

Welcome to:

POWER Systems Micro-Partitioning Part 2

Janel Barfield jgbarfie@us.ibm.com

Objectives

- Use AIX commands to view partition configuration and processor performance information
- Describe performance considerations when configuring Micro-Partitioning options
- Configure a partition using the advanced processor options

Viewing Processor Information

• Processors are seen with the lsdev command -lsdev shows *physical* or *virtual* processors

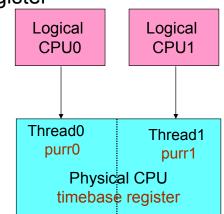
lsdev -Cc processor proc0 Available 00-00 Processor proc2 Available 00-02 Processor

• Processor attributes are seen with the lsattr command

# lsattr -El proc0										
frequency	1656000000	Processor	Speed	False						
<pre>smt_enabled</pre>	true	Processor	SMT enabled	False						
<pre>smt_threads</pre>	2	Processor	SMT threads	False						
state	enable	Processor	state	False						
type	PowerPC_POWER5	Processor	type	False						

- Logical processors are seen with the **bindprocessor** command
 - # bindprocessor -q

The available processors are: 0 1 2 3


© Copyright IBM Corporation 2009

Traditional CPU Utilization Statistics

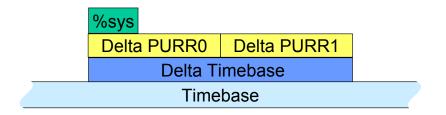
- Data collection is sample based
- 100 samples per second sorted into the following categories:
 - user
 - sys
 - iowait
 - idle
- Each sample corresponds to a 10 ms clock tick
- Recorded in the kernel data structures: sysinfo and cpuinfo
- Performance tools convert:
 - Tick counts from the sysinfo structure into utilization percentages for the machine/partition (e.g., vmstat, iostat, sar)
 - Tick counts from the cpuinfo structure into utilization percentages for a processor/thread (e.g., sar -P ALL, topas hot CPU section)

Processor Utilization of Resources Register (PURR)

- Traditional utilization metrics are misleading:
 - They think there are two physical processors
 - In AIX 5L V5.3, the number of dispatch cycles for each thread can be measured using a new processor utilization of resources register (PURR)
- Two PURR registers (one for each hardware thread)
- Units are the same as the timebase register
- Sum of the PURR values for both threads is equal to the timebase register

CPU Utilization

- In a simultaneous multi-threaded environment and/or a Micro-Partition, CPU utilization statistics:
 - Still collect 100 samples per second (for binary compatibility)
 - Collect additional state-based PURR-based metrics (in PURR increments)
- Utilization metrics:
 - Same categories are used: user, sys, iowait, and idle
 - Physical resource utilization metrics for a logical processor:
 - (delta PURR/delta TB) represents the fraction of the physical processor consumed by a logical processor
 - (delta PURR/delta TB)*100 over an interval represents the percentage of dispatch cycles given to a logical processor

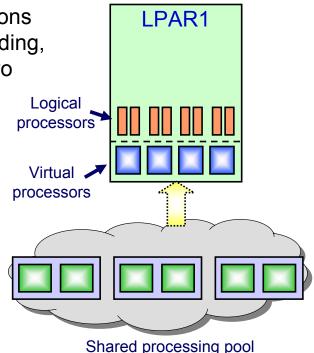

CPU Utilization Example

- Assume:
 - Two threads running on a single CPU system with simultaneous multi-threading enabled
 - -One thread is 100% busy, the second one is idle:
 - Traditional, sample-based collection method would (incorrectly) show the system as 50% busy
 - New, state-based (PURR) collection method would (correctly) show the system as 100% busy

- Physical CPU utilization metrics are calculated using PURR statistics:
 - For example:

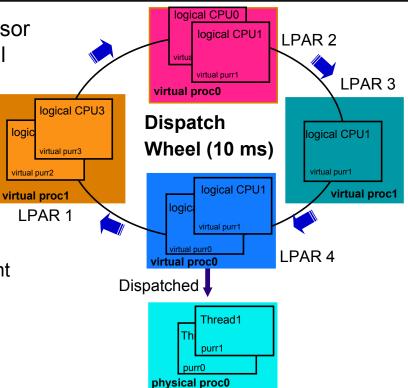
%sys = (delta PURR in system mode/delta PURR in all modes)*100

• For example, if a logical processor runs for 4 ms, and it was in system mode for 1 ms, %sys would report 25



Additional CPU Utilization Metrics

- Physical Processor Consumed (PPC) = sum(delta PURR/delta TB)
 - This is how much physical processor time was consumed for each logical processor
 - Dedicated partitions will always show all processors consumed (because even if idle, it's being "consumed" by the partition)
 - Micro-Partitions show actual portions of physical processors consumed because a virtual processor gives up its excess cycles
- Micro-Partitions only:
 - Percentage of entitlement consumed = (PPC/ENT)*100
 - Available physical processors = (delta PIC/delta TB)
 - PIC = Pool Idle Count (Delta PURR when no VPs are dispatched):
 - All partition entitlements satisfied
 - No partition to dispatch
 - Logical processor utilization (%lbusy):
 - Sum of %sys and %user


Simultaneous Multi-Threading and SPLPARs

- Simultaneous multi-threading can be used with Micro-Partitions
- With simultaneous multi-threading, each virtual processor runs two threads
 - Each thread is called a logical processor
- LPAR1 example:
 - -1.6 processing units
 - -4 virtual processors
 - Simultaneous multi-threading enabled
 - 8 logical processors

Metrics with Simultaneous Multi-Threading and SPLPAR

- Each virtual processor supports two logical processors
 - Dispatched at the same time
- PURR statistic
 - Still measures fraction of time partition runs on a physical processor (the relative amount of processing units consumed)

© Copyright IBM Corporation 2009

Viewing Partition Information (1 of 2)

•lparstat -i command

\$ lparstat -i

Node Name	:	lou162
Partition Name	:	LPAR2
Partition Number	:	2
Туре	:	Shared-SMT
Mode	:	Capped
Entitled Capacity	:	0.50
Partition Group-ID	:	32770
Shared Pool ID	:	0
Online Virtual CPUs	:	1
Maximum Virtual CPUs	:	2
Minimum Virtual CPUs	:	1
Online Memory	:	1280 MB
Maximum Memory	:	1536 MB
Minimum Memory	:	1024 MB
Variable Capacity Weight	:	0
Minimum Capacity	:	0.10
Maximum Capacity	:	1.00
Capacity Increment	:	0.01
Maximum Physical CPUs in system	:	2
Active Physical CPUs in system	:	2
Active CPUs in Pool	:	2
Unallocated Capacity	:	0.00
Physical CPU Percentage	:	50.00%
Unallocated Weight	:	0

© Copyright IBM Corporation 2009

Viewing Partition Information (2 of 2)

The HMC lshwres command

```
lshwres -r proc -m mansys --filter "lpar_names=LPAR" --level lpar
Managed Partition Name
System Name
```

```
hscroot@hmc:~> lshwres -r proc -m sputnik --filter \
"lpar_names=LPAR2" --level lpar -F curr_proc_units,curr_procs \
--header
curr_proc_units,curr_procs
0.6,6
```

AIX SPLPAR Tool Impact (1 of 2)

- SPLPAR tool impact:
 - Many standard AIX analysis tools and the Perfstat library have been enhanced to use the new Processor Utilization of Resources Register (PURR) or Scalable Processor Utilization of Resources Register (SPURR) in POWER6 systems
 - Additional metrics have been added
 - New tools have been added such as lparstat and mpstat
- **lparstat** is an easy way to view partition's configuration and processor usage:

(# lpa:	rstat									
			igurat size=2			hared	mode=Ca	apped	smt=O	n lcpı	4=1
	%user	%sys	%wait	%idle	physc	%entc	lbusy	app	VCSW	phint	
	0.1	0.1	0.0	99.8	0.00	0.3	0.0	1.99	580	0	

AIX SPLPAR Tool Impact (2 of 2)

•vmstat, iostat, sar:

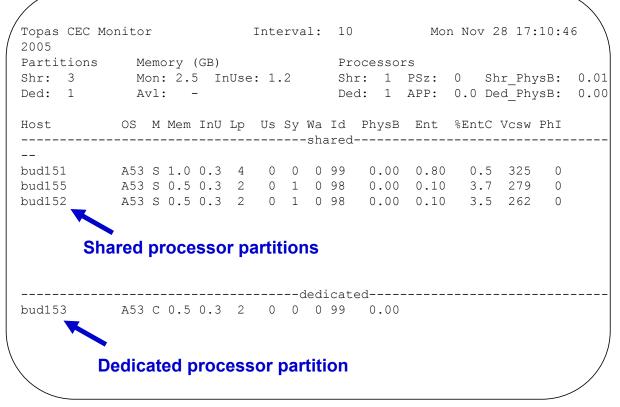
- Automatically use new PURR-based metrics for %user, %sys, %wait,
 %idle with simultaneous multi-threading or shared processor partitions
- New metrics:
 - Physical Processor Consumed (pc or physc) by the partition
 - Percentage of Entitlement Consumed (**pec** or **%entc**) by the partition which can go as high as 1000% for uncapped partitions
- •mpstat can be used to monitor logical and virtual processor activity
- •topas -L adds LPAR view (shows new metrics)
- Additional tools such as trace-based tools can utilize additional metrics

Using sar with SPLPAR (1 of 2)

		2			1.0 -	'dle	<u>ę.</u>	
AIX train	n172 3	5 00C88	F7D4C00	03/01	_/05		System	
System co	onfigu	ration:	lcpu=2	ent=1.00			-10	
20:20:57	cpu	%usr	%sys	%wio	%idle	physc	%entc	
20:20:58	0	23	58	0	19	0.01	0.7	
	1	0	2	0	98	0.00	0.2	
	U	-	_	0	99	0.99	99.1	
	-	0	0	0	99	0.01	0.9	
20:20:59	0	15	60	0	25	0.01	0.5	
	1	0	2	0	98	0.00	0.2	
	U	-	-	0	99	0.99	99.3	
	-	0	0	0	100	0.01	0.7	
Average	0	20	59	0	21	0.01	0.6	
	1	0	2	0	98	0.00	0.2	
	U	-	-	0	99	0.99	99.2	
	-	0	0	0	100	0.01	0.8	

Using sar with SPLPAR (2 of 2)

# sar -P AIX bud1	ALL 1 1 52 3 5 C		4C00	03/21/0	6	Busy Sys						
System co	onfigura	tion: l	cpu=4 e	nt=0.80			stem					
16:19:23	cpu	%usr	%sys	%wio		physc	%entc					
16:19:24	0	0	7	0	93	0.03	3.3					
	1	100	0	0	0	0.37	46.8					
	2	100	0	0	0	0.38	46.9					
	3	0	1	0	99	0.02	3.1					
	-	94	0	0	6	0.80	100.0					
# mpstat -s 1 1 System configuration: lcpu=4 ent=0.8												
Prod		Pr										
39.9	99%	39	.76%									
-	cpu1	-	-									
2.55%	37.45%	37.57%	2.19	00			/					


topas - Example Main Screen

/	/ Topas Mo	nitor	for bo	<t•< th=""><th>bud1</th><th>51</th><th></th><th>EVENTS/QUEU</th><th>IES</th><th>FILE/TTY</th><th></th></t•<>	bud1	51		EVENTS/QUEU	IES	FILE/TTY	
·	Wed Nov					rval: 2	>	Cswitch	260	Readch	1078
	wea nov	25 20.	23.20	2005	Ince.	LVUI. 2	-	Syscall	261	Writech	161
	Kernel	0.2	#					Reads	201	Rawin	101
				ппппп	цппппп.	ппппппп	пттттт (1		
	User	99.6	# # #	# # # # # #	+ # # # # # •	######	+++++++	Writes	-	Ttyout	162
	Wait	0.0						Forks	0	Igets	0
i.	Idle	0.2	#					Execs	0	Namei	0
	Physc =	0.80				%Ento	c = 100.0	Runqueue	8.0	Dirblk	0
								Waitqueue	0.0		
	Network	KBPS	I-Pa	ck O-	-Pack	KB-In	KB-Out				
	en0	0.3	2	.5	0.5	0.1	0.2	PAGING		MEMORY	
	100	0.1	1	.0	1.0	0.1	0.1	Faults	0	Real,MB	1024
								Steals	0	% Comp	28.0
	Disk	Busy%	KB	PS	TPS 1	KB-Read	KB-Writ	PgspIn	0	% Noncomp	3.9
	hdisk0	0.0	0	.0	0.0	0.0	0.0	PgspOut	0	% Client	4.7
								PageIn	0		
	Name		PID	CPU%	PgSp	Owner		PageOut	0	PAGING SPA	CE
	spload	2	21394	39.8	1.3	root		Sios	0	Size,MB	512
	topas	1	88422	0.0	1.1	root				% Used	1.0
	qil		65568	0.0		root		NFS (calls/	(sec)	% Free	98.9
	aixmibd		37726	0.0		root		ServerV2	0		
	rpc.lock		47580	0.0		root		ClientV2	0	Press:	
	rmcd		.76292	0.0		root		ServerV3	0	"h" for	heln
	snmpdv3n		258276	0.0		root		ClientV3	0	"q" to q	-
	Simpavon	2	.50270	0.0	1.0	TOOL		CITEUCAR	0	y to y	uru

Partition Data with topas -L

Psize Ent:	val: 2 2 0.80		5		Share	n: LPA ed SMI e: Cap	10				Onli Onli	ne 1 ne 1	Memo: Logic		
%usr	%sys %			nysc %e							phint	%hy		hcal	
Cpu0	minpf 0 0 0 0	0 0 0	intr 263 106 10 10	134 112	119 103	2 2	100 100	9 12	991 231	L O O L O O O	0 0 23	0 0	0 0 77	pc 0.41 0.39 0.00 0.00	100
															/

Cross Partition Data with topas -C

© Copyright IBM Corporation 2009

Micro-Partitioning and Applications

- Applications do not need to be aware of Micro-Partitioning
- Applications that may not benefit from Micro-Partitioning:
 - Applications with a strong response time requirement for transactions may find Micro-Partitioning detrimental:
 - Because virtual processors can be dispatched at various times during a timeslice
 - May result in longer response time with too many virtual processors:
 - Each virtual processor with a small entitled capacity is in effect a slower CPU
 - Compensate with more entitled capacity (2-5% PUs over plan)
 - Applications with polling behavior
 - CPU intensive application examples: DSS, HPC
- Applications that are good candidates for Micro-Partitioning:
 - Ones with low average CPU utilization, with high peaks:
 - Examples: OLTP, web applications, mail server, directory servers