
IBM TotalStorage SAN File System

(based on IBM Storage Tank™ technology)

System Management API Guide and

Reference

Version 2 Release 2

GA27-4315-02

���

IBM TotalStorage SAN File System

(based on IBM Storage Tank™ technology)

System Management API Guide and

Reference

Version 2 Release 2

GA27-4315-02

���

Note

Before using this information and the product it supports, read the information in ″Notices.″

Third Edition (November 2004)

This edition applies to the IBM TotalStorage SAN File System and to all subsequent releases and modifications until

otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office servicing your locality. Publications

are not stocked at the address below.

IBM welcomes your comments. A form for reader’s comments is provided at the back of this publication. If the

form has been removed, you may address your comments to:

International Business Machines Corporation

Design & Information Development

Department CGFA

PO Box 12195

Research Triangle Park, NC 27709–9990

U.S.A.

You can also submit comments by selecting Feedback at www.ibm.com/storage/support/.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http:/www.ibm.com/storage/support

Contents

About this guide vii

Who should use this guide vii

Notices in this guide vii

Publications vii

SAN File System publications vii

SAN File System related publications viii

Web sites viii

Chapter 1. Getting started 1

CIM concepts 1

CIM 1

CIM-related concepts 1

CIM agent 2

Storage Management Initiative Specification . . . 3

SAN File System concepts 4

Administrative server 4

Alerts and events 5

Cluster 5

Components 7

Engines 9

Filesets 9

FlashCopy images 14

Global namespace 17

Locks and leases 19

Logs and traces 20

Metadata server 22

SNMP 24

Storage management 25

Storage pools 27

User interfaces 29

User roles 30

Volumes 31

Administrative agent for SAN File System 33

Functional view of the Administrative agent . . . 34

CIM base classes 34

SAN File System component classes 36

SAN File System configuration classes 45

SAN File System status classes 48

SAN File System log classes 54

SAN File System backup classes 56

Programming considerations 58

Role-based access 58

Dynamic and static methods 59

Chapter 2. Managing SAN File System 61

Managing clients 61

Listing clients by LUN access 61

Listing clients by volume access 61

Managing the cluster 61

Changing configuration parameters 61

Changing active cluster states 62

Listing installed languages 62

Starting the cluster 62

Stopping the cluster 63

Upgrading cluster software 63

Managing disaster recovery files 63

Creating a recovery file 63

Deleting a recovery file 63

Generating recovery commands 63

Managing engines 64

Powering off the engine 64

Powering on the engine 64

Restarting the engine 64

Managing filesets 64

Attaching a fileset 65

Changing the assignment of a fileset server . . . 65

Creating a fileset 65

Deleting a fileset 65

Detaching a fileset 66

Moving a fileset 66

Retrieving fileset information 66

Managing FlashCopy images 66

Creating a FlashCopy image 66

Deleting a FlashCopy image 66

Reverting to a previous FlashCopy image . . . 67

Managing logs 67

Clearing logs 67

Retrieving log records 67

Managing metadata servers 68

Checking metadata 68

Retrieving file information 68

Starting a metadata server 69

Starting the metadata server restart service . . . 69

Stopping a metadata server 69

Stopping the metadata server restart service . . 69

Managing policies 69

Activating a policy 69

Creating a policy 69

Deleting a policy 70

Viewing a policy 70

Viewing policy statistics 70

Managing storage pools 70

Creating a storage pool 70

Deleting a storage pool 71

Disabling the default storage pool 71

Moving a storage pool 71

Moving files 71

Setting the default storage pool 72

Managing users 72

Timing out all user authorizations 72

Timing out a user authorization 72

Managing user mappings 72

Creating a domain 72

Creating a user mapping 73

Deleting a domain 73

Deleting a user mapping 73

Renaming a domain 73

Refreshing a user mapping 73

Managing volumes and LUNs 73

Activating a suspended volume 74

Adding a volume to a storage pool 74

© Copyright IBM Corp. 2003, 2004 iii

Listing LUNs 74

Removing volumes from a storage pool 74

Resizing a volume 74

Retrieving file entries on a volume 75

Suspending a volume 75

Collecting problem determination data 75

Chapter 3. Administrative agent

methods 77

Intrinsic methods 77

EnumerateClasses() 77

EnumerateClassNames() 78

EnumerateInstanceNames() 79

EnumerateInstances() 79

EnumerateQualifiers() 80

ExecQuery() 80

GetClass() 80

GetInstance() 81

GetProperty() 81

GetQualifier() 82

ModifyInstance() 82

SetProperty() 83

Intrinsic method return codes 84

Extrinsic methods 84

Extrinsic method return codes 86

Chapter 4. Administrative agent object

classes 89

STC_AdminMessageLog 89

STC_AdminProcess 89

STC_AdminSecurityLog 90

STC_AdminUser 90

ClearAllCurrentAuthorizations() method . . . 91

ClearCurrentAuthorization() method 91

STC_AvailableLUNs 91

CloseClientLUNList() method 92

GetNextClientLUN() method 93

GetWWIds() method 94

OpenClientLUNList() method 95

RescanLUNs() method 96

STC_Cluster 96

STC_ComputerSystem 97

GetPowerState() method 98

OneButtonDataCollector() method 99

SetPowerState() method 99

STC_Container 100

Attach() method 102

ChangeServer() method 103

Create() method 104

Delete() method 105

Detach() method 106

GetFileSetInfo() method 107

ListAssociatedPools() method 108

Move() method 108

RemoveServerBinding() method 109

STC_Domain 110

Create() method 110

Delete() method 111

Move() method 111

STC_LdapDynamicSetting 112

STC_MasterDisruptiveSetting 113

GetInstalledLanguages() method 115

STC_MasterDynamicSetting 115

STC_MasterMetrics 116

STC_MasterSAP 117

STC_MasterService 117

AddServer() method 119

CommitUpgrade() method 119

DropServer() method 120

DropServerByName() method 121

FileSystemCheck() method 122

GetFileInfo() method 123

ListClientsByLUN() method 124

ListClientsByVolume() method 125

QuiesceService() method 126

ResumeService() method 126

StartService() method 127

StartServiceInAdmin() method 128

StopFileSystemCheck() method 128

StopService() method 129

STC_MDSAuditLog 129

STC_MDSEventLog 129

STC_MDSMessageLog 130

STC_MessageLog 130

ClearLog() method 131

GetNextRecords() method 131

GetPreviousRecords() method 132

PositionToFirstRecord() method 134

PositionToLastRecord method 134

PositionWithFilter() method 135

STC_NodeFan 136

STC_NodeTemperature 137

STC_NodeVitalProductData 137

STC_NodeVoltage 138

STC_NodeWatchdog 139

STC_PitImage 141

Create() method 141

Delete() method 142

Revert() method 143

STC_PolicySet 144

Activate() method 145

Create() method 146

Delete() method 147

GetPolicyRuleStats() method 147

GetRules() method 148

GetStoragePoolStats() method 149

STC_RegisteredFSClients 150

STC_RemoteServiceAccessPoint 151

STC_RsaDynamicSetting 151

STC_Setting 151

STC_StoragePool 152

Create() method 153

Delete() method 154

DisableDefault() method 155

Move() method 155

MoveFile() method 156

SetDefault() method 157

STC_SystemMDRAid 157

Create() method 158

Delete() method 159

GenerateCommandFiles() method 159

iv SAN File System System Management API Guide and Reference

STC_TankDisruptiveSetting 160

STC_TankEvents 161

Test() method 162

STC_TankMetrics 163

STC_TankSAP 164

STC_TankService 165

StartService() method 166

StopService() method 166

STC_TankTransientSetting 167

STC_TankWatchdog 167

Disable() method 170

Enable() method 170

STC_UserMap 170

Create() method 171

Delete() method 172

DeleteAll() method 172

RefreshAll() method 173

STC_Volume 173

Create() method 174

CreateUsingLunId() method 176

Delete() method 177

DeleteUsingClient() method 178

GetNextFOV() method 179

Move() method 180

ResetFOV() method 181

Resize() method 182

ResumeAllocation() method 182

SuspendAllocation() method 183

STC_WatchdogDynamicSetting 184

Appendix A. Accessibility 185

Appendix B. SNMP trap MIB 187

Appendix C. Notices 189

Trademarks 190

Appendix D. Glossary 191

Index 199

Contents v

vi SAN File System System Management API Guide and Reference

About this guide

This guide introduces the administrative agent for SAN File System. It describes

the administrative agent object model, the classes and properties that make up the

model, and methods that the classes provide to implement the model.

Who should use this guide

This guide should be used by application programmers writing third-party

applications for SAN File System.

Note: This document is intended for selected business partners. Contact your

IBM® representative before using this publication.

Application programmers should have experience in the following skills, or have

access to personnel with experience in these skills:

v Object-oriented programming

v CIM-based application programming

v Networking and network management

v SAN management

Notices in this guide

The following types of notices occur in this guide and convey these specific

meanings:

Note: These notices provide important tips, guidance, or advice.

Attention: These notices indicate possible damage to programs, devices, or data.

An attention notice appears before the instruction or situation in which damage

could occur.

Publications

This topic describes the publications in the SAN File System library and in related

libraries.

SAN File System publications

This topic describes the publications in the SAN File System library.

The following publications are available in the SAN File System library. They are

provided in softcopy on the IBM TotalStorage SAN File System Publications CD and

at www.ibm.com/storage/support. To use the CD, insert it in the CD-ROM drive.

If the CD does not launch automatically, follow the instructions on the CD label.

Note: The softcopy versions of these publications are accessibility-enabled for the

IBM Home Page Reader.

v IBM TotalStorage SAN File System Release Notes

This document provides any changes that were not available at the time the

publications were produced. This document is available only from the technical

support Web site: www.ibm.com/storage/support

© Copyright IBM Corp. 2003, 2004 vii

http://www.ibm.com/storage/support/
http://www.ibm.com/storage/support/

v IBM TotalStorage SAN File System Software License Information

This publication provides multilingual information regarding the software

license for IBM TotalStorage SAN File System Software.

v IBM TotalStorage SAN File System Administrator’s Guide and Reference, GA27-4317

This publication introduces the concept of SAN File System, and provides

instructions for configuring, managing, and monitoring the system using the

SAN File System console and administrative command-line interfaces. This book

also contains a commands reference for tasks that can be performed at the

administrative command-line interface or the command window on the client

machines.

v IBM TotalStorage SAN File System Basic Configuration for a Quick Start, GX27-4058

The document walks you through basic SAN File System configuration and

specific tasks that exercise basic SAN File System functions. It assumes that the

physical configuration and software setup have already been completed.

v IBM TotalStorage SAN File System Maintenance and Problem Determination Guide,

GA27-4318

This publication provides instructions for adding and replacing hardware

components, monitoring and troubleshooting the system, and resolving

hardware and software problems.

Note: This document is intended only for trained support personnel.

v IBM TotalStorage SAN File System Installation and Configuration Guide, GA27-4316

This publication provides detailed procedures to set up and cable the hardware,

install and upgrade the SAN File System software, perform the minimum

required configuration, and migrate existing data.

v IBM TotalStorage SAN File System Messages Reference, GC30-4076

This publication contains message description and resolution information for

errors that can occur in the SAN File System software.

v IBM TotalStorage SAN File System Planning Guide, GA27-4344

This publication provides detailed procedures to plan the installation and

configuration of SAN File System.

v IBM TotalStorage SAN File System System Management API Guide and Reference,

GA27-4315

This publication contains guide and reference information for using the CIM

Proxy API, including common and SAN File System-specific information.

Note: This document contains information and procedures intended for only

selected IBM Business Partners. Contact your IBM representative before

using this publication.

SAN File System related publications

These publications are related to SAN File System.

v IBM TotalStorage® Subsystem Device Driver User’s Guide, SC26-7637

Web sites

This topic discusses any Web sites that offer additional, up-to-date information

about SAN File System.

The following Web sites have additional information about SAN File System:

v www.ibm.com/storage/support/sanfs/

viii SAN File System System Management API Guide and Reference

foi0_pdf.pdf
fpr0_pdf.pdf
foj0_pdf.pdf
fog0_pdf.pdf
fpn0_pdf.pdf
fqe0_pdf.pdf
fof0_pdf.pdf
f2bsdu03.pdf
http://www.ibm.com/storage/support/sanfs/

v www.ibm.com/storage/software/virtualization/sfs/

The following Web site has information about the languages that have

International Components for UNICODE (ICU) converters:

oss.software.ibm.com/cgi-bin/icu/convexp/

About this guide ix

http://www.ibm.com/storage/software/virtualization/sfs/
http://oss.software.ibm.com/cgi-bin/icu/convexp

x SAN File System System Management API Guide and Reference

Chapter 1. Getting started

This chapter introduces the Common Information Model (CIM) agent for SAN File

System, known as the administrative agent. The administrative agent implements an

object-oriented management interface over Hypertext Transfer Protocol (HTTP). It

conforms to CIM 2.7 and plans to follow the Storage Management Initiative

Specification (SMI-S) as it develops. The administrative agent’s managed object

format (MOF) derives from CIM standard models where they apply to SAN File

System.

This chapter describes key concepts related to CIM, SAN File System, and the

administrative agent. It also presents functional views of the administrative-agent

object model and describes programming considerations such as accessing the

object model and invoking dynamic and static methods.

The rest of the information in this guide is organized as follows:

v Chapter 2, “Managing SAN File System,” on page 61 describes how to perform

tasks for managing SAN File System using the object model.

v Chapter 3, “Administrative agent methods,” on page 77 describes intrinsic and

extrinsic methods that the administrative classes provide.

v Chapter 4, “Administrative agent object classes,” on page 89 describes the classes

that make up the object model of the administrative agent and their properties

and methods.

v The appendices provide the following additional information:

– Accessibility features of the SAN File System console and help system

– SNMP Trap MIB

– Notices

CIM concepts

This section provides an overview of the Common Information Model (CIM) and

CIM-related concepts. It also describes a CIM agent, in general, and the Storage

Management Initiative Specification (SMI-S).

CIM

The Common Information Model (CIM) is a set of standards from the Distributed

Management Task Force Inc. (DMTF). It provides a conceptual framework for

storage management and an open approach to the design and implementation of

storage systems, applications, databases, networks, and devices.

The CIM specifications provide the language and the methodology for describing

management data. Specifically, the CIM defines common object classes,

associations, and methods. Member vendors can use those objects and extend them

to specify how data should be processed and organized in a specific managed

environment.

CIM-related concepts

The CIM specifications use the following concepts and terminology to describe the

various object models:

© Copyright IBM Corp. 2003, 2004 1

Namespace

The scope within which a CIM schema applies.

Schema

A group of object classes defined for and applicable to a single namespace.

Within the CIM agent, the supported schemas are the ones that are loaded

through the managed object format (MOF) compiler.

Managed object format (MOF)

A compiled language for defining classes and instances. A MOF compiler

offers a textual means of adding data to the CIM Object Manager

repository. MOF eliminates the need to write code, thus providing a simple

and fast technique for modifying the CIM Object Manager repository

(DMTF CIM Tutorial Glossary).

Object name

An object that consists of a namespace path and a model path. The

namespace path provides access to the CIM implementation managed by

the CIM agent, and the model path provides navigation within the

implementation.

Class The definition of an object within a specific hierarchy. An object class can

have properties and methods and serve as the target of an association.

Property

An attribute that is used to characterize instances of a class.

Key A property that is used to provide a unique identifier for an instance of a

class. Key properties are marked with the Key qualifier. (DMTF CIM

Tutorial Glossary).

Method

A way to implement a function on a class.

Qualifier

A value that provides additional information about a class, association,

indication, method, method parameter, instance, property, or reference.

CIM agent

A CIM agent is a specific piece of software that handles CIM requests in an

embedded model.

Components

A CIM agent typically contains (or interacts) with the following components:

The agent

An open-system standard that interprets CIM requests and responses as

they are transferred between the client application and the device.

Client application

A storage management program that initiates CIM requests to the CIM

agent for the device.

CIM object manager (CIMOM)

The common conceptual framework for data management that receives,

validates, and authenticates the CIM requests from the client application

and then directs the requests to the appropriate component or device

provider.

2 SAN File System System Management API Guide and Reference

Service location protocol (SLP)

A directory service that the client application calls to locate the CIMOM.

Device provider

A device-specific handler that serves as a plug-in for the CIM. That is, the

CIMOM uses the handler to interface with the device.

Device

The storage server that processes and hosts the client application requests.

In the case of the CIM agent for SAN File System, known as the administrative

agent, its components include the agent, the CIMOM, and the device provider. The

administrative agent is separate from and interacts with the SLP daemon, client

application and device.

CIM agent at work

The client application locates the CIMOM by calling an SLP directory service.

When an application first invokes the CIMOM, it registers itself to the SLP and

supplies its location information, including IP address, port number, and the type

of service that it provides. With this information, the client application starts to

communicate directly with the CIMOM.

The client application then sends CIM requests to the CIMOM. As requests arrive,

the CIMOM validates and authenticates each request. It then directs the requests to

the appropriate functional component of the CIMOM or a device provider. The

provider makes calls to a device-unique programming interface on behalf of the

CIMOM to satisfy client application requests.

Storage Management Initiative Specification

The Storage Management Initiative Specification (SMI-S) is a design specification of

the Storage Management Initiative (SMI) launched by the Storage Networking

Industry Association (SNIA).

It specifies a secure and reliable interface that allows storage management systems

to identify, classify, monitor, and control physical and logical resources in a storage

area network (SAN). The interface is intended as a solution that integrates the

various devices to be managed in a SAN and the tools used to manage them.

SMI-S is based on a number of existing technologies or industry standards that

include the following:

Common Information Model (CIM)

An object model for data storage and management developed by the

Distributed Management Task Force (DMTF). CIM makes it possible to

organize devices and components of devices in an object-oriented pattern.

Web-Based Enterprise Management (WBEM)

A tiered enterprise management architecture also developed by the DMTF.

This architecture provides the management design framework that consists

of devices, device providers, the object manager, and the messaging

protocol for the communication between client applications and the object

manager. In the case of the CIM, the object manager is the CIMOM and the

messaging protocol is the CIM over HTTP technology. The CIM over HTTP

approach specifies that the CIM data is encoded in XML and sent in

specific messages between the client applications and the CIMOM over the

TCP/IP network in a SAN.

Chapter 1. Getting started 3

Service Location Protocol (SLP)

A directory service that the client application calls to locate the CIMOM.

 Intended to be an industry standard, SMI-S extends the generic capabilities of the

CIM, the WBEM, and the SLP to implement storage networking interoperability.

For example, the WBEM is expanded to provide provisions for security,

resource-locking management, event notification, and service discovery.

SAN File System concepts

This section discusses concepts that will help you understand how SAN File

System works. Becoming familiar with the SAN File System components and

understanding the concepts in this section enables you to use SAN File System

most effectively.

Administrative server

Watch and learn

The administrative server processes all requests that are initiated from an

administrative interface. Three major components of the administrative

infrastructure include IBM Director Agent, a Web server, and the administrative

agent.

IBM Director Agent enables remote administration and control of the storage

engines.

The Web server interacts with the administrative agent and renders the Web pages

that make up the SAN File System console. The console is a Web-based user

interface, which can be accessed using a Web browser, that has network access to

the engines that host the master metadata server in the cluster.

An administrative server interacts with a metadata server through an intermediary

service, called the administrative agent. The administrative agent is based on the

Common Information Model (CIM) standard to process all management requests

from the SAN File System console and administrative command-line interface.

When you issue a request, the administrative agent checks with the lightweight

directory access protocol (LDAP) server to authenticate the user ID and password

and to verify whether the user has the authority (is assigned the appropriate role)

to issue a particular request. After authenticating the user, the administrative agent

interacts with the metadata server to process the request. It also communicates

with the operating system, the Remote Supervisory Adapter II (RSA-II) card, and

administrative agents on other engines when processing requests. This same

system of authentication and interaction is also available to third-party CIM clients

to manage SAN File System.

To ensure high availability, the administrative server resides on each storage

engine. All requests that come from the SAN File System console are processed by

the administrative server that runs on the same engine as the master metadata

server. This server is known as the primary administrative server. However, requests

that are initiated by the administrative command-line interface are processed by

the administrative server that is running on the engine that you are logged in to.

This can be the primary administrative server or a secondary administrative server,

which is an administrative server that runs on an engine hosting a subordinate

metadata server.

4 SAN File System System Management API Guide and Reference

foe0_admin_server.swf

Alerts and events

An event is an occurrence in the metadata server or cluster, such as a change in

state from online to offline. Events are recorded as messages in the metadata server

logs. You can view these messages using the SAN File System console or by using

administrative commands.

An alert is a message that can be generated for an event. It warns you about

certain conditions, such as a fileset or a storage pool reaching or exceeding its

threshold.

A Simple Network Management Protocol (SNMP) trap is a notification mechanism to

convey the occurrence of an event. You can set configuration parameters that

determine whether SNMP trap messages are generated for events. SNMP trap

messages notify you about events asynchronously, eliminating the need for you to

frequently view messages in the metadata server logs to determine the state of the

cluster.

The first configuration parameter determines where SNMP trap messages are sent.

You must define a list of SNMP managers that are the recipients of any SNMP trap

messages. The list includes the IP address, port number, version of SNMP, and

community string for one or two managers. If no SNMP managers are defined, no

SNMP trap messages are sent.

The second parameter specifies which types of event messages generate SNMP

trap messages. Event message types are informational, warning, error, or severe.

You can specify any combination of message severities.

In addition, if the service alert feature is active on the master console, that feature

generates a specific type of SNMP trap whenever a metadata server encounters an

event that requires notification to the IBM Support Center.

All of the SNMP-related configuration parameters must be set correctly for the

service alert feature to work.

 Table 1. Alerts, events, and traps

Description Delivery

Alert Warns of a significant event

on a metadata server or

cluster. Also informs about

condition changes, such as a

change in state to offline or

storage is approaching

capacity.

A generated message is sent

to the terminal.

Event Identifies an occurrence in

the metadata server or

cluster.

The event is recorded in the

metadata server logs.

Trap Optionally, notifies a

specified administrator of

events asynchronously.

A generated message is sent

to the administrator directly,

either locally or remotely.

Cluster

Watch and learn

Chapter 1. Getting started 5

foe0_cluster.swf

The SAN File System cluster is a set of metadata servers, each running on a

separate hardware engine. The metadata servers communicate with each other and

with SAN File System clients over your existing IP network. The cluster provides a

single point of control for administrative and service operations.

The cluster has one master metadata server and one or more subordinate metadata

servers. The master metadata server maintains the cluster state and is the focal

point for most administrative services. The maximum number of metadata servers

that SAN File System allows in the cluster is eight.

Note: Although SAN File System requires a minimum of two metadata servers,

you can run a single metadata-server system if all other metadata servers in

the cluster fail (for example, if you have only two engines, and one of them

fails), or if you want to stop all of the metadata servers except one to

perform scheduled hardware maintenance.

Cluster workload

Each metadata server in a cluster, including the master metadata server, is assigned

a workload. The workload is the amount of processing that is required to manage

the locks, leases, and metadata on behalf of the clients when they request access to

data that resides in a fileset in the global namespace. To the client, the fileset

appears to be another directory, but to the metadata server, a fileset is an amount of

workload. For example, a fileset that contains data that is frequently accessed by

clients will have a higher workload than a fileset that stores archived data.

The workload is balanced among the metadata servers by assigning a set of filesets

to each. SAN File System can automatically balance the workload for you by

dynamically assigning filesets across all metadata servers.

You can also choose to control the workload manually by statically assigning the

filesets to specific metadata servers. When assigning static filesets, consider the

metadata-activity level of each fileset, and balance the filesets evenly across all

metadata servers in the cluster. To ensure that each metadata server handles a

share of the entire workload, assign at least one fileset to each metadata server.

Creating additional filesets provides you with greater flexibility in assigning and

reassigning filesets to achieve optimal results. You can statically assign a fileset to a

metadata server or unassign a fileset at any time.

A spare metadata server is a metadata server that has no statically-assigned filesets

but might be serving dynamic filesets if the filesets have been created in a mixed

environment. You can reserve a spare metadata server for failover to take on the

static workload of another metadata server that goes offline and preserve the

workload balance.

During client setup, a client is given the address of one of the metadata servers for

initial contact and metadata server cluster discovery. When the client issues a

request to access data, it is automatically directed to the appropriate metadata

server to obtain the metadata and locks required to access the data.

Tip:

v Use all static or all dynamic fileset assignments in the cluster because in

mixed environments, filesets could be reassigned to a metadata server that

does not have spare capacity to handle the additional workload.

v The global fileset (ROOT) is created during installation time as a static

fileset assigned to the master metadata server. You can reassign this fileset

to another metadata server or change it to a dynamic fileset.

6 SAN File System System Management API Guide and Reference

Communication between metadata servers

The metadata servers communicate with each other for a variety of reasons. For

example, they exchange heartbeats, which are messages sent periodically from one

metadata server to another so that each knows that the other is still active. If a

metadata server stops sending heartbeats for a specific period of time (which is set

with heartbeat parameters), the other metadata servers form the cluster again

without it.

The master metadata server communicates with its subordinate metadata servers to

perform many administrative tasks, such as supplying the metadata servers with

the current workload map and querying metadata server status. It also contacts

them to process administrative requests to perform tasks such as moving the

contents of one volume to another and creating FlashCopy® images of filesets.

Subordinate metadata servers initiate contact with the master metadata server for

specific tasks, such as acquiring more space or obtaining file-placement policy

information.

Soft cluster failures

A soft failure by the cluster requires no intervention and is recoverable by simply

restarting the metadata server software.

Soft failures are handled in different ways depending on their cause. The

administrative server provides an optional metadata server restart service that

monitors the metadata server software and restarts it if necessary. If a metadata

server goes offline, an internal thread detects that condition and enables the

rebooting of the software. If the operating system on the engine crashes or hangs,

SAN File System can reboot the operating system. Then, the metadata server

restart service is automatically started, and in turn, restarts the metadata server on

the engine. When a metadata server is restarted after a soft failure, it resumes

serving the same workload that it was serving before the failure.

If a subordinate metadata server fails, the filesets that are assigned only to that

metadata server are temporarily unavailable. If the master metadata server fails, all

of the subordinate metadata servers eventually pause, either because they require a

service from the master metadata server or because they are no longer receiving a

heartbeat from the master metadata server, and the entire global namespace is

unavailable until the master metadata server is restarted.

When a client has an active session with a metadata server and that metadata

server fails, the client stops receiving responses for transactions and lease renewal

attempts. However, the client remains active. The client loses its lease and any

locks it had obtained from that metadata server. After the metadata server is

restarted, the client can contact the metadata server and renew its lease. Then, it

can reassert its locks (get back all the locks it had before the metadata server

failure) and refresh its metadata cache as needed. A metadata server provides a

grace period for lock reassertion to allow clients to reassert their locks before

allowing other clients to obtain new ones. Applications running on the client

experience a pause in service during the restart and recovery period.

Components

Figure 1 on page 8 illustrates the major components of SAN File System.

Chapter 1. Getting started 7

The metadata servers and clients communicate over a private IP network and

access data over a Fibre Channel storage attached network (SAN). SAN File

System relies on networking hardware (including an IP network, SAN, network

switches, and routers) that already exists in your environment.

The metadata servers run on separate physical machines (known as engines) and

perform metadata, administrative, and storage-management services. The metadata

servers are clustered for scalability and availability, and are referred to collectively

as the cluster. In the cluster, there is one master metadata server and one or more

subordinate metadata servers. Additional metadata servers can be added, as

required, when the workload grows.

The metadata resides on private storage that is shared among all the metadata

servers in the cluster. This storage is known as the system storage pool. A storage

pool is a collection of SAN File System volumes in the SAN. The system storage

pool contains the system metadata (such as system configuration and state

information) and file metadata (such as file creation date and permissions). The

actual file data is stored on the user storage pools, which may be shared among the

clients.

AIX client

Solaris
client

Linux
client

Windows
client

System
storage

pool

Engine 1 Engine 2 Engine n

User storage pools

IP network

Administrative
interfaces

LDAP

Fibre Channel SAN

Master
console

Master
metadata

server

Subordinate
metadata

server

Subordinate
metadata

server

Primary
admin
server

Secondary
admin
server

Secondary
admin
server

Figure 1. SAN File System components

8 SAN File System System Management API Guide and Reference

The administrative server allows SAN File System to be remotely monitored and

controlled through a Web-based user interface, called the SAN File System console.

In addition, the administrative server processes requests issued from the

administrative command-line interface, which can also be accessed remotely. The

ability to access the SAN File System through these two types of interfaces allows

you to administer SAN File System from almost any system with network

connectivity. The machine that you use to access these interfaces is called the

administrative console. The administrative server uses a Lightweight Directory Access

Protocol (LDAP) server to look up authentication and authorization information

about the administrative users. The primary administrative server runs on the

same engine as the master metadata server. It receives all requests issued by

administrators and also communicates with the administrative servers that run on

each additional metadata server in the cluster to perform routine requests.

Computers that share data and have their storage centrally managed by SAN File

System are known as clients. The SAN File System client software enables the

clients to access a single, uniform global namespace through a virtual or installable

file system. These clients can act as servers to a broader clientele, providing

network file system (NFS) or common Internet file system (CIFS) access to the

global namespace or hosting applications, such as database servers or Web-hosting

services that use multiple servers.

The master console provides serviceability features, including the remote-support

interface for remote access and service alert for call home capabilities. The master

console is a required feature for SAN File System that can be shared with other

IBM TotalStorage products, such as SAN Volume Controller.

Engines

Within SAN File System, the hardware on which the metadata servers and

administrative servers run are called storage engines. SAN File System supports

from two to eight engines.

SAN File System is intended to run with a minimum of two engines; however, you

can run a single-engine system if:

v All of the other engines fail (for example, if you have only two engines, and one

of them fails)

v You want to bring down all of the engines except one before performing

scheduled maintenance.

v One engine hosts a spare metadata server.

You can use the SAN File System console or administrative command-line interface

to monitor and control the engines from any computer with a network connection

to the cluster.

Filesets

In most file systems, a typical file hierarchy is represented as a series of folders or

directories that form a tree-like structure. Each folder or directory could contain

many other folders or directories, file objects, or other file-system objects, such as

symbolic links and hard links. Every file system object has a name associated with

it, and it is represented in the namespace as a node of the tree.

SAN File System introduces a new file system object, called a fileset. A fileset can

be viewed as a portion of the tree-structured hierarchy (or global namespace).

Filesets divide the global namespace into a logical, organized structure. They attach

Chapter 1. Getting started 9

to other directories in the hierarchy, ultimately attaching through the hierarchy to

the root of the SAN File System cluster mount point. The collection of filesets and

their content in SAN File System along with the file system root combine to form

the global namespace. Fileset boundaries are not visible to the clients; only the

administrator of SAN File System is aware of them.

From a client’s perspective, a fileset appears as a regular directory or folder within

which the clients can create their own regular directories and files. Clients cannot

delete or rename the directories that represent filesets.

In addition to organizing the overall structure of the global namespace, SAN File

System also uses filesets for these purposes:

v Represent the workload for the metadata servers

v Provide a level of granularity for data replication (using FlashCopy images)

v Control the amount of space used by the clients (through hard and soft quotas)

A fileset has the following properties:

v A fileset name.

v A directory path leading to the directory within which the fileset is attached.

The directory path for the global fileset is the same as the cluster name, sanfs.

v A directory name that the fileset is given at the end of the directory path.

v A hard or soft quota.

The root of the global namespace is the global fileset. The name of the global fileset

is always ROOT. The directory path of the global fileset is specified when you set

up the global namespace and is the same as the cluster name sanfs.

When you create a fileset, you attach it to a specific location in the global

namespace, either to the global fileset or to another fileset. When a fileset is

attached to another fileset other than the root fileset, it is called a nested fileset.

You can detach a fileset and reattach it at the same location or a different location.

If a fileset is reattached at a different location, all the files contained in the fileset

are rooted to the new location without any further operations. Before a fileset can

be detached, any nested filesets must be detached first.

Filesets and clients

From a client perspective, a fileset appears to be a regular directory. Users and

applications running on the clients can create objects, such as directories and files,

within the fileset.

HR

Assets Revenue

Finance Marketing CRM

SANFS Global Fileset

Filesets

Nested Filesets

10 SAN File System System Management API Guide and Reference

A fileset must be attached to the global namespace before it is available for use by

clients.

A client cannot create hard links across fileset boundaries and cannot rename,

move, or delete a directory that is the root of a fileset. If a client attempts to

perform any of these operations, SAN File System returns an error indicating a

cross-file-system condition.

Filesets and metadata servers

When creating a fileset, you can statically assign the fileset to a specific metadata

server or SAN File System can dynamically assign it to a metadata server for you.

Filesets that are statically assigned are known as static filesets. Filesets that are

dynamically assigned are known as dynamic filesets.

The assigned metadata server is then responsible for providing metadata and locks

to clients when they request access to files that reside in that fileset. The

fileset-to-metadata server assignment is automatically communicated between

clients and metadata servers. The client transparently discovers which metadata

server to use when accessing files in a fileset. Each metadata server should be

assigned to manage one or more filesets. If a metadata server is not managing any

filesets, it is considered to be in standby mode. You can have an idle, or nearly

idle, metadata server available to provide failover, if desired.

You should create at least one fileset for each metadata server in the cluster.

However, creating more filesets gives you greater flexibility in distributing filesets

among metadata servers in order to maintain availability and to balance the

workload.

Tip: You can assign a nested fileset to a different metadata server than the one to

which its parent fileset is assigned.

You can reassign a fileset to another metadata server, for example, to balance the

workload. While filesets are being reassigned, they are temporarily unavailable to

clients. After the reassignment, the clients can continue transparently and

automatically recognize the new metadata server hosting the fileset.

Filesets and storage pools

Filesets are not specifically related to storage pools, although each file in a fileset

physically resides in blocks in a storage pool. This relationship is many-to-many;

each file in the fileset can be stored in a different user storage pool. A storage pool

can contain files from many filesets. However, all of the data for a particular file is

wholly contained within one storage pool. Figure 2 on page 12 shows an example

of the relationship between filesets and storage pools.

Chapter 1. Getting started 11

Using file-placement policies, you can specify that all files created in a particular

fileset are to be stored in a specific storage pool. Using file-management policies,

you can define how files in a specific fileset are to be moved or deleted during the

file’s life cycle.

Fileset considerations

You can create filesets based on conditions in your environment (for example,

workflow patterns, security, or backup considerations, all the files used by a

specific application, or files associated with a specific application or client). Filesets

are used not only for managing the storage space used, but also for creating

FlashCopy images. Correctly defined filesets mean that you can take a FlashCopy

image for all the files in a fileset together in a single operation, providing a

consistent image for all of those files. The global namespace is partitioned into

filesets that match the data-management model of the enterprise. Filesets can also

be used as criteria when placing individual files in global namespace.

When you are creating filesets, consider the overall I/O loads on the cluster.

Because each fileset is assigned to one (and only one) metadata server, you need to

balance the load across all metadata servers in the cluster by assigning filesets

appropriately. Also, when the number of filesets is greater than one thousand,

response time will increase when you issue fileset commands.

To facilitate file sharing, you can optionally separate filesets by their primary

allegiance of the operating system. Separating filesets also facilitates file-based

backup methods (for example, utilities, such as tar, and Windows® backup

applications such as VERITAS NetBackup or IBM Tivoli® Storage Manager); full

metadata attributes of Windows files can be backed up from a Windows backup

client only and full metadata attributes of UNIX® files can be backed up from an

UNIX backup client only.

Fileset permissions

When you create and attach a new fileset to the global namespace, the fileset is

owned by user Anonymous. A UNIX root user or a Windows administrator user

must change the ownership and permissions of the fileset before the fileset is

usable. (You must do this for the FlashCopy directory and the lost+found directory

under the fileset root.) You need to make these changes only once in the lifetime of

a fileset. The changed permissions are persistent across metadata server restarts

and whenever the fileset is detached or attached.

Storage pool A

Storage pool B

Storage pool C

Storage pool D

.gif

.pdf

.jpg

.c

.h

.exe

Fileset 1

Fileset 3

Fileset 2

Figure 2. The relationship between filesets and storage pools

12 SAN File System System Management API Guide and Reference

Unlike the requirement for the global fileset, a UNIX or Windows user can own a

fileset exclusively. The fileset is not required to have write permissions for both

UNIX and Windows domains.

Tip: If you change the permissions of a fileset after you create a FlashCopy image

and then revert back to that FlashCopy image, the permissions also revert to

the settings at the time when the FlashCopy image was taken.

Fileset quotas

When creating a fileset, you can specify a maximum size for the fileset, called a

quota limit, and specify whether SAN File System should generate an alert if the

size of the fileset reaches or exceeds a specified percentage of the maximum size,

called a threshold. For example, if the quota on the fileset is set to 100 GB, and the

threshold is 80%, an alert is generated when the fileset contains 80 GB of data.

(Note that the quota is based on space allocated to the fileset, not the data is

contains.)

The action taken when the fileset reaches its quota size depends on whether the

quota is defined as hard or soft. If you use a hard quota, once the threshold is

reached, SAN File System denies new client requests to add more space to the

fileset (by creating or extending files). If you use a soft quota, which is the default,

SAN File System allocates more space but continues to send alerts. Once the

amount of physical storage available to global fileset is exceeded, no more space

can be used. You can set the quota limit, threshold and quota type individually for

each fileset.

Note:

v The space used by a fileset includes the space used by FlashCopy images.

It does not include the space used by any nested filesets.

v The metadata servers compute and track hard quota limits for filesets in

multiples of the partition size. If a hard quota is not set as a multiple of

the partition size, quota violation errors appear in the log file even though

the size of the fileset has not reached the specified limit. To avoid this

problem, specify hard quota limits as multiples of the partition size (for

example, if the partition size is 16 MB, set the quota to multiples of 16).

Nested fileset considerations

Consider the following circumstances when creating nested filesets:

v You cannot access a nested fileset if the metadata server that is hosting the

parent fileset is unavailable. In other words, if the parent fileset becomes a rogue

fileset and is unable to be failed over, then the nested filesets of that parent

fileset would also, effectively, be unavailable.

v A FlashCopy image is created at the individual fileset level and does not include

any nested filesets. You cannot make a FlashCopy image of a fileset and any

nested filesets in a single operation. This can be of concern if you are required to

have a consistent image of a fileset and its nested filesets. Making FlashCopy

images in multiple operations could lead to ordering or consistency issues.

v To detach a fileset, you must first detach all of its nested filesets.

v It is not possible to revert to a FlashCopy image when nested filesets exist

within the fileset. You must manually detach the nested filesets before reverting

to the FlashCopy image. You can reattach the nested filesets after the fileset is

reverted.

Chapter 1. Getting started 13

v When creating nested filesets, attach them only directly to other filesets. Do not

attach filesets to client-created directories because a large-scale restore is more

complex.

FlashCopy images

SAN File System has a FlashCopy function that creates an instantaneous copy (or

image) of a fileset. The FlashCopy image is a read-only, space-efficient image of the

contents of the fileset at the time that it was taken. You can use standard backup

applications or utilities on SAN File System clients to back up the contents of

FlashCopy images, rather than the actual fileset. Backing up the FlashCopy image

avoids any issues with open files that might cause problems when backing up live

data.

FlashCopy images are file-based, so SAN File System clients can see all of the files

and directories in the image. The clients can use this image for quick restore of

parts of the fileset if required, by simply copying the required files and folders

back to the actual fileset. You can also quickly revert the entire fileset from a

FlashCopy image.

Backing up and reverting files using FlashCopy images

When you use standard backup tools available in your environment to back up

your data from a client machine, you can specify the path to the FlashCopy image

instead of the path to the actual files and continue working with the files while the

backup occurs. This procedure produces a consistent backup of the files in the

fileset.

Although creating FlashCopy images is not a replacement for creating backups of

your files to protect your data, in some cases, a user can choose to use a

FlashCopy image to revert a file or a set of files to a specific point in time. For

example, if a user accidentally deletes a file, restoring it by copying it from a

FlashCopy image to another directory instead of restoring it from a backup copy

can be faster.

When you restore files from a backup taken from a FlashCopy image, you cannot

restore the files to the same location as the FlashCopy image because all FlashCopy

image directories are read-only directories. You must restore the files to the

directory where the original files resided or to another directory.

When you revert a fileset to a specific FlashCopy image, the target FlashCopy

image and all FlashCopy images created between the current fileset and the target

FlashCopy image are deleted. The target FlashCopy image then becomes the image

for the current fileset. For example, if you have a current fileset and three

FlashCopy images, FCimage1 created in January, FCimage2 created in February,

and FCimage3 created in March,

Fileset

flashcopy

FCimage1

FCimage2

FCimage3

14 SAN File System System Management API Guide and Reference

and you revert the current fileset back to FlashCopy images FCimage2, FCimage2

becomes the current fileset, and FlashCopy images FCimage2 and FCimage3 are

deleted.

Fileset

flashcopy

FCimage1

Tip: For ease of management, create FlashCopy images of all filesets at the same

point in time, and use a common naming convention to indicate that they

represent a set.

Copy on write

Immediately after the FlashCopy operation, the original fileset files (the source

data) and the FlashCopy images (the copy data) of the files in the fileset share the

same data blocks; that is, nothing is actually copied, which makes the operation

space efficient.

As soon as any updates are made to the actual fileset contents (for example, a

client adds or deletes files, or updates the contents of files), the fileset is updated

by an operation called copy on write, in which only the changed blocks in the fileset

are written to a new location on disk. The FlashCopy image continues to point to

the old blocks, whereas the source fileset will be updated over time to point to the

new blocks.

For example, when you create a FlashCopy image, the image is a set of pointers

back to the original data in the fileset.

If two blocks were changed (S and E), one block was deleted (T) and a new block

was written (P) in the actual fileset, the new blocks would be written, and the

FlashCopy image continues to point to the original blocks, preserving the

point-in-time copy.

Therefore, any access to the FlashCopy image accesses the data blocks as they

existed when the FlashCopy image was created, and any access to the fileset itself

accesses the new data blocks.

S O U R C E D A T A

S O U R C E D A T A

FlashCopy image is the set
of pointers back to the original
data.

Figure 3. FlashCopy image

S O U R C E D A T A
FlashCopy still points
to original data.

Modified source data
11

1 1S E T P
S O U R C E D A T A S E P

Figure 4. Copy on write

Chapter 1. Getting started 15

Creating FlashCopy images

When you create a FlashCopy image, you specify the fileset to be copied. The

FlashCopy image operation is performed individually for each fileset. While the

FlashCopy image is being created, all data remains online and available to users

and applications. The space used to keep the FlashCopy image is included in its

overall fileset space; however, a space-efficient algorithm is used to minimize the

space requirement. The FlashCopy image does not include any nested filesets

within it. Also, you can create incremental FlashCopy images to be used as the

basis for incremental backups. You can create and maintain a maximum of 32

FlashCopy images of any fileset.

The following figure shows how a FlashCopy image is viewable on a Windows

client. In this case, a FlashCopy image was made of the Applications fileset and

created in the directory 060304image. The fileset has two top-level directories,

Adobe and Winamp. After the FlashCopy image is made, a subdirectory called

060304image appears in the special directory, .flashcopy (which is hidden by

default), under the root of the fileset. This directory contains the same folders as

the original fileset (Adobe, Winamp, and all the files and folder structure

underneath). It is captured at the time the image was taken. Therefore, clients have

file-level access to these images, and can access older versions of files, or make

copies of individual files for the original fileset, if required.

When creating a FlashCopy image for a fileset, you can indicate whether the oldest

image should be deleted if creating a new one causes the maximum number of

images to be exceeded. Once a FlashCopy image is created, its name cannot be

changed.

Applications Data

SANFS

Adobe

Acrobat 6.0

Esl

Help

ENU

Reader

Resource

Winamp

Plugins

avs

Skins

Adobe

Acrobat 6.0

Esl

Help

ENU

Reader

Resource

Winamp

Plugins

avs

Skins

Adobe

.flashcopy

060304image

16 SAN File System System Management API Guide and Reference

The actual files in a fileset and the FlashCopy images of the files in the fileset share

the same file data blocks until a client makes changes to the files. When a client

makes a change to a file, such as adding or deleting data, the client performs an

operation called copy on write, in which the client writes the changed blocks to a

new location on disk. At this point, the FlashCopy image points to the old blocks,

and the actual file points to the blocks with the new data. Therefore, any access to

the FlashCopy image produces the data blocks as they existed when the FlashCopy

image was created, and any access to the actual file accesses the new data blocks.

FlashCopy image considerations

These are some basic considerations regarding FlashCopy:

v While a FlashCopy image is being created, all data remains online and available

to users and applications.

v The FlashCopy image operation is performed on a single fileset. You cannot

create FlashCopy images for multiple filesets in a single operation.

v FlashCopy images are full images — you cannot create incremental FlashCopy

images.

v Each fileset can have up to 32 read-only FlashCopy images.

v Once a FlashCopy image is created, its name cannot be changed.

v You can use a FlashCopy image for backing up files, instead of the original

source data. This guarantees a consistent image of the files because the files in a

FlashCopy image are read-only.

v Clients have file-level access to FlashCopy images, to access older versions of

files or to copy individual files back to the real fileset if required.

v FlashCopy images for each fileset are stored in a special subdirectory, called

.flashcopy, under the fileset‘s attachment point. The .flashcopy directory is a

hidden directory. So by default, it does not appear in Windows Explorer in a

SAN File System client.

Disk space used by FlashCopy images

FlashCopy images consume space on the same volumes as the original fileset.

Because FlashCopy uses a space-efficient method to make the image, the amount

of space that is used by FlashCopy images is not possible to predict. If all blocks in

the fileset are changed, the image takes up the same amount of space currently

occupied by the non-FlashCopy objects within the fileset. If nothing in the fileset

changes, the FlashCopy images takes up virtually no space (just pointers to the real

fileset data). It is not possible to determine how much space is being occupied by a

particular FlashCopy image at any particular time.

Therefore, when you plan your space requirements, include space for FlashCopy

images. The amount of space you need to plan for flashcopy images correlates to

the amount of changes you make to files with flashcopy images. Carefully monitor

the user-storage-pool space threshold. Be aware that the space used by FlashCopy

images count toward the fileset’s quota.

Global namespace

The global namespace is the key to SAN File System. It gives all SAN File System

clients common access to all files and directories, and ensures that all SAN File

System clients have consistent access and a consistent view of the data and files

managed by SAN File System. Having common access to all files reduces the need

to store and manage duplicate copies of data and simplifies the backup process.

Security mechanisms, such as permissions and access control lists (ACLs), restrict

the visibility of files and directories.

Chapter 1. Getting started 17

Client access to the global namespace

SAN File System clients mount the global namespace on their systems to access the

filesets. After the global namespace is mounted on a client, users and applications

can use it just as they do any other file system in order to access data and to

create, update, and delete directories and files.

From a client’s perspective, the global namespace appears as a normal directory.

On a UNIX-based client, the global namespace looks like a mounted file system.

On a Windows client, it appears as another drive letter and looks like any other

NTFS file system. Basically, the global namespace looks and acts like any other file

system on a client’s system.

Note: A client cannot move, rename or delete a fileset, and cannot create hard

links across fileset boundaries.

Figure 5 illustrates the appearance of the fileset from the metadata server and

client perspectives. There are five filesets shown: the root, Images, Install,

Unix_files, and Win_files. Some of these filesets have subdirectories (for example,

the folder Backup is a subdirectory on the root file system, and the fileset

Unix_files, has a subdirectory named data). The client, however, cannot tell which

folders are filesets; they appear all as regular directories.

Global namespace structure

The global namespace is organized into filesets. Each fileset is available to the

global namespace at its attachment point. You are responsible for creating filesets

and attaching them to directories in the global namespace. This can be done at

multiple levels. An attach point appears to a SAN File System client as a directory

in which the client can create files and directories (permissions permitting).

Figure 6 on page 19 shows a sample global namespace. In this sample, the global

fileset is attached to the root level in the namespace hierarchy (sanfs), and the

Local Disk (C:)

My Computer

Windows client

Sanfs (T:)

Images

Backup

Install

UNIX_files

Win_files

data

3 / Floppy (A:)1
2

Compact Disk (F:)

Metadata server

Images fileset

Install fileset

UNIX_files fileset

Win_files fileset

Root fileset (Sanfs)

_

Figure 5. Filesets as seen by the metadata server and client

18 SAN File System System Management API Guide and Reference

filesets (HR, Finance, Marketing, and CRM) are attached to the global fileset, and

the nested filesets (Assets and Revenue) are attached to the Finance fileset. By

defining the path of a fileset’s attach point, you also automatically define its

nesting level in relationship to the other filesets.

Shared access to the global namespace

A homogeneous environment is one in which all clients run the same operating

system. In a homogeneous environment, SAN File System provides access and

semantics that are customized for the operating system that is running on the

clients. For example, when files are created and accessed from only Windows

clients, all the security features of Windows are available and enforced. When files

are created and accessed from only UNIX clients, all the security features of UNIX

are available and enforced.

A heterogeneous environment is one in which clients run more than one type of

operating system. In a heterogeneous environment, there is a restricted form of

access. For example, when files created on an UNIX client are accessed by a

Windows client, access is controlled using only the semantics and permissions of

the “other” permission bits in UNIX. Similarly, when files created on a Windows

client are accessed on an AIX® client, access is controlled using only the semantics

and permissions of the “everyone” group in Windows.

Locks and leases

SAN File System uses locks and leases to ensure the consistency and integrity of

data in the SAN File System global namespace. The internal locks discussed are in

addition to the locks provided with the native file systems, such as flock() in

UNIX.

A lock is a mechanism that restricts access to data and metadata. The SAN File

System protocol provides locks that enable file sharing among SAN File System

clients, and that allow clients to have exclusive access to files, when necessary. It

uses distributed data locks for cache consistency and file access locks to

synchronize multiple, concurrent open instances of the same file. You can use

locking semantics that correspond to open modes that are native to Windows and

UNIX operating systems. You can also use byte-range locks.

Note: The locks for objects in a fileset are administered by the metadata server

serving the fileset. During failover, if a SAN File System client relinquishes

demand for locks on objects in a fileset that is being relocated to another

metadata server, you might receive spurious locking errors.

HR

Assets Revenue

Finance Marketing CRM

SANFS Global Fileset

Filesets

Nested Filesets

Figure 6. Sample global namespace

Chapter 1. Getting started 19

When a client or server fails, SAN File System uses a lease-based safety protocol to

ensure data consistency and to protect the structural integrity of the global

namespace.

A client obtains a lease from a metadata server as soon as it makes contact with

that server. A lease is valid for a period of time that is set by an administrator

using a metadata server configuration parameter. When a client obtains a lock from

a server, that lock is guaranteed to be valid by the server only as long as the client

has a valid lease with the server. The server renews a client’s lease each time the

client contacts the server.

If a client does not contact the metadata server within the specified lease period

(for example, due to a temporary network failure), the metadata server can revoke

the client’s locks. If other clients request locks on the same data, the server revokes

the first client’s locks and grants new locks to the other clients. If no such requests

are made, when the client contacts the server again, it can renew its lease and

reassert any locks (get its old locks back) that protect modified but uncommitted

data in the client’s cache, thus preventing data loss.

A client can also lose its lease because of a server failure. However, when the

metadata server is restarted, the client can renew its lease and reassert its locks. A

metadata server provides a grace period for lock reassertion to allow clients to

reassert their locks before allowing other clients to obtain new ones. Reasserting

the locks preserves the first client’s cache. Clients cannot access any new data until

the grace period has ended.

Logs and traces

SAN File System provides various logging and tracing mechanisms for use with

the metadata server and clients. Log messages provide a trail of routine system

activities, operations that occur in normal day-to-day use of the product; as such,

they are of interest to system administrators, as well as to IBM Support Center and

trained service personnel. The contents of the logs, together with the observed

symptoms, are used as a basis to begin isolating problems. Trace messages are

used primarily for diagnostic purposes and are not intended for day-to-day use.

You can view the administrative, audit, cluster, and security logs from the SAN

File System console or by using the catlog command; to clear the cluster and audit

logs use the clearlog command. The SAN File System console also allows you to

filter these logs based on severity and date.

Messages in the SAN File System console log views are linked to the Information

Center. Clicking the message ID displays the Information Center with a description

of the message and recommended actions to resolve the problem.

Administrative log

An administrative log contains entries for routine activity and error conditions that

are generated by the administrative servers. A separate log is maintained for each

administrative server. If you access these logs through the master metadata server

(either from the SAN File System console or the administrative command-line

interface) you see a consolidated view of the logs for each administrative server in

the cluster, ordered by date and time. If you access these logs through a

subordinate metadata server (from the administrative command-line interface), you

see only the logs for the administrative server running on the same engine as that

particular metadata server.

20 SAN File System System Management API Guide and Reference

Audit log

The audit log contains administrative audit messages, which are generated in

response to operations performed by the SAN File System administrative server.

The log does not capture every administrative operation. Instead, it records all

commands that modify metadata or cluster configuration and significant

operations, including commands that would have made a change but failed to do

so. The log also keeps a record of the user ID issuing the command, along with the

time stamp and completion status of the requested operation. The log does not

keep a record of simple query operations; such operations do not alter metadata,

and because they are likely to be more numerous than those that do, their presence

could easily overwhelm logging and interpretation of more meaningful operations.

You can use information in the audit log to help convert requests made from the

SAN File System console into equivalent command line interface instructions or to

perform troubleshooting in the case of a failure within SAN File System.

Client logs and traces

Use the logging and tracing functions that are provided on each SAN File System

client to help diagnose client-related problems. There is also a client dump facility

to help with data collection in the event that the IBM Support Center requires this

information.

Event log

The event logs contains a subset of the entries in the metadata server logs. The

entries that appear in the event logs are those events, such as changes in server

state, that have been configured as alerts. The event log is not stored in a separate

physical file, but is generated from entries in the metadata server logs or cluster

log.

Message IDs

The format of the message IDs helps you determine the type of error. The format

of the message IDs is shown in the following figure. TheXXX, YY, and Z fields are

alphabetic, and the nnnn field is a 4-digit number. For example, HSTAD001I would

be an informational Basic Administration Message from the SAN File System

Administration Service.

 Refer to the “Message conventions” topic in the reference section for a detailed list

of values for the component and subcomponent fields.

The severity can be one of these values:

 I Informational

W Warning

E Error

S Severe

XXXYYnnnnZ
Component

Subcomponent

Message

Number

Severity

Level

Chapter 1. Getting started 21

Metadata server logs

The metadata server logs contain entries for routine activity and error conditions that

are generated by the metadata servers. A separate log is maintained for each

metadata server in the cluster. If you access these logs through the master

metadata server (either from the SAN File System console or the administrative

command-line interface using the catlog –log cluster command), you see a

consolidated view of the logs for each metadata server in the cluster, ordered by

date and time, providing you with cluster-wide view of activities and events. This

consolidated view is called the cluster log. If you access these logs through a

subordinate metadata server (from the administrative command-line interface), you

only see the logs for that particular metadata server.

Each metadata server log has a maximum size of 250 MB. Once a log file reaches

its maximum size, it is renamed with a .old extension (for example, the log.std file

is renamed log.std.old). An existing .old file is overwritten when a subsequent .old

file of the same name is created. The log.std file is then cleared and used for new

messages of the indicated type. In this way, 500 MB of each type of log data is

maintained.

Security log

The security log maintains a history of administrator login activity generated by the

administrative servers. A separate log is maintained for each administrative server.

If you access these logs through the master metadata server (either from the SAN

File System console or the administrative command-line interface, you see a

consolidated view of the logs for each administrative server in the cluster, ordered

by date and time. If you access these logs through a subordinate metadata server

(from the administrative command-line interface), you see only the logs for the

administrative server that is running on the same engine as that particular

metadata server.

Trace log

The trace log receives trace messages from the metadata server. Because a minimal

amount of tracing is always enabled for first-failure data capture, this log always

exists. However, the number of messages and the level of detail that the messages

convey is dependent on the current trace settings for the particular metadata

server. The default level of tracing that is active at all times is 0, which sends only

the most important messages. These messages are useful for providing initial

first-failure data capture (FFDC) information. Trace messages are of interest

primarily to IBM support personnel. Change the trace settings only at their

direction. Higher levels of tracing can generate significant processing activity and

should be used only when necessary.

Metadata server

Watch and learn

A metadata server is a software server that performs metadata, administrative, and

storage-management services and provides clients with shared, coherent access to

shared storage (or global namespace). The metadata servers are clustered for

scalability and availability, and are often referred to as a cluster. In the cluster,

there is one master metadata server and one or more subordinate metadata servers,

each running on a separate storage engine. Additional metadata servers can be

added, as required, when the workload grows.

All of the metadata servers, including the master metadata server, share the

workload of the global namespace. Each is responsible for providing metadata and

22 SAN File System System Management API Guide and Reference

foe0_metadata_server.swf

locks to clients for specific filesets assigned to them. They know which filesets

belong to which metadata server, and when contacted by a client, can direct the

client to the appropriate metadata server. They also manage distributed locks to

ensure the integrity of all of the data within the global namespace.

In addition to providing metadata to clients and managing locks, metadata servers

perform a wide variety of other tasks. They process requests to create and manage

filesets, storage pools, volumes, and policies; enforce the policies to place files in

appropriate storage pools; and send alerts when any threshold established for the

filesets and storage pools are exceeded.

Administrative services

The metadata servers process requests from administrators (issued from the SAN

File System console or administrative command-line interface) to perform the

following types of tasks:

v Create and manage filesets, which are subsets of the entire global namespace

and serve as the units of workload assigned to specific metadata servers.

v Create and manage volumes, which are LUNs labeled for SAN File System’s use

in storage pools.

Data-volume operations are initiated from and coordinated by the metadata

servers but are actually performed by one or more clients. These operations are

serial and I/O bound, and most have no affect on processing; however, some

operations (such as moving the contents of one volume to another) are more

processor-intensive and might effect client performance. The metadata servers

perform metadata-volume operations.

v Create and maintain storage pools. For example, an administrator can create a

storage pool that consists of Redundant Array of Independent Disks (RAID) or

striped storage devices to meet reliability requirements, or create a storage pool

that consists of random-access or low-latency storage devices to meet high

performance requirements.

v Create FlashCopy images of filesets in the global namespace that can be used to

make file-based backups easier to perform.

v Define policy sets that contain rules that determine in which storage pools

specific files are stored.

Metadata services

There are two types of metadata:

v File metadata is information that clients need to access files directly from storage

devices in the SAN. File metadata includes permissions, owner and group,

access time, creation time, and other file characteristics, as well as the location of

the file on the storage device.

v System metadata is metadata used by the system itself. It includes information

about file sets, storage pools, volumes, and policies. The metadata servers

perform the reads and writes required to create, distribute, and manage this

information. The system metadata is stored and managed in the system storage

pool, which is only accessible by the metadata servers in the cluster.

Distributing locks to clients involves the following services:

v Issuing leases that determine the length of time that a metadata server

guarantees the locks that it grants to clients.

v Granting locks to clients that allow them shared or exclusive access to files or

parts of files. These locks are semi-preemptible, which means that if a client does

not contact the metadata server within the lease period, the metadata server can

Chapter 1. Getting started 23

“steal” the client’s locks and grant them to other clients if requested; otherwise,

the client can reassert its locks (get its locks back) when it can contact the

metadata server again.

v Providing a grace period during which a client can reassert its locks before other

clients can obtain new locks if the metadata server itself goes offline and then

comes back online.

Metadata servers and filesets

The metadata servers manage such things as file locations, file permissions, and

locking. Only the metadata information travels over the IP network, minimizing

the data transfer on the IP network. The SAN File System clients still access the

regular data in the SAN and thus can benefit from the high performance a SAN

can provide. For ideal performance, it is beneficial to evenly balance the workload

across the metadata servers. Each fileset is assigned to a metadata server, and thus

the filesets can be balanced across the metadata servers in the cluster.

SAN File System provides administrative commands that can be used to monitor

transaction rates on each metadata server. Transaction rate parity across all

metadata servers provides better SAN File System performance. Fileset assignment

can be changed from one metadata server to another to balance transaction rates

within the SAN File System environment. You should plan the filesets to be used

based on expected I/O transaction rates, because this (rather than file size or

storage space consumption) drives workload on the metadata server.

Storage-management services

The metadata servers perform these storage-management services:

v Manage allocation of blocks of space for files on LUNs

v Maintain pointers to the data blocks of the files

v Evaluate the rules in the active policy and manage the placement of files in

specific storage pools based on those rules

v Issue alerts when file sets and storage pools reach or exceed their specified

thresholds, or return out-of-space messages if they run out of space

SAN File System is designed to optimize communication between the metadata

servers and clients. If a client deletes a file, there might be a delay before the free

space is visible to the clients. The metadata server periodically checks for and

reclaims freed space. Until the space is reclaimed, clients cannot see the freed

space.

SNMP

The Simple Network Management Protocol (SNMP) is typically used to monitor

network health, and performance and hardware, as well as to find and solve

network problems. SNMP consists of two main components:

v SNMP agents, which are software components that reside on managed devices

and collect management information (using Management Information Bases or

MIBs). SNMP agents issue traps when SNMP events occur. These traps are sent

through User Datagram Protocol (UDP) to an SNMP Manager.

v An SNMP manager, which is a network management application (for example,

IBM Tivoli NetView®) that monitors and controls devices on which SNMP

agents are running and can receive SNMP traps.

In SAN File System, each metadata server generates SNMP traps in response to

certain events. SNMP traps are not issued from the operating system, hardware, or

the administrative agent.

24 SAN File System System Management API Guide and Reference

Tip: The RSA II cards can be set up to generate hardware traps as well.

You can configure which severity levels of events (informational, warning, error, or

severe) should generate SNMP traps and you can define which SNMP managers in

the SAN environment are to receive the traps. When an event occurs with a

severity level that causes an SNMP trap, SAN File System sends the trap, and logs

the event in the cluster log.

Note: SAN File System supports asynchronous monitoring through traps but does

not support SNMP GETs or PUTs for active management. The SNMP

Manager cannot manage SAN File System.

Not all events in SAN File System generate traps. Examples of events that might

generate SNMP trap messages include:

v When a metadata server executes a change in state

v When a metadata server detects that another metadata server is not active

v When the size of a file set reaches a specified percentage of its capacity

Storage management

SAN File System provides automatic file placement and management through the

use of policies. The policy rules cause newly created files to be placed in the

appropriate storage pools and cause files of a certain age or size to be moved or

deleted.

File placement

SAN File System provides automatic file placement at the time of creation through

the use of policies and storage pools. You can create quality-of-service storage

pools that are available to all users and define rules and policies that place newly

created files into the appropriate storage pool automatically.

The file-placement policy tells a metadata server where to place the data for a

newly created file in a specific storage pool if the attributes of that file meet the

criteria specified in a rule. A rule can apply to any file being created or to only

files being created within a specific fileset depending on how it is defined. Other

criteria include these:

v Date and time when the file is created

v Fileset

v File name or extension

v User ID and group ID on UNIX clients

The rules in a file-placement policy are evaluated in order until the condition in

one of the rules is met. The data for the file is then stored in the storage pool that

is specified by the applicable rule. If none of the conditions specified in the rules is

met, the data for the file is stored in the default storage pool.

Rules in a policy are evaluated only when a file is being created. If you switch

from one policy to another, the rules in the new policy apply only to newly created

files. Activating a new policy does not change the storage pool assignments for

existing files. Moving a file does not cause a policy to be applied. You can create

multiple policies, but only one policy can be active at a time.

After a file has been created, you can check its storage pool assignment using the

statfile command from the administrative command-line interface (CLI). You can

also use the statpolicy command from the administrative CLI to view the statistics

about the file-placement policy rules.

Chapter 1. Getting started 25

Attention:

It is recommended that you do not use creation time, user ID or group ID to place

file. If you do base any file-placement rules on creation time, user IDs, or group

IDs, be aware of these restore and migration considerations:

v A rule that uses the creation date as the placement criteria assigns a file based

on the time that the file was restored or migrated, not the original creation time.

v A rule that uses a user ID or group ID as the placement criteria assigns a file

based on the effective user and group IDs of the restore process, not the original

file’s user and group IDs.

Policies and rules

This topic describes how SAN File System automates the management of files

using policies and rules.

SAN File System enables you to automate the management of files using policies

and rules. Properly managing your files allows you efficiently use and balance

your premium and inexpensive storage. SAN File System supports these policies:

v File-placement policies are used to automatically place newly created files to a

specific storage pool.

v File-management policies are used to manage files (move or delete) during its

lifecycle by moving them to another storage pool or delete them all together.

Policies

A policy is a set of rules that determine where specific files are placed based on the

file’s attributes. You can define any number of policies, but only one policy can be

active at a time. If you switch from one policy to another or make changes to a

policy, that action has no effect on existing files in the global namespace. The new

or changed policy is effective only on newly created files in SAN File System.

Manually moving a file does not cause the policy to be applied.

A policy can contain any number of rules. There is no limit to the size of a policy.

SAN File System performs error checking for file-placement policies in the

following phases:

v When you create a new policy, the master metadata server checks the basic

syntax of all the rules in the policy.

v When you activate the policy, the master metadata server checks all references to

filesets and storage pools. If a rule in the policy refers to a fileset or storage pool

that does not exist, the policy is not activated and an error is returned.

v When a new file is created by a client, the rules in the active policy are

evaluated in order. If an error is detected, the metadata server responsible for

creating the file logs an error, skips all subsequent rules, and assigns the file to

the default storage pool. If a default pool does not exist, the file is not created

and the metadata server returns an error to the client application.

Currently, there is no error checking for file-management policies.

If your environment is set up in a non-uniform zone configuration (in which

clients cannot access all volumes), you need to ensure that the rules in the active

policy place files into volumes that are accessible to the clients that use them.

26 SAN File System System Management API Guide and Reference

Tip: When SAN File System is first installed, a default file-placement policy is

created and remains active until you create and activate a new one. The

default file-placement policy assigns all files to the default storage pool.

Although the default storage pool is created when SAN File System is first

started, you must assign volumes to it before it can be used. If a user or

application on a SAN File System client attempts to create new files that

would be assigned to the default storage pool, and there are no volumes

assigned to it, the user or application receives No Space errors.

Rules

A rule is an SQL-like statement that tells the metadata server what to do with the

data for a file in a specific storage pool if the file meets specific criteria. A rule can

apply to any file being created or only to files being created within a specific fileset

or group of filesets.

Rules identify the conditions, such as these, that when matched causes that rule to

be applied:

v Date and time when the file is created

v Date and time when the file was last accessed

v Fileset

v File name or extension

v File size

v User ID and group ID on UNIX clients

SAN File System evaluates rules in order, from top to bottom, as they appear in

the active policy. The first rule that matches determines what is to be done with

that file. For example, when a client creates a file, SAN File System scans the list of

rules in the active file-placement policy to determine which rule applies to the file.

When a rule applies to the file, SAN File System stops processing the rules and

assigns the file to the appropriate storage pool. If no rule applies, the file is

assigned to the default storage pool.

Attention:

It is recommended that you do not use creation time, user ID or group ID to place

file. If you do base any file-placement rules on creation time, user IDs, or group

IDs, be aware of these restore and migration considerations:

v A rule that uses the creation date as the placement criteria assigns a file based

on the time that the file was restored or migrated, not the original creation time.

v A rule that uses a user ID or group ID as the placement criteria assigns a file

based on the effective user and group IDs of the restore process, not the original

file’s user and group IDs.

Storage pools

Watch and learn

A storage pool is a named set of SAN File System volumes that can be used to store

either metadata or file data. A storage pool consists of one or more volumes that

provide a quality of service that you want for a specific use, such as to store all

files for a particular application or a specific business division. You must assign

one or more volumes to a storage pool before it can be used.

Chapter 1. Getting started 27

foe0_storage_pools.swf

SAN File System has two types of storage pools: system storage pool and user

storage pool.

Storage pools and volumes

Typically, you assign volumes to storage pools based on their common

characteristics, such as device capabilities (availability or performance level) and

usage (business division, project, application, location, or customer).

Each storage pool manages its own volumes. File space is allocated to the volumes

in a given storage pool in a round-robin algorithm (as shown in Figure 7) in logical

partitions, or in blocks. Logical partitions are allocated to the system storage pool

in 16-MB blocks. For user storage pools, including the default storage pool, you

can allocate logical partitions in 16, 64, or 256-MB blocks. All logical partitions in

the same storage pool must be the same size.

Tip: You can set a threshold to generate an alert when a storage pool reaches or

exceeds a certain percentage of its maximum capacity. By default, an alert is

generated when a storage pool becomes 80% full. An alert is logged every

five minutes until one or more volumes are assigned to the storage pool. You

can set configuration parameters to cause an SNMP trap message to be

generated as well. An SNMP trap notifies you of this condition

asynchronously.

System storage pool

The system storage pool contains the system metadata (system and file attributes,

configuration information, and metadata server state) that is accessible to all

metadata servers in the cluster. There is only one system storage pool that is

created automatically when SAN File System is installed. The system storage pool

contains the most critical data for SAN File System. The first volume that is

assigned to the system storage pool, called the master volume, contains the most

critical pages of metadata that SAN File System manages.

Important: Use highly-reliable and available logical unit numbers (LUNs) for the

system storage pool (for example, mirroring or redundant array of

independent disks (RAID), plus hot spares in the backend storage

system) so that the cluster always has a robust copy of the system

metadata.

Because the amount of metadata grows as the global namespace grows, you must

monitor the system storage pool to ensure that there is always enough volumes

assigned to it to accommodate the growth. The system storage pool typically

Volume 1

File 1

File 3

Volume 2 Volume 3

File 2

Storage pool

121

5 43

31

264

2

Figure 7. File space allocation

28 SAN File System System Management API Guide and Reference

requires approximately 2% to 5% of the total storage capacity that SAN File System

manages, but this amount varies depending on your environment. Use the alert

features on the system storage pool to ensure that you do not run out of space.

Tip: The minimum size of a system volume is 2 GB; therefore, the minimum size

of the system storage pool is also 2 GB.

For security and reliability, the volumes that are assigned to the system storage

pool should be accessible only to the cluster using a private SAN or a shared SAN

with a combination of zoning, LUN masking, or special configuration. For

reliability, the volumes should be virtualized RAID arrays (also known as ranks

within IBM Enterprise Storage Server®).

User storage pools

A user storage pool contains the blocks of data that make up user files. SAN File

System stores the data that describes the files, called file metadata, separately from

the actual file data. You can create one or more user storage pools, and then create

policies that contain rules that cause metadata servers to store data for specific files

in the appropriate storage pools.

The default storage pool is a special user storage pool. This optional storage pool is

used to store the data for a file if the file is not assigned to a specific storage pool

by a rule in the active policy. A default storage pool is created when SAN File

System is installed. However, if you want to use the default storage pool, you must

assign one or more volumes to it. There can be only one default user storage pool

in SAN File System. You can designate any user storage pool that has volumes

assigned to it to be the default storage pool. You can choose to disable the default

storage pool. In this case, newly created files that do not match any rules in the

active policy are not saved.

User interfaces

There are two methods for managing SAN File System: an administrative

command-line interface and a graphical user interface, called the SAN File System

console. You can access the administrative command-line interface by either directly

logging in to an engine or using a Secure Shell (SSH) client to remotely connect to

the engine. You can access the SAN File System console using a Web browser.

SAN File System provides you with different levels of user access to perform

administrative operations. The users and user roles are defined on your LDAP

server. Therefore, you cannot access the SAN File System without a valid user ID

that is defined in the LDAP server.

SAN File System provides the following user interfaces:

v A Web-based administrative user interface called the SAN File System console

v An administrative command-line interface

v A client command-line interface

Note: The administrative server does not lock administrative access in order to

prevent simultaneous SAN File System console or administrative

command-line interface sessions. You must manually coordinate the use of

the administrative interfaces.

Chapter 1. Getting started 29

SAN File System console

The SAN File System console allows you to control and monitor SAN File System

from a Web-based graphical user interface. For ease of monitoring, it provides a

system overview that illustrates the status of the various SAN File System

components. In addition, the SAN File System console provides inline messaging

that assists with system configuration, performance tuning and troubleshooting

tasks.

The SAN File System console also contains the Help Assistant, which provides

panel-level help information as well as links to related topics in the SAN File

System Information Center. The Information Center serves as an online, searchable

repository for all of the product documentation.

Administrative command-line interface

You can use the administrative command-line interface to administer all aspects of

SAN File System, including setting up and managing storage pools, volumes, and

filesets. For security reasons, administrative command-line interface runs only on

the engines in your cluster.

You can use the administrative command-line interface interactively using the

sfscli utility. You can also embed administrative commands in scripts.

To access sfscli, you must log in to an engine that hosts any metadata server. The

following figure illustrates how you access sfscli.

Client commands

SAN File System provides a set of commands that are used to set up SAN File

System clients and to perform planning, migration, and verification tasks for data.

These commands are issued from the client machines.

User roles

SAN File System provides different levels of user access that are assigned to

specific administrative tasks in your environment. These access levels, or user roles,

are one way to provide security. The following table describes the SAN File System

user roles.

 Table 2. SAN File System user roles

Role Level Description

Engine 1 Engine 2 Engine n

Master
metadata

server

Subordinate
metadata

server

Subordinate
metadata

server

Primary
admin
server

Secondary
admin
server

Secondary
admin
server

ssh connection

Administrator

Admin
CLI

Admin
CLI

Admin
CLI

Figure 8. Accessing sfscli

30 SAN File System System Management API Guide and Reference

Table 2. SAN File System user roles (continued)

Monitor Basic level of access Allows you to obtain basic status

information about the cluster,

display the message logs, display

the rules in a policy, and list

information regarding SAN File

System elements such as storage

pools, volumes, and filesets.

Backup Monitor + backup access Allows you to perform backup and

recovery tasks in addition to all

operations available to the Monitor

role.

Operator Backup + additional access Allows you perform day-to-day

operations and tasks requiring

frequent modifications, in addition

to all operations available to the

Backup and Monitor roles.

Administrator Full access Provides you with full,

unrestricted access to all

administrative operations.

At least one user with Administrator access is required. You can also choose to

define other roles as appropriate for your organization.

Volumes

A logical unit number (LUN) is the logical unit of storage that a SAN or other disk

subsystem can assign to metadata servers and clients. A volume is a LUN that is

labeled by SAN File System for its use. Volumes are grouped together virtually to

form storage pools, in which file data and metadata is stored.

An LUN becomes a SAN File System volume when you add it to a storage pool. It

is automatically assigned a system-generated label that identifies it as a SAN File

System volume. You must also give the volume a name that is unique among all

the volumes used by a SAN File System cluster.

During startup, the metadata server scans all LUNs that it can access in the SAN,

searching for the label that tells it that the LUN is a valid SAN File System

volume. Clients perform this same search whenever they are started.

System-data LUN operations are performed by the metadata servers. All other data

LUN operations are initiated from and coordinated by the metadata servers in the

cluster but are actually performed by one or more clients; therefore, the metadata

servers no longer need to see the data LUNs, and the clients only need to see the

data LUNs that they need to access. This allows SAN File System to support a

wide variety of SAN configurations, storage devices, and drivers, and also

supports scaling to large numbers of storage devices and clients. This also allows

SAN File System to support grouping clients and LUNs into SAN zones to provide

enhanced security.

A volume must be empty to be removed from a storage pool. When you remove a

volume, SAN File System moves the contents of that volume across other available

volumes in the same storage pool. If the storage pool does not have sufficient

space available in other volumes to move all of the data contained in the specified

Chapter 1. Getting started 31

volume, the removal fails and the metadata server suspends the volume (the

metadata server cannot allocate new data on that volume).

Tip: Keep the storage subsystem device driver’s virtual path (vpath) configuration

file current. If many LUNs are added and deleted from the metadata server, it

is possible for the configuration file to contain references to LUNs that do not

exist.

Restriction: A metadata server can access up to a combined total of 256 SCSI disk

single-pathed and/or vpath multi-pathed LUNs. This is a limitation of

the Linux™ operating system. When the number of entries in the

storage subsystem device driver’s vpath configuration file reaches 256,

any new LUN configured on the metadata server will not be visible.

Volumes and storage pools

When you install SAN File System, there is a system storage pool, which is used

by metadata servers to store system and file metadata, and a default storage pool,

which can be used to store file data. You can create additional user storage pools

for file data; however, no data can be stored in a storage pool until you assign one

or more volumes to it. You can also remove the default storage pool if you choose.

The volumes added to the system storage pool are called system volumes.

As the amount of metadata that is generated for the server cluster and client files

grows, you must ensure that the system storage pool always has enough volumes

assigned to it so that it does not run out of space.

You must also ensure that the user storage pools, including the default storage

pool, has a sufficient number of volumes. Each storage pool must have at least one

volume assigned to it before any files can be stored in it.

To assist you in monitoring storage pool capacity, SAN File System provides a

threshold option that you can specify when adding a volume to a storage pool or

changing settings for a storage pool. A threshold is a specified percentage of the

estimated maximum capacity of the storage pool. When a storage pool reaches or

exceeds the percentage specified as its threshold, SAN File System generates an

alert. This alert can also generate an SNMP trap message to notify you of the

condition asynchronously, if you set the appropriate parameters for SNMP traps.

Volume activation and suspension

When you add a volume to a storage pool, by default, the volume is activated.

This means that a metadata server can allocate data to the newly added volume.

You can add a volume to a storage pool in a suspended state; however, no data

can be allocated to the volume until you activate it.

A volume can be in a suspended state if you add it to a storage pool without

activating it. You can also change the state of a volume from activated to

suspended. When a volume is in a suspended state, a metadata server cannot

allocate any data to it.

Volume removal

You can remove a volume from a storage pool. During this process, any files that

are stored in the volume are automatically redistributed among the remaining

volumes in the same storage pool. When you remove a volume, data is moved and

32 SAN File System System Management API Guide and Reference

committed one logical partition at a time. If a failure occurs while moving the

contents of a volume, you can reissue the command, and the move process

continues where it stopped earlier.

If you forcefully remove a volume containing part of a file’s data, that part of the

file data will be lost, creating a hole in the file. You will receive an I/O error if you

attempt to read or write that part of the file; However, you can still access the

parts of the file on other volumes. If part of a FlashCopy image is lost, the entire

FlashCopy image is marked as damaged and becomes irrevertible. However, you

can still access the unaffected parts of the FlashCopy image using ordinary file

operations such as copy. If you attempt to back up a file with a hole, the behavior

depends on your backup application. It might back up the file up to the point of

the hole, or it might abort the entire process.

Remember: There is no automatic recovery process when you specify the force

option. All files are removed immediately without being copied.

Before removing a volume with the force option, use the

reportvolfiles command to display a list of files on the volume. The

files for which failures occur are also listed in the cluster message log,

and you can restore those files manually.

When you remove a volume from a storage pool, its label is removed, and the

volume becomes a logical unit number (LUN) again.

Limitations to volumes in the system storage pool

The volumes in the system storage pool have these limitations:

v All volumes in the system storage pool must be of the same type of backend

storage device and must be one of the supported IBM storage subsystems. You

can use IBM TotalStorage SAN Volume Controller to provide mixed storage as

long as only the SAN Volume Controller virtual devices are visible to the cluster.

v All volumes in the system storage pool must be visible to all metadata servers in

the cluster.

v Each volume in the system storage pool must be at least 2 GB in size.

v The system storage pool is limited to 126 dual-path volumes.

Administrative agent for SAN File System

The CIM Agent for SAN File System, known as the administrative agent, provides

an application programming interface for the operations that an administrator

performs to manage a cluster. It offers CIM-compatible objects for managing SAN

File System.

Note: The SAN File System CIM model is following the direction of the

Distributed Management Task Force Inc. (DMTF) industry standard as it

develops. As the standard develops, the SAN File System model should

improve in its consistency and its inheritance from CIM base classes. Also,

the SAN File System model does not currently include associations and

indications.

Service Location Protocol (SLP) is a mechanism for publishing and locating the

administrative agent. It enables third-party clients to discover and connect to the

administrative agent. SAN File System provides a default SLP configuration. If you

want to modify the default configuration, see the www.openslp.org web site for

information about SLP settings.

Chapter 1. Getting started 33

A standard CIM client can use the administrative agent to access and control the

metadata server. The administrative agent restricts access to administrative

operations through user roles that are stored in the Lightweight Directory Access

Protocol (LDAP) server. Before using a CIM client, make sure the LDAP server

contains your user name and password. See the SAN File System Installation and

Configuration Guide for information about configuring LDAP.

Functional view of the Administrative agent

This section provides functional views of the administrative agent object model.

Diagrams show specific functionality that is provided by the administrative agent

and illustrate the architecture of the administrative agent.

CIM base classes

The following diagram shows the CIM base classes, which are the superclasses of

the SAN File System classes.

34 SAN File System System Management API Guide and Reference

CIM_ManagedElement

CIM_ServiceStatisticalInformation

CIM_ComputerSystem

CIM_Policy

CIM_Setting

CIM_StatisticalInformation

CIM_Cluster

CIM_System

CIM_PolicySet

CIM_ServiceAccessPoint

CIM_ClusteringService

CIM_Service

CIM_MessageLog

CIM_StorageVolume

CIM_StorageExtent

CIM_LogicalDevice

CIM_ManagedSystemElement

CIM_LogicalElement

CIM_EnabledLogicalElement

Figure 9. CIM base classes

Chapter 1. Getting started 35

SAN File System component classes

Table 3 provides an overview of the classes that represent the major elements of

SAN File System.

 Table 3. SAN File System element classes

Name Description

“STC_AvailableLUNs” on page 91 This class represents an available Fibre Channel (FC)

LUN. (When you assign a LUN to a storage pool, SAN

File System labels it as a volume.) This class provides

information about the channel and the LUN size and

state. Its methods enable you to retrieve information

about LUNs that a specific client can access.

“STC_Cluster” on page 96 This class, along with the STC_MasterService class,

represents a cluster. It provides the identifier of the

cluster and the number of engines.

“STC_ComputerSystem” on page

97

This class represents each engine in the cluster. It

provides the identifier and state of the engine. Its

methods enable you to set and retrieve the power state

of the engine.

“STC_Container” on page 100 This class represents a fileset (also known as a

container). It provides the identifier, its location, size,

FlashCopy images and server of the fileset. Its methods

enable you to define a new fileset, attach, detach,

delete or move an existing fileset or change its hosting

server. It also provides methods to remove the static

assignment that a fileset has to a server, to list the

storage pools that a fileset can use to store data, and to

retrieve fileset information.

“STC_Domain” on page 110 This class represents a SAN File System domain, which

is used for user mappings. It provides the name of the

domain and its type, which can be Windows Active

Directory, UNIX NIS, or UNIX LDAP. Its methods

enable you to create, delete and rename domains.

“STC_MasterSAP” on page 117 This class represents the master metadata server service

access point.

“STC_MasterService” on page 117 This class, along with the STC_Cluster class, represents

a cluster and provides cluster services. It identifies the

service and the state of the cluster. Its methods enable

you to bring up, bring down, quiesce or resume all

servers in a cluster, add or drop a server from the

cluster, start or stop a check of metadata, display

metadata for a file, or commit the cluster to start using

the latest software. It also provides methods for listing

clients that have access to a specified LUN or volume.

“STC_PolicySet” on page 144 This class represents a policy, which is a list of

file-placement and service-class rules that define

characteristics and placement of files. It provides

information about the policy and its policy rules. Its

methods enable you to create, delete, activate, and

retrieve the rules and statistics for a policy.

“STC_RegisteredFSClients” on

page 150

This class represents a registered client of a metadata

server. It provides identifier, location, and lease

information about the client.

36 SAN File System System Management API Guide and Reference

Table 3. SAN File System element classes (continued)

Name Description

“STC_RemoteServiceAccessPoint”

on page 151

This class represents a remote service access point. It

provides information that you can use to access the

SAN File System console.

“STC_StoragePool” on page 152 This class represents a storage pool. It provides

identifier, type, and size information about the storage

pool. Its methods enable you to create, delete, move,

set the storage pool type, disable the default storage

pool and move a file to a different storage pool.

“STC_TankSAP” on page 164 This class represents a metadata server service access

point. It provides the addresses of the Ethernet server

and the configuration of the ports and indicates

whether the local server is the master metadata server.

“STC_TankService” on page 165 This class represents a metadata server and provides

server services. It provides the identifier and state of

the server, whether it is a master metadata server, and

the number of filesets that it serves. Its methods enable

you to start and stop a metadata server.

“STC_UserMap” on page 170 This class represents a user mapping to make a user

name on Windows and a user name on UNIX

equivalent for file access purposes. It provides user and

domain names on Windows and UNIX. Its methods

enable you to create, delete and refresh user mappings.

“STC_Volume” on page 173 This class represents a volume. It provides identifier,

location, state and size information about the volume.

Its methods enable you to create, delete, move, resize a

volume and suspend and resume partition allocation of

a volume, reset the iterator that locates each file entry

on the volume, and return the next file entry.

Available LUNs class

The following diagram shows the hierarchy and definition of the

STC_AvailableLUNs class.

Chapter 1. Getting started 37

Computer system classes

The following diagram shows the hierarchy and definitions of the STC_Cluster and

STC_Computer classes.

See CIM base classes

CIM_StorageVolume

STC_AvailableLUNs

LunID : uint64
NodeWWN : string
PortWWN : string
Vendor : string
Product : string
Version : string
Size : uint64
State : uint32
VolumeName : string

OpenClientLUNList()
GetNextClientLUN()
CloseClientLUNList()
RescanLUNs()
GetWWIds()

Figure 10. Available LUNs class

38 SAN File System System Management API Guide and Reference

See CIM base classes

CIM_Cluster

Interconnect : string
InterconnectAddress : string
Types : uint16 []
MaxNumberOfNodes : uint32
ClusterState : uint16

CIM_ComputerSystem

STC_ComputerSystem

CreationClassName : string
TotalPowerOnHours : uint64
RestartCount : uint16
IsPowerOn : boolean
ASMTime : datetime
CurrentState : uint32
UUID : string

SetPowerState()
GetPowerState()

STC_Cluster

SystemCreationClassName : string
SystemName : string
CreationClassName : string
ClusterId : uint32
ConfiguredNumberOfNodes : uint32
CurrentNumberOfNodes : uint32

Figure 11. Computer system classes

Chapter 1. Getting started 39

System element classes

The following diagram shows the hierarchy and definitions of the STC_Container,

STC_StoragePool, STC_Volume, STC_Domain, and STC_UserMap classes.

40 SAN File System System Management API Guide and Reference

CIM_ManagedElement

Caption : string
Description : string
ElementName : string

CIM_ManagedSystemElement

InstallDate : datetime
Name : string
OperationalStatus : uint16[]
StatusDescriptions : string[]
Status : string

STC_Container

Name : string
Description : string
InstallDate : datetime
State : uint32
Attachpoint : string
DirectoryName : string
DirectoryPath : string
Parent : string
NumberofChildren : uint32
Quota : unint32
IsHardQuota : boolean
AlertPercentage : uint16
SizeAllocated : uint64
SizeAllocatedPercentage : uint16
NumberofPITCopies : uint16
LastPITCopyDate : datetime
AssignmentPolicy : uint32
AssignedServer : string
Server : string
Serverstate : uint32

Create()
Attach()
Detach()
Delete()
ChangeServer()
RemoveServerBinding()
Move()
ListAssociatedPools()
GetFileSetInfo()

STC_StoragePool

Caption : string
Name : string
Id : string
PoolType : uint32
PartitionSize : uint64
BlockSize : uint32
AlertPercentage : uint16
Size : uint64
SizeAllocated : uint64
SizeAllocatedPercentage : uint16
NumberofVolumes : uint32
Description : string

Create()
SetDefault()
DisableDefault()
Delete()
Move()
MoveFile()

STC_Volume

StoragePoolName : string
Caption : string
Name : string
OSDeviceName : string
State : uint32
Size : uint64
SizeAllocated : uint64
SizeAllocatedPercentage : uint16
Description : string

Create()

SuspendAllocation()
ResumeAllocation()
ResetFOV()
GetNextFOV()
Delete()

Move()
Resize()

CreateUsingLunId()

DeleteUsingClient()

STC_Domain

Name : string
DomainType : uint32

Create()
Delete()
Move()

STC_UserMap

SrcUserDomain : string
TgtDomainName : string
TgtUserName : string
SrcDomainName : string
SrcUserName : string
Caption : string
Description : string

Create()
Delete()
DeleteAll()
Refresh()
RefreshAll()

Figure 12. System element classes

Chapter 1. Getting started 41

Service access point classes

The following diagram shows the hierarchy and definitions of the

STC_RemoteServiceAccessPoint, STC_MasterSAP, and STC_TankSAP classes.

Service classes

The following diagram shows the hierarchy and definitions of the

STC_MasterService and STC_TankService classes.

See CIM base classes

CIM_ServiceAccessPoint

CIM_RemoteServiceAccessPoint

STC_RemoteServiceAccessPoint

STC_TankSAP

TypeOfAddress: uint16
Ip : string
ClusterPort : uint32
HeartbeatPort : uint32
STPPort : uint32
AdminPort : uint32
AgentPort : uint32
IsLocal : boolean

STC_MasterSAP

Figure 13. Service access point classes

42 SAN File System System Management API Guide and Reference

See CIM base classes

CIM_Service

CIM_ClusteringService

STC_MasterService

SystemCreationClassName : string
SystemName : string
CreationClassName : string
Name : string
CurrentState : uint32
PendingState : uint32
LastCurrentStateChangeTime : datetime
LastPendingStateChangeTime : datetime
CommittedVersion : string
CommittedUpgradeTimestamp : datetime
CurrentVersion : string
IsUpgradeInProgress : boolean

StartService()
StartServiceInAdmin()
StopService()
QuiesceService()
ResumeService()

FileSystemCheck()
StopFileSystemCHeck()
CommitUpgrade()
GetFileInfo()
ListClientsByLUN
ListClientsByVolume

MDCScanState : uint16
MDCScanProgress : uint8

AddServer()
DropServer()
DropServerByName()

STC_TankService

SystemCreationClassName : string
SystemName : string
CreationClassName : string
Name : string
CurrentState : uint32
PendingState : uint32
LastBootUpTime : datetime
LocalDateTime : datetime
LastCurrentStateChangeTime : datetime
LastPendingStateChangeTime : datetime
CurrentVersion : string
IsMaster : boolean
NumberOfContainers : uint32

StartService()
StopService()
BecomeMaster()

Figure 14. Service classes

Chapter 1. Getting started 43

Policy class

The following diagram shows the hierarchy and definition of the STC_PolicySet

class.

Metadata server clients class

The following diagram shows the hierarchy and definition of the

STC_RegisteredFSClients class.

See CIM base classes

CIM_Policyset

STC_Policyset

SystemCreationClassName : string
SystemName : string
CreationClassName : string
Name : string
State : uint16
PolicyRules : string
Description : string
CreationDate : datetime
LastModificationDate : datetime
LastActiveDate : datetime

Create()
Delete()
Activate()
GetRules()
GetPolicyRuleStats()
GetStoragePoolStats()

Figure 15. Policy class

44 SAN File System System Management API Guide and Reference

SAN File System configuration classes

Table 4 provides an overview of the classes that represent configuration

parameters.

 Table 4. SAN File System configuration parameter classes

Name Description

“STC_LdapDynamicSetting” on

page 112

This class represents LDAP configuration parameters

that you can dynamically update, without a cluster

restart.

“STC_MasterDisruptiveSetting”

on page 113

This class represents cluster configuration parameters

that require a cluster restart for an update to take effect.

Its method enables you to list the languages installed in

SAN File System.

See CIM base classes

CIM_LogicalElement

STC_RegisteredFSClients

SystemCreationClassName : string
SystemName : string
ServiceCreationClassName : string
ServiceName : string
CreationClassName : string
Name : string
Id : uint64
IPAddress : string
IPPort : uint32
Platform : string
Version : string
LeaseRenewals: uint64
State : uint16
IsPrivileged : boolean
LastLeaseTimeStamp : datetime
ResidualLeaseTime : uint32
Transactions : uint64
CompletedTransactions : uint64
SessionLocks : uint32
DataLocks : uint32
ByteRangeLocks : uint32

Figure 16. Metadata server clients class

Chapter 1. Getting started 45

Table 4. SAN File System configuration parameter classes (continued)

Name Description

“STC_MasterDynamicSetting” on

page 115

This class represents cluster configuration parameters

that you can dynamically update, without a cluster

restart.

“STC_RsaDynamicSetting” on

page 151

This class represents Remote Service Adapter (RSA)

configuration parameters that you can dynamically

update, without a cluster restart.

“STC_TankDisruptiveSetting” on

page 160

This class represents settings for server-specific,

configuration parameters that need a metadata server

restart for an update to take effect.

“STC_TankTransientSetting” on

page 167

This class represents server-specific configuration

parameters that are effective only until the next restart.

“STC_WatchdogDynamicSetting”

on page 184

This class represents metadata server restart service

configuration parameters that you can dynamically

update, without a cluster restart.

The following diagram shows the hierarchy and definitions of the configuration

classes.

46 SAN File System System Management API Guide and Reference

CIM_Setting

See CIM base classes

STC_MasterDisruptiveSetting

SystemCreationClassName : string
SystemName : string
ServiceCreationClassName : string
ServiceName : string
ClusterID : uint32
ClusterName : string
ClientTimeoutInterval : uint32
ServerTimeoutInterval : uint32
DiskHeartbeatInterval : uint32
LogicalPartitionSize : uint32
NWHeartbeatInterval : uint32
NWMaxMissedHeartbeats : uint32
DiskMaxMissedHeartbeats : uint32
LockLeasePeriod : uint32
LockGracePeriodMultiplier : uint32
ClusterTimeout : uint32
RetriesToClient : uint32
Lang : string

GetInstalledLanguages()

STC_MasterDynamicSetting

SystemCreationClassName : string
ServiceCreationClassName : string
ServiceName : string
MasterBufferSize : uint32
SubordinateBufferSize : uint32
SpaceReclaimDelay : uint32
PrivilegedFSClients : string
SNMPEvents : uint16
SNMPManagers : string
NumAdminThreads : uint32
NumWorkerThreads : uint32

STC_LdapDynamicSetting

SystemCreationClassName : string
ServiceCreationClassName : string
SystemName : string
ServiceName : string
ServerIP : string
User : string
Password : string
SecuredConnection: boolean
BaseDnRoles : string
RoleIdAttr : string
RoleMemIdAttr : string
UserIdAttr : string
CacheAge : uint32

STC_TankDisruptiveSetting

SystemCreationClassName : string
ServiceCreationClassName : string
ServerName : string
ProtocolType : uint32
ClientNetworkProtocol : uint32
ServerNetworkProtocol : uint32
NumDeleteThreads : uint32
PrimaryIP : string
ClusterPort : uint32
HeartbeatPort : uint32
STPPort : uint32
AdminPort : uint32
NoLogReserve : boolean

STC_RsaDynamicSetting

RsaUser : string
RsaPassword : string

STC_WatchdogDynamicSetting

SystemCreationClassName : string
ServiceCreationClassName : string
ServiceName : string
ProbeInterval : uint32
LiveTestTimeOutInterval : uint32
RetryLimit : uint32
MaxTransitionInterval : uint32

STC_Setting

SystemCreationClassName : string
SystemName : string
ServiceCreationClassName : string
ServiceName : string

Figure 17. Configuration classes

Chapter 1. Getting started 47

SAN File System status classes

Table 5 provides an overview of the classes that represent the status of SAN File

System components.

 Table 5. SAN File System status classes

Name Description

“STC_AdminProcess” on page 89 This class represents a long-running administrative

process in the cluster of servers. It provides the

identifier and start time for the process, and the

command that initiated the process.

“STC_AdminUser” on page 90 This class represents an authorized user of the SAN File

System. It provides a user’s identifier and role as

defined in the Lightweight Directory Access Protocol

(LDAP). It also indicates whether the LDAP needs to

reauthorize a user for a new request or if the user is

still authorized from the last request, and the time

remaining in that authorization window. Its methods

enable you to clear this authorization window for an

individual or all users.

“STC_MasterMetrics” on page

116

This class represents the metrics for a cluster. It

provides metrics for metadata activity and buffers

within the cluster.

“STC_NodeFan” on page 136 This class represents the status of an engine’s fan. It

provides an identifier for the specific fan and the speed

of the fan.

“STC_NodeTemperature” on

page 137

This class represents the temperature state of hardware

components of an engine. An instance exists for each

temperature sensor on every engine in the cluster. It

provides current temperature and threshold values.

“STC_NodeVitalProductData” on

page 137

This class represents vital product data about the

components of an engine. It provides the model and

serial number of the host machine and firmware

information.

“STC_NodeVoltage” on page 138 This class represents the state of the voltage sources of

an engine. It provides engine voltage information and

warning thresholds.

“STC_NodeWatchdog” on page

139

This class represents the watchdog for each engine in a

cluster.

“STC_TankEvents” on page 161 This class represents a possible event that a server

might generate. It provides information about the

message that would be logged and the trap that might

be generated by the event.

“STC_TankMetrics” on page 163 This class represents the metrics for each subordinate

server. It provides metrics for metadata activity, locks,

and buffers within the server.

“STC_TankWatchdog” on page

167

This class represents the metadata server restart service

operations. It provides the state of the metadata server

restart service, probe intervals, total number of retries,

total number of absence tests.

48 SAN File System System Management API Guide and Reference

Current user and process status classes

The following diagram shows the hierarchy and definitions of the

STC_AdminProcess and STC_AdminUser classes.

Metrics classes

The following diagram shows the hierarchy and definitions of the

STC_MasterMetrics and STC_TankMetrics classes.

See CIM base classes

CIM_LogicalElement

STC_AdminProcess

SystemCreationClassName : string
SystemName : string
ServiceCreationClassName : string
ServiceName : string
InstallDate : datetime
DirectoryName : string
CreationClassName : string
Id : uint64
InstallDate : datetime
Command : string

STC_AdminUser

SystemCreationClassName : string
SystemName : string
CreationClassName : string
Name : string
EffectiveRole : uint16
IsAuthorizationCurrent : boolean
AuthCurrentRemainingTime : uint32

ClearAllCurrentAuthorizations()
ClearCurrentAuthorization()

Figure 18. Current user and process status classes

Chapter 1. Getting started 49

Engine status classes

The following diagram shows the hierarchy and definitions of the STC_NodeFan,

STC_NodeTemperature, STC_NodeVitalProductData, STC_NodeVoltage and

STC_NodeWatchdog classes.

See CIM base classes

CIM_ServiceStatisticalInformation

STC_MasterMetrics

TotalSystemMetaActivity : uint64
TotalSystemMetaUpdateActivity : uint64
TotalSystemBuffers : uint32
CleanSystemBuffers : uint32
DirtySystemBuffers : uint32
FreeSystemBuffers : uint32

STC_TankMetrics

TotalUserMetaActivity : uint64
TotalUserMetaUpdateActivity : uint64
SessionLocks : uint64
DataLocks : uint32
ByteRangeLocks : uint32
TotalBuffers : uint32
CleanBuffers : uint32
DirtyBuffers : uint32
FreeBuffers : uint32

Figure 19. Metrics classes

50 SAN File System System Management API Guide and Reference

See CIM base classes

CIM_LogicalElement

STC_NodeWatchdog

SystemCreationClassName : string
SystemName : string
CreationClassName : string
Name : string
POSTTimeout : uint32
OSMonitorInterval : uint32
OSTimeout : uint32
LoaderTimeout : uint32
PowerOffDelay: uint32

STC_NodeVoltage

SystemCreationClassName : string
SystemName : string
CreationClassName : string
DeviceID : string
CurrentVoltage : real32
DefaultVoltage : real32
HasThresholds : boolean
WarningResetLow : real32
WarningResetHigh : real32
WarningLow : real32
WarningHigh : real32
SoftShutdownLow : real32
SoftShutdownHigh : real32
HardShutdownLow : real32
HardShutdownHigh : real32

STC_NodeVitalProductData

SystemCreationClassName : string
SystemName : string
CreationClassName : string
DeviceID : string
MachineModel : string
SerialNumber : string
Revision : string
RevisionDate : datetime
FirmwareFileName : string
FirmwareBuildID : string

STC_NodeTemperature

SystemCreationClassName : string
SystemName : string
CreationClassName : string
DeviceID : string
Value : real32
HasThresholds : boolean
WarningReset : real32
Warning : real32
SoftShutdown : real32
HardShutdown : real32

STC_NodeFan

SystemCreationClassName : string
SystemName : string
CreationClassName : string
DeviceID : string
Speed : uint32

Figure 20. Engine status classes

Chapter 1. Getting started 51

Server status classes

The following diagram shows the hierarchy and definitions of the STC_TankEvents

and STC_TankWatchdog classes.

52 SAN File System System Management API Guide and Reference

See CIM base classes

CIM_LogicalElement

STC_TankEvents

SystemCreationClassName : string
SystemName : string
ServiceCreationClassName : string
ServiceName : string
MessageID : string
Severity : uint8
Message : string
SNMPTrap : string
IsSNMPTrapEnabled : boolean

Test()

STC_TankWatchdog

SystemCreationClassName : string
SystemName : string
ServiceCreationClassName : string
ServiceName : string
CreationClassName : string
Name : string
State : uint32
ProbeState: uint32
ProbeInterval : uint32
LiveTestTimeoutInterval : boolean
RetryLimit : uint32
StartTimeStamp : datetime
LastProbeTimeStamp : datetime
TotalProbes : uint64
LiveTestTimeouts : uint64
TotalRetries : uint64
CurrentRetries : uint32
RetriesLWM : uint32
RetriesHWM : uint32
LastLiveTestTime : uint32
LiveTestTimeLWM : uint32
LiveTestTimeHWM : uint32
TotalAbsenceTests : uint32
LastAbsenceTestTime : uint32
AbsenceTestTimeLWM : uint32
AbsenceTestTimeHWM : uint32

Enable()
Disable()

Figure 21. Service status classes

Chapter 1. Getting started 53

SAN File System log classes

Table 6 provides an overview of the classes that represent logs.

 Table 6. SAN File System log classes

Name Description

“STC_AdminMessageLog” on

page 89

This class represents the message log file for the

administrative server. It extends the STC_MessageLog

class.

“STC_AdminSecurityLog” on

page 90

This class represents the security log file for the

administrative server. It extends the STC_MessageLog

class.

“STC_MDSAuditLog” on page

129

This class represents the audit log file for a metadata

server. It extends the STC_MessageLog class.

“STC_MDSEventLog” on page

129

This class represents the event log file for a metadata

server. It extends the STC_MessageLog class.

“STC_MDSMessageLog” on page

130

This class represents the message log file for a metadata

server. It extends the STC_MessageLog class.

“STC_MessageLog” on page 130 This class represents log files that are present in the

SAN File System. It provides identifier and location

information about the log. Its methods enable you to

traverse a log forwards and backwards and for a

specified date and severity levels; retrieve a specified

number of log records; and clear a log.

The following diagram shows the hierarchy and definitions of the log classes.

54 SAN File System System Management API Guide and Reference

See CIM base classes

STC_AdminSecurityLog

STC_MessageLog

LogFileName : string

ClearLog()
PositionToFirstRecord()
PositionToLastRecord()
PositionWithFilter()
GetNextRecords()
GetPreviousRecords()

STC_AdminMessageLog

CIM_MessageLog

STC_MDSAuditLog

BackupLogFileName : string

STC_MDSEventLog

BackupLogFileName : string

STC_MDSMessageLog

BackupLogFileName : string

Figure 22. Log classes

Chapter 1. Getting started 55

SAN File System backup classes

Table 7 provides an overview of the classes for backup.

 Table 7. SAN File System backup classes

Name Description

“STC_PitImage” on page 141 This class represents a FlashCopy image (also known as

the point-in-time image) of a fileset. It describes the

identifier of the fileset and the FlashCopy image and

the FlashCopy image location. Its methods enable you

to create a new FlashCopy image, revert the fileset to a

FlashCopy image, or delete a FlashCopy image.

“STC_SystemMDRAid” on page

157

This class provides a mechanism to extract system

metadata information into a recovery file on a local

disk. It provides recovery file identifier, location, and

size information, as well as a script to generate

commands from the file. Its methods enable you to

create and delete a recovery file and to generate

commands for recreating metadata from the file.

The following diagram shows the hierarchy and definitions of the backup classes.

56 SAN File System System Management API Guide and Reference

STC_PitImage

Caption : string
ContainerName : string
Name : string
Description : string
InstallDate : datetime
DirectoryName : string

Create()
Revert()
Delete()

See CIM base classes

CIM_ManagedSystemElement

STC_SystemMDRAid

SystemCreationClassName : string
SystemName : string
CreationClassName : string
Name : string
LocalDirectoryName : string
CLIGeneratorName : string
InstallDate : datetime
Size : uint64

Create()
Delete()
GenerateCommandFiles()

Figure 23. Backup classes

Chapter 1. Getting started 57

Programming considerations

Third-party CIM clients can manage SAN File System by calling methods in

administrative agent classes. In general, CIM clients should interface with the

administrative agent on the master metadata server.

Consider the following conventions when programming the classes:

v A CIM client cannot change read-only properties. You can set only those

properties that are writable.

v Although method parameters are independent from properties, often a

parameter of a method correlates to a property of its class.

Role-based access

For security, the object model implements role-based access. It restricts access to

administrative operations through user roles that are stored in the Lightweight

Directory Access Protocol (LDAP).

As described in “User roles” on page 30, the Administrator role has access to the

Monitor, Backup, and Operator tasks, plus access to Administrator tasks. To define

the minimum role needed for a certain operation, the object model uses the

following CIM qualifiers:

v ReadRole – The role required to read a property. A CIM client must have at least

the Monitor role to read a class property.

v WriteRole – The role required to write a writable property. A CIM client must

have the Administrator role to change a writable property.

v ExecuteRole – The role required to invoke a method. A CIM client must have the

Administrator role to invoke a method with the following exceptions:

– CloseClientLUNList() method requires the Monitor role.

– Create() (FlashCopy image) method requires the Backup role.

– Create() (recovery file) method requires the Backup role.

– Delete() (FlashCopy image) method requires the Backup role.

– Delete() (recovery file) method requires the Backup role.

– GenerateCommandFiles() method requires the Backup role.

– GetFileSetInfo() method requires the Backup role.

– GetFileInfo() method requires the Monitor role.

– GetNextClientLUN() method requires the Monitor role.

– GetPolicyRuleStats() method requires the Monitor role.

– GetStoragePoolStats() method requires the Monitor role.

– GetRules() method requires the Monitor role.

– GetNextFOV() method requires the Backup role.

– GetNextRecords() method requires the Monitor role.

– GetPreviousRecords() method requires the Monitor role.

– ListAssociatedPools() method requires the Monitor role.

– ListClientsByLUN() method requires the Monitor role.

– ListClientsByVolume() method requires the Monitor role.

– MoveFile() method requires the Operator role.

– OneButtonDataCollector() method requires the Operator role.

– OpenClientLUNList() method requires the Monitor role.

– PositionToFirstRecord() method requires the Monitor role.

58 SAN File System System Management API Guide and Reference

– PositionToLastRecord() method requires the Monitor role.

– PositionWithFilter() method requires the Monitor role.

– RescanLUNs() method requires the Monitor role.

– ResetFOV() method requires the Backup role.

Dynamic and static methods

CIM supports dynamic and static methods. A static method operates on a class

while a dynamic method operates on a specific instance of a class. Therefore, a

dynamic method must reference a specific instance of the class. You can call a

static method by constructing a CIM object path that just has the class name. For a

dynamic method, the CIM object path must be the fully-qualified name of the

instance.

The fully-qualified name of the instance might include the class name and the

following set of keys that uniquely identify the instance:

v CreationClassName - The class name of this instance

v SystemCreationClassName - The class name of the system to which this instance

belongs. The system is usually either a cluster (represented by the STC_Cluster

class) or an engine (represented by the STC_ComputerSystem class).

v System Name - The instance name of the system to which this instance belongs

v ServiceCreationClassName - The service class is usually either

STC_MasterService or STC_TankService.

v Service Name - The instance name of the service

Most extrinsic methods are dynamic.

With a static method, you need to specify only the class name to indicate the CIM

object path.

The following extrinsic methods are static methods:

v ClearAllCurrentAuthorizations()

v CloseClientLUNList()

v Create() (domain)

v Create() (fileset)

v Create() (FlashCopy image)

v Create() (policy)

v Create() (recovery file)

v Create() (storage pool)

v Create() (user mapping)

v Create() (volume)

v CreateUsingLunId()

v DisableDefault()

v GetFileSetInfo()

v GetInstalledLanguages()

v GetNextClientLUN()

v GetPolicyRuleStats()

v GetStoragePoolStats()

v OpenClientLUNList()

v RescanLUNs()

Chapter 1. Getting started 59

v Test()

60 SAN File System System Management API Guide and Reference

Chapter 2. Managing SAN File System

This chapter describes the management of SAN File System using the object model.

Managing clients

This section describes the methods you can invoke to manage clients.

Listing clients by LUN access

You must have Administrator privileges to perform this task.

The STC_MasterService class provides a method for retrieving a list of clients that

have access to a specified LUN.

To retrieve the list of client names, invoke the

STC_MasterService.ListClientsByLUN() method with the LunID parameter.

Listing clients by volume access

You must have Administrator privileges to perform this task.

The STC_MasterService class provides a method for retrieving a list of clients that

have access to a specified volume.

To retrieve the list of client names, invoke the

STC_MasterService.ListClientsByVolume() method with the VolumeName

parameter.

Managing the cluster

This section describes the methods you can invoke to perform tasks for managing

the cluster.

Changing configuration parameters

You must have Administrator privileges to perform this task.

The following SAN File System configuration classes contain writable properties

that you can change:

v STC_MasterDisruptiveSetting and STC_MasterDynamicSetting classes contain

writable properties that represent cluster configuration parameters.

v STC_LdapDynamicSetting class contains writable properties that represent LDAP

configuration parameters.

v STC_RsaDynamicSetting class contains writable properties that represent the

Remote Supervisory Adapter (RSA) userid and password, which are used to

access information from the engines. The values must match those in the RSA

system.

v STC_WatchdogDynamicSetting class contains writable properties that represent

metadata-server restart-service tuning options, such as retry limits, probe

intervals, and activity test timeouts.

© Copyright IBM Corp. 2003, 2004 61

To change these configuration parameters, invoke the SetProperty() intrinsic

method. Specify the instance name and the property that represents the

configuration parameter.

Changing active cluster states

You must have Administrator privileges to perform this task.

The quiescent states restrict activity on all metadata servers in the cluster.

1. To place the cluster in a quiescent state, invoke the

STC_MasterService.QuiesceService() method while specifying the mode

parameter. The Mode parameter can be one of the following values:

a. 0: Partly Quiescent - A limited quiescent mode that allows the client to

continue file data activity but prevents client metadata activity and new

client connections. In this state, a backup would preserve metadata integrity,

but might not preserve file data integrity.

b. 1: Fully Quiescent - A full quiescent mode that suspends all client metadata

activity and file data activity and terminates all client sessions. This state

allows a backup with metadata and file data integrity.

c. 2: Administrative Quiescent - A quiescent mode that allows administrative

operations that do not permit client activity.
2. To return the cluster to an active state, invoke the

STC_MasterService.ResumeService() method. This method returns the cluster to

a fully online state from the quiescent state.

Listing installed languages

You must have Administrator privileges to perform this task.

The STC_MasterDisruptiveSetting class provides a method for retrieving a list of

the languages in which a metadata server can run in the cluster. The possible

languages are United States English (en_US.utf8) and Japanese (ja_JP.utf8).

To retrieve the list of installed languages, invoke the

MasterDisruptiveSetting.GetInstalledLanguages() method.

Starting the cluster

You must have Administrator privileges to perform this task.

The STC_MasterService class provides the method for starting the cluster.

To start the cluster, invoke the STC_MasterService.StartService() method, which

brings up all pre-commissioned metadata servers in online mode on all engines.

This method starts the master metadata server, verifies that the master metadata

server is online, and then starts all subordinate servers. You can also bring up all

pre-commissioned metadata servers in offline mode on all engines by invoking the

STC_MasterService.StartServiceInAdmin() method.

62 SAN File System System Management API Guide and Reference

Stopping the cluster

You must have Administrator privileges to perform this task.

The STC_MasterService class provides the method for stopping a cluster.

To stop a cluster, invoke the STC_MasterService.StopService() method, which

brings down all servers on all engines.

Upgrading cluster software

You must have Administrator privileges to perform this task. A cluster upgrade

can occur only after you have upgraded each individual metadata server to the

same new software version.

The STC_MasterService class provides the method for committing a cluster to start

using an upgraded software version.

1. Stop each metadata server in the cluster, install the new version of software,

and restart the server.

2. Invoke the STC_MasterService.CommitUpgrade() method to commit the

software version upgrade and begin the process of updating the metadata

structures.

Managing disaster recovery files

This section describes the methods you can invoke to perform tasks for managing

disaster recovery files.

Creating a recovery file

You must have Administrator privileges to perform this task.

The STC_SystemMDRAid class provides the method for creating a cluster-wide,

metadata recovery file.

To create a recovery file, invoke the STC_SystemMDRAid.Create() method. If you

set the IsForce parameter to True, the new recovery file overwrites any existing

one.

Deleting a recovery file

You must have Administrator privileges to perform this task.

The STC_SystemMDRAid class provides the method for deleting a recovery file.

To delete a recovery file, invoke the STC_SystemMDRAid.Delete() method.

Generating recovery commands

You must have Administrator privileges to perform this task.

The STC_SystemMDRAid class provides the GenerateCommandFiles() method for

generating recovery commands. The class properties specify the location of the

generated command files and the script used to generate command files.

Chapter 2. Managing SAN File System 63

v TankSysCLI.auto - This file contains commands to re-create storage pools,

filesets, and policies. In case of disaster, this file can run without manual

intervention.

v TankSysCLI.volume - This file contains commands to re-create volumes. This file

requires manual verification and editing to run.

v TankSysCLI.attachpoint - This file contains commands to re-create fileset attach

points. This file requires manual verification, editing, and intervention to run.

Managing engines

This section describes the methods you can invoke to perform tasks for managing

engines.

Powering off the engine

You must have Administrator privileges to perform this task.

The STC_ComputerSystem class provides the SetPowerState() method to power off

the engine. Specify the following parameters:

v PowerState - 6 for power off, 7 for hibernate, and 8 for soft off

v Time - The time when the power setting should occur. If value is zero, the

setting occurs immediately.

Powering on the engine

You must have Administrator privileges to perform this task.

The STC_ComputerSystem class provides the SetPowerState() method to power on

the engine. Specify the following parameters:

v PowerState - 1 for full power, 2 for low power mode, 3 for standby mode, and 4

for any other type of power save

v Time - The time when the power setting should occur. If value is zero, the

setting occurs immediately.

Restarting the engine

You must have Administrator privileges to perform this task.

The STC_ComputerSystem class provides the SetPowerState() method to restart the

engine. Specify the following parameters:

v PowerState - 5 for power cycle

v Time - The time when the power setting should occur. If value is zero, the

setting occurs immediately.

Managing filesets

This section describes the methods you can invoke to perform tasks for managing

filesets.

64 SAN File System System Management API Guide and Reference

Attaching a fileset

You must have Administrator privileges to perform this task.

The STC_Container class provides the Attach() method to attach a fileset.

v ExistingDirPath - Current path where the fileset directory resides.

v NewDirName - The directory name of the fileset.

Changing the assignment of a fileset server

You must have Administrator privileges to perform this task.

The STC_Container class provides methods to change the metadata server

assignment of a fileset.

To change the assignment of a fileset from the metadata server to another specific

server, invoke the STC_Container.ChangeServer() method while specifying the new

server as a parameter. To remove the static assignment that a fileset has to a server

so that the SAN File System dynamically assigns a fileset to a server, invoke the

STC_Container.RemoveServerBinding() method.

Creating a fileset

You must have Administrator privileges to perform this task.

The STC_Container class provides the Create() method to create a fileset.

v Name - Your label for the fileset

v Description - Your description of the fileset

v Quota - The maximum size limit, in MB

v IsHardQuota - An indicator that a quota limit cannot be extended

v AlertPercentage - The percent of the fileset size that, when reached, causes the

server to generate an alert message

v ExistingDirPath - Current path where the fileset directory resides

v NewDirName - The directory name of the fileset

v Server - The name of the server to host this fileset

Deleting a fileset

You must have Administrator privileges to perform this task.

The STC_Container class provides the method to delete a fileset. You can delete a

fileset under the following conditions:

v The fileset is detached

v The fileset is not the global fileset

v The fileset does not have files on it unless the IsForce option is True

To delete a fileset, invoke the STC_Container.Delete() method. If you set the IsForce

parameter to True, the Delete() method deletes the fileset even if it has files in it.

Chapter 2. Managing SAN File System 65

Detaching a fileset

You must have Administrator privileges to perform this task.

The STC_Container class provides the method to detach a fileset.

To detach a fileset, invoke the STC_Container.Detach() method. If you set the

IsForce parameter to True, the Detach() method detaches the fileset even if clients

are using files in it.

Moving a fileset

You must have Administrator privileges to perform this task.

The STC_Container class provides the method to move a fileset.

To move a fileset, invoke the STC_Container.Move() method while specifying your

new label for the fileset as a parameter.

Retrieving fileset information

You must have Administrator privileges to perform this task.

The STC_Container class provides the method for retrieving information about the

filesets in a cluster.

To retrieve information about filesets, invoke the STC_Container.GetfilesetInfo()

method while specifying the names of the filesets about which you want

information. This method retrieves the name of the server serving the fileset and

transaction statistics.

Managing FlashCopy images

This section describes the methods you can invoke to perform tasks for managing

FlashCopy images.

Creating a FlashCopy image

You must have Backup privileges to perform this task.

The STC_PitImage class provides the Create() method to create a FlashCopy image.

v ContainerName - Your label for the fileset to which this FlashCopy image

belongs.

v Name - Your administrative name for the FlashCopy image.

v Description - Your description of the fileset.

v DirectoryName - The new directory name to be given to the FlashCopy image.

v IsForce - Indicator of whether to delete the oldest FlashCopy image to create this

one when the number of FlashCopy images exceeds the maximum.

Deleting a FlashCopy image

You must have Backup privileges to perform this task.

The STC_PitImage class provides the method to delete a FlashCopy image.

66 SAN File System System Management API Guide and Reference

To delete a FlashCopy image, invoke the STC_PitImage.Delete() method. If you set

the IsForce parameter to True, the Delete() method deletes the FlashCopy image

even if client activity exists.

Reverting to a previous FlashCopy image

Attention: When you revert to a FlashCopy image, all FlashCopy images created

after the specified FlashCopy image are deleted. The specified FlashCopy image

becomes the primary image for the fileset and no longer appears as an image listed

in the .flashcopy directory.

You must have Administrator privileges to perform this task.

The STC_PitImage class provides the method to revert to a previous FlashCopy

image.

To revert to a previous a FlashCopy image, invoke the STC_PitImage.Revert()

method. If you set the IsForce parameter to True, the Revert() method reverts to

the previous image even if client activity exists.

Managing logs

This section describes the methods you can invoke to perform tasks for managing

logs.

Clearing logs

You must have Administrator privileges to perform this task.

The STC_MessageLog class provides the method for clearing a message log.

To clear a message log of all entries, invoke the STC_MessageLog.ClearLog()

method.

Retrieving log records

You must have Monitor privileges to perform this task.

1. Create an iterator.

a. To create an iterator and position it at the beginning of the log, invoke the

STC_MessageLog.PositionToFirstRecord() method.

b. To create an iterator and position it at the end of the log, invoke the

STC_MessageLog.PositionToLastRecord() method.

c. To create an iterator and position it at the start or end of messages with a

specified date and with specified severities (Information, Warning, Error,

Severe), invoke the STCMessageLog.PositionWithFilter() method.
2. Retrieve log records.

a. To retrieve a specified number of records from the message log starting

from the record indicated by the IterationIdentifier parameter, invoke the

STC_MessageLog.GetNextRecords() method.

b. To retrieve a specified number of records from the message log ending from

the record indicated by the IterationIdentifier parameter, invoke the

STC_MessageLog.GetPreviousRecords() method.

Chapter 2. Managing SAN File System 67

Managing metadata servers

This section describes the methods you can invoke to perform tasks for managing

metadata servers.

Checking metadata

You must have Administrator privileges to perform this task.

The STC_MasterService class provides a method for checking and repairing

metadata. It also provides a method for stopping a metadata check that is in

progress.

You can use the FileSystemCheck() method to check and repair metadata. It

enables you to specify the following options:

v Check the integrity of the structure and the content of the metadata.

v Check the integrity of the system metadata and the file metadata.

v Limit the user metadata checking to a subset of filesets.

You can restrict this operation to check-only or check and repair. The message log

contains a report generated by this method. If you did not limit the mode to

check-only, the system automatically salvages and repairs the damaged data if

possible. Some types of repair require manual intervention from the administrator.

In those cases, the system places the cluster state into Administrative mode.

Note:

1. This method is a long-running process. If there is a cluster reformation

while the method is running, this method might stop.

2. Only one FileSystemCheck() operation can be in progress at time.

Specify the following parameters:

v IsCheckOnly - Indicator of whether to only check and not repair.

v CheckScope - A bitmap that indicates the scope of the check, which could be a

check of the structure or content or both.

v Type - A bitmap that indicates the type of metadata to be checked. The possible

types are system or user (file) or both.

v ContainerList - A list of filesets for the method to check or repair if the Type

parameter indicates User and not System.

Retrieving file information

Retrieving file information

You must have Administrator privileges to perform this task.

The STC_MasterService class provides the method for retrieving metadata

information for a file.

To retrieve metadata information for a file, invoke the

STC_MasterService.GetFileInfo() method, specifying the name of the file about

which you want the information. This method retrieves attributes such as the file

type and size; the time the file was created, last modified, and last accessed; and

the storage pool, fileset, and metadata server on which the file resides.

68 SAN File System System Management API Guide and Reference

Starting a metadata server

You must have Administrator privileges to perform this task.

The STC_TankService class provides the method for starting a metadata server on

an engine.

To start a metadata server, invoke the STC_TankService.StartService() method.

Starting the metadata server restart service

You must have Administrator privileges to perform this task.

The STC_TankWatchdog class provides the method for enabling the metadata

server restart service.

To enable the metadata server restart service, invoke the

STC_TankWatchdog.Enable() method.

Stopping a metadata server

You must have Administrator privileges to perform this task.

The STC_TankService class provides the method for stopping a metadata server on

an engine.

To stop a metadata server, invoke the STC_TankService.StopService() method.

Stopping the metadata server restart service

You must have Administrator privileges to perform this task.

The STC_TankWatchdog class provides the method for disabling the metadata

server restart service.

To disable the metadata server restart service, invoke the

STC_TankWatchdog.Disable() method.

Managing policies

This section describes the methods you can invoke to perform tasks for managing

policies.

Activating a policy

You must have Administrator privileges to perform this task.

The STC_PolicySet class provides the method for activating a policy.

To activate a policy, invoke the STC_PolicySet.Activate() method.

Creating a policy

You must have Administrator privileges to perform this task.

Chapter 2. Managing SAN File System 69

The STC_PolicySet class provides the Create() method for creating a new policy.

Specify the following parameters:

v Name - A label for this policy.

v Description - Your description of this policy.

v PolicyRules - The set of policy rules belonging to this policy.

v IsForce - Indicator of whether to modify an existing policy.

Deleting a policy

You must have Administrator privileges to perform this task.

The STC_PolicySet class provides the method for deleting a policy.

To delete a policy, invoke the STC_PolicySet.Delete() method.

Viewing a policy

You must have Monitor privileges to perform this task.

The STC_PolicySet class provides the method for retrieving the rules associated

with a policy.

To retrieve the rules, invoke the STC_PolicySet.GetRules() method. This method

returns the rules as a string parameter.

Viewing policy statistics

You must have Administrator privileges to perform this task.

The STC_PolicySet class provides the method for retrieving rule and storage pool

statistics about a policy.

To retrieve the policy rule statistics associated with one or more filesets, invoke the

STC_PolicySet.GetPolicyRuleStats() method. Specify the Filesets input parameter to

indicate the filesets for which you want the statistics. For each fileset, this method

returns the rule name, position, storage pool name, and the number of times the

rule applied or did not apply to the fileset.

To retrieve the policy storage pool statistics associated with one or more filesets,

invoke the STC_PolicySet.GetStoragePoolStats() method. Specify the Filesets input

parameter to indicate the filesets for which you want the statistics. For each fileset,

this method returns the storage pool name, the files placed in the storage pool, and

the time the last file was placed.

Managing storage pools

This section describes the methods you can invoke to perform tasks for managing

storage pools.

Creating a storage pool

You must have Administrator privileges to perform this task.

70 SAN File System System Management API Guide and Reference

The STC_StoragePool class provides the Create() method for creating new storage

pools. Specify the following parameters:

v Name - Your label for the storage pool.

v Description - A string that is your description of the storage pool.

v PartitionSize - The partition size, in megabytes, to use when a fileset allocates

space.

v BlockSize - The allocation strategy to use for files on this storage pool.

v AlertPercentage - The percentage of the storage pool size that, when reached,

causes the server to generate an alert message.

Deleting a storage pool

You must have Administrator privileges to perform this task.

The STC_StoragePool class provides the method for deleting a storage pool.

To delete a storage pool, invoke the STC_StoragePool.Delete() method.

Disabling the default storage pool

You must have Administrator privileges to perform this task.

The STC_StoragePool class provides the method for disabling the use of a default

storage pool.

To disable the use of a default storage pool, invoke the

STC_StoragePool.DisableDefault() method.

Moving a storage pool

You must have Administrator privileges to perform this task.

The STC_StoragePool class provides the method to move or rename a storage pool.

It creates a new storage pool with the specified name and migrates the data and

capabilities to the new name.

To move or rename a storage pool, invoke the STC_StoragePool.Move() method

and specify the new label for the storage pool.

Moving files

You must have Administrator privileges to perform this task.

The STC_StoragePool class provides the method for moving files to a different

storage pool or to defragment the file if you indicate the current storage pool.

To move a file, invoke the STC_StoragePool.MoveFile() method. Specify the

following parameters:

v FilePath - Fully qualified name of a file to move or defragment.

v Client - Name of a SAN File System client to perform the move or defragment

of the file.

v IsForce - Indicator of whether to force the metadata server to move the file even

if the file is open.

Chapter 2. Managing SAN File System 71

Setting the default storage pool

You must have Administrator privileges to perform this task.

The STC_StoragePool class provides the method for changing a user storage pool

to the default storage pool. The PoolType property of the STC_StoragePool class

changes from User to User Default.

To change the storage pool type from User to User Default, invoke the

STC_StoragePool.SetDefault() method.

Managing users

This section describes the methods you can invoke to perform tasks for managing

users.

Timing out all user authorizations

You must have Administrator privileges to perform this task.

The STC_AdminUser class provides the method for clearing all current validation

windows.

To clear all current validation windows, invoke the

STC_AdminUser.ClearAllCurrentAuthorizations() method.

Timing out a user authorization

You must have Administrator privileges to perform this task.

The STC_AdminUser class provides the method for clearing the validation window

of a user.

To clear a user’s validation window, invoke the

STC_AdminUser.ClearCurrentAuthorization() method.

Managing user mappings

This section describes the methods you can invoke to perform tasks for managing

mappings of user names on Windows and UNIX for file access.

Creating a domain

You must have Administrator privileges to perform this task.

The STC_Domain class provides the method for creating a domain.

To create a domain, invoke the STC_Domain.Create() method. Specify the

following parameters:

v Name - A label for the domain.

v DomainType - The type of directory server that the domain represents: UNIX

NIS, UNIX LDAP, or Windows Active Directory.

72 SAN File System System Management API Guide and Reference

Creating a user mapping

You must have Administrator privileges to perform this task.

The STC_UserMap class provides the method for creating a user mapping.

To create a user mapping, invoke the STC_UserMap.Create() method. Specify the

following parameters to indicate the user name on the Windows domain and user

name on the UNIX domain.

v SrcUserAndDomainNam - User and domain name.

v TgtUserAndDomainName - User and domain name.

Deleting a domain

You must have Administrator privileges to perform this task.

The STC_Domain class provides the method for deleting a domain.

To delete a domain, invoke the STC_Domain.Delete() method.

Deleting a user mapping

You must have Administrator privileges to perform this task.

The STC_UserMap class provides the method for deleting a user mapping.

To delete a user mapping, invoke the STC_UserMap.Delete() method. To delete all

user mappings, invoke the STC_UserMap.DeleteAll() method.

Renaming a domain

You must have Administrator privileges to perform this task.

The STC_Domain class provides the method for renaming a domain.

To rename a domain, invoke the STC_Domain.Move() method and specify the new

name for the domain as an input parameter.

Refreshing a user mapping

You must have Administrator privileges to perform this task.

The STC_UserMap class provides the method for refreshing a user mapping with

the latest information.

To refresh a user mapping, invoke the STC_UserMap.Refresh() method. To refresh

all user mappings, invoke the STC_UserMap.RefreshAll() method.

Managing volumes and LUNs

This section describes the methods you can invoke to perform tasks for managing

volumes and LUNs.

Chapter 2. Managing SAN File System 73

Activating a suspended volume

You must have Administrator privileges to perform this task.

The STC_Volume class provides the method for resuming suspended partition

allocations on a volume.

To activate a suspended volume, invoke the STC_Volume.ResumeAllocation()

method.

Adding a volume to a storage pool

You must have Administrator privileges to perform this task.

The STC_Volume class provides Create() and CreateUsingLunId() methods for

adding volumes to a storage pool. You add a volume to a storage pool when you

create a new volume or move or rename an existing volume.

Listing LUNs

You must have Administrator privileges to perform this task.

1. Establish an iteration of a list of LUNs that a specified client can access, by

invoking the STC_Available_LUNs.OpenClientLUNList() method. This method

returns an iteration identifier for the list.

2. Invoke the STC_Available_LUNs.GetNextClientLUN() method. This method

returns an array of information that includes the LUN ID, vendor, product,

version, size, and volume name for each LUN.

3. To refresh the list, invoke the STC_Available_LUNs.RescanLUNs() method,

which rescans the LUNs on the host system for a specified client.

4. To close an iteration of a list, invoke the

STC_Available_LUNs.CloseClientLUNList() method with the iteration identifier

for the list.

Removing volumes from a storage pool

You must have Administrator privileges to perform this task.

The STC_Volume class provides a method for deleting an existing volume.

To delete an existing volume, invoke the STC_Volume.Delete() method. Specify

with the IsForce parameter whether the method should delete a volume even if it

contains files.

If the IsForce parameter is True, this method deletes all the files that partly or fully

exist on the volume before deleting the volume. If the IsForce parameter is False,

this method first drains the volume by moving the file data that resides on the

volume to other volumes in the same storage pool. If the volume drain fails, the

method places the volume into a Suspend Allocations state, which requires manual

administrative action.

Resizing a volume

You must have Administrator privileges to perform this task.

74 SAN File System System Management API Guide and Reference

The STC_Volume class provides the method for notifying a metadata server that

the capacity of the LUN has increased. The notification enables the metadata server

to expand the size of the volume.

To enable a metadata server to resize a volume, invoke the STC_Volume.Resize

method. When you invoke this method you can specify the name of a client that

can access the volume. This parameter is required only if the volume is not

accessible by a metadata server. When this parameter is specified, the method uses

the client regardless of whether a metadata server can access the LUN.

Retrieving file entries on a volume

You must have Backup privileges to perform this task.

1. Create an iterator that retrieves each file entry that resides on the volume by

invoking the STC_Volume.ResetFOV() method. This method returns the

identifier for the iterator as a parameter.

2. Invoke the STC_Volume.GetNextFOV() method. Specify the FOVHandle

parameter, which is the file on volume (FOV) iteration identifier.

3. The method returns the following parameters:

a. FOVHandle - The FOV iteration identifier

b. FOVEntry - The file entry

Suspending a volume

You must have Administrator privileges to perform this task.

The STC_Volume class provides the method for suspending partition allocations on

a volume. A metadata server cannot allocate new data on the volume.

To suspend a volume, invoke the STC_Volume.SuspendAllocation() method.

Collecting problem determination data

You must have Administrator privileges to perform this task.

The STC_ComputerSystem class provides a method to invoke the one-button data

collector utility that collects server information and system information that is

needed for problem determination.

1. Determine the directory in which the data will collect. By default, the

information collects in the /usr/tank/pmf directory. Use the TANKDIR

environment variable, if you want to specify a different directory. If the utility

generates any stdout output and any stderr output, the output collects in the

/tmp/obdcout file on the local disk of the engine.

2. Invoke the STC_ComputerSystem.OneButtonDataCollector() method to invoke

the one-button data collector utility.

See the Maintenance and Problem Determination Guide for details about the

information the utility collects.

Chapter 2. Managing SAN File System 75

76 SAN File System System Management API Guide and Reference

Chapter 3. Administrative agent methods

This chapter describes the intrinsic and extrinsic methods that the administrative

agent classes provide. These methods implement the function of the administrative

agent.

Intrinsic methods

Intrinsic methods are provided by the Distributed Management Task Force Inc.

(DMTF) for the purpose of modeling a typical CIM operation. Intrinsic methods

provide the basic means that enable you to work with an object model.

The administrative agent uses the following intrinsic methods:

 Table 8. SAN File System Intrinsic Methods

Method name Functional group

“EnumerateClasses()” Basic read

“EnumerateClassNames()” on

page 78

Basic read

“EnumerateInstanceNames()” on

page 79

Basic read

“EnumerateInstances()” on page

79

Basic read

“EnumerateQualifiers()” on page

80

Qualifier declaration

“ExecQuery()” on page 80 Query execution

“GetClass()” on page 80 Basic read

“GetInstance()” on page 81 Basic read

“GetProperty()” on page 81 Basic read

“GetQualifier()” on page 82 Qualifier declaration

“ModifyInstance()” on page 82 Instance manipulation

“SetProperty()” on page 83 Basic write

The CIM intrinsic methods are defined in the Distributed Management Task Force Inc.

(DMTF) Specification for CIM Operations over HTTP available at

www.dmtf.org/standards/documents/WBEM/DSP200.html.

EnumerateClasses()

Use the EnumerateClasses() method to enlist all subclasses of a single object class

or all classes of the same object type in the target namespace.

© Copyright IBM Corp. 2003, 2004 77

Parameters

You can specify the following parameters of the EnumerateClasses() method:

 Table 9. EnumerateClasses() method parameters

Name Type Description

ClassName string Defines the name of the class for which subclasses are to be

returned. If this field is null, all base classes within the

target namespace are returned.

DeepInheritance boolean If True, returns all subclasses of the specified class. If false,

returns only immediate child subclasses.

LocalOnly boolean If True, returns all properties, methods, and qualifiers that

are overridden within the definition of the class.

IncludeQualifiers boolean If True, returns all qualifiers for the class, its properties,

methods, or method parameters; if False, returns no

qualifiers.

IncludeClassOrigin boolean If True, returns the CLASSORIGIN attribute of the class.

The EnumerateClasses() method enumerates the specified one or more classes or

returns one of the following error codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

v 5 (CIM_ERR_INVALID_CLASS)

EnumerateClassNames()

You can use the EnumerateClassNames() method to enlist the names of all

subclasses of a single object class or the names of all classes of the same object type

in the target namespace.

Parameters

You can specify the following parameters of the EnumerateClassNames() method:

 Table 10. EnumerateClassNames() method parameters

Name Type Description

ClassName string Defines the name of the class for which subclasses are to be

returned. If this field is null, all base classes within the target

namespace are returned.

DeepInheritance boolean If True, returns all subclasses of the specified class. False

returns only immediate child subclasses.

The EnumerateClassNames() method enumerates the specified one or more classes

or returns one of the following error codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

v 5 (CIM_ERR_INVALID_CLASS)

78 SAN File System System Management API Guide and Reference

EnumerateInstanceNames()

You can use the EnumerateInstanceNames() method to enlist all the names of the

instances of the same object class in the target namespace.

Parameters

You can specify the following parameters of the EnumerateInstanceNames()

method:

 Table 11. EnumerateInstanceNames() method parameters

Name Type Description

ClassName string Defines the name of the class for which instances are to be

returned.

The EnumerateInstanceNames() method enumerates the specified names of the

instances or returns one of the following error codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

v 5 (CIM_ERR_INVALID_CLASS)

EnumerateInstances()

You can use the EnumerateInstances() method to enlist all instances of the same

object class in the target namespace.

Parameters

You can specify the following parameters of the EnumerateInstances() method:

 Table 12. EnumerateInstances() method parameters

Name Type Description

ClassName string Defines the name of the class for which instances are to be

returned.

DeepInheritance boolean If True, returns all instances and all properties of the

instance, including those added by creating subclasses. If

False, returns only properties defined for the specified class.

LocalOnly boolean If True, returns all properties, methods, and qualifiers that

are overridden within the definition of the class.

IncludeQualifiers boolean If True, returns all qualifiers for each instance, its

properties, methods, or method parameters. False returns

no qualifiers.

IncludeClassOrigin boolean If True, returns the CLASSORIGIN attribute of the class

within the instance.

The EnumerateInstances() method enumerates the specified instances or returns

one of the following error codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

Chapter 3. Administrative agent methods 79

v 4 (CIM_ERR_INVALID_PARAMETER)

v 5 (CIM_ERR_INVALID_CLASS)

EnumerateQualifiers()

You can use the EnumerateQualifiers() method to enumerate qualifier declarations

in the target namespace.

The EnumerateQualifiers() method enumerates the specified qualifier declarations

or returns one of the following error codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

ExecQuery()

You can use the ExecQuery() method to execute a query against the target

namespace.

Parameters

You can specify the following parameters of the ExecQuery() method:

 Table 13. ExecQuery() method parameters

Name Type Description

QueryLanguage string Defines the query language in which the query parameter is

expressed. SAN File System supports the WQL Level 1 query

language, which is represented by the string WBEMSQL1.

Query string Defines the query to be executed.

The ExecQuery() method retrieves one or more classes or instances or returns one

of the following error codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

v 5 (CIM_ERR_INVALID_CLASS)

GetClass()

You can use the GetClass() method to retrieve a single object class from the target

namespace.

Parameters

You can specify the following parameters of the GetClass() method:

 Table 14. GetClass() method parameters

Name Type Description

ClassName string Defines the name of the class to retrieve.

LocalOnly boolean If True, returns all properties, methods, and qualifiers

overridden within the definition of the class.

80 SAN File System System Management API Guide and Reference

Table 14. GetClass() method parameters (continued)

Name Type Description

IncludeQualifiers boolean If True, returns all qualifiers for the class, its properties,

methods, or method parameters. If False, returns no

qualifiers.

IncludeClassOrigin boolean If True, returns the CLASSORIGIN attribute of the class.

The GetClass() method returns the specified class or one of the following error

codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

GetInstance()

You can use the GetInstance() method to retrieve a single instance of an object

from the target namespace.

Parameters

You can specify the following parameters of the GetInstance() method:

 Table 15. GetInstance() method parameters

Name Type Description

InstanceName string Defines the name of the instance to retrieve.

LocalOnly boolean If True, returns all properties, methods, and qualifiers

overridden within the definition of the class.

IncludeQualifiers boolean If True, returns all qualifiers for the class, its properties,

methods, or method parameters. If False, returns no

qualifiers.

IncludeClassOrigin boolean If True, returns the CLASSORIGIN attribute of the class.

The GetInstance() method returns the specified class or one of the following error

codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

v 5 (CIM_ERR_INVALID_CLASS)

v 6 (CIM_ERR_NOT_FOUND)

GetProperty()

You can use the GetProperty() method to retrieve a single attribute value of an

instance in the target namespace.

Chapter 3. Administrative agent methods 81

Parameters

You can specify the following parameters of the GetProperty() method:

 Table 16. GetProperty() method parameters

Name Type Description

InstanceName string Defines the name of the instance.

PropertyName string Defines the name of the property whose value is to be

returned from the instance.

The GetProperty() method returns the specified property of the target instance or

one of the following error codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

v 5 (CIM_ERR_INVALID_CLASS)

v 6 (CIM_ERR_NOT_FOUND)

v 12 (CIM_ERR_NO_SUCH_PROPERTY)

GetQualifier()

You can use the GetQualifier() method to retrieve a single qualifier declaration

from the target namespace.

Parameters

You can specify the following parameters of the GetQualifier() method:

 Table 17. GetQualifier() method parameters

Name Type Description

QualifierName string Defines the qualifier whose declaration is to be returned.

The GetQualifier() method returns the specified qualifier or returns one of the

following error codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

v 6 (CIM_ERR_NOT_FOUND)

ModifyInstance()

You can use the ModifyInstance() method to modify an existing instance of an

object in the target namespace.

82 SAN File System System Management API Guide and Reference

Parameters

You can specify the following parameters of the ModifyInstance() method:

 Table 18. ModifyInstance() method parameters

Name Type Description

ModifiedInstance string Defines the name of the instance to modify

IncludeQualifiers boolean True modifies qualifiers.

propertyList string[] Specifies properties that are to be modified. If NULL is

specified, all properties are modified.

The ModifyInstance() method returns the specified class or one of the following

error codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

v 5 (CIM_ERR_INVALID_CLASS)

v 6 (CIM_ERR_NOT_FOUND)

SetProperty()

You can use the SetProperty() method to define a single property value of an

instance in the target namespace. You can use it to change a configuration

parameter value by changing the writable property in an instance of the

STC_MasterDisruptiveSetting or STC_MasterDynamicSetting class.

Parameters

You can specify the following parameters of the SetProperty() method:

 Table 19. SetProperty() method parameters

Name Type Description

InstanceName string Defines the name of the instance.

Property string Defines the name of the property whose value is to be defined.

NewValue Defines the new value for the Property (which might be

NULL).

The SetProperty() method defines the property name of the target instance or

returns one of the following error codes:

v 1 (CIM_ERR_FAILED)

v 2 (CIM_ERR_ACCESS_DENIED)

v 3 (CIM_ERR_INVALID_NAMESPACE)

v 4 (CIM_ERR_INVALID_PARAMETER)

v 5 (CIM_ERR_INVALID_CLASS)

v 6 (CIM_ERR_NOT_FOUND)

v 12 (CIM_ERR_NO_SUCH_PROPERTY)

v 13 (CIM_ERR_TYPE_MISMATCH)

Chapter 3. Administrative agent methods 83

Intrinsic method return codes

For easier diagnosis, return codes from method invocations have the same general

meanings.

Table 20 describes the meanings of intrinsic method return codes.

 Table 20. Intrinsic method return codes

Code Symbolic Name Definition

1 CIM_ERR_FAILED A general error occurred that is not covered by a

more specific error code.

2 CIM_ERR_ACCESS_DENIED Access to a CIM resource was not available to the

client.

3 CIM_ERR_INVALID_NAMES

PACE

The target namespace does not exist.

4 CIM_ERR_INVALID_PARAM

ETER

One or more parameter values passed to the

method were invalid.

5 CIM_ERR_INVALID_CLASS The specified class does not exist.

6 CIM_ERR_NOT_FOUND The requested object could not be found.

12 CIM_ERR_NO_SUCH_PROP

ERTY

The specified property does not exist.

13 CIM_ERR_TYPE_MISMATCH The value supplied is incompatible with the type.

When you invoke an intrinsic method, the administrative agent returns more

specific information along with the intrinsic method return code. The

administrative agent includes a string in the form SSG:nn where nn is an extrinsic

method return code. For example, if you invoke EnumerateInstances() method on

the STC_Container class when the server is down, you receive the

CIM_ERR_FAILED return code as well as the string SSG:65. The 65 represents the

return code meaning: ″Server not available″. See “Extrinsic method return codes”

on page 86 for a description of these return code meanings.

Extrinsic methods

Extrinsic methods are specific to administrative- agent object classes. They add

function to the object classes.

The administrative agent supports the following extrinsic methods. Each extrinsic

method is described with its object class in the Chapter 4, “Administrative agent

object classes,” on page 89 chapter in this document.

 Table 21. SAN File System extrinsic methods

Method origin (derived from) Method name

STC_AdminUser “ClearAllCurrentAuthorizations() method” on page 91

“ClearCurrentAuthorization() method” on page 91

STC_AvailableLUNs “CloseClientLUNList() method” on page 92

“GetNextClientLUN() method” on page 93

“GetWWIds() method” on page 94

“OpenClientLUNList() method” on page 95

“RescanLUNs() method” on page 96

84 SAN File System System Management API Guide and Reference

Table 21. SAN File System extrinsic methods (continued)

Method origin (derived from) Method name

STC_ComputerSystem “GetPowerState() method” on page 98

“OneButtonDataCollector() method” on page 99

“SetPowerState() method” on page 99

STC_Container “Attach() method” on page 102

“ChangeServer() method” on page 103

“Create() method” on page 104

“Delete() method” on page 105

“Detach() method” on page 106

“GetFileSetInfo() method” on page 107

“ListAssociatedPools() method” on page 108

“Move() method” on page 108

“RemoveServerBinding() method” on page 109

STC_Domain “Create() method” on page 110

“Delete() method” on page 111

“Move() method” on page 111

STC_MasterDisruptiveSetting “GetInstalledLanguages() method” on page 115

STC_MasterService “AddServer() method” on page 119

“CommitUpgrade() method” on page 119

“DropServer() method” on page 120

“DropServerByName() method” on page 121

“FileSystemCheck() method” on page 122

“GetFileInfo() method” on page 123

“ListClientsByLUN() method” on page 124

“ListClientsByVolume() method” on page 125

“QuiesceService() method” on page 126

“ResumeService() method” on page 126

“StartService() method” on page 127

“StartServiceInAdmin() method” on page 128

“StopFileSystemCheck() method” on page 128

“StopService() method” on page 129

STC_MessageLog “ClearLog() method” on page 131

“GetNextRecords() method” on page 131

“GetPreviousRecords() method” on page 132

“PositionToFirstRecord() method” on page 134

“PositionToLastRecord method” on page 134

“PositionWithFilter() method” on page 135

STC_PitImage “Create() method” on page 141

“Delete() method” on page 142

“Revert() method” on page 143

Chapter 3. Administrative agent methods 85

Table 21. SAN File System extrinsic methods (continued)

Method origin (derived from) Method name

STC_PolicySet “Activate() method” on page 145

“Create() method” on page 146

“Delete() method” on page 147

“GetPolicyRuleStats() method” on page 147

“GetRules() method” on page 148

“GetStoragePoolStats() method” on page 149

STC_StoragePool “Create() method” on page 153

“Delete() method” on page 154

“DisableDefault() method” on page 155

“Move() method” on page 155

“MoveFile() method” on page 156

“SetDefault() method” on page 157

STC_SystemMDRAid “Create() method” on page 158

“Delete() method” on page 159

“GenerateCommandFiles() method” on page 159

STC_TankEvents “Test() method” on page 162

STC_TankService “StartService() method” on page 166

“StopService() method” on page 166

STC_TankWatchdog “Enable() method” on page 170

“Disable() method” on page 170

STC_UserMap “Create() method” on page 171

“Delete() method” on page 172

“DeleteAll() method” on page 172

Refresh() method

“RefreshAll() method” on page 173

STC_Volume “Create() method” on page 174

“CreateUsingLunId() method” on page 176

“Delete() method” on page 177

“DeleteUsingClient() method” on page 178

“GetNextFOV() method” on page 179

“Move() method” on page 180

“ResetFOV() method” on page 181

“Resize() method” on page 182

“ResumeAllocation() method” on page 182

“SuspendAllocation() method” on page 183

Extrinsic method return codes

For easier diagnosis, return codes from method invocations have the same general

meanings. Return codes from extrinsic methods have the following meanings:

v 0 - Method completed successfully

86 SAN File System System Management API Guide and Reference

v 1 - Not supported

v 2 - Access failed

v 3 - Already defined or already disabled

v 4 - Command failed

v 5 - In use

v 7 - Insufficient space

v 8 - Integrity lost

v 9 - Name not valid

v 10 - Invalid parameter

v 11 - Invalid size

v 12 - I/O failed

v 13 - Is Default

v 14 - Is referenced

v 15 - Is System

v 18 - Already exists

v 20 - Not attached

v 21 - Not found

v 22 - Not the primary administrative server

v 23 - Not viable

v 24 - Server timed out

v 25 - Policy bind errors

v 26 - Policy syntax error

v 27 - Is global fileset

v 28 - Storage pool not found

v 30 - Transaction failed

v 32 - Volume in use

v 33 - Volume not found

v 34 - Allocations already suspended

v 35 - Allocations were not suspended

v 36 - Is attached

v 37 - End of iteration

v 38 - Invalid iteration identifier

v 39 - File not found

v 40 - Cannot read file

v 41 - Partial data

v 43 - Directory exists

v 44 - Incompatible operation

v 45 - Server not found

v 46 - Invalid cluster state

v 52 - Disk not viable

v 56 - Access denied

v 57 - No space

v 61 - Cannot connect to server

v 62 - Too many connections

v 63 - Metadata server restart service is already enabled

Chapter 3. Administrative agent methods 87

v 64 - Metadata server restart service is already disabled

v 65 - Server not available

v 66 - Metadata server restart service state cannot continue

v 67 - Cannot become the primary administrative server

v 68 - Already in progress

v 69 - Up-to-date

v 70 - Servers not the same version

v 71 - RSA unavailable

v 75 - Invalid value

v 76 - Cancel pending

v 77 - Salvage failed

v 78 - Aborted - One or more metadata servers, including the master, has aborted.

v 79 - System volume

v 80 - Device not found

v 81 - Client not found

v 82 - Client not reachable

v 83 - Client I/O failed

v 84 - Client unsupported operation

v 85 - File system check resized

v 86 - Server unsupported operation

v 87 - Not a directory

v 88 - Rogue client

v 89 - Invalid LUN ID

v 91 - Cannot contact remote CIM agent

v 92 - SAN File System is in a grace period to enable clients to reassert locks.

v 93 - Storage pool not found

v 94 - Fileset not served

v 95 - No directory service

v 98 - User map full

v 99 - Domain not found

v 100 - Domain exists

v 101 - Domain map full

v 102 - Invalid domain type

v 103 - Invalidate failed

v 104 - User-map threads busy

88 SAN File System System Management API Guide and Reference

Chapter 4. Administrative agent object classes

This chapter describes the classes that make up the administrative agent object

model. The object classes are the building blocks of the administrative agent and

provide management function to the SAN File System.

STC_AdminMessageLog

The STC_AdminMessageLog class represents the aggregated, message log file for

the administrative server. This class extends the STC_MessageLog class. It inherits

methods from the STC_MessageLog class that enable you to traverse the log and

retrieve a specified number of log records.

STC_AdminProcess

The STC_AdminProcess class represents the long-running administrative

commands in the cluster. This class extends the CIM_LogicalElement class.

Properties

The STC_AdminProcess class has the following properties:

 Table 22. STC_AdminProcess class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. A key property is a property that is used to

provide a unique identifier for an instance of a class. The

maximum length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service: STC_MasterService. This

property is key. The maximum length is 256 characters.

ServiceName string The instance name of the scoping service. This property is key.

The maximum length is 256 characters.

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_AdminProcess. When used with the other key

properties of this class, this property allows all instances of this

class and its subclasses to be uniquely identified. This property

is key. The maximum length is 256 characters.

Id uint64 The identifier of the process. This property is key.

InstallDate datetime The date-and-time timestamp for the beginning of the process.

This property is read-only.

Command string The command that initiated this process. The Command string

contains a command name and a list of parameters. This

property is read-only. The maximum length is 256 characters.

© Copyright IBM Corp. 2003, 2004 89

STC_AdminSecurityLog

The STC_AdminSecurityLog class represents the aggregated, security log file for

the administrative server. This class extends the STC_MessageLog class. It inherits

methods from the STC_MessageLog class that enable you to traverse the log and

retrieve a specified number of log records.

STC_AdminUser

The STC_AdminUser class represents an authorized user of SAN File System. This

class extends the CIM_LogicalElement class.

The Common Information Model Object Model (CIMOM) authenticates a user by

comparing a user name and password with information stored in the LDAP server.

After the CIMOM authenticates a user, it authorizes the user depending on

whether the user has the appropriate level of access to perform a requested action.

Every property and method of a class has a minimum role needed to get or set a

property or invoke a method.

When CIMOM receives an administrator request, it authenticates the user in the

LDAP server and extracts the role of a successfully authenticated user. For

performance purposes, an authenticated user’s role remains validated for a small

interval of time. CIMOM does not consult LDAP again within this time window. If

the same user makes an administrator request again when the window is open, the

CIMOM authenticates the user without consulting the LDAP server.

Properties

The STC_AdminUser class has the following properties:

 Table 23. STC_AdminUser class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. The maximum length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_AdminUser. When used with the other key

properties of this class, this property allows all instances of this

class and its subclasses to be uniquely identified. This property

is key. The maximum length is 256 characters.

Name string The user name. This property is key. The maximum length is 256

characters.

EffectiveRole uint16 The effective role of the user, as determined by the

authentication (CIMOM) service. The direct role of the user or

the groups to which the user belongs determine the user’s

effective role. The strongest role is the effective role. Possible

values are:

 0: Administrator

 1: Operator

 2: Backup

 3: Monitor

Any other value indicates that the role is unknown.

90 SAN File System System Management API Guide and Reference

Table 23. STC_AdminUser class properties (continued)

Name Type Description

IsAuthorizatio

nCurrent

boolean An indicator of whether the role is currently validated. If a

user’s role was recently validated on the LDAP server, the

effective role for the user will remain valid for a short interval of

time. If a user makes a request again in this time interval, the

LDAP server will not be contacted for authentication.

AuthCurrentR

emainingTime

uint32 The remaining time interval after which if the user makes a

request, the LDAP server will be contacted again to determine

the effective role of a user. The value of this property is valid

only if validation is current; otherwise, the value will be zero.

ClearAllCurrentAuthorizations() method

Use the ClearAllCurrentAuthorizations() method to clear all current validation

windows.

Execute Role: Administrator

Method Type: Static

Return values

The ClearAllCurrentAuthorizations() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 21 (Not found)

v 30 (Transaction failed)

v .. (Internal error)

ClearCurrentAuthorization() method

Use the ClearCurrentAuthorization() method to clear a user’s validation window.

Execute Role: Administrator

Method Type: Dynamic

Return values

The ClearCurrentAuthorization() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 21 (Not found)

v 30 (Transaction failed)

v .. (Internal error)

STC_AvailableLUNs

The STC_AvailableLUNs class represents available Fibre Channel logical unit

numbers (LUNs). These LUNs are the storage volumes exposed using the small

computer system interface (SCSI) LUNs on the engines of the cluster. The

STC_AvailableLUNs class extends the CIM_StorageVolume.

Chapter 4. Administrative agent object classes 91

Properties

The STC_AvailableLUNs class has the following properties:

 Table 24. STC_AvailableLUNs class properties

Name Type Description

LunID uint64 The LUN identifier.

NodeWWN string The worldwide node name providing the LUN. A 16-digit

hexidecimal number in the form xx:xx:xx:xx:xx:xx:xx:xx. The

maximum length is 23 characters.

PortWWN string The worldwind port name on the node that is providing the

LUN. A 16-digit hexidecimal number in the form

xx:xx:xx:xx:xx:xx:xx:xx. The maximum length is 23 characters.

Vendor string The name of the vendor supplying the product. The maximum

length is 256 characters.

Product string The product name. The maximum length is 256 characters.

Version string The version of the product. The maximum length is 256

characters.

Size uint64 Storage size, in megabytes, of the LUN.

State uint32 The availability state of this LUN as a volume. Possible values

are:

 0: Available - This LUN is available to be added as a volume.

 1: Assigned - This LUN is already assigned to SAN File

System as a volume. The VolumeName property value

identifies the specific volume.

 2: Error - An error occurred determining the properties of the

LUN.

 3: Unknown - The Metadata server is not running. Cannot

determine the availability of the LUN.

 4: Unusable - This LUN is unsuitable as a volume. One

reason the LUN is not suitable is that the (inherited) Access

property shows the LUN does not support read/write. Other

reasons include inconsistent availability of this LUN from all

engines of the cluster.

VolumeName string If the LUN is already assigned to a SAN File System storage

pool, this is the volume name that was given when the LUN was

added. Otherwise, the value will be null. The maximum length is

256 characters.

CloseClientLUNList() method

Use the CloseClientLUNList() method to close an iteration of a list of LUNs

accessed by a specific client.

Execute Role: Monitor

Method Type: Static

Parameters

Table 25 on page 93 describes the parameters that you can specify for the

CloseClientLUNList() method.

92 SAN File System System Management API Guide and Reference

Table 25. CloseClientLUNList() method parameters

Name Type Description

IterationIdentif

ier

string The input/output parameter that is an identifier for the iterator.

Return values

The CloseClientLUNList() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 30 (Transaction failed)

v 38 (Invalid IterationIdentifier)

v .. (Internal error)

GetNextClientLUN() method

Use the GetNextClientLUN() method to retrieve information for the next LUN in a

list of LUNs accessed by a specific client.

This method returns information about one or more LUNs. It uses a set of array

output parameters to represent information about each LUN.

Execute Role: Monitor

Method Type: Static

Parameters

Table 26 describes the parameters that you can specify for the GetNextClientLUN()

method.

 Table 26. GetNextClientLUN() method parameters

Name Type Description

IterationIdentif

ier

string Input/output parameter that is an identifier for the iterator for

the current iteration.

NumberOfEntr

ies

uint32 Input/output parameter that indicates the number of entries to

be retrieved and returns the actual number of entries that were

retrieved.

LunID string[] Output parameter with the identifier of the LUN.

Vendor string[] Output parameter that is the name of the vendor supplying the

product. The maximum length is 256 characters.

Product string[] Output parameter that is the product name. The maximum

length is 256 characters.

Version string[] Output parameter that is the version of the product. The

maximum length is 256 characters.

BlockSize uint64[] Output parameter that is the size in bytes of blocks.

NumberOfBloc

ks

uint64[] Output parameter that is the total number of logically

contiguous blocks.

Size uint64[] Output parameter that contains the storage size, in MB, of the

LUN.

Chapter 4. Administrative agent object classes 93

Table 26. GetNextClientLUN() method parameters (continued)

Name Type Description

DeviceID string[] Output parameter that is identifying information to uniquely

name the LUN.

State uint32[] Output parameter that is the availability state of this LUN as a

volume. Possible values are:

 0: Available - This LUN is available to be added as a volume.

 1: Assigned - This LUN is already assigned to SAN File

System as a volume. The VolumeName property value

identifies the specific volume.

 2: Error - An error occurred determining the properties of the

LUN.

 3: Unknown - The metadata server is not running. The

availability of the LUN cannot be determined.

 4: Unusable - This LUN is unsuitable as a volume. The LUN

may be unsuitable because the (inherited) Access property

shows that the LUN does not support read/write or because

it is inconsistently available from all engines of the cluster.

VolumeName string[] Output parameter that is the volume name that was given when

the LUN was added, if the LUN is already assigned to a storage

pool. Otherwise, the value will be null. The maximum length is

256 characters.

NodeWWN string[] Output parameter that is the worldwide node name providing

the LUN. A 16-digit hexadecimal number of the form

xx:xx:xx:xx:xx:xx:xx:xx. The maximum length is 23 characters.

PortWWN string[] Output parameter that is the worldwide port name on the node

that is providing the LUN. A 16-digit hexadecimal number in the

form xx:xx:xx:xx:xx:xx:xx:xx.The maximum length is 23

characters.

Return values

The GetNextClientLUN() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 10 (Invalid parameter)

v 30 (Transaction failed)

v 37 (End of iteration)

v 38 (Invalid IterationIdentifier)

v .. (Internal error)

GetWWIds() method

Use the GetWWIds() method to retrieve a list of all worldwide node names

(WWNNs) and worldwide port names (WWPNs).

Execute Role: Monitor

Method Type: Static

94 SAN File System System Management API Guide and Reference

Parameters

Table 27 describes the parameters that you can specify for the GetWWIds() method.

 Table 27. GetWWIds() method parameters

Name Type Description

NodeWWN string[] Output parameter that is the worldwide node name providing

the LUN. A 16-digit hexadecimal number in the form

xx:xx:xx:xx:xx:xx:xx:xx.The maximum length is 23 characters.

PortWWN string[] Output parameter that is the worldwide port name on the node

providing the LUN. A 16-digit hexadecimal number in the form

xx:xx:xx:xx:xx:xx:xx:xx.The maximum length is 23 characters.

Return values

The GetWWIds() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

OpenClientLUNList() method

Use the OpenClientLUNList() method to establish an iteration of a list of LUNs

accessed by a specific client.

Execute Role: Monitor

Method Type: Static

Parameters

Table 28 describes the parameters that you can specify for the

OpenClientLUNList() method.

 Table 28. OpenClientLUNList() method parameters

Name Type Description

IterationIdentif

ier

string The output parameter that is an identifier for the iterator.

ClientName string The input parameter that is the client name for which the list of

LUNs is to be retrieved.

Return values

The OpenClientLUNList() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

Chapter 4. Administrative agent object classes 95

v 10 (Invalid parameter)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 81 (Client not found)

v 82 (Client not reachable)

v 84 (Client unsupported operation)

v .. (Internal error)

RescanLUNs() method

Use the RescanLUNs() method to rescan the LUNs on the host system.

Execute Role: Monitor

Method Type: Static

Parameters

Table 29 describes the parameters that you can specify for the RescanLUNs()

method.

 Table 29. RescanLUNs() method parameters

Name Type Description

ClientName string Input parameter that is the client name for which the ReScan

operation needs to take place. If the client name is null, this

operation will take place on the local metadata server.

Return values

The RescanLUNs() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 81 (Client not found)

v 82 (Client not reachable)

v 84 (Client unsupported operation)

v .. (Internal error)

STC_Cluster

The STC_Cluster class, along with the STC_MasterService class, provides cluster

operations. It extends the CIM_Cluster class.

96 SAN File System System Management API Guide and Reference

Properties

The STC_Cluster class has the following properties:

 Table 30. STC_Cluster class properties

Name Type Description

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_Cluster. When used with the other key properties

of this class, this property allows all instances of this class and

its subclasses to be uniquely identified. This property is key. The

maximum length is 256 characters.

ClusterId uint32 A unique integer identifier for the cluster.

ConfiguredNu

mberOfNodes

uint32 The number of configured engines in the cluster.

CurrentNumbe

rOfNodes

uint32 Number of engines participating in the cluster. If this number is

not the same as the configured number, the cluster is not

operating at its full potential.

STC_ComputerSystem

The STC_ComputerSystem class represents each engine in the cluster. This class

extends the CIM_ComputerSystem class.

Properties

The STC_ComputerSystem class has the following properties.

 Table 31. STC_ComputerSystem class properties

Name Type Description

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_ComputerSystem. When used with the other key

properties of this class, this property allows all instances of this

class and its subclasses to be uniquely identified. This property

is key. The maximum length is 256 characters.

TotalPowerOn

Hours

uint64 The total number of hours the engine has been powered on. This

is a read-only counter property.

RestartCount uint16 The total number of times the engine has been power cycled.

This is a read-only counter property.

IsPowerOn boolean An indicator of whether the engine is powered on. This property

is read-only.

ASMTime datetime The current time on the Advanced System Management

Processor’s local clock. It is the time reference that must be used

to schedule a power off using the “SetPowerState() method” on

page 99. This time is independent of the date and time on the

server. This property is read-only.

Chapter 4. Administrative agent object classes 97

Table 31. STC_ComputerSystem class properties (continued)

Name Type Description

CurrentState uint32 The state of the system. This property is read-only. Possible

values are:

v 0: Unknown/Power Off

v 1: In Power-On Self Test (POST)

v 2: Stopped in POST

v 3: Booted Flash

v 4: Booting operating system

v 5: In operating system

v 6: CPU is held in reset

v 7: Before POST

UUID string The universal unique identifier of the engine. This string

represents a 128-bit number in the form of 32 consecutive

hexadecimal numbers with no delimiters. This property is

read-only.

GetPowerState() method

Use the GetPowerState() method to retrieve the power state of an engine

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 32 describes the parameters that you can specify for the GetPowerState()

method.

 Table 32. GetPowerState() method parameters

Name Type Description

CurrentState uint32 Output parameter that is the current power setting of the engine.

Possible values are:

v 0: Unknown/Power Off

v 1: In Power-On Self Test (POST)

v 2: Stopped in POST

v 3: Booted Flash

v 4: Booting operating system

v 5: In operating system

v 6: CPU is held in reset

v 7: Before POST

Return values

The GetPowerState() method returns one of the following codes:

v 0 (Completed successfully)

v 4 (Command failed)

v 8 (Integrity lost)

v 30 (Transaction failed)

98 SAN File System System Management API Guide and Reference

v 44 (Incompatible operation)

v 71 (RSA unavailable)

v .. (Internal error)

OneButtonDataCollector() method

Use the OneButtonDataCollector() method to invoke the one-button data collector

utility that collects server and system information needed for problem

determination. See the Maintenance and Problem Determination Guide for details

about the information that the utility collects.

By default, the information collects in the /usr/tank/pmf directory. You can

specify a different directory using the TANKDIR environment variable. Any stdout

and stderr output generated by the utility collects in the /tmp/obdcout file on the

local disk of the engine.

Execute Role: Administrator

Method Type: Dynamic

Return values

The OneButtonDataCollector() method returns one of the following codes:

v 0 (Completed successfully)

v .. (Internal error)

SetPowerState() method

Use the SetPowerState() method to set the power state of the engine. This class

overrides the SetPowerState() method in its parent class, CIM_ComputerSystem. It

supports only a limited subset of power setting capabilities that are fully described

in the parent class.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 33 describes the parameters that you can specify for the SetPowerState()

method.

 Table 33. SetPowerState() method parameters

Name Type Description

PowerState uint16 The input parameter that is the power setting of the engine.

Possible values are:

v 1: Full Power

v 2: Power Save - Low Power Mode

v 3: Power Save - Standby

v 4: Power Save - Other

v 5: Power Cycle

v 6: Power Off

v 7: Hibernate

v 8: Soft Off

Chapter 4. Administrative agent object classes 99

Table 33. SetPowerState() method parameters (continued)

Name Type Description

Time datetime The input parameter that is the time when the power setting

should occur. If the value is zero, the setting occurs immediately.

Return values

The SetPowerState() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 4 (Command failed)

v 8 (Integrity lost)

v 30 (Transaction failed)

v 44 (Incompatible Operation)

v 63 (Already enabled)

v 64 (Already disabled)

v 71 (RSA unavailable)

v .. (Internal error)

STC_Container

The STC_Container class represents a fileset (also known as a container). It extends

the CIM_ManagedSystemElement class.

There is an instance of this class for every fileset that exists in a SAN File System.

The list of instances and the methods defined in this class are available only on the

master Metadata server.

Properties

The STC_Container class has the following properties:

 Table 34. STC_Container class properties

Name Type Description

Name string Your label for the fileset when you create, move, or rename it.

This property is key. The maximum length is 256 characters.

Description string Your description of the fileset. This property is writable. The

maximum length is 256 characters.

InstallDate datetime The time when the fileset was created. A lack of a value does not

indicate that the fileset does not exist. This property is read-only.

State uint32 The state of the fileset. This property is read-only. Possible values

are:

 0: Detached

 1: Attached

100 SAN File System System Management API Guide and Reference

Table 34. STC_Container class properties (continued)

Name Type Description

AttachPoint string The attach point of this fileset in the file system namespace. An

attach point is the combined path formed by the directory path

used to attach and the directory name. This property gives the

fully qualified directory name of this fileset. It combines the

DirectoryPath property with the DirectoryName property. If the

fileset is not attached, this value is null. This property is

read-only.

DirectoryName string The name of the fileset as known to the file system. A fileset is

made available to the file system using a different name than the

Name property, called the directory name. A directory name is

attached to an existing directory path that can be another fileset’s

attach point or a file directory. This name will appear as a

directory under the path shown by DirectoryPath property. You

specify this name when you create the fileset and can change it

by reattaching the fileset. This property is read-only.

DirectoryPath string The directory path under which a fileset will appear to the file

system. The name of the directory is indicated by the

DirectoryName property. The fully qualified directory name of

this fileset is indicated by the AttachPoint property. This

property is read-only.

Parent string The name of the parent fileset. If this is the global fileset, the

value is null. Default is null. This property is read-only.

NumberOfChil

dren

uint32 The number of immediate child filesets. Default is 0. This

property is read-only.

Quota uint32 The maximum size limit, in megabytes, for the fileset. A value of

zero, the default, indicates that there is no limit. The maximum

value is 1024 petabytes. This property is writable.

IsHardQuota boolean The indicator of whether a quota limit cannot be extended,

which is a hard quota. This property is used when a quota limit

exists and the fileset’s allocated size reaches the quota limit. If

the value is True, the server does not extend the allocated size of

the fileset beyond the quota limit. It sends a Severe alert message

and logs the message in the server message log. If False, the

quota is soft. The server extends the allocated size of the fileset

and logs a Warning alert message. This property is writable.

Changing this property from soft quota (False) to hard quota

(True) when the fileset has exceeded its quota causes a Hard

Quota Violation (72) exception.

AlertPercenta

ge

uint16 The percentage of the fileset size that, when reached, causes the

server to generate an alert message. An alert is generated only if

all the following conditions are met:

v The Quota property value is greater than zero.

v An AlertPercentage property value is greater than zero.

v The SizeAllocatedPercentage property value equals or exceeds

the AlertPercentage property value.

This property is writable. Minimum is 0% and indicates that the

server should not generate an alert. The maximum value is

100%. The default value is 80%.

SizeAllocated uint64 The size, in MB, of the fileset. This size can change as files are

added and deleted in the fileset. This property is read-only.

Chapter 4. Administrative agent object classes 101

Table 34. STC_Container class properties (continued)

Name Type Description

SizeAllocatedP

ercentage

uint16 The percentage of the size allocated compared to the quota in

the pool. This can be compared directly with the AlertPercentage

to determine how close the fileset is to causing an alert. This

property is read-only. The minimum value is 0%. The maximum

value is 100%.

NumberOfPIT

Copies

uint16 The number of existing FlashCopy images. A fileset can have as

many as 32 read-only FlashCopy images. When an administrator

creates a FlashCopy image that causes the maximum number of

images to be exceeded, SAN File System deletes the oldest

existing image. This property is read-only.

LastPITCopyD

ate

datetime The datetime value of the last FlashCopy image. This property is

read-only.

AssignmentPol

icy

uint32 The server assignment policy for this fileset. Possible values are:

 0: Dynamic - SAN File System dynamically assigns the fileset

to a server.

 1: Static - The Administrator assigned the fileset to a specific

server. If the assigned server stops, SAN File System will

choose another server to host the fileset until the assigned

server starts again.

This property is read-only.

AssignedServ

er

string The server name of the server to which the Administrator

statically assigned the fileset. If the AssignmentPolicy property is

Dynamic(0), this property will be null. This property is

read-only.

Server string The name of the server currently hosting this fileset. This

property is read-only. The maximum length is 256 characters.

ServerState uint32 The state of the server serving the fileset. This property is

read-only. Possible values are:

 0: Offline

 1: Online

Attach() method

Use the Attach() method to attach an existing fileset to a file system namespace.

You can also use this method to reattach an attached fileset to a new file system

namespace. When you reattach a fileset, you can change the directory path as well

as the directory name.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 35 describes the parameters that you can specify for the Attach() method.

 Table 35. Attach() method parameters

Name Type Description

ExistingDirPa

th

string Input parameter that is an existing directory path to attach to.

102 SAN File System System Management API Guide and Reference

Table 35. Attach() method parameters (continued)

Name Type Description

NewDirName string Input parameter that is the new directory name of the fileset.

Return values

The Attach() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 9 (Invalid name)

v 18 (The name given in the NewDirName parameter exists.)

v 21 (Directory path given in ExistingDirPath parameter not found)

v 22 (Not the primary Administrative server)

v 23 (Not viable; for reattach, the new path for the fileset to be attached already

contains the original attach point name for the fileset.)

v 30 (Transaction failed)

v 36 (Is already attached)

v 44 (Incompatible operation)

v 61 (Cannot connect to server; the Administrative server could not contact the

local Metadata server.)

v 62 (Too many connections)

v 65 (Server state offline)

v .. (Internal error)

ChangeServer() method

Use the ChangeServer() method to change the metadata server hosting the fileset.

You can change the server under the following conditions:

v The specified server acting as the new host must be part of the cluster.

v The cluster and the specified server must be either online or in a quiescent state.

v The current host server can be down. If it is not down, it and the cluster must

be in a quiescent state.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 36 describes the parameters that you can specify for the ChangeServer()

method.

 Table 36. ChangeServer() method parameters

Name Type Description

Server string Input parameter that is the name of the metadata server to host

this fileset. The maximum length is 32 characters.

Chapter 4. Administrative agent object classes 103

Return values

The ChangeServer() method returns one of the following codes:

v 0 (Completed successfully)

v 3 (Already defined)

v 8 (Integrity lost)

v 10 (Invalid parameter)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 27 (Is global fileset)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 45 (Server not found)

v 46 (Invalid cluster state)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 65 (Server state offline)

v .. (Internal error)

Create() method

Use the Create() method to define a new fileset. This method is the constructor for

the class. Optionally, you can attach the fileset to an attach point by supplying an

existing directory path and the new Directory name.

Execute Role: Administrator

Method Type: Static

Parameters

Table 37 describes the parameters that you can specify for the Create() method.

 Table 37. Create() method parameters

Name Type Description

Name string Input parameter that is your label for the fileset. The maximum

length is 256 characters.

Description string Input parameter that is your description of the fileset. The

maximum length is 256 characters.

Quota uint64 Input parameter that is the maximum size limit, in megabytes,

for the fileset. A value of zero indicates that there is no limit. The

default is no limit. The maximum value is 1024 petabytes.

IsHardQuota boolean Input parameter that is an indicator of whether a quota limit

cannot be extended.

AlertPercenta

ge

uint16 Input parameter that is the percentage of the fileset; size that,

when reached, will cause the server to generate an alert message.

The minimum value is 0% and indicates that the server should

not generate an alert. The maximum value is 100%. The default

value is 90%.

ExistingDirPath string Input parameter that is an existing directory path to attach to.

104 SAN File System System Management API Guide and Reference

Table 37. Create() method parameters (continued)

Name Type Description

NewDirName string Input parameter that is the new directory name to be given to

the fileset.

Server string Input parameter that is the name of the server to host this fileset.

The maximum length is 32 characters.

Return values

The Create() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 10 (Invalid parameter)

v 18 (Name exists)

v 21 (Directory path given in ExistingDirPath parameter not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 43 (The name given in the NewDirName parameter exists.)

v 44 (Incompatible operation)

v 45 (Server not found)

v 57 (No space - The metadata server ran out of space in system volumes where

master metadata is stored.

v 61 (Cannot connect to server - The current hosting server and all other parent

hosting servers, if any, must be online.)

v 62 (Too many connections)

v 65 (Server state offline)

v .. (Internal error)

Delete() method

Use the Delete() method to delete a fileset.

You can delete a fileset under the following conditions:

v The fileset is detached.

v The fileset is not the global fileset.

v The fileset does not have files on it unless the IsForce option is set to True.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 38 describes the parameters you can specify for the Delete() method.

 Table 38. Delete() method parameters

Name Type Description

IsForce boolean Input parameter that indicates whether to delete the fileset even

if it has files on it.

Chapter 4. Administrative agent object classes 105

Return values

The Delete method returns one of the following codes:

v 0 (Completed successfully)

v 5 (In use - Fileset has files and IsForce is False.)

v 8 (Integrity lost)

v 14 (Is referenced - Fileset is referenced in an active policy rule.)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 27 (Is global fileset)

v 30 (Transaction failed)

v 36 (Is attached)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 65 (Server state offline; with or without the force option, the serving server must

be online.)

v .. (Internal error)

Detach() method

Use the Detach() method to detach a fileset from a file system namespace.

You can detach a fileset under the following conditions:

v Fileset does not have any child filesets attached to it.

v No clients are using files on it unless the IsForce option is set to True.

When you detach a fileset, the attach point does not persist. The directory path

and directory name are lost.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 39 describes the parameters that you can specify for the Detach() method.

 Table 39. Detach() method parameters

Name Type Description

IsForce boolean Input parameter that indicates whether to detach the fileset even

if clients are using files on it.

Return values

The Detach() method returns one of the following codes:

v 0 (Completed successfully)

v 5 (In use)

v 8 (Integrity lost)

v 14 (Is referenced; IsForce is False and clients are using files in the fileset)

106 SAN File System System Management API Guide and Reference

v 20 (Not attached)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 27 (Is global fileset)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 65 (Server state offline)

v .. (Internal error)

GetFileSetInfo() method

Use the GetFileSetInfo() method to retrieve fileset information for filesets in the

cluster.

This method returns information about one or more filesets. It uses a set of array

output parameters to represent information about each fileset.

Execute Role: Backup

Method Type: Static

Parameters

Table 40 describes the parameters that you can specify for the GetFileSetInfo()

method.

 Table 40. GetFileSetInfo() method parameters

Name Type Description

FileSetNames string Input parameter that is the list of fileset names. The maximum

length is 256 characters.

FileSetName string[] Output parameter that is the name of the fileset.

ServerName string[] Output parameter that is the name of the metadata server

serving this fileset.

CurrentTransac

tions

uint64[] Output parameter that is the number of transactions accessing

this fileset.

StoppedTransa

ctions

uint64[] Output parameter that is the number of transactions that failed

to finish their work with this fileset.

RetriedTransac

tions

uint64[] Output parameter that is the number of times some of the

transactions have been retried. This number reports the number

of deadlocks that are occurring.

StartedTransac

tions

uint64[] Output parameter that is the number of transactions that used or

are using this fileset.

CompletedTra

nsactions

uint64[] Output parameter that is the total number of transactions that

successfully finished their work with this fileset.

Return values

The GetFileSetInfo() method returns one of the following codes:

v 0 (Completed successfully)

Chapter 4. Administrative agent object classes 107

v 8 (Integrity lost)

v 21 (Not found; the fileset name was not found in the global namespace.)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v .. (Internal error)

ListAssociatedPools() method

Use the ListAssociatedPools() method to list the storage pools that a fileset can use

to store data.

This method can return information about one or more storage pools. It uses a set

of array output parameters to represent information about each storage pool.

Execute Role: Monitor

Method Type: Dynamic

Parameters

Table 41 describes the parameters that you can specify for the ListAssociatedPools()

method.

 Table 41. ListAssociatedPools() method parameters

Name Type Description

StgPoolName string[] Output parameter that is the name of the storage pool associated

to this fileset.

InUse boolean[

]

Output parameter that indicates whether the named storage pool

is currently used by this fileset.

PolicyRuleRefe

renceCount

uint32[] Output parameter that is the number of policy rules that

associate this storage pool with this fileset.

Return values

The ListAssociatedPools() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

Move() method

Use the Move() method to move or rename a fileset by creating a new fileset with

the specified new name and migrating the data and capabilities to the new name.

If successful, the old fileset is deleted.

Execute Role: Administrator

108 SAN File System System Management API Guide and Reference

Method Type: Dynamic

Parameters

Table 42 describes the parameters that you can specify for the Move() method.

 Table 42. Move() method parameters

Name Type Description

NewName string Input parameter that is your new label for the fileset. The

maximum length is 256 characters.

Return values

The Move() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 9 (Fileset name is not valid.)

v 18 (Fileset name already exists.)

v 21 (Fileset not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

RemoveServerBinding() method

Use the RemoveServerBinding() method to remove the static assignment that a

fileset has to a metadata server. The fileset is immediately assigned a new server

and its assignment policy becomes dynamic.

Execute Role: Administrator

Method Type: Dynamic

Return values

The RemoveServerBinding() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 46 (Invalid cluster state)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

Chapter 4. Administrative agent object classes 109

STC_Domain

The STC_Domain class represents SAN File System domains for UNIX and

Windows user mappings. This class, along with STC_UserMap class, allows for

uniform file security in heterogeneous systems. It extends the

CIM_ManagedSystemElement class.

Properties

The STC_Domain class has the following properties:

 Table 43. STC_Domain class properties

Name Type Description

Name string Input parameter that is your administrative name for the

domain. This property is key. The maximum length is 256

characters.

DomainType uint32 Input parameter that is the type of domain. This property is

writable. Possible values are:

 0: UNIX_NIS

 1: UNIX_LDAP

 2: Windows_AD

 Unknown

Create() method

Use the Create() method to create a domain. This method is the constructor for the

class.

Execute Role: Administrator

Method Type: Static

Parameters

Table 44 describes the parameters that you can specify for the Create() method.

 Table 44. Create() method parameters

Name Type Description

Name string Input parameter that is your name for the domain. The

maximum length is 256 characters.

DomainType uint32 Input parameter that is the type of domain. Possible values are:

 0: UNIX_NIS

 1: UNIX_LDAP

 2: Windows_AD

Return values

The Create() method returns one of the following codes:

v 0 (Completed successfully)

v 3 (Already defined)

v 8 (Integrity lost)

v 9 (Domain name is not valid)

110 SAN File System System Management API Guide and Reference

v 10 (Parameter not valid)

v 18 (Domain name already exists.)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 100 (Domain exists)

v 101 (Domain map full)

v 102 (Invalid domain type)

v .. (Internal error)

Delete() method

Use the Delete() method to delete an existing domain.

Execute Role: Administrator

Method Type: Dynamic

Return values

The Delete() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 9 (Domain name is not valid)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 99 (Domain not found)

v .. (Internal error)

Move() method

Use the Move() method to rename a domain.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 45 on page 112 describes the parameters that you can specify for the Move()

method.

Chapter 4. Administrative agent object classes 111

Table 45. Move() method parameters

Name Type Description

NewName string Input parameter that is the new name for the domain. The

maximum length is 256 characters.

Return values

The Move() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 9 (Domain name is not valid)

v 10 (Parameter not valid)

v 18 (Domain name already exists.)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

STC_LdapDynamicSetting

The STC_LdapDynamicSetting class contains the settings for LDAP configuration

parameters that you can dynamically update without a cluster restart. These

parameters persist across cluster restarts. If you have Administrator privileges, you

can change the writable properties in this class using the SetProperty() intrinsic

method. This class extends the STC_Setting class.

Properties

The STC_LdapDynamicSetting class has the following properties:

 Table 46. STC_LdapDynamicSetting class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. The maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service:

STC_LdapDynamicSetting. This property is key. The maximum

length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

ServiceName string The name of the scoping service: LdapDynamicSetting. This

property is key. The maximum length is 256 characters.

ServerIP string The IP address of the LDAP server. This property is writable.

User string The root user for LDAP server for authentication. This property

is writable.

Password string The root password for LDAP server for authentication. This

property is writable.

112 SAN File System System Management API Guide and Reference

Table 46. STC_LdapDynamicSetting class properties (continued)

Name Type Description

SecuredConne

ction

boolean An indicator of whether to use a Secure Sockets Layer (SSL)

connection with LDAP. This property is writable.

BaseDnRoles string The base DN for role information. This property is writable.

RoleIdAttr string The attribute name of the role ID. This property is writable. The

default value is ″cn″.

RoleMemIdAt

tr

string The attribute name of the user reference. This property is

writable. Default is ″roleOccupant″.

UserIdAttr string The attribute name of the user ID within reference. This property

is writable. The default value is ″uid″.

CacheAge uint32 The duration (in seconds) to hold LDAP entries in the LDAP

cache. This property is writable. The default value is 600.

STC_MasterDisruptiveSetting

The STC_MasterDisruptiveSetting class represents the parameter settings for cluster

configuration that require a cluster restart for an update to take effect. This class

extends the STC_Setting class.

The read-only properties in this class can be set only during installation. If you

have Administrator privileges, you can change the writable properties using the

SetProperty() intrinsic method.

Properties

The STC_MasterDisruptiveSetting class has the following properties:

 Table 47. STC_MasterDisruptiveSetting class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. The maximum length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service:

STC_MasterDisruptiveSetting. This property is key. The

maximum length is 256 characters.

ServiceName string The name of the scoping service: MasterDisruptiveSetting. This

property is key. The maximum length is 256 characters.

ClusterID uint32 A unique cluster ID number that is set only at installation time.

This property is read-only. The default value is the lower 16-bit

value of the system time during installation.

ClusterName string A unique cluster name that is set only at installation time. This

cluster name determines the name of the root directory in the file

system namespace. This property is read-only. The maximum

length is 32 characters.

ClientTimeoutI

nterval

uint32 The amount of time, in milliseconds, to wait between attempted

message sends from server to client. This property is read-only.

The minimum length of time is 200 and the maximum length of

time is 1000 milliseconds. The default value is 500.

Chapter 4. Administrative agent object classes 113

Table 47. STC_MasterDisruptiveSetting class properties (continued)

Name Type Description

ServerTimeout

Interval

uint32 The amount of time, in milliseconds, to wait between attempted

message sends from server to server. This property is read-only.

The minimum length of time is 200 and the maximum length of

time is 1000 milliseconds. The default value is 500.

DiskHeartbeatI

nterval

uint32 The interval, in milliseconds, between heartbeats written to disk.

This property is read-only. The minimum length of time is 200

and The maximum length of time is 10 000 milliseconds. The

default value is 500.

LogicalPartitio

nSize

uint32 The logical partition size in megabytes. This property is

read-only. The default is 16 MB.

NWHeartbeatI

nterval

uint32 The interval, in milliseconds, between the heartbeats over the

network. This property is writable. The minimum length of time

is 200 and The maximum length of time is 10 000 milliseconds.

The default value is 500.

NWMaxMisse

dHeartbeats

uint32 The maximum number of heartbeats that can be missed before

the cluster ejects the server. If a server is ejected, it does not need

to be recommissioned into the cluster. This property is writable.

The minimum value is 1 and the maximum value is 100. The

default value is 3.

DiskMaxMisse

dHeartbeats

uint32 The maximum number of heartbeats that can be missed before

the disk ejects a server. If a server is ejected, it does not need to

be recommissioned into the cluster. This property is writable.

The minimum value is 1 and the maximum value is 100. The

default value is 4.

LockLeasePeri

od

uint32 The amount of time, in seconds, a lock is leased to a client when

the server grants a lock. The server applies a multiplier, specified

by the LockGracePeriodMultiplier property, before actually

expiring the lease. This property is writable. The minimum value

is 10 and the maximum value is 120. The default value is 20

seconds.

LockGracePeri

odMultiplier

uint32 The value that the server would multiply times the lock lease

period to determine the amount of time to wait before actually

expiring a lease of a lock to a client. The server must receive a

lock renewal request from the client during this time to keep the

lease active. This property is writable. The minimum value is 0

and the maximum value is 4. The default value is 2 seconds.

ClusterTimeout uint32 The timeout, in microseconds, for communications within the

cluster. This property is writable. The minimum value is 500 000

and the maximum value is 10 000 000. The default value is 1 000

000.

RetriesToClient uint32 The number of times a server attempts to send to a client before

declaring the client dead. This property is writable. The

minimum value is 1 and the maximum value is 100. The default

value is 5.

Lang string The language that the metadata server runs, which can be

United States English or Japanese. Possible values are:

 en_US.utf8

 ja_JP.utf8

The initial value is en_US.utf8.

114 SAN File System System Management API Guide and Reference

GetInstalledLanguages() method

Use the GetInstalledLanguages() method to list the languages installed in SAN File

System.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 48 describes the parameter for the GetInstalledLanguages() method.

 Table 48. GetInstalledLanguages() method parameters

Name Type Description

Languages string[] Output parameter that is the list of installed languages.

Return values

The GetInstalledLanguages() method returns one of the following codes:

v 0 (Completed successfully)

v 4 (Command failed)

v 8 (Integrity lost)

v 30 (Transaction failed)

v .. (Internal error)

STC_MasterDynamicSetting

The STC_MasterDynamicSetting class represents the parameter settings for cluster

configuration that you can dynamically update without a cluster restart. These

parameters persist across cluster restarts. This class extends the STC_Setting class.

If you have Administrator privileges, you can change the writable properties in

this class using the SetProperty() intrinsic method.

Properties

The STC_MasterDynamicSetting class has the following properties.

 Table 49. STC_MasterDynamicSetting class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. The maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service:

STC_MasterDynamicSetting. This property is key. The maximum

length is 256 characters.

ServiceName string The name of the scoping service: MasterDynamicSetting. This

property is key. The maximum length is 256 characters.

MasterBufferSi

ze

uint32 The buffer-cache size for master database space in 4 KB pages.

This property is writable. The minimum value is 2048 and the

maximum value is 8192 KB. The default value is 2048 KB.

Chapter 4. Administrative agent object classes 115

Table 49. STC_MasterDynamicSetting class properties (continued)

Name Type Description

SubordinateBu

fferSize

uint32 The buffer-cache size for subordinate database space in 4 KB

pages. This property is writable. The minimum value is 30 000

and the maximum value is 250 000 KB. The default value is 30

000 KB.

SpaceReclaim

Delay

uint32 The interval, in minutes, that the space-reclamation thread waits

between runs. A value of zero indicates that space reclamation is

disabled. This property is writable. The minimum value is 0 and

the maximum value is 1440 minutes. The default value is 60

minutes.

PrivilegedFSCl

ients

string A comma-separated list of client names for whom administrator

privileges are granted in the file system namespace. This

property is writable.

SNMPEvents uint16 A filter that decides if a Simple Network Management Protocol

(SNMP) trap is to be generated when a significant event occurs

in a server. You can choose the severity of the events that

generate an SNMP trap by setting the corresponding bit in this

property. This property is writable. Possible values are:

v 0: Information

v 1: Warning

v 2: Error

v 3: Severe

If this value is set to zero (no bits set), SNMP trap generation is

disabled. If all the bits are set to one, all event messages generate

SNMP traps.

SNMPManage

rs

string A comma-separated list of destination Internet Protocol (IP)

addresses, in dotted decimal format, of the SNMP managers. If

an SNMP trap is generated, the trap is sent to this list of

managers. This property is writable.

NumAdminTh

reads

uint32 The number of threads for administrative operations. This value

can only be increased and not decreased. This property is

writable. The minimum value is 1 and the maximum value is 10.

The default value is 4.

NumWorkerTh

reads

uint32 The number of threads for general operations. This value can

only be increased and not decreased. This property is writable.

The minimum value is 10 and the maximum value is 50. The

default value is 10.

STC_MasterMetrics

The STC_MasterMetrics class represents the metrics for a cluster. Only one instance

of this class should exist. This class extends the CIM_ServiceStatisticalInformation

class.

The metrics include the current totals for the following types of buffers:

v Clean - Buffers that contain data but are available for reuse.

v Dirty - Buffers that contain data that is awaiting input/output (I/O) to disk.

v Free - Buffers that are available because they are currently not in use.

116 SAN File System System Management API Guide and Reference

Properties

The STC_MasterMetrics class has the following properties:

 Table 50. STC_MasterMetrics class properties

Name Type Description

TotalSystemMe

taActivity

uint64 The total number of transactions relating to metadata activity for

system objects. System objects include storage pools, filesets,

volumes, policies, and engines. The activity includes read, create,

delete, and modify operations on these objects. This counter

property is read-only.

TotalSystemMet

aUpdateActivi

ty

uint64 The total number of transactions relating to metadata updates for

system objects. This counter property is read-only.

TotalSystemBu

ffers

uint32 The current number of total buffers for system metadata activity.

This property is read-only.

CleanSystemB

uffers

uint32 The current number of clean buffers for system metadata activity.

Clean buffers contain data but the buffers are available for reuse.

This property is read-only.

DirtySystemBu

ffers

uint32 The current number of dirty buffers for system metadata activity.

Dirty buffers contain data awaiting I/O to disk. This property is

read-only.

FreeSystemBuf

fers

uint32 The current number of free buffers for system metadata activity.

Free buffers are available because they are currently not in use.

This property is read-only.

STC_MasterSAP

The STC_MasterSAP class represents the service access point of the master

metadata server in a cluster. It extends the STC_TankSAP class.

STC_MasterService

The STC_MasterService class, along with the STC_Cluster class, provides cluster

services. It extends the CIM_ClusteringService class.

Chapter 4. Administrative agent object classes 117

Properties

The STC_MasterService class has the following properties:

 Table 51. STC_MasterService class properties

Name Type Description

CurrentState uint32 The state of the cluster. This property is read-only. Possible

values are:

 0: Down

 1: Online

 2: Partly Quiescent - Only metadata server I/O operations are

suspended.

 3: Fully Quiescent - All background I/O, client, and metadata

server operations are suspended.

 4: Administrative Quiescent - No longer servicing clients.

 5: Forming a cluster

 6: Not the master metadata server anymore

 7: Unknown - Master metadata server could not be contacted

to determine the cluster state. The probable reasons for this

would be that the master is down or a network partition.

PendingState uint32 The current state of the cluster transitions to this state if the

current state is different from this pending state. This property is

read-only. Possible values are the same as the CurrentState

property.

LastCurrentSta

teChangeTime

datetime The time passed since the cluster changed its current state. This

property is read-only.

LastPendingSt

ateChangeTim

e

datetime The time passed since the cluster has had a state change

pending. This property is read-only.

CommittedVersion string The committed software release version. This property is

read-only.

CommittedUp

gradeTimesta

mp

datetime The timestamp when the latest upgrade was committed. This

property is read-only.

CurrentVersion string The current software release version. This version will be

different from the previous (committed) version if there was an

upgrade done but the commit action was not yet activated. This

property is read-only.

IsUpgradeInPr

ogress

boolean An indicator of whether an upgrade is in progress. After a

version is committed, the system might take some time to sync

up all the internal data structure versions. This property

indicates if such a change is still in progress. This property is

read-only.

MDCScanState uint16 State of a metadata check at the current time. This property is

read-only. Possible values are:

 0: Idle

 1: Active

MDCScanProgress uint8 Progress of an active metadata check, expressed in terms of 0 to

100 percent. This property is read-only.

118 SAN File System System Management API Guide and Reference

AddServer() method

Use the AddServer() method to add a metadata server to the cluster.

Execute Role: Administrator

Method Type: Dynamic

Properties

Table 52 describes the parameters you can specify for the AddServer() method.

 Table 52. AddServer() method parameters

Name Type Description

Ip string Input parameter that is the IP address of the Ethernet interface

for the engine. The minimum value is 1024, and the maximum

value is 65535.

ClusterPort uint32 Input parameter that is the cluster port used by internal group

services infrastructure communication. The default value is 1737.

Return values

The AddServer() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 4 (Command failed)

v 8 (Integrity lost)

v 12 (I/O failed)

v 16 (Message error)

v 18 (Already exists; another metadata server with the same name or the same IP

and port values already exists.)

v 22 (Not the primary administrative server)

v 23 (Not viable; the server that you are adding is running on an engine that

belongs to an incorrect subnetwork. Tip: The correct network is determined by

the netmask value on the engine running the master metadata server.)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 74 (Values unequal; the configuration parameter values in the cluster do not

match the values in the server that you are adding. Normally this is a transient

problem because the server being rejected goes down after writing the new

values in its local configuration file. If you restart the server and add the server

again, this problem should not occur again. Note that if the server watchdog is

enabled, the server will be restarted automatically.)

v .. (Internal error)

CommitUpgrade() method

Use the CommitUpgrade() method to obligate the cluster to start using an

upgraded software version level. All the metadata servers in the cluster must first

be upgraded to this version level.

Chapter 4. Administrative agent object classes 119

Execute Role: Administrator

Method Type: Dynamic

Return values

The CommitUpgrade() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 68 (Already in progress; another commit is already in progress.)

v 69 (Up-to-date; the committed version is the same as the software version of all

the servers.)

v 70 (All the servers in the cluster are not at the same software version.)

v .. (Internal error)

DropServer() method

Use the DropServer() method to stop and drop a metadata server from the cluster.

This method requires that you specify the IP address and port number of the

server that you want to drop from the cluster. If the server has filesets statically

assigned to it, the filesets are moved to other servers.

Execute Role: Administrator

Method Type: Dynamic

Properties

Table 53 describes the parameters that you can specify for the DropServer()

method.

 Table 53. DropServer() method parameters

Name Type Description

Ip string Input parameter that is the IP address of the Ethernet interface

for the engine. The minimum value is 1024, and the maximum

value is 65535.

ClusterPort uint32 Input parameter that is the cluster port used by internal group

services infrastructure communication. The default value is 1737.

Return values

The DropServer() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 4 (Command failed)

v 5 (In use; there are some filesets statically assigned to the server that you are

dropping.)

v 8 (Integrity lost)

120 SAN File System System Management API Guide and Reference

v 16 (Message error)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

DropServerByName() method

Use the DropServer() method to stop and drop a metadata server from the cluster.

This method requires that you specify the IP address and port number of the

server that you want to drop from the cluster. If the server has filesets statically

assigned to it, the filesets are moved to other servers.

Execute Role: Administrator

Method Type: Dynamic

Properties

Table 54 describes the parameters that you can specify for the

DropServerByName() method.

 Table 54. DropServerByName() method parameters

Name Type Description

ServerName string The input parameter that is the name of the metadata server that

you want dropped.

Return values

The DropServerByName() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 4 (Command failed)

v 5 (In use)

v 8 (Integrity lost)

v 16 (Message error)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 45 (Server not found)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

Chapter 4. Administrative agent object classes 121

FileSystemCheck() method

Use the FileSystemCheck() method to check and repair metadata.

This method provides options for you to:

v Check the integrity of the structure and the content of the metadata.

v Check the integrity of the system metadata and the user (fileset) metadata.

v Limit the user metadata checking to a subset of filesets.

You can restrict this operation to check only or check and repair. The message log

contains a report generated by this method. If you did not limit the mode to check

only, the system automatically salvages and repairs the damaged data if possible.

Some types of repair require manual intervention from the administrator. In those

cases, the cluster state is placed in Administrative mode. You can invoke the

StopFileSystemCheck() method to stop a check and repair of metadata.

Note:

1. This method is a long-running process. If there is a cluster reformation

while the method is running, this method might stop.

2. Only one FileSystemCheck() operation can be in progress at time.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 55 describes the parameters that you can specify for the FileSystemCheck()

method.

 Table 55. FileSystemCheck() method parameters

Name Type Description

IsCheckOnly boolean The input parameter that is an indicator of whether to only

check and not repair.

CheckScope uint16 The input parameter that is a bitmap indicating the scope of the

check. Possible values are:

 0: Structure - Checks the structure of the metadata.

 1: Content - Checks the contents of the metadata.

You can set both bits to check the structure and content.

Type uint16 The input parameter that is a bitmap indicating the type of the

metadata to be checked. Possible values are:

 0: System - Checks the system metadata.

 1: User - Checks the user (fileset) metadata.

You can set both bits to check the system and user metadata.

ContainerList string[] The input parameter that is a list of filesets to be checked or

repaired if the Type parameter is set to User and not System.

Return values

The FileSystemCheck() method returns one of the following codes:

v 0 (Completed successfully)

122 SAN File System System Management API Guide and Reference

v 5 (In use; another FileSystemCheck operation is active.)

v 8 (Integrity lost; check-only option was chosen and the server detects

corruption.)

v 10 (Invalid parameter)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 60 (Canceled; due to StopFileSystemCheck method.)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 73 (Salvaged; repair was requested. Corruption was detected and repaired

successfully. This return code indicates success, not an error.)

v 76 (Cancel pending; aFileSystemCheck() method is active with a cancel pending.

Make sure that the previous FileSystemCheck() method has stopped completely

before issuing another check.)

v 77 (Salvage failed; a repair attempt failed. You can look in the server log files for

details. Contact technical support and initiate metadata and data recovery

actions.)

v .. (Internal error)

GetFileInfo() method

Use the GetFileInfo() method to retrieve the metadata information for a file.

Execute Role: Monitor

Method Type: Dynamic

Parameters

Table 56 describes the parameters that you can specify for the GetFileInfo() method.

 Table 56. GetFileInfo() method parameters

Name Type Description

FileName string This input/output parameter is the name of the file for which

you are retrieving information.

FileType uint32 This output parameter indicates the type of file. Possible values

are:

 1: File

 2: Directory

 3: SymbolicLink

 4: Unknown

CreateTimeSta

mp

datetime This output parameter is the time stamp for the file creation.

AccessTimeSta

mp

datetime This output parameter is the time stamp for the last file access.

ModifyTimeSt

amp

datetime This output parameter is the time stamp for the last modification

of the data in the file.

AttrChangeTi

meStamp

datetime This output parameter is the time stamp for the last modification

of the file attributes.

FileSize uint64 This output parameter is the file size (in bytes).

Chapter 4. Administrative agent object classes 123

Table 56. GetFileInfo() method parameters (continued)

Name Type Description

BlockCount uint64 This output parameter is the block file size (in bytes).

LinkCount uint32 This output parameter is the number of names that reference this

file object.

StoragePoolNa

me

string This output parameter is the name of the storage pool assigned

for the file.

FileSetName string This output parameter is the name of the fileset to which the file

belongs.

ServerName string This output parameter is the name of the metadata server

serving the file.

Return values

The GetFileInfo() method returns one of the following codes:

v 0 (Completed successfully)

v 10 (Invalid parameter)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 44 (Incompatible operation)

v 65 (Server state offline)

v 86 (Operation unsupported by server)

v 87 (Not a directory)

v .. (Internal error)

ListClientsByLUN() method

Use the ListClientsByLUN() method to list the clients that have access to a

specified LUN.

This method can return a list of one or more clients. It uses an array output

parameters to list the clients.

Execute Role: Monitor

Method Type: Dynamic

Parameters

Table 57 describes the parameters for the ListClientsByLUN() method.

 Table 57. ListClientsByLUN() method parameters

Name Type Description

LunID string The input parameter that is the identifier of the LUN.

ClientName string[] The output parameter that is the name of a client that can access

the LUN.

124 SAN File System System Management API Guide and Reference

Return values

The ListClientsByLUN() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 89 (Invalid LUN ID)

v .. (Internal error)

ListClientsByVolume() method

Use the ListClientsByVolume() method to list the clients that have access to a

specified volume.

This method can return a list of one or more clients. It uses an array output

parameters to list the clients.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 58 describes the parameters for theListClientsByVolume() method.

 Table 58. ListClientsByVolume() method parameters

Name Type Description

VolumeName string Input parameter that is the name of the volume.

ClientName string[] Output parameter that is the name of a client that can access the

volume.

Return values

The ListClientsByVolume() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 79 (System volume)

v .. (Internal error)

Chapter 4. Administrative agent object classes 125

QuiesceService() method

Use the QuiesceService() method to place the cluster in a quiescent state to

perform some backup-and-restore and administrative operations.

All the servers that currently belong to the cluster are brought into a quiescent

state. A cluster might temporarily leave the quiescent state if a server leaves or

joins the cluster. You can use the ResumeService() method to return a cluster to a

fully online state from a quiescent state.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 59 describes the parameters that you can specify for the QuiesceService()

method.

 Table 59. QuiesceService() method parameters

Name Type Description

Mode uint32 This input parameter is the quiescent state. Possible values are:

 0: Partly Quiescent - A limited quiescent mode that allows

client file data activity to continue but prevents client

metadata activity and new client connections. This state

allows a backup with metadata integrity but might not

preserve file data integrity.

 1: Fully Quiescent - A full quiescent mode that suspends all

client metadata activity and file data activity and terminates

all client sessions. This state allows a backup with metadata

and file data integrity.

 2: Administrative Quiescent - Administrative operations that

do not permit client activity can be performed safely.

Return values

The QuiesceService() method returns one of the following codes:

v 0 (Completed successfully.)

v 1 (Not supported)

v 4 (Command failed)

v 8 (Integrity lost)

v 10 (Invalid parameter)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

ResumeService() method

Use the ResumeService() method to return the cluster to a fully online state from

the quiescent state.

126 SAN File System System Management API Guide and Reference

Execute Role: Administrator

Method Type: Dynamic

Return values

The ResumeService() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 4 (Command failed)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

StartService() method

Use the StartService() method to bring up all pre-commissioned metadata servers

in an online state on all engines. This method starts the master metadata server,

verifies that the master metadata server is online and then starts all subordinate

servers.

Execute Role: Administrator

Method Type: Dynamic

Return values

The StartService() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 4 (Command failed)

v 5 (In use; the cluster is running already. The master metadata server is running.)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 24 (Server timed out; the metadata server in the cluster was launched

successfully but failed to come online after a maximum wait period.)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 66 (Metadata server restart service state cannot continue; this is only a warning;

the cluster is started successfully.)

v 78 (Aborted; one or more metadata servers, including the master, has aborted.)

v 91 (Cannot contact remote CIM agent to start a subordinate server)

v .. (Internal error)

Chapter 4. Administrative agent object classes 127

StartServiceInAdmin() method

Use the StartServiceInAdmin() method to bring up all pre-commissioned metadata

servers in an offline state on all engines.

Execute Role: Administrator

Method Type: Dynamic

Return values

The StartServiceInAdmin() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 4 (Command failed)

v 5 (In use; the cluster is running already. The master metadata server is running.)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 24 (Server timed out; the metadata server in the cluster was launched

successfully but failed to come online after a maximum wait period.)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 66 (Metadata server restart service state cannot continue; this is only a warning;

the cluster is started successfully.)

v 78 (Aborted; one or more metadata servers, including the master, has aborted.)

v 91 (Cannot contact remote CIM agent)

v .. (Internal error)

StopFileSystemCheck() method

Use the StopFileSystemCheck() method to stop a FileSystemCheck() method that is

in progress.

Execute Role: Administrator

Method Type: Dynamic

Return values

The StopFileSystemCheck() method returns one of the following codes:

v 0 (Completed successfully. - The current FileSystemCheck() method is marked

for cancellation.)

v 8 (Integrity lost)

v 21 (Not Found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

128 SAN File System System Management API Guide and Reference

v 76 (Cancel pending - A cancel has been issued using StopFileSystemCheck, but

the cancel is still pending. A check operation might not stop immediately after

you invoke the StopFileSystemCheck() method.

v .. (Internal error)

StopService() method

Use the StopService() method to gracefully bring down metadata servers on all

engines of a cluster.

Execute Role: Administrator

Method Type: Dynamic

Return values

The StopService() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 4 (Command failed)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 24 (Server timed out)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 66 (Metadata server restart service state cannot continue)

v 91 (Cannot contact remote CIM agent)

v .. (Internal error)

STC_MDSAuditLog

The STC_MDSAuditLog class represents the aggregated, audit log file for a

metadata server. This class extends the STC_MessageLog class. It inherits methods

from the STC_MessageLog class that enable you to traverse the log and retrieve a

specified number of log records.

Properties

The STC_MDSAuditLog class has the following properties:

 Table 60. STC_MDSAuditLog class properties

Name Type Description

BackupLogFile

Name

string The absolute path and name of the backup log file. This is

consistent across all engines in the cluster.

STC_MDSEventLog

The STC_MDSEventLog class represents the event log file for a metadata server.

This class extends the STC_MessageLog class.

Chapter 4. Administrative agent object classes 129

Though the event log file is represented as a separate file, the event log is

primarily a filter that groups all event records from the STC_MDSMessageLog.

Properties

The STC_MDSEventLog class has the following properties:

 Table 61. STC_MDSEventLog class properties

Name Type Description

BackupLogFile

Name

string The absolute path and name of the backup log file. This is

consistent across all engines in the cluster.

STC_MDSMessageLog

The STC_MDSMessageLog class represents the aggregated, message log file for a

metadata server. This class extends the STC_MessageLog class. It inherits methods

from the STC_MessageLog class that enable you to traverse the log and retrieve a

specified number of log records.

Properties

The STC_MDSMessageLog class has the following properties:

 Table 62. STC_MDSMessageLog class properties

Name Type Description

BackupLogFile

Name

string The absolute path and name of the backup log file. This is

consistent across all engines in the cluster.

STC_MessageLog

The STC_MessageLog class represents log files that are present in SAN File System.

This class extends the CIM_MessageLog class.

The STC_MessageLog class enhances the iterator methods of traversing the log file

as defined in CIM_MessageLog class in the following ways:

v It has a PositionToLastRecord() method in addition to the

PositionToFirstRecord() method.

v The GetNextRecords() and GetPreviousRecords() methods set the direction of

traversal from a given iterator and return one or more log records using a set of

array output parameters. The parameter values at a given index into this array

constitute a log record.

Properties

The STC_MessageLog class has the following properties:

 Table 63. STC_MessageLog class properties

Name Type Description

LogFileName string The absolute path and name of the log file. This is consistent

across all engines in the cluster.

130 SAN File System System Management API Guide and Reference

ClearLog() method

Use the ClearLog() method to clear a message or audit log of all entries.

Execute Role: Administrator

Method Type: Dynamic

Return values

The ClearLog() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported. Check that the Capabilities property defined in the parent

class specifies that the message log can be cleared.)

v 4 (Command failed; the clear operation failed on the metadata server)

v 8 (Integrity lost)

v 30 (Transaction failed)

v 41 (Partial data; the clear operation partially cleared the log.)

v 61 (Cannot connect to metadata server)

v 62 (Too many connections)

v .. (Internal error)

GetNextRecords() method

You can use the GetNextRecords() method to retrieve a specified number of

records from a message log, starting from the record indicated by the

IterationIdentifier parameter.

After the method retrieves the records, it advances the IterationIdentifier parameter

to the record after the last record returned. If the traversal reaches the last record

in the file, the method returns an End of Iteration return code. Subsequent calls to

this method might return new records if they have been written to the log.

This method can return one or more log records. It uses a set of array output

parameters to represent the log records. The parameter values at a given index into

this array constitute a log record. These parameter values provide information

about the message as well as its content.

Execute Role: Monitor

Method Type: Dynamic

Parameters

Table 64 describes the parameters that you can specify for the GetNextRecords()

method.

 Table 64. GetNextRecords() method parameters

Name Type Description

IterationIdenti

fier

string Input/Output parameter that is an identifier for the iterator. The

maximum length is 100 characters.

NumberOfEntr

ies

uint32 Input/Output parameter that indicates the number of records to

be retrieved and returns the actual number of log records that

were retrieved.

Chapter 4. Administrative agent object classes 131

Table 64. GetNextRecords() method parameters (continued)

Name Type Description

MessageTime

stamp

datetime

[]

Output parameter with the timestamp for the message.

MessageID string[] Output parameter with the identifier for the message.

MessageType uint8[] Output parameter with the type of message. Possible values are:

v 1: Normal

v 2: Event

v 3: Audit

v 4: Trace

SourceNode string[] Output parameter with the identifier of the engine that

originated the message.

Severity uint8[] Output parameter with the severity of the message. Possible

values are:

v 0: Information

v 1: Warning

v 2: Error

v 3: Severe

MessageString string[] Output parameter with the content of the message.

Return values

The GetNextRecords() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 8 (Integrity lost)

v 10 (Invalid parameter)

v 30 (Transaction failed)

v 37 (End of iteration)

v 38 (Invalid IterationIdentifier)

v 39 (File not found)

v 40 (Cannot read file)

v 41 (Partial data)

v .. (Internal error)

GetPreviousRecords() method

Use the GetPreviousRecords() method to retrieve a specified number of records

from a message log, ending at the record indicated by the IterationIdentifier

parameter.

After the method retrieves the records, it positions the IterationIdentifier parameter

to the record before the first record returned. If the traversal reaches the first

record in the file, the method returns an End of Iteration return code. Subsequent

calls to this method will have no effect.

132 SAN File System System Management API Guide and Reference

This method can return one or more log records. It uses a set of array output

parameters to represent the log records. The parameter values at a given index into

this array constitute a log record. These parameter values provide information

about the message as well as its content.

Execute Role: Monitor

Method Type: Dynamic

Return values

Table 65 describes the parameters that you can specify for the

GetPreviousRecords() method:

 Table 65. GetPreviousRecords() method parameters

Name Type Description

IterationIdenti

fier

string Output parameter that is an identifier for the iterator. The

maximum length is 100 characters.

NumberOfEntr

ies

uint32 Input/Output parameter that indicates the number of records to

be retrieved and returns the actual number of log records that

were retrieved.

MessageTime

stamp

datetime

[]

Output parameter with the timestamp for the message.

MessageID string[] Output parameter with the identifier for the message.

MessageType uint8[] Output parameter with the type of message. Possible values are:

v 1: Normal

v 2: Event

v 3: Audit

v 4: Trace

SourceNode string[] Output parameter with the identifier of the engine that

originated the message.

Severity uint8[] Output parameter with the severity of the message. Possible

values are:

v 0: Information

v 1: Warning

v 2: Error

v 3: Severe

MessageString string[] Output parameter with the content of the message.

Return values

The GetPreviousRecords() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 8 (Integrity lost)

v 10 (Invalid parameter)

v 30 (Transaction failed)

v 37 (End of iteration)

v 38 (Invalid IterationIdentifier)

v 39 (File not found)

Chapter 4. Administrative agent object classes 133

v 40 (Cannot read file)

v 41 (Partial data)

v .. (Internal error)

PositionToFirstRecord() method

Use the PositionToFirstRecord() method to establish an iteration of a message log

and set the iterator to the first entry in the log. An identifier for the iterator is

returned as an output parameter.

Execute Role: Monitor

Method Type: Dynamic

Parameters

Table 66 describes the parameters that you can specify for the

PositionToFirstRecord() method.

 Table 66. PositionToFirstRecord() method parameters

Name Type Description

IterationIdenti

fier

string The output parameter that is an identifier for the iterator.

Return values

The PositionToFirstRecord() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 8 (Integrity lost)

v 30 (Transaction failed)

v 39 (File not found)

v 40 (Cannot read file)

v 41 (Partial data)

v .. (Internal error)

PositionToLastRecord method

Use the PositionToLastRecord() method to establish an iteration of a message log

and set the iterator to the last entry in the log. An identifier for the iterator is

returned as an output parameter.

Execute Role: Monitor

Method Type: Dynamic

Parameters

Table 67 on page 135 describes the parameters that you can specify for the

PositionToLastRecord() method.

134 SAN File System System Management API Guide and Reference

Table 67. PositionToLastRecord() method parameters

Name Type Description

IterationIdenti

fier

string The output parameter that is an identifier for the iterator.

Return values

The PositionToLastRecord() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 8 (Integrity lost)

v 30 (Transaction failed)

v 39 (File not found)

v 40 (Cannot read file)

v 41 (Partial data)

v .. (Internal error)

PositionWithFilter() method

Use the PositionWithFilter() method to establish an iteration of a message log at a

specified date and with a severity filter. An identifier for the iterator is returned as

an output parameter.

You can decide to position the iterator at either the beginning or end of a set of log

entries that have the specified date. The severity filter enables you to specify that

the iterator only return entries of a specified severity.

Execute Role: Monitor

Method Type: Dynamic

Parameters

Table 68 describes the parameters that you can specify for the PositionWithFilter()

method.

 Table 68. PositionWithFilter() method parameters

Name Type Description

IterationIdenti

fier

string The output parameter that is an identifier for the iterator.

IsBeginning boolean The input parameter that indicates whether the position of the

iterator is at the beginning of the specified date. If a date is not

specified this parameter indicates whether the position of the

iterator is at the beginning of the log.

DateFilter datetime The input parameter that specifies the date at which the iterator

will be positioned. If the date is within the range of entries in

the log, the iterator is positioned at the previous or next date

based on the direction indicated by the IsBeginning parameter. If

a specified date is outside the range in the log or is all zeroes,

the iterator is positioned at the beginning or the end of the log,

based on the IsBeginning parameter. Only the yyyymmdd fields

in the datetime value are used.

Chapter 4. Administrative agent object classes 135

Table 68. PositionWithFilter() method parameters (continued)

Name Type Description

SeverityFilter uint8 The input parameter that specifies the severities of log entries

that the iterator returns. Possible values are:

 0: Information

 1: Warning

 2: Error

 3: Severe

The minimum value is 1 and the maximum value is 15.

Return values

The PositionWithFilter() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 8 (Integrity lost)

v 30 (Transaction failed)

v 39 (File not found)

v 40 (Cannot read file)

v 41 (Partial data)

v .. (Internal error)

STC_NodeFan

The STC_NodeFan class represents status of a engine’s fan. This class extends the

CIM_LogicalElement class.

Properties

The STC_NodeFan class has the following properties:

 Table 69. STC_NodeFan class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_ComputerSystem.

This property is key. The maximum length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_NodeFan. When used with the other key

properties of this class, this property allows all instances of this

class and its subclasses to be uniquely identified. This property

is key. The maximum length is 256 characters.

DeviceID string. An address or other identifying information to uniquely name

the specific fan. This property is key. The maximum length is 64

characters.

Speed uint32 Speed of the fan in percentage of the optimal speed of 100%.

136 SAN File System System Management API Guide and Reference

STC_NodeTemperature

The STC_NodeTemperature class represents the temperature state of hardware

components of an engine, as reported by the Advanced System Management

Processor. An instance of this class exists for each temperature sensor available on

every engine of a cluster. This class extends the CIM_LogicalElement class.

Properties

The STC_NodeTemperature class has the following properties:

 Table 70. STC_NodeTemperature class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_ComputerSystem.

This property is key. The maximum length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_NodeTemperature. When used with the other key

properties of this class, this property allows all instances of this

class and its subclasses to be uniquely identified. This property

is key. The maximum length is 256 characters.

DeviceID string An address or other identifying information to uniquely name

the temperature sensor, for example, CPU temperature. This

property is key. The maximum length is 64 characters.

Value real32 Current temperature, in degrees Celsius, of this hardware

component. This property is read-only.

HasThresholds boolean Indicator of whether thresholds are available for this hardware

component. This property is read-only.

WarningReset real32 Temperature threshold value for warning reset. If the

temperature exceeds the Warning property value and then drops

below this value, the Advanced System Management Processor

clears any active temperature events. A value of zero means that

this threshold is disabled. This property is read-only.

Warning real32 Temperature threshold value for warning. If the temperature

reaches this value, the Advanced System Management Processor

generates a warning event. A value of zero means that this

threshold is disabled. This property is read-only.

SoftShutdown real32 Temperature threshold value for soft shutdown. If the

temperature reaches this value, a critical event is generated and

the server is powered off after the operating system is shut

down. A value of zero means that this threshold is disabled. This

property is read-only.

HardShutdow

n

real32 Temperature threshold value for hard shutdown. If the

temperature reaches this value, a critical event is generated and

the server is powered off immediately. A value of zero means

that this threshold is disabled. This property is read-only.

STC_NodeVitalProductData

The STC_NodeVitalProductData class represents vital product data about the

components of a engine. This class extends the CIM_LogicalElement class.

Chapter 4. Administrative agent object classes 137

Properties

The STC_NodeVitalProductData class has the following properties:

 Table 71. STC_NodeVitalProductData class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_ComputerSystem.

This property is key. The maximum length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_NodeVitalProductData. When used with the other

key properties of this class, this property allows all instances of

this class and its subclasses to be uniquely identified. This

property is key. The maximum length is 256 characters.

DeviceID string An address or other identifying information to uniquely name

the logical device. This property is key. The maximum length is

64 characters.

MachineModel string The model identifier of the logical device’s host machine. This

property is read-only.

SerialNumber string The serial number of the logical device’s host machine. This

property is read-only.

Revision string The firmware revision of the logical device. This property is

read-only.

RevisionDate datetime The firmware revision date of the logical device. This property is

read-only.

FirmwareFileN

ame

string The firmware file name of the logical device. This property is

read-only.

FirmwareBuild

ID

string The firmware build ID of the logical device. This property is

read-only.

STC_NodeVoltage

The STC_NodeVoltage class represents the state of the voltage sources of a engine,

as reported by the Advanced System Management Processor. There is an instance

of this class for each voltage source available on every engine of a cluster. This

class extends the CIM_LogicalElement class.

Properties

The STC_NodeVoltage class has the following properties:

 Table 72. STC_NodeVoltage class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_ComputerSystem.

This property is key. The maximum length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

138 SAN File System System Management API Guide and Reference

Table 72. STC_NodeVoltage class properties (continued)

Name Type Description

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_NodeVoltage. When used with the other key

properties of this class, this property allows all instances of this

class and its subclasses to be uniquely identified. This property

is key. The maximum length is 256 characters.

DeviceID string An address or other identifying information to uniquely name

the logical device. This property is key. The maximum length is

64 characters.

CurrentVoltage real32 The current voltage of a voltage source line on this engine.

DefaultVoltage real32 The default voltage of a voltage source line on this engine.

HasThresholds boolean An indicator of whether thresholds are available for this device.

WarningR

esetLow

real32 The low value for a warning reset on this voltage line. If the

voltage reading was not within the WarningLow and

WarningHigh threshold range, and then changed to a value

within this WarningResetLow and WarningResetHigh range, any

active voltage events are cleared. A value of -99.99 means that

this threshold is disabled.

WarningR

esetHigh

real32 The high value for a warning reset on this voltage line. If the

voltage reading was not within the WarningLow and

WarningHigh threshold range, and then changed to a value

within this WarningResetLow and WarningResetHigh range, any

active voltage events are cleared. A value of -99.99 means that

this threshold is disabled.

WarningLow real32 The low value for a warning on this voltage line. If the voltage

drops below this value, a warning event is generated. A value of

-99.99 means that this threshold is disabled.

WarningHigh real32 The high value for a warning on this voltage line. If the voltage

rises above this value, a warning event is generated. A value of

-99.99 means that this threshold is disabled.

SoftShutdown

Low

real32 The low value for a soft shutdown of this voltage line. If the

voltage drops below this value, a critical event is generated and

the server is powered off after the operating system is shut

down. A value of -99.99 means that this threshold is disabled.

SoftShutdown

High

real32 The high value for a soft shutdown of this voltage line. If the

voltage rises above this value, a critical event is generated and

the server is powered off after the operating system is shut

down. A value of -99.99 means that this threshold is disabled.

HardShutdow

nLow

real32 The low value for a hard shutdown of this voltage line. If the

voltage drops below this value, a critical event is generated and

the server is powered off immediately. A value of -99.99 means

that this threshold is disabled.

HardShutdow

nHigh

real32 The high value for a hard shutdown of this voltage line. If the

voltage rises above this value, a critical event is generated and

the server is powered off immediately. A value of -99.99 means

that this threshold is disabled.

STC_NodeWatchdog

The STC_NodeWatchdog class represents the settings for an Advanced System

Management Processor watchdog. There is an instance of this class for each engine

in the cluster. This class extends the CIM_LogicalElement class.

Chapter 4. Administrative agent object classes 139

Properties

The STC_NodeWatchdog class has the following properties:

 Table 73. STC_NodeWatchdog class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_ComputerSystem.

This property is key. The maximum length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_NodeWatchdog. When used with the other key

properties of this class, this property allows all instances of this

class and its subclasses to be uniquely identified. This property

is key. The maximum length is 256 characters.

Name string An address or other identifying information to uniquely name

the watchdog. This property is key. The maximum length is 64

characters.

POSTTimeout uint32 The watchdog timeout value for the Power-On Self Test (POST).

The POST watchdog is active once when the power is coming

up. If the engine fails to complete POST within the time

indicated by this timeout value, the Advanced System

Management Processor generates a POST timeout alert and

automatically restarts the system once. When the system restarts,

the POST watchdog is automatically disabled until the operating

system is shut down and the server is power cycled. A value of

zero indicates that this watchdog is disabled.

OSMonitorInte

rval

uint32 The frequency, in seconds, that the Advanced System

Management Processor checks that the operating system is

running properly. The operating system watchdog checks the

state of the operating system at periodic intervals of time. A

value of zero indicates that this watchdog is disabled.

OSTimeout uint32 The watchdog timeout value, in seconds, for the operating

system. If the operating system fails to respond to these checks

within this timeout value, the Advanced System Management

Processor generates an operating system Timeout alert and

automatically restarts the system. When the operating system

restarts, the operating system watchdog is automatically disabled

until the operating system is shut down and the server is power

cycled.

LoaderTimeout uint32 The watchdog timeout value, in seconds, for the operating

system boot process or loader. The timeout value indicates the

amount of time the Advanced System Management Processor

waits between the completion of POST and the end of loading

the operating system. If the interval is exceeded, the Advanced

System Management Processor generates a Loader Timeout alert

and automatically restarts the system once. When the system

restarts, the Loader Timeout is disabled until the operating

system is shut down and the server is power cycled. A value of

zero indicates that this watchdog is disabled.

PowerOffDela

y

uint32 The amount of time, in seconds, the Advanced System

Management Processor waits for the operating system to shut

down before powering off the system.

140 SAN File System System Management API Guide and Reference

STC_PitImage

The STC_PitImage class represents the FlashCopy images (also known as

point-in-time images) of a fileset. This class extends the

CIM_ManagedSystemElement class.

There is an instance of this class for every FlashCopy images of the filesets that

exists in a SAN File System. The space used by a FlashCopy image is accounted

for in the space used by a container for quota calculations. When a FlashCopy

image is created, it does not use any space. FlashCopy images use space when files

within the fileset are modified after a FlashCopy image is taken.

Properties

The STC_PitImage class has the following properties:

 Table 74. STC_PitImage class properties

Name Type Description

Caption string A one-line description of the object. This property is read-only.

The maximum length is 64 characters.

ContainerNam

e

string Your label for the fileset to which this FlashCopy image belongs.

This property is key. The maximum length is 256 characters.

Name string Your administrative name for the FlashCopy image. This

property is key. The maximum length is 256 characters.

Description string Your description of the fileset. The maximum length is 256

characters.

InstallDate datetime The time when the FlashCopy image was created. A lack of a

value does not indicate that the fileset does not exist. The alias is

CreationDate.

DirectoryNam

e

string The directory name containing this FlashCopy image. The full

path for the FlashCopy image in the file system is given by

AttachPoint/.pit/DirectoryName where AttachPoint is the attach

point of the fileset.

State uint32 The state of the FlashCopy image. Possible values are:

 0: Complete

 1: Incomplete

Create() method

Use the Create() method to create a new FlashCopy image for a fileset. This

method is the constructor for this class.

When you create a FlashCopy image, the fileset can be attached or detached.

Thirty-two FlashCopy images can exist at any given time. When this limit is

reached, a Create operation fails unless the IsForce parameter is set to True. In this

case, the oldest FlashCopy image is deleted so the new one can be created.

Execute Role: Backup

Method Type: Static

Chapter 4. Administrative agent object classes 141

Parameters

Table 75 describes the parameters you can specify for the Create() method.

 Table 75. Create() method parameters

Name Type Description

ContainerNam

e

string Input parameter that is your label for the fileset to which this

FlashCopy image belongs. The maximum length is 256

characters.

Name string Input parameter that is your administrative name for the

FlashCopy image. The maximum length is 256 characters.

Description string Input parameter that is your description of the fileset. The

maximum length is 256 characters.

DirectoryNam

e

string Input parameter that is the new directory name to be given to

the FlashCopy image.

IsForce boolean Input parameter that indicates whether to delete the oldest

FlashCopy image copy to create this one when the limit is

reached.

Return values

The Create() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 10 (Invalid parameter; the FlashCopy image name length is greater than the

maximum, or Description length is greater than the maximum, or

DirectoryName length is greater than the maximum, or the DirectoryName

contains directory separators.)

v 18 (FlashCopy image name already exists for the fileset.)

v 21 (Fileset not found or no server serving the fileset.)

v 22 (Not the primary administrative server)

v 30 (Transaction failed; other concurrent activity in the server caused this create

operation to fail.)

v 42 (Table full; the number of FlashCopy images taken are at the maximum limit

already.)

v 43 (Directory name already exists for another FlashCopy image for the same

fileset.)

v 44 (Incompatible operation; the server is executing an incompatible operation to

this Create.)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 65 (Server state offline; any operation on a FlashCopy image needs the server

serving the fileset to be online.)

v .. (Internal error)

Delete() method

Use the Delete method to delete a FlashCopy image of a fileset.

142 SAN File System System Management API Guide and Reference

You cannot delete a FlashCopy image that has client activity (session locks open)

unless the IsForce parameter is set to True. If the IsForce parameter is set to True,

all the client activity is terminated (session locks revoked) before the delete.

Execute Role: Backup

Method Type: Dynamic

Parameters

Table 76 describes the parameters that you can specify for the Delete() method.

 Table 76. Delete method parameters

Name Type Description

IsForce boolean Input parameter that indicates whether to delete the fileset even

if client activity exists.

Return values

The Delete() method returns one of the following codes:

v 0 (Completed successfully)

v 5 (In use; client session locks are open and IsForce option is False.)

v 8 (Integrity lost)

v 21 (Not found; FlashCopy image not found or fileset not found, or no server

serving the fileset.)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 65 (Server state offline; any operation on a FlashCopy image needs the server

serving the fileset to be online.)

v .. (Internal error)

Revert() method

Use the Revert() method to revert a fileset to this instance of the FlashCopy image.

You cannot revert a fileset that has children filesets. Detach children filesets, if any,

manually.

A Revert operation deletes all the FlashCopy images that are more recent than this

instance, including the current fileset image. If the IsForce parameter is False, you

cannot revert a fileset to this instance under any of the following conditions:

v Any client activity exists (session locks open) in the FlashCopy images

(including the current fileset) to be deleted.

v Any client activity exists (session locks open) in the current PIT instance.

In other words, the client activity can continue only in FlashCopy images taken

earlier than this instance.

Execute Role: Administrator

Chapter 4. Administrative agent object classes 143

Method Type: Dynamic

Parameters

Table 77 describes the parameters you can specify for the Revert() method:

 Table 77. Revert() method parameters

Name Type Description

IsForce boolean Input parameter that indicates whether to revert a fileset to this

instance even if client activity exists.

Return values

The Revert() method returns one of the following codes:

v 0 (Completed successfully)

v 5 (In use; client session locks are open and IsForce option is False.)

v 8 (Integrity lost)

v 21 (Not found; FlashCopy image not found or fileset not found, or no server

serving the fileset.)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 36 (Is attached; fileset has child filesets.)

v 41 (Partial data; FlashCopy image contains incomplete files so the fileset is not

reverted.)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 65 (Server state offline; any operation on a FlashCopy image needs the server

serving the fileset to be online.)

v .. (Internal error)

STC_PolicySet

The STC_PolicySet class represents a policy, which is a list of file-placement and

service-class rules that define characteristics and placement of files. It extends the

CIM_PolicySet class.

There is an instance of this class for every policy that exists in a SAN File System.

Although multiple policies can exist in the system, only one policy can be active.

The system defines a default policy set that assigns files to the Default storage

pool.

Properties

The STC_PolicySet class has the following properties:

 Table 78. STC_PolicySet class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. The maximum length is 256 characters.

144 SAN File System System Management API Guide and Reference

Table 78. STC_PolicySet class properties (continued)

Name Type Description

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_PolicySet. When used with the other key

properties of this class, this property allows all instances of this

class and its subclasses to be uniquely identified. This property

is key. The maximum length is 256 characters.

Name string A label for this policy. This property is key. The maximum length

is 256 characters.

State uint16 An indication whether or not this policy is administratively

active. Only one policy can be active at any time. Possible values

are:

 0: Not Active

 1: Active

The default value is 0.

PolicyRules string The set of policy rules belonging to this policy.

Description string Your description of this policy. The maximum length is 256

characters.

CreationDate datetime The date and time when this policy was created.

LastModificati

onDate

datetime The date and time when the rules in this policy were last

modified. If the rules were never modified, this value will be the

same as the creation date. The policy rules can be modified as a

whole by creating a policy with the same name and using the

IsForce option.

LastActiveDate datetime The date and time when this policy was last active. This is

actually the date and time when another policy was made active

(enabled) instead of this one. If the policy was never activated or

is currently active, the value is null.

Activate() method

Use the Activate() method to activate a stored policy.

Execute Role: Administrator

Method Type: Dynamic

Properties

Table 79 describes the parameters you can specify for the Activate() method.

 Table 79. Activate() method parameters

Name Type Description

Errors string[] Output parameter that contains information about a policy bind

error if one occurred.

Chapter 4. Administrative agent object classes 145

Return values

The Activate() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 25 (Policy bind errors; see the Errors output parameter for more information

about this error.)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

Create() method

Use the Create() method to create a new policy. This method is the constructor for

the class.

Execute Role: Administrator

Method Type: Static

Parameters

Table 80 describes the parameters that you can specify for the Create() method

 Table 80. Create() method parameters

Name Type Description

Name string Input parameter that is a label for this policy. The maximum

length is 256 characters.

Description string Input parameter that is your description of this policy. The

maximum length is 256 characters.

PolicyRules string Input parameter that is the set of policy rules belonging to this

policy. See the ″File placement policy syntax″ section in the

Administrator’s Guide and Reference for a description of the syntax

conventions for policy rules.

IsForce boolean Input parameter that indicates whether an existing policy with

the same name will be overwritten by this policy.

Errors string[] Output parameter that contains information about a policy

syntax error if one occurred.

Return values

The Create() method returns one of the following codes:

v 0 (Completed successfully)

v 3 (Already defined; another policy with the same name exists and the IsForce

flag is False.)

v 5 (In use)

v 8 (Integrity lost)

146 SAN File System System Management API Guide and Reference

v 9 (Invalid name; the name has invalid characters)

v 13 (Is default; the name is DEFAULT_POLICY and the IsForce flag is True.

Cannot overwrite the default policy.)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 26 (Policy syntax error; see the Errors output parameter for more information

about this error including its location.)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

Delete() method

Use the Delete() method to delete an existing stored policy. The policy must be

inactive for delete to succeed.

Execute Role: Administrator

Method Type: Dynamic

Return values

The Delete() method returns one of the following codes:

v 0 (Completed successfully)

v 5 (In use)

v 8 (Integrity lost)

v 13 (Is default; the name is DEFAULT_POLICY and the IsForce flag is True.

Cannot delete default policy.)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

GetPolicyRuleStats() method

Use the GetPolicyRuleStats() method to retrieve the policy rule statistics associated

with a specified fileset.

This method returns statistics associated with one or more specified filesets. It uses

a set of array output parameters to represent the information for each fileset.

Execute Role: Monitor

Method Type: Static

Chapter 4. Administrative agent object classes 147

Parameters

Table 81 describes the parameters that you can specify for the GetPolicyRuleStats()

method:

 Table 81. GetPolicyRuleStats() method parameters

Name Type Description

Filesets string Input parameter that is the list of fileset names.

Name string[] Output parameter that is the name of the rule.

Index uint32[] Output parameter that is the ordinal position of the rule.

Pool string[] Output parameter that is the name of the storage pool.

Last datetime[

]

Output parameter that is the time when a rule was last applied.

Hit uint32[] Output parameter that is the number of times that the rule has

been evaluated and its conditions were true, so that the rule was

applied.

Miss uint32[] Output parameter that is the number of times that the rule has

been evaluated and its conditions were false, so that the rule was

not applied.

Err uint32[] Output parameter that is the number of times that the rule has

caused an error while being evaluated. These are not syntax

errors.

Return values

The GetPolicyRuleStats() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

GetRules() method

Use the GetRules() method to retrieve the set of rules associated with this policy.

Execute Role: Monitor

Method Type: Dynamic

Parameters

Table 82 on page 149 describes the parameters that you can specify for the

GetRules() method.

148 SAN File System System Management API Guide and Reference

Table 82. GetRules() method parameters

Name Type Description

RulesList string This output parameter is the set of policy rules belonging to this

policy. See the ″File placement policy syntax″ section in the

Administrator’s Guide and Reference for a description of the syntax

conventions for policy rules.

Return values

The GetRules() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

GetStoragePoolStats() method

Use the GetStoragePoolStats() method to retrieve the policy storage pool statistics

associated with a specified fileset.

This method returns statistics associated with one or more specified filesets. It uses

a set of array output parameters to represent the information for each fileset.

Execute Role: Monitor

Method Type: Static

Parameters

Table 83 describes the parameters that you can specify for the GetStoragePoolStats()

method.

 Table 83. GetStoragePoolStats() method parameters

Name Type Description

Filesets string Input parameter that is the list of fileset names.

PoolName string[] Output parameter that is the name of the storage pool.

Count uint32[] Output parameter that is the number of times a file was placed

into this storage pool.

Last datetime[

]

Output parameter that is the time a file was last placed into this

storage pool.

Return values

The GetStoragePoolStats() method returns one of the following codes:

v 0 (Completed successfully)

Chapter 4. Administrative agent object classes 149

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

STC_RegisteredFSClients

The STC_RegisteredFSClients class represents the registered clients of a metadata

server. This class extends the CIM_LogicalElement class.

Every client-server registration pair is unique. The same client that registers to two

servers appears as two instances.

Properties

The STC_RegisteredFSClients class has the following properties:

 Table 84. STC_RegisteredFSClients class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_ComputerSystem.

This property is key. The maximum length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service: STC_TankService. This

property is key. The maximum length is 256 characters.

ServiceName string The instance name of the scoping service. This property is key.

The maximum length is 256 characters.

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_RegisteredFSClients. When used with the other

key properties of this class, this property allows all instances of

this class and its subclasses to be uniquely identified. This

property is key. The maximum length is 256 characters.

Name string The name of the client. The maximum length is 256 characters.

Id uint64 The ID of the client.

IPAddress string The IP network address of the client.

IPPort uint32 The IP network port address of the client.

Platform string The operating system platform of the client.

Version string The SAN File System version of the client.

LeaseRenewals uint64 The total number of times the client has renewed a lease. This

property indicates a measure of how long the client was active.

State uint16 The state of the client’s lease. Possible values are:

v 0: Expired lease

v 1: Valid lease

IsPrivileged boolean An indicator of whether this SAN File System client has

Administrator privileges to the SAN File System namespace.

LastLeaseTime

Stamp

datetime The timestamp when the server issued or extended the lease.

150 SAN File System System Management API Guide and Reference

Table 84. STC_RegisteredFSClients class properties (continued)

Name Type Description

ResidualLease

Time

uint32 The countdown timer, in seconds, indicating how long the

current lease will last. The lease time is two times the lease

renewal interval, a configurable parameter, beginning from the

LastLeaseTimeStamp property value.

Transactions uint64 The total number of transactions started by this client.

CompletedTra

nsactions

uint64 The total number of transactions completed.

SessionLocks uint32 The current number of session locks this client is holding.

DataLocks uint32 The current number of data locks this client is holding.

ByteRangeLoc

ks

uint32 The current number of byte range locks this client is holding.

STC_RemoteServiceAccessPoint

The STC_RemoteServiceAccessPoint class represents a remote service access point.

It provides information that you can use to access the SAN File System console.

This class extends the CIM_RemoteServiceAccessPoint class.

STC_RsaDynamicSetting

The STC_RsaDynamicSetting class contains the settings for RSA configuration

parameters that you can dynamically update, without a cluster restart. These

parameters persist across cluster restarts. If you have Administrator privileges, you

can change the writable properties in this class using the SetProperty() intrinsic

method. This class extends the STC_Setting class.

Properties

The STC_RsaDynamicSetting class has the following properties:

 Table 85. STC_RsaDynamicSetting class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. The maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service: STC_RsaDynamicSetting.

This property is key. The maximum length is 256 characters.

ServiceName string The name of the scoping service: RsaDynamicSetting. This

property is key. The maximum length is 256 characters.

RsaUser string The user name for the RSA cards found on the RS-485 bus. The

local RSA card is accessed directly. This property is writable.

RsaPassword string The password for the RSA cards found on the RS-485 bus. The

local RSA card is accessed directly. This property is writable.

STC_Setting

The STC_Setting class is the base class for cluster and server configuration

parameters. This class extends the CIM_Setting class.

Chapter 4. Administrative agent object classes 151

Properties

The STC_Setting class has the following properties:

 Table 86. STC_Setting class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system. For the

STC_MasterDisruptiveSetting and STC_MasterDynamicSetting

classes, the class name of the scoping system is STC_Cluster. For

the STC_TankDisruptiveSetting and STC_TankTransientSetting

classes, the class name of the scoping system is

STC_ComputerSystem. This property is key. The maximum

length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service. For the

STC_MasterDisruptiveSetting and STC_MasterDynamicSetting

classes, the class name of the scoping service is

STC_MasterService. For the STC_TankDisruptiveSetting and

STC_TankTransientSetting classes, the class name of the scoping

service is STC_TankService. This property is key. The maximum

length is 256 characters.

ServiceName string The instance name of the scoping service. This property is key.

The maximum length is 64 characters.

STC_StoragePool

The STC_StoragePool class represents a storage pool. It extends the

CIM_ManagedSystemElement class.

There is an instance of this class for every storage pool that exists in a SAN File

System. The instances include a system storage pool that the SAN File System uses

to maintain system metadata. At least one other storage pool must exist for client

files, which is called the default storage pool. The list of instances and the methods

defined in this class are available only on the master metadata server.

Properties

The STC_StoragePool class has the following properties:

 Table 87. STC_StoragePool class properties

Name Type Description

Caption string A one-line description of the object. This property is read-only.

The maximum length is 64 characters.

Name string Your label for the storage pool. This property is key. The

maximum length is 256 characters.

PoolType uint32 The type of pool. This property is read-only. Possible values are:

 0: User

 1: User Default

 2: System

The default is User. You can use the “SetDefault() method” on

page 157 to change the storage pool type to User Default if the

storage pool type is User.

152 SAN File System System Management API Guide and Reference

Table 87. STC_StoragePool class properties (continued)

Name Type Description

PartitionSize uint64 The partition size, in megabytes, to use when a fileset allocates

space. This property is read-only. Possible values are 16, 64, and

256 MB. The default value is 16 MB.

AllocSize uint32 The allocation strategy to use for files on this storage pool:

v System allocation - An escalation algorithm is used to allocate

blocks to a file placed on this storage pool. Indicated by a

AllocSize value of zero. This is the default value.

v Fixed allocation - The file is extended by a chosen fixed size

every time. The fixed allocation size is indicated by this

AllocSize value, either 4 KB or 128 KB.

This property is read-only. Possible values are 0, 4, or 128.

Default is 0.

AlertPercentag

e

uint16 The percentage of the estimated storage pool size that, when

reached, causes the server to generate an alert message. This

property is writable. The minimum percentage is 0% and

indicates that the server should not generate an alert. The

maximum percentage is 100%. The default value is 80%.

Size uint64 The size, in megabytes, of the storage pool. The size of the

storage pool is the sum of the sizes of the volumes within the

storage pool. The size of the storage pool can change as volumes

are added and deleted. This property is read-only.

SizeAllocated uint64 The size, in megabytes, of the storage pool allocated to filesets.

The files within a fileset use a portion of the size allocated to a

fileset. The rest is free size. This property is the sum of the

allocated sizes of the volumes within the storage pool. It is

read-only.

SizeAllocatedP

ercentage

uint16 The percentage of the size allocated in the storage pool. You can

compare this value to the AlertPercentage property value to

determine how close the storage pool is to causing an alert. This

property is read-only. The minimum percentage is 0%. The

maximum percentage is 100%.

NumberOfVol

umes

uint32 The total number of volumes assigned to this storage pool. This

property is read-only.

Description string Your description of the storage pool. This property is writable.

The maximum length is 256 characters. You cannot change the

description for System storage pool

Create() method

Use the Create() method to define a new user storage pool. This method is the

constructor for the class.

Execute Role: Administrator

Method Type: Static

Parameters

Table 88 on page 154 describes the parameters that you can specify for the Create()

method.

Chapter 4. Administrative agent object classes 153

Table 88. Create() method parameters

Name Type Description

Name string Input parameter that is your label for the storage pool. The

maximum length is 256 characters.

Description string Input parameter that is your description of the storage pool. The

maximum length is 256 characters.

PartitionSize uint32 Input parameter that is the partition size, in MB, to use when a

file et allocates space. Possible values are 16, 64, and 256 MB.

The default value is 16 MB.

AllocSize uint32 Input parameter that is the allocation strategy to use for files on

this storage pool:

v System allocation - An escalation algorithm is used to allocate

blocks to a file placed on this storage pool. Indicated by a

AllocSize value of zero. This is the default value.

v Fixed allocation - The file is extended by a chosen fixed size

every time. The fixed allocation size is indicated by this

AllocSize value, either 4 KB or 128 KB.

This property is read-only. Possible values are 0, 4, or 128. The

default value is 0.

AlertPercentag

e

uint16 Input parameter that is the percentage of the storage pool size

that, when reached, causes the server to generate an alert

message. The minimum value is 0%, and the maximum value is

100%.

Return values

The Create() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 9 (Name not valid; the name has invalid characters.)

v 13 (Is default; DEFAULT is a reserved name and cannot be used as a name for a

user storage pool.

v 15 (Is system; SYSTEM is a reserved name and cannot be used as a name for a

user storage pool.)

v 18 (Storage pool name already exists.)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

Delete() method

Use the Delete() method to delete an existing, empty, unreferenced storage pool.

You cannot delete a storage pool that contains volumes or that has references in an

active policy.

Execute Role: Administrator

Method Type: Dynamic

154 SAN File System System Management API Guide and Reference

Return values

The Delete() method returns one of the following codes:

v 0 (Completed successfully)

v 5 (Storage pool is in use.)

v 8 (Integrity lost)

v 13 (Storage pool is the default storage pool.)

v 14 (The current active policy references the storage pool.)

v 15 (Storage pool is a System storage pool.)

v 21 (Storage pool not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

DisableDefault() method

Use the DisableDefault() method to disable the use of a default storage pool.

Execute Role: Administrator

Method Type: Dynamic

Return values

The DisableDefault() method returns one of the following codes:

v 0 (Completed successfully)

v 3 (Already disabled; the default storage pool is already disabled.)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

Move() method

Use the Move() method to move or rename a storage pool by creating a new

storage pool with the specified name and migrating the data and capabilities to the

new name. If successful, the old storage pool will be removed.

You cannot rename a system storage pool. You cannot use SYSTEM or DEFAULT

for the new name.

Execute Role: Administrator

Method Type: Dynamic

Chapter 4. Administrative agent object classes 155

Parameters

Table 89 describes the parameters that you can specify for the Move() method.

 Table 89. Move() method parameters

Name Type Description

NewName string Input parameter that is your new label for the storage pool.

Return values

The Move() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 9 (Name not valid - The name has invalid characters.)

v 13 (Is default; DEFAULT is a reserved storage pool name)

v 15 (Is system; cannot rename the system storage pool or SYSTEM cannot be the

new name.)

v 18 (Storage pool name already exists.)

v 21 (Storage pool not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

MoveFile() method

Use the MoveFile() method to move data associated with a file to a storage pool. If

you specify that the file move to its current storage pool, this method defragments

the file.

You cannot specify a system storage pool as a destination storage pool.

Execute Role: Operator

Method Type: Dynamic

Parameters

Table 90 describes the parameters that you can specify for the MoveFile() method.

 Table 90. MoveFile() method parameters

Name Type Description

FilePath string Input parameter that is the fully qualified name of a file to move

or defragment.

Client string Input parameter that is the name of a SAN File System client to

perform the move or defragment of the file.

IsForce boolean Input parameter that indicates whether to force the metadata

server to move the file even if the file is open.

156 SAN File System System Management API Guide and Reference

Return values

The MoveFile() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 15 (Is system; cannot move a file to a system pool)

v 21 (File not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 57 (No space; insufficient space in the destination storage pool)

v 82 (Client not reachable; the client lost its lease)

v 87 (Not a directory; the object specified by the file path was not a file)

v 88 (Rogue client; a copydata operation on the client timed out)

v 93 (Specified storage pool not found)

v 94 (Fileset not served; the file path name includes a fileset that is not currently

served by a metadata server)

v .. (Internal error)

SetDefault() method

Use the SetDefault() method to change a user storage pool to the default storage

pool. The STC_StoragePool class PoolType property changes from User to User

Default.

Execute Role: Administrator

Method Type: Dynamic

Return values

The SetDefault() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 13 (Is already default)

v 15 (Storage pool is a system storage pool)

v 21 (Storage pool not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

STC_SystemMDRAid

The STC_SystemMDRAid class supports the recovery of metadata for a cluster. It

provides a mechanism to extract system metadata information into a recovery file

on the local disk of the system (not on the SAN). This class extends the

CIM_ManagedSystemElement class.

Chapter 4. Administrative agent object classes 157

You can extract multiple recovery files to save the state of the system metadata at

various points in time. You can generate administrative commands from the

recovery file, to re-create metadata using the GenerateCommandFiles() method.

After you re-create the metadata, you can create the recovery file again and verify

it with the original recovery file.

Properties

The STC_SystemMDRAid class has the following properties:

 Table 91. STC_SystemMDRAid class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. The maximum length is 256 characters.

SystemName string The instance name of the scoping system. This property is key.

The maximum length is 256 characters.

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_SystemMDRAid. When used with the other key

properties of this class, this property allows all instances of this

class and its subclasses to be uniquely identified. This property

is key. The maximum length is 256 characters.

Name string The name of the extracted metadata recovery file in the format

<name>.dump. This property is key. The maximum length is 256

characters.

LocalDirectory

Name

string The metadata server local disk directory name where the

recovery files and the generated command files are stored. This

property is read-only. The maximum length is 256 characters.

CLIGenerator

Name

string The script used to generate command files from the metadata

recovery file. This property is read-only.

InstallDate datetime The date when the recovery file was created. This property is

read-only.

Size uint64 The size, in kilobytes, of the metadata recovery file. This

property is read-only.

Create() method

Use the Create() method to create a new metadata recovery file. This method is the

constructor for the class.

Execute Role: Administrator

Method Type: Static

Parameters

Table 92 describes the parameters you can specify for the Create() method.

 Table 92. Create() method parameters

Name Type Description

Name string Input parameter that is the name of the extracted metadata

recovery file in the format <name>.dump. The maximum length

is 256 characters.

158 SAN File System System Management API Guide and Reference

Table 92. Create() method parameters (continued)

Name Type Description

IsForce boolean Input parameter that indicates whether to overwrite an existing

recovery file

Return values

The Create() method returns one of the following codes:

v 0 (Completed successfully)

v 7 (Insufficient space)

v 8 (Integrity lost)

v 9 (Invalid name)

v 18 (Recovery file name already exists)

v 22 (Not the primary administrative server)

v 30 (Transaction failed.)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

Delete() method

Use the Delete() method to delete an existing metadata recovery file.

Execute Role: Administrator

Method Type: Dynamic

Return values

The Delete() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v .. (Internal error)

GenerateCommandFiles() method

Use the GenerateCommandFiles() method to generate commands for re-creating

metadata from a recovery file. Any existing command files are overwritten.

The method can generate the following set of command files:

v TankSysCLI.auto - This file contains commands to re-create storage pools,

filesets, and policies. In case of disaster, this file can be run without manual

intervention.

v TankSysCLI.volume - This file contains commands to re-create volumes. This file

cannot be run without manual verification and editing.

v TankSysCLI.attachpoint - This file contains commands to re-create fileset attach

points. This file cannot be run without manual verification, editing, and

intervention.

Chapter 4. Administrative agent object classes 159

These command files are needed only for recovery, and their generation can be

postponed until needed. Also the metadata server does not have to be up and

running to generate these files.

Execute Role: Administrator

Method Type: Dynamic

Return values

The GenerateCommandFiles() method returns one of the following codes:

v 0 (Completed successfully)

v 7 (Insufficient space)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v .. (Internal error)

STC_TankDisruptiveSetting

The STC_TankDisruptiveSetting class contains the settings for server-specific

configuration parameters that need a metadata server restart for an update to take

effect. These parameters are read-only and can only be specified on the command

line when the server is started. This class extends the STC_Setting class.

Properties

The STC_TankDisruptiveSetting class has the following properties:

 Table 93. STC_TankDisruptiveSetting class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. The maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service:

STC_TankDisruptiveSetting. This property is key. The maximum

length is 256 characters

ServerName string The unique server name that can be set only at installation. This

property is read-only. The maximum length is 32 characters.

ProtocolType uint32 The client-server and server-server communication protocol type.

v 0: UDP

v 1: TCP

Default is 0.

ClientNetwork

Protocol

uint32 The client-server communication protocol type. This property is

read-only. Possible values are:

v 0: UDP

v 1: TCP

Default is 1.

160 SAN File System System Management API Guide and Reference

Table 93. STC_TankDisruptiveSetting class properties (continued)

Name Type Description

ServerNetwork

Protocol

uint32 The server-server communication protocol type. This property is

read-only. Possible values are:

v 0: UDP

v 1: TCP

Default is 0.

NumDeleteThr

eads

uint32 The number of threads for garbage collection of deleted files.

This property is read-only. The minimum value is 1 and the

maximum value is 4.

PrimaryIP string The IP address of the Ethernet interface for the server. This

property is read-only.

ClusterPort uint32 The cluster port used by internal group services infrastructure

communication. This port must be free on the interface when the

server is started. This property is read-only. The minimum value

is 1024 and the maximum value is 65 535. The default value is

1737.

HeartbeatPort uint32 The heartbeat port used by internal group services infrastructure

communication on which to receive heartbeats. This port must

be free on the interface when the server is started. This property

is read-only. Minimum is 1024 and maximum is 65 535. Default

is 1738.

STPPort uint32 The SAN File System protocol port used for communication with

file system clients. This port must be free on the interface when

the server is started. This property is read-only. The minimum

value is 1024 and the maximum value is 65 535. The default

value is 1700.

AdminPort uint32 The port to receive administrative requests. This port must be

free on the interface when the server is started. This property is

read-only. The minimum value is 1024 and the maximum value

is 65 535. The default value is 1800.

NoLogReserve boolean An indicator of whether the metadata server should reserve disk

space for logs. The property is writable. The default value is

True.

STC_TankEvents

The STC_TankEvents class represents the possible events that a metadata server

can generate. This class extends the CIM_LogicalElement class.

A master metadata server can generate any of these events and a subordinate

metadata server can generate only a subset. An instance of this class is not the list

of events that occurred in a server, just the possible events that could occur.

SNMP traps are either generic or specific traps as indicated by the SNMPTrap

property. The meaning of a generic trap can be interpreted by the message content.

Thus, only generic traps contain the message actually logged in the event log.

A specific trap is specific to a particular event. A specific trap does not contain the

message content. Rather, the name of the trap itself indicates what specific event

has occurred. For example, the tankClusterStateChangeTrap trap is generated

whenever the primary administrative server changes the cluster state. This trap

Chapter 4. Administrative agent object classes 161

contains the OldState and the CurrentState values of the cluster. Each specific trap

also contains context (varbinds) that further identifies what happened. Some other

specific traps are:

v tankLogRotateTrap - The metadata server log has been rotated.

v tankStoragePoolSpaceTrap - The storage pool usage has exceeded its alert

percentage with a new allocation.

v tankContainerQuotaTrap - Fileset hard or soft quota violation.

The SNMP Trap MIB defines the specific traps.

Properties

The STC_TankEvents class has the following properties:

 Table 94. STC_TankEvents class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system. This property is key. The

maximum length is 256 characters.

SystemName string The name of the scoping system. This property is key. The

maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service. This property is key. The

maximum length is 256 characters.

ServiceName string The name of the scoping service. This property is key. The

maximum length is 256 characters.

MessageID string The ID associated with the message that will be logged in the

metadata server log when this event occurs. This property is key.

Severity uint8 The severity level of the event. This property is read-only.

Possible values are:

v 0: Information

v 1: Warning

v 2: Error

v 3: Severe

Message string The message format the metadata server will use to log a

message when this event occurs in the server. If there are any

parameter format specifications in this string, they are replaced

with actual values when this message is logged. This property is

read-only.

SNMPTrap string The name of the SNMP trap generated by this event. All

instances with this property value set to tankGenericTrap are

generic traps. The rest of the instances are specific traps. This

property is read-only.

IsSNMPTrapEn

abled

boolean An indicator of whether the SNMPEvents configuration

parameter filter allows the generation of the SNMP trap if this

event occurs. This property is read-only.

Test() method

Use the Test() method to generate a test event. You can check that an SNMP

manager can receive a trap.

This event causes a trap with severity information. Make sure that the following

conditions are met:

162 SAN File System System Management API Guide and Reference

v SNMPEvents configuration parameter is set to allow event with severity

information.

v SNMPManagers configuration parameter is also set properly.

v Specified SNMP managers are configured properly and active to receive traps.

The SNMPManagers property in the “STC_MasterDynamicSetting” on page 115

class lists the SNMP managers’ IP addresses.

Execute Role: Administrator

Method Type: Static

Return values

The Test() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v .. (Internal error)

STC_TankMetrics

The STC_TankMetrics class represents the metrics for each metadata server. Only

one instance of this class should exist for each server running including the master

metadata server. This class extends the CIM_ServiceStatisticalInformation class.

The metrics include the current totals for the following types of buffers:

v Clean - Buffers that contain data but are available for reuse.

v Dirty - Buffers that contain data that is awaiting I/O to disk.

v Free - Buffers that are available because they are currently not in use.

Properties

The STC_TankMetrics class has the following properties:

 Table 95. STC_TankMetrics class properties

Name Type Description

TotalUserMeta

Activity

uint64 The total number of transactions relating to file system metadata

activity including fileset attach points, creating directories, and

extending files. This property is read-only.

TotalUserMeta

UpdateActivit

y

uint64 The total number of transactions relating to file system updates

for system objects. This property is read-only.

SessionLocks uint64 The current number of session locks held in the Lock Manager

for this server. Session lock holds a reference in each file that it

manages. You must acquire a session lock to perform any actions

with the file, such as a stat, lstat, or opendir operation. This

property is read-only.

DataLocks uint32 The current number of data locks held in the Lock Manager. This

property is read-only.

ByteRangeLoc

ks

uint32 The current number of byte range locks held in the Lock

Manager. This property is read-only.

Chapter 4. Administrative agent object classes 163

Table 95. STC_TankMetrics class properties (continued)

Name Type Description

TotalBuffers uint32 The current number of total buffers for user metadata activity.

This property is read-only.

CleanBuffers uint32 The current number of clean buffers for user metadata activity.

Clean buffers contain data but the buffers are available for reuse.

This property is read-only.

DirtyBuffers uint32 The current number of dirty buffers for user metadata activity.

Dirty buffers contain data awaiting I/O to disk. This property is

read-only.

FreeBuffers uint32 The current number of free buffers for user metadata activity.

Free buffers are available because they are currently not in use.

This property is read-only.

STC_TankSAP

The STC_TankSAP class represents a metadata server service access point. It

extends the CIM_ServiceAccessPoint class.

Properties

The STC_TankSAP class has the following properties:

 Table 96. STC_TankSAP class properties

Name Type Description

TypeOfAddres

s

uint16 An enumeration that defines how to format the address and

mask of the address range that defines this IP subnet. Whenever

possible, IPv4-compatible addresses should be used instead of

IPv6 addresses (see RFC 2373, section 2.5.4). To have a consistent

format for IPv4 addresses in a mixed IPv4 and IPv6

environment, all IPv4 addresses and both IPv4-compatible IPv6

addresses and IPv4-mapped IPv6 addresses, per RFC 2373,

section 2.5.4, should be formatted in standard IPv4 format.

However, the 2.2 version of the Network Common Model will

not explicitly support mixed IPv4 and IPv6 environments. This

support will be added in a future release. This property is

read-only. Possible values are:

 0: Unknown

 1: IPv4

 2: IPv6

The default value is 1.

Ip string The IP address of the Ethernet network interface of a metadata

server. The Group Services and the SAN File System protocol are

bound to this IP at boot time. The HeartBeat protocol and the

Admin Service are also bound to this port for service. This

property is read-only.

ClusterPort uint32 The cluster port used by internal group services infrastructure

communication. This port must be free on both the interfaces

when the server is started. This property is read-only. The

default value is 1737. The minimum value is 1024. The

maximum value is 65 535.

164 SAN File System System Management API Guide and Reference

Table 96. STC_TankSAP class properties (continued)

Name Type Description

HeartbeatPort uint32 The heartbeat port used by internal infrastructure

communication to receive heartbeats. This port must be free on

both the interfaces when the engine is started. This property is

read-only. The default value is 1738. The minimum value is 1024.

The maximum value is 65 535.

STPPort uint32 The SAN File System protocol port used for communication with

file system clients. This port must be free on both the interfaces

when the engine is started. This property is read-only. The

default value is 1700. The minimum value is 1024. The

maximum value is 65 535.

AdminPort uint32 The port to receive administrative requests. This port must be

free on both the interfaces when the engine is started. This

property is read-only. The minimum value is 1024. The

maximum value is 65 535.

IsLocal boolean An indicator of whether the local server is the master metadata

server in the cluster.

STC_TankService

The STC_TankService class represents a metadata server and provides server

services. It extends the CIM_Service class.

Properties

The STC_TankService class has the following properties:

 Table 97. STC_TankService class properties

Name Type Description

CurrentState uint32 The state of the metadata server. This property is read-only.

Possible values are:

 0: Down

 1: Online

 2: Partly Quiescent - Only server I/O operations are

suspended.

 3: Fully Quiescent - All background I/O, client, and server

operations are suspended.

 4: Administrative Quiescent - No longer servicing clients.

 5: Initializing for the first time

 6: FailedInit - Encountered an error during startup or group

formation.

 7: UnCommissioned - Not commissioned into a cluster.

 8: Joining a cluster.

 9: Unknown

PendingState uint32 The current state of the server transitions to this state if the

current state is different from this pending state. This property is

read-only. Possible values are the same as the CurrentState

property.

LastBootUpTi

me

datetime The time when the server was last started. This property is

read-only.

Chapter 4. Administrative agent object classes 165

Table 97. STC_TankService class properties (continued)

Name Type Description

LocalDateTime datetime The local date and time of day according to the server. This

property is read-only.

LastCurrentSta

teChangeTime

datetime The time since the server changed its current state. This property

is read-only.

LastPendingSt

ateChangeTime

datetime The time since the server has a state change pending. This

property is read-only.

CurrentVersion string The current software release version. This is the version of the

latest upgrade. This will be different from the previous

(committed) version if there was an upgrade but the commit was

not yet activated. This property is read-only.

IsMaster boolean An indicator of whether this is the master metadata server. This

property is read-only.

NumberOfCon

tainers

uint32 The number of filesets served from this server. This property is

read-only.

StartService() method

Use the StartService() method to start the metadata server on this engine.

Execute Role: Administrator

Method Type: Dynamic

Return values

The StartService() method returns one of the following codes:

v 0 (Completed successfully; the metadata server started.)

v 1 (Not supported)

v 4 (Command failed)

v 5 (In use)

v 8 (Integrity lost)

v 21 (Not found)

v 24 (Server timed out)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 66 (Metadata server restart service state cannot continue)

v 78 (Aborted)

v 91 (Cannot contact remote CIM agent)

v .. (Internal error)

StopService() method

Use the StopService() method to stop the metadata server on this engine.

Execute Role: Administrator

Method Type: Dynamic

166 SAN File System System Management API Guide and Reference

Return values

The StopService() method returns one of the following codes:

v 0 (Completed successfully)

v 1 (Not supported)

v 4 (Command failed)

v 8 (Integrity lost)

v 21 (Not found)

v 24 (Server timed out)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 66 (Metadata server restart service state cannot continue)

v 91 (Cannot contact remote CIM agent)

v .. (Internal error)

STC_TankTransientSetting

The STC_TankTransientSetting class contains server-specific configuration

parameters that are effective only until the next restart. This class extends the

STC_Setting class.

STC_TankWatchdog

The STC_TankWatchdog class represents the metadata server restart service

operations. It extends the CIM_LogicalElement class.

There is an instance of this class for each metadata server in the cluster. This

administrative service keeps track of the vitality of a metadata server. If enabled,

the service restarts the server when it detects positively that the server is down.

Properties

The STC_TankWatchdog class has the following properties:

 Table 98. STC_TankWatchdog class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. The maximum length is 256 characters.

SystemName string The name of the STC_Cluster instance that is the scoping system.

This property is key. The maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service: STC_TankService. This

property is key. The maximum length is 256 characters.

ServiceName string The name of the STC_TankService instance that is the scoping

service. This property is key. The maximum length is 256

characters.

Chapter 4. Administrative agent object classes 167

Table 98. STC_TankWatchdog class properties (continued)

Name Type Description

CreationClass

Name

string The name of the class or the subclass used in the creation of an

instance: STC_TankWatchdog. When used with the other key

properties of this class, this property allows all instances of this

class and its subclasses to be uniquely identified. This property

is key. The maximum length is 256 characters.

Name string An address or other identifying information to uniquely name

the metadata server restart service. This property is key. The

maximum length is 256 characters.

State uint32 The state of the metadata server restart service. This property is

read-only. Possible values are:

 0: Off - The metadata server restart service is manually

turned off.

 1: On - The metadata server restart service is manually

turned on.

 2: Standby - The metadata server restart service is in a

passive standby mode because the server it is probing has

been manually shut down. The watchdog automatically turns

on when this server is restarted.

 3: Aborted - The metadata server restart service reached the

retry limit for detecting server liveness and the metadata

server restart service was turned off. An administrator must

manually turn on the watchdog again to continue.

 Unknown - The metadata server restart service is in an

indeterminate state because the metadata server restart

service server could not be reached.

The state of the metadata server restart service persists with a

server restart. Default is 0.

ProbeState uint32 The server status found in the current probe cycle. This property

is read-only. Possible values are:

 0: Not Probed - Metadata server restart service has not

started the probe because it is off or in a standby or an

aborted state

 1: Probing - Metadata server restart service has started a

probe.

 2: Server Live - Metadata server restart service detected that

the server is live. There is no need to restart the server.

 3: Server Absent - Metadata server restart service positively

detected that the server is absent. The metadata server restart

service attempts to restart the server.

 Unknown - The liveness test failed and the absence test

failed. The metadata server restart service does not attempt to

restart the server.

The default value is 0.

ProbeInterval uint32 The interval, in seconds, at which the metadata server restart

service will periodically start a probe. This property is read-only.

The minimum value is 10 seconds and the maximum value is 60.

The default value is 10.

LiveTestTimeo

utInterval

boolean The maximum time, in seconds, to wait for the server to respond

to a liveness test request before deciding that the server is not

live. This property is read-only. The minimum value is 1 second

and the maximum value is 10 seconds. The default value is 2.

168 SAN File System System Management API Guide and Reference

Table 98. STC_TankWatchdog class properties (continued)

Name Type Description

RetryLimit uint32 The number of times to try detecting liveness of the server if the

server is declared not live. When this retry limit is reached, the

metadata server restart service is turned off. This property is the

number of tries, not the number of retries. For example, if this

value is 3, the probe is sent three times, the original time plus

two retries. This property is read-only. The minimum value is 1

and the maximum value is 10. The default value is 3.

The following properties represent statistics initialized when watchdog becomes active.

StartTimeStam

p

datetime The date and time when the metadata server restart service was

started. This property is read-only.

LastProbeTime

Stamp

datetime The date and time when the last probe was started. This

property is read-only.

TotalProbes uint64 The counter of the total number of probes done so far. This

property is read-only.

LiveTestTimeo

uts

uint64 The counter of the total number of times the liveness test has

taken longer than the test timeout interval and caused a timeout

error to occur. This property is read-only.

The following properties represent statistics for retries.

TotalRetries uint64 The counter of the total number of retries done so far. This

property is read-only.

CurrentRetries uint32 The number of retries in the current probe cycle. This property is

read-only. The value of this property ranges from 0 to one less

than the limit as set by the RetryLimit property.

RetriesLWM uint32 The lowest number of retries reached so far. This property is

read-only.

RetriesHWM uint32 The highest number of retries reached so far. This property is

read-only.

The following properties represent statistics for liveness tests.

LastLiveTestTi

me

uint32 The time taken by the last liveness test. This property is

read-only.

LiveTestTimeL

WM

uint32 The low watermark for time, in milliseconds, taken by the

liveness test. This property is read-only.

LiveTestTimeH

WM

uint32 The high watermark for time, in milliseconds, taken by the

liveness test. This property is read-only.

The following properties represent statistics absence tests.

TotalAbsenceT

ests

uint64 The counter of the total number of time absence test was started.

This property is read-only.

LastAbsenceTe

stTime

uint32 The time, in milliseconds, taken by the last absence test. This

property is read-only.

AbsenceTestTi

meLWM

uint32 The low watermark time, in milliseconds, taken by the last

absence test. This property is read-only.

AbsenceTestTi

meHWM

uint32 The high watermark for time, in milliseconds, taken by the last

absence test. This property is read-only.

Chapter 4. Administrative agent object classes 169

Disable() method

Use the Disable method to disable the metadata server restart service.

Execute Role: Administrator

Method Type: Dynamic

Return values

The Disable() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 30 (Transaction failed)

v 64 (Metadata-server restart service is already disabled)

v 66 (Cannot continue metadata-server restart service)

v 91 (Cannot contact remote CIM agent)

v .. (Internal error)

Enable() method

Use the Enable() method to enable the metadata server restart service.

Execute Role: Administrator

Method Type: Dynamic

Return values

The Enable() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 30 (Transaction failed)

v 63 (Metadata server restart service is already enabled)

v 66 (Cannot continue metadata server restart service)

v 91 (Cannot contact remote CIM agent)

v .. (Internal error)

STC_UserMap

The STC_UserMap class represents the mapping of users between SAN File System

domains for UNIX and Windows. It extends the CIM_ManagedSystemElement

class.

Properties

The STC_UserMap class has the following properties:

 Table 99. STC_UserMap class properties

Name Type Description

SrcUserDomai

n

string Source user and domain name in the format: user@domain. This

property is key. The maximum length is 513 characters.

170 SAN File System System Management API Guide and Reference

Table 99. STC_UserMap class properties (continued)

Name Type Description

TgtDomainNa

me

string Target domain name. The maximum length is 256 characters.

TgtUserName string Target user name. The maximum length is 256 characters.

SrcDomainNa

me

string Source domain name. The maximum length is 256 characters.

SrcUserName string Source user name. The maximum length is 256 characters.

Caption string A one-line description of the object. This property is read-only.

The maximum length is 64 characters.

Description string A textual description of the object.

Create() method

Use the Create() method to create a user mapping. This method is the constructor

for the class.

Execute Role: Administrator

Method Type: Static

Parameters

Table 100 describes the parameters that you can specify for the Create() method.

 Table 100. Create() method parameters

Name Type Description

SrcUserAndDo

mainName

string Input parameter that is a user and domain name in the format:

user@domain.

TgtUserAndDo

mainName

string Input parameter that is a user and domain name in the format:

user@domain..

Return values

The Create() method returns one of the following codes:

v 0 (Completed successfully)

v 3 (Already defined)

v 8 (Integrity lost)

v 9 (Name is not valid)

v 10 (Parameter not valid)

v 18 (Name already exists.)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 95 (No directory service)

Chapter 4. Administrative agent object classes 171

v 96 (User not found in directory)

v 98 (User map full)

v 99 (Domain not found)

v 103 (Invalidate failed)

v 104 (User-map threads busy)

v .. (Internal error)

Delete() method

Use the Delete() method to delete an existing user mapping.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 101 describes the parameters that you can specify for the Delete() method.

 Table 101. Delete() method parameters

Name Type Description

user mapping string Input parameter that is the user mapping to delete.

Return values

The Delete() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 9 (Name is not valid)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 95 (No directory service)

v 96 (User not found in directory)

v 99 (Domain not found)

v 103 (Invalidate failed)

v 104 (User-map threads busy)

v .. (Internal error)

DeleteAll() method

Use the DeleteAll() method to delete an existing user mapping.

Execute Role: Administrator

Method Type: Static

172 SAN File System System Management API Guide and Reference

Return values

The DeleteAll() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 9 (Name is not valid)

v 21 (Not found)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 95 (No directory service)

v 96 (User not found in directory)

v 99 (Domain not found)

v 103 (Invalidate failed)

v 104 (User-map threads busy)

v .. (Internal error)

RefreshAll() method

Use the RefreshAll() method to reload all the user mappings with the latest

information.

Execute Role: Administrator

Method Type: Static

Return values

The RefreshAll() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 103 (Invalidate failed)

v 104 (User-map threads busy)

v .. (Internal error)

STC_Volume

The STC_Volume class represents a volume. The list of instances and the methods

defined in this class are available only on the master metadata server. This class

extends the CIM_ManagedSystemElement class.

Chapter 4. Administrative agent object classes 173

A volume is a logical unit number (LUN) labeled by SAN File System for its use.

You can use the“STC_AvailableLUNs” on page 91 class to see all the LUNs

available on a host engine.

Properties

The STC_Volume class has the following properties:

 Table 102. STC_Volume class properties

Name Type Description

StoragePoolNa

me

string The storage pool to which this volume belongs. This property is

read-only.

Caption string A one-line description of the object. This property is read-only.

The maximum length is 64 characters.

Name string Your label for the volume. This property is key. Its alias is

VolumeName. The maximum length is 256 characters.

OSDeviceNam

e

string The file path to the storage device. This property is read-only.

The maximum length is 256 characters.

State uint32 The state of the volume. This property is read-only. Possible

values are:

 0: Normal - Volume is available for reading, writing and

allocation.

 1: Suspend Allocations - Allocation of new partitions to

filesets is suspended. A client can still read from and write to

the volume and a fileset can still allocate a new file on this

volume if sufficient space exists.

 2: Volume being Deleted - Volume is processing a deletion

request.

Size uint64 The size, in megabytes, of the volume. This property is

read-only.

SizeAllocated uint64 The size, in megabytes, of the volume allocated to filesets. This

property is read-only.

SizeAllocatedP

ercentage

uint16 The percentage of the size allocated in the volume. This property

is read-only. The minimum value is 0% and the maximum value

is 100%.

Description string Your description of the volume. This property is writable. The

maximum length is 256 characters.

Create() method

Use the Create() method to create a volume using a device that is accessible by a

metadata server or to attach a volume to a storage pool. This method is the

constructor for the class.

Execute Role: Administrator

Method Type: Static

Parameters

Table 103 on page 175 describes the parameters that you can specify for the

Create() method.

174 SAN File System System Management API Guide and Reference

Table 103. Create() method parameters

Name Type Description

OSDeviceNam

e

string Input parameter that is the file path to the storage device. The

maximum length is 256 characters.

StoragePoolNa

me

string Input parameter that is your label for the storage pool to which

you are attaching the volume. The maximum length is 256

characters.

VolumeName string Input parameter that is your label for the volume. The maximum

length is 256 characters.

Description string Input parameter that is your description of the volume. The

maximum length is 256 characters.

IsForce boolean Input parameter that indicates whether a volume will be deleted

even if it has files on it.

IsSuspendAllo

cations

boolean Input parameter that indicates whether the volume state is set to

Suspend Allocations.

Return values

The Create() method returns one of the following codes:

v 0 (Completed successfully)

v 3 (Already defined; the storage device has a label and IsForce parameter is set to

True but the device is already defined as another volume.)

v 5 (In use; the storage device has a label and IsForce parameter is set to False.)

v 8 (Integrity lost)

v 9 (Volume name is not valid)

v 10 (Parameter not valid)

v 12 (Storage device I/O failed)

v 18 (Volume name already exists.)

v 21 (Storage device not found)

v 22 (Not the primary administrative server)

v 28 (Storage pool not found)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 52 (Disk not viable for one of the following reasons:

– The volume does not hold at least one partition

– The specified local storage device is not viable as a global disk

– Hashing using worldwide name (WWN) conflicts with an existing hash

– Sector size is less than 512 or greater than 4096

– If a volume is being added to the system storage pool, the sector sizes of all

volumes are not the same.
v 56 (Storage device access denied)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

If errors such as I/O failed, invalid size, or internal error occur, you can

decommission the disk by deleting the volume.

Chapter 4. Administrative agent object classes 175

CreateUsingLunId() method

Use the CreateUsingLunId() method to create a volume using a specified LUN. The

volume creation is performed by a client, if specified, or by the metadata server.

This method is the constructor for the class.

Execute Role: Administrator

Method Type: Static

Parameters

Table 104 describes the parameters that you can specify for the CreateUsingLunId()

method.

 Table 104. CreateUsingLunId() method parameters

Name Type Description

LunID string Input parameter that is the identifier of the LUN.

ClientName string Input parameter that is the name of a client that can access the

volume. The maximum length is 256 characters.

StoragePoolNa

me

string Input parameter that is your label for the storage pool to which

you are attaching the volume. The maximum length is 256

characters.

VolumeName string Input parameter that is your label for the volume. The maximum

length is 256 characters.

Description string Input parameter that is your description of the volume. The

maximum length is 256 characters.

IsForce boolean Input parameter that indicates whether a volume will be deleted

even if it has files on it.

IsSuspendAllo

cations

boolean Input parameter that indicates whether the volume state is set to

Suspend Allocations.

Return values

The CreateUsingLunId() method returns one of the following codes:

v 0 (Completed successfully)

v 3 (Already defined; the storage device has a label and IsForce parameter is set to

True but the device is already defined as another volume.)

v 5 (In use; the storage device has a label and IsForce parameter is set to False.)

v 8 (Integrity lost)

v 9 (Volume name is not valid)

v 10 (Parameter not valid)

v 12 (Storage device I/O failed)

v 18 (Volume name already exists.)

v 21 (Storage device not found)

v 22 (Not the primary administrative server)

v 28 (Storage pool not found)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 48 (Disk not found)

176 SAN File System System Management API Guide and Reference

v 52 (Disk not viable for one of the following reasons:

– The volume does not hold at least one partition

– The specified local storage device is not viable as a global disk

– Hashing using worldwide name (WWN) conflicts with an existing hash

– Sector size is less than 512 or greater than 4096

– If a volume is being added to the system storage pool, the sector sizes of all

volumes are not the same.
v 56 (Storage device access denied)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 79 (System volume; a client name was specified to a volume in the system

storage pool.)

v 81 (Client not found; the specified client name does not match any identified

clients.)

v 82 (Client not reachable)

v 83 (Client I/O failed)

v 84 (Client unsupported operation)

v 88 (Rogue client)

v 89 (Invalid LUN ID)

v 90 (Use client; the metadata server cannot access the specified LUN.)

v .. (Internal error)

If errors such as I/O failed, invalid size, or internal error occur, you can

decommission the disk by deleting the volume.

Delete() method

Use the Delete() method to delete an existing volume that is accessible from a

metadata server.

If the IsForce parameter is True, this method deletes all the files that partly or fully

exist on the volume before it deletes the volume. If the IsForce parameter is False,

this method drains the volume first by moving the file data that resides on the

volume to other volumes in the same storage pool. If the volume drain fails, the

volume enters the Suspend Allocations state requiring manual administrative

action.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 105 describes the parameters that you can specify for the Delete() method.

 Table 105. Delete() method parameters

Name Type Description

IsForce boolean Input parameter that indicates whether a volume will be deleted

even if it has files on it.

Chapter 4. Administrative agent object classes 177

Return values

The Delete() method returns one of the following codes:

v 0 (Completed successfully)

v 2 (Access failed)

v 5 (In use; volume drain failed and volume is not empty.)

v 8 (Integrity lost)

v 12 (I/O failed)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 33 (Volume not found)

v 44 (Incompatible operation)

v 56 (Access denied)

v 57 (No space; no space in other volumes of the storage pool for volume drain.)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 65 (Server state offline; force option removes files from filesets. The serving

server must be online. Without force, volume is drained; you need to revoke

locks; the serving fileset must be up.)

v 92 (SAN File System is in a grace period to enable clients to reassert locks. Retry

the operation after the grace period.)

v .. (Internal error)

DeleteUsingClient() method

Use the DeleteUsingClient() method to delete an existing volume. The volume

deletion is performed by a client, if specified, or by the metadata server.

If the IsForce parameter is True, this method deletes all the files that partly or fully

exist on the volume before it deletes the volume. If the IsForce parameter is False,

this method drains the volume first by moving the file data that resides on the

volume to other volumes in the same storage pool. If the volume drain fails, the

volume enters the Suspend Allocations state requiring manual administrative

action.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 106 describes the parameters that you can specify for the DeleteUsingClient()

method.

 Table 106. DeleteUsingClient() method parameters

Name Type Description

ClientName string Input parameter that is the name of a client that can access the

volume. The maximum length is 256 characters.

IsForce boolean Input parameter that indicates whether a volume will be deleted

even if it has files on it.

178 SAN File System System Management API Guide and Reference

Return values

The DeleteUsingClient() method returns one of the following codes:

v 0 (Completed successfully)

v 2 (Access failed)

v 5 (In use; volume drain failed and volume is not empty.)

v 8 (Integrity lost)

v 12 (I/O failed)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 33 (Volume not found)

v 44 (Incompatible operation)

v 48 (Disk not found)

v 56 (Access denied)

v 57 (No space; no space in other volumes of the storage pool for volume drain.)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 65 (Server state offline; force option removes files from filesets. The serving

server must be online. Without force, volume is drained; you need to revoke

locks; the serving fileset must be up.)

v 79 (System volume; a client name was specified to a volume in the system

storage pool.)

v 81 (Client not found; the specified client name does not match any identified

clients.)

v 82 (Client not reachable)

v 83 (Client I/O failed)

v 84 (Client unsupported operation)

v 88 (Rogue client)

v 90 (Use client; the metadata server cannot access the specified LUN.)

v 92 (SAN File System is in a grace period to enable clients to reassert locks. Retry

the operation after the grace period.)

v .. (Internal error)

GetNextFOV() method

Use the GetNextFOV() method to get the next file on volume (FOV) entry, given

the FOV iterator handle FOVHandle.

Use the GetNextFOV() method to get the next file on volume (FOV) entry, by

providing the FOV iterator in the FOVHandle input parameter. The file entry is

made available in the FOVEntry output parameter. The iterator to use for the next

call is returned in the FOVHandle parameter.

Note: This method can be a long-running process depending on the number of

files and size of storage.

Execute Role: Backup

Method Type: Dynamic

Chapter 4. Administrative agent object classes 179

Parameters

Table 107 describes the parameters that you can specify for the GetNextFOV()

method

 Table 107. GetNextFOV() method parameters

Name Type Description

FOVHandle string The input/output parameter that is the FOV iteration identifier.

FOVEntry string The output parameter that is the file entry.

Return values

The GetNextFOV() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 37 (End of Iteration; end of file reached.)

v 38 (Invalid IterationIdentifier)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

Move() method

Use the Move() method to move or rename a volume. This method creates a new

volume with the specified new name and migrates the data and capabilities to the

new volume. If successful, this method deletes the old volume.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 108 describes the parameters that you can specify for the Move() method:

 Table 108. Move() method parameters

Name Type Description

NewName string Input parameter that is your new label for the volume.

Return values

The Move() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 9 (Name not valid; the new name has invalid characters.)

v 22 (Not the primary administrative server)

180 SAN File System System Management API Guide and Reference

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

ResetFOV() method

Use the ResetFOV() method to reset a Files-On-Volume (FOV) iterator. This method

creates and returns an iterator that can be used to locate each file entry that resides

on this volume instance.

You pass in the iterator when you invoke the “GetNextFOV() method” on page

179, which returns one successive file entry per call. Only one iterator can be active

at any given instance.

Note: This method can be a long-running process depending on the number of

files and size of storage.

Execute Role: Backup

Method Type: Dynamic

Parameters

Table 109 describes the parameters that you can specify for the ResetFOV() method:

 Table 109. ResetFOV() method parameters

Name Type Description

FOVHandle string The output parameter that is the FOV iteration identifier.

Return values

The ResetFOV() method returns one of the following codes:

v 0 (Completed successfully)

v 2 (Access failed)

v 7 (Insufficient space; not enough temporary space on the local disk.)

v 8 (Integrity lost)

v 21 (Not found; no files found on this volume.)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 56 (Access denied)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 65 (Server state offline; the volume has files of a fileset with its server offline.)

v .. (Internal error)

Chapter 4. Administrative agent object classes 181

Resize() method

Use the Resize() method to notify a metadata server that the capacity of the LUN

has increased. This notification enables the metadata server to expand the size of

the volume.

Execute Role: Administrator

Method Type: Dynamic

Parameters

Table 110 describes the parameters that you can specify for the Resize() method.

 Table 110. Resize() method parameters

Name Type Description

ClientName string The input parameter that is the name of a client that can access

the volume. This parameter is required only if the volume is not

accessible by a metadata server. When this parameter is

specified, the method uses the client regardless of whether a

metadata server can access the LUN.

Return values

The Resize() method returns one of the following codes:

v 0 (Completed successfully)

v 8 (Integrity lost)

v 11 (Invalid size)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 44 (Incompatible operation)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v 69 (Up-to-date)

v 79 (System volume)

v 80 (Device not found)

v 81 (Client not found)

v 82 (Client not reachable)

v 83 (Client I/O failed)

v 84 (Client unsupported operation; the client is running an older version of SAN

File System that does not support this method.)

v 85 (File system check resized; the file system check has already noticed the resize

and updated the volume.)

v .. (Internal error)

ResumeAllocation() method

Use the ResumeAllocation() method to resume suspended partition allocations on a

volume.

182 SAN File System System Management API Guide and Reference

Use the ResumeAllocation() method to resume suspended partition allocations on a

volume.

Execute Role: Administrator

Method Type: Dynamic

Return values

The ResumeAllocation() method returns one of the following codes:

v 0 (Completed successfully)

v 2 (Access failed)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 33 (Volume not found)

v 35 (Allocations were not suspended.)

v 44 (Incompatible operation)

v 56 (Access denied)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

SuspendAllocation() method

Use the SuspendAllocation() method to suspend partition allocations on a volume.

Use the SuspendAllocation() method to suspend partition allocations on a volume.

A metadata server cannot allocate new data on the volume.

Execute Role: Administrator

Method Type: Dynamic

Return values

The SuspendAllocation() method returns one of the following codes:

v 0 (Completed successfully)

v 2 (Access failed)

v 8 (Integrity lost)

v 22 (Not the primary administrative server)

v 30 (Transaction failed)

v 33 (Volume not found)

v 34 (Allocations already suspended.)

v 44 (Incompatible operation)

v 56 (Access denied)

v 61 (Cannot connect to server)

v 62 (Too many connections)

v .. (Internal error)

Chapter 4. Administrative agent object classes 183

STC_WatchdogDynamicSetting

The STC_WatchdogDynamicSetting class contains the settings for metadata-server

restart-service configuration parameters that you can dynamically update, without

a cluster restart. These parameters persist across cluster restarts. If you have

Administrator privileges, you can change the writable properties in this class using

the SetProperty() intrinsic method. This class extends the STC_Setting class.

Properties

The STC_WatchdogDynamicSetting class has the following properties:

 Table 111. STC_WatchdogDynamicSetting class properties

Name Type Description

SystemCreatio

nClassName

string The class name of the scoping system: STC_Cluster. This

property is key. The maximum length is 256 characters.

ServiceCreatio

nClassName

string The class name of the scoping service:

STC_WatchdogDynamicSetting. This property is key. The

maximum length is 256 characters.

ServiceName string The name of the STC_WatchdogDynamicSetting instance that is

the scoping service. This property is key. The maximum length is

256 characters.

ProbeInterval uint32 The interval, in seconds, at which the metadata-server restart

service will periodically start a probe. This property is writable.

The minimum value is 10 seconds and the maximum value is 60

seconds. The default value is 10 seconds.

LiveTestTimeo

utInterval

boolean The maximum time, in seconds, to wait for the server to respond

to an activity test request before deciding that the server is

inactive. This property is writable. The minimum value is 1

second and the maximum value is 10 seconds. The default value

is 2 seconds.

RetryLimit uint32 The number of times to try detecting server activity if the server

is declared inactive. When this number is reached, the

metadata-server restart service is turned off. This property is the

number of tries, not the number of retries; for example, if this

value is 3, the probe is sent three times. This property is

writable. The minimum value is 1 and the maximum value is 10.

The default value is 3.

MaximumTran

sitionInterval

uint32 The maximum time, in seconds, that the provider should wait

for the server to make the transition to a specific set of server

states. For example, the provider needs to wait for the master

server to become operational before starting other subordinate

servers. This property is writable. The minimum value is 1 and

the maximum value is 3600. The default value is 600.

184 SAN File System System Management API Guide and Reference

Appendix A. Accessibility

This topic provides information about the accessibility features of SAN File System

and its accompanying documentation.

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully.

Features

These are the major accessibility features in SAN File System:

v You can use screen-reader software and a digital speech synthesizer to hear what

is displayed on the screen.

Note: The SAN File System Information Center and its related publications are

accessibility-enabled for the IBM Home Page Reader.

v You can operate all features using the keyboard instead of the mouse.

Navigating by keyboard

You can use keys or key combinations to perform operations and initiate many

menu actions that can also be done with a mouse. You can navigate the SAN File

System console and help system from the keyboard by using the following key

combinations:

v To traverse to the next link, button or topic, press Tab inside a frame (page).

v To expand or collapse a tree node, press Right Arrow or Left Arrow, respectively.

v To move to the next topic node, press Down Arrow or Tab.

v To move to the previous topic node, press Up Arrow or Shift+Tab.

v To scroll all the way up or down, press Home or End, respectively.

v To go back, press Alt+Left Arrow

v To go forward, press Alt+Right Arrow.

v To go to the next frame, press Ctrl+Tab. There are quite a number of frames in

the help system.

v To move to the previous frame, press Shift+Ctrl+Tab.

v To print the current page or active frame, press Ctrl+P.

© Copyright IBM Corp. 2003, 2004 185

186 SAN File System System Management API Guide and Reference

Appendix B. SNMP trap MIB

The SAN File System SNMP MIB defines the structure and content of events.

It defines the following traps:

v sanfsGenericTrap

v sanfsClusterStateChangeTrap

v sanfsServerStateChangeTrap

v sanfsStoragePoolSpaceTrap

v sanfsFilesetQuotaTrap

v sanfsLogRotateTrap

As defined in the MIB, the traps capture information about SAN File System

resources at the time of an event. Refer to the actual MIB for details.

© Copyright IBM Corp. 2003, 2004 187

188 SAN File System System Management API Guide and Reference

Appendix C. Notices

Availability Notice

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation

 MW9A/050

 5600 Cottle Road

 San Jose, CA 95193

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

© Copyright IBM Corp. 2003, 2004 189

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation or Tivoli Systems Inc. in the United States or other countries or both:

 AIX

 Enterprise Storage Server

 IBM

 IBM logo

 FlashCopy

 StorageTank

 TotalStorage

 WebSphere

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of

Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

190 SAN File System System Management API Guide and Reference

Appendix D. Glossary

This glossary defines technical terms and abbreviations used in SAN File System

documentation. If you do not find the term you are looking for, refer to the index

of the appropriate DFSMS manual or view the Glossary of Computing Terms

located at: http://www.ibm.com/ibm/terminology/.

This glossary includes terms and definitions from:

v The American National Standard Dictionary for Information Systems, ANSI

X3.172-1990, copyright 1990 by the American National Standards Institute

(ANSI). Copies can be purchased from the American National Standards

Institute, 1430 Broadway, New York, New York 10018. Definitions are identified

by the symbol (A) after the definition.

v The ANSI/EIA Standard - 440A: Fiber Optic Terminology, copyright 1989 by the

Electronics Industries Association (EIA). Copies can be purchased from the

Electronics Industries Association, 2001 Pennsylvania Avenue N.W., Washington,

D.C. 20006. Definitions are identified by the symbol (E) after the definition.

v The Information Technology Vocabulary, developed by Subcommittee 1, Joint

Technical Committee 1, of the International Organization for Standardization and

the International Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions

of published parts of this vocabulary are identified by the symbol (I) after the

definition; definitions taken from draft international standards, committee drafts,

and working papers being developed by ISO/IEC JTC1/SC1 are identified by

the symbol (T) after the definition, indicating that final agreement has not yet

been reached among the participating National Bodies of SC1.

v The Storage Networking Dictionary, available online at the Storage Networking

Industry Association (SNIA) Web site:

www.snia.org/education/dictionary/

v The Distributed Management Task Force (www.dmtf.org), copyright 2003 by the

Distributed Management Task Force, Inc., 225 SE Main Street Portland, OR

97214. Definitions derived from this book have the symbol (D) after the

definition.

This glossary uses the following cross-reference forms:

See This refers the reader to one of two kinds of related information:

v A term that is the expanded form of an abbreviation or acronym. This

expanded form of the term contains the full definition.

v A synonym or more preferred term

See also

This refers the reader to one or more related terms.

ACLI See administrative command-line interface (ACLI).

administrative command-line interface (ACLI)

A command-line interface used to administer all aspects of the SAN File

System. The ACLI runs on all engines that host metadata servers and the

administrative server.

administrative log

A log that maintains a history of routine activities and error conditions that

are generated by the administrative servers.

© Copyright IBM Corp. 2003, 2004 191

http://www.ibm.com/ibm/terminology/

administrative server

For SAN File System, a set of servlets running within a customized

instance of WebSphere® Application Server that handles all SAN File

System administrative requests from the SAN File System console. See also

SAN File System console.

alert A message or other indication that identifies a problem or an impending

problem.

audit log

A log that maintains the history of all commands that modify metadata or

configuration data and significant operations, including commands that

would have made a change but failed to do so.

CIFS See Common Internet File System.

CIM See Common Information Model.

CIM client application

A storage management program that initiates CIM requests to the

administrative agent for the device.

CIM namespace

The scope within which a CIM schema applies.

CIM object manager (CIMOM)

The common conceptual framework for data management that receives,

validates, and authenticates the CIM requests from the client application

and then directs the requests to the appropriate component or device

provider.

CIMOM

See CIM object manager.

client For SAN File System, a client is a system that can access the SAN File

System. These clients act as servers to a broader clientele, providing

Network File System or Common Internet File System access to the global

namespace or hosting applications (such as database servers or

Web-hosting services that use multiple servers).

CLI See Administrative command-line interface.

client state manager (CSM)

A component of the client kernel that provides protocol support for the

client.

cluster

A group of metadata servers that is managed as a set and presents a single

point of control for configuration and service activity.

cluster log

A log that maintains a history of routine activities and error conditions that

are generated by all metadata servers in the cluster.

cluster state

A status condition of the cluster. Cluster states can be inactive (Not

running or Forming), active (Online, Offline, Partly quiescent, or Fully

quiescent) or unknown. See also Forming, Fully quiescent, Not running,

Offline, Online, and Partly quiescent.

Common Information Model (CIM)

A set of standards from the Distributed Management Task Force Inc.

(DMTF). CIM provides a conceptual framework for storage management

192 SAN File System System Management API Guide and Reference

and an open approach to the design and implementation of storage

systems, applications, databases, networks, and devices.

Common Internet File System (CIFS)

A protocol that enables collaboration on the Internet by defining a remote

file-access protocol that is compatible with the way applications already

share data on local disks and network file servers.

container

See fileset.

coordinated universal time (UTC)

The time scale, based on the System International (SI) second, as defined

and recommended by the Comitb Consultatif International de la Radio

(CCIR) and maintained (using an atomic clock) by the Bureau International

des Poids et Mesures (BIPM).

CSM See client state manager.

default user storage pool

A storage pool that stores file data that SAN File System has not assigned

(using the active policy) to a user storage pool, as well as file data that is

assigned directly to this storage pool. There is only one default user

storage pool; however, you can assign any user storage pool as the default

storage pool. See also user storage pool

dynamic fileset

A fileset that is dynamically assigned to a metadata server by SAN File

System.

engine

The hardware unit that hosts the software for the metadata server.

event log

A log that maintains a history of event messages issued by all metadata

servers in the cluster. It is a subset of the cluster log.

 IBM Term: A log that contains information about events for a particular

system or group, for a particular metric, or for all the events that are

associated with a specific monitor.

failover

The automatic recovery of resources in the event of a network outage, or

failure of the hardware or software.

file metadata

Information about the file, such as owner, permission, and physical

location. This information is stored in the system storage pool.

file-management rule

A rule that controls into what storage pool SAN File System moves a file

in the global namespace or whether to delete a file. See also rule and global

namespace.

file-placement rule

A rule that controls in what storage pool SAN File System places files in

the global namespace. See also rule and global namespace.

fileset A hierarchical grouping of files managed as a unit for balancing workload

across a cluster.

Appendix D. Glossary 193

FlashCopy image

A space-efficient image of the contents of part of the SAN File System at a

particular moment.

forming

A status condition where the cluster has a master and is in the process of

forming. This state is always the initial one whenever a cluster is newly

formed.

fully quiescent

A status condition that cuts off all client communication with the cluster.

global fileset

The root fileset in the global namespace.

global namespace

A single file system that provides complete, shared access to both

Windows and UNIX clients in the same environment.

ID See identifier.

initializing

A status condition during which a metadata server or the entire cluster is

set up for the first time.

lease The amount of time that a client can hold a lock.

Lightweight Directory Access Protocol (LDAP)

An open protocol that uses TCP/IP to provide access to directories that

support an X.500 model and that does not incur the resource requirements

of the more complex X.500 Directory Access Protocol (DAP). For example,

LDAP can be used to locate people, organizations, and other resources in

an Internet or intranet directory.

lock A restriction that allows clients to have exclusive access to files. Types of

locks include data locks, session locks, and range locks.

logical unit (LU)

In open systems, a logical disk drive.

logical unit number (LUN)

In the small computer system interface (SCSI) protocol, a unique number

used on a SCSI bus to enable it to differentiate between up to sixteen

separate devices per SCSI ID address, each of which is a logical unit.

LU See logical unit.

LUN See logical unit number.

managed object format (MOF)

A compiled language for defining classes and instances. A MOF compiler

offers a textual means of adding data to the CIM Object Manager

repository. MOF eliminates the need to write code, thus providing a simple

and fast technique for modifying the CIM Object Manager repository. (D)

master console

In a system with multiple consoles, the basic console used for

communication between the operator and the system.

master metadata server

In SAN File System, the metadata server in a cluster that is responsible for

physical-space allocation.

194 SAN File System System Management API Guide and Reference

master volume

The first volume assigned to the system storage pool that stores the most

critical system metadata.

metadata

The data that describes the characteristics of stored data; descriptive data.

metadata server

In SAN File System, a server that offloads the metadata processing from

the data-storage environment to improve SAN performance. An instance of

the SAN File System runs on each engine, and together the metadata

servers form a cluster. See also cluster.

metadata server log

A log that maintains a history of routine activities and error conditions that

are generated by a metadata server.

MOF See managed object format.

Network File System (NFS)

A protocol, developed by Sun Microsystems, Incorporated, that allows any

host in a network to mount another host’s file directories. After a file

directory is mounted, it appears to reside on the local host.

not running

A condition in which the cluster cannot perform any functions because the

master metadata server has not completed the start up procedure to the

point where the cluster is able to service filesets or perform administration

functions.

 A status condition where the metadata server is not running and cannot

perform any functions.

OBDC

See one-button data collection.

Offline

A status condition during which clients are not being serviced and the

cluster is responding only to administrative requests.

one-button data collection

A utility that gathers data for diagnosing errors or failures associated with

metadata servers and clients. It is intended primarily for first-failure

data-capture capabilities useful for investigating problems upon their initial

occurrence, without requiring problem recreation or subsequent tracing.

online A status condition that indicates the normal operational state for the

cluster.

partly quiescent

A status condition that allows existing metadata activity and client

communication to continue on the cluster, but prohibits new

communication.

policy A list of rules that define placement or management of files. Several

policies can be defined within the configuration, but only one policy is

active at one time. See also file-placement rule and file-management rule.

pool See storage pool.

primary administrative server

The administrative server that runs on the same engine as the master

metadata server. It processes all administrative requests that are initiated

Appendix D. Glossary 195

from the SAN File System console and those requests initiated from the

ACLI that are logged into the master metadata server.

quota A size limitation, such as the limit on the amount of disk space or size of a

fileset.

remote access

A serviceability feature that enables remote IBM service personnel to access

the system to assist in diagnosing and resolving problems.

Remote Supervisor Adapter II (RSA II)

A high-performance PCI adapter that provides remote access to and control

of xSeries servers, including remote management independent of server

status, remote control of hardware and operating systems, and remote

updates.

rogue metadata server

A metadata server that is not reachable from the cluster, fails to respond to

requests, and might be running or have latent queued I/O.

root squashing

The process of a root or Administrator user logging into a client that is not

a privileged client.

rule The lines within a policy that specify which actions will occur when

certain conditions are met. Conditions include attributes about an object

(file name, type or extension, dates, owner, and groups) and the fileset

name associated with the object.

SAN File System console

A Web user interface used to monitor and control the SAN File System

remotely by using any standard Web browser.

secondary administrative server

The administrative server that runs on the same engine as a subordinate

metadata server and processes only those administrative requests that are

initiated from the administrative command-line interface (CLI) that is

logged into that subordinate metadata server.

security log

A log that maintains a history of administrator login activity generated by

the administrative server.

service alert

A serviceability feature that automatically notifies the IBM Support Center

about a problem that occurred.

service location protocol

A directory service that the CIM client application calls to locate the

CIMOM.

shutdown

A status condition that describes when the cluster is shut down as

intended.

Simple Network Management Protocol (SNMP)

In the Internet suite of protocols, a network management protocol that is

used to monitor routers and attached networks. SNMP is an

application-layer protocol. Information on devices managed is defined and

stored in the application’s Management Information Base (MIB).

Simple Network Management Protocol (SNMP) trap

In the Simple Network Management Protocol (SNMP), a message sent by a

196 SAN File System System Management API Guide and Reference

managed node (agent function) to a management station to report an

exception condition. See also simple network management protocol.

SLP See service location protocol.

spare metadata server

An idle metadata server that has no statically assigned filesets. It is used

for failover to take on the workload of another metadata sever that goes

off-line.

starting

A status condition when a metadata server is starting as designed but is

not ready to accept connections from clients.

static fileset

A fileset that is manually assigned to a specific metadata server by the

administrator.

storage pool

A named set of storage volumes that is the destination for storing client

data.

system metadata

Information that is create and managed by the metadata server, such as

information about filesets, storage pools, volumes and policies. This

information is stored in the system storage pool.

system storage pool

A storage pool that contains the system metadata (system and file

attributes, configuration information, and metadata server state) that is

accessible to all metadata servers in the cluster. There is only one system

storage pool. See also metadata server.

trace log

A log that maintains of history of trace activity on the metadata server.

user storage pool

An optional storage pool that contains blocks of data that compose the files

that are created by SAN File System clients. See also storage pool and default

user storage pool.

volume

A labeled logical unit, which can be a physical device or a logical device.

For SAN File System, there is a one to one relationship between volumes

and LUNs. See also logical unit number.

UTC See coordinated universal time

worldwide node name

A unique 64-bit identifier for a host containing a fibre-channel port. See

also worldwide port name.

worldwide port name

A unique 64-bit identifier associated with a fibre-channel adapter port. The

WWPN is assigned in an implementation-independent and

protocol-independent manner.

WWNN

See worldwide node name

WWPN

See worldwide port name

Appendix D. Glossary 197

198 SAN File System System Management API Guide and Reference

Index

A
About the System Management API

Guide and Reference vii

accessibility
disability 185

keyboard 185

shortcut keys 185

Activate() method 145

adding a volume to 32

AddServer() method 119

administrative
log 89

server 4

administrative agent
description 33

functional views 34

methods 77

object classes 89

administrative log 20

administrative services 23

Administrator user role 30

alerts 5

assigning
volumes to storage pools 28

Attach() method 102

audit log 21

authorization
timing out all 72

timing out one 72

B
backing up

files using FlashCopy images 14

backup user role 30

buffer totals 116

C
CD, publications vii, viii

ChangeServer() method 103

CIM
concepts 1, 2

description 1

CIM agent, description 2

class
STC_AdminMessageLog 89

STC_AdminProcess 89

STC_AdminSecurityLog 90

STC_AdminUser 90

STC_AvailableLUNs 92

STC_Cluster 97

STC_ComputerSystem 97

STC_Container 100

STC_Domain 110

STC_LdapDynamicSetting 112

STC_MasterDisruptiveSetting 113

STC_MasterDynamicSetting 115

STC_MasterMetrics 116

STC_MasterSAP 117

class (continued)
STC_MasterService 118

STC_MDSAuditLog 129

STC_MDSEventLog 130

STC_MDSMessageLog 130

STC_MessageLog 130

STC_NodeFan 136

STC_NodeTemperature 137

STC_NodeVitalProductData 138

STC_NodeVoltage 138

STC_NodeWatchdog 140

STC_PitImage 141

STC_PolicySet 144

STC_RegisteredFSClients 150

STC_RemoteServiceAccessPoint 151

STC_RsaDynamicSetting 151

STC_Setting 152

STC_StoragePool 152

STC_SystemMDRAid 158

STC_TankDisruptiveSetting 160

STC_TankEvents 161

STC_TankMetrics 163

STC_TankSAP 164

STC_TankService 165

STC_TankTransientSetting 167

STC_TankWatchdog 167

STC_UserMap 170

STC_Volume 174

STC_WatchdogDynamicSetting 184

classes
CIM base 35

SAN File System backup 56

SAN File System component 36

SAN File System configuration 45

SAN File System log 54

SAN File System status 48

ClearAllCurrentAuthorizations()

method 91

ClearCurrentAuthorization() method 91

ClearLog() method 131

client
accessing the global namespace 18

logs, traces, and dumps 21

clients
about fileset 10

listing by LUN access 61

listing by volume access 61

CloseClientLUNList() method 92

cluster
changing states 62

description of 5

soft failure 7

starting 62

stopping 63

upgrading software 63

cluster logs 22

CommitUpgrade() method 120

communication between metadata

servers 7

components
SAN File System 7

configuration parameters, changing 61

considerations
fileset 12

FlashCopy images 17

nested fileset 13

copy on write
description of 15

Create() (domain) method 110

Create() (fileset) method 104

Create() (FlashCopy image) method 141

Create() (policy) method 146

Create() (recovery file) method 158

Create() (storage pool) method 153

Create() (user mapping) method 171

Create() (volume) method 174

CreateUsingLunId() (volume)

method 176

creating
FlashCopy images 16

D
Delete() (domain) method 111

Delete() (fileset) method 105

Delete() (FlashCopy image) method 143

Delete() (policy) method 147

Delete() (recovery file) method 159

Delete() (storage pool) method 154

Delete() (user mapping) method 172

Delete() (volume) method 177

DeleteAll() (user mapping) method 172

DeleteUsingClient() (volume)

method 178

Detach() method 106

Disable() method 170

DisableDefault() method 155

domains
creating 72

deleting 73

renaming 73

DropServer() method 120

DropServerByName() method 121

E
Enable() method 170

engine
definition 9

powering off 64

powering on 64

restarting 64

EnumerateClasses() method 78

EnumerateClassNames() method 78

EnumerateInstanceNames() method 79

EnumerateInstances() method 79

EnumerateQualifiers() method 80

event log 21

ExecQuery() method 80

© Copyright IBM Corp. 2003, 2004 199

F
file information

retrieving 68

file placement, policy-based 25

files
automatic placement of 25

moving 71

fileset
about clients 10

about metadata servers 11

about storage pools 11

attaching 9, 65

changing server 65

considerations 12

considerations for nested 13

creating 9, 65

creating objects in 9

deleting 65

description of 9

detaching 66

moving 66

permissions 12

placing in storage pools 9

quotas 13

fileset information
retrieving 66

FileSystemCheck() method 122

FlashCopy images
about backing up files 14

about creating 16

about reverting files 14

considerations 17

creating 66

deleting 66

description of 14

reverting to a previous 67

space for 17

G
GenerateCommandFiles() method 159

GetClass() method 80

GetFileInfo() method 123

GetFileSetInfo() method 107

GetInstalledLanguages() method 115

GetInstance() method 81

GetNextFOV() method 179

GetNextRecords() method 131

GetNextRecords()GetNextClientLUN()

method 93

GetPolicyRuleStats() method 147

GetPowerState() method 98

GetPreviousRecords() method 132

GetProperty() method 82

GetQualifier() method 82

GetRules() method 148

GetStoragePoolStats() method 149

GetWWIds() method 94

global fileset
description of 9

global namespace 17

client access to 18

shared access 19

structure of 18

I
interaction between metadata servers 7

introduction 1

L
label, volume 31

languages
listing installed 62

lease 19

limitations 33

limited warranty vii

ListAssociatedPools() method 108

ListClientsByLUN() method 124

ListClientsByVolume() method 125

lock 19

log
administrative 20

audit 21

clearing 67

cluster 22

description of 20

event 21

metadata server 22

retrieving records 67

security 22

trace 22

logical unit (LUN) 31

LUNs
listing for client 74

M
managing

clients 61

cluster 61

disaster recovery files 63

engines 64

filesets 64

FlashCopy images 66

logs 67

Metadata servers 68

policies 69

SAN File System 61

storage pools 70

user mappings 72

users 72

volumes and data 73

message IDs 21

metadata
checking 68

server 22, 24

services 23

metadata server
starting 69

stopping 69

metadata server logs 22

metadata server restart service
starting 69

Metadata server restart service
stopping 69

metadata servers
about fileset 11

communication between 7

metadata volume
limitations 33

method
Activate() 145

AddServer() 119

Attach() 102

ChangeServer() 103

ClearAllCurrentAuthorizations() 91

ClearCurrentAuthorization() 91

ClearLog() 131

CloseClientLUNList() 92

CommitUpgrade() 120

Create() (domain) 110

Create() (fileset) 104

Create() (FlashCopy image) 141

Create() (policy) 146

Create() (recovery file) 158

Create() (storage pool) 153

Create() (user mapping) 171

Create() (volume) 174

CreateUsingLunId() (volume) 176

Delete() (domain) 111

Delete() (fileset) 105

Delete() (FlashCopy image) 143

Delete() (policy) 147

Delete() (recovery file) 159

Delete() (storage pool) 154

Delete() (user mapping) 172

Delete() (volume) 177

DeleteAll() (user mapping) 172

DeleteUsingClient() (volume) 178

Detach() 106

Disable() 170

DisableDefault() 155

DropServer() 120

DropServerByName() 121

Enable() 170

EnumerateClasses() 78

EnumerateClassNames() 78

EnumerateInstanceNames() 79

EnumerateInstances() 79

EnumerateQualifiers() 80

ExecQuery() 80

FileSystemCheck() 122

GenerateCommandFiles() 159

GetClass() 80

GetFileInfo() 123

GetFileSetInfo() 107

GetInstalledLanguages() 115

GetInstance() 81

GetNextClientLUN() 93

GetNextFOV() 179

GetNextRecords() 131

GetPolicyRuleStats() 147

GetPowerState() 98

GetPreviousRecords() 132

GetProperty() 82

GetQualifier() 82

GetRules() 148

GetStoragePoolStats() 149

GetWWIds() 94

ListAssociatedPools() 108

ListClientsByLUN() 124

ListClientsByVolume() 125

ModifyInstance() 83

Move() (domain) 111

Move() (fileset) 108

Move() (storage pool) 155

Move() (volume) 180

200 SAN File System System Management API Guide and Reference

method (continued)
MoveFile() 156

OneButtonDataCollector() 99

OpenClientLUNList() 95

PositionToFirstRecord() 134

PositionToLastRecord() 134

PositionWithFilter() 135

QuiesceService() 126

RefreshAll() 173

RemoveServerBinding() 109

RescanLUNs() 96

ResetFOV() 181

Resize volume 182

ResumeAllocation() 183

ResumeService() 127

Revert() 143

SetDefault() 157

SetPowerState() 99

SetProperty() 83

StartService() 127

StartService() (Metadata server) 166

StartServiceInAdmin() 128

StopFileSystemCheck() 128

StopService() 129

StopService() (Metadata server) 166

SuspendAllocation() 183

Test() method 162

methods
dynamic and static 59

intrinsic 77

MIB, SNMP 187

ModifyInstance() method 83

monitor user role 30

Move() (domain) method 111

Move() (fileset) method 108

Move() (storage pool) method 155

Move() (volume) method 180

MoveFile() method 156

N
navigating by keyboard 185

notices used in this guide vii

O
OneButtonDataCollector() method 99

OpenClientLUNList() method 95

operator user role 30

P
permissions

fileset 12

policies and rules
using 26

policy
activating 69

creating 69

deleting 70

viewing 70

policy statistics
viewing 70

PositionToFirstRecord() method 134

PositionToLastRecord() method 134

PositionWithFilter() method 135

problem determination data,

collecting 75

programming considerations 58

publications vii, viii

publications CD vii, viii

Q
QuiesceService() method 126

quotas
fileset 13

R
recovery commands, generating 63

recovery file
creating 63

deleting 63

RefreshAll() method 173

release notes vii, viii

RemoveServerBinding() method 109

removing 32

RescanLUNs() method 96

ResetFOV() method 181

Resize() (volume) method 182

ResumeAllocation() method 183

ResumeService() 127

Revert() method 143

reverting
files using FlashCopy images 14

Role-based access 58

S
safety information vii, viii

safety notices, translated vii

SAN File System
components 7

SAN File System accessibility

features 185

security log 22

server
administrative 4

metadata 22, 24

services
administrative 23

metadata 23

storage management 24

SetDefault() method 157

SetPowerState() method 99

SetProperty() method 83

Simple Network Management Protocol

(SNMP)
components 24

traps 5

skills needed to write CIM-based

application programs vii

SMI-S, description 3

SNMP (Simple Network Management

Protocol)
components 24

traps 5

SNMP MIB 187

soft failure, cluster 7

StartService() method 127, 166

StartServiceInAdmin() method 128

STC_AdminMessageLog class 89

STC_AdminProcess class 89

STC_AdminSecurityLog class 90

STC_AdminUser class 90

STC_AvailableLUNs class 92

STC_Cluster class 97

STC_ComputerSystem class 97

STC_Container class 100

STC_Domain class 110

STC_LdapDynamicSetting class 112

STC_MasterDisruptiveSetting class 113

STC_MasterDynamicSetting class 115

STC_MasterMetrics class 116

STC_MasterSAP class 117

STC_MasterService class 118

STC_MDSAuditLog class 129

STC_MDSEventLog class 130

STC_MDSMessageLog class 130

STC_MessageLog class 130

STC_NodeFan class 136

STC_NodeTemperature class 137

STC_NodeVitalProductData class 138

STC_NodeVoltage class 138

STC_NodeWatchdog class 140

STC_PitImage class 141

STC_PolicySet class 144

STC_RegisteredFSClients class 150

STC_RemoteServiceAccessPoint

class 151

STC_RsaDynamicSetting class 151

STC_Setting class 152

STC_StoragePool class 152

STC_SystemMDRAid class 158

STC_TankDisruptiveSetting class 160

STC_TankEvents class 161

STC_TankMetrics class 163

STC_TankSAP class 164

STC_TankService class 165

STC_TankTransientSetting class 167

STC_TankWatchdog class 167

STC_UserMap class 170

STC_Volume class 174

STC_WatchdogDynamicSetting class 184

StopFileSystemCheck() method 128

StopService() method 129, 166

storage management 25

storage management services 24

storage pool
assigning volumes to 28

creating 70

deleting 71

description of 27

disabling the default 71

moving 71

removing volumes 74

setting default 72

system 28

user 29

storage pools 32

about fileset 11

SuspendAllocation() method 183

system storage pool
description of 28

Index 201

T
Test() method 162

trace log 22

trademarks 190

traps, Simple Network Management

Protocol (SNMP) 5

U
user interface

Web-based 29

user mapping
creating 73

deleting 73

refreshing 73

user role
Administrator 30

backup 30

monitor 30

operator 30

user storage pool
description of 29

V
volume

activating 32

adding 74

adding to storage pools 32

description of 31

limitations in the system storage

pool 33

removing from a storage pool 32

resizing 74

resuming 74

retrieving a file entry 75

suspending 32, 75

volume from a storage pool 32

volume label 31

volumes
assigning to storage pools 28

volumes in the system storage pool 33

W
watch and learn

about administrative server 4

about metadata server 22

about storage pools 27

about the cluster 5

watchdog
disabling 69

enabling 69

Web sites viii

Who should use this guide vii

202 SAN File System System Management API Guide and Reference

Readers’ Comments — We’d Like to Hear from You

IBM TotalStorage SAN File System

(based on IBM Storage Tank™ technology)

System Management API Guide and Reference

Version 2 Release 2

 Publication No. GA27-4315-02

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 GA27-4315-02

GA27-4315-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation

Dept. CGFA

PO Box 12195

Research Triangle Park, NC 27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in USA

GA27-4315-02

	Contents
	About this guide
	Who should use this guide
	Notices in this guide
	Publications
	SAN File System publications
	SAN File System related publications

	Web sites

	Chapter 1. Getting started
	CIM concepts
	CIM
	CIM-related concepts
	CIM agent
	Storage Management Initiative Specification

	SAN File System concepts
	Administrative server
	Alerts and events
	Cluster
	Cluster workload
	Communication between metadata servers
	Soft cluster failures

	Components
	Engines
	Filesets
	Filesets and clients
	Filesets and metadata servers
	Filesets and storage pools
	Fileset considerations
	Fileset permissions
	Fileset quotas
	Nested fileset considerations

	FlashCopy images
	Backing up and reverting files using FlashCopy images
	Copy on write
	Creating FlashCopy images
	FlashCopy image considerations
	Disk space used by FlashCopy images

	Global namespace
	Client access to the global namespace
	Global namespace structure
	Shared access to the global namespace

	Locks and leases
	Logs and traces
	Administrative log
	Audit log
	Client logs and traces
	Event log
	Message IDs
	Metadata server logs
	Security log
	Trace log

	Metadata server
	Administrative services
	Metadata services
	Metadata servers and filesets
	Storage-management services

	SNMP
	Storage management
	File placement
	Policies and rules

	Storage pools
	Storage pools and volumes
	System storage pool
	User storage pools

	User interfaces
	User roles
	Volumes
	Volumes and storage pools
	Volume activation and suspension
	Volume removal
	Limitations to volumes in the system storage pool

	Administrative agent for SAN File System
	Functional view of the Administrative agent
	CIM base classes
	SAN File System component classes
	SAN File System configuration classes
	SAN File System status classes
	SAN File System log classes
	SAN File System backup classes

	Programming considerations
	Role-based access
	Dynamic and static methods

	Chapter 2. Managing SAN File System
	Managing clients
	Listing clients by LUN access
	Listing clients by volume access

	Managing the cluster
	Changing configuration parameters
	Changing active cluster states
	Listing installed languages
	Starting the cluster
	Stopping the cluster
	Upgrading cluster software

	Managing disaster recovery files
	Creating a recovery file
	Deleting a recovery file
	Generating recovery commands

	Managing engines
	Powering off the engine
	Powering on the engine
	Restarting the engine

	Managing filesets
	Attaching a fileset
	Changing the assignment of a fileset server
	Creating a fileset
	Deleting a fileset
	Detaching a fileset
	Moving a fileset
	Retrieving fileset information

	Managing FlashCopy images
	Creating a FlashCopy image
	Deleting a FlashCopy image
	Reverting to a previous FlashCopy image

	Managing logs
	Clearing logs
	Retrieving log records

	Managing metadata servers
	Checking metadata
	Retrieving file information
	Starting a metadata server
	Starting the metadata server restart service
	Stopping a metadata server
	Stopping the metadata server restart service

	Managing policies
	Activating a policy
	Creating a policy
	Deleting a policy
	Viewing a policy
	Viewing policy statistics

	Managing storage pools
	Creating a storage pool
	Deleting a storage pool
	Disabling the default storage pool
	Moving a storage pool
	Moving files
	Setting the default storage pool

	Managing users
	Timing out all user authorizations
	Timing out a user authorization

	Managing user mappings
	Creating a domain
	Creating a user mapping
	Deleting a domain
	Deleting a user mapping
	Renaming a domain
	Refreshing a user mapping

	Managing volumes and LUNs
	Activating a suspended volume
	Adding a volume to a storage pool
	Listing LUNs
	Removing volumes from a storage pool
	Resizing a volume
	Retrieving file entries on a volume
	Suspending a volume

	Collecting problem determination data

	Chapter 3. Administrative agent methods
	Intrinsic methods
	EnumerateClasses()
	EnumerateClassNames()
	EnumerateInstanceNames()
	EnumerateInstances()
	EnumerateQualifiers()
	ExecQuery()
	GetClass()
	GetInstance()
	GetProperty()
	GetQualifier()
	ModifyInstance()
	SetProperty()
	Intrinsic method return codes

	Extrinsic methods
	Extrinsic method return codes

	Chapter 4. Administrative agent object classes
	STC_AdminMessageLog
	STC_AdminProcess
	STC_AdminSecurityLog
	STC_AdminUser
	ClearAllCurrentAuthorizations() method
	ClearCurrentAuthorization() method

	STC_AvailableLUNs
	CloseClientLUNList() method
	GetNextClientLUN() method
	GetWWIds() method
	OpenClientLUNList() method
	RescanLUNs() method

	STC_Cluster
	STC_ComputerSystem
	GetPowerState() method
	OneButtonDataCollector() method
	SetPowerState() method

	STC_Container
	Attach() method
	ChangeServer() method
	Create() method
	Delete() method
	Detach() method
	GetFileSetInfo() method
	ListAssociatedPools() method
	Move() method
	RemoveServerBinding() method

	STC_Domain
	Create() method
	Delete() method
	Move() method

	STC_LdapDynamicSetting
	STC_MasterDisruptiveSetting
	GetInstalledLanguages() method

	STC_MasterDynamicSetting
	STC_MasterMetrics
	STC_MasterSAP
	STC_MasterService
	AddServer() method
	CommitUpgrade() method
	DropServer() method
	DropServerByName() method
	FileSystemCheck() method
	GetFileInfo() method
	ListClientsByLUN() method
	ListClientsByVolume() method
	QuiesceService() method
	ResumeService() method
	StartService() method
	StartServiceInAdmin() method
	StopFileSystemCheck() method
	StopService() method

	STC_MDSAuditLog
	STC_MDSEventLog
	STC_MDSMessageLog
	STC_MessageLog
	ClearLog() method
	GetNextRecords() method
	GetPreviousRecords() method
	PositionToFirstRecord() method
	PositionToLastRecord method
	PositionWithFilter() method

	STC_NodeFan
	STC_NodeTemperature
	STC_NodeVitalProductData
	STC_NodeVoltage
	STC_NodeWatchdog
	STC_PitImage
	Create() method
	Delete() method
	Revert() method

	STC_PolicySet
	Activate() method
	Create() method
	Delete() method
	GetPolicyRuleStats() method
	GetRules() method
	GetStoragePoolStats() method

	STC_RegisteredFSClients
	STC_RemoteServiceAccessPoint
	STC_RsaDynamicSetting
	STC_Setting
	STC_StoragePool
	Create() method
	Delete() method
	DisableDefault() method
	Move() method
	MoveFile() method
	SetDefault() method

	STC_SystemMDRAid
	Create() method
	Delete() method
	GenerateCommandFiles() method

	STC_TankDisruptiveSetting
	STC_TankEvents
	Test() method

	STC_TankMetrics
	STC_TankSAP
	STC_TankService
	StartService() method
	StopService() method

	STC_TankTransientSetting
	STC_TankWatchdog
	Disable() method
	Enable() method

	STC_UserMap
	Create() method
	Delete() method
	DeleteAll() method
	RefreshAll() method

	STC_Volume
	Create() method
	CreateUsingLunId() method
	Delete() method
	DeleteUsingClient() method
	GetNextFOV() method
	Move() method
	ResetFOV() method
	Resize() method
	ResumeAllocation() method
	SuspendAllocation() method

	STC_WatchdogDynamicSetting

	Appendix A. Accessibility
	Appendix B. SNMP trap MIB
	Appendix C. Notices
	Trademarks

	Appendix D. Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

