Platform Selection for WebSphere: why choose z/OS?

February 2006
Version 1.3.5.1
Chris Barwise

IBM Consulting IT Specialist
barwisc@uk.ibm.com

Contents
3Introduction

3Why would WebSphere on z/OS be any different?

4Customer requirements

4Cost, Qualities of Service and choice of platform

5Low Total Cost of Ownership

5The Problem of Test/Development Environments

6Consolidation and TCO savings

8Infrastructure simplification and TCO savings

8zSeries Application Assist Processors and TCO

8High performance with good response times

9Near-linear scalability

10High availability (99.999% application availability target)

10Excellent manageability

11Maintainability (including flexibility and portability)

12Highest security

14New products in a UNIX/Windows environment

14WebSphere Extended Deployment

15Tivoli Intelligent Orchestrator

15Enterprise Workload Manager

17When to use which platform – are they all mainframes now?

18Factors to consider in platform selection

19Summary

20Feedback

21Appendix: Summary of how zSeries technology advantages map to customer requirements

23Appendix: Explanation of zSeries functions

Introduction

No single platform is the best choice for each and every application. This document describes how WebSphere Application Server (WAS) on z/OS is different from WAS on other platforms, and the advantages resulting from this. It is intended to be understandable by people unfamiliar with z/OS. Functions which are z/OS-specific are generally in bold italic. Although these terms will be new to those without a z/OS background, they should be understandable from the text. They are also explained more fully in Appendix: Explanation of zSeries functions on page 23.
Why would WebSphere on z/OS be any different?
WebSphere common code is the same on all platforms, and therefore WAS cannot assume that services from any given platform will be available. On one platform (z/OS) the developers decided to write extensions so that WebSphere could exploit the underlying z/OS system services which contribute to outstanding z/OS performance, scalability, availability, manageability, maintainability and security (or Qualities of Service).

On any platform, WebSphere benefits passively from the underlying hardware characteristics (such as availability). WAS on Linux on zSeries benefits from the underlying zSeries hardware characteristics in this way. Only on z/OS have extensions been written to allow active exploitation of the underlying system services.

[image: image1.wmf]RISC/Intel

RISC/Intel

J

E

S

Unix

Unix

Linux

Linux

Windows

Windows

etc.

etc.

J2EE

J2EE

Middleware

Middleware

J

E

S

Linux

Linux

WebSphere

WebSphere

ND

ND

J

E

S

^

Z

^

Z

Self-healing attributes:

Helping maintain

continuous service

Workload consolidation:

Managing cost of servers

Self-configuring attributes:

Responding to changing

business conditions

Service Level Agreement

Management: Guaranteed,

consistent results

Deep system

integration for J2EE

workloads

Hardware

(Linux and z/OS)

Software

(z/OS only)

WebSphere

WebSphere

for z/OS

for z/OS

z/OS

z/OS

While platform-independent Java code can be deployed virtually anywhere, during development J2EE components are not optimised to any deployment platform.

The server, operating system and WAS determine how well those components meet business objectives in production.

The z/OS-specific extensions allow z/OS to offer higher Qualities of Service than the other platforms. Of course, if the applications do not require this level of Quality of Service (performance, scalability, availability, manageability, maintainability and security), then it may be cheaper to deploy on another platform, though the TCO analysis is still worthwhile because of factors such as local database access and zSeries Application Assist Processors (zAAPs). zAAPs are attractively priced specialised Java processing units offering hardware, software and maintenance savings compared to standard processors.
The following sections explore the advantages that these z/OS extensions deliver.
Customer requirements
· Low Total Cost of Ownership (TCO)
· High performance with good response times
· Near-linear scalability to meet transaction growth with acceptable costs and response times
· High availability (99.999% application availability target)

· Excellent manageability
· Maintainability (including flexibility and portability)

· Highest security

The requirements on performance, scalability, availability, manageability, maintainability and security are sometimes called Qualities of Service or non-functional requirements.

Cost, Qualities of Service and choice of platform

Cost and Qualities of Service (or non-functional requirements) are inextricably linked. Attempting to satisfy a requirement with an inappropriate platform costs more:

[image: image2.wmf]Hardware Costs

Windows

UNIX

z/OS

Limited QoS

Good Enough Computing

The Ultimate QoS

 Qualities of Service

Follow the bottom line

Develop on one platform

and deploy on another

Move applications between

platforms

Stretching a technology

Stretching a technology

beyond its design point

beyond its design point

is sub-optimal

is sub-optimal

and may be impossible

and may be impossible

Projects often start on one platform for simplicity, but fail to take into account the required qualities of service in production. They end up adding hardware in an attempt to increase the Qualities of Service (for example trying to achieve higher availability). There is no warning when the cost crossover point has been reached.
Clearly there are cost advantages to developing under simple Windows configurations, however the hardware costs involved in scaling those up or providing sufficiently high Quality of Service may exceed those of a more expensive hardware platform. The cheapest hardware configuration changes as the application moves through the development cycle, and even during phases of the production deployment. For example, an application visible to external users might require higher Qualities of Service than one only visible to internal users.

However, hardware cost is not the only factor involved, and a true comparison requires a Total Cost of Ownership (TCO) comparison, to include hardware, software, staff costs, maintenance, development and test environments etc.
Low Total Cost of Ownership
The key here is the word Total. It is very easy to compare hardware and software costs for a production environment and neglect the significant costs of providing development and test environments and hidden factors such as people costs. The costs of these are not similar, but vary widely from platform to platform. An analysis excluding these may well come up with a false conclusion.

[image: image3.emf]Production Overlooked Costs

Hidden costs

Hardware

Software

Maintenance

Test and

development

Hardware

Test and

development

Software

Test and

development

Maintenance

People

Environment

Unused space

Disaster Recovery

The Problem of Test/Development Environments

Application architectures are becoming increasingly complex. A typical web infrastructure is shown below. In reality, most elements would be duplicated for availability.

[image: image4.wmf]DMZ

PKI

DMZ

LDAP

Trusted

LDAP

Trusted

PKI

Web/App

MQSeries

DB Server

Mainframe

User

Trusted

User

Outer

Bastion

Inner

Bastion

Two Web/App Servers

Two MQ Messaging Servers

Two DB Servers

Dispatchers

The problem with only considering production, is that a number of test/development environments are required in addition. The software costs of doing this on UNIX or Windows are significant, whereas on z/OS, many of these environments can be accommodated without incurring additional software and hardware costs, since the licences and hardware resources can be dynamically shared.

[image: image5.wmf]DMZ

PKI

DMZ

LDAP

Trusted

LDAP

Trusted

PKI

Web/App

MQSeries

DB Server

Mainframe

User

Trusted

User

Outer

Bastion

Inner

Bastion

Dispatchers

DMZ

PKI

DMZ

LDAP

Trusted

LDAP

Trusted

PKI

Web/App

MQSeries

DB Server

Mainframe

User

Trusted

User

Outer

Bastion

Inner

Bastion

Dispatchers

DMZ

PKI

DMZ

LDAP

Trusted

LDAP

Trusted

PKI

Web/App

MQSeries

DB Server

Mainframe

User

Trusted

User

Outer

Bastion

Inner

Bastion

Dispatchers

DMZ

PKI

DMZ

LDAP

Trusted

LDAP

Trusted

PKI

Web/App

MQSeries

DB Server

Mainframe

User

Trusted

User

Outer

Bastion

Inner

Bastion

Dispatchers

DMZ

PKI

DMZ

LDAP

Trusted

LDAP

Trusted

PKI

Web/App

MQSeries

DB Server

Mainframe

User

Trusted

User

Outer

Bastion

Inner

Bastion

Dispatchers

DMZ

PKI

DMZ

LDAP

Trusted

LDAP

Trusted

PKI

Web/App

MQSeries

DB Server

Mainframe

User

Trusted

User

Outer

Bastion

Inner

Bastion

Dispatchers

Stress test

Acceptance Test

Development

Production-level test

Production

Contingency site

Similarly, adding a new application to an existing z/OS infrastructure can incur minimal costs (perhaps even zero if there is spare capacity) compared to adding a new server environment (as is common for each new application on UNIX or Intel).

Consolidation and TCO savings

Industry averages for UNIX and Windows CPU utilisation are around 15% and 5% respectively. This compares to zSeries averages of around 90%. One of the reasons for this vast amount of unused capacity on Windows and UNIX is the sheer number of systems involved and the difficulty of capacity planning or monitoring across them. There are opportunities for large savings by consolidating these onto zSeries, or avoiding the creation of new underutilised systems.

Another reason so much capacity is unused is that many platforms only offer partitioning on card or processor boundaries. This means resources within one card or processor are not available to other partitions, even if they are idle. Even IBM’s recent POWER5 Micropartitioning function is not as flexible as zSeries partitioning, which goes well beyond simple partitioning and provides hardware virtualization, allowing savings through hardware sharing.
If the partition boundaries are inflexible and the separate systems are no easier to manage afterwards, little is gained from consolidation into one footprint apart from floor space.

In the following diagram, the numbers in each column represent the capacity units required in each scenario for a set of workloads whose peak requirements total 400 units. (For example 440 units are required if the boxes are planned to peak at 90% utilisation in column 3).

[image: image6.wmf]

Internet

OLTP

Batch

Workload

Profile

3 separate

servers

One server,

shared

workload

3 servers

losing Web

trades

Dynamic

shared

workload,

delay lower

priority work

400

300

440

280

200

The fourth column illustrates the advantages of running these workloads in one system, or of using flexible LPARs, allowing a much lower total capacity in this case, since the workloads peak at different times.

The fifth column demonstrates the advantage of z/OS WLM being able to differentiate between high and low priority work, giving enough resource to high priority work to meet its goals, while delaying lower business-priority work, giving it resources when not required by the higher priority work. WLM doesn’t just do this for WebSphere, but across all workloads, so for example, batch can be delayed to give priority to online transactions.

z/OS has the unique ability to differentiate between different types of transactions and users, delivering better service levels to the high priority transactions and users, even within WAS. This makes consolidation much easier, since on other platforms, every transaction and user within WAS has the same priority, allowing low priority workloads to degrade service for high priority work.

Infrastructure simplification and TCO savings
zSeries enables significant infrastructure simplification and cost savings. Having far fewer servers is considerably simpler in itself. In addition, zSeries can simplify the infrastructure by removing the necessity for certain components:
· Hipersockets are TCP/IP connections through internal memory that allow network access at memory speeds between the logical partitions (LPARs) on the same box (for example WAS and legacy CICS, IMS or DB2 systems), simplifying the network infrastructure.
· Cross-System Coupling Facility (XCF) allows TCP/IP connections (and some other forms of communication) between z/OS systems on different physical boxes at gigabit speeds.

· zSeries cryptography hardware can remove the need for specialised external cryptography hardware, since it is capable of up to 6000 SSL handshakes/sec. on new System z9 configurable cryptographic feature

· Sysplex Distributor can remove the need for workload balancers, since new work arriving at the Sysplex (z/OS cluster) will be directed to the server best able to handle the work at that moment
zSeries Application Assist Processors and TCO

A new feature that can have a significant effect on Cost of Ownership is zSeries Application Assist Processors (zAAPs). zAAPs are attractively priced specialised Java processing units offering hardware, software and maintenance savings compared to standard processors. These are unique to z/OS.
High performance with good response times

A significant advantage of running WAS on z/OS is its proximity to the transactions and data. This offers several advantages and the opportunity for optimisation of the code on z/OS. The first three items are the same as in the list under Infrastructure simplification and TCO savings earlier on this page:

· Hipersockets allow network IP connections between LPARs at memory speeds, avoiding inter-system bottlenecks and network delays.

· Cross-System Coupling Facility (XCF) allow high-speed TCP/IP (and other) connections between z/OS systems on different physical boxes at gigabit speeds.

· zSeries cryptography hardware allows processor-cycle-intensive encryption operations to be offloaded onto specialised hardware, freeing processor resource that would otherwise have been used to perform these operations. A System z9 configurable cryptographic feature is capable of over 6,000 SSL handshakes/Second (the most CPU-intensive part of SSL).
· Since CICS, IMS, DB2 and MQSeries are usually also running on z/OS, optimisation of the connection code from WAS has been done to take advantage of this (for example using XCF rather than a TCP/IP connection where possible).

· Resource Recovery Services (RRS) is the long-standing and highly robust and scaleable z/OS transaction service. This is used for existing CICS, IMS and DB2 workloads and can be used by WAS on z/OS to co-ordinate Logical Units of Work using two-phase commit. Clearly it is easier and more efficient to co-ordinate recovery across z/OS systems than over different systems, possibly at different physical locations.

Near-linear scalability
Customer benchmarks of real applications show WebSphere on z/OS is capable of scaling linearly (though of course the application may contain code that is incapable of scaling linearly!) It will scale almost linearly across multiple systems on different physical boxes.
The following are real results obtained by a banking customer, benchmarking their application under WAS V4.01 on z/OS in IBM Montpellier.

[image: image7]
The CPU/transaction actually decreased slightly as the utilisation approached 100%. This is because z/OS spends less time looking for work to do. As the workload was ramped up, the customer saw WLM start up new instances of WAS as the response time target of 0.5 Seconds was approached. The additional instances kept the response well within the target.
By contrast the customer’s UNIX system was not linear. The transaction rate decreased slightly as the system approached 100% and there was a small percentage failed transactions. The customer also benchmarked this workload with three UNIX vendors, none of whom was able to scale to 1000 transactions per second, though the reasons for this were not determined.
It is noteworthy that the load-generating tools reported no failed transactions connecting to WAS on z/OS, whereas the UNIX systems measured by the customer did report a small percentage of failed transactions. Response times were also more variable on the UNIX systems tested.

High availability (99.999% application availability target)
99.999% (“five 9s”) availability has been a design point of Parallel Sysplex (z/OS clustering) for many years. This includes hardware and software and both planned and unplanned outages. It has taken many years of identifying the real causes of customer outages and systematically working through them to achieve this. It is generally recognised that z/OS provides the highest availability of any platform.

While other platforms are starting to claim similar numbers, the small print usually indicates that this is:
· for unplanned outages only
· hardware only.

That is database reorgs, backups, software, microcode and hardware upgrades etc. may require an outage.
It might be argued that at these levels of availability, the last few digits are insignificant, however, if 99.99% is enough, 1,830 pieces of mail would be mishandled/hour in the US! 99.99% equates to 87 hours/year.
As part of the benchmark described in the previous section, WAS regions were made to fail to demonstrate resilience. On z/OS, only the in-flight transactions failed (1 for a Servant Region, 14 for a Control region at 1000 transactions per second). The system reconfigured itself and continued processing. The customer tried this on their distributed systems, and hundreds of transactions failed before the configuration started to route transactions around the problem. This could be a significant factor in a banking branch environment (especially if the teller staff keep clicking to resubmit the transactions until they succeed, since this generates a workload spike).

Excellent manageability
Some of the key factors that make z/OS more manageable in WebSphere environments stem from traditional z/OS systems management strengths and maturity, including:
· Far fewer servers are usually required:
· On z/OS, usually there are many applications in each partition compared to UNIX and Windows, where one application per partition is very common.

· WAS on z/OS can handle high numbers of processors

· Cloning of systems in a Parallel Sysplex makes creating and managing the different systems easier
· Mature z/OS Systems Management software and automation. Not only are the products more mature, but many customers simply have not applied the same level of sophistication of automation and procedures to their large estates of UNIX and Intel boxes (part of the problem is the sheer numbers involved).
· Disaster recovery can be easier to manage, since normal z/OS disaster recovery can easily be extended to cover the additional capacity. In a distributed environment there can be large numbers of physical boxes required at the backup site, each with their own software and data to be backed up and recovered. Since these systems often rely on z/OS systems for database and transaction access, backup and recovery co-ordinated with z/OS might also be more effective.
· A technology refresh can be achieved by upgrading a much smaller number of boxes. By comparison, in a distributed environment, every box might have to be upgraded to achieve the same result. Examples might include applying software patches, a hardware upgrade necessary to support a new level of software, or a change to a 64-bit architecture.

A major additional contribution comes from z/OS’ ability to self-manage and self-tune:
· z/OS Workload Manager (WLM) is unique in tuning the system to meet response time goals for each workload that are specified by the administrator. At times of high demand for resources, WLM will take resources from lower-priority work to maintain the response times of the higher-priority work. The system self-tunes itself from moment to moment.
· Sophisticated logical partitioning (LPAR) allows unused processor capacity to be used by other partitions. Intelligent Resource Director (IRD) (working with WLM) manages the response time goals across partitions by taking resource from low-priority workloads or workloads meeting their goals and giving the resource to workloads in other partitions.
· WLM can prioritise and differentiate different workloads within WebSphere by user type, transaction type or time of day, allowing capacity to be used where business priorities indicate it should be, not simply consumed by the most resource-hungry workload
Examples of differentiating workloads might be setting higher priority for certain types of users (e.g. Gold Card holders) or for certain types of transaction (e.g. potential customers trying to open a new account).
z/OS workload prioritisation includes I/O and even IP packets sent into the network (CISCO routers can differentiate service based on these priorities).

Functions such as z/OS Workload Manager (WLM) automatically optimising the number of JVMs and WAS Server regions by workload and transaction types relieve administrators of many of the problems of tuning (for example determining the optimum ratio of JVMs/processor etc. which is necessary in a UNIX environment).
Maintainability (including flexibility and portability)

J2EE standards provide a high degree of application deployment flexibility. Inevitably, however, no one platform is ideal for every application. J2EE assumes a distributed, heterogeneous environment, which means that a mix of platforms can be used, with elements of the architecture employed where they can exploit the characteristics of the underlying platform: transaction- and database-oriented on the z/OS platform, processor-intensive on a UNIX platform.

[image: image8.wmf]Edge servers

"Specialty" servers

Web

Web

application

application

servers

servers

Transaction servers

Data servers

WebSphere on

UNIX or Linux

WebSphere

 on z/OS

WAS is often run in existing production LPARs. However developers sometimes say they want the flexibility to apply new maintenance or upgrade software at will, and might feel constrained by the usually strict z/OS change control. Of course strict change control is important for system stability and availability. Either choice can be made: if desired, separation of WAS LPARs on zSeries from existing production LPARs would allow a more flexible approach to be taken to system maintenance than on existing production LPARs.
The Parallel Sysplex architecture means that most changes and maintenance can be applied concurrently with production work, with one system at a time being taken down to apply maintenance, then brought back in, until all systems have been updated while production applications continue to run.
Highest security
The damage to brand image alone when an institution is publicly hacked can run into millions of Euros, in addition to any direct loss.

z/OS offers the highest security of any platform. This is because security has always been a primary concern on commercial platforms, whereas in academic environments (UNIX’s heritage) or single-user systems (Windows’ heritage) it was less important. Firewalls cannot protect a fundamentally insecure system.
The difference is fundamentally rooted in the architecture and philosophy. It would take many pages even to outline the differences, including functions such as storage protection keys to prevent any application interfering with another’s memory. To take just one example: every UNIX superuser has total authority on a UNIX system, whereas on z/OS, superusers are controlled rigorously by z/OS Security Server: each superuser can be granted different authorities with a fine degree of granularity. The different functions/roles required can be spread over multiple userids and precisely controlled so that no-one has total authority.
More recently z/OS has added cryptographic co-processors, firewall, Intrusion Detection and Public Key Infrastructure (PKI) services.
z/OS and z/VM are the only operating systems that offer an Integrity Guarantee. If a customer discovers a way to compromise system integrity (in a properly secured system), IBM will accept an APAR (Authorised Program Analysis Report) for it.
zSeries is the only platform to have achieved Common Criteria Evaluation Assurance Level 5 (EAL5) certification for the security of its logical partitions (LPARs).
New products in a UNIX/Windows environment

Several new software products change the way a UNIX/Windows environment could work by adding some z/OS-inspired functionality. The products are:

· WebSphere Extended Deployment (WebSphere XD)

· Enterprise Workload Manager (EWLM)

· Tivoli Intelligent Orchestrator (TIO)

WebSphere Extended Deployment
WebSphere XD adds new functionality on all platforms including z/OS (for example: WebSphere Partitioning Facility (WPF), extensions to the admin console, Health Monitoring, Business Grid, Application Edition Manager and ObjectGrid). In addition it brings several z/OS-inspired capabilities to a UNIX/Windows environment.

[image: image9]
A new component called the On Demand Router (ODR) performs several functions:

· Classification of workloads
· Prioritisation of requests (no longer simply first in first out: lower priority requests can be queued)
· Flow control (queuing of requests before they reach the WAS nodes to avoid overloading the nodes)

· Routing and load-balancing (which dynamically balances the requests to nodes, but based only on response times, not factors such as memory shortages, the amount of high priority work running on those nodes etc. as z/OS does).
WebSphere XD also adds a Placement Manager which will start up and stop new WAS instances within the WAS cell only to help balance the workload.
These are useful functions (both on z/OS and other platforms), but there are still advantages to the z/OS implementation, for example:
· WLM can co-ordinate all the elements of the transaction (e.g. WAS, CICS, TCP/IP, DB2) to meet the response time goals whereas WAS XD can only manage WAS.
· WebSphere XD is only able to manage resources within the WAS cell. It cannot take resources away from other workloads (e.g. Lotus Notes) or other WAS cells, since these are outside its control. A consequence is that WAS XD can only help by scaling horizontally, whereas WLM can provide additional resources to enable vertical scalability. (Another product, Tivoli Intelligent Orchestrator (described next) can allow WebSphere nodes to be started on hardware outside the WAS cell, but this is still horizontal scaling, and adds yet another layer of complexity, compared to an inbuilt function of z/OS).

· Once WebSphere XD has allocated a request to a particular node, the management of resources on that node is still up to the operating system. Dynamic tuning of resources within the system is still only performed by z/OS.

· WAS XD can start multiple instances of the application servers in order to use all the power of a node, however the stacking number (the number of instances required to do this) has to be determined manually for each application/type of node combination. z/OS can start multiple servants and tune the number automatically.
· If insufficient resources are available WebSphere XD will degrade the response times for all applications under its control so that they all miss their goals (though high priority workloads will miss by less). z/OS will degrade the response times for low priority workloads so that the high priority workloads continue to meet their goals (if possible given the resources available).

· WebSphere XD routing to nodes is based only on response times; other factors such as storage shortage conditions and the amount of high-priority work already running on each node are not taken into account as they are on z/OS (though XD emergency throttling will reduce the number of requests sent to a system where sensors detect conditions such as extremely high node utilization or intermittent communication failures)
· Stopping WAS instances using WebSphere XD (which may be done automatically to enable new instances of another application to run on that server) is essentially session failover. If state is required, and is not persisted to disk, the user will perceive an outage.

Tivoli Intelligent Orchestrator

Tivoli Intelligent Orchestrator (TIO) is a software product that monitors workloads and servers, and can be set up to automatically initiate the re-allocation of servers to other workloads. When TIO determines that new servers need to be allocated to a workload it asks Tivoli Provisioning Manager (TPM) to take servers from the free pool and configure the appropriate application to run on them. When the additional servers are no longer needed, TIO asks TPM to return them to the free pool.
While this is extremely useful, and provides a firm foundation for advanced virtualisation, it is another layer of complexity compared to the inbuilt capabilities of z/OS. In addition, provisioning a server with new workload will take a finite amount of time, whereas z/OS can re-allocate resources from moment to moment.

Enterprise Workload Manager
EWLM begins to add z/OS WLM functions to distributed platforms. Today, however, it will only perform classification and the ability to report how workloads are performing against their response time goals. It will not automatically tune the systems to help them meet their goals.

In addition, for full EWLM functionality, the application or middleware needs to be ARM-instrumented (Application Response Measurement). IBM webserving plugins, WAS and DB2 are ARM-instrumented, however many other workloads are not today. EWLM offers a lower level of functionality for these “partially instrumented” workloads.
When to use which platform – are they all mainframes now?
Many vendors claim that their products have some “mainframe-like” attributes. Clearly they believe mainframe qualities are something to aspire to, so why don’t all systems have mainframe qualities? Is there an operating system which offers the nirvana of being ideal in all environments, or are some operating systems more suited to particular types of work than others?
The answer stems from the fact that historically Windows, UNIX and z/OS served different workloads and therefore had different development priorities. Also compromises have to be made between conflicting requirements: the compromises chosen reflected the workloads. What was important for a UNIX or Windows system in the past was different from what is important in a commercial transaction-oriented system, and this has resulted in very different system characteristics. UNIX and Windows would like to emulate many z/OS characteristics, but over 40 years of evolution and enhancement take some time and investment to match.
Equally, of course, UNIX and Windows systems have strengths that z/OS lacks. Would you want to use z/OS to create presentations on your laptop? Of course not: it doesn’t have the graphical, friendly user interface, and it’s more complex to install and operate because it’s optimised for complex multi-user transactional environments. The focus of z/OS has been on high transaction-volume, database-intensive multi-user systems, and it is still the operating system best suited to those environments.

Historically, UNIX systems have evolved from a scientific environment, where the priorities were different from commercial requirements:

	Scientific computing requirements
	Commercial computing requirements

	Supercomputing (number-crunching)
	High data bandwidth for data-oriented work

	High number of floating-point ops/Second
	Scaling to large numbers of users/transactions

	Raw Megaflops are focus
	Transaction-handling is focus

	Flexibility: user can change the system
	Manageability: changes impact everyone

	Fast reboot in case of problems
	Recover, isolate problem, remain available

	Security not a big issue
	Data is sensitive and security critical

	Cheap to buy - users look after it
	Low total cost - low cost to manage/own

	Graphics and user interface important
	Transaction-integrity important

	New applications available quickly is key
	Robustness and availability are key

	One application per box
	Multiple applications and systems per box

	Data often not shared between systems
	Most/all data shared by all systems

A similar comparison table could be constructed for Windows, where the focus was originally on personal (single-user) productivity.
Of course, there has been enormous emphasis on delivering commercial computing capabilities within every operating system, and many ideas which originated in the mainframe environment are being adopted by other platforms. There are design tradeoffs, however, and the consequences of the original focus are still evident for most of the differences above. The previous sections of this document have outlined some of the differences that exist for WAS today.
Factors to consider in platform selection
The key is to consider the relationship between Total Cost of Ownership and the Qualities of Service required. Recall this diagram from page 4:

[image: image10.wmf]Hardware Costs

Windows

UNIX

z/OS

Limited QoS

Good Enough Computing

The Ultimate QoS

 Qualities of Service

Follow the bottom line

Develop on one platform

and deploy on another

Move applications between

platforms

Stretching a technology

Stretching a technology

beyond its design point

beyond its design point

is sub-optimal

is sub-optimal

and may be impossible

and may be impossible

Factors in the following table will influence the decision:
	Factors favouring a UNIX/Windows environment
	Factors favouring a z/OS environment

	CPU-intensive workloads
	Data/transaction-intensive workloads or workloads accessing z/OS applications

	Breadth of software portfolio:

· New products often available in UNIX/Windows environments earlier

· Specialised applications
· 3rd party applications
	Demanding requirements for QoS/NFRs:
· Performance

· Scalability
· Availability

· Manageability

· Maintainability

· Security/Integrity

	Speed of initial deployment
	Change control, stability, availability

	Each project can buy its own systems
	Shared pool of resources, automatically re-deployed to meet response time goals

	Low purchase cost
	Low Total Cost of Ownership

Key points:
1). UNIX systems tend to be optimised for CPU-intensive work and offer excellent price-performance for these workloads. The reasons zSeries excels at data-intensive work include:

· the number of internal data-paths;
· the high internal and external bandwidth;
· the use of specialised processors to offload I/O processing from the central processors (System Assist Processors);
· the use of specialised processors within the channel subsystem.
2). Some applications are simply not available on z/OS or appear first on UNIX/Windows. However, those that appear on zSeries are often re-written to exploit z/OS functionality (e.g. Parallel Sysplex, security etc.) rather than simply ported. This means they can be tightly integrated with z/OS operating systems functionality to offer higher Qualities of Service than the distributed version.

3). The highest capabilities for QoS/NFRs are delivered on z/OS. Particularly important to consider are the real differences (described earlier) in:

· availability (not just 99.999% for hardware or unplanned outages)

· manageability (automatic re-allocation of a shared pool of resources to meet response time goals leading to high utilisation versus managing the sheer number of UNIX/Windows systems involved; disaster recovery etc.)

· security.
4). It can be easier to deploy a new application quickly on UNIX (if only because of different change control practices) however security, robustness and availability will generally be better in a z/OS environment.

5). It can be attractive for each project to have the ability to buy its own systems in a UNIX/Windows environment. However, this can lead to isolated islands of resources, increased costs and difficulties of management. It is much easier to manage a shared pool of resources, automatically re-deployed to meet response time goals.
6). Purchase cost for hardware and software is generally lower in a UNIX/Windows environment, however consultancy groups often conclude that total cost of ownership is lower in a zSeries environment. Software and staff costs are significant factors, and the trend is for these to increase.
Summary

No single platform is the best choice for each and every application. This document has outlined how WebSphere Application Server on z/OS differs from WAS on other platforms by exploiting the underlying z/OS systems services, and the advantages this gives against the key requirements of:

· Low Total Cost of Ownership (TCO)
· High performance with good response times

· Near-linear scalability to meet transaction growth with acceptable costs and response times
· High availability (99.999% application availability target)

· Excellent manageability

· Maintainability (including flexibility and portability)
· Highest security.

A table summarising how zSeries technologies fulfil these requirements can be found in Appendix: Summary of how zSeries technology advantages map to customer requirements.
Feedback

I would be delighted to receive feedback or comments. Please send via email to barwisc@uk.ibm.com. Thank you.
Appendix: Summary of how zSeries technology advantages map to customer requirements
zSeries technology advantages are mapped to requirements in the following table. The functions are described in more detail in the sections following the table:

	Requirement
	Function
	Benefit to customer

	Low TCO
	 Many applications on one system

 Low management costs
 High utilisation
 Dynamic LPARs

 WLM
 IRD

 Hipersockets
XCF

 Sysplex Distributor

 Cryptography hardware

 High I/O bandwidth

 Ability to handle database access from multiple applications

 zAAPs
	 Low incremental cost of adding applications compared to adding systems
 Consultancy groups report zSeries has lowest total cost of ownership versus Windows and UNIX
 Less white space as can run at 90-100% utilisation
 Resources automatically shared between LPARs

 Resources allocated to workloads according to how response time goals are being met
 Resources dynamically redistributed between LPARs according to response time goals
 Simplify infrastructure by eliminating some networking hardware

 Simplifies infrastructure by eliminating some workload balancers

 Minimises processor cycles used by encryption and eliminates some external cryptography hardware
 More data processed by a given CPU capacity

 Reduces the number of copies of the database and therefore the hardware and management cost. Key to data consistency, integrity, security, timely decision making, reducing data transfer costs, associated security risks and data backup.
 Reduces hardware, software and maintenance costs

	High performance with good response times
	 High I/O bandwidth

 Parallel Sysplex

 Hipersockets
XCF

 Cryptography hardware

 Local optimisations

	 High database transactions/second
 Ability for all applications running on all systems to share the same data
 High-performance network connections can reduce network latency
 Up to 6,000 SSL handshakes/second

 Improved performance when connectors are accessing local systems

	Near-Linear Scalability
	 zSeries proven track-record

 Cryptography hardware
	 Reduced risk in implementing
 Up to 6,000 SSL handshakes/second

	High availability (99.999% application availability target)
	 Internal clustering

 Parallel Sysplex

 Remote copy
	 Redundant hardware within a single box

 99.999% availability design point (including planned outages, unlike other platforms)
 Can duplex data to a remote site. XRC unique to zSeries

	Excellent manageability
	 One Sysplex easier to manage than several systems
 zSeries systems management software
 Easier disaster recovery

 Easier technology refreshes
 WLM

 IRD

 Self-tuning
	 Managing multiple LPARs on zSeries is much easier than managing multiple boxes

 The problems most customers face is managing the (larger number of) non-zSeries systems
 Existing z/OS disaster recover easily extended to cover WAS applications
 Far fewer systems to upgrade

 Resources automatically managed by response time goals

 Resources managed by response time across LPARs

 Less time spent managing and tuning

	 Maintainability (including flexibility and portability)
	 J2EE compliance

 SMP/E

 Separate LPAR

 Parallel Sysplex
	 Applications can be moved between platforms
 Ability to selectively back out maintenance

 Changes don’t affect production

 Can quiesce one system, apply maintenance, move transactions back, with the ability to back out the maintenance in case of problems.

	Highest security
	 zSeries security server

 SSL hardware

 LPAR isolation certification to military standards
	 Much higher security than other UNIX systems
 Can handle overhead of encryption

 Multiple LPARs on the same box can be as secure as multiple boxes (certified to EU and US standards).

The functions in the second column of the table are explained in the next section (in alphabetical order to help locate them).
Appendix: Explanation of zSeries functions
Ability to handle concurrent database access from different applications

The zSeries Workload Manager is the world’s most sophisticated workload management tool, and it dynamically ensures that small, large and ‘killer’ queries against the databases do not impact on the day-to-day operational transactions. When other higher priority jobs are not running, these queries can have access to all the available systems resources (e.g. overnight).

Cross-System Coupling Facility (XCF)
See XCF.
Cryptography hardware

zSeries can include cryptography hardware. This allows far superior numbers of SSL transactions to be sustained compared to other platforms, and allows encryption to be more extensively implemented without excessive overhead or severe limitations on scalability. A System z9 is capable of over 6,000 SSL handshakes per second. (The SSL handshake is by far the most CPU-intensive part of an SSL session).

Dynamic LPARs
zSeries systems typically run multiple systems on one box, with production, development and test LPARs, and more recently web-serving LPARs or new application LPARs.

This leads to better use of resources, since all resources in the box are available to whichever application needs them at a given moment. Similarly, due to Parallel Sysplex and sophisticated Systems Management software evolving over 30 years, these LPARs are easier to manage than individual systems would be.

This should be contrasted with the state of the art partitioning on UNIX and Windows systems. Apart from IBM’s POWER5, generally partition boundaries must match physical boundaries (at a card or processor level). The dynamic flexibility to consume resources anywhere within the box is completely lost. Manual re-configuration is necessary, and this is severely restricted. In addition, managing multiple UNIX or Windows LPARs is just the same as managing multiple systems: it is much less efficient than zSeries.
Dynamic Workload Management (WLM)

WLM automatically manages contention for resources between different applications by business transaction priorities. WLM has a holistic view of the system, allowing it to manage the response times of every element of a business transaction. This allows multiple applications to reside in the same partition and WLM re-tunes the system continuously to ensure all applications meet their response time goals as far as possible within the constraints of the physical hardware available.

High I/O bandwidth throughout the system

zSeries provides virtually limitless scalability of data. The internal data transfer speed of up to 96GB per second allows data movement and information access virtually real-time. This gives the capability to analyse information and sustain a high rate of database transactions.

Specialised additional processors (System Assist Processors) handle I/O processing to free the central processors for application work and increase the I/O throughput.
High Utilisation

zSeries systems routinely run multiple concurrent production applications and databases securely at high utilisation (typically >70% prime shift, 90-100% peak hour). Windows and UNIX boxes typically run at much lower peak utilisations, and have one application per box, which leads to wasted hardware and higher cost. This also implies fewer operations staff per installation.
Hipersockets

Hipersockets are TCP/IP connections through internal memory that allow network access at memory speeds between the logical partitions (LPARs) on the same box (for example WAS and legacy CICS, IMS or DB2 systems), simplifying the network infrastructure.
Intelligent Resource Director (IRD)

zSeries uses intelligent resource management to allocate hardware resources to the highest priority online work (vs. batch, test, and other online) across LPARs, based on response times versus goals.
Internal Clustering

[image: image11.wmf]Instruction

Instruction

Unit

Unit

(mirror)

(mirror)

Execution

Execution

Unit

Unit

(unchecked)

(unchecked)

Cache

Cache

(parity)

(parity)

Instruction

Instruction

Unit

Unit

(mirror)

(mirror)

Execution

Execution

Unit

Unit

(mirror)

(mirror)

Recovery

Recovery

Unit

Unit

(ECC on

(ECC on

saved

saved

state)

state)

Instruction

Instruction

Unit

Unit

(unchecked)

(unchecked)

zSeries CPU Fault Tolerance

zSeries CPU Fault Tolerance

[image: image12.wmf] Detect error

 Instruction retry

 Hardware control

 Transient recovery

 Permanent fault

Retry ineffective

CPU

CPU

error

error

Checkpoint

Checkpoint

retry

retry

Process

Process

relocate

relocate

CPU

CPU

sparing

sparing

 Restore full

 capacity

 Move work

 to another CPU

zSeries processors are designed to allow for failures and contain redundant hardware so that one system can stay up even when it has encountered a hardware failure. An example would be that each instruction is performed twice on dual hardware, and the results compared.

Local optimisations

Since CICS, IMS, DB2 and MQSeries are usually also running on z/OS, optimisation of the connection code from WAS has been done to take advantage of this (for example using XCF rather than a TCP/IP connection where possible).
LPAR isolation certification to military standards
zSeries LPAR has been certified to military standards in both Europe and the US as providing a similar level of isolation to separate boxes. This allows multiple LPARs to be used on the same system without additional security concerns.
One Sysplex easier to manage than several systems
Multiple z/OS systems in a Parallel Sysplex are much easier to manage than multiple UNIX systems. It is also much easier to capacity plan for one box where resource is available to all applications than to capacity plan for each application separately.

Parallel Sysplex

Parallel Sysplex is the zSeries approach to clustering multiple systems, while sharing the database among all systems with low overhead due to Coupling Facility technology. This allows:

 Applications on different systems to share the data with high performance.

 High availability: an application can be run over several systems and continue operating in the event of failure of one system.

 Continuous availability: the zSeries focus on availability over several decades has led to areas such as database re-organisation to be done concurrently. This used to require the applications to be shut down.
The design point for zSeries availability is 99.999% (including scheduled outages). This is superior to any other platform.
Remote Copy

In the future it may be desired to spread the data across two sites for availability in the event of a disaster at one site. This is easily achievable with zSeries and has been implemented by many financial institutions. Co-ordinating consistency of z/OS and Linux data is also possible.
Sysplex
See Parallel Sysplex

Sysplex Distributor

Sysplex Distributor is an intelligent network traffic router within the Sysplex. It can remove the need for workload balancers, since new work arriving at the Sysplex (z/OS cluster) will be directed to the server best able to handle the work at that moment. Sysplex Distributor and WLM interact to determine which server is the most appropriate at that moment.

XCF

Cross-System Coupling Facility (XCF) allows TCP/IP connections (and some other forms of communication) between z/OS systems on different physical boxes at gigabit speeds.

WLM

See Dynamic Workload Management (WLM)

zAAPs

zAAPs are attractively priced specialised Java processing units offering hardware, software and maintenance savings. Adding a zAAP has no effect on IBM software costs.
zSeries Security Server

zSeries offers unparalleled security features developed over the last 30 years including system level, network level, and right down to transaction level security. For Internet access a System z9 can deliver up to 6,000 Secure Sockets Layer transactions/second using cryptography hardware. This ensures that the right users get speedy access to their authorised information and do so in privacy.
zSeries systems management software

zSeries systems management has evolved over several decades through the early automation of message-handling to today’s sophisticated systems management software. Most customers’ problems lie in handling the larger number of non-zSeries systems that proliferate rapidly.
zSeries track record of scalability

zSeries has over the past decades repeatedly tuned and removed bottlenecks to ensure scalability. Transaction rates of well in excess of a thousand transactions/second are commonplace on single systems. While Java is a less mature technology, and by its nature more CPU-intensive than COBOL or assembler, benchmarks and real customer workloads have demonstrated thousands of transactions/second are possible on single systems under WebSphere.
Adding additional systems in a Parallel Sysplex could allow even higher volumes to be handled.

� EMBED FLW3Drawing ���

� EMBED FLW3Drawing ���

AM

Node

5

FA

AM

Low

Importance

Medium

Importance

High

Importance

Financial

Advice

Account

Mngmt

WebSphere XD

Decision Makers

WebSphere on demand Router

WebSphere Cell

Operational Policy

Classification

Routing and

Load Balancing

Stock

Trading

Prioritization and

Flow Control

Placement

Decisions

Application Demand

Resource State

Financial

Advice

Account

Mngmt

Stock

Trading

Placement

Executions

Node

1

ST

AM

Node

4

FA

AM

Node

3

ST

FA

Node

2

ST

� The SSL rate was achieved with a System z9 with four processors and two Crypto Express2 Cards (one feature, both configured as accelerators). When a System z9 with four CPs and both PCI-X adapters on a Crypto Express2 feature are configured as accelerators, the Crypto Express2 feature is designed to perform up to 6,000 SSL handshakes per second.

© 2005 “IBM Advanced Technical Support Techdocs” and “Washington Systems Center”
Version 5/26/2006
 http://w3.ibm.com/support/Techdocs
Platform Selection for WebSphere: why choose z/OS?
Page 14 of 26

[image: image13.wmf]Scalability

0

100

200

300

400

500

600

0

200

400

600

800

1000

1200

tx

/sec

CPU

Total CPU

Linear trend line

Scalability

0

100

200

300

400

500

600

0

200

400

600

800

1000

1200

tx

/sec

CPU

Total CPU

Linear trend line

[image: image14.wmf]Instruction

Instruction

Unit

Unit

(mirror)

(mirror)

Execution

Execution

Unit

Unit

(unchecked)

(unchecked)

Cache

Cache

(parity)

(parity)

Instruction

Instruction

Unit

Unit

(mirror)

(mirror)

Execution

Execution

Unit

Unit

(mirror)

(mirror)

Recovery

Recovery

Unit

Unit

(ECC on

(ECC on

saved

saved

state)

state)

Instruction

Instruction

Unit

Unit

(unchecked)

(unchecked)

zSeries CPU Fault Tolerance

zSeries CPU Fault Tolerance

[image: image15.wmf] Detect error

 Instruction retry

 Hardware control

 Transient recovery

 Permanent fault

Retry ineffective

CPU

CPU

error

error

Checkpoint

Checkpoint

retry

retry

Process

Process

relocate

relocate

CPU

CPU

sparing

sparing

 Restore full

 capacity

 Move work

 to another CPU

_1107867120.unknown

_1168784908.unknown

_1092151173.unknown

_1107858939.unknown

_1092151272.unknown

_1091619675.unknown

