Execution Environment

A CIO_HALT operation can be called from the [process environmentf only.

Return Values

In general, communication device handlers use the common return codes defined for an operation.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the CIO_HALT operation are the following:

Return Code Description

ENXIO Indicates an attempt to use an unconfigured device.
EFAULT Indicates an incorrect address was specified.

EINVAL Indicates an incorrect parameter was specified.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related reference:

['CIO_GET_STAT ddioctl Communications PDH Operation” on page 62|
['CIO_START ddioctl Communications PDH Operation” on page 73|
Related information:

ddioctl subroutine]

CIO_QUERY (Query Statistics) tsioctl PCI MPQP Device Handler
Operation
Purpose

Provides the means to read counter values accumulated by the IBM ARTIC960Hx PCI adapter (PCI
MPQP) and device handler.

66 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Description

The CIO_QUERY operation reads the counter values accumulated by the PCI MPQP device handler. The
counters are initialized to 0 by the first entry point operation.

The CIO_QUERY operation returns the Reliability / Availability /Serviceability field of the define device
structure (DDS).

The CIO_QUERY operation functions with a 4-Port Multiprotocol Interface adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more
information on configuring the adapter and network qualifications.

The t_query_parms Parameter Block

For this operation, the extptr parameter points to an t_query_parms structure. This structure is defined in
the /usr/include/sys/mpqp.h file and has the following fields:

Item Description

status Contains additional information about the completion of the status block. Device-dependent codes may also be
returned.

CI0_OK Indicates that the operation was successful.

bufptr Specifies the address of a buffer where the returned statistics are to be placed.

buflen Specifies the length of the buffer; it should be at least 45 words long (unsigned long).

reserve Reserved for use in future releases.

Statistics Logged for PCI MPQP Ports

The following statistics are logged for each PCI MPQP port.
* Bytes transmitted

* Bytes received

* Frames transmitted

* Frames received

* Receive errors

* Transmission errors

* DMA buffer not large enough or not allocated
e CTS time out

* CTS dropped during transmit

* DSR time out

* DSR dropped

* DSR on before DTR on a switched line

* DCE clear during call establishment

* DCE clear during data phase

¢ X.21 T1-T5 time outs

* X.21 invalid DCE-provided information (DPI)

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a
leased-circuit public data network is not supported.

Execution Environment

The CIO_QUERY operation can be called from the [process environment| only.

Technical Reference: Kernel and Subsystems, Volume 2 67

Return Values

Item Description

EFAULT Indicates a specified address is not valid.
EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.

ENOMEM Indicates the operation was unable to allocate the required memory.
ENXIO Indicates an attempt to use unconfigured device.

Related reference:

[‘tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 86|

[‘CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler Operation” on page 59|
['MP_CHG_PARMS (Change Parameters) tsioctl PCI MPQP Device Handler Operation” on page 84|

CIO_QUERY ddioctl Communications PDH Operation
Purpose

Returns device statistics.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl

(devno, op, parmptr,
devflag, chan, ext)

dev_t |devnol;

int |opls

struct query parms * |Ear‘mptr|;
ulong |devflagl;

int |[chan), lext];

Parameters

Item Description

devno Specifies major and minor device numbers.

op Indicates the entry point of the CIO_QUERY operation.

parmptr Points to a query_parms structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Specifies the flag. This flag is set by calling kernel-mode processes and cleared by calling user-mode
processes.

chan Specifies channel number assigned by the device handler's entry point.

ext Indicates device-dependent.

Description

The CIO_QUERY operation returns various statistics from the device. Counters are zeroed by the
physical device handler when the device is configured. The data returned consists of two contiguous
portions. The first portion contains counters to be collected and maintained by all device handlers in the
communication I/O subsystem. The second portion consists of device-dependent counters and
parameters.

query_parms Parameter Block

For the CIO_QUERY operation, the paramptr parameter points to a query_parms structure. This structure
is located in the /usr/include/sys/comio.h file and contains the following fields:

68 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Field Description

status Contains additional information about the completion of the status block. Besides the status codes listed here, the
following device-dependent codes can be returned:

CIO_OK
Indicates the operation was successful.

CIO_INV_CMD
Indicates a command was issued that is not valid.

bufptr Points to the buffer where the statistic counters are to be copied.
buflen Indicates the length of the buffer pointed to by the bufptr field.
clearall When set to CIO_QUERY_CLEAR, the statistics counters are set to 0 upon return.

Execution Environment

A CIO_QUERY operation can be called from the fprocess environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the CIO_QUERY operation are the following:

Return Code Description

ENXIO Indicates an attempt to use unconfigured device.
EFAULT Indicates an address was specified that is not valid.
EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.

ENOMEM Indicates the operation was unable to allocate the required memory.
EBUSY Indicates the maximum number of opens was exceeded.
ENODEV Indicates the device does not exist.

Related information:
ddioctl subroutine|
ddmpx subroutine|

CIO_START (Start Device) tsioctl PCI MPQP Device Handler Operation
Purpose

Starts a session with the IBM ARTIC960Hx PCI (PCI MPQP) device handler.

Description

The CIO_START operation registers a network ID in the network ID table and establishes the physical
connection with the PCI MPQP device. Once this start operation completes successfully, the port is ready

to transmit and receive data.

Note: The CIO_START operation defines the protocol- and configuration-specific attributes of the
selected port. All bits that are not defined must be set to 0 (zero).

For the PCI MPQP CIO_START operation, the extptr parameter points to a t_start_dev structure. This
structure contains pointers to the session_blk structure.

The session_blk structure contains the netid and status fields. The t_start_dev device-dependent

information for an PCI MPQP device follows the session block. All of these structures can be found in the
fusr/include/sys/mpqp.h file.

Technical Reference: Kernel and Subsystems, Volume 2 69

The CIO_START operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

t_start dev Fields

The t_start_dev structure contains the following fields:

Item Description

phys_Tink Indicates the physical link protocol. Only one type of physical link is valid at a time. The
supported values are:

Physical Link
Type

PL_232D
EIA-232D

PL_V35 V.35

PL_X21 X.21
Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation
on a leased-circuit public data network is not supported.

dial_proto The dial_proto field is ignored.

data_proto Identifies the possible data protocol selections during the data transfer phase. The data_flags
field has different meanings depending on what protocol is selected. The data_proto field
accepts the following values:

DATA_PRO_BSC
Indicates a bisync protocol.

DATA_PRO_SDLC_FDX
Indicates receivers enabled during transmit.

DATA_PRO_SDLC_HDX
Indicates receivers disabled during transmit.
modem_fTlags Establishes modem characteristics. This field accepts the following values:

MF_AUTO
Indicates that the call is to be answered or dialed automatically.

MF_CALL
Indicates an outgoing call.

MF_LEASED
Indicates a leased telephone circuit.

MEF_LISTEN
Indicates an incoming call (switched only).

MF_MANUAL
Indicates that the operator answers or dials the call manually.

MF_SWITCHED
Indicates a switched telephone circuit.

Note: Since each of these modem chracteristics are handled by the modem, the driver actually
determines connection status in the same way, no matter what value is set in the modem_flags
field. When the CIO_START ioctl is executed, the DTR signal is asserted and an active
connection is reported when an active DSR signal is detected.

poll_addr Identifies the address-compare value for a Binary Synchronous Communication (BSC) polling
frame or an Synchronous Data Link Control (SDLC) frame. If using BSC, a value for the
selection address must also be provided or the address-compare is not enabled. If a frame is
received that does not match the poll address (or select address for BSC), the frame is not
passed to the system.

select_addr Specifies a valid select address for BSC only.

modem_int_mask Reserved. This value must be 0.

baud_rate This value should be set to 0 to indicate the port is to be externally clocked (that is, use modem
clocking).

70 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

rcv_timeout Indicates the period of time, expressed in 100-msec units (0.10 sec), used for setting the receive
timer. The PCI MPQP device driver starts the receive timer whenever the CIO_START
operation completes and a final transmit occurs.

If a receive occurs that is not a receive final frame, the timer is restarted. The timer is stopped
when the receive final occurs. If the timer expires before a receive occurs, an error is reported
to the logical link control (LLC) protocol. After the CIO_START operation completes, the

receive time out value can be changed by the MP_CHG_PARMS| operation. A value of zero

indicates that a receive timer should not be activated.

Final frames in SDLC are all frames with the poll or final bit set. In BSC, all frames are final
frames except intermediate text block (ITB) frames.

rcv_data_offset Reserved
dial_data_length Not used.

Flag Fields for Protocols
Flag fields in the t_start_dev structure take different values depending on the type of protocol selected.
Data Flags for the BSC Protocol

If BSC is selected in the data_proto field, either ASCII or EBCDIC character sets can be used. Control
characters are stripped automatically on reception. Data link escape (DLE) characters are automaticall
inserted and deleted in transparent mode. If BSC Address Check mode is selected, values for both
addresses must be supplied. Odd parity is used if ASCII is selected.

The following are the default values:
* EBCDIC.

* Do not restart the receive timer.

* Do not check addresses.

* RTS controlled.

The data flags for the BSC protocol are:

Item Description

DATA_FLG_ADDR_CHK Address-compare select. This causes frames to be filtered by the hardware based on
address. Only frames with matching addresses are sent to the system.

DATA_FLG_BSC_ASC ASCII BSC select.

DATA_FLG_C_CARR_ON Continuous carrier (RTS always on).

DATA_FLG_C_CARR_OFF RTS-disabled between transmits (default).

Data Flags for the SDLC Protocol

For the Synchronous Data Link Control (SDLC) protocol, the flag for NRZ or NRZI must match the
data-encoding method that is used by the remote DTE. If SDLC Address Check mode is selected, the poll
address byte must also be specified. The receive timer (RT) is started whenever a final block is
transmitted. If RT is set to 1, the receive timer is restarted after expiration. If RT is set to 0, the receive
timer is not restarted after expiration. The receive timer value is specified by the 16-bit rcv_timeout field.
The following are the acceptable SDLC data flags:

Technical Reference: Kernel and Subsystems, Volume 2 71

Item Description

DATA_FLG_NRZI NRZI select (default is NRZ).
DATA_FLG_ADDR_CHK Address-compare select.
DATA_FLG_RST_TMR Restart receive timer.
DATA_FLG_C_CARR_ON Continuous carrier (RTS always on).
DATA_FLG_C_CARR_OFF RTS disabled between transmits (default).

t_err_threshold Fields

The t_err_threshold structure describes the format for defining thresholds for transmit and receive errors.
Counters track the total number of transmit and receive errors. Individual counters track certain types of
errors. Thresholds can be set for individual errors, total errors, or a percentage of transmit and receive
errors from all frames received.

When a counter reaches its threshold value, a status block is returned by the driver. The status block
indicates the type of error counter that reached its threshold. If multiple thresholds are reached at the

same time, the first expired threshold in the list is reported as having expired and its counter is reset to 0.
The user can issue a |[CIO_QUERY] operation call to retrieve the values of all counters.

If no thresholding is desired, the threshold should be set to 0. A value of 0 indicates that LLC should not
be notified of an error at any time. To indicate that the LLC should be notified of every occurrence of an

error, the threshold should be set to 1.

The t_err_threshold structure contains the following fields:

Item Description

tx_err_thresh Specifies the threshold for all transmit errors. Transmit errors include transmit underrun, CTS
dropped, CTS time out, and transmit failsafe time out.

rx_err_thresh Specifies the threshold for all Receive errors include overrun errors, break/abort

errors, framing/cyclic redundancy check (CRC)/frame check sequence (FCS) errors, parity errors,
bad frame synchronization, and receive-DMA-buffer-not-allocated errors.

tx_err_percent Specifies the percentage of transmit errors that must occur before a status block is sent to the LLC.
rx_err_percent Specifies the percentage of that must occur before a status block is sent to the LLC.

Execution Environment

The CIO_START operation can be called from the [process environment| only.

Return Values

Item Description

CIO_OK Indicates successful CIO_START operation.

EBUSY Indicates the port state is not opened for a CIO_START operation.
EFAULT Indicates the cross-memory copy service was unsuccessful.

EINVAL Indicates the physical link parameter is not valid for the port.

EIO Indicates the device handler could not queue command to the adapter.
ENOMEM Indicates no mbuf clusters are available.

ENXIO Indicates the adapter number is out of range.

Related reference:

[‘tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 86|
[‘CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler Operation” on page 59|
['CIO_HALT (Halt Device) tsioctl PCI MPQP Device Handler Operation” on page 64|

72 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

CIO_START ddioctl Communications PDH Operation
Purpose

Opens a communication session on a channel opened by a ddopen entry point.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl (devno, op, parmptr, devflag, chan, ext)
dev_t devno|;

int |op;
struct session blk * ;
ulong_[devflag

int |chan], lextl;

Parameters

Item Description

devno Specifies major and minor device numbers.

op Specifies the entry point for the CIO_START operation.

parmptr Points to a session_blk structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Specifies the flag. This flag is set by calling kernel-mode processes and cleared by calling user-mode
processes.

chan Specifies the channel number assigned by the device handler's entry point.

ext Indicates device-dependent.

Description

The CIO_START operation must be supported by each physical device handler (PDH) in the
communication I/O subsystem. Its use varies from adapter to adapter. This operation opens a
communication session on a channel opened by a entry point. Once a channel is opened,
multiple CIO_START operations can be issued. For each successful start, a corresponding
operation must be issued later.

The CIO_START operation requires only the netid input parameter. This parameter is registered for the
session. At least one network ID must be registered for this session before the PDH successfully accepts a
call to the [ddwrite| or [ddread| entry point on this session. If this start is the first issued for this port or
adapter, the appropriate hardware initialization is performed. Time-consuming initialization activities,
such as call connection, are also performed.

This call returns immediately to the caller before the asynchronous command completes. If the return
indicates no error, the PDH builds a |[CIO_START_DONE|status block upon completion. For kernel-mode
processes, the status block is passed to the associated [status function| (specified at open time). For
user-mode processes, the status block is placed in the associated status or exception queue.

The session_blk Parameter Block

For the CIO_START operation, the ext parameter may be a pointer to a session_blk structure. This
structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

Technical Reference: Kernel and Subsystems, Volume 2 73

Field Description
status Indicates the status of the port. This field may contain additional information about the completion of the
CIO_START operation. Besides the status codes listed here, device-dependent codes can also be returned:

CIO_OK
Indicates the operation was successful.

CIO_INV_CMD
Indicates an issued command was not valid.

CIO_NETID_INV
Indicates the network ID was not valid.

CIO_NETID_DUP
Indicates the network ID was a duplicate of an existing ID already in use on the network.

CIO_NETID_FULL
Indicates the network table is full.

netid Contains the network ID to register with the start.

Execution Environment

A CIO_START operation can be called from the [process environment| only.

Return Values

In general, communication device-handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the CIO_START operation are the following:

Return Code Description

ENXIO Indicates an attempt to use an unconfigured device.
EFAULT Indicates a specified address is not valid.

EINVAL Indicates a parameter is not valid.

ENOSPC Indicates the network ID table is full.

EADDRINUSE Indicates a duplicate network ID.

EBUSY Indicates the maximum number of opens was exceeded.
ENODEV Indicates the device does not exist.

Related reference:
['CIO_GET_FASTWRT ddioctl Communications PDH Operation” on page 58|
[‘ddread Communications PDH Entry Point” on page 79|

[‘ddwrite Communications PDH Entry Point” on page 82|

Related information:
ddioctl subroutine|

dd_fastwrt Communications PDH Entry Point
Purpose

Allows kernel-mode users to transmit data.

Description

You use the dd_fastwrt entry point from a kernel-mode process to pass a write packet or string of
packets to a PDH for transmission. To get the address of this entry point, you issue the

(CIO_GET_FASTWRT) kernel service.

The syntax and rules of usage are device-dependent and therefore not listed here. See the documentation
on individual devices for more information. Some of the information that should be provided is:

74 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

* Number of packets allowed on a single fast write function call.

* Operational level from which the fast write function can be called.
* Syntax of the entry point.

* Trusted path usage. The device may not check every parameter.

When you call this entry point from a different adapter's receive interrupt level, you must ensure that the
calling level is equal to or lower than the target adapter's operational level. This is the case when you
forward packets from one port to another. To find out the operational level, see the documentation for the
specific device.

Related information:

fp_ioctl subroutine|

ddclose Communications PDH Entry Point
Purpose

Frees up system resources used by the specified communications device until they are needed.
Syntax
#include <sys/device.h> int ddclose (dev_t devno; int chan;

Parameters

Item Description
devno Major and minor device numbers.
chan Channel number assigned by the device handler's entry point.

Description

The ddclose entry point frees up system resources used by the specified communications device until
they are needed again. Data retained in the receive queue, transmit queue, or status queue is purged. All
buffers associated with this channel are freed. The ddclose entry point should be called once for each

successfully issued entry point.
Before issuing a ddclose entry point, a |CIO_HALT| operation should be issued for each previously
_

successful |CIO_START]| operation on this channel.

Execution Environment

A ddclose entry point can be called from the [process environment| only.

Return Value
In general, communication device-handlers use the common return codes defined for entry points.

However, device handlers for specific communication devices may return device-specific codes. The
common return code for the ddclose entry point is the following:

Technical Reference: Kernel and Subsystems, Volume 2 75

Item Description
ENXIO Indicates an attempt to close an unconfigured device.

Related reference:
['CIO_HALT ddioctl Communications PDH Operation” on page 65|
['CIO_START ddioctl Communications PDH Operation” on page 73|

Related information:

ddopen subroutine|

ddopen (Kernel Mode) Communications PDH Entry Point
Purpose

Performs data structure allocation and initialization for a communications physical device handler (PDH).

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddopen (devno, devflag, chan, extptr)
dev_t [(devnoj;
ulong |devflagl;

int chan|;
struct kopen_ext * lextptri;

Parameters for Kernel-Mode Processes

Item Description
devno Specifies major and minor device numbers.
devflag Specifies the flag word with the following definitions:
DKERNEL
Set to call a kernel-mode process.
DNDELAY
When set, the PDH performs nonblocking writes for this channel. Otherwise, blocking writes are
performed.
chan Specifies the channel number assigned by the device handler's entry point.
extptr Points to the kopen_ext structure.
Description

The ddopen entry point performs data structure allocation and initialization. Hardware initialization and
other time-consuming activities, such as call initialization, are not performed. This call is synchronous,
which means it does not return until the ddopen entry point is complete.

kopen_ext Parameter Block

For a kernel-mode process, the extptr parameter points to a kopen_ext structure. This structure contains
the following fields:

76 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Field Description

status The status field may contain additional information about the completion of an open. Besides the status code listed
here, the following device-dependent codes can also be returned:

CIO_OK
Indicates the operation was successful.

CIO_NOMBUF
Indicates the operation was unable to allocate mbuf structures.

CIO_BAD_RANGE
Indicates a specified address or parameter was not valid.

CIO_HARD_FAIL
Indicates a hardware failure has been detected.

rx_fn Specifies the address of a kernel procedure. The PDH calls this procedure whenever there is a receive frame to be
processed. The rx_fn procedure must have the following syntax:

#include </usr/include/sys/comio.h>
void rx_fn (open_id, rd_ext_p, mbufptr)
ulong open_id;

struct read_extension *rd_ext_p;

struct mbuf *mbufptr;
open_id Identifies the instance of open. This parameter is passed to the PDH with the ddopen entry point.
rd_ext_p Points to the read extension as defined in the /ust/include/sys/comio.h file.

mbufptr Points to an mbuf structure containing received data.

The kernel procedure calling the ddopen entry point is responsible for pinning the rx_fn kernel procedure before
making the open call. It is the responsibility of code scheduled by the rx_fn procedure to free the chain.

tx_fn Specifies the address of a kernel procedure. The PDH calls this procedure when the following sequence of events
occurs:

1. The DNDELAY flag is set (determined by its setting in the last field).
2. The most recent |ddwrite| entry point for this channel returned an [EAGAIN|value.

3. Transmit queue for this channel now has room for a write.
The tx_fn procedure must have the following syntax:
#include </usr/include/sys/comio.h>

void tx_fn (open_id)

ulong open_id;

open_id Identifies the instance of open. This parameter is passed to the PDH with the ddopen call.

The kernel procedure calling the ddopen entry point is responsible for pinning the tx_fn kernel procedure before
making the call.

Technical Reference: Kernel and Subsystems, Volume 2 77

Field Description

stat_fn Specifies the address of a kernel procedure to be called by the PDH whenever a status block becomes available.
This procedure must have the following syntax:

#include </usr/include/usr/comio.h>
void stat_fn (open_id, sblk_ptr);
ulong open_id;

struct status_block *sblk_ptr

open_id Identifies the instance of open. This parameter is passed to the PDH with the ddopen entry point.

sblk_ptr Points to a status block defined in the /usr/include/sys/comio.h file.

The kernel procedure calling the ddopen entry point is responsible for pinning the stat_fn kernel procedure before
making the open call.

The rx_fn, tx_fn, and stat_fn procedures are made synchronously from the off-level portion of the PDH at high
priority from the PDH. Therefore, the called kernel procedure must return quickly. Parameter blocks are passed by
reference and are valid only for the call's duration. After a return from this call, the parameter block should not be
accessed.

Execution Environment

A ddopen (kernel mode) entry point can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common codes defined for an entry point. However,
device handlers for specific communication devices may return device-specific codes. The common return
codes for the ddopen entry point are the following:

Return Code Description

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred. The field contains the relevant exception code.

ENODEV Indicates there is no such device.

EBUSY Indicates the maximum number of opens was exceeded, or the device was opened in exclusive-use mode.
ENOMEM Indicates the PDH was unable to allocate the space that it needed.

ENXIO Indicates an attempt was made to open the PDH before it was configured.

ENOTREADY Indicates the PDH is in the process of shutting down the adapter.

Related reference:

['ddclose Communications PDH Entry Point” on page 75|

Related information:

ddmpx subroutine|

Btatus Blocks for Communication Device Handlers Overview]|

ddopen (User Mode) Communications PDH Entry Point
Purpose

Performs data structure allocation and initialization for a communications physical device handler (PDH).
Syntax

#include <sys/device.h>
#include <sys/comio.h>

78 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

int ddopen (devno, devflag, chan, ext)
dev_t
ulong

int |chanj;
int l|ext|;

Parameters for User-Mode Processes

Item Description

devno Specifies major and minor device numbers.

devflag Specifies the flag word with the following definitions:
DKERNEL

This flag must be clear, indicating call by a user-mode process.

DNDELAY
If this flag is set, the PDH performs nonblocking reads and writes for this channel. Otherwise, blocking
reads and writes are performed for this channel.

chan Specifies the channel number assigned by the device handler's entry point.
ext Indicates device-dependent.
Description

The ddopen entry point performs data structure allocation and initialization. Hardware initialization and
other time-consuming activities such as call initialization are not performed. This call is synchronous and
does not return until the open operation is complete.

Execution Environment

A ddopen entry point can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices can return device-specific codes. The
common return codes for the ddopen entry point are:

Return Code Description

EINVAL Indicates a parameter is not valid.

ENODEV Indicates there is no such device.

EBUSY Indicates the maximum number of opens was exceeded.

ENOMEM Indicates the PDH was unable to allocate needed space.

ENOTREADY Indicates the PDH is in the process of shutting down the adapter.

ENXIO Indicates an attempt was made to open the PDH before it was configured.

Related reference:

[‘ddclose Communications PDH Entry Point” on page 75|

[‘ddopen (Kernel Mode) Communications PDH Entry Point” on page 76|

ddread Communications PDH Entry Point
Purpose

Returns a data message to a user-mode process.
Syntax

#include <sys/device.h>
#include <sys/comio.h>

Technical Reference: Kernel and Subsystems, Volume 2 79

int ddread (devno, uiop, chan, extptr)
dev t [devnol

struct uio * ;

int ;

read_extension * ;

Parameters

Item Description

devno Specifies major and minor device numbers.

uiop Points to a structure. For a calling user-mode process, the uio structure specifies the location and length of the
caller's data area in which to transfer information.

chan Specifies the channel number assigned by the device handler's entry point.

extptr Indicates null or points to the read_extension structure. This structure is defined in the /usr/include/sys/comio.h file.

Description

Note: The entry point should not to be called by a kernel-mode process.

The ddread entry point returns a data message to a user-mode process. This entry point may or may not
block, depending on the setting of the DNDELAY|flag. If a nonblocking read is issued and no data is

available, the ddread entry point returns immediately with 0 (zero) bytes.

For this entry point, the extptr parameter points to an optional user-supplied read_extension structure.
This structure contains the following fields:

Field Description

status Contains additional information about the completion of the ddread entry point. Besides the status codes listed here,
device-dependent codes can be returned:
CIO_OK

Indicates the operation was successful.

CIO_BUF_OVFLW
Indicates the frame was too large to fit in the receive buffer. The PDH truncates the frame and places the
result in the receive buffer.

netid Specifies the network ID associated with the returned frame. If a CIO_BUF_OVFLW code was received, this field
may be empty.

sessid Specifies the session ID associated with the returned frame. If a CIO_BUF_OVFLW code was received, this field may
be empty.

Execution Environment

A ddread entry point can be called from the [process environment| only.

Return Values
In general, communication device handlers use the common codes defined for an entry point. However,

device handlers for specific communication devices may return device-specific codes. The common return
codes for the ddread entry point are the following:

80 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Return Code Description

ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.

EACCES Indicates a call from a kernel process is not valid.

EMSGSIZE Indicates the frame was too large to fit into the receive buffer and that no extptr parameter was supplied to
provide an alternate means of reporting this error with a status of

EINTR Indicates a locking mode sleep was interrupted.

EFAULT Indicates a supplied address is not valid.

EBIDEV Indicates the specified device does not exist.

Related reference:
['CIO_START ddioctl Communications PDH Operation” on page 73|
[‘ddwrite Communications PDH Entry Point” on page 82|

Related information:

ddmpx subroutine|

ddselect Communications PDH Entry Point
Purpose

Checks to see whether a specified event or events has occurred on the device.
Syntax
#include <sys/device.h>

#include <sys/comio.h>

int ddselect (devno, events, reventp, chan)

dev_t 4
ushort |events];
ushort =* |reventpl;
int |chan;
Parameters
Item Description
devno Specifies major and minor device numbers.
events Specifies conditions to check. The conditions are denoted by the bitwise OR of one or more of the following;:
POLLIN
Check whether receive data is available.
POLLOUT
Check whether transmit available.
POLLPRI
Check whether status is available.
POLLSYNC
Check whether asynchronous notification is available.
reventp Points to the result of condition checks. A bitwise OR of the following conditions is returned:
POLLIN
Indicates receive data is available.
POLLOUT
Indicates transmit available.
POLLPRI
Indicates status is available.
chan Specifies the channel number assigned by the device handler's entry point.

Technical Reference: Kernel and Subsystems, Volume 2

81

Description
Note: This entry point should not be called by a kernel-mode process.

The ddselect communications PDH entry point checks and returns the status of 1 or more conditions for
a user-mode process. It works the same way the common device driver entry point does.

Execution Environment

A ddselect entry point can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the ddselect entry point are the following;:

Return Code Description

ENXIO Indicates an attempt to use an unconfigured device.
EINVAL Indicates a specified argument is not valid.

EACCES Indicates a call from a kernel process is not valid.
EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related information:

ddmpx subroutine|

ddwrite Communications PDH Entry Point
Purpose

Queues a message for transmission or blocks until the message can be queued.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddwrite (devno, uiop, chan, extptr)
dev_t ;

struct uio * ;

int ;

struct write_extension * ;

Parameters

Item Description

devno Specifies major and minor device numbers.

uiop Points to a uio structure specifying the location and length of the caller's data.

chan Specifies the channel number assigned by the device handler's ddmpx entry point.

extptr Points to a write_extension structure. If the extptr parameter is null, then default values are assumed.
Description

The ddwrite entry point either queues a message for transmission or blocks until the message can be
queued, depending upon the setting of the DNDELAY flag.

82 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

The ddwrite communications PDH entry point determines whether the data is in user or system space by
looking at the uiop->uio_segflg field. If the data is in system space, then the uiop->uio_iov->iov_base
field contains an mbuf pointer. The mbuf chain contains the data for transmission. The uiop->uio_resid
field has a value of 4. If the data is in user space, the data is located in the same manner as for the
ddwrite device driver entry point.

write_extension Parameter Block

For this entry point, the extptr parameter can point to a write_extension structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

Field
status

flag

writid

netid

Description

Indicates the status of the port. This field may contain additional information about the completion of the ddwrite
entry point. Besides the status codes listed here, device-dependent codes can be returned:

CIO_OK
Indicates that the operation was successful.

CIO_NOMBUF
Indicates that the operation was unable to allocate mbuf structures.
Contains a bitwise OR of one or more of the following:

CIO_NOFREE_MBUF
Requests that the physical device handler (PDH) not free the mbuf structure after transmission is complete.
The default is bit clear (free the buffer). For a user-mode process, the PDH always frees the mbuf structure.

CIO_ACK_TX_DONE
Requests that, when done with this operation, the PDH acknowledge completion by building a
CIO_TX_DONE status block. In addition, requests that the PDH either call the kernel status function or
(for a user-mode process) place the status block in the status or exception queue. The default is bit clear (do
not acknowledge transmit completion).

Contains the write ID to be returned in the CIO_TX_DONE status block. This field is ignored if the user did not

request transmit acknowledgment by setting CIO_ACK_TX_DONE status block in the flag field.

Contains the network ID.

Execution Environment

A ddwrite entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices can return device-specific codes. The
common return codes for the ddwrite entry point are the following:

Return Code

Description

ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates a parameter that is not valid.

EAGAIN Indicates the transmit queue is full and the DNDELAY flag is set. The command was not accepted.
EFAULT Indicates a specified address is not valid.

EINTR Indicates a blocking mode sleep was interrupted.

ENOMEM Indicates the operation was unable to allocate the needed mbuf space.

ENOCONNECT Indicates a connection was not established.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related reference:

['CIO_GET_FASTWRT ddioctl Communications PDH Operation” on page 58|

Related information:

ddmpx subroutine|

Technical Reference: Kernel and Subsystems, Volume 2 83

io subroutine

MP_CHG_PARMS (Change Parameters) tsioctl PClI MPQP Device
Handler Operation
Purpose

Permits the data link control (DLC) to change certain profile parameters after the IBM ARTIC960Hx PCI
(PCI MPQP) device has been started.

Description
MPQP device has been started. The cmd parameter in the [tsioct]| entry point is set to the

MP_CHG_PARMS operation. This operation can interfere with communications that are in progress.
Data transmission should not be active when this operation is issued.

The MP_CHG_PARMS operation permits the DLC to change certain profile parameters after the PCI
_

For this operation, the extptr parameter points to a t_chg_parms structure. This structure has the
following changeable fields:

Item Description
chg_mask Specifies the mask that indicates which fields are to be changed. The possible choices are:

 CP_POLL_ADDR
* CP_RCV_TMR
* CP_SEL_ADDR

More than one field can be changed with one MP_CHG_PARMS operation.

rcv_timer Identifies the timeout value used after transmission of final frames when waiting for receive data in 0.1 second
units.

poll_addr Specifies the address. Possible values are Synchronous Data Link Control (SDLC) or Binary Synchronous
Communications (BSC) poll addresses.

select_addr Specifies the address. BSC is the only possible protocol that supports select addresses.

Related reference:

[‘tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 86|
[‘CIO_HALT (Halt Device) tsioctl PCI MPQP Device Handler Operation” on page 64|
['CIO_START (Start Device) tsioctl PCI MPQP Device Handler Operation” on page 69|

tsclose Multiprotocol (PClI MPQP) Device Handler Entry Point
Purpose

Resets the IBM ARTIC960Hx adapter (PCI MPQP) and device handler to a known state and returns
system resources back to the system on the last close for that adapter.

Syntax

int tsclose (devno, chan, ext)
dev_t devno;
int chan, ext;

Description
The tsclose entry point routine resets the PCI MPQP adapter to a known state and returns system
resources to the system on the last close for that adapter. The port no longer accepts tsread, tswrite, or

tsioctl operation requests. The tsclose entry point is called in user mode by issuing a system call.
The tsclose entry point is invoked in response to an kernel service.

84 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

On an tsclose entry point, the PCI MPQP device handler does the following:
* Frees all internal data areas for the corresponding entry point.
* Purges receive data queued for this tsopen entry point.

On the last tsclose entry point for a particular adapter, the PCI MPQP device handler also does the
following:

* Frees its interrupt level to the system.

* Frees the DMA channel.

* Disables adapter interrupts.

* Sets all internal data elements to their default settings.

The tsclose entry point closes the device. For each tsopen entry point issued, there must be a
corresponding tsclose entry point.

Before issuing the tsclose entry point, the caller should issue a CIO_HALT operation for each
CIO_START operation issued during that particular instance of open. If a close request is received
without a preceding CIO_HALT operation, the functions of the halt are performed. A close request
without a preceding CIO_HALT operation occurs only during abnormal termination of the port.

The tsclose entry point functions with a 4-port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Parameters

Item Description

devno Specifies major and minor device numbers.

chan Specifies the channel number assigned by the @ entry point.
ext Ignored by the PCI MPQP device handler.

Execution Environment

The tsclose entry point can be called from the [process environment| only.

Return Values

The common return codes for the tsclose entry point are:

Item Description
ECHRNG Indicates the channel number is too large.
ENXIO Indicates the port initialization was unsuccessful. This code could also indicate that the registration of the

interrupt was unsuccessful.
ECHRNG Indicates the channel number is out of range (too high).

Related reference:

[‘tsopen Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 89|
['CIO_HALT (Halt Device) tsioctl PCI MPQP Device Handler Operation” on page 64
Related information:

klose subroutine|

fp_close subroutine|

Technical Reference: Kernel and Subsystems, Volume 2

85

tsconfig Multiprotocol (PCI MPQP) Device Handler Entry Point
Purpose

Provides functions for initializing and terminating the IBM ARTIC960Hx PCI adapter (PCI MPQP) and
device handler.

Syntax
#include <sys/uio.h>

int tsconfig (devno, cmd, uiop)
dev_t devno;

int cmd;

struct uio *uiop;

Description

The tsconfig entry point provides functions for initializing and terminating the PCI MPQP device handler
and adapter. It is invoked through the /usr/include/sys/config device driver at device configuration time.
This entry point supports the following operations:

- [CFG_INT
.

The tsconfig entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Parameters
Item Description
devno Specifies major and minor device numbers.
cmd Specifies the function to be performed by this routine. There are two possible functions:
CFG_INIT
Initializes device handler and internal data areas.
CFG_TERM
Terminates the device handler.
uiop Points to a structure. The uio structure is defined in the /usr/include/sys/uio.h file.

Execution Environment

The tsconfig entry point can be called from the [process environment| only.

Related reference:
[‘tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point”|

Related information:

ddconfig subroutine|
PCI MPQP Device Handler Interface Overview|

tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point
Purpose

Provides various functions for controlling the IBM ARTIC960Hx PCI adapter (PCI MPQP) and device
handler.

86 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Syntax

#include <sys/devinfo.h>

#include <sys/ioctl.h>

#include <sys/comio.h>

#include <sys/mpqgp.h>

int tsioctl

(devno, cmd, extptr, devflag, chan, ext)
dev_t devno;

int cmd, extptr;

ulong devflag;

int chan, ext;

Description

The tsioctl entry point provides various functions for controlling the PCI MPQP adapter. There are 16
valid tsioctl operations, including:

Item Description

CIO_GET_STA!I Gets the status of the current PCI MPQP adapter and device handler.

@ Ends a session with the PCI MPQP device handler.

@ Initiates a session with the PCI MPQP device handler.

CIO?QUERE] Reads the counter values accumulated by the PCI MPQP device handler.

MP_CHG_PARMS] Permits the DLC to change certain profile parameters after the PCI MPQP device has been started.

The tsioctl entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

The possible tsioctl operation codes can be found in the /usr/include/sys/ioctlLh, /ust/include/sys/
comio.h, and /usr/include/sys/mpqp.h files.

Parameters

Item Description

devno Specifies major and minor device numbers.

cmd Identifies the operation to be performed.

extptr Specifies an address of the parameter block.

devflag Allows tsioctl calls to inherit properties that were specified at open time. The PCI MPQP device handler inspects

the DNDELAY flag for ioctl calls. Kernel-mode data link control (DLC) sets the DKERNEL flag that must be set
for a tsopen call.

chan Specifies the channel number assigned by the tsmpx entry point.
ext Not used by PCI MPQP device handler.

Execution Environment

The tsioctl entry point can be called from the [process environment| only.

Return Values

The common return codes for the tsioctl entry point are:

Technical Reference: Kernel and Subsystems, Volume 2 87

Item Description
ENOMEM Indicates the no memory buffers (mbufs) or mbuf clusters are available.
ENXIO Indicates the adapter number is out of range.

Related reference:

[‘tsconfig Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 86|

['CIO_HALT (Halt Device) tsioctl PCI MPQP Device Handler Operation” on page 64|
['MP_CHG_PARMS (Change Parameters) tsioctl PCI MPQP Device Handler Operation” on page 84|

tsmpx Multiprotocol (PCI MPQP) Device Handler Entry Point
Purpose

Allocates and deallocates a channel for the IBM ARTIC960Hx PCI (PCI MPQP) device handler.

Syntax

int tsmpx (devno, chanp, channame)
dev_t devno;

int *chanp;

char *channame;

int openflag;

Description

The tsmpx entry point allocates and deallocates a channel. The tsmpx entry point is supported similar to
the common entry point.

Parameters

Item Description

devno Specifies the major and minor device numbers.

chanp Identifies the channel ID passed as a reference parameter. Unless specified as null, the channame parameter is set

to the allocated channel ID. If this parameter is null it is set as the ID of the channel to be deallocated.
channame Points to the remaining path name describing the channel to be allocated. There are four possible values:

Equal to NULL
Deallocates the channel.

A pointer to a NULL string
Allows a normal open sequence of the device on the channel ID generated by the tsmpx entry point.

Return Values

The common return codes for the tsmpx entry point are the following:

Item Description

EINVAL Indicates an invalid parameter.

ENXIO Indicates the device was open and the Diagnostic mode open request was denied.
EBUSY Indicates the device was open in Diagnostic mode and the open request was denied.

Related reference:

['tsclose Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 84|
[‘tsconfig Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 86|
Related information:

ddmpx subroutine|

Communications I/O Subsystem: Programming Introduction|

88 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

tsopen Multiprotocol (PClI MPQP) Device Handler Entry Point
Purpose

Prepares the IBM ARTIC960Hx PCI (PCI MPQP) device for transmitting and receiving data.

Syntax

#include <sys/comio.h>
#include <sys/mpqgp.h>

int tsopen (devno, devflag, chan, ext)
dev_t devno;

ulong devflag;

int chan;

STRUCT kopen_ext *ext;

Description

The tsopen entry point prepares the PCI MPQP device for transmitting and receiving data. This entry
point is invoked in response to a kernel service call. The file system in user mode also calls the
tsopen entry point when an open subroutine is issued. The device should be opened for reading and
writing data.

Each port on the PCI MPQP adapter must be opened by its own tsopen call. Only one open call is
allowed for each port. If more than one open call is issued, an error is returned on subsequent tsopen
calls.

The PCI MPQP device handler only supports one kernel-mode process to open each port on the PCI
MPQP adapter. It supports the multiplex (mpx) routines and structures compatible with the
communications I/O subsystem, but it is not a true multiplexed device.

The kernel process must provide a parameter block. This parameter block is found in
/usr/include/sys/comio.h file.

For a user-mode process, the ext parameter points to the tsopen structure. This is defined in the
[usr/include/sys/comio.h file. For calls that do not specify a parameter block, the default values are used.

If adapter features such as the read extended status field for binary synchronous communication (BSC)
message types as well as other types of information about read data are desired, the ext parameter must
be supplied. This also requires the readx or read subroutine. If a system call is used, user data is
returned, although status information is not returned. For this reason, it is recommended that readx
subroutines be used.

The tsopen entry point functions with a 4-Port Multiprotocol Interface Adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Note: A|CIO_START]|operation must be issued before the adapter is ready to transmit and receive data.
Write commands are not accepted if a CIO_START operation has not been completed successfully.

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 89

Item Description
devno Specifies the major and minor device numbers.

devflag Specifies the flag word. For kernel-mode processes, the devflag parameter must be set to the DKERNEL flag, which
specifies that a kernel routine is making the tsopen call. In addition, the following flags can be set:

DWRITE
Specifies to open for reading and writing.

DREAD Specifies to open for a trace.

DNDELAY
Specifies to open without waiting for the operation to complete. If this flag is set, write requests return
immediately and read requests return with 0 length data if no read data is available. The calling process
does not sleep. The default is DELAY or blocking mode.

DELAY Specifies to wait for the operation to complete before opening. This is the default.
Note: For user-mode processes, the DKERNEL flag must be clear.
chan Specifies the channel number assigned by the tsmpx entry point.

ext Points to the kopen_ext parameter block for kernel-mode processes. Specifies the address to the tsopen parameter
block for user-mode processes.

Execution Environment
The tsopen entry point can be called from the process environment only.
Return Values

The common return codes for the tsopen entry point are the following:

Item Description

ENXIO Indicates that the port initialization was unsuccessful. This code could also indicate that the registration of the
interrupt was unsuccessful.

ECHRNG Indicates that the channel number is out of range (too high).
ENOMEM Indicates that there were no mbuf clusters available.

EBUSY Indicates that the port is in the incorrect state to receive an open call. The port may be already opened or not yet
configured.

Related reference:

[‘tsclose Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 84|
[‘tsconfig Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 86|
[‘CIO_START (Start Device) tsioctl PCI MPQP Device Handler Operation” on page 69|
Related information:

fp_open subroutine|

tsread Multiprotocol (PClI MPQP) Device Handler Entry Point
Purpose

Provides the means for receiving data from the IBM ARTIC960Hx PCI (PCI MPQP) device.

Syntax

#include <sys/uio.h>

int tsread (devno, uiop, chan, ext)
dev_t devno;

struct uio *uiop;
int chan, ext;

90 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Description
Note: Only user-mode processes should use the tsread entry point.

The tsread entry point provides the means for receiving data from the PCI MPQP device. When a
user-mode process user issues a subroutine, the kernel calls the tsread entry point.

The DNDELAY flag, set either at open time or later by an operation, controls whether tsread calls
put the caller to sleep pending completion of the call. If a program issues an tsread entry point with the
DNDELAY flag clear (the default), program execution is suspended until the call completes. If the
DNDELAY flag is set, the call always returns immediately. The user must then issue a poll and a
[CIO_GET_STAT| operation to be notified when read data is available.

When user application programs invoke the tsread operation through the read or readx subroutine, the
returned length value specifies the number of bytes read. The status field in the read_extension
parameter block should be checked to determine if any errors occurred on the read. One frame is read
into each buffer. Therefore, the number of bytes read depends on the size of the frame received.

For a nonkernel process, the device handler copies the data into the buffer specified by the caller. The
size of the buffer is limited by the size of the internal buffers on the adapter. If the size of the use buffer
exceeds the size of the adapter buffer, the maximum number of bytes on a tsread entry point is the size
of the internal buffer. For the PCI MPQP adapter, the maximum frame size is defined in the
fusr/include/sys/mpqp.h file.

Data is not always returned on a read operation when an error occurs. In most cases, the error causes an
error log to occur. If no data is returned, the buffer pointer is null. On errors such as buffer overflow, a
kernel-mode process receives the error status and the data.

There are also some cases where network data is returned (usually during a [CIO_START]|operation).
Network data is distinguished from normal receive data by the status field in the read_extension
structure. A nonzero status in this field indicates an error or information about the data.

The PCI MPQP device handler uses a fixed length buffer for transmitting and receiving data. The
maximum supported buffer size is 4096 bytes.

The tsread entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Note: The PCI MPQP device handler uses fixed length buffers for transmitting and receiving data. The
RX_BUF_LEN field in the /usr/include/sys/mpqp.h file defines the maximum buffer size.

read_extension Parameter Block

For the tsread entry points, the ext parameter may point to a read_extension structure. This structure is
found in the /usr/include/sys/comio.h file and contains this field:

Technical Reference: Kernel and Subsystems, Volume 2 91

Item Description

status Specifies the status of the port. There are six possible values for the returned status parameter. The following status
values accompany a data buffer:

CIO_OK
Indicates that the operation was successful.

MP_BUF_OVERFLOW
Indicates receive buffer overflow. For the MP_BUF_OVERFLOW value, the data that was received before
the buffer overflowed is returned with the overflow status.

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a
leased-circuit public data network is not supported.

Parameters

Item Description

devno Specifies the major and minor device numbers.

uiop Pointer to an @ structure that provides variables to control the data transfer operation. The uio structure is defined in
the fusr/include/sys/uio.h file.

chan Specifies the channel number assigned by the@ routine.

ext Specifies the address of the read_extension structure. If the ext parameter is null, then no parameter block is specified.

Execution Environment

The tsread entry point can be called from the [process environment| only.

Return Values

The tsread entry point returns the number of bytes read. In addition, this entry point may return one of
the following:

Item Description

ECHRNG Indicates the channel number was out of range.
ENXIO Indicates the port is not in the proper state for a read.
EINTR Indicates the sleep was interrupted by a signal.
EINVAL Indicates the read was called by a kernel process.

Related reference:
[‘tswrite Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 93|
Related information:

ead or readx

Communications Physical Device Handler Model Overview|

tsselect Multiprotocol (PClI MPQP) Device Handler Entry Point
Purpose

Provides the means for determining whether specified events have occurred on the IBM ARTIC960Hx
PCI (PCI MPQP) device.

Syntax

#include <sys/devices.h>
#include <sys/comio.h>

int tsselect (devno, events, reventp, chan)

92 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

dev_t devno;
ushort events;
ushort *reventp;
int chan;

Description
Note: Only user-mode processes can use the tsselect entry point.

The tsselect entry point provides the means for determining if specified events have occurred on the PCI
MPQP device. This entry point is supported similar to the ddselect communications entry point.

The tsselect entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Parameters

Item Description

devno Specifies major and minor device numbers.

events Identifies the events to check.

reventp Returns events pointer. This parameter is passed by reference and is used by the tsselect entry point to indicate

which of the selected events are true at the time of the call.
chan Specifies the channel number assigned by the tsmpx entry point.

Execution Environment
The tsselect entry point can be called from the process environment only.
Return Values

The common return codes for the tsselect entry point are the following:

Item Description

ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates the select operation was called from a kernel process.
ECHNG Indicates the channel number is too large.

Related reference:

[‘ddselect Communications PDH Entry Point” on page 81|

Related information:

poll subroutine

belect subroutine|

tswrite Multiprotocol (PCI MPQP) Device Handler Entry Point
Purpose

Provides the means for transmitting data to the IBM ARTIC960Hx PCI (PCI MPQP) device.
Syntax
#include <sys/uio.h>

#include <sys/comio.h>
#include <sys/mpqp.h>

Technical Reference: Kernel and Subsystems, Volume 2 93

int tswrite (devno, uiop, chan, ext)
dev_t devno;

struct uio *uiop;

int chan, ext;

Description

The tswrite entry point provides the means for transmitting data to the PCI MPQP device. The kernel
calls it when a user-mode process issues a subroutine. The tswrite entry point can also be

called in response to an [fpwrite| kernel service.

The PCI MPQP device handler uses a fixed length buffer for transmitting and receiving data. The
maximum supported buffer size is 4096 bytes.

The tswrite entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

tswrite Parameter Block
For the tswrite operation, the ext parameter points to the mp_write_extension structure. This structure is

defined in the /usr/include/sys/comio.h file. The mp_write_extension structure contains the following
fields:

Item Description
status Identifies the status of the port. The possible values for the returned status field are:
CIO_OK

Indicates the operation was successful.

CIO_TX_FULL
Indicates unable to queue any more transmit requests.

CIO_HARD_FAIL
Indicates hardware failure.

CIO_INV_BFER
Indicates invalid buffer (length equals 0, invalid address).

CIO_NOT_STARTED
Indicates device not yet started.
write_id Contains a user-supplied correlator. The write_id field is returned to the caller by the operation
if the [CIO_ACK_TX_DONE] flag is selected in the asynchronous status block.

For a kernel user, this field is returned to the caller with the stat_fn function which was provided at open time.

In addition to the common parameters, the mp_write_extension structure contains a field for selecting
Transparent mode for [binary synchronous communication| (BSC). Any nonzero value for this field causes
Transparent mode to be selected. Selecting Transparent mode causes the adapter to insert data link escape
(DLE) characters before all appropriate control characters. Text sent in Transparent mode is unaltered.
Transparent mode is normally used for sending binary files.

Note: If an mp_write_extension structure is not supplied, Transparent mode can be implemented by the
kernel-mode process by imbedding the appropriate DLE sequences in the data buffer.

Parameters

94 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

devno Specifies major and minor device numbers.

uiop Points to a structure that provides variables to control the data transfer operation. The uio structure is defined in
the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the entry point.

ext Specifies the address of the mp_write_extension parameter block. If the ext parameter is null, no parameter block is
specified.

Execution Environment

The tswrite entry point can be called from the [process environment| only.

Return Values

The common return codes for the tswrite entry point are the following;:

Item Description

EAGAIN Indicates that the number of direct memory accesses (DMAs) has reached the maximum allowed or that the device
handler cannot get memory for internal control structures.
Note: The PCI MPQP device handler does not currently support the function. If a value of EAGAIN is
returned by an tswrite entry point, the application is responsible for retrying the write.

ECHRNG Indicates that the channel number is too high.

EINVAL Indicates one of the following;:

* The port is not set up properly.
* The PCI MPQP device handler could not set up structures for the write.

* The port is not valid.
ENOMEM Indicates that no mbuf structure or clusters are available or the total data length is more than a page.
ENXIO Indicates one of the following;:

* The port has not been successfully started.
* An invalid adapter number was passed.

* The specified channel number is illegal.

Related reference:

[‘tsread Multiprotocol (PCI MPQP) Device Handler Entry Point” on page 90|
['CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler Operation” on page 59|
Related information:

rite or write

Binary Synchronous Communication (BSC) with the MPQP Adapter|

LFT Subsystem

dd close LFT Device Driver Interface
Purpose

Deallocates device driver resources and can be used with the dd_open low function terminal (LFT)
device driver interface to ensure exclusive access to a device.

Syntax

int dd_close (DevNo, Chan, Ext) dev_t [DevNo} long [Chan

Technical Reference: Kernel and Subsystems, Volume 2 95

Description

The dd_close LFT device driver interface deallocates resources used by a device driver and can be used
in conjunction with the dd_open LFT device driver to ensure exclusive access to a device.

Parameters

Item Description

DevNo Specifies the major and minor device numbers.

Chan Specifies the channel number (multiplexed devices only).

Ext Specifies the extension parameter for device-dependent functions.

Return Values

If successful, the dd_close device driver interface returns a value of 0. Otherwise, a value of 1 is returned
and the errno global variable is set to indicate the error.

dd _ioctl LFT Device Driver Interface
Purpose

Performs device-dependent processing.
Syntax

int dd_ioctl (DevNo, Cmd, Arg, DevFlag, Chan, Ext)
dev_t [DevNof;
Tong , Wrgl, pevFlagl, |Chanl, ;

Description

The dd_ioctl low function terminal (LFT) device driver interface performs device-dependent processing
not related to reading from and writing to the device.

Parameters

Item Description

DevNo Specifies the major and minor device numbers.

Cmd Specifies the device-dependent command.

Arg Specifies the command-dependent parameter block address.
DevFlag Specifies the flag indicating the type of operation.

Chan Specifies the channel number (multiplexed devices only).

Ext Specifies the extension parameter for device-dependent functions.

Return Values

If successful, the dd_ioctl device driver interface returns a value of 0. Otherwise, a value of 1 is returned
and the errno global variable is set to indicate the error.

dd_open LFT Device Driver Interface
Purpose

Allocates device driver resources and ensures exclusive access to a device.

96 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Syntax

int dd_open (DevNo, Flag, Chan, Ext)
dev_t [Devidl;
long [Flag, [char], [Extl

Description

The dd_open low function terminal (LFT) device driver interface allocates resources needed by a device
driver and can be used to ensure exclusive access to a device if necessary.

Parameters

Item Description

DevNo Specifies the major and minor device numbers.

Flag Specifies the open file control flags.

Chan Specifies the channel number (multiplexed devices only).

Ext Specifies the extension parameter for device-dependent functions.

Return Values

If successful, the dd_open device driver interface returns a value of 0. Otherwise, a value of 1 is returned
and the errno global variable is set to indicate the error.

DIALREGRING (Register Input Ring)
Purpose

Registers input ring.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, DIALREGRING, Arg)
int FileDescriptor;
struct uregring *Arg;

Description

The DIALREGRING ioctl subroutine call specifies the address of the input ring and the value to be used
as the source identifier when enqueuing reports on the ring. A subsequent DIALREGRING ioctl
subroutine call replaces the input ring supplied earlier. Specify a null input ring pointer to disable dial
input.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the dials.
Arg Specifies the address of the uregring structure.

DIALRFLUSH (Flush Input Ring)
Purpose

Flushes input ring.

Technical Reference: Kernel and Subsystems, Volume 2 97

Syntax
#include <sys/inputdd.h>
int ioctl (FileDescriptor, DIALRFLUSH, Arg)

int FileDescriptor;

Description

The DIALRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail
pointers with the starting address of the reporting area. The overflow flag is then cleared.

Parameters
Item Description
FileDescriptor Specifies the open file descriptor for the dials.

DIALSETGRAND (Set Dial Granularity)
Purpose

Sets dial granularity.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, DIALSETGRAND, Arg)
int FileDescriptor;
struct dialsetgrand *Arg;

Description

The DIALSETGRAND ioctl subroutine call sets the number of events reported per 360 degree revolution,
specified as a power of two on a per-dial basis. The dialsetgrand structure contains a bit mask that
indicates which dial or dials should be modified. Valid granularity is any number between 2 and 8§,
inclusive. The default granularity is 7 (128 reports per rotation).

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the dials.

Arg Specifies the address of the dialsetgrand structure.

GIOQUERYID (Query Attached Devices)
Purpose

Queries attached devices.

Syntax
#include <sys/inputdd.h>

int ioct1(FileDescriptor, GIOQUERYID, Arg)
int FileDescriptor;
struct gioqueryid *Arg;

98 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Description

The GIOQUERYID ioctl subroutine call returns the identifier of devices connected to the GIO adapter.

The ID of the device connected to port 0 is returned in the first field of the structure, and the device
connected to port 1 is returned in the second field of the structure. Valid device IDs are as follows:

#define giolpfkid 0x01 /* LPFK device ID */
#define giodialsid 0x02 /* dials device ID */

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the gio adapter.
Arg Specifies the address of a gioqueryid structure.

Input Device Driver ioctl Operations

The keyboard special file supports the ioctl operations listed below. Because configuration information is

shared between channels, certain ioctl operations such as the KSTRATE (set typematic rate) ioctl
operation affect both channels regardless of which channel the request is received from.

Operation Description

JOCINFO| Returns devinfo structure.
@ Queries keyboard device identifier.
KS—QUERYSV Queries keyboard service vector.
KSREGRING] Registers input ring.

KSRFLUSH| Flushes input ring.

@ [lluminates and darkens LEDs on the keyboard.
@ Configures the keyboard clicker.
@ Sets alarm volume.

KSALAR@] Sounds alarm.

KSTRATE Sets typematic rate.

@ Sets typematic delay.

@ Enables/disables keep alive poll.
KSKAPACKI Acknowledges keep alive poll.
@ Enables/disables diagnostics mode.
@ Queries mouse device identifier.
@ Registers input ring.

@ Flushes input ring.
@ Sets mouse reporting threshold.
@ Sets mouse resolution.

@ Sets mouse scale factor.
@ Sets mouse sample rate.
@ Queries tablet device identifier.
m Registers input ring.

TABRFLUSH Flushes input ring.

TABCONVERSIO@I Sets tablet conversion mode.
TABRESOLUTIONI Sets tablet resolution.
TABORIGINl Sets tablet origin.

TABSAMPLERATE Sets tablet sample rate.
TABDEADZONE] Sets tablet dead zone.
GIOQUERYIDI Queries attached devices.

@ Registers input ring.
m Flushes input ring.
@ Sets dial granularity.
@ Registers input ring.
@ Flushes input ring.

LPFKLIGHT] Sets/resets key lights.

Technical Reference: Kernel and Subsystems, Volume 2

99

The following ioctl operations are ignored (return immediately with a good return code) when sent to a
channel which is not active, and return an EBUSY error code if the keyboard is in diagnostics mode:

KSLED
KSCFGCLICK
KSVOLUME
KSALARM
KSTRATE
KSTDELAY

IOCINFO (Return devinfo Structure) ioctl Input Device Driver
Purpose

Returns devinfo structure.

Syntax
#include <sys/devinfo.h>

int ioctl (FileDescriptor, IOCINFO, Arg)
int FileDescriptor;
struct devinfo *Arg;

Description

The IOCINFO ioctl operation returns a devinfo structure, defined in the /usr/include/sys/devinfo.h file,
that describes the device. Only the first two fields are valid for this device. The values are as follows:

char devtype; /* device type TBD */

char flags; /* open flags (see sys/device.h) */
Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the device.
Arg Specifies the address of the devinfo structure.

KSALARM (Sound Alarm)
Purpose

Sounds alarm.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSALARM, Arg)
int |FiZeDescriptor|;
struct ksalarm * [Argj;

Description

The KSALARM ioctl subroutine call causes the native keyboard speaker to produce a sound using the
specified frequency and duration. A valid frequency is 32Hz-12KHz inclusive. A valid duration is a
number between 0 and 32767. Duration is specified in units of 1/128 of a second, with a maximum of 4.3
minutes.

100 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

If the alarm is already on, the request is queued and processed after the previous alarm request has
completed. If the queue is full, an EBUSY error code is returned. The KSALARM function returns
immediately if the alarm volume is off (KSAVOLOFF) or a duration of 0 is specified.

When keyboard diagnostics are enabled, the KSALARM ioctl subroutine call fails and sets the errno
global variable to a value of EBUSY.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies the address of the KSALARM structure.

Related reference:

['KSVOLUME (Set Alarm Volume) ioctl” on page 108|
Related information:

thhwkbd subroutine]

KSCFGCLICK (Enable/Disable Keyboard Clicker)
Purpose

Configures the keyboard clicker.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSCFGCLICK, Arg)
int |FileDescriptory;
wint * [Argl;

Description

The KSCFGCLICK ioctl subroutine call enables and disables the keyboard clicker and sets the clicker's
volume. When the keyboard clicker is enabled, the native keyboard speaker generates a sound when a
key is pressed.

The KSCFGCLICK ioctl subroutine call is supported even when the workstation does not provide a
keyboard clicker.

When keyboard diagnostics are enabled, the KSCFGCLICK ioctl subroutine call fails and set the errno
global variable to a value of EBUSY.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies an address of an integer that contains one of the following values:

#define KSCLICKOFF 0 /*Turns off clicker.*/

#define KSCLICKLOW 1 /*Sets clicker to Tow volume.x/
#define KSCLICKMED 2 /*Sets clicker to medium volume.*/
#define KSCLICKHI 3 /xSets clicker to high volume.x/

Technical Reference: Kernel and Subsystems, Volume 2 101

KSDIAGMODE (Enable/Disable Diagnostics Mode)
Purpose

Enables/disables diagnostics mode.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSDIAGMODE, Arg)

uint * ;
Description

The KSDIAGMODE ioctl subroutine call enables and disables keyboard diagnostics mode. When
diagnostics mode is enabled, the keyboard driver undefines the keyboard driver interrupt handler and
stops processing keyboard events. When diagnostics mode is disabled, the keyboard driver redefines its
interrupt handler, then resets and reconfigures the keyboard.

When keyboard diagnostics mode is enabled, the following keyboard ioctl subroutine calls fail and set the
errno global variable to a value of EBUSY:

 KSLED

* KSCFGCLICK
* KSVOLUME
* KSALARM

* KSTRATE

*+ KSTDELAY

Parameters

Item Description
FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies the address of an integer that is equal to one of the following values:

#define KSDDISABLE 0 /*Disables diagnostics mode.x/
#define KSDENABLE 1 /+Enables diagnostics mode.*/

Return Values

The KSDIAGMODE ioctl subroutine call returns a value of -1 and sets the errno global variable to a
value of EINVAL when called by a kernel extension. The KSDIAGMODE ioctl subroutine call sets the
errno global variable to a value of EBUSY on the RS1/RS2 platform when the tablet special file is open.

KSKAP (Enable/Disable Keep Alive Poll)
Purpose

Enables/disables keep alive poll.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSKAP, Arg)

int |FileDescriptory;

uchar * [rgl;

102 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Description

The KSKAP ioctl subroutine call enables and disables the keep alive poll. The KSKAP ioctl subroutine
call defines the key sequence that the operator can use to kill the process that owns the keyboard. The
Arg parameter must point to an array of characters or be equal to NULL. When the Arg parameter points
to an array of characters, the first character specifies the number of keys in the sequence. The remainder
of the characters in the array define the sequence. Each key of the sequence consists of a position code
followed by a modifier flag. The modifier flags can be any combination ok KBDUXSHIFT, KBUXCTRL,
and KBDUXALT. If the Arg parameter is equal to NULL, the keep alive poll is disabled. A sequence key
count of 0 is invalid.

When the keep alive poll is enabled, a SIGKAP signal is sent to the user process thatregistered the input
ring associated with the active channel when the operator presses and holds down the keys in the order
specified by the KSKAP ioctl subroutine call. The process must respond with a ioctl
subroutine call within 30 seconds or the keyboard driver issues a SIGKILL signal to terminate the

process.

The keep alive poll is controlled on a per-channel basis and defaults to disabled. The KSKAP ioctl
subroutine call is not available when the channel is owned by a kernel extension.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of an array of characters or is equal to NULL.

Related reference:
['KSKAPACK (Acknowledge Keep Alive Poll)”|

KSKAPACK (Acknowledge Keep Alive Poll)
Purpose

Acknowledges SIGKAP signals.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSKAPACK, NULL)

int |FileDescriptoryj;

Description
The KSKAPACK ioctl subroutine call acknowledges a SIGKAP (keep alive poll) signal.

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 103

Item Description
FileDescriptor Specifies the open file descriptor for the keyboard.

Related reference:
['KSKAP (Enable/Disable Keep Alive Poll)” on page 102

KSLED (llluminate/Darken Keyboard LEDS)
Purpose

[luminates and darkens LEDs on the keyboard.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSLED, Arg)

int |FileDescriptor|, * ;
Description

The KSLED ioctl subroutine call illuminates and darkens the LEDs on the natively attached keyboard.
The Arg parameter points to a bit mask (one bit per LED) that specifies the state of each keyboard LED.

The current state of the keyboard LEDs is returned in the input ring event report for the keyboard.

When keyboard diagnostics are enabled, the KSLED ioctl operation fails and sets the errno global
variable to a value of EBUSY.

Parameters
Item Description
Arg Specifies the address of the LED bit mask. The bit mask can be any combination of the following
values ORed together:
#define KSCROLLLOCK 0x01 /*I1Tuminates ScrolllLock LED.*/
#define KSNUMLOCK 0x02 /+IT1Tuminates NumLock LED.*/
#define KSCAPLOCK 0x04 /*I1luminates CapsLock LED.*/
FileDescriptor Specifies the open file descriptor for the keyboard.

KSQUERYID (Query Keyboard Device Identifier)
Purpose

Queries keyboard device identifier.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSQUERYID, Arg)
int FileDescriptor;
uint *Arg;

Description

The KSQUERYID ioctl subroutine call returns the keyboard device identifier in the location pointed to by
the calling argument. Valid keyboard identifiers are:

104 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

#define KS101 /0x01 /* 101 keyboard =*/
#define KS102 /0x02 /* 102 keyboard =
#define KS106 /0x03 /* 106 keyboard */

#define KS101 Ox01 /* */

#define KS102 0x02 /* *

#define KS103 0x03 /* */

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of the location to return the keyboard identifier.

KSQUERYSV (Query Keyboard Service Vector)
Purpose

Queries keyboard service vector.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSQUERYSV, Arg)
int FileDescriptor;
caddr_t *Arg;

Description

The KSQUERYSYV ioctl subroutine call returns the address of the keyboard service vector via the calling
argument. The keyboard service vector is provided so that certain services may be invoked by kernel
extensions without the occurrence of sleeps or page faults. The services provided by the vector must not

be invoked by a user process.

The following offsets into the vector are defined:

#define KSVALARM 0 /* sound alarm */
#define KSVSAK 1 /% disable/enable secure attention key =*/
#define KSVRFLUSH 2 /x flush input ring */
#define KSVALARM 0 /*...... */
#define KSVSAK 1 /*...... */
#define KSVRFLUSH 2 /*...... */

Service vector routines are invoked using an indirect call as follows:
(*service_vector[service_number]) (dev_t devno, caddr_t arg)

where:

* The service vector is a pointer to the service vector obtained by the KSQVERYSU fp_ioctl subroutine
call.

* The service_number parameter is offset into the service vector.
* The devno parameter is the device number for the keyboard.

* The arg parameter points to a ksalarm structure for alarm requests and an unsigned integer (uint) for
secure attention key (SAK) enable/disable requests. The arg parameter is NULL for flush queue
requests.

A value of zero is returned if the service vector function is successful. Otherwise, an error number

defined in the errno.h file is returned. Alarm requests are ignored if the kernel extension's channel is not
active; enable/disable SAK and queue flush requests are always processed.

Technical Reference: Kernel and Subsystems, Volume 2 105

The KSQUERYSYV ioctl subroutine call returns a value of -1 and sets the errno global variable to a value
of EINVAL when called by a user process.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of the location to return the service vector address.

KSREGRING (Register Input Ring)
Purpose

Registers input ring.
Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSREGRING, Arg)

int |FileDescriptoryj;

caddr_t * JArg);
Description

If the keyboard special file was opened by a process in user mode, the Arg parameter should point to a
uregring structure containing:

* A pointer to an input ring in user memory.
* The value to be used as the source identifier when enqueuing reports on the ring.
* The size of the input ring in bytes.

If the keyboard special file was opened by a process in kernel mode, the Arg parameter should point to a
kregring structure containing:

* A pointer to an input ring in pinned kernel memory.
* The value to be used as the source identifier when enqueuing reports on the ring.

* A pointer to the notification callback routine. The callback is invoked following the occurrence of an
event as specified via the ir_notify field in the input ring structure.

* A pointer to the secure attention key (SAK) callback routine. The callback is invoked following the
occurrence of a SAK (Ctrl x-r) when SAK detection is enabled.

All callbacks execute within the interrupt environment. All fields within the input ring header as defined
by the input ring structure must be properly initialized before the invocation of the ioctl. A subsequent
KSREGRING ioctl subroutine call replaces the input ring supplied earlier. Specify a null input ring
pointer to disable keyboard input.

The input ring acts as a buffer for operator input. Key press and release events are placed on the ring as
they occur, without processing or filtering.

Parameters

106 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description
FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies the address of the uregring or kregring structure.

KSRFLUSH (Flush Input Ring)
Purpose

Flushes input ring.

Syntax
#include <sys/inputdd.h>

int ioctl (|FileDescriptor, KSRFLUSH, NULL)
int FileDescriptors;

Description

The KSRFLUSH ioctl subroutine call flushes the input ring. The KSRFLUSH ioctl subroutine call loads
the starting address of the reporting area into the input ring head and tail pointers, then clears the
overflow flag.

Parameter
Item Description
FileDescriptor Specifies the open file descriptor for the keyboard.

KSTDELAY (Set Typematic Delay)
Purpose

Sets typematic delay.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSTDELAY, Arg)

int |FileDescriptorj;
wint * [Argl;

Description

The KSTDELAY ioctl subroutine call sets the time, specified in milliseconds, that a key must be held
down before it repeats.

When keyboard diagnostics are enabled, the KSTDELAY ioctl subroutine call fails and sets the errno
global variable to a value of EBUSY.

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 107

Item Description

FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of a value representing the typematic delay. The Arg parameter can be one of
the following delay values:

#define KSTDLY250 1 250ms.
#define KSTDLY500 2 500ms.
#define KSTDLY750 3 750ms.
#define KSTDLY1000 4 1000ms.

Note: For the 106-keyboard, the delays are 300, 400, 500, and 600 milliseconds. All delays are +/-
20%.

Related information:
thhwkbd subroutine]

KSTRATE (Set Typematic Rate)
Purpose

Sets typematic rate.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSTRATE, Arg)

int |FileDescriptory;
uint * Argj;

Description
The KSTRATE ioctl subroutine call changes the rate at which a pressed key repeats itself, specified in
number of repeats per second. The minimum rate is 2 repeats per second, and the maximum rate is 30

repeats per second.

When keyboard diagnostics are enabled, the KSTRATE ioctl subroutine call fails and sets the errno global
variable to a value of EBUSY.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of an integer that contains the desired typematic rate.

Related information:
thhwkbd subroutine]

KSVOLUME (Set Alarm Volume) ioctl
Purpose

Sets alarm volume.
Syntax

#include <sys/inputdd.h>int ioctl (FileDescriptor, KSVOLUME, Arg)

int |FileDescriptori;
uint * [Argl;

108 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Description
The KSVOLUME ioctl subroutine call sets the alarm volume.

When keyboard diagnostics are enabled, the KSVOLUME ioctl subroutine call fails and sets the errno
global variable to a value of EBUSY.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies an integer that contains one of the following values:

#define KSAVOLOFF 0 /*Turns off alarm.*/

#define KSAVOLLOW 1 /xSets alarm to low volume.x/
#define KSAVOLMED 2 /*Sets alarm to medium volume*/
#define KSAVOLHI 3 /+Sets alarm to high volume.*/

Ift_dds t Structure

The 1ft_dds_t structure is defined in the 1ft_dds.h file and is defined as 1ft_dds_t by the typedef storage
class specifier. The 1ft_dds_t structure is a common structure that is shared by the Low Function Terminal
(LFT) Configure method and the LFT subsystem.

Most of the Ift_dds_t structure is initialized by the configure method's build_dds routine. This routine
queries the Object Data Manager (ODM) for all LFT-relevant data. After the build_dds routine has
completed its initialization of the I1ft_dds_t structure, the configure method calls the Ift_init routine and
passes it the pointer to the 1ft_dds_t structure. The Ift_init routine then copies the 1ft_dds_t structure
from user space into LFT's own local device-dependent structure (DDS) in kernel space. A pointer to this
local 1ft_dds_t structure is then stored in the anchored LFT DDS.

The 1ft_dds_t structure contains values initialized by LFT, as well as values from the ODM. The values
initialized by LFT are the keyboard file pointer (kbd.fp), the display file pointers (displays[i].fp), and the
vtmstruct structure pointers (displays[i].vtm_ptr).

The 1ft_dds_t structure is defined as follows:
typedef struct {

1ft_dev_t 1ft;
1ft_kbd_t kbd;
int number_of_displays;
int default_disp_index;
char *swkbd_file;
char *font_file_names;
int number_of_fonts;
uint start_fkproc;
1ft_disp_t displays[1];

} 1ft_dds_t;

The 1ft_dds_t structure members are defined as follows:

Structure Member Description
1ft Specifies a structure that contains the device number and logical name of LFT. The 1ft
structure is initialized by the LFT Configure method. The Ift structure is defined as follows:
typedef struct {
dev_t devno;
char devname [NAMESIZE] ;
} 1ft_dev_t;

Technical Reference: Kernel and Subsystems, Volume 2 109

Structure Member
kbd

number_of_displays

default_disp_index

*swkbd_file

*font_file_names

number_of_fonts

start_fkproc

Description

Specifies a structure that contains keyboard-specific information. The kbd structure is
defined as follows:

typedef struct {

dev_t devno;

char devname [NAMESIZE] ;
struct file *fp;

struct diacritic *diac;

uint kbd_type;

Specifies the total number of displays found to be available by LFT's configure method.
This reflects the number of entries in the 1ft_disp_info array.

Specifies an index into the displays array and specifies the display currently in use by LFT.
The default_disp_index member is initialized by the LFT Configure method. The value of
the default_disp_index member is set to -1 if the default_disp attribute is not found in the
ODM. LFT provides an ioctl call that allows the value of the default_disp_index member
to be changed after LFT has been initialized.

Specifies a pointer to the software-keyboard file name. The LFT Configure method allocates
space for the software-keyboard file name. LFT copies the software-keyboard file name into
kernel space, opens the file, and reads the software-keyboard information into kernel space.
Specifies a pointer to the names of the font files. The LFT Configure method allocates space
for the font file names. LFT copies the font file names into kernel space, opens each of the
font files, and reads the font information into kernel space. The space allocated in the
kernel for holding the font file names is then released.

Specifies the number of fonts. The number_of_fonts member is initialized by the LFT
Configure method.

Specifies a Boolean flag. This flag is set to True if the LFT Configure method finds an
fkproc attribute in the ODM for any of the displays associated with LFT. LFT then calls the
font server if the flag was set to True.

110 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Structure Member Description

displays|[1] Specifies an array, the size of which is determined by the number of available displays
found during the configuration process. The displays[1] structure is defined as follows:

typedef struct {

dev_t devno;

char devname [NAMESIZE] ;
int font_index;

struct file *fp;

ushort fp_valid:

ushort flags;

struct vtmstruct *vtm_ptr;

} 1ft_disp_t;

This is an array of 1ft_disp_t structures, one for each available display. Each structure is
tied to a display that has been attached to LFT by the LFT Configure method. The LFT
Configure method initializes the device number, device name, and default font index
members for each structure associated with an available display. LFT then initializes each
vtmstruct structure and *vtm_ptr file pointer associated with a display. The
number_of_displays member of the 1ft_dds_t structure defines how many of the 1ft_disp_t
structures are valid. The 1ft_disp_t structure members are defined as follows:

devno Specifies the device number of the display adapter. The LFT Configure method
initializes this member.

devname{NAMESIZE]
Specifies the logical name of the adapter. The LFT Configure method initializes
this member.

font_index
Specifies an integer which contains the index of the default font to be used by
the associated adapter. The LFT Configure method initializes this member.

*fp Specifies a pointer to an integer which specifies the file pointer of the opened
display adapter. The *fp pointer is used when the display needs to be closed.
LFT initializes this member.

fp_valid Specifies a boolean flag that is set to True if LFT can write to this display. LFT
initializes this member.

flags Specifies state flags. Only the APP_IS_DIAG flag is currently used.

*vtm_ptr
Specifies a pointer to a structure of type vtmstruct. The *vtm_ptr structure
pointer is used in all virtual device driver (VDD) calls to the display device
driver. LFT allocates and initializes the vtmstruct structure.

Related reference:
[‘1ft_t Structure”]
['vtmstruct Structure” on page 127|

[‘phys_displays Structure” on page 117|

Ift_t Structure

The 1ft_t structure is defined in the 1ft.h file. The 1ft_t structure is defined as 1ft_t with the typedef
storage class specifier. The global variable of type 1ft_t is declared within the Low Function Terminal
(LFT) subsystem. A pointer to the 1ft_t structure is stored in the devsw structure in the LFT device-switch
table entry. The 1ft_t structure is defined as follows:

typedef struct 1ft {

1ft_dds_t *dds_ptr;

uint initialized;
uint open_count;
unit default_cursor;
struct font_data *fonts;
1ft_swkbd_t *swkbd
1ft_fkp_t 1ft_fkp;
strift_ptr_t strift;

}1ft_t, *1ft_ptr_t;

Technical Reference: Kernel and Subsystems, Volume 2 111

The 1ft_t structure members are defined as follows:

Structure Member Description

dds_ptr Specifies a pointer to the device-dependent structure (DDS). This pointer is initialized by the 1ft_init
routine after the DDS has been allocated.

initialized Specifies a Boolean flag indicating whether LFT is fully initialized.

open_count Specifies a count of the current number of opens to LFT. When the open_count member is
decremented to 0, LFT is unconfigured.

default_cursor Serves as a place holder for a default cursor pointer.

fonts Specifies a pointer to all of the font information.

swkbd Specifies a pointer to the software keyboard information.

1ft_fkp Contains font kernel process (fkproc attribute) information.

strlft Specifies streams-specific information.

Related reference:
[lft_dds_t Structure” on page 109|
['vtmstruct Structure” on page 127]

[‘phys_displays Structure” on page 117|

LPFKLIGHT (Set/Reset Key Lights)
Purpose

Sets/resets key lights.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, LPFKLIGHT, Arg)
int FileDescriptor;
ulong *Arg;

Description
The LPFKLIGHT ioctl subroutine call illuminates and darkens lights associated with keys in the LPFK

array. The Arg parameter points to a bit mask (one bit per key) that indicates the state (1 = on, 0 = off)
of the key's light.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor.

Arg Specifies the address of a bit mask (one bit per key) that indicates the state of the key lights (0 = off,

1 =on).

LPFKREGRING (Register Input Ring)
Purpose

Registers input ring.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, LPFKREGRING, Arg)
int FileDescriptors;
struct uregring *Arg;

112 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Description

The LPFKREGRING ioctl subroutine call specifies the address of the input ring and the value to be used
as the source identifier when enqueuing reports on the ring. A subsequent LPFKREGRING ioctl
subroutine call replaces the input ring supplied earlier. Specify a null input ring pointer to disable LPFK
input.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor.

Arg Specifies the address of the uregring structure.

LPFKRFLUSH (Flush Input Ring)
Purpose

Flushes input ring.

Syntax
#include <sys/inputdd.h>
int ioctl (FileDescriptor, LPFKRFLUSH, NULL)

int FileDescriptor;

Description

The LPFKRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail
pointers with the starting address of the reporting area. The overflow flag is then cleared.

Parameters
Item Description
FileDescriptor Specifies the open file descriptor.

MQUERYID (Query Mouse Device Identifier)
Purpose

Queries mouse device identifier.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, MQUERYID, Arg)
int FileDescriptor;
unit *Arg;

Description
The MQUERYID ioctl subroutine call returns the identifier of the natively connected mouse.

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 113

Item Description

FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of the location to return the mouse identifier. The mouse identifier returned in
the Arg parameter is:
#define MOUSE3B 0x01 [eoiiiiinn */

#define MOUSE2B 0x02 /%2 Button Mousex/

MREGRING (Register Input Ring)
Purpose

Registers input ring.
Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, MREGRING, Arg) int FileDescriptor; struct uregring
*Arg;

Description
The MREGRING ioctl subroutine call specifies the address of the input ring and the value to be used as

the source identifier when enqueuing reports on the ring. A subsequent MREGRING ioctl subroutine call
replaces the input ring supplied earlier. Specify a null input ring pointer to disable mouse input.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the mouse.
Arg Specifies the address of an URERING structure.

MREGRINGEXT (Register Extended Input Ring)
Purpose

Registers extended input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, MREGRINGEXT, arg);
int FileDescriptor;

struct uregring *arg;

Description
This function enqueues the extended mouse event reports onto the input ring. Extended reports contain
additional information such as mouse wheel movement. This ioctl operation has the same parameters and

is processed in the same manner as the MREGRING ioctl function.

Parameters

114 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of the UREGRING structure.

MRESOLUTION (Set Mouse Resolution)
Purpose

Sets mouse resolution.

Syntax
#include <sys/inputdd.h>
int ioctl (FileDescriptor, MRESOLUTION, Arg)

int FileDescriptor;
uint *Arg;

Description

The MRESOLUTION ioctl subroutine call sets the value reported when the mouse is moved one
millimeter

Parameters
Item Description
FileDescriptor Specifies the open file descriptor for the mouse.
Arg Specifies the address of an integer where value is one of the following values:
#define MRESI 1 /* minimum */
#define MRES2 2 /% */
#define MRES3 3 /% */
#define MRES4 4 /* maximum */

MRFLUSH (Flush Input Ring)
Purpose

Flushes input ring.

Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, MRFLUSH, NULL) int FileDescriptor;
Description

The MRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail pointers
with the starting address of the reporting area. The overflow flag is then cleared.

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 115

Item Description
FileDescriptor Specifies the open file descriptor for the mouse.

MSAMPLERATE (Set Mouse Sample Rate)
Purpose

Sets mouse sample rate.

Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, MSAMPLERATE, Arg) int FileDescriptor; uint *Arg;
Description

The MSAMPLERATE ioctl subroutine call specifies the maximum number of mouse events that are
reported per second.

The default sample rate is 100 samples per second.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of an integer where value is one of the following values:
#define MSR10 1 /* 10 samples per second */
#define MSR20 2 /* 20 samples per second */
#define MSR40 3 /* 40 samples per second */
#define MSR60 4 /* 60 samples per second */
#define MSR80 5 /* 80 samples per second */
#define MSR100 6 /* 100 samples per second */
#define MSR200 7 /* 200 samples per second */

MSCALE (Set Mouse Scale Factor)
Purpose

Sets mouse scale factor.
Syntax

#include <sys/inputdd.h>

int ioctl

(FileDescriptor, MSCALE, Arg)
int |FileDescriptori;

wint * [Argl;

Description

The MSCALE ioctl subroutine call provides a course/fine tracking response. The reported horizontal and
vertical movement is converted as follows:

116 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Reported Value

Real Value 1:1 Scale 2:1 Scale
0 0 0
1 1 1
2 2 1
3 3 3
4 4 6
5 5 9
N N Nx2

where N >= 6

The default scale factor is 1:1.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of an integer where value is one of the following values:

#define MSCALE1l 1 /* 1:1 scalex/
#define MSCALE21 2 /* 2:1 scalex/

MTHRESHOLD (Set Mouse Reporting Threshold)
Purpose

Sets mouse reporting threshold.

Syntax

#include <sys/inputdd.h> int ioctlFileDescriptor, MTHRESHOLD, Arg) int FileDescriptor; ulong *Arg;
Description

The MTHRESHOLD ioctl subroutine call sets the minimum horizontal or vertical distance (in counts)
that the mouse must be moved before the driver reports an event. The high-order two bytes of the Arg
parameter specify the horizontal threshold and the low-order two bytes specify the vertical threshold. The

minimum threshold is 0, while the maximum threshold is 32767. The default horizontal and vertical
mouse reporting threshold is 22.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the mouse.
Arg Specifies the address of the desired threshold.

phys_displays Structure

Each display driver allocates and initializes a phys_displays structure during configuration. The
phys_displays structure is defined in the /usr/include/sys/display.h file. The display driver stores a
pointer to the phys_displays structure in the display driver's devsw structure, which is then added to the
device switch table. A pointer to the display driver's vtmstruct structure is initialized in the
phys_displays structure when the display driver's vttact routine is called. The phys_displays structure is
defined as follows:

Technical Reference: Kernel and Subsystems, Volume 2 117

struct phys displays { R R R T Ty

struct { /* data to set up interrupt call =/
struct intr intr; /* at init time (i_init) */
Tong intr_args[4]; [x */

} 'interrupt_data; R T T e e Y

struct phys_displays *same_level; /* other interrupts on same level */
struct phys_displays *next; /* ptr to next minor number data */

struct _gscDev *pGSC; /* device struct used by rcm */
dev_t devno; /* Device number of this adapter x/
struct 1ft *]ftanchor;/* 1ft subsystem */

int dds_length; /* length in bytes */

char *odmdds; /* ptr to define device structure */
struct display_info display_info; /* display information =/

uchar disp_devid[4]; /* device information */

/* [1] = 04=display device */
/* [2] = 21=reserved 22=reserved =*/

/* 25=reserved 27=reserved */
/* 29=reserved */
/* [3] = 00=functional */

/* [4] = 01-04=adapter instance x/

uchar usage; /* number of VT's using real screen =/
/* used to prevent deletion of =*/
/* real screen from configuration */
/* if any VT is using it. */

uchar open_cnt; /* Open flag for display */

uchar display_mode; /* Actual state of the display, */
/* not the virtual terminal: =*/
/* KSR_MODE or MOM_MODE (see vt.h) =/

uchar dma_characteristics; /* Attributes related to DMA ops */

define DMA_SLAVE_DEV 1 /* Device is bus slave, ow. master */

struct font data »default font; /* Pointer to the default font for */
/* this display */

struct vtmstruc *visible_vt; /* Pointer to current vt active or */
/* pseudo-active on THIS display */

/***********************************/

/* DMA Data Areas =/

[k Fkdkkdokkk Kk ok ok ok kh *kkxrhhhhhkkxkh kA /
int dma_chan_id; /* channel id returned from d_init */
struct dma_bufs /* DMA buffer structure */

d_dma_area[MAXDMABUFS]; /% */

/***********************************/

/* Rendering Context Manager Areas */
/***********************************/

rcmProcPtr cur_rcm; /* Pointer to current rcm on this */
/* display */
int num_domains; /* number of domains =*/
int dwa_device; /* supports direct window access */
struct _bmr /* bus memory ranges */
busmemr[MAX_DOMAINS]; /* */
uint io_range; /* Used for MCA adapter only! */

/* low limit in high short =/
/* high 1imit in Tow short =*/
/* to match IOCC register */
uint *free_area; /* area free for usage in a device x/
/* dependent manner by the VDD =/
/* for this real screen. */
#ifndef _ 64BIT KERNEL

#define RCM_ACC_METHOD_1 (oL) /* MCA and SGA bus adapters =/
#endif
#define RCM_ACC_METHOD_2 (1L) /* 60X and PCI bus adapters =/
uint access_method; /* Access method flags */
#ifndef _ 64BIT_KERNEL
#define RCM_RUBY_NO_MAP (1L) /* Tells RCM to not map the space */
#endif
uint access_flags; /* Misc flags (used for Ruby now) */
uint reserved13[13];
int current_dpm_phase; /* current phase of DPM this display is in */

118 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

#define
#define
#define
#define

#ifdef

#else

#endif

#ifdef

#else

/*

full-on=1, standby=2, suspend=3, off=4 */

DPMS_ON ox1
DPMS_STANDBY 0x2
DPMS_SUSPEND 0x3
DPMS_OFF 0x4
int NumAddrRanges;
rcmAddrRange *AddrRange;
int reserved4;
int (*reserved7)(); R R R R R d e s i s sa s T
/* VDD Function Pointers */
/***********************************/
int (xvttpwrphase)(); /* power management phase change =/
/* function. It's device dependent x/
int (*vttact)(); /* Activate the display */
int (*vttcfl)(); /* Move lines around =*/
int (xvttcir)(); /* Clear a box on screen */
int (xvttcpl)(); /* Copy a part of the Tine */
int (*vttdact)(); /* Mark the terminal as being */
/* deactivated */
int (*vttddf)(); /* Device dependent functions =/
/* i.e. Pacing, context support =/
int (*vttdefc)(); /* Change the cursor shape */
int (*vttdma)(); /* Issue dma operation x/
int (*vttdma_setup)(); /* Setup dma */
int (*vttterm)(); /* Free any resources used x/
/* by this VT */
int (*vttinit)(); /* setup new Togical terminal =/
int (*vttmovc)(); /* Move the cursor to the */
/* position indicated */
int (*vttrds)(); /* Read a line segment */
int (*vtttext)(); /* Write a string of chars x/
int (*vttscr)(); /* Scroll text on the VT =*/
int (*vttsetm)(); /* Set mode to KSR or MOM =/
int (*vttstct)(); /* Change color mappings */
int (*reserved5)(); /* Despite its name, this field is */
/* used for kdb debug */
int (*bind_draw_read_windows) ()
/***********************************/
/* RCM Function Pointers =*/
/***********************************/
int (*make_gp) () /* Make a graphics process */
int (*unmake_gp)(); /* Unmake a graphics process =/
int (*state_change)(); /* State change handler invoked */
int (*update_read_win_geom)();
int (xcreate_rcx)(); /* Create a hardware context */
int (*delete_rcx)(); /* Delete a hardware context */
_ 64BIT_KERNEL
int (*reserved21)();
int (*reserved22)();
int (*reserved23)();
int (*reserved24)();
int (*create_rcxp)(); /* Create a context part */
int (xdelete_rcxp)(); /* Delete a context part */
int (*associate_rcxp)(); /* Link a part to a context */
int (xdisassociate_rcxp)(); /* Unlink a part from a context */
int (*create_win_geom)(); /* Create a window on the screen */
int (xdelete_win_geom) (); /* Delete a window on the screen */
int (*update_win_geom)(); /* Update a window on the screen =*/
_ 64BIT_KERNEL
int (*reserved25)();
int (*reserved26)();
int (*reserved27)();
int (xcreate_win_attr)(); /* Create a window on the screen */
int (*delete_win_attr)(); /* Delete a window on the screen */

Technical Reference: Kernel and Subsystems, Volume 2

119

int (*update_win_attr)();
#endif

int (*bind_window) ()

int (*start_switch)();

int (xend_switch)();

#ifdef _ 64BIT_KERNEL
int (*reserved28)();
int (*reserved29)();
int (*reserved30)();
int (*reserved3l)();

#else
int (*check_dev)();
int (*async_mask)();
int (*sync_mask)();
int (xenable_event)();
#endif

int (*create_thread)();
int (*delete_thread)();

/* Update a window on the screen */

/* Update a window bound to rcx */
/* Start a context switch */

/* Note: This routine runs on */
/* the interrupt level %/

/* Finish the context switch */

/* started by start_switch() =/

/* Check if this address beints */
/* to this device. */

/* Note: this is run on interrupt */
/* Tlevel. */

/* Set async events reporting */

/* Set sync events reporting */

/* Turns adapter function on */

/* without reports to application */

/* Make a graphics thread */
/* Delete a graphics thread */

void (xgive_up_time_slice)(); /* Relinquish remaining time */

#ifdef _ 64BIT_KERNEL

int (*reserved32)();
telse

int (*diag_svc)();
#endif

int (*dev_init)();
#ifdef _ 64BIT_KERNEL

int (*reserved33)();
#else

int (*dev_term)();
#endif

#ifdef _ 64BIT_KERNEL
int (xreserved34)();
#else
int (*pinned_font_ready)
#endif
int (*vttddf_fast)();
ushort bus_type;
#ifndef 64BIT_KERNEL

define DISP_BUS_MCA
define DISP_BUS_SGA
define DISP_BUS_PPC
define DISP_PLANAR
#endif

define DISP_BUS_PCI

ushort flags;

/* Diagnostics Services (DMA) */

/* Device dep. initialization %/

/* Device dep. clean up */
/***********************************/

/* Font Support Function Pointers */
/***********************************/

0

/* fast ddf functions =/
/* indicates what type of bus */

0x8000/* Microchannel */
0x4000/* currently not used =/
0x2000/* processor bus */
0x0800/* planar registers */

0x1000/* PCI bus =/

/* physical display flags */

define GS_DD_DOES_AS_ATT(1L << 0)/* no as_att() by RCM =/

/* not currently used */

define GS_BUS_AUTH_CONTROL(1L << 1)/* Request bus access ctrl =/
define GS_HAS_INTERRUPT_HANDLER (1L << 2)/+ 1 after i_init() */
/= 0 after i_clear() »/
/* not currently used */
define GS_DD_SUPPORTS MP (1L << 3)

120 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

uint reservedl1[5]; /* not used =/

int ear; /* image for EAR reg (xferdata) if !0 */

uint spares[18]; /* not used - for future development */
}s

Related reference:

['1ft_t Structure” on page 111
[‘1ft_dds_t Structure” on page 109|

[‘'vtmstruct Structure” on page 127]

TABCONVERSION (Set Tablet Conversion Mode)
Purpose

Sets tablet conversion mode.

Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, TABCONVERSION, Arg) int FileDescriptor; uint *Arg;
Description

The TABCONVERSION ioctl subroutine call specifies whether the value specified by the
TABRESOLUTION ioctl subroutine call are in English units (inches) or metric units (centimeters).

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of an integer where value is one of the following values:

#define TABINCH 0
/* report coordinates in inches
*/
#define TABCM 1
/* report coordinates in centimeters */

Related reference:
['TABRESOLUTION (Set Tablet Resolution)” on page 123|

TABDEADZONE (Set Tablet Dead Zone)
Purpose

Sets tablet dead zone.

Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, TABDEADZONE, Arg) int FileDescriptor; ulong *Arg;
Description

The TABDEADZONE ioctl subroutine call specifies the edges of a zone on the tablet. When the puck is
outside of this zone, motion events are not reported (button events are still reported). The high-order two
bytes of the Arg parameter specify the horizontal edge and the low-order two bytes of the Arg parameter
specify the vertical edge of the zone. If the tablet is configured with a center origin, the negative of the
horizontal value becomes the bottom edge of the zone and the horizontal value becomes the top edge of
the zone square. The left and right edges of the zone are generated from the vertical specification in a
similar fashion. The minimum horizontal or vertical specification is 0 and the maximum horizontal or
vertical specification is 32767.

Technical Reference: Kernel and Subsystems, Volume 2 121

Parameters

Item Description
FileDescriptor Specifies the open file descriptor for the tablet.
Arg Specifies the address of the dead zone specification.

TABORIGIN (Set Tablet Origin)
Purpose

Sets tablet origin.

Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, TABORIGIN,Arg) int FileDescriptor; uint *Arg;
Description

The TABORIGIN ioctl subroutine call sets the origin of the tablet to either the lower left-hand corner or
the center of the tablet. The default origin is the lower left-hand corner.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of an integer whose value is one of the following values:
#define TABORGLL 0 /* origin is lower left corner */
#define TABORGC 1 /* origin is center */

TABQUERYID (Query Tablet Device Identifier) ioctl Tablet Device Driver
Operation
Purpose

Queries tablet device identifier.
Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, TABQUERYID, Arg) int FileDescriptor; struct
tabqueryid *Arg;

Description

The TABQUERYID ioctl subroutine call returns the identifier of the natively connected tablet and its
input device. The first field in the returned structure specifies the model number and may be:
#define TAB6093M11 0x01 /* 6093 model 11

or equivalent */
#define TAB6093M12 0x02 /* 6093 model 12 or equivalent =/

The second field in the structure indicates what type of input device is connected to the tablet and may
be one of the following;:

#define TABUNKNOWN ©0x00 /* unknown input

device */

#define TABSTYLUS 0x01 /* stylus */

#define TABPUCK 0x02 /* puck x/

122 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Parameters

Item Description
FileDescriptor Specifies the open file descriptor for the tablet.
Arg Specifies the address of a TABQUERYID structure.

TABREGRING (Register Input Ring)
Purpose

Registers input ring.
Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, TABREGRING, Arg) int FileDescriptor; struct uregring
*Arg;

Description

The TABREGRING ioctl subroutine call specifies the address of the input ring and the value to be used
as the source identifier when enqueuing reports on the ring. A subsequent TABREGRING ioctl
subroutine call replaces the input ring supplied earlier. Specify a null input ring pointer to disable tablet
input.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for the tablet.
Arg Specifies the address of a uregring structure.

TABRESOLUTION (Set Tablet Resolution)
Purpose

Sets tablet resolution.

Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, TABRESOLUTION, Arg) int FileDescriptor; uint *Arg;
Description

The TABRESOLUTION ioctl subroutine call specifies the resolution of the tablet in lines per inch. Specify
the resolution in lines per inch unless changed by the TABCONVERSION ioctl subroutine call. The
minimum resolution is 0 and the maximum resolution is 1279 lines per inch or 580 lines per centimeter.

The default resolution is 500 lines per inch.

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 123

Item Description
FileDescriptor Specifies the open file descriptor for the tablet.
Arg Specifies the address of an integer that contains the desired resoultion.

Related reference:
['TABCONVERSION (Set Tablet Conversion Mode)” on page 121

TABRFLUSH (Flush Input Ring)
Purpose

Flushes input ring.

Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, TABRFLUSH, NULL) int FileDescriptor;
Description

The TABRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail
pointers with the starting address of the reporting area. The overflow flag is then cleared.

Parameters
Item Description
FileDescriptor Specifies the open file descriptor for the tablet.

TABSAMPLERATE (Set Tablet Sample Rate) ioctl Tablet Device Driver
Operation
Purpose

Sets tablet sample rate.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABSAMPLERATE, Arg)
int FileDescriptor;
uint *Arg;

Description
The TABSAMPLERATE ioctl subroutine call specifies the number of times per second that the puck
location and button status are sampled. The minimum rate is 0 and the maximum rate is 100. The default

rate is one sample per second.

Parameters

124 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description
FileDescriptor Specifies the open file descriptor for the tablet.
Arg Specifies the address of an integer that contains the desired sample rate.

Virtual Display Driver (VDD) Interface (Iftvi)
Purpose

Provides a communication path from the LFT driver to the lower-level display adapter drivers.

Syntax
static int (VP, Down)

struct vtmstruc *VP;
struct down_stream *Down;

Description

The Iftvi interface provides a communication path from the LFT driver to the lower-level display adapter
drivers. an array of vtmstruc structures with one entry for each configured display adapter is maintained
by the Iftvi interface.

LFT cannot use the normal driver entry points, since the display drivers cannot sleep except in their own
open routines. Therefore, all virtual display driver (VDD) functions are called via function pointers in the
phys_display structure.

The Iftvi interface includes a collection of functions called by the vtmupd and vtmupd3 subroutines.
These functions update information such as cursor position and the tab stop map by calling the
appropriate display driver function.

Parameters

Item Description

Function Specifies one of the functions provided by the 1ftvi interface. The following functions are provided:
cursor_up

Moves the cursor up the number of rows specified in the escape sequence.

cursor_down
Moves the cursor down the number of rows specified in the escape sequence.

cursor_left
Moves the cursor left the number of columns specified in the escape sequence.

cursor_right
Moves the cursor right the number of columns specified in the escape sequence.

cursor_absolute
Moves the cursor to the row and column coordinates specified in the escape sequence.

delete_char
Deletes data from the cursor X position. The number of characters to be deleted is specified in the
escape sequence.

delete_line
Deletes the number of lines specified in the escape sequence from the cursor line. Any data following
the deleted lines is scrolled up.

erase_l Erases a line. The escape sequence specifies whether to delete to the end of the line, from the start of
the line, or all of the line. This routine calls the clear_rectangle function to perform the erasure.

erase_display
Clears all or part of the screen as specified in the escape sequence.

Technical Reference: Kernel and Subsystems, Volume 2 125

Item

Description

screen_updat
Processes a graphics string. Chops the output string into lines if necessary and calls the vtt* routines in
the display driver.

copy_part
Calls the VDD that services the terminal to copy part of a line to the presentation space.

clear_rect
Calls the VDD that services the terminal to clear a rectangle.

sound_beep
Calls the sound driver to emit a beep.

set_attributes
Sets the graphics rendition.

update_ds_modes
Sets or resets the data-stream modes.

set_clear_tab
Sets or clears the tabs as specified in the escape sequence. This function operates on either a line or
screen model.

update_ht_stop
Sets or clears horizontal tabs. This function can set or clear the horizontal tabs for one line or the
whole screen.

clear_all_ht
Clears all horizontal tabs on a line.

cursor_back_tab
Moves the cursor to the previous tab stop.

cursor_ht
Places the cursor at the next horizontal tab.

find_prior_tab
Finds the previous tab by examining the terminal's tab array and setting the cursor's X and Y
coordinates to that point. This function takes wrap and autonewline into consideration.

find_next_tab
Finds the next tab by examining the terminal's tab array and setting the cursor's X and Y coordinates
to that point. This function takes wrap and autonewline into consideration.

scroll_down
Moves the entire presentation space down the number of lines specified in the escape sequence.

scroll_up
Moves the entire presentation space up the number of lines specified in the escape sequence.

erase_char
Erases the number of characters specified in the escape sequence from the line. If an erase occurs at the
end of a line, the line length is altered.

insert_line
Scrolls the cursored line and all lines following it down the number of lines specified in the escape
sequence.

insert_char
Inserts the number of empty spaces specified in the escape sequence before the character indicated by
the cursor. Characters beginning at the cursor are shifted right. Characters shifted past the right margin
are lost.

upd_cursor
Calls the vttmove function to update the cursor position.

ascii_index
Moves the cursor down one line. If the cursor was already on the last line, all lines are scrolled up one
line.

126 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

vttscr Specifies the scroll entry point.

vtttext Specifies the display graphics characters entry point.

vttclr Specifies the clear rectangle entry point.

vttcpl Specifies the copy line entry point.

vttmove Specifies the move cursor entry point.

vttcfl Specifies the copy full line entry point.

vimstruct Structure

The vtmstruct structure is defined in the vt.h file. The Low Function Terminal (LFT) subsystem does not
support virtual terminals. However, for backward compatibility with current display drivers, the name of
this structure remains the same as in previous releases. The vtmstruct structure contains all of the
device-dependent data needed by LFT for a given display adapter. LFT allocates and initializes each
vtmstruct structure. The number of vtmstruct structures is determined by the number_of_displays
variable stored in the 1ft_dds structure. The vtmstruct structure is defined as follows:

struct vtmstruct {

struct phys_displays *display;

struct vtt_cp_parms
char

off_t

uchar

int

int

struct font_data
int

}s

mparms;
*vttld;

vtid;

vtm_mode;
font_index;
number_of_fonts;
*fonts;
(«fsp_enq) ()

The vtmstruct structure members are defined as follows:

Structure Member
display

mparms

vitld
vtid

vtm_mode

font_index

number_of_fonts

Description

Specifies a pointer to the physical display structure with the display. The *display pointer is
acquired by LFT by passing the display's device number to the devswqry command. The display
device drivers initialize the phys_displays structures.

Specifies a structure that contains a code-point mask for implementing 7- or 8-bit ASCII, the code
base that is added to the code point if the code base is greater than or equal to 0, the attribute
bits, and the cursor position. The x and y cursor coordinates are initialized to 0. The vtt_cp_parms
structure is defined as follows:

struct vtt_cp_parms

{

ulong cp_masks;
long cp_base;
ushort attributes;
struct vtt_cursor cursor;

b

Specifies a pointer to the local data area of the display adapter. The display driver initializes the
*vttld pointer.

Specifies the virtual terminal ID. This ID is no longer used, but is retained for backward
compatibility. LFT initializes the vtid member to 0.

Specifies a flag which indicates the state of the display. LFT initializes the vtm_mode member to
ksr mode, and the vtm_mode member remains unchanged, since using a hot-key to switch
between Keyboard Send-Receive (KSR) and Monitor Mode (MOM) is no longer allowed. The
vtm_mode member is retained only for backward compatibility.

Specifies an index into the font structures for a specific font chosen via a chfont command. LFT
copies this member from the font_index member of the 1ft_disp_t structure.

Specifies the number of fonts. The number_of_fonts member is copied from the 1ft_dds structure
during the initialization of the vtmstruct structure.

Technical Reference: Kernel and Subsystems, Volume 2 127

Structure Member Description
fonts Specifies a pointer to the array of font tables initialized by LFT. The display driver uses this
pointer to acquire its font information.

LFT initializes an array of structures of type font_data from data read in from the font files
specified in the Object Data Manager (ODM). A pointer to this array is then stored in the
vtmstruct structure for each display. The display drivers use this pointer to load the appropriate
font information. The members of the font_data structure are defined as follows:

struct font_data {
ulong font_id;
char font_name[20] ;
char font_weight[8];
char font_slant[8];
char font_page[8];
ulong font_style;
long font_width;
long font_height;
long fxfont_ptr;
ulong font_size;
bs
(*fsq_enq() Specifies a pointer to the LFT function that queues messages to the font server. LFT initializes this
pointer. If a display driver requires the services of the font server, it can queue a message to the
font server using the function pointed to by the (*fsq_enq()) pointer.

Related reference:

[‘Ift_t Structure” on page 111|
[1ft_dds_t Structure” on page 109|
['phys_displays Structure” on page 117|

Printer Subsystems

passthru Subroutine
Purpose

Passes through the input data stream without modification or formats the input data stream without
assistance from the formatter driver.

Library
None (provided by the formatter).

Syntax

#include <piostruct.h>
int passthru ()

Description

The passthru subroutine is invoked by the formatter driver only if the setup subroutine returned a null
pointer. If this is the case, the passthru subroutine is invoked (instead of the lineout subroutine) for one
of the following reasons:

* The input data stream is to be passed through without modification.

* Formatting is done without the help of the formatter driver to handle vertical spacing.

Even if the data is being passed through from input to output without modification, a formatter program
is used to initialize the printer before printing the file and to restore it to a known state afterward.
However, gathering accounting information for an unknown data stream being passed through is
difficult, if not impossible.

128 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

The passthru subroutine can also be used to format the input data stream if no help from the formatter
driver for vertical spacing is needed. For example, if the only formatting to be done is to add a
carrier-return control character to each linefeed control character, the passthru subroutine provides this
simple task. The passthru subroutine can also count line feeds and form feeds to keep track of the page
count. These counts can then be reported to the log_pages status subroutine, which is provided by the
spooler.

Return Values

A return value of 0 indicates a successful operation. If the passthru subroutine detects an error, it uses the
piomsgout subroutine to issue an error message. It then invokes the pioexit subroutine with a value of
PIOEXITBAD. Note that if the passthru subroutine calls the piocmdout subroutine or the piogetstr
subroutine and either of these detects an error, then the subroutine that detects the error automatically
issues its own error message and terminates the print job.

Related reference:

['‘piocmdout Subroutine”|

Related information:

lineout subroutine|
[Adding a New Printer Type to Your System|
Example of Print Formatter|

piocmdout Subroutine
Purpose

Outputs an attribute string for a printer formatter.
Library
None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

piocmdout (attrname, fileptr, passthru, NULL)
attrnamel;

Description

The piocmdout subroutine retrieves the specified attribute string from the Printer Attribute database and
outputs the string to standard output. In the course of retrieval, this subroutine also resolves any logic
and any fembedded references| to other attribute strings or integers.

The fileptr and passthru parameters are used to pass data that the formatter does not need to scan (for
example, graphics data) from the input data stream to standard output.

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 129

Item Description

attrname Points to a two-character attribute name for a string. The attribute name must be defined in the database and can
optionally have been defined to the subroutine as a variable string. The attribute should not be one
that has been defined to the piogetvals subroutine as an integer.

fileptr Specifies a file pointer for the input data stream. If the piocmdout routine is called from the [lineout| formatter
routine, the fileptr value should be the fileptr passed to the lineout routine as a parameter. Otherwise, the fileptr
value should be stdin. If the passthru parameter is 0, the fileptr parameter is ignored.

passthru Specifies the number of bytes to be passed to standard output unmodified from the input data stream specified
by the fileptr parameter. This occurs when the %x escape sequence is found in the attribute string or in a string
included by the attribute string. If no %Xx escape sequence is found, the specified number of bytes is read from
the input data stream and discarded. If no bytes are to be passed through, the passthru parameter should be 0.

Note: The fourth parameter is reserved for future use. This parameter should be a NULL pointer.
Return Values
Upon successful completion, the piocmdout subroutine returns the length of the constructed string.

If the piocmdout subroutine detects an error, it issues an error message and terminates the print job.
Related reference:

['piogetvals Subroutine” on page 135

Related information:

lineout subroutine|
[Adding a New Printer Type to Your System|
Print formatter example

pioexit Subroutine
Purpose

Exits from a printer formatter.

Library

None (linked with the pioformat formatter driver)
Syntax

#include <piostruct.h>

void pioexit ([exitcode)

int exitcode;

Description

The pioexit subroutine should be used by printer formatters to exit either when formatting is complete or
an error has been detected. This subroutine is supplied by the formatter driver.

The pioexit subroutine has no return values.

Parameters

130 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

exitcode Specifies whether the formatting operation completed successfully. A value of PIOEXITGOOD indicates that the
formatting completed normally. A value of PIOEXITBAD indicates that an error was detected.

Related information:

Understanding Embedded References in Printer Attribute Strings|
[Adding a New Printer Type to Your System|
Print formatter example|

piogetattrs Subroutine
Purpose

Retrieves printer attribute values, descriptions, and limits from a printer attribute database.
Library

libgb.a

Syntax

#include <piostruct.h> int piogetattrs(QueueName, QueueDeviceName, NumAttrElems, AttrElemTable) const
char * [QueueName, * |QueueDeviceName} unsigned short [NumAttrElemst struct pioattr * [AttrElemTable

Description

The piogetattrs subroutine retrieves printer attribute values and their associated descriptions and limits
from a printer attribute database. Any logic (using the % escape sequence character) within the attribute
description will be returned as a text string obtained from a message catalog, and will be in the language
determined by the NLSPATH and LANG environment variables.

Information can be retrieved for any number of attributes defined in the printer attribute database, and
for any combination of attribute value, attribute description, and attribute limit for each of the attributes
with one piogetattrs subroutine call.

The combination of the QueueName and QueueDeviceName parameters identify a specific printer attribute
database. Therefore, the QueueName and QueueDeviceName parameters must be unique for a particular
host.

Parameters

Item Description

QueueName Specifies the print queue name. The print queue does not have to exist.

QueueDeviceName Specifies the queue device name for the print queue name specified by the QueueName parameter.
The queue device does not have to exist.

NumAttrElems Specifies the number of attribute elements in the table specified by the AttrElemTable parameter.

AttrElemTable Points to a table of attribute element structures. Each structure element in the table specifies an

attribute name, the type of value to be returned for the attribute, fields where the location and
length of the returned value are to be stored, and a field for the return code of the retrieval
operation. Memory is allocated for each resolved value that is returned, and the memory location
and length are returned in the structure element. The format of each structure element is defined
by the pioattr structure definition in the /ust/include/piostruct.h file.

Return Values

Technical Reference: Kernel and Subsystems, Volume 2 131

Item Description

NumAttrElems Specifies the number of attribute elements for which the piogetattrs subroutine has successfully
retrieved the requested information.

-1 Indicates that an error occurred.

Examples

/* Array of elements to be passed to
piogetattrs() */
#define ATTR_ARRAY_NO (sizeof(attr_table)/sizeof(attr_table[0]))

struct pioattr attr_table[] = {
{" _b", PA_AVALT, NULL, 0, 0}, /* attribute record */
/* for _b (bottom margin)=*/
{" i", PA_AVALT, NULL, 0, 0}, /* attribute record for =/
/* _i (left indentation) =/
{"_t", PA_AVALT, NULL, 0, 0}, /* attribute record for =/

/* _t (top margin) */
}
const char xgnm = "ps";
const char *qdnm - II'ngll;
int retno;
register const pioattr_t *pap;
if((retno = piogetattrs(qnm,qdnm,ATTR_ARRAY_NO,attr_table)) ==-1) {(void)

fprintf(stderr,"Fatal error in piogetattrs()\n");

i .
else if (retno != ATTR_ARRAY NO) _{
(void) printf("Warning! Infor was not retrieved for all \
the attributes.\n");

1
for(pap = attr_table; pap<attr_table+ATTR_ARRAY NO;pap++)
if(pap->pa_retcode) /* If info was successfully x/
/* retrieved for this attr =/

piogetopt Subroutine
Purpose

Overlays default flag values from the database colon file with override values from the command line.
Library
None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

int piogetopt (, , NULL, NULL)
int argc;
char *argv [1;

Description

The piogetopt subroutine should be used by a printer formatter's routine to perform these three
tasks:

132 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

* Parse the command line flags.
* Convert the flag arguments, as needed, to the data types specified in the array of attrparms structures

previously passed to the subroutine.

* Overlay the default flag arguments with values from the database.
The piogetopt subroutine is supplied by the formatter driver.

The database attribute names for flags with integer arguments must have previously been defined to the
formatter driver with the piogetvals subroutine. Based on the information that was provided to the
piogetvals subroutine, the piogetopt subroutine takes these three actions:

* Recognizes each flag argument that needs to be converted to an integer value.

* Converts the argument string to an integer value using the conversion method specified to the
piogetvals subroutine.

* Regardless of the data type (integer variable, string variable, or string constant), overlays the default
value from the database.

Parameters

Item Description

argc Same as the argc parameter received by the formatter's setup routine when it was called by the formatter driver.
argo Same as the argv parameter received by the formatter's setup routine when it was called by the formatter driver.

Note: The third parameter, NULL, is a place holder. The fourth parameter, NULL, is reserved for future
use. The fourth parameter should be a NULL pointer.

Return Values

A return value of 0 indicates successful completion. If the piogetopt subroutine detects an error, it issues
an error message and terminates the print job.

Related reference:

[‘piogetvals Subroutine” on page 135|

Related information:
[Adding a New Printer Type to Your System|
Print formatter example|

piogetstatus Subroutine
Purpose

Retrieves print job status information from a status file.
Library
libgb.a

Syntax
#include <IN/stfile.h>

int piogetstatus(StatusFileDescriptor,
VersionMagicNumber, StatusInformation)

int StatusFileDescriptor, VersionMagicNumbers;
void *StatusInformation;

Technical Reference: Kernel and Subsystems, Volume 2 133

Description

The information returned by the piogetstatus subroutine includes the queue name, queue device name,
job number, job status, percent done, and number of pages printed. The piogetstatus subroutine reads the
specified status file and places the information in the structure specified by the StatusInformation
parameter. The format of the status structure is determined by the version magic number specified by the
VersionMagicNumber parameter. Each time there is a change in the status file structure for a new release, a
unique number is assigned to the release's version magic number. This supports structure formats of
previous releases.

Parameters

Item Description

StatusFileDescriptor Specifies the file descriptor of the status file. The StatusFileDescriptor parameter must
specify a value of 3, because the print spooler always opens a status file with a file
descriptor value of 3.

VersionMagicNumber Specifies the version magic number that identifies the format of the status structure in
which information is specified.

StatusInformation Specifies a generic pointer to a status structure that contains print job status

information that is to be stored in the status file.

Return Values

Item Description
1 Indicates that the pioputstatus subroutine was successful.
-1 Indicates that an error occurred.

piogetstr Subroutine
Purpose

Retrieves an attribute string for a printer formatter.
Library
None (linked with the pioformat formatter driver)

Syntax

#include <piostructh> piogetstr (attrname, bufrptr, bufsiz, NULL) char * jattrname|* [pufptr} int |bufsiz;

Description

The piogetstr subroutine retrieves the specified attribute string from the Printer Attribute database and
returns the string to the caller. In the course of retrieval, this subroutine also resolves any logic and any
pmbedded references| to other attribute strings or integers.

Parameters

134 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

attrname Points to a two-character attribute name for a string. The attribute name must be defined in the database. It may
optionally have been defined to the subroutine as a variable string. The attribute should not be one
that has been defined to the piogetvals subroutine as an integer.

bufptr Points to where the constructed attribute string is to be stored.
bufsiz Specifies the amount of memory that is available for storage of the string.

Note: The fourth parameter is reserved for future use. This parameter should be a NULL pointer.
Return Values

Upon successful completion, the piogetstr subroutine returns the length of the constructed string. The
null character placed at the end of a constructed string by the piogetstr subroutine is not included in the

length.

If the piogetstr subroutine detects an error, it issues an error message and terminates the print job.

Related reference:

[‘piogetvals Subroutine”|

Related information:
[Adding a New Printer Type to Your System|
Print formatter example|

piogetvals Subroutine
Purpose

Initializes a copy of Printer Attribute database variables for a printer formatter.
Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

int piogetvals (|gttrtablel, NULL)

struct attrparms attrtable [1;
Description

The piogetvals subroutine provides a way for a printer formatter's routine to define a list of printer
attribute variables (and their characteristics) to the formatter driver. This routine, which is supplied by
the formatter driver, allocates storage for the requested variables and uses the Printer Attribute database
colon file to arrive at initial values.

The variables defined by the piogetvals subroutine are copies of variables in the database; they are used
to hold current values of the variables. After the piogetvals subroutine returns pointers to each of the
variables, the characteristics and memory location of each variable is known to both the formatter and the
formatter driver. Subsequent changes to printer attribute values (made by the formatter while formatting
an input data stream) are made to the newly defined variables, not to the database values. As a result of
this scheme, the formatter driver always has access to the current value of each variable, but does not
itself ever modify them.

The caller requests variables by filling in entries (an attribute name, its data type, and other
characteristics) in the table pointed to by the attrtable parameter. For each entry, the piogetvals subroutine

Technical Reference: Kernel and Subsystems, Volume 2 135

retrieves the requested attribute string in the Printer Attribute database and converts it, if necessary, into
an actual value. The piogetvals subroutine then allocates memory for each of the variables, places the
initial values there, and stores information about the variable (its name, data type, and memory location)
in storage accessible to the piogetopt, piocmdout, and piogetstr subroutines.

Printer Attribute Variables

A Printer Attribute database is a colon file containing printer attribute values, which can be overridden at
the time a print job is requested. These attributes can be constants or may be expressions with unresolved
references to other attributes in them. These references are resolved before a database attribute is used to
fill in the value of a requested variable.

Database attribute values, which are stored in the database as ASCII strings, have possible data types of
string constant (the default), integer variable, or string variable. The requested variables should be either
integers or strings. String variables are used primarily for strings that the formatter may need to modify
during its processing. NULL characters have no special significance and are permissible within variable
strings.

Data types for the requested variables are specified in the array of the attrparms structures pointed to by
the attrtable parameter and are not specified at all in the Printer Attribute database. This means that for
database values used exclusively by the formatter, only the formatter knows the actual data type of each
value. The formatter uses the piogetvals routine in part to inform the formatter driver of the actual data
type for database values that are not the default data type.

Converting a Database Attribute String to an Actual Value

Converting a database attribute string to an actual value involves two aspects. First, the piogetvals
routine resolves any logic and any fembedded references| to other attribute strings, which yields a resolved
string variable. Secondly, the data type of the requested variable must be checked. If this data type
specifies a character string, then the resolved string is the final value, and it is stored in the memory
allocated for it.

However, if the specified data type is integer variable, then the resolved string is converted to an integer.
In this case, the attrtable entry for the attribute string is checked to determine how this conversion is to be
performed. Either use the atoi subroutine for this purpose, or provide a pointer to a lookup table. After
being converted to an integer, the value is stored in the memory allocated for it.

Using the piogetvals subroutine to convert database strings to integers as specified by the attrtable entries
provides a table-driven procedure for the conversions. It also informs the formatter driver which values
are integers and how strings that represent the integers can be converted into integer values. The
piogetopt, piocmdout, and piogetstr subroutines assume that the formatter has used the piogetvals
subroutine to provide this information about the variables to the formatter driver.

When a formatter subsequently calls either the subroutine or the subroutine to

access a string from the database, a global list of variables defined by the piogetvals subroutine is
checked by the subroutine to see if the desired string has been defined. If so, then the value of the
variable is taken from the memory location specified in the global list. If not, then the Printer Attribute
database is consulted for the correct attribute string. Either the piocmdout or piogetstr subroutine scans
the string to resolve any logic and any references to other strings or integers. The characteristics and
memory locations of the variables, as remembered by the piogetvals subroutine, are used to obtain the
current values of the variables.

Parameters

136 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description
attrtable Points to a table of variables and their characteristics. The table is an array of attrparms structures, as defined
in the piostruct.h file.

Note: The second parameter is reserved for future use. This parameter should be a NULL pointer.
Return Values

A return value of 0 indicates a successful operation. If the piogetvals subroutine detects an error, it issues
an error message and terminates the print job.

Related reference:

['‘piocmdout Subroutine” on page 129|

Related information:

htoi subroutine

[Adding a New Printer Type to Your System|

piomsgout Subroutine
Purpose

Sends a message from a printer formatter.
Library
None (linked with the pioformat formatter driver)

Syntax
void piomsgout (|nsgstr)

char *msgstr;
Description

The piomsgout subroutine should be used by printer formatters to send a message to the print job
submitter, usually when an error is detected. This subroutine is supplied by the formatter driver.

If the formatter is running under the spooler, the message is displayed on the submitter's terminal if the
submitter is logged on. Otherwise, the message is mailed to the submitter. If the formatter is not running
under the spooler, the message is sent as standard error output.

The piomsgout subroutine has no return values.

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 137

Item Description
msgstr Points to the string of message text to be sent.

Related information:

[Understanding Embedded References in Printer Attribute Strings|
[Adding a New Printer Type to Your System|
Print formatter example|

pioputattrs Subroutine
Purpose

Updates printer attribute values in a printer attribute database.
Library

libgb.a

Syntax

#include <piostruct.h> int pioputattrs (QueueName, QueueDeviceName, NumAttrElems, AttrElemTable) const

char * [QueueName, * |QueueDeviceName} unsigned short [NumAttrElemst struct pioattr * [AttrElemTable

Description

The pioputattrs subroutine can update with one call any number of attributes defined in a printer
attribute database.

The combination of the QueueName and QueueDeviceName parameters identify a specific printer attribute
database. The QueueName and QueueDeviceName parameters must be unique for a particular host.

Parameters

Item Description

QueueName Specifies the print-queue name. The print queue does not have to exist.

QueueDeviceName Specifies the queue device name for the print queue name specified by the QueueName parameter.
The queue device does not have to exist.

NumAttrElems Specifies the number of attribute elements in the table specified by the AttrElemTable parameter.

AttrElemTable Points to a table of attribute element structures. Each structure element in the table specifies an

attribute name, the type of value to be updated for the attribute, the value and length of the
value, and a field for the return code of the update operation. The type of the value to be
updated should be PA_AVALT. If a specified attribute is not valid, the specified value is put in
the database. The format of each structure element is defined by the pioattr structure definition in
the /usr/include/piostruct.h file.

Return Values

138 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

NumAttrElems Specifies the number of attribute elements for which the pioputattrs subroutine has successfully
updated the specified values in the database.

-1 Indicates that an error occurred.

Examples

/* Array of elements to be passed to
pioputattrs() */
#define ATTR_ARRAY_NO (sizeof(attr_table)/sizeof(attr_table[0]))

struct pioattr attr_table[] = {

{" _b", PA_AVALT, "2", 1, 0}, /* attribute record for =/
/* _b (bottom margin) */

{" i", PA_AVALT, "0", 1, 0}, /* attribute record for =/
/* _i (left indentation) =/

{"_t", PA_AVALT, "3", 1, 0}, /* attribute record for =/
/* _t (top margin) */

{"sA", PA_AVALT, "CP851", 5, 0} /* attribute record */
/*for eS (country code)x/

const char *qnm = "ps";
const char *qdnm = "Tp0";
int retno;
register const pioattr_t *pap;

if((retno = pioputattrs(gnm,qdnm,ATTR_ARRAY_NO,attr_table)) ==-1)
{(void) fprintf(stderr,"Fatal error in pioputattrs()\n");

pioputstatus Subroutine
Purpose

Puts job-status information for the specified print job into the specified status file.
Library
libgb.a

Syntax
#include <IN/stfile.h>

int pioputstatus(StatusFileDescriptor], [VersionMagicNumber], |StatusInformation))
int StatusFileDescriptor, VersionMagicNumber;
const void * StatusInformation;

Description

The pioputstatus subroutine stores status information for a current print job.

The pioputstatus subroutine accepts a status structure containing print job information. This information
includes queue name, queue device name, job number, and job status. The pioputstatus subroutine then
stores the specified information in the specified status file.

The format of the status structure is determined by the version magic number specified by the

VersionMagicNumber parameter. Each time there is a change in the status file structure for a new release, a

Technical Reference: Kernel and Subsystems, Volume 2 139

unique number is assigned to the release's version magic number. This supports structure formats of
previous releases.

Parameters

Item Description

StatusFileDescriptor Specifies the file descriptor of the status file. The StatusFileDescriptor parameter must
specify a value of 3, because the print spooler always opens a status file with a file
descriptor value of 3.

VersionMagicNumber Specifies the version magic number that identifies the format of the status structure in
which information is specified.

StatusInformation Specifies a generic pointer to a status structure that contains print job status

information that is to be stored in the status file.

Return Values

Item Description
1 Indicates that the pioputstatus subroutine was successful.
-1 Indicates that an error occurred.

restore Subroutine
Purpose

Restores the printer to its default state.
Library
None (provided by the formatter)

Syntax

#include <piostruct.h>
int restore ()

Description

The restore subroutine is invoked by the formatter driver after either the lineout subroutine or the
passthru subroutine has reported that printing has completed.

If the -J flag passed from the command line has a nonzero value (True), the initialize subroutine should
use the piocmdout subroutine to send a command string to the printer to restore the printer to its default
state. This default state is defined by the attribute values in the database. Any variables referenced by the
command string should be values from the database that have not been overridden by values from the
command line. This can be accomplished by placing a %0 escape sequence at the beginning of the
command string.

Return Values

A return value of 0 indicates a successful operation. If the restore subroutine detects an error, it uses the
piomsgout subroutine to issue an error message. The restore subroutine then invokes the pioexit
subroutine with a value of PIOEXITBAD. If either the piocmdout or piogetstr subroutines detect an
error, then the subroutine that detects the error issues an error message and terminates the print job.

Related reference:

[‘passthru Subroutine” on page 128

Related information:

fnitialize subroutine|

140 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

[Adding a New Printer Type to Your System|

setup Subroutine
Purpose

Performs setup processing for the print formatter.
Library

None (provided by the formatter).

Syntax

#include <piostruct.h> struct shar_vars *setup (argc, argu, passthru) unsigned char * []; int

Description

The setup subroutine performs the following tasks:
* Invokes the piogetvals subroutine to initialize the database variables that the formatter uses.
* Processes the command line flags using the piogetopt subroutine.

* Validates the input parameters from the database and the command line.

The setup subroutine should not send commands or data to the printer since the formatter driver
performs additional error checking when the setup subroutine returns.

Parameters

Item Description

arge Specifies the number of formatting arguments from the command line (including the command name).

argo Points to a list of pointers to the formatting arguments.

passthru Indicates whether the input data stream should be formatted (the passthru value is 0) or passed through without

modification (the passthru value isl). The value for this parameter is the argument value for the -# flag specified
to the pioformat formatter driver. If the -# flag is not specified, the passthru value is 0.

Return Values

Upon successful completion, the setup subroutine returns one of the following pointers:

* A pointer to a shar_vars structure that contains pointers to initialized vertical spacing variables. These
variables are shared with the formatter driver, which provides vertical page movement.

* A null pointer, which indicates that the formatter handles its own vertical page movement or that the
input data stream is to be passed through without modification. Vertical page movement includes top
and bottom margins, new pages, initial pages to be skipped, and progress reports to the qdaemon
daemon.

Returning a pointer to a shar_vars structure causes the formatter driver to invoke the formatter's lineout
function for each line to be printed. Returning a null pointer causes the formatter driver to invoke the
formatter's passthru function once instead.

If the setup subroutine detects an error, it uses the piomsgout subroutine to issue an error message. The
setup subroutine then invokes the pioexit subroutine with a value of PIOEXITBAD. Note that if the
piogetvals, piogetopt, piocmdout, or piogetstr subroutine detects an error, it automatically issues its own
error message and terminates the print job.

Related reference:

Technical Reference: Kernel and Subsystems, Volume 2 141

[‘piocmdout Subroutine” on page 129|

Related information:

fjdaemon command]|
[Adding a New Printer Type to Your System|

Subroutines for Print Formatters

The pioformat formatter driver provides the following subroutines for the print formatters that it loads,
links, and drives:

Subroutine Description

Eiocmdouﬂ Outputs an attribute string for a printer formatter.

Eioexiﬂ Exits from a printer formatter.

Eiogetstﬂ Retrieves an attribute string for a printer formatter.

Eioéetoﬁﬂ Used by printer formatters to overlay default flag values from the database with override values from the
command line.

Eiogetvalsl Initializes a copy of the database variables for a printer formatter.

Eiomséouﬂ Sends a message from a printer formatter.

Related reference:

['Subroutines for Writing a Print Formatter”|

Related information:

Printer Addition Management Subsystem: Programming Overview|
[Adding a New Printer Type to Your System|
Print formatter example|

Subroutines for Writing a Print Formatter

The pioformat formatter driver requires a print formatter to contain the following function routines:

Item Description

nitialize] Performs printer initialization.

ineouﬂ Formats a print line.

Eassthrﬁ] Passes through the input data stream without modification or formats the input data stream without
assistance from the formatter driver.

restora Restores the printer to its default state.

setu Performs setup processing for the print formatter.

Related reference:

['Subroutines for Print Formatters”|

Related information:

Printer Addition Management Subsystem: Programming Overview|
[Adding a New Printer Type to Your System|

Print formatter example|

SCSI Subsystem

IOCINFO (Device Information) tmscsi Device Driver ioctl Operation
Purpose

Returns a structure defined in the /usr/include/sys/devinfo.h file.

Note: This operation is not supported by all SCSI I/O controllers.

142 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Description

The IOCINFO ioctl operation returns a structure defined in the /usr/include/sys/devinfo.h header file.
The caller supplies the address to an area of type struct devinfo in the arg parameter to the IOCINFO
operation. The device-type field for this component is DD_TMSCSI; the subtype is DS_TM. The
information returned includes the device's device dependent structure (DDS) information and the host
SCSI adapter maximum transfer size for initiator-mode requests. The IOCINFO ioctl operation is allowed
for both target and initiator modes. This command is not required for the caller, but it is useful for
programs that need to know what the maximum transfer length is for write subroutines. It is also useful
for calling programs that need the SCSI ID or logical unit number (LUN) of the device instance in use.

Files
Item Description
/dev/tmscsi0, /dev/tmscsil,..., /dev/tmscsin Support processor-to-processor communications through the

SCSI target-mode device driver.

Related reference:

[‘tape SCSI Device Driver” on page 215|
[‘scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver”|

Parallel SCSI Adapter Device Driver
Purpose

Supports the SCSI adapter.

Syntax

<#include /usr/include/sys/scsi.h>
<#include /usr/include/sys/devinfo.h>

Description

The /dev/scsin and /dev/vscsin special files provide interfaces to allow SCSI device drivers to access SCSI
devices. These files manage the adapter resources so that multiple SCSI device drivers can access devices
on the same SCSI adapter simultaneously. The /dev/vscsin special file provides the interface for the
SCSI-2 Fast/Wide Adapter/A and SCSI-2 Differential Fast/Wide Adapter/A, while the /dev/scsin special
file provides the interface for the other SCSI adapters. SCSI adapters are accessed through the special files
/dev/scsiO, /dev/scsil, and /dev/vscsi0, /dev/vscsil,

The /dev/scsin and /dev/vscsin special files provide interfaces for access for both initiator and target
mode device instances. The host adapter is an initiator for access to devices such as disks, tapes, and
CD-ROMs. The adapter is a target when accessed from devices such as computer systems, or other
devices that can act as SCSI initiators.

Device-Dependent Subroutines

The SCSI adapter device driver supports only the open, close, and ioctl subroutines. The read and write
subroutines are not supported.

open and close Subroutines
The openx subroutine provides an adapter diagnostic capability. The openx subroutine provides an ext

parameter. This parameter selects the adapter mode and accepts the SC_DIAGNOSTIC value. This value
is defined in the /ust/include/sys/scsi.h file and places the adapter in Diagnostic mode.

Technical Reference: Kernel and Subsystems, Volume 2 143

Note: Some of the SCSI adapter device driver's open and close subroutines do not support the diagnostic
mode ext parameter. (SC_DIAGNOSTIC). If such an open is attempted, the subroutine returns a value of
-1 and the errno global value is set to EINVAL. The standalone diagnostic package provides all
diagnostic capability.

In Diagnostic mode, only the close subroutine and ioctl operations are accepted. All other valid
subroutines to the adapter return a value of -1 and set the errno global variable to a value of EACCES. In
Diagnostic mode, the SCSI adapter device driver can accept the following requests:

* Run various adapter diagnostic tests.

* Download adapter microcode.

The openx subroutine requires appropriate authority to run. Attempting to run this subroutine without
the proper authority causes the subroutine to return a value of -1, and set the errno global variable value
to EPERM. Attempting to open a device already opened for normal operation, or when another openx
subroutine is in progress, causes the subroutine to return a value of -1, and set the errno global variable
to a value of EACCES.

Any kernel process can open the SCSI adapter device driver in Normal mode. For Normal mode the ext
parameter is set to 0. However, a non-kernel process must have at least dev_config authority to open the
SCSI adapter device driver in Normal mode. Attempting to execute a normal open subroutine without
the proper authority causes the subroutine to return a value of -1, and set the errno global variable to a
value of EPERM.

ioctl Subroutine

Along with the IOCINFO operation, the SCSI device driver defines specific operations for devices in
non-diagnostic and diagnostic mode.

The IOCINFO operation is defined for all device drivers that use the ioctl subroutine, as follows:

* The operation returns a devinfo structure. This structure is defined in the /usr/include/sys/devinfo.h
file. The device type in this structure is DD_BUS, and the subtype is DS_SCSI. The flags field is not
used and is set to 0. Diagnostic mode is not required for this operation.

* The devinfo structure includes unique data such as the card SCSI ID and the maximum initiator mode
data transfer size allowed (in bytes). A calling SCSI device driver uses this information to learn the
maximum transfer size allowed for a device it controls on the SCSI adapter. In this way, the SCSI
device driver can control devices across various SCSI adapters, with each device possibly having a
different maximum initiator mode transfer size.

SCSI ioctl Operations for Adapters in Non-Diagnostic mode

The non-diagnostic operations are SCSI adapter device driver functions, rather than general device driver
facilities. SCSI adapter device driver ioctl operations require that the adapter device driver is not in
diagnostic mode. If these operations are attempted while the adapter is in diagnostic mode, a value of -1

is returned and the errno global variable is set to a value of EACCES.

The following SCSI operations are for adapters in non-diagnostic mode:

144 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Operation

SCIOEVENT]|
SCIOGTHE'
SCIOHALTl

SCIOINQU|
SCIOREADl
SCIORESE II

SCIOSTART|
SCIOSTARTTGTl
SCIOSTO lj
SCiosTOPTCT
SCiosTuNT]
SCIOTUEI

Description

Provides the means to download microcode to the adapter. The IBM SCSI-2 Fast/Wide Adapter/A
device driver does not support this operation. Microcode download for the Fast/Wide adapter is
supported in the standalone diagnostics package only.

Registers the selected SCSI device instance to receive asynchronous event notification.

Allows the caller to verify SCSI adapter device driver support for gathered writes.

Aborts the current command (if there is one), clears the queue of any pending commands, and places
the device queue in a halted state for a particular device.

Provides the means to issue an inquire command to a SCSI device.
Sends a single block read command to the selected SCSI device.

Allows the caller to force a SCSI device to release all current reservations, clear all current commands,
and return to an initial state.

Opens a logical path to a SCSI target device. The host SCSI adapter acts as an initiator.

Opens a logical path to a SCSI initiator device. The host SCSI adapter acts as a target.

Closes the logical path to a SCSI target device, where the SCSI adapter acts as an initiator.

Closes the logical path to a SCSI initiator device, where the host SCSI adapter was acting as a target.
Provides the means to issue a SCSI Start Unit command to a selected SCSI device.

Sends a Test Unit Ready command to the selected SCSI device.

SCSI ioctl Operations for Adapters in Diagnostic Mode

The following operations for the ioctl subroutine are allowed only when the adapter has been
successfully opened in Diagnostic mode. If these commands are attempted for an adapter not in
Diagnostic mode, a value of -1 is returned and the errno global variable is set to a value of EACCES.

Operation

SCIODIAG]
SCIODNLD;
SCIOTRAM]

Description

Provides the means to issue adapter diagnostic commands.

Provides the means to download microcode to the adapter.

Provides the means to issue various adapter commands to test the card DMA interface and buffer RAM.

Note: Some of the SCSI adapter device drivers do not support the diagnostic mode ioctl operations.

To allow these operations to be run on multiple SCSI adapter card interfaces, a special return value is
defined. A return value of -1 with an errno value of ENXIO indicates that the requested ioctl subroutine
is not applicable to the current adapter card. This return value should not be considered an error for
commands that require Diagnostic mode for execution.

Summary of SCSI Error Conditions

Possible errno values for the adapter device driver are:

Value
EACCES
EACCES

EACCES

EBUSY
EFAULT

EFAULT

EFAULT
EINVAL
EIO

EIO
EIO

Description
Indicates that an openx subroutine was attempted while the adapter had one or more devices in use.

Indicates that a subroutine other than ioctl or close was attempted while the adapter was in Diagnostic
mode.

Indicates that a call to the SCIODIAG command was attempted while the adapter was not in Diagnostic
mode.

Indicates that a delete operation was unsuccessful. The adapter is still open.

Indicates that the adapter is registering a diagnostic error in response to the SCIODIAG command. The

SCIODIAG resume option must be issued to continue processing.

Indicates that a severe I/O error has occurred during an SCIODNLD command. Discontinue operations

to this card.

Indicates that a copy between kernel and user space failed.
Indicates an invalid parameter or that the device has not been opened.

Indicates an invalid command. A SCIOSTART operation must be executed prior to this command, or an
invalid SCSI ID and LUN combination must be passed in.

Indicates that the command has failed due to an error detected on the adapter or the SCSI bus.
Indicates that the device driver was unable to pin code.

Technical Reference: Kernel and Subsystems, Volume 2 145

Value Description

EIO Indicates that a kernel service failed, or that an unrecoverable 1/O error occurred.
ENOCONNECT Indicates that a SCSI bus fault occurred.

ENODEV Indicates that the target device cannot be selected or is not responding.

ENOMEM Indicates that the command could not be completed due to an insufficient amount of memory.
ENXIO Indicates that the requested ioctl is not supported by this adapter.

EPERM Indicates that the caller did not have the required authority.

ETIMEDOUT Indicates that a SCSI command or adapter command has exceeded the time-out value.

Reliability and Serviceability Information

Errors detected by the adapter device driver may be one of the following:

+ [Permanent adapter or system hardware errors|

* [Temporary adapter or system hardware errors|

+ [Permanent unknown adapter microcode errors|

* [Temporary unknown adapter microcode errors|

+ [Permanent unknown adapter device driver errors|

+ [Temporary unknown adapter device driver errors|

. IPermanent unknown system errors|

* [Temporary unknown system errors|

s [Temporary SCSI bus errors|

Permanent errors are either errors that cannot be retried or errors not recovered before a prescribed
number of retries has been exhausted. Temporary errors are either noncatastrophic errors that cannot be
retried or retriable errors that are successfully recovered before a prescribed number of retries has been
exhausted.

Error-Record Values for Permanent Hardware Errors
The error record template for permanent hardware errors detected by the SCSI adapter device driver is

described below. Refer to the rc structure for the actual definition of the detail data. The rc structure is
defined in the /usr/include/sys/scsi.h file:

SCSI_ERRT1:
Field Description
Comment Permanent SCSI adapter hardware error.
Class H, indicating a hardware error.
Report TRUE, indicating this error should be included when an error report is generated.
Log TRUE, indicating an error log entry should be created when this error occurs.
Alert FALSE, indicating this error is not alertable.
Err_Type PERM, indicating a permanent failure.
Err_Desc 0x1010, indicating an adapter error.
Prob_Causes The following:
0x3330 Adapter hardware
0x3400 Cable
0x3461 Cable terminator
0x6000 Device
Fail_Causes The following:

0x3300 Adapter
0x3400 Cable loose or defective

0x6000 Device

146 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

SCSI_ERRT:

Field
Fail_Actions

Detail_Datal

Description
The following:

0x000 Perform problem determination procedures.

0x0301 Check the cable and its connections.
108, 11, and HEX

Error-Record Values for Temporary Hardware Errors

The error record template for temporary hardware errors detected by the SCSI adapter device driver

follows:

SCSI_ERR2:

Field
Comment
Class
Report

Log

Alert
Err_Type
Err_Desc
Prob_Causes

Fail_Causes

Fail_Actions

Detail_Datal

Description

Temporary SCSI adapter hardware error.

H, indicating a hardware error.

TRUE, indicating this error should be included when an error report is generated.
TRUE, indicating an error-log entry should be created when this error occurs.
FALSE, indicating this error is not alertable.

TEMP, indicating a temporary failure.

0x1010, indicating an adapter error.

The following:

0x3330 Adapter hardware
0x3400 Cable
0x3461 Cable terminator

0x6000 Device
The following:

0x3300 Adapter
0x3400 Cable loose or defective

0x6000 Device
The following:

0x000 Perform problem-determination procedures.

0x0301 Check the cable and its connections.
108, 11, and HEX

Error-Record Values for Permanent Unknown Adapter Microcode Errors

The error-record template for permanent unknown SCSI adapter microcode errors detected by the SCSI
adapter device driver follows:

SCSI_ERRS:

Field
Comment
Class
Report

Log

Alert
Err_Type
Err_Desc
Prob_Causes
Fail_Causes

Description

Permanent SCSI adapter software error.

H, indicating a hardware error.

TRUE, indicating this error should be included when an error report is generated.
TRUE, indicating an error log entry should be created when this error occurs.
FALSE, indicating this error is not alertable.

PERM, indicating a permanent failure.

0x6100, indicating an adapter error.

0x3331, indicating an adapter microcode.

0x3300, indicating the adapter.

Technical Reference: Kernel and Subsystems, Volume 2 147

SCSI_ERRS:

Field Description
Fail_Actions The following:

0x000 Perform problem determination procedures.

0x3301 If the problem persists (0x3000) contact the appropriate service representatives.
Detail_Datal 108, 11 and HEX

Error-Record Values for Temporary Unknown Adapter Microcode Errors

The error-record template for temporary unknown SCSI adapter microcode errors detected by the SCSI
adapter device driver follows:

SCSI_ERR4:

Field Description

Comment Temporary unknown SCSI adapter software error.

Class H.

Report TRUE, indicating this error should be included when an error report is generated.
Log TRUE, indicating an error log entry should be created when this error occurs.
Alert FALSE, indicating this error is not alertable.

Err_Type TEMP, indicating a temporary failure.

Err_Desc Equal to 0x6100, indicating a microcode program error.

Prob_Causes 3331, indicating adapter microcode.

Fail_Causes 3300, indicating the adapter.

Fail_Actions The following:

0x000 Perform problem determination procedures.

0x3301 If the problem persists then (0x3000) contact the appropriate service representatives.
Detail_Datal 108, 11, and HEX

Error-Record Values for Permanent Unknown Adapter Device Driver Errors

The error-record template for permanent unknown SCSI adapter device driver errors detected by the
SCSI adapter device driver follows:

SCSI_ERRS:

Field Description

Comment Permanent unknown driver error.

Class S.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type PERM, indicating a permanent failure.

Err_Desc 0x2100, indicating a software program error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x3301, indicating that if the problem persists, then (0x3000) contact the appropriate service
representatives.

Detail_Datal 108, 11, and HEX

Error-Record Values for Temporary Unknown Adapter Device Driver Errors

The error-record template for temporary unknown SCSI adapter device driver errors detected by the SCSI
adapter device driver follows:

148 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

SCSI_ERRe:

Field Description

Comment Temporary unknown driver error.

Class S.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type TEMP, indicating a temporary failure.

Err_Desc 0x2100, indicating a software program error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x3301, indicating that if the problem persists then (0x3000) contact the appropriate service
representatives.

Detail Datal 108, 11, and HEX

Error-Record Values for Permanent Unknown System Errors

The error-record template for permanent unknown system errors detected by the SCSI adapter device
driver follows:

SCSI_ERRY7:

Field Description

Comment Permanent unknown system error.

Class H.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type UNKUN, indicating an unknown error.

Err_Desc 0xFEOQ0, indicating an undetermined error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x0000 and 0x3301, indicating that problem-determination procedures should be performed; if the
problem persists, then (0x3000) contact the appropriate service representatives.

Detail_Datal 108, 11, and HEX

Error-Record Values for Temporary Unknown System Errors

The error-record template for temporary unknown system errors detected by the SCSI adapter device
driver follows:

SCSI_ERRS:

Field Description

Comment Temporary unknown system error.

Class H.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type UNKJN, indicating an unknown error.

Err_Desc 0xFEOQ0, indicating an undetermined error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x0000 and 0x3301, indicating that problem-determination procedures should be performed; if the
problem persists, then (0x3000) contact the appropriate service representatives.

Detail_Datal 108, 11, and HEX

Error-Record Values for Temporary SCSI Bus Errors

Technical Reference: Kernel and Subsystems, Volume 2 149

The error-record template for temporary SCSI bus errors by the SCSI adapter device driver follows:

SCSI_ERR10:
Field Description
Comment Temporary SCSI bus error.
Class H, indicating a hardware error.
Report True, indicating an error log entry should be created when this error occurs.
Alert FALSE, indicating this error is not alertable.
Err_Type TEMP, indicating a termporary failure.
Err_Desc 0x942, indicating a SCSI bus error.
Prob_Causes The following:
0x3400 Cable
0x3461 Cable terminator
0x6000 Device
0x3300 Adapter Hardware
Fail_Causes The following:
0x3400 Cable loose or defective
0x6000 Device
0x3300 Adapter
Fail_Actions The following:
0x000 Perform problem determination procedures.
0x0301 Check the cable and its connections.
Detail_Data 108, 11, and HEX.

Managing Dumps

The SCSI adapter device driver is a target for the system dump facility. The DUMPINIT and
DUMPSTART options to the dddump entry point support multiple or redundant calls.

The DUMPQUERY option returns a minimum transfer size of 0 bytes and a maximum transfer size equal
to the maximum transfer size supported by the SCSI adapter device driver.

To be processed, calls to the SCSI adapter device driver DUMPWRITE option should use the arg
parameter as a pointer to the sc_buf structure. Using this interface, a SCSI write command can be run on
a previously started (opened) target device. The uiop parameter is ignored by the SCSI adapter device
driver. Spanned, or consolidated, commands are not supported using DUMPWRITE.

Note: The various sc_buf status fields, including the b_error field, are not set at completion of the
DUMPWRITE. Error logging is, of necessity, not supported during the dump.

Successful completion of the dddump entry point is indicated by a 0. If unsuccessful, the entry point
returns one of the following:

Value Description

EINVAL Indicates that the adapter device driver was passed a request that was not valid, such as attempting a
DUMPSTART option before successfully executing a DUMPINIT option.

EIO Indicates that the adapter device driver was unable to complete the command due to a lack of required
resources or due to an I/O error.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed command time-out value expired.

Files

150 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

/dev/scsi0, /dev/scsil,..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI
devices or adapters.
/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

['SCIOCMD SCSI Adapter Device Driver ioctl Operation” on page 169
['scdisk SCSI Device Driver”|

[‘tape SCSI Device Driver” on page 215|

[‘tmscsi SCSI Device Driver” on page 227|

scdisk SCSI Device Driver
Purpose

Supports the small computer system interface (SCSI) hard disk, CD-ROM (compact-disc read-only
memory), and read/write optical (optical memory) devices.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scdisk.h>
#include <sys/pcm.h>
#include <sys/mpio.h>

Device-Dependent Subroutines

Typical hard disk, CD-ROM, and read/write optical drive operations are implemented by using the open,
close, read, write, and ioctl subroutines. The scdisk device driver has additional support added for MPIO
capable devices.

open and close Subroutines

The open subroutine applies a reservation policy that is based on the ODM reserve_policy attribute. In
the past, the open subroutine always applied an SCSI2 reserve. The open and close subroutines support
working with multiple paths to a device if the device is an MPIO capable device.

The openx subroutine is intended primarily for use by diagnostic commands and utilities. Appropriate
authority is required for execution. If an attempt is made to run the open subroutine without the proper

authority, the subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The ext parameter that is passed to the openx subroutine selects the operation to be used for the target
device. The /usr/include/sys/scsi.h file defines possible values for the ext parameter.

The ext parameter can contain any combination of the following flag values logically ORed together:

Technical Reference: Kernel and Subsystems, Volume 2 151

Item
SC_DIAGNOSTIC

SC_FORCED_OPEN_LUN

SC_FORCED_OPEN

SC_RETAIN_RESERVATION

SC_NO_RESERVE

SC_SINGLE

SC_PR_SHARED_REGISTER

Description

Places the selected device in Diagnostic mode. This mode is singularly entrant;
that is, only one process at a time can open it. When a device is in Diagnostic
mode, SCSI operations are performed during open or close operations, and error
logging process is disabled. In Diagnostic mode, only the close and ioctl
subroutine operations are accepted. All other device-supported subroutines return
a value of -1 and set the errno global variable to a value of EACCES.

A device can be opened in Diagnostic mode only if the target device is not
currently opened. If an attempt is made to open a device in Diagnostic mode and
the target device is already open, the subroutine returns a value of -1 and sets the
errno global variable to a value of EACCES.

On a device that supports Lun Level Reset, the device is reset regardless of any
reservation that is placed by another initiator before the open sequence takes
place. If the device does not support Lun Level Reset, and both
SC_FORCED_OPEN_LUN and SC_FORCE_OPEN flags are set, then a target
reset occurs before the open sequence takes place.

Forces a bus device reset, regardless of whether another initiator has the device
reserved. The SCSI bus device reset is sent to the device before the open sequence
begins. In other respects, the open operation runs normally.

Retains the reservation of the device after a close operation by not issuing the
release. This flag prevents other initiators from using the device unless they break
the host machine's reservation.

Prevents the reservation of a device during an openx subroutine call to that
device. This operation is provided so a device can be controlled by two processors
that synchronize their activity by their own software means.

Places the selected device in Exclusive Access mode. Only one process at a time
can open a device in Exclusive Access mode.

A device can be opened in Exclusive Access mode only if the device is not
currently open. If an attempt is made to open a device in Exclusive Access mode
and the device is already open, the subroutine returns a value of -1 and sets the
errno global variable to a value of EBUSY. If the SC_DIAGNOSTIC flag is
specified along with the SC_SINGLE flag, the device is placed in Diagnostic
mode.

In a multi-initiator shared device environment, a Persistent Reserve with service
action Register and Ignore Key is sent to the device as part of the open sequence.
This feature is aimed at the cluster environment, where an upper management
software needs to follow an advisory lock mechanism to control when the
initiator reads or writes. The device is required to support Persistent Reserve
(refer to SCSI Primary Command version 2 description of Persistent Reserve).

[SCSI Options to the openx Subroutine|in Kernel Extensions and Device Support Programming Concepts gives

more specific information about the open operations.

readx and writex Subroutines

The readx and writex subroutines provide additional parameters which affect the raw data transfer. These
subroutines pass the ext parameter, which specifies request options. The options are constructed by
logically ORing zero or more of the following values:

Item
HWRELOC
UNSAFEREL
WRITEV

ioctl Subroutine

Description

Indicates a request for hardware relocation (safe relocation only)
Indicates a request for unsafe hardware relocation

Indicates a request for write verification

ioctl subroutine operations that are used for the scdisk device driver are specific to the following

categories:

* Hard disk and read/write optical devices only

152 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

* CD-ROM devices only
* Hard disk, CD-ROM, and read/write optical devices

Hard disk and read/write optical devices

The following ioctl operations are available for the hard disk and read/write optical devices:

Item
DKIOWRSE

DKLOGSENSE

Description

Provides a means for issuing a write command to the device and obtaining the target-device sense data when an error
occurs. If the DKIOWRSE operation returns a value of -1 and the status_validity field is set to a value of
sc_valid_sense, valid sense data is returned. Otherwise, target sense data is omitted.

The DKIOWRSE operation is provided for diagnostic use. It allows the limited use of the target device when it is
operating in an active system environment. The arg parameter to the DKIOWRSE operation contains the address of an
sc_rdwrt structure. This structure is defined in the /usr/include/sys/scsi.h file.

The devinfo structure defines the maximum transfer size for a write operation. If an attempt is made to transfer more
than the maximum, the subroutine returns a value of -1 and sets the errno global variable to a value of EINVAL. Refer
to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for a particular device.
Provides a means to issue the LOG SENSE command on devices that is successfully opened. Any application that
issues this ioctl operation must pass the address of the struct sc_log_sense (defined in /usr/include/sys/scsi.h) and the
structure is filled as follows:

1. page_code and subpage_code for the requested LOG Page
2. pc set to the value CUMUL_VAL.

3. allocation_length — If this field is set to zero, only the log page header that consists of the page code and the log
page length is returned. If this field is nonzero, it must equal the length of the log page excluding the log page
header of size 4 bytes. If the user specifies an allocation length less than the actual log page length, then only the
requested length of log data is returned.

4. log_data contains the allocated memory address for storing the data that is returned from the ioctl operation.

If the requested log page is SCSI_BSR_LOG_PAGE (defined in /usr/include/sys/scsi.h) then the log_data points to the
struct sc_bsr_log_data allocated by the caller. The caller also allocates the memory for the struct sc_bms_log_data such
that total of sizeof struct sc_bsr_log_data and memory allocated for the struct sc_bms_log_data is equal to the
allocation_length.

Otherwise (for log pages other than SCSI_BSR_LOG_PAGE), it points to a chunk of memory equal to
allocation_length.

Following is the example code for filling the sc_log_sense structure:

struct sc_log_sense log_sense;

melog_sense, '\0', sizeof(struct sc_log_sense));
log_sense.page_code = SCSI_BSR_LOG_PAGE ;
log_sense.subpage_code = 03

log_sense.pc = CUMUL_VAL;
log_sense.allocation_length = 16;

if (Tog_sense.allocation_length)

if (Tog_sense.page_code == SCSI_BSR_LOG_PAGE)
{

log_sense.log_data = (struct sc_bsr_log_data *) malloc(sizeof(struct sc_bsr_log_data));

else

{

log_sense.log_data = (char *) malloc(log_sense.allocation_length);

}
if (1og_sense.log_data == NULL)
exit(-1);
if (Tog_sense.page_code == SCSI_BSR_LOG_PAGE)
{
bms_param_len = Tog_sense.allocation_length - sizeof(struct sc_scan_status);
((struct sc_bsr_Tog_data *)(log_sense.log_data))-> bms_log_data = (struct sc_bms_log_data *)
malloc(bms_param_len);
if (((struct sc_bsr_log_data *)(1og_sense.log_data))-> bms_log_data == NULL)
exit(-1);
}

}
rc = joct1(fd, DKLOGSENSE,&log_sense);

Technical Reference: Kernel and Subsystems, Volume 2 153

Item Description

The DKLOGSENSE ioctl operation returns the following data by using the struct sc_log_sense (rc=0 indicates success):

1. returned_length field contains the length of the bytes requested or zero if the user specified an allocation length of
Zero.

2. adapter_status, scsi_status, sense_key, scsi_asc, scsi_ascq set with the error return status for the LOG SENSE
command.

3. log_data field points to the memory containing the data returned by the LOG SENSE command. Driver will parse
and fill fields for the struct sc_bsr_log_data and struct bms_log_data for the Background Scan Results log page.
The ioctl caller prints structure fields to view the data. Otherwise, this memory is a char * to the log data of
returned_length. The data excludes the log page header.

if (Tog_sense.page_code == SCSI_BSR_LOG_PAGE)
{

bms_cnt = (log_sense.returned_length - 16)/24;

printf("Background Scan Results Log Page:\n");

printf("Scanning Status Parameter:\n");

bsr_log_data = (struct sc_bsr_log_data *)log_sense.log_data;
scan_status = &(bsr_log_data->scan_status);

printf("Parameter Code \t:\t %x\n", scan_status->param code);
printf("Parameter Control Byte \t:\t %x",scan_status->param_ctrl_bits);
printf("Parameter Length \t:\t %x\n", scan_status->param_length);
printf("Power Age \t:\t %x\n", scan_status->power_age);

printf("Scan Status \t:\t %x\n", scan_status->scan_status);
printf("Scan Count \t:\t %x\n", scan_status->scan_count);

printf("Scan Progress \t:\t %x \n", scan_status->scan_progress);
printf("BMS Count \t:\t %x\n", scan_status->bms_count);
printf("Background Medium Scan Parameter for %d Elements:\n",bms_cnt);

for (i=0; <ibms_cnt; i++)

{
bms_data = bsr_log_data->bms_log_data;
printf("Parameter Code \t:\t %x\n", bms_data->param_code);
printf("Parameter Control Byte \t:\t%x",bms_data->param_ctrl_bits);
printf("Parameter Length \t:\t %x\n", bms_data->param_length);
printf("Power Age \t:\t %x\n", bms_data->power_age);
printf("SenseKey & Reassign Status \t:\t %x\n",bms_data->status_snskey);
printf("ASC \t:\t %x\n", bms_data->asc);
printf("ASCQ \t:\t %x\n", bms_data->ascq);

for (§=0; j<5; j++)
printf("vendor_data[%d] \t:\t%x\n",j,bms_data->vendor_data[j]);

printf("LBA \t:\t %11x\n", bms_data->1ba);
}

} else {
Log data received is a char buffer of 'returned_length' size.
So print the data byte by byte.

154 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item
DKLOGSELECT

Description

Provides a means to issue the LOG SELECT command.

Any application that issues the DKLOGSELECT ioctl operation is expected to pass the address of the DKLOGSELECT
(defined in /ust/include/sys/scsi.h) filled as follows:

1. page_code and subpage_code for the requested LOG Page
2. pcr, sp, pc, and param_length as per the SCSI Primary Commands Standard Version 4 (SPC4) requirements.
3. log_data points to the memory that contains the parameters that must be sent to the LOG SELECT command.

Following is an example for filling the sc_log_select structure to clear the SCSI_BSR_LOG_PAGE data**.

struct sc_log_select log_select;

memset (&Tog_select, '\0', sizeof(struct sc_log select));
log_select.page_code = SCSI_BSR_LOG_PAGE;
log_select.subpage_code = 0;

log_select.pcr = 1;

log_select.sp = 0;

log_select.pc = CUMUL_VAL;

log_select.param_length = 0;

if (1og_select.param_length)

{

log_select.log_data = (char *)malloc(Tog_select.param_length);
if (Tog_select.log_data == NULL) exit(-1);

}
rc = joct1(fd, DKLOGSELECT,&log_select);
This ioctl operation returns the following data by using the struct sc_log_select (rc=0 indicates success)

adapter_status,scsi_status, sense_key, scsi_asc, and scsi_ascq fields reporting the error completion status of the LOG
SELECT command.

CD-ROM Devices Only

The following ioctl operation is available for CD-ROM devices only:

Item
CDIOCMD

Description

Allows SCSI commands to be issued directly to the attached CD-ROM device. The CDIOCMD operation
preserves binary compatibility for CD-ROM applications that were compiled on earlier releases of the
operating system. It is recommended that newly written CD-ROM applications use the DKIOCMD
operation instead. For the CDIOCMD operation, the device must be opened in Diagnostic mode. The
CDIOCMD operation parameter specifies the address of a sc_iocmd structure. This structure is defined
in the /usr/include/sys/scsi.h file.

If this operation is attempted on a device other than CD-ROM, it is interpreted as a DKIORDSE
operation. In this case, the arg parameter is treated as an sc_rdwrt structure.

If the CDIOCMD operation is attempted on a device not in Diagnostic mode, the subroutine returns a
value of -1 and sets the errno global variable to a value of EACCES. Refer to the Small Computer System
Interface (SCSI) Specification for the format of the request-sense data for a particular device.

Note: Diagnostic mode is required only for the CDIOCMD and DKIOCMD operations.

Hard disk, CD-ROM, and read/write optical devices

The following ioctl operations are available for hard disk, CD-ROM, and read/write optical devices:

[tem
IOCINFO

Description

Returns the devinfo structure that is defined in the /usr/include/sys/devinfo.h file. The
IOCINFO operation is the only operation that is defined for all device drivers that use
the ioctl subroutine. The remaining operations are all specific to hard disk, CD-ROM, and
read /write optical devices.

Technical Reference: Kernel and Subsystems, Volume 2 155

Item
DKIORDSE

DKIOCMD

DKPMR

DKAMR

DKEJECT

Description

Provides a means for issuing a read command to the device and obtaining the
target-device sense data when an error occurs. If the DKIORDSE operation returns a
value of -1 and the status_validity field is set to a value of sc_valid_sense, valid sense
data is returned. Otherwise, target sense data is omitted.

The DKIORDSE operation is provided for diagnostic use. It allows the limited use of the
target device when it is operating in an active system environment. The arg parameter to
the DKIORDSE operation contains the address of an sc_rdwrt structure. This structure is
defined in the /usr/include/sys/scsi.h file.

The devinfo structure defines the maximum transfer size for a read operation. If an
attempt is made to transfer more than the maximum, the subroutine returns a value of -1
and sets the errno global variable to a value of EINVAL. Refer to the Small Computer
System Interface (SCSI) Specification for the format of the request-sense data for a particular
device.

Note: The CDIORDSE operation might be substituted for the DKIORDSE operation
when you issue a read command to and obtain sense data from a CD-ROM device.
DKIORDSE is the recommended operation.

When the device is successfully opened in the Diagnostic mode, the DKIOCMD
operation provides the means for issuing any SCSI command to the specified device. If
the DKIOCMD operation is issued when the device is not in Diagnostic mode, the
subroutine returns a value of -1 and sets the errno global variable to a value of EACCES.
The device driver performs no error recovery or logging on failures of this operation.

The SCSI status byte and the adapter status bytes are returned through the arg parameter,
which contains the address of a sc_iocmd structure (defined in the /usr/include/sys/scsi.h
file). If the DKIOCMD operation fails, the subroutine returns a value of -1 and sets the
errno global variable to a nonzero value. In this case, the caller must evaluate the
returned status bytes to determine why the operation was unsuccessful and what
recovery actions must be taken.

The devinfo structure defines the maximum transfer size for the command. If an attempt
is made to transfer more than the maximum, the subroutine returns a value of -1 and sets
the errno global variable to a value of EINVAL. Refer to the Small Computer System
Interface (SCSI) Specification for the format of the request-sense data for a particular
device.

Note: Diagnostic mode is required only for the CDIOCMD and DKIOCMD operations.

Issues a SCSI prevent media removal command when the device is successfully opened.
This command prevents media from being ejected until the device is closed, powered off
and back on, or until a DKAMR operation is issued. The arg parameter for the DKPMR
operation is null. If the DKPMR operation is successful, the subroutine returns a value of
0. If the device is a SCSI hard disk, the DKPMR operation fails, and the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL. If the
DKPMR operation fails for any other reason, the subroutine returns a value of -1 and
sets the errno global variable to a value of EIO.

Issues an allow media removal command when the device is successfully opened. As a
result media can be ejected by using either the drive's eject button or the DKEJECT
operation. The arg parameter for this ioctl is null. If the DKAMR operation is successful,
the subroutine returns a value of 0. If the device is a SCSI hard disk, the DKAMR
operation fails, and the subroutine returns a value of -1 and sets the errno global variable
to a value of EINVAL. For any other failure of this operation, the subroutine returns a
value of -1 and sets the errno global variable to a value of EIO.

Issues an eject media command to the drive when the device is successfully opened. The
arg parameter for this operation is null. If the DKEJECT operation is successful, the
subroutine returns a value of 0. If the device is a SCSI hard disk, the DKEJECT operation
fails, and the subroutine returns a value of -1 and sets the errno global variable to a value
of EINVAL. For any other failure of this operation, the subroutine returns a value of -1
and sets the errno global variable to a value of EIO.

156 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item
DKFORMAT

DKAUDIO

Description

Issues a format unit command to the specified device when the device is successfully
opened.

If the arg parameter for this operation is null, the format unit sets the format options
valid (FOV) bit to 0 (that is, it uses the drive's default setting). If the arg parameter for
the DKFORMAT operation is not null, the first byte of the defect list header is set to the
value specified in the first byte addressed by the arg parameter. It allows the creation of
applications to format a particular type of read/write optical media uniquely.

The driver initially tries to set the FmtData and CmpLst bits to 0. If that fails, the driver
tries the remaining 3 permutations of these bits. If all four permutations fail, this
operation fails, and the subroutine sets the errno global variable to a value of EIO.

If the DKFORMAT operation is specified for a hard disk, the subroutine returns a value
of -1 and sets the errno global variable to a value of EINVAL. If the DKFORMAT
operation is attempted when the device is not in Exclusive Access mode, the subroutine
returns a value of -1 and sets the errno global variable to a value of EACCES. If the
media is write-protected, the subroutine returns a value of -1 and sets the errno global
variable to a value of EWRPROTECT. If the format unit exceeds its timeout value, the
subroutine returns a value of -1 and sets the errno global variable to a value of
ETIMEDOUT. For any other failure of this operation, the subroutine returns a value of -1
and sets the errno global variable to a value of EIO.

Issues play audio commands to the specified device and controls the volume on the
device's output ports. Play audio commands include: play, pause, resume, stop,
determine the number of tracks, and determine the status of a current audio operation.
The DKAUDIO operation plays audio only through the CD-ROM drive's output ports.
The arg parameter of this operation is the address of a ¢d_audio_cmds structure, which is
defined in the /usr/include/sys/scdisk.h file. Exclusive Access mode is required.

If DKAUDIO operation is attempted when the device's audio-supported attribute is set
to No, the subroutine returns a value of -1 and sets the errno global variable to a value of
EINVAL. If the DKAUDIO operation fails, the subroutine returns a value of -1 and sets
the errno global variable to a nonzero value. In this case, the caller must evaluate the
returned status bytes to determine why the operation failed and what recovery actions
must be taken.

Technical Reference: Kernel and Subsystems, Volume 2 157

Item
DK_CD_MODE

DK_PASSTHRU

Description

Determines or changes the CD-ROM data mode for the specified device. The CD-ROM
data mode specifies what block size and special file are used for data read across the
SCSI bus from the device. The DK_CD_MODE operation supports the following
CD-ROM data modes:

CD-ROM Data Mode 1
512-byte block size through both raw (dev/red*) and block special (/dev/cd*)
files

CD-ROM Data Mode 2 Form 1
2048-byte block size through both raw (dev/rcd*) and block special (/dev/cd*)
files

CD-ROM Data Mode 2 Form 2
2336-byte block size through the raw (dev/red*) special file only

CD-DA (Compact Disc Digital Audio)
2352-byte block size through the raw (dev/rcd*) special file only

DVD-ROM
2048-byte block size through both raw (/dev/rcd*) and block special (/dev/cd*)
files

DVD-RAM
2048-byte block size through both raw (/dev/rcd*) and block special (/dev/cd*)
files

DVD-RW
2048-byte block size through both raw (/dev/rcd*) and block special (/dev/cd*)
files

The DK_CD_MODE arg parameter contains the address of the mode_form_op structure
that is defined in the /ust/include/sys/scdisk.h file. To have the DK_CD_MODE
operation determine or change the CD-ROM data mode, set the action field of the
change_mode_form structure to one of the following values:

CD_GET_MODE
Returns the current CD-ROM data mode in the cd_mode_form field of the
mode_form_op structure, when the device is successfully opened.

CD_CHG_MODE
Changes the CD-ROM data mode to the mode specified in the cd_mode_form
field of the mode_form_op structure, when the device is successfully opened in
the exclusive access mode.

If a CD-ROM is not configured for different data modes (through mode-select density
codes), and an attempt is made to change the CD-ROM data mode (by setting the action
field of the change_mode_form structure set to CD_CHG_MODE), the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL. Attempts
to change the CD-ROM mode to any of the DVD modes also results in a return value of
-1 and the errno global variable set to EINVAL.

If the DK_CD_MODE operation for CD_CHG_MODE is attempted when the device is
not in Exclusive Access mode, the subroutine returns a value of -1 and sets the errno
global variable to a value of EACCES. For any other failure of this operation, the
subroutine returns a value of -1 and sets the errno global variable to a value of EIO.
When the device is successfully opened, the DK_PASSTHRU operation provides the
means for issuing any SCSI command to the specified device. The device driver will
perform limited error recovery if this operation fails. The DK_PASSTHRU operation
differs from the DKIOCMD operation in that it does not require an openx command
with the ext argument of SC_DIAGNOSTIC. Because of this, a DK_PASSTHRU
operation can be issued to devices that are in use by other operations.

The SCSI status byte and the adapter status bytes are returned through the arg parameter,
which contains the address of a sc_passthru structure (defined in the
lust/include/sys/scsi.h file). If the DK_PASSTHRU operation fails, the subroutine returns
a value of -1 and sets the errno global variable to a nonzero value. If this happens the
caller must evaluate the returned status bytes to determine why the operation was
unsuccessful and what recovery actions must be taken.

158 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item

DKPRES_READKEYS

Description

If a DK_PASSTHRU operation fails because a field in the sc_passthru structure has an
invalid value, the subroutine returns a value of -1 and set the errno global variable to
EINVAL. The einval_arg field is set to the field number (starting with 1 for the version
field) of the field that had an invalid value. A value of 0 for the einval_arg field indicates
that no additional information on the failure is available.

DK_PASSTHRU operations are further subdivided into requests which quiesce other I/O
requests before issuing the request and requests that do not quiesce I/O requests. These
subdivisions are based on the devflags field of the sc_passthru structure. When the
devflags field of the sc_passthru structure has a value of SC_MIX_IO, the
DK_PASSTHRU operation will be mixed with other I/O requests. SC_MIX_IO requests
that write data to devices are prohibited and will fail. When this happens -1 is returned,
and the errno global variable is set to EINVAL. When the devflags field of the
sc_passthru structure has a value of SC_QUIESCE_IO, all other I/O requests will be
quiesced before the DK_PASSTHRU request is issued to the device. If an
SC_QUIESCE_IO request has its timeout_value field set to 0, the DK_PASSTHRU
request will be failed with a return code of -1, the errno global variable will be set to
EINVAL, and the einval_arg field will be set to a value of SC_PASSTHRU_INV_TO
(defined in the /usr/include/sys/scsi.h file). If an SC_QUIESCE_IO request has a nonzero
timeout value that is too large for the device, the DK_PASSTHRU request will be failed
with a return code of -1, the errno global variable will be set to EINVAL, the einval_arg
field will be set to a value of SC_PASSTHRU_INV_TO (defined in the
/ust/include/sys/scsi.h file), and the timeout_value will be set to the largest allowed
value.

The version field of the sc_passthru structure can be set to the value of SC_VERSION_2,
and the user can provide the following fields:

* variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.

* variable_cdb_length determines the length of the cdb variable to which the
variable_cdb_ptr field points.

On completion of the DK_PASSTHRU ioctl request, the residual field indicates the
leftover data that device did not fully satisfy for this request. On a successful completion,
the residual field would indicate that the device does not have the all data that is
requested or the device has less than the amount of data that is requested. On a failure
completion, the user must check the status_validity field to determine whether a valid
SCSI bus problem exists. In this case, the residual field would indicate the number bytes
that the device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command. If an attempt
is made to transfer more than the maximum transfer size, the subroutine returns a value
of -1, sets the errno global variable to a value of EINVAL, and sets the einval_arg field to
a value of SC_PASSTHRU_INV_D_LEN (defined in the /usr/include/sys/scsi.h file).

Refer to the Small Computer System Interface (SCSI) Specification for the format of the
request-sense data for a particular device.

When the device is successfully opened, the DKPRES_READKEYS operation provides a
means to read the Persistent Reserve Registration Keys on the device. The arg parameter
to the DKPRES_READKEYS contains the address of the dk_pres_in structure. This
structure is defined in /usr/include/sys/scdisk.h. The user must provide a buffer area and
size for the registered keys to be returned. The returned_length variable sets the number of
bytes returned.

In a shared-access or clustered environment, this operation identifies all registered keys

for a particular lun.

Note: For the DKPRES_READKEYS operation and following Persistent Reserve related

operation, the interpretation of the returned value and scsi status is as follows:

* On successful attempt of the call, a 0 is returned.

*+ After a call fails, a -1 is returned and the errno global variable is set. For a specific
description of the errno value, refer to /ust/include/erno.h. In addition, the SCSI status,
along with the Sense Code, ASC and ASCQ, is set to provide further information about
why the command failed. Refer to SCSI Specification on the interpretation of the SCSI
status failure code.

Technical Reference: Kernel and Subsystems, Volume 2 159

Item
DKPRES_READRES

DKPRES_CLEAR

DKPRES_PREEMPT

DKPRES_PREEMPT_ABORT

DKPRES_REGISTER

DK_RWBUFFER

Description

When the device is successfully opened, the DKPRES_READRES operation provides a
means to read the Persistent Reserve Reservation Keys on the device. The arg parameter
to the DKPRES_READKEYS contains the address of the dk_pres_in structure. This
structure is defined in /usr/include/sys/scdisk.h. The user must provide a buffer area and
size for the reservation information to be returned. The returned_length variable sets the
number of bytes returned. In a shared-access or clustered environment, this operation
identifies the primary initiator that holds the reservation.

When the device is successfully opened, the DKPRES_CLEAR operation provides a
means to clear all Persistent Reserve Reservation Keys and Registration Keys on the
device. The arg parameter to DKPRES_CLEAR contains the address of the dk_pres_clear
structure. This structure is defined in /ust/include/sys/scdisk.h.

Attention: Attention: Exercise care when issuing the DKPRES_CLEAR operation. This
operation leaves the device unreserved, which could allow a foreign initiator to access the
device.

When the device is successfully opened, the DKPRES_PREEMPT operation provides a
means to preempt a Persistent Reserve Reservation Key or Registration Key on the
device. The arg parameter to the DKPRES_PREEMPT contains the address of the
dk_pres_preempt structure. This structure is defined in /usr/include/sys/scdisk.h. The
user must provide the second party initiator key on the device to be preempted. If the
second party initiator holds the reservation to the device, then the initiator that issues the
preemption becomes the owner of the reservation. Otherwise, the second party initiator
access is revoked.

In order for this operation to succeed, the initiator must be registered with the device
first before any preemption can occur. In a shared-access or clustered environment, this
operation is used to preempt any operative or inoperative initiator, or any initiator that is
not recognized to be part of the shared group.

This operation is the same as the DKPRES_PREEMPT, except the device follows the
SCSI Primary Command Specification in aborting tasks that belong to the preempted
initiator.

When the device is successfully opened, the DKPRES_REGISTER operation provides a
means to register a Key with the device. The Key is extracted from ODM Customize
Attribute and passed to the device driver during configuration. The arg parameter to the
DKPRES_REGISTER contains the address of the dk_pres_register structure. This
structure is defined in /usr/include/sys/scdisk.h.

In a shared-access or clustered environment, this operation attempts a registration with
the device, then follows with a read reservation to determine whether the device is
reserved. If the device is not reserved, then a reservation is placed with the device.
When the device is successfully opened, the DK_RWBUFFER operation provides the
means for issuing one or more SCSI Write Buffer commands to the specified device. The
device driver performs full error recovery upon failures of this operation. The
DK_RWBUFFER operation differs from the DKIOCMD operation in that it does not
require an exclusive open of the device (for example, openx with the ext argument of
SC_DIAGNOSTIC). Thus, a DK_RWBUFFER operation can be issued to devices that are
in use by others. It can be used with the DK_PASSTHRU ioctl operation, which (like
DK_RWBUFFER) does not require an exclusive open of the device.

The arg parameter contains the address of a sc_rwbuffer structure (defined in the
lusr/include/sys/scsi.h file). Before the DK_RWBUFFER ioctl is invoked, the fields of this
structure must be set according to the required behavior. The mode field corresponds to
the mode field of the SCSI Command Descriptor Block (CDB) as defined in the SCSI
Primary Commands (SPC) Specification. Supported modes are listed in the header file
/ust/include/sys/scsi.h.

The device driver quiesces all other I/O requests from the initiator that issues the Write
Buffer ioctl until the entire operation completes. Once the write buffer ioctl completes, all
quiesced 1/0 requests are resumed.

160 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item

DKPATHIOCMD

DKPATHFORCE

Description

The SCSI status byte and the adapter status bytes are returned through the arg parameter,
which contains the address of a sc_rwbuffer structure (defined in the
lusr/include/sys/scsi.h file). If the DK_RWBUFFER operation fails, the subroutine returns
a value of -1 and sets the errno global variable to a nonzero value. In this case, the caller
must evaluate the returned status bytes to determine why the operation was unsuccessful
and what recovery actions must be taken.

If a DK_RWBUFFER operation fails because a field in the sc_rwbuffer structure has an
invalid value, the subroutine returns a value of -1 and set the errno global variable to
EINVAL.

The DK_RWBUFFER ioctl allows the user to issue multiple SCSI Write Buffer commands
(CDBs) to the device through a single ioctl invocation. It is useful for applications such as
microcode download where the user provides a pointer to the entire microcode image,
but, because of size restrictions of the device buffers, desires that the images be sent in
fragments until the entire download is complete.

If the DK_RWBUFFER ioctl is invoked with the fragment_size member of the
sc_rwbuffer struct equal to data_length, a single Write Buffer command is issued to the
device with the buffer_offset and buffer_ID of the SCSI CDB set to the values provided
in the sc_rwbuffer struct.

If data_length is greater than fragment_size and fragment_size is a nonzero value,
multiple write buffer is issued to the device. The number of Write Buffer commands
(SCSI CDBs) issued is calculated by dividing the data_length by the required
fragment_size. This value is incremented by 1 if the data_length is not an even multiple
of fragment_size, and the final data transfer is the size of this residual amount. For each
Write Buffer command that is issued, the buffer_offset is set to the value provided in the
sc_rwbuffer struct (microcode downloads to SCSD devices requires this value to be set to
0). For the first command issued, the buffer_ID is set to the value provided in the
sc_rwbuffer struct. For each subsequent Write Buffer command that is issued, the
buffer_ID is incremented by 1 until all fragments are sent. Writing to noncontiguous
buffer_IDs through a single DK_RWBUFFER ioctl is not supported. If this functionality
is wanted, multiple DK_RWBUFFER ioctls must be issued with the buffer_ID set
appropriately for each invocation.

Note: No I/O request is quiesced between ioctl invocations.

If fragment_size is set to zero, an errno of EINVAL is returned. If the desire is to send
the entire buffer with one SCSI Write buffer command, this field must be set equal to
data_length. An error of EINVAL is also returned if the fragment_size is greater than the
data_length.

The Parameter List Length (fragment_size) plus the Buffer Offset cannot exceed the
capacity of the specified buffer of the device. It is the responsibility of the caller of the
Write Buffer ioctl to ensure that the fragment_size setting satisfies this requirement. A
fragment_size larger than the device can accommodate results in a SCSI error at the
device, and the Write Buffer ioctl reports this error but take no action to recover.

The devinfo structure defines the maximum transfer size for the command. If an attempt
is made to transfer more than the maximum transfer size, the subroutine returns a value
of -1 and sets the errno global variable to a value of EINVAL. Refer to the Small Computer
System Interface (SCSI) Specification for the format of the request sense data for a particular
device.

This command is only available for MPIO capable devices. The DKPATHIOCMD
command takes as input a pointer argument which points to a single scdisk_pathiocmd
structure. The DKPATHIOCMD command behaves exactly like the DKIOCMD
command, except that the input path is used rather than normal path selection. The
DKPATHIOCMD path is used for the DKIOCMD command regardless of any path
specified by a DKPATHFORCE ioctl command. A path cannot be unconfigured while it
is being forced.

This command is only available for MPIO capable devices. The DKPATHFORCE
command takes as input a ushort path id. The path id must correspond to one of the
path ids in CuPath ODM. The path id specifies a path to be used for all subsequent I/O
commands, overriding any previous DKPATHFORCE path. A zero argument specifies
that path forcing is terminated and that normal MPIO path selection is to be resumed.
I/0 commands sent in with the DKPATHIOCMD command overrides the
DKPATHFORCE option and send the I/O command down the path that is specified in
scdisk_pathiocmd structure.

Technical Reference: Kernel and Subsystems, Volume 2 161

Item Description
DKPATHRWBUFFER This command is only available for MPIO capable devices. The DKPATHRWBUFFER

command takes as input a pointer argument which points to a single scdisk_pathiocmd
structure. The DKPATHRWBUFFER command behaves exactly like the DKRWBUFFER
command, except that the input path is used rather than normal path selection. The
DKPATHRWBUEFFER path is used for the DKRWBUFFER command regardless of any
path that is specified by a DKPATHFORCE ioctl command.

DKPATHPASSTHRU This command is only available for MPIO capable devices. The DKPATHPASSTHRU

command takes as input a pointer argument which points to a single scdisk_pathiocmd
structure. The DKPATHPASSTHRU command behaves exactly like the DKPASSTHRU
command, except that the input path is used rather than normal path selection. The
DKPATHPASSTHRU path is used for the DKPASSTHRU command regardless of any
path that is specified by a DKPATHFORCE ioctl command.

DKPCMPASSTHRU This command is only available for MPIO capable devices. The DKPCMPASSTHRU

command takes as input a structure which is PCM-specific, it is not defined by AIX. The
PCM-specific structure is passed to the PCM directly. This structure can be used to move
information to or from a PCM.

Device Requirements

SCSI hard disk, CD-ROM, and read/write optical drives have the following hardware requirements:

SCSI hard disks and read /write optical drives must support a block size of 512 bytes per block.

If mode sense is supported, the write-protection (WP) bit must also be supported for SCSI hard disks
and read /write optical drives.

SCSI hard disks and read /write optical drives must report the hardware retry count in bytes 16 and 17
of the request sense data for recovered errors. If the hard disk or read /write optical drive does not
support it, the system error log might indicate premature drive failure.

SCSI CD-ROM and read/write optical drives must support the 10-byte SCSI read command.

SCSI hard disks and read /write optical drives must support the SCSI write and verify command and
the 6-byte SCSI write command.

To use the format command operation on read/write optical media, the drive must support setting the
format options valid (FOV) bit to 0 for the defect list header of the SCSI format unit command. If the
drive does not support this, the user can write an application for the drive so that it formats media by
using the DKFORMAT operation.

If a SCSI CD-ROM drive uses CD_ROM Data Mode 1, it must support a block size of 512 bytes per
block.

If a SCSI CD-ROM drive uses CD_ROM data Mode 2 Form 1, it must support a block size of 2048
bytes per block.

If a SCSI CD-ROM drive uses CD_ROM data Mode 2 Form 2, it must support a block size of 2336
bytes per block.

If a SCSI CD-ROM drive uses CD_DA mode, it must support a block size of 2352 bytes per block.

To control volume by using the DKAUDIO (play audio) operation, the device must support SCSI-2
mode data page OxE.

To use the DKAUDIO (play audio) operation, the device must support the following SCSI-2 optional
commands:

— read subchannel

— Ppause resume

— play audio MSF

— play audio track index
— read TOC

162 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Error Conditions

Possible errno values for ioctl, open, read, and write subroutines when you use the scdisk device driver

include:

Item
EACCES

EBUSY

EFAULT
EFORMAT
EINPROGRESS
EINVAL

EIO

EMEDIA

EMFILE

ENODEV

ENOTREADY

Description
Indicates one of the following circumstances:

* An attempt was made to open a device currently open in Diagnostic or Exclusive Access
mode.

* An attempt was made to open a Diagnostic mode session on a device already open.

* The user attempted a subroutine other than an ioctl or close subroutine while in Diagnostic
mode.

* A DKIOCMD or CDIOCMD operation was attempted on a device not in Diagnostic mode.

* A DK_CD_MODE ioctl subroutine operation was attempted on a device not in Exclusive
Access mode.

* A DKFORMAT operation was attempted on a device not in Exclusive Access mode.

Indicates one of the following circumstances:

* An attempt was made to open a session in Exclusive Access mode on a device already
opened.

* The target device is reserved by another initiator.

Indicates an invalid user address.

Indicates that the target device has unformatted media or media in an incompatible format.

Indicates that a CD-ROM drive has a play-audio operation in progress.

Indicates one of the following circumstances:

* A DKAUDIO (play-audio) operation was attempted for a device that is not configured to
use the SCSI-2 play-audio commands.

* The read or write subroutine supplied an nbyte parameter that is not an even multiple of the
block size.

* A sense data buffer length of greater than 255 bytes is not valid for a CDIORDSE,
DKIOWRSE, or DKIORDSE ioctl subroutine operation.

* The data buffer length exceeded the maximum defined in the devinfo structure for a
CDIORDSE, CDIOCMD, DKIORDSE, DKIOWRSE, or DKIOCMD ioctl subroutine
operation.

* An unsupported ioctl subroutine operation was attempted.

* A data buffer length greater than the allowed length by the CD-ROM drive is not valid for a
CDIOCMD ioctl subroutine operation.

* An attempt was made to configure a device that is still open.
* An incorrect configuration command is given.

* A DKPMR (Prevent Media Removal), DKAMR (Allow Media Removal), or DKEJECT (Eject
Media) command was sent to a device that does not support removable media.

* A DKEJECT (Eject Media) command was sent to a device that currently has its media that
are locked in the drive.

* The data buffer length exceeded the maximum defined for a strategy operation.
Indicates one of the following circumstances:

* The target device cannot be located or is not responding.

* The target device indicated an unrecoverable hardware error.

Indicates one of the following circumstances:

* The target device indicated an unrecoverable media error.

* The media was changed.

Indicates that an open operation was attempted for an adapter that already has the maximum
permissible number of opened devices.

Indicates one of the following circumstances:
* An attempt was made to access an undefined device.

* An attempt was made to close an undefined device.
Indicates that no media is in the drive.

Technical Reference: Kernel and Subsystems, Volume 2 163

Item Description
ENXIO Indicates one of the following circumstances:

* The ioctl subroutine supplied an invalid parameter.

* A read or write operation was attempted beyond the end of the hard disk.

EPERM Indicates that the attempted subroutine requires appropriate authority.

ESTALE Indicates that a read-only optical disk was ejected (without first being closed by the user) and
then either reinserted or replaced with a second optical disk.

ETIMEDOUT Indicates an I/O operation exceeded the specified timer value.

EWRPROTECT Indicates one of the following circumstances:

* An open operation that requested the read/write mode was attempted on read-only media.

* A write operation was attempted to read-only media.

Reliability and Serviceability Information

SCSI hard disk devices, CD-ROM drives, and read/write optical drives return the following errors:

Item Description

ABORTED COMMAND Indicates that the device ended the command

ADAPTER ERRORS Indicates that the adapter returned an error

GOOD COMPLETION Indicates that the command completed successfully

HARDWARE ERROR Indicates that an unrecoverable hardware failure occurred during command
execution or during a self-test

ILLEGAL REQUEST Indicates an incorect command or command parameter

MEDIUM ERROR Indicates that the command ended with an unrecoverable media error condition

NOT READY Indicates that the logical unit is offline or media is missing

RECOVERED ERROR Indicates that the command was successful after some recovery was applied

UNIT ATTENTION Indicates that the device is reset or the power is turned on

Error Record Values for Media Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical media error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error report is generated.
Log Equals a value of True, which indicates an error log entry must be created when this error occurs.
Alert Equals a value of False, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 5000, which indicates media.

User_Causes Equals a value of 5100, which indicates the media is defective.

User_Actions Equals the following values:

* 0000, which indicates problem-determination procedures must be performed

* 1601, which indicates the removable media must be replaced and retried

Inst_Causes None.
Inst_Actions None.
Fail_Causes Equals the following values:

* 5000, which indicates a media failure
* 6310, which indicates a disk drive failure
Fail_Actions Equals the following values:
* 0000, which indicates problem-determination procedures must be performed

* 1601, which indicates the removable media must be replaced and tried again

164 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description
Detail Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the sc_error_log_df structure. The
err_rec structure is defined in the /ust/include/sys/errids.h file. The sc_error_log_df structure
is defined in the /usr/include/sys/scsi.h file.

The sc_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the error,
if it is valid.

reserved2

Contains the segment count, which is the number of megabytes read from the device
at the time the error occurred.

reserved3
Contains the number of bytes read since the segment count was last increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for
a particular device.

Error Record Values for Hardware Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
hardware errors, as well as hard-aborted command errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical hardware error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error report is generated.
Log Equals a value of True, which indicates an error log entry must be created when this error occurs.
Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 6310, which indicates disk drive.

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

* 6310, which indicates a disk drive failure

* 6330, which indicates a disk drive electronics failure

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures must be performed.
Detail Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.
Note: The Detail_Data field in the err_rec structure contains the sc_error_log_df structure. The

err_rec structure is defined in the /ust/include/sys/errids.h file. The sc_error_log_df
structure is defined in the /usr/include/sys/scsi.h file.

The sc_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the
error, if it is valid.

reserved2
Contains the segment count, which is the number of megabytes read from the
device at the time the error occurred.

reserved3
Contains the number of bytes read since the segment count was last increased.

Technical Reference: Kernel and Subsystems, Volume 2 165

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for

a particular device.

Error Record Values for Adapter-Detected Hardware Failures

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors adapter-detected hardware errors are:

Item
Comment
Class
Report

Log

Alert
Err_Type
Err_Desc
Prob_Causes

User_Causes
User_Actions
Inst_Causes
Inst_Actions
Fail_Causes

Fail_Actions
Detail_Data

Description

Indicates adapter-detected hard disk, CD-ROM, or read/write optical hardware failure.

Equals a value of H, which indicates a hardware error.

Equals a value of True, which indicates this error must be included when an error report is generated.
Equals a value of True, which indicates an error-log entry must be created when this error occurs.
Equal to a value of FALSE, which indicates this error is not alertable.

Equals a value of Perm, which indicates a permanent failure.

Equals a value of 1312, which indicates a disk operation failure.

Equals the following values:

¢ 3452, which indicates a device cable failure

¢ 6310, which indicates a disk drive failure

None.

None.

None.

None.

Equals the following values:

* 3452, which indicates a storage device cable failure

¢ 6310, which indicates a disk drive failure

* 6330, which indicates a disk-drive electronics failure

Equals a value of 0000, which indicates problem-determination procedures must be performed.
Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the sc_error_log_df structure. The
err_rec structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure
is defined in the /usr/include/sys/scsi.h file.

The sc_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the error,
if it is valid.

reserved2

Contains the segment count, which is the number of megabytes read from the
device at the time the error occurred.

reserved3
Contains the number of bytes read since the segment count was last increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for

a particular device.

Error Record Values for Recovered Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors recovered errors are:

166 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item
Comment
Class
Report

Log

Alert
Err_Type
Err_Desc
Prob_Causes

User_Causes
User_Actions

Inst_Causes
Inst_Actions
Fail_Causes

Fail_Actions

Detail_Data

Description

Indicates hard disk, CD-ROM, or read/write optical recovered error.

Equals a value of H, which indicates a hardware error.

Equals a value of True, which indicates this error must be included when an error report is generated.
Equals a value of True, which indicates an error log entry must be created when this error occurs.
Equal to a value of FALSE, which indicates this error is not alertable.

Equals a value of Temp, which indicates a temporary failure.

Equals a value of 1312, which indicates a physical volume operation failure.
Equals the following values:

¢ 5000, which indicates a media failure

¢ 6310, which indicates a disk drive failure

Equals a value of 5100, which indicates media is defective.

Equals the following values:

* 0000, which indicates problem-determination procedures must be performed
* 1601, which indicates the removable media must be replaced and tried again
None.

None.

Equals the following values:

¢ 5000, which indicates a media failure

* 6310, which indicates a disk drive failure

Equals the following values:

* 0000, which indicates problem-determination procedures must be performed

* 1601, which indicates the removable media must be replaced and tried again
Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the sc_error_log_df structure. The
err_rec structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure
is defined in the /usr/include/sys/scsi.h file.

The sc_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the error,
if it is valid.

reserved2

Contains the segment count, which is the number of megabytes read from the
device at the time the error occurred.

reserved3
Contains the number of bytes read since the segment count was last increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for

a particular device.

Error Record Values for Unknown Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors unknown errors are:

Technical Reference: Kernel and Subsystems, Volume 2 167

Item
Comment
Class
Report

Log

Alert
Err_Type
Err_Desc
Prob_Causes

User_Causes
User_Actions
Inst_Causes
Inst_Actions
Fail_Causes
Fail_Actions

Detail_Data

Description

Indicates hard disk, CD-ROM, or read/write optical unknown failure.

Equals a value of H, which indicates a hardware error.

Equals a value of True, which indicates this error must be included when an error report is generated.
Equals a value of True, which indicates an error log entry must be created when this error occurs.
Equal to a value of FALSE, which indicates this error is not alertable.

Equals a value of Unkn, which indicates the type of error is unknown.

Equals a value of FE00, which indicates an undetermined error.

Equals the following values:

* 3300, which indicates an adapter failure

¢ 5000, which indicates a media failure

¢ 6310, which indicates a disk drive failure

None.

None.

None.

None.

Equals a value of FFFF, which indicates the failure causes are unknown.
Equals the following values:

* 0000, which indicates problem-determination procedures must be performed
* 1601, which indicates the removable media must be replaced and tried again
Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the sc_error_log_df structure. The
err_rec structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df
structure is defined in the /usr/include/sys/scsi.h file.

The sc_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the
error, if it is valid.

reserved?2
Contains the segment count, which is the number of megabytes read from the
device at the time the error occurred.

reserved3
Contains the number of bytes read since the segment count was last increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for

a particular device.

Special Files

The scdisk SCSI device driver uses raw and block special files in performing its functions.

Attention: Data corruption, loss of data, or loss of system integrity (system crash) occurs if devices that
support paging, logical volumes, or mounted file systems are accessed by using block special files. Block
special files are provided for logical volumes and disk devices and are solely for system use in managing
file systems, paging devices, and logical volumes. These files must not be used for other purposes.

The special files that are used by the scdisk device driver include the following (listed by type of device):

e Hard disk devices:

168 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

/dev/rhdisk0, /dev/rhdiskl,..., /dev/rhdiskn Provides an interface to allow SCSI device drivers character access (raw 1/0O access
and control functions) to SCSI hard disks.

/dev/hdiskO0, /dev/hdiskl,..., /dev/hdiskn Provides an interface to allow SCSI device drivers block I/O access to SCSI hard
disks.

* CD-ROM devices:

Item Description

/dev/rcdO, /dev/rcdl,..., /dev/redn Provides an interface to allow SCSI device drivers character access (raw 1/0 access
and control functions) to SCSI CD-ROM disks.

/dev/cdO, /dev/cdl,..., /dev/cdn Provides an interface to allow SCSI device drivers block I/O access to SCSI

CD-ROM disks.

* Read/write optical devices:

Item Description

/dev/romd0, /dev/romdd,..., /dev/romdn Provides an interface to allow SCSI device drivers character access
(raw I/0O access and control functions) to SCSI read/write optical
devices.

/dev/omd0, /dev/omdil,..., /dev/omdn Provides an interface to allow SCSI device drivers block I/O access to

SCSI read /write optical devices.

Note: The prefix r on a special file name indicates that the drive is accessed as a raw device rather
than a block device. Performing raw I/O with a hard disk, CD-ROM, or read/write optical drive
requires that all data transfers be in multiples of the device block size. All Iseek subroutines that are
made to the raw device driver must result in a file pointer value that is a multiple of the device block
size.

Related reference:

[‘Parallel SCSI Adapter Device Driver” on page 143|
Related information:

Bpecial Files Overview]|

IA Typical Initiator-Mode SCSI Driver Transaction Sequence

octl or ioctl

SCIOCMD SCSI Adapter Device Driver ioctl Operation
Purpose

Provides a means to issue any SCSI command to a SCSI device.
Description

The SCIOCMD operation allows the caller to issue a SCSI command to a selected adapter. This
command can be used by system management routines to aid in the configuration of SCSI devices.

The arg parameter for the SCIOCMD operation is the address of a sc_passthru structure, which is
defined in the /usr/include/sys/scsi.h field. The sc_passthru parameter allows the caller to select which
SCSI and LUN IDS to send the command.

The SCSI status byte and the adapter status bytes are returned through the sc_passthru structure. If the
SCIOCMD operation returns a value of -1 and the errno global variable is set to a nonzero value, the
requested operation has failed. If it happens, the caller must evaluate the returned status bytes to
determine why the operation failed and what recovery actions must be taken.

Technical Reference: Kernel and Subsystems, Volume 2 169

If the SCIOCMD operation fails because a field in the sc_passthru structure has an invalid value, the
subroutine returns a value of -1, the errno global variable is set to EINVAL, and the einval_arg field is
set to the field number (starting with 1 for the version field) of the field that had an invalid value. A
value of 0 for the einval_arg field indicates that no additional information is available.

The version field of the sc_passthru structure can be set to the value of SC_VERSION_2 in the
lusr/include/sys/scsi.h file, and the user can provide the following fields:

* variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.

* variable_cdb_length determines the length of the cdb variable to which the variable_cdb_ptr field
points.

On completion of the SCIOCMD ioctl request, the residual field indicates the leftover data that device
did not fully satisfy for this request. On a successful completion, the residual field would indicate that
the device does not have the all data that is requested or the device has less than the amount of data that
is requested. On a failure completion, the user must check the status_validity field to determine whether
a valid SCSI bus problem exists. In this case, the residual field would indicate the number bytes that the
device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command. If an attempt is made to
transfer more than the maximum transfer size, the subroutine returns a value of -1, sets the errno global

variable to a value of EINVAL, and sets the einval_arg field to a value of 18.

Refer to the Small Computer System Interface (SCSI) Specification to find out the format of the request-sense
data for a particular device.

Return Values

The SCIOCMD operation returns a value of 0 when successfully completed. If unsuccessful, a value of -1
is returned, and the errno global variable is set to one of the following values:

Item Description

EIO A system error occurred. Consider trying the operation several
(three) times because another attempt might be successful. If an
EIO error occurs and the status_validity field is set to
SC_SCSI_ERROR, the scsi_status field has a valid value and
must be inspected.

If the status_validity field is zero and remains so on successive
trials, an unrecoverable error occurred.

If the status_validity field is SC_SCSI_ERROR and the
scsi_status field contains a Check Condition status, a SCSI request
sense must be issued by using the SCIOCMD ioctl to recover
the sense data.

EFAULT A user process copy failed.

EINVAL The device is not opened, or the caller set a field in the
sc_passthru structure to an invalid value.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request failed.

ETIMEDOUT The command timed out. Consider trying the operation several
times because another attempt might be successful.

ENODEV The device is not responding.

ETIMEDOUT The operation did not complete before the timeout value was
exceeded.

Files

170 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

/dev/scsi0, /dev/scsil, ... /dev/scsin Provides an interface for all SCSI device drivers to access SCSI
devices or adapters.

Related reference:
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIODIAG (Diagnostic) SCSI Adapter Device Driver ioctl Operation
Purpose

Provides the means to issue adapter diagnostic commands.
Description

The SCIODIAG operation allows the caller to issue various adapter diagnostic commands to the selected
SCSI adapter. These diagnostic command options are:

* Run the card Internal Diagnostics test
* Run the card SCSI Wrap test

* Run the card Read/Write Register test
* Run the card POS Register test

* Run the card SCSI Bus Reset test

An additional option allows the caller to resume the card Internal Diagnostics test from the point of a
failure, which is indicated by the return value. The arg parameter for the SCIODIAG operation specifies
the address of a sc_card_diag structure. This structure is defined in the /ust/include/sys/scsi.h file.

The actual adapter error-status information from each error reported by the card diagnostics is passed as
returned parameters to the caller. Refer to the sc_card_diag structure defined in the /usr/include/sys/
scsi.h file for the format of the returned data.

When the card diagnostics have completed (with previous errors), a value of ENOMSG is returned. At
this point, no further SCIODIAG resume options are required, as the card internal diagnostics test has
completed.

Adapter error status is always returned when a SCIODIAG operation results in an errno value of
EFAULT. Because this error information is returned for each such volume, the final ENOMSG value
returned for the card Internal Diagnostics test includes no error status information. Also, because this is a
diagnostic command, these errors are not logged in the system error log.

Note: The SCSI adapter device driver performs no internal retries or other error-recovery procedures
during execution of this operation. Error logging is also inhibited when running this command.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Technical Reference: Kernel and Subsystems, Volume 2 171

Value Description

EFAULT Indicates that a bad copy between user and kernel space occurred.

EFAULT For the integrated SCSI adapter on the 7008 and 7011 system models, this return value also indicates that the
SCSI adapter device driver detected an error while attempting to run the SCIODIAG operation. In this case,
the returned adapter status information must be analyzed to discover the cause of the error. Because this is a
diagnostic command, this error is not logged in the system error log.

For all other SCSI adapters, this value indicates that the card internal diagnostics have detected an error and
paused. To continue, the caller must issue another SCIODIAG operation with the resume option. In response
to this option, the card continues the diagnostics until either the end is reached or another error is detected.
The caller must continue to issue SCIODIAG operations until the EFAULT error no longer returns.

EINVAL Indicates a bad input parameter.

EIO Indicates that the SCSI adapter device driver detected an error while attempting to run the SCIODIAG
operation. In this case, the returned adapter status information must be analyzed to discover the cause of the
error. Because this is a diagnostic command, this error is not logged in the system error log.

ENOMSG Indicates that the card Internal Diagnostics test has completed.

ENXIO Indicates that the operation or suboption selected is not supported on this adapter. This should not be treated
as an error. The caller must check for this return value first (before checking for other errno values) to avoid
mistaking this for a failing command.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed command time-out value expired. The
SCIODIAG operation is a diagnostic command, so its errors are not logged in the system error log.

Files
Item Description
/dev/scsi0, /dev/scsil,..., /dev/scsin Provide an interface to allow SCSI device

drivers to access SCSI devices/adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIODNLD (Download) SCSI Adapter Device Driver ioctl Operation
Purpose

Provides the means to download microcode to the adapter.
Description

The SCIODNLD operation provides for downloading microcode to the selected adapter. This operation
can be used by system management routines to prepare the adapter for operation. The adapter can be
opened in Normal or Diagnostic mode when the SCIODNLD operation is run.

There are two options for executing the SCIODNLD operation. The caller can either download microcode
to the adapter or query the version of the currently downloaded microcode.

If the download microcode option is selected, a pointer to a download buffer and its length must be
supplied in the caller's memory space. The maximum length of this microcode is adapter-dependent. If
the adapter requires transfer of complete blocks, the microcode to be sent must be padded to the next
largest block boundary. The block size, if any, is adapter-dependent. Refer to the reference manual for the
particular SCSI adapter to find the adapter-specific requirements of the microcode buffer to be
downloaded.

The SCSI adapter device driver validates the parameter values for such things as maximum length and

block boundaries, as required. The arg parameter for the SCIODNLD operation specifies the address of a
sc_download structure. This structure is defined in the /usr/include/sys/scsi.h file.

172 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

If the query version option is selected, the pointer and length fields in the passed parameter block are
ignored. On successful completion of the SCIODNLD operation, the microcode version is contained in
the version_number field.

The SCSI adapter device driver performs normal error-recovery procedures during execution of the
SCIODNLD operation.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a severe I/O error has occurred, preventing completion of the download. In this case, further
operations are not possible on the card, and the caller should discontinue commands to the card. The adapter
error-status information is logged in the system error log.

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that the adapter device driver was unable to run the command due to incorrect input parameters.
Check microcode length and block boundary for errors.

EIO Indicates that the adapter device driver was unable to complete the command due to an unrecoverable I/O

error or microcode cyclical redundancy check (CRC) error. If the card has on-board microcode, it may be able
to continue running, and further commands may still be possible on this adapter. The adapter error-status
information is logged in the system error log.

ENOMEM Indicates insufficient memory is available to complete the command.

ENXIO Indicates that the operation or suboption selected is not supported on this adapter and should not be treated
as an error. The caller must check for this return value first (before checking for other errno values) to avoid
mistaking this for a failing command.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed command time-out value expired.
Since the download operation may not have completed, further operations on the card may not be possible.
The caller should discontinue sending commands to the card. This error is also logged in the system error log.

Files
Item Description
/dev/scsi0, /dev/scsil,..., /dev/scsin Provide an interface to allow SCSI device

drivers to access SCSI devices and adapters.

Related reference:

[‘scdisk SCSI Device Driver” on page 151]

[‘Parallel SCSI Adapter Device Driver” on page 143|
Related information:

BCSI Subsystem Overview|

SCIOEVENT (Event) SCSI Adapter Device Driver ioctl Operation
Purpose

Registers the selected SCSI device instance to receive asynchronous event notification.

Description

The SCIOEVENT operation registers the selected initiator or target-mode device for receiving
asynchronous event notification. Only kernel mode processes or device drivers can call this function. If a
user-mode process attempts an SCIOEVENT operation, the ioctl command is unsuccessful and the errno

global value is set to EPERM.

The arg parameter to the SCIOEVENT operation should be set to the address of an sc_event_struct
structure, which is in the /usr/include/sys/scsi.h file. If this is a target-mode instance, the

Technical Reference: Kernel and Subsystems, Volume 2 173

SCIOSTARTTGT operation was used to open the device session; the caller then fills in the ID field with
the SCSI ID of the SCSI initiator and sets the Togical unit number (LUN) field to a value of 0. If this is an
initiator-mode instance, the SCIOSTART operation was used to open the device session; the ID field is
then set to the SCSI ID of the SCSI target, and the LUN is set to the LUN ID of the SCSI target. The
device must have been previously opened using one of the start ioctls for this operation to succeed. If the
device session is not opened, the ioctl command is unsuccessful and the returned errno global value is
set to EINVAL.

The event registration performed by this ioctl is only allowed once per device session; only the first
SCIOEVENT operation is accepted after the device is opened. Succeeding SCIOEVENT operations are
unsuccessful, and the errno global value is set to EINVAL. The event registration is cancelled
automatically when the device session is closed.

The caller fills in the mode field with one of the following values, which are defined in the
lusr/include/sys/scsi.h file:

#define SC_IM_MODE /* this is an initiator mode device */

#define SC_TM_MODE /* this is a target mode device */

The async_func field is filled in with the address of a pinned routine (in the calling program) that should
be called by the SCSI adapter device driver whenever asynchronous event status is available for a
registered device. The struct sc_event_info structure, defined in the /usr/include/sys/scsi.h file, is passed
by address to the caller's async_func routine.

The async_correlator field can optionally be used by the caller to provide an efficient means of
associating event information with the appropriate device. This field is saved by the SCSI adapter device
driver and is returned, unchanged, with information passed back to the caller's async_func routine.
Reserved fields must be set to 0 by the caller.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Either an SCIOSTART or SCIOSTARTTGT operator has not been issued to this device instance, or this device is
already registered for async events.

EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to execute this operation.

Files

Item Description

/dev/scsi0, /dev/scsil,..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI

devices or adapters.
/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151
[‘Parallel SCSI Adapter Device Driver” on page 143|

174 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

SCIOGTHW (Gathered Write) SCSI Adapter Device Driver ioctl
Operation
Purpose

Allows the caller to verify that the SCSI adapter device driver to which this device instance is attached
supports gathered writes.

Description
This operation allows the caller to verify that the gathered write function is supported by the SCSI
adapter device driver before the caller attempts such an operation. The SCIOGTHW operation fails if a

SCSI adapter device driver does not support gathered writes.

The arg parameter to the SCIOGTHW operation is set to null by the caller to indicate no input parameter
is passed.

Note: This operation is not supported by all SCSI I/O Controllers. If not supported, errno is set to
EINVAL and a value of -1 is returned.

Return Values

When completed successfully, the SCIOGTHW operation returns a value of 0, meaning gathered writes
are supported. Otherwise, a value of -1 is returned and errno global variable is set to EINVAL.

Files

Item Description

/dev/scsi0, /dev/scsil,..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI
devices or adapters.

/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIOHALT (Halt) SCSI Adapter Device Driver ioctl Operation
Purpose

Ends the current command (if there is one), clears the queue of any pending commands, and places the
device queue in a halted state.

Description

The SCIOHALT operation allows the caller to end the current command (if there is one) to a selected
device, clear the queue of any pending commands, and place the device queue in a halted state. The
command causes the attached SCSI adapter to execute a SCSI abort message to the selected target device.
This command is used by an upper-level SCSI device driver to end a running operation instead of
waiting for the operation to complete or time out.

Once the SCIOHALT operation is sent, the calling device driver must set the SC_RESUME flag. This bit
is located in the flags field of the next sc_buf structure to be processed by the SCSI adapter device
driver. Any sc_buf structure sent without the SC_RESUME flag, after the device queue is in the halted
state, is rejected.

Technical Reference: Kernel and Subsystems, Volume 2 175

The arg parameter to the SCIOHALT operation allows the caller to specify the SCSI identifier of the
device to be reset. The least significant byte in the arg parameter is the LUN ID (logical unit number
identifier) of the LUN on the SCSI controller to be halted. The next least significant byte is the SCSI ID.
The remaining two bytes are reserved and must be set to a value of 0.

The SCSI adapter device driver performs normal error-recovery procedures during execution of this
command. For example, if the abort message causes the SCSI bus to hang, a SCSI bus reset is initiated to
clear the condition.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned,
and the errno global variable is set to one of the following values:

Value Description

EINVAL Indicates a SCIOSTART operation was not issued prior to this operation.

EIO Indicates an unrecoverable I1/O error occurred. In this case, the adapter error-status information is logged
in the system error log.

EIO Indicates either the device is already stopping or the device driver was unable to pin code.

ENOCONNECT Indicates a SCSI bus fault occurred.

ENODEV Indicates the target SCSI ID could not be selected or is not responding. This condition is not necessarily an
error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with status before the internal command time-out value expired.

This error is logged in the system error log.

Files

Item Description

/dev/scsi0, /dev/scsil, ..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI
devices and adapters.

/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIOINQU (Inquiry) SCSI Adapter Device Driver ioctl Operation
Purpose

Provides the means to issue an inquiry command to a SCSI device.

Description

The SCIOINQU operation allows the caller to issue a SCSI device inquiry command to a selected
adapter. This command can be used by system management routines to aid in configuration of SCSI
devices.

The arg parameter for the SCIOINQU operation is the address of an sc_inquiry structure. This structure

is defined in the /ust/include/sys/scsi.h file. The sc_inquiry parameter block allows the caller to select the
SCSI and LUN IDs to be queried.

176 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

The SC_ASYNC flag byte of the parameter block must not be set on the initial call to this operation. This
flag is only set if a [bus fault occurs|and the caller intends to attempt more than one retry.

If successful, the returned inquiry data can be found at the address specified by the caller in the
sc_inquiry structure. Successful completion occurs if a device responds at the requested SCSI ID, but the
returned inquiry data must be examined to see if the requested LUN exists. Refer to the Small Computer
System Interface (SCSI) Specification for the applicable device for the format of the returned data.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of
this command.

Return Values

When completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that a SCIOSTART command was not issued prior to this command.

EIO Indicates that an unrecoverable I/O error has occurred. If EIO is returned, the caller should retry the

SCIOINQU operation since the first command may have cleared an error condition with the device. In
case of an unrecovered error, the adapter error-status information is logged in the system error log.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with the SC_ASYNC flag set
in the flag byte of the passed parameters. If more than one retry is attempted, only the last retry should be
made with the SC_ASYNC flag set. Generally the SCSI adapter device driver cannot determine which
device caused the SCSI bus fault, so this error is not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID. This return value implies that no
LUN:s exist on the requested SCSI ID. Therefore, when the ENODEYV return value is encountered, the
caller can skip this SCSI ID (and all LUNs on it) and go on to the next SCSI ID. This condition is not
necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates that the adapter did not respond with a status before the internal command time-out value
expired. On receiving the ETIMEDOUT return value, the caller should retry this command at least once,
since the first command may have cleared an error condition with the device. This error is logged in the
system error log.

Files

Item Description

/dev/scsi0, /dev/scsil, ..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI
devices/adapters.

/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIOREAD (Read) SCSI Adapter Device Driver ioctl Operation
Purpose

Issues a single block SCSI read command to a selected SCSI device.

Technical Reference: Kernel and Subsystems, Volume 2 177

Description

The SCIOREAD operation allows the caller to issue a SCSI device read command to a selected adapter.
System management routines use this command for configuring SCSI devices.

The arg parameter of the SCIOREAD operation is the address of an sc_readblk structure. This structure
is defined in the /usr/include/sys/scsi.h header file.

This command results in the SCSI adapter device driver issuing a 6-byte format ANSI SCSI-1 read
command. The command is set up to read only a single block. The caller supplies:

* Target device SCSI and LUN ID

* Logical block number to be read

* Length (in bytes) of the block on the device

* Time-out value (in seconds) for the command

* Pointer to the application buffer where the returned data is to be placed

* Flags parameter

The maximum block length for this command is 4096 bytes. The command will be rejected if the length is
found to be larger than this value.

The SC_ASYNC flag of the flag parameter must not be set on the initial call to this operation. This flag is
set only if a bus fault occurs and only if this is the caller's last retry attempt after this error occurs.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of
this command.

Return Values

When completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description
EFAULT Indicates that a bad copy between kernel and user space occurred.
EINVAL Indicates that an SCIOSTART command was not issued prior to this command. If the SCIOSTART

command was issued, then this indicates the block length field value is too large.

EIO Indicates that an I/O error has occurred. If an EIO value is returned, the caller should retry the
SCIOREAD operation since the first command may have cleared an error condition with the device. In
the case of an adapter error, the system error log records the adapter error status information.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with the SC_ASYNC flag set
in the flag byte of the passed parameters. If more than one retry is attempted, only the last retry should be
made with the SC_ASYNC flag set. Generally, the SCSI adapter device driver cannot determine which
device caused the bus fault, so this error is not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID. This return value implies that no
logical unit numbers (LUNSs) exist on the specified SCSI ID. This condition is not necessarily an error and
is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with status before the internal time-out value expired. The caller
should retry this command at least once, since the first command may have cleared an error condition
with the device. The system error log records this error.

Files

178 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

/dev/scsi0, /dev/scsil,..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI
devices/adapters.
/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIORESET (Reset) SCSI Adapter Device Driver ioctl Operation
Purpose

Allows the caller to force a SCSI device to release all current reservations, clear all current commands,
and return to an initial state.

Description

The SCIORESET operation allows the caller to force a SCSI device to release all current reservations,
clear all current commands, and return to an initial state. This operation is used by system management
routines to force a SCSI controller to release a competing SCSI initiator's reservation in a multi-initiator
environment.

This operation actually executes a SCSI bus device reset (BDR) message to the selected SCSI controller on
the selected adapter. The BDR message is directed to a SCSI ID. Therefore, all logical unit numbers
(LUNSs) associated with that SCSI ID are affected by the execution of the BDR.

For the operation to work effectively, a SCSI Reserve command should be issued after the SCIORESET
operation through the appropriate SCSI device driver. Typically, the SCSI device driver open logic issues
a SCSI Reserve command. This prevents another initiator from claiming the device.

There is a finite amount of time between the release of all reservations (by a SCIORESET operation) and
the time the device is again reserved (by a SCSI Reserve command from the host). During this interval,
another SCSI initiator can reserve the device instead. If this occurs, the SCSI Reserve command from this
host fails and the device remains reserved by a competing initiator. The capability needed to prevent or
recover from this event is beyond the SCSI adapter device driver and SCSI device driver components.

The arg parameter to the SCIORESET operation allows the caller to specify the SCSI ID of the device to
be reset. The least significant byte in the arg parameter is the LUN ID of the LUN on the SCSI controller.
The device indicated by the LUN ID should have been successfully started by a call to the SCIOSTART
operation. The next least significant byte is the SCSI ID. The remaining two bytes are reserved and must
be set to a value of 0.

Examples

1. The following example demonstrates actual use of this command. A SCSI ID of 1 is assumed, and an
LUN of 0 exists on this SCSI controller.

open SCSI adapter device driver

SCIOSTART SCSI ID=1, LUN=0

SCIORESET SCSI ID=1, LUN=0 (to free any reservations)
SCIOSTOP SCSI ID=1, LUN=0

close SCSI adapter device driver

Technical Reference: Kernel and Subsystems, Volume 2 179

open SCSI device driver (normal open) for SCSI ID=1, LUN=0

Use device as normal

2. To make use of the SC_FORCED_OPEN flag of the SCSI device driver:

open SCSI device driver (with SC_FORCED_OPEN flag)
for SCSI ID=1, LUN=0

Use the device as normal.

Both examples assume that the SCSI device driver open call executes a SCSI Reserve command on the
selected device.

The SCSI adapter device driver performs normal error-recovery procedures during execution of this
command. For example, if the BDR message causes the SCSI bus to hang, a SCSI bus reset will be
initiated to clear the condition.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EINVAL Indicates an SCIOSTART command was not issued prior to this command.

EIO Indicates an unrecoverable 1/O error occurred. In this case, the adapter error-status information is logged
in the system error log.

EIO Indicates either the device is already stopping or the device driver is unable to pin code.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with the SC_ASYNC flag set

in the flag byte of the passed parameters. If more than one retry is attempted, only the last retry should be
made with the SC_ASYNC flag set. Generally, the SCSI adapter device driver cannot determine which
device caused the bus fault, so this error is not logged in the system error log.

ENODEV Indicates the target SCSI ID could not be selected or is not responding. This condition is not necessarily an
error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with status before the internal command time-out value expired.

This error is logged.

Files

Item Description

/dev/scsi0, /dev/scsil, ..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI
devices or adapters.

/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIOSTART (Start SCSI) Adapter Device Driver ioctl Operation
Purpose

Opens a logical path to a SCSI target device.

180 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Description

The SCIOSTART operation opens a logical path to a SCSI device. The host SCSI adapter acts as an
initiator device. This operation causes the adapter device driver to allocate and initialize the data areas
needed to manage commands to a particular SCSI target.

The SCIOSTART operation must be issued prior to any of the other non-diagnostic mode operations,
such as SCIOINQU and SCIORESET. However, the SCIOSTART operation is not required prior to
calling the IOCINFO operation. Finally, when the caller is finished issuing commands to the SCSI target,
the SCIOSTOP operation must be issued to release allocated data areas and close the path to the device.

The arg parameter to SCIOSTART allows the caller to specify the SCSI and LUN (logical unit number)
identifier of the device to be started. The least significant byte in the arg parameter is the LUN, and the
next least significant byte is the SCSI ID. The remaining two bytes are reserved and must be set to a
value of 0.

Return Values

If completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and the
errno global variable set to one of the following values:

Value Description
EIO Indicates either an unrecoverable I/O error, or the device driver is unable to pin code.
EINVAL Indicates either that the SCSI ID and LUN combination was incorrect (the combination may already be in use) or that

the passed SCSI ID is the same as that of the adapter.

If the SCIOSTART operation is unsuccessful, the caller must not attempt other operations to this SCSI ID
and LUN combination, since it is either already in use or was never successfully started.

Files

Item Description

/dev/scsi0, /dev/scsil, ..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI
devices or adapters.

/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIOSTARTTGT (Start Target) SCSI Adapter Device Driver ioctl
Operation
Purpose

Opens a logical path to a SCSI initiator device.
Description
The SCIOSTARTTGT operation opens a logical path to a SCSI initiator device. The host SCSI adapter

acts as a target. This operation causes the adapter device driver to allocate and initialize
device-dependent information areas needed to manage data received from the initiator. It also makes the

Technical Reference: Kernel and Subsystems, Volume 2 181

adapter device driver allocate system buffer areas to hold data received from the initiator. Finally, it
makes the host adapter ready to receive data from the initiator.

This operation may only be called from a kernel process or device driver, as it requires that both the
caller and the SCSI adapter device driver be able to directly access each other's code in memory.

Note: This operation is not supported by all SCSI I/O controllers. If not supported, errno is set to
ENXIO and a value of -1 is returned.

The arg parameter to the SCIOSTARTTGT ioctl operation should be set to the address of an sc_strt_tgt
structure, which is defined in the /usr/include/sys/scsi.h file. The caller fills in the ID field with the SCSI
ID of the SCSI initiator and sets the Togical unit number (LUN) field to 0, as the initiator LUN is ignored
for received data.

The caller sets the buf_size field to the desired size for all receive buffers allocated for this host target
instance. This is an adapter-dependent parameter, which should be set to 4096 bytes for the SCSI I/O
Controller. The num_bufs field is set to indicate how many buffers the caller wishes to have allocated for
the device. This is also an adapter-dependent parameter. For the SCSI I/O Controller, it should be set to
16 or greater.

The caller fills in the recv_func field with the address of a pinned routine from its module, which the
adapter device driver calls to pass received-data information structures. These structures tell the caller
where the data is located and if any errors occurred.

The tm_correlator field can optionally be used by the caller to provide an efficient means of associating
received data with the appropriate device. This field is saved by the SCSI adapter device driver and is
returned, with information passed back to the caller's recv_func routine.

The free_func field is an output parameter for this operation. The SCSI adapter device driver fills this
field with the address of a pinned routine in its module, which the caller calls to pass processed
received-data information structures.

Currently, the host SCSI adapter acts only as LUN 0 when accessed from other SCSI initiators. This
means the remotely-attached SCSI initiator can only direct data at one logical connection per host SCSI
adapter. At most, only one calling process can open the logical path from the host SCSI adapter to a
remote SCSI initiator. This does not prevent a single process from having multiple target devices opened
simultaneously.

Note: Two or more SCSI target devices can have the same SCSI ID if they are physically attached to
separate SCSI adapters.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

182 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Value Description

EINVAL An SCIOSTARTTGT command has already been issued to this SCSI ID, the passed SCSI ID is the same as that of
the adapter, the LUN field is not set to 0, the buf_size field is greater than 4096 bytes, the num_bufs field is less than
16, or the recv_func field is set to null.

EIO Indicates an I/O error or kernel service failure occurred, preventing the device driver from enabling the selected SCSI
ID.

ENOMEM Indicates that a memory allocation error has occurred.

EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to execute this operation.

Files

Item Description

/dev/scsi0, /dev/scsil,...,/dev/scsin Provide an interface to allow SCSI device drivers to access SCSI

devices or adapters.
/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|

['scdisk SCSI Device Driver” on page 15|

[‘Parallel SCSI Adapter Device Driver” on page 143|
[‘tmscsi SCSI Device Driver” on page 227|

SCIOSTOP (Stop) Device SCSI Adapter Device Driver ioctl Operation
Purpose

Closes the logical path to a SCSI target device.
Description

The SCIOSTOP operation closes the logical path to a SCSI device. The host SCSI adapter acts as an
initiator. The SCIOSTOP operation causes the adapter device driver to deallocate data areas allocated in
response to a SCIOSTART operation. This command must be issued when the caller wishes to cease
communications to a particular SCSI target. The SCIOSTOP operation should only be issued for a device
successfully opened by a previous call to an SCIOSTART operation.

The SCIOSTOP operation passes the arg parameter. This parameter allows the caller to specify the SCSI
and logical unit number (LUN) IDs of the device to be stopped. The least significant byte in the arg
parameter is the LUN, and the next least significant byte is the SCSI ID. The remaining two bytes are
reserved and must be set to 0.

Return Values

When completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Technical Reference: Kernel and Subsystems, Volume 2 183

Value Description

EINVAL Indicates that the device has not been opened. An SCIOSTART operation should be issued prior to calling the
SCIOSTOP operation.

EIO Indicates that the device drive was unable to pin code.

Files

Item Description

/dev/scsi0, /dev/scsil, ..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI

devices or adapters.
/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
[‘scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIOSTOPTGT (Stop Target) SCSI Adapter Device Driver ioctl
Operation
Purpose

Closes a logical path to a SCSI initiator device.
Description

The SCIOSTOPTGT operation closes a logical path to a SCSI initiator device, where the host SCSI
adapter acts as a target. This operation causes the adapter device driver to deallocate device-dependent
information areas allocated in response to the SCIOSTARTTGT operation. It also causes the adapter
device driver to deallocate system buffer areas used to hold data received from the initiator. Finally, it
disables the host adapter's ability to receive data from the selected initiator.

This operation may only be called from a kernel process or device driver.

Note: This operation is not supported by all SCSI I/O Controllers. If not supported, errno is set to
ENXIO and a value of -1 is returned.

The arg parameter to the SCIOSTOPTGT operation should be set to the address of an sc_stop_tgt
structure, which is defined in the /usr/include/sys/scsi.h file. The caller fills in the id field with the SCSI
ID of the initiator and sets the Togical unit number (LUN) field to 0 as the initiator LUN is ignored for
received data.

Note: The calling device driver should have previously freed any received-data areas by passing their
information structures to the SCSI adapter device driver's free_func routine. All buffers allocated for this
device are deallocated by the SCIOSTOPTGT operation regardless of whether the calling device driver
has finished processing those buffers and has called the free_func routine.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

184 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description
EINVAL An SCIOSTOPTGT command has not been previously issued to this SCSI ID.

EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to execute this operation.

Files

Item Description

/dev/scsi0, /dev/scsil, ... Provide an interface to allow SCSI device drivers to access SCSI
devices or adapters.

/dev/vscsi0, /dev/vscsil, ..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|

['scdisk SCSI Device Driver” on page 151]

[‘Parallel SCSI Adapter Device Driver” on page 143|
[‘tmscsi SCSI Device Driver” on page 227|

SCIOSTUNIT (Start Unit) SCSI Adapter Device Driver ioctl Operation
Purpose

Provides the means to issue a SCSI Start Unit command to a selected SCSI device.
Description

The SCIOSTUNIT operation allows the caller to issue a SCSI Start Unit command to a selected SCSI
adapter. This command can be used by system management routines to aid in configuration of SCSI
devices. For the SCIOSTUNIT operation, the arg parameter operation is the address of an sc_startunit
structure. This structure is defined in the /usr/include/sys/scsi.h file.

The sc_startunit structure allows the caller to specify the SCSI and logical unit number (LUN) IDs of the
device on the SCSI adapter that is to be started. The SC_ASYNC flag (in the flag byte of the passed
parameter block) must not be set on the initial attempt| of this command.

The start_flag field in the parameter block allows the caller to indicate the start option to the
SCIOSTUNIT operation. When the start_flag field is set to TRUE, the logical unit is to be made ready
for use. When FALSE, the logical unit is to be stopped.

Attention: When the immed_f1lag field is set to TRUE, the SCSI adapter device driver allows
simultaneous SCIOSTUNIT operations to any or all attached devices. It is important that when
executing simultaneous SCSI Start Unit commands, the caller should allow a delay of at least 10
seconds between succeeding SCSI Start Unit command operations. The delay ensures that adequate
power is available to devices sharing a common power supply. Failure to delay in this manner can
cause damage to the system unit or to attached devices. Consult the technical specifications manual
for the particular device and the appropriate hardware technical reference for your system.

The immed_fTag field allows the caller to indicate the immediate option to the SCIOSTUNIT operation.
When the immed_f1ag field is set to TRUE, status is to be returned as soon as the command is received by
the device. When the field is set to FALSE, the status is to be returned after the operation is completed.
The caller should set the immed_flag field to TRUE to allow overlapping SCIOSTUNIT operations to
multiple devices on the SCSI bus. In this case, the SCIOTUR operation can be used to determine when
the SCIOSTUNIT has actually completed.

Technical Reference: Kernel and Subsystems, Volume 2 185

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of the
SCIOSTUNIT operation.

Return Values

When completed successfully, the SCIOSTUNIT operation returns a value of 0. Otherwise, a value of -1
is returned and the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that an SCIOSTART command was not issued prior to this command.

EIO Indicates that an unrecoverable I/O error has occurred. If EIO is received, the caller should retry this

command at least once, as the first command may have cleared an error condition with the device. In case
of an unrecovered error, the adapter error-status information is logged in the system error log.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with the SC_ASYNC flag set
in the flag byte of the passed parameters. If more than one retry is attempted, only the last retry should be
made with the SC_ASYNC flag set. Generally the SCSI adapter device driver cannot determine which
device caused the SCSI bus fault, so this error is not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID. This condition is not necessarily an
error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates that the adapter did not respond with status before the internal command time-out value

expired. If ETIMEDOUT is received, the caller should retry this command at least once, as the first
command may have cleared an error condition with the device. This error is logged in the system error

log.
Files
Item Description
/dev/scsi0, /dev/scsil,..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI
devices or adapters.
/dev/vscsi0, /dev/vscsil,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIOTRAM (Diagnostic) SCSI Adapter Device Driver ioctl Operation
Purpose

Provides the means to issue various adapter commands to test the card DMA interface and buffer RAM.
Description

The SCIOTRAM operation allows the caller to issue various adapter commands to test the card DMA
interface and buffer RAM. The arg parameter block to the SCIOTRAM operation is the sc_ram_test
structure. This structure is defined in the /usr/include/sys/scsi.h file and contains the following
information:

* A pointer to a read or write test pattern buffer
* The length of the buffer
* An option field indicating whether a read or write operation is requested

186 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Note: The SCSI adapter device driver is not responsible for comparing read data with previously
written data. After successful completion of write or read operations, the caller is responsible for
performing a comparison test to determine the final success or failure of this test.

The SCSI adapter device driver performs no internal retries or other error recovery procedures during
execution of this operation. Error logging is inhibited when running this command.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EIO Indicates that the adapter device driver detected an error. The specific adapter status is returned in the
sc_ram_test parameter block. The SCIOTRAM operation is a diagnostic command and, as a result, this error is
not logged in the system error log.

ENXIO Indicates that the operation or suboption selected is not supported on this adapter. This should not be treated
as an error. The caller must check for this return value first (before other errno values) to avoid mistaking this
for a failing command.

ETIMEDOUT Indicates the adapter did not respond with status before the passed command time-out value expired. The
SCIOTRAM operation is a diagnostic command, so this error is not logged in the system error log.

Files
Item Description
/dev/scsi0, /dev/scsil,..., /dev/scsin Provide an interface to allow SCSI device

drivers to access SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
[‘scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

SCIOTUR (Test Unit Ready) SCSI Adapter Device Driver ioctl Operation
Purpose

Sends a Test Unit Ready command to the selected SCSI device.
Description

The SCIOTUR operation allows the caller to issue a SCSI Test Unit Read (SCIOSTUNIT) command to a
selected SCSI adapter. This command is used by system management routines to help configure SCSI
devices.

The sc_ready structure allows the caller to specify the SCSI and the logical unit number (LUN) ID of the
device on the SCSI adapter that is to receive the SCIOTUR operation. The SC_ASYNC flag (in the flag
byte of the arg parameter block) must fnot be set during the initial attempt| of this command. The sc_ready
structure provides two output fields: status_validity and scsi_status. Using these two fields, the
SCIOTUR operation returns the status to the caller. The arg parameter for the SCIOTUR operation
specifies the address of the sc_ready structure, defined in the /usr/include/sys/scsi.h file.

When an errno value of is received, the caller should evaluate the returned status in the

status _validity and scsi_status fields. The status_validity field is set to the value SC_SCSI_ERROR
to indicate that the scsi_status field has a valid SCSI bus status in it. The /usr/include/sys/scsi.h file
contains typical values for the scsi_status field.

Technical Reference: Kernel and Subsystems, Volume 2 187

Following an SCIOSTUNIT operation, a calling program can tell by the SCSI bus status whether the
device is ready. If an errno value of EIO is returned and the status_validity field is set to 0, an
unrecovered error has occurred. If, on retry, the same result is obtained, the device should be skipped. If
the status_validity field is set to SC_SCSI_ERROR and the scsi_status field indicates a Check
Condition status, then another SCIOTUR command should be sent after a delay of several seconds.

After one or more attempts, the SCIOTUR operation should return a successful completion, indicating
that the device was successfully started. If, after several seconds, the SCIOTUR operation still returns a
scsi_status field set to a Check Condition status, the device should be skipped.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of
this command.

Return Values
When completed successfully, this operation returns a value of 0. For the SCIOTUR operation, this means

the target device has been successfully started and is ready for data access. If unsuccessful, this operation
returns a value of -1 and the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates the SCIOSTART operation was not issued prior to this command.

EIO Indicates the adapter device driver was unable to complete the command due to an unrecoverable I/O

error. If EIO is received, the caller should retry this command at least once, as the first command may
have cleared an error condition with the device. Following an unrecovered I/O error, the adapter error
status information is logged in the system error log.

ENOCONNECT Indicates a bus fault has occurred. The caller should retry after setting the SC_ASYNC flag in the flag
byte of the passed parameters. If more than one retry is attempted, only the last retry should be made
with the SC_ASYNC flag set. In general, the SCSI adapter device driver cannot determine which device
caused the SCSI bus fault, so this error is not logged.

ENODEV Indicates no SCSI controller responded to the requested SCSI ID. This condition is not necessarily an error
and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with a status before the internal command time-out value expired. If
this return value is received, the caller should retry this command at least once, as the first command may
have cleared an error condition with the device. This error is logged in the system error log.

Files

Item Description

/dev/scsi0, /dev/scsil,..., /dev/scsin Provide an interface to allow SCSI device drivers to access SCSI
devices or adapters.

/dev/vscsiO, /dev/vscsil,..., /dev/vscsim Provide an interface to allow SCSI-2 Fast/Wide Adapter/A and

SCSI-2 Differential Fast/Wide Adapter/A device drivers to access
SCSI devices or adapters.

Related reference:

[‘tape SCSI Device Driver” on page 215|
[‘scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

scsesdd SCSI Device Driver
Purpose

Device driver supporting the SCSI Enclosure Services device.

188 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scses.h>

Description

The special files /dev/ses0, /dev/sesl, ..., provide 1/O access and control functions to the SCSI enclosure
devices.

Typical SCSI enclosure services operations are implemented using the open, ioctl, and close subroutines.

Open places the selected device in Exclusive Access mode. This mode is singularly entrant; that is, only
one process at a time can open it.

A device can be opened only if the device is not currently opened. If an attempt is made to open a
device and the device is already open, a value of -1 is returned and the errno global variable is set to a
value of EBUSY.

ioctl Subroutine

The following ioctl operations are available for SCSI Enclosure Services devices:

Operation Description

IOCINFO Returns the devinfo structure defined in the /ust/include/sys/devinfo.h file.

SESIOCMD When the device has been successfully opened, this operation provides the means for issuing any SCSI command
to the specified enclosure. The device driver performs no error recovery or logging-on failures of this ioctl
operation.

The SCSI status byte and the adapter status bytes are returned via the arg parameter, which contains the address
of a sc_iocmd structure (defined in the /usr/include/sys/scsi.h file). If the SESIOCMD operation returns a value
of -1 and the errno global variable is set to a nonzero value, the requested operation has failed. In this case, the
caller should evaluate the returned status bytes to determine why the operation failed and what recovery actions
should be taken.

The devinfo structure defines the maximum transfer size for the command. If an attempt is made to transfer
more than the maximum, a value of -1 is returned and the errno global variable set to a value of EINVAL. Refer
to the Small Computer System Interface (SCSI) Specification for the applicable device to get request sense
information.

Device Requirements

The following hardware requirements exist for SCSI enclosure services devices:
* The device must support the SCSI-3 Enclosure Services Specification Revision 4 or later.

* The device can be addressed from a SCSI id different from the SCSI ids of the the SCSI devices inside
the enclosure.

* The device must be "well behaved", when receiving SCSI inquiries to page code 0xC7. This means that
if the device fails the inquiry to page code C7 with a check condition, then the check condition will be
cleared by the next SCSI command. An explicit request sense is not required.

* If the device reports its ANSI version to be 3 (SCSI-3) in the standard inquiry data, then it must
correctly reject all invalid requests for luns 8-31 (that is,the device cannot ignore the upper bits in Lun
id and thus cannot treat Lun 8 as being Lun 0, etc).

Error Conditions

Ioctl and open subroutines against this device fail in the following circumstances:

Technical Reference: Kernel and Subsystems, Volume 2 189

Error Description

EBUSY An attempt was made to open a device already opened.

EFAULT An illegal user address was entered.

EINVAL The data buffer length exceeded the maximum defined in the devinfo structure for a SESIOCMD ioctl
operation.

EINVAL An unsupported ioctl operation was attempted.

EINVAL An attempt was made to configure a device that is still open.

EINVAL An illegal configuration command has been given.

EIO The target device cannot be located or is not responding.

EIO The target device has indicated an unrecovered hardware error.

EMFILE An open was attempted for an adapter that already has the maximum permissible number of opened devices.

ENODEV An attempt was made to access a device that is not defined.

ENODEV An attempt was made to close a device that has not been defined.

ENXIO The ioctl subroutine supplied an invalid parameter.

EPERM The attempted subroutine requires appropriate authority.

ETIMEDOUT An I/0 operation has exceeded the given timer value.

Reliability and Serviceability Information

The following errors are returned from SCSI enclosure services devices:

Error Description

ABORTED COMMAN The device cancelled the command.

ADAPTER ERRORS The adapter returned an error.

GOOD COMPLETION The command completed successfully.

HARDWARE ERROR An unrecoverable hardware failure occurred during command execution or during a self test.
ILLEGAL REQUEST An illegal command or command parameter.

MEDIUM ERROR The command terminated with a unrecovered media error condition.

NOT READY The logical unit is off-line or media is missing.

RECOVERED ERROR The command was successful after some recovery applied.

UNIT ATTENTION The device has been reset or the power has been turned on.

Files

Item Description

/dev/ses0,/dev/sesl...,/dev/sesn Provides an interface to allow SCSI device drivers access to

SCSI enclosure services devices.

Related reference:
[‘Parallel SCSI Adapter Device Driver” on page 143|
Related information:

BCSI Subsystem Overview|
Understanding the sc_buf Structure]

scsidisk SAM Device Driver
Purpose

Supports the Fibre Channel Protocol for SCSI (FCP), Serial Attached SCSI (SAS), and the SCSI protocol

over Internet (iSCSI) hard disk, CD-ROM (compact-disk read-only memory), and read /write optical
(optical memory) devices.

190 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scdisk.h>
#include <sys/pcm.h>
#include <sys/mpio.h>

Device-Dependent Subroutines

Typical hard disk, CD-ROM, and read/write optical drive operations are implemented by using the open,
close, read, write, and ioctl subroutines. The scsidisk device driver has additional support added for
MPIO capable devices.

open and close Subroutines

The open subroutine applies a reservation policy that is based on the ODM reserve_policy attribute,
previously the open subroutine always applied an SCSI2 reserve. The open and close subroutines
support working with multiple paths to a device if the device is an MPIO capable device.

The openx subroutine is intended primarily for use by the diagnostic commands and utilities.
Appropriate authority is required for execution. If an attempt is made to run the open subroutine
without the proper authority, the subroutine returns a value of -1 and sets the errno global variable to a
value of EPERM.

The ext parameter that is passed to the openx subroutine selects the operation to be used for the target
device. The /ust/include/sys/scsi.h file defines possible values for the ext parameter.

The ext parameter can contain any combination of the following flag values logically ORed together:

Item Description

SC_DIAGNOSTIC Places the selected device in Diagnostic mode. This mode is singularly entrant; that is, only
one process at a time can open it. When a device is in Diagnostic mode, SCSI operations are
performed during open or close operations, and error logging is disabled. In Diagnostic
mode, only the close and ioctl subroutine operations are accepted. All other
device-supported subroutines return a value of -1 and set the errno global variable to a
value of EACCES.

A device can be opened in Diagnostic mode only if the target device is not currently opened.
If an attempt is made to open a device in Diagnostic mode and the target device is already
open, the subroutine returns a value of -1 and sets the errno global variable to a value of
EACCES.

SC_FORCED_OPEN_LUN On a device that supports Lun Level Reset, the device is reset regardless of any reservation
that is placed by another initiator before the open sequence takes place. If the device does
not support Lun Level Reset, and both SC_FORCED_OPEN_LUN and SC_FORCE_OPEN
flags are set, then a target reset occurs before the open sequence takes place.

SC_FORCED_OPEN Initiates actions during the open operation to break any reservation that might exist on the
device. This action might include a target reset.

Note: A target reset resets all luns on the SCSI ID.

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not issuing the release. This
flag prevents other initiators from using the device unless they break the host machine's
reservation.

SC_NO_RESERVE Prevents the reservation of a device during an openx subroutine call to that device. This

operation is provided so a device can be controlled by two processors that synchronize their
activity by their own software means.

SC_SINGLE Places the selected device in Exclusive Access mode. Only one process at a time can open a
device in Exclusive Access mode.

A device can be opened in Exclusive Access mode only if the device is not currently open. If
an attempt is made to open a device in Exclusive Access mode and the device is already
open, the subroutine returns a value of -1 and sets the errno global variable to a value of
EBUSY. If the SC_DIAGNOSTIC flag is specified along with the SC_SINGLE flag, the
device is placed in Diagnostic mode.

Technical Reference: Kernel and Subsystems, Volume 2 191

Item Description

SC_PR_SHARED_REGISTER In a multi-initiator shared device environment, a Persistent Reserve with service action
Register and Ignore Key is sent to the device as part of the open sequence. This feature is
aimed at the cluster environment, where an upper management software must follow an
advisory lock mechanism to control when the initiator reads or writes. The device is
required to support Persistent Reserve (refer to SCSI Primary Command version 2
description of Persistent Reserve).

Options to the openx Subroutine|in Kernel Extensions and Device Support Programming Concepts gives more
specific information about the open operations.

readx and writex Subroutines

The readx and writex subroutines provide additional parameters that affect the raw data transfer. These
subroutines pass the ext parameter, which specifies request options. The options are constructed by
logically ORing zero or more of the following values:

Item Description

HWRELOC Indicates a request for hardware relocation (safe relocation only).
UNSAFEREL Indicates a request for unsafe hardware relocation.

WRITEV Indicates a request for write verification.

ioctl Subroutine

ioctl subroutine operations that are used for the scsidisk device driver are specific to the following
categories:

* Hard disk and read/write optical devices only

* CD-ROM devices only

* Hard disk, CD-ROM, and read/write optical devices

Hard disk and read/write optical devices

The following ioctl operation is available for hard disk and read/write optical devices only:

Item Description

DKIOLWRSE Provides a means for issuing a write command to the device and obtaining the target-device sense data
when an error occurs. If the DKIOLWRSE operation returns a value of -1 and the status_validity field
is set to a value of SC_SCSI_ERROR, valid sense data is returned. Otherwise, target sense data is
omitted.

The DKIOLWRSE operation is provided for diagnostic use. It allows the limited use of the target device
when it operates in an active system environment. The arg parameter to the DKIOLWRSE operation
contains the address of an scsi_rdwrt structure. This structure is defined in the /usr/include/sys/
scsi_buf.h file.

The devinfo structure defines the maximum transfer size for a write operation. If an attempt is made to
transfer more than the maximum, the subroutine returns a value of -1 and sets the errno global variable
to a value of EINVAL. Refer to the Small Computer System Interface (SCSI) Specification for the format of
the request-sense data for a particular device.

Hard disk, CD-ROM, and read/write optical devices

The following ioctl operations are available for hard disk, CD-ROM, and read/write optical devices:

192 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item
IOCINFO

DKIOLRDSE

DKIOLCMD

DKPMR

DKAMR

Description

Returns the devinfo structure that is defined in the/usr/include/sys/devinfo.h file. The
IOCINFO operation is the only operation defined for all device drivers that use the ioctl
subroutine. The remaining operations are all specific to hard disk, CD-ROM, and read/write
optical devices.

Provides a means for issuing a read command to the device and obtaining the target-device
sense data when an error occurs. If the DKIOLRDSE operation returns a value of -1 and the
status_validity field is set to a value of SC_SCSI_ERROR, valid sense data is returned.
Otherwise, target sense data is omitted.

The DKIOLRDSE operation is provided for diagnostic use. It allows the limited use of the
target device when it operates in an active system environment. The arg parameter to the
DKIOLRDSE operation contains the address of an scsi_rdwrt structure. This structure is
defined in the /usr/include/sys/scsi_buf.h file.

The devinfo structure defines the maximum transfer size for a read operation. If an attempt
is made to transfer more than the maximum, the subroutine returns a value of -1 and sets the
errno global variable to a value of EINVAL. Refer to the Small Computer System Interface
(SCSI) Specification for the format of the request-sense data for a particular device.

When the device is successfully opened in the Diagnostic mode, the DKIOLCMD operation
provides the means for issuing any SCSI command to the specified device. If the
DKIOLCMD operation is issued when the device is not in Diagnostic mode, the subroutine
returns a value of -1 and sets the errno global variable to a value of EACCES. The device
driver performs no error recovery or logging on failures of this operation.

The SCSI status byte and the adapter status bytes are returned through the arg parameter,
which contains the address of a scsi_iocmd structure (defined in the /usr/include/sys/
scsi_buf.h file). If the DKIOLCMD operation fails, the subroutine returns a value of -1 and
sets the errno global variable to a nonzero value. In this case, the caller must evaluate the
returned status bytes to determine why the operation was unsuccessful and what recovery
actions must be taken.

The version field of the scsi_iocmd structure can be set to the value of SCSI_VERSION_2,
and the user can provide the following fields:

* variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.

+ variable_cdb_length determines the length of the cdb variable to which the
variable_cdb_ptr field points.

On completion of the DKIOLCMD ioctl request, the residual field indicates that the leftover
data that device did not fully satisfy for this request. On a successful completion, the
residual field would indicate that the device does not have the all data that is requested or
the device has less than the amount of data that is requested. On a failure completion, the
user must check the status_validity field to determine if a valid SCSI bus problem exists. In
this case, the residual field would indicate the number bytes that the device failed to
complete for this request.

The devinfo structure defines the maximum transfer size for the command. If an attempt is
made to transfer more than the maximum, the subroutine returns a value of -1 and sets the
errno global variable to a value of EINVAL. Refer to the Small Computer System Interface
(SCSI) Specification for the format of the request-sense data for a particular device.

Issues a SCSI prevent media removal command when the device is successfully opened. This
command prevents media from being ejected until the device is closed, powered off and then
back on, or until a DKAMR operation is issued. The arg parameter for the DKPMR
operation is null. If the DKPMR operation is successful, the subroutine returns a value of 0.
If the device is a SCSI hard disk, the DKPMR operation fails, and the subroutine returns a
value of -1 and sets the errno global variable to a value of EINVAL. If the DKPMR operation
fails for any other reason, the subroutine returns a value of -1 and sets the errno global
variable to a value of EIO.

Issues an allow media removal command when the device is successfully opened. As a result
media can be ejected by using either the drives eject button or the DKEJECT operation. The
arg parameter for this ioctl is null. If the DKAMR operation is successful, the subroutine
returns a value of 0. If the device is a SCSI hard disk, the DKAMR operation fails, and the
subroutine returns a value of -1 and sets the errno global variable to a value of EINVAL. For
any other failure of this operation, the subroutine returns a value of -1 and sets the errno
global variable to a value of EIO.

Technical Reference: Kernel and Subsystems, Volume 2 193

Item
DKEJECT

DKFORMAT

DKAUDIO

Description

Issues an eject media command to the drive when the device is successfully opened. The arg
parameter for this operation is null. If the DKEJECT operation is successful, the subroutine
returns a value of 0. If the device is a SCSI hard disk, the DKEJECT operation fails, and the
subroutine returns a value of -1 and sets the errno global variable to a value of EINVAL. For
any other failure of this operation, the subroutine returns a value of -1 and sets the errno
variable to a value of EIO.

Issues a format unit command to the specified device when the device is successfully
opened.

If the arg parameter for this operation is null, the format unit sets the format options valid
(FOV) bit to 0 (that is, it uses the drives default setting). If the arg parameter for the
DKFORMAT operation is not null, the first byte of the defect list header is set to the value
specified in the first byte addressed by the arg parameter. It allows the creation of
applications to format a particular type of read/write optical media uniquely.

The driver initially tries to set the FmtData and CmpLst bits to 0. If that fails, the driver tries
the remaining three permutations of these bits. If all four permutations fail, this operation
fails, and the subroutine sets the errno variable to a value of EIO.

If the DKFORMAT operation is specified for a hard disk, the subroutine returns a value of -1
and sets the errno global variable to a value of EINVAL. If the DKFORMAT operation is
attempted when the device is not in Exclusive Access mode, the subroutine returns a value of
-1 and sets the errno global variable to a value of EACCES. If the media is write-protected,
the subroutine returns a value of -1 and sets the errno global variable to a value of
EWRPROTECT. If the format unit exceeds its timeout value, the subroutine returns a value
of -1 and sets the errno global variable to a value of ETIMEDOUT. For any other failure of
this operation, the subroutine returns a value of -1 and sets the errno global variable to a
value of EIO.

Issues play audio commands to the specified device and controls the volume on the device's
output ports. Play audio commands include: play, pause, resume, stop, determine the
number of tracks, and determine the status of a current audio operation. The DKAUDIO
operation plays audio only through the CD-ROM drives output ports. The arg parameter of
this operation is the address of a cd_audio_cmds structure, which is defined in the
/usr/include/sys/scdisk.h file. Exclusive Access mode is required.

If DKAUDIO operation is attempted when the device's audio-supported attribute is set to
No, the subroutine returns a value of -1 and sets the errnoglobal variable to a value of
EINVAL. If the DKAUDIO operation fails, the subroutine returns a value of -1 and sets the
errno global variable to a nonzero value. In this case, the caller must evaluate the returned
status bytes to determine why the operation failed and what recovery actions must be taken.

194 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item
DK_CD_MODE

Description

Determines or changes the CD-ROM data mode for the specified device. The CD-ROM data
mode specifies what block size and special file are used for data read across the SCSI bus
from the device. The DK_CD_MODE operation supports the following CD-ROM data
modes:

CD-ROM Data Mode 1
512-byte block size through both raw (dev/red*) and block special (/dev/cd®) files

CD-ROM Data Mode 2 Form 1
2048-byte block size through both raw (dev/red*) and block special (/dev/cd*) files

CD-ROM Data Mode 2 Form 2
2336-byte block size through the raw (dev/rcd*) special file only

CD-DA (Compact Disc Digital Audio)
2352-byte block size through the raw (dev/rcd*) special file only

DVD-ROM
2048-byte block size through both raw (/dev/rcd*) and block special (/dev/cd*) files

DVD-RAM
2048-byte block size through both raw (/dev/rcd*) and block special (/dev/cd*) files

DVD-RW
2048-byte block size through both raw (/dev/rcd*) and block special (/dev/cd*) files

The DK_CD_MODE arg parameter contains the address of the mode_form_op structure that
is defined in the /usr/include/sys/scdisk.h file. To have the DK_CD_MODE operation
determine or change the CD-ROM data mode, set the action field of the change_mode_form
structure to one of the following values:

CD_GET_MODE
Returns the current CD-ROM data mode in the cd_mode_form field of the
mode_form_op structure, when the device is successfully opened.

CD_CHG_MODE
Changes the CD-ROM data mode to the mode specified in the cd_mode_form field
of the mode_form_op structure, when the device is successfully opened in the
Exclusive Access mode.

If a CD-ROM is not configured for different data modes (through mode-select density codes),
and an attempt is made to change the CD-ROM data mode (by setting the action field of the
change_mode_form structure set to CD_CHG_MODE), the subroutine returns a value of -1
and sets the errno global variable to a value of EINVAL. Attempts to change the CD-ROM
mode to any of the DVD modes also result in a return value of -1 and the errno global
variable set to EINVAL.

If the DK_CD_MODE operation for CD_CHG_MODE is attempted when the device is not
in Exclusive Access mode, the subroutine returns a value of -1 and sets the errno global
variable to a value of EACCES. For any other failure of this operation, the subroutine returns
a value of -1 and sets the errno global variable to a value of EIO.

Technical Reference: Kernel and Subsystems, Volume 2 195

Item
DK_PASSTHRU

Description

When the device is successfully opened, DK_PASSTHRU provides the means for issuing any
SCSI command to the specified device. The device driver performs limited error recovery if
this operation fails. The DK_PASSTHRU operation differs from the DKIOCMD operation in
that it does not require an openx command with the ext argument of SC_DIAGNOSTIC. As
a result, DK_PASSTHRU can be issued to devices that are in use by other operations.

The SCSI status byte and the adapter status bytes are returned through the arg parameter,
which contains the address of a sc_passthru structure (defined in the /usr/include/sys/scsi.h
file). If the DK_PASSTHRU operation fails, the subroutine returns a value of -1 and sets the
errno global variable to a nonzero value. If it happens the caller must evaluate the returned
status bytes to determine why the operation was unsuccessful and what recovery actions
must be taken.

If a DK_PASSTHRU operation fails because a field in the sc_passthru structure has an
invalid value, the subroutine returns a value of -1 and sets the errno global variable to
EINVAL. The einval_arg field is set to the field number (starting with 1 for the version field)
of the field that had an invalid value. A value of 0 for the einval_arg field indicates that no
additional information about the failure is available.

DK_PASSTHRU operations are further subdivided into requests which quiesce other I/O
before issuing the request and requests that do not quiesce I/O. These subdivisions are based
on the devflags field of the sc_passthru structure. When the devflags field of the sc_passthru
structure has a value of SC_MIX_IO, the DK_PASSTHRU operation is mixed with other I/O
requests. SC_MIX_IO requests that write data to devices are prohibited and fail. When it
happens, -1 is returned, and the errno global variable is set to EINVAL. When the devflags
field of the sc_passthru structure has a value of SC_QUIESCE_IO, all other 1/O requests are
quiesced before the DK_PASSTHRU request is issued to the device. If an SC_QUIESCE_IO
request has its timeout_value field set to 0, the DK_PASSTHRU request fails with a return
code of -1, the errno global variable is set to EINVAL, and the einval_arg field is set to a
value of SC_PASSTHRU_INV_TO (defined in the /usr/include/sys/scsi.h file). If an
SC_QUIESCE_IO request has a nonzero timeout value that is too large for the device, the
DK_PASSTHRU request fails with a return code of -1, the errno global variable is set to
EINVAL, the einval_arg field is set to a value of SC_PASSTHRU_INV_TO (defined in the
/usr/include/sys/scsi.h file), and the timeout_value is set to the largest allowed value.

The version field of the sc_passthru structure can be set to the value of SCSI_VERSION_2,
and the user can provide the following fields:

* variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.

* variable_cdb_length determines the length of the cdb variable to which the
variable_cdb_ptr field points.

On completion of the DK_PASSTHRU ioctl request, the residual field indicates that the
leftover data that device did not fully satisfy for this request. On a successful completion, the
residual field would indicate the device does not have the all data that is requested or the
device has less than the amount of data that is requested. On a failure completion, the user
must check the status_validity field to determine whether a valid SCSI bus problem exists. In
this case, the residual field indicates the number of bytes that the device failed to complete
for this request.

The devinfo structure defines the maximum transfer size for the command. If an attempt is
made to transfer more than the maximum transfer size, the subroutine returns a value of -1,
sets the errno global variable to a value of EINVAL, and sets the einval_arg field to a value
of SC_PASSTHRU_INV_D_LEN (defined in the /usr/include/sys/scsi.h file). Refer to the
Small Computer System Interface (SCSI) Specification for the format of the request-sense data for
a particular device.

Note: Calling DK_PASSTHRU ioctl as a non-root user fails with EACCES instead of
EPERM.

196 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item
DKPRES_READKEYS

DKPRES_READRES

DKPRES_CLEAR

DKPRES_PREEMPT

DKPRES_PREEMPT_ABORT

DKPRES_REGISTER

Description

When the device is successfully opened, the DKPRES_READKEYS operation provides a
means to read the Persistent Reserve Registration Keys on the device. The arg parameter to
the DKPRES_READKEYS contains the address of the dk_pres_in structure. This structure is
defined in /usr/include/sys/scdisk.h. The user must provide a buffer area and size for the
registered keys to be returned. The returned_length variable sets the number of bytes returned.

In a shared-access or clustered environment, this operation identifies all registered keys for a
particular lun.

Note: For the DKPRES_READKEYS operation and following Persistent Reserve related
operation, the interpretation of the returned value and scsi status is as follows:

* On successful attempt of the call, a 0 is returned.

* After a call fails, a -1 is returned and the errno global variable is set. For a specific
description of the errno value, refer to /usr/include/erno.h. In addition, the SCSI status,
along with the Sense Code, ASC and ASCQ, is set to provide further information about
why the command failed. Refer to SCSI Specification on the interpretation of the SCSI
status failure code.

When the device is successfully opened, the DKPRES_READRES operation provides a
means to read the Persistent Reserve Reservation Keys on the device. The arg parameter to
the DKPRES_READKEYS contains the address of the dk_pres_in structure. This structure is
defined in /usr/include/sys/scdisk.h. The user must provide a buffer area and size for the
reservation information to be returned. The returned_length variable sets the number of bytes
returned. In a shared-access or clustered environment, this operation identifies the primary
initiator that holds the reservation.

When the device is successfully opened, the DKPRES_CLEAR operation provides a means to
clear all Persistent Reserve Reservation Keys and Registration Keys on the device. The arg
parameter to DKPRES_CLEAR contains the address of the dk_pres_clear structure. This
structure is defined in /usr/include/sys/scdisk.h.

Attention: Exercise care when issuing the DKPRES_CLEAR operation. This operation
leaves the device unreserved, which allows a foreign initiator to access the device.

When the device is successfully opened, the DKPRES_PREEMPT operation provides a
means to preempt a Persistent Reserve Reservation Key or Registration Key on the device.
The arg parameter to the DKPRES_PREEMPT contains the address of the dk_pres_preempt
structure. This structure is defined in /usr/include/sys/scdisk.h. The user must provide the
second party initiator key on the device to be preempted. If the second party initiator holds
the reservation to the device, then the initiator that issues the preemption becomes the owner
of the reservation. Otherwise, the second party initiator access is revoked.

In order for this operation to succeed, the initiator must be registered with the device first
before any preemption can occur. In a shared-access or clustered environment, this operation
is used to preempt any operative or inoperative initiator, or any initiator that is not
recognized to be part of the shared group.

This operation is the same as the DKPRES_PREEMPT, except the device follows the SCSI
Primary Command Specification in canceling tasks that belong to the preempted initiator.

When the device is successfully opened, the DKPRES_REGISTER operation provides a
means to register a Key with the device. The Key is extracted from ODM Customize
Attribute and passed to the device driver during configuration. The arg parameter to the
DKPRES_REGISTER contains the address of the dk_pres_register structure. This structure is
defined in /usr/include/sys/scdisk.h.

In a shared-access or clustered environment, this operation attempts a registration with the

device, then follows with a read reservation to determine whether the device is reserved. If
the device is not reserved, then a reservation is placed with the device.

Technical Reference: Kernel and Subsystems, Volume 2 197

Item
DK_RWBUFFER

Description

When the device is successfully opened, the DK_RWBUFFER operation provides the means
for issuing one or more SCSI Write Buffer commands to the specified device. The device
driver performs full error recovery upon failures of this operation. The DK_RWBUFFER
operation differs from the DKIOCMD operation in that it does not require an exclusive open
of the device (for example, openx with the ext argument of SC_DIAGNOSTIC). Thus, a
DK_RWBUFFER operation can be issued to devices that are in use by others. It can be used
with the DK_PASSTHRU ioctl, which (like DK_RWBUFFER) does not require an exclusive
open of the device.

The arg parameter contains the address of a sc_rwbuffer structure (defined in the
/ust/include/sys/scsi.h file). Before the DK_RWBUFFER ioctl is invoked, the fields of this
structure must be set according to the required behavior. The mode field corresponds to the
mode field of the SCSI Command Descriptor Block (CDB) as defined in the SCSI Primary
Commands (SPC) Specification. Supported modes are listed in the header file
/usr/include/sys/scsi.h.

The device driver quiesces all other I/O from the initiator by issuing the Write Buffer ioctl
until the entire operation completes. Once the Write Buffer ioctl completes, all quiesced 1/O
are resumed.

The SCSI status byte and the adapter status bytes are returned through the arg parameter,
which contains the address of a sc_rwbulffer structure (defined in the /ust/include/sys/scsi.h
file). If the DK_RWBUFFER operation fails, the subroutine returns a value of -1 and sets the
errno global variable to a nonzero value. In this case, the caller must evaluate the returned
status bytes to determine why the operation was unsuccessful and what recovery actions
must be taken.

If a DK_RWBUFFER operation fails because a field in the sc_rwbuffer structure has an
invalid value, the subroutine returns a value of -1 and sets the errno global variable to
EINVAL.

The DK_RWBUFFER ioctl allows the user to issue multiple SCSI Write Buffer commands
(CDBs) to the device through a single ioctl invocation. It is useful for applications such as
microcode download where the user provides a pointer to the entire microcode image, but,
because of size restrictions of the device buffers, desires that the images be sent in fragments
until the entire download is complete.

If the DK_RWBUFFER ioctl is invoked with the fragment_size member of the sc_rwbuffer
struct equal to data_length, a single Write Buffer command is issued to the device with the
buffer_offset and buffer_ID of the SCSI CDB set to the values provided in the sc_rwbuffer
struct.

If data_length is greater than fragment_size and fragment_size is a nonzero value, multiple
Write Buffer commands are issued to the device. The number of Write Buffer commands
(SCSI CDBs) issued are calculated by dividing the data_length by the required
fragment_size. This value is incremented by 1 if the data_length is not an even multiple of
fragment_size, and the final data transfer is the size of this residual amount. For each Write
Buffer command that is issued, the buffer_offset is set to the value provided in the
sc_rwbuffer struct (microcode downloads to SCSD devices requires this to be set to 0). For
the first command issued, the buffer_ID is set to the value provided in the sc_rwbuffer
struct. For each subsequent Write Buffer command that is issued, the buffer_ID is
incremented by 1 until all fragments are sent. Writing to noncontiguous buffer_IDs through
a single DK_RWBUFFER ioctl is not supported. If this functionality is desired, multiple
DK_RWBUFEFER ioctls must be issued with the buffer_ID set appropriately for each
invocation.

Note: No I/O request is quiesced between ioctl invocations.

198 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item
DK_RWBUFFER continued

DKPATHIOLCMD

DKPATHFORCE

DKPATHRWBUFFER

DKPATHPASSTHRU

DKPCMPASSTHRU

Device Requirements

Description

If fragment_size is set to zero, an errno of EINVAL is returned. If the desire is to send the
entire buffer with one SCSI Write buffer command, this field must be set equal to
data_length. An error of EINVAL is also returned if the fragment_size is greater than the
data_length.

The Parameter List Length (fragment_size) plus the Buffer Offset can not exceed the capacity
of the specified buffer of the device. It is the responsibility of the caller of the Write Buffer
ioctl to ensure that the fragment_size setting satisfies this requirement. A fragment_size
larger than the device can accommodate results in an SCSI error at the device, and the Write
Buffer ioctl results this error but take no action to recover.

The devinfo structure defines the maximum transfer size for the command. If an attempt is
made to transfer more than the maximum transfer size, the subroutine returns a value of -1
and sets the errno global variable to a value of EINVAL. Refer to the Small Computer System
Interface (SCSI) Specification for the format of the request sense data for a particular device.
This command is only available for MPIO capable devices. The DKPATHIOLCMD command
takes as input a pointer argument which points to a single scsidisk_pathioecmd structure. The
DKPATHIOLCMD command behaves exactly like theDKIOLCMD command, except that
the input path is used instead of the normal path selection. The DKPATHIOLCMD path is
used for the DKIOLCMD command regardless of any path that is specified by a
DKPATHFORCE ioctl command. A path cannot be unconfigured while it is being forced.
This command is only available for MPIO capable devices. The DKPATHFORCE command
takes as input a ushort path id. The path id must correspond to one of the path ids in
CuPath ODM. The path id specifies a path to be used for all subsequent I/O commands,
overriding any previous DKPATHFORCE path. A zero argument specifies that path forcing
is terminated and that normal MPIO path selection is to be resumed. The PCM KE tracks the
forcing of I/O on a path. The Device Driver is unaware of this state except I/O commands
sent in with the DKPATHIOLCMD command overrides the DKPATHFORCE option and
send the I/O down the path that is specified in scsidisk_pathiocmd structure.

This command is only available for MPIO capable devices. The DKPATHRWBUFFER
command takes as input a pointer argument which points to a single scsidisk_pathiocmd
structure. The DKPATHRWBUFFER command behaves exactly like the DKRWBUFFER
command, except that the input path is used rather than normal path selection. The
DKPATHRWBUFFER path is used for the DKRWBUFFER command regardless of any path
that is specified by a DKPATHFORCE ioctl command.

This command is only available for MPIO capable devices. The DKPATHPASSTHRU
command takes as input a pointer argument which points to a single scsidisk_pathiocmd
structure. The DKPATHPASSTHRU command behaves exactly like the DKPASSTHRU
command, except that the input path is used rather than normal path selection. The
DKPATHPASSTHRU path is used for the DKPASSTHRU command regardless of any path
that is specified by a DKPATHFORCE ioctl command.

This command is only available for MPIO capable devices. The DKPCMPASSTHRU
command takes as input a structure, which is PCM-specific, it is not defined by AIX. The
PCM-specific structure is passed to the PCM directly. This structure can be used to move
information to or from a PCM.

SCSI architectural model hard disk, CD-ROM, and read/write optical drives have the following hardware

requirements:

* SAM hard disks and read /write optical drives must support a block size of 512 bytes per block.

* If mode sense is supported, the write-protection (WP) bit must also be supported for SAM hard disks
and read /write optical drives.

* SAM hard disks and read/write optical drives must report the hardware retry count in bytes 16 and 17
of the request sense data for recovered errors. If the hard disk or read/write optical drive does not
support this feature, the system error log might indicate premature drive failure.

* SAM CD-ROM and read/write optical drives must support the 10-byte SCSI read command.

* SAM hard disks and read /write optical drives must support the SCSI write and verify command and
the 6-byte SCSI write command.

Technical Reference: Kernel and Subsystems, Volume 2 199

* To use the format command operation on read/write optical media, the drive must support setting the
format options valid (FOV) bit to 0 for the defect list header of the SCSI format unit command. If the
drive does not support this feature, the user can write an application for the drive so that it formats
media by using the DKFORMAT operation.

* If a SAM CD-ROM drive uses CD_ROM Data Mode 1, it must support a block size of 512 bytes per
block.

* If a SAM CD-ROM drive uses CD_ROM data Mode 2 Form 1, it must support a block size of 2048
bytes per block.

* If a SAM CD-ROM drive uses CD_ROM data Mode 2 Form 2, it must support a block size of 2336
bytes per block.

* If a SAM CD-ROM drive uses CD_DA mode, it must support a block size of 2352 bytes per block.

* To control volume by using the DKAUDIO (play audio) operation, the device must support SCSI-2
mode data page OxE.

* To use the DKAUDIO (play audio) operation, the device must support the following SCSI-2 optional
commands:

read subchannel

pause resume
play audio MSF

— play audio track index
read TOC

Error Conditions

Possible errno values for ioctl, open,read, and write subroutines when you use the scsidisk device driver
include:

Item Description
EACCES Indicates one of the following circumstances:
* An attempt was made to open a device currently open in Diagnostic or Exclusive Access mode.
* An attempt was made to open a Diagnostic mode session on a device already open.
* The user attempted a subroutine other than an ioctl or close subroutine while in Diagnostic mode.
* A DKIOLCMD operation was attempted on a device not in Diagnostic mode.

* A DK_CD_MODE ioctl subroutine operation was attempted on a device not in Exclusive Access
mode.

* A DKFORMAT operation was attempted on a device not in Exclusive Access mode.
EBUSY Indicates one of the following circumstances:
* An attempt was made to open a session in Exclusive Access mode on a device already opened.

* The target device is reserved by another initiator.

EFAULT Indicates an invalid user address.
EFORMAT Indicates that the target device has unformatted media or media in an incompatible format.
EINPROGRESS Indicates that a CD-ROM drive has a play-audio operation in progress.

200 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item
EINVAL

EIO

EMEDIA

EMFILE

ENODEV

ENOTREADY
ENXIO

EPERM
ESTALE

ETIMEDOUT
EWRPROTECT

Description
Indicates one of the following circumstances:

* A DKAUDIO (play-audio) operation was attempted for a device that is not configured to use the
SCSI-2 play-audio commands.

* The read or write subroutine supplied an nbyte parameter that is not an even multiple of the block
size.

* A sense data buffer length of greater than 255 bytes is not valid for a DKIOLWRSE, or DKIOLRDSE
ioctl subroutine operation.

* The data buffer length exceeded the maximum defined in the devinfo structure for a DKIOLRDSE,
DKIOLWRSE, or DKIOLCMD ioctl subroutine operation.

* An unsupported ioctl subroutine operation was attempted.
* An attempt was made to configure a device that is still open.
* An incorrect configuration command is given.

* ADKPMR (Prevent Media Removal), DKAMR (Allow Media Removal), or DKEJECT (Eject Media)
command was sent to a device that does not support removable media.

* A DKEJECT (Eject Media) command was sent to a device that currently has its media locked in the
drive.

* The data buffer length exceeded the maximum defined for a strategy operation.
Indicates one of the following circumstances:

* The target device cannot be located or is not responding.

* The target device is indicated an unrecoverable hardware error.

Indicates one of the following circumstances:

* The target device is indicated an unrecoverable media error.

* The media was changed.

Indicates that an open operation was attempted for an adapter that already has the maximum
permissible number of opened devices.

Indicates one of the following circumstances:
* An attempt was made to access an undefined device.

* An attempt was made to close an undefined device.
Indicates that no media is in the drive.

Indicates one of the following circumstances:

* The ioctl subroutine supplied an invalid parameter.

* A read or write operation was attempted beyond the end of the hard disk.
Indicates that the attempted subroutine requires appropriate authority.

Indicates that a read-only optical disk was ejected (without first being closed by the user) and then either
reinserted or replaced with a second optical disk.

Indicates that an I/O operation exceeded the specified timer value.
Indicates one of the following circumstances:

* An open operation that requests read/write mode was attempted on read-only media.

* A write operation was attempted to read-only media.

Reliability and Serviceability Information

SCSI hard disk devices, CD-ROM drives, and read/write optical drives return the following errors:

Item

ABORTED COMMAND
ADAPTER ERRORS
GOOD COMPLETION
HARDWARE ERROR

ILLEGAL REQUEST
MEDIUM ERROR
NOT READY
RECOVERED ERROR

Description

Indicates that the device ended the command.
Indicates that the adapter returned an error.
Indicates that the command completed successfully.

Indicates an that unrecoverable hardware failure occurred during command execution or during
a self-test.

Indicates that an incorrect command or command parameter.

Indicates that the command ended with an unrecoverable media error condition.
Indicates that the logical unit is offline or media is missing.

Indicates that the command was successful after some recovery was applied.

Technical Reference: Kernel and Subsystems, Volume 2 201

Item

UNIT ATTENTION

Description
Indicates that the device is reset or the power is turned on.

Error Record Values for Media Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical

media errors are:

Item
Comment
Class
Report

Log

Alert
Err_Type
Err_Desc
Prob_Causes
User_Causes
User_Actions

Inst_Causes
Inst_Actions
Fail_Causes

Fail_Actions

Detail_Data

Description
Indicates hard disk, CD-ROM, or read/write optical media error.
Equals a value of H, which indicates a hardware error.

Equals a value of True, which indicates this error must be included when an error report is
generated.

Equals a value of True, which indicates an error log entry must be created when this error occurs.
Equals a value of False, which indicates this error is not alertable.

Equals a value of Perm, which indicates a permanent failure.

Equals a value of 1312, which indicates a disk operation failure.

Equals a value of 5000, which indicates media.

Equals a value of 5100, which indicates the media is defective.

Equals the following values:

* 1601, which indicates the removable media must be replaced and tried again
* 00E1 Perform problem determination procedures

None.

None.

Equals the following values:

¢ 5000, which indicates a media failure

* 6310, which indicates a disk drive failure

Equals the following values:

* 1601, which indicates the removable media must be replaced and tried again

* 00E1 Perform problem determination procedures
Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df structure. The
err_recstructure is defined in the /usr/include/sys/errids.h file. The scsi_error_log_df structure is
defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the error, if it is
valid.

ddl Contains the segment count, which is the number of megabytes read from the device at
the time the error occurred.

dd2 Contains the number of bytes read since the segment count was last increased.

dd3 Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for

a particular device.

Error Record Values for Hardware Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
hardware errors, as well as hard-aborted command errors are:

202 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical hardware error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error report is
generated.

Log Equals a value of True, which indicates an error log entry must be created when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 6310, which indicates disk drive.

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

* 6310, which indicates a disk drive failure

* 6330, which indicates a disk drive electronics failure
Fail_Actions Equals a value of 00E1, which indicates problem-determination procedures must be performed.

Detail Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.
Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df structure. The
err_recstructure is defined in the /usr/include/sys/errids.h file. The scsi_error_log_df structure is
defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the error, if it is
valid.

dd1 Contains the segment count, which is the number of megabytes read from the device at the
time the error occurred.

dd2 Contains the number of bytes read since the segment count was last increased.

dd3 Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for
a particular device.

Error Record Values for Adapter-Detected Hardware Failures

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors adapter-detected hardware errors are:

Item Description

Comment Indicates adapter-detected hard disk, CD-ROM, or read/write optical hardware failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error report is generated.
Log Equals a value of True, which indicates an error-log entry must be created when this error occurs.
Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals the following values:

e 3452, which indicates a device cable failure

* 6310, which indicates a disk drive failure

User_Causes None.
User_Actions None.
Inst_Causes None.
Inst_Actions None.

Technical Reference: Kernel and Subsystems, Volume 2 203

Item Description
Fail_Causes Equals the following values:

* 3452, which indicates a storage device cable failure
* 6310, which indicates a disk drive failure

* 6330, which indicates a disk-drive electronics failure
Fail_Actions Equals a value of 0000, which indicates problem-determination procedures must be performed.
Detail _Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.
Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df structure. The
err_recstructure is defined in the /usr/include/sys/errids.h file. The scsi_error_log_df structure is
defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the error, if it is
valid.

dd1 Contains the segment count, which is the number of megabytes read from the device at the
time the error occurred.

dd2 Contains the number of bytes read since the segment count was last increased.

dd3 Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for
a particular device.

Error Record Values for Recovered Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors recovered errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical recovered error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error report is generated.
Log Equals a value of True, which indicates an error log entry must be created when this error occurs.
Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Temp, which indicates a temporary failure.

Err_Desc Equals a value of 1312, which indicates a physical volume operation failure.

Prob_Causes Equals the following values:

* 5000, which indicates a media failure

¢ 6310, which indicates a disk drive failure
User_Causes Equals a value of 5100, which indicates media is defective.
User_Actions Equals the following values:

* 0000, which indicates problem-determination procedures must be performed
* 1601, which indicates the removable media must be replaced and tried again
Inst_Causes None.
Inst_Actions None.
Fail_Causes Equals the following values:
¢ 5000, which indicates a media failure
* 6310, which indicates a disk drive failure
Fail_Actions Equals the following values:
* 1601, which indicates the removable media must be replaced and tried again

* 00E1 Perform problem determination procedures

204 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

Detail Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.
Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df structure. The
err_rec structure is defined in the /ustr/include/sys/errids.h file. The scsi_error_log_df structure is
defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the error, if it is
valid.

ddl Contains the segment count, which is the number of megabytes read from the device at the
time the error occurred.

dd2 Contains the number of bytes read since the segment count was last increased.

dd3 Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for
a particular device.

Error Record Values for Unknown Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors unknown errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical unknown failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error report is generated.
Log Equals a value of True, which indicates an error log entry must be created when this error occurs.
Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Unkn, which indicates the type of error is unknown.

Err_Desc Equals a value of FE00, which indicates an undetermined error.

Prob_Causes Equals the following values:

* 3300, which indicates an adapter failure
¢ 5000, which indicates a media failure

* 6310, which indicates a disk drive failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of FFFF, which indicates the failure causes are unknown.
Fail_Actions Equals the following values:

* 00E1 Perform problem determination procedures

* 1601, which indicates the removable media must be replaced and tired again

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.
Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df structure. The
err_recstructure is defined in the /usr/include/sys/errids.h file. The scsi_error_log_df structure is
defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the error, if it is
valid.

ddl Contains the segment count, which is the number of megabytes read from the device at the
time the error occurred.

dd2 Contains the number of bytes read since the segment count was last increased.

dd3 Contains the number of opens since the device was configured.

Technical Reference: Kernel and Subsystems, Volume 2 205

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense data for
a particular device.

Special Files
The scsidisk SCSI device driver uses raw and block special files in performing its functions.

Attention: Data corruption, loss of data, or loss of system integrity (system crash) occurs if devices that
support paging, logical volumes, or mounted file systems are accessed by using block special files. Block
special files are provided for logical volumes and disk devices and are solely for system use in managing
file systems, paging devices, and logical volumes. These files must not be used for other purposes.

The special files that are used by the scsidisk device driver include the following (listed by type of
device):
* Hard disk devices:

Item Description
/dev/rhdisk0, /dev/rhdiskl,..., Provide an interface to allow SCSI device drivers character access (raw I/O access and
/dev/rhdiskn control functions) to SCSI hard disks.

/dev/hdisk0, /dev/hdiskl,..., /dev/hdiskn Provide an interface to allow SCSI device drivers block I/O access to SCSI hard disks.

¢ CD-ROM devices:

Item Description

/dev/rcd0, /dev/rcdl,..., /dev/redn Provide an interface to allow SCSI device drivers character access (raw I/O access and
control functions) to SCSI CD-ROM disks.

/dev/cdO, /dev/cdl,..., /dev/cdn Provide an interface to allow SCSI device drivers block I/O access to SCSI CD-ROM
disks.

* Read/write optical devices:

Item Description

/dev/romd0, /dev/romdi,..., /dev/romdn Provide an interface to allow SCSI device drivers character access (raw I/0
access and control functions) to SCSI read/write optical devices.

/dev/omd0, /dev/omdl,..., /dev/omdn Provide an interface to allow SCSI device drivers block I/0O access to SCSI

read/write optical devices.

Note: The prefix r on a special file name indicates that the drive is accessed as a raw device rather
than a block device. Performing raw I/O with a hard disk, CD-ROM, or read/write optical drive
requires that all data transfers be in multiples of the device block size. Also, all Iseek subroutines
that are made to the raw device driver must result in a file pointer value that is a multiple of the
device block size.

Related information:

Understanding the scsi_buf Structure|

ppen, openx, or creat]

|write, writex, writev, or writevx|
rhdisk subroutine]

scsisesdd SAM Device Driver
Purpose

Supports the Serial Attached SCSI Enclosure Services device.

206 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scses.h>

Description

The special files /dev/ses0, /dev/ses1 ... provide I/O access and control functions to the SCSI enclosure

devices.

Typical SCSI enclosure services operations are implemented using the open, ioctl, and close subroutines.

The open subroutine places the selected device in Exclusive Access mode. This mode is singularly
entrant; that is, only one process at a time can open it. A device can be opened only if it is not currently
opened. If an attempt is made to open a device that is already open, a value of -1 is returned and the
errno global variable is set to a value of EBUSY.

ioctl Subroutine

The following ioctl operations are available for SCSI Enclosure Services devices:

Operation Description
IOCINFO Returns the devinfo structure defined in the /ustr/include/sys/devinfo.h file.
SESPASSTHRU

When a device has been successfully opened, this operation provides the means for issuing
any SCSI command to the specified enclosure. The device driver performs no error recovery
or logging-on failures of this ioctl operation.

The SCSI status byte and the adapter status bytes are returned through the arg parameter,
which contains the address of an sc_passthru structure (defined in the /ust/include/sys/scsi.h
file). If the SESPASSTHRU operation returns a value of -1 and the errno global variable is set
to a nonzero value, the requested operation has failed. In this case, the caller must evaluate
the returned status bytes to determine why the operation failed and what recovery actions
must be taken.

The version field of the sc_passthru structure should be set to the value of
SCSI_VERSION_1, and SES does not support Variable length CDBs.

On completion of the SESPASSTHRU ioctl request, the residual field indicates the leftover
data that the device did not fully satisfy for this request. Upon successful completion, the
residual field indicates that the device does not have all the data that was requested or the
device has less than the amount of data that was requested. Upon failure, the user needs to
check the status_validity field to determine if a valid SCSI bus problem exists. In this case,
the residual field indicates the number bytes that the device failed to complete for this
request.

The devinfo structure defines the maximum transfer size for the command. If an attempt is
made to transfer more than the maximum transfer size, the subroutine returns a value of -1,
sets the errno global variable to a value of EINVAL, and sets the einval_arg field to a value
of SC_PASSTHRU_INV_D_LEN (defined in the /usr/include/sys/scsi.h file). Refer to the
Small Computer System Interface (SCSI) Specification for the format of the request-sense data for
a particular device.

Device Requirements

The following hardware requirements exist for SCSI enclosure services devices:

* The device must support the SCSI-3 Enclosure Services Specification Revision 4 or later.
* The device can be addressed from an SCSI ID different from the SCSI IDs of the SCSI devices inside

the enclosure.

Technical Reference: Kernel and Subsystems, Volume 2 207

* The device must be "well behaved", when receiving SCSI inquiries to page code 0xC7. This means that
if the device fails the inquiry to page code C7 with a check condition, then the check condition is
cleared by the next SCSI command. An explicit request sense is not required.

* If the device reports its ANSI version to be 3 (SCSI-3) in the standard inquiry data, then it must
correctly reject all requests that are not valid for luns 8-31 (that is, the device cannot ignore the upper
bits in Lun ID and thus cannot treat Lun 8 as being Lun 0, and so on).

Examples

This is the example code for filling the sc_passthru structure for the SESPASSTHRU ioctl to issue
Standard Inquiry SCSI CDB:

struct sc_passthru passthru;
version = SCSI_VERSION_1;

passthru.
passthru.
passthru.
passthru.
passthru.
passthru.
passthru.
passthru.
passthru.
passthru.
passthru.
passthru.
passthru.
passthru.
passthru.

SC_SIMPLE_Q;

timeout_value = 30;
command_length = 6;
q_tag_msg =

flags = B_READ;

autosense_Tength = SENSE_LEN;

autosense_buffer_ptr = &sense_data[0]; /* Buffer for Auto Sense Data =*/
data_Tlength = OxFF;

buffer = data; /* Data buffer address to store inquiry data */
scsi_cdb[0] = SCSI_INQUIRY;

scsi_cdb[1] = 0x00;

scsi_cdb[2] = 00; /* Page Code */

scsi_cdb[3] = 00;

scsi_cdb[4] = OxFF;

scsi_cdb[5] = 0x00;

Error Conditions

ioctl and open subroutines against this device fail in the following circumstances:

Error Description

EBUSY An attempt was made to open a device already opened.

EEXIST Device already exists in the device table.

ENOMEM Memory allocation failed.

EFAULT An illegal user address was entered.

EINVAL The data buffer length exceeded the maximum defined in the devinfo structure for a
SESPASSTHRU ioctl operation.

EINVAL An unsupported ioctl operation was attempted.

EINVAL An attempt was made to configure a device that is still open.

EINVAL An illegal configuration command was given.

EINVAL The variable_cdb_ptr or variable_cdb_length fields are set in the sc_passthru struct.

EIO The target device cannot be located or is not responding.

EIO The target device has indicated an unrecovered hardware error.

EMFILE An open operation was attempted for an adapter that already has the maximum permissible number
of opened devices.

ENODEV An attempt was made to access a device that was not defined.

ENODEV An attempt was made to close a device that was not defined.

ENXIO The parameter or device number supplied by the ioctl subroutine is not valid, or the device is not
configured.

EPERM The attempted subroutine requires appropriate authority.

ETIMEDOUT An I/0 operation has exceeded the given timer value.

Files

208 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description
/dev/ses0, /dev/sesl... /[dev/sesn Provides an interface to allow SCSI device drivers access to SCSI enclosure services devices.

Related information:

BAM Subsystem Overview|

IA Typical Initiator-Mode SAM Driver Transaction Sequence]
BAM Adapter Device Driver ioctl Commands|
Understanding the Execution of Initiator I/O Requests|

sctape FC Device Driver

Note: The /dev/rmt0 through /dev/rmt255 special files provide access to magnetic tapes. Magnetic tapes
are used primarily for backup, file archives, and other offline storage.

Purpose

Supports the Fibre Channel Protocol for SCSI (FCP) for sequential access bulk storage medium device
driver.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/tape.h>
#include <sys/pcm.h>
#include <sys/mpio.h>

Device-Dependent Subroutines

Most tape operations are implemented using the fopen| [read} [write] and [close| subroutines. However, the
subroutine must be used if the device is to be opened in Diagnostic mode.

open and close Subroutines

The openx subroutine is intended for use by the diagnostic commands and utilities. Appropriate
authority is required for execution. Attempting to execute this subroutine without the proper authority
causes the subroutine to return a value of -1 and sets the errno global variable to EPERM.

The openx subroutine allows the device driver to enter Diagnostic mode and disables command-retry
logic. This action allows for execution of ioctl operations that perform special functions associated with
diagnostic processing. Other openx capabilities, such as forced opens and retained reservations, are also
available.

The open subroutine applies a reservation policy based on the ODM reserve_policy attribute.
The ext parameter passed to the openx subroutine selects the operation to be used for the target device.

The ext parameter is defined in the /usr/include/sys/scsi.h file. This parameter can contain any
combination of the following flag values logically ORed together:

Technical Reference: Kernel and Subsystems, Volume 2 209

Item Description

SC_DIAGNOSTIC Places the selected device in Diagnostic mode. This mode is singularly entrant. When a
device is in Diagnostic mode, SCSI operations are performed during open or close
operations, and error logging is disabled. In Diagnostic mode, only the close and ioctl
operations are accepted. All other device-supported subroutines return a value of -1 and
set the errno global variable to a value of EACCES.

A device can be opened in Diagnostic mode only if the target device is not currently
opened. If an attempt is made to open a device in Diagnostic mode and the target
device is already open, the subroutine returns a value of -1 and sets the errno global
variable to a value of EACCES.

SC_FORCED_OPEN Forces a bus device reset (BDR) regardless of whether another initiator has the device
reserved. The SCSI bus device reset is sent to the device before the open sequence
begins. Otherwise, the open operation executes normally.

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not issuing the release.
This flag prevents other initiators from using the device unless they break the host
machine's reservation.

[FCP Options to the openx Subroutine|in Kernel Extensions and Device Support Programming Concepts gives
more specific information on the open operations.

ioctl Subroutine

The STIOCMD ioctl operation provides the means for sending SCSI commands directly to a tape device.
This allows an application to issue specific SCSI commands that are not directly supported by the tape
device driver.

To use the STIOCMD operation, the device must be opened in Diagnostic mode. If this command is
attempted while the device is not in Diagnostic mode, a value of -1 is returned and the errno global
variable is set to a value of EACCES. The STIOCMD operation passes the address of a sc_iocmd
structure. This structure is defined in the /usr/include/sys/scsi.h file.

The following ioctl operations are only available for MPIO capable FC tape devices:

Item Description

STPATHIOCMD The STPATHIOCMD command will take as input a pointer argument which points to a single
sctape_pathiocmd structure. The STPATHIOCMD command will behave exactly like the STIOCMD
command, except that the input path is used rather than normal path selection performed by the PCM.
The STPATHIOCMD path is used for the STIOCMD command regardless of any path specified by a
STPATHFORCE ioctl command. A path cannot be unconfigured while it is being forced.

STPATHFORCE The STPATHFORCE command takes as input a ushort path ID. The path ID should correspond to one of
the path IDs in the CuPath ODM. The path ID specifies a path to be used for all subsequent I/O
commands, overriding any previous STPATHFORCE paths. A zero (0) argument specifies that path
forcing is terminated and that normal MPIO path selection is to be resumed. The PCM KE keeps track of
the forcing of I/O on a path. The Device Driver is unaware of this state. I/O commands sent in with
STPATHIOCMD will override the STPATHFORCE option and send the I/O down the path specified in
the st_pathiocmd structure.

STPATHPASSTHRU The STPATHPASSTHRU command takes as input a pointer argument that points to a single
sctape_pathiocmd structure. The STPATHPASSTHRU command will behave exactly like STIOCMD,
except that the input path is used rather than normal path selection.

STPCMPASSTHRU The STPCMPASSTHRU command takes as input a structure that is PCM-specific; it is not defined by
AIX. The PCM-specific structure is passed to the PCM directly. This structure can be used to move
information to or from a PCM.

Error Conditions

In addition to those errors listed, ioctl, open, read, and write subroutines against this device are
unsuccessful in the following circumstances:

210 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item
EAGAIN
EBUSY
EINVAL
EINVAL

EINVAL
EINVAL
EIO

EIO

EMEDIA

ENOTREADY
ENXIO

EPERM
ETIMEDOUT
EWRPROTECT

EWRPROTECT

Description

Indicates that an attempt was made to open a device that was already open.

Indicates that the target device is reserved by another initiator.

Indicates that a value of O_APPEND is supplied as the mode in which to open.
Indicates that the nbyte parameter supplied by a read or write operation is not a
multiple of the block size.

Indicates that a parameter to an ioctl operation is not valid.

Indicates that the requested ioctl operation is not supported on the current device.
Indicates that the tape drive has been reset or that the tape has been changed. This error
is returned on open if the previous operation to tape left the tape positioned beyond the
beginning of the tape upon closing.

Indicates that the device could not space forward or reverse the number of records
specified by the st_count field before encountering an EOM (end of media) or a file
mark.

Indicates an open operation was attempted for an adapter that already has the
maximum permissible number of opened devices.

Indicates that there is no tape in the drive or the drive is not ready.

Indicates that there was an attempt to write to a tape that is at EOM.

Indicates that this subroutine requires appropriate authority.

Indicates a command has timed out.

Indicates an open operation requesting read/write mode was attempted on a read-only
tape.

Indicates that an ioctl operation that affects the media was attempted on a read-only
tape.

Reliability and Serviceability Information

Errors returned from tape devices are as follows:

Item

ABORTED COMMAND

BLANK CHECK

DATA PROTECT
GOOD COMPLETION
HARDWARE ERROR

ILLEGAL REQUEST
MEDIUM ERROR

NOT READY

RECOVERED ERROR
UNIT ATTENTION

Description

Indicates the device ended the command.

Indicates that a read command encountered a blank tape.
Indicates that a write was attempted on a write-protected tape.
Indicates the command completed successfully.

Indicates an unrecoverable hardware failure occurred during command execution or
during a self-test.

Indicates an illegal command or command parameter.

Indicates the command ended with an unrecoverable media error condition. This
condition may be caused by a tape flaw or a dirty head.

Indicates the logical unit is offline.
Indicates the command was successful after some recovery was applied.
Indicates the device has been reset or the power has been turned on.

Medium, hardware, and aborted command errors from the preceding list are to be logged every time
they occur. The ABORTED COMMAND error might be recoverable, but the error is logged if recovery
fails. For the RECOVERED ERROR and recovered ABORTED COMMAND error types, thresholds are
maintained; when they are exceeded, an error is logged. The thresholds are then cleared.

Note: There are device-related adapter errors that are logged every time they occur.

Error Record Values for Tape Device Media Errors

The fields defined in the error record template for tape-device media errors are:

Technical Reference: Kernel and Subsystems, Volume 2 211

Item Description

Comment Equal to tape media error.

Class Equal to H, indicating a hardware error.

Report Equals a value of True, which indicates this error should be included when an error
report is generated.

Log Equals a value of True, which indicates an error log entry should be created when this
error Occurs.

Alert Equals a value of False, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1332, which indicates a tape operation failure.

Prob_Causes Equals a value of 5003, which indicates tape media.

User_Causes Equals a value of 5100 and 7401, which indicates a cause originating with the tape and
defective media, respectively.

User_Actions Equal to 1601 and 0000, which indicates, respectively, that the removable media should

be replaced and the operation retried, and that problem determination procedures
should be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 5003, which indicates tape media.

Fail_Actions Equal to 1601 and 0000, which indicates, respectively, that the removable media should

be replaced and the operation retried and that problem determination procedures
should be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure,
which describes information contained in the Detail_Data field, is defined in the /usr/include/sys/scsi.h
file.

Error Record Values for Tape or Hardware Aborted Command Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for hardware errors and
aborted command errors, are:

Item Description

Comment Equal to a tape hardware or aborted command error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error
report is generated.

Log Equals a value of True, which indicates an error log entry should be created when this
error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1331, which indicates a tape drive failure.

Prob_Causes Equals a value of 6314, which indicates a tape drive error.

User_Causes None.

User_Actions Equal to 0000, indicating that problem determination procedures should be performed.

Inst_Actions None.

Fail_Causes Equal to 5003 and 6314, indicating the failure cause is the tape and the tape drive,
respectively.

Fail_Actions Equal to 0000 to perform problem determination procedures.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure,
which describes information contained in the Detail_Data field, is defined in the /usr/include/sys/scsi.h
file.

212 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Error Record Values for Tape-Recovered Error Threshold Exceeded

The fields defined in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for recovered
errors that have exceeded the threshold counter, are:

Item
Comment
Class
Report

Log

Alert
Err_Type
Err_Desc
Prob_Causes
User_Causes

User_Actions
Inst_Causes
Inst_Actions

Fail_Causes

Fail_Actions

Description
Indicates the tape-recovered error threshold has been exceeded.
Equals a value of H, which indicates a hardware error.

Equals a value of True, which indicates this error should be included when an error
report is generated.

Equals a value of True, which indicates an error-log entry should be created when this
error occurs.

Equal to a value of FALSE, which indicates this error is not alertable.

Equals a value of TEMP, which indicates a temporary failure.

Equals a value of 1331, which indicates a tape drive failure.

Equal to 6314, which indicates the probable cause is the tape drive.

Equal to 5100 and 7401, which indicates that the media is defective and the read/write
head is dirty, respectively.

Equal to 1601 and 0000, which indicates that removable media should be replaced and
the operation retried and that problem-determination procedures should be performed,
respectively.

None.

None.

Equal to 5003 and 6314, which indicates the cause is the tape and tape drive,
respectively.

Equals a value of 0000, which indicates problem-determination procedures should be
performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. This field is contained in the err_rec structure. The err_rec
structure is defined in the /usr/include/sys/errids.h file. The Detail_Data field also specifies the error type
of the threshold exceeded. The sc_error_log_df structure, which describes information contained in the
Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Tape SCSI Adapter-Detected Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for adapter-detected

errors, are:

Item
Comment
Class
Report

Log

Alert
Err_Type
Err_Desc
Prob_Causes

User_Causes
User_Actions

Inst_Causes
Inst_Actions
Fail_Causes

Fail_Actions

Description

Equal to a tape FC adapter-detected error.

Equals a value of H, which indicates a hardware error.

Equals a value of True, which indicates this error should be included when an error
report is generated.

Equals a value of True, which indicates an error log entry should be created when this
error occurs.

Equal to a value of FALSE, which indicates this error is not alertable.
Equals a value of PERM, which indicates a permanent failure.
Equals a value of 1331, which indicates a tape drive failure.

Equals values of 3300 and 6314, which indicates an adapter and tape drive failure,
respectively.

None.

Equals a value of 0000, which indicates that problem determination procedures should
be performed.

None.

None.

Equals values of 3300 and 6314, which indicates an adapter and tape drive failure,
respectively.

Equals a value of 0000, which indicates problem-determination procedures should be
performed.

Technical Reference: Kernel and Subsystems, Volume 2 213

The Detail_Data field contains the command type and adapter status. This field is contained in the
err_rec structure, which is defined by the /usr/include/sys/err_rec.h file. Request-sense information is not
available with this type of error. The sc_error_log_df structure describes information contained in the
Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Tape Drive Cleaning Errors

Some tape drives return errors when they need cleaning. Errors that occur when the drive needs cleaning
are grouped under this class.

Item Description

Comment Indicates that the tape drive needs cleaning.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error
report is generated.

Log Equals a value of True, which indicates an error log entry should be created when this
error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of TEMP, which indicates a temporary failure.

Err_Desc Equals a value of 1332, which indicates a tape operation error.

Prob_Causes Equals a value of 6314, which indicates that the probable cause is the tape drive.

User_Causes Equal to 7401, which indicates a dirty read/write head.

User_Actions Equals a value of 0000, which indicates that problem determination procedures should
be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of 6314, which indicates that the cause is the tape drive.

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures should be
performed.

The Detail_Data field contains the command type and adapter status, and also the request-sense
information from the particular device in error. This field is contained in the err_rec structure, which is
defined by the /ust/include/sys/errids.h file. The sc_error_log_df structure describes information
contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Unknown Errors

Errors that occur for unknown reasons are grouped in this class. Data-protect errors fall into this class.
These errors, detected by the tape device driver, are never seen at the tape drive.

The err_hdr structure for unknown errors describes the following fields:

Item Description

Comment Equal to a tape unknown error.

Class Equal to all error classes.

Report Equals a value of True, which indicates this error should be included when an error
report is generated.

Log Equals a value of True, which indicates an error log entry should be created when this
erTor occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of UNKN, which indicates the type of error is unknown.

Err_Desc Equals a value of OxFEQ0, which indicates the error description is unknown.

Prob_Causes Equals the following values:

* 3300, which indicates a tape drive failure
* 5003, which indicates a tape failure

* 6314, which indicates an adapter failure

214 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of OxFFFF, which indicates the failure causes are unknown.

Fail_Actions Equals 0000, which indicates that problem-determination procedures should be
performed.

The Detail_Data field contains the command type and adapter status, and the request-sense information
from the particular device in error. The Detail_Data field is contained in the err_rec structure. This field
is contained in the /usr/include/sys/errids.h file. The sc_error_log_df structure describes information
contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Refer to the Fibre Channel (FC) Specification for the applicable device for the format of the particular
request-sense information.

Related information:

Bpecial Files Overview]|
FCP Device Driver|

octl or ioctl

fead, readx, readv, or readvx|

tape SCSI Device Driver
Purpose

Supports the sequential access bulk storage medium device driver.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/tape.h>

Note: The /dev/rmt0 through /dev/rmt255 special files provide access to magnetic tapes. Magnetic tapes
are used primarily for backup, file archives, and other offline storage.

Device-Dependent Subroutines

Most tape operations are implemented using the [open| [read} [write} and |close| subroutines. However, the
subroutine must be used if the device is to be opened in Diagnostic mode.

open and close Subroutines

The openx subroutine is intended for use by the diagnostic commands and utilities. Appropriate
authority is required for execution. Attempting to execute this subroutine without the proper authority
causes the subroutine to return a value of -1 and sets the errno global variable to EPERM.

The openx subroutine allows the device driver to enter Diagnostic mode and disables command-retry
logic. This action allows for execution of ioctl operations that perform special functions associated with
diagnostic processing. Other openx capabilities, such as forced opens and retained reservations, are also
available.

The ext parameter passed to the openx subroutine selects the operation to be used for the target device.
The ext parameter is defined in the /usr/include/sys/scsi.h file. This parameter can contain any

combination of the following flag values logically ORed together:

Technical Reference: Kernel and Subsystems, Volume 2 215

Flag Value
SC_DIAGNOSTIC

Description

Places the selected device in Diagnostic mode. This mode is singularly entrant.
When a device is in Diagnostic mode, SCSI operations are performed during open
or close operations and error logging is disabled. In Diagnostic mode, only the close
and ioctl operations are accepted. All other device-supported subroutines return a
value of -1, with the errno global variable set to a value of EACCES.

A device can be opened in Diagnostic mode only if the target device is not currently
opened. If an attempt is made to open a device in Diagnostic mode and the target
device is already open, a value of -1 is returned and the errno global variable is set
to EACCES.

Forces a bus device reset (BDR) regardless of whether another initiator has the
device reserved. The SCSI bus device reset is sent to the device before the open
sequence begins. Otherwise, the open operation executes normally.

SC_FORCED_OPEN

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not issuing the
release. This flag prevents other initiators from using the device unless they break

the host machine's reservation.

['SCSI Options to the openx Subroutine'|in Kernel Extensions and Device Support Programming Concepts
gives more specific information on the open operations.

ioctl Subroutine

The STIOCMD ioctl operation provides the means for sending SCSI commands directly to a tape device.
This allows an application to issue specific SCSI commands that are not directly supported by the tape
device driver.

To use the STIOCMD operation, the device must be opened in Diagnostic mode. If this command is
attempted while the device is not in Diagnostic mode, a value of -1 is returned and the errno global
variable is set to a value of EACCES. The STIOCMD operation passes the address of a scsi_iocmd
structure. This structure is defined in the /usr/include/sys/scsi_buf.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for information
on issuing the parameters.

Error Conditions

In addition to those errors listed, ioctl, open, read, and write subroutines against this device are
unsuccessful in the following circumstances:

Error Description

EACCES Indicates that a diagnostic command was issued to a device not in Diagnostic mode.

EAGAIN Indicates that an attempt was made to open a device that was already open.

EBUSY Indicates that the target device is reserved by another initiator.

EINVAL Indicates that a value of O_APPEND is supplied as the mode in which to open.

EINVAL Indicates that the nbyte parameter supplied by a read or write operation is not a multiple of the block size.
EINVAL Indicates that a parameter to an ioctl operation is not valid.

EINVAL Indicates that the requested ioctl operation is not supported on the current device.

EIO Indicates that the tape drive has been reset or that the tape has been changed. This error is returned on open

if the previous operation to tape left the tape positioned beyond beginning of tape upon closing.

EIO Indicates that the device could not space forward or reverse the number of records specified by the st_count
field before encountering an EOM (end of media) or a file mark.

EMEDIA Indicates that the tape device has encountered an unrecoverable media error.

EMFILE Indicates that an open operation was attempted for a SCSI adapter that already has the maximum
permissible number of open devices.

ENOTREADY Indicates that there is no tape in the drive or the drive is not ready.

ENXIO Indicates that there was an attempt to write to a tape that is at EOM.

EPERM Indicates that this subroutine requires appropriate authority.

ETIMEDOUT Indicates a command has timed out.

216 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Error Description
EWRPROTECT Indicates an open operation requesting read/write mode was attempted on a read-only tape.
EWRPROTECT Indicates that an ioctl operation that affects the media was attempted on a read-only tape.

Reliability and Serviceability Information

Errors returned from tape devices are as follows:

Error Description

ABORTED COMMAND Indicates the device ended the command.

BLANK CHECK Indicates that a read command encountered a blank tape.

DATA PROTECT Indicates that a write was attempted on a write-protected tape.

GOOD COMPLETION Indicates that the command completed successfully.

HARDWARE ERROR Indicates that an unrecoverable hardware failure occurred during command execution or during a
self-test.

ILLEGAL REQUEST Indicates an illegal command or command parameter.

MEDIUM ERROR Indicates that the command terminated with a unrecovered media error condition. This condition
may be caused by a tape flaw or a dirty head.

NOT READY Indicates that the logical unit is offline.

RECOVERED ERROR Indicates that the command was successful after some recovery was applied.

UNIT ATTENTION Indicates the device has been reset or powered on.

Medium, hardware, and aborted command errors from the above list are to be logged every time they
occur. The ABORTED COMMAND error may be recoverable, but the error is logged if recovery fails.
For the RECOVERED ERROR and recovered ABORTED COMMAND error types, thresholds are
maintained; when they are exceeded, an error is logged. The thresholds are then cleared.

Note: There are device-related adapter errors that are logged every time they occur.

Error Record Values for Tape Device Media Errors

The fields defined in the error record template for tape-device media errors are:

Field Description

Comment Equal to tape media error.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is generated.

Log Equal to TRUE, indicating an error log entry should be created when this error occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to 1332, indicating a tape operation failure.

Prob_Causes Equal to 5003, indicating tape media.

User_Causes Equal to 5100 and 7401, indicating a cause originating with the tape and defective media, respectively.
User_Actions Equal to 1601 and 0000, indicating respectively that the removable media should be replaced and the

operation retried, and that problem determination procedures should be performed.
Inst_Causes None.

Inst_Actions None.
Fail_Causes Equal to 5003, indicating tape media.
Fail_Actions Equal to 1601 and 0000, indicating respectively that the removable media should be replaced and the

operation retried and that problem determination procedures should be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure,
which describes information contained in the Detail_Data field, is defined in the /usr/include/sys/scsi.h
file.

Technical Reference: Kernel and Subsystems, Volume 2 217

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format of
the particular request-sense information.

Error-Record Values for Tape or Hardware Aborted Command Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for hardware errors and
aborted command errors, are:

Field Description

Comment Equal to a tape hardware or aborted command error.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is generated.
Log Equal to TRUE, indicating an error log entry should be created when this error occurs.
Alert FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to 1331, indicating a tape drive failure.

Prob_Causes Equal to 6314, indicating a tape drive error.

User_Causes None.

User_Actions Equal to 0000, indicating that problem determination procedures should be performed.
Inst_Actions None.

Fail_Causes Equal to 5003 and 6314, indicating the failure cause is the tape and the tape drive, respectively.
Fail_Actions Equal to 0000 to perform problem determination procedures.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure,
which describes information contained in the Detail_Data field, is defined in the /usr/include/sys/scsi.h
file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format of
the particular request-sense information.

Error-Record Values for Tape-Recovered Error Threshold Exceeded

The fields defined in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for recovered
errors that have exceeded the threshold counter, are:

Field Description

Comment Indicates the tape-recovered error threshold has been exceeded.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is generated.

Log Equal to TRUE, indicating an error log entry should be created when this error occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to 1331, indicating a tape drive failure.

Prob_Causes Equal to 5003 and 6314, indicating the probable cause is the tape and tape drive, respectively.

User_Causes Equal to 5100 and 7401, indicating that the media is defective and the read/write head is dirty,
respectively.

User_Actions Equal to 1601 and 0000, indicating that removable media should be replaced and the operation retried
and that problem-determination procedures should be performed, respectively.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 5003 and 6314, indicating the cause is the tape and tape drive, respectively.

Fail_Actions Equal to 0000, to perform problem determination procedures.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. This field is contained in the err_rec structure. The err_rec

218 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

structure is defined in the /usr/include/sys/errids.h file. The Detail_Data field also specifies the error type
of the threshold exceeded. The sc_error_log_df structure, which describes information contained in the
Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format of
the particular request-sense information.

Error Record Values for Tape SCSI Adapter-Detected Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for adapter-detected

errors, are:

Field
Comment
Class

Report

Log

Alert
Err_Type
Err_Desc
Prob_Causes
User_Causes
User_Actions
Inst_Causes
Inst_Actions
Fail_Causes
Fail_Actions

Description

Equal to a tape SCSI adapter-detected error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error report is generated.
Equal to TRUE, indicating an error log entry should be created when this error occurs.
Equal to FALSE, indicating this error is not alertable.

Equal to PERM, indicating a permanent failure.

Equal to 1331, indicating a tape drive failure.

Equal to 3300 and 6314, indicating an adapter and tape drive failure, respectively.
None.

Equal to 0000, indicating that problem determination procedures should be performed.
None.

None.

Equal to 3300 and 6314, indicating an adapter and tape drive failure, respectively.
Equal to 0000, to perform problem-determination procedures.

The Detail_Data field contains the command type and adapter status. This field is contained in the
err_rec structure, which is defined by the /usr/include/sys/err_rec.h file. Request-sense information is not
available with this type of error. The sc_error_log_df structure describes information contained in the
Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format of
the particular request-sense information.

Error-Record Values for Tape Drive Cleaning Errors

Some tape drives return errors when they need cleaning. Errors that occur when the drive needs cleaning
are grouped under this class.

Field

Comment
Class

Report

Log

Alert
Err_Type
Err_Desc
Prob_Causes
User_Causes
User_Actions
Inst_Causes
Inst_Actions
Fail_Causes
Fail_Actions

Description

Indicates that the tape drive needs cleaning.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating that this error should be included when an error report is generated.
Equal to TRUE, indicating that an error-log entry should be created when this error occurs.
Equal to FALSE, indicating this error is not alertable.

Equal to TEMP, indicating a temporary failure.

Equal to 1332, indicating a tape operation error.

Equal to 6314, indicating that the probable cause is the tape drive.

Equal to 7401, indicating a dirty read/write head.

Equal to 0000, indicating that problem determination procedures should be performed.
None.

None.

Equal to 6314, indicating that the cause is the tape drive.

Equal to 0000, indicating to perform problem-determination procedures.

Technical Reference: Kernel and Subsystems, Volume 2 219

The Detail_Data field contains the command type and adapter status and also the request-sense
information from the particular device in error. This field is contained in the err_rec structure, which is
defined by the /usr/include/sys/errids.h file. The sc_error_log_df structure describes information
contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format of
the particular request-sense information.

Error-Record Values for Unknown Errors

Errors that occur for unknown reasons are grouped in this class. Data-protect errors fall into this class.
These errors, detected by the tape device driver, are never seen at the tape drive.

The err_hdr structure for unknown errors describes the following fields:

Field Description

Comment Equal to tape unknown error.

Class Equal to all error classes.

Report Equal to TRUE, indicating this error should be included when an error report is generated.
Log Equal to TRUE, indicating an error-log entry should be created when this error occurs.
Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to UNKN, indicating the error type is unknown.

Err_Desc Equal to 0XFEO00, indicating the error description is unknown.

Prob_Causes None.

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to OxFFFF, indicating the failure cause is unknown.

Fail_Actions Equal to 0000, indicating that problem-determination procedures should be performed.

The Detail_Data field contains the command type and adapter status, and the request- sense information
from the particular device in error. The Detail_Data field is contained in the err_rec structure. This field
is contained in the /usr/include/sys/errids.h file. The sc_error_log_df structure describes information
contained in the Detail_Data field and is defined in the /ust/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format of
the particular request-sense information.

Files
/dev/rmt0, /dev/rmt0.1, /dev/rmt0.2, ..., /dev/rmt0.7,

/dev/rmtl, /dev/rmtl.1, /dev/rmtl.2, ..., /dev/rmtl.7,...,

Item Description
/dev/rmt255, /dev/rmt255.1, /dev/rmt255.2, ..., /dev/rmt255.7 Provide an interface to allow SCSI device drivers to access SCSI
tape drives.

Related reference:

[‘Parallel SCSI Adapter Device Driver” on page 143|
Related information:

rhdisk subroutine]

octl subroutine

IA Typical Initiator-Mode SCSI Driver Transaction Sequence

220 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

TMCHGIMPARM (Change Parameters) tmscsi Device Driver ioctl
Operation
Purpose

Allows the caller to change parameters used by the target-mode device driver.
Note: This operation is not supported by all SCSI I/O controllers.
Description

The TMCHGIMPARM ioctl operation allows the caller to change certain parameters used by the
target-mode device driver for a particular device instance. This operation is allowed only for the
initiator-mode device. The arg parameter to the TMCHGIMPARM operation specifies the address of the
tm_chg_im_parm structure defined in /usr/include/sys/tmscsi.h file.

Default values used by the device driver for these parameters usually do not require change. However,
for certain calling programs, default values can be changed to fine-tune timing parameters related to error
recovery.

The initiator-mode device must be open for this command to succeed. Once a parameter is changed
through the TMCHGIMPARM operation, it remains changed until another TMCHGIMPARM operation
is received or until the device is closed. At open time, these parameters are set to the default values.

Parameters that can be changed with this operation are the amount of delay (in seconds) between device
driver-initiated retries of SCSI send commands and the amount of time allowed before the running of
any send command times out. To indicate which of the possible parameters are being changed, the caller
sets the appropriate bit in the chg_option field. Values of 0, 1, or multiple flags can be set in this field to
indicate which parameters are being changed.

To change the delay between send command retries, the caller sets the TM_CHG_RETRY_DELAY flag in
the chg_option field and places the desired delay value (in seconds) in the new_delay field of the
structure. The retry delay can be changed with this command to any value between 0 and 255, inclusive,
where 0 instructs the device driver to use as little delay as possible between retries. The default value is
approximately 2 seconds.

To change the send command timeout value, the caller sets the TM_CHG_SEND_TIMEOUT flag in the
chg_option field, sets the desired flag in the timeout_type field, and places the desired timeout value in
the new_timeout field of the structure. A single flag must be set in the time_out field to indicate the
desired form of the timeout. If the TM_FIXED_TIMEOUT flag is set in the timeout_type field, then the
value placed in the new_timeout field is a fixed timeout value for all send commands. If the
TM_SCALED_TIMEOUT flag is set in the timeout_type field, then the value placed in the new_timeout
field is a scaling-factor used in the calculation for timeout as shown under the description of the write
entry point. The default send command timeout value is a scaled timeout with scaling factor of 10.

Regardless of the value of the timeout_type field, if the new_timeout field is set to a value of 0, the caller
specifies "no timeout" for the send command, allowing the command to take an indefinite amount of

time. If the calling program wants to end a write operation, it generates a signal.

Files

Technical Reference: Kernel and Subsystems, Volume 2 221

Item Description

/dev/tmscsi0, /dev/tmscsil,..., /dev/tmscsin Support processor-to-processor communications through the
SCSI target-mode device driver.

Related reference:

[‘scdisk SCSI Device Driver” on page 151]

[‘tmscsi SCSI Device Driver” on page 227|

[‘Parallel SCSI Adapter Device Driver” on page 143|

TMGETSENS (Request Sense) tmscsi Device Driver ioctl Operation
Purpose

Runs a SCSI request sense command and returns the sense data to the user.
Note: This operation is not supported by all SCSI I/O controllers.
Description

The TMGETSENS ioctl operation runs a SCSI request sense command and returns the sense data to the
user. This operation is allowed only for the initiator-mode device. It is issued by the caller in response to
a write subroutine errno global variable set to a value of ENXIO. This operation must be the next
command issued to the device for this initiator or the sense data is lost. The arg parameter to the ioctl
operation is the address of the tm_get_sens structure defined in the /usr/include/sys/tmscsi.h file. The
caller must supply the address and length of a buffer used for holding the returned device-sense data in
this structure. The maximum length for request-sense data is 255 bytes. The caller should refer to the
SCSI specification for the target device to determine the correct length for the device's request-sense data.
The lesser of either the sense data length requested or the actual sense data length is returned in the
buffer passed by the caller. For the definition of the returned data, refer to the detailed SCSI specification
for the device in use.

After each TMGETSENS operation, the target-mode device driver generates the appropriate errno global
variable. If an error occurs, the return value is set to a value of -1 and the errno global variable is set to
the value generated by the target-mode device driver. The device driver also updates a status area that is
kept for the last command to each device. For certain errors, and upon successful completion, the caller
can read this status area to get more detailed error status for the command. The operation
can be used for this purpose. The errno global variables covered by this status include EIO, EBUSY,
ENXIO, and ETIMEDOUT.

Files
Item Description
/dev/tmscsi0, /dev/tmscsil,..., /dev/tmscsin Support processor-to-processor communications through the

SCSI target-mode device driver.

Related reference:

[‘scdisk SCSI Device Driver” on page 151

[‘Parallel SCSI Adapter Device Driver” on page 143|
[‘tmscsi SCSI Device Driver” on page 227|

222 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

TMIOASYNC (Async) tmscsi Device Driver ioctl Operation
Purpose

Allows future initiator-mode commands for an attached target device to use asynchronous data transfer.
Note: This operation is not supported by all SCSI I/O controllers.
Description

The TMIOASYNC ioctl operation enables asynchronous data transfer for future initiator-mode
commands on attached target devices. Only an initiator-mode device may use this operation. The arg
parameter of the TMIOASYNC operation is set to a null value by the caller.

This operation is required when the caller is intending to retry a previous initiator SCSI command (other
than those sent through the TMIOCMD operation) that was unsuccessful with a SC_SCSI_BUS_FAULT
status in the general_card_status field in the status structure returned by the TMIOSTAT operation. If
more than one retry is attempted, this operation should be issued only before the last retry attempt.

This operation allows the device to run in asynchronous mode if the device does not negotiate for
synchronous transfers. This operation affects all future initiator commands for this device. However, a
SCSI reset or power-on to the device results in an attempt to again run synchronous data transfers. At
open time, synchronous data transfers are attempted.

Files
Item Description
/dev/tmscsi0, /dev/tmscsil,..., /dev/tmscsin Support processor-to-processor communications through the

SCSI target-mode device driver.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

TMIOCMD (Direct) tmscsi Device Driver ioctl Operation
Purpose

Sends SCSI commands directly to the attached device.
Note: This operation is not supported by all SCSI I/O controllers.
Description

Attention: The TMIOCMD operation is a very powerful operation. Extreme care must be taken by
the caller before issuing any general SCSI command, as this may adversely affect the attached
device, other SCSI devices on the SCSI bus, or even general system availability. It should only be
used when no other means are available to run the required function or functions on the attached
device. This operation requires at least dev_config authority to run.

The TMIOCMD operation provides a means of sending SCSI commands directly to the attached device.
This operation is only allowed for the initiator-mode device. It enables a caller to issue specific SCSI
commands that are not directly supported by the device driver. The caller is responsible for any and all
error recovery associated with the sending of the SCSI command. No error recovery is performed by the
device driver when the command is issued. The device driver does not log errors that occur while
running the command.

Technical Reference: Kernel and Subsystems, Volume 2 223

The arg parameter to this command specifies the address of the sc_iocmd structure defined in the
lusr/include/sys/scsi.h file. The caller fills in the SCSI command descriptor block area, command length
(SCSI command block length), the time-out value for the command, and a flags field. If a data transfer is
involved, the data length and buffer pointer areas, as well as the B_READ flag in the flags field, must be
filled in. The B_READ is set to a value of 1 to indicate the command's data transfer is incoming, and
B_READ is set to a value of 0 to indicate the data is outgoing. If there is no data transfer, these fields and
flags are set to 0 values.

The target-mode device driver builds the appropriate command block to execute this operation, including
ORing in the 3-bit logical unit number (LUN) identifier in the SCSI command based on the configuration
information for this device instance. The returned errno global variable is generated and the status
validity, SCSI bus status, and adapter status fields are updated to reflect the completion status for the
command. These status areas are defined in the /usr/include/sys/scsi.h file.

Files
Item Description
/dev/tmscsi0, /dev/tmscsil,..., /dev/tmscsin Support processor-to-processor communications through the

SCSI target-mode device driver.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

TMIOEVNT (Event) tmscsi Device Driver ioctl Operation
Purpose

Allows the caller to query the device driver for event status.
Note: This operation is not supported by all SCSI I/O controllers.
Description

The TMIOEVNT ioctl operation allows the caller to query the device driver for status on certain events.
The arg parameter to the TMIOEVNT operation specifies the address of the tm_event_info structure
defined in the /usr/include/sys/tmscsi.h file. This operation conveys status that is generally not tied to a
specific application program subroutine and would not otherwise be known to the application. For
example, failure of an adapter function not associated directly with a SCSI command is reported through
this facility.

Although this operation can be used independently of other commands to the target-mode device driver,
it is most effective when issued in conjunction with the [select entry point] POLLPRI option. For this
device driver, the POLLPRI option indicates an event has occurred that is reported through the
TMIOEVNT operation. This allows the caller to be asynchronously notified of events occurring to the
device instance, which means the TMIOEVNT operation need only be issued when an event occurs.
Without the select entry point, it would be necessary for the caller to issue the TMIOEVNT operation
after every read or write subroutine to know when an event has occurred. The select entry point allows
the caller to monitor events on one or more target or initiator devices.

Because the caller is not generally aware of which adapter a particular device is attached to, event
information in the TMIOEVNT operation is maintained for each device instance. Application programs
should not view any information from one device's TMIOEVNT operation as necessarily affecting other
devices opened through this device driver. Rather, the application must base its error recovery for each
device on that device's particular TMIOEVNT information.

224 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Event information is reported through the events field of the tm_event_info structure and can have the
following values:

Value Description

TM_FATAL_HDW_ERR Adapter fatal hardware failure
TM_ADAP_CMD_FAILED Unrecoverable adapter command failure
TM_SCSI_BUS_RESET SCSI Bus Reset detected
TM_BUFS_EXHAUSTED Maximum buffer usage detected

Some of the events that can be reported apply to any SCSI device, whether they are initiator-mode or
target-mode devices. These events include adapter fatal hardware failure, unrecoverable adapter
command failure, and SCSI BUS Reset detected. The maximum buffer usage detected event applies
only to the target mode device and is never reported for an initiator-mode device instance.

The adapter fatal hardware failure event is intended to indicate a fatal condition. This means no further
commands are likely to complete successfully to or from this SCSI device, as the adapter it is attached to
has failed. In this case, the application should end the session with the device.

The unrecoverable adapter command failure event is not necessarily a fatal condition but can indicate
that the adapter is not functioning properly. The application program has these possible actions:

* End the session with the device in the near future.
* End the session after multiple (two or more) such events.
* Attempt to continue the session indefinitely.

The SCSI Bus Reset detection event is mainly intended as information only but can be used by the
application to perform further actions, if necessary. The Reset information can also be conveyed to the
application during command execution, but the Reset must occur during the SCSI command for this to
occur.

The maximum buffer usage detected event only applies to a given target-mode device; it is not be
reported for an initiator device. This event indicates to the application that this particular target-mode
device instance has filled its maximum allotted buffer space. The application should perform read
subroutines fast enough to prevent this condition. If this event occurs, data is not lost, but it is delayed to
prevent further buffer usage. Data reception is restored when the application empties enough buffers to
continue reasonable operations. The num_bufs attribute may need to be increased from the default value
to help minimize this problem.

Return Values

Item Description

EFAULT Operation failed due to a kernel service error.

EINVAL Attempted to execute an ioctl operation for a device instance that is not configured, not open, or is not in the
proper mode (initiator versus target) for this operation.

EIO An I/0 error occurred during the operation.

EPERM For the TMIOCMD operation, the caller did not have dev_config authority.

ETIMEDOUT The operation did not complete before the timeout expired.

Files

Technical Reference: Kernel and Subsystems, Volume 2 225

Item Description

/dev/tmscsi0, /dev/tmscsil,..., /dev/tmscsin Support processor-to-processor communications through the
SCSI target-mode device driver.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

TMIORESET (Reset Device) tmscsi Device Driver ioctl Operation
Purpose

Sends a Bus Device Reset (BDR) message to an attached target device.
Note: This operation is not supported by all SCSI I/O controllers.
Description

The TMIORESET ioctl operation allows the caller to send a Bus Device Reset (BDR) message to a
selected target device. Only an initiator-mode device may use this operation. The arg parameter of the
TMIORESET operation is set to a null value by the caller.

The attached target device typically uses this BDR message to reset certain operating characteristics. Such
an action may be needed during severe error recovery between the host initiator and the attached target
device. The specific effects of the BDR message are device dependent. Since the effects of this operation
are potentially adverse to the target device, care should be taken by the caller before issuing this message.
To run this operation requires at least dev_config authority.

Files
Item Description
/dev/tmscsi0, /dev/tmscsil,..., /dev/tmscsin Support processor-to-processor communications through the

SCSI target-mode device driver.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

TMIOSTAT (Status) tmscsi Device Driver ioctl Operation
Purpose

Allows the caller to get detailed status about the previous write or TMGETSENS operation.

Note: This operation is not supported by all SCSI I/O controllers.

Description

The TMIOSTAT operation allows the caller to get detailed status about a previous write or
TMGETSENS operation. This operation is allowed only for the initiator-mode device. The arg parameter
to this operation specifies the address of the tm_get_stat structure defined in /ust/include/sys/tmscsi.h

file. The status returned by the TMIOSTAT operation is updated for both successful and unsuccessful
completions of these commands. This status is not valid for all errno global variables.

226 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Files

Item Description

/dev/tmscsi0,/dev/tmscsil,..., /dev/tmscsin Support processor-to-processor communications through the
SCSI target-mode device driver.

Related reference:

[‘tape SCSI Device Driver” on page 215|
['scdisk SCSI Device Driver” on page 151]
[‘Parallel SCSI Adapter Device Driver” on page 143|

tmscsi SCSI Device Driver
Purpose

Supports processor-to-processor communications through the SCSI target-mode device driver.
Note: This operation is not supported by all SCSI I/O controllers.

Syntax

#include </usr/include/sys/devinfo.h>
#include </usr/include/sys/tmscsi.h>
#include </usr/include/sys/scsi.h>

Description

The Small Computer Systems Interface (SCSI) target-mode device driver provides an interface to allow
processor-to-processor data transfer using the SCSI send command. This single device driver handles
both SCSI initiator and SCSI target mode roles.

The user accesses the data transfer functions through the special files /dev/tmscsiO.xx, /dev/tmscsil.xx,
These are all character special files. The xx can be either im, initiator-mode interface, or tm, target-mode
interface. The initiator-mode interface is used by the caller to transmit data, and the target-mode interface
is used to receive data.

The least significant bit of the minor device number indicates to the device driver which mode interface
is selected by the caller. When the least significant bit of the minor device number is set to a value of 1,
the target-mode interface is selected. When the least significant bit is set to a value of 0, the
initiator-mode interface is selected. For example, tmscsi0.im should be defined as an even-numbered
minor device number to select the initiator-mode interface, and tmscsi0.tm should be defined as an
odd-numbered minor device number to select the target-mode interface.

When the caller opens the initiator-mode special file a logical path is established, allowing data to be
transmitted. The user-mode caller issues a write, writev, writex, or writevx system call to initiate data
transmission. The kernel-mode user issues an fp_write or fp_rwuio service call to initiate data
transmission. The SCSI target-mode device driver then builds a SCSI send command to describe the
transfer, and the data is sent to the device. Once the write entry point returns, the calling program can
access the transmit buffer.

When the caller opens the target-mode special file a logical path is established, allowing data to be
received. The user-mode caller issues a read, readv, readx, or readvx system call to initiate data reception.
The kernel-mode caller issues an fp_read or fp_rwuio service call to initiate data reception. The SCSI
target-mode device driver then returns data received for the application.

Technical Reference: Kernel and Subsystems, Volume 2 227

The SCSI target mode device driver allows access as an initiator mode device through the write entry
point. Target mode device access is made through the read entry point. Simultaneous access to the read
and write entry points is possible by using two separate processes, one running read subroutines and the
other running write subroutines.

The SCSI target mode device driver does not implement any protocol to manage the sending and
receiving of data, with the exception of attempting to prevent an application from excessive received-data
buffer usage. Any protocol required to maintain or otherwise manage the communications of data must
be implemented in the calling program. The only delays in sending or receiving data through the target
mode device driver are those inherent to the hardware and software driver environment.

Configuration Information

When the tmscsi0 special file is configured, both the tmscsi0.im and tmscsi0.tm special files are created.
An initiator-mode/target-mode pair for each device instance should exist, even if only one of the modes
is being used. The target-mode SCSI ID for an attached device should be the same as the initiator-mode
SCSI ID, but the logical unit number (LUN) is ignored in target mode, because the host SCSI adapter can
only respond as LUN 0.

If multiple LUNs are supported on the attached initiator device, a pair of tmscsin special files (where # is
the device instance) are generated for each SCSI ID/LUN combination. The initiator-mode special files
allow simultaneous access to the associated SCSI ID/LUN combinations. However, only one of the
target-mode special files for this SCSI ID can be opened at one time. This is because only one LUN 0 is
supported on the host adapter and only one logical connection can be actively using this ID at one time.
If a target-mode special file is open for a given SCSI ID, attempts to open other target-mode special files
for the same ID will fail.

The target-mode device driver configuration entry point must be called only for the initiator-mode device
number. The driver configuration routine automatically creates the configuration data for the target-mode
device minor number based on the initiator-mode data.

Device-Dependent Subroutines

The target-mode device driver supports the open, close, read, write, select, and ioctl subroutines.

open Subroutine

The open subroutine allocates and initializes target or initiator device-dependent structures. No SCSI
commands are sent to the device as a result of running the open subroutine.

The SCSI initiator or target-mode device must be configured and not already opened for that mode for
the open subroutine to work. For the initiator-mode device to be successfully opened, its special file must
be opened for writing only. For the target-mode device to be successfully opened, its special file must be
opened for reading only.

Possible return values for the errno global variable include:

228 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Value Description
EAGAIN Lock kernel service failed.

EBUSY Attempted to execute an open for a device instance that is already open.
EINVAL Attempted to execute an open for a device instance using an incorrect open flag, or device is not yet configured .
EIO An I/0O error occurred.

ENOMEM The SCSI device is lacking memory resources.

close Subroutine

The close subroutine deallocates resources local to the target device driver for the target or initiator
device. No SCSI commands are sent to the device as a result of running the close subroutine. Possible
return values for the errno global variable include:

Value Description
EINVAL Attempted to execute a close for a device instance that is not configured.
EIO An I/0O error occurred.

read Subroutine

The read subroutine is supported only for the target-mode device. Data scattering is supported through
the user-mode readv or readvx subroutine, or the kernel-mode fp_rwuio service call. If the read
subroutine is unsuccessful, the return value is set to a return value of -1, and the errno global variable is
set to the return value from the device driver. If the return value is something other than -1, then the
read was successful and the return code indicates the number of bytes read. This should be validated by
the caller. File offsets are not applicable and are therefore ignored for target-mode reads.

SCSI send commands provide the boundary for satisfying read requests. If more data is received in the
send command than is requested in the current read operation, the requested data is passed to the caller,
and the remaining data is retained and returned for the next read operation for this target device. If less
data is received in the send command than is requested, the received data is passed for the read request,
and the return value indicates how many bytes were read.

If a send command has not been completely received when a read request is made, the request blocks
and waits for data. However, if the target device is opened with the O_NDELAY flag set, then the read
does not block; it returns immediately. If no data is available for the read request, the read is unsuccessful
and the errno global variable is set to EAGAIN. If data is available, it is returned and the return value
indicates the number of bytes received. This is true even if the send command for this data has not
ended.

Note: Without the O_NDELAY flag set, the read subroutine can block indefinitely, waiting for data. Since
the read data can come at any time, the device driver does not maintain an internal timer to interrupt the
read. Therefore, if a time-out function is desired, it must be implemented by the calling program.

If the calling program wishes to break a blocked read subroutine, the program can generate a signal. The
target-mode device driver receives the signal and ends the current read subroutine with failure. The
errno global variable is then set to EINTR. The read returns with whatever data has been received, even
if the send command has not completed. If and when the remaining data for the send command is
received, it is queued, waiting for either another read request or a close. When the target receives the
signal and the current read is returned, another read can be initiated or the target can be closed. If the
read request that the calling program wishes to break completes before the signal is generated, the read
completes normally and the signal is ignored.

The target-mode device driver attempts to queue received data ahead of requests from the application. A
read-ahead buffer area (whose length is determined by the product of 4096 and the num_bufs attribute

value in the configuration database) is used to store the queued data. As the application program

Technical Reference: Kernel and Subsystems, Volume 2 229

executes read subroutines, the queued data is copied to the application data buffer and the read-ahead
buffer space is again made available for received data. If an error occurs while copying the data to the
caller's data buffer, the read fails and the errno global variable is set to EFAULT. If the read subroutines
are not executed quickly enough, so that almost all the read-ahead buffers for the device are filled, data
reception will be delayed until the application runs a read subroutine again. When enough area is freed,
data reception is restored from the device. Data may be delayed, but it is not lost or ignored. If almost all
the read-ahead buffers are filled, status information is saved indicating this condition. The application
may optionally query this status through the operation. If the application uses the optional
select/poll operation, it can receive asynchronous notification of this and other events affecting the
target-mode instance.

The target-mode device driver handles only received data in its read entry point. All other initiator-sent
SCSI commands are handled without intervention by the target-mode device driver. This also means the

target-mode device driver does not directly generate any SCSI sense data or SCSI status.

The read entry point may optionally be used in conjunction with the select entry point to provide a
means of asynchronous notification of received data on one or more target devices.

Possible return values for the errno global variable include:

Value Description

EAGAIN Indicates a non-blocking read request would have blocked, because no data is available.

EFAULT An error occurred while copying data to the caller's buffer.

EINTR Interrupted by a signal.

EINVAL Attempted to execute a read for a device instance that is not configured, not open, or is not a target-mode minor
device number.

EIO 1/0 error occurred.

write Subroutine

The write entry point is supported only for the initiator-mode device driver. The write entry point
generates a single SCSI send command in response to a calling program's write request. If the write
request is for a length larger than the host SCSI adapter's maximum transfer length or if the request
cannot be pinned as a single request, then the write request fails with the errno global variable set to
EINVAL. The maximum transfer size for this device is discovered by issuing an IOCINFO ioctl call to
the target-mode device driver.

Some target mode capable adapters support data gathering of writes through the user_mode writev or
writevx subroutine or the kernel-mode fp_wruio service call. The write buffers are gathered so that they
are transferred, in order, as a single send command. The target-mode device driver passes information to
the SCSI adapter device driver to allow it to perform the gathered write. Since the SCSI adapter device
driver can be performing the gather function in software (when the hardware does not directly support
data gathering), it is possible for the function to be unsuccessful because of a lack of memory or a copy
error. The returned errno global variable is set to ENOMEM or EFAULT. Due to how gathered writes are
handled, it is not possible for the target-mode device driver to perform retries. When an error does occur,
the caller must retry or otherwise recover the operation.

If the write operation is unsuccessful, the return value is set to -1 and the errno global variable is set to
the value of the return value from the device driver. If the return value is a value other than -1, the write
operation was successful and the return value indicates the number of bytes written. The caller should
validate the number of bytes sent to check for any errors. Since the entire data transfer length is sent in a
single send command, a return code not equal to the expected total length should be considered an error.
File offsets are not applicable and are ignored for target-mode writes.

If the calling program needs to break a blocked write operation, a signal should be generated. The
target-mode device driver receives the signal and ends the current write operation. A write operation in

230 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

progress fails, and the errno global variable is set to EINTR. The calling program may then continue by
issuing another write operation, an ioctl operation, or may close the device. If the write operation the
caller attempts to break completes before the signal is generated, the write completes normally and the
signal is ignored.

The target-mode device driver automatically retries (up to the number of attempts specified by the value
TM_MAXRETRY defined in the /ust/include/sys/tmscsi.h file) the send command if either a SCSI Busy
response or no device response status is received for the command. By default, the target mode device
driver delays each retry attempt by approximately two seconds to allow the target device to respond
successfully. The caller can change the amount of time delayed through the TMCHGIMPARM] operation.
If retries are exhausted and the command is still unsuccessful, the write fails. The calling program can
retry the write operation or perform other appropriate error recovery. All other error conditions are not
retried but are returned with the appropriate errno global variable.

The target-mode device driver, by default, generates a time-out value, which is the amount of time
allowed for the send command to complete. If the send command does not complete before the time-out
value expires, the write fails. The time-out value is based on the length of the requested transfer, in bytes,
and calculated as follows:

timeout_value = ((transfer_length / 65536) +1) *
10

In the calculation, 10 is the default scaling factor used to generate the time-out value. The caller can
customize the time-out value through the TMCHGIMPARM operation.

One of the errors that can occur during a write is a SCSI status of check condition. A check-condition
error requires a SCSI request sense command to be issued to the device. This returns the device's SCSI
sense data, which must be examined to discover the exact cause of the check condition. To allow the
target-mode device driver to work with a variety of target devices when in initiator mode, the device
driver does not evaluate device sense data on check conditions. Therefore, the caller is responsible for
evaluating the sense data to determine the appropriate error recovery. The operation is
provided to allow the caller to get the sense data. A unique errno global variable, ENXIO, is used to
identify check conditions so that the caller knows when to issue the TMGETSENS operation. This error
is not logged in the system error log by the SCSI device driver. The writer of the calling program must be
aware that according to SCSI standards, the request sense command must be the next command received
by the device following a check-condition error. If any other command is sent to the device by this
initiator, the sense data is cleared and the error information lost.

After each write subroutine, the target-mode device driver generates the appropriate return value and
errno global variable. The device driver also updates a status area that is kept for the last command to
each device. On certain errors, as well as successful completions, the caller may optionally read this
status area to get more detailed error status for the command. The operation can be used for
this purpose. The errno global variables covered by this status include EIO, EBUSY, ENXIO, and
ETIMEDOUT.

Other possible return values for the errno global variable include:

Value Description

EBUSY SCSI reservation conflict detected. Try again later or make sure device reservation is ended before
proceeding.

EFAULT This is applicable only during data gathering. The write operation was unsuccessful due to a kernel
service error.

EINTR Interrupted by signal.

EINVAL Attempted to execute a write operation for a device instance that is not configured, not open, or is not an

initiator-mode minor device number.

Transfer length too long, or could not pin entire transfer. Try command again with a smaller transfer
length.

Technical Reference: Kernel and Subsystems, Volume 2 231

Value Description

EIO 1/0 error occurred. Either an unreproducible error occurred or retries were exhausted without success on
an unreproducible error. Perform appropriate error recovery.
ENOCONNECT Indicates a SCSI bus fault has occurred. The caller should respond by retrying with asynchronous data

transfer allowed. This is accomplished by issuing a TMIOASYNC operation to this device prior to the
retry. If more than one retry is attempted, the TMIOASYNC operation should be performed only before
the last retry.

ENOMEM This is applicable only during data gathering. The write operation was unsuccessful due to lack of system
memory.
ENXIO SCSI check condition occurred. Execute a TMGETSENS operation to get the device sense data and then

perform required error recovery.
ETIMEDOUT The command has timed out. Perform appropriate error recovery.

ioctl Subroutine

The following ioctl operations are provided by the target-mode device driver. Some are specific to either
the target-mode device or the initiator-mode device. All require the respective device instance be open for
the operation run.

Operation Description

@l Returns a structure defined in the /usr/include/sys/devinfo.h file.

I‘MCHGIMPAR@] Allows the caller to change certain parameters used by the target mode device driver for a particular
device instance.

TMGETSENS Runs a SCSI request sense command and returns the sense data to the user.

TMIOASYNC Allows succeeding initiator-mode commands to a particular target-mode device to use asynchronous data
transfer.

TMIOCMDl Sends SCSI commands directly to the attached device.

TMIOEVN II Allows the caller to query the device driver for status on certain events.

ITMIORESE l] Sends a Bus Device Reset message to an attached target-mode device.

TMIOSTATl Allows the caller to get detailed status information about the previously-run write or TMGETSENS ioctl
operation.

select Entry Point

The select entry point allows the caller to know when a specified event has occurred on one or more
target-mode devices. The events input parameter allows the caller to specify which of one or more
conditions it wants to be notified of by a bitwise OR of one or more flags. The target-mode device driver
supports the following select events:

Event Description

POLLIN Check if received data is available.

POLLPRI Check if status is available.

POLLSYNC Return only events that are currently pending. No asynchronous notification occurs.

An additional event, POLLOUT, is not applicable and therefore is not supported by the target-mode
device driver.

The reventp output parameter points to the result of the conditional checks. A bitwise OR of the following
flags can be returned by the device driver:

232 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Flag Description
POLLIN Received data is available.
POLLPRI Status is available.

The chan input parameter is used for specifying a channel number. This is not applicable for
non-multiplexed device drivers and should be set to a value of 0 for the target-mode device driver.

The POLLIN event is indicated by the device driver when any data is received for this target instance. A
non-blocking read subroutine, if subsequently issued by the caller, returns data. For a blocking read
subroutine, the read does not return until either the requested length is received or the send command
completes, whichever comes first.

The POLLPRI event is indicated by the device driver when an exceptional event occurs. To determine the
cause of the exceptional event, the caller must issue a TMIOEVNT]|operation to the device reporting the
POLLPRI event.

The possible return value for the erro global variable includes:

Value Description
EINVAL A specified event is not supported, or the device instance is either not configured or not open.

Error Logging

Errors detected by the target-mode device driver can be one of the following:
* Unreproducible hardware error while receiving data

* Unreproducible hardware error during initiator command

* Unrecovered hardware error

* Recovered hardware error

¢ Device driver-detected software error

The target-mode device driver passes error-recovery responsibility for most detected errors to the caller.
For these errors, the target-mode device driver does not know if this type of error is permanent or
temporary. These types of errors are logged as temporary errors.

Only errors the target-mode device driver can itself recover through retries can be determined to be
either temporary or permanent. The error is logged as temporary if it succeeds during retry (a recovered
error) or as permanent if retries are unsuccessful (an unrecovered error). The return code to the caller
indicates success if a recovered error occurs or failure if an unrecovered error occurs. The caller can elect
to retry the command or operation, but the probability of retry success is low for unrecovered errors.

Related reference:
[‘Parallel SCSI Adapter Device Driver” on page 143|
Related information:

kmscsi subroutine|

Prrpt command

NVMe subsystem

Provides device driver support for Non-Volatile Memory Express (NVMe). The device driver supports
Peripheral Component Interconnect Express (PCle) attachment of storage that conforms to the NVMe
specification.

Technical Reference: Kernel and Subsystems, Volume 2 233

The NVMe protocol stack consists of a single device driver that supports interfaces to both the
PCle-attached NVMe controller device and corresponding NVMe storage (hdisk) devices.

NVMe storage (hdisk) device driver
Purpose

Supports Peripheral Component Interconnect Express (PCle)-attached Non-Volatile Memory Express
(NVMe) storage devices.

Syntax

<#include /usr/include/sys/nvme.h>
<#include /usr/include/sys/devinfo.h>

Description

The /dev/hdiskn special file provides interfaces to the NVMe storage device driver.
Device-dependent subroutines

The NVMe storage device driver supports the open, close, read, write, and ioctl subroutines.
ioctl subroutine

Along with the IOCINFO operation, the NVMe storage device driver defines operations for NVMe
storage devices.

The IOCINFO operation is defined for all device drivers that use the ioct1 subroutine, as follows:

The IOCINFO operation returns a devinfo structure. The devinfo structure is defined in the
/usr/include/sys/devinfo.h header file. The device type in this structure is DD_SCDISK, and the subtype
is DS_PV. The flags field is used to indicate the values DF_SSD and DF_NVME. When the DF_4B_ALINGED flag
is preset, the flag indicates that all host data buffer addresses must be aligned to a 4 byte address.

NVMe storage ioctl operations

The following ioct1 operations are supported for NVMe storage devices:
NVME_PASSTHRU

Provides options to send a passthru command to an NVMe storage device. The arg parameter for
the NVME_PASSTHRU operation is the address of an NVME_PASSTHRU structure that is defined in the
/usr/include/sys/nvme.h header file.

Note: You can send an admin command only to the adapter device, and an NVM command only
to the storage (hdisk) device. Otherwise, the commands can result in undefined behavior such as
data corruption. The opcodes of all the NVMe commands are unique only within a command set
and the opcode value can be used for different operations in different command sets.

When an NVMe passthru command is issued to the NVMe storage device, a specific path_id can
be specified. If you want to use specific path_id for the passthru command, you need to
configure both the NVME_PASS_PASSTHRU flag in the flags field and the path_id to be used in the
path_id field.

You can write the dword_10 to dword_15 data in endian format that is used by the host such that
(leftmost) bit 31 is the most significant bit and (rightmost) bit 0 is the least significant bit
according to the NVMe specification. For example, to read 0xAC blocks and to set FUA, dword_10
in the passthru structure is set to 0x400000AB.

234 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

You must byte reverse any two fields in the data that is transferred by using the passthru
command. For example, to read the name space size (NSZE) from data that is returned by
Identify Namespace, bytes 0 - 7 in the data buffer must be byte reversed.

The passthru command is unsuccessful if the ioct1 subroutine returns -1. A return value of -1
indicates that the driver failed to send the command to the controller or the controller did not
respond before the timeout occurred. If the errno flag is set to the EINVAL value, the resp.status
parameter contains a code that indicates the invalid field.

The passthru command is successful if the ioct] subroutine returns 0 and if the resp.status
parameter contains 0. The passthru command runs in parallel with commands that are initiated
by another user by running read or write operation.

NVMe controller device driver
Purpose

Supports the Non-Volatile Memory Express (NVMe) controller.

Syntax

<#include /usr/include/sys/nvme.h>
<#include /usr/include/sys/devinfo.h>

Description
The /dev/nvmen special file provides interfaces to the NVMe controller device driver.
Device-dependent subroutines

The NVMe controller device driver supports the open, close, and ioct] subroutines only. The read and
write subroutines are not supported by the NVMe controller special file.

ioctl Subroutine

Along with the IOCINFO operation, the NVMe controller device driver defines operations for NVMe
controller devices.

The IOCINFO operation is defined for all device drivers that use the ioct1 subroutine as follows:

* The IOCINFO operation returns a devinfo structure. The devinfo structure is defined in the
/usr/include/sys/devinfo.h header file. The device type in this structure is DD_BUS, and the subtype
is DS_NVME. The flags field is not used and it is set to 0.

* The devinfo structure includes unique data such as version information and the data transfer size that
is allowed in the maximum initiator mode. The transfer size is specified in bytes.

NVMe controller ioctl operations

The following ioct1 operations are supported for NVMe controller devices:
NVME_PASSTHRU

Provides options to send a passthru command to an NVMe controller device. The arg parameter
for the NVME_PASSTHRU operation is the address of an NVME_PASSTHRU structure that is defined in
the /usr/include/sys/nvme.h header file.

Note: You can send an admin command only to the adapter device, and an NVM command only
to the storage (hdisk) device. Otherwise, the commands can result in undefined behavior such as
data corruption. The opcodes of all the NVMe commands are unique only within a command set
and the opcode value can be used for different operations in different command sets.

Technical Reference: Kernel and Subsystems, Volume 2 235

When an NVMe passthru command is issued to the NVMe controller device, a specific path_id
can be specified. If you want to use specific path_id for the passthru command, you need to
configure both the NVME_PASS_PASSTHRU flag in the flags field and the path_id to be used in the
path_id field.

You can write the dword_10 to dword_15 data in the endian format that is used by the host such
that (leftmost) bit 31 is the most significant bit and (rightmost) bit 0 is the least significant bit
according to the NVMe specification. For example, to read 0xAC blocks and to set FUA, dword_10
in the passthru structure is set to 0x400000AB.

You must byte reverse any fields in the data that is transferred by using the passthru command.
For example, to read the name space size (NSZE) from data that is returned by Identify
Namespace, bytes 0 - 7 in the data buffer must be byte reversed.

The passthru command is unsuccessful if the ioct1 subroutine returns -1. A return value of -1
indicates that the driver failed to send the command to the controller or the controller did not
respond before the timeout occurred. If the errno flag is set to the EINVAL value, the resp.status
parameter contains a code that indicates the invalid field.

The passthru command is successful if the ioct] subroutine returns 0 and if the resp.status
parameter contains 0. The passthru command runs in parallel with commands that are initiated
by another user by running read or write operation.

NVME_CNTL
Provides the options to submit a control request to the NVMe controller device driver. The arg
parameter of the NVME_CNTL operation is the address of an nvme_cnt1 structure that is defined
in the /usr/include/sys/nvme.h header file. The types of control operations that are supported
for the NVMe controller device driver are documented in the nvme_cnt1 structure.

USB Subsystem

The protocol stack of the Universal Serial Bus (USB) device driver for the AIX operating system consists
of several drivers that communicate with each other in a layered fashion. These layers of drivers in the
USB subsystem work together to support the attachment of a range of USB devices, such as flash drives,
removable disk drive (RDX), tape, keyboard, mouse, speakers, and optical devices (for example,
CD-ROM, CD-R, CD-RW, DVD-R, DVD-RW, and DVD-RAM).

Extensible Host Controller Adapter Device Driver
Purpose

Supports the Universal Serial Bus (USB) 3.0 Extensible Host Controller Interface (xHCI) specification for
adapter device drivers.

Syntax

#include <sys/hcdi.h>
#include <sys/usbhdi.h>
#include <sys/usb.h>

Description

The /dev/usbhcn special files provide interfaces that allow access to the USB host controller adapter
devices. These files manage the adapter resources so that multiple USB client drivers and the USB system
(or the protocol driver) can access the USB devices on the same USB host controller adapter
simultaneously.

The AIX operating system supports the USB host controllers with various interface architectures, such as
the Open Host Controller Interface (OHCI) and the Enhanced Host Controller Interface (EHCI). The
binary interface to the USB 3.0 adapters is called the Extensible Host Controller Interface (xHCI). The AIX

236 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

operating system currently supports the 0.96 and 1.0 versions of the xHCI specification. The xHCI
specification defines a new host controller architecture that replaces the existing OHCI or EHCI
specification and also extends to new specifications, for example, USB Version 3.0, or later.

The /usr/Tib/drivers/pci/xhcidd device driver handles the xHCI adapters and the /usr/1ib/methods/
cfgxhci device driver is the corresponding AIX configuration method.

The max_sTots Object Data Manager (ODM) attribute for the adapter driver specifies the maximum
number of USB devices that are supported by an xHCI adapter. The default value of the attribute is 8.
You can modify this value to a maximum value of 32 to support more devices.

Note: If the max_slots values is set to 8 and if you connect more than 8 USB devices to the USB adapter,
the adapter configures only 8 devices. The configuration for the remaining device fails.

Adapter device driver entry point subroutines

The USB adapter device driver supports only the open, close, ioctl, and config entry points. The read
and write entry points are not supported.

open and close subroutines

The open subroutine associates the device number, which is specified as a parameter to the open system
call, with the internal adapter device structure. If the open subroutine finds an adapter structure, it
verifies that the corresponding adapter device is configured and is not marked inactive. If the open
subroutine does not find an adapter structure, it returns an error. If the Enhanced Error Handling (EEH)
feature is enabled, the open subroutine prevents access to the device when an EEH event is being
processed.

ioctl subroutine

The xHCI adapter device driver supports the following ioct1 suboperation:

| Operation Description

[HCD_REGISTER_HC| Registers the call vectors between the USB system (or the protocol driver) and the host
controller driver. After the call vectors are registered, all further communication between
the USB system (or protocol driver) and the host controller driver is handled by these
vectors.

Summary of error conditions returned by the xHCI adapter device driver

The following Transfer Request Block (TRB) completion status codes are returned by the xHCI during
status update if the associated error condition is detected. The TRB status values are specified in the
xHCI specification. These completion codes in turn are mapped to the following USBstatus values:

TRB status USBstatus value Description
XHCI_TRB_STATUS_BAB_DET_ERR USBD_STALL Babbling during transaction
XHCI_TRB_STATUS_BW_ERR USBD_ERROR Bandwidth is not available for periodic
endpoint connection
XHCI_TRB_STATUS_BW_OVERRUN_ERR USBD_ERROR Isochronous transfer descriptor (TD)
exceeded bandwidth of the endpoints
XHCI_TRB_STATUS_CMDRING_ABORT_ERR USBD_ERROR Command abort operation
XHCI_TRB_STATUS_CMDRING_STOP_ERR USBD_ERROR Command ring stopped
XHCI_TRB_STATUS_CTXT_STATE_ERR USBD_ERROR Invalid context state change command
XHCI_TRB_STATUS_DATA_BUF_ERR USBD_ERROR Overrun or underrun
XHCI_TRB_STATUS_EP_NE_ERR USBD_ERROR Endpoint is in a disabled state

Technical Reference: Kernel and Subsystems, Volume 2 237

TRB status USBstatus value Description
XHCI_TRB_STATUS_EVENT_LOST_ERR USBD_ERROR Internal event overrun
XHCI_TRB_STATUS_EVTRING_FULL_ERR USBD_ERROR Event ring is full
XHCI_TRB_STATUS_INCOMPAT_DEV_ERR USBD_ERROR Incompatible device
XHCI_TRB_STATUS_INVALID USBD_ERROR Completion update error
XHCI_TRB_STATUS_INVALID_SID_ERR USBD_ERROR Invalid stream ID
XHCI_TRB_STATUS_INVALID_STR_TYP_ERR USBD_ERROR Invalid stream of context (Ctxt) type
XHCI_TRB_STATUS_ISOCH_BUF_OVR_ERR USBD_ERROR Isochronous buffer overrun
XHCI_TRB_STATUS_MAXEL_LARGE_ERR USBD_ERROR Maximum exit latency is too large
XHCI_TRB_STATUS_MIS_SERV_ERR USBD_ERROR Isochronous endpoint is not serviced
XHCI_TRB_STATUS_NOPING_RESP_ERR USBD_ERROR No ping response within endpoint
service interval time (ESIT)
XHCI_TRB_STATUS_NOSLOTS_ERR USBD_ERROR Exceeded maximum slots
XHCI_TRB_STATUS_PARAM_ERR USBD_ERROR Context parameter is invalid
XHCI_TRB_STATUS_RESOURCE_ERR USBD_ERROR No adequate resources
XHCI_TRB_STATUS_RING_OVERRUN_ERR USBD_ERROR Ring overrun
XHCI_TRB_STATUS_RING_UNDERRUN_ERR USBD_ERROR Ring underrun
XHCI_TRB_STATUS_SEC_BW_ERR USBD_ERROR Secondary bandwidth error

XHCI_TRB_STATUS_SHORT_PKT_ERR

USBD_SUCCESSS

The packet size is lesser than the transfer
descriptor size in the transfer request.

XHCI_TRB_STATUS_SLOT_DISABLED_ERR USBD_ERROR Slot is in a disabled state
XHCI_TRB_STATUS_SPLIT_TR_ERR USBD_ERROR Split transaction error
XHCI_TRB_STATUS_STALL_ERR USBD_STALL Delay detected on TRB
XHCI_TRB_STATUS_STOP_LEN_ERR USBD_ERROR Transfer event length is invalid
XHCI_TRB_STATUS_STOPPED_ERR USBD_ERROR Stop endpoint command is received
XHCI_TRB_STATUS_SUCCESS USBD_SUCCESS Command success
XHCI_TRB_STATUS_TRB_ERR USBD_ERROR TRB parameter error
XHCI_TRB_STATUS_UNDEFINED_ERR USBD_ERROR Undefined error condition
XHCI_TRB_STATUS_USB_TSX_ERR USBD_ERROR No valid response from the device
XHCI_TRB_STATUS_VF_EVTRING_FULL_ERR USBD_ERROR Virtual Function (VF) event ring is full

Call vectors

Whenever the USB configuration method is run, it opens the /dev/usb® USB system driver (USBD)
special file and attempts to register each detected and available USB host controller with the USBD by
using a USBD_REGISTER_HC ioct1 operation. When the USBD_REGISTER_HC ioct1 operation is processed, the
USBD opens the host controller driver and requests for the registration of call vectors stored within the
host controller driver by using an HCD_REGISTER_HC ioct1 operation. After the call vectors are registered
with the USBD, all further communication between the USBD and the host controller driver is handled
by the call vectors. The summary of call vectors follows:

238 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

| Call vector

Description

IIECdConfi,cz,Pipesl

This call vector is provided by the USBD during the enumeration of USB logical device.

This call vector supports the xHCD with USBD, however it does not support EHCI or

OHCI drivers. It issues a configure endpoint command to the USB device to make the

non-control endpoints on the device operational. This call vector is called by the USBD
after the configuration selection is complete on the USB device.

EcdDevAHoa

Detects the attachment of a USB logical device. This call vector is provided by the
USBD.

This call vector supports the Extensible Host Controller Driver (xHCD) with USBD,
however it does not support EHCI or OHCI drivers. It enables the slot, sets the USB
device address, and allocates the HCD driver resources to use the USB device. It returns
the USB address value to the USBD. After this call, the default control endpoint on the
USB device is enabled to query the USB protocol-specific data.

IhcdDevFreel

Detects the removal of a USB logical device. This call vector is provided by the USBD.

This call vector supports the xHCD with USBD, however it does not support EHCI or
OHCI drivers. It disables the slot and also deallocates the resources that are allocated by
the hcdDevAlToc call vector.

|

Obtains the current frame number from the connected host controller. This call vector is
provided by the USBD.

|ECdPipeAborE|

Cancels the processing of an I/O buffer. The pipe that is specified by the I/O buffer is
already halted before the hcdPipeAbort call vector is called. This call vector is provided
by the USBD.

IhcdPipe AddIOB|

Increases the maximum number of outstanding I/O buffers. This call vector is provided
by the USBD.

||hchiEeClea§|

Clears, unhalts, and restarts the I/O operations on a specific endpoint. When this call
vector is called, the function checks whether the ring is in the halted state.

[edPipeConned

Creates a pipe connection to an endpoint on a specific USB device.

|EchipeDisconnecE|

Removes the previously established pipe connection with the endpoint on a specific USB
device.

||hchiEeHalﬂ

Halts a pipe from the perspective of the host controller. All pending I/O operations
remain in a pending state. This call vector is provided by the USBD.

Performs the I/O operations on the USB device. The I/O operations can be of the
following transfer types: control, bulk, isochronous, and interrupt.

||E1chipeResetToggle|
|

Resets the data synchronization toggle bit to DATAQ. This call vector is provided by the
USBD.

Obtains the status of the pipe from the host perspective. This call vector is provided by
the USBD.

thdShutdownComplete| Informs the host controller driver that the usbdReqHCshutdown request is completed. This
call vector is provided by the USBD.
[hedUnconfigPipes)| Detects that a device is removed from the system. This call vector is provided by the

USBD.

This call vector supports the xHCD with USBD, however it does not support EHCI or
OHCI drivers. It issues a configure endpoint command with the Unconfig bit set to
disable all the non-control endpoints on the USB device and deallocate the resources that
are allocated by the hcdConfigPipes call vector.

I|ﬁ_lch1r1registerHC|

Unregisters a host controller from the USBD.

| sbdBusMap

Maps the memory for bus mastering. This call vector is provided by the xHCD.

| sbdPostlOB

Retires an I/O buffer. This call vector is provided by the adapter driver.

I;isbdReqHCrestara

This call is provided when an error is detected with the adapter and the recovery of
adapter driver from this error requires you to restart the adapter.

lusbdReqHCshutdown|

This call vector is provided during the removal of host controller.

lusbdRegHCunregister|

The CFG TERM function of the adapter driver requests the USBD to unregister the host
controller. This call vector is provided during the removal of the host controller.

Technical Reference: Kernel and Subsystems, Volume 2 239

Related reference:

['USBD Protocol Driver” on page 276|

Related information:

usbhc special file|

Required USB Adapter Driver ioctl Commands|

Enhanced Host Controller Adapter Device Driver
Purpose

Supports the Enhanced Host Controller Interface (EHCI) specification for adapter device drivers.

Syntax

#include <sys/hcdi.h>
#include <sys/usbhdi.h>
#include <sys/usb.h>

Description

The /dev/usbhcn special files provide interfaces that allow access to the Universal Serial Bus (USB) host
controller adapter devices. These files manage the adapter resources so that multiple USB client drivers
and the USB system (or the protocol driver) can access the USB devices on the same USB host controller
adapter simultaneously.

In the USB 2.0 design, the USB Implementers Forum (USB-IF) implemented single specification, which is
known as EHCI, that supports only high-speed data transfers. EHCI-based adapters are multi-function
Peripheral Component Interconnect (PCI) devices that consist of virtual host controller functions that are
called companion controllers to support Open Host Controller Interface (OHCI) connectivity to USB 1.0
and 1.1 devices. The Object Data Manager (ODM) alt_usb_ctr1 attribute of the EHCI adapter provides
the location values for the companion OHCI controllers.

Adapter device driver entry point subroutines

The USB adapter device driver supports only the open, close, ioctl, and config entry points. The read
and write entry points are not supported.

open and close subroutines

The open subroutine associates the device number, which is specified as a parameter to the open system
call, with the internal adapter device structure. If the open subroutine finds an adapter structure, it
verifies that the corresponding adapter device is configured and is not marked inactive. If the open
subroutine does not find an adapter structure, it returns an error. If the Enhanced Error Handling (EEH)
feature is enabled, the open subroutine does not access the device when an EEH event is being processed.

ioctl subroutine

The EHCI adapter device driver supports the following ioct1 suboperations:

240 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

| Operation

Description

[FECD_REGISTER_HJ

Registers the call vectors between the USB system (or the protocol driver) and the host
controller driver. After the call vectors are registered, all further communication between
the USB system (or the protocol driver) and the host controller driver is handled by
these vectors.

[HCD_REQUEST_COMPANIONS]

Requests port routing information about the companion OHCI host controllers.

Summary of error conditions returned by the EHCI adapter device driver

Possible values of the USBstatus return value for the EHCI adapter device driver are as follows:

Error code

Description

USBD_ABORTED

The associated IRP has ended.

USBD_ABORTING

The associated 1/O request packet (IRP) is failing.

USBD_ACTIVE

The logical pipe is in operation and is not halted.

USBD_BADHANDLE

The handle that is passed as parameter through the call vector interface is invalid.

USBD_BANDWIDTH

The logical pipe connection has failed because of bandwidth requirements.

USBD_CONNECT

The logical pipe is already connected.

USBD_DATA Invalid response from the device.

USBD_DISCONNECT The device that is associated with the transaction is disconnected or removed.
USBD_ERROR General error condition.

USBD_HALTED The logical pipe that is associated with the transaction is halted.
USBD_POWER The device exceeded power budget.

USBD_SPEED The port reset operation has failed because of device speed mismatch.
USBD_STALL The logical pipe that is associated with the transaction is delayed.

USBD_TIMEOUT

The I/0O operation has timed out.

Call vectors

Whenever the USB configuration method is run, it opens the /dev/usb® USB system driver (USBD)
special file, and attempts to register each detected and available USB host controller with the USBD by
using a USBD_REGISTER_HC ioctl1 operation. When the USBD_REGISTER_HC ioct1 operation is processed, the
USBD opens the host controller driver and requests for the registration of call vectors that are stored
within the host controller driver by using an HCD_REGISTER_HC ioct1 operation. After the call vectors are
registered with the USBD, all further communication between the USBD and the host controller driver is
handled by the call vectors. The summary of call vectors follows:

| Call vector

Description

[hcdGetFramd Obtains the current frame number from the connected host controller. This call vector is
provided by the USBD.

[hcdPipeAbort Cancels the processing of an I/O buffer. The pipe that is specified by the 1/O buffer is
already halted before the hcdPipeAbort call vector is called. This call vector is provided
by the USBD.

hcdPipeAddIOB Increases the maximum number of outstanding I/O buffers. This call vector is provided
by the USBD.

EchipeClea;I Clears, unhalts, and restarts the I/O operations on a specific endpoint. When this call
vector is called, the function checks whether the ring is in the halted state.

I|&_1chiEeConnec§| Creates a pipe connection to an endpoint on a specific USB device.

Removes the previously established pipe connection with the endpoint on a specific USB
device.

hcdPipeHalt Halts a pipe from the perspective of the host controller. All pending I/O operations

remain in the pending state. This call vector is provided by the USBD.

Technical Reference: Kernel and Subsystems, Volume 2 241

0
1Y
=
<
)
a
-
=]
=

Description

| pelO Performs the I/O operations on the USB device. The I/O operations can be of the
following transfer types: control, bulk, isochronous, and interrupt.

IhcdPipeResetTogelel Resets the data synchronization toggle bit to DATA@. This call vector is provided by the
USBD.

hcdPipeStatu: Obtains the status of the pipe from the perspective of the host controller. This call vector
is provided by the USBD.

[hcdShutdownComplete] Informs the host controller driver that the usbdReqHCshutdown request is completed. This
call vector is provided by the USBD.

hcdUnregisterHC Unregisters a host controller from the USBD.

Maps the memory for bus-mastering. This call vector is provided by the Extensible Host
Controller Driver (xHCD).

Retires an I/O buffer. This call vector is provided by the adapter driver.

This call vector is provided when an error is detected in the adapter and the recovery of
adapter driver from this error requires you to restart the adapter.

This call vector is provided during the removal of the host controller.

The CFG TERM function of the adapter driver requests the USBD to unregister the host
controller. This call vector is provided during the removal of the host controller.

HCD_REQUEST_COMPANIONS Adapter Device Driver ioctl Operation

Purpose

Requests port routing information about the Open Host Controller Interface (OHCI) companion

This ioct] command is used by the configuration application to determine information about the OHCI
companion controller. This information includes the number of root hub ports, the number of companion
controllers, and the number of ports per companion controller.

Return values

The following return values are supported:

Value Description

0 Successful completion.

DEFAULT The user has insufficient authority to access the data.
EIO A permanent I/O error occurred.

Open Host Controller Adapter Device Driver

Purpose

Supports the Open Host Controller Interface (OHCI) specification for adapter device drivers.

242 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Syntax

#include <sys/hcdi.h>
#include <sys/usbdi.h>
#include <sys/usb.h>

Description

The /dev/usbhcn special files provide interfaces that allow access to the Universal Serial Bus (USB) host
controller adapter devices. These files manage the adapter resources so that multiple USB client drivers
and the USB system (or the protocol driver) can access low and full speed of the USB devices on the
same USB host controller adapter simultaneously.

The OHCI adapter supports the USB devices (for example, keyboard and mouse) that operate at USB 1.0
and USB 1.1 speeds.

Adapter device driver entry point subroutines

The USB adapter device driver supports only the open, close, ioctl, and config entry points. The read
and write entry points are not supported.

open and close subroutines

The open subroutine associates the device number, which is specified as a parameter to the open system
call, with the internal adapter device structure. If the open subroutine finds an adapter structure, it
verifies that the corresponding adapter device is configured and is not marked inactive. If the open
subroutine does not find an adapter structure, it returns an error. If the Enhanced Error Handling (EEH)
feature is enabled, the open subroutine prevents access to the device when an EEH event is being
processed.

ioctl subroutine

The OHCI adapter device driver supports the following ioct1 suboperation:

| Operation Description

IIHCD?REGISTER?HC| Registers the call vectors between the USB system (or the protocol driver) and the host
controller driver. After the call vectors are registered, all further communication between
the USB system (or protocol driver) and the host controller driver is handled by these
vectors.

Summary of error conditions returned by the OHCI adapter device driver

The following error condition codes for OHCI are translated into a USBstatus value to inform the USB
protocol driver and the client drivers about the error condition. Possible OHCI error conditions and the
corresponding USBstatus values follow:

OHCI error condition code USBstatus value Description

OHCI_CC_BitStuffing USBD_ERROR General error condition
OHCI_CC_BufferOverrun USBD_ERROR General error condition
OHCI_CC_BufferUnderrun USBD_ERROR General error condition
OHCI_CC_CRC USBD_ERROR General error condition
OHCI_CC_DataOverrun USBD_ERROR General error condition
OHCI_CC_DataToggleMismatch USBD_ERROR General error condition
OHCI_CC_DataUnderrun USBD_ERROR General error condition
OHCI_CC_DeviceNotResponding USBD_ERROR General error condition

Technical Reference: Kernel and Subsystems, Volume 2 243

OHCI error condition code USBstatus value Description
OHCI_CC_NotAccessed_0 USBD_ERROR General error condition
OHCI_CC_NotAccessed_1 USBD_ERROR General error condition
OHCI_CC_NoError USBD_SUCCESS Completion of successful transaction
OHCI_CC_PIDCheckFailure USBD_ERROR General error condition
OHCI_CC_STALL USBD_STALL The logical pipe is delayed
OHCI_CC_UnexpectedPID USBD_ERROR General error condition

Call vectors

Whenever the USB configuration method is run, it opens the /dev/usb® USB system driver (USBD)
special file and attempts to register each detected and available USB host controller with the USBD by
using a USBD_REGISTER_HC ioct1 operation. When the USBD_REGISTER_HC ioct1 operation is processed, the
USBD opens the host controller driver and requests for the registration of call vectors stored within the
host controller driver by using an HCD_REGISTER _HC ioct1 operation. After the call vectors are registered
with the USBD, all further communication between the USBD and the host controller driver is handled
by the call vectors. The summary of the call vectors follows:

|Ca11 vector

Description

cdGe

s
T
s
o
3
@

Obtains the current frame number from the connected host controller. This call vector is
provided by the USBD.

(e}
o
=
5
5
o
<}
o

Cancels the processing of an I/O buffer. The pipe that is specified by the I/O buffer is
already halted before the hcdPipeAbort call vector is called. This call vector is provided
by the USBD.

cdPipe AddIOB

Increases the maximum number of outstanding I/O buffers. This call vector is provided
by the USBD.

cdPipeClear

Clears, unhalts, and restarts the I/O operations on a specific endpoint. When this call
vector is called, the function checks whether the ring is in halted state. This call vector
is provided by the USBD.

cdPipeConnec

Creates a pipe connection to an endpoint on a specific USB device.

cdPipeDisconnect]

Removes the previously established pipe connection with the endpoint on a specific USB
device.

cdPipeHal

Halts a pipe from the perspective of the host controller. All pending I/O operations
remain in a pending state. This call vector is provided by the USBD.

I pelO Performs I/0 operations on the USB device. The 1/O operation can be of the following
transfer types: control, bulk, isochronous, and interrupt.

IhcdPipeResetTogele| Resets the data synchronization toggle bit to DATA@. This call vector is provided by the
USBD.

Obtains the status of the pipe from the host perspective. This call vector is provided by
the USBD.

[hcdShutdownComplete] Informs the host controller driver that the usbdReqHCshutdown request is completed. This
call vector is provided by the USBD.

lhcdUnregisterHC Unregisters a host controller from the USBD.

usbdBusMap Maps memory for bus mastering by the host controller. This call vector is provided by
the Extensible Host Controller Driver (xHCD).

|lusbdPostIOB Retires an I/0O buffer. This call vector is provided by the adapter driver.

usbdReqHCrestart This call is provided when an error is detected with the adapter and the recovery of
adapter driver from this error requires you to restart the adapter.

lusbdRegHCshutdown| This call vector is provided during the removal of host controller.

lusbdReqgHCunregister| The CFG TERM function of the adapter driver requests the USBD to unregister the host

controller. This call vector is provided during the removal of the host controller.

Related reference:

244 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

['USBD Protocol Driver” on page 276|

Related information:

usbhc special filel

Required USB Adapter Driver ioctl Commands|

octl subroutine

HCD_REGISTER_HC Adapter Device Driver ioctl Operation
Purpose

Registers the host controller with the Universal Serial Bus (USB) protocol driver.
Description

This ioct1 command is issued by the USB system driver (USBD) during the registration of host controller
with the USBD. During the processing of this ioct1 operation, the call vectors of the adapter device
driver are registered with USBD. After the call vectors are registered with the USBD, all further
communication between the USBD and the Host Controller Driver (HCD) is handled by these call
vectors.

Return values

The following return values are supported:

Value Description

0 Successful completion.

DEFAULT Incorrect size of the call vector or incorrect version of the call vector data structure.
EBUSY Adapter hardware is inaccessible.

EINVAL Host controller is already registered with the USBD.

USB Audio Device Driver
Purpose

Supports the Universal Serial Bus (USB) audio devices.

Syntax
#include <sys/ushdi.h>

Description

The USB audio device driver supports isochronous USB devices such as USB audio speakers. Each USB
audio device is represented as the following interfaces: audio control and audio streaming. Although
these interfaces are associated with the single device, the interfaces are treated as separate devices
virtually. The /dev/paud0d special file is created for audio control interface and the /dev/paudas0 special
file is created for audio streaming interface.

The audio control interface is used to access the internal functions of an audio device. Any request to
change the audio controls within the audio function's units or terminals is directed to the audio control
interface of the function.

The audio streaming interface can be configured to operate in mono or stereo mode. The number of input
channel data streams varies based on the selected mode. Audio streaming interface must have
isochronous endpoint. This interface can have alternative settings that can be used to change some
characteristics of the endpoint.

Technical Reference: Kernel and Subsystems, Volume 2 245

Note: You must use external or third-party audio software to stream and play audio files on the

supported USB audio devices.

The following table lists the ioct1 operations:

ioctl operation

Description

AUDIO_INIT

The driver searches the interfaces and alternative settings to determine the setting
that can support the requested sample rate, bits per sample, mode, and channels.

AUDIO_STATUS

The driver returns information about its internal data structures.

AUDIO_CONTROL

The driver handles requests to change the audio properties, for example, start, stop,
and pause.

AUDIO_BUFFER

The driver calculates and returns the values that are based on the information
about its data structures, the amount of data in buffers, the amount of data in
requests, the time delay that is specified in the bDelay field, and general
class-specific interface descriptor.

AUDIO_WAIT

The driver waits until the requests for all remaining playback data are complete. If
the bDelay field is specified, it waits for that amount of time. This operation must
be called just before the AUDIO_STOP operation to avoid interruption in the last
remaining samples in the playback buffer.

AUDIO_SET_CHANNELS

The driver updates its copies of the record and playback settings in the driver's
internal data structures.

* If a record path is active and one of the record settings is changed, the driver
sends requests to the USB audio device to change the settings in the units.

* If the playback path is active and one of the playback settings is changed, the
driver sends requests to the USB audio device to change the settings in the units
for the playback and playback rider paths. For the playback path, the master
settings volume must be included in the calculations before you set the playback
path volume.

AUDIO_GET_CHANNELS

The driver returns information that is based on the four input and one output
device models.

AUDIO_CHANNEL_STATUS

The driver returns information that is stored in its internal data structures.

AUDIO_SET_GAIN

The driver updates its copy of the settings in its internal data structures. If a record
path is active, the driver sends requests to the USB audio device to change the
settings in the units.

AUDIO_MODIFY_LIMITS

The driver updates the values in its internal data structures. If a select() call is
pending and one of the conditions to unblock the select() call is met, the
select() call is unblocked.

AUDIO_MASTER_VOLUME

The driver saves the new master volume value. It calculates the new unit volume
value that is based on the new master volume value and the playback volume
value. If playback is active, the driver sends requests to the USB audio device to
change the settings in the units for the playback and playback rider paths.

USB Keyboard Client Device Driver

Purpose

Supports the Universal Serial Bus (USB) keyboard devices.

Syntax

#include <sys/usbhdi.h>

Description

The keyboard client consists of a back end that interfaces with the USB system driver (USBD) and a front
end that interfaces with the AIX applications such as the low function terminal (LFT) and X server
applications. The USB keyboard client driver has no knowledge of the underlying USB adapter hardware.
Instead, the client driver sends control requests to the USB keyboard through the USBD and receives
input events through the USBD. The keyboard client driver identifies itself as a generic keyboard driver

246 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

by setting the devid field in its Object Data Manager (ODM) predefined data to 030101. The parent device
of the keyboard client is the pseudo device, usb0. The keyboard client does not have any child. Each
keyboard device that is connected to the AIX system is represented as /dev/kbd0, /dev/kbdl, and so on.

The USB keyboard client driver supports the attachment of multiple USB keyboard devices. Each device
is enumerated in the ODM and is marked as available. The client driver treats all keyboards as a single
logical device. Light-emitting diode (LED) settings are sent to all keyboards and input events from all
keyboards are sent to a single input ring. State tracking by the client driver ensures that a key does not
generate consecutive break events and that typematic delay and repeat are handled appropriately.

Special files (for example, /dev/kbd0, /dev/kbdl, and so on) are created for each USB keyboard device. If
there is at least one available USB keyboard device, an application (typically the LFT or X server
application) can open any one of the USB keyboard special files.

Special treatment for the keyboard is provided by the USB system device driver configuration method
because of the strict configuration and ordering rules of the graphics subsystem. When both the USB host
controller and the graphics adapter are in an available state and no existing keyboard is present, the
USBD ensures that at least one USB keyboard instance is defined. The USB keyboard client driver uses
the USBD_OPEN_DEVICE_EXT ioct]1 operation to open the device that generates a valid handle even when no
USB keyboard is attached to the system. The EAGAIN value is returned by the ioct1 operation if there is
no keyboard device and the client driver treats the device as disconnected. When you plug in a USB
keyboard, a reconnect call back is made to the keyboard client by the USBD and the device is initialized
allowing input events to flow to the LFT and X server applications.

Device-dependent subroutines

The USB adapter device driver supports only the open} [close] [ioct1} and config subroutines.

open and close subroutines

The open subroutine is used to create a channel between the caller and the keyboard client driver. The
keyboard special file supports two such channels. The open subroutine call is processed normally except
that the OF1ag and Mode parameters are ignored. The keyboard supports an fp_open request from a kernel
process. The keyboard client driver is multiplexed for an orderly change of control between the LFT and
the X server applications. The most recently opened keyboard channel is the active channel to which the
input events are sent. Only one channel can be open in the kernel mode at a time. The USB keyboard
client supports the attachment of multiple USB keyboard devices. Thus, one or more special files can be
defined. If there is at least one available USB keyboard device, an application (typically the LFT or the X
server) can open any one special file of the USB keyboard because the keyboard client driver ignores the
minor number specification. However, only two channels can be defined regardless of the number of
available USB keyboard devices.

The close subroutine call is used to end a channel.
Read and write operations

The keyboard client driver does not support read and write operations. A read or write operation to the

special file of the driver behaves as if a read operation or a write operation was made to the /dev/null
file.

ioctl subroutine

The keyboard device driver supports the following ioctl suboperations:

Technical Reference: Kernel and Subsystems, Volume 2 247

| Operation Description

I Returns a devinfo structure, which is defined in the sys/devinfo.h header file, that
describes the device. The first field of the structure (devtype) is set to the DD_INPUT value;
the remaining structure is set to zero.

. Queries keyboard device identifier.

| Queries keyboard service vector.

| Registers input ring.

| Flushes input ring.

| Sets or resets keyboard LEDs.

| Sets alarm volume.

| Sounds alarm.

| Sets typematic rate.

| Sets typematic delay.

| Enables or disables keep-alive poll.

Related information:

bd special file

USB Mass Storage Client Device Driver
Purpose

Supports the Universal Serial Bus (USB) protocol for mass storage and bulk type hard disk, Removable
Disk Drive (RDX), flash drives, CD-ROM, DVD-RAM, Blu-ray read-only, and read/write optical memory
devices.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scdisk.h>
#include <sys/ide.h>
#include <sys/usb.h>
#include <sys/ushdi.h>
#include <sys/mstor.h>

Description

Typical USB hard disk, RDX, flash drives, CD-ROM, DVD-RAM, Blu-ray read-only, and read/write
optical drive operations are implemented by using the open, close, read, write, and ioct1 subroutines.

Device-dependent subroutines

The USB mass storage device driver supports only the open, close, ioctl, and config subroutines.
open and close subroutines

The openx subroutine is primarily used by the diagnostic commands and utilities. Appropriate authority
is required to run the subroutine. If you run the open subroutine without the required authority, the

subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The ext parameter that is specified in the openx subroutine selects the operation to be used for the target
device. The /usr/include/sys/usb.h file defines the possible values for the ext parameter.

The ext parameter can contain any logical combination of the following flag values:

248 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

SC_DIAGNOSTIC Places the selected device in the Diagnostic mode. This mode is singularly entrant, which
means that only one process at a time can open the device at a time. When a device is in the
Diagnostic mode, the USB devices are initialized during the open or close operations, and error
logging is disabled. In the Diagnostic mode, only the close and ioctl subroutine operations are
accepted. All other device-supported subroutines return a value of -1 and set the errno global
variable to a value of EACCES.

A device can be opened in the Diagnostic mode only if the target device is not currently
opened. If you open a device in the Diagnostic mode when the target device is already open,
the subroutine returns a value of -1 and sets the errno global variable to a value of EACCES.

SC_SINGLE Places the selected device in the Exclusive Access mode. Only one process can open a device in
the Exclusive Access mode at a time.

A device can be opened in the Exclusive Access mode only if the device is not currently open.
If you open a device in the Exclusive Access mode and the device is already open, the
subroutine returns a value of -1 and sets the errno global variable to a value of EBUSY. If the
SC_DIAGNOSTIC flag is specified along with the SC_SINGLE flag, the device is placed in Diagnostic
mode.

readx and writex subroutines

The readx and writex subroutines are not supported on USB devices. Even if they are called, the ext
parameter is not processed.

ioctl subroutine

The ioct1 subroutine operations that are used for the usbcd device driver are specific to the following
categories of USB devices:

* Common ioct] operations for all USB devices
¢ USB hard disk, flash drive, and RDX devices
* USB CD-ROM and read/write optical devices

Common ioctl operations supported for all USB devices

The following ioct1 operations are available for hard disk, flash drive, RDX, CD-ROM, and read/write
optical devices:

Operation Description

DKIORDSE Issues a read command to the device and obtains the target-device sense data when an error
occurs. If the DKIORDSE operation returns a value of -1 and if the status_validity field is set to
the SC_SCSI_ERROR value, valid sense data is returned. Otherwise, target sense data is omitted.

The DKIORDSE operation is provided for diagnostic use. It allows the limited use of the target
device while operating in an active system environment. The arg parameter of the DKIORDSE
operation contains the address of a sc_rdwrt structure. This structure is defined in the
/usr/include/sys/scsi.h file.

The devinfo structure defines the maximum transfer size for a read operation. If you transfer
more than the maximum limit, the subroutine returns a value of -1 and sets the errno global
variable to a value of EINVAL.

Note: The CDIORDSE operation can be substituted for the DKIORDSE operation when the read
command is issued to obtain sense data from a CD-ROM device. The DKIORDSE operation is the
recommended operation.

Technical Reference: Kernel and Subsystems, Volume 2 249

Operation

Description

DKIOCMD

When the device is successfully opened in the Normal or Diagnostic mode, the DKIOCMD
operation can issue any Small Computer System Interface (SCSI) command to the specified
device. The device driver does not log any error recovery or failures of this operation.

The SCSI status byte and the adapter status bytes are returned through the arg parameter that
contains the address of a sc_iocmd structure, which is defined in the /usr/include/sys/scsi.h
file. If the DKIOCMD operation fails, the subroutine returns a value of -1 and sets the errno global
variable to a nonzero value. In this case, the caller must evaluate the returned status bytes to
determine the cause of operation failure and the recovery actions.

The devinfo structure defines the maximum transfer size for the command. If you transfer
more than the maximum value, the subroutine returns a value of -1 and sets the errno global
variable to a value of EINVAL.

DKIOCMD (continued)

The following example code issues the DKIOCMD ioctl operation to the usbms@ device to get the
SCSI standard inquiry data:

char sense_data[255];
char *data_buffer=NULL;
struct sc_iocmd sciocmd;

fd = open("/dev/usbms®", O_RDWR);
if (fd == -1){
printf("\niocmd: Open FAIL\n");
exit(-1);
}

memset (&sciocmd, '\0', sizeof(struct scsi_iocmd));
sciocmd.version = SCSI_VERSION_1;
sciocmd.timeout_value = 30;

sciocmd.command_length = 6;

sciocmd.flags = B_READ;

sciocmd.autosense_length = 255;
sciocmd.autosense_buffer _ptr = &sense_data[0];

sciocmd.data_Tlength = OxFF;

sciocmd.buffer = inq_data;

sciocmd.scsi_cdb[0] = SCSI_INQUIRY;
sciocmd.scsi_cdb[1] = 0x00; /* Standard Inquiry*/

sciocmd.scsi_cdb[2] = 0x00;
sciocmd.scsi_cdb[3] = 0x00;
sciocmd.scsi_cdb[4] = OxFF;
sciocmd.scsi_cdb[5] = 0x00;

if ((rc=ioct1(fd, DKIOCMD, &sciocmd)) != 0){
printf("iocmd: Ioctl FAIL errno %d\n",errno);
printf("status_validity: %x, scsi_status: %x, adapter_status:%x\n",
sciocmd.status_validity, sciocmd.scsi_bus_status,
sciocmd.adapter_status);
hexdump (sense_data, (long)20);
close(fd);
exit(-1);
} else {
printf("cdiocmd : Ioctl PASS\n");
if (cmd = SCSI_INQUIRY)
hexdump (inq_data,0x20) ;
}

close(fd);

250 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Operation

Description

DKIOLCMD

When the device is successfully opened in the Normal or Diagnostic mode, the DKIOLCMD
operation can issue any SCSI command to the specified device. The device driver does not log
any error recovery failures of this operation.

This ioct] operation is similar to the DKIOCMD16 operation that is used to issue 16-byte SCSI
commands to the USB mass storage device.

The SCSI status byte and the adapter status bytes are returned through the arg parameter that
contains the address of a sc_iocmd16cdb structure. This structure is defined in the
/usr/include/sys/scsi.h file. If the DKIOLCMD operation fails, the subroutine returns a value of
-1 and sets the errno global variable to a nonzero value. In this case, the caller must evaluate
the returned status bytes to determine the cause of operation failure and the recovery actions.

On completion of the DKIOLCMD ioct1 request, the residual field indicates the leftover data that
the device did not fully satisfy for this request. On a successful completion, the residual field
indicates that the device does not have all of the data that is requested or the device has less
amount of data than requested. On a request failure, you must check the status_validity field
to determine whether a valid SCSI bus problem exists. In this case, the residual field indicates
the number of bytes that the device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command. If you transfer
more than the maximum value, the subroutine returns a value of -1 and sets the errno global
variable to a value of EINVAL.

DKIOLCMD (continued)

The following example code issues the DKIOLCMD ioctl operation to the usbms@ device to get the
SCSI standard inquiry data:

char sense_data[255];
char xdata_buffer=NULL;
struct sc_iocmdlécdb sciocmd;

fd = open("/dev/usbms@", O_RDWR);
if (fd == -1){
printf("\niocmd: Open FAIL\n");
exit(-1);
}

memset (&sciocmd, '\0', sizeof(struct scsi_iocmd));
sciocmd.version = SCSI_VERSION_1;
sciocmd.timeout_value = 30;

sciocmd.command_length = 6;

sciocmd.flags = B_READ;

sciocmd.autosense_length = 255;
sciocmd.autosense_buffer _ptr = &sense_data[0];

sciocmd.data_Tength = OxFF;

sciocmd.buffer = inq_data;

sciocmd.scsi_cdb[0] = SCSI_INQUIRY;
sciocmd.scsi_cdb[1] = 0x00; /* Standard Inquiry*/

sciocmd.scsi_cdb[2] 0x00;
sciocmd.scsi_cdb[3] 0x00;
sciocmd.scsi_cdb[4] = OxFF;
sciocmd.scsi_cdb[5] = 0x00;

if ((rc=ioct1(fd, DKIOCMD, &sciocmd)) != 0){
printf("iocmd: Ioctl FAIL errno %d\n",errno);
printf("status_validity: %x, scsi_status: %x, adapter status:%x\n",
sciocmd.status_validity, sciocmd.scsi_bus_status,
sciocmd.adapter_status);
hexdump (sense_data, (long)20);
close(fd);
exit(-1);
} else {
printf("cdiocmd : Ioctl PASS\n");
if (cmd = SCSI_INQUIRY)
hexdump (inq_data,0x20);
}

close(fd);

Technical Reference: Kernel and Subsystems, Volume 2 251

Operation

Description

DK_PASSTHRU

When the device is successfully opened, the DK_PASSTHRU operation can issue any SCSI
command to the specified device. The device driver performs limited error recovery if this
operation fails. The DK_PASSTHRU operation differs from the DKIOCMD operation such that it does
not require an openx command with the ext argument of the SC_DIAGNOSTIC field. Because of
this, the DK_PASSTHRU operation can be issued to devices that are in use by other operations.

The SCSI status byte and the adapter status bytes are returned through the arg parameter that
contains the address of a sc_passthru structure. This structure is defined in the
/usr/include/sys/scsi.h file. If the DK_PASSTHRU operation fails, the subroutine returns a value
of -1 and sets the errno global variable to a nonzero value. In this case, the caller must evaluate
the returned status bytes to determine the cause of operation failure and the recovery actions.

If a DK_PASSTHRU operation fails because a field in the sc_passthru structure has an invalid
value, the subroutine returns a value of -1 and set the errno global variable to EINVAL. The
einval_arg field is set to the field number (starting with 1 for the version field) of the field
that had an invalid value. A value of 0 for the einval_arg field indicates that no additional
information about the failure is available.

The version field of the sc_passthru structure can be set to the value of SCSI_VERSION_2 and
you can specify the following fields:

* The variable_cdb_ptr field is a pointer to a buffer that contains the cdb variable.

» The variable_cdb_length field determines the length of the cdb variable to which the
variable_cdb_ptr field points.

On completion of the DK_PASSTHRU request, the residual field indicates the leftover data that the
device did not fully satisfy for this request. On a successful completion, the residual field
indicates that the device does not have all of the data that is requested or the device has less
amount of data than requested. On a request failure, you must check the status_validity field
to determine if a valid SCSI bus problem exists. In this case, the residual field indicates the
number of bytes that the device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command. If an attempt is
made to transfer more than the maximum transfer size, the subroutine returns a value of -1,
sets the errno global variable to a value of EINVAL, and sets the einval_arg field to a value of
SC_PASSTHRU_INV_D_LEN. These values are defined in the /usr/include/sys/scsi.h file.

Note: If you call the DK_PASSTHRU operation as a non-root user, the operation fails with the
EACCES error value instead of the EPERM value.

252 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Operation

Description

DK_PASSTHRU (continued)

The following example code issues the DK_PASSTHRU ioct1 operation to the usbms0 device to
get the SCSI standard inquiry data:

char sense_data[255];
char *data_buffer=NULL;
struct sc_passthru sciocmd;

fd = open("/dev/usbms®", O _RDWR);

if (fd == -1){
printf("\npassthru: Open FAIL\n");
exit(-1);

}

memset (&sciocmd, '\0', sizeof(struct sc_passthru));
sciocmd.version = SCSI_VERSION_1;
sciocmd.timeout_value = 30;

sciocmd.command_length = 6;
sciocmd.autosense_length = 2553
sciocmd.autosense_buffer_ptr = &sense_data[0];

sciocmd.data_length = OxFF;
sciocmd.buffer = inq_data;

sciocmd.flags = B_READ;

sciocmd.scsi_cdb[0] = SCSI_INQUIRY;
sciocmd.scsi_cdb[1] = 0x00; /* Standard Inquiry*/

sciocmd.scsi_cdb[2] = 0x00;
sciocmd.scsi_cdb[3] = 0x00;
sciocmd.scsi_cdb[4] = OxFF;
sciocmd.scsi_cdb[5] = 0x00;

if ((rc=ioct1(fd, DK_PASSTHRU, &sciocmd)) != 0){
if (sciocmd.adap_set_flags & SC_AUTOSENSE_DATA_VALID) {
/* look at sense data */
} /* end SC_AUTOSENSE_DATA_VALID */

printf("passthru: Ioctl FAIL errno %d\n",errno);

printf("status_validity: %x, scsi_status: %x, adapter_status:%x\n",
sciocmd.status_validity, sciocmd.scsi_bus_status,
sciocmd.adapter_status);

printf("Residual: %x\n", sciocmd.residual);

exit(-1);

} else {

printf("passthru: Ioctl PASS\n");

printf("status_validity: %x, scsi_status: %x, adapter status:%x\n",
sciocmd.status_validity, sciocmd.scsi_bus_status,
sciocmd.adapter_status);

printf("Residual: %x\n", sciocmd.residual);

/* ing_data buffer has valid Standard Inquiry data */

ioctl operations for USB hard disk, flash drive, and RDX devices

The following ioct1 operations are available for USB hard disk, flash drive, and RDX devices only:

Operation

Description

IOCINFO

Returns the devinfo structure that is defined in the /usr/include/sys/devinfo.h file. The
IOCINFO operation is the only operation that is defined for all device drivers that use the ioctl
subroutine. The following values are returned:

devinfo.devtype = DD_SCDISK;

devinfo.flags =(uchar)DF_RAND;

devinfo.devsubtype = 0x00;

devinfo.un.scdk.max_request = Maximum_transfer_supported by usbcd driver;
devinfo.un.scdk.numblks = Largest_LBA_supported_by device+l;
devinfo.un.scdk.blksize = Block_size_set_for_the_USB_Disk/Flash/RDX_Device;

Technical Reference: Kernel and Subsystems, Volume 2 253

Operation

Description

DKPMR

Issues an SCSI prevent media removal (PMR) command when the device is successfully
opened. This command prevents media from being ejected until the device is closed, powered
off and restarted, or until a DKAMR operation is issued. The arg parameter for the DKAMR
operation is null. If the DKAMR operation is successful, the subroutine returns a value of 0. If the
device is an SCSI hard disk, the DKAMR operation fails, the subroutine returns a value of -1, and
sets the errno global variable to a value of EINVAL. If the DKAMR operation fails for any other
reason, the subroutine returns a value of -1 and sets the errno global variable to a value of EIO.
Note: This function is provided to support the USB RDX devices that support ejecting the
media cartridges.

DKAMR

Issues an allow media removal (AMR) command when the device is successfully opened. The
media can then be ejected by using either the driver's eject button or the DKEJECT operation.
The arg parameter for this ioct1 operation is null. If the DKAMR operation is successful, the
subroutine returns a value of 0. If the device is an SCSI hard disk, the DKAMR operation fails. In
addition, the subroutine returns a value of -1 and sets the errno global variable to a value of
EINVAL. For any other cause of failure of this operation, the subroutine returns a value of -1,
and sets the errno global variable to a value of EIO.

Note: This function is provided to support the USB RDX devices that support ejecting the
media cartridges.

ioctl operations for CD-ROM and read/write optical devices

The following ioct1 operations are available for CD-ROM and read/write optical devices:

Operation Description
IOCINFO Returns the devinfo structure that is defined in the /usr/include/sys/devinfo.h file. The
IOCINFO operation is the only operation that is defined for all device drivers that use the ioct]
subroutine. The following values are returned:
devinfo.devtype = DD_CDROM;
devinfo.flags = (uchar)DF_RAND;
devinfo.devsubtype = 0x00;
devinfo.un.idecd.numblks =
Largest logical block addressing (LBA) supported by device + 1;
devinfo.un.idecd.bTksize = Block size set for the USB Disk, flash, or RDX device;
IDEPASSTHRU Issues an AT Attachment Packet Interface (ATAPI) command to the specified device when the

device is successfully opened. The IDEPASSTHRU operation does not require an openx command
with the ext argument of the SC_DIAGNOSTIC value. Therefore, an IDEPASSTHRU operation can be
issued to devices that are in use by other operations.

The AT Attachment (ATA) status bytes and the ATA error bytes are returned through the arg
parameter. This parameter contains the address of an ide_ata_passthru structure that is
defined in the /usr/include/sys/ide.h file. If the IDEPASSTHRU operation fails, the subroutine
returns a value of -1 and sets the errno global variable to a nonzero value. In this case, the
caller evaluates the returned status bytes to determine the cause of operation failure and the
recovery actions.

If the IDEPASSTHRU operation fails, the device driver performs limited error recovery. If this
operation fails because a field in the ide_ata_passthru structure has an invalid value, the
subroutine returns a value of -1 and sets the errno global variable to EINVAL.

On successful completion of the IDEPASSTHRU request, the residual field indicates that the
device does not have all of the data that is requested, or the device has less than the amount of
data that is requested. If the IDEPASSTHRU request fails, the residual field indicates the number
bytes that the device failed to complete for this request.

254 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Operation

Description

IDEPASSTHRU (continued)

The following example code issues an SCSI inquiry command that uses the IDEPASSTHRU
operation:

struct ide_atapi_passthru atapicmd;
char ing_buffer[255];
uchar sense_data[255];

/* set up the arg parameter block */
memset (&atapicmd, '\0', sizeof(struct ide_atapi_passthru));
memset (sense_data, '\0', 255);

atapicmd.ide_device = 0;
atapicmd.flags = IDE_PASSTHRU_READ;

atapicmd.timeout_value = 30;
atapicmd.rsvO = IDE_PASSTHRU_VERSION_01;
atapicmd.rsvl = 03
atapicmd.atapi_cmd.Tength = 12;
atapicmd.atapi_cmd.resvd = 0;
atapicmd.atapi_cmd.resvdl = 0;
atapicmd.atapi_cmd.resvd2 = 0;

atapicmd.data_ptr = ing_buffer;
atapicmd.buffsize = OxFF;

atapicmd.atapi_cmd.packet.opcode = SCSI_INQUIRY;
atapicmd.atapi_cmd.packet.byte[0] (0x00 | vpd) ; /+Standard Inquiry =/
atapicmd.atapi_cmd.packet.byte[1] = page code; /*Page Code-Valid if vpd=1 */

atapicmd.atapi_cmd.packet.byte[2] = 0x00;
atapicmd.atapi_cmd.packet.byte[3] = OxFF;
atapicmd.atapi_cmd.packet.byte[4] = 0x00;

atapicmd.sense_data
atapicmd.sense_data_length

= sense_data;
= 255;
fd = openx("/dev/cd0", O_RDWR, NULL, SC_DIAGNOSTIC);
if (fd == -1) {
printf("IDEPASSTHRU: Openx failed with errno %x \n", errno);
exit(-1);
}
if ((rc = ioct1(fd, IDEPASSTHRU, &atapicmd) !'= 0)) {
printf("IDEPASSTHRU: IOCTL Failed");
printf("errno %d\n",errno);
printf("ata_status: %x, ata_error:%x\n",
atapicmd.ata_status, atapicmd.ata_error);
close(fd);
exit(-1);
} else {
printf("IDEPASSTHRU : Ioctl PASS\n");
printf("ata_status: %x, ata_error: %x\n",
atapicmd.ata_status, atapicmd.ata_error);

1
close(fd);

DKPMR

Issues a Small Computer System Interface (SCSI) prevent media removal command when the
device is successfully opened. This command prevents media from ejecting until the device is
closed, powered off and then powered on, or until a DKAMR operation is issued. The arg
parameter for the DKPMR operation is null. If the DKPMR operation is successful, the subroutine
returns a value of 0. If the device is an SCSI hard disk, the DKPMR operation fails, the subroutine
returns a value of -1, and sets the errno global variable to a value of EINVAL. If the DKPMR
operation fails because of any other reason, the subroutine returns a value of -1 and sets the
errno global variable to a value of EIO.

DKAMR

Issues an allow media removal command when the device is successfully opened. The media
can be ejected by using either the drives eject button or the DKEJECT operation. The arg
parameter for this operation is null. If the DKAMR operation is successful, the subroutine returns
a value of 0. If the device is an SCSI hard disk, the DKAMR operation fails, and the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL. For any other cause
of operation failure, the subroutine returns a value of -1 and sets the errno global variable to a
value of EIO.

Technical Reference: Kernel and Subsystems, Volume 2 255

Operation Description

DKEJECT Issues an eject media command to the drive when the device is successfully opened. The arg

parameter for this operation is null. If the DKEJECT operation is successful, the subroutine
returns a value of 0. If the device is an SCSI hard disk, the DKEJECT operation fails, the
subroutine returns a value of -1, and sets the errno global variable to a value of EINVAL. For any
other cause of operation failure, the subroutine returns a value of -1 and sets the errno variable
to a value of EIO.

DKAUDIO Issues a play audio command to the specified device and controls the volume on the device's

output ports. Play audio commands can play, pause, resume, stop, determine the number of
tracks, and determine the status of a current audio operation. The DKAUDIO operation plays
audio only through the CD-ROM drive's output ports. The arg parameter of this operation is
the address of a cd_audio_cmds structure that is defined in the /usr/include/sys/scdisk.h file.
Exclusive access mode is required.

If the DKAUDIO operation is attempted when the device's audio-supported attribute is set to No,
the subroutine returns a value of -1 and sets the errno global variable to a value of EINVAL. If
the DKAUDIO operation fails, the subroutine returns a value of -1 and sets the errno global
variable to a nonzero value. In this case, the caller must evaluate the returned status bytes to
determine the cause of operation failure and recovery actions.

DK_CD_MODE Issues one of the following commands:

CD_GET_MODE
Returns the current CD-ROM data mode in the cd_mode_form field of the
mode_form_op structure when the device is successfully opened.

CD_CHG_MODE
Changes the CD-ROM data mode to the mode that is specified in the cd_mode_form
field of the mode_form_op structure when the device is successfully opened in the
exclusive access mode.

If a CD-ROM is not configured for different data modes by using the mode-select density
codes, and if you change the CD-ROM data mode by setting the action field of the
change_mode_form structure to the CD_CHG_MODE command, the subroutine returns a value of -1
and sets the errno global variable to a value of EINVAL. Attempts to change the CD-ROM mode
to any of the DVD modes also results in a return value of -1 and the errno global variable is set
to EINVAL. If the DK_CD_MODE operation for the CD_CHG_MODE command is attempted when the
device is not in exclusive access mode, the subroutine returns a value of -1 and sets the errno
global variable to a value of EACCES. For any other cause of operation failure, the subroutine
returns a value of -1 and sets the errno global variable to a value of EI0.

Device hardware requirements

USB hard disk, flash drive, RDX, CD-ROM, and read/write optical drives have the following hardware
requirements:

These drives must support a block size of 512 bytes per block.
If mode sense is supported, the write-protection (WP) bit must also be supported for sequential access
memory (SAM) hard disks and read/write optical drives.

USB hard disks, flash drives, RDX, and read /write optical drives must report the hardware retry count
in bytes of the request sense data for recovered errors. If the USB hard disk or read/write optical drive
does not support this feature, the system error log might indicate premature drive failure.

USB CD-ROM and read/write optical drives must support the 10-byte SCSI read command.
USB hard disks, flash drives, RDX, and read/write optical drives must support the SCSI write and
verify command and the 6-byte SCSI write command.

The read/write optical drive must set the format options valid (FOV) bit to 0 for the defect list header
of the SCSI format unit command to use the format command operation. If the drive does not support
this feature, you can write an application for the drive so that it formats the media by using the
DKFORMAT operation.

If a USB CD-ROM drive uses CD_ROM Data Mode 1 format, it must support a block size of 512 bytes
per block.

256 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

* If a USB CD-ROM drive uses CD_ROM data Mode 2 Form 1 format, it must support a block size of
2048 bytes per block.

+ If a USB CD-ROM drive uses CD_ROM data Mode 2 Form 2 format, it must support a block size of
2336 bytes per block.

* If a USB CD-ROM drive uses CD_DA mode, it must support a block size of 2352 bytes per block.

* To control the volume by using the DKAUDIO (play audio) operation, the device must support the SCSI-2
mode data page OxE.

* To use the DKAUDIO (play audio) operation, the device must support the following SCSI-2 optional
commands:

— read sub-channel

— Jpause resume

play audio mail summary file (.msf)

play audio track index
read table of contents (TOC)

Note: Only the International Organization for Standardization (ISO) file system (read-only ISO 9660),
Universal Disk Format (UDF) file system Version 2.01, or earlier, are supported on USB devices for the
AIX operating system. However, you can create a system backup or data archival on the drives by using
the mksysb, tar, cpio, backup, or restore commands. You can also use the dd command to add the ISO
images to the drives.

To use the USB flash drive, RDX, CD-ROM, DVD-RAM, and Blu-ray read-only devices, install the
following device package:

devices.ushif.08025002

The AIX operating system does not support plug-and-play feature for USB devices. To make a flash
drive, RDX, CD-ROM, Blu-ray, or DVD-RAM drive available to the AIX users, a root user must connect
the drive to a system USB port and run the following command:

cfgmgr -1 ushO

Note: Use caution when you remove the flash drives from ports. If the drives are not properly closed or
unmounted before you remove the drives, the data on the drives can be corrupted.

After you remove the drives, the drives remain in the available state in the Object Data Manager (ODM)
until the root user runs the following command:

rmdev -1 usbmsn

or

#rmdev -1 cdn

When a drive is in the available state, you can reconnect the drive to the system, and the drive can be
remounted or reopened. If a drive is disconnected from a system USB port while it is still open for a user,
that drive is not reusable until you close and reopen it.

AIX Version 6.1 with the 6100-06 Technology Level recognizes and configures USB attached Blu-ray
drives as read-only. The AIX operating system does not support the write operation to CD, DVD, or
Blu-ray media that are present in the USB Blu-ray drive. Although the write operation is not prevented (if
the drive is write-capable), no support is provided for any issues that are encountered during the write
operation.

The capability of the AIX operating system to operate on USB original equipment manufacturer (OEM)
flash drive, Blu-ray, and optical devices is validated against a sample of industry standard OEM USB

devices that are compliant with the USB standards. You might encounter issues with certain USB devices

Technical Reference: Kernel and Subsystems, Volume 2 257

that are not compliant and the AIX operating system does not provide any support for those issues.
Related information:

Dptions to the openx subroutine|

usbms special file|

[USB subsystem overview|

octl subroutine|

Error Conditions for USB Mass Storage Client Device Driver
Possible errno values for ioctl, open, read, and write subroutines when you use the scsidisk device
driver include the following values:

Value Description

EACCES Indicates one of the following conditions:

* An attempt was made to open a device that is currently open in the Diagnostic
or Exclusive Access mode.

* An attempt was made to open a Diagnostic mode session on a device that is
already open.

* You attempted to run a subroutine other than an ioct1 or close subroutine
while in Diagnostic mode.

* A DKIOLCMD operation was attempted on a device that is not in the Diagnostic
mode.

* A DK_CD_MODE ioctl subroutine operation was attempted on a device that is not
in the Exclusive Access mode.

EBUSY Indicates one of the following conditions:

* An attempt was made to open a session in the Exclusive Access mode on a
device that is already opened.

* The target device is reserved by another initiator.

EFAULT Indicates an invalid user address.

EFORMAT Indicates that the target device has unformatted media or the media is in an
incompatible format.

EINPROGRESS Indicates that a CD-ROM drive has a play-audio operation in progress.

EINVAL Indicates one of the following circumstances:

* A DKAUDIO (play-audio) operation was attempted for a device that is not
configured to use the SCSI-2 play-audio commands.

* The read or write subroutine supplied an nbyte parameter that is not an even
multiple of the block size.

* A sense data buffer length of greater than 255 bytes is not valid for a DKIORDSE
ioct1 subroutine operation.

* The data buffer length exceeded the maximum value that is defined in the
devinfo structure for a DKIORDSE or DKIOLCMD ioct1 subroutine operation.

* An unsupported ioct] subroutine operation was attempted.
* An attempt was made to configure a device that is still open.
* An invalid configuration command is provided.

* A DKPMR (prevent media removal), DKAMR (allow media removal), or DKEJECT (eject
media) command was sent to a device that does not support removable media.

* A DKEJECT (eject media) command was sent to a device that currently has its
media locked in the drive.

* The data buffer length exceeded the maximum value that is defined for a
strategy operation.

EIO Indicates one of the following circumstances:
* The target device cannot be located or is not responding.

* The target device indicates an unrecoverable hardware error.

258 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Value

Description

EMEDIA Indicates one of the following circumstances:
* The target device indicates an unrecoverable media error.
* The media was changed.
EMFILE Indicates that an open operation was attempted for an adapter that already has the
maximum permissible number of opened devices.
ENODEV Indicates one of the following circumstances:
* An attempt was made to access an undefined device.
* An attempt was made to close an undefined device.
ENOTREADY Indicates that there is no media in the drive.
ENXIO Indicates one of the following circumstances:
* The ioct] subroutine supplied an invalid parameter.
* A read or write operation was attempted beyond the end of the hard disk.
EPERM Indicates that the attempted subroutine requires appropriate authority.
ESTALE Indicates that a read-only optical disk was ejected (without first being closed by the
user) and then either reinserted or replaced with a second optical disk.
ETIMEDOUT Indicates that an I/O operation exceeded the specified timer value.
EWRPROTECT Indicates one of the following circumstances:

* An open operation that requires read/write mode was attempted on a read-only
media.

* Awrite operation was attempted to a read-only media.

Reliability and serviceability information

USB hard disk, flash drive, RDX devices, CD-ROM drives, and read /write optical drives return the

following errors:

Error

Description

ABORTED COMMAND

Indicates that the device ended the command.

ADAPTER ERRORS

Indicates that the adapter returned an error.

GOOD COMPLETION

Indicates that the command completed successfully.

HARDWARE ERROR

Indicates that an unrecoverable hardware failure occurred when the command was
run or during a self-test.

ILLEGAL REQUEST Indicates an invalid command or command parameter.

MEDIUM ERROR Indicates that the command ended with an unrecoverable media error condition.
NOT READY Indicates that the logical unit is offline or the media is missing.

RECOVERED ERROR Indicates that the command was successful after some recovery was applied.
UNIT ATTENTION Indicates that the device is reset or the power is turned on.

The fields that are defined in the error record template for hard disk, flash drive, RDX, CD-ROM, and
read /write optical media errors are logged as per the following structure:

/* Bulk transfer cmd and status blocks */

typedef struct mstor_cbw {
uint32_t cbw_signature;
uint32_t cbw_tag;
f1d32_t cbw_dlen;
uchar cbw_flags;
uchar cbw_Tun;
uchar cbw_cblen;
uchar chw_cb[16];
uchar cbw_rsvd;

} mstor_cbw_t;

/*
/*
/*
/*
/*
/*

/* Always "USBC" little endian */

Command identification =/

Data length =*/

Indicates data in or data out */
Logical unit number, 0-15 =*/
Significant bytes of the cmd b1k */
Command block itself =/

Technical Reference: Kernel and Subsystems, Volume 2 259

/* For error logging x/
struct mstor_err_rec {
struct err_recO® Tog;
uint cmd_error;
mstor_cbw_t cbw;
char sense_data[128];

s

LABEL: DISK_ERRx

IDENTIFIER: XXXXXXXX

Date/Time: Wed Aug 4 11:40:43 CDT 2010
Sequence Number: 80

Machine Id: 00000A2AD400

Node Id: nodel0

Class: H

Type: PERM

Resource Name: usbmsO

Resource Class: ushms

Resource Type: 0806500b

Location: U78A5.001.WIHOOAD-P1-T1-L1-L2-L3

Description
Probable Causes
User Causes
Failure Causes

SENSE DATA

1111 2222 2222 3333 3333 4444 4444 5566 LLCC CCCC CCCC CCCC CCCC cccc ccce ccce
CCRR SSSS KKSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSSSSSS
SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSSSSSS
SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSSSSSS
SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SS00 SSNN

Data Representation Legend
cmd_error 1 Command Error Value
(cmd_error values can be negative which are Togged as 2's complement.
For these USB specific error values refer below or /usr/include/sys/ushdi.h.
For error values which are positive Please refer to /usr/include/sys/errno.h file for error description)

Bulk transfer Command and Status Blocks

cbw_signature 2 Always .USBC. in ASCII — "5553 4243"
cbw_tag 3 Command Identification
cbw_dTen 4 Data Length
cbw_fTags 5 Indicates Data IN or OUT
cbw_Tun 6 LUN Id
chw_chlen L CDB (Command Descriptor Bytes) length
cbw_cb C CDB — SCSI/ATAPI Command Set
cbw_rsvd R Reserved
Sense data
Sense data S
Sense key K
ASC o
ASCQ q
Driver Open Count 0
Location N Device Driver log location

Error record values for media errors

260 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Value Description

Comment Indicates hard disk, flash drive, RDX, CD-ROM, or read/write optical media error.

Class Equals a value of H that indicates a hardware error.

Report Equals a value of True that indicates this error must be included when an error report is generated.
Log Equals a value of True that indicates an error log entry must be created when this error occurs.
Alert Equals a value of False that indicates this error cannot have an alert.

Err_Type Equals a value of Perm that indicates a permanent failure.

Err_Desc Equals a value of 1312 that indicates a disk operation failure.

Prob_Causes

Equals a value of 5000 that indicates medjia.

User_Causes

Equals a value of 5100 that indicates the media is defective.

User_Actions

Equals the following values:
* 1601, which indicates the removable media must be replaced and tried again.

* 00E1, which instructs to perform problem determination procedures.

Inst_Causes

None.

Inst_Actions

None.

Fail_Causes

Equals the following values:
¢ 5000, which indicates a media failure.

¢ 6310, which indicates a disk drive failure.

Fail_Actions

Equals the following values:
* 1601, which indicates that the removable media must be replaced and tried again.

* 00E1, which instructs to perform problem determination procedures.

Detail_Data

Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail Data field in the err_rec structure contains the mstor_err_rec structure. The
err_rec field is defined in the /usr/include/sys/errids.h file. The Detail_Data field follows the
same legend as mentioned in the preceding structure example.

Refer to the Small Computer System Interface (SCSI) specifications for the format of the request-sense
data for a particular device.

Error record values for hardware errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
hardware errors and for hard-aborted command errors are listed in the following table:

Value Description

Comment Indicates hard disk, flash drive, RDX, CD-ROM, or read/write optical hardware error.

Class Equals a value of H that indicates a hardware error.

Report Equals a value of True that indicates this error must be included when an error report is generated.
Log Equals a value of True that indicates an error log entry must be created when this error occurs.
Alert Equals a value of False that indicates this error cannot be alerted.

Err_Type Equals a value of Perm that indicates a permanent failure.

Err_Desc Equals a value of 1312 that indicates a disk operation failure.

Prob_Causes

Equals a value of 6310 that indicates disk drive.

User_Causes None.
User_Actions None.
Inst_Causes None.
Inst_Actions None.

Fail_Causes

Equals the following values:
¢ 6310, which indicates a disk drive failure.

¢ 6330, which indicates a disk drive electronics failure.

Technical Reference: Kernel and Subsystems, Volume 2 261

Value

Description

Fail_Actions

Equals a value of 00E1 that indicates problem-determination procedures must be performed.

Detail_Data

Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the mstor_err_rec structure. The
err_rec field is defined in the /usr/include/sys/errids.h file. It follows the same legend as
mentioned in the preceding structure example.

Error record values for adapter-detected hardware failures

The following fields are defined in the error record template for hard disk, CD-ROM, and read/write
optical media errors and for adapter-detected hardware errors:

Value Description

Comment Indicates adapter-detected hard disk, flash drive, RDX, CD-ROM, or read/write optical hardware
failure.

Class Equals a value of H that indicates a hardware error.

Report Equals a value of True that indicates that this error must be included when an error report is
generated.

Log Equals a value of True that indicates that an error-log entry must be created when this error
occurs.

Alert Equals a value of False that indicates this error cannot be alerted.

Err_Type Equals a value of Perm that indicates a permanent failure.

Err_Desc Equals a value of 1312 that indicates a disk operation failure.

Prob_Causes

Equals the following values:
* 3452, which indicates a device cable failure

* 6310, which indicates a disk drive failure

User_Causes None.
User_Actions None.
Inst_Causes None.
Inst_Actions None.

Fail_Causes

Equals the following values:
* 3452, which indicates a storage device cable failure
¢ 6310, which indicates a disk drive failure

¢ 6330, which indicates a disk-drive electronics failure

Fail_Actions

Equals a value of 0000 that indicates that the problem-determination procedures must be
performed.

Detail_Data

Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the mstor_err_rec structure. The
err_rec field is defined in the /usr/include/sys/errids.h file. It follows the same legend as
mentioned in the preceding structure example.

Error record values for recovered errors

The following fields are defined in the error record template for hard disk, CD-ROM, and read/write
optical media recovered errors:

262 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical recovered error.

Class Equals a value of H that indicates a hardware error.

Report Equals a value of True that indicates this error must be included when an error report is generated.
Log Equals a value of True that indicates an error log entry must be created when this error occurs.
Alert Equal to a value of False that indicates this error cannot be alerted.

Err_Type Equals a value of Temp that indicates a temporary failure.

Err_Desc Equals a value of 1312 that indicates a physical volume operation failure.

Prob_Causes

Equals the following values:
* 5000, which indicates a media failure

* 6310, which indicates a disk drive failure

User_Causes

Equals a value of 5100 that indicates that the media is defective.

User_Actions

Equals the following values:
* 0000, which indicates that the problem-determination procedures must be performed

* 1601, which indicates that the removable media must be replaced and tried again

Inst_Causes

None.

Inst_Actions

None.

Fail_Causes

Equals the following values:
¢ 5000, which indicates a media failure

* 6310, which indicates a disk drive failure

Fail_Actions

Equals the following values:
* 1601, which indicates that the removable media must be replaced and tried again

* 00E1, which performs problem determination procedures

Detail_Data

Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the mstor_err_rec structure. The
err_rec field is defined in the /usr/include/sys/errids.h file. It follows the same legend as
other errors.

Error record values for unknown errors

The following fields are defined in the error record template for hard disk, CD-ROM, and read/write
optical media unknown errors:

Value Description

Comment Indicates hard disk, CD-ROM, or read/write optical unknown failure.

Class Equals a value of H that indicates a hardware error.

Report Equals a value of True that indicates this error must be included when an error report is
generated.

Log Equals a value of True that indicates an error log entry must be created when this error
occurs.

Alert Equal to a value of False that indicates this error cannot be alerted.

Err_Type Equals a value of Unkn that indicates the type of error is unknown.

Err_Desc Equals a value of FEOO that indicates an undetermined error.

Prob_Causes

Equals the following values:
* 3300, which indicates an adapter failure
¢ 5000, which indicates a media failure

¢ 6310, which indicates a disk drive failure

User_Causes None.
User_Actions None.
Inst_Causes None.

Technical Reference: Kernel and Subsystems, Volume 2

263

Value Description

Inst_Actions None.
Fail_Causes Equals a value of FFFF that indicates the failure causes are unknown.
Fail_Actions Equals the following values:

* 00E1, which performs problem determination procedures

* 1601, which indicates the removable media must be replaced and tried again

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail Data field in the err_rec structure contains the mstor_err_rec structure.
The err_rec field is defined in the /usr/include/sys/errids.h file. It follows the same
legend as other errors.

Special Files

The usbcd USB client device driver uses raw and block special files for its functions. The special files that
are used by the usbcd device driver are listed by the type of device in the following table:

Table 1. Special files for the usbcd device driver

Device Special file Description
Hard disk, flash drive, RDX /dev/rusbms0O, /dev/rusbmsl, ..., | Provides an interface for USB client device drivers to access
devices /dev/rusbmsn character (raw I/O access and control functions).
/dev/usbhms0, /dev/usbmsli, ..., Provides an interface for USB client device drivers to access
/dev/ushmsn block I/0.
CD-ROM, DVD-RAM, Blu-ray /dev/rcd0, /dev/rcdl, ..., Provides an interface for USB client device drivers to access
read-only devices: /dev/rcdn character (raw I/O access and control functions).
/dev/cd0, /dev/cdl, ..., /dev/cdn | Provides an interface for USB client device drivers to access
block I/0.

Note: The prefix r on a special file name indicates that the drive is accessed as a raw device rather than
a block device. Performing raw I/O with a hard disk, flash drive, RDX, CD-ROM, or read/write optical

drive requires all data transfers to be in multiples of the device block size. Also, all the Iseek subroutines
that are made to the raw device driver must result in a file pointer value that is a multiple of the device

block size.

Related information:

ppen and openx subroutines|
Required USB Adapter Driver ioctl Commands|

RDX USB External Dock (1104 and EU04) and RDX Removable Disk Drives (1106, 1107, EU01, EUOS, and|
EU15)

USB Mouse Client Device Driver
Purpose

Supports the Universal Serial Bus (USB) mouse device.

Syntax
#include <sys/ushdi.h>

Description
The USB mouse client device driver consists of a back end that interfaces with the USB system driver

(USBD) and a front end that interfaces with an AIX application such as the X server application. The
client driver has no knowledge of the underlying USB adapter hardware. Instead, the client driver sends

264 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

control requests to the USB mouse through the USBD and receives input events through the USBD. The
USB mouse client driver supports the attachment of multiple USB mouse devices. Each device is
enumerated in the Object Data Manager (ODM) and marked available. The client driver treats all the
mouse devices as a single logical device. Input events from all the devices are sent to a single input ring.

A device special file is created for each USB mouse device. Until there is at least one USB mouse device
that is marked available, an application (typically the X server application) can open any one of the USB
mouse special files because the client driver ignores the minor number specification. A USB mouse device
that is added and configured after the open operation is automatically added to the open set. The device
special files (for example, /dev/mouse, /dev/mousel, and so on) are created for each USB mouse device.

Special treatment for the mouse is provided by the USBD configuration method because of the strict
configuration and ordering rules of the graphics subsystem. When a USB host controller and a graphics
adapter are marked available, and no existing mouse is present, the USBD ensures that at least one USB
mouse instance is defined. The USB mouse client driver uses the USBD_OPEN_DEVICE_EXT ioctl operation
to open the device that generates a valid handle even when there is no USB mouse that is attached to the
system. The EAGAIN error code is returned by the USBD_OPEN_DEVICE_EXT operation if there is no mouse
device and the client driver treats the device as disconnected. When you plug in a USB mouse, a
reconnect call back operation is made to the mouse client by the USBD and the device is initialized for
the input events to flow to the X server application.

The following input device driver ioct] operations are used for the USB mouse operations:

| Operation Description

m Returns a devinfo structure, which is defined in the sys/devinfo.h header file, that
describes the device. The first field of the structure (devtype) is set to DD_INPUT; the rest
of the structure is set to zero.

IMQUERYI!] Queries mouse device identifier.

| Registers input ring.

| Registers extended input ring.

| Flushes input ring.

| Sets mouse reporting threshold.

| Sets mouse resolution.

| Sets mouse scale factor.

| Sets mouse sample rate.

Related information:

mouse special file]

USB Tape Client Device Driver
Purpose

Supports the Universal Serial Bus (USB) protocol for sequential access tape device driver.

Syntax

#include <sys/devinfo.h>
#include <sys/usb.h>
#include <sys/tape.h>
#include <sys/ushdi.h>

Device-dependent subroutines

Most of the tape operations are implemented by using the open, close, read, and write subroutines.
However, the openx subroutine must be used if the device must be opened in the Diagnostic mode.

Technical Reference: Kernel and Subsystems, Volume 2 265

open and close subroutines

The openx subroutine is primarily used for the diagnostic commands and utilities. Appropriate authority
is required for to run the subroutine. If you run the openx subroutine without the required authority, the
subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The openx subroutine enables the Diagnostic mode for the device driver and disables command-retry

logic. This action allows the
diagnostic processing. The o

The open subroutine applies

ioct] operations that perform special functions that are associated with
penx subroutine can also force-open and retain reservations.

a reservation policy that is based on the Object Data Manager (ODM)

reserve_policy attribute. The USB tape devices might not support Small Computer System Interface
(SCSI) reservation command and therefore, these commands might be ignored.

The ext parameter that is passed to the openx subroutine selects the operation to be used for the target
device. The /usr/include/sys/scsi.h file defines the possible values for the ext parameter.

The ext parameter can conta

in any logical combination of the following flag values:

Item

Description

SC_FORCED_OPEN

Forces access to a device by removing any type of reservation on the device that can inhibit
access. The type of action to remove the reservation depends upon the specific type of the
established reservation. If this flag is specified, a mass storage reset command is issued for a
USB tape, which is a mass storage bulk device.

SC_DIAGNOSTIC

Places the selected device in the Diagnostic mode. This mode is singularly entrant. It means
when a device is in the Diagnostic mode, SCSI operations are performed during the open or
close operations, and error logging is disabled. In the Diagnostic mode, only the close and
ioct1 operations are accepted. All other device-supported subroutines return a value of -1 and
set the errno global variable to a value of EACCES.

A device can be opened in the Diagnostic mode only if the target device is not currently
opened. If you open a device in the Diagnostic mode and the target device is already open, the
subroutine returns a value of -1 and sets the errno global variable to a value of EACCES.

ioctl subroutine

The following ioct1 operations are supported on USB tape devices:

Operation

Description

IOCINFO

Populates the devinfo argument that is passed by the caller with the following values:

devinfo.devtype = DD_SCTAPE;
devinfo.flags = 0;
devinfo.devsubtype = 0x00;
devinfo.un.scmt.type = DT_STREAM;

devinfo.un.scmt.blksize Block Size Set for the Tape Device;

266 AIX Version 7.2: Technical

Reference: Kernel and Subsystems, Volume 2

Operation

Description

STIOCTOP

Specifies the address of a stop structure that is defined in the src/bos/usr/include/sys/tape.h
file. The operation that is found in the st_op field in the stop structure is run st_count times,
except for rewind, erase, and retention operations.

This ioct] command supports the following operations with the respective implementation
details:

STREW Issues the REWIND command to the tape device to rewind the tape.

STERASE
Issues the SCSI ERASE command to erase the contents of the tape media. Erase is not
allowed with a read-only tape.

STRETEN or STINSRT
Issues the SCSI LOAD command with Load and Reten bits that are set in byte 4 of the
command.

STWEOF
Writes the end-of-file mark to the tape. The Write End-of-Filemark operation is not
allowed with a read-only tape.

STDEOF
Disables the end-of-tape checking command.

STFSF Issues the Forward Space File command. The st_count field specifies the number of
file marks that the tape advances.

STFSR Issues the Forward Space Record command. The st_count field is the number of
records that the tape advances.

STRSF Issues the Reverse Space File command. The st_count field is the number of file
marks that the tape reverses.

STRSR Issues the Reverse Space Record command. The st_count field is the number of
records that the tape reverses.

STOFFL or STEJECT
Ejects the tape from the tape drive. This operation issues the SCSI LOAD command
with Load bit in byte 4 of Command Descriptor Block (CDB) that is set to zero.

STIOCHGP
Defines the ioct1 command to dynamically change the block size for this tape
device. The block size is changed for the length of the open operation and is returned
to the original values on the next open operation. The tape is forced to BOT
(beginning-of-tape) when this operation is performed.

The parameter to this ioct] command specifies the address of a stchgp structure that
is defined in the src/bos/usr/include/sys/tape.h file. The st_blksize field in the
structure specifies the block size value to be set.

Technical Reference: Kernel and Subsystems, Volume 2 267

Operation

Description

STIOCTOP (continued)

STIOCMD
When the device is successfully opened, the STIOCMD operation issues an SCSI
command to the specified tape device.

The SCSI status byte and the adapter status bytes are returned through the arg
parameter that contains the address of a scsi_iocmd structure. This structure is
defined in the /usr/include/sys/scsi_buf.h file. The STIOCMD operation receives the
SCSI command in the scsi_cdb section of the scsi_iocmd structure and issues it to the
USB tape device. If the STIOCMD operation fails, the subroutine returns a value of -1
and sets the errno global variable to a nonzero value. In this case, the caller must
evaluate the returned status bytes to determine the cause of operation failure and the
recovery actions.

The version, command_length, and timeout_value values that are passed by the user is
validated and error value EINVAL is returned if they are not valid.

If you transfer more than 1 MB of the maximum I/O transfer size, the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL.

On a check condition, the following error status values are set in the sc_passthru
structure:

status_validity = SC_SCSI_ERROR
scsi_bus_status = SC_CHECK_CONDITION
adap_set_flags will have SC_AUTOSENSE_DATA_VALID flag set.

The following example is a pseudo code to issue the STIOCMD operation to the USB
tape to issue an INQUIRY SCSI command:

struct scsi_iocmd cmd;
char ing_data[255];
char sense_data[255];

fd = open("/dev/rmt0", O_RDWR);

memset (&md, '\0', sizeof(struct sc_passthru));
cmd.version = SCSI_VERSION_1;

cmd.timeout_value = 30;

cmd.command_Tength = 6;

cmd.autosense_length = 255;
cmd.autosense_buffer ptr = &sense_data[0];
cmd.data_length = OxFF;

cmd.buffer = inq_data;

cmd.flags = B_READ;

cmd.scsi_cdb[0] = SCSI_INQUIRY;
cmd.scsi_cdb[1] = (0x00 | vpd); /+ Standard Inquiry — vpd=1
for Extended Inquiry =/
cmd.scsi_cdb[2] = page_code; /* Page Code — valid if vpd=1 */
cmd.scsi_cdb[3] = 0x00;
cmd.scsi_cdb[4] = OxFF;
cmd.scsi_cdb[5] = 0x00;

if ((rc=ioct1(fd, STIOCMD, &cmd)) != 0){
if (cmd.adap_set flags & SC_AUTOSENSE_DATA VALID) {
/* look at sense data */
} /* end SC_AUTOSENSE_DATA_VALID */

printf("STPASSTHRU: Ioctl FAIL errno %d\n",errno);

printf("status_validity: %x, scsi_status: %x, adapter_status:%x\n",
cmd.status_validity, cmd.scsi_bus_status, cmd.adapter_status);

printf("Residual: %x\n", cmd.residual);

exit(-1);
} else {

printf("STPASSTHRU : Ioctl PASS\n");

printf("status_validity: %x, scsi_status: %x, adapter_status:%x\n",
cmd.status_validity, cmd.scsi_bus_status, cmd.adapter_status); }

268 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Operation

Description

STPASSTHRU

cha
cha

fd

cmd
cmd
cmd
cmd
cmd

if (

}

}

Takes the SCSI command in the scsi_cdb section of the sc_passthru structure and issues it to
the USB tape driver. This operation is similar to the STIOCMD ioct1 operation with the only
exception of additional informative fields in the sc_passthru structure that provides more
information on the error.

The following example is a pseudo code to issue the STPASSTHRU operation to the USB tape to
issue an INQUIRY SCSI command:

struct sc_passthru cmd;

r ing_data[255];
r sense_data[255];

= open("/dev/rmt0", O _RDWR);

memset (&cmd, '\0', sizeof(struct sc_passthru));
cmd.
cmd.
cmd.
cmd.

version = SCSI_VERSION_1;
timeout_value = 30;
command_length = 6;
autosense_Tlength = 255;

cmd.autosense_buffer_ptr = &sense_data[0];
cmd.data_length = OxFF;

cmd.buffer = inq_data;

cmd. flags = B_READ;

cmd.scsi_cdb[0] = SCSI_INQUIRY;

.scsi_cdb[1] = (0x00 | vpd); /* Standard Inquiry — vpd=1
for Extended Inquiry x/

.scsi_cdb[2] = page_code; /* Page Code — valid if vpd=1 */
.scsi_cdb[3] = 0x00;
.scsi_cdb[4] = OxFF;
.scsi_cdb[5] = 0x00;

(rc=ioct1(fd, STPASSTHRU, &cmd)) != 0){
if (cmd.adap_set_flags & SC_AUTOSENSE_DATA VALID) {
/* Took at sense data */
} /* end SC_AUTOSENSE_DATA_VALID */

printf("STPASSTHRU: Ioctl FAIL errno %d\n",errno);

printf("status_validity: %x, scsi_status: %x, adapter_status:%x\n",
cmd.status_validity, cmd.scsi_bus_status, cmd.adapter_status);

printf("Residual: %x\n", cmd.residual);

exit(-1);
else {

printf("STPASSTHRU : Ioctl PASS\n");

printf("status_validity: %x, scsi_status: %x, adapter_status:%x\n",
cmd.status_validity, cmd.scsi_bus_status, cmd.adapter_status);

Related information:

Dptions to the openx subroutine|

mt special file

bpen subroutine|
fwrite subroutine|

Error Conditions for USB Tape Client Device Driver

In addition to the listed errors, the

joctl, open, read, and write subroutines for USB tape device are

unsuccessful in the following circumstances:

Technical Reference: Kernel and Subsystems, Volume 2

269

Value Description

EAGAIN Indicates that an attempt is made to open a device, which is already open.

EBUSY Indicates that the target device is reserved by another initiator.

EINVAL * Indicates that the O_APPEND value is supplied as the mode in which the device is
to be opened.

* Indicates that the nbyte parameter that is supplied by a read or write operation
is not a multiple of the block size.

* Indicates that a parameter to an ioct] operation is not valid.

* Indicates that the requested ioct1 operation is not supported on the current
device.

EIO * Indicates that the tape drive is reset or the tape is changed. This error is returned
during the open operation if the tape is positioned beyond the beginning of the
tape upon closing as a result of the previous operation to the tape.

* Indicates that the device cannot space forward or reverse the number of records
that is specified by the st_count field before it encounters an end-of-media
(EOM) or a file mark.

EMEDIA Indicates an open operation is attempted for an adapter that already has the

maximum permissible number of opened devices.

ENOTREADY Indicates that there is no tape in the drive or the drive is not ready.

ENXIO Indicates that there was an attempt to write to a tape, which has already reached

EOM.

EPERM Indicates that the subroutine requires appropriate authority.

ETIMEDOUT Indicates that a command has timed out.

EWRPROTECT

* Indicates that an open operation is attempted for the read /write mode on a
read-only tape.

* Indicates that an ioctl operation, which affects the media, was attempted on a
read-only tape.

Reliability and serviceability information

The following errors are returned from the tape devices:

Error

Description

ABORTED COMMAND

Indicates that the device ended the command.

BLANK CHECK

Indicates that a read command encountered a blank tape.

DATA PROTECT

Indicates that a write operation was attempted on a write-protected tape.

GOOD COMPLETION

Indicates the command completed successfully.

HARDWARE ERROR

Indicates that an unrecoverable hardware failure occurred during the command
execution or during a self-test.

ILLEGAL REQUEST

Indicates an invalid command or an invalid command parameter.

MEDIUM ERROR

Indicates that the command ended with an unrecoverable media error condition.
This condition can be caused by a tape flaw or a dirty head.

NOT READY Indicates that the logical unit is offline.
RECOVERED ERROR Indicates the command is successful after some recovery operations were applied.
UNIT ATTENTION Indicates that the device is reset or the power is turned on.

Medium, hardware, and unsuccessful command errors from the preceding list must be logged every time
they occur. The ABORTED COMMAND error might be recoverable, but the error is logged if recovery fails. For
the RECOVERED ERROR and recovered ABORTED COMMAND error types, thresholds are maintained; when they
are exceeded, an error is logged. The thresholds are then cleared.

270 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

/* Bulk transfer cmd and status blocks */
typedef struct mstor_cbw {

uint32_t cbw_signature; /* Always "USBC" 1ittle endian */
uint32_t cbw_tag; /* Command identification =/

f1d32_t cbw_dlen; /* Data length =/

uchar cbw_flags; /* Indicates data in or data out */
uchar cbw_lun; /* Logical unit number, 0-15 =/

uchar cbw_cblen; /* Significant bytes of the cmd blk */
uchar cbw_cb[16]; /* Command block itself =/

uchar cbw_rsvd;
} mstor_cbw_t;

/* For error logging */
struct usbtape_err_rec {
struct err_recO Tog;
uint cmd_error;
mstor_cbw_t cbw;
char sense_data[168];

uint ddi; /* reserved for dd use */
uint dd2; /* reserved for dd use */
uint dd3; /* reserved for dd use */
uint dd4; /* reserved for dd use x/
uint dds; /* reserved for dd use */
uint ddé6; /* reserved for dd use */
uint dd7; /* reserved for dd use */
uint dd8; /* reserved for dd use */

}s

LABEL: SC_TAPE_ERRxX

IDENTIFIER: XXXXXXXX

Date/Time: Thu Mar 12 05:20:27 CDT 2009

Sequence Number: 3829

Machine Id: 0000097AD400

Node Id: sitar04

Class: H

Type: PERM

Resource Name: rmtO
Resource Class: tape
Resource Type: 0806500c
Location:

Description
Probable Causes
Failure Causes

Recommended Actions
Detail Data

SENSE DATA

1111 1111 2222 2222 3333 3333 4444 4444 5566 7788 8888 8888 8838 3888 8388 8888
8888 8899 aaaa kkaa aaaa aaaa aaaa aaaa CCQqQ aaaa aaaa aaaa aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa bbbb bbbb cccc cccc dddd dddd

Data Representation Legend
cmd_error 1 Command Error Value
(cmd_error values can be negative which are lTogged as 2's complement.
For these USB specific error values refer below or /usr/include/sys/usbdi.h.
For error values which are positive Please refer to /usr/include/sys/errno.h file for error description)

Bulk transfer Command and Status Blocks

cbw_signature 2 Always .USBC. in ASCII — "5553 4243"
cbw_tag 3 Command Identification

Technical Reference: Kernel and Subsystems, Volume 2 271

cbw_dlen
cbw_fTags
cbw_Tun
cbw_cblen
cbw_cb
cbw_rsvd

Sense data
Sense data
Sense key
ASC
ASCQ
Read Transfer Count
Write Transfer Count
Location

O ooNOY U~

o0 Tao0x o

Data Length

Indicates Data IN or OUT

LUN Id

CDB (Command Descriptor Bytes) Tlength
CDB

Reserved

In bytes
In bytes
Device Driver log location

Note: Device-related adapter errors are logged every time the errors occur.

Error record values for tape device errors

The following table lists the fields that are defined in the error record template for tape device errors:

Error ID

Description

SC_TAPE_ERR1

Permanent tape error. This error is logged when tape medium error is encountered.

SC_TAPE_ERR2

Permanent tape hardware error. This error is logged when tape hardware error is
encountered or command is aborted by the drive and all attempts to resolve the error have
failed.

SC_TAPE_ERR3

Temporary tape drive failure. This error is not logged in Universal Serial Bus (USB) tape
driver.

SC_TAPE_ERR4

Permanent tape drive failure. This error is logged when adapter failure is detected and all
attempts have failed.

SC_TAPE_ERR5

Unknown tape error. This error is logged when tape returns a check condition but the
sense data does not contain valid information.

SC_TAPE_ERR6

Temporary tape operation error. Tape drive needs to be cleaned.

SC_TAPE_ERR7

Informational error. Remote Access Service (RAS) related error logs due to internal driver
sanity check failures.

SC_TAPE_ERRS8

Temporary tape drive failure. This error is not logged in USB tape driver.

Error record values for tape device media errors

The following table lists the fields that are defined in the error record template for tape device media

errors:

Item Description

Comment The tape media error.

Class A value of H that indicates a hardware error.

Report A value of True that indicates this error must be included when an error report is
generated.

Log A value of True that indicates an error log entry must be created when this error occurs.

Alert A value of False that indicates this error cannot be alerted.

Err_Type A value of Perm that indicates a permanent failure.

Err_Desc A value of 1332 that indicates a tape operation failure.

Prob_Causes

A value of 5003 that indicates tape media.

User_Causes

A value of 5100 that indicates an error with the tape device and a value of 7401 that
indicates an error with the defective media.

272 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item

Description

User_Actions

A value of 1601 that indicates that the removable media must be replaced and the
operation must be tried again.

Or, it equals a value of 0000 that indicates that problem determination procedures must be
performed.

Inst_Causes

None.

Inst_Actions

None.

Fail_Causes

A value of 5003 that indicates tape media.

Fail_Actions

A value of 1601 that indicates that the removable media must be replaced and the
operation must be tried again.

Or, it equals a value of 0000 that indicates that problem determination procedures must be
performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This structure is defined in the /usr/include/sys/errids.h file.

Error record values for tape or hardware aborted command errors

The following fields in the err_hdr structure are defined in the /usr/include/sys/erec.h file for
hardware errors and aborted command errors:

Item Description

Comment A value of tape hardware or aborted command error.

Class A value of H that indicates a hardware error.

Report A value of True that indicates this error must be included when an error report is
generated.

Log A value of True that indicates an error log entry must be created when this error occurs.

Alert A value of FALSE that indicates this error cannot be alerted.

Err_Type A value of Perm that indicates a permanent failure.

Err_Desc A value of 1331 that indicates a tape drive failure.

Prob_Causes

A value of 6314 that indicates a tape drive error.

User_Causes

None.

User_Actions

A value of 0000 that indicates that problem determination procedures must be performed.

Inst_Actions

None.

Fail_Causes

A value of 5003 that indicates the failure case is the tape and a value of 6314 that indicates
the failure case is the tape drive.

Fail_Actions

A value of 0000 that indicates that problem determination procedures must be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This structure is defined in the /usr/include/sys/errids.h file. The usbtape_err_rec structure
describes information that is contained in the Detail_Data field.

Error record values for tape-recovered error threshold exceeded

The following fields are defined in the err_hdr structure that are defined in the /usr/include/sys/erec.h
file for recovered errors that have exceeded the threshold counter:

Technical Reference: Kernel and Subsystems, Volume 2 273

Item Description

Comment Indicates that the threshold for the tape-recovered errors is exceeded.

Class A value of H that indicates a hardware error.

Report A value of True that indicates this error must be included when an error report is
generated.

Log A value of True that indicates an error-log entry must be created when this error occurs.

Alert A value of False that indicates this error cannot be alerted.

Err_Type A value of TEMP that indicates a temporary failure.

Err_Desc A value of 1331 that indicates a tape drive failure.

Prob_Causes

A value of 6314 that indicates the probable cause is the tape drive.

User_Causes

A value of 5100 that indicates the media is defective and a value of 7401 that indicates the
read /write head is dirty.

User_Actions

A value of 1601 that indicates that the removable media must be replaced and the
operation must be tried again.

Or, it equals a value of 0000 that indicates that problem determination procedures must be
performed.

Inst_Causes

None.

Inst_Actions

None.

Fail_Causes

A value of 5003 that indicates the failure cause is the tape and a value of 6314 that
indicates the failure cause is tape drive.

Fail_Actions

A value of 0000 that indicates problem-determination procedures must be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. This field is contained in the err_rec structure. The
err_rec structure is defined in the /usr/include/sys/errids.h file. The Detail_Data field also specifies
the error type of the threshold exceeded. The usbtape_err_rec structure describes information contained

in the Detail Data field.

Error record values for tape USB adapter-detected errors

The following fields in the err_hdr structure are defined in the /usr/include/sys/erec.h file for

adapter-detected errors:

Item Description

Comment A tape Fibre Channel adapter-detected error.

Class A value of H that indicates a hardware error.

Report A value of True that indicates this error must be included when an error report is
generated.

Log A value of True that indicates an error log entry must be created when this error occurs.

Alert A value of FALSE that indicates this error cannot be alerted.

Err_Type A value of PERM that indicates a permanent failure.

Err_Desc A value of 1331 that indicates a tape drive failure.

Prob_Causes

The values of 3300 that indicates adapter failure and a value of 6314 that indicates tape
drive failure.

User_Causes

None.

User_Actions

A value of 0000 that indicates that problem determination procedures must be performed.

Inst_Causes

None.

Inst_Actions

None.

Fail_Causes

A value of 3300 that indicates adapter failure and a value of 6314 that indicates tape drive
failure.

274 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Item Description

Fail_Actions A value of 0000 that indicates problem-determination procedures must be performed.

The Detail_Data field contains the command type and adapter status. This field is contained in the
err_rec structure that is defined by the /usr/include/sys/err_rec.h file. Request-sense information is
not available with this type of error. The usbtape_err_rec structure describes information contained in
the Detail_Data field.

Error record values for tape drive cleaning errors

Some tape drives return errors when they need cleaning. Errors that occur when the drive needs cleaning
are grouped under this class.

Item Description

Comment Indicates that the tape drive needs cleaning.

Class A value of H that indicates a hardware error.

Report A value of True that indicates this error must be included when an error report is
generated.

Log A value of True that indicates an error log entry must be created when this error occurs.

Alert A value of FALSE that indicates this error cannot be alerted.

Err_Type A value of TEMP that indicates a temporary failure.

Err_Desc A value of 1332 that indicates a tape operation error.

Prob_Causes A value of 6314 that indicates that the probable cause is the tape drive.

User_Causes A value of 7401 that indicates a dirty read/write head.

User_Actions A value of 0000 that indicates that problem determination procedures must be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes A value of 6314 that indicates that the cause is the tape drive.

Fail_Actions A value of 0000 that indicates problem-determination procedures must be performed.

The Detail_Data field contains the command type and adapter status, and also the request-sense
information from the particular device in error. This field is contained in the err_rec structure that is
defined by the /usr/include/sys/errids.h file. The ushbtape_err_rec structure describes information
contained in the Detail_Data field.

Error record values for unknown errors

Errors that occur for unknown reasons are grouped in this class. Data-protect errors fall into this class.
These errors, which are detected by the tape device driver, are never seen at the tape drive.

The err_hdr structure for unknown errors describes the following fields:

Item Description

Comment A tape unknown error.

Class All error classes.

Report A value of True that indicates this error must be included when an error report is
generated.

Log A value of True that indicates an error log entry must be created when this error occurs.

Alert A value of FALSE that indicates this error cannot be alerted.

Err_Type A value of UNKN that indicates the type of error is unknown.

Err_Desc A value of 0xFEQO that indicates the error description is unknown.

Technical Reference: Kernel and Subsystems, Volume 2 275

Item Description

Prob_Causes Specifies the following values:
* 3300, which indicates a tape drive failure
* 5003, which indicates a tape failure

* 6314, which indicates an adapter failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes A value of OxFFFF that indicates the causes for failure are unknown.

Fail_Actions A value of 0000 that indicates that problem-determination procedures must be performed.

The Detail_Data field contains the command type and adapter status, and the request-sense information
from the particular device in error. The Detail_Data field is contained in the err_rec structure. This field
is contained in the /usr/include/sys/errids.h file. The usbtape_err_rec structure describes information
that is contained in the Detail_Data field.

Refer to the SCSI specification for the applicable device for the format of the particular request-sense
information.

Related information:

[USB subsystem overview|

Understanding the Execution of Initiator 1/0 Requests|
[USB Error Recoveryl

Managing tape drives|

USBD Protocol Driver
Purpose

Supports the USB system driver (USBD) protocol.

Syntax

#include <sys/usb.h>
#include <sys/ushdi.h>
#include <sys/hubClass.h>
#include <sys/hidClass.h>

Description

The USBD protocol driver is the layer between the host controller the and client drivers. The /dev/usb@®
special file provides interface to allow communication between the host controller and the client drivers.
This driver is responsible for the device communication to appropriate host controller. The device
connection, disconnection, and re-connection are performed at this level. There is no parent for this
device and the device's CuDv entry is created by the /usr/1ib/methods/startusb script that is invoked
from the ConfigRules field.

The /usr/1ib/drivers/usb/usbd driver implements the USB protocol and the /usr/1ib/methods/cfgusb
file is the ushd file's configuration method. The USB protocol driver updates the speed ODM attribute
that is specific to each individual USB devices. The speed is updated when the USB devices are
enumerated during the AIX configuration.

276 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Device-dependant subroutines

The USBD protocol driver supports only the open, close, and ioct] subroutines. The read and write
subroutines are not supported.

open and close subroutines

The open subroutine associates a specific device number that is passed in as a parameter to the open
system call with the internal adapter device structure. If it finds an adapter structure, it verifies that the
corresponding adapter device is configured and sets the state as open. Otherwise, the subroutine returns

an error.

ioctl subroutine

The ioct1 operations for USBD protocol drivers are exposed to kernel and user environments.

USBD ioctl operations

The following USBD ioct1 operations are exposed to kernel threads that are used to open a specific USB

logical device:
+ USBD_OPEN_DEVICE

« USBD_OPEN_DEVICE_EXT

The following USBD ioct1 operations are exposed to user threads:

| Operation

Description

[[OSBD_REGISTER_MULTI_H(|

Registers all the USB host controllers with USB system driver.

[[USBD_REGISTER_SINGLE_HC]|

Registers only a single USB host controller with USB system driver.

[[USBD_ENUMERATE_DEVICE|

Gets a list of USB logical devices (excluding hubs) that are connected to a host controller.

|[USBD_ENUMERATE_ALL)

Gets a list of all the USB logical devices that are connected to a host controller.

[USBD_ENUMERATE_CFQ)

Gets a list of USB logical devices that are connected to a host controller along with the client
device selection information.

[USBD_GET_DESCRIPTORS)

Gets standard USB descriptors for a logical device.

[CSBD_CFG_CLIENT UPDATH

Updates client connection information.

Summary of USBD error conditions

Possible errno values for the

adapter device driver are as follows:

Value Description
EACCES An openx subroutine was attempted to run while the adapter had one or more devices in use.
EEXIST The device is already configured.
EINVAL An invalid parameter or that the device is not opened.
EIO * The command failed due to an error detected.
* The device driver was unable to pin code.
* A kernel service failed or an unrecoverable 1/O error occurred.
ENOCONNECT A USB bus fault occurred.
ENODEV The target device cannot be selected or is not responding.
ENOMEM The command cannot be completed because of an insufficient amount of memory.
ENXIO The requested ioctl operation is not supported by this adapter.
EPERM The caller does not have the required authority.

Technical Reference: Kernel and Subsystems, Volume 2

277

Related reference:

[‘Extensible Host Controller Adapter Device Driver” on page 236|

[‘Enhanced Host Controller Adapter Device Driver” on page 240|

[‘Open Host Controller Adapter Device Driver” on page 242|

Related information:
lusb0 special filel

USBD ioctl Operations
There is a set of input and output control (ioctl) system calls to control I/O operations for Universal
Serial Bus (USB) devices.

An ioctl call contains the following parameters:

* An open file descriptor.

* A request code.

* An integer value, possibly unsigned that is assigned to the driver.
* A pointer to data that is available in the host controller structure.

USBD_OPEN_DEVICE:
Purpose

Opens a specific Universal Serial Bus (USB) logical device.

Syntax
int fp_ioctl (file, USBD_OPEN DEVICE, arg, ext)

Parameters

Item Description

file File descriptor that is obtained when the USB system driver (USBD) special file was opened.
arg Address of an initialized DEVOPEN structure.

ext Not used and must be set to zero.

Description

The client driver uses this fp_ioct1 operation to establish a connection to a specific USB logical device
that is identified by the information within the DEVSELECTOR structure. A USB logical device can be
opened by only one client driver at a time. If a client opens the device, it must connect to a pipe before
the data can flow to or from the device. This data includes, but is not limited to, the default control pipe.
The client driver must close any device that it opened by calling the usbdCloseDevice operation when it
no longer wants to manage the device. Typically, a client driver must open the USBD, issue a
USBD_OPEN_DEVICE ioct] operation to open a specific USB device, and close the USBD. Then, the client
must communicate with the USBD by using the handle that is returned by the USBD_OPEN_DEVICE ioct]
operation and the interface macros that are located within the usbdi.h file. To properly track the USB
device when the device needs to be moved or replaced, the client must open the device when the client is
configured, and the client must close the USB device when the client is unconfigured.

Execution environment
This function can be called from the kernel process environment only.

Return values

278 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Value Description

0 Success.

Nonzero values Failure.

USBD_OPEN_DEVICE_EXT:
Purpose

Opens a specific Universal Serial Bus (USB) logical device.

Syntax
int fp_ioctl (file, USBD_OPEN _DEVICE_EXT, arg, ext)

Parameters

Item Description

file File descriptor that is obtained when the USBD special file was opened.
arg Address of an initialized DEVOPEN structure.

ext Not used and must be set to zero.

Description

The client driver uses this fp_ioct1 operation to establish a connection to a USB logical device that is
identified by the information within the DEVSELECTOR structure. The ioct1 operation is similar to the
USBD_OPEN_DEVICE ioct] operation except that a client handle is allocated even when a USB logical device
that matches the criteria that is specified in the DEVSELECTOR structure is not available. The USB system
driver (USBD) returns the EAGAIN error value to indicate this condition. When the EAGAIN value is
returned, the client driver must treat the device as disconnected and wait for connection before it
proceeds with device initialization.

Execution environment
This function can be called from the kernel process environment only.

Return values

Value Description
0 Success.
EAGAIN No device matched the criteria. The client handle is valid but the device is treated as being in the

disconnected state.

All other values Failure.

USBD_REGISTER_MULTI_HC:
Purpose

Registers the Universal Serial Bus (USB) host controller with the USB system driver (USBD).

Syntax
int joctl (file, USBD_REGISTER MULTI HC, arg)

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 279

Item Description

file File descriptor that is obtained when the USBD special file was opened.
arg Pointer to the information structure of the USB host controller.
Description

This ioct] operation registers all the USB host controllers that are listed in the usb_adapterhc_info
structure with the USBD and allows the clients to communicate to the devices that are connected to the
controller. There is no specific ioct1 operation to unregister a hardware controller. It stays registered until
either the USBD is unconfigured or the host controller is unconfigured. In the latter case, the host
controller driver requests the USBD to unregister the host controller through the usbdReqHCunregister call
vector. This ioct1 operation must be invoked only by the cfgusb configuration method during
enumeration and individual USB adapter configuration methods must use the USBD_REGISTER_SINGLE_HC
operation to register single host controller instance.

Execution environment
This function can be called from the user process environment only.

Return values

Value Description
0 Success.
-1 Failure. Check the errno value for specific failure causes.

USBD_REGISTER_SINGLE_HC:
Purpose

Registers single Universal Serial Bus (USB) host controller with the USB system driver (USBD).

Syntax
int ioctl (file, USBD_REGISTER SINGLE_HC, arg)

Parameters

Item Description

file File descriptor that is obtained when the USBD special file was opened.

arg Pointer to the integer that contains 32-bit devno structure of the USB host controller.
Description

This ioct] operation registers the specified host controller with the USBD and allows clients to
communicate to the devices that are connected to the controller. There is no specific ioct1 operation to
unregister a hardware controller. It stays registered until either the USBD is unconfigured or the host
controller is unconfigured. In the latter case, the host controller driver requests the USBD to unregister
the host controller through the usbdRegHCunregister call vector.

Execution environment

This function can be called from the user process environment only.

Return values

280 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Value Description

0 Success.

-1 Failure. Check the errno value for specific failure causes.

USBD_ENUMERATE_DEVICE:
Purpose

Gets a list of USB logical devices (excluding hubs) that are connected to a host controller.

Syntax
int joctl (file, USBD_ENUMERATE_DEVICE, arg)

Parameters

Item Description

file File descriptor that is obtained when the USBD special file was opened.
arg Address of the USBENUM structure that is aligned on a 4-byte boundary.
Description

This ioctl operation returns a description of each logical USB device that is connected to the specified
host controllers without any hubs. The description is returned in the form of a usb_device_t structure.
The array of returned structures is encapsulated within a USBENUM structure whose length is specified by
the caller. When this function is started, the devno and buffSize fields within the USBENUM structure must
be initialized. The devno field must contain the 32-bit devno value of the host controller to be enumerated
while the buffSize field must indicate the number of bytes that are available to buffer the returned array
of usb_device_t structures. If the area is too small, the number of returned structures is truncated to fit
the available space. The caller can detect this condition by noting that the number of returned
usb_device_t structures is less than the number of discovered logical devices.

Execution environment
This function can be called from the user process environment only.

Return values

Value Description
0 Success.
-1 Failure. Check the errno value for specific failure causes.

USBD_ENUMERATE_ALL:
Purpose

Gets a list of all the Universal Serial Bus (USB) logical devices that are connected to a host controller.

Syntax
int joctl (file, USBD_ENUMERATE_ALL, arg)

Parameters

Technical Reference: Kernel and Subsystems, Volume 2 281

Item Description

file File descriptor that is obtained when the USB system driver (USBD) special file was opened.
arg Address of the USBENUM structure that is aligned with a 4-byte boundary.

Description

This ioct] operation behaves in the same manner as the USBD_ENUMERATE_DEVICE ioct1 operation except
that it includes all hubs other than the root hub.

Execution environment
This function can be called from the user process environment only.

Return values

Value Description
0 Success.
-1 Failure. Check the errno value for specific failure causes.

USBD_ENUMERATE_CFG:
Purpose

Gets a list of Universal Serial Bus (USB) logical devices that are connected to a host controller.
Note: This ioct] operation is used only by the USB system device driver’s configuration method.

Syntax
int joctl (file, USBD_ENUMERATE_CFG, arg)

Parameters

Item Description

file File descriptor that is obtained when the USB system driver (USBD) special file was opened.
arg Address of the USBENUMCFG structure that is aligned with a 4-byte boundary.

Description

This ioct1 operation behaves in the same manner as the USBD_ENUMERATE_DEVICE ioct1 operation except
that it also returns the client device selection information. The selection information uniquely identifies
device-client pairing and allows the configuration method to correlate enumerated devices with their
Object Data Manager (ODM) instances.

Execution environment

This function can be called from the user process environment only.

Return values

282 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Value Description

0 Success.

-1 Failure. Check the errno value for specific failure causes.

USBD_GET_DESCRIPTORS:
Purpose

Gets standard Universal Serial Bus (USB) descriptors for a logical device.

Syntax
int joctl (file, USBD_GET_DESCRIPTORS, arg)

Parameters

Item Description

file File descriptor that is obtained when the USB system driver (USBD) special file was opened.
arg Address of the USBDGD structure that is aligned on a 4-byte boundary.

Description

After a successful return from the ioct1 operation, a DESCIDX structure is placed at the start of the
specified buffer that is followed by the standard device descriptor, configuration descriptor, interface
descriptor, endpoint descriptors, human interface device (HID) descriptor (if an HID device is used), hub
descriptor (if hub device is used), and string descriptors of the specified logical USB device. The DESCIDX
structure provides direct addressability to the individual descriptors. String descriptors are reformed to
null terminated American Standard Code for Information Interchange (ASCII) strings for ease of use. All
other descriptors adhere to the standard USB format. Since the size of the returned data is typically
unknown, the ioct1 operation must be called twice. The first time that you call the ioct1 operation, set
the bufferLength field equal to zero and the buffer field to null. The ioct1 operation might fail with the
ENOSPC error, however the minBufflLength value is returned that indicates the required size of the buffer.
The caller can then allocate the buffer and call the ioct] operation again with the bufferLength field set
to the correct value.

Execution environment
This function can be called from the user process environment only.

Return values

Value Description
0 Success.
-1 Failure. Check the errno value for specific failure causes.

USBD_CFG_CLIENT_UPDATE:
Purpose

Updates the client connection information.

Note: This ioct] operation is used only by the USB system driver (USBD) configuration method.

Syntax
int joctl (file, USBD_CFG_CLIENT UPDATE, arg)

Technical Reference: Kernel and Subsystems, Volume 2 283

Parameters

Item Description

file File descriptor that is obtained when the USBD special file was opened.
arg Address of the USBENUMCFG structure that is aligned with a 4-byte boundary.
Description

This ioct1 operation is used by the USBD’s defined children configuration procedure to update the
device selection criteria that is used by the client driver. Specifically, it updates the hcdevno, addr, cfg,
and intfc fields to reflect the current values for the device that are managed by the client.

Execution environment

This function can be called from the user process environment only.

Return values

Value Description
0 Success.
-1 Failure. Check the errno value for specific failure causes.

USBLIBDD Passthru Driver
Purpose

Supports the application drivers that are written by using the libusb APIs.

Syntax

#include <usbhdi.h>
#include <usbh.h>

Description

The libusb passthru driver is the layer between the user-level application driver and the USB protocol
driver (USBD). The /dev/usblibdevX special file provides interface to libusb applications to communicate
directly with the device through the passthru driver. The passthru driver converts the libusb APIs to the
USBD function vectors that interact with the appropriate Universal Serial Bus (USB) host controllers such
as Open Host Controller Interface (OHCI), Enhanced Host Controller Interface (EHCI), or eXtensible Host
Controller Interface (xHCI).

The libusb devices are created in the /dev file system irrespective of the presence of built-in AIX client
USB drivers. The parent for this device is the usb0 and the libusb devices that are enumerated by the
lusr/lib/methods/cfgusb file.

The /usr/lib/drivers/usb/usblibdd driver implements the libusb passthru driver. The passthru driver
uses the /usr/lib/methods/cfgusblibke configuration method. These devices have two Object Data
Manager (ODM) attributes called usbdevice and speed. If a device belongs to standard classes such as
Mass Storage, Tape, human interface device (HID), these devices are claimed by the built-in USB client
driver of the AIX operating system. In such case, a libusb device is created as a pseudo device. The
usbdevice attribute identifies the device of the client driver that is associated with a pseudo device. If a
device belongs to other classes and if client drivers are not associated with the device, the usbdevice
attribute is not valid.

284 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

For every libusb device, which has an AIX operating system built-in client driver, a new attribute that is
called usbdevice is created in the ODM to identify the client driver device that is associated with the
libusb device. The following example shows how the device is displayed:

1sattr -E1 usblibdevO
speed highspeed USB Protocol Speed of Device False

ushbdevice usbmsO Actual USB Device with Client Driver False

In this example, the USB device that is connected is a flash drive, which has the AIX operating system
built-in /usr/lib/drivers/usb/usbcd Mass Storage Class client driver. The device of the client driver
associated with the usblibdev0 device is usbms0.

By default, this device is claimed by the built-in client driver. The same device is also claimed by the
libusb passthru driver. Therefore, for one physical USB device, you have two OS devices (usbms0 and
usblibdev0) located in the /dev file system after you run the configuration method of the parent device,
which is USBD protocol driver.

Note: Only the built-in client driver or the libusb passthru driver can use this device at a time. You
cannot run simultaneous operations on both drivers.

Use the following command to display the USB devices in this scenario:
1sdev -C | grep usb

An output similar to the following example is displayed:
usho Available USB System Software

usbhcoO Available 00-00 PCIe2 USB 3.0 xHCI 4-Port Adapter (4c10418214109e04)
usblibdevO Available USB Library Interface Device

usbms0 Available 0.3 USB Mass Storage

In the this example, a USB encryption device (vendor-defined class) is connected to the AIX system. The
device does not have a built-in client driver. This device is only claimed by the libusb passthru driver
and only a single device is displayed. Another example to display the USB devices follows:

1sdev -C | grep usb

An output similar to the following example is displayed:
usho Available USB System Software

usbhcoO Available 00-00 PCIe2 USB 3.0 xHCI 4-Port Adapter (4c10418214109e04)

usblibdevl Available 0.4 USB Library Interface Device
In this example, usblibdevl device is the encryption device of the libusb driver.
Device-dependant subroutines

The libusb passthru driver supports the following subroutines:
* open
* close
* joctl

Note: The read and write subroutines are not supported.

open and close subroutines

Technical Reference: Kernel and Subsystems, Volume 2 285

The open and close subroutines are not directly supported on usblibdevX devices. You can open and
close subroutines by using the libusb APIs.

ioctl subroutine
The libusb driver exposes the ioctl subroutine to the libusb user environments. The libusb
implementation of operating system backend use these ioctl subroutines. The ioctl subroutine acts as a

pass through between the application and the protocol driver.

The following USBD ioct1 operations are supported by the libusb drivers:
Table 2. USBD ioctl operations

Operations Description

USBLIB_PIPE_IO Issues I/0O on the wanted endpoint through the aix_pipeio
structure.

USBLIB_HALT_CLEAR Issues a request to halt an endpoint.

USBLIB_GETIRP_STATUS Read the status of the I/O request packet (IRP) that was issued.

USBLIB_SET_CONFIGURATION Issues a set configuration on a device.

USBLIB_CLAIM_INTERFACE Ensures sure that the interface is being used by the libusb
passthru driver.

USBLIB_RELEASE_INTERFACE Sets the interface to alternate setting value of zero.

USBLIB_SET_ALT_INTFC Sets the alternate setting on an interface.

USBLIB_RESET_DEVICE Resets on the device.

USBLIB_ABORT_IO Aborts or cancels to the submitted I/0.

USBLIB_GET_CONFIG_DESC Issues request to read the entire configuration descriptor. If a
device has X configurations, X number of total configuration
descriptor is read and stored in a single bulffer.

USBD error conditions

Possible errno values for the adapter device driver follow:

Table 3. USBD error conditions

Value Description

EAGAIN Indicates that the operation has been to retried.
EEXIST The device is already configured.

EINVAL An invalid parameter or the device is not opened.
EIO * The command failed due to an error.

* The device driver was unable to pin code.

¢ A kernel service failed or an unrecoverable I/O error

occurred.
ENOCONNECT A USB bus fault occurred.
ENODEV The target device cannot be selected or is not responding.
ENOMEM The command cannot be completed because of insufficient
memory.
ENXIO The requested ioctl operation is not supported by this adapter.
EPERM The caller does not have the required authority.

286 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Non-responsive USB devices

USB devices that are associated to 1ibusb applications on the AIX operating system might not respond on
non-control endpoints. This condition might be because of default behavior of AIX USB protocol driver to
send the CLEAR_FEATURE request when the USB devices are opened.

Note: The CLEAR_FEATURE request is a standard USB command to remove the halt condition on the
device.

To resolve the issues associated with the non-responsive USB devices, the following attributes must be
set:

PdAt class object
The Predefined Attribute (PdAt), object class contains an entry for each existing attribute for each USB
device. This includes information such as interrupt levels, bus I/O address ranges, baud rates, parity
settings, block sizes, and microcode file names. To initialize the PdAt class object set the following

values:

uniquetype = "generic/ushif/usblibke"
attribute = "<vendorid>_<productid>"
deflt = "toggle_no"
values = "toggle_yes,toggle no"
width = ""
type = WR®
generic = "U"
rep = IIS'III
nls_index = 0

VendorId

Vendor ID of the USB device that can be obtained from the descriptor data of the USB device.
VendorID must be a hexadecimal number.

ProductID
Product ID of the USB device that can be obtained from the descriptor data of the USB device.
ProductID must be a hexadecimal number.

toggle_no
Indicates that the CLEAR_FEATURE request is not sent to the device during pipe initialization.

toggle_yes
Indicates the default behavior of the USB device to send the CLEAR_FEATURE request.

Note: The ODM entry must be added to each device that does not respond on non-control endpoints.

An example ODM attribute follows. This example considers the Kingston USB flash drive (DataTraveler
Ultimate G2). The vendor ID of Kingston USB flash drive is 0951 and Product ID is 1656.

PdAt:
uniquetype = "generic/ushif/usblibke"
attribute = "0951 _1656"
deflt = "toggle_no"
values = "toggle_yes,toggle no"

width = ""
type = IIRII
generic = "U"
rep = "s1"

nls_index = 0

To add predefined attributes to the PdAt object class complete the following steps:
1. Run the following command to remove a non-responsive USB device from the ODM entries.
rmdev -R1 ushO

The output might be similar to the following example:

Technical Reference: Kernel and Subsystems, Volume 2 287

usbms0 Defined
usblibdevO Defined
usblibdevl Defined
usb0 Defined

2. Add the odm PdAt entry in to a file by using any standard file edit command such as vi.
3. Run the following command.
odmadd entry

The output is not displayed.
4. Run the following command.
cfgmgr -1 ush0

The output is not displayed.
5. Run the 1ibusb application. Following example shows the execution of a USB application.

./xusb -k XXXX:YYYY
Opening device XXXX:YYYY...
found /dev/usbhcO

found 1 devices

found /dev/usbhcl

found 0 devices

found /dev/usbhc2

found 1 devices

Reading device descriptor:
length: 18
device class: 0
S/N: 0
VID:PID: XXXX:YYYY
bcdDevice: 0303

iMan:iProd:iSer: 1:2:0

nb confs: 1

Reading BOS descriptor: no descriptor

Reading first configuration descriptor:
nb interfaces: 1
interface[0]: id = 0
interface[0].altsetting[0]: num endpoints = 1
Class.SubClass.Protocol: 03.00.00
endpoint[0] .address: 81
max packet size: 0008
polling interval: OA

Claiming interface 0O...
in aix_claim_interface

Reading string descriptors:
String (0x01): "DeviceName"
String (0x02): "Elitename"

Releasing interface 0...
Closing device...

6. Run the following command to delete the PdAt entry of the non-responsive USB device:
odmdelete -o PdAt -q 'attribute=0951_1656 and uniquetype="generic/usbif/usblibke""

The output might be similar to the following example:
0518-307 odmdelete: 1 object deleted

Related information:

Enabling /Disabling LIBUSB Devices|

288 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 2015, 2016 289

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

290 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Privacy policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at |http:/ /www.ibm.com/privacy|and IBM’s Online Privacy Statement at

http:/ /www.ibm.com /privacy /details| the section entitled “Cookies, Web Beacons and Other
Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http:/ /www.ibm.com /software /info/product-privacy}

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information|at www.ibm.com /legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 291

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

292 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Index

Special characters

/dev/nvram special file
machine device driver and 24

A

adapter cards

device method guidelines for 16
adapters

bus resources 36

PdALt object class

considerations 4

attrval subroutine 5
autodial protocols 71

bus resources

allocating 6
bus special file

machine device driver 24
busresolve subroutine 6

C

CD-ROM SCSI device driver 151
cfg device method 47
CFG_INIT operation

PCI MPQP 86
CFG_TERM operation
PCI MPQP 86

Change method 45
handling invalid attributes 45
chg device method 45
CIO_GET_FASTWRT operation
ddioctl 58
CIO_GET_STAT operation
ddioctl 62
PCI MPQP 59
CIO_HALT operation
ddioctl 65
PCI MPQP 64
CIO_QUERY operation
ddioctl 68
PCI MPQP 66
CIO_START operation
ddioctl 73
PCI MPQP 69
close subroutine
/dev/bus special file 24
/dev/nvram special file and 24
rmt SCSI device driver and 215
scdisk SCSI device driver and 151
SCSI adapter device driver and 143
tmscsi SCSI device driver and 227
communication I/O subsystem 65
communications device handlers 84, 93
checking event status 81
communications device handlers 93

© Copyright IBM Corp. 2015, 2016

communications device handlers (continued)

communications sessions
halting 65
opening 73
device statistics
returning 68
entry points
dd_fastwrt 74
ddclose 75
ddopen (kernel mode) 76
ddopen (user mode) 78

ddread 79
ddselect 81
ddwrite 82

fast-write call 58
kopen_ext parameter block 76
query_parms parameter block 68
queuing messages 82
reading data messages 79
session_blk parameter block 73
status blocks
getting 62
system resources
freeing 75
transmitting data 74
PCI MPQP 93
Config_Rules object class 8
Configuration Manager
rules
configuration 8
Configure method
and errors 47
and VPD 47
described 47
guidelines 47
CuAt object class
attribute information
updating 42
creating objects 42
deleting objects 42
described 9
descriptors 9
getattr subroutine 20
putattr subroutine 42
querying attributes 20
CuDep object class
descriptors 11
introduction 11
CuDv object class
descriptors 12
generating logical names 19
genminor subroutine 17
subroutines
genseq 19
CuDvDr object class
descriptors 11
genmajor subroutine 16
getminor subroutine 21
major numbers
releasing 43, 44

293

CuDvDr object class (continued)
minor numbers
releasing 43
querying minor numbers 21
reldevno subroutine 43
relmajor subroutine 44
CuVPD object class
descriptors 15
introduction 15

D

data messages
reading 79
data structures
allocating
for communications PDH 78
initializing

for communications PDH 76, 78

dd_fastwrt entry point 74
ddclose entry point 75
ddread entry point

communications PDH 79
ddselect entry point

communications PDH 81
ddwrite entry point

communications PDH 82
def device method 51
Define method 51
device attributes

creating 42

deleting 42

predefined 32

querying class 20

specific 9

updating 42

verifying ranges 5
device configuration methods

guidelines for writing 57
device configuration subroutines

attrval 5

busresolve 6

genmajor 16

genminor 17

genseq 19

getattr 20

getminor 21

loadext 23

putattr 42

reldevno 43

relmajor 44
device driver

loading 24

machine

/dev/bus special file 24

/dev/nvram special file 24, 30

bus special file 24
initialization 24
overview 24
termination 24
major numbers
generating 16
names
obtaining 23
device drivers
sctape FC 209

device methods
adapter card guidelines 16

Change 45

Configure 47

Define 51

returning errors 22

Start 57

Stop 57

Undefine 56

devices

critical resource information

storing 11

defined state

resolving attributes of 6
dependencies 11
generating minor numbers 17
intermediate

connection information 38
logical names

generating 19
major numbers

releasing 43
minor numbers

releasing 43
types of 38

E

EHCI 240

Enhanced Host Controller Interface
adapter device driver 240

Ethernet device handler
write_extension parameter block 83

Extensible Host Controller Interface
adapter device driver 236

G

genmajor subroutine 16
genminor subroutine 17
genseq subroutine 19
getattr subroutine 20
getminor subroutine 21

H

HCD_REGISTER_HC
ioctl operation 245
HCD_REQUEST_COMPANIONS
ioctl operation 242

idscsi 226, 227
intermediate devices
connection information 38
IOCINFO operation
tmscsi 142
ioctl operations
/dev/nvram special file 24
ioctl subroutine
rmt SCSI device driver and 215
scdisk SCSI device driver and 151
SCSI adapter device driver and 143
tmscsi SCSI device driver and 227

294 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

ioctl subroutines
/dev/bus special file 24
/dev/nvram special file 24

K

kernel extensions

loading 23

unloading 23
kopen_ext parameter block 76
KSTDELAY 107

L

loadext subroutine 23
logical names 19

M

machine device drivers 24
magnetic tape access

tape SCSI device driver and 215
major numbers

generating 16

releasing 43, 44
message queues

messages

queueing for transmission 82

microcode

downloading to SCSI adapter 172
minor numbers

generating 17

getting 21

releasing 43
MP_CHG_PARMS operation 84
MREGRINGEXT 114

N

NVMe
controller
Device Driver 235
storage (hdisk)
Device Driver 234
NVMe controller Device Driver 235
NVMe storage (hdisk) Device Driver 234

o)

ODM
object classes 31
OHCI 242

Open Host Controller Interface
adapter device driver 242

open subroutine
/dev/bus special file 24
/dev/nvram special file and 24
rmt SCSI device driver and 215
scdisk SCSI device driver and 151
SCSI adapter device driver and 143
tmscsi SCSI device driver and 227

P

passthru subroutine 128

PCI MPQP device handler
allocating channels 88
controlling 86
deallocating channels 88
entry points

tsclose 84
tsconfig 86
tsioctl 86
tsmpx 88
tsopen 89
tsread 90
tsselect 92
tswrite 93
events

checking for 92
getting status of 59
initializing 86
ioctl operations
CIO_GET_STAT 59
CIO_HALT 64
CIO_QUERY 66
CIO_START 69
MP_CHG_PARMS 84
opening for transmission 89
read_extension parameter block 90
reading data 90
resetting 84
sessions
ending 64
starting 69
t_err_threshold structure 72
t_start_dev structure 70
terminating 86
tswrite parameter block 94
using autodial protocols 71
PdAt object class
attrval subroutine 5
descriptors 32, 36
getattr subroutine 20
loading devices 24
querying attributes 20
types of attributes 32
PdCn object class 38
PdDv object class
adapter-specific considerations 4
descriptors 38
loadext subroutine 23
loading devices 24
piocmdout subroutine 129
pioexit subroutine 130
piogetopt subroutine 132
piogetstr subroutine 134
piogetvals subroutine 135
piomsgout subroutine 137
predefined attributes 32
print formatters
attribute database
initializing 135
attribute variables 135
attributes
retrieving 134
command-line flags
parsing 132
processing 141
converting attribute strings 135

Index

295

print formatters (continued)
database
validating input parameters 141
database variables
initializing 141
exiting 130
flag arguments
converting 132
overlaying defaults 132
passing input data stream 128
sending messages from 137
subroutines
list for writing 142
list of 142
passthru 128
piocmdout 129
pioexit 130
piogetopt 132
piogetstr 134
piogetvals 135
piomsgout 137
restore 140
setup 141
printer attribute variables 135
putattr subroutine 42

Q

query_parms parameter block 68

R

read subroutine
/dev/bus special file 24
/dev/nvram special file 24
tmscsi SCSI device driver and 227
read_extension parameter block 90
readx subroutine
scdisk SCSI device driver and 151
reldevno subroutine 43
remajor subroutine 44
restore subroutine 140
rmt SCSI device driver
close subroutine and 215
device-dependent subroutines 215
error conditions 215
error record values 215
ioctl subroutine and 215
open subroutine and 215
reliability and serviceability 215

S

scdisk SCSI device driver
close subroutine and 151
device requirements 151
device-dependent subroutines 151
error conditions 151
error record values 151
ioctl subroutine and 151
open subroutine and 151
physical volume and CD-ROM 151
readx subroutine and 151
reliability and serviceability 151
writex subroutine and 151
SCIOCMD operation 169

SCIODIAG operation 171
SCIODNLD operation 172
SCIOEVENT operation 173
SCIOGTHW operation 175
SCIOHALT operation 175
SCIOINQU operation 176
SCIOREAD operation 177
SCIORESET operation 179
SCIOSTART operation 180
SCIOSTARTTGT operation 181
SCIOSTOP operation 183
SCIOSTOPTGT operation 184
SCIOSTUNIT operation 185
SCIOTRAM operation 186
SCIOTUR operation 187
scsesdd SCSI Device Driver 188
SCSI adapter device driver 143, 227

close subroutine and 143

closing logical paths 183, 184

device registration 173

device-dependent subroutines 143

downloading microcode 172

error conditions 143

error-record values 143

halting a device 175

ioctl subroutine and 143

issuing commands 169

issuing diagnostic commands 171

issuing inquiry commands 176

issuing read command 177

managing dumps 143

open subroutine and 143

opening logical paths 180, 181

reliability and serviceability 143

resetting a device 179

starting devices 185

supporting the SCSI adapter 143

testing a unit 187

testing buffer RAM 186

testing card DMA interface 186

verifying gathered write support 175

SCSI ioctl operations
SCIOCMD 169
SCIODIAG 171
SCIODNLD 172
SCIOEVENT 173
SCIOGTHW 175
SCIOHALT 175
SCIOINQU 176
SCIOREAD 177
SCIORESET 179
SCIOSTART 180
SCIOSTARTTGT 181
SCIOSTOP 183
SCIOSTOPTGT 184
SCIOSTUNIT 185
SCIOTRAM 186
SCIOTUR 187

SCSI subsystem 173

sctape FC device driver 209

select entry point
tmscsi SCSI device driver and 227

session_blk parameter block 66, 73

setup subroutine 141

Start method 57

status blocks
getting 62

296 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Stop method 57
stp device method 57
stt device method 57

T

t_err_threshold structure 72

t_start_dev structure 70

tape device media errors 215

tape SCSI device driver
introduced 215

TIMIORESET operation 226

TMCHGIMPARM operation 221

TMGETSENS operation 222

TMIOASYNC operation 223

TMIOCMD operation 223

TMIOEVNT operation 224

TMIOSTAT operation 226

tmscsi ioctl operations
IOCINFO 142
TMCHGIMPARM 221
TMGETSENS 222
TMIOASYNC 223
TMIOCMD 223
TMIOEVNT 224
TMIORESET 226
TMIOSTAT 226

tmscsi SCSI device driver
changing parameters 221
close subroutine and 227
configuring 227
device-dependent subroutines 227
error logging 227
getting device information 142
getting device status 226
ioctl subroutine and 227
open subroutine and 227
processor-to-processor communications 227
querying event status 224
read subroutine and 227
requesting sense data 222
select entry point and 227
sending bus device resets 226
sending direct commands 223
transferring data asynchronously 223
write subroutine and 227

tsclose entry point 84

tsconfig entry point 86

tsioctl entry point 86

tsmpx entry point 88

tsopen entry point 89

tsread entry point 90

tsselect entry point 92

tswrite entry point 93

tswrite parameter block 94

U

udef device method 56
Unconfigure method 54
Undefine method 56
USB audio

device driver 245
USB keyboard

device driver 246

USB mass storage
device driver 248
error conditions 258

USB mouse
device driver 264

USB subsystem 236

USB tape
device driver 265
error conditions 269

USBD ioctl operation
USBD_CFG_CLIENT_UPDATE 283
USBD_ENUMERATE_ALL 281
USBD_ENUMERATE_CFG 282
USBD_GET_DESCRIPTORS 283
USBD_OPEN_DEVICE 278
USBD_OPEN_DEVICE_EXT 279
USBD_REGISTER_MULTI_HC 279
USBD_REGISTER_SINGLE_HC 280

USBD IOCTL operation
USBD_ENUMERATE_DEVICE 281

USBD ioctl operations 278

USBD protocol driver 276, 284

\'

vital product data 47
VPD 15
handling 47

w

write subroutine

/dev/bus special file 24

/dev/nvram special file 24

tmscsi SCSI device driver and 227
write_extension parameter block 83
writex subroutine

scdisk SCSI device driver and 151

X

XHCI 236

Index

297

298 AIX Version 7.2: Technical Reference: Kernel and Subsystems, Volume 2

Printed in USA

	Contents
	About this document
	Highlighting
	Case sensitivity in AIX
	ISO 9000

	Technical Reference: Kernel and Subsystems, Volume 2
	What's new in Technical Reference: Kernel and Subsystems, Volume 2
	Configuration Subsystem
	Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class
	Adapter-Specific Considerations for the Predefined Devices (PdDv) Object Class
	attrval Device Configuration Subroutine
	busresolve Device Configuration Subroutine
	Configuration Rules (Config_Rules) Object Class
	Customized Attribute (CuAt) Object Class
	Customized Dependency (CuDep) Object Class
	Customized Device Driver (CuDvDr) Object Class
	Customized Devices (CuDv) Object Class
	Customized VPD (CuVPD) Object Class
	Device Methods for Adapter Cards: Guidelines
	genmajor Device Configuration Subroutine
	genminor Device Configuration Subroutine
	genseq Device Configuration Subroutine
	getattr Device Configuration Subroutine
	getminor Device Configuration Subroutine
	How Device Methods Return Errors
	loadext Device Configuration Subroutine
	Loading a Device Driver
	Machine Device Driver
	ODM Device Configuration Object Classes
	Predefined Attribute (PdAt) Object Class
	Predefined Attribute Extended (PdAtXtd) Object Class
	Predefined Connection (PdCn) Object Class
	Predefined Devices (PdDv) Object Class
	putattr Device Configuration Subroutine
	reldevno Device Configuration Subroutine
	relmajor Device Configuration Subroutine
	Writing a Change Method
	Writing a Configure Method
	Writing a Define Method
	Writing an Unconfigure Method
	Writing an Undefine Method
	Writing Optional Start and Stop Methods

	Communications Subsystem
	CIO_GET_FASTWRT ddioctl Communications PDH Operation
	CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler Operation
	CIO_GET_STAT ddioctl Communications PDH Operation
	CIO_HALT (Halt Device) tsioctl PCI MPQP Device Handler Operation
	CIO_HALT ddioctl Communications PDH Operation
	CIO_QUERY (Query Statistics) tsioctl PCI MPQP Device Handler Operation
	CIO_QUERY ddioctl Communications PDH Operation
	CIO_START (Start Device) tsioctl PCI MPQP Device Handler Operation
	CIO_START ddioctl Communications PDH Operation
	dd_fastwrt Communications PDH Entry Point
	ddclose Communications PDH Entry Point
	ddopen (Kernel Mode) Communications PDH Entry Point
	ddopen (User Mode) Communications PDH Entry Point
	ddread Communications PDH Entry Point
	ddselect Communications PDH Entry Point
	ddwrite Communications PDH Entry Point
	MP_CHG_PARMS (Change Parameters) tsioctl PCI MPQP Device Handler Operation
	tsclose Multiprotocol (PCI MPQP) Device Handler Entry Point
	tsconfig Multiprotocol (PCI MPQP) Device Handler Entry Point
	tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point
	tsmpx Multiprotocol (PCI MPQP) Device Handler Entry Point
	tsopen Multiprotocol (PCI MPQP) Device Handler Entry Point
	tsread Multiprotocol (PCI MPQP) Device Handler Entry Point
	tsselect Multiprotocol (PCI MPQP) Device Handler Entry Point
	tswrite Multiprotocol (PCI MPQP) Device Handler Entry Point

	LFT Subsystem
	dd_close LFT Device Driver Interface
	dd_ioctl LFT Device Driver Interface
	dd_open LFT Device Driver Interface
	DIALREGRING (Register Input Ring)
	DIALRFLUSH (Flush Input Ring)
	DIALSETGRAND (Set Dial Granularity)
	GIOQUERYID (Query Attached Devices)
	Input Device Driver ioctl Operations
	IOCINFO (Return devinfo Structure) ioctl Input Device Driver
	KSALARM (Sound Alarm)
	KSCFGCLICK (Enable/Disable Keyboard Clicker)
	KSDIAGMODE (Enable/Disable Diagnostics Mode)
	KSKAP (Enable/Disable Keep Alive Poll)
	KSKAPACK (Acknowledge Keep Alive Poll)
	KSLED (Illuminate/Darken Keyboard LEDs)
	KSQUERYID (Query Keyboard Device Identifier)
	KSQUERYSV (Query Keyboard Service Vector)
	KSREGRING (Register Input Ring)
	KSRFLUSH (Flush Input Ring)
	KSTDELAY (Set Typematic Delay)
	KSTRATE (Set Typematic Rate)
	KSVOLUME (Set Alarm Volume) ioctl
	lft_dds_t Structure
	lft_t Structure
	LPFKLIGHT (Set/Reset Key Lights)
	LPFKREGRING (Register Input Ring)
	LPFKRFLUSH (Flush Input Ring)
	MQUERYID (Query Mouse Device Identifier)
	MREGRING (Register Input Ring)
	MREGRINGEXT (Register Extended Input Ring)
	MRESOLUTION (Set Mouse Resolution)
	MRFLUSH (Flush Input Ring)
	MSAMPLERATE (Set Mouse Sample Rate)
	MSCALE (Set Mouse Scale Factor)
	MTHRESHOLD (Set Mouse Reporting Threshold)
	phys_displays Structure
	TABCONVERSION (Set Tablet Conversion Mode)
	TABDEADZONE (Set Tablet Dead Zone)
	TABORIGIN (Set Tablet Origin)
	TABQUERYID (Query Tablet Device Identifier) ioctl Tablet Device Driver Operation
	TABREGRING (Register Input Ring)
	TABRESOLUTION (Set Tablet Resolution)
	TABRFLUSH (Flush Input Ring)
	TABSAMPLERATE (Set Tablet Sample Rate) ioctl Tablet Device Driver Operation
	Virtual Display Driver (VDD) Interface (lftvi)
	vtmstruct Structure

	Printer Subsystems
	passthru Subroutine
	piocmdout Subroutine
	pioexit Subroutine
	piogetattrs Subroutine
	piogetopt Subroutine
	piogetstatus Subroutine
	piogetstr Subroutine
	piogetvals Subroutine
	piomsgout Subroutine
	pioputattrs Subroutine
	pioputstatus Subroutine
	restore Subroutine
	setup Subroutine
	Subroutines for Print Formatters
	Subroutines for Writing a Print Formatter

	SCSI Subsystem
	IOCINFO (Device Information) tmscsi Device Driver ioctl Operation
	Parallel SCSI Adapter Device Driver
	scdisk SCSI Device Driver
	SCIOCMD SCSI Adapter Device Driver ioctl Operation
	SCIODIAG (Diagnostic) SCSI Adapter Device Driver ioctl Operation
	SCIODNLD (Download) SCSI Adapter Device Driver ioctl Operation
	SCIOEVENT (Event) SCSI Adapter Device Driver ioctl Operation
	SCIOGTHW (Gathered Write) SCSI Adapter Device Driver ioctl Operation
	SCIOHALT (Halt) SCSI Adapter Device Driver ioctl Operation
	SCIOINQU (Inquiry) SCSI Adapter Device Driver ioctl Operation
	SCIOREAD (Read) SCSI Adapter Device Driver ioctl Operation
	SCIORESET (Reset) SCSI Adapter Device Driver ioctl Operation
	SCIOSTART (Start SCSI) Adapter Device Driver ioctl Operation
	SCIOSTARTTGT (Start Target) SCSI Adapter Device Driver ioctl Operation
	SCIOSTOP (Stop) Device SCSI Adapter Device Driver ioctl Operation
	SCIOSTOPTGT (Stop Target) SCSI Adapter Device Driver ioctl Operation
	SCIOSTUNIT (Start Unit) SCSI Adapter Device Driver ioctl Operation
	SCIOTRAM (Diagnostic) SCSI Adapter Device Driver ioctl Operation
	SCIOTUR (Test Unit Ready) SCSI Adapter Device Driver ioctl Operation
	scsesdd SCSI Device Driver
	scsidisk SAM Device Driver
	scsisesdd SAM Device Driver
	sctape FC Device Driver
	tape SCSI Device Driver
	TMCHGIMPARM (Change Parameters) tmscsi Device Driver ioctl Operation
	TMGETSENS (Request Sense) tmscsi Device Driver ioctl Operation
	TMIOASYNC (Async) tmscsi Device Driver ioctl Operation
	TMIOCMD (Direct) tmscsi Device Driver ioctl Operation
	TMIOEVNT (Event) tmscsi Device Driver ioctl Operation
	TMIORESET (Reset Device) tmscsi Device Driver ioctl Operation
	TMIOSTAT (Status) tmscsi Device Driver ioctl Operation
	tmscsi SCSI Device Driver

	NVMe subsystem
	NVMe storage (hdisk) device driver
	NVMe controller device driver

	USB Subsystem
	Extensible Host Controller Adapter Device Driver
	Enhanced Host Controller Adapter Device Driver
	HCD_REQUEST_COMPANIONS Adapter Device Driver ioctl Operation

	Open Host Controller Adapter Device Driver
	HCD_REGISTER_HC Adapter Device Driver ioctl Operation
	USB Audio Device Driver
	USB Keyboard Client Device Driver
	USB Mass Storage Client Device Driver
	Error Conditions for USB Mass Storage Client Device Driver

	USB Mouse Client Device Driver
	USB Tape Client Device Driver
	Error Conditions for USB Tape Client Device Driver

	USBD Protocol Driver
	USBD ioctl Operations

	USBLIBDD Passthru Driver

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

