
AIX Version 7.2

Cluster Data Aggregation Tool
User's Guide and Reference

IBM

AIX Version 7.2

Cluster Data Aggregation Tool
User's Guide and Reference

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 23.

This edition applies to AIX Version 7.2 and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Copyright IBM Corporation 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Highlighting v
Case-sensitivity in v
ISO 9000. v

CDAT user’s guide and reference 1
Cluster Data Aggregation Tool 1

Overview 1
CDAT command 2
Periodic collections 14
Log files 15

Collect types 16

Default collect types 16
Extending the framework. 17

Custom collect scripts 18
Framework helpers 20
CDAT quick start 21

Notices 23
Privacy policy considerations 25
Trademarks 25

Index 27

© Copyright IBM Corp. 2015 iii

iv AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

About this document

This document provides users and system administrators with complete information about Cluster Data
Aggregation Tool (CDAT). AIX® Cluster Data Aggregation Tool provides a single instance to launch RAS
debug and monitoring actions, and to collect problem determination data for multiple nodes.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are
predefined by the system. Also identifies graphical objects such as buttons, labels, and icons that the user
selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see displayed,
examples of portions of program code similar to what you might write as a programmer, messages from
the system, or information you should actually type.

Case-sensitivity in
Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2015 v

vi AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

CDAT user’s guide and reference

CDAT (Cluster Data Aggregation Tool) provides a single instance to launch RAS debug and monitoring
actions, and to collect problem determination data for multiple nodes. To use the information effectively,
you must be familiar with commands, system calls, subroutines, file formats, and special files. This topic
is also available on the documentation CD that is shipped with the AIX operating system.

The Cluster Data Aggregation Tool environment is made of a central master node and remote nodes. The
Cluster Data Aggregation Tool is installed on and executed from the central master node. The central
master node hosts the data collection repository, which is a new file system that contains all the collection
data from multiple remote nodes. The remote nodes are the locations where the Cluster Data Aggregation
Tool data are collected that are the AIX LPAR, VIOS, and HMC. The Cluster Data Aggregation Tool is
managed by the cdat command that is divided into several subcommands. The subcommands are access,
archive, check, collect, delete, discover-nodes, init, list-nodes, list-types, and show.

Cluster Data Aggregation Tool
AIX Cluster Data Aggregation Tool provides a single instance to launch RAS debug and monitoring
actions, and to collect problem determination data for multiple nodes. The Cluster Data Aggregation Tool
environment is made of a central master node and remote nodes.

Overview
AIX Cluster Data Aggregation Tool provides a single instance to launch RAS debug and monitoring
actions, and to collect problem determination data for multiple nodes.

The Cluster Data Aggregation Tool is installed on and executed from the central master node. The central
master node hosts the data collection repository, which is a new file system that contains all the collection
data from multiple remote nodes. The remote nodes are where Cluster Data Aggregation Tool data are
collected, which are AIX LPAR, VIOS, and HMC.

Cluster Data Aggregation Tool has following features.
v Captures problem determination data across multiple nodes.
v Supports sending data gathering tool on remote nodes.
v Provides extensible plug-in feature that supports new data collection types for user.
v Integrates with RBAC to enable non-root user to collect Cluster Data Aggregation Tool data.
v Relies on SSH for secure connectivity between nodes.
v Is controlled via CLI and SMIT panel.

The Cluster Data Aggregation Tool command is named cdat. It is divided into several subcommands. The
subcommands are init, show, check, delete, discover-nodes, list-nodes, access, collect, list-types, and
archive. The init subcommand creates the data infrastructure and defines the user used to run all other
subcommands.

The Cluster Data Aggregation Tool provides a smit interface. It can be launched from the Problem
Determination menu or using the fast path cdat (smit cdat).

To capture problem determination data across multiple nodes, the collect framework provides the
following features:

© Copyright IBM Corp. 2015 1

v It coordinates invocation of Cluster Data Aggregation Tool data gathering. For second failure data
capture (SFDC) it replaces the need for customers to manually start data gathering across multiple
nodes, and synchronizes the start and stop of data collection instance across multiple nodes.

v Retrieving RAS and monitoring data from multiple nodes, it provides an easy way to collect them from
multiple remote nodes and place onto a single central node. The RAS tools need to be pushed out to
multiple nodes.

v The Cluster Data Aggregation Tool framework data can be gathered from the AIX LPAR, VIOS, and
HMC

v The central node supports AIX only. The remote nodes supports HMC (Linux) and AIX. The central
node as a host supports AIX Version 6.1 and above releases.

The data collection repository should be large enough to contain all the data collections under a single
place. The default size is 10 GB.

The Cluster Data Aggregation Tool data type collection supports data collections for some tools, like
perfpmr, snap, trace. Cluster Data Aggregation Tool framework provides a capability for plug-in
additional data collection types as needed.

The Cluster Data Aggregation Tool framework is initialized by the root user. A non-root user is created
during the tool initialization, and is used for subsequent tool subcommands. Additionally, the framework
allows to create a non-admin user on the remote nodes that will be used during data collection. The user
is assigned AIX roles with necessary authorizations, which will ensure RAS commands (snap, dump,
trace, iptrace, perfpmr) can be executed by this user.

The core of the Cluster Data Aggregation Tool framework is a standalone command line base. The root
user or the specified non-admin user is able to initialize The Cluster Data Aggregation Tool and capture
data by running commands.

The Cluster Data Aggregation Tool configuration is simple. The Cluster Data Aggregation Tool
Framework supports configuration changes, such as a user may want to add or remove nodes or change
the configuration information for a node.

CDAT command
The Cluster Data Aggregation Tool command is named cdat.

Purpose

The Cluster Data Aggregation Tool is divided into several subcommand.

Description

The cdat command is divided into several subcommand. The subcommand are init, show, check, delete,
discover-nodes, list-nodes, access, collect, list-types, and archive. Only the init subcommand needs to be
executed by the privileged user (root). The init subcommand creates the data infrastructure and defines
the user used to run all other subcommand.

Note: To prevent concurrent accesses to the nodes.txt file or to the collect.xml file, running multiple
instances of the cdat command on the same repository is forbidden and the repository is protected by a
lock file.

Syntax
cdat -h <subcommand> [<options....>]

Flags

2 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

Flag Description
-h Displays command usage.
subcommand Specifies the subcommand name, among:

v init

v show

v check

v delete

v discover-nodes

v list-nodes

v access

v collect

v list-types

v archive

Output

If used with -h or with an unknown subcommand, the command prints the help, otherwise the output is
the subcommand output.

Return Code

If used with -h or with an unknown subcommand, the return code is 1. Otherwise the return code is the
return code of the subcommand.

cdat init subcommand
Purpose

Initializes the Cluster Data Aggregation repository.

Description

The init subcommand initializes the Cluster Data Aggregation repository. This subcommand must be run
by the privileged user root.

You can specify the name of the directory for the repository (/cdat by default). You can request to create a
specific file system. In that case, you can specify the name of the volume group and the size. You can
specify the logical volume. It also allows you to define which user will run the cdat command to collect
data. The default user is cdat.

Syntax
cdat init -h
cdat init [-c [-g VGName] [-s FSSize]] [-d Directory] [-l LVName] [-u User]

Flags

Flag Description
-h Displays command usage.
-d

Directory

Specifies the directory to use as the repository.

-u

User

Specifies the user to run the cdat subcommand.

-c Creates a logical volume mounted on the cdat directory path.
-g

VGName

Selects the volume group to use to create the logical volume.

CDAT user’s guide and reference 3

Flag Description
-l

LVName

Specifies the name of the new logical volume to use.

-s

FSSize

Specifies the size of the logical volume.

Output

If the subcommand is used with -h or with an invalid parameter, the subcommand prints the help. The
command displays the name of the cdat user and then requests a password. The command displays the
name of the directory that is used to store the collect data.

Example
cdat init
Creating user "cdat"
Changing password for "cdat"
cdat’s new password: *********
Re-enter cdat’s new password: ********
creating directory "/cdat"

Return code

If the subcommand is used with -h or with an invalid parameter, the return code is 1. If the command
fails to create the user or to set the user's password, the return code is 2. If the command fails to create
the directory, the return code is 3. If the command fails to create the logical volume, the return code is 4.
Otherwise, the return code is 0.

cdat show subcommand
Displays content of the Cluster Data Aggregation repository.

Purpose

Displays the content of the Cluster Data Aggregation repository.

Description

The show subcommand displays the content of the Cluster Data Aggregation repository. A first level of
verbosity only displays global collection information. A second level also displays the node information.

You can specify to display by node or by collect Id (by default). You can specify a collect Id, a PMR
number, or a node to filter the output. You can use verbose mode to display more information.

Syntax
cdat show -h
cdat show [-v]
cdat show [-v] Id
cdat show [-v] -p PMR
cdat show [-v] -n [Host]

Flags

4 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

Flag Description
-h Displays command usage.
-v Enables verbose mode. Displays node information.
-n Displays the list ordered by node.
Id Specifies the name of the collection.
-p

PMR

Specifies the PMR number of the collection.

Output

If the subcommand is used with -h or with an invalid parameter, the subcommand prints the help.
Otherwise, the command displays information you requested.

The cdat show command without specifying a parameter displays the list of collections:
cdat show
Repository: /cdat
Local user: cdat

1: 20090127-12:23:45+0200

Collect perfpmr data to identify the cause of performance trouble
PMR: 12345,678,901
Location: /cdat/00000001/

2: 20090212-18:30:25+0200

Gather system configuration information with snap for analysis
PMR: 12345,589,235
Location: /cdat/00000002/

With the -v parameter, the output is more verbose and displays the nodes involved for each collection:
cdat show -v
Repository: /cdat
Local user: cdat

1: 20090127-12:23:45+0200

Collect perfpmr data to identify the cause of performance trouble
PMR: 12345,678,901
Location: /cdat/00000001/

node1:
type : VIOS
user : padmin
machine id: 000069EAD300
lpar id : 1
timezone : CEST

node2:
type : LPAR
user : root
machine id: 000069EAD300
lpar id : 2
timezone: CEST

node3:
type : LPAR
user : root
machine id: 000069EAD300
lpar id : 4
timezone : CDT

CDAT user’s guide and reference 5

2: 20090212-18:30:25+0200

Gather system configuration information with snap for analysis.
PMR: 12345,589,235
Location: /cdat/00000002/

[...]

The information for only one collection can be displayed by providing the collect Id:
cdat show 1
Repository: /cdat
Local user: cdat

1: 20090127-12:23:45+0200

Collect perfpmr data to identify the cause of performance trouble.
PMR: 12345,678,901
Location: /cdat/00000001/

The -v option is also available to display nodes information.

The list can also be displayed by node instead of by collection:
cdat show -n
Repository: /cdat
Local user: cdat

node1:

1: 20090127-12:23:45+0200

Collect perfpmr data to identify the cause of performance trouble.
PMR: 12345,678,901
Location: /cdat/00000001/

2: 20090212-18:30:25+0200

Gather system configuration information with snap for analysis.
PMR: 12345,589,235
Location: /cdat/00000002/

node2:

1: 20090127-12:23:45+0200

Collect perfpmr data to identify the cause of performance trouble
PMR: 12345,678,901
Location: /cdat/00000001/

2: 20090127-12:52:07+0200

Collect IP trace analysis.
PMR: 12345,678,901
Location: /cdat/00000002/

[...]

The information for one given node is available using the -n option:
cdat show -n node1
Repository: /cdat
Local user: cdat

node1:

1: 20090127-12:23:45+0200

Collect perfpmr data to identify the cause of performance trouble.

6 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

PMR: 12345,678,901
Location: /cdat/00000001/

2: 20090212-18:30:25+0200

Gather system configuration information with snap for analysis.
PMR: 12345,589,235
Location: /cdat/00000002/

The -v option is also available to display nodes information for each collection.

The list of collects for a given PMR is available using the -p option:
cdat show -p 12345,678,901
Repository: /cdat
Local user: cdat

5: 20090127-12:23:45+0200

Collect perfpmr data to identify the cause of performance trouble.
PMR: 12345,678,901
Location: /cdat/00000005/

8: 20090212-18:30:25+0200

Gather system configuration information with snap for analysis.
PMR: 12345,678,901
Location: /cdat/00000008/

The -v option is also available to display nodes information for each collection.

Return code

If the subcommand is used with -h or with an invalid parameter, the return code is 1. If the command
fails, the return code is 2. Otherwise the return code is 0.

cdat check subcommand
To check consistency of the Cluster Data Aggregation repository, the check subcommand is used.

Purpose

The check subcommand checks consistency of the Cluster Data Aggregation repository.

Description

The check subcommand checks consistency between the cdat.xml file that contains the description of the
repository and the real content of the Cluster Data Aggregation repository.

If you specify the -d option, it can correct possible inconsistencies (this operation is interactive).

Syntax
cdat check -h
cdat check [-d]

Flags

CDAT user’s guide and reference 7

Flag Description
-h Displays command usage.
-d Specifies the files that must be corrected if required.

Output

If used with -h or with an invalid parameter, the subcommand prints the help. During the processing, the
command displays the list of discovered inconsistencies. It asks for confirmation before repairing.

Return Code

If used with -h or with an invalid parameter, the return code is 1. If the command detects some
inconsistencies, the return code is 2. Otherwise the return code is 0.

cdat delete subcommand
Purpose

Removes the specified collections from the Cluster Data Aggregation repository.

Description

The delete subcommand removes entries from the cdat.xml file and from the Cluster Data Aggregation
repository for the specified collections.

Each collection is identified by an Id. Either you can specify a collect Id to suppress the specified
collection or you can specify a PMR number to suppress all the collections relative to the specified PMR
number.

Syntax
cdat delete -h
cdat delete -p PMR
cdat delete Id

Flags

Flag Description
-h Displays command usage.
Id Specifies the Id of the collection to delete.
-p

PMR

Specifies the PMR number of the collections to be deleted.

Output

If the subcommand is used with -h or with an invalid parameter, the subcommand prints the help.
Otherwise, the command displays the list of collections it is deleting.

Return code

If the subcommand is used with -h or with an invalid parameter, the return code is 1. If the command
fails to delete the collection, the return code is 2. Otherwise, the return code is 0.

cdat discover-nodes subcommand
Purpose

Retrieves the LPAR name of all nodes connected to one or more given HMCs or IVMs.

8 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

Description

The discover-nodes subcommand retrieves the name of the LPAR connected to the specified list of
HMCs. You can specify a Virtual I/O Server (VIOS) instead of an HMC in case an Integrated
Virtualization Management (IVM) replaces an HMC. You can also specify an LPAR node to retrieve the
workload partition (WPAR) running on this LPAR. You can specify the file where the list of found nodes
is stored. By default, the list is stored in the nodes.txt file under the directory specified with the cdat init
subcommand (/cdat by default). You can execute the cdat discover-nodes subcommand several times,
and you can append or overwrite the file. Multiple instances of the same node are not recorded in the
file.

The result of the discover-nodes subcommand can be used as input to the access and run subcommands.
The discover-nodes subcommand retrieves LPAR names, which means that if the LPAR name is not the
same as the host name, you must edit the file to set the real host name.

Syntax
cdat discover-nodes -h
cdat discover-nodes [-a|-w] [-f File] -n Type:[User@]Node ...

Flags

Flag Description
-h Displays command usage.
-w Specifies that the file must be overwritten.
-a Specifies that new nodes must be appended to the file.
-f

File

Specifies the file where the nodes must be stored.

-n

Type:[User@]Node

Specifies a list of nodes, where Type is one of the following values:

v HMC

v VIOS

v LPAR

Defines the HMC, VIOS, or LPAR to connect to and possibly the user used to connect to.

Output

If the subcommand is used with -h or with an invalid parameter, the subcommand prints the help.
Otherwise, the command requests the password for the hscroot user (privileged user on an HMC), the
padmin user (privileged user on an IVM), the root user (privileged user on an LPAR), or the specified
user. The subcommand then displays the name of the file where the nodes list is written.

Example
$ cdat discover-nodes -a -n HMC:uranus -n LPAR:mylpar
hscroot@uranus’s Password: ******
root@mylpar’s Password: *******
Updating /cdat/nodes.txt

Return code

If the subcommand is used with -h or with an invalid parameter, the return code is 1. If the command
cannot connect to the HMC or IVM, the return code is 2. If the command cannot write data to the file,
the return code is 3. Otherwise, the return code is 0.

cdat list-nodes subcommand
Purpose

Displays the list of known nodes.

CDAT user’s guide and reference 9

Description

The list-nodes subcommand displays the list of known nodes (the content of the file nodes.txt). You can
specify one or more node files.

Syntax
cdat list-nodes -h
cdat list-nodes [-f File ...]

Flags

Flag Description
-h Displays command usage.
-f

File

Specifies the file that contains the list of nodes. Multiple files can be specified using multiple
-f options.

Output

If the subcommand is used with -h or with an invalid parameter, the subcommand prints the help.
Otherwise, the command lists the known remote nodes.

Example
$ cdat list-nodes
HMC uranus
VIOS miranda
LPAR ariel
LPAR umbriel
LPAR titania
LPAR oberon

Return code

If the subcommand is used with -h or with an invalid parameter, the return code is 1. If the command is
not able to list the nodes, the return code is 2. Otherwise, the return code is 0.

cdat access subcommand
The access authorization to remote nodes is managed by the access subcommand.

Purpose

The access subcommand manages access authorization to remote nodes.

Description

The access subcommand sets up access authorization to the specified remote nodes. It creates the
specified users on the remote nodes if they do not already exist and it attributes to these users all the
RBAC authorizations required to perform collection of RAS data. It uses the appropriate privileged user
to create the user on each node. Accordingly, hscroot user is used on HMC, root on LPAR and padmin
on VIOS. The subcommand installs the SSH public key of the cdat user on the remote nodes. If the SSH
daemon is not available on a remote node, it uses the exec protocol (port 512) if it is available or the
telnet protocol to execute commands on the remote node. You can directly specify the list of nodes in the
command line or you can specify the file containing the list of nodes. You can specify a default remote
user that is used if you do not specify a user for a given node. If you specify the -d option, the cdat
access subcommand removes access authorization to the specified remote nodes previously set up; it also
removes the remote users on the remote nodes if they were previously created by the cdat access
subcommand.

10 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

Syntax
cdat access -h

cdat access [-dF] [-u User] -n Type:[User@]Node ...

cdat access [-dF] [-u User] -f File ...

Flags

Flag Description
-h Displays command usage.
-d Deletes authentication credentials from remote nodes.
-F Forces operation even if it was already done.
-u

User

Specifies the user to create on the remote nodes.

-n

Type:[User@]Node

Specifies the list of nodes to authenticate with, where Type is one of:

v HMC

v LPAR

v VIOS
Node is the name or the IP address of the node to connect to.

User is the user to create on this particular node (overrides -u).
-f

File

Specifies the file containing the list of node to authenticate with. Multiple files can be specified
using multiple -f options.

Output

If used with -h or with an invalid parameter, the subcommand prints the help. Otherwise, the command
asks for the cdat user's password and displays the connection status.

Example
$ cdat access -u cdat
"cdat" user password: *********
accessing cdat@uranus
accessing cdat@miranda
accessing cdat@ariel
accessing cdat@umbriel
accessing cdat@titania
accessing cdat@oberon

Return code

If used with -h or with an invalid parameter, the return code is 1. If the command fails to connect to a
remote node, the return code is 2. If the command fails to access nodes list file, the return code is 3.
Otherwise the return code is 0.

cdat collect subcommand
Purpose

Starts analysis tools on remote nodes and collects results at the end.

Description

The collect subcommand starts analysis tools on remote nodes and collects results at the end.

Similarly to the access subcommand, the list of nodes can be provided either on the command line or
from a file.

CDAT user’s guide and reference 11

Several collect types can be done in one collection. This subcommand updates the cdat.xml file, creates
the collect.xml file, and gets remote files from nodes to place them into the local Cluster Data
Aggregation repository.

Collections might be associated with a product modification request (PMR) number. It is easier to list
collection types that are related to the same PMR (using the show subcommand) or to remove all
collection types related to a specified PMR (using the delete subcommand).

Syntax
cdat collect [-gqv] [-i Id] [-p PMR] [-m Comment] [-u User] -t Type[,Options] ... -n Type:[User@]Node ...

cdat collect [-gqv] [-i Id] [-p PMR] [-m Comment] [-u User] -t Type[,Options] ... -f File ...

Flags

Flag Description
-h Displays command usage.
-i

Id

Specifies the name of the collect.

-p

PMR

Specifies the PMR number of this collect.

-m

Comment

Specifies a comment for this collect.

-q Enables quiet (noninteractive) mode. No questions are asked of the user. The flag is useful for
scheduling collects from a cron job.

-v Enables the verbose mode, and displays additional status information during the collection.
-g Causes the growth of the file system automatically if needed.
-u

User

Specifies the user to connect to the remote nodes.

-t

Type[,Options]

Specifies the type of collect operation to run. Optionally, you can specify options related to the
type of collect you want.

-n

Type:[User@]Node

Specifies the nodes to connect to and, optionally, the user to use.

-f

File

Specifies the file containing the list of nodes to connect to. Multiple files can be specified
using multiple -f options.

Output

If the sub command is used with -h or with an invalid parameter, the subcommand prints the help.

Return code

If the sub command is used with -h or with an invalid parameter, the return code is 1. If the collect
operation fails, the return code is 2. Otherwise, the return code is 0.
Related information:
“Custom collect scripts” on page 18
You can find the information on a set of six phases for the collect operation: check, init, execute,
terminate, grab, and clean that the Cluster Data Aggregation Tool framework defines.

cdat list-types subcommand
Purpose

Displays the list of installed collect types and their descriptions.

12 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

Description

The list-types subcommand displays the list of installed collect types along with their descriptions. It
searches for collect types in the /usr/lib/cdat/types/ and the /var/adm/ras/cdat/ directories, and in
directories specified by the CDAT_TYPE environment variable (separated by a colon). All directories that
contain a manifest.xml file are considered as a valid collect type.

Syntax
cdat list-types -h
cdat list-types [-v]

Flags

Flag Description
-h Displays command usage.
-v Enables verbose output and displays the usage of collect types.

Output

If the subcommand is used with -h or with an invalid parameter, the subcommand prints the help.
Otherwise, the command lists the installed collect types.

Example
$ cdat list-types -v
List of available collect types:

trace (/usr/lib/cdat/types/trace): \\Records selected system events from nodes of type AIX LPAR or VIOS.
Usage: trace [-d duration] -- [trace_options]
-d duration \\duration of collect in seconds (default is 30)
trace_options AIX trace(5) command options

perfpmr (/usr/lib/cdat/types/perfpmr): \\Retrieves the result of the perfpmr command from nodes of type AIX LPAR.
Usage: perfpmr [-d duration]
-d duration \\duration of collect in seconds (default is 600)

snap (/usr/lib/cdat/types/snap): \\Gathers system configuration information from nodes of type AIX LPAR or VIOS.
Usage: snap [snap_options]
snap_options AIX snap(5) command options (default is -a)

Return code

If the subcommand is used with -h or with an invalid parameter, the return code is 1. If the command is
not able to list the collect types, the return code is 2. Otherwise, the return code is 0.

cdat archive subcommand
To create a compressed archive tar.Z of collects stored in the repository, the archive subcommand can be
used .

Purpose

The archive subcommand can be used to create a compressed archive tar.Z of collects stored in the
repository.

Description

The archive subcommand can be used to create a compressed archive tar.Z of collects stored in the
repository. It is possible to archive all collects associated with a given PMR number or a collect specified
by its name.

CDAT user’s guide and reference 13

Syntax
cdat archive -h

cdat archive [-f File] -p PMR

cdat archive -f File Id

Flags

Flag Description
-h Displays command usage.
Id Specifies the identifier of the collect to be archived.
-p

PMR

Specifies the PMR number of the collects to be archived.

-f

FILE

Specifies the name of the archive to be created. In case where -p is specified, the default
filename is PMR.tar.Z, PMR is the PMR number.

Output

If used with -h or with an invalid parameter, the subcommand prints the help. Otherwise the command
creates an archive containing all the collects corresponding to the specified PMR number or collect name.
The archive contains all the directories of the collects as well as a text file (README) describing the
collects. This text file is the output of the cdat show -v command on the specified PMR number or collect
name.

Example
% cdat archive -p 12345,123,123 -f archive.tar.Z
% uncompress -c archive.tar.Z | tar tf -
README
mycollect/
mycollect/logs.txt
mycollect/trace/
mycollect/trace/fleuret_ios/
mycollect/trace/fleuret_ios/logs.txt
mycollect/trace/fleuret_ios/trcfile
mycollect/trace/fleuret_ios/trcfmt
mycollect/trace/mnffdc1/
mycollect/trace/mnffdc1/logs.txt
mycollect/trace/mnffdc1/trcfile
mycollect/trace/mnffdc1/trcfmt
mycollect/trace/sohmc/
mycollect/trace/sohmc/logs.txt
mycollect/trace/sohmc/errors.txt
mycollect/trace/mnffdc2/
mycollect/trace/mnffdc2/logs.txt
mycollect/trace/mnffdc2/trcfile
mycollect/trace/mnffdc2/trcfmt

Return code

If used with -h or with an invalid parameter, the return code is 1. If the command is not able to create
the archive, the return code is 2. Otherwise the return code is 0.

Periodic collections
It is possible to schedule periodic data collections using the crontab(1) command.

For example, to run the snap collect type every day at midnight:
% crontab -e cdat
0 0 * * * /usr/bin/cdat collect -q -t snap -f /cdat/nodes.txt

14 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

With this configuration, cdat creates a new directory under /cdat (and a new collect Id) every day at
midnight that will contain the snap data for each node present in /cdat/nodes.txt. It is possible (but not
mandatory) to overwrite previous snap collections by specifying a collect Id to the collect subcommand
by using the -i option:
% crontab -e cdat
0 0 * * * /usr/bin/cdat collect -q -t snap -i my_daily_snap -f /cdat/nodes.txt

In this case, the same directory is used for all collections. Only the last valid snap data is kept for each
node present in /cdat/nodes.txt. Older snap data is overwritten. Removing a previously scheduled
collections can be done by running the crontab -e cdat command and by removing the appropriate entry
from the file. Scheduled collections can be managed transparently from the SMIT menus, which avoids
the, manual manipulation of the crontab.

Log files
Log files can be used to diagnose problems encountered during a collection.

There are two types of log files, one per-collect log file that contains synchronization information between
nodes and one per-node log file that contains information about collection phases and remote commands.
A log file is named logs.txt and is located in the collect directory, for example, /cdat/00000001/, or the
node directory for example, /cdat/00000001/trace/node1, respectively, for a per-collect log file or for a
per-node log file. Each line in a log file is prefixed with a time stamp of the central node.

Here is an example of a per-collect log file for the trace collect on the node1 node:
% cat /cdat/00000001/logs.txt
2010-07-29 09:17:42: Creating "/cdat/00000001/collect.xml"
2010-07-29 09:17:42: Retrieving node information for node1
2010-07-29 09:17:44: Starting collect type "trace"
2010-07-29 09:17:44: Creating directory "/cdat/00000001/trace"
2010-07-29 09:17:44: Creating directory "/cdat/00000001/trace/node1"
2010-07-29 09:17:44: Starting "check" phase on node1 (LPAR): pid 5570774
2010-07-29 09:17:44: Waiting for children to terminate
2010-07-29 09:17:44: pid 5570774 (node1) terminated with exit status 0
2010-07-29 09:17:44: Starting "init" phase on node1 (LPAR): pid 5570776
2010-07-29 09:17:44: Waiting for children to terminate
2010-07-29 09:17:44: pid 5570776 (node1) terminated with exit status 0
2010-07-29 09:17:44: Starting "execute" phase on node1 (LPAR): pid 5570778
2010-07-29 09:17:44: Waiting for children to terminate
2010-07-29 09:17:46: pid 5570778 (node1) terminated with exit status 0
2010-07-29 09:17:46: Starting "terminate" phase on node1 (LPAR): pid 5570780
2010-07-29 09:17:46: Waiting for children to terminate
2010-07-29 09:17:47: pid 5570780 (node1) terminated with exit status 0
2010-07-29 09:17:47: Starting "grab" phase on node1 (LPAR): pid 5570782
2010-07-29 09:17:47: Waiting for children to terminate
2010-07-29 09:17:49: pid 5570782 (node1) terminated with exit status 0
2010-07-29 09:17:49: Starting "clean" phase on node1 (LPAR): pid 5570784
2010-07-29 09:17:49: Waiting for children to terminate
2010-07-29 09:17:50: pid 5570784 (node1) terminated with exit status 0

Here is an example of a per-node log file for the trace collect for the node1 node:
% cat /cdat/00000001/trace/node1/logs.txt
*** "check" phase ***
Running "/usr/lib/cdat/types/trace/trace -d1"
*** "init" phase ***
Running "/usr/lib/cdat/types/trace/trace -d1"
*** "execute" phase ***
Running "/usr/lib/cdat/types/trace/trace -d1"
Running remote command "LANG=C /usr/sbin/trace -a -o /tmp/cdat.trc " on "node1" as user "cdat"
Return code 0
*** "terminate" phase ***
Running "/usr/lib/cdat/types/trace/trace -d1"
Running remote command "LANG=C /usr/bin/trcstop" on "node1" as user "cdat"

CDAT user’s guide and reference 15

Return code 0
*** "grab" phase ***
Running "/usr/lib/cdat/types/trace/trace -d1"
Retrieving /tmp/cdat.trc from LPAR node1 using SCP
Retrieving /etc/trcfmt from LPAR node1 using SCP
*** "clean" phase ***
Running "/usr/lib/cdat/types/trace/trace -d1"
Running remote command "rm -f /tmp/cdat.trc" on "node1" as user "cdat"
Return code 0

Collect types
The Cluster data Aggregation framework provides you with a set of collect types.

The set of default collect type are : snap, perfpmr, and trace.

Default collect types
The default collect types are as follows:
v snap: Collects snap data from an AIX LPAR or VIOS.
v perfpmr: Collects perfpmr data from an AIX LPAR.
v trace: Tracks trace data from an AIX LPAR or VIOS.

snap collect type
The snap collect type runs the snap command with the specified options on an AIX LPAR or VIOS and
retrieves the content of the /tmp/ibmsupt directory in the central repository. The snap collect type
supports all the options supported by the AIX snap command.

Example

An example of a snap (default is snap -a) collect for two nodes (one for AIX LPAR and another for VIOS)
follows:
% cdat collect -t snap -n LPAR:root@lpar1 -n
VIOS:padmin@vios1

perfpmr collect type
The perfpmr collect type installs the perfpmr command on an AIX LPAR (for example, perf61.tar.Z)
and runs it with theperfpmr.sh 600 command.

The perfpmr collect type retrieves the file produced by perfpmr.sh -o perfdata -z on the central
repository under the perfpmr.pax.gz directory. The perfpmr collect type supports the option -d
<duration> that specifies the duration of the analysis in seconds (default is 600 seconds). If no version of
the perfpmr tool matches the Operating System level of a remote node (for example, perf61.tar.Z for
AIX 6.1) under the /usr/lib/cdat/types/perfpmr/ directory, the perfpmr collect type fails for that node
and you must download the appropriate version of perfpmr for the node and copy it under
the/usr/lib/cdat/types/perfpmr/ directory.

Examples

An example for the collect type follows:
Phase "check" of collect type "perfpmr" failed for node lpar1:
BEGIN REASON
/usr/lib/cdat/types/perfpmr/perf61.tar.Z not found.
Please install a version of PERFPMR suitable for AIX 6.1.3.0 under
/usr/lib/cdat/types/perfpmr/perf61.tar.Z.
You may find it at the following URL:
ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/
END REASON

16 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

An example for a perfpmr collect (duration equals 60 seconds) for the two AIX LPAR nodes follows:
% cdat collect -t perfpmr,”-d 60” -n LPAR:lpar1 -n LPAR:root@lpar2

Note: You might retrieve the perfpmr package (for instance perf61.tar.Z) at ftp://
ftp.software.ibm.com/aix/tools/perftools/perfpmr and select the appropriate version (for perf61
download perf61.tar.ZforAIX).

trace collect type
The trace collect type runs the command trace -a on an AIX LPAR or VIOS.

The trace collect type holds for the specified number of seconds and then runs the trcstop command. It
retrieves the trace file on the central repository under the trcfile file. The trace collect type supports the
option -d <duration>, which specifies the duration of the trace in seconds (default is 30 seconds). Options
can be passed to the AIX trace(5) command that are separated from script options by the -- symbol.

Example

The following command can be run:
% cdat collect -t trace,”-d 60 –- -j 492” -n LPAR:lpar1 \

-n LPAR:root@lpar2

This command runs the trace command with option -j 492 during 60 seconds on nodes lpar1 and lpar2

Extending the framework
This section describes how to extend the framework.

You can define a new type of collect in any of the following ways:
1. Creating a directory with the name of the new collect type in the /var/adm/ras/cdat/ directory.
2. Creating a manifest XML file within the directory that describes the function of the newly added

collect type.
3. Writing a script within the directory to perform the collect operation.

Format of the manifest.xml file

A manifest.xml file describes what a collect type is and what options it supports.

An example of a manifest.xml file for the trace collect type follows:
<?xml version=”1.0”?>
<manifest>

<description>
Retrieve trace data from remote nodes.

</description>
<script-arg id=”d” mandatory=”0” default=”30”

<description>Duration in seconds</description>
</script-arg>
<pass-through-arg default=”-a”>

<description>AIX trace(5) command options</description>
</pass-through-arg>

</manifest>

The XML Schema Definition for the manifest.xml file follows:
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="manifest">
<xs:complexType>

<xs:sequence>

CDAT user’s guide and reference 17

<xs:element name="description"/>
<xs:element name="script-arg">

<xs:complexType>
<xs:sequence>

<xs:element name="description"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="mandatory" type="xs:integer" use="required"/>
<xs:attribute name="default" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="pass-through-arg">

<xs:complexType>
<xs:sequence>

<xs:element name="description"/>
</xs:sequence>
<xs:attribute name="default" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Custom collect scripts
You can find the information on a set of six phases for the collect operation: check, init, execute,
terminate, grab, and clean that the Cluster Data Aggregation Tool framework defines.

A collect type might provide a script or an executable to implement those phases. Not all phases are
required, and if a given phase is not implemented, this phase is ignored. There is a synchronization point
after each phase; that is, that is the framework waits for the previous phase to finish on all nodes before
starting the next phase.
v The purpose of the check phase is to verify that the collect operation can be performed on the remote

node. The process include steps such as checking the OS level of the remote node and checking the
disk space.

v The purpose of the init phase is to set up the environment that is required for the execution of the
collect. The process include the installation of file sets or scripts on the remote node. It is best to use
the push_file service to copy files to the remote node.

v The purpose of the execute phase is to start the collect process on the remote nodes.
v The purpose of the terminate phase is to stop the collect process on the remote nodes such that the

result of the collect is available.
v The purpose of the grab phase is to retrieve the collected data from the remote node and to copy it

into the destination directory. Use the get_file service to retrieve files or directories from a remote node
because this service manages the authentication with the remote node automatically and is capable of
extending the size of the repository when required.

v The purpose of the clean phase is to perform cleanup on the local or remote node. The process include
the removal of temporary files or the removal of file sets installed during the init phase from the
remote node. Notice that the clean phase is always performed, even if the collect fails or is interrupted.

A custom collect script must be provided to implement phases such as check, init, execute, terminate,
grab, and clean. It is not mandatory to implement all the phases. For example, you are not required to
provide an init or terminate implementation, if no special action is being performed during those
phases. The script is written in any programming language (scripts or compiled binaries). You call the
push_file, get_file, mlog, and remote_cmd services provided by the Cluster Data Aggregation Tool
framework from the custom scripts to transfer files, log messages, or run commands on a remote node.

Each implemented phase of the custom script must follow the rules that are described for the return
codes:

18 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

Return value Description
0 Indicates that the collect phase succeeded.
1 Indicates that the current remote node should be ignored in subsequent phases.
More than 128 Indicates that an error occurred during the execution of the phase. The framework calls the

clean phase when such an error occurs.

A collect script is invoked with the following environment variables (set by the framework):

Variable name Description
CDAT_DEST_DIR Specifies the directory on the master node where the data collected on the remote node is

stored.
CDAT_HOST Specifies the host name of the remote node.
CDAT_PHASE Specifies the phase to be executed.
CDAT_PMR If set, specifies the PMR number associated with the current collect.
CDAT_SRVC_DIR Specifies the path on the master node to the get_file, push_file, remote_cmd, and mlog

services.
CDAT_TYPE Specifies the node type (that is, LPAR, HMC, VIOS, or PSCALE).
CDAT_TYPE_DIR Specifies the directory that contains the script for the current collect type.
CDAT_USER Specifies the user name to log into the remote node.

Example

An example of a new collect type definition that retrieves the content of the /var/adm/ras/errlog file
from remote nodes (of type AIX LPAR) follows:
1. Create a new directory under the /var/adm/ras/cdat/ directory:

% mkdir -p /var/adm/ras/cdat/myerrlog

2. Create the manifest.xml file:
% vi /var/adm/ras/cdat/myerrlog/manifest.xml
<?xml version=”1.0”?>
<manifest>
<description>Retrieve the content of the /var/adm/ras/errlog file.</description>
</manifest>

Note: You can also create localized manifest.xml files by adding a local suffix (for example, the
manifest.fr_FR.xml file for French).

3. Create the script that fetches the errlog file. In the following example, only the grab phase is
implemented because there is no command to generate the file (no execute phase).
% vi /var/adm/ras/cdat/myerrlog/myerrlog
#!/bin/sh
if [$CDAT_PHASE = “grab”]; then

$CDAT_SRVC_DIR/get_file /var/adm/ras/errlog
if [$? -ne 0] ; then

$CDAT_SRVC_DIR/mlog 0 “Could not retrieve errlog from $CDAT_HOST”
exit 128

fi
fi
exit 0

4. Verify whether the new collect type is added and detected, by running the following command:
% cdat list-types

The preceding command lists all the available collect types.
The following command retrieves the content of the /var/adm/ras/errlog file:
... myerrlog (/var/adm/ras/cdat/myerrlog)

5. Run the new collect type:
% cdat collect -t myerrlog -n LPAR:root@mylpar1 -n LPAR:root@mylpar2

CDAT user’s guide and reference 19

Related concepts:
“cdat collect subcommand” on page 11

Framework helpers
The framework provides a set of services to collect scripts that you use to log messages, to execute
commands on remote nodes, or to transfer files between remote nodes and the central master node.

To be portable, collect scripts use these services to accomplish those actions instead of creating your own.
These services allow the collect scripts to ignore the underlying transport protocol, which is used to
connect to remote nodes such as Secure Shell (SSH), Remote Execution Protocol (REXEC), Telnet, and File
Transfer Protocol (FTP).

remote_cmd service
Use the remote_cmd service to execute commands on the remote nodes.

Information about how to connect to the remote node is retrieved from the CDAT_USER, CDAT_HOST,
and CDAT_TYPE environment variables. The remote_cmd service might use SSH, REXEC, or Telnet to
execute the command on the remote node. If logging to the remote node requires a password (for
example, no preauthentication phase was performed for this node), the remote_cmd service will fail.

Syntax
remote_cmd <command>

push_file service
Use the push_file service to copy files or directories from the central master node to a remote node.

Information about how to connect to the remote node is retrieved from the CDAT_USER, CDAT_HOST,
and CDAT_TYPE environment variables. The push_file service might use Secure Copy Protocol (SCP) or
File Transfer Protocol (FTP) to copy the files to the remote node. If copying a file to the remote node
requires a password (for example, no preauthentication phase was performed for this node), the
push_file service will fail.

Syntax
push_file <local file>....<remote directory>

get_file service
Use the get_file service to copy files or directories from the remote node to the central master node.
Information about how to connect to the remote node is retrieved from the CDAT_USER, CDAT_HOST,
and CDAT_TYPE environment variables.

The CDAT_DEST_DIR environment variable specifies the location where files must be copied. The
get_file service might use Secure Copy Protocol (SCP) or FTP to copy the files from the remote node. If
copying a file from the remote node requires a password (for example, no preauthentication phase was
performed for this node), the get_file service will fail.

Syntax
get_file <remote file>....<local file>

A directory can be specified instead of local file to retrieve several files or directories with a single call.
get_file <remote file>....<local directory>

Before retrieving the file, the get_file service determines whether there is enough free space in the
destination file system to store that file. If this is not the case, the get_file service extends the size of the
file system automatically if the cdat collect command was called with option -g.

20 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

mlog service
Use the mlog service to log diagnostic messages. These diagnostic messages are stored in the per-node
log files.

Syntax
mlog <level> <message to log>

A severity level can be specified with <level> (an integer). If the level is -1, the message is also printed
on the stderr output (and in the collect log file), when the current collect phase ends.

CDAT quick start
Before using the Cluster Data Aggregation Tool, you must initialize it on the master node, the central
node that gathers problem determination data.

To initialize Cluster Data Aggregation Tool, complete the following steps:
1. Log in to the Cluster Data Aggregation Tool central master node as root and run the smit cdat

command.
2. Select Create the Repository.
3. Select Discover Nodes to create a file that lists all of the remote nodes where you need to collect

problem determination data. The default name for this file is /cdat/nodes.txt.
4. Select Manage Remote Nodes.
5. Select Initialize Access to Remote Nodes.
6. Specify the file name that lists all the remote nodes in the Node filename field.
7. Press Enter to perform the initialization.
8. Answer all questions when prompted and specify a password for the cdat user that is created on each

remote node. You must provide the root password of each remote node.

After the Cluster Data Aggregation Tool master node has been initialized, you are able to collect problem
determination data on the remote nodes by using default collect types such as perfpmr, snap, or trace

To collect data on remote nodes, complete the following steps:
1. Log in to the Cluster Data Aggregation Tool master node as root or as cdat user and run the smit cdat

command.
2. Select Collect Data from Remote Nodes.
3. If there is a file that lists all of the remote nodes where you need to collect problem determination

data, use it to specify the remote nodes. The default value for the Node filename field is
/cdat/nodes.txt. If you do not have a file that lists the remote nodes, manually enter the remote nodes
in the Remote nodes field.

4. Select the collect type you want to perform in the Collect type field.
5. Specify options in the Parameters field.
6. Press Enter to perform the collect operation.

CDAT user’s guide and reference 21

22 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

Notices

This information was developed for products and services that are offered in the USA.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright IBM Corp. 2015 23

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 903
11501 Burnet Road
Austin, TX 78758-3400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

24 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

Privacy policy considerations
IBM® Software products, including software as a service solutions, (“Software Offerings”) may use
cookies or other technologies to collect product usage information, to help improve the end user
experience, to tailor interactions with the end user or for other purposes. In many cases no personally
identifiable information is collected by the Software Offerings. Some of our Software Offerings can help
enable you to collect personally identifiable information. If this Software Offering uses cookies to collect
personally identifiable information, specific information about this offering’s use of cookies is set forth
below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at
http://www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other
Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Notices 25

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

26 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

Index

Special characters
/cdat/nodes.txt 14, 21
/usr/lib/cdat/types/ 12

A
access 1, 2, 8, 10
archive 1, 2, 13

C
cdat 2, 3, 10, 14, 15, 21
CDAT_DEST_DIR 20
CDAT_HOST 20
CDAT_TYPE 20
CDAT_USER 20
cdat.xml 7, 8
check 1, 7, 17, 18
clean 1, 17, 18
collect 1, 2, 11, 20
collect log 21
collect.xml 11

D
Default Collect Types 16
delete 1, 2, 8
discover-node 1, 2
discover-nodes 8
dump 1

E
execute 1, 17, 18
Extending Framework 17, 18

G
get_file 17, 18, 20
grab 1, 17, 18

H
Helpers 20
HMC 1, 8, 10
hscroot 8

I
init 1, 2, 3, 8, 17, 18
iptrace 1
IVM 8

L
list-nodes 1, 2, 9
list-types 1, 2, 12

log file 15
LPAR 1, 8, 16, 17
lpar1 17
lpar2 17

M
manifest.xml 12, 17, 18
mlog 17, 18, 21

N
Node 10
nodes.txt 8, 9

P
padmin 8, 10
perfpmr 1, 16, 21
perfpmr package 16
PMR number 8
push_file 17, 18, 20

Q
Quickstart 21

R
remote nodes 11
remote_cmd 17, 18, 20
root 3, 21
run 8

S
show 1, 2, 4, 13
SMIT 1
smit cdat 21
snap 1, 14, 16, 21
stderr 21

T
terminate 1, 17, 18
trace 1, 16, 17, 18, 21
trcfile 17

U
User 10

V
var/adm/ras/cdat/ 12
VIOS 1, 8, 16, 17

© Copyright IBM Corp. 2015 27

28 AIX Version 7.2: Cluster Data Aggregation Tool User's Guide and Reference

IBM®

Printed in USA

	Contents
	About this document
	Highlighting
	Case-sensitivity in
	ISO 9000

	CDAT user’s guide and reference
	Cluster Data Aggregation Tool
	Overview
	CDAT command
	cdat init subcommand
	cdat show subcommand
	cdat check subcommand
	cdat delete subcommand
	cdat discover-nodes subcommand
	cdat list-nodes subcommand
	cdat access subcommand
	cdat collect subcommand
	cdat list-types subcommand
	cdat archive subcommand

	Periodic collections
	Log files

	Collect types
	Default collect types
	snap collect type
	perfpmr collect type
	trace collect type

	Extending the framework
	Custom collect scripts
	Framework helpers
	remote_cmd service
	push_file service
	get_file service
	mlog service

	CDAT quick start

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special characters
	A
	C
	D
	E
	G
	H
	I
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V

