
IBM

WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization

Solution

Development

Guide

Version

4.3.1

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

general

information

under

“Notices

and

Trademarks”

on

page

57.

(6February2004)

This

edition

of

this

document

applies

to

IBM®

WebSphere®

Business

Integration

Express

for

Item

SynchronizationVersion

4.3.1,

IBM

WebSphere

Business

Integration

Express

for

Item

SynchronizationVersion

4.3.1,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

this

document,

e-mail

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2003,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Solution

Development

Guide

.

.

.

.

.

. 1

About

this

document

.

.

.

.

.

.

.

.

.

.

. 1

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Related

documents

.

.

.

.

.

.

.

.

.

.

. 2

Typographic

conventions

.

.

.

.

.

.

.

.

. 2

How

the

Solution

Development

Guide

is

organized

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Processing

a

business

object:

example

workflows

(DTD

support)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

ItemAdd

workflow:

adding

a

new

item

to

UCCnet

(DTD

support)

.

.

.

.

.

.

.

.

.

.

.

.

. 6

ItemPublicationAdd

workflow:

making

a

new

item

available

to

trading

partners

and

processing

their

responses

.

.

.

.

.

.

.

.

.

.

.

.

. 8

ItemChange

workflow:

updating

item

information

in

UCCnet

(DTD

support)

.

.

.

. 13

ItemPublicationChange

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses

.

.

.

. 16

ItemDelist

workflow:

making

an

item

permanently

unavailable

to

trading

partners

(DTD

support)

.

.

.

.

.

.

.

.

.

.

.

. 21

ItemWithdrawal

workflow:

making

an

item

temporarily

unavailable

to

all

or

selected

trading

partners

(DTD

support)

.

.

.

.

.

.

.

.

. 23

Processing

a

business

object:

example

workflows

(schema

support)

.

.

.

.

.

.

.

.

.

.

.

. 24

ItemAdd

workflow:

adding

a

new

item

to

UCCnet

(schema

support)

.

.

.

.

.

.

.

. 24

CatalogueItemNotification_Add

and

CatalogueItemPublication_Add

workflows:

making

a

new

item

available

to

trading

partners

and

processing

their

responses

.

.

.

.

.

.

. 27

ItemChange

workflow:

updating

item

information

in

UCCnet

(schema

support)

.

.

. 30

CatalogueItemNotification_Change

and

CatalogueItemPublication_Change

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses

. 33

ItemDelist

workflow:

making

an

item

permanently

unavailable

to

trading

partners

(schema

support)

.

.

.

.

.

.

.

.

.

.

. 36

ItemWithdrawal

workflow:

making

an

item

temporarily

unavailable

to

all

or

selected

trading

partners

(schema

support)

.

.

.

.

.

.

.

. 38

Checking

that

item

data

exists

for

fields

required

by

UCCnet

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Using

the

PROCESSED_GTIN

table

.

.

.

.

.

. 40

Using

the

audit_log

table

.

.

.

.

.

.

.

.

.

. 41

Using

the

trading_partner

table

.

.

.

.

.

.

.

. 43

Polling

UCCnet

for

worklists

.

.

.

.

.

.

.

. 43

Using

subdiagrams

.

.

.

.

.

.

.

.

.

.

.

. 44

AUTHORIZATION_RESPONSES

subdiagram

.

. 46

CATEGORY_ADD_CHANGE

subdiagram

.

.

. 46

CATALOGUE_ITEM_CONFIRMATION

subdiagram

.

.

.

.

.

.

.

.

.

.

.

.

. 47

CIN_RESPONSE

subdiagram

.

.

.

.

.

.

. 47

DEAD_LETTER_PUB_RECEIPT

subdiagram

.

. 47

INITIAL_ITEM_LOAD_REQUEST

subdiagram

47

ITEM_ADD_CHANGE

subdiagram

.

.

.

.

. 48

NEW_ITEM_PUBLICATION_REQUEST

subdiagram

.

.

.

.

.

.

.

.

.

.

.

.

. 48

PUBLICATION_COMMAND_RESPONSE

subdiagram

.

.

.

.

.

.

.

.

.

.

.

.

. 49

RCIR_RESPONSE

subdiagram

.

.

.

.

.

.

. 49

RCIR_QUERY_RESPONSE

subdiagram

.

.

.

. 50

SIMPLE_RESPONSE

subdiagram

.

.

.

.

.

. 50

UNKNOWN_MESSAGES

subdiagram

.

.

.

. 51

UNKNOWN_RESPONSE

subdiagram

.

.

.

. 51

Sending

e-mail

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Alerting

e-mail

recipients

of

processing

errors

.

. 51

Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams

.

.

.

.

.

. 52

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Notices

and

Trademarks

.

.

.

.

.

.

. 57

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Programming

interface

information

.

.

.

.

. 58

Trademarks

and

service

marks

.

.

.

.

.

.

.

. 59

©

Copyright

IBM

Corp.

2003,

2004

iii

iv

Solution

Development

Guide

Solution

Development

Guide

The

workflows

described

in

this

document

are

composed

of

business

objects,

collaboration

objects,

connectors,

and

maps.

These

basic

components

work

together

to

enable

supply-side

trading

partners

to

automatically

add

items

to,

update

or

delist

items

within,

or

withdraw

items

from

UCCnet®

when

item

updates

are

made

in

their

Enterprise

Resource

Planning

(ERP)

applications.

When

an

update

is

made

in

a

supplier’s

ERP

system,

item

data

is

automatically

validated,

reformatted,

and

sent

to

the

UCCnet

standard

registry.

Suppliers

can

also

communicate

new

or

updated

item

information

to

subscribing

trading

partners

via

UCCnet.

Thus,

enterprise

data

is

synchronized

with

item

data

sent

outside

the

enterprise.

About

this

document

The

products

IBM®

WebSphere®

Business

Integration

Express

for

Item

Synchronization

and

IBM®

WebSphere®

Business

Integration

Express

Plus

for

Item

Synchronization

are

made

up

of

the

following

components:

InterChange

Server

Express,

the

associated

Toolset

Express

product,

the

Item

Synchronization

Collaboration,

and

a

set

of

software

integration

adapters.

Together,

the

components

provide

business

process

integration

and

connectivity

among

leading

e-business

technologies

and

enterprise

applications

as

well

as

integration

with

the

UCCnet

GLOBAL

registry.

The

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product

includes

InterChange

Server

Express,

the

associated

Toolset

Express

product,

the

Item

Synchronization

Collaboration,

and

a

set

of

software

integration

adapters.

Together

they

provide

business

process

integration

and

connectivity

among

leading

e-business

technologies

and

enterprise

applications

as

well

as

integration

with

the

UCCnet

GLOBALregistry.

The

Solution

Development

Guide

describes

the

internal

processing

of

the

WebSphere

Business

Integration

Express

for

Item

Synchronization

and

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

products.

Except

where

noted,

all

the

information

in

this

guide

applies

to

both

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

and

IBM

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization.

The

term

″WebSphere

Business

Integration

Express

for

Item

Synchronization″

and

its

variants

refer

to

both

products.

Audience

This

document

is

intended

for

programmers

who

design

and

implement

workflows

using

the

product

and

who

might

participate

in

designing

customizations

to

solutions

that

are

based

upon

this

product.

It

assumes

that

users

are

experienced

programmers

and

that

they

understand

the

following

concepts

and

have

experience

with

the

software

associated

with

them:

v

Developing

collaboration

objects,

business

objects,

maps,

and

other

related

components.

v

Installing,

configuring,

and

operating

the

WebSphere

Business

Integration

Express

for

Item

Synchronization

product.

©

Copyright

IBM

Corp.

2003,

2004

1

Programmers

must

also

have

experience

with

the

respective

operating

systems

where

their

implementations

are

installed.

Related

documents

The

complete

set

of

documentation

available

with

these

products

describe

the

features

and

components

common

to

all

WebSphere

Business

Integration

Express

for

Item

Synchronization

and

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

installations

and

includes

reference

material

on

specific

components.

You

can

install

the

documentation

from

the

following

site:

IBM®

WebSphere®

Business

Integration

Express

for

Item

Synchronization

InfoCenter.

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

file

name,

information

that

you

type,

or

information

that

the

system

prints

to

the

screen.

bold

Indicates

a

command

name

or

GUI

control

names.

italic

Indicates

an

important

term.

blue

outline

A

blue

outline,

which

is

visible

only

when

you

view

a

manual

online,

indicates

a

cross-reference

hyperlink.

Click

inside

the

outline

to

jump

to

the

object

of

the

reference.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

where

you

must

choose

only

one.

[

]

In

a

syntax

line,

brackets

surround

an

optional

parameter.

.

.

.

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

<

>

In

a

naming

convention,

angle

brackets

surround

individual

elements

of

a

name

to

distinguish

them

from

each

other.

\,

/

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

Linux

installations,

substitute

forward

slashes

(/)

for

backslashes.

All

InterChange

Server

Express

path

names

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

%text%

and

$text

Text

within

percent

(%)

signs

indicates

the

value

of

the

Windows.

The

equivalent

UNIX

notation

$text

indicates

the

value

of

the

text

system

variable

or

user

variable.

How

the

Solution

Development

Guide

is

organized

The

Solution

development

guide

introduces

the

mechanics

of

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product

by

first

presenting

sample,

high-level,

step-by-step

workflows

demonstrating

how

the

solution

handles

scenarios

for

both

DTD

and

Schema

support.

DTD

support

scenarios:

ItemAdd

Described

in

the

section

“ItemAdd

workflow:

adding

a

new

item

to

UCCnet

(DTD

support)”

on

page

6.

ItemPublicationAdd

Described

in

the

section

“ItemPublicationAdd

workflow:

making

a

new

2

Solution

Development

Guide

http://www.ibm.com/websphere/wbiitemsync/express/infocenter
http://www.ibm.com/websphere/wbiitemsync/express/infocenter

item

available

to

trading

partners

and

processing

their

responses”

on

page

8.

(ItemAdd

and

ItemPublicationAdd

workflows

typically

occur

sequentially.)

ItemChange

Described

in

the

section

“ItemChange

workflow:

updating

item

information

in

UCCnet

(DTD

support)”

on

page

13.

ItemPublicationChange

Described

in

the

section

“ItemPublicationChange

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses”

on

page

16.

(ItemChange

and

ItemPublicationChange

workflows

typically

occur

sequentially.)

ItemDelist

Described

in

the

section

“ItemDelist

workflow:

making

an

item

permanently

unavailable

to

trading

partners

(DTD

support)”

on

page

21.

ItemWithdrawal

Described

in

the

section

“ItemWithdrawal

workflow:

making

an

item

temporarily

unavailable

to

all

or

selected

trading

partners

(DTD

support)”

on

page

23.

Schema

support

scenarios:

ItemAdd

Described

in

the

section

“ItemAdd

workflow:

adding

a

new

item

to

UCCnet

(schema

support)”

on

page

24.

CatalogueItemNotification_Add

Used

only

if

UCCnet

is

not

used

as

the

data

pool

as

described

in

the

section

“CatalogueItemNotification_Add

and

CatalogueItemPublication_Add

workflows:

making

a

new

item

available

to

trading

partners

and

processing

their

responses”

on

page

27.

(ItemAdd

and

CatalogueItemNotification_Add

workflows

typically

occur

sequentially.)

CatalogueItemPublication_Add

Used

only

if

UCCnet

is

used

as

the

data

pool

as

described

in

the

section

“CatalogueItemNotification_Add

and

CatalogueItemPublication_Add

workflows:

making

a

new

item

available

to

trading

partners

and

processing

their

responses”

on

page

27

(ItemAdd

and

CatalogueItemPublication_Add

workflows

typically

occur

sequentially.)

ItemChange

Described

in

the

section

“ItemChange

workflow:

updating

item

information

in

UCCnet

(schema

support)”

on

page

30.

CatalogueItemNotification_Change

Used

only

if

UCCnet

is

not

used

as

the

data

pool

as

described

in

the

section

“CatalogueItemNotification_Change

and

CatalogueItemPublication_Change

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses”

on

page

33.

(ItemAdd

and

CatalogueItemNotification_Add

workflows

typically

occur

sequentially.)

CatalogueItemPublication_Change

Used

only

if

UCCnet

is

used

as

the

data

pool

as

described

in

the

section

“CatalogueItemNotification_Change

and

CatalogueItemPublication_Change

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses”

on

page

33

(ItemAdd

and

CatalogueItemPublication_Add

workflows

typically

occur

sequentially.)

ItemDelist

Described

in

the

section

“ItemDelist

workflow:

making

an

item

permanently

unavailable

to

trading

partners

(schema

support)”

on

page

36.

Solution

Development

Guide

3

ItemWithdrawal

Described

in

the

section

“ItemWithdrawal

workflow:

making

an

item

temporarily

unavailable

to

all

or

selected

trading

partners

(schema

support)”

on

page

38.

Many

steps

contain

links

to

detailed

conceptual

information

about

the

mechanics

of

the

solution

associated

with

those

steps.

Other

sections

describe

in

detail

how

solution

processing

operates,

as

follows:

v

“Checking

that

item

data

exists

for

fields

required

by

UCCnet”

on

page

39

details

how

a

UCCnet_ItemSync

collaboration

object

ensures

that

the

business

object

to

be

passed

to

UCCnet

contains

data

in

all

of

the

fields

where

UCCnet

requires

data.

v

“Using

the

PROCESSED_GTIN

table”

on

page

40

describes

how

the

solution

populates

and

maintains

data

in

the

provided

PROCESSED_GTIN

relational

table,

which

permits

a

UCCnet_processWorklist

collaboration

object

to

process

incoming

INITIAL_ITEM_LOAD_REQUEST

commands

without

the

need

to

communicate

with

the

back-end

ERP

system.

v

“Using

the

audit_log

table”

on

page

41

provides

information

about

how

the

solution

populates

and

maintains

data

in

the

provided

audit_log

relational

table,

used

to

track

events

associated

with

UCCnet

activities

to

support

complete

end-to-end

accountability.

v

“Using

the

trading_partner

table”

on

page

43

identifies

how

the

solution

maintains

data

in

the

provided

trading_partner

relational

table,

which

maintains

the

complete

list

of

trading

partners.

v

“Polling

UCCnet

for

worklists”

on

page

43

describes

how

the

solution

obtains

worklists

from

UCCnet.

v

“Using

subdiagrams”

on

page

44

details

the

logic

behind

the

subdiagrams

contained

in

a

UCCnet_processWorklist

collaboration

object.

v

“Sending

e-mail”

on

page

51

describes

how

solution

collaboration

objects

alert

e-mail

recipients

of

processing

errors,

and

how

subdiagrams

within

a

UCCnet_processWorklist

collaboration

object

process

mail

for

different

processing

circumstances.

v

“Logging”

on

page

55

describes

the

capabilities

of

various

collaboration

objects

to

log

errors.

v

“Tracing”

on

page

55

outlines

how

problems

that

might

occur

in

the

solution

workflow

can

be

traced

and

identified.

New

in

this

release

New

in

version

4.3.1:

February

2004

v

The

text

of

the

section“Using

the

PROCESSED_GTIN

table”

on

page

40

has

been

revised

and

expanded.

v

The

text

of

the

section

“Using

the

trading_partner

table”

on

page

43

has

been

revised

and

expanded.

December

2003

This

is

the

second

release

of

WebSphere

Business

Integration

Express

for

Item

Synchronization

V4.3.1

and

the

first

release

of

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

V4.3.1.

Except

where

noted,

all

the

information

in

this

guide

applies

to

both

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

and

IBM

4

Solution

Development

Guide

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization.

The

term

″WebSphere

Business

Integration

Express

for

Item

Synchronization″

and

its

variants

refer

to

both

products.

Planning

the

configuration

Before

you

install

and

configure

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product,

you

must

determine

how

you

will

connect

to

UCCnet

and

what

message

format

and

protocols

you

will

use.

Connectors:

The

way

you

connect

to

UCCnet

will

determine

the

connector

that

you

use

to

communicate

with

it.

If

you

exchange

messages

with

UCCnet

using

an

AS2/EDIINT

interface

protocol,

you

can

use

iSoftConnector

or

communicate

with

UCCnet

through

an

iSoft

Peer-to-Peer

Agent.

If

you

exchange

messages

through

the

UCCnet

Command

Line

Utility

(CLU)

or

are

testing

your

installation,

you

can

use

a

JTextISoftConnector.

Because

the

actual

connector

you

use

to

communicate

with

UCCnet

is

dependent

on

your

setup,

the

term

“AS2

channel

connector”

is

used

throughout

this

document

as

a

general

term

for

either

the

iSoftConnector

or

JTextISoftConnector.

Note:

The

iSoftConnector

is

available

only

on

the

Windows

operating

system.

Use

the

JTextISoftConnector

to

access

the

Peer-to-Peer

Agent

on

the

Linux

and

iSeries

platforms.

Messages:

Messages

are

exchanged

with

UCCnet

in

Extensible

Markup

Language

(XML)

documents.

The

XML

document

format

and

the

protocol

that

you

select

for

communication

with

UCCnet

significantly

impact

the

way

that

you

set

up

your

solution.

The

following

options

are

available:

DTD

message

format

The

format

of

the

XML

documents

exchanged

with

UCCnet

is

defined

by

a

Document

Type

Definition

(DTD).

The

DTD

mode

of

operation

has

one

protocol

available.

Schema

message

format

The

format

of

the

XML

documents

exchanged

by

UCCnet

is

defined

by

an

XML

Schema

Definition

(XSD).

The

XSD

mode

of

operation

has

two

command

protocols

available:

CIN

operation

The

supplier

implements

its

own

subscriber

data

pool.

Catalogue_Item_Notification

(CIN)

messages

are

sent

from

the

supplier

directly

to

trading

partners

subscribed

to

the

product

categories.

CIP

operation

The

supplier

uses

UCCnet

as

the

subscriber

data

pool.

Catalogue_Item

(CI)

messages

containing

additional

item

information

that

is

not

included

in

the

UCCnet

registry

data

are

sent

from

the

supplier

to

UCCnet.

Catalogue_Item_Publication

messages

are

then

sent

to

UCCnet

to

identify

the

subscribers

to

whom

UCCnet

needs

to

send

CIN

messages.

Solution

Development

Guide

5

Processing

a

business

object:

example

workflows

(DTD

support)

The

information

in

the

following

sections

outlines

at

a

high

level

how

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product

handles

the

workflows

that

support

the

DTD-based

implementations.

UCCnet_ItemSync,

UCCnet_requestWorklist,

UCCnet_processWorklist,

and

Notify_by_eMail

collaboration

objects

log

error

messages

if

they

encounter

error

situations

during

any

stage

of

processing.

See

the

section

“Logging”

on

page

55

for

detailed

information.

Tracing

can

also

be

enabled

for

all

collaboration

objects

to

record

logical

flows

and

data

processed.

See

the

section“Tracing”

on

page

55

for

detailed

information.

ItemAdd

workflow:

adding

a

new

item

to

UCCnet

(DTD

support)

In

the

ItemAdd

workflow,

a

new

item

is

added

to

UCCnet.

The

source

of

the

flow

is

the

creation

of

a

new

item

in

the

source

ERP

application.

This

workflow

does

not

result

in

notifications

being

sent

to

subscribed

demand-side

trading

partners.

Another

workflow,

ItemPublicationAdd

detailed

in

the

section

“ItemPublicationAdd

workflow:

making

a

new

item

available

to

trading

partners

and

processing

their

responses”

on

page

8,

accomplishes

sending

these

notifications.

Notes:

1.

Mappings

of

some

attributes

in

the

ItemAdd

messages

requires

the

use

of

value

translation

tables.

The

InterChange

Server

Express

implements

these

tables

as

cross-reference

relationships.

2.

If

you

are

using

schema

support,

refer

to

the

documentation

found

in

“ItemAdd

workflow:

adding

a

new

item

to

UCCnet

(schema

support)”

on

page

24

The

following

instructions

describe

how

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

ItemAdd

workflow:

1.

A

trigger

from

the

ERP

source

provides

the

item

(for

example,

an

IDOC

from

SAP)

to

the

connector

specific

to

that

ERP.

In

this

example,

the

SAPConnector

is

used.

The

SAPConnector

converts

the

input

from

the

ERP

into

a

SAP

application

specific

business

object.

2.

The

SAPConnector

passes

the

SAP

application

specific

business

object

to

a

UCCnet_ItemSync

collaboration

object,

first

transforming

it

into

a

generic

ItemBasic

business

object

with

a

Create

verb

by

passing

it

through

the

Sa4CwItemBasic

input

map.

3.

The

UCCnet_ItemSync

collaboration

object

accepts

the

object

on

its

From

port

and

checks

that

required

fields

contain

information,

as

detailed

in

the

section

“Checking

that

item

data

exists

for

fields

required

by

UCCnet”

on

page

39.

If

all

required

fields

are

complete,

the

collaboration

object

continues

processing

it.

If

all

required

fields

are

not

complete,

the

collaboration

object

aborts

processing

and

sends

an

mail

to

a

configured

address,

as

detailed

in

the

section

“Alerting

e-mail

recipients

of

processing

errors”

on

page

51.

For

this

example,

assume

all

fields

are

complete.

4.

The

UCCnet_ItemSync

collaboration

object

adds

an

entry

for

the

new

item

to

the

PROCESSED_GTIN

table,

setting

the

value

for

the

withdrawn

field

for

this

entry

to

N.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

6

Solution

Development

Guide

5.

The

UCCnet_ItemSync

collaboration

object

adds

an

entry

to

the

audit_log

table

to

identify

the

ItemAdd

transaction

processed.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

6.

The

UCCnet_ItemSync

collaboration

object

delivers

the

ItemBasic

business

object

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

into

an

application-specific

business

object,

a

UCCnetDTD_envelope

business

object.

The

ItemBasic

business

object

is

converted

by

passing

through

the

RouterMap_CwItemBasic_to_UCCnetDTD_envelope

router

map

and

CwItemBasic_to_UCCnetDTD_envelope_documentCommand_item

translation

map.

7.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

ItemAdd

XML

message

in

UCCnet

format.

8.

The

AS2

channel

connector

passes

this

message

to

the

AS2

channel

server.

9.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

ItemAdd

message

to

UCCnet.

10.

UCCnet

generates

and

returns

to

the

AS2

channel

server

a

Message

Disposition

Notification

(MDN)

to

indicate

successful

receipt

of

the

ItemAdd

message.

11.

The

AS2

channel

server

delivers

the

MDN

to

the

AS2

channel

connector.

12.

The

AS2

channel

connector

sends

the

MDN

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

13.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

14.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

15.

The

UCCnet_processWorklist

collaboration

object

receives

the

business

object

on

its

From

port,

identifies

it

as

an

MDN,

and

dispatches

it

to

its

SIMPLE_RESPONSE

subdiagram.

See

the

section

“SIMPLE_RESPONSE

subdiagram”

on

page

50

for

more

information

about

this

subdiagram.

16.

The

SIMPLE_RESPONSE

subdiagram

sends

e-mail

to

the

recipients

configured

in

the

UCCnet_processWorklist_SIMPLE_RESPONSEObject

collaboration

object

(an

instance

of

the

Notify_by_eMail

collaboration

template).

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information

about

how

to

configure

properties

controlling

mail.

17.

UCCnet

creates

a

worklist

containing

the

notification

response

for

a

successful

ItemAdd.

18.

A

chronologically

triggered

process

must

be

configured

to

move

query

command

messages

tailored

to

retrieve

specific

UCCnet

notifications

from

the

following

directory

(dependent

on

platform)

that

is

created

during

installation

of

the

solution

to

the

event

directory

of

the

JTextRWLConnector:

v

On

Windows®

systems:

..\WebSphereICS\UCCnet\UCCnetMessages\Source

v

On

Linux®

and

OS/400®

systems:

../WebSphereICS/UCCnet/UCCnetMessages/Source

Note:

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

installation

path

is

dependent

on

the

path

set

when

the

solution

is

installed.
The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

Solution

Development

Guide

7

commands

that

might

have

been

delivered.

See

the

section

“Polling

UCCnet

for

worklists”

on

page

43

for

more

information

about

this

process.

19.

The

JTextRWLConnector

retrieves

the

worklist

query

command

from

its

event

directory

and

sends

it

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

commands

related

to

it.

20.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

map.

21.

The

JTextRWLConnector

passes

the

business

object

to

a

UCCnet_requestWorklist

collaboration

object.

22.

The

UCCnet_requestWorklist

collaboration

object

receives

the

UCCnetGBO_envelope

business

object

on

its

From

port

and

passes

it

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

to

a

UCCnetDTD_envelope

business

object.

The

UCCnetGBO_envelope

business

object

is

converted

by

passing

through

the

RouterMap_UCCnetGBO_envelope_to_UCCnetDTD_envelope

and

UCCnetGBO_envelope_to_UCCnetDTD_envelope

router

and

translation

maps.

23.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

XML

message

in

UCCnet

format.

24.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

25.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

message

to

UCCnet.

26.

UCCnet

delivers

the

worklist

containing

the

notification

response

for

a

successful

ItemAdd

to

the

AS2

channel

server.

27.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

28.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

29.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

30.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

31.

The

UCCnet_processWorklist

collaboration

object

receives

the

business

object

on

its

From

port,

identifies

it

as

an

ItemAdd

notification,

and

dispatches

it

to

its

ITEM_ADD_CHANGE

subdiagram.

As

a

result

of

the

ItemAdd

workflow,

UCCnet

has

been

updated

with

the

new

item

information.

Now,

the

supplier’s

demand-side

trading

partners

must

be

made

aware

that

the

item

is

available.

This

ongoing

workflow,

referred

to

as

the

ItemPublicationAdd

workflow,

is

continued

in

the

section

“ItemPublicationAdd

workflow:

making

a

new

item

available

to

trading

partners

and

processing

their

responses.”

ItemPublicationAdd

workflow:

making

a

new

item

available

to

trading

partners

and

processing

their

responses

The

information

in

this

section

describes

how

the

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

ItemPublicationAdd

workflow.

In

the

ItemPublicationAdd

workflow,

a

new

item

that

was

passed

to

UCCnet

through

the

ItemAdd

workflow

(detailed

in

the

section

“ItemAdd

workflow:

adding

a

new

8

Solution

Development

Guide

item

to

UCCnet

(DTD

support)”

on

page

6)

is

made

available

to

the

supplier’s

demand-side

trading

partners.

The

demand-side

trading

partners’

responses

to

the

new

item

are

processed

as

well.

As

a

result,

the

ItemPublicationAdd

workflow

is

described

as

two

subflows:

v

The

subflow

that

makes

the

new

item

available

to

the

supplier’s

demand-side

trading

partners,

is

described

in

the

section

“ItemPublicationAdd

subflow

1:

making

a

new

item

available

to

trading

partners.”

v

The

subflow

that

processes

the

demand-side

trading

partners’

responses

to

the

new

item,

is

described

in

the

section

“ItemPublicationAdd

subflow

2:

processing

trading

partners’

responses

to

a

new

item”

on

page

11.

ItemPublicationAdd

subflow

1:

making

a

new

item

available

to

trading

partners

The

following

instructions

describe

how

the

ItemPublicationAdd

workflow

makes

a

new

item

available

to

a

supplier’s

demand-side

trading

partners.

At

this

point

in

processing,

the

ItemAdd

workflow

has

completed

and

a

UCCnetGBO_envelope

business

object

has

arrived

in

the

ITEM_ADD_CHANGE

subdiagram

of

the

UCCnet_processWorklist

collaboration

object.

1.

The

UCCnet_processWorklist

collaboration

object’s

ITEM_ADD_CHANGE

configures

the

business

object

so

that

the

router

map

will

select

the

correct

transformation

map.

See

the

section

“ITEM_ADD_CHANGE

subdiagram”

on

page

48

for

more

information

about

this

subdiagram.

2.

The

AS2

channel

connector

maps

the

UCCnetGBO_envelope

business

object

into

a

UCCnetDTD_envelope

business

object.

The

UCCnetGBO_envelope

business

object

is

converted

by

passing

through

the

RouterMap_UCCnetGBO_envelope_to_UCCnetDTD_envelope

and

UCCnetGBO_envelope_notification_to_UCCnetDTD_envelope

_publishCommand

router

and

input

maps.

The

business

object

contains

the

corresponding

ItemPublicationAdd

request.

This

message

includes

a

request

for

UCCnet

to

publish

the

item

to

the

trading

partners

listed

in

the

message

3.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

ItemPublicationAdd

XML

message

in

UCCnet

format.

4.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

5.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

ItemPublicationAdd

message

to

UCCnet.

6.

UCCnet

generates

and

sends

to

the

AS2

channel

server

an

MDN

indicating

successful

receipt

of

the

ItemPublicationAdd

message.

7.

The

AS2

channel

server

delivers

the

MDN

to

the

AS2

channel

connector.

8.

The

AS2

channel

connector

sends

the

MDN

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

9.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

10.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

11.

The

UCCnet_processWorklist

collaboration

object

receives

the

business

object

on

its

From

port,

identifies

it

as

an

MDN,

and

dispatches

it

to

its

SIMPLE_RESPONSE

subdiagram.

See

the

section

“SIMPLE_RESPONSE

subdiagram”

on

page

50

for

more

information

about

this

subdiagram.

12.

The

SIMPLE_RESPONSE

subdiagram

sends

e-mail

to

the

recipients

configured

in

the

UCCnet_processWorklist_SIMPLE_RESPONSEObject

collaboration

object

(an

instance

of

the

Notify_by_eMail

collaboration

template).

See

the

Solution

Development

Guide

9

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information

about

how

to

configure

properties

controlling

e-mail.

13.

UCCnet

performs

a

compliance

check

on

the

data

and,

if

all

data

exists

in

the

appropriate

formats,

creates

a

worklist

containing

a

PUB_RELEASE_NEW_ITEM

notification

to

indicate

a

successful

ItemPublicationAdd.

14.

A

chronologically

triggered

process

must

be

configured

to

move

query

command

messages

tailored

to

retrieve

specific

UCCnet

notifications

from

the

following

directory

(dependent

on

platform)

that

is

created

during

installation

of

the

solution

to

the

event

directory

of

the

JTextRWLConnector:

v

On

Windows

systems:

..\WebSphereICS\UCCnet\UCCnetMessages\Source

v

On

Linux

and

OS/400

systems:

../WebSphereICS/UCCnet/UCCnetMessages/Source

Note:

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

installation

path

is

dependent

on

the

path

set

when

the

solution

is

installed.
The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

commands

that

might

have

been

delivered.

See

the

section

“Polling

UCCnet

for

worklists”

on

page

43

for

more

information

about

this

process.

15.

The

JTextRWLConnector

retrieves

the

worklist

query

command

from

its

event

directory

and

sends

it

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object

16.

.

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

commands

related

to

it.

17.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

18.

The

JTextRWLConnector

passes

the

business

object

to

a

UCCnet_requestWorklist

collaboration

object.

19.

The

UCCnet_requestWorklist

collaboration

object

receives

the

UCCnetGBO_envelope

business

object

on

its

From

port

and

passes

it

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

to

a

UCCnetDTD_envelope

business

object.

The

UCCnetGBO_envelope

business

object

is

converted

by

passing

through

the

RouterMap_UCCnetGBO_envelope_to_UCCnetDTD_envelope

and

UCCnetGBO_envelope_to_UCCnetDTD_envelope

router

and

translation

maps.

20.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

XML

message

in

UCCnet

format.

21.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

22.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

message

to

UCCnet.

23.

UCCnet

delivers

the

worklist

containing

the

PUB_RELEASE_NEW_ITEM

notification

indicating

a

successful

ItemPublicationAdd

to

the

AS2

channel

server.

24.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

25.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

10

Solution

Development

Guide

26.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

27.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

28.

The

UCCnet_processWorklist

collaboration

object

receives

the

object

on

its

From

port,

identifies

it

as

a

PUB_RELEASE_NEW_ITEM,

and

dispatches

it

to

its

NEW_ITEM_PUBLICATION_REQUEST

subdiagram.

See

the

section

“NEW_ITEM_PUBLICATION_REQUEST

subdiagram”

on

page

48

for

more

information

about

this

subdiagram.

As

a

result

of

this

subflow

of

the

ItemPublicationAdd

workflow,

a

new

item

is

made

available

to

a

supplier’s

demand-side

trading

partners.

The

ongoing

subflow

that

alerts

them

of

the

item’s

existence

and

processes

their

responses,

referred

to

as

the

ItemPublicationAdd

subflow

2,

is

continued

in

the

section

“ItemPublicationAdd

subflow

2:

processing

trading

partners’

responses

to

a

new

item.”

ItemPublicationAdd

subflow

2:

processing

trading

partners’

responses

to

a

new

item

At

this

point

in

processing,

the

first

subflow

of

the

ItemPublicationAdd

workflow

has

completed

and

a

UCCnetGBO_envelope

business

object

has

arrived

in

the

NEW_ITEM_PUBLICATION_REQUEST

subdiagram

of

the

UCCnet_processWorklist

collaboration

object.

The

following

instructions

describe

how

the

ItemPublicationAdd

workflow

alerts

demand-side

trading

partners

that

a

new

item

is

available

and

processes

their

responses:

1.

The

UCCnet_processWorkflow

collaboration

object’s

NEW_ITEM_PUBLICATION_REQUEST

subdiagram

logic:

a.

Verifies

that

the

GTIN

value

associated

with

the

item

is

in

the

PROCESSED_GTIN

table

and

that

the

item

is

not

withdrawn.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

b.

Checks

that

the

new

item

to

be

published

is

supplied

by

a

trading

partner

listed

in

the

trading_partner

table

and

verifies

that

the

demand-side

trading

partners

to

whom

notification

will

be

sent

are

also

in

this

table.

See

the

section

“Using

the

trading_partner

table”

on

page

43

for

more

information

about

the

trading_partner

table.

c.

Configures

the

business

object

so

that

the

router

map

will

be

used

by

the

connector.

d.

Sends

the

ItemPublicationAdd

for

the

GTIN

to

the

demand-side

trading

partners

identified

in

the

business

object.

The

message

is

sent

over

the

NEW_ITEM_PUBLICATION_REQUEST

port

to

the

AS2

channel

connector.

e.

Logs

the

notification

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.
2.

The

AS2

channel

connector

maps

the

business

object

into

a

UCCnetDTD_envelope

business

object.

The

business

object

is

converted

by

passing

through

the

RouterMap_UCCnetGBO_envelope_to_UCCnetDTD_envelope

and

UCCnetGBO_envelope_notification_to_UCCnetDTD_envelope

_publishCommand

maps.

3.

The

business

object

is

converted

to

XML,

delivered

to

the

AS2

channel

server,

and

then

to

UCCnet.

Solution

Development

Guide

11

4.

UCCnet

delivers

the

ItemPublicationAdd

to

the

demand-side

trading

partners.

The

trading

partners

can

respond

with

any

of

the

following

responses:

AUTHORIZE

The

product

information

has

been

integrated

into

the

demand-side

user’s

existing

environment

and

the

demand-side

user

is

ready

to

begin

trading.

PEND_PUBLICATION

The

demand-side

user

is

unsure

about

the

proper

action

to

take

on

the

product.

The

product

is

being

studied,

but

no

action

is

possible

at

this

time.

REJECT_PUBLICATION

The

demand-side

user

has

no

interest

in

the

product.

PRE_AUTHORIZATION

The

demand-side

user

wants

to

begin

the

process

of

integrating

the

product

into

its

existing

environment.

This

response

might

indicate

that

the

supplier

contact

the

demand-side

user

to

begin

the

process

of

deciding

on

order

quantities,

pricing

specifics,

and

so

on.

DE_AUTHORIZATION

The

demand-side

user

has

removed

the

product

from

the

assortment

and

wants

no

further

updates

sent

for

the

product.

Note:

Assume

a

demand-side

trading

partner

responds

with

an

AUTHORIZE

response.
For

this

example,

5.

UCCnet

performs

a

compliance

check

on

the

data.

If

all

data

exists

in

the

appropriate

formats,

then

UCCnet

creates

a

worklist

containing

the

notification

response.

6.

UCCnet

delivers

the

worklist

to

the

AS2

channel

server.

7.

A

chronologically

triggered

process

must

be

configured

to

move

query

command

messages

tailored

to

retrieve

specific

UCCnet

notifications

from

the

following

directory

(dependent

on

platform)

that

is

created

during

installation

of

the

solution

to

the

event

directory

of

the

JTextRWLConnector:

v

On

Windows

systems:

..\WebSphereICS\UCCnet\UCCnetMessages\Source

v

On

Linux

and

OS/400

systems:

../WebSphereICS/UCCnet/UCCnetMessages/Source

Note:

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

installation

path

is

dependent

on

the

path

set

when

the

solution

is

installed.
The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

commands

that

might

have

been

delivered.

See

the

section

“Polling

UCCnet

for

worklists”

on

page

43

for

more

information

about

this

process.

8.

The

JTextRWLConnector

retrieves

the

worklist

query

command

from

its

event

directory

and

sends

it

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

commands

related

to

it.

9.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

10.

The

JTextRWLConnector

passes

the

business

object

to

a

UCCnet_requestWorklist

collaboration

object.

11.

The

UCCnet_requestWorklist

collaboration

object

receives

the

UCCnetGBO_envelope

business

object

on

its

From

port

and

passes

it

to

the

12

Solution

Development

Guide

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

to

a

UCCnetDTD_envelope

business

object.

The

UCCnetGBO_envelope

business

object

is

converted

by

passing

through

the

RouterMap_UCCnetGBO_envelope_to_UCCnetDTD_envelope

and

UCCnetGBO_envelope_to_UCCnetDTD_envelope

router

and

translation

maps.

12.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

XML

message

in

UCCnet

format.

13.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

14.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

message

to

UCCnet.

15.

UCCnet

delivers

the

worklist

containing

the

AUTHORIZE

notification

to

the

AS2

channel

server.

16.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

17.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

18.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

19.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

20.

The

UCCnet_processWorklist

collaboration

object

receives

the

object

on

its

From

port,

identifies

it

as

an

AUTHORIZE

response,

and

dispatches

it

to

its

AUTHORIZATION_RESPONSES

subdiagram.

See

the

section

“AUTHORIZATION_RESPONSES

subdiagram”

on

page

46

for

more

information

about

this

subdiagram.

21.

The

AUTHORIZATION_RESPONSES

subdiagram

completes

the

following

steps:

a.

Sends

e-mail

to

the

recipients

configured

in

the

UCCnet_processWorklist_AUTHORIZATION_RESPONSESObject

collaboration

object

(an

instance

of

the

Notify_by_eMail

collaboration

template).

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information

about

how

to

configure

properties

controlling

e-mail.

b.

Logs

the

event

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

ItemChange

workflow:

updating

item

information

in

UCCnet

(DTD

support)

The

ItemChange

workflow

sends

updated

information

about

an

existing

item

to

UCCnet.

The

source

of

the

flow

is

a

change

to

the

data

of

an

existing

item

in

the

ERP

source

application.

Issuing

a

change

does

not

result

in

notifications

being

sent

to

subscribed

demand-side

trading

partners.

Another

workflow,

ItemPublicationChange

detailed

in

the

section

“ItemPublicationChange

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses”

on

page

16,

accomplishes

sending

these

notifications.

Notes:

1.

The

mappings

used

in

processing

ItemChange

messages

use

value

translation

tables.

The

InterChange

Server

Express

implements

these

tables

as

cross-references.

Solution

Development

Guide

13

2.

If

you

are

using

schema

support,

refer

to

the

documentation

found

in

“ItemChange

workflow:

updating

item

information

in

UCCnet

(schema

support)”

on

page

30

The

following

instructions

describe

how

high-level

components

of

the

Item

Integration

Collaboration

perform

the

ItemChange

workflow:

1.

A

trigger

from

the

ERP

source

provides

the

item

(for

example,

an

IDOC

from

SAP)

to

the

connector

portion

of

an

adapter

specific

to

that

ERP.

In

this

example,

the

SAPConnector

is

used.

The

SAPConnector

converts

the

input

from

the

ERP

into

a

SAP

application

specific

business

object.

2.

The

SAPConnector

passes

the

SAP

application

specific

business

object

to

a

UCCnet_ItemSync

collaboration

object,

first

transforming

it

into

a

generic

ItemBasic

business

object

with

a

Update

verb

by

passing

it

through

the

Sa4CwItemBasic

input

map.

3.

The

UCCnet_ItemSync

collaboration

object

accepts

the

object

on

its

From

port

and

checks

that

required

fields

contain

information,

as

detailed

in

the

section

“Checking

that

item

data

exists

for

fields

required

by

UCCnet”

on

page

39.

If

all

required

fields

are

complete,

the

collaboration

object

continues

processing

it.

If

all

required

fields

are

not

complete,

the

collaboration

object

aborts

processing

and

sends

an

e-mail

to

a

configured

address,

as

detailed

in

the

section

“Alerting

e-mail

recipients

of

processing

errors”

on

page

51.

For

this

example,

assume

all

fields

are

complete.

4.

The

UCCnet_ItemSync

collaboration

object

checks

if

the

item

exists

in

the

PROCESSED_GTIN

table

and

processes

it,

as

follows:

v

If

the

item

exists

in

the

table

and

the

value

for

its

withdrawn

field

is

set

to

N,

the

collaboration

object

continues

processing

it.

v

If

the

item

exists

in

the

table

and

the

value

for

its

withdrawn

field

is

set

to

Y,

the

collaboration

object

completes

the

following

steps:

–

Changes

the

value

of

the

entry’s

withdrawn

field

to

N.

–

Changes

the

value

of

the

entry’s

delete

field

to

U.

–

Changes

the

business

object

verb

to

UNWITHDRAWN.

–

Continues

processing

it.
v

If

the

item

does

not

exist

in

the

table,

the

collaboration

object

changes

the

verb

to

Create

and

adds

it

to

the

PROCESSED_GTIN

table,

setting

the

entry’s

withdrawn

field

to

N.

Note:

Assume

that

the

item

already

exists

in

the

table

and

is

not

withdrawn.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

5.

The

UCCnet_ItemSync

collaboration

object

adds

an

entry

to

the

audit_log

table

to

identify

the

ItemChange

transaction

processed.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

6.

The

UCCnet_ItemSync

collaboration

object

delivers

the

ItemBasic

business

object

to

the

AS2

channel

connector

over

its

To

port.

Notes:

a.

If

you

are

using

iSoftConnector,

the

associated

map

is

RouterMap_CwItemBasic_to_UCCnetDTD_envelope.

b.

If

you

are

using

JTextISoftConnector,

the

associated

map

is

RouterMap_CwItemBasic_to_UCCnetDTD_envelope.

14

Solution

Development

Guide

In

the

connector

controller,

it

is

converted

into

a

UCCnetDTD_envelope.

The

ItemBasic

business

object

is

converted

by

passing

through

the

RouterMap_CwItemBasic_to_UCCnetDTD_envelope

and

CwItemBasic_to_UCCnetDTD_envelope_documentCommand_item

router

and

translation

maps.

7.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

ItemChange

XML

message

in

UCCnet

format.

8.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

9.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

ItemChange

message

to

UCCnet.

10.

UCCnet

generates

and

returns

to

the

AS2

channel

server

an

MDN

to

indicate

successful

receipt

of

the

ItemChange

message.

11.

The

AS2

channel

server

delivers

the

MDN

to

the

AS2

channel

connector.

12.

The

AS2

channel

connector

sends

the

MDN

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

13.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope.

14.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

15.

The

UCCnet_processWorklist

collaboration

object

receives

the

business

object

on

its

From

port,

identifies

it

as

an

MDN,

and

dispatches

it

to

its

SIMPLE_RESPONSE

subdiagram.

See

the

section

“SIMPLE_RESPONSE

subdiagram”

on

page

50

for

more

information

about

this

subdiagram.

16.

The

SIMPLE_RESPONSE

subdiagram

sends

e-mail

to

the

recipients

configured

in

the

UCCnet_processWorklist_SIMPLE_RESPONSEObject

collaboration

object

(an

instance

of

the

Notify_by_eMail

collaboration

template).

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information

about

how

to

configure

properties

controlling

e-mail.

17.

UCCnet

creates

a

worklist

containing

an

ItemChange

notification

to

indicate

a

successful

ItemChange.

18.

A

chronologically

triggered

process

must

be

configured

to

move

query

command

messages

tailored

to

retrieve

specific

UCCnet

notifications

from

the

following

directory

(dependent

on

platform)

that

is

created

during

installation

of

the

solution

to

the

event

directory

of

the

JTextRWLConnector:

v

On

Windows

systems:

..\WebSphereICS\UCCnet\UCCnetMessages\Source

v

On

Linux

and

OS/400

systems:

../WebSphereICS/UCCnet/UCCnetMessages/Source

Note:

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

installation

path

is

dependent

on

the

path

set

when

the

solution

is

installed.
The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

commands

that

might

have

been

delivered.

See

the

section

“Polling

UCCnet

for

worklists”

on

page

43

for

more

information

about

this

process.

19.

The

JTextRWLConnector

retrieves

the

worklist

query

command

from

its

event

directory

and

sends

it

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

commands

related

to

it.

Solution

Development

Guide

15

20.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

21.

The

JTextRWLConnector

passes

the

business

object

to

a

UCCnet_requestWorklist

collaboration

object.

22.

The

UCCnet_requestWorklist

collaboration

object

receives

the

UCCnetGBO_envelope

business

object

on

its

From

port

and

passes

it

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

to

a

UCCnetDTD_envelope

business

object.

The

UCCnetGBO_envelope

business

object

is

converted

by

passing

through

the

RouterMap_UCCnetGBO_envelope_to_UCCnetDTD_envelope

and

UCCnetGBO_envelope_to_UCCnetDTD_envelope

router

and

translation

maps.

23.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

XML

message

in

UCCnet

format.

24.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

25.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

message

to

UCCnet.

26.

UCCnet

delivers

the

worklist

containing

the

ItemChange

notification

for

a

successful

ItemChange

to

the

AS2

channel

server.

27.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

28.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

29.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

30.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

31.

The

UCCnet_processWorklist

collaboration

receives

the

business

object

on

its

From

port,

identifies

it

as

an

ItemChange

notification,

and

dispatches

it

to

its

ITEM_ADD_CHANGE

subdiagram.

As

a

result

of

the

ItemChange

workflow,

UCCnet

has

updated

the

item

information.

Now,

the

supplier’s

demand-side

trading

partners

must

be

notified

that

updated

information

about

the

item

exists.

This

ongoing

workflow,

referred

to

as

the

ItemPublicationChange

workflow,

is

continued

in

the

section

“ItemPublicationChange

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses.”

ItemPublicationChange

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses

The

information

in

this

section

describes

how

the

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

ItemPublicationChange

workflow.

In

the

ItemPublicationChange

workflow,

updated

item

information

that

was

passed

to

UCCnet

through

the

ItemChange

workflow

(detailed

in

the

section

“ItemChange

workflow:

updating

item

information

in

UCCnet

(DTD

support)”

on

page

13)

is

made

available

to

the

supplier’s

demand-side

trading

partners.

The

demand-side

trading

partners’

responses

to

this

item

information

must

then

be

processed.

As

a

result,

the

ItemPublicationChange

workflow

is

described

as

two

subflows:

16

Solution

Development

Guide

v

The

subflow

that

makes

updated

item

information

available

to

the

supplier’s

demand-side

trading

partners,

described

in

the

section

“ItemPublicationChange

subflow

1:

making

updated

item

information

available

to

trading

partners.”

v

The

subflow

that

processes

the

demand-side

trading

partners’

responses

to

the

updated

information,

described

in

the

section

“ItemPublicationChange

subflow

2:

processing

trading

partners’

responses

to

updated

item

information”

on

page

19.

ItemPublicationChange

subflow

1:

making

updated

item

information

available

to

trading

partners

At

this

point

in

processing,

the

ItemChange

workflow

has

completed

and

a

UCCnetGBO_envelope

business

object

has

arrived

in

the

ITEM_ADD_CHANGE

subdiagram

of

the

UCCnet_processWorklist

collaboration

object.

The

following

instructions

describe

how

the

ItemPublicationChange

workflow

makes

updated

item

information

available

to

a

supplier’s

demand-side

trading

partners:

1.

The

UCCnet_processWorklist

collaboration

object’s

ITEM_ADD_CHANGE

subdiagram

completes

the

following

steps:

a.

The

UCCnet_processWorklist

collaboration

object’s

ITEM_ADD_CHANGE

subdiagram

configures

the

business

object

so

that

the

router

map

will

select

the

correct

transformation

map.

b.

The

subdiagram

sends

the

ItemPublicationChange

request

over

the

ITEM_ADD_CHANGE

port

to

the

AS2

channel

connector.

c.

Logs

the

notification

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

See

the

section

“ITEM_ADD_CHANGE

subdiagram”

on

page

48

for

more

information

about

this

subdiagram.

2.

The

AS2

channel

connector

maps

the

UCCnetGBO_envelope

business

object

into

a

UCCnetDTD_envelope

business

object.

The

UCCnetGBO_envelope

business

object

is

converted

by

passing

through

the

RouterMap_UCCnetGBO_envelope_to_UCCnetDTD_envelope

and

UCCnetGBO_envelope_notification_to_UCCnetDTD_envelope_publishCommandrouter

and

transformation

maps.

The

business

object

contains

the

corresponding

ItemPublicationAdd

request.

This

message

includes

a

request

for

UCCnet

to

publish

the

item

to

the

trading

partners

listed

in

the

message.

3.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

ItemPublicationChange

XML

message

in

UCCnet

format.

4.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

5.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

ItemPublicationChange

message

to

UCCnet.

6.

UCCnet

generates

and

sends

to

the

AS2

channel

server

an

MDN

indicating

successful

receipt

of

the

ItemPublicationChange

message.

7.

The

AS2

channel

server

delivers

the

MDN

to

the

AS2

channel

connector.

8.

The

AS2

channel

connector

sends

the

MDN

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

9.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

Solution

Development

Guide

17

10.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

11.

The

UCCnet_processWorklist

collaboration

object

receives

the

business

object

on

its

From

port,

identifies

it

as

an

MDN,

and

dispatches

it

to

its

SIMPLE_RESPONSE

subdiagram.

See

the

section

“SIMPLE_RESPONSE

subdiagram”

on

page

50

for

more

information

about

this

subdiagram.

12.

The

SIMPLE_RESPONSE

subdiagram

sends

e-mail

to

the

recipients

configured

in

the

UCCnet_processWorklist_SIMPLE_RESPONSEObject

collaboration

object

(an

instance

of

the

Notify_by_eMail

collaboration

template).

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information

about

how

to

configure

properties

controlling

e-mail.

13.

UCCnet

performs

a

compliance

check

on

the

data.

If

all

the

data

are

in

the

correct

formats,

UCCnet

creates

a

worklist

containing

the

PUB_RELEASE_DATA_CHANGE

notification

to

indicate

a

successful

ItemPublicationChange.

14.

A

chronologically

triggered

process

must

be

configured

to

move

query

command

messages

tailored

to

retrieve

specific

UCCnet

notifications

from

the

following

directory

(dependent

on

platform)

that

is

created

during

installation

of

the

solution

to

the

event

directory

of

the

JTextRWLConnector:

v

On

Windows

systems:

..\WebSphereICS\UCCnet\UCCnetMessages\Source

v

On

Linux

and

OS/400

systems:

../WebSphereICS/UCCnet/UCCnetMessages/Source

Note:

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

installation

path

is

dependent

on

the

path

set

when

the

solution

is

installed.
The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

commands

that

might

have

been

delivered.

See

the

section

“Polling

UCCnet

for

worklists”

on

page

43

for

more

information

about

this

process.

15.

The

JTextRWLConnector

retrieves

the

worklist

query

command

from

its

event

directory

and

sends

it

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

commands

related

to

it.

16.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

17.

The

JTextRWLConnector

passes

the

business

object

to

a

UCCnet_requestWorklist

collaboration

object.

18.

The

UCCnet_requestWorklist

collaboration

object

receives

the

UCCnetGBO_envelope

business

object

on

its

From

port

and

passes

it

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

to

a

UCCnetDTD_envelope

business

object.

The

UCCnetGBO_envelope

business

object

is

converted

by

passing

through

the

RouterMap_UCCnetGBO_envelope_to_UCCnetDTD_envelope

and

UCCnetGBO_envelope_to_UCCnetDTD_envelope

router

and

translation

maps.

19.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

XML

message

in

UCCnet

format.

20.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

21.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

message

to

UCCnet.

18

Solution

Development

Guide

22.

UCCnet

delivers

the

worklist

containing

the

PUB_RELEASE_DATA_CHANGE

notification

for

a

successful

ItemPublicationChange

to

the

AS2

channel

server.

23.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

24.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

25.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

26.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

27.

The

UCCnet_processWorklist

collaboration

object

receives

the

object

on

its

From

port,

identifies

it

as

a

PUB_RELEASE_DATA_CHANGE,

and

dispatches

it

to

its

NEW_ITEM_PUBLICATION_REQUEST

subdiagram.

See

the

section

“NEW_ITEM_PUBLICATION_REQUEST

subdiagram”

on

page

48

for

more

information

about

this

subdiagram.

As

a

result

of

this

subflow

of

the

ItemPublicationChange

workflow,

updated

item

information

is

made

available

to

a

supplier’s

demand-side

trading

partners.

The

ongoing

subflow

that

alerts

them

of

the

available

updated

information

and

processes

their

responses,

referred

to

as

the

ItemPublicationChange

subflow

2,

is

continued

in

the

section

“ItemPublicationChange

subflow

2:

processing

trading

partners’

responses

to

updated

item

information.”

ItemPublicationChange

subflow

2:

processing

trading

partners’

responses

to

updated

item

information

At

this

point

in

processing,

the

first

subflow

of

the

ItemPublicationChange

workflow

has

completed

and

a

UCCnetGBO_envelope

business

object

has

arrived

in

the

NEW_ITEM_PUBLICATION_REQUEST

subdiagram

of

the

UCCnet_processWorklist

collaboration

object.

The

following

instructions

describe

how

the

ItemPublicationChange

workflow

alerts

demand-side

trading

partners

that

new

item

information

is

available

and

processes

their

responses:

1.

The

UCCnet_processWorkflow

collaboration

object’s

NEW_ITEM_PUBLICATION_REQUEST

subdiagram

logic

completes

the

following

steps:

a.

Verifies

that

the

GTIN

value

associated

with

the

item

is

in

the

PROCESSED_GTIN

table

and

that

the

item

is

not

withdrawn.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

b.

Checks

that

the

new

item

information

to

be

published

is

supplied

by

a

trading

partner

listed

in

the

trading_partner

table

and

verifies

that

the

demand-side

trading

partners

to

whom

notification

will

be

sent

are

also

in

this

table.

See

the

section

“Using

the

trading_partner

table”

on

page

43

for

more

information

about

the

trading_partner

table.

c.

Sends

the

ItemPublicationChange

for

the

GTIN

to

the

demand-side

trading

partners

identified

in

the

business

object.

The

message

is

sent

over

the

NEW_ITEM_PUBLICATION_REQUEST

port

to

the

AS2

channel

connector.

d.

Logs

the

notification

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

Solution

Development

Guide

19

2.

The

AS2

channel

connector

maps

the

business

object

into

a

UCCnetDTD_envelope

business

object.

The

business

object

is

converted

by

passing

through

the

RouterMap_UCCnetGBO_envelope_to_UCCnetDTD_envelope

and

UCCnetGBO_envelope_notification_to_UCCnetDTD_envelope_

publishCommand

router

and

transformation

maps.

3.

The

business

object

is

converted

to

XML,

delivered

to

the

AS2

channel

server,

and

then

to

UCCnet.

4.

UCCnet

delivers

the

ItemPublicationAdd

to

the

demand-side

trading

partners.

The

trading

partners

can

respond

with

any

of

the

following

responses:

AUTHORIZE

The

product

information

has

been

integrated

into

the

demand-side

user’s

existing

environment

and

the

demand-side

user

is

ready

to

begin

trading.

PEND_PUBLICATION

The

demand-side

user

is

unsure

about

the

proper

action

to

take

on

the

product.

The

product

is

being

studied,

but

no

action

is

possible

at

this

time.

REJECT_PUBLICATION

The

demand-side

user

has

no

interest

in

the

product.

PRE_AUTHORIZATION

The

demand-side

user

wants

to

begin

the

process

of

integrating

the

product

into

its

existing

environment.

This

response

might

indicate

that

the

supplier

contact

the

demand-side

user

to

begin

the

process

of

deciding

on

order

quantities,

pricing

specifics,

and

so

on.

DE_AUTHORIZATION

The

demand-side

user

has

removed

the

product

from

the

assortment

and

wants

no

further

updates

sent

for

the

product.

Note:

Assume

a

demand-side

trading

partner

responds

with

an

AUTHORIZE

response.

5.

UCCnet

performs

a

compliance

check

on

the

data.

If

all

the

data

exist

in

the

appropriate

formats,

then

UCCnet

creates

a

worklist

containing

the

notification

response.

6.

UCCnet

delivers

the

worklist

to

the

AS2

channel

server.

7.

A

chronologically

triggered

process

must

be

configured

to

move

query

command

messages

tailored

to

retrieve

specific

UCCnet

notifications

from

the

following

directory

(dependent

on

platform)

that

is

created

during

installation

of

the

solution

to

the

event

directory

of

the

JTextRWLConnector:

v

On

Windows

systems:

..\WebSphereICS\UCCnet\UCCnetMessages\Source

v

On

Linux

and

OS/400

systems:

../WebSphereICS/UCCnet/UCCnetMessages/Source

Note:

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

installation

path

is

dependent

on

the

path

set

when

the

solution

is

installed.
The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

commands

that

might

have

been

delivered.

See

the

section

“Polling

UCCnet

for

worklists”

on

page

43

for

more

information

about

this

process.

8.

The

JTextRWLConnector

retrieves

the

worklist

query

command

from

its

event

directory

and

sends

it

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

commands

related

to

it.

20

Solution

Development

Guide

9.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

10.

The

JTextRWLConnector

passes

the

business

object

to

a

UCCnet_requestWorklist

collaboration

object.

11.

The

UCCnet_requestWorklist

collaboration

object

receives

the

UCCnetGBO_envelope

business

object

on

its

From

port

and

passes

it

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

to

a

UCCnetDTD_envelope

business

object.

The

UCCnetGBO_envelope

business

object

is

converted

by

passing

through

the

RouterMap_UCCnetGBO_envelope_to_UCCnetDTD_envelope

and

UCCnetGBO_envelope_to_UCCnetDTD_envelope

router

and

translation

maps.

12.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

XML

message

in

UCCnet

format.

13.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

14.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

message

to

UCCnet.

15.

UCCnet

delivers

the

worklist

containing

the

AUTHORIZE

notification

to

the

AS2

channel

server.

16.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetDTD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

17.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetDTD_envelope_to_UCCnetGBO_envelope

input

map.

18.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

19.

The

UCCnet_processWorklist

collaboration

object

receives

the

object

on

its

From

port,

identifies

it

as

an

AUTHORIZE

response,

and

dispatches

it

to

its

AUTHORIZATION_RESPONSES

subdiagram.

See

the

section

“AUTHORIZATION_RESPONSES

subdiagram”

on

page

46

for

more

information

about

this

subdiagram.

20.

The

AUTHORIZATION_RESPONSES

subdiagram

completes

the

following

steps:

a.

Sends

e-mail

to

the

recipients

configured

in

the

UCCnet_processWorklist_AUTHORIZATION_RESPONSESObject

collaboration

object

(an

instance

of

the

Notify_by_eMail

collaboration

template).

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information

about

how

to

configure

properties

controlling

e-mail.

b.

Logs

the

event

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

ItemDelist

workflow:

making

an

item

permanently

unavailable

to

trading

partners

(DTD

support)

The

ItemDelist

workflow

requests

that

UCCnet

make

an

item

in

the

repository

permanently

unavailable.

After

an

item

has

been

delisted,

it

cannot

be

returned

to

active

trading.

(To

remove

an

item

from

active

trading

only

temporarily,

issue

an

ItemWithdrawal,

as

discussed

in

the

section

“ItemWithdrawal

workflow:

making

an

item

temporarily

unavailable

to

all

or

selected

trading

partners

(DTD

support)”

on

page

23

Solution

Development

Guide

21

on

page

22.)

The

source

of

the

flow

is

the

delist

of

an

existing

item

in

the

ERP

source

application.

This

workflow

does

not

result

in

notifications

being

sent

to

demand-side

trading

partners.

Note:

If

you

are

using

schema

support,

refer

to

the

documentation

found

in

“ItemDelist

workflow:

making

an

item

permanently

unavailable

to

trading

partners

(schema

support)”

on

page

36

The

following

instructions

describe

how

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

ItemDelist

workflow:

1.

A

trigger

from

the

ERP

source

provides

the

item

(for

example,

an

IDOC

from

SAP)

to

the

connector

portion

of

an

adapter

specific

to

that

ERP.

In

this

example,

the

SAPConnector

is

used.

The

SAPConnector

converts

the

input

from

the

ERP

into

a

SAP

application

specific

business

object.

2.

The

SAPConnector

passes

the

SAP

application

specific

business

object

to

a

UCCnet_ItemSync

collaboration

object,

first

transforming

it

into

a

generic

ItemBasic

business

object

with

an

Delist

verb

by

passing

it

through

the

Sa4CwItemBasic

input

map.

3.

The

UCCnet_ItemSync

collaboration

object

accepts

the

object

on

its

From

port

and

checks

that

required

fields

contain

information,

as

detailed

in

the

section

“Checking

that

item

data

exists

for

fields

required

by

UCCnet”

on

page

39.

If

all

required

fields

are

complete,

the

collaboration

object

continues

processing

it.

If

all

required

fields

are

not

complete,

the

collaboration

object

aborts

processing

and

sends

an

e-mail

to

a

configured

address,

as

detailed

in

the

section

“Alerting

e-mail

recipients

of

processing

errors”

on

page

51.

For

this

example,

assume

all

fields

are

complete.

4.

The

UCCnet_ItemSync

collaboration

object

removes

the

item

from

the

PROCESSED_GTIN

table.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

5.

The

UCCnet_ItemSync

collaboration

object

adds

an

entry

to

the

audit_log

table

to

identify

the

ItemDelist

transaction

processed.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

6.

The

UCCnet_ItemSync

collaboration

object

delivers

the

ItemBasic

business

object

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

to

a

UCCnetDTD_envelope

business

object.

The

ItemBasic

business

object

is

converted

by

passing

through

the

RouterMap_CwItemBasic_to_UCCnetDTD_envelope

and

CwItemBasic_to_UCCnetDTD_envelope_publishCommand_documentIdentifier

router

and

translation

maps.

7.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

ItemDelist

XML

message

in

UCCnet

format.

8.

The

AS2

channel

connector

passes

this

message

to

the

AS2

channel

server.

9.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

ItemDelist

message

to

UCCnet.

10.

UCCnet

generates

an

MDN

to

indicate

successful

receipt

of

the

ItemDelist

message.

As

a

result

of

the

ItemDelist

workflow,

the

item

has

been

permanently

delisted

in

UCCnet

and

removed

from

the

PROCESSED_GTIN

table.

22

Solution

Development

Guide

ItemWithdrawal

workflow:

making

an

item

temporarily

unavailable

to

all

or

selected

trading

partners

(DTD

support)

The

ItemWithdrawal

workflow

requests

that

UCCnet

make

an

item

temporarily

unavailable

to

all

or

selected

trading

partners.

An

item

might

be

temporarily

removed,

for

instance,

if

it

is

out

of

season

or

not

in

production.

It

might

also

be

made

available

only

to

a

specific

set

of

demand-side

trading

partners

as

a

special

order

item.

(To

remove

an

item

from

active

trading

permanently,

issue

an

ItemDelist,

as

discussed

in

the

section

“ItemDelist

workflow:

making

an

item

permanently

unavailable

to

trading

partners

(DTD

support)”

on

page

21.)

The

source

of

the

flow

is

the

withdrawal

of

an

existing

item

in

the

ERP

source

application.

This

workflow

does

not

result

in

notifications

being

sent

to

demand-side

trading

partners.

Note:

If

you

are

using

schema

support,

refer

to

the

documentation

found

in

“ItemWithdrawal

workflow:

making

an

item

temporarily

unavailable

to

all

or

selected

trading

partners

(schema

support)”

on

page

38

The

following

instructions

describe

how

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

ItemWithdrawal

workflow:

1.

A

trigger

from

the

ERP

source

provides

the

item

(for

example,

an

IDOC

from

SAP)

to

the

connector

portion

of

an

adapter

specific

to

that

ERP.

In

this

example,

the

SAPConnector

is

used.

The

SAPConnector

converts

the

input

from

the

ERP

into

a

SAP

application

specific

business

object.

2.

The

SAPConnector

passes

the

SAP

application

specific

business

object

to

a

UCCnet_ItemSync

collaboration

object,

first

transforming

it

into

a

generic

ItemBasic

business

object

with

an

Withdraw

verb

by

passing

it

through

the

Sa4CwItemBasic

input

map.

3.

The

UCCnet_ItemSync

collaboration

object

accepts

the

object

on

its

From

port

and

checks

that

required

fields

contain

information,

as

detailed

in

the

section

“Checking

that

item

data

exists

for

fields

required

by

UCCnet”

on

page

39.

If

all

required

fields

are

complete,

the

collaboration

object

continues

processing

it.

If

all

required

fields

are

not

complete,

the

collaboration

object

aborts

processing

and

sends

an

e-mail

to

a

configured

address,

as

detailed

in

the

section

“Alerting

e-mail

recipients

of

processing

errors”

on

page

51.

For

this

example,

assume

all

fields

are

complete.

4.

The

UCCnet_ItemSync

collaboration

object

locates

the

item

in

the

PROCESSED_GTIN

table

and

sets

the

value

for

the

withdrawn

field

to

Y.

This

action

prevents

the

publication

of

the

item

in

response

to

an

incoming

INITIAL_ITEM_LOAD_REQUEST.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

5.

The

UCCnet_ItemSync

collaboration

object

adds

an

entry

to

the

audit_log

table

to

identify

the

ItemWithdrawal

transaction

processed.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

6.

The

UCCnet_ItemSync

collaboration

object

delivers

the

ItemBasic

business

object

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

into

a

UCCnetDTD_envelope

business

object.

The

ItemBasic

business

object

is

converted

by

passing

through

the

RouterMap_CwItemBasic_to_UCCnetDTD_envelope

and

CwItemBasic_to_UCCnetDTD_envelope_publishCommand_documentIdentifier

router

and

translation

maps.

Solution

Development

Guide

23

7.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

ItemWithdrawal

XML

message

in

UCCnet

format.

8.

The

AS2

channel

connector

passes

this

message

to

the

AS2

channel

server.

9.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

ItemWithdrawal

message

to

UCCnet.

10.

UCCnet

generates

and

returns

to

the

AS2

channel

server

an

MDN

to

indicate

successful

receipt

of

the

ItemWithdrawal

message.

As

a

result

of

the

ItemWithdrawal

workflow,

the

item

has

been

temporarily

withdrawn

from

UCCnet

and

has

been

indicated

as

withdrawn

in

the

PROCESSED_GTIN

table.

Processing

a

business

object:

example

workflows

(schema

support)

The

information

in

the

following

sections

outlines

at

a

high

level

how

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product

handles

the

workflows

that

support

the

schema-based

implementations.

Collaboration

objects

based

on

the

ItemCommandRouter,

Notify_by_eMail,

UCCnet_ItemSync,

UCCnet_requestWorklist,

UCCnet_processWorklist,

or

CIN_CIP_Dispatcher

collaboration

templates

log

error

messages

if

they

encounter

error

situations

during

any

stage

of

processing.

See

the

section

“Logging”

on

page

55

for

detailed

information.

Tracing

can

also

be

enabled

for

all

collaboration

objects

to

record

logical

flows

and

data

processed.

See

the

section

“Tracing”

on

page

55

for

detailed

information.

Notes:

1.

If

you

are

using

iSoftConnector,

the

associated

map

for

the

first

instance

is

CwItemBasic_to_UCCnetXSD_envelope_registerCommand_itemAddChange.

If

you

are

setting

up

for

XSD

CIP

operation,

you

need

two

instances

of

iSoftConnector.

The

associated

map

for

the

second

instance

is

CwItemBasic_to_UCCnetXSD_envelope_publicationCommand_catalogueItem.

2.

If

you

are

using

JTextISoftConnector,

the

associated

map

for

the

first

instance

is

CwItemBasic_to_UCCnetXSD_envelope_to_registerCommand_itemAddChange.

If

you

are

setting

up

for

XSD

CIP

operation,

you

need

two

instances

of

JTextISoftConnector.

The

associated

map

for

the

second

instance

is

CwItemBasic_to_UCCnetXSD_envelope_publicationCommand_catalogueItem.

ItemAdd

workflow:

adding

a

new

item

to

UCCnet

(schema

support)

In

the

ItemAdd

workflow,

a

new

item

is

added

to

UCCnet.

The

source

of

the

flow

is

the

creation

of

a

new

item

in

the

source

ERP

application.

This

workflow

does

not

result

in

notifications

being

sent

to

subscribed

demand-side

trading

partners.

Other

workflows,

detailed

in

the

section

“CatalogueItemNotification_Add

and

CatalogueItemPublication_Add

workflows:

making

a

new

item

available

to

trading

partners

and

processing

their

responses”

on

page

27,

send

these

notifications.

Notes:

1.

Mappings

of

some

attributes

in

the

ItemAdd

messages

requires

the

use

of

value

translation

tables.

The

InterChange

Server

Express

implements

these

tables

as

cross-reference

relationships.

2.

If

you

are

not

using

schema

support,

refer

to

the

documentation

found

in

“ItemAdd

workflow:

adding

a

new

item

to

UCCnet

(DTD

support)”

on

page

6.

24

Solution

Development

Guide

The

following

instructions

describe

how

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

ItemAdd

workflow:

1.

A

trigger

from

the

ERP

source

provides

the

item

(for

example,

an

IDOC

from

SAP)

to

the

connector

portion

of

an

adapter

specific

to

that

ERP.

In

this

example,

the

SAPConnector

is

used.

The

SAPConnector

converts

the

input

from

the

ERP

into

a

SAP

application

specific

business

object.

2.

The

SAPConnector

passes

the

SAP

application

specific

business

object

to

a

UCCnet_ItemSync

collaboration

object,

first

transforming

it

into

a

generic

ItemBasic

business

object

with

a

Create

verb

by

passing

it

through

the

Sa4CwItemBasic

input

map.

3.

The

UCCnet_ItemSync

collaboration

object

accepts

the

object

on

its

From

port

and

checks

that

required

fields

contain

information,

as

detailed

in

the

section

“Checking

that

item

data

exists

for

fields

required

by

UCCnet”

on

page

39.

If

all

required

fields

are

complete,

the

collaboration

object

continues

processing

it.

If

all

required

fields

are

not

complete,

the

collaboration

object

aborts

processing

and

sends

an

e-mail

to

a

configured

address,

as

detailed

in

the

section

“Alerting

e-mail

recipients

of

processing

errors”

on

page

51.

For

this

example,

assume

all

fields

are

complete.

4.

The

UCCnet_ItemSync

collaboration

object

adds

an

entry

for

the

new

item

to

the

PROCESSED_GTIN

table,

setting

the

value

for

the

withdrawn

field

for

this

entry

to

N.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

5.

The

UCCnet_ItemSync

collaboration

object

adds

an

entry

to

the

audit_log

table

to

identify

the

ItemAdd

transaction

processed.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

6.

The

UCCnet_ItemSync

collaboration

object

delivers

the

ItemBasic

business

object

to

the

ItemCommandRouter

collaboration

object.

7.

The

ItemCommandRouter

collaboration

object

receives

the

business

object

on

its

From

port

and

determines

that

it

represents

an

item

to

be

added

to

the

UCCnet.

It

them

passes

the

business

object

to

its

ToRCIR

port.

8.

The

ItemBasic

business

object

is

passed

to

the

AS2

channel

connector,

where

it

is

converted

into

an

application

specific

business

object

in

the

connector

controller

by

the

CwItemBasic_to_UCCnetXSD_envelope_registerCommand_itemAddChange

map.

9.

After

the

conversion

is

complete,

the

business

object

is

passed

to

the

AS2

channel

connector

agent,

which

sends

it

to

the

Data

Handler

for

XML

to

produce

the

ItemAdd

XML

message

in

UCCnet

format.

10.

The

connector

then

passes

the

message

to

the

AS2

channel

server.

11.

The

server

created

the

digest,

encrypts,

and

then

transmits

the

ItemAdd

message

to

UCCnet.

12.

UCCnet

creates

a

worklist

containing

the

notification

response

RCIR_ADD_Response.

13.

A

time-triggered

process

must

be

configured

to

move

query

command

messages

tailored

to

retrieve

specific

UCCnet

notifications

from

the

following

directory

(dependent

on

platform),

which

is

created

during

installation

of

the

solution,

and

send

them

to

the

event

directory

of

the

JTextRWLConnector:

v

On

Windows

systems:

..\WebSphereICS\UCCnet\UCCnetMessages\Source

v

On

Linux

and

OS/400

systems:

../WebSphereICS/UCCnet/UCCnetMessages/Source

Solution

Development

Guide

25

Note:

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

installation

path

is

dependent

on

the

path

set

when

the

solution

is

installed.
The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

commands

that

might

have

been

delivered.

See

the

section

“Polling

UCCnet

for

worklists”

on

page

43

for

more

information

about

this

process.

14.

The

JTextRWLConnector

retrieves

the

worklist

query

command

from

its

event

directory

and

sends

it

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetXSD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

commands

related

to

it.

15.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

by

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

16.

The

JTextRWLConnector

passes

the

business

object

to

a

UCCnet_requestWorklist

collaboration

object.

17.

The

UCCnet_requestWorklist

collaboration

object

receives

the

UCCnetGBO_envelope

business

object

on

its

From

port

and

passes

it

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

into

a

UCCnetXSD_envelope.

The

UCCnetGBO_envelope

business

object

is

converted

by

passing

through

the

UCCnetGBO_envelope_to_UCCnetXSD_envelope

input

map.

18.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

XML

message

in

UCCnet

format.

19.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

20.

The

AS2

channel

server

creates

the

digest,

and

encrypts

and

transmits

the

message

to

UCCnet.

21.

UCCnet

delivers

the

worklist

containing

the

RCIR_RESPONSE

notification

indicating

a

successful

ItemAdd

to

the

AS2

channel

server.

22.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

23.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetXSD_envelope

business

object.

The

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

24.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

25.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

26.

The

UCCnet_processWorklist

collaboration

object

receives

the

business

object

on

its

From

port,

identifies

it

as

an

RCIR_RESPONSE

notification,

and

dispatches

it

to

its

RCIR_RESPONSE

subdiagram

of

the

UCCnet_processWorklist

collaboration

object.

As

a

result

of

the

ItemAdd

workflow,

UCCnet

has

been

updated

with

the

new

item

information.

Now,

the

supplier’s

demand-side

trading

partners

must

be

made

aware

that

the

item

is

available.

The

workflows

that

accomplish

this

are

described

in

the

section

“CatalogueItemNotification_Add

and

CatalogueItemPublication_Add

workflows:

making

a

new

item

available

to

trading

partners

and

processing

their

responses”

on

page

27.

26

Solution

Development

Guide

CatalogueItemNotification_Add

and

CatalogueItemPublication_Add

workflows:

making

a

new

item

available

to

trading

partners

and

processing

their

responses

The

information

in

this

section

describes

how

the

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

CatalogueItemNotification_Add

and

CatalogueItemPublication_Add

workflows.

In

these

workflows,

a

new

item

that

was

passed

to

UCCnet

through

the

ItemAdd

workflow

(detailed

in

the

section

“ItemAdd

workflow:

adding

a

new

item

to

UCCnet

(schema

support)”

on

page

24)

is

made

available

to

the

supplier’s

demand-side

trading

partners.

The

demand-side

trading

partners’

responses

to

the

new

item

are

processed

as

well.

At

this

point

in

processing,

the

ItemAdd

workflow

has

completed

and

a

UCCnetGBO_envelope

business

object

has

arrived

in

the

RCIR_RESPONSE

subdiagram

of

the

UCCnet_processWorklist

collaboration

object.

1.

The

RCIR_RESPONSE

subdiagram

receives

the

RCIR_RESPONSE

notification

inside

a

UCCnetGBO_envelope

business

object

for

the

received

message.

It

logs

the

notification

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

2.

It

creates

an

empty

ItemBasic

business

object

and

sends

it

to

the

DestinationAppRetrieve

port

with

a

retrieve

verb.

3.

The

ItemBasic

business

object

that

initiated

the

corresponding

RCIR

command,

which

was

sent

it

to

UCCnet,

is

returned

on

the

DestinationAppRetrieve

port

with

a

Create

verb.

4.

The

ItemBasic

BO

is

sent

to

the

RCIR_RESPONSE

port

with

a

Create

verb.

5.

When

using

a

supplier-implemented

data

source

pool:

a.

The

CIN_CIP_Dispatcher

collaboration

object

receives

the

ItemBasic

business

object

on

its

From

port

and

maps

it

to

a

CatalogueItemNotification_ADD

UCCnetGBO_envelope

using

the

CwItemBasic_to_UCCnetGBO_envelope_notifyCommand

_catalogueItem

map.

b.

It

uses

the

category

code

from

the

business

object

to

retrieve

the

GLNs

of

any

trading

partners

that

subscribe

to

the

category

from

the

GLN

subscription

file,

defined

by

the

DISPATCHER_GLN_FILE

property.

c.

The

collaboration

object

sends

a

CatalogueItemNotification_ADD

(CIN_ADD)

notification

out

the

To

port

to

the

AS2

channel

connector

for

each

GLN

found

in

the

GLN

subscription

file.

d.

The

UCCnetGBO_envelope

business

object

is

mapped

to

a

UCCnetXSD_envelope.

e.

The

AS2

channel

connector

sends

the

business

objects

to

the

Data

Handler

for

XML,

which

produces

the

CIN_ADD

XML

messages

in

UCCnet

format.

f.

The

AS2

channel

connector

passes

the

messages

to

the

AS2

channel

server.

g.

The

AS2

channel

server

creates

the

digest,

encrypts

and

transmits

the

messages

to

UCCnet.

h.

UCCnet

forwards

the

CIN_ADD

messages

to

the

demand-side

trading

partners.

When

using

UCCnet

as

the

data

source

pool:

a.

The

AS2

channel

connector

receives

the

ItemBasic

business

object

and

maps

it

to

a

CatalogueItem_ADD

UCCnetXSD_envelope

business

object

using

CwItemBasic_to_UCCnetXSD_envelope_publicationCommand

_catalogueItem.

b.

The

AS2

channel

connector

sends

the

business

objects

to

the

Data

Handler

for

XML,

which

produces

the

CI_ADD

XML

message

in

UCCnet

format.

Solution

Development

Guide

27

c.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

d.

The

AS2

channel

server

creates

the

digest,

encrypts

and

transmits

the

message

to

UCCnet.

e.

UCCnet

returns

a

catalogue

item

response

to

the

AS2

channel

server.

f.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

g.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetXSD_envelope.

The

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

h.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

i.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

j.

The

UCCnet_processWorklist

collaboration

object

receives

the

business

object

on

its

From

port,

identifies

it

as

an

CI

response

notification,

and

sends

it

to

the

PUBLICATION_COMMAND_RESPONSE

subdiagram

of

the

UCCnet_processWorklist

collaboration

object.

k.

The

PUBLICATION_COMMAND_RESPONSE

subdiagram

creates

an

empty

ItemBasic

business

object

and

sends

it

to

the

DestinationAppRetrieve

port

with

a

retrieve

verb

l.

The

ItemBasic

business

object

that

initiated

the

corresponding

RCIR

command,

which

was

sent

to

UCCnet,

is

returned.

m.

The

returned

ItemBasic

business

object

is

sent

to

the

PUBLICATION_CMD_RESPONSE

port

with

a

Create

verb.

n.

The

CIN_CIP_Dispatcher

collaboration

object

receives

the

ItemBasic

business

object

on

its

From

port

and

maps

it

to

a

CatalogueItemPublication_ADD

UCCnetGBO_envelope

business

object

using

the

CwItemBasic_to_UCCnetGBO_env_publicationCommand

_catalogueItemPublication

map.

o.

It

uses

the

business

object’s

category

code

to

retrieve

the

GLNs

of

any

subscribed

trading

partners

from

the

GLN

subscription

file.

This

file

is

determined

by

the

DISPATCHER_GLN_FILE

property.

p.

The

collaboration

object

sends

a

CatalogueItemPublication_ADD

(CIP_ADD)

notification

out

the

To

port

to

the

AS2

channel

connector

for

each

GLN

found

in

the

GLN

subscription

file.

q.

The

UCCnetGBO_envelope

is

mapped

to

a

UCCnetXSD_envelope.

r.

The

AS2

channel

connector

sends

the

business

objects

to

the

Data

Handler

for

XML,

which

produces

the

CIP_ADD

XML

messages

in

UCCnet

format.

s.

The

AS2

channel

connector

passes

the

messages

to

the

AS2

channel

server.

t.

The

AS2

channel

server

creates

the

digest,

encrypts

and

transmits

the

messages

to

UCCnet.

u.

UCCnet

returns

a

catalogue

item

publication

response

to

the

AS2

channel

server.

v.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

w.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetXSD_envelope.

The

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

28

Solution

Development

Guide

x.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

y.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

z.

The

UCCnet_processWorklist

collaboration

object

receives

the

business

object

on

its

From

port,

identifies

it

as

a

CIP

response

notification,

and

sends

it

to

the

PUBLICATION_COMMAND_RESPONSE

subdiagram

of

the

UCCnet_processWorklist

collaboration

object.

aa.

The

PUBLICATION_COMMAND_RESPONSE

subdiagram

sends

to

UCCnetGBO_envelope

CIP

response

to

the

CIP_RESPONSE

port

with

a

create

verb

to

send

a

notification

e-mail

to

the

supplier.

ab.

As

a

result

of

receiving

the

CIP_ADD

messages,

UCCnet

sends

out

a

CatalogueItemNotification

to

each

subscribing

demand-side

trading

partner

for

whom

a

CIP

was

received.

6.

The

trading

partners

can

respond

with

any

of

the

following

Catalogue

Item

Confirmation

responses:

REVIEW

This

state

is

used

to

tell

parties

that

an

item

is

being

reviewed

by

the

retailer.

REJECTED

This

state

is

used

to

tell

parties

that

an

item

is

rejected

and

that

no

additional

information

is

requested

at

this

time.

ACCEPTED

This

state

is

used

to

tell

initiators

that

an

item

has

been

accepted

by

the

retailer,

but

has

not

yet

been

synchronized.

This

state

is

similar

to

a

DTD-based

UCCnet

PRE-AUTHORIZATION.

SYNCHRONISED

This

state

is

used

to

tell

initiators

that

an

item

has

been

accepted

by

the

retailer

and

will

be

synchronized.

This

state

is

similar

to

a

DTD-based

UCCnet

AUTHORIZE.

Note:

Assume

a

demand-side

trading

partner

responds

with

a

SYNCHRONISED

response.

7.

UCCnet

performs

a

compliance

check

on

the

data.

If

all

the

data

exists

in

the

appropriate

format,

UCCnet

creates

a

worklist

for

the

supplier

containing

a

SYNCHRONISED

notification

to

indicate

a

successful

receipt.

8.

A

chronologically

triggered

process

must

be

configured

to

move

query

command

messages

tailored

to

retrieve

specific

UCCnet

notifications

from

the

following

directory

(dependent

on

platform),

which

is

created

during

installation

of

the

solution,

to

the

event

directory

of

the

JTextRWLConnector:

v

On

Windows

systems:

..\WebSphereICS\UCCnet\UCCnetMessages\Source

v

On

Linux

and

OS/400

systems:

../WebSphereICS/UCCnet/UCCnetMessages/Source

Note:

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

installation

path

is

dependent

on

the

path

set

when

the

solution

is

installed.
The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

commands

that

might

have

been

delivered.

See

the

section

“Polling

UCCnet

for

worklists”

on

page

43

for

more

information

about

this

process.

Solution

Development

Guide

29

9.

The

JTextRWLConnector

receives

the

worklist

query

command

from

its

event

directory

and

sends

it

to

the

Data

Handler

for

XML.

10.

The

Data

Handler

for

XML

converts

the

worklist

query

command

into

a

UCCnetXSD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

command

related

to

it.

11.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

it

through

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

12.

The

JTextRWLConnector

passes

the

business

object

to

a

UCCnet_requestWorklist

collaboration

object.

13.

The

UCCnet_requestWorklist

collaboration

object

receives

the

UCCnetGBO_envelope

business

object

on

its

From

port

and

passes

it

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

to

a

UCCnetXSD_envelope

business

object.

14.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

XML

message

in

UCCnet

format.

15.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

16.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

message

to

UCCnet.

17.

UCCnet

delivers

the

worklist

containing

the

SYNCHRONISED

notification

to

the

AS2

channel

server.

18.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

19.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnet_XSD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

20.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

it

through

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

21.

The

AS2

channel

connector

delivers

the

business

object

to

the

UCCnet_processWorklist

collaboration

object.

22.

The

UCCnet_processWorklist

collaboration

object

receives

the

object

on

its

From

port,

identifies

it

as

a

CATALOGUE_ITEM_CONFIRMATION

response,

and

dispatches

it

to

its

CATALOGUE_ITEM_CONFIRMATION

subdiagram.

23.

The

CATALOGUE_ITEM_CONFIRMATION

subdiagram

carries

out

the

following

tasks:

v

It

sends

an

e-mail

to

the

recipients

defined

by

the

UCCnet_processWorklist_CATALOGUE_ITEM_CONFIRMATIONObject

business

object,

which

is

an

instance

of

the

Notify_by_eMail

collaboration

template.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information

about

how

to

configure

properties

controlling

e-mail.

v

It

logs

the

event

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit

log

table.

ItemChange

workflow:

updating

item

information

in

UCCnet

(schema

support)

The

ItemChange

workflow

sends

updated

information

about

an

existing

item

to

UCCnet.

The

source

of

the

flow

is

a

change

to

the

data

of

an

existing

item

in

the

ERP

source

application.

Issuing

a

change

does

not

result

in

notifications

being

sent

30

Solution

Development

Guide

to

subscribed

demand-side

trading

partners.

Other

workflows,

detailed

in

the

section

“CatalogueItemNotification_Change

and

CatalogueItemPublication_Change

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses”

on

page

33,

accomplish

sending

these

notifications.

The

following

instructions

describe

how

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

ItemChange

workflow:

1.

A

trigger

from

the

ERP

source

provides

the

item

(for

example,

an

IDOC

from

SAP)

to

the

connector

portion

of

an

adapter

specific

to

that

ERP.

In

this

example,

the

SAPConnector

is

used.

The

SAPConnector

converts

the

input

from

the

ERP

into

a

SAP

application

specific

business

object.

2.

The

SAPConnector

passes

the

SAP

application

specific

business

object

to

a

UCCnet_ItemSync

collaboration

object,

first

transforming

it

into

a

generic

ItemBasic

business

object

with

an

Update

verb

by

passing

it

through

the

Sa4CwItemBasic

input

map.

3.

The

UCCnet_ItemSync

collaboration

object

accepts

the

object

on

its

From

port

and

checks

that

required

fields

contain

information,

as

detailed

in

the

section

“Checking

that

item

data

exists

for

fields

required

by

UCCnet”

on

page

39.

If

all

required

fields

are

complete,

the

collaboration

object

continues

processing

it.

If

all

required

fields

are

not

complete,

the

collaboration

object

aborts

processing

and

sends

an

e-mail

to

a

configured

address,

as

detailed

in

the

section

“Alerting

e-mail

recipients

of

processing

errors”

on

page

51.

For

this

example,

assume

all

fields

are

complete.

4.

The

UCCnet_ItemSync

collaboration

object

checks

if

the

item

exists

in

the

PROCESSED_GTIN

table

and

processes

it,

as

follows:

v

If

the

item

exists

in

the

table

and

the

value

for

its

withdrawn

field

is

set

to

N,

the

collaboration

object

continues

processing

it.

v

If

the

item

exists

in

the

table

and

the

value

for

its

withdrawn

field

is

set

to

Y,

the

collaboration

object

completes

the

following

steps:

–

Changes

the

value

of

the

entry’s

withdrawn

field

to

N.

–

Changes

the

value

of

the

entry’s

delete

field

to

U.

–

Changes

the

business

object

verb

to

UNWITHDRAWN.

–

Continues

processing

it.
v

If

the

item

does

not

exist

in

the

table,

the

collaboration

object

changes

the

verb

to

Create

and

adds

it

to

the

PROCESSED_GTIN

table,

setting

the

entry’s

withdrawn

field

to

N.

Assume

for

this

example

that

the

item

already

exists

in

the

table

and

is

not

withdrawn.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

5.

The

UCCnet_ItemSync

collaboration

object

adds

an

entry

to

the

audit_log

table

to

identify

the

ItemChange

transaction

processed.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

6.

The

UCCnet_ItemSync

collaboration

object

sends

the

ItemBasic

business

object

through

its

To

port

to

the

ItemCommandRouter

collaboration

object.

7.

The

ItemCommandRouter

collaboration

object

receives

the

business

object

on

its

From

port,

determines

that

it

represents

an

ItemChange

and

sends

it

to

its

ToRCIR

port.

8.

The

ItemBasic

business

object

is

sent

to

the

AS2

channel

connector.

9.

The

connector

controller

converts

it

into

an

application

specific

business

object

by

using

the

Solution

Development

Guide

31

CwItemBasic_to_UCCnetXSD_envelope_registerCommand_itemAddChange

map.

It

then

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

ItemChange

XML

message

in

UCCnet

format.

10.

The

AS2

channel

connector

passes

this

message

to

the

AS2

channel

server.

11.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

ItemChange

message

to

UCCnet.

12.

UCCnet

creates

a

worklist

containing

an

RCIR_CHANGE_Response

notification

to

indicate

a

successful

ItemChange.

13.

A

chronologically

triggered

process

must

be

configured

to

move

query

command

messages

tailored

to

retrieve

specific

UCCnet

notifications

from

the

following

directory

(dependant

on

platform),

which

is

created

during

installation

of

the

solution,

to

the

event

directory

of

the

JTextRWLConnector:

v

On

Windows

systems:

..\WebSphereICS\UCCnet\UCCnetMessages\Source

v

On

Linux

and

OS/400

systems:

../WebSphereICS/UCCnet/UCCnetMessages/Source

Note:

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

installation

path

is

dependent

on

the

path

set

when

the

solution

is

installed.
The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

commands

that

might

have

been

delivered.

See

the

section

“Polling

UCCnet

for

worklists”

on

page

43

for

more

information

about

this

process.

14.

The

JTextRWLConnector

retrieves

the

worklist

query

command

from

its

event

directory

and

sends

it

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetXSD_envelope

application

specific

business

object.

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

commands

related

to

it.

15.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

16.

The

JTextRWLConnector

passes

the

business

object

to

a

UCCnet_requestWorklist

collaboration

object.

17.

The

UCCnet_requestWorklist

collaboration

object

receives

the

UCCnetGBO_envelope

business

object

on

its

From

port

and

passes

it

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller

it

is

converted

to

a

UCCnetXSD_envelope

by

passing

through

the

UCCnetGBO_envelope_to_UCCnetXSD_envelope

input

map.

18.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

XML

message

in

UCCnet

format.

19.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

20.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

message

to

UCCnet.

21.

UCCnet

delivers

the

worklist,

which

contains

the

RCIR_CHANGE_Response

notification

for

a

successful

ItemChange,

to

the

AS2

channel

server.

22.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

23.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetXSD_envelope

application-specific

business

object.

24.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

32

Solution

Development

Guide

25.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

26.

The

UCCnet_processWorklist

collaboration

object

receives

the

business

object

on

its

From

port,

identifies

it

as

an

RCIR_CHANGE_RESPONSE

notification,

and

dispatches

it

to

its

RCIR_RESPONSE

subdiagram.

As

a

result

of

the

ItemChange

workflow,

UCCnet

has

been

updated

with

the

new

item

information.

Now,

the

supplier’s

demand-side

trading

partners

must

be

notified

that

the

item

information

is

available.

This

is

accomplished

by

the

CatalogueItemNotification_Change

and

CatalogueItemPublication_Change

workflows,

detailed

in

the

section

“CatalogueItemNotification_Change

and

CatalogueItemPublication_Change

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses.”

CatalogueItemNotification_Change

and

CatalogueItemPublication_Change

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses

The

information

in

this

section

describes

how

the

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

CatalogueItemNotification_Change

and

CatalogueItemPublication_Change

workflows.

In

the

CatalogueItemNotification_Change

and

CatalogueItemPublication_Change

workflows,

updated

item

information

that

was

passed

to

UCCnet

through

the

ItemChange

workflow

(detailed

in

the

section

“ItemChange

workflow:

updating

item

information

in

UCCnet

(schema

support)”

on

page

30)

is

made

available

to

the

supplier’s

demand-side

trading

partners.

The

demand-side

trading

partners’

responses

to

this

item

information

must

then

be

processed.

At

this

point

in

processing,

the

ItemChange

workflow

has

completed

and

a

UCCnetGBO_envelope

business

object

has

arrived

in

the

RCIR_RESPONSE

subdiagram

of

the

UCCnet_processWorklist

collaboration

object

1.

The

RCIR_RESPONSE

subdiagram

receives

the

RCIR_RESPONSE

notification

inside

a

UCCnetGBO_envelope

business

object

for

the

received

message.

It

logs

the

notification

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

2.

It

creates

an

empty

ItemBasic

business

object

and

sends

it

to

the

DestinationAppRetrieve

port

with

a

retrieve

verb.

3.

The

ItemBasic

business

object

that

initiated

the

corresponding

RCIR

command,

which

was

sent

it

to

UCCnet,

is

returned

on

the

DestinationAppRetrieve

port

with

an

Update

verb.

4.

The

ItemBasic

BO

is

sent

to

the

RCIR_RESPONSE

port

with

an

Update

verb.

5.

When

using

a

supplier-implemented

data

source

pool:

a.

The

CIN_CIP_Dispatcher

collaboration

object

receives

the

ItemBasic

business

object

on

its

From

port

and

maps

it

to

a

CatalogueItemNotification_ADD

UCCnetGBO_envelope

using

the

CwItemBasic_to_UCCnetGBO_envelope_notifyCommand

_catalogueItem

map.

b.

It

uses

the

category

code

from

the

business

object

to

retrieve

the

GLNs

of

any

trading

partners

that

subscribe

to

the

category

from

the

GLN

subscription

file,

defined

by

the

DISPATCHER_GLN_FILE

property.

Solution

Development

Guide

33

c.

The

collaboration

object

sends

a

CatalogueItemNotification_CHANGE

(CIN_CHANGE)

notification

out

the

To

port

to

the

AS2

channel

connector

for

each

GLN

found

in

the

GLN

subscription

file.

d.

The

UCCnetGBO_envelope

business

object

is

mapped

to

a

UCCnetXSD_envelope.

e.

The

AS2

channel

connector

sends

the

business

objects

to

the

Data

Handler

for

XML,

which

produces

the

CIN_CHANGE

XML

messages

in

UCCnet

format.

f.

The

AS2

channel

connector

passes

the

messages

to

the

AS2

channel

server.

g.

The

AS2

channel

server

creates

the

digest,

encrypts

and

transmits

the

messages

to

UCCnet.

h.

UCCnet

forwards

the

CIN_CHANGE

messages

to

the

demand-side

trading

partners.

When

using

UCCnet

as

the

data

source

pool:

a.

The

AS2

channel

connector

receives

the

ItemBasic

business

object

and

maps

it

to

a

CatalogueItem_CHANGE

UCCnetXSD_envelope

business

object

using

.

b.

The

AS2

channel

connector

sends

the

business

objects

to

the

Data

Handler

for

XML,

which

produces

the

CI_ADD

XML

message

in

UCCnet

format.

c.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

d.

The

AS2

channel

server

creates

the

digest,

encrypts

and

transmits

the

message

to

UCCnet.

e.

UCCnet

returns

a

catalogue

item

response

to

the

AS2

channel

server.

f.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

g.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetXSD_envelope.

The

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

h.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

i.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

j.

The

UCCnet_processWorklist

collaboration

object

receives

the

business

object

on

its

From

port,

identifies

it

as

an

CI

response

notification,

and

sends

it

to

the

PUBLICATION_COMMAND_RESPONSE

subdiagram

of

the

UCCnet_processWorklist

collaboration

object.

k.

The

PUBLICATION_COMMAND_RESPONSE

subdiagram

creates

an

empty

ItemBasic

business

object

and

sends

it

to

the

DestinationAppRetrieve

port

with

a

retrieve

verb

l.

The

ItemBasic

business

object

that

initiated

the

corresponding

RCIR

command,

which

was

sent

to

UCCnet,

is

returned.

m.

Because

this

is

an

item

chance,

no

CatalogueItemPublications

are

sent.

The

PUBLICATION_COMMAND_RESPONSE

subdiagram

sends

to

UCCnetGBO_envelope

CI

response

to

the

CI_RESPONSE

port

with

a

create

verb

to

send

a

notification

e-mail

to

the

supplier.

n.

The

list

of

suppliers

that

receive

a

notification

is

determined

based

on

the

CIP

messages

previously

sent

to

UCCnet

when

the

catalogue

item

was

originally

added.

UCCnet

sends

out

a

CatalogueItemNotification

to

each

subscribing

demand-side

trading

partner

for

whom

a

CIP

was

previously

received.

34

Solution

Development

Guide

6.

The

trading

partners

can

respond

with

any

of

the

following

Catalogue

Item

Confirmation

responses:

REVIEW

This

state

is

used

to

tell

parties

that

an

item

is

being

reviewed

by

the

retailer.

REJECTED

This

state

is

used

to

tell

parties

that

an

item

is

rejected

and

that

no

additional

information

is

requested

at

this

time.

ACCEPTED

This

state

is

used

to

tell

initiators

that

an

item

has

been

accepted

by

the

retailer,

but

has

not

yet

been

synchronized.

This

state

is

similar

to

a

DTD-based

UCCnet

PRE-AUTHORIZATION.

SYNCHRONISED

This

state

is

used

to

tell

initiators

that

an

item

has

been

accepted

by

the

retailer

and

will

be

synchronized.

This

is

similar

to

the

UCCnet

Authorization.

Note:

Assume

a

demand-side

trading

partner

responds

with

a

SYNCHRONISED

response.

7.

UCCnet

performs

a

compliance

check

on

the

data.

If

all

the

data

exists

in

the

appropriate

format,

UCCnet

creates

a

worklist

for

the

supplier

containing

the

SYNCHRONISED

notification

response.

8.

A

chronologically

triggered

process

must

be

configured

to

move

query

command

messages

tailored

to

retrieve

specific

UCCnet

notifications

from

the

following

directory

(dependent

on

platform),

which

is

created

during

installation

of

the

solution,

to

the

event

directory

of

the

JTextRWLConnector:

v

On

Windows

systems:

..\WebSphereICS\UCCnet\UCCnetMessages\Source

v

On

Linux

and

OS/400

systems:

../WebSphereICS/UCCnet/UCCnetMessages/Source

Note:

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

installation

path

is

dependent

on

the

path

set

when

the

solution

is

installed.

9.

The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

commands

that

have

been

delivered.

See

the

section

“Polling

UCCnet

for

worklists”

on

page

43

for

more

information

about

this

process.

10.

The

JTextRWLConnector

receives

the

worklist

query

command

from

its

event

directory

and

sends

it

to

the

Data

Handler

for

XML.

11.

The

Data

Handler

for

XML

converts

the

worklist

query

command

into

a

UCCnetXSD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

command

related

to

it.

12.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

13.

The

JTextRWLConnector

passes

the

business

object

to

a

UCCnet_requestWorklist

collaboration

object.

14.

The

UCCnet_requestWorklist

collaboration

object

receives

the

UCCnetGBO_envelope

business

object

on

its

From

port

and

passes

it

to

the

AS2

channel

connector

over

its

To

port.

In

the

connector

controller,

it

is

converted

to

a

UCCnetXSD_envelope

business

object.

Solution

Development

Guide

35

15.

The

AS2

channel

connector

sends

the

business

object

to

the

Data

Handler

for

XML,

which

produces

the

XML

message

in

UCCnet

format.

16.

The

AS2

channel

connector

passes

the

message

to

the

AS2

channel

server.

17.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

message

to

UCCnet.

18.

UCCnet

delivers

the

worklist

containing

the

SYNCHRONISED

notification

to

the

AS2

channel

server.

19.

The

AS2

channel

server

delivers

the

notification

to

the

AS2

channel

connector.

20.

The

AS2

channel

connector

sends

the

notification

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnet_XSD_envelope

business

object.

This

business

object

contains

the

entire

UCCnet

notification,

including

each

individual

data

instance

and

the

commands

related

to

it.

21.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

the

UCCnetXSD_envelope_to_UCCnetGBO_envelope

input

map.

22.

The

AS2

channel

connector

delivers

the

business

object

to

the

UCCnet_processWorklist

collaboration

object.

23.

The

UCCnet_processWorklist

collaboration

object

receives

the

object

on

its

From

port,

identifies

it

as

a

CATALOGUE_ITEM_CONFIRMATION

response,

and

dispatches

it

to

its

CATALOGUE_ITEM_CONFIRMATION

subdiagram.

24.

The

CATALOGUE_ITEM_CONFIRMATION

subdiagram

carries

out

the

following

tasks:

v

It

sends

an

e-mail

to

the

recipients

defined

by

the

UCCnet_processWorklist_CATALOGUE_ITEM_CONFIRMATIONObject

business

object,

which

is

an

instance

of

the

Notify_by_eMail

collaboration

template.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information

about

how

to

configure

properties

controlling

e-mail.

v

It

logs

the

event

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit

log

table.

ItemDelist

workflow:

making

an

item

permanently

unavailable

to

trading

partners

(schema

support)

The

ItemDelist

workflow

requests

that

UCCnet

make

an

item

in

the

repository

permanently

unavailable.

After

an

item

has

been

delisted,

it

cannot

be

returned

to

active

trading.

(To

remove

an

item

from

active

trading

only

temporarily,

issue

an

ItemWithdrawal,

as

discussed

in

the

section

“ItemWithdrawal

workflow:

making

an

item

temporarily

unavailable

to

all

or

selected

trading

partners

(schema

support)”

on

page

38.)

The

source

of

the

flow

is

the

delist

of

an

existing

item

in

the

ERP

source

application.

This

workflow

does

not

result

in

notifications

being

sent

to

demand-side

trading

partners.

Note:

If

you

are

not

using

schema

support,

refer

to

the

documentation

found

in

“ItemDelist

workflow:

making

an

item

permanently

unavailable

to

trading

partners

(DTD

support)”

on

page

21

The

following

instructions

describe

how

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

ItemDelist

workflow:

1.

A

trigger

from

the

ERP

source

provides

the

item

(for

example,

an

IDOC

from

SAP)

to

the

connector

portion

of

an

adapter

specific

to

that

ERP.

In

this

example,

the

SAPConnector

is

used.

The

SAPConnector

converts

the

input

from

the

ERP

into

a

SAP

application

specific

business

object.

36

Solution

Development

Guide

2.

The

SAPConnector

passes

the

SAP

application

specific

business

object

to

a

UCCnet_ItemSync

collaboration

object,

first

transforming

it

into

a

generic

ItemBasic

business

object

with

an

Delist

verb

by

passing

it

through

the

Sa4CwItemBasic

input

map.

3.

The

UCCnet_ItemSync

collaboration

object

accepts

the

object

on

its

From

port

and

checks

that

required

fields

contain

information,

as

detailed

in

the

section

“Checking

that

item

data

exists

for

fields

required

by

UCCnet”

on

page

39.

If

all

required

fields

are

complete,

the

collaboration

object

continues

processing

it.

If

all

required

fields

are

not

complete,

the

collaboration

object

aborts

processing

and

sends

an

e-mail

to

a

configured

address,

as

detailed

in

the

section

“Alerting

e-mail

recipients

of

processing

errors”

on

page

51.

For

this

example,

assume

all

fields

are

complete.

4.

The

UCCnet_ItemSync

collaboration

object

removes

the

item

from

the

PROCESSED_GTIN

table.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

5.

The

UCCnet_ItemSync

collaboration

object

adds

an

entry

to

the

audit_log

table

to

identify

the

ItemDelist

transaction

processed.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

6.

The

UCCnet_ItemSync

collaboration

object

sends

the

ItemBasic

business

object

through

its

To

port

to

the

ItemCommandRouter

collaboration

object.

7.

The

ItemCommandRouter

receives

the

business

object

on

its

From

port,

and

determines

that

it

is

a

delist.

8.

The

ItemCommandRouter

sends

the

ItemBasic

business

object

through

its

ToCIN_CI

port.

9.

When

using

a

supplier-implemented

data

source

pool:

A

Notify_by_eMail

collaboration

object

receives

the

ItemBasic

business

object

and

sends

a

note

to

the

supplier

saying

that

the

CI_DELIST

is

unsupported.

When

using

UCCnet

as

the

data

source

pool:

a.

The

CIN_CIP_Dispatcher

collaboration

object

receives

the

ItemBasic

business

object

on

its

From

port.

b.

The

collaboration

object

maps

the

ItemBasic

business

object

to

a

UCCnetXSD_envelope,

using

the

map

defined

by

its

collaboration

parameters.

c.

The

collaboration

object

uses

the

category

code

from

the

new

UCCnetXSD_envelope

to

retrieve

the

GLNs

of

any

trading

partners

that

subscribe

to

it.

The

collaboration

object

retrieves

the

trading

partner

subscription

list

from

the

GLN

subscription

file,

defined

by

the

CIN_DISPATCHER_GLN_FILE

property.

d.

The

collaboration

object

sends

a

CatalogueItemNotification_DELIST

(CIN_DELIST)

business

object

to

the

AS2

connector

for

each

GLN

found

in

the

GLN

subscription

file.

e.

At

the

connector,

they

are

converted

into

UCCnetXSD_envelope

business

objects.

f.

The

AS2

channel

connector

sends

each

business

object

to

the

Data

Handler

for

XML,

which

produces

the

CatalogueItemNotification_delist

XML

message

in

UCCnet

format.

g.

The

AS2

channel

connector

passes

this

message

to

the

AS2

channel

server.

h.

The

AS2

channel

server

creates

the

digest,

encrypts,

and

transmits

the

CatalogueItemNotification_delist

message

to

UCCnet.

i.

UCCnet

generates

an

MDN

to

indicate

successful

receipt

of

the

CatalogueItemNotification_delist

message.

Solution

Development

Guide

37

As

a

result

of

the

ItemDelist

workflow,

the

item

has

been

permanently

delisted

in

UCCnet

and

removed

from

the

PROCESSED_GTIN

table.

ItemWithdrawal

workflow:

making

an

item

temporarily

unavailable

to

all

or

selected

trading

partners

(schema

support)

The

ItemWithdrawal

workflow

requests

that

UCCnet

make

an

item

temporarily

unavailable

to

all

or

selected

trading

partners.

An

item

might

be

temporarily

removed,

for

instance,

if

it

is

out

of

season

or

not

in

production.

It

might

also

be

made

available

only

to

a

specific

set

of

demand-side

trading

partners

as

a

special

order

item.

(To

remove

an

item

from

active

trading

permanently,

issue

an

ItemDelist,

as

discussed

in

the

section

“ItemDelist

workflow:

making

an

item

permanently

unavailable

to

trading

partners

(schema

support)”

on

page

36.)

The

source

of

the

flow

is

the

withdrawal

of

an

existing

item

in

the

ERP

source

application.

This

workflow

does

not

result

in

notifications

being

sent

to

demand-side

trading

partners.

Note:

If

you

are

not

using

schema

support,

refer

to

the

documentation

found

in

“ItemWithdrawal

workflow:

making

an

item

temporarily

unavailable

to

all

or

selected

trading

partners

(DTD

support)”

on

page

23

The

following

instructions

describe

how

high-level

components

of

the

Item

Synchronization

Collaboration

perform

the

ItemWithdrawal

workflow:

1.

A

trigger

from

the

ERP

source

provides

the

item

(for

example,

an

IDOC

from

SAP)

to

the

connector

portion

of

an

adapter

specific

to

that

ERP.

In

this

example,

the

SAPConnector

is

used.

The

SAPConnector

converts

the

input

from

the

ERP

into

a

SAP

application

specific

business

object.

2.

The

SAPConnector

passes

the

SAP

application

specific

business

object

to

a

UCCnet_ItemSync

collaboration

object,

first

transforming

it

into

a

generic

ItemBasic

business

object

with

a

Withdraw

verb

by

passing

it

through

the

Sa4CwItemBasic

input

map.

3.

The

UCCnet_ItemSync

collaboration

object

accepts

the

object

on

its

From

port

and

checks

that

required

fields

contain

information,

as

detailed

in

the

section

“Checking

that

item

data

exists

for

fields

required

by

UCCnet”

on

page

39.

If

all

required

fields

are

complete,

the

collaboration

object

continues

processing

it.

If

all

required

fields

are

not

complete,

the

collaboration

object

aborts

processing

and

sends

an

e-mail

to

a

configured

address,

as

detailed

in

the

section

“Alerting

e-mail

recipients

of

processing

errors”

on

page

51.

For

this

example,

assume

all

fields

are

complete.

4.

The

UCCnet_ItemSync

collaboration

object

changes

the

Withdrawn

column

in

the

PROCESSED_GTIN

table

to

a

value

of

Y.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

5.

The

UCCnet_ItemSync

collaboration

object

adds

an

entry

to

the

audit_log

table

to

identify

the

ItemWithdrawal

transaction

processed.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

6.

The

UCCnet_ItemSync

collaboration

object

delivers

the

ItemBasic

business

object

to

the

From

port

of

the

ItemCommandRouter

collaboration

object

by

sending

it

out

from

its

To

port.

7.

The

ItemCommandRouter

collaboration

object

uses

a

combination

of

the

verb

and

the

DeleteFlag

attribute

of

the

ItemBasic

business

object

to

determine

that

the

item

is

being

withdrawn.

38

Solution

Development

Guide

8.

The

ItemCommandRouter

sends

the

ItemBasic

business

object

out

through

its

ToCIN_CI

port

9.

When

using

a

supplier-implemented

data

source

pool:

a.

The

CIN_CIP_Dispatcher

collaboration

object

receives

the

ItemBasic

business

object

on

its

From

port

and

maps

it

to

a

CatalogueItemNotification_WITHDRAW

UCCnetGBO_envelope

using

the

CwItemBasic_to_UCCnetGBO_envelope_notifyCommand

_catalogueItem

map.

b.

It

uses

the

category

code

from

the

business

object

to

retrieve

the

GLNs

of

any

trading

partners

that

subscribe

to

the

category

from

the

GLN

subscription

file,

defined

by

the

DISPATCHER_GLN_FILE

property.

c.

The

collaboration

object

sends

a

CatalogueItemNotification_WITHDRAW

(CIN_WITHDRAW)

notification

out

the

To

port

to

the

AS2

channel

connector

for

each

GLN

found

in

the

GLN

subscription

file.

d.

The

UCCnetGBO_envelope

business

object

is

mapped

to

a

UCCnetXSD_envelope.

e.

The

AS2

channel

connector

sends

the

business

objects

to

the

Data

Handler

for

XML,

which

produces

the

CIN_WITHDRAW

XML

messages

in

UCCnet

format.

f.

The

AS2

channel

connector

passes

the

messages

to

the

AS2

channel

server.

g.

The

AS2

channel

server

creates

the

digest,

encrypts

and

transmits

the

messages

to

UCCnet.

h.

UCCnet

forwards

the

CIN_WITHDRAW

messages

to

the

demand-side

trading

partners.

When

using

UCCnet

as

the

data

source

pool:A

Notify_by_eMail

collaboration

object

receives

the

ItemBasic

business

object

and

sends

a

note

to

the

supplier

saying

the

CI_DELIST

is

unsupported.

As

a

result

of

the

ItemWithdrawal

workflow,

the

item

has

been

temporarily

withdrawn

from

UCCnet

and

has

been

indicated

as

withdrawn

in

the

PROCESSED_GTIN

table.

Checking

that

item

data

exists

for

fields

required

by

UCCnet

UCCnet

requires

its

community

of

trading

partners

to

provide

standardized

item

data

in

particular

formats

to

its

registry.

As

a

result,

UCCnet

requires

requests

for

ItemAdd,

ItemChange,

ItemDelist,

and

ItemWithdrawal

publications

to

have

data

provided

for

certain

fields.

If

the

data

for

the

required

fields

is

not

present,

UCCnet

does

not

process

the

publications.

Data

might

be

missing

if

the

ERP

does

not

require

information

for

these

same

fields

and

the

ERP

user

is

not

aware

of

the

UCCnet

requirements.

To

help

ensure

that

ItemAdd,

ItemChange,

ItemDelist,

and

ItemWithdrawal

publications

are

accepted

by

UCCnet,

when

a

UCCnet_ItemSync

collaboration

object

accepts

an

ItemBasic

business

object,

it

checks

that

the

following

fields

that

are

required

by

UCCnet

to

have

data,

contain

information

(are

not

NULL):

v

For

ItemAdd

and

ItemChange

publications:

–

gtin

–

dimension

–

height

–

volume

–

productHierarchy

Solution

Development

Guide

39

–

barCodeId

–

unitOfWgt

(if

either

the

grossWeight

or

netWeight

fields

contain

values)
v

For

ItemDelist

and

ItemWithdrawal

publications:

–

gtin

Note:

The

UCCnet_ItemSync

collaboration

object

checks

only

that

the

required

fields

are

not

NULL.

It

does

not

verify

that

the

information

within

them

is

in

the

correct

format

for

UCCnet.

If

all

required

fields

are

complete,

the

UCCnet_ItemSync

collaboration

object

continues

processing

it.

If

all

required

fields

are

not

complete,

the

collaboration

object

aborts

processing

and

sends

an

e-mail

requesting

the

missing

information

to

an

e-mail

address

provided

in

the

UCCnet_ItemSync

collaboration

object’s

SEND_MAIL_TO

configuration

property.

See

the

section

“Alerting

e-mail

recipients

of

processing

errors”

on

page

51

for

more

information

about

how

e-mail

is

handled

within

the

solution.

Using

the

PROCESSED_GTIN

table

The

PROCESSED_GTIN

table

is

a

relational

table

provided

with

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product.

It

maintains

the

complete

list

of

the

supplier’s

items

that

exist

in

the

UCCnet

repository

by

using

each

item’s

tracking

ID,

or

GTIN,

as

the

primary

key.

This

table

permits

a

UCCnet_processWorklist

collaboration

object

to

process

incoming

INITIAL_ITEM_LOAD_REQUEST

commands

without

the

need

to

communicate

with

the

back-end

ERP

system.

See

the

section

“INITIAL_ITEM_LOAD_REQUEST

subdiagram”

on

page

47

for

more

information

about

this

subdiagram.

The

UCCnet_ItemSync

and

UCCnet_processWorklist

collaboration

objects

both

interact

with

this

table.

A

UCCnet_ItemSync

collaboration

object

updates

the

table

each

time

it

processes

an

ItemBasic

business

object.

The

collaboration

object

performs

this

processing

only

if

all

of

the

fields

that

UCCnet

requires

data

for,

are

complete

(see

the

section

“Checking

that

item

data

exists

for

fields

required

by

UCCnet”

on

page

39

for

more

information).

The

type

of

processing

the

collaboration

object

performs

depends

on

the

verb

attached

to

the

ItemBasic

business

object,

as

follows:

v

If

the

ItemBasic

business

object

has

a

Create

verb,

the

UCCnet_ItemSync

collaboration

object

checks

if

the

item

exists

in

the

PROCESSED_GTIN

table

and

processes

it,

as

follows:

–

If

the

item

does

not

already

exist

in

the

PROCESSED_GTIN

table,

the

collaboration

object

adds

an

entry

for

it

to

the

table,

and

sets

the

value

for

the

withdrawn

field

for

this

entry

to

N.

–

If

the

item

already

exists

in

the

table,

the

collaboration

object

changes

its

verb

to

Update.
v

If

the

ItemBasic

business

object

has

an

Update

verb,

the

UCCnet_ItemSync

collaboration

object

checks

if

the

item

exists

in

the

PROCESSED_GTIN

table

and

processes

it,

as

follows:

–

If

the

item

exists

in

the

table

and

the

value

for

its

withdrawn

field

is

set

to

N,

the

collaboration

object

continues

processing

it.

–

If

the

item

exists

in

the

table

and

the

value

for

its

withdrawn

field

is

set

to

Y,

the

collaboration

object

completes

the

following

steps:

-

Changes

the

value

of

the

entry’s

withdrawn

field

to

N.

-

Changes

the

value

of

the

entry’s

delete

field

to

U.

40

Solution

Development

Guide

-

Changes

the

business

object

verb

to

UNWITHDRAWN.

-

Continues

processing

it.
–

If

the

item

does

not

exist

in

the

table,

the

collaboration

object

changes

the

business

object’s

verb

to

Create

and

adds

it

to

the

PROCESSED_GTIN

table,

setting

the

entry’s

withdrawn

field

to

N.
v

If

the

ItemBasic

business

object

has

a

Delist

verb,

the

UCCnet_ItemSync

collaboration

object

removes

the

item

from

the

PROCESSED_GTIN

table.

v

If

the

ItemBasic

business

object

has

a

Withdraw

verb,

the

UCCnet_ItemSync

collaboration

object

locates

the

item

in

the

PROCESSED_GTIN

table

and

sets

the

value

for

the

entry’s

withdrawn

field

to

Y.

This

action

prevents

the

publication

of

the

item

in

response

to

an

incoming

INITIAL_ITEM_LOAD_REQUEST.

The

UCCnet_processWorklist

collaboration

object

reads

this

table

during

processing,

as

follows:

v

Its

NEW_ITEM_PUBLICATION_REQUEST

subdiagram

verifies

that

specific

items

are

in

the

table.

v

Its

INITIAL_ITEM_LOAD_REQUEST

subdiagram

generates

publication

messages

for

all

items

in

the

table

with

a

withdrawn

value

of

N.

The

UCCnet_ItemSync

collaboration

object

connects

to

the

database

through

its

GtinDB_USER,

GtinDB_PASSWORD,

JDBC_DRIVER,

and

JDBC_URL

configuration

properties;

the

UCCnet_processWorklist

collaboration

object,

through

its

DB_USER,

DB_PASSWORD,

JDBC_DRIVER,

and

JDBC_URL

configuration

properties.

See

the

Quick

Start

Guide

for

instructions

on

how

to

create

these

collaboration

objects

and

set

each

object’s

collaboration-specific

properties.

Connection

information

for

the

PROCESSED_GTIN

table

is

configured

as

part

of

the

UCCnet_ItemSync

collaboration

object

setup.

After

the

relationships

have

been

deployed,

the

table

is

created

by

running

the

supplied

InitializeRelationshipTables.sql

file

for

the

database

type

(DB2®

or

Microsoft®

SQL

Server).

See

the

Quick

Start

Guide

for

information

about

running

the

InitialRelationshipTables.sql

file

to

populate

the

relationships

after

deployment.

Using

the

audit_log

table

The

audit_log

table

is

provided

with

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product.

It

is

used

to

track

the

events

associated

with

UCCnet

activities

to

support

complete

end-to-end

auditing.

This

audit

support

provides

irrefutable

documentation

that

transmissions

have

occurred

between

trading

partners.

It

also

provides

a

profile

of

what

trading

partners

are

participating

in

the

trading

community

and

with

what

products

that

participation

is

associated.

The

audit

service

is

composed

of

three

components:

v

The

audit_log

table

receives

log

entries

from

each

participant

component

in

the

solution.

Some

possible

fields

and

their

corresponding

values

are

shown

in

the

following

table.

Table

1.

Log

entry

samples

Fields

Values

LOG_SEQ_NO

1

LOG_SOURCE_NAME

UCCnet2

GLN_CODE

NA

Solution

Development

Guide

41

ftp://ftp.software.ibm.com/software/websphere/integration/wbiitemsync/express/library/doc/wbixis431/pdf/quickstart.pdf
ftp://ftp.software.ibm.com/software/websphere/integration/wbiitemsync/express/library/doc/wbixis431/pdf/quickstart.pdf

Table

1.

Log

entry

samples

(continued)

Fields

Values

SOURCE_SYSTEM

My

Company

Name

PRODUCT_ID

2050000000454

VERB_NAME

Create

TRANS_ID

SAPConnector_1015606877187_1

TRANS_TYPE

UCCnet_processWorklist

TRANS_STATUS

ITEM_ADD_CHANGE

MSG_FILEPATH_TEXT

C:\IBM\WebSphereICS\UCCnet-1051628537493.bo

LOG_DTTM

May

5,

2003

1:44:56

PM

v

A

logging

framework

that

is

utilized

by

collaborations

and

adapters

to

log

critical

events

to

the

audit_log

table.

v

A

report

generation

facility

to

support

data

analysis

and

visualization.

UCCnet_ItemSync

and

UCCnet_processWorklist

collaboration

objects

impact

the

audit_log

table.

Any

time

an

item

is

added

to,

updated

or

delisted

within,

or

withdrawn

from

the

ERP,

and

an

ItemBasic

business

object

is

subsequently

passed

to

a

UCCnet_ItemSync

collaboration

object,

the

collaboration

object

records

an

entry

in

the

audit_log

table

detailing

the

event.

The

following

subdiagrams

of

the

UCCnet_processWorklist

collaboration

object

also

record

entries

in

the

audit_log

table

during

processing:

v

AUTHORIZATION_RESPONSES

v

CATALOGUE_ITEM_CONFIRMATION

v

INITIAL_ITEM_LOAD_REQUEST

v

ITEM_ADD_CHANGE

v

NEW_ITEM_PUBLICATION_REQUEST

v

RCIR_RESPONSE

The

following

sections

have

more

information

about

how

these

subdiagrams

operate:

v

“AUTHORIZATION_RESPONSES

subdiagram”

on

page

46

v

“CATALOGUE_ITEM_CONFIRMATION

subdiagram”

on

page

47

v

“INITIAL_ITEM_LOAD_REQUEST

subdiagram”

on

page

47

v

“ITEM_ADD_CHANGE

subdiagram”

on

page

48

v

“NEW_ITEM_PUBLICATION_REQUEST

subdiagram”

on

page

48

v

“RCIR_RESPONSE

subdiagram”

on

page

49

Each

audit

entry

is

associated

with

the

value

listed

for

the

collaboration

object’s

SUPPLIER_NAME

attribute.

Connection

from

the

UCCnet_ItemSync

and

UCCnet_processWorklist

collaboration

objects

to

the

audit_log

table

is

provided

by

the

IBM

JDBC

Driver

for

DB2

or

Microsoft

SQL

Server.

Table

creation

is

performed

via

running

the

supplied

audit_log.sql

file

for

the

database

type

(DB2

or

Microsoft

SQL

Server).

42

Solution

Development

Guide

Using

the

trading_partner

table

The

trading_partner

table,

or

GLN

table,

is

a

relational

table

provided

with

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product.

It

maintains

the

complete

list

of

trading

partners

by

using

the

Global

Location

Number

(GLN)

of

each

as

the

key.

The

NEW_ITEM_PUBLICATION_REQUEST

subdiagram

of

a

UCCnet_processWorklist

collaboration

object

checks

that

a

new

item

or

updated

item

information

to

be

published

is

supplied

by

a

trading

partner

from

this

table.

It

also

verifies

that

the

demand-side

trading

partners

to

whom

notification

will

be

sent

are

in

the

table.

The

INITIAL_ITEM_LOAD_REQUEST

subdiagram

of

a

UCCnet_processWorklist

collaboration

object

checks

the

trading_partner

table

to

verify

that

the

demand-side

trading

partner

requesting

the

INITIAL_ITEM_LOAD_REQUEST

exists.

The

ITEM_ADD_CHANGE

subdiagram

of

a

UCCnet_processWorklist

collaboration

object

utilizes

maps

that

read

from

the

trading_partner

table.

Connection

information

for

the

trading_partner

table

is

configured

as

part

of

the

UCCnet_processWorklist

collaboration

object.

The

trading_partner

table

is

created

when

the

TPTable

relationship

is

deployed

(and

the

schema

is

created).

The

InitializeRelationshipTables

scripts,

InitializeRelationshipTables.sql

and

InitializeRelationshipTablesForXSD.sql,

make

alterations

to

the

table,

which

includes

adding

the

following

columns:

v

gln_code

v

trading_partner_name

v

trading_partner_contact

v

trading_partner_group

v

trading_partner_type

v

initial_load_flag

Note:

After

the

columns

are

created,

you

must

manually

populate

it

with

the

correct

information.

See

the

Quick

Start

Guide

for

information

about

populating

the

trading_partner

table.

Polling

UCCnet

for

worklists

UCCnet

never

spontaneously

sends

notification

messages;

instead,

UCCnet

must

be

polled

for

these

messages

via

query

command

messages

tailored

to

retrieve

the

specific

UCCnet

notifications.

A

chronologically

triggered

process

must

be

configured

to

move

your

query

command

messages

to

the

event

directory

of

the

JTextRWLConnector.

This

process

is

not

part

of

the

solution

and

must

be

customized

by

the

user.

The

JTextRWLConnector

polls

its

event

directory

for

any

worklist

query

commands

that

might

have

been

delivered

at

a

polling

interval,

which

is

set

by

the

user.

When

the

JTextRWLConnector

finds

a

worklist

query

command,

it

sends

the

command

to

the

Data

Handler

for

XML,

which

converts

the

command

into

a

UCCnetXXX_envelope

business

object.

Note:

In

this

and

the

following

example

names,

the

variable

XXX

specifies

the

XML

definition

type

used

(DTD

or

XSD).

Solution

Development

Guide

43

ftp://ftp.software.ibm.com/software/websphere/integration/wbiitemsync/express/library/doc/wbixis431/pdf/quickstart.pdf

This

business

object

contains

the

entire

UCCnet

message,

including

each

individual

data

instance

and

the

commands

related

to

it.

The

JTextRWLConnector

then

passes

this

business

object

to

a

UCCnet_requestWorklist

collaboration

object,

which

passes

it

to

the

AS2

channel

server

for

transmission

to

UCCnet.

UCCnet

responds

with

the

appropriate

worklist,

which

initiates

ongoing

workflows

in

the

solution.

The

DTD_URL

and

SET_UNIQUE_IDS

properties

of

the

UCCnet_requestWorklist

collaboration

object

affect

the

outgoing

XML

message

in

systems

using

the

DTD

XML

definition

type.

The

DocType

line

in

the

XML

is

set

according

to

the

value

of

the

DTD_URL

property.

If

outgoing

messages

are

required

to

have

unique

message

IDs,

the

SET_UNIQUE_IDS

property

must

be

set

to

ALL

Both

the

worklist

request

XML

and

the

polling

interval

can

be

changed.

For

example,

the

worklist

query

command

XML

message

tailored

for

Authorization

Notifications

(query

type=″NOTIFICATION″

with

name=″AUTHORIZATION_INFORMATION″

and

status=″UNREAD″)

can

be

used

to

request

the

worklist

authorization

notification

contents.

A

similar

request

can

be

constructed

to

read

any

dead

letter

notifications.

As

an

alternative,

all

notifications

can

be

requested.

The

polling

interval

is

set

in

the

PollFrequency

attribute

of

the

JTextRWLConnector

and

is

in

milliseconds.

The

UCCnet_requestWorklist

collaboration

supports

the

notification

type=″PUBLICATION_INFORMATION″

for

the

topics

PEND_PUBLICATION,

PRE_AUTHORIZATION,

AUTHORIZATION,

REJECT_PUBLICATION,

DE_AUTHORIZATION,

and

in

the

notifications

for

NEW_ITEM_PUBLICATION_REQUEST

and

ITEM_INFORMATION

(ITEM_ADD,

ITEM_CHANGE).

Using

subdiagrams

All

messages

initiated

from

UCCnet

are

in

UCCnet

XML

format.

Because

the

UCCnet

XML

format’s

top-level

tag

(<envelope>)

is

the

same

for

all

messages,

a

component

is

needed

to

distinguish

among

the

various

notification

and

response

XML

messages

and

return

different

business

objects

for

them.

An

object

based

on

the

UCCnet_processWorklist

collaboration

template

performs

this

task.

A

UCCnet_processWorklist

collaboration

object

is

instantiated

when

the

AS2

channel

connector

forwards

to

it

a

UCCnetGBO_envelope

business

object.

This

business

object

is

created

from

the

following

process:

1.

The

AS2

channel

connector

receives

the

UCCnet

worklist

document

(envelope)

from

the

AS2

channel

server.

2.

The

AS2

channel

connector

sends

the

document

to

the

Data

Handler

for

XML,

which

converts

it

into

a

UCCnetXXX_envelope

business

object.

In

these

business

object

names,

XXX

is

either

DTD

or

XSD,

depending

on

whether

you

are

using

a

DTD

XML

definition

or

a

schema-based

XML

definition.

3.

The

business

object

is

converted

to

a

UCCnetGBO_envelope

business

object

by

passing

through

an

input

map

of

the

form

UCCnetXXX_envelope_to_UCCnetGBO_envelope.

4.

The

AS2

channel

connector

delivers

the

business

object

to

a

UCCnet_processWorklist

collaboration

object.

The

UCCnet_processWorklist

collaboration

object

parses

the

UCCnetGBO_envelope

business

object,

creating

a

separate

UCCnetGBO_envelope

business

object

for

each

44

Solution

Development

Guide

notification

or

response.

The

collaboration

object

routes

each

business

object

representing

a

single

notification

to

the

appropriate

subdiagram.

Each

subdiagram

handles

a

particular

set

of

notification

or

response

messages,

as

follows:

AUTHORIZATION_RESPONSES

subdiagram

Handles

notifications

for

the

topics

AUTHORIZE,

DE_AUTHORIZATION,

PEND_PUBLICATION,

PRE_AUTHORIZATION,

and

REJECT_PUBLICATION.

See

the

section

“AUTHORIZATION_RESPONSES

subdiagram”

on

page

46

for

more

information

about

this

subdiagram.

CATALOGUE_ITEM_CONFIRMATION

Handles

the

process

of

the

CATALOGUE_ITEM_CONFIRMATION

responses,

received

by

the

UCCnet_processWorklist

collaboration

object.

See

the

section

“CATALOGUE_ITEM_CONFIRMATION

subdiagram”

on

page

47

for

more

information.

CATEGORY_ADD_CHANGE

subdiagram

Handles

notifications

for

the

CATEGORY_ADD

and

CATEGORY_CHANGE

topics.

See

the

section

“CATEGORY_ADD_CHANGE

subdiagram”

on

page

46

for

more

information

about

this

subdiagram.

CIN_RESPONSE

subdiagram

Handles

incoming

messages

that

are

recognized

as

CIN_RESPONSE

messages.

See

the

section

“CIN_RESPONSE

subdiagram”

on

page

47

for

more

information

about

this

subdiagram.

DEAD_LETTER_PUB_RECEIPT

subdiagram

Handles

notifications

associated

with

the

single

notification

topic

DEAD_LETTER_PUB_RECEIPT.

See

the

section

“DEAD_LETTER_PUB_RECEIPT

subdiagram”

on

page

47

for

more

information

about

this

subdiagram.

INITIAL_ITEM_LOAD_REQUEST

subdiagram

Handles

notifications

associated

with

the

single

notification

topic

INITIAL_ITEM_LOAD_REQUEST.

See

the

section

“INITIAL_ITEM_LOAD_REQUEST

subdiagram”

on

page

47

for

more

information

about

this

subdiagram.

ITEM_ADD_CHANGE

subdiagram

Handles

notifications

for

the

ITEM_ADD

and

ITEM_CHANGE

topics.

See

the

section

“ITEM_ADD_CHANGE

subdiagram”

on

page

48

for

more

information

about

this

subdiagram.

NEW_ITEM_PUBLICATION_REQUEST

subdiagram

Handles

notifications

associated

with

the

single

notification

topic

NEW_ITEM_PUBLICATION_REQUEST.

See

the

section

“NEW_ITEM_PUBLICATION_REQUEST

subdiagram”

on

page

48

for

more

information

about

this

subdiagram.

PUBLICATION_COMMAND_RESPONSE

subdiagram

Handles

incoming

messages

that

are

recognized

as

CI_RESPONSE

or

CIP_RESPONSE

messages.

See

the

section

“PUBLICATION_COMMAND_RESPONSE

subdiagram”

on

page

49

for

more

information

about

this

subdiagram.

RCIR_RESPONSE

Handles

notifications

for

the

ADD

and

CHANGE

topics.

See

the

section

“RCIR_RESPONSE

subdiagram”

on

page

49

for

more

information.

Solution

Development

Guide

45

RCIR_QUERY_RESPONSE

Handles

incoming

messages

that

are

recognized

as

RCIR_QUERY_RESPONSE

messages.

See

the

section

“RCIR_QUERY_RESPONSE

subdiagram”

on

page

50

for

more

information.

SIMPLE_RESPONSE

subdiagram

Handles

immediate

responses

to

commands

such

as

MDNs

from

UCCnet.

See

the

section

“SIMPLE_RESPONSE

subdiagram”

on

page

50

for

more

information

about

this

subdiagram.

UNKNOWN_MESSAGES

subdiagram

Handles

incoming

messages

not

recognized

as

supported.

See

the

section

“UNKNOWN_MESSAGES

subdiagram”

on

page

51

for

more

information

about

this

subdiagram.

UNKNOWN_RESPONSE

subdiagram

Handles

incoming

messages

that

are

recognized

as

notification

messages,

but

are

not

supported.

See

the

section

“UNKNOWN_RESPONSE

subdiagram”

on

page

51

for

more

information

about

this

subdiagram.

AUTHORIZATION_RESPONSES

subdiagram

This

subdiagram

handles

notifications

for

the

following

topics:

AUTHORIZE,

DE_AUTHORIZATION,

PEND_PUBLICATION,

PRE_AUTHORIZATION,

and

REJECT_PUBLICATION.

UCCnet

generates

these

notifications

as

a

result

of

authorization

actions

taken

by

demand-side

trading

partners,

which

are

forwarded

to

UCCnet.

Typically

they

are

issued

in

response

to

an

ItemPublicationAdd

issued

by

the

supply-side

trading

partner,

but

they

can

be

issued

at

anytime.

The

subdiagram

logic

completes

the

following

steps:

1.

Instantiates

a

collaboration

object

based

on

the

Notify_by_eMail

collaboration

template

called

UCCnet_processWorklist_AUTHORIZATION_RESPONSESObject,

which

sends

an

e-mail

to

one

or

more

selected

recipients.

The

e-mail

message,

subject,

and

recipients

are

configured

in

this

collaboration

object’s

EMAIL_MESSAGE,

EMAIL_SUBJECT,

and

EMAIL_NOTIFICATION_RCPTS

configuration

properties.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information.

2.

Logs

the

event

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

CATEGORY_ADD_CHANGE

subdiagram

This

subdiagram

handles

notifications

for

the

CATEGORY_ADD

and

CATEGORY_CHANGE

topics.

These

notifications

are

sent

by

UCCnet

when

a

request

is

made

by

the

supply-side

trading

partner

to

add

or

change

a

category

to

better

classify

or

organize

the

items

in

its

available

inventory.

The

subdiagram

logic

sends

an

e-mail

containing

the

category

maintenance

information

to

selected

recipients

by

instantiating

a

collaboration

object

based

on

the

Notify_by_eMail

collaboration

template

called

UCCnet_processWorklist_CATEGORY_ADD_CHANGEObject.

The

e-mail

message,

subject,

and

recipients

are

configured

in

this

collaboration

object’s

EMAIL_MESSAGE,

EMAIL_SUBJECT,

and

EMAIL_NOTIFICATION_RCPTS

configuration

properties.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information.

There

is

no

follow-on

flow.

46

Solution

Development

Guide

CATALOGUE_ITEM_CONFIRMATION

subdiagram

This

subdiagram

handles

the

process

of

the

CATALOGUE_ITEM_CONFIRMATION

responses,

received

by

the

UCCnet_processWorklist

collaboration

object.

UCCnet

generates

these

responses

as

a

result

of

the

authorization

actions

taken

by

demand-side

trading

partners.

The

responses

can

have

one

of

the

following

states:

v

SYNCHRONISED

v

ACCEPTED

v

REVIEW

v

REJECTED

The

responses

are

typically

generated

in

answer

to

a

request

generated

by

the

supply-side

trading

partner

as

part

of

the

CatalogueItemNotification_Change

and

CatalogueItemNotification_Add

workflows.

However,

the

responses

can

be

issued

at

any

time.

This

subdiagram

carries

out

the

following

logic:

v

It

instantiates

a

collaboration

object

called

UCCnet_processWorklist_CATALOGUE_ITEM_CONFIRMATIONObject,

based

on

the

Notify_by_eMail

collaboration

template.

This

collaboration

object

sends

an

e-mail

to

a

set

of

defined

recipients.

The

message,

subject,

and

recipient

list

are

defined

by

the

collaboration

object’s

EMAIL_MESSAGE,

EMAIL_SUBJECT,

and

EMAIL_NOTIFICATION_RCPTS

configuration

properties.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information.

v

It

logs

the

event

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information.

CIN_RESPONSE

subdiagram

This

subdiagram

handles

incoming

CIN_Response

messages.

The

subdiagram

logic

instantiates

a

collaboration

object

based

on

the

Notify_by_eMail

collaboration

template,

which

sends

an

e-mail

to

selected

recipients.

The

e-mail

message,

subject,

and

recipients

are

configured

in

this

collaboration

object’s

EMAIL_MESSAGE,

EMAIL_SUBJECT,

and

EMAIL_NOTIFICATION_RCPTS

configuration

properties.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information.

DEAD_LETTER_PUB_RECEIPT

subdiagram

This

subdiagram

handles

notifications

for

the

DEAD_LETTER_PUB_RECEIPT

topic.

These

notifications

result

from

a

supplier

request

for

which

a

target

demand-side

trading

partner

has

not

subscribed.

The

subdiagram

logic

instantiates

a

collaboration

object

based

on

the

Notify_by_eMail

collaboration

template

called

UCCnet_processWorklist_DEAD_LETTER_PUB_RECEIPTObject,

which

sends

an

e-mail

to

selected

recipient(s).

The

e-mail

message,

subject,

and

recipients

are

configured

in

this

collaboration

object’s

EMAIL_MESSAGE,

EMAIL_SUBJECT,

and

EMAIL_NOTIFICATION_RCPTS

configuration

properties.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information.

INITIAL_ITEM_LOAD_REQUEST

subdiagram

This

subdiagram

handles

notifications

associated

with

the

single

notification

topic

INITIAL_ITEM_LOAD_REQUEST.

This

notification

is

generated

as

a

result

of

a

demand-side

trading

partner

requesting

through

UCCnet

to

initiate

synchronizing

Solution

Development

Guide

47

all

the

items

currently

traded

with

a

given

supply-side

trading

partner.

The

demand-side

partner’s

request

produces

a

notification

in

the

worklist

of

the

supply-side

trading

partner.

The

logic

in

this

subdiagram

completes

the

following

steps:

1.

Writes

a

record

to

the

audit_log

table

indicating

receipt

of

the

INITIAL_ITEM_LOAD_REQUEST.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

2.

Checks

the

trading_partner

table

to

verify

that

the

GLN

requesting

the

INITIAL_ITEM_LOAD_REQUEST

exists.

See

the

section

“Using

the

trading_partner

table”

on

page

43

for

more

information

about

the

trading_partner

table.

3.

Sends

the

business

object

to

UCCnet

over

the

INITIAL_ITEM_LOAD_REQUEST

port

via

the

AS2

channel

connector.

The

follow-up

workflow

is

that

of

an

ItemPublicationAdd

subflow

1

targeted

to

the

trading

partner

who

initiated

the

flow,

as

detailed

in

the

section

“ItemPublicationAdd

subflow

1:

making

a

new

item

available

to

trading

partners”

on

page

9.

The

PROCESSED_GTIN

table

provides

the

list

of

GTINs

for

the

ItemPublicationAdd,

and

the

incoming

message

provides

the

trading

partner’s

GLN.

There

are

no

external

business

process

steps

for

this

flow.

ITEM_ADD_CHANGE

subdiagram

This

subdiagram

handles

notifications

for

the

ITEM_ADD

and

ITEM_CHANGE

topics.

These

notifications

are

sent

by

UCCnet

to

indicate

completion

of

a

particular

item

synchronization

request,

such

as

one

initiated

by

an

ItemAdd

or

ItemChange

workflow.

The

subdiagram

logic

completes

the

following

steps:

1.

Receives

the

UCCnetGBO_envelope

business

object.

2.

Configures

it

so

that

the

correct

maps

will

be

used

by

the

AS2

channel

connector.

3.

Sends

the

ItemPublicationAdd

or

ItemPublicationChange

request

over

the

ITEM_ADD_CHANGE

port

to

the

AS2

channel

connector.

4.

Logs

the

notification

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

The

follow-up

workflow

is

that

of

the

first

subflow

of

either

the

ItemPublicationAdd

or

ItemPublicationChange

workflow,

as

detailed

in

the

sections

“ItemPublicationAdd

subflow

1:

making

a

new

item

available

to

trading

partners”

on

page

9

and

“ItemPublicationChange

subflow

1:

making

updated

item

information

available

to

trading

partners”

on

page

17.

NEW_ITEM_PUBLICATION_REQUEST

subdiagram

This

subdiagram

handles

notifications

associated

with

the

single

notification

topic

NEW_ITEM_PUBLICATION_REQUEST.

This

notification

is

generated

as

a

result

of

the

following:

v

A

new

item

being

added

to

the

source

ERP.

v

Item

data

being

updated

in

the

source

ERP.

v

A

demand-side

trading

partner

requesting

through

UCCnet

that

a

supply-side

trading

partner

publish

a

specific

item

(GTIN)

or

items

to

it

so

it

can

synchronize

them.

The

demand-side

partner’s

request

produces

a

notification

in

the

worklist

of

the

supply-side

trading

partner.

This

notification

has

the

type=″NEW_ITEM_PUBLICATION_REQUEST″.

48

Solution

Development

Guide

The

logic

in

this

subdiagram

completes

the

following

steps:

1.

Verifies

that

the

GTIN

value

associated

with

the

item

is

in

the

PROCESSED_GTIN

table

and

that

the

item

is

not

withdrawn.

See

the

section

“Using

the

PROCESSED_GTIN

table”

on

page

40

for

more

information

about

the

PROCESSED_GTIN

table.

2.

Checks

that

the

new

item

or

new

item

information

to

be

published

is

supplied

by

a

trading

partner

listed

in

the

trading_partner

table

and

verifies

that

the

demand-side

trading

partners

to

whom

notification

will

be

sent

are

also

in

this

table.

See

the

section

“Using

the

trading_partner

table”

on

page

43

for

more

information

about

the

trading_partner

table.

3.

Configures

the

business

object

so

that

the

correct

maps

will

be

used

by

the

AS2

channel

connector.

4.

Logs

the

notification

in

the

audit_log

table.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

The

follow-up

workflow

is

that

of

the

second

subflow

of

either

the

ItemPublicationAdd

or

ItemPublicationChange

workflow,

as

detailed

in

the

sections

“ItemPublicationAdd

subflow

2:

processing

trading

partners’

responses

to

a

new

item”

on

page

11

and

“ItemPublicationChange

subflow

2:

processing

trading

partners’

responses

to

updated

item

information”

on

page

19.

PUBLICATION_COMMAND_RESPONSE

subdiagram

This

subdiagram

handles

incoming

CI

response

and

CIP

response

messages

as

follows:

1.

It

writes

a

record

to

the

audit_log

table

indicating

receipt

of

the

CI

or

CIP

response

message.

See

the

section

“Using

the

audit_log

table”

on

page

41

for

more

information

about

the

audit_log

table.

2.

If

the

received

message

is

a

CIP_RESPONSE,

then

it

sends

the

UCCnetGBO_envelope

through

the

CIP_RESPONSE

port

to

the

Notify_by_eMail

collaboration

instance

to

send

a

notification

e-mail

to

the

supplier,

then

exits.

3.

Otherwise,

it

creates

an

empty

ItemBasic

business

object

and

sends

it

to

the

DestinationAppRetrieve

port

with

a

retrieve

verb.

This

actions

retrieves

the

ItemBasic

business

that

initiated

the

corresponding

RCIR

command

originally

sent

to

UCCnet.

4.

If

the

retrieved

ItemBasic

business

object

indicates

a

CHANGE,

the

subdiagram

sends

a

UCCnetGBO_envelope

business

object

through

CI_RESPONSE

port

to

a

Notify_by_eMail

collaboration

object

to

notify

the

supplier,

and

then

exits.

5.

If

the

retrieved

ItemBasic

BO

indicates

an

ADD,

the

subdiagram

sends

the

business

object

out

the

PUBLICATION_CMD_RESPONSE

port

to

an

instance

of

the

CIN_CIP_Dispatcher

collaboration

object

to

initiate

sending

of

CIPs.

RCIR_RESPONSE

subdiagram

This

subdiagram

handles

notifications

for

the

ADD

and

CHANGE

topics.

These

notifications

are

sent

by

UCCnet

when

a

request

in

made

by

the

supply-side

trading

partner

to

add

or

change

an

item.

The

subdiagram

logic

first

records

the

occurrence

of

the

RCIR_RESPONSE

message

in

the

audit_log;

then,

it

builds

a

skeleton

ItemBasic

business

object,

defining

only

the

UPCEANCODE

and

ITEM_DOMAIN

attributes.

It

next

sends

this

ItemBasic

business

object

out

through

the

DestinationAppRetrieve

port

so

that

the

user

can

respond

with

a

completed

ItemBasic

business

object.

In

a

production

environment,

Solution

Development

Guide

49

an

additional

process

is

required

to

retrieve

the

fully

defined

ItemBasic

business

object

using

the

UPCEANCODE

and

ITEM_DOMAIN

fields,

and

to

return

it

to

the

DestinationAppRetrieve

port.

After

the

fully

defined

ItemBasic

business

object

has

been

returned:

For

CIN

operation

The

RCIR_RESPONSE

subdiagram

sends

it

out

through

the

RCIR_RESPONSE

port

to

the

CIN_CIP_Dispatcher

collaboration

object.

This

action

triggers

the

CIN_CIP_Dispatcher

collaboration

object

to

generate

CATALOGUE_ITEM_NOTIFICATION

messages

and

send

one

to

each

subscribed

demand-side

trading

partner.

For

CIP

operation

The

RCIR_RESPONSE

subdiagram

sends

it

out

through

the

RCIR_RESPONSE

port

to

an

AS2

channel

connector,

which

maps

it

to

a

Catalogue

Item

message

and

sends

it

to

UCCnet.

Note:

CATALOGUE_ITEM_NOTIFICATION

is

a

general

term.

The

workflow

explanations

refer

to

either

a

CatalogueItemNotificaton_ADD

message,

or

a

CatalogueItemNotification_CHANGE

as

specific

instances

of

a

CATALOGUE_ITEM_NOTIFICATION

message.

The

follow-up

workflow

is

the

CatalogueItemNotification_Add

or

CatalogueItemNotification_Change

workflow,

as

detailed

in

the

sections

“CatalogueItemNotification_Add

and

CatalogueItemPublication_Add

workflows:

making

a

new

item

available

to

trading

partners

and

processing

their

responses”

on

page

27

and

“CatalogueItemNotification_Change

and

CatalogueItemPublication_Change

workflow:

making

updated

item

information

available

to

trading

partners

and

processing

their

responses”

on

page

33.

Ensure

that

the

schema

delist

and

withdrawal

workflows

do

not

use

this

subdiagram.

RCIR_QUERY_RESPONSE

subdiagram

This

subdiagram

handles

incoming

RCIR

Query

response

messages.

The

subdiagram

logic

instantiates

a

collaboration

object

based

on

the

Notify_by_eMail

collaboration

template,

which

sends

an

e-mail

to

selected

recipients

with

the

contents

of

the

received

message.

The

e-mail

message,

subject,

and

recipients

are

configured

in

this

collaboration

object’s

EMAIL_MESSAGE,

EMAIL_SUBJECT,

and

EMAIL_NOTIFICATION_RCPTS

configuration

properties.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information.

SIMPLE_RESPONSE

subdiagram

This

subdiagram

handles

immediate

responses

to

commands

such

as

MDNs

from

UCCnet.

The

subdiagram

logic

instantiates

a

collaboration

object

based

on

the

Notify_by_eMail

collaboration

template

called

UCCnet_processWorklist_SIMPLE_RESPONSEObject,

which

sends

an

e-mail

to

selected

recipient(s).

The

e-mail

message,

subject,

and

recipients

are

configured

in

this

collaboration

object’s

EMAIL_MESSAGE,

EMAIL_SUBJECT,

and

EMAIL_NOTIFICATION_RCPTS

configuration

properties.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information.

50

Solution

Development

Guide

UNKNOWN_MESSAGES

subdiagram

This

subdiagram

handles

incoming

messages

not

recognized

as

supported.

The

subdiagram

logic

instantiates

a

collaboration

object

based

on

the

Notify_by_eMail

collaboration

template

called

UCCnet_processWorklist_UNKNOWN_MESSAGESObject,

which

sends

an

e-mail

to

selected

recipient(s).

The

e-mail

message,

subject,

and

recipients

are

configured

in

this

collaboration

object’s

EMAIL_MESSAGE,

EMAIL_SUBJECT,

and

EMAIL_NOTIFICATION_RCPTS

configuration

properties.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information.

UNKNOWN_RESPONSE

subdiagram

This

subdiagram

handles

incoming

messages

that

are

recognized

as

notification

messages,

but

are

not

supported.

The

subdiagram

logic

instantiates

a

collaboration

object

based

on

the

Notify_by_eMail

collaboration

template

called

UCCnet_processWorklist_UNKNOWN_RESPONSEObject,

which

sends

an

e-mail

to

selected

recipient(s).

The

e-mail

message,

subject,

and

recipients

are

configured

in

this

collaboration

object’s

EMAIL_MESSAGE,

EMAIL_SUBJECT,

and

EMAIL_NOTIFICATION_RCPTS

configuration

properties.

See

the

section

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

for

more

information.

Sending

e-mail

UCCnet_ItemSync

and

UCCnet_processWorklist

collaboration

objects

can

be

configured

to

send

e-mail

to

alert

when

processing

errors

occur.

A

UCCnet_processWorklist

collaboration

object

can

also

instantiate

collaboration

objects

based

on

the

Notify_by_eMail

collaboration

template

to

respond

by

e-mail

to

configured

recipients

when

specific

processing

circumstances

occur.

For

more

information

about

these

topics,

see

the

following

sections:

v

“Alerting

e-mail

recipients

of

processing

errors”

v

“Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams”

on

page

52

Alerting

e-mail

recipients

of

processing

errors

UCCnet_ItemSync

and

UCCnet_processWorklist

collaboration

objects

can

be

configured

to

send

e-mail

to

alert

recipients

when

processing

errors

occur.

UCCnet_ItemSync

collaboration

object

This

collaboration

object

uses

two

configuration

properties

to

control

whether

e-mail

is

sent

and

to

identify

the

mail

recipients.

v

SEND_EMAIL:

This

property

controls

whether

e-mail

is

sent

to

the

e-mail

address

specified

in

the

SEND_EMAIL_TO

configuration

property.

Set

the

property

value

to

all

to

send

e-mail

or

to

none

to

not

send

e-mail.

If

the

value

is

left

empty,

no

e-mail

is

sent

even

if

recipients

exist

in

the

SEND_EMAIL_TO

property.

v

SEND_EMAIL_TO:

This

property

defines

the

e-mail

addresses

where

error

messages

are

sent.

Multiple

addresses

can

be

provided

in

a

comma-delimited

list.

This

property

must

be

configured

by

the

user.

UCCnet_processWorklist

collaboration

object

This

collaboration

object

uses

one

configuration

property

to

control

whether

e-mail

is

sent

and

to

identify

the

e-mail

recipients.

The

Solution

Development

Guide

51

SEND_EMAIL_TO

property

defines

the

e-mail

addresses

where

error

messages

are

sent.

Multiple

addresses

can

be

provided

in

a

comma-delimited

list.

If

a

value

exists

for

this

property,

the

collaboration

object

sends

e-mail.

If

the

property

is

left

blank,

the

object

does

not

send

e-mail.

This

property

must

be

configured

by

the

user.

Sending

e-mail

through

UCCnet_processWorklist

collaboration

object

subdiagrams

A

UCCnet_processWorklist

collaboration

object

contains

several

subdiagrams

that

respond

to

specific

types

of

workflow

processing.

Several

of

these

subdiagrams

include

functionality

that

sends

an

e-mail

to

a

set

of

configured

addresses

by

instantiating

a

collaboration

object

based

on

the

Notify_by_eMail

collaboration

template,

as

follows:

CATEGORY_ADD_CHANGE

subdiagram

Instantiates

a

collaboration

object

called

UCCnet_processWorklist_CATEGORY_ADD_CHANGEObject.

AUTHORIZATION_RESPONSES

subdiagram

Instantiates

a

collaboration

object

called

UCCnet_processWorklist_AUTHORIZATION_RESPONSESObject.

DEAD_LETTER_PUB_RECEIPT

subdiagram

Instantiates

a

collaboration

object

called

UCCnet_processWorklist_DEAD_LETTER_PUB_RECEIPTObject.

CATALOGUE_ITEM_CONFIRMATION

subdiagram

Instantiates

a

collaboration

object

called

UCCnet_processWorklist_CATALOGUE_ITEM_CONFIRMATIONObject

SIMPLE_RESPONSE

subdiagram

Instantiates

a

collaboration

object

called

UCCnet_processWorklist_SIMPLE_RESPONSEObject.

UNKNOWN_MESSAGES

subdiagram

Instantiates

a

collaboration

object

called

UCCnet_processWorklist_UNKNOWN_MESSAGESObject.

UNKNOWN_RESPONSE

subdiagram

Instantiates

a

collaboration

object

called

UCCnet_processWorklist_UNKNOWN_RESPONSEObject.

Each

of

these

objects

based

on

the

Notify_by_eMail

collaboration

template

can

be

configured

to

contain

the

e-mail

message,

subject,

and

recipients

specific

to

its

processing

situation

through

its

EMAIL_MESSAGE,

EMAIL_SUBJECT,

and

EMAIL_NOTIFICATION_RCPTS

configuration

properties.

These

properties

can

also

contain

the

names

of

files,

which

permits

messages,

subjects,

and

recipients

to

be

shared

among

multiple

collaboration

objects.

Also,

more

than

one

recipient

can

be

specified

to

receive

e-mail

through

the

use

of

a

comma-delimited

list.

Plus,

e-mail

message

and

subject

text

can

be

constants

that

contain

variables.

The

Notify_by_eMail

collaboration

object

substitutes

data

from

the

business

object

into

these

variables

dynamically.

See

the

following

sections

for

more

information

about

these

features:

v

“Specifying

message

text,

subjects,

and

recipients

in

external

files”

on

page

53

v

“Specifying

changing

individual

or

multiple

message

recipients”

on

page

53

v

“Using

substitution

variables

in

message

and

subject

text”

on

page

53

52

Solution

Development

Guide

The

value

of

the

AUTO_RESPOND

property

of

the

UCCnet_processWorklist

collaboration

object

determines

whether

e-mail

is

sent.

The

value

of

this

collaboration

object’s

DTD_URL

property

sets

the

DTD

line

in

the

XML

in

any

outgoing

XML

message.

Specifying

message

text,

subjects,

and

recipients

in

external

files

A

Notify_by_eMail

collaboration

object

allows

the

contents

of

its

properties

that

specify

e-mail

message

text,

subject

text,

and

recipients

to

contain

the

names

of

files.

These

files

contain

the

actual

e-mail

message

text,

subject

text,

and

addresses,

and

can

be

easily

modified

without

modifying

the

using

collaboration

objects.

This

feature

permits

messages,

subjects,

and

recipients

to

be

shared

among

multiple

collaboration

objects.

A

solution’s

messages,

subjects,

and

recipients

can

all

be

contained

in

one

easily

modifiable

directory.

A

Notify_by_eMail

collaboration

object

uses

the

following

configuration

properties

to

identify

the

e-mail

message

text,

subject

text,

and

recipients:

EMAIL_MESSAGE

Identifies

the

message

text.

EMAIL_SUBJECT

Identifies

the

subject

text.

EMAIL_NOTIFICATION_RCPTS

Identifies

the

recipient

or

list

of

recipients.

The

collaboration

object

distinguishes

whether

the

content

of

a

property

is

an

actual

value

or

file

name

based

on

whether

the

value

is

prefixed

by

the

character

@.

If

the

value

of

the

property

is

prefixed

with

the

character

@,

the

Notify_by_eMail

collaboration

object

interprets

the

rest

of

the

value

as

a

file

name.

The

collaboration

object

reads

the

value

of

the

file

into

a

String

variable

in

preparation

for

further

processing.

Files

must

be

identified

by

their

fully

qualified

names.

For

instance,

if

the

file

name

containing

the

e-mail

recipients

is

c:\Email_Files\CategoryManagerRole.txt,

set

the

value

of

the

EMAIL_NOTIFICATION_RCPTS

property,

as

follows:

@c:\Email_Files\CategoryManagerRole.txt

If

the

value

of

a

property

does

not

start

with

the

character

@,

the

Notify_by_eMail

collaboration

object

obtains

the

e-mail

value

directly

from

the

attribute.

Specifying

changing

individual

or

multiple

message

recipients

A

Notify_by_eMail

collaboration

object

allows

all

e-mail

messages

to

be

routed

to

an

administrator

or

to

a

specific

role

in

an

organization

(such

as

a

Category

Manager),

without

the

need

to

maintain

the

e-mail

recipient’s

fully

qualified

e-mail

address

in

every

collaboration

object

that

might

send

e-mail.

By

placing

the

e-mail

address

in

an

external

file,

if

the

address

changes,

the

file

can

be

modified

without

having

to

reconfigure

the

using

collaboration

objects.

More

than

one

recipient

can

be

specified

to

receive

the

e-mail

through

use

of

a

comma-delimited

list.

The

comma-delimited

list

can

be

specified

in

the

business

object

attribute

or

in

the

external

file

pointed

to

by

the

attribute.

Using

substitution

variables

in

message

and

subject

text

E-mail

message

and

subject

text

can

be

constants

that

contain

variables.

A

collaboration

object

based

on

the

Notify_by_eMail

template

substitutes

data

from

the

business

object

into

these

variables

dynamically.

Variables

to

be

substituted

Solution

Development

Guide

53

must

be

enclosed

in

the

prefix

characters

${

and

the

suffix

character

}.

As

a

result,

the

substitution

variables

in

the

e-mail

message

and

subject

text

must

appear

as:

${variable_name}

Note:

These

characters

might

need

to

be

changed

to

meet

National

Language

requirements.

The

supported

values

for

variable_name,

along

with

the

values

that

the

collaboration

object

actually

inserts

in

the

text,

are

as

follows:

getRoot

Substitutes

the

entire

triggering

business

object.

getDate

Substitutes

the

current

date

and

time.

getName

Substitutes

the

name

of

the

triggering

business

object.

getVerb

Substitutes

the

verb

of

the

triggering

business

object.

Any

attribute

name

Substitutes

the

value

of

the

named

attribute

from

the

triggering

business

object.

If

the

value

for

variable_name

does

not

match

one

of

the

specific

values

above,

the

collaboration

object

interprets

it

as

the

name

of

a

business

object

attribute.

For

instance,

in

the

following

sample

message:

UCCnet_processWorklist_AUTHORIZATION_RESPONSES.mail:

\

Date:

${getDate}

BusinessObject:

${getName}.${getVerb}

Topic:

${ROOT.body[0].response.acknowledge.acknowledgement.

\

subdocumentValid[0].subdocumentValid[0]resultList[0].

\

notification.topic}

GLN:

${ROOT.body[0].response.acknowledge.acknowledgement.

\

subdocumentValid[0].subdocumentValid[0].resultList[0].

\

notification.notificationDetail.transactionInformation.

\

entityIdentification.globalLocationNumber.gln}

GTIN:

${TLO.body.body_Wrapper1[0].response.acknowledge.

\

acknowledgement.subdocumentValid[0].subdocumentValid[0].

\

resultList.resultList_Wrapper1[0].notification.

\

notificationDetail.authorizationNotification.publication.

\

item.itemInformation.globalTradeItemNumber.gtin}

${getRoot}

the

following

variables

are

filled

in

automatically

during

the

generation

of

the

message,

as

follows:

v

${getDate},

with

the

current

date

and

time.

v

${getName},

with

the

name

of

the

triggering

business

object.

v

${getVerb},

with

the

verb

of

the

triggering

business

object.

v

All

variables

beginning

with

${ROOT.body[0].

.

.},

with

the

values

for

those

attributes.

v

${getRoot}

with

the

entire

triggering

business

object.

54

Solution

Development

Guide

Logging

If

UCCnet_ItemSync,

UCCnet_requestWorklist,

UCCnet_processWorklist,

and

Notify_by_eMail

collaboration

objects

encounter

error

situations

during

any

stage

of

processing,

they

do

the

following:

v

Log

the

error

in

the

configured

log

destination.

v

Return

the

object

to

the

calling

collaboration

object

through

the

From

port.

Note:

For

error

logging

to

occur,

tracing

must

be

enabled.

Also,

use

separate

files

for

tracing

and

logging.

Use

logging

files

to

maintain

persistent

records

of

processed

data.

Use

tracing

files

to

diagnose

problems

and

to

show

the

flow

of

an

item

through

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product.

The

Log

Viewer

tool

has

log

and

trace

file

filters

that

enable

users

to

view

the

log

or

trace

records

for

a

particular

business

object

or

collaboration

object.

Tracing

All

collaboration

objects

based

on

collaboration

templates

included

in

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product

provide

tracing

capabilities

to

record

logical

flows

and

data

processed.

Users

can

enable

tracing

for

a

particular

collaboration

object

by

selecting

the

collaboration

object

in

the

System

Manager,

displaying

its

properties,

and,

on

the

Collaboration

General

Properties

tab,

selecting

a

trace

level

greater

than

0

from

the

System

trace

level

field.

Enable

tracing

for

one

or

more

collaboration

objects

when

a

reproducible

problem

occurs.

If

a

problem

occurs

only

once

during

processing,

leave

the

tracing

function

enabled

continually

so

that

the

first

occurrence

of

the

failure

is

captured.

However,

leaving

the

tracing

function

enabled

continually

can

degrade

performance.

Clear

the

trace

file

periodically

to

simplify

viewing

and

filtering

it.

Note:

Use

separate

files

for

tracing

and

logging.

Use

tracing

files

to

diagnose

problems

and

to

show

the

flow

of

an

item

through

the

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

product.

Use

logging

files

to

maintain

persistent

records

of

processed

data.

The

Log

Viewer

tool

has

trace

and

log

file

filters

that

enable

users

to

view

the

trace

or

log

records

for

a

particular

business

object

or

collaboration

object.

Solution

Development

Guide

55

56

Solution

Development

Guide

Notices

and

Trademarks

Proprietary

Information
US

Government

Users

Restricted

Rights

-

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

©

Copyright

IBM

Corp.

2003,

2004

57

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

COPYRIGHT

LICENSE

This

information

may

contain

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

58

Solution

Development

Guide

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Solaris,

Java,

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

UCC

and

UCCnet

are

trademarks

of

Uniform

Code

Council,

Inc.,

UCCnet,

Inc.

or

both,

in

the

United

States,

other

countries,

or

both.

UCCnet

Messaging

is

a

product

and/or

trademark

of

UCCNet

and

is

used

with

permission.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

WebSphere

Business

Integration

Express

for

Item

Synchronization

V4.3.1

WebSphere

Business

Integration

Express

for

Plus

for

Item

Synchronization

V4.3.1

Notices

and

Trademarks

59

	Contents
	Solution Development Guide
	About this document
	Audience
	Related documents
	Typographic conventions
	How the Solution Development Guide is organized
	New in this release
	Planning the configuration

	Processing a business object: example workflows (DTD support)
	ItemAdd workflow: adding a new item to UCCnet (DTD support)
	ItemPublicationAdd workflow: making a new item available to trading partners and processing their responses
	ItemPublicationAdd subflow 1: making a new item available to trading partners
	ItemPublicationAdd subflow 2: processing trading partners' responses to a new item

	ItemChange workflow: updating item information in UCCnet (DTD support)
	ItemPublicationChange workflow: making updated item information available to trading partners and processing their responses
	ItemPublicationChange subflow 1: making updated item information available to trading partners
	ItemPublicationChange subflow 2: processing trading partners' responses to updated item information

	ItemDelist workflow: making an item permanently unavailable to trading partners (DTD support)
	ItemWithdrawal workflow: making an item temporarily unavailable to all or selected trading partners (DTD support)

	Processing a business object: example workflows (schema support)
	ItemAdd workflow: adding a new item to UCCnet (schema support)
	CatalogueItemNotification_Add and CatalogueItemPublication_Add workflows: making a new item available to trading partners and processing their responses
	ItemChange workflow: updating item information in UCCnet (schema support)
	CatalogueItemNotification_Change and CatalogueItemPublication_Change workflow: making updated item information available to trading partners and processing their responses
	ItemDelist workflow: making an item permanently unavailable to trading partners (schema support)
	ItemWithdrawal workflow: making an item temporarily unavailable to all or selected trading partners (schema support)

	Checking that item data exists for fields required by UCCnet
	Using the PROCESSED_GTIN table
	Using the audit_log table
	Using the trading_partner table
	Polling UCCnet for worklists
	Using subdiagrams
	AUTHORIZATION_RESPONSES subdiagram
	CATEGORY_ADD_CHANGE subdiagram
	CATALOGUE_ITEM_CONFIRMATION subdiagram
	CIN_RESPONSE subdiagram
	DEAD_LETTER_PUB_RECEIPT subdiagram
	INITIAL_ITEM_LOAD_REQUEST subdiagram
	ITEM_ADD_CHANGE subdiagram
	NEW_ITEM_PUBLICATION_REQUEST subdiagram
	PUBLICATION_COMMAND_RESPONSE subdiagram
	RCIR_RESPONSE subdiagram
	RCIR_QUERY_RESPONSE subdiagram
	SIMPLE_RESPONSE subdiagram
	UNKNOWN_MESSAGES subdiagram
	UNKNOWN_RESPONSE subdiagram

	Sending e-mail
	Alerting e-mail recipients of processing errors
	Sending e-mail through UCCnet_processWorklist collaboration object subdiagrams
	Specifying message text, subjects, and recipients in external files
	Specifying changing individual or multiple message recipients
	Using substitution variables in message and subject text

	Logging
	Tracing

	Notices and Trademarks
	Notices
	Programming interface information

	Trademarks and service marks

