
IBM WebSphere Portal security solutions
White paper

Integrating WebSphere
Portal software with your
security infrastructure.

By Ingo Schuster, Frank Seliger,
Dieter Bühler and Thomas Schaeck
IBM Software Group

October 2003

Integrating WebSphere Portal software with your security infrastructure.

Page 2

Executive overview

Portals provide personalized access to information, applications, processes

and people from a centralized point. You can authenticate users and control

access to various kinds of information and applications, based on preset secu-

rity definitions. Allow public access to less-sensitive information. And guard

classified information—such as business-critical enterprise or government

data—more carefully.

To accommodate different security requirements, portal servers must inte-

grate with various security infrastructure components—such as authentication,

authorization and single sign-on control—so you can choose the combination

that best matches your security needs. For example, authentication might be as

simple as requiring users to provide a correct user name and password. Or, your

customers could use a “smart card”—for example, a bank card with a chip that

safely stores a private key and certificate—to provide authentication. The smart

card enables Secure Sockets Layer (SSL) or Transport Layer Security (TLS)

client authentication to establish an authenticated and safe connection between

the client and the portal.

Through a modular architecture, IBM WebSphere® Portal for Multiplatforms,

Version 5.0 allows the integration of different authentication proxies, authori-

zation systems and credential vault implementations. WebSphere Portal

software is designed to work with IBM WebSphere Application Server security 1

features and IBM Tivoli® Access Manager, as well as with third-party security

products, so that you can build a highly protected system that fits your indi-

vidual infrastructure.

Introduction

Using WebSphere Portal, Version 5.0, you can establish protected access to

portal resources like page groups, pages, portlets and documents. WebSphere

Portal offers different ways to perform user authentication and authorization,

and it provides support for single sign-on. Figure 1 shows the key components,

from left to right, that are invoked when WebSphere Portal software handles

requests for portal pages. Although some portal pages can be accessed without

prior authentication (anonymously), all requests for personal pages or group

pages must pass through an authentication component. If a user is authenti-

cated successfully, the incoming request is analyzed and routed to the

appropriate component.

2 Executive overview

2 Introduction

4 Typical portal scenarios

9 Available authentication methods

10 Authentication through WebSphere

Application Server security features

10 Authentication through a separate

authentication proxy

12 Requests in an authenticated

session

13 User registry versatility

14 Portal session login

15 User logout or timeout

16 Customization of the portal login

and logout process

16 Single sign-on capabilities

17 Single sign-on from a client to

Web applications

18 Single sign-on between Microsoft

Windows workstations and portals

18 Single sign-on from portal to

back-end system

23 Client-to-portal communication

security

26 Restricting protection to sensitive

communication only

26 Using client certificates

27 Secure back-end connections

28 Understanding access-control

concepts to protect portal resources

33 Administering access control

34 Delegating administration

34 Integrating external

authorization systems

35 Maintaining portal security

36 Summary

36 For more information

Contents

Integrating WebSphere Portal software with your security infrastructure.

Page 3

HTTP requests from user agents seeking a portal page are routed to the portal

servlet, which acts as the central access point to all portal pages. Simple Object

Access Protocol (SOAP) requests from other portals intended to invoke one of

the local portlets are routed to the Web Services for Remote Portal (WSRP) or

SOAP router. In either case, authorization is required. The component

receiving the request calls the authorization component to determine whether

the requested page or the portlet to be invoked can be accessed. To guarantee

consistency of access rights, authorization information to most portal resources

is maintained in the portal. However, for some resources access control may be

externalized to systems such as Tivoli Access Manager or Netegrity SiteMinder.

When a request is routed to the portal servlet and access to a page is authorized,

the portal servlet obtains information about the portlets2 that are referenced

from the page. Next, the portal servlet calls the authorization component to

determine the subset that the current user may see, according to current access

rights, and then displays the subset. Next, the servlet selects the appropriate

aggregation module—based on the user-agent information from the request —

Figure 1. Subsystems of WebSphere Portal, Version 5.0

��������
�������

���������
�������
���������

���������
�������

���������� �����������
���������

����������
����

���������

�������
�����������

������������� ��������������� ���������
������������

���������
�������������

������
�������������

������
������������

�����������
����������������� ���������

������������� ��������
���

�������
����

������
��������

���������

��
��
��

��
��
��
��

�
��
��
��
���
��

��
���

��
��

��
��
��
���

��
��
��
��

��
�

��
��

��
��

��
��

��

����������������

��
��

��
��

��
��

��
��

��
��
��
��

��
�

��
��
��
���
��
���
��

��
��
��

��
��
��
���

��
��
��

��
�

��
��
��
���

��
��
�

��������

���������
������

��������

��������
�����������������������

���������������

��������������������
���

�������������
�����������

�����

�
��
��

��
��
��
��
��
���

��
��
��
�

��
��
���
��

��
��
��

��
��
��

�
��
��
���
��
��
��
�
��
��
�

��
��
���
�
��
��
��
�
��
��
��
��

�
��
�
��

��
��
�
��
��
���

��
��
��
��
�

Integrating WebSphere Portal software with your security infrastructure.

Page 4

and calls that module, passing the information about the page and the portlets

to be displayed. The invoked aggregation module renders the page and the

portlets in it by calling the referenced portlets. The module uses the portlet

application programming interface (API) to communicate additional user

profile information and portlet instance data from the WebSphere Portal data

store to the portlet.

Portlets are special servlets that—unlike other servlets—are designed to

participate in the portal’s event model and exploit the portal infrastructure.

As a result, a portlet invoked by the portal can, in turn, invoke any Java™ 2

Platform, Enterprise Edition (J2EE) function such as J2EE Connector

Architecture (JCA) Connectors, Enterprise JavaBeans (EJB) components,

message beans and Java Database Connectivity (JDBC) components. A portlet

may also call Web services and HTTP uniform resource locators (URLs) in

the same way it calls other servlets. It can also invoke portal-specific portlet

services and tag libraries designed to access the portal infrastructure from

JavaServer Pages (JSP) components.

Portlets are often used to integrate back-end applications with portals,

providing a Web-based user interface (UI) through the portal. When used

this way, having single sign-on capability is important because after logging

into the portal, users don’t want to enter an additional password for each appli-

cation portlet for the respective back-end systems. To enable single sign-on,

WebSphere Portal provides a credential vault portlet service. With this service,

credentials are available to portlets to forward to back-end systems where users

are then transparently authenticated. The credential vault service is backed by

a credential vault, which can either be the portal’s built-in vault or a Tivoli

Access Manager vault.

Typical portal scenarios

When you build a portal system on WebSphere Portal, you have a variety

of possible deployment options—including simple firewall protection and

Internet portal-based deployment—that provides different levels of perfor-

mance, scalability, availability and security.

Integrating WebSphere Portal software with your security infrastructure.

Page 5

Portals in protected networks

You can use a simple portal setup if your portal and its clients reside in your

protected network, assuming no internal attacks are expected. Because attacks

can be launched from your intranet, this setup, however common, is not the

best practice. The portal server, the database server and the user registry and

clients are all in the same network, protected by a firewall so they are not visible

to the Internet (see Figure 2). The Web server and the application server (with

the portal server code) are located on the same physical machine. Clients can

be connected to the portal server directly because they are in the same network.

The portal uses a separate database server to store data. All user information is

in a user registry on a third machine. And the same network includes any back-

end systems the portal applications might access.

Internet portals

When you need your portal to service Internet-based clients, simple firewall

protection isn’t enough. At least one node of the portal system must be visible

from the Internet. Typically, two or more firewalls are used, but there are a

number of variations you can use.

�������� ��������

������
��������

����
��������

��������
������

��������

�����������
�������������

���������
������

���

Figure 2. Deployment of a portal within a protected network

Integrating WebSphere Portal software with your security infrastructure.

Page 6

The first configuration is appropriate for portals that use WebSphere

Application Server security features. If the portal directly handles authentica-

tion and access control for its resources, the machine running the Web server

must be visible to the Internet (see Figure 3) because the Web server is the

first node accessible to external clients. This means that the Web server

and the application server with the portal server code must be located on

different machines. The Web server is located in a demilitarized zone (DMZ)

behind an outer firewall. And HTTP requests to the Web server are the only

incoming traffic.

A second firewall provides additional protection for the inner network and the

back-end systems by only allowing traffic from the Web server to the portal

server. To penetrate the second firewall, an attacker must successfully seize

control of the Web server. To allow the portal server to access and aggregate

external content, an outbound proxy in the DMZ forwards requests from the

intranet and returns the responses from the Internet. You can use additional

firewalls to segment your intranet.

Web services

�������� ��������

��������
�����

���������� ������
������

������
��������

�������������

��������
������

�������������

�����������

��������
���������

�������� ��������

��������
�������

�����������

Figure 3. Example of a portal configuration serving to clients in the Internet

Integrating WebSphere Portal software with your security infrastructure.

Page 7

The second configuration option is ideal for portals that use a separate

authentication proxy. To authenticate, WebSphere Portal can use its own

authentication mechanism or rely on a separate authentication proxy,

as shown in Figure 4. A separate authentication component can provide a

single central authentication point for one or more portals and other Web

resources. The authentication proxy can be implemented as a separate server

machine, as a plug-in to the Web server or as a plug-in to IBM WebSphere Edge

Server software.

In this setup, authentication is performed by a proxy server. The authentication

proxy is the only node visible to clients connecting from the Internet. It is

protected by an outer firewall. The authentication proxy cooperates with its

authorization server, which is behind another firewall. This firewall allows

inbound requests only from the authentication proxy and inbound responses

from the outbound proxy. The outbound proxy forwards requests from the

intranet and returns the responses from the Internet. The authorization server

accesses the user registry, which is in the same network. The user registry is

used by the authorization server, the portal server and by other systems.

Figure 4. A portal deployment with separate authentication component

����
��������

��������
�����

�������������
������

���������������
��������������

��������������

�������
����������

������

���������
����

��������
������

������
������

Firewall Firewall

�����������
��������

������������

�������������

���

�����������

��������
���������

�����������

��������
�������

������
��������

��������

��������

Integrating WebSphere Portal software with your security infrastructure.

Page 8

The portal server functions execute on several machines in a cluster to

provide a higher capacity and fault tolerance. In Figure 4, the cluster includes

a load balance machine, several caching proxy machines and several portal

server machines.

A portal database, content management server and search server are located in

the same network as the authorization server, the user registry and the portal

server cluster. An additional firewall separates the network from the intranet.

Another deployment possibility is based on a portal cluster, which uses a

separate, load-balanced and fault-tolerant cluster of authentication proxy

server machines (see Figure 5). The network node visible to the clients in the

Internet is the load balancer, which dispatches requests between several

authentication proxies. The authentication proxies are located in the DMZ,

so that only authenticated requests pass through the second firewall into the

production network.

Figure 5. Portal deployment with clusters of portal servers and authentication proxies

��������
�����

���������������
�������

�������������
��������������

������
��������

�������
����������

������

���������
����

��������
������

������
������

����
��������

Firewall Firewall

�����������
��������

������������

�������������

���

�����������

��������
���������

�����������

��������

��������
�������

���������������
��������������

�������������
������

����
��������

��������

Integrating WebSphere Portal software with your security infrastructure.

Page 9

The portal server cluster is placed in the production zone behind the second

firewall with the portal database, the search server and the content manage-

ment server. A third firewall separates the portal server cluster network from

the intranet clients.

Figure 5 shows a typical network administration setup with a separate adminis-

tration zone. The middle firewall uses a third network adapter with customized

filters to securely connect the administration network with the outer DMZ

and the production network. The authorization server, user registry, network

administration system and Intrusion Detection System (IDS) are all within

the adminstration network.

Available authentication methods

Access-control features require positive identification, or authentication, of

the person or program requesting access to a secured property, such as to data

or to a location. In most cases, the authentication process requires a user identi-

fication (user ID) string and a user password to verify the authority of the user.

The standard way to provide the user ID and password to the server is through

HTTP basic authentication3, which uses a Web browser mechanism with a

standard login dialog box. Alternatively, using HTTP form-based authentica-

tion, the server sends a customized authentication form to the user.

Password-based authentication schemes offer limited security, because

passwords can be poorly chosen, shared, reused between secure and insecure

systems or stolen. Other authentication mechanisms include SSL/TLS client

authentication, based on digital signatures and certificates (including secure

storage on smart cards), hardware-based authentication, and one-time pass-

words such as the RSA SecureID token. And you can use various biometric

mechanisms, including fingerprint verification, iris scanning and voice

recognition to improve authentication.

Integrating WebSphere Portal software with your security infrastructure.

Page 10

WebSphere Portal offers an authentication subsystem that delegates user

authentication to underlying mechanisms of IBM WebSphere Application

Server. The subsystem provides support for the following authentication setups:

• Use of native WebSphere Application Server authentication. A custom login form

posts the user’s authentication data to a servlet that requests WebSphere Application

Server security4 to validate the user’s authentication data. This setup exploits

WebSphere Portal integration with WebSphere Application Server and its capability

to configure the portal as a secure Web application.

• Use of an authentication proxy. WebSphere Application Server provides a trust

association interceptor (TAI) interface that allows it to establish cooperation with

trusted authentication proxies.

Authentication through WebSphere Application Server security features

To use WebSphere Application Server security features, the portal is config-

ured as a secure Web application. When WebSphere Application Server receives

a request for the application (the portal), its security component requests the

authentication credentials from the client. Depending on which authentication

method is configured, the security component request will create an HTTP

basic authentication request or an HTTP over SSL (HTTPS) client certificate

request (which is an HTTP request used over a secure connection) to be sent to

the Web browser. Or, the client is redirected to an authentication form that

prompts the user to provide the credentials for authentication. In the latter case,

the form posts the credentials to a WebSphere Portal custom authentication

servlet that obtains the posted credentials. The servlet then makes the required

calls to WebSphere Application Server security functions to log in the user to

the WebSphere Application Server security environment. With either HTTP

basic authentication or HTTPS client certificate authentication, WebSphere

Application Server receives the authentication credentials directly. WebSphere

Application Server authenticates users by checking provided credentials

against a user registry. The user registry can be a Lightweight Directory Access

Protocol (LDAP) directory or a custom user registry.

Authentication through a separate authentication proxy

An external authentication proxy can protect your portal by intercepting

all requests targeted to portal destinations. An authentication proxy can be

implemented as a proxy server such as WebSEAL in Tivoli Access Manager

for e-business. Or it can be implemented as a plug-in to the HTTP server or to

WebSphere Edge Server. Examples of HTTP plug-in authentication proxies

Integrating WebSphere Portal software with your security infrastructure.

Page 11

include the Web Agent in Netegrity SiteMinder and the authentication plug-in

in Entrust GetAccess. Tivoli Access Manager plug-in for WebSphere Edge Server

plugs into WebSphere Edge Server instead of the Web server.5 An external

authentication component authenticates users by checking the provided

credentials against a user registry, which is in most cases an LDAP directory.

Trust association interceptors registered with WebSphere Application

Server establish a connection between WebSphere Application Server and

the authentication component protecting it. TAIs are programs called by

WebSphere Application Server to work with external authentication compo-

nents, as shown in Figure 6. The program relies on external components to

process authenticating requests rather than performing authentication directly.

WebSphere Application Server defines the interface that a TAI uses to indicate

that it can handle a request and that the request has been authenticated. TAIs

communicate with the authentication component and make the authentication

decisions accessible to WebSphere Application Server through the specified

TAI interface.

After a request for a portal destination passes the external authentication

component, it is received by WebSphere Application Server and sequentially

passed to the registered TAIs until one TAI indicates that it is responsible for

authentication and either accepts or rejects the request. When no TAI can

handle the incoming request, WebSphere Application Server reverts to its

native authentication, as if no TAIs are available. The client is then redirected

to the custom login form. However, this only occurs with requests that bypass

the external authentication component.

Tivoli Access
Manager WebSeal

proxy server

Netegrity SiteMinder
Web server plug-in

RSA ClearTrust
Web server plug-in

Authentication
component

Trust Association Interceptor WebSphere
Application Server

WebSeal TAI
(part of WebSphere Application

Server, Version 5)

Netegrity SiteMinder
TAI

ClearTrust TAI
(provided by RSA)

WebSphere
Application Server
security features

Tivoli Access Manager
plug-in for WebSphere

Edge Server

Figure 6. Authentication components and TAIs

Integrating WebSphere Portal software with your security infrastructure.

Page 12

Requests in an authenticated session

When authentication is complete, the user is logged in, a portal session is started

and a Lightweight Third Party Authentication (LTPA) token, containing the

user ID and an expiration date and time, is issued to the client, along with the

HTTP session cookie (usually named JSESSIONID)6. LTPA is supported by

WebSphere components.

Figure 7 shows the detailed flow of control for a request that is passing through

an external authentication proxy. The interactions are the same for authentica-

tion proxies implemented as separate servers and for proxies implemented as

plug-ins for the Web server or WebSphere Edge Server.

������ ��������������
�����

���������
�����������

������

���������
������������������

��������
������

��� ������
�������

����
���������
������

������������
���������������

��������������
����

���������������������������������������

����������
��������

����������������������

���

�����������������������

������������

������������
���������������

��

��

�������

Figure 7. Flow of control for a request passing through an external authentication proxy

Integrating WebSphere Portal software with your security infrastructure.

Page 13

As proof of authentication, user information is signed and encrypted into

an LTPA token, which can be verified by all servers that are part of the LTPA

single sign-on (SSO) domain (see Figure 8).

User registry versatility

A user registry is a repository that holds information about registered users

and groups, as well as applications that are validated through the user registry.

WebSphere Application Server and WebSphere Portal allow an internal

WebSphere Portal database, an LDAP directory or a custom registry to be

used as a user registry. WebSphere Portal shares the authentication registry

with WebSphere Application Server while having a separate database for user

profiles and preferences. Some profile information may also be stored in the

same physical store as the authentication registry. For example, an LDAP

directory may contain significantly more information about each user than

simply a name and password.

In WebSphere Portal, Version 5.0, user information is centralized in

the member manager component. This component in WebSphere Portal

can be configured for different layouts of data in the user registry and its

database as shown in Table 1. WebSphere Portal can also work with a

read-only user registry so all portal user data to be updated is stored in

the internal database.

������ ����
�����������

��������������

���������
�����������

������

���������
��������
������

��� ������
�������

������������
���������������

������������
�������

������

�������

����
�������

������

�������

����������������������

Figure 8. Flow for a request that is already authenticated

Integrating WebSphere Portal software with your security infrastructure.

Page 14

The member manager component determines group membership. This

information is used by the WebSphere Portal access control and administration

functions. The lookup function helps to evaluate nested groups. A configurable

option stops group membership lookup at the first level to help prevent a

decrease in performance.

Portal session login

After WebSphere Application Server authentication, the portal login is

performed (see Figure 9). The user object is populated from the user registry

and the user session is resumed from the saved state, if this option is selected.

Finally, the Web browser is redirected to the target page, which can be defined

as part of the redirection policy.

During the WebSphere Portal login sequence, a Java Authentication and

Authorization Services7 (JAAS) login is executed. JAAS is a Java API that

specifies classes in three different categories: common, authentication

and authorization. WebSphere Portal primarily uses the common classes,

such as the JAAS subject. The authentication classes—such as LoginContext

and LoginModule—are used only with partial functionality, and the authoriza-

tion classes remain unused. A JAAS login, as defined by the JAAS specification,

executes a number of login modules and returns the user’s subject as a result

of a successful login. The subject is a container for the user’s identities

(principals) and credentials. Each login module can add principals or

credentials to the subject.

Table 1. Supported authentication registries and corresponding WebSphere Application Server and WebSphere Portal settings

Member manager
confi guration

WebSphere Application Server
authentication registry

Description

LDAP and database LDAP The authentication registry is a directory server. You can confi gure which
profi le information is stored in the LDAP and which is stored in the database.

Database only Custom user registry provided by
WebSphere Portal

WebSphere Portal provides a custom user registry implementation for the
internal database. The authentication registry is part of the member manager
component, and profi le information is stored in the same database.

Customer-provided registry Custom user registry provided by
customer

The customer supplies a custom user registry. Profi le information is held in
the member manager component database as well as in the custom registry.

Integrating WebSphere Portal software with your security infrastructure.

Page 15

By specification, JAAS login modules may also try to authenticate the user.

In WebSphere Portal, however, user authentication is already performed by the

authentication component. So, WebSphere Portal JAAS login modules typically

only populate the user’s JAAS subject, which allows you to store, for example,

SSO tokens. These tokens can be used by special active credential objects that

enable portlets to access other applications within the SSO domain.

User logout or timeout

A session can timeout at a specified interval of inactivity, or users can log out

manually with a logout button added by the aggregation engine to every page

banner. In the event of inactivity, when a timeout occurs, the portal logout

function performs the following actions:

• Suspend User Session. The user’s portal session is persisted.

• Portlet user logout. The portlets are notified of the event “user logged out”

to give them the option to finalize or terminate active actions and transactions.

WebSphere
Application

Server

Portal
login

command

Login
context
(JAAS)

JAAS
login

modules

JAAS
subject

User
subsystem

API

Portal
user

object

User
subsystem

implementation

User
registry

Portal
login

Populate
user object

��������������������������

�����
������

������
���������

�����������

������
���������

�������
�������

���������������

�����������

Figure 9. Portal login after successful authentication

Integrating WebSphere Portal software with your security infrastructure.

Page 16

If the logout was initiated intentionally by the user and not by session timeout,

a WebSphere Application Server logout is performed. The user’s credential

token is marked as invalid, and a respective cookie invalidation command is

added to the response. The browser is then redirected to render the post-logout

target. When using an authentication proxy, WebSphere Portal must be set up

to redirect to the authentication proxy’s logout page after logout. That way,

the authentication proxy is also notified of the logout.

Customization of the portal login and logout process

WebSphere Portal allows you to customize the portal login and logout

procedures. The following modifications are possible:

• Specifying the post-login and the post-logout redirection policy and targets

• Adding custom JAAS login modules that are used to authenticate a user and

populate the portal’s user JAAS subject with principals or credentials

• Securing the login interactions and the personalized portal pages through SSL

• Extending or replacing the portal login and logout action classes

Single sign-on capabilities

You can use WebSphere Portal to integrate enterprise information systems

and present them through the portal user interface. You want back-end systems

to perform authentication and authorization separately—to maintain current

security controls—without repeatedly prompting the user to authenticate.

The single-sign-on capability provides a reliable authentication method for

one user at a time. It allows, within a single environment—and using a single

authentication for the duration of the session—access to other applications,

systems and networks.

With WebSphere Portal, there are two SSO realms, one from the client to portal

and other Web applications. The other from the portal to back-end applications

(See Figure 10). With single sign-on from the client to Web applications and the

portal, a client logs in once to one Web application and is then able to access all

other Web applications that are part of the same SSO realm without a second

authentication challenge. It doesn’t matter whether WebSphere Portal is the

authenticating Web application. Similarly, single sign-on from the portal to

back-end applications allows a portal client to log in to the portal once and then

access a number of back-end applications through respective portlets without

having to authenticate at each of these applications.

Integrating WebSphere Portal software with your security infrastructure.

Page 17

Single sign-on from a client to Web applications

Single sign-on from a client to Web applications and a portal can be provided

through a variety of mechanisms:

• LTPA support built into WebSphere Application Server

• Authentication proxy single sign-on support (such as WebSEAL, Netegrity

SiteMinder, RSA ClearTrust and Entrust GetAccess)

In function, the various SSO solutions are essentially the same. With successful

authentication, the client receives a security token that enables it to prove

successful authentication and to pass subsequent requests through without

repeating the authentication.

Persistent cookies can be used to achieve single sign-on. The Web browser

stores persistent cookies on the client in a form that has little protection against

reading and copying. For greater security, however, WebSphere Portal only uses

cookies that are deleted when the Web browser session is terminated—not

persistent cookies.

Client

Client

Client

Client

Authentication
proxy

Client
Web

application
SSO

Portal
back-end

SSO

Portal server

Web
application

Back-end
application

Web
application

Portlet

Back-end
application

Back-end
application

Portlet

Portlet

Figure 10. WebSphere Portal SSO realms

Integrating WebSphere Portal software with your security infrastructure.

Page 18

Single sign-on between Microsoft Windows workstations and portals

With IBM Tivoli Access Manager for e-business, Version 4.1 and later, you can

realize single sign-on between a Microsoft® Windows® workstation and portals.

This means that a user can log on to a local workstation and then use Microsoft

Internet Explorer to access a portal without having to authenticate identity

separately at the portal page.8

Single sign-on from portal to back-end system

WebSphere Portal, Version 5.0 offers a credential vault as a portlet service.

This service provides the portal and portlets with a mechanism to map from

one user identity—usually a user ID (principal)— to another user identity with a

credential, such as a password. With this capability, you should not use portlets

to store user credentials as part of the user-specific portlet data. In fact, storing

credentials in the portlet data is no longer recommended to achieve a single

sign-on. You should update portlets that store credentials to make use of the

credential vault (see Figure 11).

The credential vault service provides the following functions:

• Map the requested credential slot, the user ID and the portlet ID to a resource in the

vault. A portlet can only retrieve a credential if a respective mapping rule exists.

Each credential slot is associated with a certain vault implementation (the actual

store), which allows different credentials to be kept in different physical stores.

• Retrieve the user’s credential. Some credentials will be stored and managed by the

portal that always uses the local default vault store. If a user password is not stored

in the portal’s local vault, it will be acquired from the respective external vault.

• If a credential is not available or the authentication fails, an appropriate exception

is thrown. The service passes this exception to the portlet to allow appropriate error

handling. For example, a prompt may require the user to set the credential through

the portlets edit mode.

• The credential vault will not allow anyone but the credential owner—not even the

portal administrator— to manage or use the credentials, which preserves the trust of

the end user. No method to access another user’s credentials will be provided.

• Administrate the credential vault (vault-management interface). Portal

administrators can configure the credential vault services that are not controlled by

the user. This includes the management of the vault segments, the administration

defined slots and system (shared) credentials. Although an administrator cannot

access or change user-defined credential slots and passwords, user-defined slots are

deleted if the respective user is deleted.

Integrating WebSphere Portal software with your security infrastructure.

Page 19

For each vault segment, a flag indicates whether it is to be managed by the

administrator or by the user. Only administrators can create credential slots in

an administrator-managed vault segment. Portlets (acting on behalf of a portal

user) are permitted to create credential slots only in user-managed vault

segments, but they can set and retrieve credentials in both types of segments.

Figure 11 illustrates the structure of the WebSphere Portal credential vault.

The credential vault is organized as follows:

• The portal administrator can partition the vault into several vault segments.

Vault segments can only be created and configured by portal administrators.

• A vault segment contains one or more credential slots. Credential slots are the

“drawers” from which portlets retrieve credentials and to which they are stored.

Each slot holds one credential, if user-defined, and one credential per user, if

defined by the administrator.9

• A credential slot is linked to a resource in a vault implementation, where the

credentials are actually stored. Examples for vault implementations are the

WebSphere Portal default database vault or the Tivoli Access Manager repository.

Internal External
Vault

implementations

Slot A

Vault segment U

Slot B

Vault
adapter

Vault segment A1

Vault
adapter

Slot X

Vault segment A2

Slot Y

Vault
adapter

Slot C

Figure 11. WebSphere Portal, Version 5.0 includes a credential vault portlet service

Integrating WebSphere Portal software with your security infrastructure.

Page 20

Therefore, portlets that need a credential to complete their service have two

options: to use an existing credential slot that has been defined by the portal

administrator in an administrator-managed vault segment or to create a new

credential slot in a user-managed vault segment.

The WebSphere Portal credential vault service distinguishes between three

types of credential slots:

• A system credential slot stores system credentials. Credentials are shared

among all users and portlets.

• A shared credential slot stores user credentials that are shared among the user’s

portlets. Credentials are user-specific but the same for all portlets of a user.

• A portlet private slot stores user credentials that are not shared among portlets.

Credentials are user-specific and specific to an individual portlet instance.

The credential vault service returns credentials in the form of credential

objects. WebSphere Portal differentiates between passive and active

credential objects.

Passive credential objects are a container for a credential’s sensitive informa-

tion, such as the user ID and password. Portlets that use passive credentials

must extract the information out of the credential. With passive credentials the

portlets are responsible for the communication (authentication) with the

back-end system, shown in Example 1.

Example 1. How a portlet uses a passive credential that carries a user ID and password

Passive credential object use (pseudo code)

// Retrieve the credential object from the credential vault

UserPasswordPassiveCredential credential = (UserPasswordPassiveCrede

ntial)service.getCredential(slotId, “UserPasswordPassive”, null,

porletRequest);

// Extract the actual secret out of the credential object

UserPasswordCredentialSecret secret = credential.getUserSecret([…]);

// Portlet connects to back-end system and authenticates using the

user’s secret....

// Portlet uses the connection to communicate with the backend appli-

cation....

// Portlet takes care of logging at the back-end....

Integrating WebSphere Portal software with your security infrastructure.

Page 21

An active credential object hides the user ID and password from the portlet,

making it an ideal method to preserve portal security. Active credentials allow

portlets to trigger authentication to remote servers using standard mechanisms

— such as HTTP basic authentication, HTTP form-based authentication or

POP3 authentication. To access server-side credentials, active credentials allow

the use of hardware tokens that never expose their sensitive information. Such

hardware tokens10 only allow the use of credentials inside the hardware with

the supported authentication algorithms.

Example 2 illustrates how a portlet uses an active credential. In this case, it’s an

active credential for HTTP form-based authentication, shown in Figure 12.

Example 2. How a portlet uses an active credential

Active credential object use (pseudo code)

// 1. Retrieve the credential object from the credential vault

HttpFormBasedAuthCredential credential = (HttpFormBasedAuthCredential)

service.getCredential(slotId, “HttpFormBasedAuth”, config, request);

// 2. Log into the backend system credential.login();

// 3. Get an authenticated connection to use

URLConnection connection = credential.getAuthenticatedConnection();

// 4. Portlet uses the connection to communicate with the backend

application...

// 5. Log out of backend system credential.logout();

All credential types that are available within the portal are registered in a

credential type registry. WebSphere Portal, Version 5.0 provides a small set

of credential types out of the box, but additional credential objects can easily

be registered.

Integrating WebSphere Portal software with your security infrastructure.

Page 22

Included passive credential objects:

• SimplePassive. Stores credentials as “serializable” Java objects.

• UserPasswordPassive. Stores credentials as user ID-password pairs.

• JaasSubjectPassive. Stores credentials as javax.security.auth.Subject objects. It is

used to provide portlets with the JAAS subject that the portal established for the user.

• BinaryPassive. Stores credentials as a byte array (simple implementation of

PassiveCredential for binary credentials).

Included active credential objects:

• HttpBasicAuth. Stores user ID and password and provides support for

HTTP basic authentication.

• HttpFormBasedAuth. Stores user ID and password and provides support for

HTTP form-based authentication.

• JavaMail. Stores user ID-password pairs and leverages the authentication

functionality of the javax.mail API.

• LTPA token. Supports authentication at a back-end system that is within the

same WebSphere Application Server SSO domain as the portal.

• SiteMinderToken. Supports access of back-end systems that are in the same

SiteMinder SSO domain as the portal. It is typically used when a SiteMinder

authentication proxy protects the portal and other resources.

• WebSEALToken. Supports access of back-end systems that are in the same

WebSEAL SSO domain as the portal. It is typically used when a WebSEAL

authentication proxy protects the portal and other resources.

Vault store

Portal engine
Back-end
system

Portlet
API

Active
credential

Portlet

Credential vault
portlet service

1a. Retrieve
credential

1b. Retrieve
secret

3. Get authenticated
connection

2b. Authenticate

4. Send business request

2a. Login

Figure 12. A portlet using an active credential object for back-end single sign-on

Integrating WebSphere Portal software with your security infrastructure.

Page 23

For security reasons, credential objects do not implement java.io.Serializable

and can therefore only be stored in the portlet session as a transient value.

The credential classes store the actual credential secret as private attributes.

If they were serialized into the WebSphere Application Server session table, the

credential could, potentially, be read by anyone who has access to this database.

Client-to-portal communication security

SSL and TLS protocols11 leverage different cryptographic algorithms to

implement security—for example, authentication with certificates, session key

exchange algorithms, encryption and integrity check. They are commonly used

to help provide privacy and reliability between communicating applications

such as Web clients and Web servers. SSL and TLS provide connection security

with three basic properties:

• Confidentiality. Encryption is used after an initial handshake to define a private

key. Symmetric cryptography such as Data Encryption Standard (DES) or RC4

is used for data encryption.

• Authentication. User identity can be authenticated using public key cryptography

such as RSA or DSS.

• Integrity. Message transport includes a message integrity check using a keyed

message authentication code (MAC). Secure hash functions such as SHA and

MD5 are used for MAC computations.

IP security standard (IPSec) technology can be used as an alternative to SSL.

It works on a lower layer of the OSI reference model than SSL and is usually

configured and handled on the operating system level. Although the operating

systems of most clients support IPSec today, only a few are preconfigured, so it

should not be used for communication between clients and the server complex.

When the communication between servers needs to be protected, however,

it is a question of design whether to use SSL or IPSec. Both technologies offer

advantages: IPSec is on the network level and therefore transparent to applica-

tions—they do not have to do anything to support it. In addition, it might

perform faster if the OS makes use of available crypto hardware. SSL could

exploit crypto hardware as well, but each application would have to support

this. SSL, on the other hand, is widely supported and administrators gained a

lot of experience and confidence with this technology over the years.12

Integrating WebSphere Portal software with your security infrastructure.

Page 24

 Whether using SSL or network layer security, you need to decide where to

terminate the protected connection and what communication to protect. It’s

necessary not only to protect the communication across unprotected networks

(such as the Internet), but also communication within corporate networks.

You should not underestimate the possibility of human error or internal attack.

Figure 13 shows how SSL can be implemented in the simplest deployment

scenario (see Figure 2). With no systems or firewalls between the client and

portal server, one connection has to be secured with SSL.

In the second deployment scenario (see Figure 3), the Web server is separated

from the portal server with firewalls between client, Web server and portal

server. For this example (see Figure 14), the DMZ is not fully trusted, but

communication is allowed to be unprotected within they production network.

Again, SSL must be used for the client connection. The first firewall is config-

ured to allow this kind of data to pass through. The path between the Web

server and second firewall is secured using IPSec.

Client
HTTP

SSL

Client

Web server/
portal server

Figure 13. Communication security for portal installations within a protected network

Client
HTTP

SSL

Client

Firewall Firewall

LDAPHTTPHTTP

IPSec Portal serverWeb server
LDAP

directory

Figure 14. Communication security for portal installation in a trusted intranet

Integrating WebSphere Portal software with your security infrastructure.

Page 25

The third deployment scenario (see Figure 4) places a reverse proxy for authen-

tication in the DMZ and adds a cluster of portal servers—fed by a load balancer

—behind another firewall. A possible secure communication implementation

could use SSL from the client to reverse proxy, and IPSec for the remaining

path between the servers (See Figure 15).

Client
HTTP

SSL

Client

Firewall Firewall

HTTP

IPSec
Load

balancer
HTTP

IPSec
Authorization

proxy Web server/
portal server

Figure 15. Communication security for an Internet portal cluster

In a fully clustered portal setup with all communication protected

(see Figure 16), the client’s SSL connection is tunneled through the first load

balancer and terminated at the authentication proxy cluster. This tunneling is

allowed because the first load balancer doesn’t have to read the request for its

load-balancing strategy. The second load balancer, however, will typically use

such a strategy and therefore the next SSL connection needs to be terminated

at this server. Lastly, a third SSL connection exists between the load balancer

and portal cluster. When an LDAP directory is added to the deployment

scenario (see Figure 16), communication between the application server

and LDAP server can be protected because the LDAP queries and responses

might contain confidential data. The WebSphere Application Server security

component can be configured to use LDAP over SSL (LDAPS).

Integrating WebSphere Portal software with your security infrastructure.

Page 26

Restricting protection to sensitive communication only

Using SSL consumes a considerable amount of computing power. The most

expensive SSL operation is the initial handshake, but the symmetric encryption

of the bulk data produces additional load. Therefore, it is recommended that

you keep SSL protection at the necessary minimum. WebSphere Portal allows

you to switch between SSL and non-SSL connections during a session. It’s

possible to set up a portal so that SSL is used for user login only, for login and

all personalized content or for the entire portal. The final decision whether a

portal should protect none, all or only parts of its communication with SSL

should be based on the sensitivity of the data.

Using client certificates

The SSL and the TLS protocol specify the authentication of communication

partners through the use of X.509 certificates. The client may use a certificate

to authenticate to the server. This type of authentication through the client

certificate is more convenient than typing a password. And it avoids the known

security drawbacks of passwords. In addition, if the private key associated with

the client certificate is stored on a smart card, this form of authentication can

establish particularly strong trust.

Enforced certificate-based client authentication is a configuration option

with WebSphere Application Server that must be selected during configuration

if an authentication proxy such as Tivoli Access Manager WebSEAL is used.

WebSEAL offers additional control, called step-up authentication. You can

configure it to require and automatically prompt for different forms and

strengths of authentication for different targets.

Client
HTTP / SSL

Client

Firewall
Firewall

Load
balancer

HTTP

SSL

HTTP

SSL

LDAP SSL

Load
balancer

Authentication
proxy

Web server/
portal server

LDAP
directory

LDAP

SSL Firewall

Figure 16. Communication security implementation in a fully clustered portal setup

Integrating WebSphere Portal software with your security infrastructure.

Page 27

Secure back-end connections

Some portlets are designed to access back-end applications that house critical

enterprise data. WebSphere Portal can help keep your data private in two ways:

1. Selected portlets can use SSL connections to exchange data with a corresponding

back-end application. Depending on the back-end application, an SSL handshake

with client authentication may be required.

2. The portal and the back-end applications can establish a virtual private network

(VPN) using IPSec.

WebSphere Portal offers a content access portlet service that enables portlets to

establish and use an SSL connection. It is designed to facilitate assigning the

portal a collection of client certificates that portlets can use to self-authenticate

to back-end applications. This collection may be different from what the appli-

cation server uses to authenticate directly. The portal certificates are only

available to the portal and its portlets. Other Web applications that are installed

on the same application server node cannot use them.

The content access service offers extensive SSL functionality:

• If an HTTPS protocol handler has been configured, any component

(particularly portlets) can initiate an HTTPS connection with URLConnection,

HttpURLConnection or HttpsURLConnection. The SSLContext and

SSLSocketFaktory will be created and assigned to the connection object on the

fly. The portlets can either request a markup or an input stream, and no other

communication with the content access service is necessary.

• If an HTTPS proxy has been configured, any HTTPS URL requested from content

access service will go through that proxy, unless it is explicitly listed on the content

access service exclusion list. Ports other than 443 can be configured.

• An SSL key store, a collection of keys that can be used to verify the portal’s identity

to remote systems, can be configured. The key store will be used for all direct HTTPS

requests initiated by content access service but not for the SSL handshake between

an HTTPS proxy and the back-end application.

Integrating WebSphere Portal software with your security infrastructure.

Page 28

• An SSL trust store, a collection of trusted certificates that remote systems may

present to the portal to self-authenticate, can be configured. The trust store will be

used for all direct HTTPS requests initiated by the content access service but not for

the SSL handshake between an HTTPS proxy and the back-end application.

• If an HTTPS URL returns an HTTP redirect and the maximum number of redirects

has not been exceeded, the content access service will follow the redirect using the

HTTPS protocol and the HTTPS proxy, if indicated.

Using IPSec for back-end connections is an alternative to using SSL. IPSec

operates efficiently on the network layer and is easy to configure in most

current operating systems.

Understanding access-control concepts to protect portal resources

Authorization is dependent on authentication, because verifying that the user

is trusted determines whether you allow access. WebSphere Portal provides a

facility to manage access to portals—whether to an entire portal or to specific

parts, such as individual pages. You can use portal access-control capabilities

to define the operations each user is allowed to execute within the portal object

space. This set of operations represents the total permissions granted to the

user. WebSphere Portal uses roles, based on the job responsibilities of the indi-

vidual users, to enable convenient permission management. Assigning a role

grants all of its permissions to the user. You can administer access control using

corresponding portlets within the running portal or through the XmlAccess

scripting interface.

Sensitive operations

Portal users interact with portals in various ways, potentially triggering the

execution of a high number of different operations within the portal object

model. Access to almost all of those operations has to be restricted to a well-

defined set of users. Users are only allowed to execute the sensitive operations

for which they have sufficient permissions.

Integrating WebSphere Portal software with your security infrastructure.

Page 29

The WebSphere Portal access-control policy maps each sensitive operation to

a specific set of permissions that are required to gain access to the operation.

Access-control administrators then define which users have which permissions

by creating or deleting the corresponding roles and role assignments. Sensitive

operations defined within WebSphere Portal include simple operations, like

“view a specific portlet on a specific page”, and more complex tasks, such as

“install new Web module” or “run XmlAccess scripts.”

Roles and role types

To allow a user or a group of users to execute specific, sensitive operations, you

have to assign the roles that provide the necessary permissions. Role assign-

ments can be either explicit (if a user or user group is directly assigned to a role)

or implicit (if the user or user group is a member of a user group that has a

corresponding explicit role assignment). The set of permissions granted to a

specific user is defined as the total of all permissions contained in all explicitly

and implicitly assigned roles of the user.

Each role within portal access control is an instance of a specific role type.

WebSphere Portal, Version 5.0 supports a range of role types, including

Administrator, Security Administrator, Delegator, Manager, Editor, Privileged

User and User. Role types model the different ways people interact with portals,

depending on their job responsibility:

• Users can view portal content, such as a portal page.

• Privileged Users can view portal content, personalize portlets and portal pages and

create new, private pages.

• Editors can create new, shared resources and configure existing resources used by

multiple portal users.

• Managers can create new, shared resources, and configure and delete existing

resources used by multiple portal users.

• Administrators have unrestricted access to create, configure and delete shared

resources. And, Administrators can grant access to resources by creating or deleting

corresponding role assignments.

• Security Administrators can create and delete role assignments for roles paired with

specific resources.

• Delegators can assign specific users or user groups to roles.

Integrating WebSphere Portal software with your security infrastructure.

Page 30

Role assignments and inheritance

A specific role is not only characterized by its role type, but also by its domain

root resource. Roles are named with the convention <role type>@<domain

root resource>. For example, the role Editor@Market_News_Page names a

role of type Editor tied to a specific page in the portal page hierarchy (see

Figure 17). Permissions allow users with the Editor role—or with any role

type below the Editor role type in the role type hierarchy to execute sensitive

operations on the Market_News_Page.

Roles not only contain permissions that allow users to access the domain root

resource. Roles also inherit corresponding permissions on all descendant

resources under the domain root in the resource hierarchy. You can prevent

permission inheritance by creating role blocks.

Administrator

Manager

Editor Privileged
user

Security
administrator

Delegator

User

Figure 17. In the role type hierarchy, role types are organized by hierarchy. Each greater role type
offers more access while including the privileges of lesser role types.

Integrating WebSphere Portal software with your security infrastructure.

Page 31

Role blocks

Sometimes you don’t want a specific role to affect all the resources below it in

the resource hierarchy. To prevent this, you can switch off inheritance at a

specific resource. For example, as illustrated in Figure 18, a role block assigned

to Europe_Market_News_Page prevents the Europe_Market_News_Page from

inheriting access-control configuration from its parent page.

Editor UserEditor
block

Europe_ Market
News_ Page

Market_
News_ Page

U.S.A_ Market_
News_ Page

Figure 18. Permission inheritance allows users with a role assignment to the Editor@Market_News_
Page role to act in the Editor role on the USA_Market_Page.

Role blocks are role-type specific and tied to a specific resource. This means

that a specific role block prevents inheritance on the corresponding resource

for all roles of the corresponding role type. As shown in Figure 18, a block for

the Editor role type at the Europe_Marketing_News_Page does not block other

role types, such as Manager or User. You can block each role type separately as

necessary. Administrator or Security Administrator roles can’t be blocked.

WebSphere Portal supports two kinds of role blocks. Inheritance blocks

(above the resource) shield a resource from inheriting from parent resources,

as in Figure 18. And propagation blocks (below the resource) prevent inheri-

tance from parent to child resources.

Ownership

With WebSphere Portal, you can give access to a resource by identifying a

dedicated owner. Usually, when a user creates a new portal resource, such as a

new page, the executing user automatically becomes the initial owner of that

resource. WebSphere Portal gives the owner of a resource specific permissions,

Integrating WebSphere Portal software with your security infrastructure.

Page 32

including the right to delete the resource. Ownership provides the same

permissions as the Manager role. Resource ownership cannot be inherited, but

it can be changed. You can assign a specific resource a new owner, effectively

giving the new user the corresponding privileges of the original owner.

Private pages

WebSphere Portal— through portal access-control functions—supports the

creation of private pages, which can be accessed only by the owner of the page.

Privileged Users can personalize a nonprivate page and save their changes as a

new, private page. And because the new page is owned by the Privileged User,

only that user can access the private page—a copy of the original, modified to

their preferences.

Protected resource hierarchy

WebSphere Portal uses virtual resources two ways. First, virtual resources

guard sensitive operations that affect the entire portal, instead of specific

resource instances. For example, WebSphere Portal uses the virtual resource

XmlAccess to protect the ability to execute XmlAccess scripts on a portal.

Second, WebSphere Portal uses virtual resources to group resources of the

same or related resource types. The virtual resource pages is the root node of

all pages (resource instances of the page resource type) within the portal

page hierarchy.

Resource instances are structured according to the portal object model.

This means that portlets are represented by child resources of their containing

portlet applications, and subpages are modeled as child resources of their

corresponding parent pages. The WebSphere Portal access-control function

protects Web modules, portlet application definitions, portlet definitions,

content nodes (pages, labels and external URLs), URL mapping contexts, user

groups and users (only through the groups to which users belong).

Integrating WebSphere Portal software with your security infrastructure.

Page 33

Administering access control

With WebSphere Portal, you can administer access control through corre-

sponding portlets provided within portal administration facilities and using

XmlAccess. There are two portlets that provide two different views on the

actual portal access-control configuration. The resource permissions portlet

allows an administrator to navigate through the protected object space and

provides a resource-oriented view of the configuration and corresponding

update facilities. The user-and-groups permissions portlet allows an adminis-

trator to select a specific user or user groups and provides a corresponding

view—whether for users or user groups—in the portal access-control

configuration. A complete set of configuration facilities is supported by

XmlAccess—providing full scripting capabilities to configure portal

access control.

Portlet
applications

Web
modules

Web
modules

Applications

Portlets

Pages

Pages

Mapping

Mapping

Group

Event
handlets

Portal
settings

XmlAccess

Users

Pages URL
mappings

User
groups

External
access
control

Portal

Figure 19. All portal resources—whether actual or virtual—that are potentially affected by sensitive
operations are part of a protected resource hierarchy.

Integrating WebSphere Portal software with your security infrastructure.

Page 34

Delegating administration

WebSphere Portal access-control functions enable you to delegate administra-

tion privileges. Access-control administrators are users who can change access

control configuration, such as when creating role assignments. Delegated

administration allows an administrator to delegate specific subsets of adminis-

trative privileges to other users or user groups. The receivers of these privileges

become subadministrators, and can, in turn, delegate subsets of their privileges

to others.

WebSphere Portal provides a delegated administration policy that controls

which permissions are necessary to allow users to make changes to the access

control configuration. This policy allows you to restrict administrative privi-

leges to specific parts of the protected resource space and to specific user

groups. You can establish sub-administrators to control role assignments for a

specific branch of the portal page hierarchy and for a specific set of user groups.

When WebSphere Portal is installed, the original user is initially assigned

the Administrator role at the root resource of the protected resource hierarchy

(Administrator@Portal). This role contains a specific, unique permission

which is only contained in the roles Administrator@Portal and Security_

Administrator@Portal that allows unrestricted administration of portal

access-control functions.

Integrating external authorization systems

You can configure WebSphere Portal to allow external authorization systems to

control access to portal resources—while protecting your IT assets. WebSphere

Portal, Version 5.0 includes authorization adapters for Tivoli Access Manager

and Netegrity SiteMinder.

You can allow an external system to protect individual subtrees of the protected

resource hierarchy. You simply select a corresponding root resource from the

protected resource hierarchy, and set which resources will be protected inter-

nally or by the external authorization system. Inheritance always stops between

resources that have different externalization states — even when accessed by

administrators and security administrators. This means that each resource is

either exclusively protected by WebSphere Portal access-control functions or by

the external system.

Integrating WebSphere Portal software with your security infrastructure.

Page 35

Using external systems to protect resources doesn’t mean that the resource

information is added to the protected object space of the external system.

It simply means that only the roles that exist on those resources are registered

there. An administrator of the external system can then create and delete role

mappings for these roles. Using WebSphere Portal, you retain exclusive control

of roles and role blocks. The external authorization system can only control the

mapping between roles and users or groups.

WebSphere Portal limits the ability to change the status of resources between

internal and external control by designating the change a sensitive operation.

This requires role assignments to the roles Security_Administrator@Portal

and Security_Administrator@External_Access_Control. External access

control is a virtual resource that guards the concept of externalizing and inter-

nalizing. This resource is externalized automatically during WebSphere Portal

installation and cannot be internalized. This way, an external security admin-

istrator can’t be overruled by a WebSphere Portal security administrator.

Maintaining portal security

Your portlet developers are charged with keeping sensitive data safe. And

they can’t afford to allow potentially vulnerable areas of your portal system to

be left unprotected. Even with built-in portal server security features, there

are risks. The portal engine can’t, by itself, protect against malicious portlets.

Your administrators are responsible for installing only trusted portlets.

Some portlets require secure connections. You need to guarantee the data that

portlets send is kept confidential. If the portal is enabled to serve pages through

SSL, portlets can initiate an SSL connection (with a start transaction link).

However, for each request, the portlet has to check whether the connection is

still secure. This verification can be done with the request.isSecure() method.

If a request does not come over a secure connection, the portlet must not write

confidential data to the output stream.

Integrating WebSphere Portal software with your security infrastructure.

Page 36

Some portlets accept data from any user and pass those data on to a different

user. If the portlet does not take special precautions to guard against malicious

input, the receiving user’s application (their Web browser) might process that

data with unfavorable results. This is known as a “cross-site scripting attack”

because input malicious source is usually executed as scripting language by the

receiving user. In order to prevent such attacks, the portal engine filters all

input and converts the less-than (<) and greater-than (>) characters to the

respective HTML escape sequences.

A similar problem can arise when a portlet aggregates markup language code

from a third-party server — for example, with a clipping portlet. Unfortunately,

the portal engine isn’t able to filter markup commands accurately and can’t

offer protection. This means your portlet developers have to make sure that

potentially malicious markup is filtered out of the aggregated data.

Summary

WebSphere Portal offers state-of-the-art protection through industry-

standard security protocols and cryptographic algorithms. Single sign-on

capability at the portal frontend and for back-end applications provides a

superior user experience. The portal server can be flexibly integrated with

existing corporate user directories and with products for authentication, autho-

rization and administration. In addition to password-based authentication,

stronger methods like X.509 certificates or one-time passwords (with

WebSEAL) are supported. Secure communication can be used wherever the

transmitted information is sensitive.

For more information

To learn more about IBM WebSphere Portal, Version 5.0, visit

ibm.com/websphere/portal.

G325-2090-01

© Copyright IBM Corporation 2003

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
10-03
All Rights Reserved

The e-business logo, IBM, the IBM logo, Redbooks, Tivoli and
WebSphere are trademarks of International Business Machines
Corporation in the United States, other countries or both.

Microsoft and Windows are trademarks of Microsoft Corporation in
the United States, other countries or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries or both.

Other company, product and service names may be the trademarks
or service marks of others.

 1 IBM WebSphere Application Server, Version 5 Security,
ibm.com /software/webservers/appserv/was/library/

 2 Understanding the Portlet Component Model in IBM WebSphere
Portal, visit http://www7b.boulder.ibm.com/vadd-bin/ftpdl?1/vadc/
wsdd/pdf/WebSpherePortalandPortlets.pdf

3 HTTP basic authentication has a known disadvantage: The browser
caches a user ID and password and sends both with every request
to the same target. Because there is no standardized mechanism
through which the browser will be notified of the user’s logout, the
browser will continue to implicitly log in the user as soon as the same
target is accessed again.

4 IBM WebSphere V5.0 Security WebSphere Handbook Series,
SG24-6573-00, visit http://www.redbooks.ibm.com/redbooks/
pdfs/sg246573.pdf

 5 Plugging into WebSphere Edge Server offers scalability advantages.

 6 For devices that cannot manage cookies (like WAP phones), proxy
gateways are used to handle cookies.

 7 For JAAS documentation and specifications, visit
www.jaas.sun.com/products/jaas/.

 8 Requires Microsoft Internet Information Server (IIS) to host the portal
and use of Tivoli Access Manager Web server plug-in for IIS.

 9 WebSphere Portal, Version 5.0 installs with one preconfigured, user-
managed vault segment and does not allow defining any additional
user-managed segments. Administrator-managed vault segments
can be created without any limitation.

 10 IBM has a cryptographic coprocessor (IBM 4758PCI) to store the
private key and execute the cryptographic functions. This module is
designed to meet the FIPS PUB 140-1 level 4 specification. The card
keeps the server’s private keys securely (any data tampering will be
recognizable) and executes encryption algorithms. The private keys
do not leave the card.

 11 While TLS is the standard implementation, SSL is still more widely
distributed. In this document, when SSL is used, TLS is implied.

 12 Read “SSL/TLS in WebSphere: Usage, Configuration, and
Performance,” available at ibm.com /wsdd/library/summaries/
300257.html.

