
Bruce Silver Associates Industry Trend Reports
Business Process Management and Content Management Specialists August 2004

Bruce Silver Associates Download free reports from www.brsilver.com
500 Bear Valley Road, Aptos CA 95003
Tel: 831.685.8803 Fax: 419.793.5209 E-mail: brsilver@earthlink.net

 Enterprise Service Bus Technology
for Real-World Solutions

Meeting the Challenge of Business Integration
IT executives today routinely rank business integration as their number one priority. While
it was sufficient in the past for IT initiatives to focus on individual business functions, the
challenge now is to integrate those islands of automation across the enterprise. Maximizing
operational efficiency in end-to-end business processes, critical to lowering costs, is only
one of the reasons. Business integration is also necessary for the business to become more
agile, able to respond more nimbly to changes in the external environment, launch new
products and services more quickly, or incorporate new supply chain or distribution partners
more easily. In fact, e-business transformation demands business integration, allowing IT
systems to work in concert and respond in real-time.

Service Oriented Architecture (SOA) is the software industry’s answer to this challenge, and
today most IT shops have accepted SOA as the foundation for their next generation of
enterprise software. While SOA is frequently equated to SOAP-based web services, it is
actually a more general concept. SOA is best described as an application architecture in
which individual functions are encapsulated software components exposed externally
through a universal implementation-neutral interface. Software functions deployed in this
way are called services. A hallmark of SOA is that service requests are transparent,
meaning independent of the service’s technical implementation, connection method or
protocol used to request it, or even whether it is local or remote to the requester.

SOA allows complex enterprise applications and end-to-end business processes to be
composed from these services, even when the providers of those services are applications
hosted on disparate operating system platforms, written in different programming languages,
or based on separate data models. This flexible composition supports the fundamental goals
of business integration, which are linking business systems across the enterprise and
extending business services to customers and trading partners.

The ability to expose business functions through a service-oriented interface is only half the
story. You also need a universal mechanism to interconnect all the services required in the
composed business solution – without compromising security, reliability, or performance
scalability. In SOA, the enterprise infrastructure layer interconnecting service requesters
and providers is known as the Enterprise Service Bus (ESB). Like SOA itself, ESB is
sometimes associated with a particular set of Java and web services standards, but it is more
properly viewed as an integration pattern or architecture that can accommodate a variety of
implementations consistent with the broader definition of SOA.

The purpose of this report is to describe the essential elements of an Enterprise Service Bus
in that broader context, and the resulting benefits for business and IT.

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 2

What Is an Enterprise Service Bus?
Confusion in the Marketplace
It is useful to acknowledge that ESB has been defined in different ways by various industry
analysts and software suppliers. Gartner Group1 tends to describe it in terms of a low-cost,
lightweight alternative to traditional integration middleware. IDC,2 on the other hand, calls
it the open, standards-based connectivity backbone of the future. ZapThink3 describes it
simply as a message bus with service-oriented interfaces.

A number of startup vendors providing lightweight connectivity software based on web
services and Java messaging standards have adopted the term ESB as a way to distinguish
their offerings from established “heavyweight” messaging middleware. On the other hand,
integration middleware leaders such as IBM have shown how their widely installed message
bus infrastructure has been used in large-scale SOA implementations and exemplifies the
ESB integration pattern. Meta Group4 reinforces this view by acknowledging that traditional
EAI infrastructure may be used to implement SOA, as long as it provides the required
universal, transparent connectivity.

A Practical Definition
While descriptors like “low-cost” and “lightweight” are sometimes used to differentiate the
offerings of ESB startups from established message bus providers, these attributes are
tangential to the real purpose of ESB, which is simply to provide the connectivity
infrastructure required for enterprise-scale business integration using SOA. In order to
deliver the level of reliability, performance, and functionality they need, business-critical
SOA solutions based on those lightweight ESB offerings will ultimately have to add that
weight and cost somewhere else.

You can deploy ESB as an island, but it has more value when it integrates existing business
systems and infrastructure. Unfortunately, most of the software assets than run the business
today are not service-oriented, or even standards-based. Moreover, web services standards
for critical features like quality of service are still being defined. Thus a practical definition
of ESB ought to focus on attributes and capabilities that support SOA today in the real
world. Such a definition does not limit ESB to a single product category, but describes it
more broadly as an architectural layer or integration pattern, focusing attention on its four
essential capabilities.

1. Universal connectivity of services via XML messaging, interconnecting requesters
and providers across diverse platforms and data models, providing a common
backbone for requests, messages, and events.

2. Vendor-independent communications standards, such as SOAP and Java
Messaging Service (JMS).

3. Quality of service features, including reliable delivery, transaction management,
and scalable performance.

4. Service mediation features, providing loose coupling between requesters and
providers.

1 Gartner Group, “Hype Cycle for Application Integration and Platform Middleware,” May 2003
2 IDC, “The Enterprise Service Bus: Disruptive Technology for Software Infrastructure Solutions,”
March 2003
3 ZapThink, “What is the Shape of a Service-Oriented Architecture?” August 2003
4 Meta Group, “Practical Approaches to Service-Oriented Architecture,” November 2003

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 3

Such a definition embraces both “heavyweight” messaging middleware and “lightweight”
startup offerings, and recognizes that both web services startups and established EAI
middleware vendors are ultimately aiming for the same goal. The appropriate ESB software
for the job is a function of the application requirements.

Evolution of ESB
From this perspective, ESB can be seen not just an outgrowth of web services, but as an
evolution of enterprise messaging and message broker technology:

• Enterprise messaging provides universal connectivity and quality of service, with
high-speed asynchronous any-to-any communications between application systems
– even those that are not service-oriented or standards-based. Its quality of service
features such as multihop store-and-forward, reliable once-and-only-once delivery,
transaction management and recovery, and scalability to high message volumes are
key ESB requirements.

• Message brokers provide the service mediation required by ESB, with features
such as publish-subscribe integration, content-based routing, and message
transformation. Message brokers make the integration of large numbers of
resources practical by reducing the number of point-to-point connections. More
importantly, mediation is the key to loosely coupled integration, in which the sender
of a message (service requester) does not need to know who the receiver (service
provider) is. As message broker functionality migrates into application servers,
those components become a key piece of the ESB puzzle as well.

• Web services provide a platform-independent framework for SOA based on open
standards such as XML, WSDL, and SOAP, most often on standard Internet
transports such as HTTP.

To understand what distinguishes ESB from traditional EAI architectures, we first need to
take a closer look at SOA itself.

The Importance of Service Oriented Architecture
SOA is a new distributed application architecture or design pattern that specifically
addresses the challenges of end-to-end integration in the e-business era. SOA is the key
technology enabler of a new agile business model that allows companies to respond quickly
to changing customer requirements, new business opportunities, and emerging competitive
threats. SOA enables flexible integration and reuse of existing information assets. It
reduces operating costs by automating information flows across disparate business systems.
It supports e-business transformation by linking enterprises with the business processes and
systems of trading partners. And it enables the end-to-end performance management
required for competitive advantage.

Interoperability, Composition, and Reuse
SOA’s fundamental principles are flexible interoperability, composition, and reuse of
software assets. A service in SOA is a unit of work performed by a service provider to
achieve a promised end result for a service consumer. It is a business function encapsulated
as a software component and exposed for flexible reuse in multiple business processes and
applications. In SOA, processes and applications are composed – or in the new vocabulary,
choreographed – from individual services. The location and technical implementation of the
function by the service provider is invisible or transparent to the requester.

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 4

While a service has the appearance of a self-contained function from the service requester’s
perspective, the provider’s implementation may actually be a multi-step process involving
multiple systems or even crossing enterprise boundaries. Implementation transparency
makes SOA fundamentally different from distributed component architectures of the past,
such as object-oriented architectures, in which the structure of the function request (method
call) is bound to the component’s technical implementation (CORBA, Java, etc.).

Location and implementation transparency are examples of SOA’s loose coupling principle.
Loose coupling is essential to interoperability among diverse and changing platforms, object
models, and programming languages. SOA provides loose coupling by requiring service
interfaces to be universal and descriptive, based on implementation-neutral formats and
protocols rather than APIs. Loose coupling allows either the requester or provider’s
software to change without impacting the other, provided that the descriptive interface
remains the same.

SOA and Web Services
Broadly speaking, a software solution can be called “service-oriented” if it supports:

1. Composition of business functions (services) provided by encapsulated software
components exposed through platform-neutral interfaces.

2. Universal, standards-based connectivity. In concrete terms, that means that
service interfaces in SOA are based on XML messages.

3. Loose coupling, in which the technical implementation and location of a service are
transparent to the requester.

While they are by no means the only form of SOA, web services are certainly the most
familiar. Web services represent SOA based on a specific set of Internet standards, which
impose two additional constraints on SOA:

• Service request and response messages are delivered over standard Internet
transports, such as HTTP, via a specific protocol, SOAP.

• XML message content defined by a particular interface definition language, WSDL.
Service interfaces based on the Web Services Description Language (WSDL)
describe the service operations, schemas of request and response messages, and a
URL that will accept service requests, but do not reference details of the service’s
technical implementation.

Some vendors of lightweight ESB equate SOA to web services, and assume SOAP and
WSDL in their connectivity architecture. But SOA is much broader than web services, and
practical realities require ESB to go beyond web services standards. In fact, an effective
baseline description of an ESB might be any communications infrastructure capable of
requesting and delivering services via XML messages.

ESB in Theory and Practice
In SOA, ESB serves as the connectivity fabric linking service requesters and providers. It
adds quality of service (QoS) features, such as security and reliable delivery, and mediation
services, such as message routing and data transformation, to an enterprise messaging
backbone. First-generation ESB software has been able to provide these features in a
“lightweight” and “low-cost” form by leveraging industry standards and the built-in
capabilities of J2EE applications servers, notably JMS and web services.

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 5

Limitations of “Lightweight” ESB
ESB vendors proudly claim to have architected their software from the ground up take
advantage of the new standards, in contrast to established integration middleware, which
they position as “proprietary” and “out-of-date.” Nevertheless, actual deployment of
business solutions based on this software has been limited to relatively small “greenfield”
applications built from web services and JMS-aware components, not large-scale business-
critical applications that reuse and compose existing software assets. There are several good
reasons for this:

1. Existing resources not standards-based or decomposable
One reason is fairly obvious. The critical applications that currently run the business are
neither standards-based nor WSDL- or JMS-aware. Many are not even decomposable into
independent services without a complete rewrite. This is not a flaw in the SOA vision. It’s
just the reality. Moving to SOA is by necessity an incremental process.

2. Immature standards limit interoperability
Less widely understood is the fact that the standards underpinning these “lightweight” ESB
offerings are themselves immature and do not yet provide true interoperability.

• Web services support is native to application servers, but incompatibilities still
divide vendor implementations. True web services interoperability is still being
hammered out in standards committees, including WS-ReliableMessaging and WS-
Trust, among others.

• JMS as a standard has focused on the API. However, many aspects of the
underlying messaging service implementation, such as the wire protocol, vary from
vendor to vendor. As a result, JMS implementations from different vendors
typically do not interoperate.

• J2EE Connection Architecture (JCA) provides a standard framework for
pluggable resource adapters that can invoke APIs of popular packaged applications.
But it, too, is limited. JCA 1.0, for example, does not support requests or events
from packaged applications, only requests to those applications, and does not
standardize the metadata required to introspect available operations in order to
configure service requests. These advanced functions are provided in vendor-
proprietary extensions.

Even the underlying messaging backbone of the ESB may be limited in its interoperability.
For example, it may not support the operating system or programming language required to
integrate some existing IT assets needed in the end-to-end solution.

3. Performance limitations
A third limitation is performance. For example, while lightweight ESB vendors tout
“wrapper” tools as a way to provide service-oriented interfaces for any application or
middleware that exposes APIs, wrappered interfaces may degrade performance. Also,
layering QoS features like reliable delivery on top of standards-based communications can
limit performance scalability.

4. Functional limitations
In many ESB offerings, “low cost” is directly related to limited functionality. For example,
mainstream business integration middleware suppliers have added business process
management – tools to compose and execute end-to-end processes based on service

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 6

choreography – and performance management capabilities – complementary tools to
monitor service levels and optimize key business metrics. Lightweight ESB vendors shun
such capabilities as bloat and overkill, and for greenfield proof-of-concept applications they
probably are. But for SOA designed to really run the business, they certainly are not.

ESB for “Real World” SOA
The point is not that ESB is a bad idea, but that it is defined by the connectivity requirements
of “real world” SOA. By necessity, SOA adoption – in the business-critical applications
where it really counts – is occurring incrementally. Refactoring, wrappering, or replacing
legacy applications with new standards-aware equivalents is going to be a slow process. The
web services and Java standards that promise out-of-the-box interoperability are still being
tweaked. Thus lightweight ESB technology that simply assumes interoperable WSDL-based
business functions is going to see limited use in mission-critical solutions today.

Nevertheless, as we have seen, service-oriented solutions can be built today from existing IT
assets by applying the principles of composition, XML message-based interfaces, and loose
coupling. These solutions represent “real world” SOA. The Enterprise Service Bus they use
may not be the lightweight, standards-based variety, but an integration pattern leveraging
established messaging middleware such as IBM MQ, IBM WebSphere Business Integration
Message Broker, and associated integration adapters. Here are three examples:

Customer Example: Standard Life
Standard Life,5 based in the UK, is one of the world’s largest mutual financial services
companies. The majority of its business is conducted through Independent Financial
Advisors (IFAs). In the late 1990s, the need to lower operating costs while improving
service to IFAs and customers was straining Standard Life’s IT infrastructure, primarily
mainframes running COBOL-based IMS and DB2 applications. For example, IFAs needed
to be able to compare prices across various products and aggregate all of a customer’s
holdings in a single view.

In the new integration architecture, flexibility and reuse would be critical. According to
Standard Life’s core technology design manager, “We needed to maintain independence of
underlying infrastructure, allowing us to change the infrastructure without rewriting the
applications.” The key elements of the new architecture were determined to be an intelligent
messaging hub linking application services, XML as the common language of integration
messages, and Java as the platform for new application services running on a variety of
operating systems. While it was radical at the time, today we recognize Standard Life’s new
architecture as an early example of the ESB integration pattern.

Proposals from IBM, Microsoft, and Oracle all included a messaging middleware, message
brokers, and application server technology, but Standard Life chose IBM largely because of
the proven performance scalability of its WebSphere MQ messaging backbone and brokers
at large financial institutions. Figure 1 illustrates the resulting architecture.

The WebSphere Business Integration Message Broker (formerly known as MQSeries
Integrator) and messaging backbone interconnects WebSphere Application Server, IMS
mainframes, other application servers, and web portals, all through XML messages.
Message-driven beans on WebSphere Application Server interface the messages to Java. On
the mainframe, Standard Life created its own messaging interface, called Core Systems
Access, which exposes IMS and CICS transactions to MQ messages.

5 Case study, D. Marshak, Patricia Seybold Group, www.psgroup.com

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 7

Figure 1. Standard Life’s ESB uses XML messaging over MQ. Source: Patricia Seybold Group

The new integration architecture became the required platform for all new e-business
projects at Standard Life. Less than a year after initial deployment of the platform, the
company had twelve applications running on the IFA extranet, including commissions,
quotes, individual client and policy service, group service, and group new business. Now
IFAs, while talking to customers, can go to a single site and get quotes from multiple
financial institutions and aggregate them in real time. IFAs can also submit new business
requests to Standard Life as XML messages.

As a result of their pioneering ESB, Standard Life has been able to reduce costs, while
making themselves more attractive to IFAs through superior business integration and
customer service. Within the IT shop, the major benefit of a common business integration
platform has been savings in resource planning and allocation. According to the
development manager, “We are definitely seeing improved speed to market – directly
attributable to the new architecture and the way we are designing the applications.”

Customer Example: Charles Schwab
Charles Schwab6 invented the full-service discount brokerage model thirty years ago, and
today handles over 8 million active accounts and almost $800 billion in customer assets
through 422 US offices, four regional call centers, and automated web and telephonic
channels. As internet trading has eroded commissions, Schwab has evolved toward a
business model based on trusted relationships with customers, focusing on accurate
independent advice for investors. Advice to customers is provided through a hierarchy of
channels, ranging from web self-service to face-to-face interaction with a Schwab
investment consultant.

6 Case study, D. Marshak, Patricia Seybold Group, www.psgroup.com

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 8

Schwab’s IT architecture is shaped by three primary business goals:

• Consistency of client experience across all channels

• Responsiveness to new business needs by adding new customer types and channels
without affecting back-end services, and adding new services without affecting
channels

• Efficiency through maximum reuse of existing infrastructure, new development, and
IT resources

Like other large financial services companies, Schwab is a huge COBOL/CICS mainframe
shop. However, the need for consistency, responsiveness, and efficiency pushed Schwab to
turn its hierarchical mainframe environment into a peer-to-peer service-oriented architecture.
The first step was to take the backend applications and make them channel-independent
services, beginning years ago with the introduction of voice response units in the call center.
Step two was to create a middleware bridge between the channels and the channel-
independent services. The third step, ongoing today, is to evolve that middleware away
from tightly-coupled proprietary interfaces to loosely-coupled, standards-based interactions
– an Enterprise Service Bus.

In Schwab’s bus, backend services are exposed to channels as web services, i.e., with WSDL
interfaces. According to the company’s VP of Engineering in charge of the project, “WSDL
is very important to enable different invocations of a service, and the Bus is essentially an
enabling technology that supports these multiple services and transports.”

Like Standard Life, Schwab chose ESB technology from IBM largely for its strength in
integrating the mainframe assets at the core of Schwab’s backend services. Phase 1 of the
rollout supports asynchronous messaging based on MQ, WebSphere Business Integration
Message Broker, and JMS for distributed connections. Message Brokers running on the
mainframe provide data transformation between COBOL and XML. Phase 2 adds
synchronous service invocation built on the Web Services Gateway component of the
WebSphere Application Server.

In parallel with the ESB deployment, Schwab is converting its core backend functions into
managed sets of reusable components called domains, each controlled by an explicit
“owner” with subject matter expertise and responsibility for long-term maintenance. In
addition, IT is creating a new structured Java development environment for reusable service
components, intended to free designers to focus on business logic without worrying about
the underlying implementation. All of these efforts contribute essential elements to
Schwab’s Service Oriented Architecture.

Customer Example: Raiffeisen Group
Raiffeisen is the third largest banking group in Switzerland, with 2 million customers and
$55 billion in deposits. Since Raiffeisen is structured as a network of independent
institutions, its IT environment is by necessity distributed and heterogeneous, but it faces
increasing demands for business integration. For example, distributed systems in the
branches need to be integrated with centralized securities trading. To achieve this, the
company created a “banking bus,” a central platform providing a standardized and
transparent interface linking heterogeneous applications across the bank – in other words, an
Enterprise Service Bus.

Raiffeisen, like Schwab and Standard Life, based its ESB on WebSphere MQ and
WebSphere Business Integration Message Broker. Raiffeisen required a mainframe solution
because of the heavy transaction volume, and was the first company to deploy the

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 9

WebSphere Business Integration Message Broker on an IBM e-server zSeries mainframe.
Today, stock trades and position management data are automatically sent over the bus to a
variety of decentralized applications, streamlining trading operations and allowing numerous
manual processes to be automated and simplified. Over 800 employees have been freed
from these manual tasks to spend more time on advising customers. In the next phase, the
ESB will allow customers to check their accounts at any office and perform transactions
directly online.

Essential Elements of the ESB Integration Pattern
From these examples we’ve seen that traditional heavyweight messaging middleware like
WebSphere MQ and WebSphere Business Integration Message Broker can be leveraged
effectively in the ESB integration pattern. Those software products do not require messages
to be XML and WSDL-based, but they allow it. The examples also demonstrate that ESB is
not a single software product but an architectural layer that creates a service-oriented
infrastructure out of multiple middleware components, and tailors it to the particular needs
of the enterprise.

It is also clear that linking business functions through a transparent, service-oriented
interface does not require the ESB internals to be purely standards-based. In fact, in
industries like financial services, where either the transaction volume or established backend
infrastructure means a heavy dose of mainframe technology, performance scalability and
mainframe integration features are more important today than open standards. In those
cases, MQ messaging may be a critical ESB capability.

On the other hand, not all implementations of MQ or other traditional EAI middleware
should be considered ESBs. ESB actually represents a particular integration style, whether
the bus is lightweight and standards-based or built on established “heavyweight”
middleware. With this in mind, let’s examine its essential elements:

Baseline Capabilities
1. Standards-Based Communications
A fundamental ESB requirement is support for XML communications that is “standards-
based.” Today in practice that means support for asynchronous store-and-forward
messaging using JMS and synchronous request-reply using HTTP. Although JMS is a
standard messaging API, it allows a variety of message bus implementations to act as JMS
providers, including widely deployed middleware such as IBM WebSphere MQ. While
JMS supports reliable delivery and other quality of service features demanded by real-world
SOA, web services QoS standards are still in development, so these features must be layered
on top of the standard by the ESB.

2. Universal Connectivity
The ESB must provide connectivity to service providers based on all types of software
assets, including:

• Packaged applications, such as SAP and Siebel

• Legacy applications, such as CICS and IMS

• Databases

• EJBs and Java components

• COM and CORBA components

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 10

• Web services

For components that are not natively “message-aware,” connectivity is delivered in the form
of integration adapters. These adapters provide the service interface by translating platform-
neutral XML message content into the native APIs of the component. Ideally, the ESB
should support pre-built adapters for all of these components.

Even components that are message-aware – in particular, legacy mainframe applications –
are frequently unable to receive XML messages directly via JMS or HTTP. However, most
support traditional messaging middleware such as MQ, with the XML transformed into
proprietary formats. Thus universal connectivity implies that if an ESB cannot support MQ
as a native messaging backbone, it must at least connect to it through an integration adapter
and support the necessary data transformations.

3. Service Mediation
Location independence in SOA means that the requester of a service does not need to know
the “address” of the service provider. Instead, the service request message is sent to an
intermediary called a broker, part of the ESB. The broker provides a number of functions in
support of SOA’s loose coupling principle, and must be able to compose these functions in
user-defined message flows:

• Content-based routing. The broker routes the request to a specific service location
or endpoint based on data in the message itself, as prescribed by user-defined rules.

• Publish-subscribe integration. The broker routes the request to all services that
have registered a subscription to the request.

• Message transformation. The broker transforms message content into the schema
required by the requested service. For XML messages, this means the broker should
include an XSLT or XQuery transformation engine.

• Message validation and authentication. The broker authenticates the message
sender and ensures that the message content conforms to its predefined schema.

Enabling Real-World SOA
Most of these baseline capabilities are provided by both lightweight ESB offerings and
heavyweight business integration middleware, although offerings in the latter category, such
as IBM WebSphere Business Integration, offer more in the way of packaged integration
adapters and connectivity to legacy software assets than do the lightweight ESBs. But large-
scale business-critical SOA solutions require more than this baseline functionality. They
require robustness and performance as well. Real-world ESB technology therefore must
also provide:

1. Scalability
The ESB needs to be able to process peak message volumes while maintaining service level
agreements. For applications like brokerage settlement, these volumes are measured in tens
of thousands of transactions per hour. Mature message bus technology like WebSphere MQ
has proven its ability to handle this; lightweight ESBs have not. Performance scalability
must be designed deeply into the ESB architecture, and may not be easily layered on top of
internet standards. Although some lightweight ESBs claim scalability, the imposition of
reliable messaging and mediation functionality on them can seriously compromise
performance.

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 11

2. Platform and Language Independence
While lightweight ESB vendors like to talk about standards, they don’t claim to provide a
client API for all the platforms and programming languages required by service consumers
and providers – the applications that currently run the business. Java and J2EE by itself is
rarely enough. The ESB may need to support C and COBOL, and run on platforms from
Windows to mainframes. As seen by the earlier examples, some customers even require
core ESB components such as brokers to run on a mainframe to handle the transaction
volumes.

3. Reliable Delivery
Reliable integration via messaging is more complicated than with synchronous procedure
calls. Messages can get lost due to server or network failures. The first message sent might
not be the first one received. If a message is re-sent because a reply is not received in time,
two copies of the original message may be received. The ESB must provide whatever is
missing in the underlying transport protocol to assure that messages are delivered reliably,
once and only once, and in the right order. Depending on the quality of service required,
this means the ESB must store messages until delivery is confirmed, and be able to manage
messages as transactions, supporting commit and rollback.

4. Security
Security is critical. Authentication using LDAP or J2EE security is required at both the user
and service level. Role-based access control to ESB administration must be enforced. The
ESB must be able to support transport-level security such as SSL and handle encrypted
messages, and should support non-repudiation through secure document tracking and audit
trails.

5. High Availability
Beyond reliable message delivery, business-critical systems often must provide high
availability, including nonstop operation despite component failures. ESBs for these
environments should support clustering, redundant hardware, and other features of high-
availability configurations.

6. Monitoring and Management
Business-critical solutions demand that service levels be continuously monitored, and ESB
components managed, from a centralized administrative console. In practice that means the
ESB must make its metrics accessible to enterprise-class system and network management
tools such as Tivoli, OpenView, or UniCenter.

7. Graphical Design Tools
Mediation functions such as authentication, validation, transformation, routing, and
exception handling are composed in user-defined message flows. The ESB should provide
graphical tools to design, maintain, and reuse these flows with a minimum of skill and effort.

Delivering Business Value Today
ESB is more than just a next-generation technology architecture. It can deliver real business
value today.

For line-of-business managers, ESB is the key to:

• Cross-functional business integration. While leading companies are sweeping
away organizational barriers to cross-functional business process integration,

Enterprise Service Bus Technology in Real-World Solutions

© Bruce Silver Associates 2004 12

technical integration barriers remain. Ripping and replacing existing stovepipe
solutions is not always feasible, and never can be done overnight. Real-world ESB
bridges the barriers between the old and the new, linking legacy mainframe,
packaged client-server, and new web-centric components in end-to-end business
process solutions. The ability to manage cross-functional business processes as a
whole means improved transaction speed, better service to customers, and
operational cost savings.

• E-business transformation. The internet has created new business models linking
companies electronically with their trading partners, and new business processes
spanning the entire “extended enterprise.” XML, standards-based communications,
and SOA make e-business possible. Global competition makes it a practical
necessity.

• Agility. The only constant today is change. Companies must be able to respond
rapidly to new customer demands, competitive threats, and emerging opportunities.
Bringing new products and services to market quickly requires IT infrastructure
designed for change. Because SOA is based on composition and standards-based
interfaces, new solutions can be delivered more quickly than in the past, and
ultimately at lower cost.

ESB has practical benefits for IT managers as well:

• Reuse of existing assets. Real-world ESB allows existing software assets to be
reused in new service-oriented solutions, saving time and money. While some work
is required to provide service-oriented interfaces for legacy applications, the cost is
far less than replacing them entirely, and the work may be reused in multiple
applications and processes.

• Responsiveness. Traditional software development cycles that take a year or more
to complete are under fire. The business demands more responsiveness from IT in
order to meet its own agility goals. SOA solutions based on composition of existing
assets make IT more responsive.

• Flexibility. While platform standardization is always an IT goal, managers know
it’s an illusion. As business solutions grow larger and increasingly cross
organizational boundaries, dealing with a multitude of OS platforms, programming
languages, and object models is a fact of life. SOA and an Enterprise Service Bus
provide the only way out.

In order to deliver business value today, SOA cannot depend on web services and Internet
standards alone. The standards are incomplete, immature, and unproven in high-volume
business-critical solutions. On the other hand, enterprise messaging middleware like
WebSphere MQ and WebSphere Business Integration Message Broker is both production-
proven and capable of providing the needed ESB functionality. Besides, it is likely already
deployed in the organization. While lightweight ESB products are just getting off the
ground, over 80% of businesses that use messaging middleware have MQ installed.

IT managers need to understand they can begin deploying ESB today by leveraging this
existing middleware, applying the principles of service-oriented architecture: platform-
neutral XML messaging at the integration hub and implementation-specific adapters for
individual services.

Bruce Silver

