
 1

Migrating ColdFusion to WebSphere

Authors: Sunil Prasad

Intended Audience: This paper is primarily intended for managers and architects considering options for

migrating applications from ColdFusion platform to WebSphere..

Further Inquiries and Feedback: info@thbs.com

 Notices:

The contents of this paper are protected by copyright. No part of this paper may be reproduced in any form

by any means without the prior written authorization of Torry Harris Business Solutions, Inc.

WebSphere� is a trademark of the IBM Corporation

ColdFusion� is a trademark of Sun Microsystems

Java�, JavaServer� Pages, Java Servlets�, Enterprise Java Beans� are all trademarks of Sun

Microsystems

Torry Harris

Distributed e-enterprise Computing

 2

1 Introduction

1.1 Scope of Document

This document gives a detailed study of the issues involved in migrating ColdFusion applications to
J2EE architecture. It includes the detailed Tag , Function and operator mappings into the J2EE
world.

2 Technology Overview

ColdFusion Application is a page based web application, developed using propritary markup
language called the CFML - ColdFusion Markup Language. ColdFusion Application is a
collection of ColdFusionApplicationPage.

2.1 ColdFusion Application Pages

Application pages are the functional parts of a ColdFusion application, including the user interface
pages and forms that handle data input and format data output. They can contain ColdFusion tags
(CFML), HTML tags, CFScript, JavaScript, and anything else you can normally embed in an
ordinary HTML page. The default file extension used for ColdFusion application pages is .CFM.

CFML is a tag based language like HTML and XML. It is used to create server side scripts for
accessing database, manipulating the data and dynamically generating the web page. CFML is the
ColdFusion Application Development Platform containing nearly 105 CFML Tags and 235 CFML
Functions.

2.2 ColdFusion Server

ColdFusion Server is an extension to the WebServer that processes ColdFusion Application Page
from the WebServer.

When the Web Browser requests a page that contains CFML tags, the Web server passes the file
with the ColdFusion file extension to ColdFusion Server. ColdFusion Server scans the page and
processes all CFML tags. ColdFusion Server then returns only HTML and other client-side
technologies to the Web server. The Web server passes the page back to the Web Browser.

 3

2.3 Architecture Overview

 request c) req .cfm page

.cf DB
DB

Reg response res . html

2.3.1.1.1 ColdFusion WebApplication Architecture

The above mentioned is the simple ColdFusion application architecture. When the client
requests a ColdFusion Application page, the webserver passes the .cfm files to the ColdFusion
Application Server. ColdFusion application pages are processed on the server at runtime.
ColdFusion Server then returns only HTML and other client-side technologies to the Web server.
The Web Server passes the HTML page back to the browser client.

 request req .jsp page

 DB

 response r es . html

JSP based WebApplication Architecture

When the client from the browser requests a JSP Page, the WebServer forwards the request to the
WebSphere Application Server. When JSP pages are requested for the first time, they are
converted to Servlets and then compiled to a .class file. Compiled Servlet is then loaded to handle
the client request. After processing it creates a dynamic HTML page as response and sends it to
the client through the WebServer.

B
R
O
W
S
E
R

WEB
SERVER

ColdFusion
Application

Server

B
R
O
W
S
E
R

WEB
SERVER

WebSphere
Application

Server

 4

3 Migration to WebSphere

Migration requires the conversion of .cfm files to .jsp files. It requires parsing the ColdFusion
Application Page (.cfm file) and replacing ColdFusion tags with equivalent JSP tags and replacing
ColdFusion functions with Java API function equivalents or functions within the THBS CF2WAS
toolkit.

The sections below provide a high level view of the complexity involved in the Tag and Function
mapping. All the Functions/Tags are categorized according to the complexity in the migration.

�� Low � Equivalent exists or can be achieved easily.
�� Medium/Moderate � Equivalent functionality can be achieved , but not straight

forward.
�� High � These are areas in which equivalent functionality does not exist in J2EE and

Involve complex coding efforts
�� Critical � This involves serious complexities

3.1 CFML Tags
A detailed study of all the CFML tags are done. Tags are grouped into different categories.
For each CFML tag mapping to JSP tag if exists, else possible solution to create the JSP
tag equivalent, any issues and the level of complexity are documented.

3.1.1 Complexity Analysis

Table below gives the complexity analysis for mapping CFML tags to J2EE .

Tag Critical High Medium Low
Form 0 6 6 0
Extensibility 4 3 0 2
Internet Protocol 0 5 2 0
Web Application 3 2 0 0
Database Manipulation 0 7 1 0
Data Output 0 3 2 0
File Management 0 1 1 0
Flow Control 1 1 10 2
Variable Manipulation 0 3 1 0
Others 0 2 1 2
Total 8 33 24 6

 Table 4.1

Appendix A lists all the tag mappings.

3.2 CFML Functions

 5

Function mapping involves the mapping of CFML functions to J2EE equivalents. Appendix B
gives a detailed description of the CFML functions and J2EE mapping.

3.2.1 Complexity Analysis

Table below gives the complexity analysis for mapping CFML functions to J2EE .

Function Critical High Medium Low
Array 0 0 11 8
Structure 0 0 10 3
Date & Time 0 7 17 8
System 1 3 3 3
Other 0 3 8 5
Dynamic Evaluation 0 2 0 2
Display & Formatting 0 4 2 9
International 0 2 1 13
List 0 6 3 12
Authentication 0 0 1 3
Decision 0 4 1 12
String 0 6 13 25
Mathematical 0 0 7 27
Query 0 5 0 2
Total 1 42 77 132

 Table 5.1

Appendix B lists all the function mappings

 6

4 Appendix A - Tag Mapping

4.1.1 Conversion of CF Tags � Risks Involved

There are some issues involved in creating CFML tags equivalent JSP tags library. There are
some CFML tags for which equivalent JSP tag may not be possible.

• CFREGISTRY tag gives you programmatic access to the Windows Registry. The
CFREGISTRY tag reads, writes, and deletes keys and values in the system registry.
CFREGISTRY is supported on all platforms, including Solaris and HP-UX.

• CFREPORT runs a predefined Crystal Reports report.

• CFSCRIPT tag encloses a code segment containing CFScript ColdFusion server-side

scripting language. CFScript is similar to Java Script and VBScript. CFScript uses
ColdFusion functions, expressions, and operators. Read and write ColdFusion
variables inside of CFScript. One use of CFSCRIPT is to wrap a series of assignment
functions that would otherwise require CFSET statements.

• CFWDDX tag serializes and de-serializes CFML data structures to the XML-based

WDDX format (Web Distributed Data eXchange). It is used to generate JavaScript
statements instantiating JavaScript objects equivalent to the contents of a WDDX
packet or some CFML data structures. WDDX is used for representing objects in a
language independent manner.

• CFSCHEDULE provides a programmatic interface to the ColdFusion scheduling

engine. You can run a specified page at scheduled intervals with the option to write out
static HTML pages. This allows you to offer users access to pages that publish data,
such as reports, without forcing users to wait while a database transaction is
performed in order to populate the data on the page.

• CFCOLLECTION tag allows you to create and administer Verity collections.

• CFINDEX tag used to populate collections with indexed data.

• CFSEARCH tag used to execute searches against data indexed in Verity collections.

Note: Verity Collection � Indexing and searching

Free Text searching is a very powerful programming tool that lets you search
thousands of files or database records for any text any where within them. ColdFusion
implements text searching looping with Verity using the <CFSEARCH> and
<CFINDEX> tags. The free text indexing and searching functionality in ColdFusion is
based on Verity, Inc.�s SEARCH�97 product.

 7

ColdFusion allows you to index and search collections populated with data from:
· ASCII text files.
· Binary Office documents
· ColdFusion queries resulting from data returned by a <CFQUERY> operation.

• CFASSOCIATE tag allows sub-tag data to be saved with the base tag. This applies to
custom CFML tags only.

• CFCACHE allows to speed up pages considerably in cases where the dynamic

content doesn't need to be retrieved each time a user accesses the page. To
accomplish this, it creates temporary files that contain the static HTML returned from a
particular run of the ColdFusion page. You can use CFCACHE for simple URLs and
URLs that contain URL parameters.

4.2 Tag Mappings

4.2.1 Category: Database Manipulation Tags

Total CFML Tags = 8
Equivalent Available = Nil

 Complexity(Low/Medium/High/Critical) = 0L / 1M / 7H / 0C

 CFML Tags JSP Tags Complexity

Tag: CFINSERT

Description: CFINSERT used to insert new records in data sources.

<CFINSERT DATASOURCE="ds_name"
 DBTYPE="type"
 DBSERVER="dbms"
 DBNAME="database name"
 TABLENAME="tbl_name"
 TABLEOWNER="owner"
 TABLEQUALIFIER="tbl_qualifier"
 USERNAME="username"
 PASSWORD="password"
 PROVIDER="COMProvider"
 PROVIDERDSN="datasource"
 FORMFIELDS="formfield1, formfield2, ...">

Exist (Yes/No/Partial): No

JSP tag to be created to insert
records using
JDBC API.
java.sql.Statement
java.sql.PreparedStatement

H

Tag: CFUPDATE

Description: The CFUPDATE tag updates existing records in data
sources

<CFUPDATE DATASOURCE="ds_name"
 DBTYPE="type"
 DBSERVER="dbms"
 DBNAME="database name"
 TABLENAME="table_name"
 TABLEOWNER="name"

Exist (Yes/No/Partial): No

JSP tag to be created to update
records using JDBC API.
java.sql.Statement
java.sql.PreparedStatement

H

 8

 TABLEQUALIFIER="qualifier"
 USERNAME="username"
 PASSWORD="password"
 PROVIDER="COMProvider"
 PROVIDERDSN="datasource"
 FORMFIELDS="field_names">

Tag: CFQUERY

CFQUERY passes SQL statements for any purpose to your data
source. Not limited to queries.

<CFQUERY NAME="query_name"
 DATASOURCE="ds_name"
 DBTYPE="type"
 DBSERVER="dbms"
 DBNAME="database name"
 USERNAME="username"
 PASSWORD="password"
 MAXROWS="number"
 BLOCKFACTOR="blocksize"
 TIMEOUT="milliseconds"
 CACHEDAFTER="date"
 CACHEDWITHIN="timespan"
 PROVIDER="COMProvider"
 PROVIDERDSN="datasource"
 DEBUG="Yes/No">

SQL statements

</CFQUERY>

Exist (Yes/No/Partial): No

JSP tag to be created to execute
any SQL using JDBC API.
java.sql.Statement
java.sql.PreparedStatement

H

Tag: CFSTOREDPROC

Description: The CFSTOREDPROC tag is the main tag used for
executing stored procedures via an ODBC or native connection to a
server database. It specifies database connection information and
identifies the stored procedure.

<CFSTOREDPROC PROCEDURE="procedure name"
 DATASOURCE="ds_name"
 USERNAME="username"
 PASSWORD="password"
 DBSERVER="dbms"
 DBNAME="database name"
 BLOCKFACTOR="blocksize"
 PROVIDER="COMProvider"
 PROVIDERDSN="datasource"
 DEBUG="Yes/No"
 RETURNCODE="Yes/No">

Exist (Yes/No/Partial): No

JSP tag to be created to execute
Stored Procedures using JDBC
API
 java.sql.CallableStatement

H

Tag: CFPROCPARAM

Description: The CFPROCPARAM tag is nested within a
CFSTOREDPROC tag. You use it to specify parameter information,
including type, name, value, and length.

Exist (Yes/No/Partial): No

JSP tag to be created to specify
information and parameters to

H

 9

<CFPROCPARAM TYPE="IN/OUT/INOUT"
 VARIABLE="variable name"
 DBVARNAME="DB variable name"
 VALUE="parameter value"
 CFSQLTYPE="parameter datatype"
 MAXLENGTH="length"
 SCALE="decimal places"
 NULL="yes/no">

Stored Procedures using JDBC
API
 java.sql.CallableStatement

Tag: CFQUERYPARAM

Description: CFQUERYPARAM checks the data type of a query
parameter. The CFQUERYPARAM tag is nested within a
CFQUERY tag. More specifically, it is embedded within the query
SQL statement. If you specify its optional parameters,
CFQUERYPARAM also performs data validation.

SELECT STATEMENT WHERE column_name=
<CFQUERYPARAM VALUE="parameter value"
CFSQLType="parameter type" MAXLENGTH="maximum
parameter length" SCALE="number of decimal places"
DBNAME="database name" NULL="Yes/No" > AND/OR
...additional criteria of the WHERE clause...

Exist (Yes/No/Partial): No

JSP tag to be created to check
query parameter data type and
data validation.

H

Tag: CFTRANSACTION

Description: Use CFTRANSACTION to group multiple queries into a
single unit. CFTRANSACTION also provides commit and rollback
processing.

<CFTRANSACTION
 ACTION="BEGIN" or "COMMIT" or
 "ROLLBACK"
 ISOLATION="Read_Uncommitted"
 or "Read_Committed" or
 "Repeatable_Read" >
</CFTRANSACTION>

Exist (Yes/No/Partial): No

JSP tag to be created to manage
transaction using JTA API.
javax.transaction.
 UserTransaction

M

Tag: CFPROCRESULT

Description: The CFPROCRESULT tag is nested within a
CFSTOREDPROC tag. This tag's NAME parameter specifies a
result set name that other ColdFusion tags, such as CFOUTPUT
and CFTABLE, use to access the result set. It also allows you to
optionally identify which of the stored procedure's result sets to
return.

<CFPROCRESULT NAME="query_name"
 RESULTSET="1-n"
 MAXROWS="maxrows">

Exist (Yes/No/Partial): No

JSP tag to be created to process
multiple result set using JDBC
API

H

 10

4.2.2 Category: Variable Manipulation Tags
Total CFML Tags = 4
Equivalent Available = Nil

 Complexity(Low/Medium/High/Critical) = 0L / 1M / 3H / 0C

CFML Tags JSP Tags Complexity
Tag: CFCOOKIE

Description: Defines cookie variables, including expiration
and security options.

<CFCOOKIE NAME="cookie_name"
 VALUE="text"
 EXPIRES="period"
 SECURE="Yes/No"
 PATH="urls"
 DOMAIN=".domain">

Exist (Yes/No/Partial): No

JSP tag to be created using Servlet API
 javax.servlet.http.Cookie

M

Tag: CFPARAM

Description: CFPARAM is used to test for a parameter's
existence, and optionally test its data type, and provide a
default value if one is not assigned.
.

Exist (Yes/No/Partial): No

JSP tag to be created using Servlet API
javax.servlet.http.
 HttpServletRequest

H

Tag: CFSCHEDULE

Description: CFSCHEDULE provides a programmatic
interface to the ColdFusion scheduling engine. You can run a
specified page at scheduled intervals with the option to write
out static HTML pages. This allows you to offer users access
to pages that publish data, such as reports, without forcing
users to wait while a database transaction is performed in
order to populate the data on the page.

Exist (Yes/No/Partial): No
JSP tag to be created.

H

Tag: CFSET

Description: Use the CFSET tag to define a ColdFusion
variable. If the variable already exists, CFSET resets it to the
specified value.

Exist (Yes/No/Partial): No

JSP tag to be created

H

 11

4.2.3 Category: Other Tags

Total CFML Tags = 5
Equivalent Available = 2

 Complexity(Low/Medium/High/Critical) = 2L / 1M / 2H / C

CFML Tags JSP Tags Complexity
Tag: CFHTMLHEAD

Description: CFHTMLHEAD writes the text specified in the TEXT
attribute to the <HEAD> section of a generated HTML page.
CFHTMLHEAD can be useful for embedding JavaScript code, or
placing other HTML tags such as META, LINK, TITLE, or BASE in
an HTML page header.

Exist (Yes/No/Partial): No
JSP tag to be created using HTML

M

Tag: CFINCLUDE

Description: CFINCLUDE lets you embed references to
ColdFusion pages in your CFML.

Exist (Yes/No/Partial): Yes
<jsp:include>
<%@include%>

Tag: CFSILENT

Description: CFSILENT suppresses all output that is produced by
the CFML within the tag's scope.

Exist (Yes/No/Partial): Yes
<%-- comment --%>

Tag: CFSETTING

Description: CFSETTING is used to control various aspects of
page processing, such as controlling the output of HTML code in
your pages. One benefit of this option is managing whitespace that
can occur in output pages that are served by ColdFusion.

Exist (Yes/No/Partial): No
To be checked may not be really
required in JSP.

H

Tag: CFCACHE

Description: CFCACHE allows you to speed up pages
considerably in cases where the dynamic content doesn't need to
be retrieved each time a user accesses the page. To accomplish
this, it creates temporary files that contain the static HTML
returned from a particular run of the ColdFusion page.

Exist (Yes/No/Partial): No
To be checked may not be really
required.

H

 12

4.2.4 Category: Internet ProtocolTags
Total CFML Tags = 7
Equivalent Available = Nil

 Complexity(Low/Medium/High/Critical) = 0L / 2M / 5H / 0C

 CFML Tags JSP Equivalent Complexity
Tag: CFFTP

Description:
 CFFTP allows users to implement File Transfer Protocol
operations

Exist (Yes/No/Partial): No

JSP tag has to be created using java
API�s
java.io.*
And Servlet API�s

H

Tag: CFHTTP

Description:
 The CFHTTP tag allows you to execute POST and GET
operations on files. Using CFHTTP, you can execute
standard GET operations as well as create a query object
from a text file. POST operations allow you to upload MIME
file types to a server, or post cookie, formfield, URL, file, or
CGI variables directly to a specified server.

Exist (Yes/No/Partial): No

JSP tag has to be created using java
API�s
java.net.*
java.io.*

H

Tag: CFHTTPPARAM

Description:
Required for CFHTTP POST operations, CFHTTPPARAM is
used to specify the parameters necessary to build a
CFHTTP POST.

Exist (Yes/No/Partial): No

JSP tag has to be created using java
API�s
java.net.*
java.io.*

M

Tag: CFLDAP

Description:
CFLDAP provides an interface to LDAP (Lightweight
Directory Access Protocol) directory servers

Exist (Yes/No/Partial):

JSP tag has to be created using java
API�s
java.net.*
java.io.*

H

Tag: CFMAIL

Description:
CFMAIL allows you to send email messages via an SMTP
server.

Exist (Yes/No/Partial): No

JSP tag has to be created using java
API�s
java.net.*
java.io.*

H

Tag: CFMAILPARAM

Description:
CFMAILPARAM can either attach a file or add a header to a
message. If you use CFMAILPARAM, it is nested within a
CFMAIL tag

Exist (Yes/No/Partial): No

JSP tag has to be created using java
API�s
java.net.*
java.io.*

M

Tag: CFPOP

Description:
 CFPOP retrieves and deletes email Messages from a
POP mail server

Exist (Yes/No/Partial):

JSP tag has to be created using java mail
API

H

 13

Issues:
CFFTP,CFHTTP,CFMAIL can be created with the J2EE compliance.
For accomplishing those protocols there are some readymade code implementation.
We can make use of those implementation.

4.2.5 Category: Forms Tags

Total CFML Tags = 12
Equivalent Available = 0

 Complexity(Low/Medium/High/Critical) = 0L / 6M / 6H / 0C

 CFML Tags HTML Equivalent Complexity
Tag: CFAPPLET

Description:
 CFAPPLET allows you to reference custom Java
applets that have been previously registered using the
ColdFusion Administrator.

Exist (Yes/No/Partial): No
HTML Tag: <APPLET> </APPLET>

Proposed Solution in case of Non or Partial
Existence:

M

Tag: CFFORM

Description:
 CFFORM allows you to build a form with CFML custom
control tags that provide much greater functionality than
standard HTML form input elements.

Exist (Yes/No/Partial): No
HTML Tag: <FORM></FORM>

Proposed Solution in case of Non or Partial
Existence:

M

Tag: CFGRID

Description:
 CFGRID allows you to place a grid control in a
ColdFusion form. A grid control is a table of data divided
into rows and columns. CFGRID column data is specified
with individual CFGRIDCOLUMN tags.

Exist (Yes/No/Partial): No
HTML Tag:

Proposed Solution in case of Non or Partial
Existence:

M

Tag: CFGRIDCOLUMN

Description: you use CFGRIDCOLUMN to specify
individual column data in a CFGRID control. Font and
alignment attributes used in CFGRIDCOLUMN override
any global font or alignment settings defined in CFGRID.

Exist (Yes/No/Partial): No

Proposed Solution in case of Non or Partial
Existence:

H

Tag: CFGRIDROW

Description:
 CFGRIDROW allows you to define a CFGRID that does
not use a QUERY as source for row data. If a QUERY
attribute is specified in CFGRID, the CFGRIDROW tags
are ignored.

Exist (Yes/No/Partial): No

Proposed Solution in case of Non or Partial
Existence:

H

Tag: CFGRIDUPDATE

Exist (Yes/No/Partial): No

 14

Description:
 CFGRIDUPDATE allows you to perform updates to data
sources directly from edited grid data. CFGRIDUPDATE
provides a direct interface with your data source.

Proposed Solution in case of Non or Partial
Existence:

H

Tag: CFINPUT

Description:
 CFINPUT is used inside CFFORM to place radio buttons,
checkboxes, or text boxes. Provides input validation for
the specified control type.

Exist (Yes/No/Partial): No
HTML Tag: <INPUT>
Proposed Solution in case of Non or Partial
Existence:

M

Tag: CFSELECT

Description:
 CFSELECT allows you to construct a drop-down list box
form control. You can populate the drop-down list box
from a query, or using the OPTION tag. Use OPTION
elements to populate lists. Syntax for the OPTION tag is
the same as for its HTML counterpart.

Exist (Yes/No/Partial): No
HTML Tag: <SELECT> </SELECT>

Proposed Solution in case of Non or Partial
Existence:

M

Tag: CFSLIDER

Description:
 CFSLIDER allows you to place a slider control in a
ColdFusion form. A slider control is like a sliding volume
control. The slider groove is the area over which the slider
moves.

Exist (Yes/No/Partial): No

Proposed Solution in case of Non or Partial
Existence:

H

Tag: CFTEXTINPUT

Description:
 The CFTEXTINPUT form custom control allows you to
place a single-line text entry box

Exist (Yes/No/Partial): Partial
HTML Tag: <INPUT>

Proposed Solution in case of Non or Partial
Existence:

M

Tag: CFTREEITEM

Description:
 Use CFTREEITEM to populate a tree control created
with CFTREE with individual elements

Exist (Yes/No/Partial): No

Proposed Solution in case of Non or Partial
Existence:

H

Tag: CFTREE

Description:
 The CFTREE form custom control allows you to place a
tree control

Exist (Yes/No/Partial): No

Proposed Solution in case of Non
or Partial Existence:

H

 15

4.2.6 Category: Flow Control Tags

Total CFML Tags = 14
Equivalent Available = 1

 Complexity(Low/Medium/High/Critical) = 2L / 10M / 1H / 1C

CFML Tags JSP Tags Complexity
Tag: CFLOOP

Index Loops
An index loop repeats for a number of times determined
by a range of numeric values. Index loops are commonly
known as FOR loops, as in "loop FOR this range of
values. "

<CFLOOP INDEX="parameter_name"
 FROM="beginning_value"
 TO="ending_value"
 STEP="increment">
 ...
 HTML or CFML code to execute
 ...
</CFLOOP>

Conditional Loops
A conditional loop also known as while loop iterates over
a set of instructions while a given condition is TRUE.

<CFLOOP CONDITION="expression">

</CFLOOP>

Looping over a Query
A loop over a query repeats for every record in the query
record set. The CFLOOP results are just like a
CFOUTPUT. During each iteration of the loop, the
columns of the current row will be available for output.
CFLOOP allows you to loop over tags that can not be
used inside CFOUTPUT.

<CFLOOP QUERY="query_name"
 STARTROW="row_num"
 ENDROW="row_num">
</CFLOOP>

Looping over a List
Looping over a list offers the option of walking through
elements contained within a variable or value returned
from an expression. In a list loop, the INDEX attribute
specifies the name of a variable to receive the next
element of the list, and the LIST attribute holds a list or a
variable containing a list.

<CFLOOP INDEX="index_name"

Exist (Yes/No/Partial): No

JSP tag to be created for wrapping Java
Control statement
 // for loop

Exist (Yes/No/Partial): No

JSP tag to be created for wrapping Java
Control statement
// while loop

Exist (Yes/No/Partial): No

JSP tag to be created using Java Control
statement and JDBC API.
 java.sql.ResultSet

Exist (Yes/No/Partial): No

JSP tag to be created using Java API
 java.util.StringTokenizer

M

M

M

M

 16

 LIST="list_items"
 DELIMITERS="item_delimiter">
</CFLOOP>

Looping over a COM Collection or Structure
The CFLOOP COLLECTION attribute allows you to loop
over a structure or a COM/DCOM collection object:
A COM/DCOM collection object is a set of similar items
referenced as a group rather than individually. For
example, the group of open documents in an application
is a type of collection.
A structure can contain either a related set of items or be
used as an associative array. Looping is particularly
useful when using a structure as an associative array.

Exist (Yes/No/Partial): No

JSP tag to be created.

Critical

Tag: CFABORT

Description: The CFABORT tag stops processing of a
page at the tag location. ColdFusion simply returns
everything that was processed before the CFABORT tag.
CFABORT is often used with conditional logic to stop
processing a page because of a particular condition.

Exist (Yes/No/Partial): No

JSP tag to be created

L

Tag: CFBREAK

Description: Used to break out of a CFLOOP.

Exist (Yes/No/Partial): No
JSP tag to be created for wrapping Java
Control statement
// break

M

Tag: CFEXECUTE

Description: Enables ColdFusion developers to execute
any process on the server machine

<CFEXECUTE
 NAME=" ApplicationName "
 ARGUMENTS="CommandLine Arguments"
 OUTPUTFILE="Output file name"
 TIMEOUT="Timeout interval in seconds">

Exist (Yes/No/Partial): No

JSP tag to be created.

H

Tag: CFIF/CFELSEIF/CFELSE

Description: Used with CFELSE and CFELSEIF, CFIF
lets you create simple and compound conditional
statements in CFML. The value in the CFIF tag can be
any expression.

<CFIF expression>
 HTML and CFML tags
<CFELSEIF expression>
 HTML and CFML tags
<CFELSE>
 HTML and CFML tags
</CFIF>

Exist (Yes/No/Partial): No

JSP tag to be created for wrapping Java
Control statement
//if
//else if
//else

M

Tag: CFLOCATION

 17

Description: CFLOCATION opens a specified ColdFusion
page or HTML file. For example, you might use
CFLOCATION to specify a standard message or
response that you use in several different ColdFusion
applications. Use the ADDTOKEN attribute to verify client
requests.

Exist (Yes/No/Partial): Yes

<jsp: forward>

L

Tag: CFSWITCH/CFCASE/CFDEFAULTCASE

Description: Used with CFCASE and CFDEFAULTCASE,
the CFSWITCH tag evaluates a passed expression and
passes control to the CFCASE tag that matches the
expression result. You can optionally code a
CFDEFAULTCASE tag, which receives control if there is
no matching CFCASE tag value.

<CFSWITCH EXPRESSION="expression">
 <CFCASE VALUE="value1">
 HTML and CFML tags
 </CFCASE>
 <CFCASE VALUE=�value2�>
 HTML and CFML tags
 </CFCASE>
 <CFDEFAULTCASE>
 HTML and CFML tags
 </CFDEFAULTCASE>
</CFSWITCH>

Exist (Yes/No/Partial): No

JSP tag to be created for wrapping Java
Control statement
//switch
//case
//default

M

Tag: CFTHROW

Description: The CFTHROW tag raises a developer-
specified exception that can be caught with CFCATCH
tag

Exist (Yes/No/Partial): No

JSP tag to be created for wrapping Java
Control statement
//throw

M

Tag: CFRETHROW

Description: Rethrows the currently active exception.
<CFRETHROW> preserves the exception's
CFCATCH.TYPE and CFCATCH.TAGCONTEXT
information.

Exist (Yes/No/Partial): No

JSP tag to be created for wrapping Java
Control statement
//throws

M

Tag: CFTRY/CFCATCH

Description: Used with one or more CFCATCH tags, the
CFTRY tag allows developers to catch and process
exceptions in ColdFusion pages.

Exist (Yes/No/Partial): No
JSP tag to be created for wrapping Java
Control statement
//try
//catch
//finally

M

 18

4.2.7 Category: File Management Tags

Total CFML Tags = 2
Equivalent Available = Nil

 Complexity(Low/Medium/High/Critical) = 0L / 1M / 1H / 0C

CFML Tags JSP Tags Complexity
Tag: CFDIRECTORY

Description: CFDIRECTORY tag is used to handle
all interactions with directories.

<CFDIRECTORY ACTION="directory action"
 DIRECTORY="directory name"
 NAME="query name"
 FILTER="list filter"
 MODE="permission"
 SORT="sort specification"
 NEWDIRECTORY="new directory name">

Exist (Yes/No/Partial): No

JSP tag to be created using Java IO API
java.io.File class
java.io.FileNameFilter

H

Tag: CFFILE

Description: CFFILE tag is used to handle all
interactions with files.
.

Exist (Yes/No/Partial): No

JSP tag to be created using Java IO API
java.io.File class
java.io.InputStream
javax.servlet.ServletRequest

CFFILE tag has 8 diferent action attribute and each
has 5 corresponding attributes.

Critical

4.2.8 Category: ExtensibilityTags
Total CFML Tags = 9
Equivalent Available = 2

 Complexity(Low/Medium/High/Critical) = 2L / 0M / 3H / 4C

 CFML Tags JSP Equivalent Complexity
Tag: CFCOLLECTION

Description:
The CFCOLLECTION tag allows you to create and
administer Verity collections

Exist (Yes/No/Partial): No

JSP tag has to be created using java API�s
Java.lang.System
Java.io.*

Critical

Tag: CFEXECUTE

Description:
Enables ColdFusion developers to execute any process on
the server machine.

Exist (Yes/No/Partial): No

JSP tag has to be created using java API�s
Java.lang.System

H

Tag: CFOBJECT

Description:
 The CFOBJECT tag allows you to call methods in COM,
CORBA, and JAVA objects

Exist (Yes/No/Partial): No

Proposed Solution in case of Non or Partial Existence:

Critical

 19

Tag: CFREPORT

Description:
CFREPORT runs a predefined Crystal Reports.

Exist (Yes/No/Partial): No

JSP tag has to be created using java API�s
java.util.*.

Critical

Tag: CFSEARCH

Description:
Use the CFSEARCH tag to execute searches against data
indexed in Verity collections.

Exist (Yes/No/Partial): No

JSP tag has to be created using java API�s
We can accomplish the functionality with the optimal
search algorithm using
java.util.Hashtable.

H

Tag: CFSERVLET

Description:
 Executes a Java servlet on a JRun engine.

Exist (Yes/No/Partial): Yes
JSP Tag:<SERVLET>
Proposed Solution in case of Non or Partial Existence:

L

Tag: CFSERVLETPARAM

Description:
 The CFSERVLETPARAM is a child of CFSERVLET. It is
used to pass data to the servlet.

Exist (Yes/No/Partial): Yes
JSP Tag: <PARAM>

Proposed Solution in case of Non or Partial Existence:

L

Tag: CFINDEX

Description:
Use the CFINDEX tag to populate collections with indexed
data

Exist (Yes/No/Partial): No

JSP tag has to be created using Java API�s
Java.util.Hashtable.

H

Tag: CFWDDX
Description:
The CFWDDX tag serializes and de-serializes CFML data
structures to the XML-based WDDX format

Exist (Yes/No/Partial): No
JSP tag has to be created using Java API�s
It has to implement the interface Serializable.

Critical

Issues
CFOBJECT, CFREPORT creating the equivalent J2EE compliance tag will be difficult.
In CFOBJECT they are instantiating the COM , DCOM objects.
In CFREPORT they are generating crystal report which is specific to Microsoft.

4.2.9 Category: Data Output Tags

Total CFML Tags = 5
Equivalent Available = Nil

 Complexity(Low/Medium/High/Critical) = 0L / 2M / 3H / 0C

CFML Tags JSP Tags Complexity
Tag: CFCOL

Description: Defines table column header, width, alignment, and text.
Only used inside a CFTABLE.

<CFCOL HEADER="text"
 WIDTH="number"

Exist (Yes/No/Partial): No
JSP tag to be created wrapping
HTML table header.

M

 20

 ALIGN="position"
 TEXT="text">

Tag: CFTABLE

Description: Builds a table in your ColdFusion page. Use the CFCOL
tag to define column and row characteristics for a table. CFTABLE
renders data either as preformatted text, or, with the HTMLTABLE
attribute, as an HTML table. Use CFTABLE to create tables if you
don't want to write your own HTML TABLE tag code, or if your data
can be well presented as preformatted text.

<CFTABLE QUERY="query_name"
 MAXROWS="maxrows_table"
 COLSPACING="number_of_spaces"
 HEADERLINES="number_of_lines"
 HTMLTABLE
 BORDER
 COLHEADERS
 STARTROW="row_number">

</CFTABLE>

Exist (Yes/No/Partial): No
JSP tag to be created wrapping
HTML table to create table and
populating the table with
database resultset.

H

Tag: CFCONTENT

Description: Defines the MIME type returned by the current page.
Optionally, allows you to specify the name of a file to be returned with
the page.
.
<CFCONTENT TYPE="file_type"
 DELETEFILE="Yes/No"
 FILE="filename"
 RESET="Yes/No">

Exist (Yes/No/Partial): No
JSP tag to be created using
Servlet API

javax.servlet.http.HttpServletResp
onse

H

Tag: CFOUTPUT

Description: Displays the results of a database query or other
operation.

<CFOUTPUT
 QUERY="query_name"
 GROUP="query_column"
 GROUPCASESENSITIVE="yes/no"
 STARTROW="start_row"
 MAXROWS="max_rows_output">

</CFOUTPUT>

Exist (Yes/No/Partial): No
JSP tag to be created using
JDBC API

H

Tag: CFHEADER

Description: CFHEADER generates custom HTTP response headers
to return to the client.

<CFHEADER
 NAME="header_name"
 VALUE="header_value">

Exist (Yes/No/Partial): No
JSP tag to be created using
Servlet API

javax.servlet.http.HttpServletResp
onse

M

 21

4.2.10 Category: Web Application Frame WorkTags

Total CFML Tags = 5
Equivalent Available = Nil

 Complexity(Low/Medium/High/Critical) = 0L / 0M / 2H / 3C

 CFML Tags JSP Equivalent Complexity

Tag: CFAPPLICATION

Description:
 Defines scoping for a ColdFusion application, enables or
disables storing client variables, and specifies a client variable
storage mechanism. By default, client variables are disabled. Also,
used to enable session variables and to set timeouts for both
session and application variables. Session and application
variables are stored in memory.

Exist (Yes/No/Partial): No

Sugession:
JSP tag has to be created using
java API�s
java.io.*
And Servlet API�s

Critical

Tag: CFASSOCIATE

Description:
 The CFASSOCIATE tag allows sub-tag data to be saved with
the base tag. This applies to custom tags only.

Exist (Yes/No/Partial): No

Critical

Tag: CFAUTHENTICATE

Description:
 The CFAUTHENTICATE tag authenticates a user, setting a
security context for the application. See the descriptions of the
functions IsAuthenticated and AuthenticatedContext.

Exist (Yes/No/Partial): No

Critical

Tag: CFERROR

Description:
 Provides the ability to display customized HTML pages when
errors occur. This allows you to maintain a consistent look and feel
within your application even when errors occur.

Exist (Yes/No/Partial): No

H

Tag: CFLOCK

Description:

 The CFLOCK tag provides two types of locks to ensure the
integrity of shared data:

Exclusive lock
Read-only lock

Exist (Yes/No/Partial): No

H

Issues:
The above mentioned tags doesn�t have the direct mapping to the JSP tags.Those tags seems to be mission critical
tags.We need to work around a lot say
• Understanding the funtionality of the tags in depth.
• Knowing the functionality by running the example application.
• Has to get hands on knowledge by writing a similar application.

 22

5 Appendix B - Function mapping

5.1 Conversion of CF Functions � Risks Involved

• GetMetricData(Monitor_name) On Windows NT, GetMetricData returns all the internal data

that is otherwise displayed in the Windows NT PerfMonitor. On UNIX, GetMetricData returns
all of the internal data found by using CFStat. For it to work on NT you need to have turned on
the PerfMonitor feature from the ColdFusion Administrator. The name of the performance
monitor. On Windows NT, the performance monitor is PerfMonitor. On UNIX, it is CFStat.

On Windows NT, the function returns a ColdFusion structure with the following data
fields: InstanceName, PageHits, ReqQueued, DBHits, ReqRunning, ReqTimedOut, BytesIn,
BytesOut, AvgQueueTime, AvgReqTime, AvgDBTime, CachePops .

As of now we have not found equivalent functionality in java API .

5.2 Function Mappings

5.2.1 Category: Array Functions

Total CFML Functions = 19
Available Java Functions = 13 (Including Partial matches)
Complexity Level (Low/Medium/High) � 8L / 11M / 0H / 0C

 CFML Functions JAVA API�s Complexity
Name: ArrayAppend

Description: Appends an array index to the
end of the specified array. Returns a Boolean
TRUE on successful completion

Exist (Yes/No/Partial): Yes
Class: java.util.ArrayList
Method: add(object)

Proposed Solution in case of Non or Partial Existence:

L

Name:ArrayMax

Description:
Returns the largest numeric value in the
specified array

Exist (Yes/No/Partial): No
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
Have a new method which finds the maximum element
in the ArrayList

L

Name:ArraySum

Description:
Returns the sum of values in the specified
array

Exist (Yes/No/Partial): No
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
Have a new method which adds the numerical values
of all the elements in the arraylist

M

 23

Name:ArrayAvg

Description:
Returns the average of the values in the
specified array.

Exist (Yes/No/Partial): No
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
Have a new method which makes use of the method
which is implemented for the ArraySum. Divide the
resulting value by the number of elements present

L

Name:ArrayMin

Description:
Returns the smallest numeric value in the
specified array.

Exist (Yes/No/Partial): No
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
Have a new method which finds the minimum element
in the ArrayList

L

Name:ArraySwap

Description:
Swaps array values for the specified array at
the specified positions. ArraySwap can be
used with greater efficiency than multiple
CFSETs.
Returns a Boolean TRUE on successful
completion.

Exist (Yes/No/Partial): No
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
Have a new method which swaps the objects at the
specified loactions of the ArrayList

M

Name: ArrayClear

Description:
Deletes all data in the specified array. Returns
a Boolean TRUE on successful completion.

Exist (Yes/No/Partial): Partial
Class: java.util.ArrayList
Method: clear()
Proposed Solution in case of Non or Partial Existence:
 The clear method deletes the date in the array, but it
returns void instead of a boolean value.
A wrapper method can be used which returns true all
the time.

M

Name:ArrayNew

Description: Creates an array of between 1
and 3 dimensions. Array elements are indexed
with square brackets: [].
Note that ColdFusion arrays expand
dynamically as data is added.

Exist (Yes/No/Partial): Partial
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
Constructor of ArrayList constructs a single
dimensional array.
Separate implementation is needed for 2 & 3
dimensional arrays.

M

Name: ArrayToList

Description: Converts the specified one
dimensional array to a list, delimited with the
character you specify.
Syntax : ArrayToList(array [, delimiter])
 array � Name of the array containing
elements you want to use to build a list
 delimiter - Specify the character(s) you want
to use to delimit elements in the list. Default is
comma (,)

Exist (Yes/No/Partial): Partial
Class: java.util.Arrays
Method: Arrays.asList()

Proposed Solution in case of Non or Partial Existence:
The above method takes a one dimensional array and
returns an java.util.List object which is internally
represented as [elem1,elem2,elem3...].It is not
possible to change the delimiter

L

Name:ArrayDeleteAt Exist (Yes/No/Partial): Partial M

 24

Description: Deletes data from the specified
array at the specified index position. Note that
when an array index is deleted, index positions
in the array are recalculated. For example, in
an array containing the months of the year,
deleting index position [5] removes the entry
for May. If you then want to delete the entry for
November, you delete index position [10], not
[11], since the index positions were
recalculated after index position [5] was
removed.
Returns a Boolean TRUE on successful
completion.

Class: java.util.ArrayList
Method: Object remove(int index)

Proposed Solution in case of Non or Partial Existence:
ArrayDeleteAt returns a boolean whereas remove()
returns the object which was removed. And remove ()
throws an exception to indicate if something went
wrong. An wrapper function can be used to return a
boolean.

Name:ArrayPrepend

Description: Adds an array element to the
beginning of the specified array. Returns a
Boolean TRUE on successful completion

Exist (Yes/No/Partial): Partial
Class: java.util.ArrayList
Method: void add(int index, Object element)

Proposed Solution in case of Non or Partial Existence:
 The index parameter should always be set to 0 in
case of add() method.

M

Name:IsArray

Description:
Returns TRUE if value is an array.

Exist (Yes/No/Partial): Partial
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
The �Class� class in java has a similar method isArray()
which checks if the current class is an array or not. But
cheking for the exact dimensions of the array is not
there.

M

Name:ArrayInsertAt

Description:
Inserts data in the specified array at the
specified index position. All array elements
with indexes greater than the new position are
shifted right by one. The length of the array
increases by one index.
Returns a Boolean TRUE on successful
completion.

Exist (Yes/No/Partial): Partial
Class: java.util.ArrayList
Method: void add(int index, Object element)

Proposed Solution in case of Non or Partial Existence:
ArrayInsertAt returns a boolean whereas add() returns
void. Add() Throws a exception if index is invalid. An
wrapper function can be used to have the same
method signature

M

Name:ArrayResize

Description: Resets an array to a specified
minimum number of elements. ArrayResize
can provide some performance gains if used
to size an array to its expected maximum. Use
ArrayResize immediately after creating an
array with ArrayNew for arrays greater than
500 elements.
Returns a Boolean TRUE on successful
completion.

Exist (Yes/No/Partial): Yes
Class: java.util.ArrayList
Method: void ensureCapacity(int minCapacity)

Proposed Solution in case of Non or Partial Existence:

M

Name: ListToArray

Description: Converts the specified list into an
array.

Exist (Yes/No/Partial): Yes
Class: java.util.List
Method: toArray()
Proposed Solution in case of Non or Partial Existence:

L

 25

Syntax : ListToArray(list [, delimiter])
 list - Any list
 delimiters - Set of delimiters used in list

Name:ArrayIsEmpty

Description: Determines whether the specified
array is empty of data.
Returns a Boolean TRUE if specified array is
empty, FALSE if not empty.

Exist (Yes/No/Partial): Yes
Class: java.util.ArrayList
Method: boolean isEmpty()

Proposed Solution in case of Non or Partial Existence:

L

Name:ArraySet

Description: In a one-dimensional array, sets
the elements in a specified range to the
specified value. Useful in initializing an array
after a call to ArrayNew. Returns a Boolean
TRUE on successful completion.

Exist (Yes/No/Partial): No
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
Have a new method which initializes the elements in
the given range to the given value

M

Name:ArrayLen

Description:
 Returns the length of the specified array

Exist (Yes/No/Partial): Yes
Class: java.util.ArrayList
Method: size(object)

Proposed Solution in case of Non or Partial Existence:

L

Name:ArraySort

Description: Returns the specified array with
elements numerically or alphanumerically
sorted

Exist (Yes/No/Partial): No
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
Get the array of objects from the ArrayList , using the
static sort method of the Array Class, the array can be
sorted.

M

Note :
The Cold Fusion Arrays have the functionality which is almost similar to the functionality provided by the ArrayList class
in Java. Most of the functions could be mapped either directly or with some modifications to the ArrayList functions in
case of single dimensional array. Support for multi dimensional array is not clear.

5.2.2 Category: Structure Functions

Total CFML Functions = 13
Available Java Functions = 11(including partial)
Complexity Level (Low/Medium/High) � 3L / 10M / 0H / 0C

 CFML Functions JAVA API�s Complexity

Name: IsStruct(variable)

Description: Returns true if the variable is
a structure.

Exist (Yes/No/Partial):Yes
Class: java.lang.class
Method:public boolean isInnstance(Object obj)

Description :This method returns true if the object
passed is non-null can be cast to the reference
type represented by this Class object . It returns
false otherwise.

 26

Proposed Solution in case of Non or Partial
Existence:

Name: StructIsEmpty(structure)

Description: Indicates whether the
specified structure contains data. Returns
TRUE if structure is empty and FALSE if it
contains data.

Exist (Yes/No/Partial): Partial
Class: java.util.Collection
Method:public boolean isEmpty()
Description : true if this collection has no
elements; false otherwise

Proposed Solution in case of Non or Partial
Existence:The isEmpty () methods in various java
classes can be modified to map the same
functionality.

M

Name: StructClear(structure)

Description: Removes all data from the
specified structure. Always returns Yes

Exist (Yes/No/Partial): Partial
Class: java.lang.class
Method: public Field[] getFields()
Description: Returns an array containing Field
objects reflecting all the accessible public fields of
the class or interface represented by this Class
object.

Class:java.util.jar.Attribute
Method: public void clear()
Description: Removes all attributes from this Map.

Proposed Solution in case of Non or Partial
Existence:For partial functionality many java class
methods in Java2 API can be
referenced.eg.java.util.List,java.util.Vector etc.We
can get all the fields of the object and then set
them to null.thereby clearing the data in the
object.

M

Name: StructKeyArray(structure)

Description: Returns an array of the keys
in the specified ColdFusion structure.

Exist (Yes/No/Partial): Partial
Class java.util.jar.Attribute
Method: public set keyset()
Description: Returns a Set view of the attribute
names (keys) contained in this Map.

Proposed Solution in case of Non or Partial
Existence: For partial functionality many java
class methods in Java2 API can be
referenced.eg.java.util.List,java.util.Vector etc.to
achieve full functionality some wrapping is
needed.

M

Name: StructCopy(structure)

Description: Returns a new structure with
all the keys and values of the specified
structure.

Exist (Yes/No/Partial): Partial
Class: java.util.ArrayList
Method: public Object clone()
Description: Returns a clone of the ArrayList
Class:java.util.Collections.
Method: public static void copy(List dest,List src)
Description: Copies all of the elements from one

M

 27

list into another. After the operation, the index of
each copied element in the destination list will be
identical to its index in the source list.

Proposed Solution in case of Non or Partial
Existence:almost similar functionalities are
available in Java2 API.Action as earlier functions
should be taken.

Name: StructKeyExists(structure,key)

Description: Returns TRUE if the specified
key is in the specified structure and FALSE
if it is not.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:Java2 API�s is* method list can be
enhanced and new method can be created on the
same lines (eg. Checking a key of the objects in
a vector class.)

M

Name: StructCount(structure)

Description: Returns the number of keys in
the specified structure.

Exist (Yes/No/Partial): Partial
Interface: java.text.attributedcharacterIterator
 Method: public Set getAllAttributeKeys()
 Description: Returns the keys of all attributes
defined on the iterator's text range. The set is
empty if no attributes are defined.
We need to count the number of items in the
set.Hence an extension of the functionality is
needed.

M

Name: StructKeyList(structure, [delimiter])

Description: Returns the list of keys that
are in the specified ColdFusion structure

Exist (Yes/No/Partial): Yes
Class: java.util.Hashtable
Method: public Set keySet()

Description: Returns a Set view of the keys
contained in this Hashtable
Proposed Solution in case of Non or Partial
Existence:We do not have a delimiter in the
hashtable methods.we have to modify to a certain
extent to achieve the goal.

L

Name: StructDelete(structure, key [,
indicatenotexisting])

Description: Removes the specified item
from the specified structure.

Exist (Yes/No/Partial): Yes
Class: java.util.Hashtable
Method: public Object remove(Object key)
Description: Removes the key (and its
corresponding value) from this hashtable. This
method does nothing if the key is not in the
hashtable.
Proposed Solution in case of Non or Partial
Existence:

L

Name: StructNew()

Description: Returns a new structure.

Exist (Yes/No/Partial): Yes
Class: java.Lang.Class
Method: public Object newInstance()
Description: Creates a new instance of the class
represented by this Class object. The class is
instantiatied as if by a new expression with an
empty argument list. The class is initialized if it
has not already been initialized.
In java programming Language any Instace of a

M

 28

user defined class can be obtained as follows:

A b=new A();(where�A� is the class ,�b� the
instance)
Proposed Solution in case of Non or Partial
Existence:

Name: StructFind(structure, key)

Description: Returns the value associated
with the specified key in the specified
structure

Exist (Yes/No/Partial): Partial
Class: java.util.Hashtable
Method: public boolean contains(Object value)

Description: Tests if some key maps into the
specified value in this hashtable.
Proposed Solution in case of Non or Partial
Existence:

M

Name: StructUpdate(structure, key, value)

Description: Updates the specified key with
the specified value. Returns Yes if the
function is successful and throws an
exception if an error occurs.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:The class
org.omg.CORBA.StructMember serves partially
as its constructor method public
StructMember(String __name,TypeCode __type,
IDLType __type_def)Constructs a StructMember
object.
A method which can take all three arguments and
modify the member can show the way.

M

Name: StructInsert(structure, key, value [,
allowoverwrite])

Description: Inserts the specified key-value
pair into the specified structure. Returns
Yes if the insert was successful and No if
an error occurs.

Exist (Yes/No/Partial): Partial
Class: java.util.Vector
Method: public void insertElementAt(Object obj,
int index)
Description: Inserts the specified object as a
component in this vector at the specified index

Proposed Solution in case of Non or Partial
Existence:Java2 API �s insert* methods can be
wrapped to serve desired fnctionality.

M

ISUUES/NOTES:

As structure in cold Fusion itself is a key-value pair entity it has all its function typically pertaining to that.In java we can
have somehing of that sort edit into the existinfg API.We can have a java class with a key-value pair
implementation(collection ,hashtable,vector .java.sql.struct classes can be looked into) and then inherit and extend its
functionality to work with.

 29

5.2.3 Category: String Functions

Total CFML Functions = 44
Available Java Functions = 20(including partial)
Complexity Level (Low/Medium/High) � 25L / 13M / 6H / 0C

 CFML Functions JAVA API�s Complexity
Name: Asc(string)
Description: Returns the ASCII value
(character code) of the first character
of a string. Returns 0 if string is
empty.

Exist :No
Class: java.lang.String
Method:
Proposed Solution : A method has to be developed to do the
necessary conversion with necessary logic.
A name value pair for the conversion can be created.

L

Name: Ljustify(string,length)

Description: Returns left-justified
string of the specified field length.

Exist : No
Class: java.lang.String
Method:
Proposed Solution :
String Ljustify(String, length)
The return string should have length equal to the �length�
argument. The string value passed as argument should start
at index 0.

L

Name: Replace(string, substring1,
substring2 [,scope])

Description: Returns string with
occurrences of substring1 being
replaced with substring2 in the
specified scope.

Exist : No
Class: java.lang.String
Method: substring, compareTo
Proposed Solution :
There should be two overloaded methods for the scope
variable.
The logic for search and replace to be developed.

L

Name: Chr(number)

Description: Returns a character of a
given ASCII value (character code).

Exist :No
Class: java.lang.String
Method:
Proposed Solution : A method has to be developed to do the
necessary conversion .
A name value pair for the conversion can be created.

L

Name: ListValueCount(list, value [,
delimiters])

Description: Returns the number of
instances of a specified value in a
list. The underlying search that finds
the instances is case-sensitive.

Exist : No
Class:
Method:
Proposed Solution : The method developed should read
from list (form), form a query and get result from database.

H

Name: ReplaceList(string, list1, list2)

Description: Returns string with all
occurrences of the elements from the
specified comma-delimited list being
replaced with their corresponding

Exist :No
Class: java.lang.String
Method: substring, compareTo

Proposed Solution :
ReplaceList(string, list1, list2)

M

 30

elements from another comma-
delimited list. The search is case-
sensitive.

This method should replace strings. The logic has to be
developed so that it takes in
�list1� and �list2�(which are comma separated strings) and
does the replacement.

Name: Cjustify(string, length)

Description: Centers a string in the
specified field length.

Exist : No
Class: java.lang.String
Method:
Proposed Solution :
String Cjustify(String, length)
The return string should have length equal to the �length�
argument. The string value passed as argument should start
at �center� of the newly formed string.

L

Name: ListValueCountNoCase(list,
value [, delimiters])
Description: Returns the number of
instances of a specified value in a
list. The underlying search that finds
the instances is not case-sensitive.

Exist : No
Class:
Method:
Proposed Solution : The method developed should read
from list (form), form a query and get result from database.
Case should be ignored.

H

Name: ReplaceNoCase(string,
substring1, substring2 [,scope])

Description: Returns string with
occurrences of substring1 being
replaced regardless of case matching
with substring2 in the specified
scope.

Exist : No
Class: java.lang.String
Method: compareToIgnoreCase
Proposed Solution :
There should be two overloaded methods for the scope
variable.
The logic for replacing should be developed.
String.compareToIgnoreCase() method should be used
while comparing.

M

Name: Compare(string1, string2)

Description: Performs a case-
sensitive comparison of two strings.
Returns a negative number if string1
is less than string2; 0 if string1 is
equal to string2; or a positive number
if string1 is greater than string2.

Exist : Yes
Class: java.lang.String
Method: compareTo(String)
Proposed Solution in case of Non or Partial Existence:

L

Name: LSParseCurrency(string)
Description: Converts a locale-
specific currency string to a number.
Attempts conversion through each of
the three default currency formats
(none, local, international). Returns
the number matching the value of
string.

Exist :No
Class: java.lang.String
Method: substring,
Proposed Solution : The method should have a logic to
parse the String and produce a number.

M

Name: REReplace(string,
reg_expression, substring [, scope])

Description: Returns string with a
regular expression being replaced
with substring in the specified scope.
This is a case-sensitive search.

Exist : No
Class: java.lang.String
Method: substring, compareTo

Proposed Solution: This function takes arguments which
searches for multiple strings and replaces with another
string.
This will require parsing the argument and then replacing .
The implementation for

M

 31

 �Replace� function can be called.

Name: CompareNoCase(string1,
string2)

Description: Performs a case-
insensitive comparison of two strings.
Returns a negative number if string1
is less than string2; 0 if string1 is
equal to string2; or a positive number
if string1 is greater than string2.

Exist :Yes
Class: java.lang.String
Method: compareToIgnoreCase

L

Name: LSParseDateTime(date-time-
string)

Description: A locale-specific version
of the ParseDateTime function,
except that there is no option for POP
date/time object parsing. Returns a
date/time object.

Exist :No
Class:
Method:
Proposed Solution: Here a logic for conversion has to be
developed.

M

Name: REReplaceNoCase(string,
reg_expression, substring [, scope])

Description: Returns string with a
regular expression being replaced
with substring in the specified scope.
The search is case-insensitive.

Exist : No

Class: java.lang.String
Method: compareToIgnoreCase

Proposed Solution:
This function takes arguments which searches for multiple
strings and replaces with another string.
This will require parsing the argument and then replacing .
The implementation for
�ReplaceNoCase� function can be called.

M

Name:
DayOfWeekAsString(day_of_week)

Description: Returns the day of the
week corresponding to day_of_week,
an integer ranging from 1 (Sunday) to
7 (Saturday).

Exist :Yes
Class: java.util.Calendar
Method: get

L

Name:
LSParseEuroCurrency(currency-
string)

Description: Converts a locale-
specific currency string that contains
the Euro symbol (�) or sign (EUR) to
a number. Attempts conversion
through each of the three default
currency formats (none, local,
international). Returns the number
matching the value of string.

Exist :No.
Class:
Method:
Proposed Solution: Logic should be developed for parsing
and to return the number.

M

 32

Name: Reverse(string)

Description: Returns string with
reversed order of characters.

Exist :Yes
Class: java.lang.StringBuffer
Method: StringBuffer.reverse()
Proposed Solution :

L

Name: FormatBaseN(number, radix)

Description: Converts a number to a
string in the base specified by radix.

Exist : Partial
Class: java.lang.Integer
Method: toHexString, toBinaryString, toOctalString
Proposed Solution : The method should use the above
mentioned methods for the conversion.

L

Name : LSParseNumber(string)

Description: LSParseNumber
converts a locale-specific string to a
number. Returns the number
matching the value of string.

Exist : No
Class:
Method:
Proposed Solution : Logic should be developed for parsing
and to return the number.

H

Name: Right(string, count)

Description: Returns the rightmost
count characters of a string.

Exist :Yes
Class: java.lang.String
Method: String.substring(beginIndex)
Proposed Solution : Calculate the beginIndex as
String.length() - count

L

Name: Find(substring, string [, start])

Description: Returns the first index of
an occurrence of a substring in a
string from a specified starting
position. Returns 0 if substring is not
in string. The search is case-
sensitive.

Exist :Partial
Class: java.lang.String
Method: String.indexOf(String, fromIndex)
Proposed Solution:
This method should be overloaded (Third Parameter).
This is similar to java.lang.String.indexOf() method . It
should return �0� if substring is not a string.

L

Name: Ltrim(String)

Description: Returns string with
leading spaces removed.

Exist : No
Class: java.lang.String, java.lang.Character
Method: isSpaceChar, substring
Proposed Solution:
This can be done by comparing the characters with �space�
(Claracter.isSpaceChar()) and getting the index of the first
non-space character. Then String.substring() method can be
used.

L

Name: RJustify(string, length)

Description: Returns right-justified
string in the specified field length.

Exist :No
Class: java.lang.String
Method:
Proposed Solution: This can be done by creating a new
string with blank spaces in the beginning. The number of
blank spaces should be length � string.length()

L

Name: FindNoCase(substring, string
[, start])

Exist : Partial
Class: java.lang.String
Method: equalsIgnoreCase, substring
Proposed Solution :

M

 33

Description: Returns the first index of
an occurrence of a substring in a
string from a specified starting
position. Returns 0 if substring is not
in string. The search is case-
insensitive.

This method should be overloaded (Third Parameter).
Here the comparison should be done by ignoring the case.

Name: Mid(string, start, count)

Description: Returns count
characters from string beginning at
start position.

Exist :No
Class:
Method:
Proposed Solution :Here a algorithm has to be developed to
parse the string and return the necessary result string.

M

Name: RTrim(string)

Description: Returns string with
removed trailing spaces.

Exist :No
Class: java.lang.String, java.lang.Character
Method: isSpaceChar, substring
Proposed Solution:
This can be done by comparing the characters with �space
character� (Claracter.isSpaceChar()) starting from the last
character to the non-space character and making a result
string with the trailing spaces trimmed.

L

Name: FindOneOf(set, string [, start
])

Description: Return the first index of
the occurrence of any character from
set in string. Returns 0 if no
characters are found. The search is
case-sensitive.

Exist : Partial
Class: java.lang.String
Method: String.indexOf()
Proposed Solution in case of Non or Partial Existence: This
requires parsing the argument �set� and finding the index for
each in the �set�.

H

Name:
MonthAsString(month_number)

Description: Returns the name of the
month corresponding to
month_number.

Exist :Yes
Class: java.util.Calendar
Method: get
Proposed Solution in case of Non or Partial Existence:

L

Name: SpanExcluding(string, set)

Description: Returns all characters
from string from its beginning until it
reaches a character from the set of
characters. The search is case-
sensitive.

Exist :Partial
Class: java.lang.String
Method:String.indexOf(), String.substring()
Proposed Solution: Index of the first occurrence of set is
determined.
Using this index, the substring can be made.

L

Name: GetToken(string, index [,
delimiters])

Description: Returns the specified
token in a string. Default delimiters

Exist : Yes
Class: java.util.StringTokenizer
Method: nextToken()
Proposed Solution in case of Non or Partial Existence:

M

 34

are spaces, tabs, and newline
characters. If index is greater than
the number of tokens in string,
GetToken returns an empty string.

Name: ParseDateTime(date-time-
string [, pop-conversion])

Description: Returns a date/time
object from a string.

Exist : No
Class:
Method:
Proposed Solution: Logic has to be developed for the
parsing and conversion. This method should be overloaded.

M

Name: SpanIncluding(string,
set)
Description: Returns all characters
from string from its beginning until
it reaches a character that is not
included in the specified set of
characters. The search is case-
sensitive.

Exist : Partial
Class: java.lang.String
Method: String.indexOf, String.subString
Proposed Solution in case of Non or Partial Existence: Index
of the first occurrence of set is determined.
Using this index, the substring can be made.

L

Name: Insert(substring, string,
position)

Description: Inserts a substring in a
string after a specified character
position. Prepends the substring if
position is equal to 0.

Exist : Partial
Class: java.lang.String
Method: substring
Proposed Solution : This method should form a new string
by appending the substrings from the original string and
inserting the new string.

L

Name: REFind(reg_expression,
string [, start]
 [, returnsubexpressions])

Description: Returns the position of
the first occurrence of a regular
expression in a string starting from
the specified position. Returns 0 if no
occurrences are found. This search is
case sensitive.

Exist : No
Class: java.lang.String
Method: indexOf
Proposed Solution :
Logic have to be developed in the method which parses the
argument, and searches for the occurrence of the
expression.
Java.lang.String.indexOf() method has to be used.

M

Name: ToBase64(string or
binary_object)

Description: Returns the Base 64
representation of the string or binary
object. Base64 is a format that uses
printable characters, allowing binary
data to be sent in forms and Email,
and stored in a database or file.

Exist :No
Class:
Method:
Proposed Solution : The logic for this conversion has to be
developed.

H

Name: JSStringFormat(string)

Description: Returns a string that is
safe to use with JavaScript.

Exist : No
Class:
Method:
Proposed Solution : Logic has to be developed to remove
characters from string so that it can be used with Java
S i t

H

 35

 Script.

Name:
REFindNoCase(reg_expression,
string [, start] [,
returnsubexpressions])

Description: Returns the position of
the first occurrence of a regular
expression in a string starting from
the specified position if the
returnsubexpressions parameter is
not set to True. Returns 0 if no
occurrences are found.The search is
case-insensitive.

Exist : No
Class: java.lang.String
Method: indexOf
Proposed Solution :
Logic have to be developed in the method which parses the
argument, and searches for the occurrence of the
expression.
Java.lang.String.indexOf() method has to be used.

M

Name: Ucase(String)

Description: Returns string
converted to uppercase.

Exist :Yes
Class: java.lang.String
Method: toUpperCase
Proposed Solution :

L

Name: Left(string, count)

Description: Returns the count of
characters from the beginning of a
string argument.

Exist :Yes
Class: java.lang.String
Method: String.substring(beginIndex, endIndex)
Proposed Solution : Here , the endIndex is the �count� value.

L

Name: RemoveChars(string, start,
count)

Description: Returns string with
count characters removed from the
specified starting position. Return 0 if
no characters are found.

Exist : Partial
Class: java.lang.String
Method: subString(beginIndex, endIndex)
Proposed Solution :
The method should get the substring from the original string
and form a new string.

L

Name: Val(string)

Description: Returns a number that
the beginning of a string can be
converted to. Returns 0 if conversion
is not possible.

Exist : Partial
Class: java.lang.String, java.lang.Character,
java.lang.Integer
Method: charAt , substring, isDigit
Proposed Solution in case of Non or Partial Existence: This
method will check each character till it finds a non-numeric
value. Get the index. Get the substring. And convert to and
integer using the constructor of java.lang.Integer.

L

Name: Len(string or Binary object)

Description: Returns the length of a
string or a binary object.

Exist : Yes
Class: java.lang.String
Method: length()
Proposed Solution : Has to be checked with binary object.

L

 36

Name: RepeatString(string, count)

Description: Returns a string created
from string being repeated a
specified number of times.

Exist : Partial
Class: java.lang.String
Method:
Proposed Solution : The result string can be created in a
loop.

L

Notes:

a. There are methods which can be downloaded from the net.
 ToBase64(String). We have to make sure about the functionality through testing.

b. Some methods may not be required after the migration.
 JSStringFormat(String). This method returns a string which is safe to be used with Java Script.

c. There can be a package say util
 There should be methods for

 i. Separating the "list arguments" commonly used with the CFML functions.

5.2.4 Category: Query Functions

Total CFML Functions = 7
Available Java Functions = 3
Complexity Level (Low/Medium/High) � 2L / 0M / 5H / 0C

 CFML Functions JAVA API�s Complexity
Name: IsQuery

Description: Returns TRUE if value is a query.

Exist (Yes/No/Partial): Yes
Class: java.sql.Statement
Method: execute(String) throws SQLException
Proposed Solution in case of Non or Partial
Existence:

L

Name: QuerySetCell

Description: Sets the cell in a specified column
to a specified value. If no row number is
specified, the cell on the last row will be set.
Returns TRUE.

Exist (Yes/No/Partial): Yes
Class: java.sql.ResultSet
Method: updateObject(String/int , Object),
update<type>(String/int,<type>)
Proposed Solution in case of Non or Partial
Existence:

L

Name: QueryAddColumn

Description: Adds a new column to a specified
query and populates the column's rows with the
contents of a one-dimensional array. Returns the
query object with the additional column. Padding
is added, if necessary, on the query columns to
ensure that all columns have the same number of
rows.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:
If the query's data is for a temporaray purpose,
which is not going to be stored in database, any
of the collection classes can be used to store
tabular form of data with rows and columns.

H

Name: QuotedValueList

Exist (Yes/No/Partial): No
Class:

H

 37

Description: Returns a comma-separated list of
the values of each record returned from a
previously executed query. Each value in the list
is enclosed in single quotes.

Method:
Proposed Solution in case of Non or Partial
Existence:
Alternate Method has to be defined using
ResultSet class extracting the values of all fields
of a row added to a String looping through the
entire set of records.

Name: QueryAddRow

Description: Adds a specified number of empty
rows to the specified query. Returns the total
number of rows in the query that you are adding
rows to.

Exist (Yes/No/Partial): Partial
Class: java.sql.resultSet
Method: insertRow()
Proposed Solution in case of Non or Partial
Existence:
Description : Inserts the contents of the insert
row into the result set and the database. Must
be on the insert row when this method is called.

H

Name: ValueList

Description: Returns a comma-separated list of
the values of each record returned from a
previously executed query.

Exist(Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:
 Alternate Method has to be defined using
ResultSet class extracting the values of all fields
of a row added to a String looping through the
entire set of records.

H

Name: QueryNew

Description: Returns an empty query with a set
of columns or an empty query with no columns.
See Usage for more information.

Exist(Yes/No/Partial):No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:
If the query's data is for a temporaray purpose,
which is not going to be stored in database, any
of the collection classes can be used to store
tabular form of data.

H

Issues/Concerns : Cfml query tags like QueryNew,QueryAddColumn doesnot have any type of java contemporary
methods.These tags help in generating table structures used for storing temporary database whereas java doesnot
support any such class .Collections can be used to some extent to obtain the functionality of the above mentioned
tags.

5.2.5 Category: Other Functions

Total CFML Functions = 16
Available Java Functions = 12(including partial matches)
Complexity Level (Low/Medium/High) � 5L / 8M / 3H / 0C

 CFML Functions JAVA API�s Complexity level
Name: CreateObject

Description: Allows you tocreate
COM, CORBA, and JAVA objects.

Exist (Yes/No/Partial): Yes
Class: org.omg.CORBA.ORB

Method: public abstract Any create_any()

Description: Creates an IDL Any object initialized

L

 38

 to contain a Typecode object whose kind field

Creating any java object in java platform can be done
by using any class� constructorAS the cfml function just
needs the type and class of the object created.For eg.
We can create an object as following(there can be any
java object inplace .Creates a new java object that is a
copy of this Graphics object.

Proposed Solution in case of Non or Partial Existence:

Name: GetClientVariablesList

Description: Returns a comma-
delimited list of non-readonly client
variables available to a template.
This list contains the custom client
variables about a particular client.
However the standard The standard
system-provided client variables
(CFID, CFToken, URLToken,
HitCount, TimeCreated, and LastVisit)
are not returned in the list.

Exist (Yes/No/Partial): Partial
For Client state management(which matches the
CFML API�s standard system-provided variables)we
can use the the following-
Class: javax.servlet.http.HttpSession
Method: public java.lang.String getId()

Description: Returns a string containing the
unique identifier assigned to this session. The
identifier is assigned by the servlet engine and is
implementation dependent.

Class: javax.servlet.http.HttpServletRequest
Method: public Cookie[] getCookies()

Description:Returns an array of all the Cookies
included with this request, or null if the request
has no cookies

Proposed Solution in case of Non or Partial
Existence:We need to write a new
Function(functions/classes)in order to satisfy the
objective.Ideally we save the custom client variables in
a database or a persistent bean.but I feel we need to
think in a different line here.

M

Name: CreateUUID

Description: Returns a Universally
Unique Identifier (UUID)

Exist (Yes/No/Partial): Partial
Class: java.rmi.server.UID.

Method: public UID()

Description: Creates a pure identifier that is unique
with respect to the host on which it is generated

Class: javax.servlet.http.HttpSession
Method: public java.lang.String getId()

Description: Returns a string containing the
unique identifier assigned to this session. The
identifier is assigned by the servlet container and
is implementation dependent.

Proposed Solution in case of Non or Partial
Existence:No actual match found.We can have unique
ids to identify clients in a client-server app and can
have some other unique(typecode
object)representation to access in a distributed
environment.

L

Name: GetTickCount Exist (Yes/No/Partial):Partial M

 39

Description: Returns a millisecond
clock counter that can be used for
timing sections of CFML code or any
other aspects of page processing.

Class: java.lang.System
Method: public static long currentTimeMillis()
Description: Returns the current time in milliseconds. ,
between the current time and midnight, January 1,
1970 UTC.
Consder a Jsp Page:
<html>
<body >
<%
System s;
Time t1,t2,t3;
 t1=s.currentTimeMills();
�------ jsp page functionality-------�
 t2=s.currentTimeMills();
t3=can get the value. Of(t2-t1) and get the processing
time.
Proposed Solution in case of Non or Partial Existence:

Name: Decrypt

Description: Decrypts an encrypted
string.

Exist (Yes/No/Partial): Yes
Class: javax.crypto.Cipher

Description: This class provides the functionality of a
cryptographic cipher for encryption and decryption. It
forms the core of the Java Cryptographic Extension
(JCE) framework.
Cipher in=Cipher.getInstance(cipheralgo,�SUN�);
In.init(Cipher.ENCRYPT_MODE,key);
CipherInputStream cIn=new
CipherInputStream(bIn,in);
Other ref. Class: javax.crypto.CipherInputStream

Proposed Solution in case of Non or Partial Existence:

L

Name: PreserveSingleQuotes

Description: Prevents ColdFusion
from automatically "escaping" single
quotes contained in variable.

Exist (Yes/No/Partial): Partial
Class: java.lang.String
Method:No Existing single method
Proposed Solution in case of Non or Partial Existence:
Strings are constant; their values cannot be changed
after they are created
char data[] = {'a', 'b', 'c'};
 String str = new String(data);
We can check the string objects by
Public char charAt(int index)
eg. String s;
if((s.charAt(0))==��� && if(s.endsWith())==���)
then accept as satisfied condition;
or the other methods like
int compareTo(String anotherString)
boolean equals(Object anObject)
boolean startsWith(String prefix)
etc. can be used.

M

Name: DeleteClientVariable

Description: Deletes the client
variable specified by name. Returns a
Boolean TRUE when variable is
successfully deleted, even if variable

Exist (Yes/No/Partial): Partial

As discussed here we are writing the solutions for the
standard system variables found.
Class: javax.servlet.http.Cookie
Method: public void setMaxAge(int expiry)

M

 40

did not previously exist. To test for the
existence of a variable, use IsDefined.

Class:javax.servlet.http.HttpSession.
Method:Void
RemoveAttribute(java.lang.String name)
Description: Removes the object bound with the
specified name from this session.

Proposed Solution in case of Non or Partial
Existence:The client information comes through
cookie.we can delete the cookie by setting the maxage
to zero.
Eg.
Cookie c;
c.setMaxAge(0);
res.addCookie(c);(res=HttpResponseObject)

Name: QuotedValueList

Description: Returns a comma-
separated list of the values of each
record returned from a previously
executed query.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:At present the JDBC2.0 API does not
support such functionality.For enhancement
Recommended
Java.sql.Resultset, the getXXX methods and interface
ResultsetMetaData helps in
querying and getting the result.StringBuffer class�s
append method can be used after getting the resultset
object.
Resultset rs=stmt.executeQuery(sql);
Whille(rs.next)
StringBuffer s=rs.getArray(string
col).append(���).toString:
The approach like above can be made.

H

Name: Encrypt

Description: Encrypts a String.

Exist (Yes/No/Partial): Partial
We can actually achieve encryptuion using Java
Cryptographic architecture(JCA).This is done by JCE
1.2.1(java API for cryptography support)
Encrypt:
Cipher out=Cipher.getInstance(cipheralgo,�SUN�);
Out.init(Cipher.ENCRYPT_MODE,key);
CipherOutputStream cIn=new
CipherOutputStream(bout,out);

Other ref. Class: javax.crypto.CipherOutputStream

Proposed Solution in case of Non or Partial Existence:

L

Name: StripCR

Description: Returns string with all
carriage return characters removed.

Exist (Yes/No/Partial): No
Class: java.lang.String
Method: public String replace(char oldChar,char
newChar),
Public String trim().
Description:First method Returns a new string resulting
from replacing all occurrences of oldChar in this string
with newChar.
The second one Removes white space from both ends

M

 41

of this string.

Proposed Solution in case of Non or Partial Existence:
String s1,s2,s3;
S1=�string with carriage return chars�;
S2=s1.replace(char carriagereturn,� �);
S3=s2.trim();
System�out.println(s3);

Name: GetBaseTagData

Description: Returns an object that
contains data (variables, scopes, etc.)
from a specified ancestor tag.

Exist (Yes/No/Partial): Partial
Class: javax.servlet.jsp.tagext.Tag
 javax.servlet.jsp.tagext.TagData
 javax.servlet.jsp.tagext.TagInfo
Method: public Tag getParent()
Description: the parent extension tag instance

Method: public TagData getTagData()
Description: return the immmutable TagData for this
tag

Proposed Solution in case of Non or Partial
Existence:The approach should be on the lines of
working with the classes in conjunction.

H

Name: URLEncodedFormat

Description: Returns a URL-encoded
string. Spaces are replaced with +
and all non-alphanumeric characters
with equivalent hexadecimal escape
sequences.

Exist (Yes/No/Partial): Yes
Class: java.net.URLEncoder
Method: public static String encode(String s)
Description: Translates a string into x-www-form-
urlencoded format.

Proposed Solution in case of Non or Partial Existence:

L

Name: GetBaseTagList

Description: Returns a comma-
delimited list of uppercase ancestor
tag names. The first element of the
list is the parent tag. If you call this
function for a top-level tag, it returns
an empty string.

Exist (Yes/No/Partial): Partial
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:Almost Same as GetBaseTagData.
With a difference that here we need an array of Parent
tags from getTagData() meyhods.

H

Name: ValueList
Description: Returns a comma-
separated list of the values of each
record returned from a previously
executed query

Exist (Yes/No/Partial):Partial
Class:
Method:
Proposed Solution in case of Non or Partial Existence:
Almost Same as QuotedValueList
And here again we are to operate upon JDBC2.0 APIs.

M

Name: GetBaseTemplatePath

Description: Returns the fully
specified path of the base template

Exist (Yes/No/Partial): No
Class: java.io.File
Method:
public File getParentFile()
public String getParent()
public String getAbsolutePath()

Description:
Returns the pathname string of this abstract
pathname's parent, or null if this pathname does not

M

 42

name a parent directory.

Returns the absolute pathname string of this file.
Proposed Solution in case of Non or Partial Existence:

Name: WriteOutput

Description: Appends text to the page
output stream. Although you can call
this function anywhere within a page,
it is most useful inside a CFSCRIPT
block.

Exist (Yes/No/Partial): Yes
Class: javax.servlet.http.HttpServletResponse

Method: public java.io.PrintWriter getWriter()
or
public ServletOutputStream getOutputStream()
Description:
First one returns Returns a PrintWriter object that can
send character text to the client
Second one returns Returns a ServletOutputStream
suitable for writing binary data in the response

Proposed Solution in case of Non or Partial Existence:
HttpservletResponse res;
PrintWriter out=res.getWriter();

Enhancement on these lines.

M

Issues/Notes:
The GetClientVariables() method returns the custom client variables,and not the system supplied variables and in a
j2ee environment we save custom client data(suppose favourite colour of page)in a component(bean) and retrieve
from there.So we need to develop methods to access this data and same applies for the DeleteClientVariables()
method.
The GetBaseTemplate* functions� mapping can be done in java�s Get* methods,for which we need to write fresh code
and aciheve the required functionality.
We have Resultset Object in JDBC API.For the DataBase access related methods like QuotedValueList,ValueList we
need to extend functionality of our Jdbc resultset methods.

5.2.6 Category: Mathematical Functions

Total CFML Functions = 34
Available Java Functions = 28
Complexity Level (Low/Medium/High) � 27L / 7M / 0H / 0C

 CFML Functions JAVA API�s Complexity
Name: ACos

Description: Returns the arccosine of a number in
radians. The arccosine is the angle whose cosine is
number

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: acos(double)

Proposed Solution in case of Non or Partial
Existence:

L

Name: Ceiling

Description: Returns the closest integer greater than

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: ceil(double)

L

 43

a given number. Proposed Solution in case of Non or Partial
Existence:

Name: Min

Description: Returns the minimum, or smaller, value
of two numbers.

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: min(long , long)
Proposed Solution in case of Non or Partial
Existence:

L

Name: ASin

Description: Returns the arcsine of a number in
radians. The arcsine is the angle whose sine is
number.

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: asin(double)
Proposed Solution in case of Non or Partial
Existence:

L

Name: Cos

Description: Returns the cosine of a given angle in
radians.

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: cos(double)
Proposed Solution in case of Non or Partial
Existence:

L

Name: Pi

Description: Returns the number
3.14159265358979, the mathematical constant
(read as Pi), accurate to 15 digits.

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method:

Proposed Solution in case of Non or Partial
Existence:
Observation: Java has a contemporary
variable equivalent to Pi method:
public final static double : PI

L

Name: Atn

Description: Returns the arctangent of a number.
The arctangent is the angle whose tangent is
number.

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: atan(double)
Proposed Solution in case of Non or Partial
Existence:

L

Name: DecrementValue

Description: Returns integer part of number
decremented by one.

Exist (Yes/No/Partial): No
Class: java.lang.Integer
Method: parseInt()
Operator:
Proposed Solution in case of Non or Partial
Existence:An alternative method has to be
defined decrementing the integer value by 1
and truncating the decimal portion.

M

Name: Rand

Description: Returns a random decimal number in
the range 0 to 1.

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: random()
Proposed Solution in case of Non or Partial
Existence:

L

Name: BitAnd

Description: Returns the bitwise AND of two long
integers.

Exist (Yes/No/Partial): Yes
Class: java.lang.BigInteger
Method: and(BigInteger)

Proposed Solution in case of Non or Partial
Existence:

L

 44

Name: Exp

Description: Returns e raised to the power of
number. The constant e equals 2.71828182845904,
the base of the natural logarithm.

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: exp(double)
Proposed Solution in case of Non or Partial
Existence:

L

Name: Randomize

Description: Seeds the random number generator
in ColdFusion with the integer part of a number. By
seeding the random number generator with a
variable value, you help to ensure that the Rand
function generates highly random numbers.This
method has to be called before invoking Rand
method.

Exist (Yes/No/Partial): Yes
Class: java.util.Random
Method: setSeed(long)
Proposed Solution in case of Non or Partial
Existence:

L

Name: BitMaskClear

Description: Returns number bitwise cleared with
length bits beginning from start.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:
An alternate method has to be defined using
the Integer,StringBuffer and String classes to
obtain the functionality of the tag.

M

Name: Fix

Description: Returns the closest integer less than
number if number is greater than or equal to 0.
Returns the closest integer greater than number if
number is less than 0.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:
An alternate method has to be defined using
the ceil and floor methods.

M

Name: RandRange

Description: Returns a random integer between two
specified numbers.
Note: Requests for random integers greater than
100,000,000 will result in non-random behavior.

Exist (Yes/No/Partial): Yes
Class: java.util.Random
Method: nextInt(int)
Proposed Solution in case of Non or Partial
Existence:

L

Name: BitMaskRead

Description: Returns the integer created from
length bits of number beginning from start.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:
An alternate method has to be defined using
the Integer,StringBuffer ,BitSet and String
classes to obtain the functionality of the tag.

M

Name: IncrementValue

Description: Returns integer part of number
incremented by one.

Exist (Yes/No/Partial): No
Class: java.lang.Integer
Method: parseInt()
Proposed Solution in case of Non or Partial
Existence:An alternative method has to be
defined incrementing the integer value by 1
and further truncating the decimal portion.

M

 45

Name: Round

Description: Rounds a number to the closest
integer .

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: round(long/double)
Proposed Solution in case of Non or Partial
Existence:

L

Name: BitMaskSet

Description: Returns number bitwise masked with
length bits of mask beginning from start.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:
An alternate method has to be defined using
the Integer,StringBuffer and String classes to
obtain the functionality of the tag.

M

Name: InputBaseN

Description: Returns the number obtained by
converting string using the base specified by radix,
an integer ranging from 2 to 36.

Exist (Yes/No/Partial): Yes
Class: java.lang.Integer
Method: valueOf(String,int)
Proposed Solution in case of Non or Partial
Existence:

L

Name: Sgn

Description: Determines the sign of a number.
Returns 1 if number is positive; 0 if number is 0; and
-1 if number is negative.

Exist (Yes/No/Partial): Yes
Class: java.lang.BigInteger/BigDecimal
Method: signum()
Proposed Solution in case of Non or Partial
Existence:

L

Name: BitNot

Description: Returns the bitwise NOT of a long
integer.

Exist (Yes/No/Partial): Yes
Class: java.lang.BigInteger
Method: not()
Proposed Solution in case of Non or Partial
Existence:

L

Name: Int

Description: Returns the closest integer smaller
than a number.

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: floor(long/float)
Proposed Solution in case of Non or Partial
Existence:

L

Name: Sin

Description: Returns the sine of the given angle.

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: sin(double)
Proposed Solution in case of Non or Partial
Existence:

L

Name: BitOr

Description: Returns the bitwise OR of two long
integers.

Exist (Yes/No/Partial): Yes
Class: java.lang.BigInteger
Method: or(BigInteger)
Proposed Solution in case of Non or Partial
Existence:

L

Name: Log

Description: Returns the natural logarithm of a
number. Natural logarithms are based on the
constant e (2.71828182845904).

Exist (Yes/No/Partial): Yes
Class: java.lang.Math
Method: log(double)
Proposed Solution in case of Non or Partial
Existence:

L

Name: Sqr Exist (Yes/No/Partial): Yes L

 46

Description: Returns a positive square root.

Class: java.lang.Math
Method: sqrt(double)
Proposed Solution in case of Non or Partial
Existence:

Name: BitSHLN

Description: Returns number bitwise shifted without
rotation to the left by count bits.

Exist (Yes/No/Partial): Yes
Class: java.lang.BigInteger
Method: shiftLeft(int)
Proposed Solution in case of Non or Partial
Existence:

L

Name: Log10

Description: Returns the logarithm of number to
base 10.

Exist (Yes/No/Partial): Partial
Class: java.lang.Math
Method: log(double) (natural log)
Proposed Solution in case of Non or Partial
Existence:Conversion factor can be used to
obtain the log base 10 value from the natural
log value.

M

Name: Tan

Description: Returns the tangent of a given angle.

Exist (Yes/No/Partial):Yes
Class: java.lang.Math
Method: tan(double)
Proposed Solution in case of Non or Partial
Existence:

L

Name: BitSHRN

Description: Returns number bitwise shifted without
rotation to the right by count bits.

Exist(Yes/No/Partial):Yes
Class: java.lang.BigInteger
Method: shiftRight(int)
Proposed Solution in case of Non or Partial
Existence:

L

Name: Abs

Description: Returns the absolute value of a
number. The absolute value of a number is the
number without its sign.

Exist(Yes/No/Partial): Yes
Class: java.lang.Math
Method: abs(long/float/double/int)
Proposed Solution in case of Non or Partial
Existence:

L

Name: BitXor

Description: Returns bitwise XOR of two long
integers.

Exist(Yes/No/Partial): Yes
Class: java.lang.Math
Method: xor(BigInteger)
Proposed Solution in case of Non or Partial
Existence:

L

Name: Max

Description: Returns the maximum, or higher, value
of two numbers.

Exist(Yes/No/Partial): Yes
Class: java.lang.Math
Method: max(long,long)
Proposed Solution in case of Non or Partial
Existence:

 L

Issues/Concerns : Given any of the Cfml Mathematical Tags , defining a corresponding Java Method , if it doesnot
exist in the API , requires minimum efforts to accomplish the same functionality using the simple classes like String ,
StringBuffer , Integer ,Float ,Number etc.,

 47

5.2.7 Category: List Functions

Total CFML Functions = 21
Available Java Functions = 16

 Complexity level(Low\Medium\High)- 12L / 3M / 6H

 CFML Functions JAVA API�s Complexity Level
Name: ArrayToList

Description: Converts the specified one
dimensional array to a list, delimited with the
character you specify.
Syntax : ArrayToList(array [, delimiter])
 array - Name of the array containing
elements you want to use to build a list
 delimiter - Specify the character(s) you want
to use to delimit elements in the list. Default is
comma (,)

Exist (Yes/No/Partial): Partial
Class: java.util.Arrays
Method: Arrays.asList()
Proposed Solution in case of Non or Partial
Existence: The above method takes a one
dimensional array and returns an java.util.List
object which is internally represented as
[elem1,elem2,elem3...].It is not possible to
change the delimiter (it is internally represented
by ',').

 L

Name: ListLast

Description: Returns the last element of the
list.
 Syntax : ListLast(list [, delimiters])
 list - List whose last element is being
retrieved.
 delimiters - Set of delimiters used in list

Exist (Yes/No/Partial): Yes
Class: java.util.List
Method: get()
Returns the element at the specified position in
this list.Passing the index of the element will
return the last object of the List.
Proposed Solution in case of Non or Partial
Existence:

 L

Name: ListAppend

Description:Returns list with value appended
behind its last element.
 Syntax : ListAppend(list, value [, delimiters])
 list - Any list
 delimiters - Set of delimiters used in list
 value � Number or list being added.

Exist (Yes/No/Partial): Yes
Class: java.util.List
Method: add() or addAll()
 Appends the specified element to the end of
this list.
Proposed Solution in case of Non or Partial
Existence:

L

Name: ListLen

Description: Returns the number of elements
in the list
 Syntax : ListLen(list [, delimiters])
 list - Any list
 delimiters - Set of delimiters used in list

Exist (Yes/No/Partial): Yes
Class: java.util.List
Method: size()
Proposed Solution in case of Non or Partial
Existence:

L

Name: ListChangeDelims

Description:Returns list with all delimiter
characters changed to new_delimiter string.
Syntax:ListChangeDelims(list, new_delimiter [,
delimiters])

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:
The delimiters are internal representation they
cannot be altered. In the presenr java API we
do not have support for that. A proposed
solution is to wrap each of the List item with the
new_delimiter value and add them back to List
replaceing the previous value.

H

 48

Name: ListPrepend

Description: Returns list with value inserted at
the first position, shifting all other elements
one to the right.
 Syntax : ListAppend(list, value [, delimiters])
 list - Any list
 delimiters - Set of delimiters used in list
 value � Number or list being added.

Exist (Yes/No/Partial): Yes
Class: java.util.List
Method: add() or addAll()
 To this method pass the index as '0' to add
as first element of the List.
Proposed Solution in case of Non or Partial
Existence:

L

Name: ListContains

Description:Returns the index of the first item
that contains the specified substring. The
search is case-sensitive. If the substring is not
found in any of the list items, it returns zero (0)
 Syntax : ListContains(list, substring [,
delimiters])

Exist (Yes/No/Partial): Yes
Class: java.util.List
Method: indexOf()
 Returns the index in this list of the first
occurrence of the specified element, or -1 if this
list does not contain this element.
Proposed Solution in case of Non or Partial
Existence:

L

Name: ListQualify

Description:Returns a list with a qualifying
character around each item in the list, such as
double or single quotes.
Syntax : ListQualify(list, qualifier [, delimiters]
[, elements])
 list - Any list of items or a variable that
names a list
 qualifier - The character that is to be placed
at the beginning and end of each item in the
list
 delimiters - Set of delimiters used in list
 elements - Either the keyword "ALL" or
"CHAR." If you specify "ALL," the function
qualifies all items in the list. If you specify
"CHAR," the function qualifiers only items
comprised of alphabetic characters; it does
not qualify numeric items

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:

A qualifying character around each item in the
list, such as double or single quotes is internal
representation and cannot be altered.Current
Java API does'nt provide any mechanism to
alter the delemiters in a list.A possible solution
is to wrap each of the List item with single (') or
double quote (") and add them back to List
replaceing the previous value.

H

Name: ListContainsNoCase
Description: Returns the index of the first
element of a list that contains the specified
substring within elements. The search is case-
insensitive. If no element is found, returns 0.

Exist (Yes/No/Partial): Partial
Class: java.util.List
Method: indexOf() (Here the search is case �
sensitive.)
Proposed Solution in case of Non or Partial
Existence:

M

Name: ListRest

Description: Returns list without its first
element. Returns an empty list (empty string)
if list has only one element.
Syntax : ListRest(list [, delimiters])
 list - Any list
 delimiters - Set of delimiters used in list

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:
 It is possible to pass the desired List as the
argument to the method and use the remove(0)
on this List and return the resultant List.

H

Name: ListDeleteAt Exist (Yes/No/Partial): Yes L

 49

Description: Returns list with element deleted
at the specified position.
Syntax :ListDeleteAt(list, position [, delimiters
])
 list - Any list
 delimiters - Set of delimiters used in list
 position - Positive integer indicating the
position of the element being deleted. The
starting position in a list is denoted by the
number 1, not 0

Class: java.util.List
Method: remove()
 Removes the element at the specified
position in this list.First element is denoted by 0
(zero).

Proposed Solution in case of Non or Partial
Existence:

Name: ListSetAt

Description: Returns list with value assigned
to its element at specified position.
Syntax : ListSetAt(list, position, value [,
delimiters])
 list - Any list
 delimiters - Set of delimiters used in list
 value � Any value.
 position - Any position. The first position in
a list is denoted by the number 1, not 0.

Exist (Yes/No/Partial): Yes
Class: java.util.List
Method: add()
 Inserts the specified element at the specified
position in this list.

Proposed Solution in case of Non or Partial
Existence:

L

Name: ListFind

Description: Returns the index of the first
occurrence of a value within a list. Returns 0 if
no value is found. The search is case-
sensitive.
Syntax : ListFind(list, value [, delimiters])
 list � Any list.
 value - Number or string that is to be found
in the items of the list.
 delimiters - Set of delimiters used in list

Exist (Yes/No/Partial): Partial
Class: java.util.List
Method: indexOf() (Here the method accepts
only objects.)
Proposed Solution in case of Non or Partial
Existence:

M

Name: ListSort

Description: Sorts and delimits the items in a
list according to the specified sort type and
sort order.
Syntax : ListSort(list, sort_type [, sort_order] [,
delimiter])
 list � Any list.
 sort_type � Numeric (sorts numbers), Text
(sorts text alphabetically),Textnocase (sorts
text alphabetically. The case is ignored)
 sort_order � Asc (Ascending,Default), Desc
(Descending)
 delimiter - Set of delimiters used in list

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:

A partial alternative, is to convert the List in to
an Array (using List.toArray()) and then passing
the resultant array to java.util.Arays.sort() for
sorting and then converting the resultant array
abck to List using java.util.Arays.asList()
method.The sorting is only ascending.
Current Java API does'nt provide any
mechanism to alter the delemiters in a list.

H

Name: ListFindNoCase

Description: Returns the index of the first
occurrence of a value within a list. Returns 0 if
no value was found. The search is case-
insensitive.
 Syntax : ListFindNoCase(list, value [,

Exist (Yes/No/Partial): Partial
Class: java.util.List
Method: indexOf(). This search is not case-
insensitive.
Proposed Solution in case of Non or Partial
Existence:

M

 50

delimiters])
 list � Any list.
 value - Number or string that is to be found
in the items of the list.
 delimiters - Set of delimiters used in list

Name: ListToArray

Description: Converts the specified list into an
array.
Syntax : ListToArray(list [, delimiter])
 list - Any list
 delimiters - Set of delimiters used in list

Exist (Yes/No/Partial): Yes
Class: java.util.List
Method: toArray()
Proposed Solution in case of Non or Partial
Existence:

L

Name: ListFirst

Description: Returns the first element of the
list.
Syntax : ListFirst(list [, delimiters])
 list - Any list
 delimiters - Set of delimiters used in list

Exist (Yes/No/Partial): Yes
Class: java.util.List
Method: get()
 To this method pass 0(zero) as the argument
which will return the first element of the List.
Proposed Solution in case of Non or Partial
Existence:

L

Name: ListValueCount

Description: Returns the number of instances
of a specified value in a list. The underlying
search that finds the instances is case-
sensitive.
 Syntax : ListValueCount(list, value [,
delimiters])

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence: It possible to write a method which
compares each list element with the specified
element.And have a counter varaible which is
incrementd by 1 if a match occurs.

H

Name: ListGetAt

Description: Returns the element at a given
position.
Syntax : ListGetAt(list, position [,delimiters])
 list � Any List
 position - Positive integer indicating the
position of the element being retrieved.

Exist (Yes/No/Partial): Yes
Class: java.util.List
Method: get()
 Returns the element at the specified position
in this list

Proposed Solution in case of Non or Partial
Existence:

L

Name: ListValueCountNoCase

Description: Returns the number of instances
of a specified value in a list. The underlying
search that finds the instances is not case-
sensitive.

Exist (Yes/No/Partial): No
Class:
Method:
 Inserts the specified element at the specified
position in this list.
Proposed Solution in case of Non or Partial
Existence: It possible to write a method which
compares each list element with the specified
element.And have a counter varaible which is
incrementd by 1 if a match occurs.But the
comparison is case-sensitive.

H

Name: ListInsertAt

Exist (Yes/No/Partial): Yes
Class: java.util.List

L

 51

Description: Returns list with value inserted at
the specified position.
 Syntax : ListSetAt(list, position, value [,
delimiters])
 list - Any list
 delimiters - Set of delimiters used in list
 value � Any value.
 position - Any position. The first position in
a list is denoted by the number 1, not 0.

Method: add()
Proposed Solution in case of Non or Partial
Existence:

Issues :
 All the functions mentioned above have an optional parameter delimiters which is used to specify delimiter other than
','(by default).This is not possible in Java as it is JVM dependent.
 ListQualify-This function retwurns a list with a qualifying character around each item in the list, such as double or
single quotes.It is not possible to alter the way the value of a list item is represented.
 ListContainsNoCase & ListFindNoCase � These functions returns the index of the first occurrence of a value within a
list.The search is case-insensitive.The corresponding matches in Java API are java.util.List.indexOf(),but the search
here is case-sensitive.
 ListValueCount & ListValueCountNoCase -- Returns the number of instances of a specified value in a list. The
underlying search that finds the instances is not case- sensitive.No match is found which does case-insensitive
search.Incase the List elements are of String type then it is possible to write a custom function that does a case-
 insensitive comparison while doing the search using the java.lang.String.equalsIgnoreCase().
 ListSort - Sorts and delimits the items in a list according to the specified sort type and sort order.The sort types can be
- Numeric (sorts numbers), Text (sorts text alphabetically),Textnocase (sorts text alphabetically. The case is ignored).

5.2.8 Category: International Functions

Total CFML Functions = 16
Available Java Functions = 14(Including Partial)
Complexity Level(Low\Medium\High)- 13L / 1M / 2H / 0C

 CFML Functions JAVA API�s Complexity
Name: DateConvert

Description:
Converts local time to Universal Coordinated Time
(UTC) or UTC to local time based on the specified
parameters. This function uses the daylight savings
settings in the executing machine to compute
daylight savings time, if required.

Syntax : DateConvert(conversion-type, date)
conversion-type
There are two conversion types: "local2Utc" and "utc2Local."
The former converts local time to UTC time. The later
converts UTC time to local time.

date
Any ColdFusion date and time string. In order to create a
ColdFusion date and time, use CreateDateTime.

Exist (Yes/No/Partial): Partial
Class: java.util.TimeZone
 Method: public abstract void setRawOffset(int
offsetMillis)
Sets the base time zone offset to GMT. This is
the offset to add *to* UTC to get local time.
Parameters:
OffsetMillis - the given base time zone offset to
GMT.
Proposed Solution in case of Non or Partial
Existence:

 M

Name: GetLocale

Description:
Returns the locale for the current request. Locales are

Exist (Yes/No/Partial): Yes
Class: java.util.Locale
Method: public static Locale getDefault()
Class: java.text.DateFormat

 L

 52

determined by the native operating system.

A locale is an encapsulation of the set of attributes that
govern the display and formatting of international date, time,
number, and currency values.
Syntax : GetLocale()

Method: public static final DateFormat
getDateTimeInstance(int dateStyle,int
timeStyle,Locale aLocale)

Proposed Solution in case of Non or Partial
Existence:

Name: GetTimeZoneInfo
Description:
Syntax : GetTimeZoneInfo()
Returns a structure containing time zone information for the
machine on which this function
is executed. The structure contains four elements.

Exist (Yes/No/Partial): Yes
Class: java.util.Date
Method: public int getTimezoneOffset()
Proposed Solution in case of Non or Partial
Existence:

 L

Name: LSCurrencyFormat

Description:
Returns a currency value using the locale convention. Default
value is "local."
Syntax : LSCurrencyFormat(number [, type])
number
The currency value.
Type
Currency type. Valid arguments are:
none -- (For example, 10.00)
local -- (Default. For example, $10.00)
international -- (For example, USD10.00)

Exist (Yes/No/Partial): Yes
Class: java.text.DecimalFormatSymbols

Method: public String getCurrencySymbol()
Proposed Solution in case of Non or Partial
Existence:

 L

Name: LSDateFormat

Description:
Formats the date portion of a date/time value using the locale
convention. Like DateFormat LSDateFormat returns a
formatted date/time value. If no mask is specified,
LSDateFormat returns a date value using the locale-specific
format.

Syntax : LSDateFormat(date [, mask])

Exist (Yes/No/Partial): Yes
Class: java.text.DateFormat,
java.text.SimpleDateFormat
Method: format() in combinaion with
getDateInstance() or getInstance() of
java.text.DateFormat class. The methods
getDateInstance() or getInstance() also take
Locale as one of their parameters.
Method: public abstract StringBuffer format(Date
date,StringBuffer toAppendTo,FieldPosition
fieldPosition)
public final String format(Date date)
Proposed Solution in case of Non or Partial
Existence:

 L

Name: LSEuroCurrencyFormat

Description:
Returns a currency value using the convention of the locale
and the Euro as the currency symbol. Default value is "local."

Note: The locale is set with the SetLocale function.
Syntax : LSEuroCurrencyFormat(currency-number [, type])

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:
Java(1.2)API does not support
EuroCurencyFormat

 H

Name: LSIsCurrency

Description:
Checks whether a string is a locale-specific currency string.
Returns TRUE if string is a currency string, FALSE otherwise.

Syntax : LSIsCurrency(string)

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat
Method:
NumberFormat.getInstance().format(number)
(this method can be used for Locale-specific
numeber formats) or new
DecimalFormat(pattern).foramt(number) (this
method can be used for user-defined patterns)

 L

 53

String: The locale-specific currency string.
Proposed Solution in case of Non or Partial
Existence:

Name: LSIsDate
Description:
Like the IsDate function, LSIsDate returns TRUE if string can
be converted to a date/time value in the current locale,
FALSE otherwise.
5.2.8.1.1 Syntax : LSIsDate(string)

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat
Method:
NumberFormat.getInstance().format(number)
(this method can be used for Locale-specific
numeber formats) or new
DecimalFormat(pattern).foramt(number) (this
method can be used for user-defined patterns)
Proposed Solution in case of Non or Partial
Existence:

 L

Name: LSIsNumeric

Description:
Like the IsNumeric function, LSIsNumeric returns TRUE if
string can be converted to a number in the current locale;
otherwise, FALSE.

Syntax : LSIsNumeric(string)

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat
Method:
public Number parse(String text)throws
ParseException
Throws: ParseException - if the specified string is
invalid.
Proposed Solution in case of Non or Partial
Existence:

 L

Name : LSNumberFormat

Description:
Formats a number using the locale convention. If mask is
omitted, the number is formatted as an integer.

Syntax : LSNumberFormat(number [, mask])

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat
Method:
NumberFormat.getInstance().format(number)
(this method can be used for Locale-specific
numeber formats) or new
DecimalFormat(pattern).foramt(number) (this
method can be used for user-defined patterns)
Syntax:
public final String format(double number)
public final String format(long number)
Proposed Solution in case of Non or Partial
Existence:

 L

Name: LSParseCurreny

Description:
Converts a locale-specific currency string to a number.
Attempts conversion through each of the three default
currency formats (none, local, international). Returns the
number matching the value of string.
Syntax : LSParseCurrency(string)
string :
The locale-specific string you want to convert to a number.

Exist (Yes/No/Partial): Yes
Class: java.text
 Method: parse(String text)
Proposed Solution in case of Non or Partial
Existence:

 L

Name: LSParseDateTime

Description:
A locale-specific version of the ParseDateTime function,
except that there is no option for POP date/time object
parsing. Returns a date/time object.
Syntax : LSParseDateTime(date-time-string)
date-time-string :
String being converted to date/time object. This string must
be in a form that is readable in the current locale setting. By
default the locale is set to English (US).

Exist (Yes/No/Partial): Yes
Class: java.text.DateFormat
Method: public abstract Date parse(String
text,ParsePosition pos)

Proposed Solution in case of Non or Partial
Existence:

 L

Name: LSParseEuroCurrency

Description:

Exist (Yes/No/Partial): No
Class:
Method:

 H

 54

Converts a locale-specific currency string that contains the
Euro symbol (�) or sign (EUR) to a number. Attempts
conversion through each of the three default currency formats
(none, local, international). Returns the number matching the
value of string.
Syntax : LSParseEuroCurrency(currency-string)
currency-string :
The locale-specific string you want to convert to a number.

Proposed Solution in case of Non or Partial
Existence:

Java(1.2)API does not support EuroCurrency

Name: LSParseNumber

Description:
Converts a locale-specific string to a number. Returns the
number matching the value of string.
Syntax : LSParseNumber(string)
string : String being converted to a number.

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat
Method: public abstract Number parse(String
text,ParsePosition parsePosition)
Proposed Solution in case of Non or
Partial Existence:

 L

Name: LSTimeFormat

Description:
Returns a custom-formatted time value using the locale
convention.
Syntax : LSTimeFormat(time [, mask])

Exist (Yes/No/Partial): Yes
Class: java.text.DateFormat
Method:
public abstract StringBuffer format(Date
date,StringBuffer to AppendTo,
FieldPosition fieldPosition)
Formats a Date into a date/time string.
Proposed Solution in case of Non or Partial
Existence:

 L

Name: SetLocale

Description:
Sets the locale to the specified new locale for the current
session.
Note: SetLocale returns the old locale in case it needs to be
restored.
Syntax : SetLocale(new_locale)
new_locale :The name of the locale you want to set.

Exist (Yes/No/Partial): Yes
Class: java.util.Local
Method: getDefault()
public static Locale getDefault()
Common method of getting the current default
Locale.
public static void setDefault (Locale newLocale)
Sets the default locale for the whole JVM.
SetDefault does not reset the host locale.
Construtor:
Locale(String language, String country)
Locale(String language, String country, String
variant)

Proposed Solution in case of Non or Partial
Existence:

 L

Issues: Most of the functions are available are in java. Out of 16, 14 are available(including partial)in java. 2 functions
are not avilable in java.These are LSEuroCurrencyFormat , LSParseEuroCurrency.
These functions are related to runtime attributes and Java API (JDK1.2) doesn�t provide any mechanism to determine
these values.Euro currency is not recognized by JDK1.2.
For this functions new methods should be written in Java.

5.2.9 Category: Dynamic Evaluation Functions

Total CFML Functions = 4
Available Java Functions = 2

 Complexity level(Low\Medium\High)- 2L / 0M / 2H / 0C

 CFML Functions JAVA API�s ComplexityLevel
Name: DE

Description: Returns its argument with

Exist (Yes/No/Partial): No
Class:
Method:

H

 55

double quotes wrapped around it and all
double quotes inside it escaped. The DE
(Delay Evaluation) function prevents the
evaluation of a string as an expression
when it is passed as an argument to IIf or
Evaluate.

Proposed Solution in case of Non or Partial
Existence:
 Partial match for this java.lang.String. toString()
which returns an String object for whatever
argument that is passed.

Name: Iif

Description: The function evaluates its
condition as a Boolean. If the result is
TRUE, it returns the value of
Evaluate(string_expression1); otherwise, it
returns the value of
Evaluate(string_expression2).The
expressions string_expression1 and
string_expression2 must be string
expressions, so that they do not get
evaluated immediately as the arguments of
Iif.
Syntax : IIf(condition, string_expression1,
string_expression2)

Exist (Yes/No/Partial): Yes
Operator: ternary operator (condition?exp1:exp2)
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:

L

Name: Evaluate

Description: The function evaluates all of
its arguments, left to right, and returns the
result of evaluating the last argument.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:The Java interpreter executes an
expression from left to right.This also seem to be
a Cold fusion specific function imlemetation of
which is yet to be there in java API.

H

Name: SetVariable

Description:The function sets the variable
specified by name to value and returns the
new value of the variable.
 Syntax:
 SetVariable(name, value)

Exist (Yes/No/Partial): Yes
Operator: assignment operator (=)
 name = value
Class:
Method:
Proposed Solution in case of Non or
Partial Existence:

L

Issues :
 DE - The DE (Delay Evaluation) function prevents the evaluation of a string as an
 expression when it is passed as an argument to IIf or Evaluate.
Evaluate � This function executes the expression passed to it as String and returns the results.The Java interpreter
execute an expression when it encounters one.There is no method available for this purpose in the API.
As these again seems to be close-knit with the JVM and without any existing support .Hence this sort vof functionality
attainment need lot of effort does not look easily acheivable.

5.2.10 Category: Display & Formatting Functions

Total CFML Functions = 15

 56

Available Java Functions = 11
Complexity level(Low\Medium\High)- 9L / 2M / 4H / 0C

 CFML Functions JAVA API�s ComplexityLevel
Name: DateFormat

Description: Returns a formatted date/time
value. If no mask is specified, DateFormat
function returns date value using the dd-
mmm-yy format.

Exist (Yes/No/Partial): Yes
Class:java.text.SimpleDateFormat and
java.text.DateFormat
 Method: format() in combinaion with
getDateInstance() or getInstance() of
java.text.DateFormat class.
Proposed Solution in case of Non or Partial
Existence:

L

Name: DecimalFormat

Description: Returns number as a string
formatted with two decimal places and
thousands separator.

Exist (Yes/No/Partial): Yes
Class: java.text.DecimalFormat
 Method: format()
Proposed Solution in case of Non or Partial
Existence:

L

Name: DollarFormat

Description: Returns number as a string
formatted with two decimal places,
thousands separator, dollar sign.
Parentheses are used if number is negative.

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat
 Method: format()
Proposed Solution in case of Non or Partial
Existence:

L

Name: FormaBaseN

Description: Converts a number to a string in
the base specified by radix.
Syntax :
 FormatBaseN(number, radix)

Exist (Yes/No/Partial): Yes
Class: java.lang.Integer, java.lang.Long,
java.lang.Short, java.lang.Double,
java.lang.Float, java.lang.Byte
 Method: java.lang.Integer.toString(),
java.lang.Long.toString()
The following methods accept the number to
be converted as String and the radix as int
java.lang.Short.valueOf(),
java.lang.Double.valueOf(),
java.lang.Float.valueOf(),
java.lang.Byte.valueOf()
Proposed Solution in case of Non or Partial
Existence:

L

Name: HTMLCodeFormat

Description: Returns HTML escaped string
enclosed in <PRE> and </PRE> tags. All
carriage returns are removed from string,
and all special characters (> < " &) are
escaped.
Syntax:
 HTMLCodeFormat(string [, version])

Exist (Yes/No/Partial): No
Class:
 Method:
Proposed Solution in case of Non or Partial
Existence:

To do this the JVM should recognoize the
HTHL tags and
 Java API does not provide any mechanism
to parse the HTML tags.

H

Name: LSCurrencyFormat

Description: Returns a currency value using
the locale convention. Default value is

Exist (Yes/No/Partial): Partial
Class: java.text.NumberFormat,
java.text.DecimalFormat
Method:

M

 57

"local."

NumberFormat.getInstance().format(number
) or
NumberFormat.getCurrencyInstance().forma
t(number) (this method can be used for
Locale-specific numeber formats) or new
DecimalFormat(pattern).format(number)
(this method can be used for user-defined
patterns)
Proposed Solution in case of Non or Partial
Existence:

Name: LSDateFormat

Description: Formats the date portion of a
date/time value using the locale convention.
Like DateFormat LSDateFormat returns a
formatted date/time value. If no mask is
specified, LSDateFormat returns a date
value using the locale-specific format.

Exist (Yes/No/Partial): Yes
Class:java.text.SimpleDateFormat and
java.text.DateFormat
 Method: format() in combinaion with
getDateInstance() or getInstance() of
java.text.DateFormat class. The methods
getDateInstance() or getInstance() also take
Locale as one of their parameters.
Proposed Solution in case of Non or Partial
Existence:

L

Name: LSEuroCurrencyFormat

Description: Returns a currency value using
the convention of the locale and the Euro as
the currency symbol. Default value is "local."
The LSEuroCurrencyFormat function can
display the Euro symbol (�) only on Euro-
enabled computers, such as Windows NT
4.0 SP4, that have Euro-enabled fonts
installed.

This function is similar to LSCurrencyFormat
except that LSEuroCurrencyFormat displays
the Euro currency symbol (�) or the
international Euro sign (EUR) if you specify
the type as local or international,
respectively, and the Euro is the accepted
currency of the locale.

Exist (Yes/No/Partial): No
Class:
 Method:
Proposed Solution in case of Non or Partial
Existence: Current Java API (JDK1.2)
doesn't recognize Euro currency.

H

Name: LSNumberFormat

Description: Formats a number using the
locale convention. If mask is omitted, the
number is formatted as an integer.

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat,
java.text.DecimalFormat
 Method:
NumberFormat.getInstance().format(number
) (this method can be used for Locale-
specific numeber formats) or new
DecimalFormat(pattern).format(number)
(this method can be used for user-defined
patterns)
Proposed Solution in case of Non or Partial
Existence:

L

Name: NumberFormat

Description:Creates a custom-formatted

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat,
java.text.DecimalFormat

L

 58

number value. If no mask is specified,
returns the value as an integer with a
thousands separator.
Syntax : NumberFormat(number [, mask])

 Method:
NumberFormat.getInstance().format(number
) (this method can be used for Locale-
specific numeber formats) or new
DecimalFormat(pattern).format(number)
(this method can be used for user-defined
patterns)

Proposed Solution in case of Non or Partial
Existence:

Name: ParagraphFormat

Description: Returns string with converted
single newline characters (CR/LF
sequences) into spaces and double newline
characters into HTML paragraph markers
(<P>).

Exist (Yes/No/Partial): No
Class:
 Method:
Proposed Solution in case of Non or Partial
Existence:
 A method can be written that parses the
given text that performs the same function
as ParagraphFormat.

H

Name: TimeFormat

Description: Returns a custom-formatted
time value. If no mask is specified, the
TimeFormat function returns time value
using the hh:mm tt format.
Syntax : TimeFormat(time [, mask])
 time - Any date/time value or string
convertible to a time value.
 mask - A set of masking characters
determining the format:
 * h -- Hours with no leading zero for
single-digit hours. (Uses a 12-hour clock.)

hh -- Hours with a leading zero for
single-digit hours. (Uses a 12-hour
clock.)

H -- Hours with no leading zero for
single-digit hours. (Uses a 24-hour
clock.)

HH -- Hours with a leading zero for
single-digit hours. (Uses a 24-hour
clock.)

m -- Minutes with no leading zero for
single-digit minutes

mm -- Minutes with a leading zero for
single-digit minutes

s -- Seconds with no leading zero for
single-digit seconds

ss -- Seconds with a leading zero for
single-digit seconds

t -- Single-character time marker
string, such as A or P

tt -- Multiple-character time marker
string, such as AM or PM

When passing a date/time value

Exist (Yes/No/Partial): Yes
Class: java.text.SimpleDateFormat and
java.text.DateFormat
 Method: format() in combinaion with
getTimeInstance() or getInstance()of
java.text.DateFormat class.

Proposed Solution in case of Non or Partial
Existence:

L

 59

as a string, make sure it is
enclosed in quotes. Otherwise, it is
interpreted as a number
representation of a date/time
object, returning undesired results

Name: YesNoFormat

Description:Returns Boolean data as YES or
NO.The YesNoFormat function returns all
non-zero values as YES and zero values as
NO.
Syntax :
 YesNoFormat(value)
 value-Any number or Boolean value.

Exist (Yes/No/Partial):Partial
Class: java.lang.Boolean
 Method: Boolean.valueOf() This method
takes only a String.If the String argument
passes is "true" then it returns boolean true
or else false.
Proposed Solution in case of Non or Partial
Existence:

M

Name: LSTimeFormat

Description: Returns a custom-formatted
time value using the locale convention.
Syntax : TimeFormat(time [, mask]) (same
as TimeFormat)
 time - Any date/time value or string
convertible to a time value.
 mask - A set of masking characters
determining the format.

Exist (Yes/No/Partial): Yes
Class: java.text.SimpleDateFormat and
java.text.DateFormat
 Method: format() in combinaion with
getTimeInstance() or getInstance()of
java.text.DateFormat class .The methods
getTimeInstance() or getInstance() also take
Locale as one of the parameters.
Proposed Solution in case of Non or Partial
Existence:

L

Name:HTMLEditFormat
Description:Returns HTML escaped string.
All carriage returns are removed from string,
and all special characters (> < " &) are
escaped.

Exist (Yes/No/Partial):No
Class:
Method:

Proposed Solution in case of Non or Partial
Existence:
To do this the JVM should recognoize the
HTHL tags and
 Java API does not provide any mechanism
to parse the HTML tags.

H

Issues :
HTMLEditFormat & HTMLCodeFormat - These fuctions return the HTML escaped strings.The former encloses the
returned string with <PER></PRE> tags while the later just returns the HTML escaped string.And Java API does not
provide any mechanism to parse the HTML tags.We need to see the existing parsers (for xml) and have to develop an
equivalent in java which is considerably non-simple and time taking.

 LSEuroCurrencyFormat � Current Java API (JDK1.2) doesn't recognize Euro currency.

5.2.11 Category: Decision Functions

Total CFML Functions = 17
Available Java Functions = 13(Including Partial)
Complexity Level(Low\Medium\High)- 12L / 1M / 4H / 0C

 60

 CFML Functions JAVA API�s Complexity

Name:IsArray

Description:
Returns TRUE if value is an array.
Syntax : IsArray(value [, number])
Value : Variable name or array name.
Number : Tests if the array has exactly the
specified dimension.

Exist (Yes/No/Partial): Yes
Class: java.lang.Class
Method: public boolean isArray()
Determines if this Class object represents an array class.
Returns: true if this object represents an array class; false
otherwise.
OR,
int a[]={1,2,3,4};
System.out.println(a instanceof int[]);
System.out.println(a.length);
for(int i=0;i<a.length;i++){
System.out.println(a[i]);

Proposed Solution in case of Non or Partial Existence:

 L

Name:IsAuthenticated

Description:
Returns TRUE if the user has been authenticated
for any ColdFusion security context. If you specify
the name of the security context, IsAuthenticated
returns TRUE if the user has been authenticated
for the specified ColdFusion security context.

Syntax :IsAuthenticated([security-context-name])

Security-context-name: The security context
name.

Exist (Yes/No/Partial): Yes
Class: javax.servlet.http
Interface: HttpSession
Method: getSession()
We can achive the required functionality with following
custom code.HttpSession�s getValue
(Constant.AUTHENTIFICATION) and
putValue(Constant.AUTHENTIFICATION) can be used.
Syntax:
 HttpSession session = request.getSession(false);
 String requestedPage =
request.getParameter(Constants.REQUEST);
 if (session != null)
 {
 Boolean isAuthenticated = (Boolean)
 session.getValue(Constants.AUTHENTICATION);
 if (!isAuthenticated.booleanValue())
 {
 unauthenticatedUser(response,
requestedPage);
 }
 }
 else
 {
 unauthenticatedUser(response, requestedPage);
 }
 }

Proposed Solution in case of Non or Partial Existence:

 L

Name:IsAuthorized

Description:
Returns TRUE if the user is authorized to perform
the specified action on the specified ColdFusion
resource.
Syntax:
IsAuthorized(resourcetype, resourcename [, action
])

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial Existence:
No such method is there in java.
This is a runtime verification and Java does not provide any
property or method that will check whether the authorized
is performed or not.

 H

Name:IsBinary

Description:
Returns TRUE if value is binary; otherwise, the
function returns FALSE.

Exist (Yes/No/Partial): Yes
Class: java.lang.Integer
Method: public static int parseInt(String s,int
binary_value)throws NumberFormatException
Proposed Solution in case of Non or Partial Existence:

 L

 61

Syntax : IsBinary(value)
value : Any value.
Name:IsDate

Description:
Returns TRUE if string can be converted to a
date/time value; otherwise, FALSE. Note that
ColdFusion converts the Boolean return value to
its string equivalent, "Yes" and "No."
Syntax : IsDate(string)
string : Any string value.

Exist (Yes/No/Partial):Yes
Class: java.util.Date; java.sql.Date;
Method: toString()
Class: java.text.DateFormat
Method:
public abstract StringBuffer format(Date date,StringBuffer
toAppendTo,FieldPosition fieldPosition)
Formats a Date into a date/time string.

Proposed Solution in case of Non or Partial Existence:

 L

Name:IsDebugMode

Description:
Returns TRUE if debugging mode was set via the
ColdFusion Administrator and FALSE if debugging
mode is disabled.

Syntax : IsDebugMode()

Exist (Yes/No/Partial): No
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
No such method is available in java.
Java API does not provide any mechanism to determine
whether debugging is enabled or disabled.

 H

Name:IsDefined

Description:
Evaluates a string value to determine if the
variable named in the string value exists.
IsDefined returns TRUE if the specified variable is
found, FALSE if not found.

IsDefined provides an alternative to the
ParameterExists function, eliminating the need for
cumbersome expressions used to test for the
existence of a variable:
Evaluate("ParameterExists(#var_name#)")
Syntax : IsDefined("variable_name")

Exist (Yes/No/Partial): No
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
Class: java.lang.reflect.Field
Method: getName()
Returns the name of the field represented by this Field
object.
Syntax: public String getName()

 H

Name:IsLeapYear

Description:
Returns TRUE if the year is a leap year;
otherwise, FALSE.
Syntax : IsLeapYear(year)
year : Number representing the year.

Exist (Yes/No/Partial): Yes
Class: java.util.GregorianCalendar
Method: public boolean isLeapYear(int year)
OR,
for(int i=0;i<3000;i++){
if(i%4==0)
System.out.println(i +"is a Leap year");
Else
System.out.println(i+" is not a Leap year");
}

Proposed Solution in case of Non or Partial Existence:

 L

Name:IsNumeric

Description:
Returns TRUE if string can be converted to a
number; otherwise, FALSE.
Syntax : IsNumeric(string)
string : Any string value.

Exist (Yes/No/Partial): Yes
Class: java.lang.Integer;
Method: parseInt(String s)
Parses the string argument as a signed decimal integer.

Syntax: public static int parseInt(String s)throws
NumberFormatException

Parses the string argument as a signed decimal integer. The
characters in the string must all be decimal digits, except
that the first character may be an ASCII minus sign '-'
('\u002d') to indicate a negative value. The resulting integer
value is returned, exactly as if the argument and the radix 10

 L

 62

were given as arguments to the parseInt(java.lang.String,
int) method.

Returns: the integer represented by the argument in
decimal.

Throws: NumberFormatException - if the string does not
contain a parsable integer.

Name:IsNumericDate
Description:
Evaluates "real value" of date/time object. Returns
TRUE if the number represents "real value" of the
date/time object; otherwise, FALSE.
Syntax : IsNumericDate(number)
number : Real number.

Exist (Yes/No/Partial): Partial
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
Class: java.text.DateFormat
Method: public Date parse(String text)throws
ParseException
Parse a date/time string.
Parameters:
text - The date/time string to be parsed
Returns:
A Date, or null if the input could not be parsed
Throws:
ParseException - If the given string cannot be parsed as a
date.

 M

Name:IsProtected

Description:
Returns TRUE if the resource is protected in the
security context of the authenticated user.
Syntax : IsProtected(resourcetype, resourcename
[, action])

Exist (Yes/No/Partial): Yes
Class: java.security.GuardedObject
Method: public Object getObject()throws SecurityException
Syntax:
public class GuardedObject extends Object implements
Serializable
A GuardedObject is an object that is used to protect access
to another object.

A GuardedObject encapsulates a target object and a Guard
object, such that access to the target object is possible only
if the Guard object allows it. Once an object is encapsulated
by a GuardedObject, access to that object is controlled by
the getObject method, which invokes the checkGuard
method on the Guard object that is guarding access. If
access is not allowed, an exception is thrown.

Proposed Solution in case of Non or Partial Existence:

 L

Name:IsSimpleValue

Description:
Returns TRUE if value is a string, number,
Boolean, or date/time value.

Syntax : IsSimpleValue(value)
value : Variable or expression.

Exist (Yes/No/Partial): Yes
Class: java.sql.*;
Interface: ResultSet
Method: executeQuary("Select * from tableName")
getString("...")
Syntax:
Class.forName("Driver");
Connection con=DriverManager.getConnection("jdbc:
odbc:DSN,"login name","password");
Statement st=con.creatStatement();
ResultSet rs=st.executeQuary("Select * from tableName")
while(rs.next()){
 rs.getString("Emp_ID");
 rs.getString("FirstName");

 L

 63

 rs.getString("LastName");
}

Proposed Solution in case of Non or Partial Existence:

Name:IsStruct

Description:
Returns TRUE if variable is a structure.
Syntax : IsStruct(variable)
variable : Variable name.

Exist (Yes/No/Partial): Yes
Class: java.sql.*;
Interface: ResultSet
Method: executeQuary("Insert into tableName")
Syntax:
Class.forName("Driver");
Connection con=DriverManager.getConnection("jdbc:
odbc:DSN,"login name","password");
PreparedStatement st=con.prepareStatement();
while(rs.next()){
 rs.setString(1,String);
 rs.setInt(2,"int value");
 rs.setFloat(3,"float value");
}
ResultSet rs=ps. ExecuteQuary()
whule(rs.next()){.....}
Proposed Solution in case of Non or Partial Existence:
Class: java.sql
Interface: public abstract interface Struct
It has 3 methods:
getAttributes(): Produces the ordered values of the attributes
of the SQL structurec type that this Struct object represents.

getAttributes(Map map): Produces the ordered values of the
attributes of the SQL structurec type that this Struct object
represents.

getSQLTypeName():Retrieves the SQL type name of the
SQL structured type that this Struct object represents.

 L

Name:LSIsCurrency

Description:
Checks whether a string is a locale-specific
currency string. Returns TRUE if string is a
currency string, FALSE otherwise.

5.2.11.1.1 Syntax :LSIsCurrency(string)
string :

The locale-specific currency string.

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat
Method: NumberFormat.getInstance().format(number) (this
method can be used for Locale-specific numeber formats) or
new DecimalFormat(pattern).foramt(number) (this method
can be used for user-defined patterns)

Proposed Solution in case of Non or Partial Existence:

 L

Name:LSIsdate

Description:
Like the IsDate function, LSIsDate returns TRUE if
string can be converted to a date/time value in the
current locale, FALSE otherwise.

Syntax : LSIsDate(string)

string : Any string value.

Usage : Years less than 100 are interpreted as

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat
Method:
NumberFormat.getInstance().format(number) (this method
can be used for Locale-specific numeber formats) or new
DecimalFormat(pattern).foramt(number) (this method can be
used for user-defined patterns)
Proposed Solution in case of Non or Partial Existence:

 L

 64

20th century values.
Name:LSIsNumeric

Description:
Like the IsNumeric function, LSIsNumeric returns
TRUE if string can be converted to a number in
the current locale; otherwise, FALSE.
Syntax : LSIsNumeric(string)
string : Any string value.

Exist (Yes/No/Partial): Yes
Class: java.text.NumberFormat
Method:
public Number parse(String text)throws ParseException
Throws: ParseException - if the specified string is invalid.
Proposed Solution in case of Non or Partial Existence.

 L

Name:ParameterExist

Description:
Returns True if the specified parameter has been
passed to the current template or has already
been created during execution of the current
template. Otherwise returns NO.
This function is provided for backward
compatibility with previous versions of ColdFusion.
You should use the function IsDefined instead.
Syntax : ParameterExists(parameter)
parameter : Any syntactically valid parameter
name.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial Existence:
This is a cold fusion special function for cold fusion.
No such speaial method is in Java.

 H

Issues:

Most of the functions are available are in java. Out of seventeen , therteen are available(including partial)in java. five
functions are not avilable in java.These are IsAuthenticated, IsAuthorized, , IsDebugMode, IsDefined &
ParameterExist.These functions are related to runtime attributes and Java API doesn�t provide any mechanism to
determine these values. For this functions new method should be written in Java.

5.2.12 Category: Date & Time Functions

Total CFML Functions = 32
Available Java Functions = 24 (Including partially matching functions)
Complexity Level (Low/Medium/High) � 8L / 17M / 7H / 0C

CFML Functions JAVA API�s Complexity
Name: CreateDate

Description:
Returns a valid date/time object.

Exist (Yes/No/Partial): Partial
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:

Contruct an instance of java.util.GregorianCalendar with the
constructor GregorianCalendar(int year, int month, int date).
Later getTime() method can be used to get an instance of
java.util.Date if required.

M

Name: CreateDateTime

Description:

Exist (Yes/No/Partial): Partial
Class:
 Method:

M

 65

Returns a valid date/time object.

Proposed Solution in case of Non or Partial Existence:

Contruct an instance of java.util.GregorianCalendar with the
constructor GregorianCalendar(int year, int month, int date,
int hour, int minute, int second) . Later getTime() method can
be used to get an instance of java.util.Date if required.

Name: CreateODBCDate

Description:
Returns a date in ODBC date format.

Exist (Yes/No/Partial): Partial
Class: java.sql.TimeStamp
 Method: construtor TimeStamp(int year, int month, int date,
int hour, int minute, int second, int nano)
or construtor TimeStamp (long time)

Proposed Solution in case of Non or Partial Existence:

M

Name: CreateODBCDateTime

Description: Returns a date/time object in
ODBC timestamp format.

Exist (Yes/No/Partial): Partial
Class: java.sql.TimeStamp
 Method: construtor TimeStamp(int year, int month, int date,
int hour, int minute, int second, int nano)
or construtor TimeStamp (long time)

Proposed Solution in case of Non or Partial Existence:

M

Name: CreateODBCTime

Description: Returns a time object in
ODBC time format.

Exist (Yes/No/Partial): Partial
Class: java.sql.Time
 Method: construtor Time(int hour, int minute, int second)

Proposed Solution in case of Non or Partial Existence:

M

Name: CreateTime

Description: CreateTime(hour, minute,
second)
The date portion of time is set to
December 30, 1899

Exist (Yes/No/Partial): Partial
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:
Contruct an instance of java.util.GregorianCalendar with the
constructor GregorianCalendar(int year, int month, int date,
int hour, int minute, int second) . Pass 1899, 11, 29 to the
first three parameters.
Later use the getTime() method to get an instance of
java.util.Date

M

Name: CreateTimeSpan

Description:
Creates a date/time object for adding and
subtracting other date/time objects.

Exist (Yes/No/Partial): Partial
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:
Arithmetic on date objects can be done using the add(int
field, int amount) method of java.util.GregorianCalendar.

M

Name: DateCompare

Description:
Performs a full date/time comparison of
two dates. Returns -1 if date1 is less than
date2; returns 0 if date1 is equal to date2;
returns 1 if date1 is greater than date2.
See the description of datePart for
information on specifying the precision of

Exist (Yes/No/Partial): Partial

Class: java.util.Date
 Method: int compareTo(Date anotherDate)

Proposed Solution in case of Non or Partial Existence:
This method returns a integer which could be anything less
than or greater that zero, unlike the Cold Fusion function
which returns �1 or +1 when the dates arent equal.

H

 66

the comparison.

The precision of comparision cannot be specifed in case of
java. A wrapper function could be written to implement this
feature.

Name: DateConvert

Description:
Converts local time to Universal
Coordinated Time (UTC) or UTC to local
time based on the specified parameters.
This function uses the daylight savings
settings in the executing machine to
compute daylight savings time, if required.

Exist (Yes/No/Partial): No
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:
A new method should be written to implement this
functionality. Classes GregorianCalendar and TimeZone
can be used to convert the local time to utc and viceversa

H

Name: DateDiff

Description:
Returns the number of intervals in whole
units of type Datepart by which Date1 is
less than Date2.

Exist (Yes/No/Partial): No
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:

A new method should be written to implement this
functionality.
The date value can be converted to milliseconds form and
differences between the two dates can be computed. The
difference can be returned in the units that is specified.

H

Name: DateFormat

Description:
Returns a formatted date/time value. If no
mask is specified, DateFormat function
returns date value using the dd-mmm-yy
format.

Exist (Yes/No/Partial): Partial
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:
Use java.text.SimpleDateFormat class. Map the various
patterns of Cold Fusion to the patterns available in
SimpleDateFormat. Specify the required format using the
applyPattern() method. Then on calling the format(), we get
the date in a string form in the specified format.

H

Name: DatePart

Description:
Returns the specified part of a date as an
integer.

Exist (Yes/No/Partial): Partial
Class:
 Method:
Proposed Solution in case of Non or Partial Existence:
Create an instance of GregorianCalendar passing the date
object.
Pass appropriate constants to get the corresponding parts of
the date to the get(int part) method.

M

Name: Day

Description: Returns the ordinal for the day
of the month, ranging from 1 to 31.

Exist (Yes/No/Partial): Yes
Class: java.util.GregorianCalendar
 Method: get(int field)

Pass Calendar.DAY_OF_MONTH
 For this method

Proposed Solution in case of Non or Partial Existence:

M

Name: DayOfWeek

Description:
Returns the ordinal for the day of the
week. The day is given as an integer

Exist (Yes/No/Partial): Partial
Class: java.util.GregorianCalendar
 Method: int get(int field)

Proposed Solution in case of Non or Partial Existence:

M

 67

ranging from 1 (Sunday) to 7 (Saturday).

The int parameter field should be
java.util.Calendar.DAY_OF_WEEK
1 should be added to the returned integer.

Name: DayOfWeekAsString

Description:
Returns the day of the week corresponding
to day_of_week, an integer ranging from 1
(Sunday) to 7 (Saturday).

Exist (Yes/No/Partial): No
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:
Return an appropriate String depending on the value
returned by
java.util.GregroianCalendar.get(java.util.Calendar.DAY_OF_
WEEK).

M

Name: DayOfYear

Description:
Returns the ordinal for the day of the year.

Exist (Yes/No/Partial): Partial
Class: java.util.GregorianCalendar
 Method: int get(int field)

Proposed Solution in case of Non or Partial Existence:
The int parameter should be
java.util.Calendar.DAY_OF_YEAR in the above class.

M

Name: DaysInMonth

Description: Returns the number of days in
the specified month (Date).

Exist (Yes/No/Partial): Partial
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:
Create an instance of java.util.GregorianCalendar by using
the Date value. Then use the getActualMaximum(
Calendar.MONTH) to get the number of days in that
particular month

M

Name: DaysInYear

Description: Returns the number of days
in a year

Exist (Yes/No/Partial): Partial
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:
Create an instance of java.util.GregorianCalendar using
that particular date. Then use the getActualMaximum(
Calendar.DAY_OF_YEAR) to get the number of days in that
particular year.

M

Name: FirstDayOfMonth

Description:
Returns the ordinal (the day's number in
the year) for the first day of the specified
month.

Exist (Yes/No/Partial): No
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:
Get the current month and from this find the day of the year
for the first day of the month.

H

Name: GetTimeZoneInfo

Description:
Returns a structure containing time zone
information for the machine on which this
function is executed

Exist (Yes/No/Partial): Yes
Class: java.util.GregorianCalendar
 Method: getTimeZone()

Proposed Solution in case of Non or Partial Existence:

L

 68

Name: Hour

Description:
Returns the ordinal value for the hour,
ranging from 0 to 23.

Exist (Yes/No/Partial): Yes
Class: java.util.GregorianCalendar
 Method: get(int field)

Pass Calendar.HOUR for this method

Proposed Solution in case of Non or Partial Existence:

L

Name: IsDate

Description:
Returns TRUE if string can be converted to
a date/time value; otherwise, FALSE. Note
that ColdFusion converts the Boolean
return value to its string equivalent, "Yes"
and "No."

Exist (Yes/No/Partial): Partial
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:
Use parse() method of java.text.SimpleDateFormat to parse
the given string. This returns a date object, if it is possible to
parse the string. The method throws an ParseException if the
string cannot be parsed. A wrapper function can be used to
return appropriate boolean values

M

Name: IsLeapYear

Description:
Returns TRUE if the year is a leap year;
otherwise, FALSE.

Exist (Yes/No/Partial): Yes
Class: java.util.GrergorianCalendar
 Method: boolean isLeapYear(int year)

Proposed Solution in case of Non or Partial Existence:

L

Name: IsNumericDate

Description:
Evaluates "real value" of date/time object.
Returns TRUE if the number represents
"real value" of the date/time object;
otherwise, FALSE.

Exist (Yes/No/Partial): Partial
Class: java.text.DateFormat
 Method: Date parse(String dateString)

Proposed Solution in case of Non or Partial Existence: The
DateFormat.parse(), method returns a reference to Date
object on successfull parsing and it throws an exception if the
string couldnt be parsed to a date. A wrapper function should
be used to return boolean values.

M

Name: Minute

Description:
Returns the ordinal for the minute, ranging
from 0 to 59.

Exist (Yes/No/Partial): Yes
Class: java.util.GregorianCalendar
 Method: get(int field)

Pass Calendar.MINUTE for this method

Proposed Solution in case of Non or Partial Existence:

L

Name: Month

Description:
Returns the ordinal for the month, ranging
from 1 (January) to 12 (December).

Exist (Yes/No/Partial): Yes
Class: java.util.GregorianCalendar
 Method: get(int field)

Pass Calendar.MONTH for this method

Proposed Solution in case of Non or Partial Existence:

L

Name: MonthAsString

Description:
Returns the name of the month
corresponding to month_number

Exist (Yes/No/Partial): No
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:

M

 69

 Pass the month number to the function.
 Then map the integer value to a string Value in a switch
statement.

Name: Now

Description:
Returns the current date and time as a
valid date time object.

Exist (Yes/No/Partial): Yes
Class: java.util.Date
 Method: Constructor Date()

Proposed Solution in case of Non or Partial Existence:

L

Name: ParseDateTime

Description:
Returns a date/time object from a string.

Exist (Yes/No/Partial): Partial
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:We
can Use parse() method of java.text.SimpleDateFormat. This
throws an exception, if the string passed couldnot be
parsed.We can almost achieve the same functionality as of
the cfml function.

H

Name: Quarter

Description:
Returns the number of the quarter, an
integer ranging from 1 to 4.

Exist (Yes/No/Partial): Partial
Class:
 Method:

Proposed Solution in case of Non or Partial Existence:
Get the Month of the date and calculate the quarter using
this.A customised logic can be developed for this purpose
achieve he functionality.

M

Name: Second

Description:
For a date/time value, returns the ordinal
for the second, an integer from 0 to 59.

Exist (Yes/No/Partial): Yes
Class: java.util.GregorianCalendar
 Method: get(int field)

Pass Calendar.SECOND for this method

Proposed Solution in case of Non or Partial Existence:

L

Name: Week

Description:
Returns the ordinal for the week number in
a year; an integer ranging from 1 to 53.

Exist (Yes/No/Partial): Yes
Class: java.util.GregorianCalendar
 Method: get(int field)

Pass Calendar.WEEK_OF_YEAR for this method

Proposed Solution in case of Non or Partial Existence:

L

Name:XMLFormat

Description: Returns a string that is safe to
use with XML.

Exist (Yes/No/Partial): No
Class:
Method:

Proposed Solution in case of Non or Partial Existence:
A function can be written which escapes any xml special
characters, if they are present in the Date string,so that it
becomes XML compatible.

H

Note :
Most of the functionality of the Date and Time functions can be achived using the Date and GregorianCalendar classes
of the java.util package.
In case of Cold Fusion Date and Time functions, whenever there is a number representing a year, then the following
convention must be followed. This number could be in the range 100-9999. Years from 0 to 29 are interpreted as 21st

 70

century values. Years 30 to 99 are interpreted as 20th century values.There lies a possibility of a sort of hardle,maynot
be of greater magnitude.

5.2.13 Category: Authentication Functions
Total CFML Functions = 4
Available Java Functions = 4(Including Partial)
Complexity Level(Low\Medium\High)- 3L / 1M / 0H / 0C

 CFML Functions JAVA API�s Complexity
Name: AuthenticatedContext

Description: Returns the name of the
security context .

Syntax : AuthenticatedContext()

Exist (Yes/No/Partial): Partial
Class:
Method:
Proposed Solution in case of Non or Partial Existence:
Class: java.security.Security
Method: public static String getProperty(String key)
Gets a security property value.
First, if there is a security manager, its checkPermission
method is called with a java.security.SecurityPermission
("getProperty."+key) permission to see if it's ok to retrieve the
specified security property value.
Parameters:
key � the key of the property being retrieved.
Returns: the value of the security property corresponding to
key.
Throws: SecurityException - if a security manager exists and
its
SecurityManager.checkPermission(java.security.Permission)
method denies access to retrieve the specified security
property value
Class: java.security.Permission
Method: public final String
GetName()
Returns the name of this Permission. For example, in the
case of a java.io.FilePermission, the name will be a
pathname.
Returns: the name of this Permission.

 M

Name: AuthenticatedUser

Description: Returns the name of the
authenticated user.
Syntax : AuthenticatedUser()

Exist (Yes/No/Partial): Yes
Class:
Interface : HttpServletRequest
Method: getRemoteUser()
Returns the name of the user making this request, if the user
has logged in using HTTP authentication.

Syntax:

Public abstract interface HttpServletRequest extends
ServletRequest

Public java.lang.String getRemoteUser()

Proposed Solution in case of Non or Partial Existence:

 L

Name: IsAuthenticated

Description: Returns TRUE if the
user has been authenticated for any

Exist (Yes/No/Partial): Yes
Class: javax.servlet.http
Interface: HttpSession
Method: getSession()

 L

 71

ColdFusion security context. If you
specify the name of the security
context, IsAuthenticated returns
TRUE if the user has been
authenticated for the specified
ColdFusion security context.
Syntax : IsAuthenticated ([security-
context-name])

We can achive the required functionality with following
custom code.HttpSession�s getValue
(Constant.AUTHENTIFICATION) and
putValue(Constant.AUTHENTIFICATION) can be used.
Syntax:
 HttpSession session = request.getSession(false);
 String requestedPage =
request.getParameter(Constants.REQUEST);
 if (session != null)
 {
 Boolean isAuthenticated = (Boolean)
 session.getValue(Constants.AUTHENTICATION);
 if (!isAuthenticated.booleanValue())
 {
 unauthenticatedUser(response,
requestedPage);
 }
 }
 else
 {
 unauthenticatedUser(response, requestedPage);
 }
 }

Proposed Solution in case of Non or Partial Existence:

Name:IsAuthorized
Description Returns TRUE if the user
is authorized to perform the specified
action on the specified ColdFusion
resource.

Syntex : IsAuthorized (resourcetype,
resourcename [, action])

resourcetype:
String specifying the type of
resource:

Application ,CFML ,File ,DataSource
Component ,Collection ,CustomTag
UserObject

Exist (Yes/No/Partial): Yes
Class:
com.netscape.server.servlet.extension
Method: isAuthorized()
Checks whether the current user has a specified permission.
Interface: HttpSession2 interface
Syntax:
isAuthorized()
Checks whether the current user has a specified permission.
public abstract boolean isAuthorized(String acl,String
permission)
acl. The access control list in which to check for the
permission.
permission. The permission to check for.
Rule :
Before calling isAuthorized(), the application must create a
session. The user must also be logged in with loginSession(
).
Return Value :
Returns true if the authorization check succeeds; otherwise,
returns false.

Proposed Solution in case of Non or Partial Existence:

 L

Issues:

All the functions are available are in java. Out of four, four are available(including partial)in java .

5.2.14 Category: System Functions

 72

Total CFML Functions = 10
Available Java Functions = 7(including partial matches)
Complexity Level (Low/Medium/High/Critical) � 3L / 3M / 3H / 1C

 CFML Functions JAVA API�s Complexity Level
Name: DirectoryExists

Description: Returns YES if the directory
specified in the argument does exist;
otherwise, it returns NO.

Exist (Yes/No/Partial): Yes
Class: java.io.File
Method: public boolean sDirectory()

Description: Tests whether the file denoted by this
abstract pathname is a directory.retuns true if
adirectory,false otherwise.

Proposed Solution in case of Non or Partial
Existence:

L

Name: GetFileFromPath

Description: Extracts the filename from a fully
specified path.

Exist (Yes/No/Partial): Yes
Class:
Class:java.net.URL
Method: public String getFile()
Description:Get the file name of the URL.
javax.swing.plaf.metal.MetalFileChooserUI
Method: public String getFileName()
Description:Get the file name from the path.

Proposed Solution in case of Non or Partial
Existence:

L

Name: ExpandPath

Description: Returns a path equivalent to the
relative_path appended to the base template
path.
ExpandPath creates a platform-appropriate
path

Exist (Yes/No/Partial): No
Class:
Description:
Proposed Solution in case of Non or Partial
Existence:
This is a typical CFML Application specific function
which has no present implementation in
contemporary java API.However we have to write
methods to extract the Parent directory name fro a
fully qualified pathname and append to the relative
path (starts fro the appserver root directory)of the
same.

H

Name: GetMetricData

Description: On Windows NT, GetMetricData
returns all the internal data that is otherwise
displayed in the Windows NT PerfMonitor.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:Some method which can get details in a
structured format from windows nt perf monitor
should be written to achieve the same functionality.

Critical

Name: FileExists

Description: Returns YES if the file specified
in the argument does exist; otherwise, it

Exist (Yes/No/Partial): Yes
Class: java.io.File
Method: public boolean isFile()
Description :Tests whether the file denoted by this

L

 73

returns NO

abstract pathname is a normal file

Proposed Solution in case of Non or Partial
Existence:

Name: GetTempFile

Description: Creates and returns the name of
a temporary file in a directory whose name
starts with (at most) the first three characters
of prefix.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence: Exploring Java2 API's getPath()
methods and moderate edition can be done

High

Name: GetCurrentTemplatePath

Description: Returns the fully specified path
of the template containing the call to this
function.

Exist (Yes/No/Partial): No
Class: java.io.File
Method:
Proposed Solution in case of Non or Partial
Existence: Exploring Java2 API's getPath()
methods and moderate edition can be done

M

Name: GetTemplatePath

Description: Returns the fully specified path
of the base template.

Exist (Yes/No/Partial): No
Class:
Description:

Proposed Solution in case of Non or Partial
Existence:Exploring Java2 API's getPath() methods
and moderate edition can be done.

M

Name: GetDirectoryFromPath

Description: Extracts the directory (with a \
(backslash)) from a fully specified path.

Exist (Yes/No/Partial): No
Class:
Method:
Proposed Solution in case of Non or Partial
Existence:No equivalent method is there in the java
API at present and a new method has to be written
.A look into the Swing.plaf package can be done.

H

Name: SetProfileString

Description: Sets the value of a profile entry
in an initialization file. This function returns an
empty string if the operation succeeds or an
error message if the operation fails.

Exist (Yes/No/Partial): No
Class: javax.servlet.HttpServletConfig
Method:public void init()
Proposed Solution in case of Non or Partial
Existence:At present support is not availale in
Java2 API.
Servlet API�s Init(),getInitParameters() methods
can be looked at to draw a possible way of action.

H

ISSUES/NOTES:

GetMetricData() returns data of the windows performance monitor ,we do not have any mapping for it in java.to extract
this system level data we need to new function.
To deal with Function like SetProfileString() where we need to update the profile in an initialization file we have to write
scripts which interact and updates the profile of a component.

 74

GetTempFile()-could not be clear about the exact format in which we get the name.

 75

6 Appendix C - Cold Fusion to J2EE operator mappings

 CF Operator J2EE Equivalent Comments

1. & + String concatenation
2. MOD % Modulus
3. ^ Pow(base, power) Exponentiation
4. \ / Integer division
5. IS

EQUAL
EQ

== Equal-to

6. IS NOT
NOT EQUAL
NEQ

!= Not equal-to

7. CONTAINS indexOf
Eg. X.indexOf(Y) != 0

Containment operator for strings

8. DOES NOT CONTAIN indexOf
Eg. X.indexOf(Y) == 0

Opposite of CONTAINS

9. GREATER THAN
GT

> Greater-than

10. LESS THAN
LT

< Less-than

11. GREATER THAN OR EQUAL TO
GTE
GE

>= Greater-than or Equal-to

12. LESS THAN OR EQUAL TO
LTE
LE

<= Less-than or Equal-to

13. TRUE No Equivalent May not be required.
Eg. CFIF expression IS TRUE
can be translated to
 IF (expression)
in JAVA

14. FALSE No Equivalent May not be required.
Eg. CFIF expression IS FALSE
can be translated to
 IF !(expression)
in JAVA

15. NOT ! NOT

16. AND && Logical-AND

17. OR | | Logical-OR

18. XOR ^ Exclusive-OR

19. EQV !^ Exclusive-NOR

20. IMP Not available Implies
Eg. A IMP B
 Means
 IF A then B

