

A CBDI Report Series-
Guiding the Transition to Web Services and SOA

Introducing Web Services and Service
Oriented Architecture (SOA) requires change
right across the organization for both end
user enterprises and the software industry.
These changes, technical, organizational,
process and project related, will happen over
a period of time and with varying levels of
coordination. Some of the changes will be
obvious, others need to be identified; many
will need organization specific solutions.
To assist organizations making these changes
CBDI has created the Web Services Roadmap
report series to provide practice guidance in
this area.

Inside…
• Web Services Roadmap Planning

Framework
• A Web Services Maturity Model
• ROI – The Costs and Benefits of Web

Services and Service Oriented Architecture
• The Web Services Protocol Stack
• Assembling the Web Service Infrastructure
• Moving to SOA
• ISVs and Packaged Application Vendors

Start Here
• Applying Web Services
• Real World Migration of Development

Projects to SOA
• Web Services Roadmap for the On Demand

Business
• Microsoft in Transition - Delivering a Less

Complex Service Oriented Platform
• Practical Support for Separate Supplier and

Consumer Activity

Web
Services Roadmap

SOA

W
SMWS Process

O
n D

em
and

SLM
SOA

W
SMWS Process

O
n D

em
and

SLM

© 2003 CBDI Forum Ltd 1

About The Web Services Roadmap
Introduction
Introducing Web Services and Service Oriented Architecture (SOA) requires change right across
the organization for both end user enterprises and the software industry. These changes,
technical, organizational, process and project related, will happen over a period of time and with
varying levels of coordination. Some of the changes will be obvious, others need to be identified;
many will need organization specific solutions.
To assist organizations making these changes CBDI has created the Web Services Roadmap to
provide practice guidance in this area. It is organized into six topic streams, providing a
clustering around critical activities as follows:
Plan & Manage. The activities involved in managing the transition to a more federated
environment, enabled by SOA; the development and coordination of common policies and
practices between the parts of the federation.
Infrastructure. Guidance on the strategies, activities and timing involved in transitioning existing
infrastructures.
Architecture. Architecture is a major issue. As an organization moves forward it is looking to
integrate Web Services into core business processes, to progressively establish the service as
the unit of reuse across an organization. The Service Oriented Architecture is a key strategy to
achieve pervasive shared business services.
Process. In the service oriented world, the management life cycle changes in a profound
manner. Organizations need to alter their application acquisition and delivery processes to reflect
this.
Projects. As an organization matures in its use of services, the project profiles change
considerably.
Vendor Strategies. Analysis and assessment of the strategies and capabilities of the leading
vendors in the Web Services and SOA market.

Web Services Roadmap On-line
The CBDI Web Services Roadmap continues to be extended and updated on-line. You will also
find the latest related news and an opportunity to leave feedback and discuss issues with your
peers. This is provided at no charge, and no registration is required. CBDI Corporate Subscribers
are also able to download all the roadmap materials as Microsoft PowerPoint presentations to
further assist them in communicating their plans to their colleagues.

Visit http://roadmap.cbdiforum.com
Authors
David Sprott – david.sprott@cbdiforum.com
Lawrence Wilkes – lawrence.wilkes@cbdiforum.com
Richard Veryard – richard.veryard@cbdiforum.com
Jonathan Stephenson – jonathan.stephenson@cbdiforum.com

The CBDI Web Services Roadmap is Sponsored by

© 2003 CBDI Forum Ltd 2

Audience
This report assumes readers have a basic understanding of Web Services and SOA.
It is aimed at project managers and lead developers, development managers, CTO's, technical
and application architects, business analysts, senior consultants and product strategists and
managers.
It is equally applicable to both end user organizations and IT vendors.

Using this Report
This report has not been designed to be read sequentially from cover to cover like a novel.
Rather, it is more of a reference work that readers can turn to for guidance on introducing Web
Services and SOA into their organization.

Copyright
This document is copyright of CBDI Forum Ltd.
Please feel free to distribute this document as a whole, not in part.
Please contact CBDI to discuss any other usage rights of this document or its contents.

Contents
Web Services Roadmap Planning Framework ...4

Introduction ...4
The Basic Roadmap Model ..4
The Roadmap Framework ..5
Plan & Manage Stream..6
Infrastructure Stream..11
Architecture Stream..14
Process Stream ...18
Projects ..25

A Web Services Maturity Model ...27
A Strategic Perspective for Technology and Business Planning27
Introduction ...27
Technology Maturity ...27
Business Maturity ...28
Four Phases...28
Timing...31
Summary ..32

ROI – The Costs and Benefits of Web Services and Service Oriented Architecture........33
Why Web Services? ..33
Why SOA?..37
The Costs of Web Services and SOA..37
The Cost of SOA..38

The Web Services Protocol Stack..40
Web Services Architecture...40
CBDI Assessment ...41
Roadmap Actions..44

Assembling the Web Service Infrastructure...45
Introduction ...45
Web Service Infrastructure Architecture ..47
Web Service Management..49
Stages of Web Service Infrastructure Deployment ...49
Considerations and Inhibitors ...51
Needs of the Large Enterprise ...51

Moving to SOA...53
Introduction ...53
It's About Better Integration...54
Creating the Foundation...55

© 2003 CBDI Forum Ltd 3

The Business Service Bus ...56
A Framework for SOA...57
Summary ..60

ISVs and Packaged Application Vendors Start Here ...61
Introduction ...61
ISV Deltas...61
ISV Deployment Patterns..63
Competitive Threats..64
Web Services Adoption Steps ...64

Applying Web Services...66
Introduction ...66
Conversion Scenarios – The First Steps towards Web Services...................................66
Where to Apply Web Services ...70
Exploitation Scenarios – Capitalizing on Web Services ...72
Application Policy ...75
Managing Participation...76

Real World Migration of Development Projects to SOA..77
Introduction ...77
Using MDA to Move to SOA ...77
Using OptimalJ to Move to SOA ..79
JCA Integration Model ..81
Web Services Support ..82
Model-based Pattern-Driven Code Generation ..82
Summary ..83

Web Services Roadmap for the On Demand Business ...84
On Demand Business ...84
The IS Department Challenge ..85
Web Services are Key...85
Components of Web Services Success..86
Delivering Best Practices ...88
Web Services Roadmap..90
Summary ..94

Microsoft in Transition - Delivering a Less Complex Service Oriented Platform95
Technology Platform and Complexity Reduction..95
Architecture – Inside and Out ..96
Service Oriented Architecture ...96
The Mission to Jupiter ..97
The Roadmap to SOA ...97
Mobility and Smart Devices..98
Summary ..99

Practical Support for Separate Supplier and Consumer Activity.....................................100
Introduction ...100
Supply Manage and Consume (SMaC)..100
Four Routes to SOA..101
New Solution..102
OO & Micro-Componentry..103
Case Studies in Enterprise CBD..104
Legacy & COTS ...105
Select Business Solutions ...109

© 2003 CBDI Forum Ltd 4

Web Services Roadmap Planning Framework
Abstract: Introducing Web Services requires some changes right across the organization.
These changes, technical, organizational, process and project related, will happen over a
period of time and with varying levels of coordination. Some of the changes will be
obvious, others need to be identified; many will need organization specific solutions. In
this report we provide a planning framework that can be used as either a starting point or
as review input.
Introduction
A Roadmap is typically used to plan a journey. The roadmap is a general purpose device that
allows route planning where the start point is known, and there are potentially many alternative
routes that could be taken to reach a known endpoint. Whilst we won't stretch the metaphor too
far, the concept of Roadmap planning for IT systems has been widely used, as a device to
coordinate many disparate activities which are often widely dispersed in terms of time, geography
and accountability. Hence the Roadmap approach seems highly appropriate for Web Services
introduction.
In this report we will consider the requirements of the typical enterprise. Many other types of
organization such as ISV's, Systems Integrators, Intermediaries and Service Platform Providers
may also benefit from a Roadmap, and the base enterprise model may be a useful context (as a
supplier, consumer or intermediary) for planning.
In “A Web Services Maturity Model”, we introduce the concept of Phases of Web Service related
activity. We suggested that whilst there will always be exceptions, there is a mainstream adoption
profile which follows a path of early learning; integration, reengineering and finally maturity. In this
report we will reuse and build upon this basic phase structure, identifying the relevant policies,
capabilities and tasks that may need to be put in place in each of the phases.

The Basic Roadmap Model
In Figure 1 we introduce the basic Roadmap model. The x axis repeats the phases discussed
above. On the y axis we provide a structure for thinking about timing and interdependency which
are simply clustering mechanisms, which specifically remove any organizational relevance. We
refer to these as streams.
The basic Roadmap model has many potential uses. These might include:

• Making strategic choices, for example identifying the states that an organization may plan
to achieve during each Phase.

• Guiding disparate activity across an organization, providing an organization independent
model that many parties can easily subscribe to.

• communicating cross organizational activity in an organization independent manner
We have found that a high level view of this type can be very useful in sorting out the overall
directions. So in this illustration we have charted an example enterprise that follows a fairly
conventional path, which many will recognize. Early learning is undertaken in a deliberately
uncoordinated manner, with the minimum of formality. The integration phase then requires certain
matters to be managed in order to achieve sensible levels of consistency, which will hopefully
reduce overall cost to the organization as well as establish common foundations for matters such
as classification, core infrastructure services etc. The reengineering phase is then focused on
creating enterprise level services and platforms, and maturity is all about convergence of the IT
Services and the business products and processes.

© 2003 CBDI Forum Ltd 5

Figure 1 - - Example of Enterprise Roadmap Strategy

We have based this particular model on a very common pattern which we might refer to as large
distributed enterprise. The base model may form a good basis for developing variants, that would
be suitable for alternative patterns such as integrated enterprise; virtual enterprise; Web Service
is a product; and so on.

The Roadmap Framework
In this section and the remainder of this paper we focus on a more detailed guide to Roadmap
activity. We provide a first level of decomposition of the streams, with topic areas and
deliverables, together with rough indications of Phase applicability. We stress that this guide is
intended as a starting point and or review input, in order to assist organizations to customize and
manage their activities and plans.

Early Learning Integration Reengineering Maturity

Plan &
Manage

Infrastructure

Architecture

Process

Projects

N/A

Basic security
policies

N/A

WS- I Profile
Coordination

Experimental

Fund Common
Infrastructure

Common
Platform and
Interop Bus

SOA Governance

SLA and
Classification

Project services

Enterprise level
Funding Service

Based Org

Common
management

Business Service
Bus

Collaborative
Framework

Federated
Management

Virtual
Business

Everything is
a service

Services are
Products

Enterprise
services

Product Line

Early Learning Integration Reengineering Maturity

Plan &
Manage

Infrastructure

Architecture

Process

Projects

N/A

Basic security
policies

N/A

WS- I Profile
Coordination

Experimental

Fund Common
Infrastructure

Common
Platform and
Interop Bus

SOA Governance

SLA and
Classification

Project services

Enterprise level
Funding Service

Based Org

Common
management

Business Service
Bus

Collaborative
Framework

Federated
Management

Virtual
Business

Everything is
a service

Services are
Products

Enterprise
services

Product Line

© 2003 CBDI Forum Ltd 6

Plan & Manage Stream
WS Maturity Phase

Topic Area

Deliverables EL INT RE MAT

Service strategy Agreed roadmap - Organizational consensus on the
overall plan for transitioning business and
technology environments, synchronizing relative
maturity of capabilities and applications

 Y Y Y

Business and
Technical
Justification

Identified Business Opportunities
Support to Technical Strategy

 Y Y

Coordination,
Communications
& Policy
Management

Identified areas for cross organizational coordination
Mechanisms for cross organizational policy setting,
projects support, decision making

Y

Funding &
Charging

Funding Strategy & Policy Y Y

Organizational
change

Roles and responsibilities Y Y

Classification
systems

Common classification policy and schemas Y Y

Service Level
Management

SLA policies - levels and processes Y Y

Monitoring and
reporting

Management policies and systems Y Y Y

Marketing Promote common services Y Y

Services as
business
products

Policies and plans for implementing a Product line
or equivalent process

Y Y Y

Security and
Trust

Business and Technical Security Policies Y Y Y Y

Table 1 - The CBDI Roadmap Framework – Plan and Manage Stream

The transition to a more federated environment, enabled by SOA, requires the development and
coordination of common policies and practices between the parts of the federation. The
management stream provides a clustering of topics and deliverables required to establish these.
Service strategy
Generally the requirement for, and understanding of a service strategy will surface after only after
early learning experience has demonstrated the need for common services, classifications and
agreements. However our observation is that the strategic nature of service orientation as it
applies to an enterprise is likely to develop progressively over time. An important factor in this is
business management understanding. In our survey, carried out in early 20031, there was very
low awareness outside of technical management, and this will take time to permeate outside the
IT world, given the relatively slow take-up of Web Services and the dismal economic climate
which militates against IT led investment. Also from the IT perspective in the archetypal
enterprise, there is much work to be done in creating a critical mass of existing and legacy
applications in an SOA, before real cross enterprise business advantage will be perceived.

1 CBDI Web Services Usage Survey, February/March 2003
http://www.cbdiforum.com/bronze/webserv_usage/webserv_usage.php3

© 2003 CBDI Forum Ltd 7

The roadmap concept is therefore recommended as a living deliverable, which will in the early
stages reflect the technical nature of the tasks at hand, but will allow technical managers to
communicate in understandable terms how and when the IT investment will support new
business models.
Business and Technical Justification
A key part of the roadmap process is guiding the use of new technologies appropriately. Many
organizations have moved slowly with Web Services because they do not have clear justification
for implementing new protocols, and particularly the necessary infrastructure and management
environment, when existing arrangements work entirely satisfactorily.
In our research on ROI and cost justification2 we have primarily focused on benefits to specific
and individual applications in terms of productivity, quality, ease of integration and enablement of
new business models. In the context of Roadmap planning there is the additional opportunity to
take an enterprise wide view of the infrastructure investment and returns.
Coordination, Communications & Policy Management
Many organizations do not have mechanisms for enterprise wide policy setting. More than a few
enterprises tell us they deliberately operate different technical and application sourcing policies in
order to segregate business divisions. Those organizations that have already been developing
intra and inter company document exchange based on XML will have established organizational
mechanisms to manage document content semantics and schemas, and also transport,
document security and guaranteed delivery arrangements. With Web Services the cross and
inter enterprise coordination requirements expand to include service level agreements, contract
agreements, process choreography and service management.
Funding & Charging
You may think that charging automatically moves to a "per service" basis, simply because it's
made easier by a) the business transaction relevance and b) the management and monitoring
systems that make per service billing easy. However think before you charge, because all of the
time honored intricacies of charging apply here also, and free, partial per service and many other
arrangements may apply. It's all about behavior modification through the pricing mechanism.
The most important principle is that many Web Services will not be chargeable at all - because
the Web Service is an intrinsic component of a business service or transaction. So the purchaser
of a book from Amazon pays for the book, which in some manner subsumes the cost of providing
the service. But clearly there will be some level of internal accounting within Amazon that
accounts for product costing. We can rationalize this as two different classes of Consumer charge

• Usage charging, charging someone for using the service, and
• Cost recovery, charging for the execution of the service, which is often most relevant

when the service is provided to the end user at no charge.
We discussed usage charging in our report Component Pricing3. We suggested that at this early
stage, we are inclined to the opinion that the well known Boston Grid will be the dominant
influence in macro pricing strategy. Subscription-based pricing seems particularly appropriate for
mature products – which may represent “cash cows” for the suppliers – where the users usually
know what they’re getting. “Cash cow” is one of the four stages of the product lifecycle, known as
the Boston Grid.
Other stages of the product lifecycle probably need other pricing schemes, as shown in the
following table.

2 CBDI Report - Inside Every Web Service is a Benefit Struggling to Get Out
http://www.cbdiforum.com/bronze/inside_web.php3
3 CBDI Journal Report - Component Pricing, July/August 2001
http://www.cbdiforum.com/secure/interact/2001-08/comp_pricing.php3

© 2003 CBDI Forum Ltd 8

Product
stage

Market
dynamics

Market
share

Objectives Pricing model

Problem
child

growing small Develop product.
Encourage
experimentation

Low unit pricing.

Rising star growing large Maintain market share.
Encourage customer
roll-out,

Site licenses.
Volume discounts.

Cash cow stable large Maintain long-term
revenues from product

Subscription-based
licence

Dying dog stable small Transfer customers
onto alternative
products

Table 2 - Boston Grid

In the report we went on to say - Although subscription pricing remains rare for software
components, it has sometimes been predicted as the dominant model for Web Services.
However, we believe it would be incorrect to assume that Web Services will automatically be
priced in this manner. Whilst consumer Web Services (B2C) may largely adopt subscription
pricing, business (B2B) Web Services are much more likely to be an integral part of a product
(bundled) or priced in some manner that modifies behavior.
Organizational Change
Service architectures introduce clear separation, with a high level of formality between provider
and consumer. In the early learning stages things will remain pretty much unchanged. But as
soon as services are better understood there's massive potential for productivity and quality gain.
Many organizations that embraced component based development (CBD) implemented
significant levels of separation between the supplier and consumer of a component. This base
concept is fundamental to the service world, but for services we have the addition dimension of
design time and run time reuse. In Figure 2 we show a real world perspective where we have new
parties involved and changed responsibilities in the process:

• Developer - yes of course the developer still exists, BUT now the developer is providing
to the provisioner who undertakes the publishing tasks.

• Process Owner - the process owner's view is now entirely service based. The process
owner specifies, acquires, assembles, tests and deploys services.

• Provisioner - the provisioner is a new role, which may well take responsibility as an
intermediary, as a BPO operator or application provider to provide the entire life cycle of a
service.

• Collaborator - the essential part of a service is that there are two parties to the use of a
service. The collaborator is tracking a parallel view of the service throughout the life
cycle.

© 2003 CBDI Forum Ltd 9

Figure 2 - The Evolving Organization

As the organization matures its use of services, roles and responsibilities will change. For
example who undertakes the testing process? In the early stages as services are part of projects,
budgets may dictate that the services are simply developed and tested and consumed as part of
a common process – Though we might actually disagree and would advise against, but we
accept reality sometimes makes this difficult. But as services become shared between projects,
then across the organization and SLA's are required, it is essential that some form of
(independent) certification comes into play.
Classification systems
Services are only useful if they can be found, and managed. Many are dismissing UDDI because
they think that they will only use services that they already know about. They are ignoring the
power of a directory as the basis of managing the service life cycle.
Our observation is that classification systems are going to evolve. It's important to set policies for
specific issues such as versioning, usage, certification and so on, but it's also very important to
allow developers and projects to extend the classification system to accommodate new
requirements.

Box 1 - Example Classification Criteria

Actual QoS; Certification; Platform Class; Conformance;
Configuration; Criticality; Deployment; Capability; Funding;
Ownership; Pricing; Target QoS; Taxonomy; Security Class;

Service Level; Usage Policy; Version

Service
Publishing

Process
Specification

ProvisionerCollaborator Process Owner Developer

Service
Deployment

Service
Management &
Monitoring

D
esign Tim

e
R

un Tim
eService

Management
& Monitoring

Service
Management
& Monitoring

Service
Deployment

Service
Assembly

Service
Testing

Service
Assembly

Service
Acquisition

Service
Specification

Process
Specification

Service
Design

Service
Integration

Service Build
& Test

Service Asset
Management &
Publishing

Service
Publishing

Process
Specification

ProvisionerCollaborator Process Owner Developer

Service
Deployment

Service
Management &
Monitoring

D
esign Tim

e
R

un Tim
eService

Management
& Monitoring

Service
Management
& Monitoring

Service
Deployment

Service
Assembly

Service
Testing

Service
Assembly

Service
Acquisition

Service
Specification

Process
Specification

Service
Design

Service
Integration

Service Build
& Test

Service Asset
Management &
Publishing

© 2003 CBDI Forum Ltd 10

Service Level Management
SLM is closely related to classification. Part of a classification system needs to provide
information on service level policies. In most enterprises the SLM policy will be established on an
enterprise basis, covering two primary dimensions:

• Service trust - allows the provider to offer the service in a manner that is fit for purpose,
and for consumer to easily understand the context in which it can reasonably be used.
Service trust classification data includes - source, certification, protocol profile
conformance, warranty, reusability, customer rating, security etc

• Service operations - allows the provider to establish standards, practices and platform
products that are clustered around levels of operational guarantee. Service operational
classification data includes - availability, reliability, performance, capacity, security, pre-
requisites etc

Early learning and integration stage activity will use SLM classifications that have been developed
specifically for the enterprise. However standards will evolve in this area, particularly in industry
sectors and ecosystems where collaborations are implementing wide area business processes.
Monitoring and Recording
Services are a product, and the separation of provision and consumption creates the obligation
on the provider to deliver service according to some form of agreement. Standardized
classification taxonomies for operational guarantees and service trust characteristics provide the
basis for enterprise standard monitoring and recording. A key part of establishing confidence in a
Web Service is providing the infrastructure that allows customers and suppliers, and just as
important disparate parts of the enterprise, with consistent and timely feedback on the
performance of services provided.
Marketing
Yes, services are going to need marketing! Services are products, and must be sold to potential
consumers. The prior two topics, classification and monitoring are the basics of marketing, - it
works, let me prove it to you! However beyond the basics there is a requirement for a product life
cycle approach to services. For some organizations this is as simple as managing specification in
a collaborative manner that maximizes reuse. However for others the service will be a front line
business product, where the technical aspects of the delivery are really trivial, compared with the
complexities of market research and development. Our report on the BT authentication service4 is
a good example of this latter category, and is covered in the next topic.
Services as business products
Financial services organizations in particular have for some time now understood the concept of
information as a product. Some organizations such as Amazon are moving rapidly to use the
easier and deeper integration capabilities of Web Services to create extended products,
particularly for their affiliates. It is notable that in the Amazon case, this productization is clearly
early learning for Amazon also. However by the time organizations reach the third, reengineering
stage of Web Service usage, it is to be expected that many enterprises will be offering Web
Services as products, or as an integral part of pre-existing and or new core business products.
What is particularly important to note here is that innovative enterprises such as Amazon, and BT
mentioned earlier, have already embarked on R & D for integrated products. The lesson that
financial services organizations have learnt long ago, is that the critical path is the business
product, not the technology. Over and again we hear the comment that the technology is easy by
comparison.
Security and Trust
In the past we have protected enterprise assets by erecting high walls which prevent access at a
transport level; it is assumed that inside the high walls everyone is to be trusted. Today we

4 CBDI Journal Report - The BT Authentication Service, April 2003
http://www.cbdiforum.com/secure/interact/2003-04/bt.php3

© 2003 CBDI Forum Ltd 11

recognize the inadequacies of these assumptions. We now understand that blunt instruments are
inadequate, and that finer grained control over access and usage is essential. Web Services
provide that finer grained control, BUT have the potential to increase exposure to greater levels of
risk.
We also understand that security is never absolute; the best technical security will always be
under threat from determined individuals. What we need are levels of protection that are relevant
to an individual business service, which are an intrinsic part of the service design. The application
level security oriented business logic, is then used in conjunction with broader grained security
mechanisms which in combination create a trusted environment. Security creates barriers, trust
establishes confidence that the service provides the advertised capability with understood and
acceptable levels of risk.
As a consequence, delivering security and trust is increasingly the concern of everyone involved
in the service life cycle. In planning Web Service and SOA related activity, it is a vital task to
establish policies that define acceptable levels of risk in context with the specific business, and to
implement these with new or altered roles and responsibilities as appropriate.

Infrastructure Stream
Web Services and SOA require new and modified infrastructure support. The Infrastructure
stream provides a clustering of topics and deliverables required to establish these.
Provider Host environment
Hosting requirements will be more easily managed if there are clear policies set on service levels
(see Planning & Management Stream). Service level classes may distinguish between broad
classes of requirement, for example development, pre-production, low volume-low criticality
production, mission critical production. However these could equally be application specific.
In the early stages of Web Service usage the primary requirement will be to provide a platform
that makes it easy for developers to publish services. Requirements over time are almost certain
to vary. A common approach to early learning stage hosting is to support a Web Service facade
deployment with remote access to function and data. However as and when Web Services
become integral to business critical functionality, with high volumes etc, it may become necessary
to implement a management infrastructure which has greater visibility of the supporting
functionality.
Longer term there will be a shift towards an ‘On Demand’ operating environment, where not only
will the physical location of the service implementation become increasingly remote from the
business service provider, but will evolve to become dynamically locatable.
Consumer environment
Though we expect the consumer environment to be a mirror of the provider’s in terms of the
logical capability, we make the distinction between them because in some situations such as
small mobile devices the requirement for purely consumption will drive a different set of service
characteristics
Middleware
Many organizations will already have implemented middleware backbones or a bus structure that
allow intra and inter enterprise communications. Moving to Web Services and SOA requires new
protocol support and a number of additional services.
Integration and Assembly
In the early learning stage Web Services are generally an additional option for integration. Many
organizations may set the objective to establish an assembly infrastructure and environment that
allows services to be used in many different contexts. It should be noted however, that many of
the early services may not be good candidates for general purpose assembly, unless they have
been reengineered for general purpose usage.

© 2003 CBDI Forum Ltd 12

Table 3 - The CBDI Roadmap Framework – Infrastructure Stream

WS Maturity Phase
Topic Area

Deliverables EL INT RE MAT

Provider Host
environment

WS Developer environment
Hosting environment for WS facades
Hosting environment for WS applications
On Demand Operating Environment

Y

Y
Y

Y
Y
Y

Y

Consumer
environment

Internal
External

Y Y

Middleware Middleware and Communications technology
Broking and Routing
Transformation

Y Y

Integration and
Assembly

EAI use of Web Services
Workflow and BP standards
Aggregation and composition mechanism

Y Y
Y

Y
Y

Development
environment

Tools policies Y Y

Asset
Management

Asset management environment supporting
supplier/consumer environment

Y Y

UDDI Directory Static usage support
Dynamic usage
Publishing process
- manual process
- more automation, integrated with Asset Mgt.

Y Y
Y

Y

Service Level
Management

WS Management environment
SLA management
- Provided
- Consumed

 Y
Y

Security
Infrastructure

- XML Firewall
- Message level security

 Y

Y
Y

Monitoring &
Measurement

Mechanisms to provide
- SLA compliance
- Service level logging
- Business monitoring services

 Y Y

Diagnostics,
failover

Fault management
Diagnostics and Alerts
- Infrastructure
- Business Service

 Y

Consumer/
Subscriber
Management

Access control
Subscription
Accounting
Common billing system

 Y Y

WS Protocols Standards adoption and compliance Y Y

© 2003 CBDI Forum Ltd 13

Development environment
Development tools have rapidly adapted to provide support for Web Service protocols. Through a
combination of platform and development tool support, the technology of Web Services will be
largely transparent to developers. Adequate support is already provided for the early learning
stage. However, beyond that tools will need to evolve further to provide support for SOA modeling
and design, and the ability to support the design of complex service based business processes
that must be translated into emerging Web Service protocols such as BPEL.
Moving further out, we can expect to see much greater emphasis and support on the assembly
and consumption of services integral to business process life cycle support tools. As the
coverage and sophistication of this support extends, we will view this as a service assembly and
management platform.
Asset Management
As Services become further abstracted away from their implementation through the application of
SOA principles, they will be recognized as an independent asset type in their own right, rather
than a property of a component or object. Asset Management will become important during the
Integration stage to understand and manage the complex relationships between requirements,
services, implementations, and countless associated development artifacts.
UDDI Directory
The emergence of private UDDI directories in enterprises will become widespread during the
Integration stage to facilitate the internal provision and consumption of Web Services, and to
provide a filter to external unqualified Web Services in public directories.
Service Level Management
Service Level Management will be essential for both Service Providers and Consumers to
monitor Services and their compliance with Service Level Agreements. Whilst the growing volume
of Services in use and transactions will be obvious drivers to SLM, even the simplest of Web
Services used during the Early Learning stage may still be subject to stringent SLA requirements
and need careful monitoring.
Most enterprises will implement Web Services Management capability through a variety of
approaches to enable the following topics including security, monitoring and measurement,
diagnostics etc.
Security Infrastructure
Security is often referenced as a barrier to wider Web Services adoption. In the early learning
stage existing web security mechanisms such as SSL will often suffice for straightforward
transactions. WS-Security protocols will enable message level security that is suitable for more
complex transaction scenarios. It can be expected that malicious attacks, such as denial of
service will start to use Web Services necessitating the use of XML aware Firewalls.
Monitoring & Measurement
Mechanisms will be needed quite early in the process to monitor Web Services for SLA
compliance, and straightforward fault management and diagnostics.
Where Web Services are abstracted away from the underlying low level network and database
traffic that composes the implementation, it provides an opportunity to monitor Services at a
meaningful level to the business. This enables not only monitoring of computing resource, but
also of business performance.
Diagnostics, failover
With meaningful business Web Services, diagnostics and failover can be considered at both the
business and infrastructure levels. Failover can be implemented at the SLM level for example by
re-routing Service requests dynamically.
Consumer/Subscriber Management
The need to manage service consumers in terms of access control (not the same as security) and
accounting for their usage is not just relevant to commercial Web Services, as internal usage may

© 2003 CBDI Forum Ltd 14

still be the subject of internal accounting procedures. Not only may this entail providing links to
accounting and billing systems, but to provide a more dynamic environment, self subscription
mechanisms will also have to be provided to consumers.
Web Service Protocols
Though several core WS protocols are in place and/or in progress through standard committees,
a broader set will continue to emerge and evolve to support the needs of Enterprise level Web
Service and other scenarios. Many organizations are implementing their own protocol compliance
guidelines in order to facilitate early learning activity. It will make sense to adopt the WS-I profiles
as they come available, although it will still be necessary to have some level of coordination on
what profiles are being used at any point in time, and also any local overlays that are applicable.
Interoperability will continue to be a minor problem in the Early Learning stage.

Architecture Stream
WS Maturity Phase

Topic Area

Deliverables EL INT RE MAT

Service
Oriented
Architecture

Patterns, design guidelines
Life cycle management guidelines including
versioning

Y Y Y

Trust &
Security
Architecture

Security framework and common services
Trust design patterns

Y Y Y

Business
Service Bus

Defined service sets Y Y Y

Redefining the
Application

Project scoping guidelines Y Y

Governance
framework

Guidelines, patterns and practices to ensure
implementation of SOA policies

 Y Y

Shared usage Common Services at infrastructure and
business levels

Y Y Y

Semantics Policies governing semantics
Defined semantic sets
Collaboration projects - industry; organization;
supply chain etc

 Y Y Y

Protocol
coordination

Managing compliance
Best practices to ensure interoperability
Defined profiles and transition coordination

 Y Y Y

Information
Ownership

Information Currency Strategy
Review of Information ownership
Common Information access services -
rationalize or wrap existing sources

 Y Y

WS Based BI
Strategy

BI Patterns
BI Priorities

Y Y Y

Table 4 - The CBDI Roadmap Framework – Architecture Stream

In the early learning stage, Web Services will typically be adopted in a tactical manner.
Architecture is not a significant issue. As an organization moves forward it is looking to integrate

© 2003 CBDI Forum Ltd 15

Web Services into core business processes, to progressively establish the service as the unit of
reuse across an organization. The Architecture stream provides a clustering of topics and
deliverables to support this activity.
Service Oriented Architecture
SOA is the broad set of concepts that enable units of functionality to be provided and consumed
as Services. This essentially simple concept can and should be used, not just for Web Services,
but also at each tier of the architecture, in order to compartmentalize and provide flexibility.
Establishing a Service Oriented Architecture is a foundational activity that forms the basis for a
more adaptable application portfolio, exposing core functionality as Web Services. CBDI advise
that creating an SOA is a medium term project, which implements services to a common bus
structure (policy, semantics, middleware). This is typically an integration stage Roadmap activity,
and should be viewed as an essential pre-requisite for the reengineering Roadmap stage. More
details can be found in the section “Moving to SOA”
Trust & Security Architecture
Application publishing and using Web Services require a new layer of security that is separate
from the network firewalls, which in the main can do no more than block unwanted protocols and
rogue IP addresses. There is an interesting conflict that in order to empower an application, the
credentials and encryption capabilities have to be moved nearer to the code and away from the
infrastructure. But, to maintain a clean separation of concerns the service implementation must
be clearly separated from the security management layer. The new SOAP protocols for WS-
security allow an application to deal with data that is private, right from the point of entry, all the
way through to the point of delivery, and even then it can remain encrypted in storage. Similarly,
authentication is end-to-end, from the individual that signs the request right through to the
business process that checks the ID. This is how you do conventional business – you sign the
check, not the postman.
In the Plan & Manage Roadmap Stream we identify the business and technical policies that drive
the application specific security. Here in the Architecture Stream there is a requirement for clear
architectural guidance in various forms, to ensure conformance with the policies and clean
separation of concerns.
Business Service Bus
In the days when middleware was top of the technical architect's toy box, the notion of the
transaction bus was very popular. But whilst this is a necessary layer, it's equally if not more
important to develop the concept of the Business Service Bus. The Business Service Bus is the
set of business services for a specific domain that are available for widespread use across an
enterprise. The services are published in a UDDI compliant registry which allows them to be
reused without manual intervention by the provider.
The creation and particularly the population of the BSB is an important step towards service
maturity, which facilitates widespread reuse of common services.
Redefining the Application
Application scoping has always been an imprecise science for end user enterprises and ISV's. In
the end result many projects are scoped around a compromise of functionality and
commercial/budgetary considerations that makes most sense at the time.
In the initial stages of service usage, the service is simply an appendage to existing applications.
However the service concept is closely related to the business process; some say the service is a
business process. Over time therefore sets of service will become the natural focus of application
investment and scoping. Why over time? Because there are relatively few applications being built
from scratch today, and it will take time for services to be incorporated into existing portfolios, to a
point where there are service based artifacts available as a basis for planning.
Governance framework
An important aspect of SOA is the question of how to ensure architectural decisions get
implemented - otherwise known as the governance issue. Each architectural deliverable can be

© 2003 CBDI Forum Ltd 16

attributed with governance roles, for example - standard or guideline, mandatory or optional.
These roles then have applicability to specific domains which might include platform, product,
layer, application, relationship etc. Governance may then be managed by a variety of
mechanisms which include patterns, templates, common components, common services,
protocols, semantics, products and practices.
Shared usage
Creating services for use by multiple consumers has all the complexities of creating common
components, and then some more. This is a major area of architectural consideration, which will
need to be planned for each application and service set.
The first thing to think about is generalization of functionality. This is one of the primary issues in
the integration Roadmap stage, because the level of generalization is determined to a large
extent by the existing applications. Some level of generalization and transformation can be built
into the facade and business process scripting layers. However this may not be possible without
expensive, invasive modifications. So in the early stages there may be considerable compromise
required.
CBDI defined the concept of the differentiated service5 as an important pattern for service
architects. The differentiated service is a device for managing reuse of common services in a
context sensitive manner. This pattern may be used to simply reduce the number of interfaces,
and to increase the applicability of an individual service offering. More importantly the pattern will
be applicable to design guidelines for security and productized business services.
Semantics
Web Services enable wider involvement in existing processes and or wider use of standard
services. These developments require that the users have a common language system. In simple
domains, it may at least be theoretically possible (even if often impractical or technically
inappropriate) to establish a single shared (global) data model, so that all local models are
mapped to the shared model. In complex domains, which means most large enterprises, this isn't
even theoretically possible. There is no top-down approach, because there is no single agreed
place that is the "top" - merely lots of different stakeholders each of whom thinks the world
revolves around his agenda.
Many organizations have commenced some rationalization at a document level as they
implement XML based transfers between systems. However many of these implementations have
been achieved using transformations rather than rationalization. A key architectural task for
organizations preparing for widespread usage of Web Services is to establish the policies and
practices that lead to rationalization where it makes business sense, and for coordination of
different stakeholders views.
In the CBDI Report on Data Collaboration6, we examined how a distributed business process can
be understood as a series of collaborations or conversations between different stakeholders.
Each stakeholder has a context, which can be expressed as a local data model. This leads to
defining firstly the documents that represent the exchange of information and services between
stakeholders, and secondly the process wiring that bridges between the multiple contexts. We
look at the techniques for doing this, and the implications for decomposing requirements into
discrete services?
Protocol coordination
Whilst it is probable that there will be universal consensus around the transport protocols, SOAP
and WSDL, it is by no means certain that this acceptance will apply throughout the entire Web
Service stack. Although ebXML has adopted the transport protocols, it is entirely feasible that it

5 Design Pattern: Differentiated Service, CBDI Journal December 2000
http://www.cbdiforum.com/secure/interact/2000-12/design_pattern.php3
6 CBDI Report - Service Identification - Data Collaboration, March 2002
http://www.cbdiforum.com/secure/interact/2002-03/service.php3

© 2003 CBDI Forum Ltd 17

will continue to occupy a niche, particularly in business contract descriptions. Likewise there is no
evidence yet of agreement around BPEL, WSCI etc.
Each organization needs to select the combination of protocols that are likely to be most
applicable in terms of functionality and acceptance within the ecosystem relevant for that
enterprise.
Information Ownership
Replicated data is the industry convention. We replicate because there has been no sensible
alternative. Yet replication is an inherently weak and error prone model that causes
inconsistency, complexity and huge costs. Web Services based interoperability offers interesting
solutions to this problem as the new SOAP based Internet standards enable pervasive
accessibility. We don't suggest that all data replication will or should be eliminated, but we do
anticipate opportunities to simplify and improve business processes that architects should be
looking for right now.
Over time data distribution will migrate towards the point of ownership, or a proxy of same. Rather
than every organization replicating and maintaining copies of the data, real owners of the data will
maintain it themselves and make it accessible to everyone who needs it. Your bank does not
'own' your name and address, nor does the retailer, but you do as an individual. They do own the
transactions you make of course, but this is an intersection between their products and you. What
if instead, you maintain your personal information in one location and everyone retrieves it from
there at the time they need it? All any interested parties have to do is store the URL that you give
them and then retrieve up to date information whenever they need it.
Not every piece of information needs to accessible in real time. Where it is appropriate the
migration to a Web Service will still be gradual. But this is a progressive process which will be
driven by business opportunity and need. An important part of Roadmap planning is therefore to
prepare for the progressive change, a) by providing the infrastructure to allow data migration and
b) working with business units, partners, customers and suppliers etc to improve the currency and
accuracy of data using Web Service based architectures.
There is comprehensive treatment of this topic in the CBDI Report “Will Web Services
Revolutionize Data Distribution?”7
WS Based BI Strategy
Web services are being widely discussed for integration of operational business processes.
Many enterprises are starting to deploy Web Service technology for connecting applications
internally. Whilst there is significant interest in deploying the same technologies externally, this is
currently inhibited by concerns such as security and reliability. Meanwhile, the use of the Internet
as a platform for business intelligence (BI) is becoming more mature and sophisticated. There is
an important role for Web Services in the business intelligence space based on the capability of
creating real time, rules driven information access services, which can potentially deliver real
business benefit even with relatively unsophisticated WS technologies.
At the core of most BI systems are software products providing query, reporting and analysis
functionality, sometimes referred to as OLAP. Traditionally, these functions have been based
either directly on operational systems, or more commonly on a data warehouse or data mart,
which assembles and restructures data from one or more operational data stores. The result of
the data combination can be stored in another data store, or may remain virtual. However
business intelligence should be viewed as a closed control loop system where managers use
tools to process and interpret information; they then act upon this information and monitor the
effects of their actions. If the actions have the expected effect on business performance, this
helps to confirm the original interpretation; if management intervention doesn’t work in the
expected way, then this should trigger further analysis. This management feedback and learning
loop is a key element of true business intelligence.

7 CBDI Report - Will Web Services Revolutionize Data Distribution? December 2000
http://www.cbdiforum.com/secure/interact/2000-12/rev_data_dist.php3

© 2003 CBDI Forum Ltd 18

It is also important to provide a context for making sense of events and trends. Regular readers
of CBDI reports will recall our analysis of the Kodak case8, in which the online retailer found itself
obliged to supply a large number of digital cameras at an incorrect price. Real-time business
intelligence can help identify a sudden increase in demand for a given product, and may place
some constraints on automatic supply until the increase can be explained. But we need some
context for this. It is only when we can link a sudden increase EITHER to a marketing campaign
by Kodak OR to some hostile activity on an internet newsgroup that we know what to make of it -
and therefore how to respond. For more information on this topic there is fuller treatment in a
related CBDI report9.

Process Stream
WS Maturity Phase

Topic Area

Deliverables EL INT RE MAT

Basic Life
Cycle
definition

Communication baseline Y Y Y

Business
Integration
(Services as
business
products)

Product line (or equivalent) process Y Y

Collaborative
(Supplier
/Consumer)
Life Cycle

Documented Life Cycle with applicability
guidelines

 Y Y

Collaborative
specification

Specification guidelines Y Y

Certification Certification requirements and relationship to
SLA levels
- architecture review
- business logic
- performance
- security and trust

 Y Y

Publishing Publishing Guidelines and repository
requirements
Life cycle management process

 Y Y

Deployment
and Versioning

Deployment practice and guidelines Y Y

Acquisition Agreement templates Y Y

Security and
trust

Security and trust process guidelines Y Y Y

Table 5 - The CBDI Roadmap Framework – Process Stream

8 CBDI COMMENTARY - WHERE DID THEY GO, I JUST DON'T KNOW . . . February 2002
http://www.cbdiforum.com/public/news/index.php3?id=885&news_date=2002-2
9 CBDI Report - Web Services To Improve Business Intelligence, June 2003
http://www.cbdiforum.com/secure/interact/2003-06/bi.php3

© 2003 CBDI Forum Ltd 19

In the early learning stage, Services will be managed as adjuncts to conventional systems
delivery processes (such as process design, application development, configuration and
deployment etc). However, as Services become the primary mechanism for inter company
communication, it will be essential for some considerable process reengineering to take
advantage of the service orientation. A fundamental premise of the service is also that there is a
provider and consumer, each of whom is executing different processes; the challenge is to align
collaborator processes. However in the Roadmap process it is important to differentiate between
use of Services as technical interoperability devices, and use as black box components where
provider and consumer processes are quite separate.
Basic Life Cycle definition
A basic life cycle is required to cover use of services in project and integration use. The scope of
the basic life cycle is likely to include the following deliverables:

• Definition of generic Service delivery process
• Operational Service contract management guidelines
• Security patterns and guidance on application
• Service integration patterns and guidance on application
• Service monitoring best practices and guidelines
• Exception handling best practices
• Diagnostics best practices
• Quality assurance and testing best practices
• Change and version management best practices and guidelines

Business Integration (Services as business products)
SOA today is a largely technical concept surrounding the creation of loosely coupled services.
Further SOA is often regarded merely as a superior way of deploying a component-based
architecture - and in their early use of SOA, many organizations will not go far beyond CBD.
However the real benefits of services will emerge when enterprises understand the concomitant
business transformation that will be enabled.
In the old economy, a standard enterprise transforms raw materials and components into finished
product. In its simplest form, the business process can be represented as the kind of production
line designed by Henry Ford. In the service-based economy, the core business model is no
longer based on the conversion of raw materials into finished goods. The enterprise buys in
services and sells services, and the core value proposition is the conversion of input services into
output services. This calls for a very different kind of business process model, which allows us to
see how services combine and interact to make other services. For example:

• A service may be subject to continual maintenance by the service provider, constantly
striving for improvements in scope and performance, so that the same service can be
offered to an ever larger number of consumers.

• And the consumers of a service have much greater flexibility to switch between
alternative services.

• The selection of a service may be done in real time, based on some set of policies.
• If a service is to operate differently for employees and for other users, there has to be

some context model that shows how employees are to be differentiated from other users.
• A service should be designed to operate in as many different contexts as possible. This

requires some modeling of the service context. It may also require some modeling of the
differentiation policies to be applied when executing the service.

• The importance of the contract in SOA cannot be overestimated. The formal contract is
the device that allows us to create virtual businesses; formalize system scope and
boundaries; minimize dependencies and thus maximize adaptability; use blackbox testing
and have choice of Services and easier change of supply.

© 2003 CBDI Forum Ltd 20

In considering the Web Services Roadmap, it will be necessary to consider how business
services may alter the core and peripheral business of the enterprise(s) in question, and crucially
in what timeframe.
Today we model requirements using artifacts that are appropriate for understanding how to
create applications and components. As our use of services matures, we will need to adapt our
modeling techniques appropriately. For example hiding complexity (which is what a service does)
yields a gain in manageability, as well as flexibility and reuse. Business analysts should consider
carefully which type of complexity is most at issue in a given situation, and choose the
appropriate modeling approach accordingly. See related CBDI Reports providing insight on this
topic10.
Collaborative (Supplier /Consumer) Life Cycle
In the early learning and possibly the integration stages processes used to deliver, manage and
consume Web and other types of services will be progressive extensions of existing processes
and practices. However the real benefits from Web Services will only be realized when the
providing and consuming processes are reengineered such that the interdependency between
provider and consumer is reduced to the minimum necessary.
Figure 3 illustrates that we have parallel universes that are focused on different aspects of the
same service. Once an organization has implemented this perspective thoroughly, their ability to
use, reuse, outsource, change supplier of services is radically improved.

Figure 3 - The Service Life Cycle

Organizations should be responding to a number of drivers as follows:
• As Services become more central to business and IT architectures, an holistic process

that manages the Service life cycle will become essential. Management of the
specification, delivery, acquisition and consumption of the components should be
coordinated by a Service life cycle perspective.

10 CBDI Report - Modeling for SOA, February 2003 and CBDI Report - Modeling for SOA - Worked
Example, April 2003 http://www.cbdiforum.com/secure/interact/2003-04/model_soa.php3

Service Provision

Publish

Discover Consume

Version

Asset Management

Service Implementation

Service Consumption

ExecuteDeploy

Asset Management

Solution Implementation

Collaborative
Design

Certify

Service Provision

Publish

Discover Consume

Version

Asset Management

Service Implementation

Service Consumption

ExecuteDeploy

Asset Management

Solution Implementation

Collaborative
Design

Certify

© 2003 CBDI Forum Ltd 21

• Services will increasingly be provided and consumed on an inter business basis. To
facilitate this, certain aspects of the Service delivery processes implemented in each of
the participating organizations will need to be common in order to ensure reasonable
productivity and to deliver the required levels of trust and security.

• Services will increasingly be designed through a process of collaboration between
multiple participants, with increasing emphasis on vertical industry standardization of
business Services and Service based business processes. A mutually understood
Service delivery process is essential to ensure successful collaboration

• With increased collaboration between fundamentally separate business entities, there will
need to be greater formality in the specification of services, contracts, etc. Achieving this
will drive the requirement for some formalization of the Service Delivery Process and
mutual understanding of deliverables

• With Services provided to external organizations, sometimes on a commercial basis, far
greater emphasis will be placed on risk management, quality of service, service level
agreements and accounting. The Service delivery process must encompass this across
the entire lifecycle, for example as part of the Service strategy and design, not just as a
facet of operations.

The scope of the collaborative life cycle is likely to include the following deliverables:
• Definition of generic Service delivery process
• Definition of generic commercial process
• Identification of deliverables
• Clarification of organizational roles such as

o provider
o intermediary
o consumer/requestor

• Clarification of responsibilities
o Service specification
o Contract architect
o Service publisher
o Service manager

• Definition of publishing best practices
• Business Service contract management guidelines
• Operational Service contract management guidelines
• Trust patterns and guidance on application
• Security patterns and guidance on application
• Service integration patterns and guidance on application
• Service monitoring best practices and guidelines
• Exception handling best practices
• Diagnostics best practices
• Quality assurance and testing best practices
• Guidance on making semantic agreements
• Service level agreement best practices and guidelines
• Change and version management best practices and guidelines
• Business process design patterns for inter company exchange

© 2003 CBDI Forum Ltd 22

Collaborative specification
If businesses are to collaborate using Web Services to support a business process, this raises
the question - how is this going to be managed. Obviously we don't want to hard-code Web
Service calls into an application, because this will be highly inflexible. Instead, we want something
like a scripting language, which will define the wiring between Web Services in a way that can be
interpreted and executed at runtime.
BPEL4WS, the Business Process Execution Language for Web Services is just that - a workflow
definition language that allows businesses to describe complex business processes capable of
both consuming and providing Web Services. BPEL4WS represents a merger between two
initiatives: IBM's Web Services Flow Language and Microsoft's XLANG. The BPEL4WS scenario
can be understood as a programming abstraction of a long-running business transaction or
collaborative business process, and is sometimes known as choreography.
For distributed collaborations, a contract between provider and consumer needs to have three
parts. The first part of the contract specifies the function of the Service, typically using a series of
logical assertions such as preconditions and postconditions. The second part of the contract
specifies the quality of service - which are often given the rather dismissive label of non-functional
characteristics. The third part of the contract specifies the commercial arrangements, including
charging for normal operation and compensation for abnormal operation.
At the time of writing the BP scripting languages have very limited support for contractual
specification. However in time this will be an area of critical focus, because it will be the
mechanism by which we articulate precise obligations between collaborators. This collaboration
will be an area for significant process development and improvement in the reengineering stage
of the Roadmap. CBDI have undertaken research in this area, and organizations considering
process patterns in this area may consult the related CBDI Report11.
Certification
Service Testing and certification practices require careful examination. Whilst many other issues
relating to Web Services may be safely delayed until volume and widespread usage force action,
testing and certification need early attention in order to ensure that Web Services are widely used
and reused. The big issue is will the service work correctly every time when I need it?
A further aspect is that Web Services are by definition designed in isolation from the end user.
What we are asking for is the same level of reliability from "ordinary" business components as
you would expect from safety-critical systems. We would all like 100% correct components, but
what happens when the environment in which that component is being used changes? A
component that is 100% correct for internal use can become vulnerable and a weakness when
used on the open Internet, particularly when trust levels change. Even 100% correct can be
wrong if the specification is wrong. This is a major problem with software in general - how do you
test the specification? The Ariane 5 software was 100% correct to its spec for Ariane 4, but was
reused in a different environment and caused a 500 million dollar uninsurable rocket launch to
explode because of an integer overflow problem. Both computers worked perfectly, both
shutdown correctly, and the self-destruct mechanism triggered.
Web Services therefore place new demands on testing activity. There are fundamental
differences between black box and white box reuse, and whilst we have all paid lip service to
black box with components, once we go beyond the boundaries of project reuse, we are forced to
operate with full transparency between provider and consumer in the Services world. Testing
seems too narrow an expression because traditionally it is limited to activities that take place in
the development process, and not during the execution phase, and certainly not prior to every
business event. We need some form of active certification that the task has completed correctly
with no unwanted effects. This goes beyond simply checking return codes and provides
confirmation that the business transaction has completed correctly, which may of course involve
multiple parties to validate this.

11 CBDI Report - From Web Services to Web Collaborations, November 2002
http://www.cbdiforum.com/secure/interact/2002-11/collaboration.php3

© 2003 CBDI Forum Ltd 23

The need for dynamic testing suggests we need to look at each part of the life cycle of a service
and identify appropriate testing and certification at each stage. This requires a new framework for
testing which might include:

• Static Testing - execution of a service prior to deployment
• Static Certification - warranty by some certifying body that a service is fit for purpose prior

to deployment
• Dynamic testing - execution of a dummy or test service, that is used as part of pre-

conditional activity to ensure the service provides the correct functionality.
• Dynamic certification - execution of post conditional services that verify the service has

executed to specification.
The dynamic aspects of testing XML Web Services require the introduction of testing services in
addition to the functional service. These are pre-condition and post-condition checks before and
after each functional interface, and could include technical and business oriented testing services.
A technical testing service may check that the WSDL complies with prior agreements. A business
testing service would ensure transactional integrity. For example if a bank provides a web service
function call “fundTransfer(fromAcct, toAcct)", then there may be two additional services required:
 "checkAccts(fromAcct)" which checks the fromAcct has enough funds, and
 "checkBalance(fromAcct, toAcct)" which verifies the sum of the two accounts is
 unchanged.
These additional services are specifically checking pre and post conditional states, and designed
to validate the correct operation of the core business service. A benefit of separate classification
of these services would be to make it easy to manage (the entire life cycle of) these services
quite separately from the core business transactions.
Publishing
Web Services that are intended to be consumer by others need publishing. The extent and quality
of the information will reflect the level of separation between provider and consumer, and also the
SLA underlying the service.
In the early stages of Web Service use, many enterprises find they do not require discovery
facilities provided by UDDI, because services are communicated to potential consumers that are
already known.
However as soon as the service is offered on a broader basis the publishing process needs to
expose sufficient information to allow the user to understand the capability being offered and the
implications of usage. Published information may also vary depending on the product SLA
offered, for example more comprehensive information on the service behavior as a UML model,
which may be appropriate to certain classes of consumers.
Deployment and Versioning
Web Services protocols have no explicit support for versioning. This is not a particular issue while
Web Services are being used internal to projects, where provider and consumer are one and the
same. But as soon as the provider and consumer are separate entities, and particularly when
there is automated consumption, that is no communication other than provided by the WS
protocols, then a versioning strategy is essential to ensure that there is good version
coordination.
It's important not to confuse the version of the implementation with the version of service
(interface). New versions of the implementation should be transparent to the consumer. The
service interface can of course be extended without impacting existing consumers, and it is
common for projects to consider versioning a non issue because of that. But the issue is that you
still have to ensure that consumers are made aware of extended functionality. Further there is a
question of traceability and supportability. How do you know who's using what and why, and from
what point in time? So whilst Web Services, courtesy of XML, are loosely coupled and won't
break contracts so easily as tightly coupled services, nether less you still need a change

© 2003 CBDI Forum Ltd 24

management process to trace changes, notify service consumers where necessary and track
usage.
Acquisition
The technology issues involved in acquiring Web Services are pretty easy. If you are consuming
a Web Service on a sold as seen basis, such as an exchange rate calculator, or a weather
forecast service, and you are quite happy if it may not be available in the future, or perform in
exactly the same manner, then acquisition is easy.
Widespread acquisition of services is unlikely to become widespread business practice in the
near future however, not because of security, but because of external dependence and the risks
associated with placing business reliance upon third parties. But not all services have the same
dependence characteristics or profile, and in the table below we provide some thoughts on where
you might want to go faster or slower in your thinking.

Class of Acquisition Concerns Stage

Commodity service acquired
singly or in narrow footprint,
from major supplier. For
example authentication
service or Amazon's
Associate service

High dependence requires
confidence in service level.
However contractual
agreement probably
determined largely by
supplier, who will rely on
reputation rather than
contractual agreements.
Alternative sourcing is viable
back-up and cost
management action

Major suppliers will be in a
good position to provide
trusted services on the basis
of mass adoption. Serious
options will apply in 2nd
Stage

Sets of commodity services
acquired from single source.
Example Salesforce.com
CRM and sales management
services

As above Whilst vendors such as
Salesforce.com are making
progress in this area,
particularly in specific
horizontal applications,
widespread adoption will be
slower

Sets of custom or limited
volume services acquired
from single source. Example
vertical specialist services

SLA applicable to the entire
set reduces administrative
overhead. Commitment to
one source makes SLA high
criticality.

Stage 3

Ad hoc single service
acquired on demand.
Example actual calculations,
weather forecasts for
specialist purposes

Behavioral more important
than operational guarantees.
Multiple sourcing options
based on differential behavior

Stage 2

Table 6 - Service Acquisition

Security and trust
Security is a core topic in Web Services land. We have discussed security implications in
planning & management, infrastructure and architecture. The purpose of a Web Services security
architecture is to enable a variety of Web Service implementations to securely interoperate in a
platform - and language-neutral manner, and to ensure the integrity, confidentiality and security of
Web services.

© 2003 CBDI Forum Ltd 25

The real issue at the heart of these cases is that our systems automate standard or expected
behavior. We omit to implement controls that "monitor" the behavior of systems. We hope that
nuclear power stations have these controls, but we don't apply the same logic to business
systems. We trap software errors not systems errors. Web services will potentially magnify this
problem. With Web Services we will be able to increase the automation of business processes
within and across companies. The lesson for Web Service providers is therefore clear - they may
be introduced to improve operational efficiency, but must also be complemented with intelligent
monitoring and systems controls.
The purpose of process activity therefore is to ensure that the architecture is used appropriately.
We might expect that the process includes steps such as:

• Define a set of business security requirements.
• Use the Web Services security architecture to design (some elements of) a security

solution - at least for the web service elements of a business system.
• Verify and monitor adherence to the business security requirements, and detect any

breaches.
• Diagnose breaches - how did this intruder get in, how did this information leak out - and

plan appropriate corrective/preventive action.

Projects
WS Maturity Phase

Topic Area

Deliverables EL INT RE MAT

Experimental
and early
learning

Shared experience
Services as a better form of project
architecture

Y

Project level
services

Services as a better form of project
architecture
Services shared within project

Y Y Y Y

Implementation
Based Services

Harvesting
Existing implementations/interfaces rendered
as Web Services

 Y

Enterprise level
services

Generalized services providing single source
of functionality
SLA based guarantees
Formally published
Managed upgrade

 Y Y Y

Services are
products

Integrated product and IT development
process

 Y Y

Table 7 - The CBDI Roadmap Framework – Projects Steam

Many organizations will maintain recommended project profiles for project teams to then
customize as appropriate. Existing project profiles will require customization and there are five
important profiles that may be important to consider and plan for.
Experimental and early learning
Exploratory activity that is undertaken either by individuals of individual project teams. No
significant reliance on shared infrastructure.

© 2003 CBDI Forum Ltd 26

Project level services
Web Services created as interoperability mechanisms within the confines of a project. Relatively
minimal requirement for formality of process, for example separation of supplier and consumer,
certification etc
Implementation Based Services
Web Services used as integration layer for existing and legacy applications.
Enterprise level services
Web Services created for reuse across the enterprise.
Services are products
Web Services form an integral part of one or more core business product offerings.

© 2003 CBDI Forum Ltd 27

A Web Services Maturity Model
A Strategic Perspective for Technology and Business Planning
Adopting Web Services and SOA is an evolutionary process for vendors and their
customers. The question is how do you manage progress and risk in a constantly
changing environment? While the technology issues are inevitably dominant today, this is
merely a symptom of the immaturity of the service environment. Very soon business
issues will dominate. In this report we introduce a high level maturity model that provides
an assessment of relevant timescales and a framework for aligning business and
technology roadmaps.
Introduction
Every parent is familiar with the sound of the tiny voice piping up from the rear seats of the
automobile "when are we going to be there?" Many are starting to ask the same question of Web
Services, which are on the face of it, taking an inordinate amount of time to come to anything like
widespread acceptance. Believe it or not it's nearly three years since Web Services first came on
the scene, and four since XML-RPC activity signaled the paradigm shift. Two things are clear -
first Web Services are far from mature by any measure, and second we have a long way to run
before we reach anything like maturity.
You might well ask, "What defines a mature state?" Also "What happens after we reach
maturity?" Although, as our recent survey confirmed, many organizations are adopting Web
Services, equally many organizations are deliberately adopting conservative, mainstream
adoption policies, and currently staying out of the Web Services market. In a difficult economic
climate, why take a risk if you don't have to?
Yet Web Services are a little different to many other new technology trends. Web Services are
clearly evolutionary insofar as they enable wrapping of existing application functionality, and
provide early ROI based on improved reuse and better structured applications. And with the
standards process very obviously following a course of layering complexity upon complexity, it is
clear that a prediction of concept maturity based on the standards would be 2005 at the earliest.
Is there a risk that Web Services will fail, and be superseded by something else or simply swept
aside by some new technology trend? Frankly this is about as likely as a collision with a stray
interplanetary body. With the hegemony of Microsoft and IBM driving Web Services at the core of
their business strategy, this is a technology that is going to run and run. So the questions to ask
are when do you jump on the train and why?
And here we need to consider the relative maturity of both technology and business.

Technology Maturity
If we look at Web Services as a set of technologies, then we should expect to see an Atlantic
breaker pattern, where rolling waves are continuously breaking on the shore, with something
resembling predictability and regularity. Because the evolution of Web Services is fundamentally
driven by the standards process, we can forecast when the waves of security, reliability,
management etc will happen. Although there are competitive and commercial games being
played with the standards process, it is to everyone's advantage that there is universal buy-in to
the WS protocols, and therefore we can be less concerned about tactical battles, because the
outcome is pretty much a given.
With most new technologies there is an observable model where early use of any new idea is
perceived as an extension to existing practices. So the first automobiles were designed to look
like carriages without the horse. Mobile phones provide(d) text messaging facilities that use the
numeric keyboard irrespective of the difficulty of using the UI.
Although the use of Web Services for better integration is now becoming widespread, the reality
is they are simply another layer on top of the infrastructure that already exists. This is particularly
true in the Java environment, where there are so many layer mappings - from UML, to relational,
from XML to objects and back again, and XML to code, that it's not surprising that organizations

© 2003 CBDI Forum Ltd 28

are going slow, unless there is a real imperative. In an upcoming report we look in detail at new
XML based implementation technologies such as X# and Water, which clearly have the potential
to make large swathes of the current development complexity redundant. So while the technology
world waits for the WS standards to catch up with expectations, we might just see a major
advance in implementation technologies happening concurrently, which will deliver massive
simplicity into the services "delivery" environment.

Business Maturity
In Richard Veryard's recent CBDI reports on Modeling for SOA12 he has described the
opportunities that are going to surface as we achieve the reality of trusted, and ubiquitous service
interoperability. In particular he has emphasized the importance of looking at mundane business
processes and services in a new context, for example looking at the service ecosystem as the
scope for business design. What we used to call reengineering before it became over hyped and
unfashionable!
An equally interesting perspective to examine is the way that business may be transformed by
service thinking. One of the more interesting reports that I have personally researched over the
past six months was about BT's authentication service13. In this CBDI report I discussed how BT
is working on a long term program which aims to deliver a pervasively used authentication
service. The really key point here is that the technical delivery of the service is literally trivial in
comparison to the business task. Although BT is partnering with a company highly experienced in
authentication and personal data management, they have a huge task to persuade initially
businesses and subsequently individuals to change their customary practices in relation to
personal identification. This is nothing short of reengineering on a grand scale. What's important
to note is that BT is already embarked on this program, long before the technologies are
anywhere near mature, and is focusing on business led product design, with the clear intent to
converge with the maturing technology.

Web Services Maturity Model
So how do we rationalize where we are in the overall march towards a service oriented world? In
our work we advise the importance of pacing activity in line with product maturity, whilst at the
same time developing and working towards a longer term vision. The BT authentication program
is clearly a good case study.
In Figure 4 we offer a very simple model to assist communication and planning. This model is not
intended to be definitive or precise, rather a rough aid to understanding what's going on. For
example if the columns don't all match up for all the rows at any point in time don't worry unduly,
it's the principle of phased progression that's important, and the need to prepare and manage
through it.

Four Phases
It seems probable that most organizations will go through four major phases in the service
oriented environment.
Phase 1 - Early Learning
In this phase it's a technical service world. Early activity is exploratory and mostly about better
application integration. Activity is mostly internal and an extension to current activity, and
managed under existing processes.

12 CBDI Best Practice Report - February 2003 - Modeling for SOA
http://www.cbdiforum.com/secure/interact/2003-02/model.php3
CBDI Best Practice Report - April 2003 - Modeling for SOA - Worked Example
http://www.cbdiforum.com/secure/interact/2003-04/model_soa.php3

13 CBDI April 2003: Product Report - The BT Authentication Service
http://www.cbdiforum.com/secure/interact/2003-04/bt.php3

© 2003 CBDI Forum Ltd 29

Figure 4 - The Web Services Maturity Model

The WSnn protocol efforts in the W3C and more recently in OASIS have now been running for
some 3 years, and the all important trio - SOAP, WSDL and UDDI, together with the important
WS-I profiles allow a basic level of description and interoperability of messages that establish a
first base. We might regard this as completion of a major phase of work, that will permit certain
types of application, which might be more easily defined by what they do not permit - for example
reliability, transactionality, security etc.
In this phase the predominant service deployments will be:

• mostly internal
• low-risk external
• using existing security mechanisms
• not mission critical
• focused on better application integration

CBDI has reported on numerous case studies that have shown how Web Services can be used to
good effect with the basic protocols. For example we might instance Amazon that is very clearly
set on reengineering their business and enabling their affiliates to do the same. But these are in a
minority. Whilst there will undoubtedly be some new and innovative uses of Web Services, this
phase will be best characterized as a period in which many enterprises do their early learning,
and some existing applications are wrapped in order to establish some elementary level of
service oriented architecture.
It's clear there's a big difference between adopting Web Services and becoming a service
oriented organization. Web Services in the end are simply a better form of middleware. Moving
beyond that level requires a change in business practices not just technology.
Phase 2 – Integration
In the second phase business drivers will start to become important. This was clear from our
survey carried out in February 200314, which showed business appreciation of the benefits from

14 CBDI Web Services Usage Survey
http://www.cbdiforum.com/bronze/webserv_usage/webserv_usage.php3

Early Learning Integration Reengineering Maturity

Integrated Architected Measured
and Managed

FederatedService
Deployments

Technical
Interface

Business
Capability

Business
Product

Domain
Standard

Service
Perspective

Technical Business Enterprise Industry/
Ecosystem

Drivers

Internal Limited
External

Virtual
Business

AnonymousCollaborations

Momentum Extended
Momentum

Reengineered StandardizedService
Process

Early Learning Integration Reengineering Maturity

Integrated Architected Measured
and Managed

FederatedService
Deployments

Technical
Interface

Business
Capability

Business
Product

Domain
Standard

Service
Perspective

Technical Business Enterprise Industry/
Ecosystem

Drivers

Internal Limited
External

Virtual
Business

AnonymousCollaborations

Momentum Extended
Momentum

Reengineered StandardizedService
Process

© 2003 CBDI Forum Ltd 30

better, loose coupled architecture. In this second phase SOA is a critical objective, which is
justified by greater business flexibility, and creating an application environment where "business"
capabilities are exposed as services which can be easily reused and upgraded.
The focus in this phase remains very much on internal activity and external services continue to
use current practices and technical architectures for inter company interoperability.
The adoption of SOA does introduce some important delivery process change, as organizations
introduce service delivery and management tools and techniques, but in the main this phase is
managed by an extension of current practices.
It has become something of a "cause celebre" that the absence of Web Services security has
been a significant inhibitor to adoption. However this bears re-examination. Those that have
wanted to secure Web Services using what we have defined as first phase protocols, have used
pre-existing security mechanisms (SSL, CORBA etc) without difficulty. What the WS-Security
protocols bring is heterogeneous message level security, which we suggest is relevant to more
sophisticated architectures that also need enhanced guarantees of reliability and availability.
And it seems most likely that the combination of security and reliability will form the basis for a
second phase of Web Services adoption that will be characterized by the ability to offer some
guarantees around service levels. It also seems likely that this phase will be characterized by
some level of business process integration. From a timing perspective it seems highly likely that
the BPEL specification will prevail and will, by the early 2004 timeframe, provide a reasonable
basis for business process integration. This is corroborated by the primary vendors supporting
BPEL that plan to have tools available in this period.
In this phase the predominant service deployments will be:

• Business process oriented
• Project level implementation
• Mostly internal usage
• Based on a more mature understanding of SOA with better separation of layers as BPEL

scripting is implemented
Phase 3 – Reengineering
The third phase represents the point in time when the man waving the red flag in front of the
automobile is no longer required. When the automobile and the mobile phone are designed for
purpose, rather than to replicate prior practices simply because they are de facto conventions.
The term reengineering is perhaps not popular because it has been subject to misuse, but it is
highly relevant in this phase where the very purpose of services will undergo change, as well as
the delivery technologies and practices.
The primary discontinuity or driver will be the transition to "business product" thinking, where the
service becomes the business product. The notion of information technology and systems
requirements goes away, because the requirements are fully synonymous with the business
product design.
A key pre-condition and driver to this phase is mature measurement and management
functionality, as well as ubiquitous external interoperability enabled by mature security and usage
profile standards. As we have indicated earlier, it is likely that this phase will coincide with the
mature availability of massively simpler (and presumably cheaper) implementation technology
which will act as a significant stimulus to action.
For some time now there has been evident something of a disconnect between the ambitions of
the major platform vendors and the standards processes. The issue here is management, the
protocols which are being worked under the OASIS WSDM committee.
The issue is that enterprise level services will only become acceptable to enterprises when the
provider can provide rock solid guarantees of availability, reliability and performance, AND can
dynamically manage the environment to deliver that, AND prove in retrospect that the

© 2003 CBDI Forum Ltd 31

commitments have been met. This will be the major inhibitor to more widespread use and reuse
of services. Although there are an extraordinary number of ISV's that have entered this Web
Service Management marketplace, the typical enterprise is going to a) see a standards based
platform as a prerequisite for implementation and b) prefer to wait and see what the major
platform vendors provide. Early adopters will always move with early adopting tools vendors, but
the mainstream market will wait.
The current emphasis placed upon on-demand or demand based environments is going to be a
critical enabler of the end point service vision. What's interesting is to compare the efforts of the
major vendors. In our previous reports on this area, we have characterized the efforts of HP and
Sun as primarily about utility computing - creating a flexible technical environment, whereas IBM
is increasingly focused on the business opportunities that are enabled by on-demand
environments. This increased visibility is going to be essential in our Third Phase, as we have
pointed out in a recent CBDI Newswire - Groundhog Day. As one correspondent accurately
commented, it's going to be essential to "Convince the main board to address enterprise IS
architecture seriously, not as a modeling exercise and not as a means of controlling IT but as an
integrated part of business strategy planning."
Our Third Phase is therefore the point in time when service oriented applications are fully
integrated with the business from organizational, funding, and product development perspectives,
to name just a few.
In this phase the predominant service deployments will be:

• Enterprise level, with common services used right across organizations
• Services implemented as an integral part of business products
• Supported by guarantees and standards based measurement and monitoring systems
• Enabled by a wider selection of available services both inside and external to

organizations
Phase 4 – Maturity
One hesitates to write and comment about maturity because it is high probability that by the time
we ever reached a mature state that new concepts will have superseded what we are working
with today. However in our fourth phase and mature state, services are ubiquitous. Federated
services collaborate and create complex products with individual services provided from
potentially many providers. Services are designed to support the consumer in their ecosystem,
not in a company specific system or service. Many business services such as perhaps the BT
authentication service discussed earlier may have become pervasive standards. This process will
take considerably longer than the relatively trivial matter of setting protocol standards, which can
be carried out by a small group of technologists sitting in isolation on top of a mountain. In
contrast business service standards will require huge investment in marketing and process
reengineering that may take years to come to maturity.

Timing
The IT archaeologist of the future might be a little puzzled when he or she sees a huge amount of
hype and spin about Web Services between 2000 and 2003, which then dies down considerably.
What's happening here is that the industry actually didn't over hype the "potential" for Web
Services, but what they "did" do, was to set the expectation that the vision would be delivered in a
relatively short timescale. The reality is very different. We are currently in Phase One as we have
defined it. Many organizations will only enter that phase this year and next. Phase Two will
commence in 2004 and run through 2007. Phase 3 will commence sometime perhaps late 2005,
and run and run.
It is also important to recognize that the standards processes as we see them today are not the
end of the line. As with every standards effort, these are going to continue. One of the most
important continuing efforts, and conversely the weakest of the current standards efforts, is the
whole area of process choreography. Whilst BPEL is considerably better defined than the
competing specification WSCI, it does not deliver a comprehensive view of the contract between
the provider and consumer.

© 2003 CBDI Forum Ltd 32

The importance of contracts should not be underestimated. It is very difficult to adopt an on
demand approach (to either computing resources, or business processes) without having a very
clear and precise way of expressing machine readable contracts. This is a major failing, because
without it, there is going to have to be incremental communications between the collaborating
parties. Widespread reuse of services will only occur when the consumer is given a
comprehensive contractual view that documents all the behaviors and obligations, in other words
a specification model of the externalized perspective of the offered service. This is perhaps the
next big challenge, and as yet this requirement is not yet even comprehended by some major
players in the modeling tools space.

Summary
So don't be surprised when you hear the major vendors de-emphasizing Web Services. They
know they have over reached themselves on this issue, and that they need to redirect attention
for a time. On demand, demand computing, efficiency and cost reduction are all good themes that
play to today's economic circumstances. This is where the vendors will address their efforts, and
not unreasonably establish the necessary operating environment for a world where use of
services is pervasive.
For the same reasons the vendors are characterizing Web Services as "just another form of
middleware". They realize they have to adjust their messages for a while, and play down the
strategic importance of Web Services, until they are ready for mainstream deployment. So
focusing on just another form of middleware is resetting expectations to be relevant to
applications that can reasonably be implemented during our Phase One and Two.
It's important to understand that this is a longer term game we are playing. Web Services is
merely a phase in a longer running process which will eventually deliver a comprehensive service
oriented environment. It's going to take time, but there's much that can be cost justified today,
which equally contributes building blocks to the overall project.
The primary message in this report is the criticality of managing the process of evolution. Those
businesses that sit back and allow technology matters to drive their use of services will almost
certainly fail to survive what looks like a profound change in business practices, which will occur
in the second half of this decade.
What's needed is a balanced approach to building the technology with today's tools, recognizing
that these will certainly be superseded in due course. The most important issues are establishing
the loose coupled SOA architecture that hides the implementation and allows transparent
technology upgrade, while the reengineered product planning and process management
practices deliver on innovative new business services that provide real competitive edge in the
right timeframe.

Roadmap Actions

Establish a service oriented strategy -
Establish organizational consensus on the overall plan for transitioning business and
technology environments, synchronizing relative maturity of capabilities and applications

Identify business opportunities -
look at mundane business processes and services in a new context, plan support at the
service ecosystem level

Set up long term R & D and service oriented projects -
don't wait until the technology and standards are available, business development always
takes longer than IT

Review Technical Strategy -
augment technology strategies to prepare for service orientation

© 2003 CBDI Forum Ltd 33

ROI – The Costs and Benefits of Web Services and Service
Oriented Architecture

Having difficulty persuading your colleagues or business sponsors of the merit of
adopting Service Oriented Architecture (SOA) or using Web Services instead of some
existing mature technology? Need to understand what the costs will be, not just the
potential benefits? Then this section should help.
Why Web Services?
After a couple of years of hype you would imagine everyone is now familiar with the justification
for using Web Services. And yet, on many occasions the industry still struggles to clearly put
across the benefits of Web Services and articulate precisely how they differ from existing
technology solutions.
The issue is that superficially much of the benefits that are attributed to Web Services have also
been claimed by pretty much every new technology over the past n years. You might realistically
argue that the IT industry is well known for hyperbole and exaggeration, and that reality generally
falls short of expectations. Things like "improving business agility", "reducing time to market", etc
are still valid - but not entirely new. Why is Web Services going to deliver this time?
Consequently, there is a real need to be much more precise about the specific cost savings and
benefits for both business and IT that can reasonably be attributed to Web Services.
This is not so surprising because Web Services have been a technology led paradigm, and early
usage has often been in the area of internal integration where benefits are quite straightforward.
Grand visions of everything being connected in dynamic real time scenarios are one thing, but
most organizations have more mundane problems to solve. And so we seemingly get stuck in the
middle, not always knowing which aspect of Web Services to highlight. Too visionary and the
audience gets scared (early adoption = risk), too mundane and they get bored (their existing
solutions suffice)
Also, the constant evolution of Web Services means that the benefits keep evolving too. What
started out as a simple distributed computing solution can now be applied to wider range of
connectivity scenarios. So just what are Web Services now? Is it just a better, cheaper, faster
(BCF) interface for existing EAI, distributed computing, EDI or other scenarios? Or is it more than
that? Of course there should be every reason to use Web Services if they are truly BCF in these
scenarios, but this is largely an IT centric message. And a frequent response is that existing
solutions in these scenarios are mature and largely get the job done - so why convert to Web
Services?
Perhaps because the ideas are more abstract, we often see the industry failing to put across what
are some of the key differentiators of Web Services. For example the richness of the service
specification that can be conveyed in WSDL and emerging business process orchestration
standards that enable self describing services and self discovering applications. If you just need
your developer to connect A to B, then EAI might suffice. But if you want A to dynamically find B,
and later switch to C, without developer intervention, and regardless of the technology that A, B
and C use, then Web Services is the only solution.
So, what then are the benefits and motivations for using Web Services? And what are the precise
features that deliver them? Original definitions of Web Services are now outdated as they were
too narrow in their viewpoint, which was typically focused on an RPC centric, object/component
oriented view of the world. So we offer up a broader definition, which also now recognises that
Web Services are not necessarily anything to do with the web:
"Web Services provide a simplified mechanism to connect applications regardless of the
technology or devices they use, or their location. They are based on industry standard protocols
with universal vendor support that can leverage the internet for low cost communications, as well
as other transport mechanisms. The loosely coupled messaging approach supports multiple
connectivity and information sharing scenarios via services that are self describing and can be
automatically discovered."

© 2003 CBDI Forum Ltd 34

To understand how both businesses and IT departments benefit from Web Services in detail, let's
dissect this statement and consider it line by line.
1. A Simplified Mechanism To Connect Applications Regardless Of The
Technology Or Devices They Use, Or Their Location
Web Services will be ubiquitous. Applications running anywhere, on any technology or device will
have a Web Services capability available to them. As such, the applications of customers and
business partners will be able to participate in an organizations business process, in real time.

2. Based on Industry Standard Protocols with universal support
Previous solutions are typically proprietary, and even if so called ‘standards’ have failed to reach
universal adoption.

3. Leverages the Internet for low cost communications
The high cost of private networks, coupled with the cost of proprietary EDI/B2B solutions has
been a barrier to entry for many organizations. Though big participants can justify this, many
industries have thousands of small organizations who cannot. Similarly organizations like retailers
with an extensive branch network, can more easily enable them to participate in real time
communications.

Business Benefit –
Wide Area Business Process Efficiency

IT Benefit –
Cost Reduction

Potentially improves business process
efficiency by reducing cost and particularly
time to connect applications.

Lowers the cost of connection.

Increases the feasibility of real time, remote
access to core source of information (owner)
which provides current information to a
process.

Reduces complexity of integration.

Enables real time business, and straight
through processing.

Delivers platform and technology
independence

Customer, partner and employee enablement.

Business And IT Benefit – Cost Reduction And Choice

Both Business and IT gain traditional “open standards” benefits

Not locked into proprietary technology

A wide choice of suppliers

Reduction in technology costs through commoditisation

Increased quality through competition on implementation

© 2003 CBDI Forum Ltd 35

4. As well as other transport mechanisms
Whilst the Internet provides a ubiquitous, low cost transport for Web Services, the “web” in Web
Service is now misleading, as bindings to other transport mechanisms are available which may
be more appropriate to internal usage or private networks where higher speed and more robust
connections are available. Though this might seem to contradict point 3, it nevertheless reflects
that for some scenarios the Internet will not be ideal, and that Web Service protocols that will
improve the reliability of Internet based communications are not yet mature. The key benefit,
primarily to IT, is that it now provides choice of transport.

5. Loosely Coupled
Previous connectivity approaches required the same technology at each end of the wire. For
example, even though EAI adaptors enabled different applications to connect to each other, it still
required the same proprietary EAI technology as a wrapper around each application. Focusing on
XML protocols, Web Services describe the connection, not the technology at either end. Loose
coupling is not just a technology issue however, but a key aspect of service design.

Business Benefit -
Lowers The Barrier To Entry

IT Benefit –
Simplified Middleware

Available to all sizes of organization, and
individuals

Same technology can be used for both
external and internal connections

Low cost means thousands of small partners
and suppliers, or a branch network, can now
be integrated

Leverage ubiquitous Internet protocols and
infrastructure

Supports globalisation. Integration of
geographically dispersed organizations

IT Benefit – Can choose transport most suitable to need

Leverage existing transport infrastructure

Deliver Web Services over reliable, robust, fast transport mechanisms

Options for both internal and external Web Services

Business Benefit –
Agile Relationships

IT Benefit –
Reduce Cost Of Maintenance

Makes it easier to change or add partners. Lower cost of maintenance

Facilitates M&A activity Reduced impact of change

System change is not a constraint on
business change

Facilitates reuse of existing assets

© 2003 CBDI Forum Ltd 36

6. Supports Multiple Connectivity and Information Sharing Scenarios
Today organizations use different technologies for distributed computing, EAI, EDI, B2B,
Websites, Portals. This results in n times the products, tools, skills and cost. Web Services
provides an opportunity to radically reduce this by supporting these different scenarios with the
same basic protocol stack.

7. Self Describing
The time taken for developers to properly understand how to use an existing interface –
particularly when it is external to their own projects – slows down the time that new connections
can be established. Web Services provides a much richer specification of the service compared
to previous technologies, which can be accessed programmatically.

8. Automated Discovery
Provides a mechanism for discovering Service Providers, which can be automated.

Business Benefit –
Faster Extension Of Ecosystem

IT Benefit –
Cost And Time Saving Through
Automation

Makes it easier for customers to find you and
your services

Reduces or removes development effort to
support new connections

Makes it easier to find new partners and their
services

IT Benefit –
Cost Savings Through Consolidation

Broad applicability reduces the number of different products, tools, skills, etc required

Consistent approach in all scenarios

Common infrastructure can be leveraged across all scenarios – e.g. security

Business Benefit –
Time To Market

IT Benefit –
Shortened Development Cycles

Improves time to market as connections to
partners and customers can be made faster,
even dynamically.

Reduces development effort as consumption
of service is largely automated.

Makes it easier for partners to do business
with you.

Reduced impact of change. Response to
changes can be automated.

 Services can be consumed dynamically
without developer intervention.

© 2003 CBDI Forum Ltd 37

Why SOA?
Web Services are not a silver bullet. Like most technologies, it is only by ensuring that business
requirements are properly understood and their application is carefully designed, that the benefits
claimed are truly delivered. It is very easy to deliver bad Web Services.
Whilst Web Services remove many of the technology constraints of communication between
applications providing flexibility at the implementation layer, the business agility that is promised
is more a factor of Service design than protocol adoption.
As such SOA should be thought of not just as a way of designing and documenting an
“Architecture of Services”, showing their relationships, dependencies, etc., but also a discipline by
which we ensure that those Services are the right Services, delivered at appropriate levels of
granularity, abstraction and generality that makes sense to both Service Provider and Service
Consumer, reduces the effort (particularly on the consumer) to use a set of services to perform a
particular objective, and truly minimises the impact of change allowing Service consumers to
switch providers and Service providers to switch implementations.
We believe that SOA disciplines will become vital in delivering external Web Services where
agility and flexibility is required (by both provider and consumer), and for Enterprise Wide Web
Services where broad applicability must be ensured to enable reuse.

The Costs of Web Services and SOA
Many of the benefits outlined above imply reduce IT costs resulting from the adoption of Web
Services. What, if any are the additional costs of using Web Services and adopting SOA?
Thanks to the universal adoption of Web Services by vendors, much of the software infrastructure
required effectively comes as part of the regular upgrade cycle of existing products that most
organizations will already have. This is not to say that organizations will not take the opportunity
to decide whether they need to change products or vendors in order to obtain software better

Why Web Services Should Work
Déjà vu? Heard it all before? Here are some reasons why Web Services should work where
prior approaches have failed

1. Universal Support. Previous de facto, or de jure interoperability standards usually lacked
participation by one or more key vendors.

2. Protocol not Platform. It doesn’t require the adoption of a common platform, just
adherence to the standard protocols.

3. Low Product Costs. Sure vendors will want to sell products that optimise the Web
Service experience in some way, but the basic needs are going to be supported
essentially for free as part of the platform or as an adjunct to some existing product. Nor
are they expensive to adopt in term of development effort. Everyone can play this game
without major investment.

4. Evolutionary. Long term, Web Services will likely usher in some revolutionary new ideas
that force the replacement of existing systems. In the meantime consider Web Services
as evolutionary and use them to leverage your existing applications and infrastructure
rather than requiring rip and replace - another low cost benefit.

5. Business Oriented. Web Services don’t just appeal to the technician, but directly
address real business needs of today. The business didn’t care about OO or CBD, but
should care about Web Services, particularly where they directly reflect some meaningful
business concept, and especially where they are being exposed external – and hence are
a reflection on the business.

© 2003 CBDI Forum Ltd 38

optimized for Web Services, or acquire additional products that might make them more
productive. For example, some organizations might introduce new capabilities they have not used
before such as business process orchestration/workflow products that now support Web Service
protocols.
However, the bottom line is that most of the essential Web Services capability can be acquired
via software upgrades that also contain other useful functionality, and as such comes at
effectively zero or little additional cost in terms of software.

The Cost of SOA
Delivery of the Web Services themselves in terms of the necessary protocols if largely hidden
from developers by tools, and is unlikely to be an overhead in terms of programmer productivity.
As such, much of the development overhead of delivering Web Services will come in the analysis
and design phase to ensure that where required Services are

• Properly abstracted away from the implementation to deliver flexibility and agility
• Sufficiently generalised to enable enterprise wide applicability

Performance Overheads
Whilst there are ways of optimising the use of XML, many Web Service scenarios will involve
extra process steps that will likely add some performance overhead to the overall process. That
said, existing alternative integration options such as EAI and B2B have similar performance
profiles in comparison to a point to point connection between two applications using the same
(proprietary) technology. Some possible sources of performance overheads will be,

• Service Wrappers and Facades around existing systems
• Transformation in and out of XML
• Dynamic Web Service Management
• Federated Security
• Services routed via external intermediaries

Of course these should all be seen from the perspective of the benefit they bring, not just the
overheads they incur.

Software costs and Product Acquisitions

Software Upgrades to support
Web Service protocols

 Likely to be part of regular upgrade cycle – not specific to
Web Services

Web Services Management
and Web Service “Utilities”

 Acquire or build
 Some capability will be delivered as part of server

platform upgrades

Private UDDI Software essentially free, but still requires deployment
management. May require dedicated server(s)

Security Infrastructure upgrades to support federated security, improved identity
management, etc

See “Assembling the Web Services Infrastructure”
http://roadmap.cbdiforum.com/reports/infrastructure/

Organizational

Skills SOA Skills will need to be acquired, learned
 Web Services technology largely automated and hidden

from developer

Roles New roles with new disciplines

© 2003 CBDI Forum Ltd 39

 Table 8 - Costs of Web Services and SOA

Development

Enterprise SOA Ensuring Services are applicable Enterprise-wide

Abstraction Ensuring Services are properly abstracted away from the
implementation

Collaborative development Jointly agreeing and designing Services in collaboration
with other participants (providers and consumers)

Service Wrappers for existing
systems

 Often these will come at little cost or effort where vendors
are Web Service enabling the underlying platform, or
packaged application, as part of their upgrade cycle

 However, careful design is needed to ensure abstraction

Testing Web Services should be real “black boxes”, requiring
more diligence in testing as the implementation is not
available for inspection.

Roadmap Actions

Business
drivers

Align Web Service benefits with business requirements.

Strategy and
policy

Identify business opportunities and support to Technical Strategy
Identify areas for cross organizational coordination, establish reuse strategies
and mechanisms for cross organizational policy setting, projects support,
decision making

Infrastructure Justify infrastructure investments on the basis of clear benefits

Process and
governance

Incorporate WS benefit assessment into life cycle

Application
(areas of usage)

Be clear in the justification for using Web Services rather than any other
approach

Organizational
change

Ensure that education covers not just the what and the how, but the why of
Web Services
Ensure that SOA is seen as an additional discipline with it’s own costs and
benefits, and is not an automatic by-product of using Web Services

© 2003 CBDI Forum Ltd 40

The Web Services Protocol Stack
Abstract: This report assesses the status of various Web Service protocols and suggests
a timeline for their adoption and relevant roadmap actions. It provides a useful reference
and links to all the numerous protocols currently proposed or in the standards process
Web Services are a set of protocols based on XML (Extensible Markup Language). Many readers
will be familiar with the following base protocols that formed the initial specification for Web
Services.

• Simple Object Access Protocol (SOAP) - defines the runtime message that contains the
service request and response. SOAP is independent of any particular transport and
implementation technology.

• Web Services Description Language (WSDL) - describes a Web Service and the SOAP
Message. It provides a programmatic way to describe what a service does, paving the
way for automation.

• Universal Discovery, Description, Integration (UDDI) - UDDI is a cross industry initiative
to create a standard for service discovery together with a registry facility that facilitates
the publishing and discovery processes.

Figure 5 - Base Web Service Protocols

These have effectively become de facto standards, with effectively universal acceptance and
widespread implementation by vendors. Figure 5 shows the way their application is typically
illustrated.
These base protocols have enabled many companies to put straightforward Web Services into
production. However, to improve the security and reliability of Web Services and to address more
complex business scenarios, a wide range of additional protocols have since been proposed.
Some of these have since been merged with others or morphed into new proposals. The current
proposals are illustrated in Figure 6. Further detail and links to the various specifications is
provided on the Roadmap website15 which is kept constantly up to date with their evolving status.

Web Services Architecture
The additional protocols have been proposed within the context of a modular framework that
would allow,

15 http://roadmap.cbdiforum.com/reports/protocols/summary.php

Connect via SOAPConnect via SOAP

Describe via WSDLDescribe via WSDL

Publish via UDDI

Publish via UDDIFin
d v

ia
UDDI

Fin
d v

ia
UDDI

Service
Provider

Service
Consumer

Service
Registrar

Connect via SOAPConnect via SOAP

Describe via WSDLDescribe via WSDL

Publish via UDDI

Publish via UDDIFin
d v

ia
UDDI

Fin
d v

ia
UDDI

Service
Provider

Service
Consumer

Service
Registrar

© 2003 CBDI Forum Ltd 41

Developers to only use the modules needed for their Web Services. Each module can be
lightweight and not overburdened with irrelevant syntax.
Each module to evolve in isolation
The W3C have since formed a Web Services Architecture Working Group16 and Figure 6 is
loosely based on the architecture in their current draft. Microsoft has also promoted their Global
XML Web Services Architecture (GXA), but this is essentially the same and should not be
misunderstood as a Microsoft proprietary alternative.

Figure 6 - The Current Web Service Protocol Stack

CBDI Assessment
Additional Protocols Required
Taking all the proposals in Figure 6 into consideration, the set of protocols required for secure,
reliable ‘Enterprise’ Web Services is largely complete. Areas not fully addressed are

• Management. The OASIS WSDM Technical Committee has only just been established.
As yet, the full scope of the protocols they will propose is not clear. The intention is
primarily to provide protocols to enable the run-time management of Web Services and
enable Web Service platforms to feed relevant information to traditional Systems
Management tools.

16 http://www.w3.org/2002/ws/arch/

Transport

Description

Discovery

Security

Management

Security WS-Security

Distributed Management WSDM, WS-Manageability

Publication UDDI
Inspection WSIL

Transport HTTP, TCP, SMTP, etc
Packaging SOAP, WS-Attachments, DIME

Interface WSDL
Implementation WSDL
Policy WS-Policy
Presentation WSIA
Orchestration BPEL4WS, WS-Choreography
Transaction WS-Transactions, WS-Coordination, WS-CAF

Discovery UDDI

Reliable Messaging WS-ReliableMessaging, WS-Reliability
Routing/Addressing WS-Addressing

Portal WSRP

Security Policy WS-SecurityPolicy
Secure Conversation WS-SecureConversation
Trusted Message WS-Trust
Federated Identity WS-Federation

Transport

Description

Discovery

Security

Management

Security WS-Security

Distributed Management WSDM, WS-Manageability

Publication UDDI
Inspection WSIL

Transport HTTP, TCP, SMTP, etc
Packaging SOAP, WS-Attachments, DIME

Interface WSDL
Implementation WSDL
Policy WS-Policy
Presentation WSIA
Orchestration BPEL4WS, WS-Choreography
Transaction WS-Transactions, WS-Coordination, WS-CAF

Discovery UDDI

Reliable Messaging WS-ReliableMessaging, WS-Reliability
Routing/Addressing WS-Addressing

Portal WSRP

Security Policy WS-SecurityPolicy
Secure Conversation WS-SecureConversation
Trusted Message WS-Trust
Federated Identity WS-Federation

© 2003 CBDI Forum Ltd 42

• Service and Business Level Agreements. These are identified by the W3C Web Service
Architecture working group as part of the description layer, but as yet no proposals have
been made in this area.

• WS-Security. The specifications for some elements of the WS-Security architecture have
yet to be published. These are WS-Authorization and WS-Privacy.

Alternative Proposals
The degree of industry consensus on Web Service protocols has been significant. Though
alternative proposals have been made in some areas, the formation of an appropriate working
group in either W3C or OASIS has usually seen the subsequent convergence of all interested
parties.
However, there are currently alternative proposals, namely in the areas of Reliable Messaging,
Orchestration, and most recently Coordination and Transactions. The alternatives reflect an
IBM/Microsoft led initiative on one side, and one led by Sun/Oracle on the other. W3C have
kicked off a WS-Choreography (orchestration) working group and OASIS a Reliable Messaging
TC without IBM or Microsoft’s participation. Subsequently, IBM, Microsoft and their partners
formed the Web Services Business Process Execution Language TC at OASIS to further their
BPEL4WS proposals as a direct alternative to W3C WS-Choreography. Recently, Sun, Oracle
and others have published the WS-Composite Application Framework as an alternative to the
WS-Coordination proposal from IBM, Microsoft, and BEA.
We judge the IBM/Microsoft proposals to be technically more advanced than the alternatives,
together with support from key industry leaders in each space, including a number of companies
such as SAP and Tibco who originally backed WS-Choreography but have now also joined WS-
BPEL. Given that, it is still early in the standardization process for protocols in these areas, and
we anticipate that ultimately there will be convergence and consensus as in the other areas.
There is also some overlap with the ebXML initiative. ebXML uses SOAP at the transport level,
but has its own registry and orchestration. Though ebXML is an approved, robust standard its
applicability is far narrower than Web Services. As an evolution of EDI, it primarily addresses B2B
only. As such we believe the Web Service protocols that are designed to address multiple
requirements will prove more valuable in time and that ebXML will probably evolve to adopt
additional Web Service protocols as they mature and are approved.
Standardization Process
Though the proposal of various Web Services protocols has been a fast moving area, their
transition into actual open standards is inevitably much slower. There are only a few protocols
that have, or a close to completing the standards process proper. Some key proposals have yet
to be submitted to any standards body. We advise continuous monitoring of what are currently
the two main standards groups involved in Web Services,

• World Wide Web Consortium (W3C)– www.w3c.org
• Organization for the Advancement of Structured Information Standards (OASIS) –

www.oasis-open.org
The CBDI Web service protocols summary table15 on the roadmap website indicates the current
status of the various protocols in the standards process
WS-Interoperability (WS-I)
WS-I is an open, industry group that was formed in 2002 to promote Web services interoperability
across platforms, operating systems, and programming languages. Though this would appear to
be the basic premise of Web Services and the role of standards bodies, WS-I still has a useful
role to play, for example,

• Standards specifications are always open to interpretation to some extent. WS-I will
provide guidelines and tools to help measure the conformance of various
implementations, and to enable their interoperability

• As standards evolve, there is a need to understand what different versions might
interoperate

© 2003 CBDI Forum Ltd 43

• Publishing interoperability profiles to reflect the above, one of the key deliverables of WS-
I.

Adoption
An assessment of the timescales for adoption of these protocols is provided in Figure 3. Given
the alternatives that have been proposed for some protocols, we judge the future of those not
currently backed by the groups containing IBM and Microsoft to be uncertain.

Figure 7 – Likely adoption rate of Web Service Protocols

• Specification – Exists only as draft specification. Any usage requires hand coding.
• Experimentation – early implementations provided by vendors permit experimentation,

but are not recommended for production use. (e.g. technologies available from IBM
Alphaworks do not support production use)

• Early adoption – More robust implementations available and protocol well into standards
process, encourages production usage by end user organizations

• Mainstream – standard ratified, or wide scale de facto adoption

Transport

Description

Discovery

Security

ManagementWSDM

SOAP

WS-Policy
WSIA

WS-BPEL

WS-ReliableMessaging
WS-Addressing

WSRP

2003

UDDI

WSDL

WSIL

WS-Security
WS-SecurityPolicy
WS-SecureConversation
WS-Trust

MainstreamSpecification Experimentation Early Adoption

WS-Reliability

Uncertain

WS-Choreography

Key

2004 2005

WS-Transactions, WS-Coordination

WS-Attachments, DIME

WS-Federation

WS-CAF

Transport

Description

Discovery

Security

ManagementWSDM

SOAP

WS-Policy
WSIA

WS-BPEL

WS-ReliableMessaging
WS-Addressing

WSRP

2003

UDDI

WSDL

WSIL

WS-Security
WS-SecurityPolicy
WS-SecureConversation
WS-Trust

MainstreamSpecification Experimentation Early Adoption

WS-Reliability

Uncertain

WS-Choreography

Key

2004 2005

WS-Transactions, WS-Coordination

WS-Attachments, DIME

WS-Federation

WS-CAF

© 2003 CBDI Forum Ltd 44

Roadmap Actions
Apart from infrastructure and tools vendors, and early experimentation, organizations should
avoid handcrafting the use of Web Service protocols wherever possible. It should not be
necessary for developers to learn the low-level XML syntax of Web Services, delegating the
generation of it instead to the infrastructure products and development tools.
Organizations should establish a policy for compliance with standards, paying particular attention
to evolving versions and using WS-I profiles wherever relevant.

Roadmap Actions

Monitor progress of protocols through key standards bodies

Establish policy on protocol usage

Adopt protocols as WS-Profiles become available to ensure standards based interoperability.
Create local profiles only where necessary, and plan to upgrade to WS-I as they are published

Coordinate use of protocols to ensure consistent implementation of versions and profiles.
Publish best practices

Plan for phased implementation of emerging protocols with local extensions where necessary

Wherever possible wait for implementation of protocols in products

© 2003 CBDI Forum Ltd 45

Assembling the Web Service Infrastructure
With each technology shift, organizations need to re-examine their infrastructure to
determine how it will support the new requirements. Web Services now raise the question
again and in this report we examine the issues facing organizations and some of the
options available, as well as exploring a phased approach to infrastructure upgrades.
Introduction
With each technology shift, organizations need to re-examine their infrastructure to determine
how it will support the new requirements. With regard to Web Services, organizations need to
consider such issues as,

• What elements of their existing infrastructure need upgrading to provide specific support
for Web Service protocols? Is XML capability enough? Or does it need specific support
for Web Service protocols?

• To what extent will their existing infrastructure built to support the Internet suffice?
• Are there new classes of tools required?
• Is the same infrastructure capable of supporting both internal and external Web

Services?
• How far into the infrastructure do Web Services need to penetrate? Will a new layer or

façade on the existing infrastructure suffice, or must the whole infrastructure be
upgraded?

There are several elements to the Web Services infrastructure, as listed in Table 9. The
requirements for this Infrastructure may be served by more than one type of software
component/product and organizations need to carefully examine how their full needs are going to
be addressed. For example, a web/application server may contain some measure of all these
requirements, but at the same time may not be as comprehensive as a dedicated product
(perhaps from an ISV rather than a platform vendor) in any one of these domains.
At one extreme, some organizations with a small number of straightforward Web Services may
feel their requirements are addressed by little more than a Web Service capable web server such
as Apache AXIS and a few well chosen scripts. Whereas larger organizations, delivering
numerous business critical Web Services with demanding SLAs, will see an overall benefit from
adopting several dedicated infrastructure components.
As with other technology shifts, many start ups or existing ISVs are delivering new products
dedicated to Web Services. At the same time, the major platform vendors are also delivering
useful Web Service capability as upgrades to their platform and middleware products. In Table 10
we examine the support for Web Service protocols in infrastructure products.

© 2003 CBDI Forum Ltd 46

Infrastructure
Requirement

Likely Source
Component

Comments

Deployment
Run time handling of Web
Service protocols

Web/Application Server Built into Servers such as Microsoft
.NET, J2EE1.4, Apache AXIS, BEA
WebLogic

Management
Run time management of
services, messages,
users, etc

Web/Application Server
Web Service
Management (WSM)
Systems Management

Elements of both passive and active
management will be contained in the
underlying platform and the
web/application server. However
dedicated WSM products allow you
to abstract and centralise
management away from the multiple
(heterogeneous) applications.

Security
Identification and
authentication of
participants, protection
against cyber attack

Web Services Firewall
Identification Services
Web Service
Management

Though elements of security will be
built into other components, there is
merit in addressing security via
separate, stand-alone components

Orchestration
Run time
workflow/process control

Workflow/Orchestration
engine

Look for products based on
emerging Web Service protocols
such as BPEL4WS, WS-
Choreography

Protocol Creation
Delivery and description of
Web Service in terms of
Web Service protocols

Web/Application Server
Development Tools

.NET and J2EE 1.4 will automatically
create the necessary protocols

Development
Build/assemble
implementation of above

Development Tools
Workflow/Orchestration
Tools

Development tools will become less
focused on the creation of Web
Service protocols, and more focused
on service design, and solution
assembly

Publication and Discovery UDDI Directory Public and Private directories can
support both external and internal
use respectively

Table 9 - Essential Infrastructure Components

© 2003 CBDI Forum Ltd 47

Table 10 - Infrastructure Support for Web Service Protocols

Web Service Infrastructure Architecture
There are a number of deployment options for Web Services Infrastructure.
As with other infrastructure deployment, for larger organizations we believe the ideal would be to
put a comprehensive Web Services infrastructure in place that can for example,

• Be reused by any application or service developers across the organizations, so they
don’t have to reinvent the wheel in each project

• Ensure consistency of approach, management, and security across the organization
• Where relevant operate at the business service level, abstracted away from the (multiple)

back end implementations

Existing
Infrastructure

WS Protocols
support in current
Infrastructure

Use of new WS
aware products

Outlook

Routers and
Firewalls

 Little or limited Supplement with
new XML and WS
Firewalls and
routers

Longer term expect WS support
embedded in hardware routers
and firmware
Implementation of WS-
Addressing for SOAP routing

Directory and
Security
Servers

 Little or limited Supplement with
private UDDI
directory

UDDI layered on LDAP

Application
and Web
Servers

 Already
upgraded

 Some WS infrastructure in other
categories will be increasingly
embedded in the Web/app
servers

OLTP, ORB,
and MOM

 Being upgraded Though SOAP aware, these
products will need some further
upgrading to support emerging
standards such as WS-
Transactions, etc

EAI Tools Being upgraded Could supplement
with broker
capabilities in
some WS
Management tools

WS will reduce need for EAI
adaptor capability.
EAI remains useful to wrap
existing systems as WS

Orchestration
Engines

 Only technology
previews currently

 Products based on emerging
BPEL and/or WS-Choreography
protocols

Systems
Management

 Little, or limited Supplement with
dedicated WS
Management

Traditional SM tools will add WS
capability
WSDM standards emerge in
2004

Development
Tools

 Already
upgraded

 Although upgraded to support
basic WS Protocols, few support
SOA principals

© 2003 CBDI Forum Ltd 48

Like the collaborative SOA approach that organizations are encouraged to implement in their
applications using Web Services, then the Web Service infrastructure itself will also follow suit.
This will remove some the need for a centralised implementation or to funnel Web Services
through specific infrastructure server as components of the infrastructure can themselves
collaborate via Web Service protocols.

Figure 8 - Web Services and Physical Pipeline

One key architectural question is how far should Web Services ‘penetrate’ into the typical
enterprise infrastructure. Now that vendors are Web Service enabling a diverse range of
products, as illustrated in Figure 8 a SOAP message might pass through, or be directed to,
several physical server types and across multiple networks within the enterprise before reaching
its final destination.
At a minimum, an organization could halt the SOAP message at the Web Server, and convert it to
existing infrastructure protocols to forward the message on to the appropriate internal system.
However, besides obvious benefits of platform independence and the ability for the SOAP
message to more easily navigate a heterogeneous environment there would be a number of other
benefits in using Web Service protocols across the wider infrastructure for end-to-end message
flow. These, together with some of the downsides of adopting this approach are considered in
Table 11.

?

Web/App
ServerSOAP

EAI
Server

Orchest
-ration
Server

App
Server

How ‘deep’ do SOAP messages penetrate?

? ? ? ? ?

?

Where do you place Web Service Management Pipeline components?

When is it secure to ‘open’ the message?

What infrastructure can handle Web Services?

DB
Server

?

Multiple messaging bus, ORBs, etc

SNMP

?
WSM
components

Router Firewall

?

Web/App
ServerSOAP

EAI
Server

Orchest
-ration
Server

App
Server

How ‘deep’ do SOAP messages penetrate?

? ? ? ? ?

?

Where do you place Web Service Management Pipeline components?

When is it secure to ‘open’ the message?

What infrastructure can handle Web Services?

DB
Server

?

Multiple messaging bus, ORBs, etc

SNMP

?
WSM
components

Router Firewall

© 2003 CBDI Forum Ltd 49

Pros Cons

Provides platform and transport independent
messaging infrastructure

Need to upgrade each of the infrastructure
elements listed in tables 1 and 2 with support
for Web Service protocols. And eventually
every instance.

Use WS-Security to maintain the integrity of
a message right until its ultimate destination,
keeping it secure inside the firewall, not just
outside.

Support for emerging (and more complex)
Web Service protocols will take longer to apply
to existing infrastructure elements than basic
SOAP/WSDL support. Some might not be
upgraded by vendors

Use WS-Addressing to route messages to
specific servers and applications.

Development and assembly of Internal
applications and components can benefit
from protocols such as WSDL, and
publication via a private UDDI registry

Fragmentation of development assets that
target each of the infrastructure elements.
Needs careful co-ordination

Remove need for overhead of transformation
to existing protocols – and potential errors

Performance of XML based infrastructure may
not be as optimised as existing protocols.

Table 11 - Pros and Cons of Deploying Web Services Infrastructure Enterprise-Wide

Web Service Management
One new category of infrastructure introduced is that of Web Services Management (WSM).
WSM complements existing systems management software by operating at the Service level.
This also raises an opportunity to monitor and manage at a level meaningful to the business
instead of the low level operations, providing Web Services are delivered at the appropriate level
of granularity and abstraction.
In the near and mid term organizations should consider adopting tools on offer from a number of
ISVs. Ultimately we expect existing systems management tools to provide WSM capabilities,
though this does not mean leading WSM vendors will not endure.
We will look at the roadmap for WSM in a further report. In the meantime, the capabilities that
organizations should be looking for in WSM tools are considered in our Business Services Server
report17

Stages of Web Service Infrastructure Deployment
Deployment of Web Service enabled infrastructure is likely to happen in 3 stages as illustrated in
Figure 9. In some cases, organizations may expose limited external Web Services as their first
use, though as explained elsewhere it is becoming more common for organizations to adopt
internal usage first. Actual infrastructure elements that need to be upgraded or added at each
stage will of course vary from organization, which is explored in Table 12.

17 Business Services Service, CBDI Report (FOC), http://www.cbdiforum.com/bus_services.php3

© 2003 CBDI Forum Ltd 50

Figure 9 - Web Service Infrastructure Deployment Stages

Upgrades Comment

Stage One – Internal usage – limited upgrade to key infrastructure where required

Web/App server Likely platform for new cross functional business systems
requiring WS

EAI server Front end current non-WS enabled systems. Some
orchestration.

Other App/DB servers Upgrade current or ‘legacy’ app, OLTP, DB servers where some
limited native WS now provided. Otherwise use EAI to access.

UDDI Registry Private UDDI registry for internal use

Web Service Management Basic monitoring of internal WS to provide performance and
usage statistics, and raise alerts to basic problems

Message Orient
Middleware
and/or ORB

Possibly upgrade existing MOM to provide reliable messaging.
Similar upgrade ORB to integrate existing object infrastructure

Stage Two – External usage – main impact security and additional WSM to manage SLA

Web Service Management Add modules for SLA Management, User Management, Access
control, and Message Management to support External usage

XML Firewall External usage requires XML/WS level firewall and security

Web/App
ServerSOAP

Orchestration Server

DB Server

Router Firewall

App Server

App Server

Web/App
ServerSOAP

Orchestration Server

DB Server

Router Firewall

App ServerEAI Server

App Server

EAI Server

Stage 1
Internal Use of Web Services

Web/App
Server Orchestration Server

DB Server

App Server

App Server

EAI Server

Stage 2
External Use of Web Services

Stage 3
Service Oriented Enterprise Infrastructure

WSM
components

WS enabled
components

Private UDDI

Private UDDI

Private UDDI

Web/App
ServerSOAP

Orchestration Server

DB Server

Router Firewall

App Server

App Server

Web/App
ServerSOAP

Orchestration Server

DB Server

Router Firewall

App ServerEAI Server

App Server

EAI Server

Stage 1
Internal Use of Web Services

Web/App
Server Orchestration Server

DB Server

App Server

App Server

EAI Server

Stage 2
External Use of Web Services

Stage 3
Service Oriented Enterprise Infrastructure

WSM
components

WS enabled
components

Private UDDI

Private UDDI

Private UDDI

© 2003 CBDI Forum Ltd 51

Stage Three – Enterprise Wide SOA infrastructure - underlying platforms/ transports
transparent. Enables shift to On Demand Operating Environment by “virtualizing” the
back end implementations.

Web Service Management WSM components deployed to individual servers. Eventually
compliant with emerging WSDM standards

XML Router Compatible with WS-Addressing

Orchestration Server BPEL4WS, and/or WS-Choreography compliant business
process orchestration

Web/App/DB Server Upgrade where full WS capability provided, including emerging
enterprise standards

Table 12 - Web Service Infrastructure Deployment Stages

Considerations and Inhibitors
Several considerations need to be made when upgrading the infrastructure for Web Services,
some of which will be potential inhibitors

• Project Culture
Working against the implementation of an enterprise-wide Web Services infrastructure is
the project-centric culture that predominates today. In our survey of organizations who
have implemented Web Services, 70% of the projects were funded at the divisional level.
As such many questions regarding the responsibility, funding or even the need for an
enterprise-wide approach remain cultural rather than technical.

• Interoperability
With Web Service protocols evolving rapidly their implementation across the diverse
infrastructure is likely to raise issues of interoperability due to different versions and
inconsistent implementations by vendors. Infrastructure elements will need to be
upgraded in parallel to avoid interoperability issues.

• Lowest common denominator functionality
Additionally, the diversity of infrastructure elements means that not all will deliver the
same Web Services capabilities. E.g. certain emerging protocols will only be supported
by some elements.

• Performance
Web Service infrastructure will at least in the near term often constitute an additional
layer of infrastructure, as opposed to replacement, impacting performance. However, this
should only affect the Web Services themselves, not other messages and transactions
passing through the same infrastructure element. Organizations can also consider
introducing parallel infrastructure elements dedicated to Web Services to ensure existing
operations are not affected.

• Service Level Agreements
Consider how Web Service infrastructure elements contribute to, or impact, the delivery
of SLAs. Consider what WSM capabilities might be needed to manage and monitor SLAs.
What SLA is offered by the operational Web Services environment to the
application/service developer?

Needs of the Large Enterprise
Large and global enterprises face a similar challenge of upgrading for Web Services as they do
with any other infrastructure decision. E.g. the project culture issues raised earlier. Web Services
are unlikely to change current practice without an associated change in culture. However, given
that Web Services are primarily being introduced at present in large enterprises to support EAI
needs, it once again raises the issue. We believe it is sensible for Central IT to deliver or at least
provide guidelines on the following,

© 2003 CBDI Forum Ltd 52

• Global Private UDDI Registry. There seems little point in allowing each division to
implement their own

• Protocol Usage and Interoperability Standards. Guidelines as to which Web Service
protocols can be used should be issued to enable enterprise wide interoperability and
integration, and the use of WS-I profiles

• Reference Platform. Issue guidelines for recommend platform(s) that support above.
• Messaging Infrastructure. Upgrades to network to transport Web Services messages.
• Security – The needs for a common security policy should be apparent.

Roadmap Actions

Plan & Manage Identify infrastructure upgrade required for new technical strategy, in
each stage
Assess Organization impacts. E.g. Project vs central responsibilities
Acquire funding for infrastructure upgrades
Set SLA policies
Establish WS security policy

Infrastructure Adopt phased approach to infrastructure upgrades. Upgrade
infrastructure in step with needs, and protocol evolution including:
- WS Developer environment
- Hosting environment for WS facades
- Hosting environment for WS applications
- On Demand Operating Environment
- Support for Consumer environment
- Developer tools
- Security infrastructure
- Monitoring and measurement
- Diagnostics and failure
etc

Architecture Plan WSM deployment architecture, e.g. extent of distributed elements
Establish SOA middleware layer

Process Publish interoperability strategy and guidelines

Projects Upgrades to centralised infrastructure
Assess WSM requirements
Private UDDI implementation

© 2003 CBDI Forum Ltd 53

Moving to SOA
Service Oriented Architecture or SOA is the subject of the moment. It's a great idea, to
publish a portfolio of services from the existing application base that can be easily reused
by existing and new applications without invasive activity in the source application. But
many enterprises are finding it's not as straightforward as slapping loose coupled
interfaces onto existing applications and legacy code. Genuinely adaptable architectures
need a little more thought. In this report we examine the issues in moving to SOA.

Introduction
First it is useful to differentiate between Service Oriented Architecture (SOA) and Web Services.
SOA is the broad set of concepts that enable units of functionality to be provided and consumed
as Services. This essentially simple concept can and should be used, not just for Web Services,
but also at each tier of the architecture, in order to compartmentalize and provide flexibility.
What some enlightened organizations have been doing over the past year or so is restructuring
their application base to expose core services so that they can be reused in a loose coupled
manner. By loose coupled we are not necessarily referring to specific protocols or behaviors, but
the reduction of dependency and increased separation that allows the core service to be more
easily used. And more easily means lower resource, lower cost and faster change.
Whilst WSXX based protocols will naturally be used for publishing Services, various technologies
will be utilized in creating the Service Oriented architecture. The really far sighted organizations
will be implementing WSDL and a UDDI compliant registry throughout their architecture in order
to formalize the publication of Service meta data, and to make reuse easier.
For more on SOA see related CBDI reports18.

18 Services Oriented Architecture - A Series of CBDI Reports by Oliver Sims
This series is about the effective specification, design, and delivery of service-oriented applications and
business processes in the enterprise environment. It assumes that applications must integrate not only with
legacy, but also with each other, in order to avoid creating tomorrow's stovepipe legacy. In particular, we
address the major “choke points” from end-to-end of the development lifecycle, and end-to-end from front
to back of the distributed enterprise system.

Part 1 -The Foundation - http://www.cbdiforum.com/secure/interact/2003-03/foundation.php3
Part 2 - The Bridge - http://www.cbdiforum.com/secure/interact/2003-04/bridge.php3
Part 3 - Federation - http://www.cbdiforum.com/secure/interact/2003-05/federation.php3
Part 4 - The Platform - http://www.cbdiforum.com/secure/interact/2003-06/federation.php3
Part 5 - The Service Based Business - http://www.cbdiforum.com/secure/interact/2003-
07/services_oriented_arch.php3

“To the extent that the components of business are off-the-shelf services, then the business
attention switches to the configuration of the business process. If we are going to talk about

components, whatever they are, we've also got to talk about the relationships and interactions
and collaborations and connections between components, the "glue" or "wiring". In plugging

together a component based business, we need to pay attention to the interfaces between the
business components - in other words the business relationships.”

Richard Veryard, The Component Based Business

© 2003 CBDI Forum Ltd 54

SOA Attribute Description

Business Level Services Services are published at a level of abstraction that corresponds
to real world activity and recognizable business function. The
really compelling aspect of this is the opportunity to implement
comprehensive alignment and integration of the service life cycle
with the business product and/or process life cycle.

Service Based
Collaboration

Although Services are being widely used internally and for
integration purposes this technical orientation will change soon
enough. Services will increasingly mirror real world business
activity, such that data is obtained from the real source in real
time, that combinations of Services from collaborating
organizations cooperate to provide value added Services. Whilst
there will be infrastructural differences covering matters such as
security between internal and externally supplied Services,
increasingly there will be a common Service model that allows
seamless operation of business processes internal and external
to the enterprise. Although Services may be simple, they may
also be aggregated from different sources, again reflecting real
world business activities. There is clearly a real requirement for
Service interaction and dependency modeling.

Separation of Interface
from Implementation

A core tenet of SOA is that it's the interface (as opposed to the
application) that is integrated, in a manner that the consumer has
no visibility of the implementation. Some call this "Interface Based
Design", a well understood technique from Component Based
Development. However this is a rather technical perspective.
Services are offered at a business level of abstraction, which
renders the interface a business interface, and this generally
means a contract, which is expressed in XML.

Contract based integration The importance of the contract in SOA cannot be overestimated.
The formal contract is the device that allows us to create virtual
businesses, formalize system and scope boundaries, minimize
dependencies and maximize adaptability, use black box testing
and have a choice of Services and more easily change supplier.
Although there is some work in progress to bring Design by
Contract into UML, and a vague intent to formalize contract
elements in BPEL, this looks like an area with a lot of outstanding
issues.

Separation between
Provider and Consumer

Among other things, Service Oriented Architectures must be
designed with a view to the ease of management - including
supply risk management. If the enterprise is dependent upon a
few key service providers, this represents a potential risk to the
enterprise. This leads to a design goal of making service
specifications as general as possible, which of course brings us
directly into conflict with performance objectives.

Table 13 - SOA Attributes

It's About Better Integration
Although Web Services have stolen the limelight, what's actually happening in private, in
enlightened companies, behind their enterprise firewalls, is restructuring. Because the business
case for restructuring on service lines is obvious - it avoids application rebuild, it reuses what

© 2003 CBDI Forum Ltd 55

already exists and allows IT organizations to respond much more rapidly to new and changing
requirements. That's going to reduce costs.
Many organizations tried to reuse (extend the life of, implement best of breed components) their
existing applications by using Enterprise Application Integration (EAI). However most EAI efforts
failed to cut it because, the most widely adopted approach was to tightly couple the
implementations. For example projects were focused typically focused on application specific
objectives such as interfacing Oracle with Seibel, rather than the logical level of creating single
instances of collaborating business services. In contrast the Service based architecture
establishes a more durable Services layer, where the integration point is the Service specification
or the interface, not the implementation. This provides implementation transparency, where
multiple implementations may be rationalized, or an older implementation upgraded, with minimal
impact on the consumer of the Service. This establishes a loosely coupled architecture of
services that have minimum dependencies and maximum platform independence that can be
reused with minimum cost overhead.

Creating the Foundation
In the first part of our report series on SOA (reference above) we advise on the importance of
using service thinking inside the enterprise.
There is no reason why these should not apply inside enterprise IT as well as outside. The result
would be a single kind of interface, using the same technology, for all internal systems that
provide a service. Many existing systems would need to be wrapped of course. And performance
would have to be considered. However, the potential advantage of a single interface type, that
maps to many programming languages, is a huge simplifier for enterprise systems. It’s like a
common hub—indeed, considering a number of other technologies that go with web services—
such as message queuing, it’s almost a must—a highly compelling simplifier. And simplification
means effort reduction which means cost reduction and/or faster response to business needs.
Note that this also reduces the variety of invocation mechanisms. Each of these has its own
programming model, and this is often visible in the applications making the requests. Wrapping all
of these mechanisms with web services not only provides simplicity for the application
developers, it also separates the communications and messaging infrastructures from
applications. This means they can be evolved without impact on applications.
In the report we then discuss the limitations of wrapping. Sometimes it's the only possible way
forward, as with the Chernobyl strategy discussed in above. But as with physical buildings, the
strongest foundations will be established by a good underlying architecture. And this will be
component based.
Best practice OO design suggests that objects should provide a defined service. It’s the same
with components. We identify two kinds of component - process components, which make use of
the services of entity components. These will ideally be arranged according to the mediator

CASE STUDY - THE CHERNOBYL STRATEGY
In one situation we are familiar with, the application platform tool combination had just been
announced as obsolete. Basic support will be continued but no further upgrade in function.
You know how it works - the original tool vendor fell on hard times and was bought out by a
specialist in legacy product management. In this case the applications were about ten years
old, and as we all know, that's relatively young for an enterprise system. So what to do?
There's almost never a case for rewriting the applications in some modern language. If the
core transactions fit the business need, and the platform tool combination is adequate for
basic server side transactions, and it usually is, then you may be able to use our Chernobyl
strategy. In this situation you encase core transactions and possibly data in thick (logical)
concrete, and expose core business transactions and data that can be aggregated, new rules
applied, and potentially extended on a middle tier, before exposing them as business level
services. Many organizations have followed something similar to this approach with their
mainframe applications, although in practice the sharp focus on exposing Business Services
hasn't always been present.

© 2003 CBDI Forum Ltd 56

pattern, which reduces dependencies. This makes the mediated components more re-usable by
other process components. The component assembly is therefore complete in itself, and needs
no code to glue the components together - the component middleware effectively does that
dynamically at run-time. This is where the Generic Component Realization comes in. A Generic
Component Realization is one where the component consists of a declarative specification or
script, which is interpreted at run-time by some middleware engine - for example, a workflow
engine. Such an engine can be thought of as a generic implementation, modified by the script, for
all components that make use of that particular engine. This means that a workflow or B2B
collaboration can be developed using many of the same concepts as components destined to be
implemented on a J2EE or .NET environment.
In summary, the component concept can be applied to a wide variety of modules, whether built
with compiled code, or declaratively scripted. Further, the autonomy characteristic of all
components, from design through build into the run-time, means that its internals are opaque to
all but the builder. The service oriented architecture is a classic component based architecture,
but complemented with many different types of implementation and a service invocation layer.

The Business Service Bus
In the days when middleware was top of the technical architect's toy box, the notion of the
transaction bus was very popular. But whilst this is a necessary layer, it's equally if not more
important to develop the concept of the Business Service Bus. We first introduced this notion over
two years ago, and since then it seems to have gained widespread acceptance because it is
inherently simple.
The Business Service Bus is the set of business services for a specific domain that are available
for widespread use across an enterprise. The services are published in a UDDI compliant registry
which allows them to be reused without manual intervention by the provider. Usage policies are
implemented as part of an authentication and approval system, which differs from external
services only in relation to being inside the firewall. The services have been implemented using a
standardized semantic set that normalizes local application semantics and rules.
One of the reasons for using the Business Service Bus is so that common specifications, policies,
etc can be made at the bus level, rather than for each individual service. For example, services
on a bus should all follow the same semantic standards, adhere to the same security policy, all
point to the same global model of the domain. It also facilitates the implementation of a number of
common, lower-level business infrastructure services that can be aggregated into other higher
level business services on the same bus (e.g. they all use the same product code validation
service).
Many organizations have attempted with mixed success to implement common components by
rationalizing their installed application base. In contrast the Business Service Bus is based on the
premise that there will be multiple implementations of the same business object, either now or in
the future, and the purpose of the bus is to make those implementations transparent from service
usage.

• Provides, through use of web services interfaces, a single interface and
service access design, which is independent of the underlying platforms

• Provides a single type system for interactions across and outside the
enterprise

• Provides a clear architecture for the internal implementation of services
• Separates much more clearly the business logic in code, workflow, or B2B

collaboration specifications from the underlying middleware, including
integration subsystems, communication subsystems, and component
containers

• Simplifies the whole enterprise development environment
Foundation Characteristics

© 2003 CBDI Forum Ltd 57

The overall objective is by definition, to establish a single logical bus structure. Whilst it might be
natural (and politically easier) to implement bus structures that mirror organizational boundaries,
the successful organization will see the real value in creating cross organizational services that
allow the organization to evolve independently of the information services.

A Framework for SOA

A service oriented architecture is one view or perspective of the overall architecture. It's a
mechanism for ensuring the application and infrastructure is and remains loosely coupled. Of
course the SOA is implemented as a series of alterations or delta to conventional practice, and
we need to determine for any particular enterprise what that delta is.
In Table 14 we provide a framework, as a useful way to document this, and both ensure some
consistency and completeness of the list. We have commenced with something like a Zachman
framework, which is widely used by enterprise architects, and then developed a fairly arbitrary set
of domains, against which we can record SOA decisions and or deliverables. The Zachman
framework analyses architectural elements across conceptual, logical and physical layers, but we
have found it more useful to think about requirements, specifications and implementations.
However we do stress this is a framework in the best meaning of the term, and encourage
organizations to use this as a starting point, and to develop and customize as appropriate. The
advantage of this framework level of abstraction is that it moves just a little beyond vague, and ill
understood terms like "architecture", while retaining the ability to have an overall perspective. A
framework of this nature would also form a good communication vehicle between the
(architecture) provider and consumer. It also has the advantage of allowing specialist architects to
develop customized views that can easily be mapped to other views.
Another important aspect of SOA is the question of how to ensure architectural decisions get
implemented - otherwise known as the governance issue. Each deliverable can be attributed with
governance roles, including standards or guidelines, mandatory or optional, which themselves
have applicability to specific domains which might include platform, product, layer, application,
relationship etc. We provide some examples of governance deliverables in Table 15

• Provides business level visibility of available and planned services
• In an organizational independent manner
• Provides a clustering mechanism for managing service attributes including

semantics, taxonomies, usage, security policies, SLAs, funding and charging
models, etc

• Bridges business and IT perspectives in a precise and meaningful manner
Business Service Bus

© 2003 CBDI Forum Ltd 58

Domain /
View

Requirements
(Conceptual)

Specifications
(Logical)

Implementations
(Physical)

Business Standardized business
services

Business Service Bus WSDL specifications

 Business virtualization BPO Service
architecture

UDDI based service
registry

 Purely information based
products

Information service
specifications

WSDL specifications

 Service based product
components providing
value add to physical
products

Service product
specifications

WSDL specifications

Information Definition of the real
information owner,
internal and external to
the business and strategy
for managing that class of
information

Information currency
and ownership
distribution analysis

Information access
services

 Common semantics and
domain applicability
(business unit, enterprise,
ecosystem, sector etc)

Semantic standards XML documents and
mapping and
transformation rules

Application Applications redefined
as sets of business
objects and related
services

Applications acquired
as (hosted) services

Service Service is first order
construct in business
process

Service as unit of
provision and
consumption

Delivered service

 Standard/common
business services

Standard/common
business services

Standard/common
business services

 Standard/common
infrastructural services

Standard/common
infrastructural services

 Business service patterns Domain business
service patterns

 Business service contract
templates

Service specification
contract templates and
reusable components

BPEL4WS or ebXML
template specifications

Component Business domains mirror
business requirements for
articulation

Business components
encapsulate a single
business concept (entity
or process)

Offers well defined
network interfaces that
offer services

Middleware Business Service Bus Wire protocol standards XML Messages

 Message security
services

Message security
services

© 2003 CBDI Forum Ltd 59

Domain /
View

Requirements
(Conceptual)

Specifications
(Logical)

Implementations
(Physical)

 Component and
Service container

Service
Management

Business rules Rule specifications XSLT or similar

 Business policies Policy specifications XSLT or similar

 Business service
requirements

Service Level
Agreements

Dependency
specifications,
thresholds,
contingency plans

 Business trust
requirement

Trust specification Monitoring policies and
rules, breakpoints and
escalation
specifications

 Management services
pipeline

Management services
pipeline

Platform Grid based services
virtualize physical
platform resource

Platform functionality
delivered as services

 Integrity Units define
domains for trust,
resource management,
technical upgrade

Virtual physical
resources

Device Device independent UI Service interface
specification NOT the
User Interface

Service interface
specification NOT the
User Interface

User Roles User profiles Directory Server

Table 14 - Service Oriented Architecture Framework

Governance Role Architecture
Deliverable Type Standard or

guideline
Mandatory or

optional

Domain applicability

Patterns
Templates
Common
components

Common services
Protocols
Semantics
Products
Practices

Table 15 - Architectural Governance

© 2003 CBDI Forum Ltd 60

Summary
Most organizations should now be planning and executing on some level of SOA based
environment. For some the change will happen by default as they implement new versions of
packages such as SAP that have embraced the concepts. But most organizations have a
heterogeneous environment and need to manage the transition to ensure they achieve a high
level of componentization and separation, that will flow through into improved economics and
response time to change.
The archetypal enterprise organization is highly distributed, but in a service context it is very
important that there is coordination of service creation and reuse, to ensure the common usage
where necessary. Governance policies are an essential pre-requisite to make this happen. It
won't happen without serious cross organizational effort.

Roadmap Actions

Define a Business Service Bus
Establish a vehicle that enables policy development and communications at the service level
between IT and business communities.

Develop a component based architecture to support the Business Service Bus
Make plans on how clear separation will be established at the (application) implementation
level. Build into all project and acquisition plans. Ensure that acquisitions confirm to separation
policies

Implement a Service Based Scoping Policy for Projects
Ensure that all projects are required to scope and justify their activity on the basis of services
used and implemented.

Implement Relevant Governance Mechanisms
Implement appropriate practices to ensure that corporate SOA strategy gets implemented in
delivered and acquired applications.

© 2003 CBDI Forum Ltd 61

ISVs and Packaged Application Vendors Start Here
This section considers how Web Services will impact ISVs and how they must adapt their
software packages to support both the provision and consumption of Web Services.
Introduction
Independent Software Vendors (ISV) must also
make the transition to Web Services. As with any
major change, Web Services presents the ISVs
both with opportunities for new business, and
challenges in making the transition. Some
considerations ISVs should make include
• Near term, customers will expect to use their

existing packaged applications in Web
Service Scenarios and ISVs will need to
consider to what extent they need to expose
Web Services directly from their application to
enable this.

• Longer term, ISV's must look to see how their
products can add real value and deliver ROI
to their customers by being WS enabled.
Customers can be expected to consider new
packaged applications that exploit Web
Services, and ISVs should evaluate the
opportunities this presents them.

• ISVs need to consider how their products are
going to participate in more dynamic,
collaborative business processes that will be
supported by emerging Web Service
protocols.

• The impact on the ISV’s business model. E.g.
changing from software to service provider.
And whether Web Services introduce new
competitive threats from new forms of
competitors

• What infrastructure ISVs should use to deliver
their Web Services

Many package vendors for example are converting interfaces and technologies initially developed
to address Enteprise Application Integration (EAI) requirements, to support Web Service
Protocols. Adapting an existing interface to support basic Web Service protocols such as SOAP
and WSDL should not be too difficult. In many cases this might be achieved through a simple
‘wrapper’ that requires little modification of the base software. Elements of WS-Security can
probably be addressed in this manner too.
However, the more complex protocols that are emerging to support dynamic, collaborative
business processes, or that might be considered pre-requisites to ‘enterprise level’ Web Services,
such as transactions, and business process orchestration, will likely require some level of re-
engineering of the software.
Additionally, ISVs must recognise that not only must their software expose Web Services, but will
often need to be re-engineered to consume them too.

ISV Deltas
In several respects, Web Services will have similar impacts on the ISV as they do end-user
organizations. Activities such as moving to SOA, considering how to best transition their

How Web Services Will Impact the ISV

Opportunities and Benefits

Will ease customer’s integration
requirements

Providing SOAP/WSDL interfaces may be
straightforward

Introduce new opportunities for
collaborative applications

Change deployment options. E.g. Bring
new ‘service hosting’ opportunities

Re-engineering Challenges

Highlight weaknesses in, or unsuitability of,
current interfaces

Demand for more real-time behaviour in
their apps

Need for apps to consume Web Services,
not just provide them

Converting apps to support emerging
enterprise-level Web Service standards for
transactions and process orchestration

Remove internal dependencies so that
customers can use services at a more
granular level than the whole application

© 2003 CBDI Forum Ltd 62

applications to Web Services, and effecting that change, will contain many of the same actions for
both ISV and end-user alike. However, the nature of ISV applications is such that there will be
deltas in comparison to end-user adoption of Web Services. The prime difference of course is
that Web Services may have not just an architectural impact on the ISVs applications, but also a
commercial impact on their business model, on the way in which they deploy software to their
customers, and how they charge for it.

Area Roadmap Consideration

Business Integration
Today, incompatibilities are resolved by EAI
tools. Web Services will remove the need for
protocol conversion, but not fully resolve
semantic differences.
ISVs can reduce their dependence on EAI-like
solutions by conforming to standardised
business semantics

Consider participation in industry-body activity
setting Web Service standards for your
domain
Work with obvious ISV partners in eco-system
to develop common business semantics

Collaborative Solutions
Increased demand from customers to build
collaborative solutions will mean few ISV
applications can ‘stand alone’. Applications
must not just be able to share information via
Web Services, but collaborate in common
business processes

Move to SOA
Ensure proper separation of concerns, so that
business process is properly isolated
Prepare for shift to standardised workflow and
BPO – e.g. BPEL4WS, WS-Choreography

Horizontal Applications
Applications not specific to a vertical domain
will find themselves the most obvious
candidates for deployment as hosted
services, and affected by shifts to On-Demand
and Grid based approaches

Ensure applications are ‘location’ independent
Applications need to be properly
componentised to exploit rapid, on -demand
deployment
Internal dependencies need to use Web
Services to facilitate distributed deployment

Platform Independent Solutions
ISVs often base their applications on a
platform independent infrastructure they have
built or acquired to enable portability. How will
this transition to Web Services?

ISVs need to careful evaluate the use of
platform specific Web Services infrastructure
with regard to delivering portable solutions
Implementation of SOA principals, a proper
service architecture, use of the service bus,
and a separated services layer will improve
the ability to deliver platform independent
solutions, whilst at the same time exploiting
platform specific features

Configuration and Deployment
Web Services enable widely distributed
applications to be more easily integrated via
services. Externally hosted applications can
be integrated to the same level as internal
ones

ISVs need to whether they can take
advantage of alternative deployment patterns
such as providing hosted services.

Table 16 - ISV Considerations

© 2003 CBDI Forum Ltd 63

ISV Deployment Patterns
We see the following three basic patterns to the application of Web Services by ISVs
1. Traditional Deployment plus Web Services
The ISV delivers the software to the customer who hosts the application in-house.
Web Services are added to the application by the ISV for two reasons

• Internal Services. So that the customer can integrate the application more easily with
other internal applications

• External Services. So that the customer can expose the services to their own external
customers and business partners

2. ASP with Web Services - Hosted Service Provider
The ISV hosts the software themselves, or uses a 3rd party host. The customer then uses the
application via its external Web Services.
Most ISVs do not traditionally host their own applications preferring instead (or more commonly
the customer preferring) to use ASPs if the customer does not want to deploy the application in-
house, and there is little reason to believe this would change.
Whereas traditional ASP was primarily a ‘self service’ approach with the application being
accessed by employees via a browser interface, the use of Web Services enables the customer
to integrate the hosted application into their business processes as if it was deployed in-house.
3. Distributed
A hybrid approach is a distributed pattern in which the customer still deploys part of the
application in-house, whilst the ISV (or their ASP) delivers the remainder as a hosted service.
Web Services could be leveraged to simplify the deployment and configuration requirement in
situations where the ISV is responsible for ‘feeding’ information or rules that must be maintained
on a regular basis.

Figure 10 - ISV Web Service Patterns

Customer ISV (or ASP)

ISV
Application

Web
Services

Customer’s
Applications

Customer’s
Customers

ISV
Application

ISV
Application

ISV
Application

Customer’s
Applications

Customer’s
Customers

Customer’s
Applications

Customer’s
Customers

1. Traditional
Deployment, plus

Web Services

2. Hosted Service
Provider

3. Distributed

Customer ISV (or ASP)

ISV
Application

ISV
Application

Web
Services

Customer’s
Applications

Customer’s
Customers

ISV
Application

ISV
Application

ISV
Application

ISV
Application

ISV
Application

ISV
Application

Customer’s
Applications

Customer’s
Customers

Customer’s
Applications

Customer’s
Customers

1. Traditional
Deployment, plus

Web Services

2. Hosted Service
Provider

3. Distributed

© 2003 CBDI Forum Ltd 64

Web Service Strategies of Some
Leading Package Vendors

SAP – SAP Exchange Infrastructure
http://www.sap.com/solutions/netweaver/keycapabi
lities/xi.asp

Peoplesoft –Pure Internet Architecture
http://www.peoplesoft.com/corp/en/products/techno
logy/index.asp

IFS - Web Services and Integration
http://www.ifsworld.com/ifs_applications/technology
/web_services_integration.asp#1

Consuming Web Services
Regardless of the deployment pattern, ISVs will also need to adapt their applications to consume
services, not just provide them. This could be for either

• Business Services – the application will need to consume Web Services provided by the
customer’s business partners and their own applications.

• Infrastructure Services – the ISV can leverage infrastructure services rather than having
to implement certain capabilities within their software. Similarly, their customer will want
integrate the software with a variety of infrastructure services provided for example by the
underlying platform, Web Service Management products, and external hosted services.

Consuming Web Services will be the more challenging for ISVs. Though they may not be the
ideal services, existing interfaces already exposed by their product can be quickly converted to
use Web Service protocols. This may even be provided by a wrapper layer that removes the need
to change the existing software. However, if existing ISV software is to consume external Web
Services it will likely require some re-engineering, which may be significant.

Competitive Threats
Many ISVs will find themselves driven to
Web Services as a competitive response.
Agile ISVs looking for competitive
advantage will use Web Services sooner
rather than later. Though initial usage
may well be only skin deep, it will quickly
become a hygiene factor that ISVs must
adopt to keep up. Long term, ISVs will
need to re-engineer their applications to
exploit Web Services. Thought this will be
more expensive and difficult, ISVs who
move fully to SOA to support this will
undoubtedly gain long term competitive
advantage in terms of agility and flexibility
over those that simply try to dress up their
existing interfaces with new protocols.
The business models of some ISVs will be threatened by increased use of Hosted Services that
will introduce new types of competitors. ISVs have for some time been able to adopt the ASP
approach. Web Services improves the integration and granularity of the hosted solution.
However, it also introduces the possibility that end-user organizations could open up their own
applications and provided them as hosted services in certain situations. Perhaps the best
example today is Amazon19 who enable other retailers to use Amazon’s systems as a basis for
their own e-commerce operation, which can now be better integrated with the retailers systems
through the use of Web Services. This effectively places Amazon in competition with ISVs selling
e-commerce solutions.

Web Services Adoption Steps
ISVs can consider the following outline steps towards adopting Web Services in their products
1. Wrap existing interfaces with SOAP and WSDL to provide basic Web Services support. Some

of this ability will come courtesy of the application container the software runs in (such as
J2EE, .NET, etc), and require minimal effort.

2. Building a more comprehensive Web Services Façade can be useful to deliver more
meaningful aggregate business services, rather than simply exposing the existing APIs, and
can be used to provide support for emerging enterprise level Web Service protocols that may
require some application specific behaviour.

19 www.amazon.com/webservices

© 2003 CBDI Forum Ltd 65

3. Perform invasive surgery on the application to enable it to consume relevant Web Services
rather than simply provide them. This probably requires the use of a “plug point” approach as
the specific Web Services may be unknown in advance.

4. Start to use the Web Services you provide for end customers to integrate your own software
components (eat your own dog food). This will prepare for more radical re-engineering in
future – such as the move to an on demand operating environment

5. Consider what Web Service infrastructure elements you might acquire, licence or partner with
vendors to provide, that would benefit customers in deploying or accessing your applications
as Web Services. For example including components of Web Service Management.

6. Consider how a hosted version of the software would be deployed, what Services would be
exposed, and what infrastructure would be necessary to manage users, usage, and SLA.

7. Re-architect where relevant to support a truly distributed implementation where individual
components could be redeployed on demand

Roadmap Actions

 Near Term Mid Term

Plan &
Manage

Agree roadmap - overall plan for
transitioning
Identify business
opportunity/competitive threats

Consider new competitive threats
introduced by hosted services, and
non-traditional vendors (e.g.
Amazon)
Revised pricing strategy

Infrastructure Deployment to Web Service enabled
platforms
Implement WS based security and
trust

Consider build vs buy vs service
usage equation for some
infrastructure elements
Incorporate hosting requirements

Architecture Define route to SOA and release plans
Publish new technical directions and
architecture
Wrap existing interfaces with base
Web Service protocols, publish WS
based API structure.
Built a Web Service Façade
Collaborate on WS based semantics
within customer, industry or
ecosystem groupings

Re-engineer to exploit “Enterprise”
Web Service protocols, and on
demand operating environments.

Process Provide customers with upgrade path

Identify opportunities to collaborate
with other ISV products
real time access to information
- real time access to new
complementary functionality

Projects Determine release contents and road
to SOA

Redefine product(s) as sets of
services
Potential for hosted services

© 2003 CBDI Forum Ltd 66

Applying Web Services
In this section we provide an analysis of the types of Web Service application, with a
framework for planning when, where and why they may be applied.
Introduction
Eventually most software functionality will be published and consumed as Web Services. Three
years ago this statement would have met with considerable scepticism, today many will agree.
The entire industry is focused on this direction and, whilst there will be continuous evolution and
morphing of the concepts, the momentum is now unstoppable.
However it will take some considerable time before this happens. First the standards, practices,
tools and platform infrastructure are immature, second enterprise and ISV organizations have a
both a huge portfolio of existing applications which need to be upgraded and a significant
infrastructure and skills and practice development task. So meantime organizations need to a
direct their energies in a manner that a) minimizes risk, b) enables learning in a controlled
manner and c) maximizes the business impact of their early learning activity. In this report we
provide a framework to assist organizations in making these critical decisions.

Conversion Scenarios – The First Steps towards Web Services
Existing Scenario Conversion Scenarios Drivers

Distributed Computing
with Web Services

Integrating Components of
disparate technologies such as
.NET and J2EE. using Internet
protocols

Platform independence
Enable Wide Area Web-based
distributed computing
Technical simplicity

Web Site to Web
Service

Converting functionality exposed
through existing web site

Enable automation rather than
self-service through browser
Extend reach by enabling
embedding in 3rd party sites

Portal Using Web Services to integrate
back end systems into portal
Delivering functionality that was
encapsulated in portlet as a Web
Service to enable integration

Automation rather than self
service
Greater flexibility in portal
publishing and integration
Expose functionality to external
portals

EAI with Web
Services

Standards-based Web Service
wrappers to replace adaptors
Using EAI to wrap existing
systems to expose Web Services

Reduce dependence on
proprietary EAI adaptors
(standards based integration)
Leverage existing systems
Faster, cheaper integration

EDI/B2B Offering External Web Services
across supply chain

Reduce dependence on
proprietary EDI/B2B software
Enable small partners to
participate without expensive
EDI software

Table 17 - Web Service "Conversion" Scenarios

Originally, Web Services were primarily presented as a way to expose object/component
interfaces in such a way that they could be accessed across the Internet and outside the firewall
– hence “Object Access” in SOAP. However, as SOAP went through the standards process the
Web Service concept morphed into something more broadly applicable. Particularly important is

© 2003 CBDI Forum Ltd 67

the realization that the implementation behind a Web Service need not necessarily be
object/component based and that it is equally valid for a Web Service to simply exchange
documents as well as call methods.
Table 17 illustrates the wide variation of scenarios and styles that Web Services will be used in,
all using the same protocols. Looking at many of the applications of Web Services so far it is clear
their usage has been in what we term “Conversion Scenarios”, as listed in Table 17.
Organizations are typically converting or extending some existing business process and
technology scenario to use Web Services, and whilst this has brought many benefits they have
not yet exploited the new capabilities offered by Web Services to re-engineer their processes. For
example there is little use so far of the more dynamic capabilities enabled by Web Services such
as publishing, locating and consuming services at run-time.
It's not unusual that new technologies are initially deployed as an incremental or alternative
function. No surprise therefore that Web Services often used in parallel to the existing business
process and technology to provide an alternative access to information.
The challenge for organizations today is that each of these existing scenarios is normally
associated with its own set of proprietary technologies. That is, the technology used for EDI is not
suitable for distributed computing, which in turn not suitable for EAI, etc. As a consequence we
have 5 times the products, 5 times the cost, training and skills etc
This can becomes a problem as organizations extend integration with new business processes
that span not only their own organization, but also their partners and customers, then none of
these existing solutions is really adequate. When customers, partners and internal systems are all
involved in the same end-to-end process then organizations need to question the following

• Where for example, does EAI end and B2B Start?
• Is there a break in the process between them? Is the end-to-end process broken by

manual steps, or batch transfers that introduce delays and errors?
• Does the need for the Real Time Enterprise or Straight Through Processing stop at your

organizational boundary?
• How is the accuracy and visibility of information improved if the real source is external? Is

the information you supply your customers and partners accurate and visible in real time?
• How does your partner provide information to your customer? Directly or via you?

As the scope of integration grows organizations need to use aspects of each of the existing
scenario for the complete solution. But today because of their proprietary nature is can be very
complex to string them all together. A key advantage that Web Services brings is that you can
start to adopt a single standard framework that can be applied to all of these existing scenarios
rather than continuing to use point solutions.
Ultimately, the use of Web Services blurs the distinction between the existing scenarios but as
they are often the starting point for Web Service projects the following section examines in more
detail some of the reasons for using Web Services in them.
Distributed Computing with Web Services
Web Services are simply a vastly improved form of distributed computing. Whilst some
organizations have been successful with distributed computing deployments, the limitations are
obvious.
Exposing existing or new component interfaces as SOAP has been made very easy by the
various platform vendors, and is the most common application of Web Services to date. Web
Services protocols are now effectively embedded within the platform making their usage
transparent to the developer.
Advantages

• Technology independent
• Protocol Based
• Open Standards

© 2003 CBDI Forum Ltd 68

• Loosely coupled
• Works inside and outside across the firewall
• Richer Specification

Suitability
• Exposing business algorithms, not just exposing information
• Component/object based systems
• Potentially complex transactions with emerging Web Service protocols
• Remote Procedure Call behavior. Though current best practice is now moving towards

recommending the asynchronous document exchange style of Web Service for many
implementations.

Web Site to Web Service
Converting existing website functionality to enable application to application connectivity through
Web Services is one of the easiest of conversions to perform. There is no reason why existing e-
commerce applications cannot be converted to Web Services either.
Advantages

• Leverage investments already made in web enabling existing systems
• Convert the existing information, forms etc., presented through web browser for

customer, employee and partner self-service
• Use existing technology infrastructure, with minimal amount of effort required to upgrade

to support Web Services
• Web Services directly supported, and relatively easy to implement in current Web

Servers such as Apache, WebSphere, Windows Server, Weblogic, etc
• Technology used to provide secure external Web Sites can be used to used to provide

external, secure Web Services
Suitability

• Information provision and Simple transactions. Even with emerging standards it is
probably that existing form based website functionality has been designed in a way to
support more complex transaction scenarios.

• Simple e-commerce transactions. For example providing Web Services to enable
business partner to embed them in their own portal and resell products, but have the
transaction made directly with the provider

• You don’t expect communications to be any more reliable or robust than to your current
web site

Portal with Web Services
The use of Web Services to extend portal usage is equally useful to the service consumer and
provider, who

• Consume Web Services to build the portal. This doesn’t really differ from consuming Web
Services in any other scenario, except that portals by their very nature tend to consolidate
information from diverse sources which makes Web Services ideal as a mechanism to
provide that information.

• Provide Web Services by converting existing Portlets to enable remote consumption
• Wider use of Web Services within portal scenarios will increase as emerging standards

(WSRP20) are adopted
Advantages

• Portal Technology independence. Portals are often built using proprietary portal engines.

20 Web Service Remote Portlets http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

© 2003 CBDI Forum Ltd 69

• Ease of integration for remote portal builder
• Portal vendors now providing Web Service support

Suitability
• As with web site

EAI with Web Services
Limitations of conventional EAI can be addressed to a great extent by Web Services. By
converting the Enterprise Applications to provide Web Services natively for their interfaces, you
can eliminate most requirements for adaptors. Many of the Packaged Applications that are the
centre of EAI scenarios, for example SAP, have already been converted by their vendors to
expose Web Services. However EAI doesn't disappear completely.

• Web Services may not an immediate solution for all legacy applications as end-user
organizations may not have the time or resources to build wrappers around them.
Conventional EAI can continue to provide the adaptors that convert them to Web
Services. The platform vendor that underpins the legacy application may also provide
such a solution.

• Adaptors will still be needed to now wrap existing applications with Web Services, where
they are not provided natively

• The EAI hub typically provides other functionality that is still required for integration –
most notably Business Process Orchestration. Though this is becoming Web Service
based too. The challenge for EAI vendors will be to make their BPO engine Web Service
compliant.

• Semantic conversion. Even though XML based, semantic conversion may still be
necessary to convert documents passed between service consumer and provider unless
they adhere to the same semantic standards – many of which are only just emerging.

So EAI doesn’t go away – it just adapts to Web Services. Web Services should make it easier
and faster to deliver EAI solutions. And perhaps most importantly, provide an EAI solution that is
based on Open Standards rather than proprietary technology.
Advantages

• Standards based
• Remove some need for proprietary adaptors
• Leverage existing EAI infrastructure providing vendor provides Web Service upgrades
• Web Services can continue to use existing messaging infrastructure that may be part of

the EAI architecture
Suitability

• Internal Web Services
• Exposing Web Services from Legacy systems
• Document exchange style of Web Services

EDI/B2B with Web Services
EDI and B2B is one of the most commonly presented Web Services scenarios. Today proprietary
EDI and B2B gateways are widely used by large organizations but the high cost of
implementation has prohibited their many smaller suppliers and partners from utilizing this
approach. Frequently EDI is batch type of operation, and is not suitable to providing more real
time information feeds, such as accurate stock availability, that may be required.
Thanks to the work of the EDI community, document exchange standards already exist and these
are being evolved into XML and Web Service formats by initiatives such as XML.org. Additionally,
ebXML.org has done much work to provide a XML-based standard protocol stack that includes
SOAP messaging and a process orchestration mechanism that is needed to support standardized
business processes to complement the document standards. However, much of the ebXML stack

© 2003 CBDI Forum Ltd 70

is in conflict with various similar Web Service initiatives. See the section on Web Service
Protocols for more information.
Until the Web Service protocol stack matures, organizations can use ebXML for a comprehensive
EDI/B2B solution though clearly there is the uncertainty of how these initiatives will merge in
future.
Alternatively, organizations with simple EDI/B2B requirements can use the web site to Web
Service or distributed computing conversion scenarios above to provide alternative lower cost
access mechanisms for their partners, and deliver more timely information.
Advantages

• Lower cost of implementation, hence effectively available to all participants regardless of
size

• Open standards rather than proprietary gateways and networks
• Enable real time exchanges

Suitability
• Near to middle term, complement existing EDI scenarios with Web Services for smaller

participants

Where to Apply Web Services
Whilst we expect to see a gradual adoption of Web Services across all connectivity scenarios, we
fully expect organizations to adopt a “if it ain’t broke, don’t fix it” attitude, and extension not
replacement will be the de facto strategy.
In the short to medium term organizations will be looking for the sweet spots in which to use Web
Services, where there are clear advantages or where Web Services provide a solution not really
viable with the existing technologies. In this section we provide a framework for identifying these
sweet spots.
Business Characteristics
Table 18 examines some of the characteristics of business processes that might be best
supported by the applying Web Services.

Business Characteristic Reasons to Apply Web Services

High number of
participants

• One to Many
• Many to many
• Multiple intermediaries

(business and infrastructure)
• Federated

• Increasing likelihood of diverse
technology across participants,
and/or unknown technology at
other end of wire

• Support for Federation

Cross Functional • Process or information need
spans many business units,
organizations

• Diverse technology

External integration • Need to integrate customer
or partners

• Increasing likelihood of
incompatible technology
between provider and
consumer and likelihood that
technology at other end of wire
is unknown

© 2003 CBDI Forum Ltd 71

Business Characteristic Reasons to Apply Web Services

Real time information
need

• Provide real time access to
remote information

• Improve the accuracy and
timeliness of information

• Retrieve information on
demand from source rather
than replicate

• Enable direct access to core
operational systems, rather
than cached or replicated data
which is out of synch

Automation

• Application to Application
• Repetitive, well defined

processes, rules and
information

• Provide automatable interface,
rather than self-service browser
interface

• Human intervention for
exceptions, not for every
execution

Dynamic
Provider/Consumer
marketplace

• Dynamic selection of new
service providers

• Self subscription of service
consumers

• Richer specification of Service
• Programmable specification

enables automation of service
consumption in applications

Dynamic Process • Reconfigure business
process on demand

• Enable runtime selection of
service and/or provider

Table 18 – Business Processes Characteristics suitable for Web Services

Looking for Boundaries
Boundary Use of Web Services

Organization External interfaces to customer, partner, etc use SOAP for loose
coupling to remove technology independence

Division/Business
Unit

Internal interfaces to other business units use SOAP. Loose coupling
supports potential for outsourcing, spin off, etc
as Organizational boundary

Sub Assembly
(grouping of related
objects and
components)

(e.g. Customer) Internally uses native platform protocols to
communicate between low level interfaces, but interfaces external to the
sub assembly are SOAP to facilitate integration into multiple systems.
Enable sub assembly level replacement or upgrade
Enable outsourcing of business functionality at sub assembly level (e.g.
logistics)

Application As sub assembly.
Enable Application level replacement or upgrade

Application Layer Communications across layers such as presentation, business rules
and data, or client/server use SOAP, but use platform native protocols
within the same layer

Platform Communication between components on same platform use native
protocols, whereas communications to different platforms use SOAP

Table 19 - Candidate Boundaries for Web Service Adoption

Another useful selection process is to identify where processes have to cross what we term
“boundaries”. Where change might occur independently on either side of a boundary, then a

© 2003 CBDI Forum Ltd 72

loosely coupled approach (as offered by Web Services) to any connections across those
boundaries can better facilitate those changes. Whereas within the boundary existing proprietary
or platform specific technologies and approaches can continue to be used, and may be desirable
for performance or SLA reasons.
An organizational boundary is an obvious candidate as the participants on either side of the
boundary need not be forced to adopt the same technology to interoperate. But this can true for
divisions and business units within the organization too. As well as organizational, other obvious
boundaries are technology and application architecture as illustrated in Table 19.
In time this concept may become redundant as all communications simply become based on Web
Services. In the meantime, identifying boundary points across which Web Services are most
suitable is a useful starting point for Web Services adoption.

Exploitation Scenarios – Capitalizing on Web Services
Beyond the conversion scenarios outlined above, there are three exploitation scenarios based on
re-engineering business processes:
1. Reengineer Selected Information Flows.

Using the more conventional approaches outlined above, but reengineering the way
information flows through the business process.

2. Use Breakthrough Technology
Taking advantage of new capabilities offered by Web Services, particularly their support for
more dynamic usage scenarios via

3. Convergent Technology Strategy
Implementing Web Services in conjunction with other emerging technologies (which are
themselves becoming increasingly Web Service based) such as

a. Pervasive Computing
b. Grid Computing
c. “On Demand”, or “Utility” Computing
d. Autonomic Computing

Or of course some combination of each.
Re-engineering Selected Information Flows
Web Services can be used to optimize and change what we term the Information Supply Chain –
i.e. we don’t change the physical participants in the supply chain, but we do change how
information flows between them. The following shows a couple of examples of how we might
consider re-engineering firstly data sharing, and secondly process execution to improve
information flows.
Data Sharing
With the capability of semi real-time, wide area interoperability, Web Services have the potential
to enable breakthrough solutions. Some of the most interesting early case studies of Web Service
adoption have been about radical improvement in data availability.
Today, data is commonly replicated by a plethora of diverse mechanisms amongst the
participants in business processes. A conversion scenario might use Web Services to enhance
the replication process.
Whilst this would simplify and standardize the way in which data is transferred, the use of Web
Services per se doesn’t fully remove synchronization problems, nor does it necessarily improve
the accuracy of information presented to a particular participant unless other participants replicate
changes the moment they occur.
Figure 11 illustrates how participants might share the same single source of information using a
Web Service so that all information is up to date. This is not to suggest that all participants now
consolidate all their data in a single shared database. Rather it is the principle of each participant
sharing the data they truly own and who’s responsibility it is to ensure that data is timely and
accurate.

© 2003 CBDI Forum Ltd 73

Advantages
• Timely and accurate information
• Reduction on in-house data storage requirements

Suitability
• Fast changing data where changes should be made available ASAP to other participants
• Large volumes of reference data that would otherwise need to be stored in-house

Figure 11 - Data Replication or Data Sharing?

Shared Collaborative Processes
The next logical step is to ask if participants are going to share the same data via Web Services,
should they also consider sharing processes too? Today, not only will the participants be
replicating data, but will often use that information in similar systems. In an exploitation scenario,
rather than duplicate functionality in-house, organizations could share their processes as well as
data. This is not the same pattern as Application Solution Provider (ASP), as the process is
shared between all participants, rather than each of them just outsourcing their own. However, it
may well be that a 3rd party such as an ASP would be ideal for hosting common shared
processes as Web Services.
The BPEL protocol is suitable for this scenario.
Advantages

• Process and business rule consistency
• Reduction of in-house processing requirements
• Reduction of in-house configuration management

Suitability
• Common processes that are not the source of competitive advantage

Of course in both the above cases, whilst Web Services might provide a solution to current
problems they introduce new challenges of their own. Common objections to the above scenarios
would be security, SLA, scalability, and the risk of basing core systems on external

Data

Participant
A

Web Service

Data

Participant
B

Data

Participant
C

Data

Participant
D

Participant
A

Participant
B

Participant
C

Participant
D

Data

Exploitation

Conversion

Web Service

Data

Participant
A

Web Service

Data

Participant
B

Data

Participant
C

Data

Participant
D

Participant
A

Participant
B

Participant
C

Participant
D

Data

Exploitation

Conversion

Web Service

© 2003 CBDI Forum Ltd 74

dependencies. Whilst these must be weighed against the business benefits, we would also
observe that apart from the additional communications factor that would be introduced, the same
objections are also unfortunately often true of in-house systems, and the current replication
process. For small organizations in particular, an external entity may be able to offer a more
secure, scalable, robust solution than they could afford to operate in-house, enabling them to
focus resources on the core processes and data which are unique to them, and they in turn will
be offering to others as services.
Additionally it clearly requires some level of process and semantic standardization amongst
participants, though replication requires this to some degree already. Moreover, where the
participants are involved in many-to-many relationships with each other it requires industry wide
agreement. See “managing participation” later in this document.
Re-engineering like this is likely to occur slowly, and probably take place between a limited
number of very close partners before spreading out across all participants. In some industries,
dominant participants might be able to force the change if they think it desirable. That said, there
are already some examples of organizations providing Web Services as an alternative way to
access information they own and which they normally deliver via replication.
Use Breakthrough Technology - Dynamic Web Service Consumption
One of the main advantages that Web Services offer over most existing application connectivity
mechanisms is that consumption of Web Services can be resolved more easily at run time, and
not just at design time. Two key elements of this are

• Rich specification, or “Self Describing” interfaces, which can be accessed
programmatically to understand what a Web Service does and how it should be used

• Publication and Discovering mechanisms to announce and locate required Web Services
These elements can be built into applications themselves so that they can effectively discover
and use new Web Services at runtime. However, most organizations are currently skeptical of
any notion that Service consumers might appear to randomly and anonymously discover and use
the provider’s Services. They point out that in most cases, the necessary business relationship
has to be in place long before any use of Web Services is appropriate, and as such any need to
discover and consume the provider’s Services at runtime is a moot point.
This is a valid point. However, in certain industries some common standard business transactions
may well be suitable for this scenario. For example in the auto insurance industry where most
insurance companies already provide a near universally similar “service” for insurance quotes via
their web sites or call centres (i.e. some minor variation on give me the vehicle ID, your ID, and
your location, and I will give you a quote) could easily be adapted to a Web Service scenario
whereby my personal finance application running on my PC could each year automatically
include new insurance companies in the list from which to get quotations. Though whether
insurance companies really want to enable such an easy form of price comparison is of course a
different question.
Advantages

• Remove developer effort to consume new Web Services
• Flexibility of choice in Service provider, resolved at run time

Suitability
• Common, standardized business services

Convergent Technology Strategy - Autonomic, Grid and On Demand
Computing
An alternative use of the dynamic Web Service scenario outlined above is to support Autonomic,
Grid and On Demand Computing. Rather than use the dynamic capabilities to discover new
service providers, instead they can also be used to discover and consumer new services from a
known provider – and of course internally.

© 2003 CBDI Forum Ltd 75

These might be used for
• Failover and backup. Publishing, discovering and using alternative routes to, or instances

of a Web Service in the event of failure. i.e. Self healing systems
• Scalability. Publishing, discovering and using additional instances of a Web Service to

scale up at periods of high demand
• Versioning. Publishing, discovering and using new versions of a Web Service
• Location Transparency. Moving the implementation of a Web Service without impacting

the service consumer
Given the current business reticence to use the dynamic Web Service consumption scenarios
mentioned previously, it is probably that in the medium term much wider use of the dynamic
nature of Web Services will be seen in the Autonomic, Grid and On Demand arena.
A more detailed look at the use of Web Services in the context of this is provided in the section
“Web Services Roadmap for the On Demand Business”
Advantages

• Reduce developer effort, and time to solution via self healing, self discovering systems
• Reduce Web Service configuration management

Suitability
• Failover. Scalability, etc are required for all mission critical Web Services

Application Policy
In the Web Services Maturity Model we introduced the concept of Phases, which illustrate
limitations in and the progressive approach to capability development. The phases and
capabilities provide a framework for policy and decision making. For example, an organization
might take the decision that shared data strategies are first order opportunities in the next two
years, but that collaborative processes should only be used in non critical environments until
certain standards and associated functionality are available.
These phases are not quantified in terms of time, but in terms of capability at any point in time.
Let's look at these in terms of a policy framework, which will provide overriding guidance to
project managers.

Phase Status Application policy guidance

Phase 1 - Early
Learning

Little formalization or coordination;
technical matters drive activity;

Internal or trusted users; exploratory;
minimize investment; mostly non
secure or using transport level
security; non critical business
function; low volume application

Phase 2 -
Integration

Architectures established; some
governance policies in place; some
infrastructure and management in
place; rudimentary SLA's established

Mostly internal usage; limited external
users and or trusted partners;

Phase 3
Reengineering

Service based process engineering
capability in place; significant number
of services now available; message
level security implemented;
sophisticated management tools
implemented

External and internal users managed
on same basis; extensive
collaborations with external
businesses; significant process
reengineering based on new
capabilities

Phase 4 -
Maturity

Table 20 – Policy Framework

© 2003 CBDI Forum Ltd 76

Managing Participation
From this policy framework it's pretty clear that a major factor in planning Web Services projects
is the type of participation. As we show in Figure 12, there's a clear progression of complexity that
needs to be managed. As the number of participants grows then one would expect that gaining
consensus on the semantics of the Web Service becomes more challenging. Having said that,
once standards are established then the need to gain consensus with subsequent users is of
course removed.
With reference to the earlier section, Looking for Boundaries, multiple instances of any boundary,
as in multiple participants, would increase the value of using Web Services as a solution.

Figure 12 - Managing Participation

Whilst managing dependency itself is nothing new, Web Services make collaborations much
easier and cheaper to implement, so the potential for wider participation is much greater.

Participation Horizon Management issues Timescale

Business Unit Short

Organization Normal sharing issues Medium

Close Business Partners Semantics Medium

Ecosystem Semantics and business model Long

Industry initiative Semantics, business model, possibly
intermediary

Long

Table 21 – Participation Horizons

Roadmap Actions

Plan & Manage Set policy on types of Web Service application that is relevant to
each phase of the maturity model

Infrastructure Implement infrastructure commensurate with Web Service style in
use

Architecture Prioritize infrastructure activity according to application priorities, not
availability of new technology

Process

Projects Establish application type priority and weighting mechanisms, and
use in project proposal, budgeting and approval processes

Business
Unit

Close
Business
Partners

Ecosystem Industry
Initiative

Organization

© 2003 CBDI Forum Ltd 77

Real World Migration of Development Projects to SOA
Abstract: When migrating the corporate software portfolio to Service Oriented Architecture
(SOA) there are many challenges. The obvious one comes from the legacy of hardware
platforms and older software models. This report explores how the special characteristics
of Object Management Group’s (OMG’s) Model Driven Architecture (MDA) and
Compuware’s OptimalJ tools addresses this challenge by ensuring that new code and
integration work is consistent with SOA.

Introduction
By driving all development from a model, accelerated delivery, reduction of complexity and
governance follow. Governance ensures consistency between model and implementation and is
a key characteristic of MDA. From it flow many improvements in the quality and cost of
development, for the entire project scope including legacy and other non-service oriented
functionality.
In this report we will look closely at how MDA contributes to the task of building and integrating
SOA in the heterogeneous enterprise. One of the classic difficulties faced by IT Directors is that
ROI (Return On Investment) cases are hard to make for projects that clean up and unify
architecture. Companies like to see obvious functional improvements before committing
resources to software projects. A tool like OptimalJ has a distinct advantage in its ability to
accelerate business-driven projects while ensuring that the code follows best practices and
conforms to SOA.
OptimalJ starts with a business model where the important objects and their relationships to each
other are modelled. These objects relate to the business domain and describe items such as:
people, account, product, payment, etc. Services are included in the model, typically business
operations such as ‘Open_Account’, ‘Buy_Product’ and so on. Once the model has been refined,
OptimalJ generates an application model and from that working Java code. Developers add Java
business logic to complete the solution and the tool builds and deploys the finished components
to the server.

Using MDA to Move to SOA
Managing Complexity with Model-Driven Pattern-Based Development
In our introduction we said that MDA manages complexity. This is achieved by promoting
application development to a higher level of abstraction, which focuses on business requirements
rather than technological details. Developers can focus their creativity on the business
functionality and leave OptimalJ to build architecture.
OptimalJ builds applications for the J2EE platform. Flexibility and power have shaped J2EE into
a platform that requires many lines of source code and deployment descriptors. While
Compuware’s wholehearted adoption of OMG’s MDA specification cannot remove complexity
from J2EE it can provide a mechanism for managing it through application of established
patterns. Patterns are a way of capturing a tried and tested solution to a problem in a generalized
format that allows others to apply it to a particular problem. Patterns have become a standard
approach in the Java world and OptimalJ’s MDA implementation is a logical progression from
manual identification and application of patterns to a more automated method.

 “MDA bridges what has been a significant gap between business modeling and software
development by ensuring that business models drive application development, not the
other way around. Patterns, however, are key. While models help designers to reduce
the complexity of the business process, patterns reduce the technology complexity. The
combination of models and patterns, therefore, closes the gap between business and IT”
Franco Flore, Senior Product Manager, Compuware.

The benefits of using tried and tested patterns are apparent in the quality of the resulting
applications and their timely delivery.

© 2003 CBDI Forum Ltd 78

Governance
The word ‘governance’ has the ring of politics about it and to understand why we throw this
controversial term into the debate we must explore one common scenario facing the UML-driven
team. A UML model is driven by the business problem as perceived by the analysts and
business users. Once the application starts to take shape the business problem shifts in the light
of experience of the prototype and a new process is needed to re-synchronize the model with the
prototype code. In a large project with many developers, the model and the application drift apart
and a point arrives where a reverse engineering exercise is tried. This often results in a model
that is unintelligible, badly commented and laid out. So we now have a pretty model that doesn’t
reflect the code and a messy one that is true but unusable. Typically the analysts continue to
work with their tidy model and the developers stick with the ‘code view’.
Governance is our word for the ability of the tool to unite model and code so that it can’t drift
apart. This can be achieved best by unifying the tools used by the business modelers and the
code developers. Using the extensible and open frameworks offered by IDEs such as NetBeans,
Eclipse and JBuilder there is no reason why this shouldn’t be achieved to the satisfaction of all
concerned. Comparing the serious players in this field, only Compuware with its OptimalJ
focuses on managing architecture implementation. That is to say, OptimalJ prevents the model
from being changed through the Java code. This is achieved by a system of guarded and free
blocks in the code. Code that implements a business requirement is added into the free blocks
and this is preserved when the application is re-generated. Guarded blocks are blocked out by
the code editor so that the model is never compromised by a change of the Java code.
Benefits in terms of quality, re-use and lower maintenance all follow from having a consistent
model and application. Investment in the business model is protected for the future because new
applications can be factored from parts or the entire model without any risk of losing bug fixes or
enhancements made to the deployed application.
Changing Roles
We were interested in how Compuware see the roles of architect, analyst and developer
changing where its MDA tool is in use. Clearly the system architect and analyst roles must be
made easier by OptimalJ’s approach but developers could be seen as being de-skilled. We
asked:
“Does MDA change the developer skills needed to build enterprise class applications? Is there
reluctance from developers to adopt the MDA approach?”
When using OptimalJ developers have less coding to do, as OptimalJ generates between 60%
and 75% of the application. It is possible, however, to influence what type of code is generated
because OptimalJ includes pattern-editing functionality enabling the customization and extension
of OptimalJ’s default patterns, which in turn, will influence the code that is being generated. The
generated code is derived from the models by OptimalJ’s Transformation Patterns resulting in
pre-tested and thus high-quality code. Therefore, it isn’t possible to change the generated code
(protected in guarded blocks). Developers, however, have the opportunity to further define the
application in the ‘free blocks’. MDA compliant tools should provide a mechanism where
developers can add their code to the generated code. This allows them to focus on the real
added value of the application, which is adding business logic and they don’t have to bother
about specific low-level coding details. This allows developers to continue being creative and to
focus on adding value by enhancing business logic, rather than building infrastructure. In this
scenario developers should not be reluctant to adopt MDA but should see the benefits of
embracing it.
Building the Business Case
Enterprise IT is emerging from a period in which central controls were relaxed in order to allow
the business benefits and not system architecture to drive purchasing decisions. With these
constraints it was difficult to impose any architecture on the collection of point solutions and
packages that inevitably built up. Is it likely that a realistic return on investment case could be
made for cleaning up the architecture?

© 2003 CBDI Forum Ltd 79

We recommend that the only way to combine development productivity with a timely transition to
SOA is to use tools that give you the architecture at no additional cost; i.e. with no extra
development resource. MDA is a good candidate here because it can deliver functionality
quickly, guarantee SOA in its new solutions but most importantly OptimalJ can integrate exiting
resources into the new architecture, again with minimal cost.

Using OptimalJ to Move to SOA
To briefly re-cap, OptimalJ’s key strengths are:

• Business focused development where key development resources are building business
functionality not architecture

• Automatic application generation from a high-level business model leading to accelerated
development

• The model includes the concept of services that promotes the design of a consistent and
business-focused service bus.

OptimalJ: Management Overview
OptimalJ is a full implementation of OMG’s MDA specification; unlike the previous
generation of code generators it is standards based and generates J2EE code.
Domain Model, Application Model and Code Model
OMG’s approach describes separate models; the Platform Independent Model (PIM) and
the Platform Specific Model (PSM), which maps to code to create a viable application.
OptimalJ implements these two models as the Domain Model and the Application Model,
and maps the code to a Code Model. OptimalJ uses a set of rules known as
Transformation Patterns to carry out transformation from one model to the next.
MDA’s models force a separation of concerns as follows:
Platform Independent Models (PIMs) provide formal specification of the structure and
function of the system and is independent of the computing platform. In OptimalJ this
model contains the business objects and services. OptimalJ provides a subset of the full
UML capability allowing analysts to specify business objects and services. Models can be
imported from other UML tools.
Platform Specific Models (PSMs) are generated automatically from the PIM using OptimalJ
and contain components that apply to the target platform and architecture. In this model
the technical architecture is now visible at the level of components, web pages and
services.
Code is generated from the PSM and includes all the source code, Java, deployment
descriptors, web pages, SQL scripts and so on to run the application.
MDA describes the mappings needed to transform one model to the next and also
describes the refinement and reuse of components in both the PIM and PSM. MDA builds
on existing XML standards, for example UML uses the XMI (XML Metadata Interchange)
standard to communicate structure of objects and interfaces and MOF (Meta Object
Facility) is used to describe objects.
OptimalJ sits very solidly in the analysis, design, build and re-factor stages of the
application development lifecycle. It leaves the infrastructure provided by the J2EE
application server to sort issues of management, security routing etc. This should be seen
as a clear benefit, especially in a time when the full standards stack is still emerging and no
one wants to build any dependencies on non-standard server capabilities. Most would see
that the lack of any ‘black boxes’ in the runtime implementation of an OptimalJ application
as a ‘must have’ feature. After all why pick an open platform such as J2EE if you then
become dependent on a ‘closed’ module from a tools vendor. Once you have a well
modeled and ‘blue print’ Java application the down-stream benefits flow from the flexibility,
re-use and modularity.

© 2003 CBDI Forum Ltd 80

• Reduction of complexity and improved quality through application of industry-standard
patterns

• Governance of process ensuring a consistency of model and code leading to improved
re-use, lower maintenance and improved quality.

Modeling Services
A service model consists of a set of business operations with consistent naming, input and
outputs and relationships to the business objects they affect or use. We believe that the full
benefit of SOA is possible only when you have a consistent model and a business overview of
services. The Domain Model in OptimalJ includes the Domain Service Model where you model
business applications. Once you have the model, existing software assets can be integrated into
the SOA and new functionality built where is doesn’t exist.
Enterprise SOA
Now let’s look at the real world of enterprise applications and in particular whether the MDA
paradigm and MDA-based tools offer any advantage when faced with a mixture of packaged
applications that developers can’t touch, old client-server applications, a few desktop applications
based on Excel and Access, a small Java web application, and some mainframe applications with
traditional CICS APIs or similar. Not much sign of the Business Services Bus here! So you have
the latest copy of OptimalJ - where do you start?
 We can identify a number of distinct steps in the transition. Step one is ‘Model’, which includes
‘Inventory’ and ‘Map’ and steps two, three and four are ‘Build’, ‘Integrate’, ‘Migrate’. In the first
step we are designing architecture for the business and creating an inventory and in steps two,
three and four we create new services, integrate the existing applications and begin the migration
towards SOA. By generating code that implements SOA the developers concentrate on building
functionality that will be visible to the business users.
The following table sets out some key activities we identify on the roadmap to SOA. Some
activities would be completed using OptimalJ’s model, but others such as the inventory and
mapping activities could be done with office tools.

Steps Description Tool/Formats

Model Build a UML business model, including a service
model

OptimalJ or other
modeling tools

Inventory

Document each application in the enterprise,
breaking each one down into domains that map
loosely to the business model

HTML document with
links to UML use cases
and business model,
use case model

Map Identify services provided by each application and
map each one to the service model, including a
traffic light status reflecting whether the service can
be re-used in the proposed services bus

HTML document
showing the relationship
between the existing
and proposed services

Build Generate the service bus code from the model as
session beans with Web Service interfaces

OptimalJ, MDA tools

Integrate Use the generated classes as wrappers for existing
functionality identified from the inventory

Connectors based on
JCA (Java Connector
Architecture), CORBA,
Web Services

Migrate Replace inflexible code with components that fit
with the planned SOA

Development platform
IDE

Table 22 - Key Activities on the Roadmap to SOA

© 2003 CBDI Forum Ltd 81

Achieving SOA inevitably involves some enterprise integration work, which calls for an adapter
approach. Fortunately J2EE has embraced this requirement with JCA. So the integration work
can be modeled and documented in the same tool set.

JCA Integration Model
OptimalJ implements the JCA architecture and utilizes the JCA resource adapters provided for
platforms such as Cobol/CICS and IMS/DC. JCA supports the concept of contracts and can
handle issues such as security and transactions in the J2EE application server. Its modeling
capability extends to the Connector model that can be manually entered or imported from Cobol
copybooks.

Figure 13 - Integration Model

The same approach works for CORBA IDL or of course Web Services, which is shown below.
UNIFACE, Compuware’s 4GL development environment has an established user base who can
also benefit from integration capabilities that OptimalJ brings. UNIFACE uses the CORBA
interface to expose functionality and will be of particular interest to these users. Additionally with
the latest UNIFACE release, UNIFACE Services can be transformed into Web Services. In both
cases UNIFACE automatically generates the interface definition (IDL or WSDL) which can be
imported into OptimalJ to create a Connector Model, which can be used to populate the Domain
Model; we believe that this ability to build a service and integration model is an important
capability that ensures that a coherent migration to SOA is possible.

Connector
Model

Domain Model

EJB Model

Java session
beans

JCA
Resource
Adapter

cobol

Mainframe

Generate
Code

Generate
JCA
Proxy

http

importGenerate

G
en

er
at

e

Connector
Model

Domain Model

EJB Model

Java session
beans

JCA
Resource
Adapter

cobol

Mainframe

Generate
Code

Generate
JCA
Proxy

http

importGenerate

G
en

er
at

e

© 2003 CBDI Forum Ltd 82

Figure 14 - Integration Model for CORBA and Web Services

Web Services Support
Web Services provides the platform independence required by the heterogeneous enterprise.
The service layer generated by OptimalJ can be selectively published as Web Services simply by
selecting a component in the model and choosing a menu option. There is no need to change
any code or write any configuration files because OptimalJ’s code generator step deals with all
the deployment issues for your selected platform.

Model-based Pattern-Driven Code Generation
Finally we look at OptimalJ’s code generation capability and focus in on what makes this code
generator so different from less successful forerunners.
The key features of Compuware’s new approach are:

• UML platform independent business model (drives the whole process)
• Transformation patterns and customizable implementation patterns (model-to-code

transformation)
• Active synchronization
• Business rules
• Integrated deployment
• Standards-based methodology and code implementation

OptimalJ promotes a top-down approach by driving the code generation from the UML business
model and maintains the model when the resulting code is customized to implement business
logic. Unlike earlier generators however, the code that is generated follows an established set of
patterns and best practice as documented in Sun’s J2EE blueprints.
Active synchronization removes the need to reverse-engineer the model from the Java code; the
IDE used by the developer is integrated with the model and ‘knows’ which lines of Java the
developer cannot change (so called guarded blocks). Any changes to the model must be made
in the model. Free blocks are designated for the developer to plug in the business rules and
processing logic.
The patterns used to transform the Domain Model into an Application Model and then to code are
not closed to the system architect and can be altered in order to follow company standards.
OptimalJ’s Template Pattern Language (TPL) is used to define the transformation from model to

Connector
Model

Domain Model

EJB Model

Java session
beans

Web Service
Or CORBA
Or UNIFACE

WSDL
/ IDL

Generate
Code

Generate
JCA
Proxy

importGenerate

G
en

er
at

e

Connector
Model

Domain Model

EJB Model

Java session
beans

Web Service
Or CORBA
Or UNIFACE

WSDL
/ IDL

Generate
Code

Generate
JCA
Proxy

importGenerate

G
en

er
at

e

© 2003 CBDI Forum Ltd 83

code. Join points add more subtlety to the pattern customization by enabling a join to be made
between a customized pattern and the pre-configured pattern supplied by Compuware – thus you
can update your OptimalJ patterns without losing your special enhancements.

Summary
In this report we have looked at the issues facing a company moving towards SOA from a
heterogeneous set of applications and platforms. We recommend a process that starts with a
top-level service model into which new and existing functionality can be integrated. By focusing
on how OptimalJ matches up to these types of demands we have identified some of the key
features of OptimalJ:

• Service model
• Automatic generation of an application model with SOA
• Support for enterprise integration within the model
• Support for Web Services

MDA is a powerful way to manage the complexity of distributed computing platforms such as
J2EE and OptimalJ’s approach takes pattern use to a new level of productivity, addressing SOA
and Web Services through its consistent application of patterns. Early adopters of OptimalJ
report productivity gains using OptimalJ but we note that the service architecture is taken as a
given. The issue isn’t anymore what is SOA or do we need SOA, but how fast can we get there?

Links
OMG MDA Model Driven Architecture MDA Documents

ormsc/01-07-01: Model Driven Architecture (MDA)
http://www.omg.org/cgi-bin/apps/do_doc?ormsc/01-07-01.pdf
omg/01-12-01: Developing in OMG's Model Driven Architecture (MDA)
http://www.omg.org/cgi-bin/apps/do_doc?omg/01-12-01.pdf

Compuware http:///www.compuware.com/
Success Stories http://www.compuware.com/products/optimalj/1792_ENG_HTML.htm

© 2003 CBDI Forum Ltd 84

Web Services Roadmap for the On Demand Business
IBM's strategy today is centered around “Business On Demand” in which their entire set
of products and services are focused on delivering greater business efficiency and agility.
A core element of the strategy is the transition to Web Services, and in this section we
examine how IBM is turning this high level goal into reality for its customers through
practical delivery of products, services and Roadmap guidance that enable the on demand
business.
On Demand Business
IBM has initiated a strategic business change which over the next five years will have profound
impacts on how it engages with its customers. This change is a move to provide end to end
business process support to their customers, which includes the entire life cycle of a business
process, spanning business design through to operational management.
By on demand, IBM means the delivery and execution of a business process when and where it
is required in the most efficient and cost effective manner. On demand encapsulates a number of
fashionable business trends. First, the on demand business needs to be a Real Time Enterprise
(RTE) where events are responded to as they happen. This requires more real time systems
behaviour. No more weekly updates or working off yesterday’s out of date information. Acting in
real time often requires Straight Through Processing (STP) to remove time wasting steps
(typically human) from the process. We can argue about just how real time things need to get, but
there is little doubt that optimizing the enterprise’s use of resources through Just In Time (JIT)
approaches are beneficial to the bottom line. But JIT requires Business Process Optimization
(BPO). There is little point in implementing JIT Manufacturing for example if the sales order
business process and inventory management are not brought into line. However, few businesses
are an island, and they work with many partners up and down the supply chain. So BPO more
often requires a broader look at Supply Chain Optimization (SCO). Each of these business
buzzwords is highly related and dependent. It is hard to deliver one without addressing the
others.
On demand also means dealing with peaks and troughs, constantly shifting requirements, and
requires the agility to not just transition to this new world on a one time basis, but to constantly
optimise processes and use of resources. To meet this challenge, organizations will increase
levels of outsourcing, yet must at the same time demand higher levels of integration from their
partners to deliver STP and SCO. Businesses, and their processes, will become increasingly
virtual so that they can constantly reconfigure themselves on demand.
Primarily, this will require greater levels of automation of business processes. If they are to be
executed quickly, they require minimal human intervention. Achieving the on demand business is
therefore dependent on information technology. But for the IS department to meet the businesses
needs in the future it too must undergo a similar transformation. Cycle times to deliver new
systems or updates must be drastically reduced. Capacity must be available JIT. Down times or
interruptions in service must be averted. In other words, IS needs to become an on demand
business too, and requires just as much BPO as any other part of the business.
As such, we can view on demand from two complimentary perspectives which we can term,
On Demand Business Processes. The business processes behaviour outlined above.
On Demand Operating Environment. Providing an IT and IS infrastructure that delivers
resources on demand, efficiently, and cost effectively.

© 2003 CBDI Forum Ltd 85

The IS Department Challenge
Desirable as the on demand business may be, many enterprise customers will however still have
what they perceive as more mundane requirements, and will see the challenge of delivering an
on demand business as considerable. For example

• Many will still be focused for example on internal Enterprise Application Integration (EAI)
projects. EAI alone doesn’t deliver the on demand business. Can they solve EAI and on
demand requirements in one go?

• Besides EAI, large enterprises will have been presented with a number of options in
recent years that additionally address B2B and distributed computing requirements, each
delivering incompatible solutions to the underlining problems of integration. Is on demand
going to require another different technology solution?

• The reuse of existing assets is key. Though they may not all deliver optimal support for
the on demand business, the cost and time to replace them is too high. Can they be
reused yet again?

• The typical IBM customer will also have a heterogeneous environment that mixes not
only diverse IBM platforms but those from several other vendors too. Will on demand
require yet another layer of software infrastructure to be delivered onto every platform?

• Are the skills required difficult to acquire? Is the learning curve to get developers up to
best practices steep?

Web Services are Key
IBM's vision for on demand business is critically dependent upon Web Services. Though aspects
of on demand could be delivered through a diversity of niche (and typically proprietary)
technologies, it is clear that Web Services will play a central role. For example

• It provides a single ubiquitous messaging/communications infrastructure based on open
standards, that should be common to all participants in on demand business scenarios,

• Web Services provide high levels of automation to the solution delivery process.
Automation is going to be central to on demand business. Not just enabling automation of
the business processes in support of the business, but automating the development,
discovery and usage of Web Services by the IS department.

• Provides mechanisms for publishing Service descriptions and dynamic Service discovery,
which facilitates on demand assembly of solutions and aggregation of new Services

The IBM On Demand Operating Environment
IBM defines the on demand Operating Environment as a “flexible, open, integrated
infrastructure for rapid deployment and integration of business applications and processes,
virtualization of resources, and for automated, resilient systems”. As most of IBM customers’
systems are built in a heterogeneous platform, it is based on open standards like Web
Services and the OGSA framework. There are three key capabilities:

• Integration creates business flexibility and the collaboration between people, processes
and information by combining disparate, unconnected data, applications and processes.

• Virtualization improves the utilization of IT, information and people assets because it
allows customers to treat resources as a single pool, accessing and managing those
resources across their organization more efficiently, by effect and need rather than
physical location.

• Automation improves availability and resiliency, while reducing the complexities of
managing IT and lowering IT management costs, based on the policies set for the
business.

© 2003 CBDI Forum Ltd 86

• Is being used at the core of autonomic and grid computing approaches which will provide
amongst other things resilience and scalability in on demand business implementations

• More specifically, there are emerging Web Service protocols that enable the operation of
the on demand business
• BPEL – dynamic location of business process execution
• WS-Addressing – redirect service requests. For example to dynamically relocate

implementations
• WS-Security – provides federated security support
• WS-ReliableMessaging – guaranteed message delivery
• WS Distributed Management – support SLA in an federated on demand environment

Importantly, Web Services provides solutions for more immediate requirements of enterprise
customers, and with careful application can provide an infrastructure that enables a transition
path to full enterprise-wide on demand business implementation. Many customers will see some
of their current projects as steps towards on demand business with a focus on enabling some
aspect of the various business buzzwords outlined earlier. However, basing those projects on
proprietary technologies without the application of Web Services, and more importantly without
taking a SOA approach, is likely to mean those solutions will have to be reengineered in future.
Consequently, Web Services are increasingly core to IBM’s strategy, helping them deliver
solutions to customer current and future needs. Web Services hide the diversity of the platforms
and systems behind a standard interface, enabling new solutions to be assembled on demand
from existing and new assets regardless of their implementation.
IBM’s leadership role in driving towards open standards for Web Services is well known. As key
contributors to, and usually instigators of the majority of Web Service protocols together with
Microsoft, IBM is in a strong position to influence the standards process to meet the requirements
of their customers and deliver early support in their products and services. We believe that open
standards will be essential to free the on demand business from the constraints of otherwise
being locked in to vendors proprietary solutions.
Besides their central role in core Web Service protocol standards, IBM have also formed a set of
Web Services Industry Councils (WSIC). These address the specific needs of different vertical
industries, where for example increasing B2B integration will drive business partners towards
greater consensus on the semantics of the information they exchange and the collaborative
processes they share. The initial focus will be on financial services, manufacturing, distribution
and retail, and public sector.

Components of Web Services Success
For IBM’s customers, successful implementation of Web Services will likely revolve around three
key areas

• Web Service enabled products. Few new classes of products will be required to support
Web Service delivery. However, upgrades to the latest releases or extensions are likely.

• Application of Best Practices. Not only providing a quick start though patterns and
frameworks, but also encapsulating the experience of IBM architects and consultants

• Support of Professional Services. Providing additional resources, ready skilled in Web
Services.

Software Products
As stated earlier, Web Services are core to IBM’s software product strategy. The portfolio of
products spans five brands which IBM is constantly upgrading to support the latest Web Service
protocols and concepts. An overview of the current support for Web Services offered by IBM
products is shown in Table 23.

© 2003 CBDI Forum Ltd 87

Table 23 - Web Services Support from IBM Products

Alphaworks
Also of particular interest are the technology previews available via the IBM Alphaworks site that
provide an early opportunity to examine a number of emerging tools, applications and frameworks
that exploit Web Services protocols. Thought these cannot be used in production, we recommend

Brands and Key
Products

Web Service Capabilities

DB2

DB2 Universal Database
V8

XML Extender generates Web Services to query and update table data
Publish stored procedures as Web Services

DB2 Information Integrator
8.1

Compose, transform and validate XML documents and data

Lotus - Provide collaborative Web Services

Lotus Domino 6 Subsumes WebSphere Application Server Web Services support
Enable Web Service based collaboration in majority of IBM Lotus products
including Notes, Domino, Workflow and Discovery Server.

Rational

Rational Rapid Developer Architected RAD based Web Service creation

Tivoli - Managing deployment and operation of Web Services

Tivoli Configuration
Manager

Installation and configuration of Web Services

Tivoli Access Manager Centralized policy management of Web Service applications

WebSphere - Develop, host, deploy and publish Web Services

WebSphere Application
Server V5

Private UDDI Registry for publication
Web Service Gateway helps make internal Web Services available to a
wider variety of consumers, both internal and external
Web Service Management (WSM) capabilities
Web Service Invocation Framework (WSIF) supports variety of transports
WS-Security support
Workflow with Web Services

WebSphere Studio
Application Developer
Integration Edition V5

Create Web Services from software assets such as JavaBeans and EJB,
JCA adaptors, etc
Service Flow Editor
Workflow/Orchestration support

WebSphere Business
Integration

Web Service Connectors for WS Gateway, WSIF, process and message
based WS connections
Web Services Application Adaptors

WebSphere Portal Support Remote Portlet Web Services (predecessor to OASIS WSRP)

WebSphere MQ 5.3 Assured delivery of Web Services using MQ transport
Provide and Consumer business processes activities as Web Services

WebSphere Commerce Subsumes WebSphere Application Server Web Services support

WebSphere SDK for Web
Services 5

Self contained tools and deployment environment for Web Service
environments
Support for latest Web Service protocols

© 2003 CBDI Forum Ltd 88

looking at the technologies like those listed in Table 24. These demonstrate that IBM is thinking
beyond the basic Web Service platform provision and providing valuable functionality that
enables the assembly of on demand infrastructure and applications.

Technology Web Service Capabilities

Web Services
Outsourcing
Manager
(WSOM)

Framework that enables dynamic on demand composition of Web
Service based business processes.

Emerging
Technologies
Toolkit (ETTK)
Formally Web
Services Toolkit

Software development kit contains many utilities and tools for designing,
developing, and executing Web services, as well as emerging autonomic
and grid-related technologies.

Utility Web
Services (in
ETTK)

For example, User Profile, Metering, Accounting, Contract, and
Notification.

On Demand
Service Grid (in
ETTK)

On Demand Service Grid: service broker that manages a heterogeneous
group of service suppliers to provide services to multiple groups of
consumers

Web Services
Bus (in ETTK)

Supports both the service requestor and service provider roles in a
service oriented architecture. The Bus promotes separation of business
logic from infrastructure, and provides format and protocol independent
deployment and invocation of web services. This enables services
exposed by a number of different component types to be used in a
uniform manner.

Web Services
Tool Kit for Mobile
Devices

Provides tools and run-time environments that allow development of
applications that use Web Services on small mobile devices

Table 24 - Some Alphaworks Web Service Technologies for on demand

Delivering Best Practices
jStart
jStart is a team of IBM experts who help IBM’s customers implement emerging technologies. The
jStart program originated to support Java and now focused on Web Services. jStart commences
activity early in the lifecycle of any new technology and often takes technology direct from the
IBM labs and gives essential feedback to the labs on real world implementation. Consequently,
both customers and IBM want to reduce risk and make sure their Web Service projects are
successful. Partnership is seen as essential, and there must be mutual benefit to all.
The program follows an engagement model illustrated in Figure 15. The jStart team work with
business users and senior IT staff to stimulate thinking of how to use technology to benefit
business and create opportunities where Web Services might best be applied. The jStart team
seek to address real business problems – pure technology pilots are not of interest. The goal is to
deliver success that is recognised by the business. In return, the business must agree to the
publication of a reference case study.
At the end of phase III the decision to turn the project into reality must be made. At this point, a
Service Oriented Architecture (SOA) will have been developed and 3 or 4 use cases that will be
the basis of the Web Services are investigated in detail to scope out a pilot project. Working from
the beginning to end, a typical project takes 45-60 days.

© 2003 CBDI Forum Ltd 89

Figure 15 - jStart Engagement Model (courtesy of IBM)

Today, jStart find that the typical project is focused on improving efficiency (as opposed to
introducing new business ideas). In the current climate, projects to automate existing manual
processes are popular for example.
IBM continues to improve the jStart program. For example they often find that on completion of
the pilot due to its very nature the technology as already moved on. To address this they have
now added a two day Web Service review workshop with the customer to consider the latest
developments. At the time of writing that might mean considering WS-Security, BPEL, or the
latest IBM tools. As well as increasing the focus on security during the rest of the year now that
standards are stabilising, jStart are also working with customers to address Web Service
provisioning. I.e., the delivery of commercial Web Services, Service Level Agreements, Web
Service Management approaches, and other issues related to delivering Web Services on a
commercial basis.
The jStart program certainly appears to be working, with an impressive number of Web Service
case studies already published on the jStart site.

IBM Patterns for e-business
IBM has developed a number of patterns reflecting common e-business scenarios that provide an
excellent starting point for IT architects. Many of the patterns have been documented in detail in
the associated book, Patterns for e-business: A Strategy for Reuse, and in various Red Books
available on-line.
IBM is now in the process of updating these patterns to reflect the use of Web Services where
applicable. At this point no new patterns are envisaged but several existing ones, such as
Extended Enterprise (B2B) or Application Integration, are being updated show where Web
Services might be applied, and how they compare to alternative technologies that could be used.
For example, they will provide guidance on delivering Service Level Agreements, Quality of
Service, and security.
This is a useful first step in support of what we term “conversion” scenarios, i.e. applying Web
Services to current application architectures. In future we would expect to see further patterns
emerging to support “exploitation” scenarios, i.e. new on demand architectures that are only really
feasible once the Web Service infrastructure is in place. For example, the dynamic discovery of
new service providers, or support for autonomic computing.
Speed Start for Web Services
At the developer level, IBM has introduced the Speed Start for Web Services training and
guidance program. This makes available to them trial versions of the latest IBM software

• Evangelism
• Business value

proposition
• Determine

readiness
• Identify candidate

projects
• Gain executive

commitment

• Business objectives
• Requirements

gathering
• Prioritization &

selection
• Project scope &

definition

• Project design
• Use case analysis
• Produce project

plan/sizing
• Develop business

proposal

• Proposal
presentation

• Contractual
agreement

• Implementation
& deployment

• IBM reference
activity

Business
Qualification Project

Definition Project
Readiness Customer

Commitment Solution
Building

Phase I

Engage Deploy Promote

Phase II
Phase III

Phase IV
Phase V

• Evangelism
• Business value

proposition
• Determine

readiness
• Identify candidate

projects
• Gain executive

commitment

• Business objectives
• Requirements

gathering
• Prioritization &

selection
• Project scope &

definition

• Project design
• Use case analysis
• Produce project

plan/sizing
• Develop business

proposal

• Proposal
presentation

• Contractual
agreement

• Implementation
& deployment

• IBM reference
activity

Business
Qualification Project

Definition Project
Readiness Customer

Commitment Solution
Building

Phase I

Engage Deploy Promote

Phase II
Phase III

Phase IV
Phase V

© 2003 CBDI Forum Ltd 90

development tools and middleware, online tutorials and articles, hands-on workshops and
technical briefings, and an online forum moderated by IBM Web services experts.

Web Services Roadmap
Enterprises will not transition to on demand business overnight. IBM’s enterprise customers need
an evolutionary architecture that will get them there in stages, and address some more immediate
problems along the way.
We see the roadmap consisting of two parallel but entwined tracks. Ideally, the provision of an on
demand operating environment should to a large extent precede the transformation to on demand
business Processes. Having said that, nothing stops new Web Services and business processes
being designed with on demand business in mind but implemented in today’s operating
environment. Circumstances will often dictate this. The key is to design and implement them in
such a way that moving them to an on demand operating environment at a later stage is as
painless as possible. As such, the use of Web Services and adoption of SOA principles will be
essential. In the following section we asses these stages according to the CBDI Web Services
Maturity Model.

Early Learning Phase
Organizations will usually commence with tactical, ad-hoc use of Web Services to meet
immediate internal and external requirements. These would not typically be implemented today
as part of a concerted effort to put a foundation in place for the on demand business.
Nevertheless, some useful steps can be taken. For example, exposing external services can
make an organization look more responsive particularly where it automates what was previously
a manual task for the service consumer.
At this stage partnering with IBM in the jStart program might be the most appropriate way to not
only address some immediate Web Service needs, but to ensure best practices are adopted and
that the correct first steps towards on demand are made. We would also recommend starting to
get developers involved as soon as possible in the IBM Speed Start for Web Services training
and guidance program.

Integration Phase
In terms of the immediate future, the integration state is probably the most important. At this
stage, most activity will revolve around optimising existing business processes where improving
integration and accessibility will be the key drivers. However, to meet these and other goals of the
on demand business it is essential that Business Services have been developed with the longer
term in mind. Business Services need to be properly abstracted away from current
implementations.
During the Integration phase, IS should be laying the groundwork for on demand. Steps include

1. Start implementing an enterprise wide Web Service infrastructure. Upgrade application
servers, middleware to support Web Services. Install Web Service Management
capabilities to manage SLA. Provide an internal UDDI registry.

2. Expose Web Services from existing applications. Owners of applications should convert
their existing interfaces to Web Services. From a technology perspective, this is often a
straightforward usage of the platform or packaged application vendors latest Web Service
aware releases of their products on which the existing apps are based. Web Services can
then be used as an open-standards approach to EAI in the continuing effort to optimise
internal processes.

3. Delivering Web Services based on SOA Principles. Apply Service Oriented Architecture
(SOA) principles in development and service design. For example, carefully abstracting
the Service away from current implementation(s).

4. Implement a Business Service Bus approach. The Business Service Bus exposes Web
Services that reflect meaningful business concepts to service consumers. The ‘bus’

© 2003 CBDI Forum Ltd 91

groups together related Web Services that will share common elements of specification
and taxonomy in a specific business domain

5. Adoption of SOA and use of the Business Service Bus will be a core here as these that
will deliver the long term flexibility that the on demand business needs. Simply exposing
Web Services directly off existing systems can be suboptimal as they can reflect too
closely the existing implementation, and are more often affected by changes to that.
Additionally, existing APIs are often of the wrong granularity, particularly for external use,
and Web Services exposed in this way can leave too much work for the service
consumer (both internal and external) to aggregate and refine them into something
useful.

This does not imply that Web Services should not be exposed from existing services, rather that
steps 3 and 4 above be used to create a two layers architecture that separates what we term
implementation based Web Services from the more meaningful Business Services that are used
by the Service consumer. Benefits of this approach include

• Truly hides the implementation from the service consumer
• Enables on demand aggregation and composition of new Business Services from

implementation based services
• Provides transition path to the on demand Operating Environment, enabling Service

implementations to be outsourced and dynamically switched with a minimum of impact on
the consumer

IBM provides a number of technologies, primarily as part of the alphaworks program listed above
that facilitate this approach, including the WS Invocation Framework and WS Gateway, both of
which are contained in their Web Services Bus. Together these (with other IBM middleware)
enable the delivery of implementation based Web Services and the mechanism to aggregate
them into, and manage them as, Business Services.
IS should also be re-engineering itself at this in preparation for the re-engineering of the business.
There is little point in trying to deliver an on demand business, whilst IS still has long lead times.
This does not just mean putting the on demand Operating Environment in place. IS needs to
consider applying on demand principles to,

• The way in which systems and their components are analysed, designed, assembled and
built

• The availability of human resources, and appropriate skills
• Willingness to use external Service Providers, Hosts and various intermediaries, both as

sources of Web Services, and to enable the delivery of Web Services

Re-engineering Phase
The Integration Phase should see the Web Service infrastructure in place, well formed Business
Services, and existing business processes optimised. At that stage, BPO will primarily be the
replacement of existing interfaces (human or machine) with Web Services to deliver STP.
However, often the business process itself will not have changed much
Though it might not be a popular term, some Business Process Reengineering is now inevitable.
Similarly, it is at this stage that the IS department should be “eating its own dog food”. That is, if
on demand is good enough for the business, it should be good enough for IS and it should start
widely using the on demand operating environment. For example

• At this stage the location of data and computing resource should not matter, providing
adequate security and SLA is in place. This does not just mean that data is stored off site,
but that data is retrieved from the owner on demand as needs require rather than
replicated into the organizations own database.

• Business Processes will be operated in a more federated and parallel approach, rather
than the sequential supply chain approach of today. Events will trigger multiple business
activities across the business process ecosystem.

© 2003 CBDI Forum Ltd 92

• Fine grained Business Process outsourcing will be possible – i.e. outsourcing the
execution of certain individual steps, not the whole process, to get availability of
appropriate resources on demand. Web Services will ensure these processes appear
seamless regardless of the location of execution of each step.

We expect that key emerging Web Service technologies that IBM is promoting will be adopted at
this stage to enable these activities. For example

• Business Process Execution Language (BPEL) – Provides a more dynamic approach to
implementing business processes. Process steps can execute wherever there is an
appropriate engine.

• Web Services Distributed Management (WSDM) –mechanism for managing SLA across
distributed Services

Maturity Phase
One hesitates to write and comment about maturity because it is high probability that by the time
we ever reach the mature state, new concepts will have superseded what we are working with
today. However at this stage services are ubiquitous and the on demand business is a reality.
Federated services collaborate and create complex products with individual services provided
from potentially many providers. The capability offered by Web Services to the mature on
demand business is illustrated in Table 25.

On Demand
Business

Web Services Status

Real Time Enterprise

All core business processes are offered as Web Services with real time
execution and currency of data;

Straight Through
Processing

All core business services have been reengineered to minimize
intervention, but also to establish comprehensive business monitoring
and measurement controls and highlight exceptional behavior

Just In Time

A complete inventory exists of core business services that allows
existing processes to be altered and new products, processes and
channels to be introduced with minimum time and cost.

Business Process
Optimization

Web Services automate process flows eliminating wasteful self-service
and other manual activity including external process steps.

Supply Chain
Optimization

Accurate and timely data is retrieved on demand from owners in the
supply chain via Web Services rather than replicated across it. Shared,
collaborative Services enable more parallel activity in processes rather
than sequential.

Table 25 - Web Services for the Mature On Demand Business

Timeline
During 2003, we expect most users to remain in the Early Learning phase. Important preparation
for the Integration Phase should also commence in terms of training and infrastructure upgrades.
Though external Web Services will be commonplace during the Early Learning and Integration
phases, the prime focus at this point will be on enabling on demand business processes and
Operating Environment from an internal perspective. Externalisation of these will not happen
widely until the Reengineering phase.

© 2003 CBDI Forum Ltd 93

Figure 16 - Adoption Timeline

Finally, let’s ask if the challenges outlined earlier will be addressed.

• Can they solve EAI
and on demand
business requirements
in one go?

Yes. Both EAI and on demand business can be addressed by
Web Services. Addressing current EAI via Web Services
provides a better transition path towards on demand business

• Is on demand
business going to
require another
different technology
solution?

No. EAI, B2B and distributed computing needs can all be
addressed via Web Services and provide a common
infrastructure to support on demand business

• Can existing assets be
reused yet again?

In the Integration Phase yes. Much of the existing infrastructure
has already been Web Service enabled to support this. Leading
package vendors have enabled their applications too. However,
the modus operandi of existing application may not be optimal
for the Reengineering Phase.

• Will on demand
business require yet
another layer of
software infrastructure
to be delivered onto
every platform?

Not really. Much of the existing software infrastructure will need
to be upgraded to the latest versions to support Web Services,
but a new additional layer shouldn’t be required.

• Are the skills required
difficult to acquire? Is
the learning curve to
get developers up to
best practices steep?

On the whole no. The technology of Web Services will be
largely transparent to developers. However Service analysis
and design will require some rethinking. Best practices
encapsulated in templates and frameworks will help
considerably.

Early
Learning

Integration Reengineering Maturity

Infrastructure

Web Service
Projects

Infrastructure
Research

Training
Speed Start

jStart Assistance

Alphaworks

Protocol adoption SOAP, WSDL, UDDI
WSIL, WS-Security

BPEL, WSDM

Upgrade Internal Infrastructure

SOA training

Implement ODOE

Implementation Based Services
Business Service Bus

Business Product Alignment

ODOE usage

Early
Learning

Integration Reengineering Maturity

Infrastructure

Web Service
Projects

Infrastructure
Research

Training
Speed Start

jStart Assistance

Alphaworks

Protocol adoption SOAP, WSDL, UDDI
WSIL, WS-Security

BPEL, WSDM

Upgrade Internal Infrastructure

SOA training

Implement ODOE

Implementation Based Services
Business Service Bus

Business Product Alignment

ODOE usage

© 2003 CBDI Forum Ltd 94

Summary
IBM provides a comprehensive set of Web Service enabled products and service offerings that
enable their customers to implement an on demand business. Importantly, IBM is making sure
that existing customers can (once again) take existing core technology investments forward via
Web Service support for technologies such as CICS, MQSeries, and DB2.
Though the vision isn’t necessarily completely new, we are impressed by the depth and breadth
of the research that IBM is putting into making what is essentially the next generation of IT a
reality. On demand pulls together many threads that IBM is at the leading edge of, such as Web
Services, Pervasive, Autonomic and Grid Computing. However, individually these are technology
centric messages and consolidating them in an on demand business message that demonstrates
greater value by them working together to solve business problems should be clearly more
attractive to the business user. Besides the obvious benefits of the business buzzwords as
highlighted at the beginning, businesses are quite used to placing dependencies on external
agents, i.e. in terms of creating supply chains and outsourcing non-core processes, and moving
to JIT. As such they should be very receptive to and understanding of an on demand message
However, whilst IS organizations appreciate these benefits, and can also see the opportunities
created by an on demand operating environment within IS itself, in our experience when
discussing the use of external Web Services, they currently have greater concerns regarding
making run-time dependencies on external agencies. This impacts the implementation of both on
demand business processes and on demand operating environment.
But the transition to on demand business is not going to happen overnight. This is something that
will take a number of years, though it will in our belief happen. As such, IS should not dismiss the
externalization of on demand based on current market immaturity. Instead they should be
commencing now to put place the necessary infrastructure and practices to support the transition
to on demand business as it evolves. Partnering with IBM through initiatives such as jStart would
be one recommended course of near term action.

Links
IBM Web Services Home http://www.ibm.com/webservices
IBM Developerworks http://www.ibm.com/developerworks/webservices
IBM Alphaworks http://www.alphaworks.ibm.com
IBM jStart http://www-3.ibm.com/software/ebusiness/jstart/
IBM E-Business Patterns http://www-106.ibm.com/developerworks/patterns/
IBM Speed Start http://www-106.ibm.com/developerworks/offers/ws-speed-start/
IBM On Demand Operating Environment http://www-3.ibm.com/software/info/openenvironment/

© 2003 CBDI Forum Ltd 95

Microsoft in Transition - Delivering a Less Complex Service
Oriented Platform

Abstract: One of the difficulties when writing anything about Microsoft is the number of
strongly held preconceptions held about the company. Everyone has Windows and
Microsoft Office and everyone believes they understand the company’s strengths and
weaknesses. Indeed some journalists have written that .NET is more a marketing angle
than a new technology platform. Our readers know better. The Microsoft that re-
engineered a completely new platform in order to do Web Services properly and to meet
the needs of collaboration and SOA is a very different organisation that refused to get
excited about the internet way back when. For this Web Services Roadmap report we
examine three core Microsoft strategies that are driving the transition from desktop
specialist to SOA platform provider. We will look at the strategy to reduce complexity for
developers and the increasing recognition that system architects need support and that
there may be architecture issues beyond which language to write in.
Technology Platform and Complexity Reduction

Figure 17 - Microsoft .NET

.NET launched when spending levels in IT were on a downturn and cost justification became
even more rigorous. We asked Microsoft to explain some of the background to the .NET project
in Microsoft.

"Today we are in a situation where complexity is consuming a large element of the IT
budget, with over 70% of this being spent on sustaining and running existing systems.
And only 30% or less being applied to new systems that facilitate business
transformation. The current economic climate only serves to really focus people’s minds
on this issue. We have to turn this around and move towards a situation where this is
nearer a 50:50 split, creating an environment for IT to deliver business agility. To achieve
this vision we’re make huge investments in underlying the architectural tenets of all of our
software to reduce the overall complexity that occurs when you bring the many pieces
together to build, deploy and manage a business solution. Our vision is to provide the
fastest and easiest way to build, evolve and orchestrate connected applications.
Further more business process typically does not respect the artificial boundaries we
place between our people, either by hierarchy or in the form of the information tools we
give them (or not). Technologically it is within our grasp to represent business processes
electronically through the deployment of fixed line and wireless networks, new form
factors of PC hardware and a common set of open Internet standards. However it is at
the software layer that we need to see innovation to make the leap, Web Services are the
key technology, providing us with a standard architecture with to solve the problem of

Complexity
Reduction

Service
Architecture.NET

M
obile/

Sm
art

D
evices

Complexity
Reduction

Service
Architecture.NET

M
obile/

Sm
art

D
evices

© 2003 CBDI Forum Ltd 96

connecting People, Process, Information and organising the Relationships between
them."

 Peter Bell, Microsoft .NET Developer Group
One question we still get asked at CBDI, is ‘well what exactly is .NET then’? I think Microsoft’s
phrase “to reduce the overall complexity” is part of the confusion. J2EE provides similar
capabilities but its features are visible in the lines of code you have to write to exploit it. Like the
Lloyds building in London with its pipes on the outside one can see what it does and how it
connects your system together. In contrast, .NET takes that complexity and pushes it down into
the duct work of the technology platform. What you need to do to deploy a web service? Add an
attribute and save the C# file; to consume one, just add a web reference.

Architecture – Inside and Out
We asked Microsoft to comment specifically on what guidance they provide for system architects
when embarking on a web services project. The answer, a URL, did highlight the fact that
Microsoft has really woken up to the importance of architecture and patterns.
The primary source for architectural guidance from Microsoft is from the .NET Architecture
Center21, provided by their Patterns and Practices group.
We were particularly impressed by the new Patterns and Practices area which discusses the
importance of patterns and catalogues some of the more important ones. For example, go to
http://msdn.microsoft.com/practices/ where you will find many of the ‘Gang of Four’ patterns
described and implemented in .NET.
Microsoft have also published a 166 page recommendation on how to architect a .NET solution,
the abstract is as follows:

“This guide provides design-level guidance for the architecture and design of .NET
Framework applications and services built on Windows 2000 and version 1.0 of the .NET
Framework. It focuses on partitioning application functionality into components, walks
through their key design characteristics, explains how security, management and
communication apply to each layer, and provides information on how the components
should be deployed”22

The whole-hearted support for architecture and patterns is reflected not just in the support they
now provide on the MSDN but also in the way they build product. Working closely with IBM on
SOAP standards (GXA) has created a modular architecture on which their .NET platform will be
based. A recent release of WSE (Web Service Extensions) neatly demonstrated the plug-and-
play SOAP architecture. This simple add-on to .NET added encryption, identity tokens and
routing to web services. Likewise the forthcoming ‘Jupiter’ release of the e-commerce platform
will unify a collection of server products into a modular architecture for e-business.

Service Oriented Architecture
Adoption of SOA is a long-term goal for many IT strategists – Web Services being just one
technology component needed to make it happen. SOA is important for enterprise IT because it
provides the framework that unites the business model with the applications that provide the
functionality required for efficient business. Without SOA IT systems become a disjointed
collection of packages, functions and screens that consume ever-increasing resources to
maintain and evolve. SOA imposes a direct correlation between business operations and
software services, making it a simple task to maintain and re-factor new systems from existing
services.
Microsoft has placed themselves at the leading edge of the Web Services curve with .NET and
are responsible for much of the work on WS-Security and WS-Routing. In 2002, the majority of

21 http://msdn.microsoft.com/architecture/
22 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp

© 2003 CBDI Forum Ltd 97

Web Services activity has been internal we asked Microsoft what advice they would give to their
customers considering external Web Services:

"We would encourage our customers to look to understand which business opportunities
can be realised or optimised as a result of Web Services. In the simplest of cases this
can simply be that the opportunity cost is lowered to a point it makes sense to enter a
new market. In a more complex scenario it may be that the technology creates an entirely
new opportunity. The latter is less frequent and harder to find, but the former example
affects every business- doing more with less.
2003 should see the completion of the next set of core standards, providing a much
needed common approach to security, reliable messaging and transactions. This will
have an exponential effect on the number of business contexts where Web Services can
be used. The relative maturity of the development platforms will also naturally bring in
those customers who do not wish to be early adopters of technology. Lastly the success
stories of 2002 will be a motivator that will move us towards critical mass. In 2002
Microsoft published over 200 customer case studies where the .NET framework was the
development platform, the majority of those using Web Services as part of the solution. "
Peter Bell, Microsoft .NET Developer Group

The Mission to Jupiter
Jupiter is Microsoft’s project name for their next major initiative for joined up business. It takes
the various e-commerce servers and unifies the architecture on the .NET platform, taking
advantage of the emerging XML standards for process management (BPEL) and the GXA SOAP
stack. The first phase is due for release later this year so we have little concrete product
information to share. However the following, taken from their press releases indicate a clear
direction.
The first set of technologies is scheduled to be delivered in the second half of 2003 and will
contain the services for Process automation, Workflow, Integration technologies, BPEL support,
Integrated developer experience.
The second set of technologies is scheduled to be delivered in the first half of 2004 and will
include all of the previous capabilities, with the addition of services for Content management;
Commerce services; Catalog management; Campaign management; Site management; Site
analytics; Targeting; Personalization; Integrated information worker experience

The Roadmap to SOA
In the transition to SOA corporations inevitably have to deal with a legacy of point solutions built
on a variety of platforms. Choosing .NET as the strategic platform on which to build SOA is a first
step. An architecture that uses adapters to plug in existing functionality will provide flexibility for
the future migration to a less diverse set of platforms and also provide a mechanism to provide a
uniform management and security infrastructure based on the GXA stack.
Migration of existing functionality, whether it is on the Microsoft or another platform, is best done
using Web Services technology. We have drawn up a simple table which can be a starting point
in the planning process:

© 2003 CBDI Forum Ltd 98

Table 26 – Migration of Existing Functionality

Figure 18 - Service Adaptor Layer provides access to Legacy Systems

Mobility and Smart Devices
Mobile smart devices such as phones with colour browsers, PDAs, tablet and hand-held PCs will
increasingly find application in the connected workplace. The .NET platform has now found full
support for these devices in the Studio 2003 release. Developers first into this area of application

Existing
Functionality

Tools Comments

VB COM.
COM+,
C++ objects

Visual Studio .NET or
TlbImp.exe

Using the .NET-COM bridge capability allows
COM objects to be wrappered within a .NET
class. A runtime callable wrapper can be
generated using the import utility or by
adding a reference to a Visual Studio project

Java Classes/EJB BizTalk Adapter or AXIS
and .NET Studio

Using the Apache AXIS server, Java
methods can be exposed as web services
and the WSDL used to add a web reference
to your .NET project

Mainframe
Applications

BizTalk plus adapter Platform service adapters provide Web
Service interface

CORBA BizTalk Adapters from
Actional/iWay

Platform service adapters provide Web
Service interface

Packaged
Applications, ERP,
SAP etc

BizTalk Adapters from
Microsoft et al

A range of 3rd party adapters allow BizTalk
to create SOAP interfaces to your ERP
application

Packaged
Applications CRM,
Siebel, etc

BizTalk Adapters from
Siebel et al

A range of 3rd party adapters allow BizTalk
to create SOAP interfaces to your CRM
application

Microsoft .NET

C
or

po
ra

te

So
ftw

ar
e

R
es

ou
rc

es

Service Adapter LayerC
om

m
un

ic
at

io
n

Se
cu

rit
y

M
an

ag
em

en
t

Microsoft .NET

C
or

po
ra

te

So
ftw

ar
e

R
es

ou
rc

es

Service Adapter LayerC
om

m
un

ic
at

io
n

Se
cu

rit
y

M
an

ag
em

en
t

© 2003 CBDI Forum Ltd 99

development had to rely on embedded C++ and VB toolkits and we welcome the unification of the
compact and mainstream platform that .NET brings for 2003.
Any device worthy of the label ‘smart’ will have some sort of browser and the .NET server now
has the ability to adapt the mark-up language to fit the targeted screen. Microsoft Mobile Internet
Toolkit (MMIT) allows you to write one .NET application that will render itself on the target
browser using the appropriate subset of HTML, WML for phones, cHTML for PDAs.
More powerful clients with a disconnected capability or a richer user interface are written using
the SDE (Smart Device Extensions) to .NET and this too is supported from the .NET Studio 2003
release. This approach dovetails with the SOA, Web Services being provided from the corporate
server to synchronise information with the mobile workforce.

Summary
We have seen a fundamental shift in Microsoft’s support for concepts of software architecture and
patterns. They now have a comprehensive web site for architects, complete with example
implementation code. The concepts of Service Oriented Architecture now permeates the .NET
platform and we can see clear differentiation between .NET and J2EE, in the way .NET
increasingly hides complexity and improves productivity by doing more with less code.
Microsoft clearly sees the SOA extending out from the corporate workplace to mobile and smart
devices and this will be an exciting area to be in over the next few years. The Java world has
made some early wins on the PDA platform but there is a significant market developing for
Microsoft here.

Links
Microsoft .NET http://www.microsoft.com/net/
Microsoft .NET Architecture Center http://msdn.microsoft.com/architecture/
Microsoft Web Services Developer Center http://msdn.microsoft.com/webservices/

© 2003 CBDI Forum Ltd 100

Practical Support for Separate Supplier and Consumer
Activity

Abstract: Select Business Solutions has promoted component and service based
approaches to software analysis and development for many years based on the formal
separation of supply, manage and consume activities. In this report we highlight how
Select is guiding its customers to adopt service orientation.
Introduction
Select has promoted component and service based approaches to software analysis and
development for many years. They first articulated guidance to their customers in the Select
Perspective method, published in 1998.
The original Select Perspective was the first clear articulation of how to develop component-
based systems for business enterprises. Recently a new and radically revised Perspective has
been published, representing a considerable advance on earlier thinking and providing a maturity
of guidance that is clearly based on deep and extensive practical experience. Five years ago,
software industry leaders were focused on techniques and development processes, with a strong
emphasis on forward engineering. Today the new Perspective provides detailed advice on how to
achieve the real business benefits that come from a mature software delivery process that is
predicated on service, component and asset management and reuse, and the managed
collaboration of the separate activities involved. Select’s CBD experience maps directly to SOA,
and shows the real world experience contained with Select Perspective. See Select Business
Solutions later for an overview of the products.

Supply Manage and Consume (SMaC)
Select's guidance and products therefore, are based on separation of the activities of service and
component supplier and consumer. Supply, manage and consume (SMaC) is the core philosophy
underlying the Select process and toolsets, that formally separates concerns and activities implicit
in distributed design by contract. Suppliers of components and services work to meet the
specifications that describe the consumers’ needs for the delivery of business solutions.

Supply Manage Consume

In principle, services may be
provided by any party on any
platform.
Reuse of available services
is preferred to the
construction of new services.
High levels of reliability and
availability may indicate a
demand for multiple supply

Communication between the
parties, publication of
services, and quality control
are overseen by the
Management function whose
core objective is to enhance
the value of the software
assets being managed.
Management of services
implies matching and binding
available services to multiple
requirements.

In principle, services may be
consumed by any party in
any context on any platform.
Promoting reuse may mean
making the service available
to a greater range of users.

Table 27: Supply / Manage / Consume

In its original and simplest form, Design by Contract incorporates the idea that components and
services can be specified in terms of a logical or functional contract. While the term “Web Service
contract” is sometimes used in the very narrow sense of the syntax/signature of the service
interface, as expressed in WSDL/XML, Design by Contract has a broader concept of contract,
which explicitly includes the semantics of the service call in terms of preconditions, postconditions
and invariants. Dependencies between services (which may be covered in BPEL) are
represented by the pairing of preconditions and postconditions, though very loose coupling
should minimize these dependencies.

© 2003 CBDI Forum Ltd 101

In a distributed service-oriented environment, this notion of contract needs to be extended still
further to cover the quality of service and commercial issues, as shown below. The W3C WS
Architecture Stack has layers for SLA, and BLA (Business), which cover these types of elements.

SMaC Relationship Contractual Elements

The full requirements of a service contract are therefore as shown in Figure 19.

Figure 19 - Full Service Contract

Four Routes to SOA
Select Business Solutions estimates that fewer than 20% of their SOA customers have a CBD
background. Many come straight from OO, pre-OO and legacy integration.
The technologies associated with Web Services and SOA have greatly reduced the costs and
difficulties of at least some aspects of interconnecting complex systems from disparate pieces, as
well as the perceived risk. This leads to a significant expansion in the range of applications and
projects that are economically and technically feasible. In other words, while OO/CBD delivered
significant benefits for some requirements in some organizations, WS/SOA is expected to be
cost-effective for a greater range of requirements in a larger number of organizations.

• Service Level Agreement (SLA)
• Quality of Service (QoS) specification
• Web services to be consumed
• Costs (time/usage based)
• Security impositions
• Web Service definitions
• other details such as client’s locale, available web service mirrors, etc

Contract

Logical
Contract

QoS
Contract

Commercial
Contract

Semantics /
Vocabulary

Semantics /
Logic

Syntax /
Signature

Contract

Logical
Contract

QoS
Contract

Commercial
Contract

Semantics /
Vocabulary

Semantics /
Logic

Syntax /
Signature

Contract

Logical
Contract

QoS
Contract

Commercial
Contract

Semantics /
Vocabulary

Semantics /
Logic

Syntax /
Signature

© 2003 CBDI Forum Ltd 102

Transition
to SOA
from …

… New
Solution

… OO & Micro-
Componentry

… Enterprise
CBD

… Legacy
& COTS

Starting
Point

New application
with little or no
need to integrate
legacy
functionality.

Small-grain
objects and
components
migrating to SOA

Enterprise
process for
large-grain reuse

Integrate legacy &
COTS into a
Service Oriented
Architecture

Example Large UK Retail
Organisation

ABN Amro Large US Utilities
Company
Large UK Utilities
Company

Limit Underwriting
Large UK
Independent Bank

Typical
Challenges

New technology
Reuse,
gaining skills
use of tools,
adoption of
process

twin-track
process,
SMaC,
organisation
change,
standards for
services

Interoper-ability,
asset
management
issues

service mining
service
integration
rolling
replacement of
legacy technology
interoper-ability

Table 28: Four Routes to SOA

New Solution
While many large IT organizations have some teams with OO or CBD experience, these methods
often have not been rolled out fully across the organization. So there are still many projects and
application areas that have not yet been touched by OO or CBD.
WS/SOA is in some ways easier to adopt than OO/CBD. The coarser grained nature of a Web
Service brings higher business visibility and understanding. From a technological point of view,
the standardization of the WS protocols makes some of the interfacing and connection issues
simpler to manage. For many organisations, XML and XML Messaging, e.g. SOAP is their first
step, with the adoption of the web services protocols as an incremental next stage.
Thus a direct route from pre-OO into Web Services and SOA proves a perfectly viable and
reasonable one; and Select has considerable experience helping organisations to move straight
to SOA. Let’s review New Solution adoption using examples from Select’s customer experience.

© 2003 CBDI Forum Ltd 103

Customer Large UK Retail Organisation

Project Name Customer Service – responding to the queries and service requests
from customers in-store

Project Objectives Develop service oriented (Web Services) solution inline with IT
strategic direction.

Initial Engagement
Description

Select service team involved from the start of the project:
Tool and UML training
Service and Component development process training
Principal consultant involvement for key milestone reviews
Select associates involved on a day to day basis:
Mentoring of the analysis team
Mentoring and leading the technical architecture definition and
implementation for SOA.

Tools Use Select Component Architect:
Business Process, Use Case and Service analysis
Service Design
Technical Architecture design and definition

Challenges
Overcome

Risks of new technology (Microsoft .NET), new development
process mitigated by tools and mentoring.

Process Issues Coordination of projects within programme in particular the
definition, implementation and use of common services, mitigated by
high quality service specification, and shared models based upon
asset management principles.

People Issues Cost of the initial development effort seen as higher than a
traditional approach. “Selling” and buy-in required to achieve
success.

Current Status Solution is starting to roll out to stores across the UK

Table 29: New Solution Adoption

OO & Micro-Componentry
For many organizations, CBD is perceived as merely an extension to traditional OO methods. In
so-called BottomUp CBD methods, component requirements are identified using class modelling
and then these requirements are bundled into physical components. Many organizations use a
single track process for objects and components, such as RUP – and while this approach is
certainly viable for small projects, the lack of clear separation between the functions of Supply,
Manage and Consume (“SMaC”) means that it cannot scale up for large organizations.
Such processes also limit the scope for reuse of components because they take a view that
components are primarily deployment-time artefacts rather than first-class tools for analysis and
design. In consequence, the service architecture is considered only very late in the life of a
project and opportunities for reuse at design-time and to reuse by adjusting and extending
existing assets are missed. ROI from such single-track, object-based methods are likely to be
considerably reduced.
In preparing its customers for the transition to SOA, Select has found that BottomUp CBD
experience, whilst widely regarded as a form of component based development, in reality
provides a similar appreciation of the issues to OO experience.

© 2003 CBDI Forum Ltd 104

For one of Select’s customers a UK Systems Integrator/Software Development House, a key goal
in moving to SOA was to establish the SMaC framework.

Customer Name UK Systems Integrator/Development House

Project Name Re-architect existing solution

Project Type OO to Components

Project Objectives To encapsulate middle-tier business implementation from client and
database concerns; to enforce a logical 3-tier model on the design of
the business architecture; to deliver components for future reuse.

Initial Engagement
Description

Select services team involved from start of the project:
Tool supply and UML training
Service and Component Based Development process training

Tools Use Select Component Architect:
Use Case and Service identification and definition.
Design of XML messages
Service design
Select Component Manager:
Cataloguing of Services to enable reuse by multiple channels

Migration/Evolution
Steps

Re-factor existing business layer;
Abstract business layer elements from data and presentation tiers;
Chunk the business tier into components and identify service
operations to be provided by each.

Challenges
Overcome

Correctly understanding the implications of a service-oriented
architecture; correctly encapsulate components to embody loose
coupling.

Process Issues Required the organisation to move to a Supply Manage and
Consume process.
Supply of services
Management and Reuse of services
Consumption of service within the channels
Roles not familiar within the organisation in particular the
management of the resultant service asset.

People Issues ROI is medium to long term therefore management buy in is key to
the success.

Current Status Application has been delivered, but business architecture is still not
fully componentised with consequent compromises in terms of
coupling, quality and maintainability.

Table 30 OO and Micro-Componentry

Case Studies in Enterprise CBD
Many large organizations have found that software reuse requires more than bottom-up CBD.
Enterprise CBD refers to the use of CBD within a defined enterprise process for managed reuse,
typically involving a twin-track process with project/organization separation between Supply and
Consume. This is sometimes called TopDown CBD.

© 2003 CBDI Forum Ltd 105

An organization with previous experience with enterprise CBD will find some of the principles of
SOA very familiar – especially the separation of concerns, the formality of contracts and
communications between suppliers and consumers, and the traceability of services and business
components from requirements to implementation.
Typically, Select’s customers that have Enterprise CBD initiatives are looking to adopt SOA as an
additional façade to their current component-centric view. The service becomes the granular,
business process-level protocol for collecting together business components for provisioning to
applications/solutions. As such, you could assume that this is “just another component access
protocol”. This would be a short-sighted approach as migrating components to SOA without
analysis, does not reap the additional benefits of granularity re-factoring. Services implement a
business process, business components collaborate to implement a business process, and
therefore the services need to access multiple components.
Table 31 and Table 32 illustrate two existing examples of Enterprise CBD migration to SOA.

Legacy & COTS
One of the key advantages of SOA is the ability to create services interfaces to integrate with
legacy systems and commercial off-the-shelf software (COTS). In the past, project groups
focused on COTS implementation would often be excluded from OO or CBD methods – but these
groups can now be brought inside an SOA process.
Limit Underwriting has gained considerable experience in wrapping legacy COBOL code using
proprietary middle-ware technology and exposing Microsoft COM interfaces. Select tools are
used extensively to catalogue the available services resulting from wrapping exercises and to
model the consumption of these services into newly deployed business solutions. The result has
been the speedy deployment of solutions, based on modern user interfaces, whilst preserving
and enhancing the value of the legacy code.
To support future technological change, Select have recommended the adoption of the ideas of
loose coupling. The provision of web services from the existing technology base is an incremental
step, supporting genuine service reuse through multiple business and technological channels. A
key risk identified by Limit is their dependence on obsolete technology to access functionality that
has not yet been replaced by wrapped code and to manage the access to data. However the
loosely coupled Web Services architecture does provide implementation transparency, and
enables a “plug-and-play” approach to the progressive upgrade of functionality in an existing
environment and, ultimately, the replacement of legacy database technology by an RDBMS.
Another example is a large UK Retail Bank, shown in Table 33.

© 2003 CBDI Forum Ltd 106

Customer Name Large US Utilities Company

Project Name IT Strategy Programme

Project Type Enterprise CBD

Project Objectives To enable the integration of many disparate systems.
Promote loose coupling and rapid application assembly.

Initial Engagement
Description

Select services team involved in the process of Service and
component management, in particular:
To help define a process context for Supply Manage and Consume of
services across the organisation
Identifying a process for Service and Component Management
Provide Select Component Manager configuration and usage training
to support the process

Tools Use Select Component Manager:
Provide a central repository for reuse of services and components
Enable the rollout of SOA across multiple development streams.

Migration/Evolution
Steps

Harvest existing services and components
Identify pilot project(s):
Candidate for Legacy wrapping
Applications
Publish services for reuse

Challenges
Overcome

Cross-site working making communication across projects difficult.
Adoption of service oriented process and toolset is helping establish
the roles and communication across the organization.
The role of Service and Component Librarian – managing the service
repository may be seen as an unnecessary overhead for a
traditionally project oriented company.
Clearly stating objectives early in the strategy and meeting those
objectives mitigates against this misconception.

Process Issues Role out of new process requires planning and support for multiple
programmes.

People Issues Training and awareness of the broader objectives is key to the
success

Current Status Service and components starting to be reused across solutions

Table 31 - Enterprise CBD migration to SOA Example 1

© 2003 CBDI Forum Ltd 107

Customer Name Large UK Utilities Company

Project Name Combined Electricity and Gas Trading System

Project Type Enterprise CBD

Project Objectives Provide trading functionality from previous CBD projects to facilitate
Gas and Electricity Trading

Initial Engagement
Description

Current successful customer with CBD, engaged at project initiation
to help decide on outsource supplier, and help manage the
implementation and solution assembly. Training, ongoing consulting
and project resources provided for the Service specification, and
Service Provisioning by the selected supplier.

Tools Use Select Component Architect, Select Component Manager and Select
Reviewer

Migration/Evolution
Steps

Refined documentation of the existing component/service assets
with SCM
Validation of three suppliers, based upon delivery of a technical
component/services as a trial
Split of teams between Solution Assembly and Service Provision by
Third Party
Implement quality measure for Service Reuse

Challenges
Overcome

Solution and Service/Component collaborative and incremental
working resolved through Component Manager
Service specification rigour for third party development using
Component Architect and Reviewer for quality assurance
Service prioritisation when dealing with Gas implementation first,
then Electricity second

Process Issues Consumer/Supplier relationship with incremental working
Service specification and testing/gap analysis

People Issues Predictability of delivery timescales, given “black box” nature of
service specification, need to drill in to get quality metrics – mitigated
by the use of detailed models to establish require artefacts, and
therefore predictable metrics
Relationship management and communication between
supplier/consumer – managed by the use of a central, versioned
services repository (Select Component Manager)
Service prioritisation, particularly when two utility types being
implemented, managed by versions of the services, and related
model definitions to establish/manage incremental delivery

Current Status First increment, Gas Trading and Operations delivered, Electricity
variant scheduled for the Summer, on target

Table 32 - Enterprise CBD migration to SOA Example 2

© 2003 CBDI Forum Ltd 108

Customer Name Large UK Retail Bank

Project Name New Channel Services

Project Type Legacy/COTS

Project Objectives To remove knowledge and dependencies of the underlying legacy
systems from the multiple access channels
Provide a single access point for business functionality and data

Initial Engagement
Description

Select services team involved from start of the project:
Tool and UML training
Service and Component Based Development process training
Consultancy help steer each stage of the development process, in
particular – Use Case and Service analysis, Service design.

Tools Use Select Component Architect:
Business process, Use Case and Service identification and
definition.
Design of XML messages
Service design
Select Component Manager:
Cataloguing of Services to enable reuse by multiple channels

Migration/Evolution
Steps

Evaluate integration technology
Select initial delivery channel and functionality required.
Identify key legacy transactions “bang for buck” to establish early
ROI and reuse
Define Technical Architecture Framework for Services and Legacy
Execution, including data transformations through the layers.

Challenges
Overcome

A well-defined Service and Component Based Development
process enabled potentially difficult synchronization of multiple
delivery teams. E.g. Channel, Legacy integration, middleware.

Process Issues Required the organisation to move to a Supply Manage and
Consume process.
Supply of services
Management and Reuse of services
Consumption of service within the channels
Roles not familiar within the organisation in particular the
management of the resultant service asset.

People Issues ROI is medium to long term therefore management buy in is key to
the success.

Current Status The business channels are successfully using Middleware services.
New channel projects starting to reuse middleware services.

Table 33 - Enterprise CBD migration to SOA Example 3

© 2003 CBDI Forum Ltd 109

Select Business Solutions

Figure 20 - Select Business Solutions

Links
Select Business Solutions: http://www.selectbs.com/

Select Perspective
The new Perspective process provides detailed advice on how to achieve the real business
benefits that come from a mature software delivery process that is predicated on the managed
collaboration of the separate activities involved. Select's guidance and products are based on
separation of activity into the activities of supply, manage and consume (SMaC).
The SMaC process is inherently service oriented. The process is predicated on reusing
existing service and component assets where they already exist, either directly or by
extension, and provides a formal framework for distributed design by contract and reuse from
third parties. The process together with tools orchestrates the communications and work of
suppliers and consumers.
Select Toolset
Select Component Factory is a suite of UML based modelling tools that actively support the
SMaC framework. Analysis and design activities are supported by Select Component
Architect, which adds Business Process Modelling and Data Modelling notations to UML. The
Component Factory covers modelling from understanding the business context to the design
and implementation of the physical database. Software solution designs are expressed in
terms of the protocols of service operations.
Select Component Manager supports component and service asset management, including
publishing. Select Process Director provides support for the definition, customization and
deployment of the software development process based on the Select Perspective.
Select Support
Select Professional Services provide advice and guidance and help to manage organisations
through every step of the adoption of Service Oriented Architecture and the development
infrastructure to support it. Focused on skills transfer, services include training and mentoring
of the initial project teams, through to planning and guiding the implementation of organisation
changes.

Software
Process

Organization
Capability

Software
Tools

Planning

Skills Transfer

Select Training

Process Director

Component Manager

SMaC

Select Perspective

Component Factory

Software
Process

Organization
Capability

Software
Tools

Planning

Skills Transfer

Select Training

Process Director

Component Manager

SMaC

Select Perspective

Component Factory

Subscribe to CBDI Forum

CBDI provides continuous
guidance and best practices
for the Service Oriented
Enterprise. In addition to the
monthly CBDI Journal and
other reports, subscription
includes access to workshop
materials.

For more details and to
subscribe see:
www.cbdiforum.com

About Us
We aim to provide unique insight on component and web service
technologies and processes for end-user organizations and
vendors. We provide high quality analysis and other information
resources on best practice in business software creation, reuse
and management, with the highest level of independence. Our
competencies cover business issues through technical platform
and application design.

Learn from CBDI
CBDI provides a number of channels including:
• Subscription services - access our continuous commentary

and practice guidance in the monthly CBDI journal, and via
workshop materials.

• Workshops and seminars - jump start your team with in depth
briefing and guidance on advanced architectures, processes
and practices from CBDI analysts.

• Consulting - put CBDI's insight to use in your organization. We
can assist in many ways including application audit and
guidance, product management and marketing advice,
technical and business evaluation for investment

Who uses CBDI Resources?
Technical leaders including architects, business analysts, CIO's,
consultants, CTO's, lead developers, development managers,
process engineers, product managers, project managers,
researchers, strategists, technologists and technical managers.
Membership is split 40% USA, 50% Europe.

Contact us:
For further information on any of our services contact us at:
info@cbdiforum.com or +353 2838073 (Ireland)

IMPORTANT NOTICE: The information available in this publication is given in good
faith and is believed to be reliable. CBDI Forum Limited expressly excludes any
representation or warranty (express or implied) about the suitability of materials in
this publication for your purposes and excludes to the fullest extent possible any
liability in contract, tort or howsoever for implementation of, or reliance upon, the
information contained in this publication. All trademarks and copyrights are
recognised and acknowledged.

Web
Services Roadmap
A CBDI Report Series – Guiding the Transition to Web Services
Web Services will shortly become a core infrastructural technology, and potentially open up many new
opportunities at both business and technical levels. The key questions for enterprises are where to start,
what to do now, and how to prepare the ground for a period of rapid and constant evolution while
maintaining high quality and minimum risk? The CBDI Web Services Roadmap provides a framework for
planning and managing the introduction of Web Services and SOA, together with guidance on many
related topics.

CBDI Web Services Roadmap deliverables are available without registration at

www.roadmap.cbdiforum.com

