
The ASPizer™ Toolkit: ASP in a Flash

Authors: A. Ghosh, S. Grandhi, R. Mathew, A. Natarajan and S. Ramaswamy

Intended Audience: This paper is primarily intended for ISVs, AIPs/HSPs and Aggregators that are building
and/or hosting applications based on the Application Service Provider business model.

Further Inquiries and Feedback: aspizer@thbs.com

Notices:

The contents of this paper are protected by copyright. No part of this paper may be reproduced in any form
by any means without the prior written authorization of Torry Harris Business Solutions, Inc.

ASPizer™ is a trademark of Torry Harris Business Solutions Inc

Torry Harris Business Solutions
1090 King Georges Post Rd
Suite 103
Edison NJ 08837
USA

Torry Harris
Distributed e-enterprise Computing

mailto:Shankar_Ramaswamy@thbs.com

1 Creating ASP Offerings
The ASP Model is essentially a new method of delivery of applications to end-users. Until the advent of
the ASP model, in order to use an application, organizations had to purchase the applications and
necessary hardware and then hire and train personnel on the operations and maintenance of this
infrastructure before end-users could use the application. With the ASP model, organizations have to just
purchase access to the application from a Service Provider and their end-users can immediately use the
application from their browsers; a process that likely takes a few minutes and does not involve any up
front infrastructure costs.

At the heart of any ASP offering is one or more web-enabled applications augmented by logic dealing
with making the applications available under the ASP model. At the very least, the ASP model requires
that there be logic dealing with the following aspects:

� Profiles – storing and using information specific to a user or company that can be used to customize
user experience with the application.

� Provisioning – creating necessary application resources for each new user or company renting the
application.

� Security – specifying and enforcing policies that ensure users or companies are authenticated and
authorized to access and modify only their own data.

� Licensing and billing – specifying and enforcing policies that ensure application use and charge for
a user or company is consistent with their contract.

While covering these basic aspects is necessary for creating a basic ASP offering, it is not really
sufficient. We feel that a broader set of issues needs to be considered when building an ASP offering.
These issues arise from the following observations about the ASP market:

� Given the ASP model mainly targets Small and Medium Businesses (SMBs), it is important to be able
to easily create seamlessly integrated solutions for specific vertical industry segments from a set of
applications.

� There are three fundamental logical roles played by companies in the ASP market – Application
Development, Application Aggregation and Application Hosting. Even though some companies play
multiple logical roles, it is highly likely that most companies will play a single logical role that best fits
their core competency. This implies companies will likely collaborate to create offerings for end-users.

� Currently, software manufacturers are likely to establish OEM relationships and channel relationships
whereby their software is marketed and sold by other parties with some value addition. A similar
model will evolve in the ASP marketplace whereby applications will be rented out through multiple
market channels each of which will bundle in some additional value in terms of augmenting
applications and/or services. This requires the applications to be very flexible and customizable to be
able to suit all the requirements of different market channels.

With the above observations in mind, we believe that logic dealing with the following aspects needs to be
considered when making an application available under the ASP model:

� Shared security – the application will need to support various security models dependent on the
specific market channel being used to access it.

� Shared session – the application will need to support a session that is shared between all
applications. This shared session can be used for passing data between applications to facilitate
better integration.

� Shared profiles – the application will need to support sharing profile information with other
applications. Having a shared profile reduces the amount of information to be stored and maintained
as well as makes the user’s life simpler.

� Custom Service Level Agreements (SLAs) – various application configurations will need to be
offered to users and companies to meet their desired price and performance points.

� Customizable look-and-feel – the application’s look-and-feel will need to conform to the market
channel being used to access it. This means the application has to be able to easily support a diverse
set of user interface styles.

� Business process integration – when multiple applications are offered at an aggregator site,
customers may want to integrate the applications or sub-tasks from applications with their own
business processes. For instance, a procurement process for a business may involve using a
purchasing application, an accounting application and an inventory control application.

� Cross application functions – when the application is integrated with other applications at an
aggregator site, a single higher level task at the site may involve sub-tasks from multiple applications.
For instance, an aggregator site that hosts productivity apps like Human Resources, Accounting and
Payroll for small businesses may require a new employee enrollment task to span all three
applications so they can all be up to date on the change.

The additional logic needed for the ASP model as mentioned above can be coded into the application
itself. While this approach integrates the ASP model well with the application, it has two major
disadvantages – increased complexity in the application and decreased flexibility in terms of the
application’s operating environment. Our ASPizer toolkit provides an alternate approach by providing the
application programmer with a set of APIs and a special runtime environment for the application. This
approach allows for tight integration of the application with the ASP model as well as reduces the
complexity of the application. Furthermore, the application can be isolated from details of its operating
environment, thereby providing a large degree of flexibility.

2 The ASPizer Toolkit Solution
The ASPizer toolkit is aimed at organizations involved in the creation of solutions for the ASP market.
These organizations could play any logical role – Application Development, Application Aggregation or
Application Hosting. The ASPizer toolkit contains features for all these roles.

Applications at the core of ASPizer-based offerings could be either web-enabled applications or web
services. If the application is web-enabled, we assume it uses an application server technology that
adheres to either the Java 2 Platform Enterprise Edition standards or the Microsoft Active Server Pages
model. The picture below illustrates how a typical ASPizer-based offering is structured.

ASPizer WEB SVCS

ASPizer FRONT-END

USERSUSERS

SOAP/XML

SOAP/XML

SOAP/XML HTTP/HTML

APP SVR

ASPizer

WEB APP

HTTP/HTML

WEB SVC

The ASPizer toolkit comprises the following parts:

� The ASPizer deployment tool that accepts an XML descriptor providing details of the nature of ASP
mode support desired for the application. The deployment tool uses this information to perform
necessary initialization and generates configuration information for use by the runtime.

� The ASPizer runtime that provides all necessary services and support for the application while it is
running in the ASP mode.

� The ASPizer APIs that are available for use by the application programmer to add enhanced support
if necessary. These APIs are available as method calls within the application server environment or
as web services – applications can choose their preferred method of access.

� The ASPizer administration tool for use by the ASP hosting provider for administering all the
applications being hosted.

The picture below illustrates a logical view of an ASPizer based ASP offering from a user perspective.
ASPizer intercepts user requests and provides a set of front-end services that come between users and
the applications they access and use. For example, the security service allows users access only to those
applications that they are authorized to use. The applications themselves can use a set of back-end
services that provide a lot of the functionality needed for the ASP model. For example, the application can
query the security service to find out the role a user is playing and present an application view that is
appropriate for that role.

The ASPizer toolkit services are logically structured as pictured below. There is a layer of core services
that are used to build a set of ASP services that ASP applications use. Some of the services like the
Router and Workflow services are complex in that they use other services themselves. The Admin
application uses the services as well as can be used to configure and monitor the services.

 ASP USER ASP COMPANY ADMIN

COMPANY

ASP SITE ADMIN

ASPizer FRONT-END SERVICES - SECURITY, SESSIONS, ROUTING, ETC.

ASPizer BACK-END SERVICES - PROFILING, PROVISIONING, BILLING, ETC.

1.1.1.2
SP APPS

1.1.1.1
DMIN APP

ASP APPS

ASP SERVICES

CORE SERVICES

ADMIN APP

ROUTE WORKFLOW

PROFILES, PROVISIONING, SECURITY, LICENSING, SESSIONS
BILLING, AUDIT, LOOK-AND-FEEL, SUPER-FUNCTIONS

TRACING, MONITORING, ADMIN, EVENTS

Details of the ASPizer toolkit services are as follows:

1. Profiles : This service deals with maintaining information unique to users, companies and
applications. For users and companies, such information could include their preferences for various
applications they access, details of the method of payment they use, etc. All users from a particular
company share information stored in the profile for the company. Forms for entering and updating
profile information are automatically generated and presented to the user (company admin for
company profiles) when necessary. The ASPizer administration tool allows the ASP site administrator
to review and update all available profiles if necessary. There is also a profile API available for use by
the application programmer to provide users with a customized experience. Application profiles
contain information necessary to create and maintain instances of the applications. These are created
and maintained by the ASP site administrator using the ASPizer administration tool.

2. Provisioning : This service deals with creating and maintaining all required external resources for an
application. These resources could be per application instance or per new user or company assigned
to an application instance. Provisioning handlers can be registered with the service for various
provisioning events. The service will automatically invoke the handlers when appropriate. Handlers
can be standard (provided with ASPizer) or custom (created by application developer). The ASPizer
administration tool can be used to specify handlers and associate them with provisioning events.
Application developers can write custom handlers and package them with their applications.

3. Security : This service deals with securing access to applications and application sub-functions. It
provides a single-sign on to the ASPizer site. Security in ASPizer is role based – users are assigned
roles, which are then allowed access to a set of resources. Security configuration is done using the
ASPizer administration tool. Access to security configuration information is made available via a
security API to the application programmer – this can be used to implement finer grain access
controls.

4. Service Level Agreements (SLAs): This service deals with the implementation of configurable
service levels for different companies. Companies may elect whether or not they want to share a
machine or an application instance. They may also select the level of reliability and availability they
require. Based on these criteria, different application configurations will need to be used for users of a
specific company. The picture below illustrates how users for four companies that have elected
different service levels are handled. Company A and B have elected to share an application instance,
Company C has elected to have an exclusive application instance and Company D has selected a
highly available configuration with two application instances (one of which is shown as having failed).
Based on these criteria, users from the four companies are routed to the appropriate application
instances. SLAs are setup for companies using the ASPizer administration tool.

USER D

USER C

USER B

USER A

COMPANY D

COMPANY A/B

COMPANY C

5. Router : The router service dynamically locates an application instance for a user based on a number
of criteria including the specific request, the applicable security constraints, the SLA applicable for the
user’s company, the existence of failures in application instances, etc. There is no explicit
configuration for the router service, its operation is implicitly dependent on the settings for other
services such as the security service and SLA service.

6. Billing : This service deals with calculating the charges incurred by users and companies as they
access and use the applications offered at a site. There are three aspects to billing – models, triggers
and rates. Models deal with what metric is being used such as frequency of access, usage time or
size of transactions. Triggers deal with which points are used for measuring the metrics. Rates deal
with how much to charge for a certain measure of the metrics. Models and triggers typically depend
on the type of application being considered while rates are typically set on a per company or user
basis. The ASPizer administration tool can be used to setup billing models, triggers and rates.

7. Licensing : This service deals with enforcing different licensing policies for companies renting the
applications at a site. License policies can include single user, multi user, node locked, etc. Licensing
is specified per company per application it accesses and uses. The ASPizer administration tool can
be used to setup licensing policies for companies.

8. Payment collection : The ASPizer toolkit supports the use of multiple payment collection methods
through a customization layer. Based on the payment methods in use for a specific instance of the
application, the toolkit automatically presents the payment choices to the user and collects all
information relevant to the specific choice made by the user. The ASPizer administration tool allows
for the setup and administration of payment methods.

9. Audit : This service helps track user activity across applications and services. This tracking can be
useful for troubleshooting, non-repudiation and security investigations. Application developers can
use the audit APIs to generate messages. All services automatically generate audit messages. The
ASPizer administration tool can be used to view audit messages.

10. Global session : The global session service allows applications to share a user session. This is
extremely useful for tight integration of applications – the shared session eliminates duplicate
information entry and can be used to pass data between applications. Application developers can
read and write session variables.

11. Customizable look-and-feel : This service allows for user and/or company level customization of the
look-and-feel for an application. Customization is achieved by providing both the ability to select
different looks for the elements of the application’s UI as well as the ability to re-arrange these
elements in different fashions on the screen. The ASPizer administration tool can be used to add new
look-and-feel schemes and/or update existing look-and-feel schemes.

12. Integrated Workflow : This service allows users and companies to integrate applications with their
business processes. Application developers need to provide special hooks into their applications to

MODELS 1.1.1.4 TRI
GG

1.1.1.3 RAT
ES

ACTUAL CHARGES

enable integration with workflow. Users and companies can setup XML-based workflow templates to
model their business processes using the ASPizer administration tool. They can also monitor the
workflow instances active at any given time using this tool. ASP site administrators can use the
ASPizer administration tool to setup master templates for standard business processes so that users
and companies have a good starting point for creating their own templates.

13. Super-functions : This service allows the creation of wizards for specific complex tasks that span
multiple applications. State can be carried from application to application via the global session. ASP
site administrators can use the ASPizer administration tool to setup XML-based super-function
templates.

The picture below illustrates how workflow and super-functions integrate users and applications.
Workflow integrates multiple applications with multiple users while super-functions integrate multiple
applications for a single user.

In the future, we plan on adding services such as a CRM service, a systems management integration
service, a training service, a customer support service, etc.

3 Using the ASPizer toolkit
The first step to using the ASPizer toolkit is to construct an XML based deployment descriptor for use by
the toolkit (ASPizer deployment descriptor). Note that this descriptor is in addition to the deployment
descriptor typically required for the target application server (application deployment descriptor).

The ASPizer deployment descriptor contains configuration information for many of the ASPizer services
mentioned earlier. The descriptor also contains application profile information that is used to create and
manage instances of the application. We have provided below a sample ASPizer deployment descriptor
for a simple payroll application.

In this sample ASPizer deployment descriptor, there are sections describing the configuration for three
services – Profiles, Provisioning and Billing. We have provided detailed descriptions for each section
below:

� Profiles : The ASPizer toolkit provides for a set of standard pre-defined user and company profile
attributes. Using the extraProfileInfo section, we are adding two additional company (jobdescr, rate)
attributes and one additional user (pymt_mode) attribute. These attributes would represent
application specific information that is pertinent for each company and user accessing it.

WORKFLOW SUPERFUNCTION

APPLICATIONS

USERS

<aspFwkApp
name="Payroll"
locator="Payroll"
description="Acme Payroll Application"
version="1.0"
vendor="Acme International"

>

<extraProfileInfo>

<companyAttr
name="jobdescr"
description=”Job Description”
maxLength="128"

/>

<companyAttr
name="rate"
description=”Rate of Pay”
maxLength="64"

/>

<userAttr
name="pymt_mode"
description=”Payment Method”
maxLength="128"

/>

</extraProfileInfo>

<appInstance
basePath="/Payroll"
defaultPage="/index.html"
host="ravenclaw.bizasp.com"
port="80"
createCompanyHandler="/CrtCompHlr"
deleteCompanyHandler="/DelCompHlr"

>

<billableResource
uri="/done.jsp"
eventId="payroll_done"
baseCharge="1000"

/>

</appInstance>

</aspFwkApp>

� Provisioning : Using attributes of the appInstance section, we specify two custom provisioning
handlers to be invoked during the addition (CrtCompHlr) and deletion (DelCompHlr) of a new
company that will use the application.

� Billing : Using the billableResource section, we specify a charge of 1000 units to be added for every
access of the URI “/done.jsp”. Note that we are using the frequency of access based billing model,
with access to the specified URI acting as a trigger and a uniform rate of 1000 units for all companies
accessing the application.

Once an ASPizer deployment descriptor is created, the ASPizer deployment tool is used to create and
configure resources used by the ASPizer runtime. The ASPizer deployment tool also configures the target
application server using the application deployment descriptor provided with the application. The ASPizer

runtime can be installed in the target application server using a provided installation utility. Now the
application is ready to be run in the ASP mode. The figure below illustrates the physical overview of an
ASP site. All the shaded boxes represent ASPizer related applications and services.

The picture below illustrates a typical requ
passes through the session, security, licen
application can make requests to the profi
APIs. The application’s response is then p
being sent back to the user. All the service
anytime during this entire flow.

4 Implementation of the
The ASPizer toolkit is completely impleme
has been designed to work with clusters o
is highly scalable as well as fault-tolerant.

ASPizer
ADMIN

USERS ASP
ROU

O
U
T
E
R

F
I
R
E
W
A
L
L

I
N

SESSION SECURITY

BIL
(AU

ROUTER
HTTP
est/response flow in an ASPizer-based ASP site. Eve
sing and SLA service before reaching the application
le, billing, session and security services via the corres
assed through the look-and-feel and auto billing serv
s and the application can write messages to the audi

 ASPizer toolkit
nted in Java and conforms to the J2EE standards. Th
f servers in a truly distributed fashion. This allows for

izer
TERS

ASP APP 1

ASP APP N

N
E
R

F
I
R
E
W
A
L
L

LICENSING SLA

ASP
APP

SLOOK-AND-FEELLING
TO)

AUDIT

ROUTER HTTP/HTML or
SOAP/XML

METHOD CAL
or SOAP/XML
ASPizer
RUNTIME
ry request
. The
ponding

ices before
t service

e toolkit
 a site that

PROFILE

BILLING

SESSION

ECURITY

L

Most of the ASPizer runtime services are flexible and configurable and can be accessed directly via Java
APIs. It is relatively easy to plug in custom implementations of a specific runtime service without affecting
the rest of the runtime. All runtime services export data that provide information about their health and log
enough information to help diagnose the causes of any problems that may occur. Site access services
provided by the runtime include highly customizable Login, Logout and Router services. The Router
controls all user access to applications enabling location transparency, security and license control. The
“router pipeline” has well-defined components which can each be replaced by customized versions
without affecting the other components, providing a very high degree of customizability and control to the
site administrator. The Login and Logout applications are completely customizable to suit the needs of the
site.

The ASPizer administration tool provides simple to use site administration and monitoring capabilities to
the administrator. . The tool can be customized to accommodate site specific functions and look-and-feel.
The ASPizer administration tool covers the following areas:

� Application management – this covers managing application instances, application security
configuration, application profiles and application provisioning requirements among other things.

� User and company management – this covers managing user and/or company profiles, security
roles for users, company security configuration, applicable billing rates for a company, company
workflow templates and user and/or company look-and-feel schemes among other things.

� Aggregation management – this covers managing workflow master templates and super-
function templates.

� Site-wide management – this covers managing licensing policies, billing models and triggers,
payment methods, global session timeouts, nodes in the site and look-and-feel schemes among
other things.

The monitoring capabilities of the ASPizer runtime services, combined with the administration tool help
the site administrator check the health of the site and proactively address problems that may arise.

5 Summary
In this paper we have discussed the additional logic needed for an application to run in the ASP mode. As
we have described, for an application to be leveraged through multiple market channels, for aggregations
of applications to be offered in well-integrated offerings and for application offerings to be built in a
collaborative manner by companies, a fairly extensive set of services are required. Our ASPizer toolkit
provides this extensive set of services needed to truly meet the requirements of the ASP market and
ensure success.

	Creating ASP Offerings
	The ASPizer Toolkit Solution
	Using the ASPizer toolkit
	Implementation of the ASPizer toolkit
	Summary

