

Email 1 from Jim

My VM has

Entitlement of 8 CPUs uncapped, Virtual Processors (VP) at 10 and SMT=4

so why with only a 20 users online out of 40, is it using 8 physical CPU cores already?

Answer 1 → E=8 VP=10 uncapped 20 users

- You set VP=10 which states: "You are happy for the VM to use 10 whole CPUs"
- AIX default behaviour is to use all the VPs for maximum performance
- If VP is 10 then as workload grows it will use up all 10 CPU cores quickly
- AIX first uses SMT thread 1 on all 10 CPU cores before allocating work to the 2nd SMT thread, ditto 3rd & 4th SMT threads

Answer 1 → E=8 VP=10 uncapped 20 users

With just

- 10 busy processes or
- -20 processes using an average of half a CPU each
- -30 processes using an average of a third a CPU each

- . . .

Then all 10 virtual processors =10 CPU cores are used

The CPU cores are 100% allocated to this VM's use

That is what you asked for (VP=10) & what you got

Answer 1 → E=8 VP=10 uncapped 20 users

But you can still use the 2nd, 3rd & 4th

SMT threads to get more work done

Ball park guess 40% to 60% more, depending on the application instructions

Can we see this on the machine?

- Quick reminder
 - SMT threads are reported as Logical CPUs
 - SMT = Simultaneous Multi-Threading threads
 - Virtual Processor map to physical CPU core (when running)
 - If SMT=4 then 1 VP shows up as 4 Logical CPUs
 - Intelligent SMT threads = dynamic switch SMT mode

Answer 1 for Jim

This is expected behaviour

Go check your spare SMT capacity + Run Queue size

I suspect you will have the resources needed for the other users

Email 2 from Jane

- Power 770 is 85+% busy
- Vital LPAR settings E=0.4 VP=4 uncapped
 - Compared to POWER6
 - → E reduced & VP=Same plus consolidation
- Performance is slow, application seems to hang and the users are revolting!

Answer 2a → Pool 85+% busy E=0.4 VP=4

- I liken this set up to my son just passing his driving test & I would like him to stay below 40 MPH, so I set the governor on the accelerator to 400 MPH, so he can overtake safely!
- Doh!
- Obviously dumb
 - He does not need that size safety margin

Email 2 from Jane

- Power 770 is 85+% busy
- Vital LPAR settings E=0.4 VP=4
 - -Same as our POWER6 machine
- Only Entitlement = 0.4 → guaranteed
- Virtual Processor = 4 → LPAR can be spread out

Answer 2b → Pool 85+% busy E=0.4 VP=4

- Jane: How much Physical CPU time is it getting?
 - Answer: about 1.2 physical CPU cores.
- How much spare capacity in the shared CPU pool?
 - Answer: very little

Answer 2b → Pool 85+% busy E=0.4 VP=4

- Jane: How much Physical CPU time is it getting?
 - Answer: about 1.2 physical CPU cores.
- How much spare capacity in the shared CPU pool?
 - Answer: very little
- If this is an important LPAR put the Entitlement up to cover the demand CPU peaks like E=1.5
 - Result: sudden & dramatic leap in performance, responsiveness & zero user problems
- Next consider reducing the VP !!!!
 - Yes I am serious VP is too high = not efficient

Email 5 from Bob

- Can you review our whole machines LPAR settings & recommend what to do?
- Then the details arrive in many bizarre formats
 - Spreadsheets
 - Hand written notes/documents
 - Screen grabs of HMC
 - Camera pictures of HMC screens!!!

Best tools → whole machine review

- 1. Systems Plans from the HMC
 - -Large PDF is a bit of a pain if 100's of LPARs & profiles
- 2. Reports
 - -Hand made or Automated via HMC commands
- 3. **HMCscanner** → free AIX wiki download

-Very cool, guick, Java extracts from HMC to a spread sheet

	_	_	Vist/Ohrea names			Entitlement					Charad Band			
Name	Status	Mode	Virt/Phys procs Min Curr Max						Weight	Sharing Mode	Shared Pool Name Resv Max		E:VP %	
purple12 IBMi	Off	shared	101111	Cuii	IVIAX	0.50	6.50	2.00		сар	DefaultPool	resv	IVIAX	123.0
purple 12 IDIVII purple 11-AIX7sp1	Off	shared	- 1	- 0	- 2	0.30	0.50	5.00		uncap	DefaultPool	-		MicroLP/
purple10 RH55	Off	shared	- 1	- 1	2	0.20	0.40	0.50		uncap	DefaultPool	-		MicroLPA
purple9 fresh	Off	shared	0	0	0	0.20	0.00	0.00		uncap	DefaultPool	-		Off
purples liesn purples SLES11	Off	shared	- 0	0	2	0.00	0.00	0.50		uncap	DefaultPool	-		Off
purple7-AIX7 TL1 WPAR	On	shared	- 1	8	16	0.20	8.00	4.00		uncap	DefaultPool	+		100.0
purple6	Off	shared	- 1	0	10	0.20	0.00	10.00		uncap	DefaultPool	-		Off
purples purple5-AIX5	Off	shared	-	0	2	0.20	0.00	0.50		uncap	DefaultPool	-		Off
purples-AIX5 purple4-ISD63-NIM	On	shared	- 1	0		0.20	0.80	4.00		uncap	DefaultPool	+		250.0
	Off	ded	1	0	32	0.20	0.80	4.00	100		DefaultPool	-		Dedicated
purple-hpc purple2-ISD63	On		- 1	- 0	32 4	0.40	0.00	4.00	100	share_idle_procs	DefaultPool			
		shared		4		0.10		4.00		uncap		_		200.0
purple1-Blue-Wiki	On	shared	1	14	32	0.50		4.00		uncap	DefaultPool	_		700.0
diamond9	On	shared	1	4	8	0.10	3.00	8.00	128	uncap	DefaultPool			133.0
mmafull	Off	ded	0	0	0					share_idle_procs				Dedicated
purplevio3	Off	shared	1	0	4	0.20	0.00	2.00		uncap	DefaultPool			Off
purplevio2	On	shared	1	2	4	0.20	1.00	2.00		uncap	DefaultPool			200.0
purplevio1	On	shared	1	2	4	0.20	1.00	2.00		uncap	DefaultPool	-		200.0
purplevio4	On	shared	1	1	2	0.10	0.50	2.00		uncap	DefaultPool			MicroLPA
purple3 Repository	On	shared	1	3	6	0.10	2.00	4.00	200	uncap	DefaultPool	-		150.0
			Size	Assigned	Availa	ble								
Active Physical Cores			32											
Dedicated Cores				0										
Shared Pool			32	28.00	4.00									
Virtual Processors				50.00										

Answer 5 → whole machine review

- I normally work on "big iron" = big LPARs
 - but now seeing many micro-partition setups
- I have had to rethink what to recommend
- Lots of:
 - -E=0.2 and VP=2
 - E=0.3 and VP=3
 - E=0.4 and VP=4

– ..

— = Ghastly but Common

Answer 5 → whole machine review

- I can see the pressure
 - Loads of LPARs but limited physical processing units
 - VP is free, allocate lots of safety margins and then no need to monitor
 - -= Bad thinking
- End up with total VP up to 10 times total physical CPU cores

Answer 5 → whole machine review

Just because IBM says: "You can do this"

- Does not make it a good idea
- Specially doing it everywhere and every time!

But but IBM promised this over-commit was OK

True it is OK

Answer 5

Just because IBM says: "You can do this"

- Does not make it a good idea
- Specially doing it everywhere and every time!

But but IBM promised this over-commit was OK

- True it is OK but it is just like:
 - Over-commit virtual → physical memory = paging & everyone hurts!
 - Over-committing disk space with thin provisioning is OK ... provided users don't all demand their max disk space (another nightmare)
- If lots of LPARs demand their all their VP then they have to compete for CPU cycles
- Only Entitlement is guaranteed plus memory affinity side effects hurts too

New Role of Thumb (ROT)

- Small shared uncapped LPARs hard to assign sensible VP numbers
- Rule E:VP ratio No real choice as 1 is the minimum
 - -0.05 to 0.6 VP=1 VP head room = 100% to 33%
 - -0.7 to 1.4 VP=2 VP head room = 65% to 30%
 - -1.5 to 2.3 VP=3 VP head room = 100% to 24%
 - -2.4 to etc.

Policy:

- E = regular in busy peaks = guaranteed
- VP allows <u>some</u> head room like ~25-50% more

Rules of Thumb

- Production LPARs
 - Entitlement (E) to cover your regular peaks = SLA
 - Virtual Processor (VP) a little bonus to handle short peaks
 - LPAR level check the E: VP ratio below 125%
 - Monitor/Alert on over E use to avoid issues
- Over committing your CPUs?
 - LPAR level check the E: VP ratio
 - Box level check the Total VP : Physical CPU ratio
 - Monitor all LPARs all the time for anomalies
 - Monitor unused Shared CPU pool (app)
 go proactive when unused pool below 15% or 3 CPUs

POWER7 Optimization & Tuning Guide

A single "first stop" definitive source for a wide variety of general information and guidance, referencing other more detailed sources on particular topics

- Redbook SG24 8079
- Lots of guru level
 Advanced Technical content

http://www.redbooks.ibm.com/abstracts/sg248079.html

Email 6 - Sue asks for Hints & Tips when using rPerfs for Sizing new machines or server consolidation

Email 6 - rPerf Sizing hints

- Website about rPerf to POWER7
 - http://www.ibmsystemsmag.com/aix/tipstechniques/Migration/rperf metric/
- 1. Sizing by adding up old box rPerf's scaled to LPAR and scaled down based on utilisation
- 2. Add guestimate of new workloads
- 3. Add guestimate of growth
- 4. Add comfort factor
- A. Find suitable matching box or boxes
- B. Decided sensible config
- C. Ask for price

BUT

- There are a large number of assumptions being made here
- These can catch you out

Ten Golden rules of using rPerf for sizing (avoiding a performance mess-up by assuming to much)

- 1. Highly threaded workloads 2 to 3 times total SMT threads
- 2. Well tuned system not out of the box settings
- 3. Full Spec RAM all slots used & lots of memory
- 4. No Disk Issues
- 5. No Network Issues
- 6. Current app, RDBMS, middle-ware & web servers software levels not what the old box ran
- 7. Latest AIX with Service Packs like benchmarks
- 8. Large LPARs rPerfs NOT based on micro-LPARs
- 9. Firmware is Current
- 10.Bug Free user MUST upgrade FW, AIX and Apps.
- Find this info on http://tinyurl.com/AIXpert

POWER7 Performance FAQ Summary

- 1. You need to monitor SMT use
- 2. Set Entitlement to typical use & monitor/tune it
- 3. Lower the VP to get SMT threads working for you
- 4. Tool up for machine monitoring
- 5. rPerf sizing is fine but watch those assumption
- Watch those ratios
 - LPAR Entitlement : Virtual Processor
 - Machine Total VPs : Physical CPUs in the Pool

Four "Get out of Jail Free" cards

- VIOS, LPAR and Java Advisors
- Free download
 - VIOS now part of VIOS → see the "part" command
- Run the advisor data collector
- Read the report for hints and Best Practice
- More to come

If you suspect bad placement! So what can you do?

- The Hypervisor does the right thing
- Can be painful to schedule

- This gets the Hypervisor to rethink placement
- Use DPO needs 760+ firmware*
- Use Affinity Group needs 730+ firmware*
- If you have bad performance raise a PMR 🔀

* also needs matching HMC version

Scaled Throughput

Scaled Throughput?

POWER7 & POWER7+ with AIX 6.1 TL08 & AIX 7.1 TL02

- It will dispatch more SMT threads to a VP core before unfolding additional VPs
- Considered a bit more like POWER6 unfolding but is a generalization, not a technical statement

What is Scaled Throughput?

- Raw provides the highest per-thread throughput and best response times at the expense of activating more physical core
- Scaled provides the highest core throughput at the expense of per-thread response times and throughput.
 - It also provides the highest system-wide throughput per VP because tertiary thread capacity is "not left on the table."

Scaled Throughput: Tuning

- Not restricted, but anyone experimenting without understanding may suffer significant performance impacts
- schedo -p -o vpm_throughput_mode=
 - O Legacy Raw mode (default)
 - 1 "Enhanced Raw" mode with a higher threshold than legacy
 - 2 Scaled mode, use primary and secondary SMT threads
 - 4 Scaled mode, use all four SMT threads
- Dynamic tunable

Scaled Throughput: Workloads

Workloads

- Workloads with many light-weight threads with short dispatch cycles and low IO (the same types of workloads that benefit well from SMT)
- Customers who are easily meeting network & I/O SLA's may find the tradeoff between higher latencies & lower core consumption attractive
- Customers who will not reduce over-allocated VPs & prefer to see behavior similar to POWER6

Performance

- It depends, we can't guarantee what a particular workload will do
- Mode 1 may see little or no impact but higher per-core utilization
- Workloads that do not benefit from SMT & use Mode 2 or Mode 4 could easily see double-digit per-thread performance degradation (higher latency, slower completion times)

Are you keeping up to date?

mr nmon on twitter

Only used to POWER / AIX news, technical content, hints, tips and links

YOU 125 techie hands-on videos on YouTube at http://www.voutube.com/user/nigelargriffiths http://www.youtube.com/user/nigelargriffiths

AlXpert Blog

- Lots of mini articles & thoughts
- http://tinyurl.com/AIXpert

AIX & PowerVM Virtual User Groups → ~monthly webinars