AIX Version 7.2

4765 PCle Cryptographic Coprocessor
AIX CCA Support Program Installation
4.4

<||IH

AIX Version 7.2

4765 PCle Cryptographic Coprocessor
AIX CCA Support Program Installation
4.4

..lli

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page 61}

This edition applies to AIX Version 7.2 and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Copyright IBM Corporation 2015, 2016.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About thisdocument vV
Audience . . T
Related pubhcatlons I ¢ |

4765 PCle Cryptographic Coprocessor
AIX CCA Support Program Installation
4.4 .

Support Program 1nstallat10n process overview .
Obtaining coprocessor hardware and software .
Installing the Support Program . .
Installing the Support Program base release 4 4.
Configuring the Support Program .
CCA Support Program and AIX file permlssrons
Reviewing coprocessor hardware errors
Removing the Support Program . .
AIX hardware and software requirements.
File permissions . . .
Loading and Unloading software 1nt0 the coprocessor
Loading coprocessor software.
Unloading coprocessor software and zeroize the
CCAnode. . . i |
Coprocessor Load Ut111ty (CLU) reference |
Managing the cryptographic node by using the
CNM and CNI utilities15
CNM and CNI overview . . . S [
Scenarios: Using the CNM and the CNI utilities 17

NN OO UTUTUT W WN R =,

© Copyright IBM Corp. 2015, 2016

Using the CNM utility functions .
Creating and managing access control data
Managing cryptographic keys

Creating other nodes by using the CNI utlhty .

Building applications to use with the CCA API
Overview of CCA verbs . . .
Calling CCA verbs in C program syntax
Compiling and linking CCA application
programs . . .
Sample C routine: Generatmg a MAC

Enhancing throughput with CCA and the 4765

coprocessor .
Initial default-role commands
Machine-readable log contents .
Device driver error codes.
Cloning a master key . .
Overview of cloning a master key
Access control considerations when cloning

Threat considerations for a digital-signing server .

IBM Cryptographic Coprocessor notices .

Notices -
Privacy policy considerations
Trademarks

Index

.23
. 25
.31
. 36
. 37
. 37
. 37

. 38
. 38

. 42
. 42
. 43
. 43
. 44
. 44
. 50
. 52
. 59

. 61
. 63
. 63

. 65

iii

1V AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

About this document

This installation information describes Release 4.4 of the IBM® Common Cryptographic Architecture
(CCA) Support Program (hereafter referred to as Support Program) for the IBM 4765 PCle Cryptographic
Coprocessor. The Support Program includes device drivers, utilities, and the CCA coprocessor code.

Use this information to help with the following tasks:
* Obtain the Support Program through the Internet
* Load the software onto a host computer and into the coprocessors.
* Use the utilities supplied with the Support Program to:
Load the coprocessor function-control vector (FCV)

— Initialize one or more coprocessors

— Create and manage access-control data

— Create a master key and primary key-encrypting keys (KEKs)

— Manage keystore at the cryptographic node

— Create node-initialization file lists to set up and configure other cryptographic nodes
* Link your application software to the CCA libraries
* Obtain guidance for security considerations in application development and operational practices

Audience

The audience for this publication includes:

* System administrators who install the software

* Security officers responsible for the coprocessor access-control system

* System programmers and application programmers who determine how the software is to be used

Highlighting

The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names
are predefined by the system. Also identifies graphical objects such as buttons, labels, and icons that the
user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see displayed,
examples of portions of program code similar to what you might write as a programmer, messages from
the system, or information you should actually type.

Case-sensitivity in AIX®

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the 1s command to list files. If you type LS, the
system responds that the command is not found. Likewise, FILEA, Filea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2015, 2016 v

Related publications

Publications for the PCle Cryptographic Coprocessor and commercial cryptographic applications in
general follow:

Cryptographic hardware publications are available at the CryptoCards website at [http:/ /www.ibm.com /|

becurity / cryptocards}
* IBM CCA Basic Services Reference and Guide for the IBM 4765 PCle and the IBM 4764 PCI-X Cryptographic

Coprocessors

Vi AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

http://www.ibm.com/security/cryptocards
http://www.ibm.com/security/cryptocards

4765 PCle Cryptographic Coprocessor AIX CCA Support
Program Installation 4.4

To use the information effectively, you must be familiar with commands, system calls, subroutines, file
formats, and special files.

Support Program installation process overview

This overview of AIX CCA explains the procedure to install and operate the IBM Cryptographic
Coprocessor Support Program on a host computer.

Related information:

[Installing the Support Program” on page 2|
Procedure to install the IBM Common Cryptographic Architecture (CCA) Support Program on the
coprocessor host computer.

Obtaining coprocessor hardware and software

Information about selecting, installing, and ordering the coprocessor hardware, and to download the
software.

The following sections describe how to:

* |Order coprocessors|

* [Placing orders for IBM 4765 coprocessor|
* [Installing the IBM 4765 hardware

* |Obtaining the coprocessor software]

Ordering coprocessors

The IBM 4765-001 is ordered from IBM as a machine type and model. The coprocessor requires a PCle
slot that accepts a 2/3 length PCle adapter.

The software supports up to eight coprocessors per system, depending on the number of PCle slots
available.

Placing orders for IBM 4765 coprocessor

To order the coprocessor hardware, contact your local IBM representative or your IBM Business Partner,
and order the model and features you have selected.

Customers in the U.S.A. can also contact IBM Direct at 1-800-IBM-CALL. Specifically mention IBM 4765
with your order to be directed to the group that processes IBM 4765 orders.

Installing the IBM 4765 hardware

The IBM 4765 is installed in a manner similar to other PCle adapters. Follow the process described in the
IBM 4765 PCle Cryptographic Coprocessor Installation 4.4 for detailed information.

Obtaining the coprocessor software

The software can be obtained by downloading it from the website: Ihttp: / /www.ibm.com /security / |
kryptocards /pciecc/ordersoftware.shtml}

© Copyright IBM Corp. 2015, 2016 1

http://www.ibm.com/security/cryptocards/pciecc/ordersoftware.shtml
http://www.ibm.com/security/cryptocards/pciecc/ordersoftware.shtml

Installing the Support Program

Procedure to install the IBM Common Cryptographic Architecture (CCA) Support Program on the
coprocessor host computer.

The IBM Common Cryptographic Architecture (CCA) Support Program consists of several components,
including:

* Device drivers and an operating system for the PCle cryptographic coprocessor hardware

* Support for the IBM Common Cryptographic Architecture (CCA) application program interface (API)
* A function-control vector (FCV)

Note: An FCV is a signed value provided by IBM. It enables the CCA application within the
coprocessor to yield a level of cryptographic service consistent with applicable cryptographic
implementation import and export regulations.

« Utility applications where the coprocessor must be installed that runs on the host machine

To install and configure the IBM Common Cryptographic Architecture (CCA) Support Program, complete
these steps:

1. Choose the platform support packages that are appropriate to your setup:

AIX 6.1 or later.

See |[“Obtaining coprocessor hardware and software” on page 1| for details.

2. Place an order for the hardware with IBM or your IBM Business Partner. See [“Obtaining coprocessor]
[hardware and software” on page 1| describes how to order and receive the coprocessor hardware from
IBM.

3. Download the Support Program for your operating system. See [“Obtaining coprocessor hardware and]
lsoftware” on page 1| describes how to install the embedded operating system, and the CCA
application program into the PCle Cryptographic Coprocessor.

4. Install the Support Program onto the coprocessor host computer.

5. Install the coprocessor hardware. See [“Obtaining coprocessor hardware and software” on page 1 for
details.

6. Load the coprocessor software. See [‘Loading and Unloading software into the coprocessor” on page 6|
for details.

7. Set up a CCA test node. You can establish a CCA cryptographic node by using the utilities provided
with the Support Program, or link your application programs to the CCA APIL. Also verify the access
control and other setup requirements imposed by the application software you plan to use with the
IBM 4765. The CCA Node Management (CNM) utility, described in [“Managing the cryptographic|
lnode by using the CNM and CNI utilities” on page 15)includes setup and management functions
needed to:

¢ Load the FCV

* Create and edit the access control data

* Manage the coprocessor master key

* Manage primary key encrypting keys (KEKs)

* Manage the storage of data keys

* Create lists (scripts) for the CCA Node Initialization (CNI) utility

8. Run test programs that utilize the CCA libraries. See [“Building applications to use with the CCA API”|
for details.

Related information:

['Obtaining coprocessor hardware and software” on page 1|
Information about selecting, installing, and ordering the coprocessor hardware, and to download the

2 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

software.

[‘Loading and Unloading software into the coprocessor” on page 6|

After installing the IBM Common Cryptographic Architecture (CCA) Support Program on the host
computer, use the Coprocessor Load Utility (CLU) to load the coprocessor operating system and CCA
application into the coprocessor.

['Managing the cryptographic node by using the CNM and CNI utilities” on page 15|
A computer that provides cryptographic services, such as key generation and digital signature support, is
defined here as a cryptographic node.

Installing the Support Program base release 4.4

Instructions for installing the Support Program on the coprocessor host computer.
Prerequisites
Before you begin the installation choose the platform support packages that are appropriate to your

setup. See [“Obtaining coprocessor hardware and software” on page 1| for details on software and
hardware requirements for AIX.

Note: If you are not installing the program for the first time, back up your key storage files.

To install the Support Program:
1. Enter the smitty install_all command.

2. Enter the location of the installation images that you obtained by using the procedure described in
Obtaining the coprocessor software section under“Obtaining coprocessor hardware and software” on|

page 1.|Press Enter.

3. Enter csufx.4765.cca csufx.4765.man in the SOFTWARE install field or press F4 (Display) to select
from the list. Verify that AUTOMATICALLY install requisite software is set to yes and that ACCEPT
new license agreements is set to yes. Use the tab key to toggle or the F4 (Display) key to list. Press
Enter and press Enter again to continue when prompted ARE YOU SURE.

4. Exit from smitty using the F10 (Exit) key.

5. Read the /usr/1pp/csufx.4765/README file. This file contains the latest information about the Support
Program product.

6. Use the configuration utilities to configure the software as described in [“Configuring the Support|

Configuring the Support Program

This section describes the utilities and system command used to configure the CCA Cryptographic
Coprocessor Support Program software.

csufadmin

Specifies the system-access permissions that are associated with the csufkeys, csufappl, csufclu
(Coprocessor Load Utility), csufcnm (Cryptographic Node Management), and csufcni
(Cryptographic Node Initialization) utilities.

Default permissions restrict the use of these utilities to the root user and to users in the system
group. Use the csufadmin utility to modify these permissions.

csufappl
Specifies the system-access permissions that are associated with the CCA libraries.

The default permissions restrict the use of the CCA libraries to the root user and members of the
system group. Use the csufappl utility to permit other groups to use the services furnished by the
CCA APL

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 3

csufkeys

Creates and identifies the file and directory names of the locations wherein the cryptographic
keys and key lists are stored. The installation program defines, in the AIX object data manager
(ODM), the following default directories:

* AES key-record-list directory: /usr/1pp/csufx.4765/csufkeys/aeslist
¢ AES key-storage file: /usr/1pp/csufx.4765/csufkeys/aes.keys
* DES key-record-list directory: /usr/1pp/csufx.4765/csufkeys/deslist
* DES key-storage file: /usr/Tpp/csufx.4765/csufkeys/des.keys
* PKA key-record-list directory: /usr/1pp/csufx.4765/csufkeys/pkalist
» PKA key-storage file: /usr/1pp/csufx.4765/csufkeys/pka.keys

Use the csufkeys utility to change the storage locations.

Note: When you initialize key storage by using the Cryptographic Node Management utility,
ensure that you specify the ODM directories that are defined by this utility.

odmget
Verifies key-storage file names with the odmget system command. You can verify the key-storage
names used by the CCA Support Program by entering the odmget csufodm command. The four
parameter name attributes specify the following values:

* csuaesds: The file containing the AES key-records

* csuaesld: The directory containing the AES key-record-list files

* csudesds: The file containing the DES key-records

* csudesld: The directory containing the DES key-record-list files

* csupkads: The file containing the PKA key-records

* csupkald: The directory containing the PKA key-record-list files

When initializing CCA key-storage with either the CNM utility or with the csnbksi CCA verb, you must
use the file names that are returned from the ODM. Use the csufkeys utility to change these file names.

The DES_Key_Record_List verb, PKA_Key_Record_List verb, and the AES_Key_Record_List verb produce
list files in the /usr/Tpp/csufx.4765/csufkeys/deslist, /usr/1pp/csufx.4765/csufkeys/pkalist, and
/usr/1pp/csufx.4765/csufkeys/aeslist directories respectively. These are the default directory names.
You can modify the directory names when you install the software. The list files are created under your
ownership, if you request the list service. Make sure that the files are created under the group ID as
required by the installation. This can also be achieved by setting the set-group-id-on-execution bit on in
these three directories. See the g+s flags in the chmod command for more information. If this procedure
is not followed, errors are returned on key-record-list verbs.

To assign a default CCA Coprocessor, use the EXPORT command to set the environment variable
CSU_DEFAULT_ADAPTER to CRPOn, where n =1, 2, 3, 4, 5, 6, 7, or 8, depending on which installed CCA
Coprocessor you want as the default. If this environment variable is not set when the first CCA verb of a
process is called, the CCA software uses Coprocessor CRP01 as the default. If this environment variable is
set to an invalid value, you will get an error until the environment variable is set to a valid value.

Related information:

[‘Creating a key label” on page 34|

CCA Support Program and AIX file permissions

The CCA Support Program relies on file permissions at the group level to function accurately.

4 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

The users and administrators of the Support Program must have the correct group file permissions on the
CCA shared libraries, utilities, key-storage files, and directories to be fully functional and to run without
errors.

Note: Key-storage files and directories are defined as those files and directories that are contained in the
key-storage directory. This directory includes the top-level key-storage directory, that is, in the default
configuration, all the files and directories under the /usr/1pp/csufx.4765/csufkeys/des1ist directory,
and the /usr/1pp/csufx.4765/csufkeys directory itself.

To operate the key-storage files and directories must have a group ID of the application user group, that
is, the groupname parameter that is used when the csufappl utility was run.

Also, as a rule, all key-storage directories must have file permissions of 2770 (drwxrws---) and be owned
by the root. All key-storage files must have file permissions of 660 (-rw-rw---).

The 4765 CCA software and keystore cannot exist concurrently with the 4764 CCA software and keystore
because of conflicts in the libraries and ODM databases.

Reviewing coprocessor hardware errors

Errors occurring in the IBM Power Systems' coprocessor hardware is recorded in the AIX error log.
To process and view the log, enter the following command:
errpt -a -N Cryptn,libxcrypt.a | more

Where nis 0, 1, 2, 3, 4, 5, 6 or 7 (for example, Crypt 0), depending on which CCA Coprocessor log you
want to view.

Related information:

[‘Loading and Unloading software into the coprocessor” on page 6|

After installing the IBM Common Cryptographic Architecture (CCA) Support Program on the host
computer, use the Coprocessor Load Utility (CLU) to load the coprocessor operating system and CCA
application into the coprocessor.

Removing the Support Program

If your key-storage files are in the default directories, back them up or save them before you remove the
IBM Cryptographic Coprocessor (CCA) Support Program. Removing the software deletes the key-storage
files in the default directories.

To remove the IBM Cryptographic Coprocessor Support Program, follow these steps:
1. Log on as root.

2. Enter the rmdev -dl Crypt0 command. The coprocessor device driver and other related information
are removed. You can use this command for each CCA coprocessor that you plan to remove or
relocate.

3. Enter the smitty install remove command.

Note: When prompted, enter the csufx.4765.com and devices.pciex.14107a0314107b03.rte product
names.

4. Verify that the REMOVE dependent software value is set to NO. Also, verify that the Preview Only
value is set to NO.

5. Press the Enter key.

AIX hardware and software requirements
The prerequisites that are required to install CCA.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 5

Hardware
Install an IBM Power Systems server with an available 4765 PCle cryptographic coprocessor.
During installation of the software, the driver interacts with the coprocessor to arbitrate interrupt settings,

DMA channels, and other system resources. For installation instructions about the coprocessor hardware
and device driver, see [“Obtaining coprocessor hardware and software” on page 1

Software
1. IBM AIX 6.1 and later.

2. Java Runtime Environment (JRE) 1.6.0, or later, that is required to run the CCA Node Management
(CNM) utility.

3. The software package csufx.4765 must be downloaded from the Ihttp:/ /www.ibm.com /security/ |
fcryptocards/pcixcc/ ordersoftware.shtml| website. The software package contains the following filesets:
* csufx.4765.com - 4765 CCA Support Program

* csufx.4765.cca - 4765 Support Program - Common Utilities

* csufx.4765.man - Support Program man pages

File permissions
Manage the file permission by using the CCA Node Management (CNM) utility.

The CCA Node Management (CNM) utility provides a way to manage access control points. To help
protect against accidental or intentional corruption of the CNM utility's executable file, set the file
permission of the CNM. jar file to read and execute only. Similarly, to protect the data file of access control
points, set the file permission of the csuap.def file to read only.

Loading and Unloading software into the coprocessor

After installing the IBM Common Cryptographic Architecture (CCA) Support Program on the host
computer, use the Coprocessor Load Ultility (CLU) to load the coprocessor operating system and CCA
application into the coprocessor.

If you obtain updates to the Support Program, use the CLU to reload the necessary program segments.
You can also load vendor software by using the CLU.

This section includes:

* Instructions for using the CLU to understand which coprocessors are installed and their status, and to
install and uninstall the software that runs within the coprocessor

¢ A reference section that describes:

The coprocessor memory segments

Validation of the coprocessor status
The syntax used to start the CLU utility
CLU return codes

For a deeper understanding of the code-loading controls and the security considerations implemented by
the coprocessor, see the research paper Building a High-Performance, Programmable Secure Coprocessor that is
available on the product website library page at [http:/ /www.ibm.com /security / cryptocards|

Notes:
1. The file locations referred to in this section are the default directory paths.

6 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

http://www.ibm.com/security/cryptocards
http://www.ibm.com/security/cryptocards
http://www.ibm.com/security/cryptocards

2. The error codes returned by the coprocessor device driver are presented in the form of a hexadecimal
number, such as X'8040xxxx". You might encounter the errors, especially when you first use the CLU
utility and are less familiar with the product and its procedures.

3. The coprocessor function-control vector (FCV) is loaded by the CCA Node Management (CNM)
utility.
Related information:

[‘Device driver error codes” on page 43|
The coprocessor device driver monitors the status of its communication with the coprocessor and the
coprocessor hardware-status registers.

[‘Managing the cryptographic node by using the CNM and CNI utilities” on page 15|
A computer that provides cryptographic services, such as key generation and digital signature support, is
defined here as a cryptographic node.

Loading coprocessor software
Find the procedures to load software into the coprocessor in this section.

See the README file that accompanies the software distribution that you are installing for specific .clu
file names. The README file might also provide additional information that enhances or modifies these
general procedures.

Use the following subtopics, follow this sequence of tasks:

1. At a command prompt, change to the directory with the Coprocessor Load Utility (CLU) files and run
the CLU.

2. Determine the software that is currently resident within the coprocessor.
3. Change the contents of software segments 1, 2, and 3, as appropriate.

4. Validate the final contents of the software segments.

Changing the default directory and running the CLU
To change the default directory, you must locate the directory that contains the coprocessor code files
(*.clu) and the Coprocessor Load Utility (CLU).

Changing the default directory

At a command prompt, change to the default directory coprocessor code directory /usr/1pp/csufx.4765/
clu to access the code files. If the CLU is not in the default directory, ensure that your operating system
can locate the CLU.

Running the CLU
Note: When using CLU, applications that use CCA must not be running.
To run the CLU utility, enter the csufclu program name at the command prompt .

You can provide parameters interactively to the CLU utility, or you can include these on the command
line. Each time you use CLU you must specify a log file name. This is the first parameter and can be
included on the command line. In general, when working with a specific coprocessor, it is best to use the
coprocessor serial number as the log file name. You can obtain the serial number from the label on the
bracket at the end of the coprocessor.

CLU will append information to two log files. If the log files do not exist, they are created. One log file
contains the same information that is normally displayed on your console. The other log file, to which
CLU will assign MRL as the file name extension, contains a machine-readable log. The MRL file is used
with an analysis utility.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 7

Note: Subsequent instructions in this section assume that you use CLU interactively. Change to the
directory that contains the coprocessor code files. Start CLU with the name appropriate to your operating
system. Respond to the prompts as requested.

CLU obtains the number of installed coprocessors from the device driver. If you have more than one
installed coprocessor, CLU requests the number of the coprocessor with which you intend to interact. The
numbers (coprocessor_number) can be 0 - 2. To correlate these numbers to a particular coprocessor, use
the System Status (SS) command to learn the number for each of the installed coprocessors. (For an
example of the output, see [Figure 2 on page 15/in the Coprocessor Load Utility commands topic.)

Note: The CLU utility can operate with a coprocessor when it obtains exclusive control of the
coprocessor. If any other application such as a thread is running and has performed the CCA verb calls,
the coprocessors that are loaded with CCA will be “busy” and unusable by CLU.

Related information:

['Coprocessor Load Utility syntax” on page 13|

Determining coprocessor software segment contents
The coprocessor has three segments: segment 1, segment 2, and segment 3. Each segment has a status,
holds software and a validation public key, and an identifier of the owner (except for segment 1).

See |Table 1| for information about the segments of the coprocessor.

Table 1. Software segment contents

Segment Content

1 Miniboot contains diagnostics and code loading controls
2 Embedded control program

3 CCA or another application

You determine the current content and status of the coprocessor segments by using the ST command.
Figure 1 on page 9 shows a typical ST response.

8 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

CSUFCLU V4.1.1 st.Tog ST begun Tue Sep 13 09:30:25 2011
*kkxkkxkkx% Command ST started. ---- Tue Sep 13 09:30:25 2011

*x% \PD data; PartNum = 45D5117

x% \PD data; EC Num = 0G43192

*#x% \PD data; Ser Num = 99000543

**%% \(PD data; Description = IBM 4765-001 PCI-e Cryptographic Coprocessor

*** VPD data; Mfg. Loc. = 91

*x% ROM Status; POSTO Version 1, Release 27

#% ROM Status; MiniBootO Version 1, Release 20

*%%x ROM Status; INIT: INITIALIZED

#% ROM Status; SEG2: RUNNABLE , OWNER2: 2

*%x ROM Status; SEG3: RUNNABLE , OWNER3: 2

**% Page 1 Certified: YES

***x Segment 1 Image: SO0103 P1v0607 M1vO11B P2v0706 F5180 201104151205401A000022000000000000

#x% Segment 1 Revision: 40105

*x*x Segment 1 Hash: 177C AF13 C601 2276 90AA 8E20 D3BB BA58 79A6 7EBA 6C2A D68B 0A34 33E0 802C 4EA7
*x*x Segment 1 Hash: 177C AF13

x Segment 2 Image: 4.1.7 y4_12-1nx-2011-03-04-16 201108111338401A000000000100010900

*** Segment 2 Revision: 40107

*x% Segment 2 Hash: 698A 29DC EF8A 44D8 A025 3117 491B C552 45DA EC6F ODOC 6671 BABE 7ABF 41E7 2FF5
**%% Segment 2 Hash: 698A 29DC

**%% Segment 3 Image: 4.1.7 CCA 201108121155401A000000000000000000

x Segment 3 Revision: 40107

**%% Segment 3 Hash: ECO2 B93A 309F 882A D859 031D 1F22 839D 2233 4D6A C58D D93C E43F 4A4C 1234 9F48
x Segment 3 Hash: EC02 B93A

*%% Query Adapter Status successful *x=

Obtain Status ended successfully!

***kkxkxxx%*x Command ST ended. ---- Tue Sep 13 09:31:26 2011

...finishing up...
**xkxkkxxx%x Command ST exited. ---- Tue Sep 13 09:31:46 2011

Figure 1. Typical CLU status response

Definitions of the fields on the ST response follow:
Field Description

PartNum
The part number (P/N) of the coprocessor.

EC Num
The engineering change number of the coprocessor.

Ser Num
The manufacturer's serial number of the coprocessor. This number is not the IBM tracking serial
number that is used for warranty verification and download authorization.

Description
A statement that describes the type of coprocessor in general terms. Auditors must review this
and other status information to confirm that an appropriate coprocessor is in use.

ROM Status
The coprocessor must always be in an INITIALIZED state. If the status is ZEROIZED, the
coprocessor detected a possible tamper event and is in an unrecoverable, nonfunctional state.
(Unintended tamper events are created if the coprocessor is not handled properly. Only remove
the batteries when you follow the recommended procedure to change the battery, maintain the
coprocessor in the safe temperature range, and follow the instruction.

ROM Status SEG2 / SEG3
Several status conditions for Segment 2 and Segment 3 exist, which includes:
* UNOWNED: Currently not in use, no content
* RUNNABLE: Contains code and is in an usable state

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

9

Owner identifiers are also shown. The standard CCA Support Program is assigned identifier 2 for
both Segment 2 and Segment 3. Any other owner identifier indicates that the software is not the
standard IBM CCA product code. In all cases, ensure that the software is loaded in your

coprocessor. Unauthorized or unknown software can represent a security risk to your installation.

Segment 1 Image
The name and description of the software content of Segment 1. For a factory shipped
coprocessor, the name includes Factory. This image and the associated validation key must be
changed.

For a previously loaded coprocessor, the Segment 1 name probably includes CCA. Ensure that
you observe the revision level.

Segment 2 and Segment 3 Images
If these segments have Owned status, observe the image name and the revision level. IBM
incorporates CCA in the image name to indicate that the image is provided as part of the CCA
Support Program. Be sure to observe the revision level.

Segment Hash values
The hash values for each segment must match the values that are shown in [Figure 1 on page 9}

Changing software segment contents
Generally, the software within the coprocessor must be at the same release level as the CCA software in
the hosting system.

Do not attempt to use various different release levels except with specific instructions from IBM.

Start the Coprocessor Load Utility (CLU) and enter the parameters interactively. For instructions, see
[‘Changing the default directory and running the CLU” on page 7.

1. Enter the log file name (nnnnnnnn.LOG, where nnnnnnnn is the serial number of the coprocessor).
2. Enter the command, PL.

3. If you have multiple coprocessors, enter the coprocessor number.

4. Enter the CLU file name as indicated in the README file.

Repeat as required so that the appropriate software is loaded for Segments 1, 2, and 3.

Validating the coprocessor segment contents
The procedure to be followed to validate the contents of the coprocessor segments.

After you have loaded or replaced the code in Segments 1, 2, and 3, use the CLU VA command to
confirm the segment contents and to validate the digital signature on the response created by the
COPTOCESSOL.

Depending on the IBM 4765 coprocessor (PartNum) in use,' issue the following command, and substitute
the class key certificate file name from [Table 2 on page 11 for the data file name. Note that the data file
name v.clu is appended to the coprocessor part number, all in lowercase characters.

csuxclu nnnnnnnn.log VA [coprocessor_n] datafile

The part number can be obtained by using the Coprocessor Load Utility (CLU) ST command.

1. You can refer to the IBM product website (http://www.ibm.com/security/cryptocards) FAQ section for the procedure to validate
coprocessor integrity. That topic carries the current list of class key certificate files.

10 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

http://www.ibm.com/security/cryptocards

Table 2. Class-key file for use with the CLU VA command

PartNum Class-key certificate file
12R8565 12r8565v.clu
4100441 41u0441v.clu

The [coprocessor_n] parameter is the optional designator for a particular coprocessor and defaults to zero.

Unloading coprocessor software and zeroize the CCA node

The steps to unload the coprocessor software and to zeroize the CCA node to surrender the ownership of
the segments are described here.

When you use Coprocessor Load Utility (CLU) to process a file that surrenders ownership of Segment 2,
both Segment 2 and the subordinate Segment 3 are cleared, and the code is removed. The validating
public key for the segment is cleared, the security-relevant data items that are held within the coprocessor
for the segment are zeroized. The owner identifiers are cleared, and the segment's status is set to
UNOWNED.

See the README file that accompanies the software distribution you are using for the specific .clu file
name that is used to surrender ownership of Segments 2 and 3. The README file might also provide
additional information that amplifies or modifies this general procedure.

Perform these actions:

* Change to the directory that contains the CLU files.

* Start the CLU utility.

* Respond to the prompts and use the serial number of the coprocessor in the log file name.

* Use the PL command to surrender Segment 2 as indicated in the README file for your platform.

Notes:
1. You can also zeroize CCA without removing the software by using the CCA reinitialize process.

2. IBM does not normally make available a file to restore the factory Segment 1 validating key to put the
coprocessor into a condition similar to a factory-ready product. Segment 1 can be changed to a limited
number of times before the available Device Key certificate space is used and the coprocessor is
potentially rendered unusable. If you require the capability to restore the validating key of Segment 1,
and are willing to display your coprocessor to a possible lock-up condition, you can obtain the
required file from IBM by submitting a query by using the Support Form on the product website,
lhttp:/ /www.ibm.com /security/cryptocards] It is important to note that certificate space is a
nonrenewable resource. After it is used, it cannot be recovered.

Related information:

[‘Initializing the node” on page 23|
The procedure to initialize the CCA node to its initial state.

Coprocessor Load Utility (CLU) reference

The coprocessor memory segments to which you load the software is described here. The approach the
coprocessor uses to validate the software loads, the syntax used to start the CLU, and the CLU return
codes.

If you do not need the details in this section, skip to [“Managing the cryptographic node by using the]
[CNM and CNI utilities” on page 15

Coprocessor memory segments
Coprocessor memory segments are organized into different segments.

The organization of memory segments and its function follows:

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 11

http://www.ibm.com/security/cryptocards

Table 3. Organization of memory segments

Segment Description

0 Basic code

The basic code manages coprocessor initialization and the hardware component interfaces. This code
cannot be changed after the coprocessor leaves the factory.

1 Software administration and cryptographic routines

Software in this segment:
* Administers the replacement of software already loaded to Segment 1.
* Administers the loading of data and software to segments 2 and 3.

* Is loaded at the factory, but can be replaced using the CLU utility.

2 Embedded operating system

The coprocessor Support Program includes the operating system. The operating system supports
applications loaded into Segment 3. Segment 2 is empty when the coprocessor is shipped from the
factory.

3 Application software

The coprocessor Support Program includes a CCA application program that can be installed into
Segment 3. The application functions according to the IBM CCA and performs access control, key
management, and cryptographic operations. Segment 3 is empty when the coprocessor is shipped
from the factory.

Validating the coprocessor software loads
When the coprocessor is shipped from the factory, it has within it the public key that is needed to
validate replacement software for Segment 1.

To load code into coprocessor Segment 2 and Segment 3, for each segment follow these steps:

1. Identify an owner for the segment by using an Establish Owner command. The owner identifier is
only accepted if the digital signature associated with this identifier can be validated by the public key
that is residing with the immediately lower segment. Once established, ownership remains in effect
until a Surrender Owner command is processed by the coprocessor.

2. Load the segment to the code. Two different commands are available.

a. Initially use the Load command. The Load command data includes a public key certificate that
must be validated by the public key that is present on the next lower segment. The coprocessor
accepts the code and retains the validated public key for the segment if one of the condition is
satisfied:

* The certificate is validated.

* The data of the owner identifier in the Load command matches the current ownership that is
held by the coprocessor for the segment.

* The complete data in the Load command can be validated by the public key in the certificate
that was used for validation.

b. If a segment already has a public key, a Reload command can be used to replace the code in a
segment. The coprocessor actions are the same as for a Load command, except that the included
certificate must be validated by the public key associated with the target segment rather than the
key associated with the next lower segment.

The embedded operating system, working with the coprocessor hardware, can store security-relevant data
items (SRDIs) on behalf of itself and an application in Segment 3. The SRDIs are zeroized upon tamper
detection, loading of segment software, or processing a Surrender Owner command of a segment. The
SRDIs for a segment are not zeroized when the Reload command is used. The CCA application stores the

2. In this publication, the terms load and reload are used. Other documentation might refer to these operations as emergency burn
(EmBurn), and regular burn or remote burn (RemBurn).

12 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

master keys, the function control vector (FCV), the access control tables, and the retained RSA private
keys as SRDI information that is associated with Segment 3.

IBM signs its own software. If another vendor intends to supply software for the coprocessor, that
vendor's Establish Owner command and the code-signing public key certificate must be signed by IBM
under a suitable contract. These restrictions make sure that the following conditions are satisfied:

* Only authorized code can be loaded into the coprocessor.

* Government restrictions are met relating to the import and export of cryptographic implementations.

Coprocessor Load Utility syntax

The syntax that is used to start the Coprocessor Load Utility (CLU), and the functions of the utility are
described.

CLU must be used for the following functions:

* Ensure that the coprocessors are not busy by ending any application that has used a coprocessor. For
example, end all applications that use the CCA APL

* Obtain the release level and the status of software that is installed in the coprocessor memory
segments.

* Confirm the validity of digitally signed messages that are returned by the coprocessor.
* Load and reload portions of the coprocessor software.
* Reset the coprocessor.

To start the utility, follow these steps:
1. Log on as required by your operating system.

2. At the command line, change directory to the directory that contains the CLU files. The default
directory is /usr/1pp/csufx.4765/clu.

3. Enter the csufclu utility name followed by the applicable parameters.

If you do not supply the necessary parameters, the utility prompts when the information is required.
Optional parameters are enclosed in brackets. The syntax for the parameters that follow the utility name
is

[log_filecmd[coprocessor _#][data_file] [-Q]]

Where:

log_file Identifies the log file name. The utility appends entries to this ASCII text file as it performs the
operations that are requested. A second machine-readable log file, with a file name of
logfile_name. MRL, is also created. This log file can be processed by a program and contains the
binary-encoded responses from the coprocessor.

cmd Specifies a two-letter abbreviation that represents the loader command to be run.

coprocessor _number
Provides the coprocessor number as established by the device driver. This parameter defaults to
0. Coprocessors are designated to the device driver as numbers 0, 1, and 2. You can use the serial
number information that you obtain with the ST or VA commands and the serial number that is
printed on the end-bracket of the coprocessor to correlate a particular coprocessor to the
coprocessor _number. The utility supports up to eight coprocessors per system.

data_file
Identifies the data file (drive, directory, and file name) that is used for the requested operation. To
identify the data_file name, use one of the following methods:
* For software loads and reloads, the data_file name is the file name of the software image that
you are loading into the coprocessor. The Support Program README file provides the data_file
name.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 13

* For the coprocessor, the coprocessor status is obtained with the VA command. The data_file
name is the class-key certificate file name that used to validate the coprocessor response. The
FAQ section of the product website (http://www.ibm.com/security/cryptocards) contains a
description of the procedure for validating the coprocessor and its code. This description also
contains a list of the current class-key certificate file names. You can download the required
certificate file from the website.

-Q Suppresses (quiets) the CLU program output to the standard output device. The status
information is still appended to the log files.

Example: To obtain the coprocessor status and save the results to the log file, enter:
csufclu nnnnnnnn.log va datafile_name.clu
It is suggested that you make nnnnnnnn the serial number of the coprocessor. It is not mandatory to use

the serial number, but it is used to retain a history of all software changes made to each specific
COPTOCessor.

Related information:

[‘Machine-readable log contents” on page 43|
The CLU utility creates two log files, one intended for reading and the other for possible input to a
program.

[‘Coprocessor Load Utility commands”)
The Coprocessor Load Utility (CLU) supports multiple loader commands.

Coprocessor Load Utility commands:
The Coprocessor Load Utility (CLU) supports multiple loader commands.

The loader commands and its functions that are supported by CLU are as following:

Table 4. CLU loader commands

Loader command Description

PL: Load microcode into coprocessor Processes a series of commands as directed by the contents of
the data file to establish segment ownership and to load or
Commands R1, E2, L2, R2, S2, E3, L3, R3, and S3 are inferred reload segment software.

from information contained in the data files that you use with
the PL command. A single “PL” file can incorporate information
for multiple ownership and loading commands.

RS: Reset the coprocessor Resets the coprocessor. Generally you will not use this
command. The command causes the coprocessor to perform a
power-on reset. You might find this command helpful should
the coprocessor and the host-system software lose
synchronization. You should end all host-system software
processes that are operating with the coprocessor prior to
issuing this command to enable the complete cryptographic
subsystem to get to a reset state.

SS: Obtain system status Obtains the part number, serial number, and a portion of the
Segment 3 software image name for each of the installed
coprocessors, provided that these are not being used by some
application such as CCA. See [Figure 2 on page 15|

ST: Obtain coprocessor status Obtains the status of loaded software and the release level of
other components. The status is appended to the log files.

14 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

http://www.ibm.com/security/cryptocards

Table 4. CLU loader commands (continued)

Loader command Description

VA: Validate coprocessor status Obtains the status of loaded software and the release level of
other components. The data is transmitted in a message signed
by the coprocessor device key, and then stored in the utility log
file.

The utility uses its built-in public key to validate the
one-or-more class-key certificates contained in data_file name
parameter. One of these certificates should validate the public
key, or chain of public keys, obtained from the coprocessor, and
confirm that the coprocessor has not been tampered with.

In general, the utility can be called by a script file or a command file. When you create a script file or a
command file to start the utility on an unattended system, add the “quiet” syntax, the -q (or -Q, /q, or

/Q) parameter, to request that no output be sent the display. By default, the utility returns prompts and
messages to the display.

The Typical CLU system status response figure shows the response of a CLU system.

CSUFCLU V4.00 ss.Tog SS begun Tue Sep 28 10:49:36 2010

*kkxkkxkkxk Command SS started. ---- Tue Sep 28 10:49:36 2010
Card # P/N S/N Segment 3 Description
0 45D6045 99000627 4.1.0 CCA

*x% Query System Status successful x*x
System Status ended successfully!
*kkxkkxkkx% Command SS ended. ---- Tue Sep 28 10:50:37 2010

...finishing up...
*kxkxkkkkkk Command SS exited. ---- Tue Sep 28 10:50:57 2010

Figure 2. Typical CLU system status response

Coprocessor Load Utility return codes
This section specifies the returned code values from CLU.

When CLU finishes processing, it returns a value that can be tested in a script file or in a command file.
Each of the returned values have their implications.

0 OK. This implies that the CLU finished processing properly.

1 Command line parameters are not valid.

2 Cannot access the coprocessor. In this case, ensure that the coprocessor and its driver have been
properly installed.

3 Check the utility log file for an abnormal condition report.

4 No coprocessor is installed. In this case, ensure that the coprocessor and its driver have been
properly installed.

5 An Invalid coprocessor number is specified.

6 A data file is required with this command.

7 The data file specified with this command is incorrect or invalid.

Managing the cryptographic node by using the CNM and CNI utilities

A computer that provides cryptographic services, such as key generation and digital signature support, is
defined here as a cryptographic node.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 15

The CCA Node Management (CNM) utility and the CCA Node Initialization (CNI) utility that are
provided with the Support Program are tools to set up and manage the CCA cryptographic services
provided by a node.

This section includes:
+ Utilities and description on how to start them.
* Sample scenarios for using the utilities that you might consider.

* How to use the CNM utility administrative functions: Review this material after working through the
topic [“Scenario: Creating a test node” on page 17,

* How to create and manage access control data: Read details about the access control portion of the
CNM utility.

* How to manage cryptographic keys: Read about some of the key management tasks that you can
accomplish with the CNM utility.

* How to establish other nodes by using the CNI utility: You can automate use of the CNM utility by
using encapsulated procedures.

These utilities are written in Java' and require the use of a Java runtime environment (JRE). You can also
use the Java Development Kit (JDK).

CNM and CNI overview

Typical users of the CCA Node Management (CNM) utility and the CCA Node Initialization (CNI) utility
are security administration personnel, application developers, system administrators, and, in some cases,
production-mode operators.

Notes:

1. The CNM utility furnishes a limited set of the CCA API services. After becoming familiar with the
utility, you can determine whether it meets your needs or whether you require a custom application
to achieve more comprehensive administrative control and key management.

2. Files that you create through use of the CNM utility might be dependent on the release of the Java
Runtime Environment (JRE). If you change the release of the Java Runtime Environment (JRE) that
you use, files that you have created with the CNM utility might not function correctly with the new
release.

3. The CNM utility has been designed for use with a mouse. Use the mouse instead of the Enter key for
consistent results.

4. No help panels are provided for the Master-Key Cloning portion of the utility.

5. These utilities use the IBM Common Cryptographic Architecture (CCA) Support Program API to
request services from the coprocessor. The IBM CCA Basic Services Reference and Guide for the IBM 4765
PCle and 4764 PCI-X Cryptographic Coprocessors manual contains a comprehensive list of the verbs (also
known as callable services or procedure calls) provided by the CCA API. Refer to this book and the
individual services described therein to understand which commands might require authorization in
the various roles that you define by using the procedures described in this section.

CCA node management utility overview

The CCA Node Management utility is a Java application that provides a graphical interface to use in the
setup and configuration of IBM 4765 CCA cryptographic nodes. The utility functions primarily to set up a
node, create and manage access-control data, and manage the CCA master-keys that are necessary to
administer a cryptographic node.

You can load data objects directly into the coprocessor or save them to disk. The data objects are usable

at other IBM 4765 CCA nodes that use the same operating system and a compatible level of the Java
application.

16 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Note: Starting the CCA Node Management Utility: To start the CCA Node Management utility enter the
csufcnm command The CNM utility logo and then the main window are displayed.

CCA node initialization utility overview

The CCA Node Initialization utility runs scripts that you create by using the CNI Editor within the CNM
utility. These scripts are known as CNI lists. The CNI utility can run the CNM utility functions that are
necessary to set up a node; for example, it can be used to load access-control roles and profiles.

As you create a CNI list, you specify the disk location of the data objects that the CNI utility will load
into the target nodes. After creating a CNI list, you can distribute the CNI list and any accompanying
data files (for roles, profiles, and so on) to nodes where the CNI utility will be used for an automated
setup. The source node and all nodes running the distributed CNI list must employ the same operating
system and a compatible level of the Java application.

Note: Starting the CCA Node Management Utility: To start the CCA Node Management utility enter the
csufcnm command The CNM utility logo and then the main window are displayed.

Related information:

[‘Scenario: Cloning a DES or PKA master key” on page 20|
The steps to clone a data encryption standard (DES) or public key algorithm (PKA) master key from one
coprocessor to another.

[‘Creating other nodes by using the CNI utility” on page 36|

Creating a CNI list for the CCA Node Initialization (CNI) utility, allows to load keys and access control
data stored on disk into other cryptographic nodes without running the CNM utility on those target
nodes.

Scenarios: Using the CNM and the CNI utilities

This section describes using the CCA Node Management (CNM) utility and the CCA Node Initialization
(CNI) utility to create a node and clone it to another coprocessor.

The usage of the utilities is illustrated in the scenarios, which includes:

1. Creating a test node to be used to develop applications or establish procedures for using the CNM
utility. First time users should follow this procedure to begin experimentation with the utility and the
coprocessor.

2. Creating nodes for a production environment using key parts. This scenario employs CNI lists to
automate establishment of target production nodes.

3. Cloning a master key from one coprocessor to another coprocessor. This is a procedure of interest to
high security installations that employ multiple coprocessors.

The purpose of the scenarios is to illustrate how the procedures described here can be used. Where
appropriate, a scenario refers to other sections of this topic collection with more detailed information.

If you are not familiar with the coprocessors's CCA access control system, see [“Access control overview”]
pn page 25 and [“Initial state of the access control system” on page 26/ Here you can find an explanation
of terms such as role initinl DEFAULT role, and user profile. The scenarios assume that the access-control
system is in its initial state.

Note: These scenarios are instructional only. You are encouraged to determine the procedures best suited
for your specific environment. Refer to the appendix about secure operations in the IBM CCA Basic
Services Reference and Guide for the IBM 4765 PCle and 4764 PCI-X Cryptographic Coprocessors.

Scenario: Creating a test node
In this scenario, a single programmer sets up a node to allow unlimited access to cryptographic services.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 17

Important: The resulting cryptographic node must not be considered secure because under this scenario
many sensitive commands are permitted with unrestricted use.

Prerequisites: You must have already installed an appropriate level of the Java Runtime Environment
(JRE) or the Java Development Kit (JDK).

To create a test node, complete the following steps:

1. Install the coprocessor and the IBM Cryptographic Coprocessor Support Program as described in
[[nstalling the Support Program|

2. Start the CCA Node Management utility by entering the csufcnm command. The CNM utility logo
and the main panel displays.

3. If you have more than one coprocessor with CCA installed, specify to the CNM utility which
coprocessor you want to use. From the Crypto Node menu, select Select Adapter. A list of available
adapter numbers (1 - 8) is displayed. Select an adapter (coprocessor) from the list. If you do not use
the Select Adapter list to select an adapter, the default adapter (coprocessor) is used.

4. Synchronize the clock within the coprocessor and host computer. From the Crypto Node menu, click
Time. From the resulting submenu, click Set. The clocks are synchronized.

5. Use the CNM utility to permit all commands in the DEFAULT role:
a. From the Access Control menu, click Roles.
b. Highlight the DEFAULT entry and click Edit. A window displays the commands that are enabled
and those that are not enabled by the DEFAULT role.
c. Click Permit All.
d. Load the modified role back into the coprocessor by clicking Load, select OK.
e. Save a copy of the role by clicking the Save button and name the role.
6. Load the function-control vector (FCV) into the coprocessor. From the Crypto Node menu, click
Authorization. From the resulting submenu, click Load to specify and load the FCV.

The FCV file is the one that was placed on your server during the installation process. FCVs usually
have file names such as fcv_td4kECC521.crt and is searched using the file search utility available with
your operating system.

7. Install a master key from the Master Key menu, click either DES / PKA Master Keys or AES Master
Keys, and click Yes. The coprocessor generates and sets a random master key.
The master key that was installed with the Auto Set option has actually passed through the main
memory of your system processor as key parts. For production purposes, use a more secure method
of establishing a master key, such as random generation or installation of known key parts entered by
two or more individuals. These options are also accessed from the menus mentioned previously.

8. Initialize the key storage files. For information on initializing the key storage files, see
finitializing key storage” on page 34|

Key storage is a CCA term that describes a place where the Support Program can store Data
Encryption Standard (DES), Rivest-Shamir-Adleman algorithm (RSA), and Advanced Encryption
Standard (AES) cryptographic keys under names that you (or your applications) define. If you intend
to use key storage, you must initialize the key storage file or files that correspond to the type of keys
that you are using: DES, RSA (PKA), or AES. For example, if you intend to use only DES keys, you
must initialize the DES key storage file but not the others. If you intend to use DES and PKA keys,
you must initialize the DES and PKA key storage files but not the AES key storage file. If you intend
to use all three, you must initialize all three.

Related Links: [‘Creating a role” on page 26|

[‘Loading the master key automatically” on page 32|

18 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Scenario: Creating nodes in a production environment
In this scenario, the responsibility for creating cryptographic nodes is divided among three individuals,
namely, an access control administrator and two key management officers.

The administrator sets up the node and its access control system. Then, the key management officers load
a master key and any required key encrypting keys (KEKs). The KEKs can be used as transport keys to
convey other keys between nodes.

This scenario is focused on installing master keys and high level, internode data encryption standard
(DES) KEKSs from key parts. The CCA implementation supports alternatives to the key part technique such
as random master-key generation and distribution of DES keys by using techniques that are based on
Rivest-Shamir-Adleman (RSA) public key technology. The key part technique assumes that there are two
key management officers who can be trusted to perform their tasks and to not share their key part
information. This technology implements a split knowledge policy. The access control system is set up to
enforce dual control by separating the tasks of the first and second officers.

In this scenario, the access-control administrator uses the cryptographic node management (CNM) utility
to prepare coprocessor node initialization (CNI) lists for the target nodes. The CNI lists automate the
process of using the CNM utility at the target node. The administrator prepares a CNI list for the tasks
that are performed by the target node access control administrator and the two key management officers.
The administrator must know the commands require authorization in the target node under different
conditions, which includes:

* Normal, limited operation (when the default role is used)

* When the access control administrator tasks are run

* When each of the key management officer tasks are run

* Under any other special circumstances by using additional roles and profiles

Note: The CNM and CNI utilities are tools that are used to set up and manage the CCA cryptographic
services that are provided by a node.

The administrator authorizes commands in the various roles to ensure that only required commands are
enabled. Sensitive commands, such as loading a first key part or loading subsequent key parts, are only
enabled in roles for users with the responsibility and authority to use those commands. It is important to
separate the responsibilities so that policies such as split knowledge and dual control are enforceable by
the coprocessor's access control system.

Related information:

['Creating and managing access control data” on page 25|

Scenario: Preparing CNI lists for target nodes: In this task, the access control administrator uses the
CCA Node Management (CNM) utility to prepare CCA Node Initialization (CNI) lists for the target
nodes.

To set up the node and create its access control data, the access control administrator can:
1. On an established node, start the CNM utility.
2. Create and save to disk the access control data for the target node, which includes:

* Supervisory roles and user profiles for the access control administrator and the key management
officers

* A default role to replace the initial default role

a. To create a CNI list to synchronize the clock and calendar within the coprocessor and host
computer.

1) Load the access control data.
2) Log on as an access control administrator.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 19

3) Load the replacement default role.
4) Load the function control vector (FCV).
5) Log off.
b. Create a CNI list for the first key-management officer:
1) Log on as the first key management officer.
2) Load a first master key of the key part.
3) Load the first part key encrypting key information.
4) Log off.
c. Create a CNI list for the second key management officer:
1) Log on as the second key management officer.
2) Load a second master key of the key part.
3) Load the second part key encrypting key information.
4) Log off.

3. Install the coprocessor and the IBM Common Cryptographic Architecture (CCA) Support Program
onto the target nodes.

4. Transport to the target nodes the access control data and the FCV specified in the CNI list.
5. With the involvement of the key management officers, on each target node run the CNI lists that you

created in steps and

The target nodes are now ready to provide cryptographic service.
Related information:

[‘Creating and managing access control data” on page 25|

[‘Creating other nodes by using the CNI utility” on page 36|

Creating a CNI list for the CCA Node Initialization (CNI) utility, allows to load keys and access control
data stored on disk into other cryptographic nodes without running the CNM utility on those target
nodes.

Scenario: Preparing and loading key parts:
This section describes the procedure to prepare, load and transport the key parts.

The key management officers prepare the key parts for use at the target nodes and load the key parts at
the target nodes.

Decide the method to transport the key parts from the point of generation to the point of installation.
Following are a few possibilities:

* Generate the key parts at a central place and transfer these on diskettes.
* Generate the key parts at a central place and transfer these on paper forms.

* Generate the key parts at the point and time of (first) installation. If the key parts are required after the
installation, to reload or to share with another node, then you must decide on the method to transport
the key parts.

Review the specific capabilities of the CNM utility by working with the utility. Then review the specific
approach that you select and test the CCA Node Initialization utility (CNI) list that was prepared in
conjunction with the access control administrator.

Scenario: Cloning a DES or PKA master key
The steps to clone a data encryption standard (DES) or public key algorithm (PKA) master key from one
coprocessor to another.

20 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

The term cloning is used rather than copying because the master key is split into shares for transporting
between the coprocessors. The technique is explained under the topic “Understanding and managing
master keys” in the IBM CCA Basic Services Reference and Guide for the IBM 4765 PCle and 4764 PCI-X
Cryptographic Coprocessors manual. The section [“Cloning a master key” on page 44| provides a step-by-step
procedure that you can follow. The background information that allows to vary the procedure is
described in this section.

Note: Cloning of an AES master key is not supported.

Cloning of the master key involves two or three nodes:

* The master key source node.

¢ The master key target node.

* The share administration (SA) node. The SA node can either be the source or the target node.

The CNM utility can store various data items that are involved in this process in a database that you can
carry (diskette) or transfer (FITP) between the different nodes. One database issa.db that is the default,
and contains the information about the SA key and keys that is certified. The target node where the
master key is cloned also has a database that is known by default as the csr.db.

You can accomplish these tasks by using the CNM utility:

1.

Start the CCA Node Management utility by entering the csufenm command. The CNM utility logo
and the main window are displayed.

Set up the nodes in a secure manner with access control roles, user profiles, and master keys.

You need a role and one or more user profiles at the source and target nodes for each user who
obtains or store shares. Processing of shares is done by a separate command so that, if you want,
your roles can ensure that independent individuals are involved with obtaining and installing the
different shares.

Consider the use of random master key generation and roles that enforce a dual control security
policy. For example, allow one individual or role to register a hash and another individual or role to
register a public key. Select different individual or role for obtaining and installing the individual
shares of the master key.

See the guidance section in the IBM CCA Basic Services Reference and Guide for the IBM 4765 PCle and
4764 PCI-X Cryptographic Coprocessors manual for the description of the Master_Key_Process and the
Master_Key_Distribute verbs.

Install a unique 1 - 16 byte environment ID (EID) of your choice into each node.

From the Crypto Node menu, click Set Environment ID, enter the identifier, and click Load. Use
only these characters in an EID: A-Z, a -z, 0 -9, and @, (X'40'), space character (X20'), &, (X'26),
and =, (X'3D").

You must enter a full 16-character identifier. For short identifiers, complete the entry with space
characters.

Initialize the master key sharing m and n values in the source and target nodes. These values must
be the same in the source and the target nodes. The value n is the maximum number of shares while
m is the minimum number of shares that must be installed to reconstitute the master key in the
target node.

From the Crypto Node menu, click Share Administration > Set number of shares, enter the values,
and click Load.

At the different nodes, generate these keys and have each public key that is certified by the SA key.
You can use the utility's sa.db database to transport the keys and the certificates.

Share administration (SA)
This key is used to certify itself and the following keys. You must register the hash of the SA
public key, and the public key itself, in the SA, source, and target nodes.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 21

After the SA key is created, the utility supplies an 8 byte or 16-hexadecimal character value
that is a portion of the hash of the SA key. Be sure to retain a copy of this value. You need this
value to confirm the hash value that is recorded in the database to register the SA public key
at the source and target nodes.

Coprocessor Share Signing (CSS)
This key is used to sign shares that are distributed from the source node. The private key is
retained within the source node.

Coprocessor Share Receiving (CSR)
This key is used to receive a share-encrypting key into the target node. The SA certified
public CSR key is used at the source node to wrap (encrypt) the share encrypting key that is
unique for each share. The private key is retained within the target node.

Generate the Key Pairs: SA, CSS, and CSR
From the Crypto Node menu, click Share Administration > Create Keys. Click the Share
Administration Keys, CSS key, or CSR key. Click Create.

You must supply key labels for the CSS and CSR keys that are retained in the source and
target nodes, for example, IBM4765.CLONING.CSS.KEY and IBM4765.CLONING.CSR.KEY. The
labels that you use must not conflict with other key labels that are used in your applications.

To generate the CSR key at the share-receiving node, you must obtain the serial number of
the coprocessor. From the Crypto Node, click Status. You must enter the serial number value
to certify the CSR key.

6. Register the SA public key in the coprocessor at the SA, source, and target nodes. This process is a
two-step process that must be done under a dual control security policy.

One individual installs the SA public key hash. From the Crypto Node menu, click Share
Administration > Register Share Administration , and click SA Key hash. You must enter the hash
value that is obtained during SA key creation.

The other individual installs the actual SA public key. From the Crypto Nodemenu, click Share
Administration > Register Share Administration , and click SA Key. By default, the public key
information is in the sa.db file.

7. Take the CSS key and the CSR key to the SA node and have the keys that are certified.

From the Crypto Node drop-down menu, select Share Administration Keys, Certify KeysCSS key,
or CSR key.

For the CSR key, you must supply the serial number of the target coprocessor as a procedural check
that an appropriate key is being certified. Your procedures must include communicating this
information in a reliable manner.

8. At the source node, the authorized individuals must sign on to the role that allows them to obtain
their shares. At least m shares must be obtained. These shares are of the current master-key.

From the Crypto Node menu, click Share Administration > Get Share, and enter the share number
to be obtained. Observe the serial numbers and database identifiers. When these shares are in
agreement, click Get Share. The share information must be placed by default into the csr.db file and
obtains the CSR key certificate, by default, from the sa.db file.

Obtain current-master-key validation information for use later at the target node. From the Master
Key menu, click DES/PKA Master Keys > Verify. Click Current.

9. At the target node, the authorized individuals must sign on to the role that allows each of them to
install their share. At least m shares must be installed to reconstitute the master key into the new
master-key register.

From the Crypto Nodemenu, click Share Administration > Load Share, and select the share number
to be installed. Verify that the serial numbers and database identifiers are correct and then click
Observe the serial numbers and database identifiers. When these shares are agreed to be correct,
click Get Share. At the target node, the authorized individuals must sign on to the role that allows
the individuals to install their share. The share information is obtained by default from the csr.db
file and the CSS key certificate is obtained by default from the sa.db file. If your server has multiple

22 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

cryptographic coprocessors that are loaded with CCA, the coprocessors must have identical master
keys that are installed for the functioning of key storage.

When m shares are loaded, verify that the key in the new master-key register is the same as the
current master key in the source node when the shares were obtained. On the target node, from the
Master Key menu, click DES/PKA Master Keys > New.

10. When it is confirmed through master key verification that the master key is cloned, an authorized
individual can set the master key. This action deletes any old master key and moves the current
master key to the old master key register. Application programs that use keys encrypted by the
master key can be impacted by this change, so ensure that setting of the master key is coordinated
with the needs of your application programs.

11. From the Master Keymenu, click DES/PKA Master Keys > Set.

Using the CNM utility functions

This section describes the procedure to use the various functions of the CNM utility.

Selecting a specific coprocessor
The procedure to choose a coprocessor from the multiple coprocessors available on the system.

If your system has multiple coprocessors loaded with the CCA code, you need to select the specific
coprocessor to work on. If you do not make a selection, you will operate with the default coprocessor.
After you make a coprocessor selection, that selection remains in effect for the current utility session or
until you make a different selection within the utility session.

To select a coprocessor, click Select Adapter from the Crypto Node menu. If you do not select an adapter,
the default adapter is used.

Note:

1. When using the CLU utility, coprocessors are referred to as 0, 1, and 2. Any particular coprocessor
might or might not have the CCA application installed. With the CNM utility (and other applications
that use the CCA API), the coprocessors loaded with the CCA application are designated as 1, 2, and
3. These new identifiers are assigned by CCA while it scans all of the installed coprocessors for those
loaded with the CCA application.

2. When coding a CCA application, keywords CRP01, CRP02, and CRP03 are used to allocate a
coprocessor. These correspond to the numbers 1, 2, and 3 that are used in the CNM utility menu.

Initializing the node
The procedure to initialize the CCA node to its initial state.

You can restore the CCA node to its initial state, provided that the role you are operating under (the
default role or a logged-on role) permits use of the Reinitialize Device command (offset X'0111").

Use of the Reinitialize Device command causes the following actions to occur:

* Clearing Master-key registers

* Clearing retained Public Key Algorithm (PKA) and registered PKA public keys
* Clearing roles and profiles and restoring the access control to its initial state.

To initialize the CCA node, select Initialize from the Crypto Node menu. You will be asked to confirm
your action.

Related information:

[‘Initial state of the access control system” on page 26|
The initial state has an initial default role.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 23

Logging on and logging off the node
A user must log on to the coprocessor in order to activate a user profile and the associated role. This is
the only way to use a role other than the default role.

To log on, select Passphrase Logon from the File menu.
To log off, select Logoff from the File menu.

Note: With the exception of the DEFAULT role, access to the coprocessor is restricted by passphrase
authentication.

Loading the function-control vector
The procedure to load the coprocessor FCV.

A function-control vector (FCV) is a signed value provided by IBM to enable the CCA application in the
coprocessor to provide a level of cryptographic service consistent with applicable import and export
regulations. Under the current regulations all users are entitled to the same level of cryptographic
functionality. Therefore, IBM now supplies a single FCV with the IBM Common Cryptographic
Architecture (CCA) Support Program.

You use the CNM utility to load the FCV into the coprocessor. The FCV file is named
fcv_td4kECC521.crt.

To load the FCV:
1. From the Crypto Node menu, select Authorization.

2. From the resulting submenu, click Load to specify the FCV file on disk. Specify the file name and
click Update. The utility loads the FCV.

3. Click OK.

Configuring the CCA Node Management utility
The procedure to configure the default values for the CNM utility.

The configuration panel of the CNM utility allows you to indicate directory paths for the files you create
with the utility. However, the utility generally does not use the paths that you store in the configuration
panel. Instead, the default paths are stored in the Windows environment variables. You might find the
configuration panel a useful place to record where you intend to keep the various classes of data items.

Synchronizing the clock and calendars
The procedure to synchronize the clock and calendars within the coprocessor and the host computer.

The coprocessor uses its clock and calendar to record the time and date and to prevent replay attacks in
the passphrase-based profile authentication. After installing the coprocessor, synchronize its clock and
calendar with that of the host system.

To synchronize the clock and calendars:

1. From the Crypto Node menu, click Time.

2. From the resulting submenu, click Set.

3. Type Yes to synchronize the clock and calendars with the host.
4. Click OK.

Obtaining status information of the CCA application
You can use the CNM utility coprocessor to obtain the status of the CCA application.

The supported status panels on the CNM utility coprocessor are:

24 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

CCA Application:
Displays the version and the build date of the application, and also displays the status of the
master-key registers.

Adapter:
Displays the coprocessor serial number, ID, and hardware level.

Command History:
Displays the five most recent commands and sub commands sent to the coprocessor.

Diagnostics:
Indicates whether any of the coprocessor tamper-sensors have been triggered, whether any errors
have been logged, and reflects the status of the coprocessor batteries.

Export Control:
Displays the maximum strength of the cryptographic keys used by the node, as defined by the
function-control vector (FCV) that is resident within the coprocessor.

To view the status panels:

1. From the Crypto Node menu, click Status. The CCA application status is displayed.
2. To select other status information, use the buttons at the bottom.

3. Click Cancel.

Related information:

['Managing the master keys” on page 31|
A master key is used to encrypt local-node working keys while they are stored external to the
COProCessor.

Creating and managing access control data

The access control system of the IBM CCA Cryptographic Coprocessor Support Program defines the
circumstances under which the coprocessor can be used. It does this by restricting the use of CCA
commands.

For a list of these CCA commands, see the IBM CCA Basic Services Reference and Guide for the IBM 4765
PCle and 4764 PCI-X Cryptographic Coprocessors. Also, see the “Required commands” section at the end of
each verb description.

An administrator can give users differing authority so that some users can use CCA services not available
to others. This section includes an overview of the access control system and instructions for managing
your access control data. You need to know the commands that are required and under what
circumstances. Consider that some commands should be authorized only for trusted individuals or for
certain programs that operate at specific times. Generally, you authorize only those commands that are
required, so as not to inadvertently enable a capability that could be used to weaken the security of your
installation.

You will obtain the information about command use from the documentation for the applications that
you intend to support. For additional guidance, see IBM CCA Basic Services Reference and Guide for the IBM
4765 PCle and 4764 PCI-X Cryptographic Coprocessors.

Access control overview
The access control system restricts or permits the use of commands based on roles and user profiles.

Use the CNM utility to create roles that correspond to the needs and privileges of assigned users.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 25

To access the privileges assigned to a role that are not authorized for a default role, a user must log on to
the coprocessor by using a unique user profile. Each user profile is associated with a role and multiple
profiles can use the same role. The coprocessor authenticates logons by using the passphrase that is
associated with the profile that identifies the user.

Note: The term user applies to both humans and programs.

The coprocessor always has at least one role, the default role. Use of the default role does not require a
user profile. Any user can use the services permitted by the default role without logging on to or being
authenticated by the coprocessor.

For example, a basic system might include the following roles:

* Access control administrator: Can create new user profiles and modify the access rights of current
users.

* Key management officer: Can change the cryptographic keys. This responsibility is best shared by two
or more individuals making use of rights to enter the first or subsequent key parts.

* General user: Can use cryptographic services to protect their work, but has no administrative
privileges. If your security plan does not require logon authentication for general users, address their
requirements in the default role.

Note: Few individuals would be assigned the roles of key-management officer or access control
administrator. Generally, the larger population would not log on and thus would have rights granted in
the default role.

Initial state of the access control system
The initial state has an initial default role.

After you have loaded the CCA software support into Segment 3 of the coprocessor, or after the access
control system is initialized, no access control data exists except for an initial default role that allows
unauthenticated users to create and load access control data.

After creating the roles and profiles needed for your environment, including the supervisory roles
necessary to load access control data and to manage cryptographic keys, remove all permissions that are
assigned to the default role. Then, add only those permissions you want to grant to unauthenticated
users.

Important: The cryptographic node and the data it protects are not secure while the default role is
permitted to load access control data.

Related information:

[‘Initial default-role commands” on page 42|
The characteristics of the default role after the coprocessor is initialized and when no other access control
data exists are described. Also, the enabled access control commands are listed.

Creating a role
A role defines permissions and other characteristics of the users assigned to that role.

To create a role, complete the following steps:
1. From the Access Control menu, click Roles. A list of currently defined roles is displayed.

2. Select New to display the Role Management window. At any time in the process, click List to return
to the list of currently defined roles.

26 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

&y CCA Node Management Utility - Role Management
File Help

Role IC:

|
Comment |
Required authentication strength ,U—

Yalid times in GMT (Start - End) 00:00 |23:59

Validdays [SunT Men ™ Tue I Wed I Thu I Fri [Sat

Restricted Operations Permitted Operations
000E Encipher A

O00F Cecipher

0010 Generate MAC FPermit All
0011 Verify MAC

0012 Reencipher to Master Key

0013 Reencipher from Master Key

0018 Load First Master Key Part

0019 Combine Master Key Parts

0014 Set Master Key

001B Load First Key Part

001C Combine Key Pars —

AN T amnote Varificatinn Pattarn :
£ 3 Restrict All

Qpen... | Save... | Load | ﬂl Cancel | Help |

Figure 3. Role Management window

3. Define the role by using the following parameters:

Role ID
A character string that defines the name of the role. This name is contained in each user
profile that is associated with this role.

Comment
An optional character string to describe the role.

Required authentication strength
When a user logs on, the strength of the authentication provided is compared to the strength
level required for the role. If the authentication strength is less than that required, the user
cannot log on. Currently only the passphrase authentication method is supported. Use a
strength of 50.

Valid times and valid days
When the user can log on. Note that these times are Coordinated Universal Time. If you are
not already familiar with the access control system, see the chapter about access control
system of the IBM CCA Basic Services Reference and Guide for the IBM 4765 PCle and 4764
PCI-X Cryptographic Coprocessors manual.

Restricted operations and permitted operations
A list defining the commands the role is allowed to use.

Each CCA API verb might require one or more commands to obtain service from the
coprocessor. The user requesting service must be assigned to a role that permits those
commands needed to run the verb.

For more information about CCA verb calls and commands, refer to the IBM CCA Basic
Services Reference and Guide for the IBM 4765 PCle and 4764 PCI-X Cryptographic Coprocessors
manual.

4. Click Save to save the role to disk.

5. Click Load to load the role into the coprocessor.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 27

Modifying existing roles
You can use the CNM utility to edit a disk stored and coprocessor stored role and delete a coprocessor
stored role.

Note: Any existing role can be used as a template to create a new role. When you open a saved role, the
existing information is displayed in the Role Definition window. You need only modify or enter
information specific to the new role, give it a new role ID, and load or save it.

Editing a disk-stored role:
This section describes the procedure to edit an existing role stored in the disk.

To edit a role stored on disk, complete the following steps:

From the Access Control menu, click Roles. A list of currently defined roles is displayed.
Click Open. You are prompted to select a file.

Open a file. Data is displayed in the Role Definition window.

Edit the role.

Click Save to save the role to disk.

ook wn =

Optional: Click Load to load the role into the coprocessor.
Editing a coprocessor-stored role:
This section describes the procedure to edit the role stored in the CCA coprocessor.

To edit a role stored in the coprocessor, complete the following steps:

From the Access Control menu, click Roles. A list of currently defined roles is displayed.
Highlight the role you want to edit.

Click Edit. Data in the Role Definition panel is displayed .

Edit the role.

Click Save. To save the role to disk.

Optional: Click Load. To load the role into the coprocessor

ook whd =

Deleting a coprocessor-stored role:
This section describes the procedure to delete the role from the CCA coprocessor.

Important: When you delete a role, the CNM utility does not automatically delete or reassign the user
profiles associated with that role. You must delete or reassign the user profiles that are associated with a
role before you delete the role.

To delete a role stored in the coprocessor, complete the following steps:

1. From the Access Control menu, click Roles. A list of currently defined roles is displayed.
2. Highlight the role you want to delete.

3. Click Delete. The role is deleted.

Creating a user profile
A user profile identifies a specific user to the coprocessor.

To create a user profile, complete the following steps:

1. From the Access Control menu, click Profiles. A list of currently defined profiles is displayed.

2. Select New to display the Profile Management window. See [Figure 4 on page 29} to view the fields of
the Profile Management window.

28 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

<5 CCA Node Management Utility - Profile Management | :
File Help

(e
@
12

User ID

Comment |

Activation Date |06/14/2005

Expiration Date MW
DEFAULT

Fole

Fassphrase |

Confirm Passphrase |
Passphrase Expiration Date |09/14/2005

Qpen... | Save.. | Load | Change Passphrase | I‘Ltl Cancel | Help |

Figure 4. Profile Management panel

3. Define the user profile.
The fields of the user profile follows:

User ID
The name given to a user profile of the cryptographic coprocessor.

Comment
An optional character string to describe the user profile.

Activation Date and Expiration Date
The first and last dates that the user can log on to the user profile.

Role The name of the role that defines the permissions granted to the user profile.

Passphrase and Confirm Passphrase
The character string that the user must enter to gain access to the cryptographic node.

Passphrase Expiration Date
The expiration date for the passphrase. The utility will set this by default to 90 days from the
current date. You can change the expiration date. Every passphrase contains an expiration
date, which defines the lifetime of that passphrase. This is different from the expiration date
of the profile itself.
4. Click Save, to save the profile to disk.

5. Optional: Click Load, to load the profile into the coprocessor.

Modifying existing profile
You can use the CNM utility to edit a disk stored and coprocessor stored profile and delete a coprocessor
stored profile.

Note: Any existing profile can be used as a template to create a new profile. When you open a saved

profile, the existing information is displayed in the Profile Definition window. You need only modify or
enter information specific to the new profile, give it a new profile ID, and load or save it.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 29

Editing a disk-stored user profile:
This section describes the procedure to edit a user profile stored on a disk.

To edit a user profile stored on disk, complete the following steps:

From the Access Control menu, select Profiles. A list of currently defined profiles is displayed.
Click Open. You are prompted to select a file.

Open a file. Data is displayed in the User Profile Definition window.

Edit the profile.

Click Save to save the profile to disk.

ook wn =

Optional: Click Load to load the profile into the coprocessor.
Editing a coprocessor-stored user profile:
This section describes the procedure to edit the user profile in the CCA coprocessor.

To edit a user profile stored in the coprocessor, complete the following steps:

From the Access Control menu, click Profiles. A list of currently defined profiles is displayed.
Highlight the user profile you want to edit.

Click Edit. Data in the Profile Definition window is displayed .

Edit the user profile.

Click Save. To save the profile to disk.

ook wn =

Optional: Click Load. To load the profile into the coprocessor
Deleting a coprocessor-stored user profile:
This section describes the procedure to delete the user profile that is stored in the CCA coprocessor.

To delete a profile stored in the coprocessor, complete the following steps:

1. From the Access Control menu, click Profiles. A list of currently defined user profiles is displayed.
2. Highlight the user profile you want to delete.

3. Click Delete. The user profile is deleted.

Resetting the user-profile failure count: To prevent unauthorized logons, the access-control system
maintains a logon-attempt failure count for each user profile. If the number of failed attempts for a user
profile exceeds the limit defined in the profile, the offending profile is disabled.

To reset the failure count, complete the following steps:

1. From the Access Control menu, click Profiles. A list of currently defined user profiles is displayed.
2. Highlight the user profile.

3. Click Reset FC. A confirmation window is displayed.

4. Click Yes to confirm. The logon-attempt failure count is set to 0.

Initializing the access control system
When you initialize the access control system, the CNM utility clears the access control data in the
coprocessor and furnishes the default role with the commands required to load access control data.

Important: The cryptographic node and the data it protects are not secure while the default role is
permitted to load access control data.

Successfully performing this action removes installed access controls and keys and is therefore a sensitive
operation that could render your node inoperable for production. Some installations might choose to

30 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

remove authorization for this function from their coprocessor's roles. In this event, if you want to
initialize the CCA cryptographic node, you must remove the CCA software from the coprocessor and
reinstall the CCA software.

To initialize the access control system:
1. From the Access Control menu, click Initialize. A confirmation window is displayed.
2. Select Yes to confirm. The utility initializes the access control system.

Note: To start the CCA Node Management utility enter the csufcnm command. The CNM utility logo
and the main window are displayed.

Managing cryptographic keys
You can use the CNM utility to manage the master keys, to manage primary key-encrypting keys (KEKs),

to reset and manage data encryption standard (DES), public key algorithm (PKA), and advanced
encryption standard (AES) key-stores. Key types are defined as follows:

A master key is a special KEK stored in clear text (not enciphered) and kept within the coprocessor
secure module. Three kinds of master keys are supported: DES, PKA, and AES. They are used to wrap
other keys so that those keys can be stored outside of the secure module. DES and PKA master keys
are 168-bit keys formed from three 56-bit DES keys. AES master keys are 256-bit keys.

Primary KEKs are DES keys shared by cryptographic nodes and are sometimes referred to as
transport keys. They are used to encipher other keys shared by the nodes. Primary KEKs, like the
master key, are installed from key parts. Knowledge of the key parts can be shared in part by two
people to effect a split-knowledge, dual-control security policy.

Other DES keys, PKA keys, and AES keys are enciphered keys that are used to provide
cryptographic services, such as media access control (MAC) keys, DATA keys, and private PKA keys.

Note: When exchanging clear key parts, ensure that each party understands how the exchanged data is
to be used, because the management of key parts varies among different manufacturers and different
encryption products.

Managing the master keys
A master key is used to encrypt local-node working keys while they are stored external to the
COPToCessor.

CCA defines three master-key registers:

* The current-master-key register stores the master key currently used by the coprocessor to encrypt and
decrypt local keys.

* The old-master-key register stores the previous master key and is used to decrypt keys enciphered by
that master key.

¢ The new-master-key register is an interim location that is used to store master-key information as
accumulated to form a new master key.

The IBM Common Cryptographic Architecture (CCA) Support Program uses three sets of master key
registers, one set for ciphering DES (symmetric) keys, one set for ciphering PKA private (asymmetric)
keys, and one set for ciphering AES (symmetric) keys.

Notes:

1. The Master_Key_Distribution master-key-administration verb does not support AES master keys.
Programs that use the CCA Master_Key_Process and Master_Key_Distribution, master-key-
administration verbs can use the ASYM-MK keyword to steer operations to the PKA asymmetric
master-key registers, the SYM-MK keyword to steer to the DES symmetric master-key registers, or
both the DES symmetric and PKA asymmetric sets of master-key registers. The CNM utility uses the
BOTH option. If you use another program to load master keys and if this program specifically

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 31

operates on either the SYM-MK or ASYM-MK master-key registers, in general, you will no longer be
able to use the CNM utility to administer these master keys. Note that AES master keys work
independently from DES and PKA master keys.

2. If your installation has multiple cryptographic coprocessors loaded with CCA, you need to
independently administer the master keys in each coprocessor.

3. If your installation has a server with multiple cryptographic coprocessors that are loaded with CCA,
those coprocessors need to be installed with identical master keys.

Related information:

[‘Obtaining status information of the CCA application” on page 24|
You can use the CNM utility coprocessor to obtain the status of the CCA application.

Verifying an existing master key:

The CNM utility generates a verification number for each master key that is stored in the master-key
registers. This number identifies the key, but does not reveal information about the actual key value.

To view a master-key verification number, follow these steps:
1. From the Load Master Key window, click Master Key.

2. From the Master Key menu, select either DES/PKA Master Keys or AES Master Key, and then click
Verify; a submenu is displayed.

3. From the resulting submenu, select a master-key register. The verification number for the key stored
in that register is displayed.

Loading the master key automatically:

The CNM utility can automatically set a master key in the coprocessor. The master key value cannot be
viewed from the utility.

Important: If a master key of unknown value is lost, you cannot decipher the key attached to it.

To automatically load the master key, follow these steps:

1. From the Load Master Key window, click Master Key.

2. From the Master Key menu, select either DES/PKA Master Keys or AES Master Key.
3. Select Auto Set or Random. You are prompted to verify the command.
4.

Click Yes. The coprocessor generates and sets a master key.

Note:

1. The Random option is preferred because the Auto Set option passes clear key parts through
host-system memory.

2. When you set or automatically set a master key, you must reeincipher all keys that were enciphered
under the former key.

Related information:

[‘Re-encipher the stored keys” on page 34|

Loading a new master key from key parts:

To set a new master key in the coprocessor, enter any part of the key in the new master-key register, and
set the new master key.

To set the new master key, follow these steps:

1. From the Master Key menu, select either DES/PKA Master Keys or AES Master Key, and then click
Parts. The Load Master Key window is displayed as shown in [Figure 5 on page 33|

32 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

<> CCA Node Management Utility - Load Master Key =Joed
File Help

MNew | Open... | Save... | Generate | Load | Cancel | Help |

Figure 5. Load Master Key window

2. Select the radio button for the key part you are editing (First Part, Middle Part, or Last Part).
3. Enter data by doing one of the following actions:

* Click New to clear data entered in error.

* Click Open to retrieve preexisting data.

* Click Generate to fill the fields with coprocessor-generated random numbers.

* Manually enter data into the Master Key Part fields. Each field accepts 4 hexadecimal digits.
4. Click Load to load the key part into the new master-key register.
5. Click Save to save the key part to disk.

Important: Key parts saved to disk are not enciphered. Consider keeping a disk with key parts on it
stored in a safe or vault.

Note: When you create a key from parts, you must have both the first and last parts. The middle part
is optional.

6. Repeat the preceding steps to load the remaining key parts to the new master-key register.

Note: For the split-knowledge security policy, different people must enter the separate key parts. To
enforce a dual control security policy, the access control system must assign the right to enter the first

key to one role and the right to enter subsequent key parts to another role. Then, authorized users can

log on and enter their respective key part.
7. From the Master Key menu, select either DES/PKA Master Keys or AES Master Key.
8. Click Set for the utility to transfer the data:

a. From the current master-key register to the old master-key register, and to delete the old master
key

b. From the new master-key register to the current master-key register

After setting a new master key, reencipher the keys that are currently in storage.

Related links: |“Re-encipher the stored keys” on page 34|

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Managing key storage
The CNM utility enables basic key storage management functions for keys. These utility functions do not
form a comprehensive key management system

Application programs are better suited to perform repetitive key management tasks.

Key storage is a repository of keys that you access by key label using labels that you or your applications
define. Data Encryption Standard (DES) keys, Public Key Algorithm (PKA) Rivest-Shamir-Adleman (RSA)
keys, and Advanced Encryption Standard (AES) keys are held in separate storage systems. Also the key
storage has limited internal storage for PKA keys. The coprocessor stored keys are not considered part of
key storage in this discussion.

Notes:

1. If your server has multiple cryptographic coprocessors that are loaded with CCA, those coprocessors
must have identical master keys installed for key storage to work properly.

2. The CNM utility displays a maximum of 1,000 key labels. If you have more than 1,000 key labels in
key storage, use an application program to manage them.

Creating or initializing key storage: To create or initialize key storage for your Data Encryption
Standard (DES) keys, Public-Key Algorithm (PKA) or Advanced Encryption Standard (AES) keys,
complete the following steps:

1. From the Key Storage menu, select DES Key Storage, PKA Key Storage, or AES Key Storage.

2. From the resulting submenu, click Initialize. The Initialize DES Key Storage, Initialize PKA Key
Storage, or Initialize AES Key Storage window is displayed.

3. Enter a description for the key-storage file.
4. Click Initialize. You are prompted to enter a name for the key-storage data set.
5. Enter a name for the file and save it. The key-storage file is created on the host.

Note: If a file with the same name exists, you are prompted to verify your choice because initializing
the key storage modifies the file; therefore, if the file had any keys, they would be erased.

Re-encipher the stored keys: To re-encipher the keys in storage under a new master key, complete the
following steps:

1. From the Key Storage menu, select DES Key Storage, PKA Key Storage, or AES Key Storage.

2. From the resulting submenu, click Manage; the DES Key Storage Management, PKA Key Storage
Management, or AES Key Storage Management window is displayed. This window panel lists the
labels of the keys in storage.

3. Click Reencipher. The keys are re-enciphered under the key in the current master-key register.

Deleting a stored key: To delete a stored key, complete the following steps:
1. From the Key Storage, click DES Key Storage, PKA Key Storage, or AES Key Storage.

2. From the resulting submenu, click Manage. The DES Key Storage Management, PKA Key Storage
Management, or AES Key Storage Management window is displayed. This window lists the labels of
the keys in storage.

You can set the filter criteria to list a subset of keys within storage. For example, if you enter *.mac as
the filter criterion and refresh the list, the subset is limited to keys with labels that end in .mac. (The
asterisk is a wildcard character.)

3. Highlight the key label for the key to be deleted.
4. Click Delete. A confirmation message is displayed.
5. Click Yes. To confirm that the stored key is deleted.

Creating a key label: To create a key label, complete the following steps:

34 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

1. From the Key Storage menu, click DES Key Storage, PKA Key Storage, or AES Key Storage.

2. From the resulting submenu, click Manage. The DES Key Storage Management, PKA Key Storage
Management, or AES Key Storage Management window is displayed. This window lists the labels of
the keys in storage.

You can set the filter criteria to list a subset of keys within storage. For example, if you enter *.mac as
the filter criterion and refresh the list, the subset is limited to keys that have labels that end in .mac.
(The asterisk is a wildcard character.)

3. Click New. You are prompted to enter a key label.
4. Click Load. The key label is loaded into storage.

Creating and storing primary DES KEKs
Key encrypting keys (KEKs) are encrypted under the Data Encryption Standard (DES) master key and
stored in DES key storage for local use.

Key parts used to create a KEK can be randomly generated or entered as clear text information. The parts
can also be saved to disk or diskette in clear text for transporting to other nodes or for re-creating the
local KEK.

Note: The Cryptographic Node Management (CNM) utility supports only DES KEKs for the transport of
keys between nodes. Applications can use the CCA API to furnish the services needed for
public-key-based or Advanced Encryption Standard (AES)-based key distribution.

To create and store a primary DES KEK (or other double-length operational key), complete the following
steps:

1. From the Keys menu, click Primary DES Key-encrypting keys. The Primary DES Key-encrypting
keys window is displayed.

At any time, you can click New to clear all data fields and reset all the radio buttons to their default
settings.

2. Select the radio button for the desired key part to be entered: First Part, Middle Part, or Last Part.
3. Enter data in the Key Part fields by doing one of the following actions:

* Click Open to retrieve pre-existing Key Part, Control Vector, and Key Label data that was
previously stored on disk by using the Save command.

* Click Generate to fill the Key Part fields with coprocessor generated random numbers.
* Manually enter data into the Key Part fields. Each of the Key Part fields accepts 4 hexadecimal
digits.
4. Select a control vector for the key:

* To use a default KEK control vector, select the appropriate Default Importer or Default Exporter
radio button.

* To use a custom control vector, select the Custom radio button. In the Control Vector fields, enter
the left or right half of a control vector for any double-length key. Note that the key part bit (bit 44)
must be on and that each byte of the control vector must have even parity.

For detailed information about control vectors, see IBM CCA Basic Services Reference and Guide
for the IBM 4765 PCle and 4764 PCI-X Cryptographic Coprocessors manual.

5. Enter a key label to identify the key token in key storage.

6. Click Load to load the key part into the coprocessor and store the resulting key token into key
storage.

7. Click Save to save the unencrypted key part and its associated control vector and key label values to
disk.

8. Save to disk or Load to key storage. the remaining key part information by following steps |2] - Iﬂ Be
sure to use the same key label for each part of a single key.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 35

Creating other nodes by using the CNI utility

Creating a CNI list for the CCA Node Initialization (CNI) utility, allows to load keys and access control
data stored on disk into other cryptographic nodes without running the CNM utility on those target
nodes.

To set up a node using the CNI utility, complete the following steps:

1. Start the CCA Node Management utility by entering the csufcnm command. The CNM utility logo
and the main panel displays.

2. Save to the host or portable media like a diskette the access control data and keys you want to
install on other nodes. When you run the CNI utility on the target node, it searches the identical
directory path for each file. For example:

» If you save a user profile to the established node directory c:\IBM4764\profiles, the CNI utility
searches the target node directory c:\IBM4764\profiles.

* If you save a user profile to the diskette directory a:\profiles, the CNI utility will search the
target node directory a:\profiles.

3. From the File menu, click CNI Editor. The CCA Node Initialization Editor window displays as
shown in

(Ao Management UBhEy L CCR oo Ttk aaton Cator mE %]

=2 : i e =)= el

Select Active Card in

Logon

Logaoff

Initialize crypto facility

Initialize access control facility.

Auto set master key

Clear new master key register

Load master key part

Set master key

I;Dellclluserproﬂl—el v

Add

New| Open... | Save... | "u"EI'if_v'| Cancel | Help |

Figure 6. CCA Node Initialization Editor window

36

The list in the top pane of the window displays the functions that can be added to the CNI list. The
bottom pane lists the functions included in the current CNI list. References to master keys in the list
refer to the DES and PKA master keys.

Add the functions you want. To add a function to the CNI list:
a. Highlight a function.
b. Click Add. The function is added to the CNI list.

Note: If the function you choose loads a data object, such as a key part, key-storage file, user
profile, or role, you are prompted to enter the file name or the ID of the object to be loaded.

Using the Move Up and Move Down buttons, organize the functions to reflect the same order you
follow when using the CNM utility. For example, if you are loading access control data.

Click Verify to confirm that objects have been created correctly.

Click Save. You are prompted to select a name and directory location for the CNI list file.

AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

8. Save the CNI list file. The list file does not contain the data objects specified in the CNI list.

9. Copy the files needed by the CNI utility to target host directory locations that mirror their locations
on the source host. If you saved the files to portable media, insert the media into the target node.

10. From the target node, run the list using the CNI utility by entering the csufcni command.

If the CNI list includes a logon, enter csulcni or csuncni on the command line (without specifying a
file name). The CNI utility help information describes the syntax for entering an ID and passphrase.

The CNI utility loads files to the coprocessor from the host or portable media, as specified by the
CNI list.

Building applications to use with the CCA API
An application can be build which can be used with the Common Cryptographic Architecture (CCA) APL

Source code for the sample routine is included with the software. You can use the sample included to test
the coprocessor and the Support Program.

Note: The file locations referred to in this section are the default directory paths.

Overview of CCA verbs

Application and utility programs issue service requests to the cryptographic coprocessor by calling the
CCA verbs. The term verb implies an action that an application program can initiate. The operating
system code in turn calls the coprocessor physical device driver (PDD). The hardware and software
accessed through the API are themselves an integrated subsystem.

Verb calls are written in the standard syntax of the C programming language, and include an entry-point
name, verb parameters, and the variables for those parameters.

For a detailed listing of the verbs, variables, and parameters you can use when programming for the
CCA security application programming interface (API), see the IBM CCA Basic Services Reference and Guide
for the IBM 4765 PCle and 4764 PCI-X Cryptographic Coprocessors manual.

Calling CCA verbs in C program syntax

In every operating system environment, you can code CCA API verb calls using standard C
programming language syntax.

Function call prototypes for all CCA security API verbs are contained in a header file. The files and their
default distribution locations are:

AIX /usr/include/

To include these verb declarations, use the following compiler directive in your program:

AIX #include "csufincl.h"

To issue a call to a CCA security API verb, code the verb entry-point name in uppercase characters.
Separate the parameter identifiers with commas and enclose them in parentheses. End the call with a
semicolon character. For example:
CSNBCKI (&return_code,

&reason_code,

dexit_data_length, /* exit_data_length */

exit_data, /* exit_data */

clear_key,

key_ token);

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 37

Note: The third and fourth parameters of a CCA call, exit_data_length and exit_data, are not currently
supported by the CCA Cryptographic Coprocessor Support Program. Although it is permissible to code
null address pointers for these parameters, it is preferred that you specify a long integer valued to 0 with
the exit_data_length parameter.

Compiling and linking CCA application programs
The CCA Cryptographic Coprocessor Support Program includes the C Language source code and the
makefile for a sample program.

The file and its default distribution location follows:

AIX /usr/lpp/csufx.4765/samples/c.

Compile application programs that use CCA and link the compiled programs to the CCA library. The
library and its default distribution location follows:

AIX /usr/1ib/1ibcsufcca.a.

Sample C routine: Generating a MAC

To illustrate the practical application of CCA verb calls, this topic describes the sample C programming
language routine included with the CCA Cryptographic Coprocessor Support Program.

There is also a sample program on the product Web site. That sample program can help you understand
the performance of the CCA implementation.

The sample routine generates a message authentication code (MAC) on a text string and then verifies the
MAC. To generate and verify the MAC, the routine:

1. Calls the Key_Generate (CSNBKGN) verb to create a MAC and MACVER key pair.

2. Calls the MAC_Generate (CSNBMGN) verb to generate a MAC on a text string with the MAC key.

3. Calls the MAC_Verify (CSNBMVR) verb to verify the text string MAC with the MACVER key.

A sample routine is shown in see the IBM CCA Basic Services Reference and Guide for the IBM 4765

PCle and 4764 PCI-X Cryptographic Coprocessors manual for the descriptions of the verbs and their
parameters. These verbs are listed in the following table.

Table 5. Verbs called by the sample routine

Verb Entry-point name
Key_Generate CSNBKGN
MAC_Generate CSNBMGN
MAC_Verify CSNBMVR

Figure 7. Sample C routine: generating a MAC,

/***/

/* */
/* Module Name: mac.c */
/* */
/* DESCRIPTIVE NAME: Cryptographic Coprocessor Support Program */
/* C language source code example */
/* */
gy */
/* */
/* Licensed Materials - Property of IBM */
/* */
/* (C) Copyright IBM Corp. 1997-2010 A11 Rights Reserved */
/* */
/* US Government Users Restricted Rights - Use duplication or */

38 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

NOTICE TO USERS OF THE SOURCE CODE EXAMPLES

The source code examples provided by IBM are only intended to
assist in the development of a working software program. The
source code examples do not function as written: additional
code is required. In addition, the source code examples may
not compile and/or bind successfully as written.

International Business Machines Corporation provides the source
code examples, both individually and as one or more groups,

"as is" without warranty of any kind, either expressed or
implied, including, but not Timited to the implied warranties of
merchantability and fitness for a particular purpose. The entire
risk as to the quality and performance of the source code
examples, both individually and as one or more groups, is with
you. Should any part of the source code examples prove defective,
you (and not IBM or an authorized dealer) assume the entire cost
of all necessary servicing, repair or correction.

IBM does not warrant that the contents of the source code
examples, whether individually or as one or more groups, will
meet your requirements or that the source code examples are
error-free.

IBM may make improvements and/or changes in the source code
examples at any time.

Changes may be made periodically to the information in the
source code examples; these changes may be reported, for the
sample code included herein, in new editions of the examples.

References in the source code examples to IBM products, programs,
or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference
to the IBM licensed program in the source code examples is not
intended to state or imply that IBM's licensed program must be
used. Any functionally equivalent program may be used.

This example program:

1) Calls the Key Generate verb (CSNBKGN) to create a MAC (message
authentication code) key token and a MACVER key token.

2) Calls the MAC_Generate verb (CSNBMGN) using the MAC key token
from step 1 to generate a MAC on the supplied text string
(INPUT_TEXT).

3) Calls the MAC Verify verb (CSNBMVR) to verify the MAC for the
same text string, using the MACVER key token created in
step 1.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/
#include <stdio.h>
#include <string.h>

#ifdef AIX

#include <csufincl.h>

#elif _ WINDOWS__

#include "csunincl.h"

#else

#include "csulincl.h" /* else linux */

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

39

#endif

/* Defines =/

#define KEY_FORM "0POP"
#define KEY_LENGTH "SINGLE "

#define KEY _TYPE_1 "MAC "

#define KEY_TYPE 2 "MACVER "

#define INPUT_TEXT "abcdefghi jk1mn0987654321"
#define MAC_PROCESSING RULE "X9.9-1 "

#define SEGMENT FLAG "ONLY "

#define MAC_LENGTH "HEX-9 "

#define MAC_BUFFER_LENGTH 10

void main()
{
static Tong return_code;
static Tong reason_code;
static unsigned char key_form[4];
static unsigned char key length[8];
static unsigned char mac_key type[8];
static unsigned char macver_key type[8];
static unsigned char kek key id_1[64];
static unsigned char kek_key_id_2[64];
static unsigned char mac_key id[64];
static unsigned char macver_key_ id[64];
static Tong text_Tength;
static unsigned char text[26];
static Tong rule_array_count;
static unsigned char rule_array[3][8]; /* Max 3 rule array elements =*/
static unsigned char chaining_vector[18];
static unsigned char mac_value[MAC_BUFFER LENGTH];

/* Print a banner */
printf("Cryptographic Coprocessor Support Program example program.\n");

/* Set up initial values for Key Generate call */
return_code = 0;
reason_code = 0;

memcpy (key_form, KEY_FORM, 4); /* OPOP key pair */
memcpy (key_length, KEY_LENGTH, 8); /* Single-Tength keys */
memcpy (mac_key type, KEY_TYPE_1, 8); /* 1st token, MAC key type */
memcpy (macver_key type, KEY_TYPE 2, 8); /* 2nd token, MACVER key type */

memset (kek key id 1, 0x00, sizeof(kek key id 1)); /* lst KEK not used =*/
memset (kek_key_id_2, 0x00, sizeof(kek_key_id_2)); /* 2nd KEK not used =*/
memset (mac_key_id, 0x00, sizeof(mac_key_id)); /* Init 1st key token */
memset (macver_key id, 0x00, sizeof(macver_key id)); /* Init 2nd key token =*/

/* Generate a MAC/MACVER operational key pair */
CSNBKGN (&return_code,
&reason_code,

NULL, /* exit_data_length */
NULL, /* exit_data */
key_form,

key _Tength,
mac_key type,
macver_key_type,
kek key id 1,
kek_key_id_2,
mac_key_id,
macver_key id);

/* Check the return/reason codes. Terminate if there is an error. */
if (return_code != 0 || reason_code != 0) {
printf ("Key Generate failed: "); /* Print failing verb */
printf ("return_code = %1d, ", return_code); /* Print return code %/
printf ("reason_code = %1d.\n", reason_code); /* Print reason code */

40 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

return;

}

else
printf ("Key_Generate successful.\n");

/* Set up initial values for MAC_Generate call =/

return_code = 0;

reason_code = 0;

text_length = sizeof (INPUT_TEXT) - 1;
memcpy (text, INPUT TEXT, text Tlength);
rule_array_count = 3;

memset (rule_array, ' ', sizeof(rule_array));

memcpy (rule_array[0], MAC_PROCESSING_RULE,
memcpy (rule_array[1], SEGMENT FLAG,
memcpy (rule_array[2], MAC_LENGTH,

memset (chaining_vector, 0x00, 18);

memset (mac_value, 0x00, sizeof(mac_value));

/* Generate a MAC based on input text =*/
CSNBMGN (&return_code,
&reason_code,
NULL,
NULL,
mac_key_id,
&text_Tength,
text,
&rule_array_count,
&rule_array[0][0],
chaining_vector,
mac_value);

8);
8);
8);

/*
/*
/*

/* Length of MAC text

/* Define MAC input text

/* 3 rule array elements

/* Clear rule array

/% 1st rule array element
/* 2nd rule array element
/* 3rd rule array element
/* Clear chaining vector

/* Clear MAC value

exit_data_Tength
exit_data
Output from Key_Generate

/* Check the return/reason codes. Terminate if there is an error.

if (return_code != 0 || reason_code != 0) {
printf ("MAC Generate Failed: ");

printf ("return_code = %1d, ", return_code);
printf ("reason _code = %1d.\n", reason_code);

return;

}

else {
printf ("MAC_Generate successful.\n");
printf ("MAC_value = %s\n", mac_value);

}

/*

/* Set up initial values for MAC Verify call */

return_code = 0;
reason_code = 0;

rule_array_count = 1; /*
memset (rule_array, ' ', sizeof(rule_array));/*
memcpy (rule_array[0], MAC_LENGTH, 8); /*
/*
/*
/*
memset (chaining_vector, 0x00, 18); /*

/* Verify MAC value */

CSNBMVR (&return_code,
&reason_code,
NULL,
NULL,
macver_key_id,
&text_Tength,
text,
&rule_array_count,
&rule_array[0][0],
chaining_vector,
mac_value);

/*
/*
/*
/*
/*

/*

/* Print failing verb
/* Print return code
/* Print reason code

Print MAC value (HEX-9)

1 rule array element
Clear rule array
Rule array element

(use default Ciphering
Method and Segmenting
Control)
Clear the chaining vector

exit_data_length
exit_data

Output from Key Generate
Same as for MAC_Generate
Same as for MAC_Generate

Output from MAC_Generate

/* Check the return/reason codes. Terminate if there is an error.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

41

if (return_code != 0 || reason_code != 0) {

printf ("MAC_Verify failed: "); /* Print failing verb */
printf ("return_code = %1d, ", return_code); /* Print return code */
printf ("reason_code = %1d.\n", reason_code); /* Print reason code */
return;

}

else /* No error occurred */

printf ("MAC Verify successful.\n");
1

Enhancing throughput with CCA and the 4765 coprocessor

When you use the CCA AP, the characteristics of your host application program will affect performance
and throughput of the 4765. For best performance on the 4765 coprocessor, evaluate and design your
application based on multithreading and multiprocessing, and based on caching Data Encryption
Standard (DES), Public-Key Algorithm (PKA), and Advanced Encryption Standard (AES) keys.

Multithreading and multiprocessing

The CCA application running inside the 4765 can process several CCA requests simultaneously. The
coprocessor contains several independent hardware elements, including the Rivest-Shamir-Adleman
algorithm (RSA) engine, Data Encryption Standard (DES) engine, CPU, random-number generator, and
Peripheral Component Interconnect-X (PCI-X) communications interface. These elements can all be
working at the same time, processing parts of different CCA verbs. By working on several verbs at the
same time, the coprocessor can keep all of its hardware elements busy, maximizing the overall system
throughput.

To take advantage of this capability, your host system must send multiple CCA requests to the
coprocessor without waiting for each one to finish before sending the next one. The best way to send
multiple requests is to design a multithreaded host application program, in which each thread can
independently send CCA requests to the coprocessor. For example, a web server can start a new thread
for each request it receives over the network. Each of these threads will send the required cryptographic
requests to the coprocessor, independent of what the other threads are doing. The multithreaded model
guarantees that the coprocessor is not under used. Another option is to have several independent host
application programs all using the coprocessor at the same time.

Caching DES, PKA, and AES keys

The CCA software for the 4765 keeps copies of recently used DES, PKA, and encrypted (not clear text)
AES keys in caches inside the secure module. The keys are stored in a form that has been decrypted and
validated, and is ready for use. If the same key is reused in a later CCA request, the 4765 can use the
cached copy and avoid the overhead associated with decrypting and validating the key token. In
addition, for retained PKA keys, the cache eliminates the overhead of retrieving the key from the internal
flash Erasable Programmable Read Only Memory (EPROM) memory.

As a result, applications that reuse a common set of keys can run much faster than those that use
different keys for each transaction. Most common applications use a common set of DES keys, PKA
private keys, and encrypted AES keys, and the caching is effective in improving throughput. PKA public
keys and AES clear keys, which have little processing overhead, are not cached.

Initial default-role commands

The characteristics of the default role after the coprocessor is initialized and when no other access control
data exists are described. Also, the enabled access control commands are listed.

For the initial default role commands, the role ID is the default and the authentication strength is zero.

The default role is valid at all times of the day and on all days of the week. The only functions permitted
are those necessary to load access control data.

42 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Important: The cryptographic mode is not secure when unauthenticated users can load access control
data by using the default role. Restrict these commands to selected supervisory roles.

lists the access control commands that are enabled in the default role when the CCA software is
initially loaded and when the CCA node is initialized.

Table 6. Initial default-role commands

Code Command name

X'0107' One-Way Hash, SHA-1

X'0110' Set Clock

X'0111' Reinitialize Device

X'0112' Initialize Access Control System

X'0113' Change User Profile Expiration Date
X'0114' Change User Profile Authentication Data
X'0115' Reset User Profile Logon-Attempt-Failure Count
X'0116' Read Public Access Control Information
X'0117' Delete User Profile

X'0118' Delete Role

X'0119' Load Function-Control Vector
X'011A' Clear Function-Control Vector

Machine-readable log contents

The CLU utility creates two log files, one intended for reading and the other for possible input to a
program.

The machine-readable (MRL) log file, contains the binary outputs from the coprocessor in response to
various commands submitted to the coprocessor.

Detailed information about the contents of the MRL is available from IBM 4764 and IBM 4765
development. Contact IBM by using the Support and downloads tab in the IBM product website at
hittp:/fwww.ibm.com/security/cryptocards)

Device driver error codes

The coprocessor device driver monitors the status of its communication with the coprocessor and the
coprocessor hardware-status registers.

Each time that the coprocessor is reset and the reset is not caused by a fault or tamper event, the
coprocessor runs through a miniboot, its power-on self-test (POST), code loading, and status routines.
During this process, the coprocessor attempts to coordinate with a host-system device driver. Coprocessor
reset operations can occur because of power-on, a reset command sent from the device driver, or because
of coprocessor internal activity such as completion of code updates.

The coprocessor fault or tamper-detection circuitry can also reset the coprocessor.

Programs such as the Coprocessor Load Utility (CLU) and the CCA Support Program can receive unusual
status in the form of a 4-byte return code from the device driver.

The possible 4-byte codes, are of the form X'8xxxxxxx'. The codes that are frequently obtained are
described in [Table 7 on page 44} If you encounter codes of the form XX'8340xxxx" or X'8440xxxx', and the
code is not in the table,contact the IBM cryptographic team through email from the Support page on the
IBM product website at [attp://www.ibm.com/security/cryptocards|

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 43

http://www.ibm.com/security/cryptocards
http://www.ibm.com/security/cryptocards

Table 7. Device-class driver error codes in X'8xxxxxxx' class

Reason Descriptions

4-byte

return code

(hex)

8040FFBF External intrusion The intrusion arises due to optional electrical connection to the
coprocessor. This condition can be reset.

8040FFDA Dead battery The batteries have been allowed to run out of sufficient power or have
been removed. The coprocessor is zeroized and is no longer functional.

8040FFDB X-ray tamper or dead battery The coprocessor is zeroized and is no longer functional.

8040FFDF X-ray or dead battery The coprocessor is zeroized and is no longer functional.

8040FFEB Temperature tamper The high or low temperature limit has been exceeded. The coprocessor is
zeroized and is no longer functional.

8040FFF3 Voltage tamper The coprocessor is zeroized and is no longer functional.

'V8040FFF9 Mesh tamper The coprocessor is zeroized and is no longer functional.

8040FFFB Reset bit is on Low voltage was detected, the internal operating temperature of the
coprocessor went out of limits, or the host driver sent a reset command.
Try removing and reinserting the coprocessor into the PCI-X bus.

8040FFFE Battery warning The battery power is marginal. For the procedure to be followed to replace

the batteries, see the IBM 4764 PCI-X Cryptographic Coprocessor Installation
Manual.

804xxxxx (for
example,
80400005)

General communication problem

Except for the prior X'8040xxxx" codes, additional conditions arose in
host-coprocessor communication. Determine that the host system in fact
has a coprocessor. Try removing and reinserting the coprocessor into the
PCI-X bus. Run the CLU status command (ST). If problem persists, contact
contact the IBM cryptographic team through email from the Support page
on the IBM product website at [ittp://www.ibm.com/security/cryptocards

8340xxxx

Miniboot-0 codes

This class of return code arises from the lowest-level of reset testing. If
codes in this class occur, contact the IBM cryptographic team through
email from the Support page on the IBM product website at
Inttp:/fwww.ibm.com/security/cryptocards|

8340038F

Random-number generation fault

Continuous monitoring of the random-number generator has detected a
possible problem. There is a small statistical probability of this event
occurring without indicating an actual ongoing problem.

Run the CLU status (ST) command at least twice to determine whether the
condition can be cleared.

8440xxxx

Miniboot-1 codes

This class of return code arises from the replaceable POST and
code-loading code.

844006B2

Invalid signature

The signature on the data sent from the CLU utility to miniboot could not
be validated by the miniboot. Be sure that you are using an appropriate
file (for example, CR1 xxxxx.clu versus CE1 xxxxx.clu). If the problem
persists, obtain the output of a CLU status report and forward the report
with a description of the task you want to achieve to the IBM
cryptographic team through email from the Support page on the IBM
product website at [ittp:/fwww.ibm.com/security/cryptocards|

Cloning a master key

This section provides instructions for cloning a master key and provides access control considerations

while cloning.

Overview of cloning a master key

The cloning procedure outlines how to clone a master key from one coprocessor to another coprocessor
by using the Cryptographic Node Management (CNM) utility.

Note: Ensure that the CNM utility is at the same level on all systems involved in the cloning procedure.

44 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

http://www.ibm.com/security/cryptocards
http://www.ibm.com/security/cryptocards
http://www.ibm.com/security/cryptocards

The master-key cloning procedure makes no assumption about which server contains the coprocessors
used for:

* Share administration (SA node)
* Master-key source (CSS coprocessor share-signing node)
* Master-key target (CSR coprocessor share-receiving node)

Note: Cloning of AES master keys is not supported.

The SA key can reside in the same coprocessor as either the CSS or the CSR key, or it can reside in a
separate coprocessor node. Any of the coprocessors can reside together in the same sever if multiple
coprocessors with CCA are available.

The procedure ignores operator actions to log on and log off, because these steps depend on the specific
roles in use at your installation. You can switch between coprocessors when you are using more than one
coprocessor within a server.

The procedure is divided into several phases as outlined in

Table 8. Master-key cloning procedure phase overview

Phase Node Task
1 SA Establish the share administration node. Create the SA database, generate the SA key, and store
its public key and hash into the SA database.
2a Source Establish the source node. Generate the CSS key and add the public key to the SA database.
Install the SA public key.
2b SA Certify the CSS key and store the certificate into the SA database.
For each

target node,
repeat phase
3 procedures.

3a Target Establish the target node. Create a CSR database, generate a CSR key, and add the public key to
the CSR database for this node. Install the SA public key.

3b SA Certify the CSR key and store the certificate into the CSR database for the target node.

3c Source Obtain shares and the current master-key verification information.

3d Target Install shares and confirm the new master-key. Set the master key.

Before starting the master-key cloning procedure, it is suggested that you complete the forms found in
table and Figure [Figure 8 on page 46|

Table 9. Cloning responsibilities, profiles, and roles

Task Node Profile Role Responsible individual
Audit access controls SA
Generate SA key SA
Register SA-key hash SA
Register SA key SA
Audit access controls CSSs
Generate CSS key CSS
Obtain CSS master key CSS
Register SA-key hash CSS
Register SA key CSs
Certify CSS key SA
Audit access controls CSR1
Generate CSR key CSR1

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 45

Table 9. Cloning responsibilities, profiles, and roles (continued)

Task Node Profile Role Responsible individual
Register SA-key hash CSR1
Register SA key CSR1
Certify CSR1 key SA
Obtain shares CSS
Install shares CSR1
Verify CSR new CSR1
Set CSR master key CSR1
Audit access controls CSR2
Generate CSR key CSR2
Register SA-key hash CSR2
Register SA key CSR2
Certify CSR2 key SA
Obtain shares CSs
Install shares CSR2
Verify CSR new CSR2
Set CSR master key CSR2
NODE Node Machine ﬁiﬁgg{ ggﬁ;?ﬁj;%re r Data Base Path and Name
INFORMATION
SA Node (sa.db)
Control
CSS Node (sa.db)
Source
CSR Node (csr1.db)
Target 1
CSR Node (csr2.db)
Target 2
SA-KEY HASH
NUMBER OF Minimum: Maximum:
SHARES “m” “n”
S imioN | Obtained from: ' 1 3 4 6 7 8 9 10 11 12 13 14 15
Installed into CSR-1: 1 3 4 6 7 8 9 10 11 12 13 14 15
Obtained from: ' 1 3 4 6 7 8 9 10 11 12 13 14 15
Installed into CSR-2: 1 3 4 6 7 8 9 10 11 12 13 14 15

Figure 8. Cloning information worksheet

46 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Phase 1 for cloning a master key: Establishing the share administration node
To use the coprocessor as the share administration (SA) node, follow the steps from cloning the master

key mentioned in [Table 10} This coprocessor can also serve as the master key source node or a master key
target node.

Prerequisites: Before running this procedure, familiarize yourself with the steps described in the section

[‘Scenario: Cloning a DES or PKA master key” on page 20and the chapter about understanding and

managing master keys in the IBM CCA Basic Services Reference and Guide for the IBM 4765 PCle and 4764

PCI-X Cryptographic Coprocessors manual.

To establish the SA node, complete the steps in the following table:

Table 10. Cloning the master key procedure: Establishing the SA node

Phase

Task

1.1

Audit the appropriateness of the access controls.

1.2

Perform time synchronization and ensure that the authorization (fcv_td4kECC521.crt) is
installed.

1.3

Confirm (or install) the master key.

14

Using the facilities of your operating system, erase any prior SA database from the SA
database media.

15

If not already established, enter the environment ID (EID) by completing the following steps:

* Click Crypto Node >Set environment ID.
¢ Enter the EID, click Load.

1.6

Generate the SA key:
* Click Crypto Node >Share Administration >Create Keys >Share Administration Key.

* Accept the default SA public key and private key labels, and enter the location and name
of the SA database (sa.db).

* Click Create.

* Record the SA-key hash value for use later in the procedure.

1.7

Register the SA public key hash:

* Click Crypto Node >Share Administration >Create Keys >Share Administration Key
>Register Share Administration Key > SA-Key Hash.

* Enter the SA database file name and location, click Next.
* Enter the SA public key label (or accept the default).
* Enter the SA-key hash, click Register.

1.8

Register the SA public key:

* Click Crypto Node >Share Administration >Create Keys >Share Administration Key
>Register Share Administration Key > SA-Key Hash.

* Enter the SA database file name and location, click Next.

* Enter the SA public key label (or accept the default), click Register.

Phase 2 for cloning a master key: Establishing the source node
Using the coprocessor designated as the master key source node, follow the steps for cloning the master

key mentioned in the [Table 11 on page 48| This coprocessor can also serve as the SA node.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

47

Table 11. Cloning the master key: Establishing the source (CSS) node

Phase |Task I
2a.l Audit the appropriateness of the access controls.
2a.2 Perform time synchronization and ensure that the fcv_td4kECC521. crtauthorization is
installed.

2a.3 Confirm the coprocessor serial number:
* Click Crypto Node >Status.
* Click Adapter.

* Note the coprocessor serial number, click Cancel.

2a.4 Confirm (or install) the master key.

2a.5 Obtain the current master key verification information:
* Click Master Key > Verify > Current.

* Click Save to transport media, click Cancel.

2a.6 If not already established, enter the environment ID (EID):
* Click Crypto Node > Set environment ID.
¢ Enter the EID, click Load.

2a.7 If not already established, set the number m and n shared values:
* Click Crypto Node > Share Administration > Set Number of Shares.

* Set the maximum and minimum number of required shares, click Load.

2a.8 Generate the CSS key:

* Click Crypto Node > Share Administration > Create Keys > CSS Key.
* Enter the CSS key label (for example, CSS.KEY).

* Confirm the coprocessor serial number.

* Confirm or enter the SA database name and location.
* Click Create.

2a.9 Register the SA public-key hash:

* Click Crypto Node > Share Administration > Register Share Administration Key >
SA-Key Hash.

¢ Enter the SA database file name and location, click Next.
* Enter the SA public key label (or accept the default).
* Enter the SA key hash, click Register.

2a.10 | Register the SA public-key:

* Click Crypto Node > Share Administration > Register Share Administration Key > SA
Key.

¢ Enter the SA database file name and location, click Next.

* Enter the SA public key label (or accept the default), click Register.

Phase 3 for cloning a master key: Establishing the target node and cloning a
master key

Using the designated nodes, establish the target node and clone the master key following the steps for
cloning the master key mentioned in [Table 12| This coprocessor can also serve as the SA node.

Table 12. Cloning a master key: Establishing the CSR node, and cloning a master key

Phase | Node | Task | V
At the
target
node
3a.l | Target Audit the appropriateness of the access controls.
3a.2 | Target Perform time synchronization and ensure that the fcv_td2k.crt authorization is
installed.

48 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Table 12. Cloning a master key: Establishing the CSR node, and cloning a master key (continued)

Phase |Node Task I

3a.3 |Target Confirm the coprocessor serial number:
* Click Crypto Node > Status.
* Click Adapter.

* Note the coprocessor serial number, click Cancel.

3a.4 | Target Ensure the existence of a (temporary) master key.

3a.5 |Target If not already established, enter the environment ID (EID):
* Click Crypto Node > Set environment ID > Crypto Node.

* Enter the EID (for example, CSR1 NODE and extend with spaces to 16 entered
characters).

* Click Load.

3a.6 | Target If not already established, set the number m and n shares values:

* Click Crypto Node > Share Administration > Set Number of Shares.
* Set the maximum and minimum number of required shares.

* Click Load.

3a.7 Target Using the facilities of your operating system, erase the csr.db data file.

3a.8 | Target Generate the CSR key:

* Click Crypto Node > Share Administration > Create Keys > CSR Key.
* Enter the CSR key label (for example, CSR1.KEY).

* Confirm the coprocessor serial number.

* Select the key size.

* Provide the CSR database name and location (for example, CSR1.DB).

* Click Create.

3a.9 |Target Register the SA public-key hash:

* Click Crypto Node > Share Administration > Register Share Administration >
SA-Key Hash.

* Enter the SA database file name and location, click Next.
* Enter the SA public key label (or accept the default).
* Enter the SA key hash, click Register.

3a.10 | Target Register the SA public-key:

* Click Crypto Node > Share Administration > Register Share Administration > SA
Key.

* Enter the SA database file name and location, click Next.

* Enter the SA public key label (or accept the default), click Register.

At the
SA
node
3b.1 |SA Certify the CSS key (as required):
* Click Crypto Node > Share Administration > Certify Keys > CSS Key.
* Enter the name and path for the SA database, click Next.
* Confirm the CSS key label, the coprocessor serial number, and the SA environment
ID.
* Click Certify.
3b.2 |SA Certify the CSR key:

* Click Crypto Node > Share Administration > Certify Keys > CSS Key.
* Enter the name and path for the SA and CSR databases, click Next.

* Confirm the SA key label, CSR key label, and the SA environment ID.

* Enter the CSR serial number.

* Click Certify.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 49

Table 12. Cloning a master key: Establishing the CSR node, and cloning a master key (continued)

Phase |Node Task | I

At the
source
node

3c.1 |Source Obtain at least the number of m and n shares. Perform the following substep for each
share. Note that logon and logoff might be required to obtain each share.

* Click Crypto Node > Share Administration > Get Share.

* Select the share. Note that if you are obtaining an additional set(s) of shares, the
Distributed messages might not be meaningful.

* Enter the name and path for the SA and CSR databases, click Next.

* Confirm the CSS key label, CSS coprocessor serial number, and the CSR coprocessor
serial number.

* Click Get Share.

Repeat as required.

At the
target
node

3d.1 | Target Install the number of m and n shares. Perform the following for each share and observe
the response. The response indicates when enough shares have been installed to form
the new master key. Note that logon and logoff might be required to install each share.

* Click Crypto Node > Share Administration > Load Share.
* Select the share.
* Enter the name and path for the CSR and SA databases, click Next.

* Confirm the CSS key label, the CSS coprocessor serial number, and the CSR
coprocessor serial number.

* Click Load Share.
Observe the response. Loading sufficient shares completes the new master-key.

Repeat as required.

3d.2 | Target Confirm the new master key:
* Click Master Key > Verify > New.
* Click Compare or select the file or click OK or click Cancel

3d.3 | Target Erase the csr.db data file. This is not a security problem but rather to avoid
complications while doing master key cloning operation.

3d4 | Target As appropriate, set the master key:
* Click Master Key > Set.
* Click OK.

Access control considerations when cloning
There are three classes of roles to consider for cloning operations.
* Roles at the share administration (SA) node.

* Roles at the source node: coprocessor share signing (CSS) node
* Roles at the target node: coprocessor share signing (CSS) node

Your security policy must define who will have the authority to:
* Generate a random master key at the source node.

* Set the master key, the action which brings a new master key into operation. When the master key
changes, the keys enciphered by the master key must be updated.

* Generate the retained Rivest-Shamir-Adleman (RSA) keys to certify the public keys of the source and
target nodes (the SA key), and to generate the retained keys at the source (CSS) and target (CSR)
nodes.

50 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

* Register the SA key and its hash and determine whether it will be a split responsibility.

In addition, you must decide how many nodes must cooperate to clone a master key. Of course, this
must be selected to avoid collusion.

In deciding the m and n values, consider when the cloning will take place and whether you need to
reconstitute the master key from a fewer number of shares than the total number obtained from the
source node (perhaps because of share corruption or the unavailability of one or more individuals who
can obtain or install a share).

Note: The cryptographic node management (CNM) utility places all of the shares from a node in the
csr.db file. Each share is encrypted under a unique, triple-length data encryption standard (DES) key

which itself is encrypted by the CSR public key of the target node.

able 13| provides guidance for selecting the permissions applicable to the roles that are related to cloning.

Table 13. CCA commands related to master key cloning

Code Command name Verb name Consideration
X'001A' Set Master Key Master_Key_Process Critical. This role must have knowledge
of the contents of the new master key
register and the implications of a master
key change.
X'001D' Compute Verification Many All
Pattern
X'0020' Generate Random Master Master_Key_Process Not critical except that it fills the new
Key master key register.
X'0032' Clear New Master Key Master_Key_Process This role is assigned to the role that can
Register set the master key. The role can override
the collected shares. It must be mutually
exclusive with the Generate Random
Master Key command.
X'0033' Clear Old Master Key Master_Key_Process Generally not used.
Register
X'008E' Generate Key Key_Generate All
Random_Number_Generate
X'0090' Reencipher to Current Key_Token_Change This role depends on who will update
Master Key the working keys encrypted by the
master key.
X'0100' PKA96 Digital Signature Digital_Signature_Generate This role certifies the SA, CSS, and CSR
Generate keys.
X'0101' PKA96 Digital Signature Digital_Signature_Verify All
Verify
X'0102' PKA96 Key Token Change |PKA_Key_Token_Change This role depends on who will update
the working keys encrypted by the
master key.
X'0103' PKA96 PKA Key Generate |PKA_Key_Generate This role is required to generate the SA,
CSS, and CSR keys.
X'0107' One-Way Hash, SHA-1 One_Way_Hash All
X'0114' Change User Profile Access_Control_Initialization This role allows to change the
Authentication Data passphrase in any profile. Use with
discretion.
X'0116' Read Public access control | Access_Control_Maintenance All
Information
X'011C' Set EID Cryptographic_Facility_Control This role is required to set up the CSS
and CSR nodes.
X'011D' Initialize Master Key Cryptographic_Facility_Control This role is required to set up the m of n
Cloning values at the CSS and CSR nodes.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4 51

Table 13. CCA commands related to master key cloning (continued)

Code Command name Verb name Consideration
X'0200' PKA Register Public Key PKA_Public_Key_Hash_Register This role must be used at the CSS and
Hash CSR nodes to ensure the SA key can be
recognized. Split responsibility with
X'0201'.
X'0201' PKA Public Key Register PKA_Public_Key_Register This role must be used at the CSS and

CSR nodes to ensure the SA key can be
recognized. Split responsibility with
X'0200'".

X'0203' Delete Retained Key Retained_Key_Delete This role is used to remove obsolete SA,
CSS, and CSR keys. Be careful about
denial of service.

X'0204' PKA Clone Key Generate PKA_Key_Generate This role is required to generate the CSS
and CSR keys.

X'0211' - X'021F' | Clone-info (Share) Obtain Master_Key_Distribution This role is assigns a profile and role for
each share to enforce split responsibility.

X'0221" - Clone-info (Share) Install Master_Key_Distribution This role is assigns a profile and role for

X'022F each share to enforce split responsibility.

X'0230' List Retained Key Retained_Key_List All

Threat considerations for a digital-signing server

Consider various threats when you deploy the IBM 4765 with the IBM Common Cryptographic
Architecture (CCA) Support Program in a digital-signing application. Much of the discussion is applicable
to other environments in which you might apply the coprocessor.

An organization placing a certification authority (CA), registration authority (RA), Online Certificate
Status Protocol (OCSP) responder, or time-stamping service into operation needs to consider how its
installation will address various threats. lists potential threats and presents product design and
implementation solutions to many of these threats. Notes describe steps that you need to consider to
further mitigate your exposure to problems.

See IBM CCA Basic Services Reference and Guide for the IBM 4765 PCle and 4764 PCI-X Cryptographic
Coprocessors manual describes actions you can use in deploying the coprocessor, policies to consider,
application functions to be included.

Read the contents of [Table 14| after you have made initial decisions about your installation.

Table 14. Threat considerations for a digital-signing server

Threat discussion | Threat mitigation

Threats associated with physical attack on the coprocessor

52 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion

Threat mitigation

Physical probing of the coprocessor

An adversary might perform physical probing of the
coprocessor to reveal design information and operational
contents. Such probing might include electrical functions but is
referred to here as physical because it requires direct contact
with the coprocessor internal functions. Physical probing might
entail reading data from the coprocessor through techniques
commonly employed in IC failure analysis and IC
reverse-engineering efforts. The goal of the adversary is to
identify such design details as hardware security mechanisms,
access control mechanisms, authentication systems,
data-protection systems, memory partitioning, or cryptographic
programs. Determination of software design, including
initialization data, passwords, PINs, or cryptographic keys
might also be a goal.

The coprocessor electronics incorporate a sophisticated set of
active tamper-detection sensors and response mechanisms. High
and low temperature, voltage levels and sequencing, radiation,
and physical penetration sensors are designed to detect unusual
environmental situations.

All of the sensitive electronics are enclosed in a physically
shielded package. Upon detecting a potential tamper event, the
coprocessor immediately clears all internal RAM memory, which
also zeroizes keys used to recover sensitive, persistent data from
flash memory. An independent state controller is also reset,
which indicates that the coprocessor is no longer in a
factory-certified condition.

The various tamper sensors are powered from the time of
coprocessor manufacture through the end of life of the
coprocessor. The coprocessor digitally signs a query response
that you can verify to confirm that the coprocessor is genuine
and is not tampered with.

Almost all of the software that runs on the main processor
within the coprocessor is available on the web and is therefore
subject to reverse engineering. However, the coprocessor
validates the digital signatures on code it is requested to accept
so that the code modified by an adversary cannot be loaded into
the coprocessor. The public keys used to validate offered code is
destroyed when a tamper event is recognized.

The design and implementation is being independently
evaluated and certified by the USA NIST under the FIPS PUB
140-2 Level 4 standard.

Note: You must validate the condition of the coprocessor and
the code content.

Physical modification of the coprocessor

An adversary might physically modify the coprocessor to reveal
design or security-related information. This modification might
be achieved through techniques commonly employed in
hardware failure analysis and reverse engineering efforts. The
goal is to identify such design details as hardware-security
mechanisms, access control mechanisms, authentication systems,
data protection systems, memory partitioning, or cryptographic
programs. Determination of software design, including
initialization data, passwords, or cryptographic keys, might also
be a goal.

The sensitive electronics are all packaged within the tamper
responding package mounted on the coprocessor. In the process
of altering the sensitive electronics, the coprocessor factory
certification would be destroyed, rendering the device useless.
Note: Confirm that a specific, serial numbered coprocessor is in
use and audit its status-query response to confirm that it
remains an unaltered IBM coprocessor loaded with appropriate
software.

Environmental manipulation of the coprocessor

An adversary might use environmental conditions beyond those
of the coprocessor specification to obtain or modify data or
program flow for fraudulent coprocessor use. This modification
might include manipulation of power lines, clock rates, or
exposure to high and low temperatures and radiation. As a
result, the coprocessor might get into a situation where
instructions are not correctly executed. As a result,
security-critical data might get modified or disclosed in
contradiction to the security requirements for the coprocessor.

The coprocessor has sensors to detect environmental stresses
that might induce erroneous operation. Abnormal conditions can
cause the unit to zeroize.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

53

Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion

Threat mitigation

Substituted process

Requests to, and responses from, the coprocessor might be
directed to an alternative implementation enabling an adversary
to influence results. An alternative implementation might be
substituted with differing security features. For example, private
key generation and the production of digital signatures might be
performed in an alternative implementation that would enable
exposure of the private key.

Notes:

1. Auditors need to complete the processes described for them
to ensure that the signing key is indeed retained within the
appropriate coprocessor.

2. Access to the host system should be supervised so that host
system security measures and correct operation can be relied
on.

Threats associated with logical attack on the coprocessor

Insertion of faults

An adversary might determine security critical information
through observation of the results of repetitive insertion of
selected data. Insertion of selected input followed by monitoring
the output for changes is a relatively well-known attack method
for cryptographic devices. The intent is to determine
information based on how the coprocessor responds to the
selected input. This threat is distinguished by the deliberate and
repetitive choice and manipulation of input data as opposed to
random selection or manipulation of the physical characteristics
involved in input or output operations.

The electronic design of the coprocessor renders classical
approaches to smart card attacks infeasible.

Note: Supervision of the host system and controlling access to
the system, both logically and physically, are important security
steps to be taken by an organization.

Forced reset

An adversary might force the coprocessor into a nonsecure state
through inappropriate ending of selected operations. Attempts
to generate a nonsecure state in the coprocessor might be made
through premature ending of transactions or communications
between the coprocessor and the host, by insertion of interrupt
function, or by inappropriate use of interface functions.

The coprocessor is designed to always run through its initial
power on sequence in the event of trap and reset conditions.
Each application level request is treated as a separate unit of
work and processed from a single defined set of initial
conditions.

Invalid input

An adversary or authorized user of the coprocessor might
compromise the security features of the coprocessor through the
introduction of invalid input. Invalid input might take the form
of operations that are not formatted correctly, requests for
information beyond register limits, or attempts to find and
execute undocumented commands. The result of such an attack
might be a compromise in the security functions, a generation of
exploitable errors in operation, or the release of protected data.

Transaction requests carry authentication information applied in
the caller's domain and validated by the coprocessor. Each
request is processed from a single, known state with predefined
conditions. The coprocessor software validates the characteristics
of each request to address misuse scenarios.

Data loading malfunction

An adversary might maliciously generate errors in setup data to
compromise the security functions of the coprocessor. During
the stages of coprocessor preparation, which involve loading the
coprocessor with special keys, identification of roles, and so
forth, the data itself might be changed from the intended
information or might be corrupted. Either event could be an
attempt to penetrate the coprocessor security functions or to
expose the security in an unauthorized manner.

Note: As outlined in auditor procedures, the access control
setup should be verified along with confirming the installed
coprocessor software.

Unauthorized program loading

An adversary might use unauthorized programs to penetrate or
modify the security functions of the coprocessor. Unauthorized
programs might include the execution of legitimate programs
not intended for use during normal operation or the
unauthorized loading of programs specifically targeted at
penetration or modification of the security functions.

The coprocessor only accepts digitally signed software after the
signature has been validated. An independent evaluation of
IBM's software build and signing procedures and the
coprocessor design affirms the trust that can be placed in the
identity of loaded software.

Note: An auditor should follow procedures to affirm that
specified software is in use.

Threats associated with control of access

54 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion

Threat mitigation

Invalid access

A user or an adversary of the coprocessor might access
information or services without having permission as defined in
the role profile. Each role has defined privileges that allow
access only to selected services of the coprocessor. Access
beyond those specified services could result in exposure of
secure information.

An auditor can confirm the permissions granted in each
established role and the set of user profiles associated with each
role. An independent evaluation of the coprocessor software
implementation and testing has reviewed the integrity of the
access control implementation.

Fraud on first use

An adversary might gain access to coprocessor information by
unauthorized use of a new, not yet installed, coprocessor. An
adversary might try to get access to a coprocessor during or
directly after the manufacturing process and load fraudulent
software into the coprocessor or modify critical data stored
within the coprocessor during the manufacturing and factory
initialization process before it is shipped to the customer.

IBM's manufacturing and distribution practice ensures that prior
to factory certification the end user of a coprocessor is unknown
and unassigned.

Factory installed software is validated through checking of
digital signatures.
Notes:

1. The standard installation bring up process replaces all of the
runtime coprocessor software.

2. You should ensure that Segments 2 and 3 are unowned
prior to loading coprocessor software for production. This
action ensures that no residual data remains to influence
subsequent operations.

Impersonation

An adversary might gain access to coprocessor information or
services by impersonating an authorized user of the coprocessor.
The coprocessor is required to define certain roles including the
required authentication mechanism and the services the role is
allowed to use. An adversary might try to impersonate an
authorized user, operating within a defined, to get access to
information or perform services allowed for the authorized user.

The two user classes follow:

1. (IBM) Coprocessor code signer: An independent evaluation
of IBM's procedure for building and signing code assures
that legitimate code can be identified by a user's auditor.

2. The CCA access control design protects the integrity and
confidentiality of a user access control passphrase from the
domain of the user process into the coprocessor. The correct
passphrase and profile identification grant use of a role.
Note: Host system security, host system application design,
and administrative policies are required to assure that a
designated user's passphrase is secure.

Threats associated with unanticipated interactions

Use of disallowed application functions

An adversary might exploit interactions between applications to
expose sensitive coprocessor or user data. Interactions might
include the execution of commands that are not required or
allowed in the specific application being performed. Examples
include the use of functions related to master key management
or functions related to symmetric encryption or financial
services. Those functions should not have any negative impact
on the coprocessor functions required for the digital signing
application.

The coprocessor design requires you to configure the access
control setup. The CCA software has been examined to ensure
that functions are disallowed when required commands are not
enabled.

Notes:

1. Your access control configuration should follow the
principles discussed in Appendix H of the IBM CCA Basic
Services Reference and Guide for the IBM 4765 PCle and 4764
PCI-X Cryptographic Coprocessors Redbooks publication such
that only the functions needed for the operational phase can
be invoked in this phase.

2. For the digital signing application, establish guidelines for a
set of roles with very limited capabilities and a setup
sequence that restricts the coprocessor functionality to that
essential for digital signing.

In some installations, it might be desirable to accommodate a
different approach to roles or to consider the functions of
additional applications, or both. In these cases, ensure that
you review the guidelines and observations in Appendix H
of the IBM CCA Basic Services Reference and Guide for the IBM
4765 PCle and 4764 PCI-X Cryptographic Coprocessors
Redbooks publication for applicability to your circumstances.

Threats regarding cryptographic functions

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

55

Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion

Threat mitigation

Cryptographic attack

An adversary might defeat security functions through a
cryptographic attack against the algorithm or through a brute
force attack. This attack might include either signature
generation and verification functions or random number
generators.

The coprocessor implements well established and standardized
cryptographic functions.

The random-number generation implementation has been
subjected to extensive evaluation under criteria published by the
USA NIST and the German Information Security Agency
(German Bundesamt fur f3r Sicherhert in der Informations
Technik or German BSI).

The secrecy afforded retained private keys is the subject of an
independent evaluation. These design and implementation steps
provide assurance against cryptographic attack.

Note: For a digital signing server, see the guidelines in
Appendix H of the IBM CCA Basic Services Reference and Guide
for the IBM 4765 PCle and 4764 PCI-X Cryptographic Coprocessors
Redbooks publication.

Threats regarding digital signatures

Forging signed data

An adversary might modify data digitally signed by the
coprocessor such that this modification is not detectable by the
signatory nor a third party. This attack might use weaknesses in
the secure hash function, weaknesses in the signature encoding,
or weaknesses in the cryptographic algorithm used to generate a
forged signature.

The coprocessor implements well established and standardized
cryptographic functions.
Notes:

1. Precautions in the use of CCA should be observed as
documented in Appendix H of the IBM CCA Basic Services
Reference and Guide for the IBM 4765 PCle and 4764 PCI-X
Cryptographic Coprocessors Redbooks publication.

2. Users should maintain an awareness of vulnerabilities
discussed in (open) forums regarding the strength of
cryptographic algorithms and processes they employ.

Forging data before it is signed

An adversary might modify data to be digitally signed by the
coprocessor before the signature is generated within the
coprocessor. This attack might use weaknesses in the
implementation that allow an adversary to modify data
transmitted for signature to the coprocessor before the
coprocessor actually calculates the signature.

Requests from user host-application process memory carry an
integrity check value that the coprocessor confirms prior to
incorporating the hash in a digital signature.

Note: Users must review host-system and host-application
program security to ensure that authenticated hash values
received into the coprocessor have not been compromised and
are representative of the data to be protected.

Misuse of signature function

An adversary might misuse the coprocessor signature creation
function to sign data that the coprocessor is not supposed to

sign.

The adversary might try to submit data to the coprocessor and
get it signed without passing the authorization checks of the
coprocessor that perform before generating a digital signature.

As an alternative, an adversary might try to modify data within
the coprocessor through the use of coprocessor functions or by
trying to influence the coprocessor such that the data in the
coprocessor gets modified.

An independent review of the coprocessor software is expected

to affirm that:

* The digital signature generation service requires an
appropriate permission in a role.

* The processing of requests and the integrity of the design
prevent data alteration.

Notes:

1. The integrity of the coprocessor and its code must be
affirmed by an auditor who reviews a coprocessor status
query.

2. An auditor must confirm that appropriate access control
roles and profiles have been established that exclude
unauthorized users from use of the digital signing function.

56 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion

Threat mitigation

Forging signature-verification function

An adversary might modify the function for signature
verification such that a false signature is accepted as valid. This
attack might try to modify the signature verification function or
signed data to be verified such that the coprocessor returns a
success message when this false signature is presented for
verification.

The signature-verification function of primary interest here
occurs in the coprocessor's code loading process (in Miniboot).
With this product:

* Miniboot code, like the control program and (CCA)
application program code, is only accepted into the
coprocessor when the coprocessor validates the signature on
the signed code.

* The initial Miniboot code loaded in the factory is also subject
to digital signature verification.

» Standardized cryptographic processes are used (SHA-1, RSA,
ISO 9796) for the signature.

* The code building and signing process are the subject of an
independent review.

Disclosure of a private RSA signature key

An adversary might use functions that disclose a private RSA
signature key.

An independent evaluation is expected to affirm that the CCA
Support Program does not contain any function to output or
reveal the value of a retained private key. Certified evaluations
are expected to demonstrate that the control program does not
output data retained in coprocessor persistent storage nor is
there any lower-level function to read such storage.

Deleting a private RSA signature key

An adversary might use a function that deletes a private RSA
signature key without being authorized to do so and without
physically tampering with the coprocessor.

Independent evaluations are expected to affirm that a retained
private key is only deleted in the following circumstances:

1. Under CCA control with the Retained_Key_Delete verb
2. By loading the coprocessor CCA software*
3. By removing the coprocessor CCA software

4. By causing a tamper event

Notes: To address these exposures takes these actions:

1. Selectively enable the Delete Retained Key command,
X'0203".

2. Use host system access controls to manage use of the CLU.

3. Manage physical access to the coprocessor.

* Reloading the coprocessor software with a file such as
CEXxxxxx.clu does not zeroize the contents of persistent storage.
The file CNWxxxxx.clu will zeroize persistent storage. See

“Loading and Unloading software into the coprocessor” on page|

6.

Threats that monitor information

Information leakage

An adversary might make use of information that is leaked
from the coprocessor during normal use. Information leakage
might occur through emanations, variations in power
consumption, I/O characteristics, clock frequency, or by changes
in processing time requirements. This leakage might be
interpreted as a covert channel transmission but is more closely
related to measurement of operating parameters, which might
be derived either from direct (contact) measurements or
measurement of emanations and can then be related to the
specific operation being performed.

Practical means to interpret information leakage are the subject
of ongoing research in commercial and governmental
laboratories. An in-depth defense should include limiting access
to the cryptographic environment and restrictions on the use of
specialized equipment in and near the cryptographic
environment.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

57

Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion

Threat mitigation

Linkage of multiple observations

An adversary might observe multiple uses of resources or
services and, by linking these observations, deduce information
that would reveal critical security information. The combination
of observations over a period of many uses of the coprocessor,
or the integration of knowledge gained from observing different
operations, might reveal information that allows an adversary to
either learn information directly or to formulate an attack that
could further reveal information that the coprocessor is required
to keep secret.

Notes:

1. Use of the cryptographic equipment should be controlled,
including following the guidelines in Appendix H of the
IBM CCA Basic Services Reference and Guide for the IBM 4765
PCle and 4764 PCI-X Cryptographic Coprocessors Redbooks
publication.

2. An adversary might well have access to the signed data and
signatures, so controls should be put in place to limit a
user's ability to submit arbitrary signing requests.

3. The use of standardized cryptographic procedures and
monitoring of the cryptographic community's understanding
of the vulnerabilities of these processes (SHA-1, RSA,

ISO 9796, X9.31, HMAC, and triple-DES) can provide
assurance of secure operation.

Miscellaneous threats

Linked attacks

An adversary might perform successive attacks with the result
that the coprocessor becomes unstable or some aspect of the
security functions is degraded. A following attack might then be
successfully executed. Monitoring outputs while manipulating
inputs in the presence of environmental stress is an example of
a linked attack.

Notes:

Use of the cryptographic system should be limited to
authorized situations enforced through the coprocessor
access controls and through use of host system controls.

Host-system controls and organizational policies should
restrict the access to the system for monitoring and the
submission of arbitrary requests.

Repetitive attack

An adversary might utilize repetitive undetected attempts at
penetration to expose memory contents or to change security
critical elements in the coprocessor. Repetitive attempts related
to some or all of the other threats discussed herein might be
used to iteratively develop an effective penetration of the
coprocessor security. If these attacks can, in all cases, remain
undetected, there will be no warning of increased vulnerability.

Note: Use of the cryptographic system should be limited to
authorized situations enforced through the coprocessor access
controls and through use of host system controls. Host system
controls and organizational policies should restrict the access to
the system for monitoring and the submission of arbitrary
requests.

Cloning

An adversary might clone part or all of a functional coprocessor
to develop further attacks. The information necessary to
successfully clone part or all of a coprocessor might derive from
a detailed inspection of the coprocessor itself or from illicit
appropriation of design information.

Note: Auditors must confirm that the digital signing key,
appropriate code, and access control regime is resident in the
authorized coprocessor.

Threats addressed by the operating environment

Coprocessor modification and reuse

An adversary might use a modified coprocessor to masquerade
as an original coprocessor so that information assets can be
fraudulently accessed. Removal, modification, and re-insertion
of that coprocessor into a host system could be used to pass
such a combination as an original. This might then be used to
access or change the private signature keys or other security
critical information to be protected.

Notes:

1. An auditor must confirm through examination of a
coprocessor signed query response that the device is genuine
and that the appropriate code is loaded.

2. The auditor must also confirm that the digital signing key is
a retained key in the coprocessor.

Abuse by privileged users

A careless, willfully negligent, or hostile administrator or other
privileged user might create a compromise of the coprocessor
assets through execution of actions that expose the security
functions or the protected data. A privileged user or
administrator could directly implement or facilitate attacks
based on any of the threats described here.

Note: An organization must establish, enforce, and audit
policies that limit the access that a single individual has to the
cryptographic system. The setup procedure must ensure that a
single user does not have the opportunity to bring an
inappropriate system into production.

58 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Table 14. Threat considerations for a digital-signing server (continued)

Threat discussion

Threat mitigation

Data modification

Data to be signed by the coprocessor might be modified by an
adversary or by faults in the operational environment after it
has been approved by the legitimate user, but before the data is
submitted to the coprocessor to be signed. Data that has been
approved by the legitimate user to be signed might be modified
by an adversary, by false or malicious programs, or by
environmental errors (for example, transmission errors) after the
data has been approved by the legitimate user and before the
data is transferred to the coprocessor to be signed.

Note: Host system security precautions and organization
policies must be defined, enforced, and audited to thwart such
attacks.

Data verification

Signed data to be verified by the coprocessor might be modified
by an adversary or by faults in the operational environment
before it is submitted to the coprocessor for signature
verification such that the response of the coprocessor does not
reflect the validity of the signature. Signed data submitted by a
user might be modified within the coprocessor environment
before it is passed to the coprocessor for verification. This might
result in a response from the coprocessor that does not reflect
the actual validity of the digital signature that should be
verified.

There is also the possibility that the response of the coprocessor
is modified in the coprocessor environment before it is passed to
the user that requested the signature verification.

The coprocessor verifies the signature on code and certain code
loading commands. An independent evaluation is expected to
confirm that this cannot be bypassed.

The CCA design supports validation of the integrity of requests
and responses between the coprocessor and the top layer of
CCA code in the host system.

Note: Host-system security measures must address blocking the
modification of request inputs and outputs.

IBM Cryptographic Coprocessor notices

IBM Cryptographic Coprocessor notices includes 3 notices that provide guidelines for safe disposal of

electronic components.

Product recycling and disposal

This unit contains materials such as circuit boards, cables, electromagnetic compatibility gaskets and
connectors that might contain lead and copper/beryllium alloys that require special handling and
disposal at end of life. Before this unit is disposed of, these materials must be removed and recycled or
discarded according to applicable regulations. IBM offers product-return programs in several countries.
Information on product recycling offerings can be found on IBM Internet site at http://www.ibm.com/
ibm/environment/products/prp.shtml IBM encourages owners of information technology (IT) equipment
to responsibly recycle their equipment when it is no longer needed. IBM offers a variety of programs and
services to assist equipment owners in recycling their IT products. Information on product recycling

offerings can be found on IBM's Internet site at:

http:/ /www.ibm.com/ibm/environment/products/prp.shtml

Notice: This mark applies only to countries within the European Union (EU) and Norway. Appliances are
labeled in accordance with European Directive 2002/96/EC concerning waste electrical and electronic
equipment (WEEE). The Directive determines the framework for the return and recycling of used
appliances as applicable throughout the European Union. This label is applied to various products to
indicate that the product is not to be thrown away, but rather reclaimed upon end of life per this

Directive.

4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

59

Battery return program

This product may contain sealed lead acid, nickel cadmium, nickel metal hydride, lithium, or lithium ion
battery. Consult your user manual or service manual for specific battery information. The battery must be
recycled or disposed of properly. Recycling facilities may not be available in your area. For information
on disposal of batteries outside the United States, go to http://www.ibm.com/ibm/environment/
products/batteryrecycle.shtml or contact your local waste disposal facility. In the United States, IBM has
established a return process for reuse, recycling, or proper disposal of used IBM sealed lead acid, nickel
cadmium, nickel metal hydride, and other battery packs from IBM Equipment. For information on proper
disposal of these batteries, contact IBM at 1-800-426-4333. Please have the IBM part number listed on the
battery available prior to your call.

For Taiwan: Please recycle batteries.

IBM Cryptographic Coprocessor card return program

This machine may contain an optional feature, the cryptographic coprocessor card which includes a
polyurethane material that contains mercury. Please follow Local Ordinances or regulations for disposal
of this card. IBM has established a return program for certain IBM Cryptographic Coprocessor cards.

More information can be found at:

http:/www.ibm.com/ibm/environment/products/prp.shtml

60 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 2015, 2016 61

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

62 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Privacy policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at |http:/ /www.ibm.com/privacy|and IBM’s Online Privacy Statement at

http:/ /www.ibm.com /privacy /details| the section entitled “Cookies, Web Beacons and Other
Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http:/ /www.ibm.com /software /info/product-privacy}

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information|at www.ibm.com /legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Windows is a trademark of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 63

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

64 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

Index
A

Access control system
Initial state 26
AIX file permissions 5
AIX Hardware and Software requirements 6
application programs
compile 38
link to CCA 38
auto-set, master key 32

B

batteries, coprocessor
status 25

C

C programming language
sample routine 38
verb calls 37
Caching , keys
AES 42
DES 42
PKA 42
choosing among coprocessors 23
clock-calendars, synchronization 24
Cloning
Access control considerations 50
Cloning a DES or PKA master key 21
cloning a master key 44
CNI list 17
CNI utility (CCA node initialization utility)
using, node setup 36
CNM (CCA node management utility)
configure 24
defaults 24
CNM and CNI overview
CCA node initialization utility 16
CCA node management utility 16
compile, application programs 38
coprocessor
status, batteries 25
create
key label 34
master key 32
Creating and storing primary DES KEKs 35
Cryptographic Coprocessor notices 59
cryptographic key management 31

D

default role
description 25
default-role
initial use 42
delete
user profile 30
description
default role 25

© Copyright IBM Corp. 2015, 2016

description (continued)
KEKs 31
master key 31

E

edit
profile 29
role 28

establish owner command 12
Establishing the SA node 47
Establishing the source node 47

F

File permissions 6
function-control vector
load 24

initial use, default role 42

initialization of the CCA node 23

Installing the Support Program
Prerequisites 3

K

KEKs
description 31
primary 31
key label, create 34
key management, cryptographic 31
key storage
delete keys 34
key label, create 34
reencipher 34

L

link to CCA, application programs 38
load coprocessor software 12
surrender owner command 12
Loading coprocessor software 7
Logging on and off the node 24
logon-attempt-failure count, reset 30

M

machine-readable log 43
make-file 38
management
cryptographic key 31
master key 31
Managing key storage 34
master key
auto-set 32
description 31

65

master key (continued)

management 31

registers 31

verification 32
master-key administration 31
Multithreading and multiprocessing 42

N

node
setup, production environment 19
setup, test 18

O

ordering
overview 1
Overview of cloning a master key 44

P

performance, enhancing 42
permit, access control commands 26
Preparing and loading key parts 20
profile

modify 29

R

reencipher stored keys 34
registers, master key 31
Removing the Support Program 5
reset logon-attempt-failure count 30
restrict, access control commands 26
Reviewing coprocessor hardware errors 5
role

modify 28

S

sample routine, C programming language
make-file 38
source code 38
syntax 38
security relevant data item (SRDI) 12
setup
production-environment node 19
test node 18
status, batteries 25
stored keys, reencipher 34
synchronization, clock-calendars 24
syntax
verb calls, C programming language 37

T

test setup, node 18
threat considerations, digital-signing server 52
throughput, enhancing 42

U

Unloading coprocessor software 11

user profile

delete 30

reset logon-attempt-failure count 30
Using CNM and CNI utilities 16
Using CNM Utility 23
utilities

CNI 36

\'}

Validating the coprocessor segment contents
verb calls, C programming language 37
verification, master key 32

V4

zeroization of the CCA node 23

66 AIX Version 7.2: 4765 PCle Cryptographic Coprocessor AIX CCA Support Program Installation 4.4

10

Printed in USA

	Contents
	About this document
	Audience
	Related publications

	4765 PCIe Cryptographic Coprocessor AIX CCA Support Program Installation 4.4
	Support Program installation process overview
	Obtaining coprocessor hardware and software
	Installing the Support Program
	Installing the Support Program base release 4.4
	Configuring the Support Program
	CCA Support Program and AIX file permissions
	Reviewing coprocessor hardware errors
	Removing the Support Program
	AIX hardware and software requirements
	File permissions

	Loading and Unloading software into the coprocessor
	Loading coprocessor software
	Changing the default directory and running the CLU
	Determining coprocessor software segment contents
	Changing software segment contents
	Validating the coprocessor segment contents

	Unloading coprocessor software and zeroize the CCA node
	Coprocessor Load Utility (CLU) reference
	Coprocessor memory segments
	Validating the coprocessor software loads
	Coprocessor Load Utility syntax
	Coprocessor Load Utility return codes

	Managing the cryptographic node by using the CNM and CNI utilities
	CNM and CNI overview
	Scenarios: Using the CNM and the CNI utilities
	Scenario: Creating a test node
	Scenario: Creating nodes in a production environment
	Scenario: Cloning a DES or PKA master key

	Using the CNM utility functions
	Selecting a specific coprocessor
	Initializing the node
	Logging on and logging off the node
	Loading the function-control vector
	Configuring the CCA Node Management utility
	Synchronizing the clock and calendars
	Obtaining status information of the CCA application

	Creating and managing access control data
	Access control overview
	Initial state of the access control system
	Creating a role
	Modifying existing roles
	Creating a user profile
	Modifying existing profile
	Initializing the access control system

	Managing cryptographic keys
	Managing the master keys
	Managing key storage
	Creating and storing primary DES KEKs

	Creating other nodes by using the CNI utility

	Building applications to use with the CCA API
	Overview of CCA verbs
	Calling CCA verbs in C program syntax
	Compiling and linking CCA application programs
	Sample C routine: Generating a MAC
	Enhancing throughput with CCA and the 4765 coprocessor
	Multithreading and multiprocessing
	Caching DES, PKA, and AES keys

	Initial default-role commands
	Machine-readable log contents
	Device driver error codes
	Cloning a master key
	Overview of cloning a master key
	Phase 1 for cloning a master key: Establishing the share administration node
	Phase 2 for cloning a master key: Establishing the source node
	Phase 3 for cloning a master key: Establishing the target node and cloning a master key

	Access control considerations when cloning

	Threat considerations for a digital-signing server
	IBM Cryptographic Coprocessor notices

	Notices
	Privacy policy considerations
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	Z

