
WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

V4.3.1

���

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

V4.3.1

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

317.

6February2004

This

edition

of

this

document

applies

to

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

3.x)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

this

document,

e-mail

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2003,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Naming

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. viii

New

in

this

release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

New

in

V4.3.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Part

1.

Connector

overview

and

setup

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Overview

of

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Connector

components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

How

the

vision

connector

framework

works

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Chapter

2.

Installing

and

configuring

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Compatibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Prerequisites

for

installation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Installing

the

connector

component

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Configuring

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Connector

startup

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Taking

advantage

of

load

balancing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Starting

multiple

connectors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Upgrading

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Comprehensive

install

and

uninstall

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Part

2.

ABAP

Extension

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Chapter

3.

Overview

of

the

ABAP

Extension

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

ABAP

Extension

Module

components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

How

the

ABAP

Extension

Module

works

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Chapter

4.

Installing

and

customizing

the

ABAP

Extension

module

.

.

.

.

.

.

.

.

.

. 47

Connector

transport

file

installation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Verifying

connector

transport

file

installation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Upgrading

the

ABAP

Extension

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Enabling

the

SAP

application

for

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Modifying

adapter-delivered

ABAP

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Preventing

event

ping-pong

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Chapter

5.

Business

object

processing

in

the

ABAP

Extension

module

.

.

.

.

.

.

.

. 57

Business

object

conversion

to

a

flat

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Business

object

data

routing

to

ABAP

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

How

ABAP

handlers

process

business

object

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Flat

structure

conversion

to

a

business

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

.

.

.

.

.

.

. 69

Background

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Developing

business

objects

using

dynamic

transaction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Developing

business

objects

using

IDocs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Calling

the

ABAP

Extension

Module

and

ABAP

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

©

Copyright

IBM

Corp.

2003,

2004

iii

Chapter

7.

Developing

event

detection

for

the

ABAP

Extension

module

.

.

.

.

.

.

.

. 89

Designing

an

event

detection

mechanism

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Implementing

an

event

detection

mechanism

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Chapter

8.

Testing

a

business

object

for

the

ABAP

Extension

module

.

.

.

.

.

.

.

. 101

Preparing

to

test

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Unit

test

issues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Testing

an

ABAP

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Chapter

9.

Managing

the

ABAP

Extension

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Managing

the

connector

log

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Monitoring

the

SAP

gateway

service

connections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Shutting

down

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Maintaining

the

event

queue

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Maintaining

the

archive

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Chapter

10.

Upgrading

the

ABAP

Extension

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Upgrading

within

a

new

version

of

SAP

R/3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Upgrading

ABAP

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Upgrade

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Part

3.

ALE

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Chapter

11.

Overview

of

the

ALE

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Overview

of

ALE

technology

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

ALE

Module

components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Chapter

12.

Configuring

the

ALE

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Prerequisites

to

running

the

ALE

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

ALE

Module

directories

and

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Configuring

the

ALE

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Checking

the

SAP

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Checking

MQ

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Configuring

SAP

To

update

IDoc

status

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Running

the

ALE

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Chapter

13.

Developing

business

objects

for

the

ALE

module

.

.

.

.

.

.

.

.

.

.

. 145

Creating

the

IDoc

definition

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Business

object

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Supported

verbs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Processing

multiple

IDocs

with

a

wrapper

business

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

Part

4.

BAPI

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

Chapter

14.

Overview

of

the

BAPI

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

BAPI

Module

components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

How

the

BAPI

Module

works

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Chapter

15.

Configuring

the

BAPI

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

BAPI

Module

directories

and

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

BAPI

Module

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Chapter

16.

Developing

business

objects

for

the

BAPI

Module

.

.

.

.

.

.

.

.

.

.

. 169

Background

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Business

object

naming

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Business

object

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Supported

verbs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

iv

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Business

object

attribute

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Business

object

application-specific

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Using

generated

business

object

definitions

and

business

object

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Using

custom

business

object

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

Part

5.

RFC

Server

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Chapter

17.

Overview

of

the

RFC

Server

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

RFC

Server

Module

components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

How

the

RFC

Server

Module

works

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Chapter

18.

Configuring

the

RFC

Server

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

RFC

Server

Module

directories

and

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

RFC

Server

Module

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Registering

the

RFC

Server

Module

with

the

SAP

gateway

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Chapter

19.

Developing

business

objects

for

the

RFC

Server

Module

.

.

.

.

.

.

.

. 191

Background

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

Business

object

naming

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

Business

object

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

Supported

verbs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Business

object

attribute

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Business

object

application-specific

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

Using

generated

business

objects

and

business

object

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Part

6.

Hierarchical

Dynamic

Retrieve

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Chapter

20.

Overview

of

the

Hierarchical

Dynamic

Retrieve

Module

.

.

.

.

.

.

.

.

. 205

Hierarchical

Dynamic

Retrieve

Module

components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

How

the

connector

works

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 206

Chapter

21.

Configuring

the

Hierarchical

Dynamic

Retrieve

Module

.

.

.

.

.

.

.

.

. 209

Hierarchical

Dynamic

Retrieve

Module

directories

and

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Hierarchical

Dynamic

Retrieve

Module

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Chapter

22.

Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Business

object

development

utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Business

object

names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Business

object

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Business

object

attribute

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Business

object

application-specific

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Generating

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Part

7.

Appendixes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

Appendix

A.

Quick

Steps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Common

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Quick

steps

for

the

BAPI

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

Quick

steps

for

the

RFC

Server

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Quick

steps

for

the

ALE

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

Quick

steps

for

the

HDR

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Appendix

B.

Standard

configuration

properties

for

connectors

.

.

.

.

.

.

.

.

.

.

. 241

New

and

deleted

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

Configuring

standard

connector

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

Summary

of

standard

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

Contents

v

Standard

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Appendix

C.

Connector

configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Overview

of

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Starting

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Running

Configurator

from

System

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

Creating

a

connector-specific

property

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

Creating

a

new

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Using

an

existing

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

Completing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Setting

the

configuration

file

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Saving

your

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Changing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Completing

the

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Using

Connector

Configurator

in

a

globalized

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Appendix

D.

Troubleshooting

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Generic

troubleshooting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

WBI

performance

tuning

and

memory

management

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

Troubleshooting

for

the

ABAP

Extension

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

Troubleshooting

for

the

BAPI

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

Troubleshooting

for

the

RFC

Server

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

Troubleshooting

for

the

ALE

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

Troubleshooting

the

Hierarchical

Dynamic

Retrieve

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

Troubleshooting

SAPODA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

Appendix

E.

Generating

business

object

definitions

using

SAPODA

.

.

.

.

.

.

.

.

. 291

Installation

and

usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Using

SAPODA

in

Business

Object

Designer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

After

using

SAPODA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

vi

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

About

this

document

The

products

IBM(R)

WebSphere(R)

Business

Integration

Express

for

Item

Synchronization

and

IBM(R)

WebSphere(R)

Business

Integration

Express

Plus

for

Item

Synchronization

are

made

up

of

the

following

components:

InterChange

Server

Express,

the

associated

Toolset

Express

product,

the

Item

Synchronization

collaboration,

and

a

set

of

software

integration

adapters.

Together,

the

components

provide

business

process

integration

and

connectivity

among

leading

e-business

technologies

and

enterprise

applications

as

well

as

integration

with

the

UCCnet

GLOBAL

registry.

This

document

describes

the

IBM

WebSphere

InterChange

Server

connector

for

SAP

R/3

including

how

to

install,

configure,

develop

business

objects,

test,

and

manage

your

custom

development.

Except

where

noted,

all

the

information

in

this

guide

applies

to

both

IBM(R)

WebSphere(R)

Business

Integration

Express

for

Item

Synchronization

and

IBM(R)

WebSphere(R)

Business

Integration

Express

Plus

for

Item

Synchronization.

The

term

″WebSphere

Business

Integration

Express

for

Item

Synchronization″

and

its

variants

refer

to

both

products.

Audience

This

document

is

for

IBM

WebSphere

InterChange

Server

consultants

and

customers.

You

should

be

familiar

with

SAP

and

connector

development.

Related

documents

The

complete

set

of

documentation

available

with

this

product

describes

the

features

and

components

common

to

all

WebSphere

Business

Integration

Express

for

Item

Synchronization

andWebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

installations,

and

includes

reference

material

on

specific

components.

This

document

contains

many

references

to

two

other

documents:

the

System

Installation

Guide

for

Windows

or

System

Installation

Guide

for

UNIX

and

the

System

Implementation

Guide

for

WebSphere

InterChange

Server.

If

you

choose

to

print

this

document,

you

may

want

to

print

these

documents

as

well.

You

can

install

the

documentation

from

the

following

site:

http://www.ibm.com/websphere/wbiitemsync/express/infocenter

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

file

name,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

bold

Indicates

a

new

term

the

first

time

that

it

appears.

italic,

italic

Indicates

a

variable

name

or

a

cross-reference.

©

Copyright

IBM

Corp.

2003,

2004

vii

blue

text

Blue

text,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

any

blue

text

to

jump

to

the

object

of

the

reference.

Naming

conventions

In

this

document

the

following

naming

conventions

are

used:

v

The

IBM

WebSphere

InterChange

Server

connector

for

SAP

is

referred

to

simply

as

the

connector.

v

The

“connector”

refers

to

the

combination

of

the

vision

connector

framework

and

a

connector

module.

v

All

references

to

names

of

IBM

WebSphere

InterChange

Server

ABAP

objects

(such

as

function

modules,

programs,

and

tables)

are

valid

for

the

connector

that

supports

SAP

R/3

version

3.x.

viii

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

New

in

this

release

New

in

V4.3.1

February

2004

v

New

appendix

with

quick

configuration

steps

v

Updated

information

on

the

ALE

module

December

2003

Version

5.4.2

is

the

first

release

as

part

of

the

IBM(R)

WebSphere(R)

Business

Integration

Express

for

Item

Synchronization

and

IBM(R)

WebSphere(R)

Business

Integration

Express

Plus

for

Item

Synchronization

release.

Except

where

noted,

all

the

information

in

this

guide

applies

to

both

IBM(R)

WebSphere(R)

Business

Integration

Express

for

Item

Synchronization

and

IBM(R)

WebSphere(R)

Business

Integration

Express

Plus

for

Item

Synchronization.

The

term

″WebSphere

Business

Integration

Express

for

Item

Synchronization″

and

its

variants

refer

to

both

products.

©

Copyright

IBM

Corp.

2003,

2004

ix

x

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Part

1.

Connector

overview

and

setup

©

Copyright

IBM

Corp.

2003,

2004

1

2

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

1.

Overview

of

the

connector

This

chapter

describes

the

connector

component

of

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

3.x).

The

connector

enables

an

integration

broker

to

exchange

business

objects

with

SAP

applications.

Connectors

consist

of

an

application-specific

component

and

the

connector

framework.

The

application-specific

component

contains

code

tailored

to

a

particular

application.

The

connector

framework,

whose

code

is

common

to

all

connectors,

acts

as

an

intermediary

between

the

integration

broker

and

the

application-specific

component.

The

connector

framework

provides

the

following

services

between

the

integration

broker

and

the

application-specific

component:

v

Receives

and

sends

business

objects

v

Manages

the

exchange

of

startup

and

administrative

messages

This

document

contains

information

about

the

application-specific

component

and

connector

framework.

It

refers

to

both

of

these

components

as

the

connector.

For

more

information

about

the

relationship

of

the

integration

broker

to

the

connector,

see

the

IBM

CrossWorlds

System

Administration

Guide

(if

InterChange

Server

is

the

integration

broker).

This

chapter

contains

the

following

sections:

v

“Connector

components”

on

page

3

v

“How

the

vision

connector

framework

works”

on

page

5

Connector

components

The

connector

for

SAP

is

written

in

Java

and

consists

of

two

parts:

the

vision

connector

framework

and

connector

modules

(the

connector’s

application-specific

component,

the

Connector

Framework,

and

business

object

handlers).

The

vision

connector

framework

provides

a

metadata-driven

layer

of

abstraction

to

the

Connector

Framework

used

by

all

WebSphere

business

integration

system

adapters.

The

vision

connector

framework

extends

the

methods

in

the

system-wide

Connector

Framework.

The

connector

modules

extend

the

methods

in

the

vision

connector

framework

and

communicate

with

an

SAP

application.

Note:

By

default,

the

connector

uses

the

ABAP

Extension

Module

to

support

the

vision

connector

framework.

For

more

information

on

the

ABAP

Extension

Module,

see

Chapter

3,

“Overview

of

the

ABAP

Extension

module,”

on

page

33.

Figure

1

illustrates

the

architecture

of

the

connector

and

the

relationship

of

the

system-wide

and

vision

connector

frameworks.

The

visionConnector

class

can

implement

any

number

of

connector

modules.

©

Copyright

IBM

Corp.

2003,

2004

3

Vision

connector

framework

The

vision

connector

framework

dynamically

routes

the

initialization,

poll,

and

termination

requests

to

connector

modules.

It

also

dynamically

routes

business

objects

to

business

object

handlers.

A

business

object

handler

is

a

connector

module

designed

specifically

to

support

business

objects.

To

dynamically

route

requests

and

business

objects,

the

connector

uses

the

verb

application-specific

information

of

a

business

object

and

values

of

certain

application-specific

connector

configuration

properties.

The

vision

connector

framework

consists

of

two

classes:

visionConnector

and

visionBOHandler.

Figure

2

illustrates

the

vision

connector

framework

and

its

association

with

connector

modules.

Vision connector

pollForEvents()terminate()init()

System-wide connector framework

doVerbFor()pollForEvents()terminate()init()

Vision BO handler

doVerbFor()

Connector

Vision connector framework

Connector modules

Figure

1.

Architecture

of

the

connector

for

SAP

4

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

vision

connector

framework

provides

the

following

capabilities

for

the

connector:

v

Calls

any

implementation

of

the

init(),

pollForEvents(),

and

terminate()

methods.

v

Routes

business

objects

to

specific

business

object

handlers

based

on

the

verb

application-specific

information

of

a

business

object.

Connector

modules

The

connector

modules

are

Java

classes

that

extend

the

methods

in

the

vision

connector

framework.

They

support

the

vision

connector

framework

by

providing

specific

functionality,

such

as

logging

in

to

the

SAP

application,

processing

events

and

business

objects,

and

terminating

the

connection

to

the

SAP

application.

The

connector

modules

carry

out

requests

between

the

vision

connector

framework

and

the

SAP

application.

By

default,

the

vision

connector

framework

uses

the

connectors\SAP

directory

as

the

root

directory

for

the

connector

modules.

Connector

modules

may

not

use

all

of

the

framework

methods.

For

example,

one

module

might

use

the

init()

and

terminate()

methods

while

another

module

uses

only

the

pollForEvents()

method.

However,

every

method

in

the

visionConnector

and

visionBOHandler

classes

must

be

implemented

for

each

connector

module.

Methods

that

a

connector

does

not

use

must

be

implemented

as

dummy

methods,

that

is,

they

do

nothing

but

exit.

How

the

vision

connector

framework

works

The

connector

interacts

with

an

SAP

application

using

connector

modules.

The

connector

modules

make

calls

to

SAP’s

Native

Interfaces

and

pass

data

(business

object

or

event

data)

to

and

from

an

SAP

application.

The

connector’s

flexible

design

enables

different

modules

to

be

used

for

different

tasks

such

as

initializing

the

connector

with

the

SAP

application

or

passing

business

object

data.

Communication

between

the

connector

and

an

SAP

application

The

connector

uses

SAP’s

Remote

Function

Call

(RFC)

library

to

communicate

with

an

SAP

application.

SAP’s

RFC

API

allows

external

programs

to

call

ABAP

function

modules

within

an

SAP

application.

visionConnector

pollForEvents()terminate()init()

Connector

visionBOHandler

terminate()init()

Connector

doVerbFor()

Connector

doVerbFor()pollForEvents()

Vision connector framework

Figure

2.

vision

connector

framework

and

connector

modules

Chapter

1.

Overview

of

the

connector

5

Processing

business

objects

The

connector

is

metadata

driven.

metadata,

in

the

WebSphere

business

integration

system,

is

application-specific

data

that

is

stored

in

business

objects

and

that

assists

a

connector

module

in

its

interaction

with

the

application.

A

metadata-driven

connector

module

handles

each

business

object

that

it

supports

based

on

metadata

encoded

in

the

business

object

definition

rather

than

on

instructions

hard-coded

in

the

connector

module.

Business

object

metadata

includes

the

structure

of

a

business

object,

the

settings

of

its

attribute

properties,

and

the

content

of

its

application-specific

information.

Because

connector

modules

are

metadata

driven,

they

can

handle

new

or

modified

business

objects

without

requiring

modifications

to

the

connector-module

code.

The

vision

connector

framework

uses

the

value

of

the

verb

application-specific

information

in

the

top-level

business

object

to

call

the

appropriate

connector

module

to

process

the

business

object.

The

verb

application-specific

information

provides

the

classname

of

the

connector

module.

The

verb

application-specific

information

of

most

top-level

business

objects

must

identify

the

classname

of

the

connector

module.

The

syntax

of

this

verb

application-specific

information

is:

AppSpecificInfo

=

PartialPackageName.ClassName,

For

example,

AppSpecificInfo

=

sap.sapextensionmodule.VSapBOHandler,

In

this

example,

sap.sapextensionmodule

is

the

partial

package

name,

and

VSapBOHandler

is

the

classname.

The

full

package

name

includes

the

com.crossworlds.connectors

prefix,

which

the

WebSphere

business

integration

system

adds

to

the

name

automatically.

In

other

words,

the

full

text

of

the

example

is:

com.crossworlds.connectors.sap.sapextensionmodule.VSapBOHandler

Note:

The

verb

application-specific

information

of

most

top-level

business

objects

must

use

a

comma

(,)

delimiter

after

the

connector

classname.

However,

the

Server

verb,

which

is

used

by

the

RFC

Server

Module,

is

delimited

instead

by

a

semi-colon

(;).

For

information

about

the

Server

verb,

see

“How

the

RFC

Server

Module

works”

on

page

185

and

“Supported

verbs”

on

page

194.

You

need

not

specify

the

package

name

and

classname

for

the

verb

application-specific

information

if

the

business

object

is

used:

v

by

the

ALE

module

to

process

application

events;

however,

when

you

use

the

ALE

module

to

process

service

call

requests,

you

must

specify

the

package

name

and

classname

v

by

the

ABAP

Extension

module,

which

uses

the

default

business

object

handler

(sap.sapextensionmodule.VSapBOHandler)

Important:

Customer-generated

connector

modules

that

process

business

objects

for

the

BAPI

and

RFC

Server

modules

must

specify

a

full

package

name,

which

must

begin

with

bapi.

For

example,

bapi.client.Bapi_customer_getdetails2.

The

full

package

name

in

this

example

is

bapi.client,

and

the

classname

is

Bapi_customer_getdetail2.

6

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Most

business

object

processing

is

specific

to

each

connector

module.

By

default

the

connector

uses

the

ABAP

Extension

Module.

For

more

information

on

business

object

processing

for

the

ABAP

Extension

Module,

see

“Business

object

processing”

on

page

36

and

“Business

object

data

routing

to

ABAP

handlers”

on

page

61.

For

more

information

on

specifying

verb

application-specific

information

for

the

ALE

module,

see

“Processing

multiple

IDocs

with

a

wrapper

business

object”

on

page

156.

Processing

multiple

concurrent

interactions

The

system-wide

Connector

Framework

can

create

separate

threads

for

processing

an

application

event

and

a

business

object

request.

When

processing

multiple

requests

from

the

integration

broker,

it

can

create

multiple

threads

to

handle

multiple

business

object

requests.

For

example,

when

InterChange

System

is

the

integration

broker,

the

connector

can

receive

multiple

business

object

requests

from

multiple

collaborations

or

from

a

multi-threaded

collaboration.

Important:

BAPI

business

object

handlers

generated

before

the

connector

for

SAP

version

4.3.0

are

not

thread-safe.

To

guarantee

data

consistency

and

integrity

when

using

multi-threading,

you

must

regenerate

these

business

object

handlers.

The

business

objects

do

no

require

any

change.

Figure

3

illustrates

the

multi-threading

architecture.

Chapter

1.

Overview

of

the

connector

7

Event

processing

The

connector

performs

the

following

steps

when

handling

a

poll

call:

1.

The

system-wide

Connector

Framework

creates

a

single

dedicated

thread

to

handle

poll

calls.

This

thread

calls

the

pollForEvents()

method

of

the

vision

connector

framework

at

the

frequency

specified

in

the

PollFrequency

configuration

property.

2.

The

thread

polls

SAP,

which

uses

a

dialog

process

to

locate

and

return

the

event.

Note:

If

the

connector’s

MaxNumberOfConnections

configuration

property

evaluates

to

a

number

greater

than

1,

the

vision

connector

framework

dedicates

a

connection

to

SAP

for

polling.

If

MaxNumberOfConnections

evaluates

to

1,

event

and

service-call

request

processing

share

a

single

connection

to

SAP.

Vision connector framework

SAP gateway

WebSphere Business
InterChange Server

SAP R/3

SAP R/3 system

SAP RFC library

Dialog
process1

Dialog
processN

System-wide connector framework

doVerbFor()pollForEvents()terminate()init()

Dialog
process2

Thread1
pollForEvents()

Thread1
doVerbFor()

ThreadN
doVerbFor()

visionConnector

Connection Pool

visionBOHandler

doVerbFor()

Connector modules

doVerbFor()

pollForEvents()terminate()init()

pollForEvents()terminate()init()

Connector

Figure

3.

Multi-Threading

Architecture

of

the

Connector

for

SAP

8

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

polling

thread

dies

only

when

the

connector

shuts

down.

Note:

Because

the

RFC

Server

connector

agent

pushes

events

out

of

SAP

instead

of

polling

for

events,

it

spawns

its

own

threads

instead

of

using

threads

created

by

the

connector

framework.

Because

the

ALE

connector

agent

uses

the

RFC

Server

connector

agent

to

access

events,

it

also

it

spawns

its

own

threads

instead

of

using

threads

created

by

the

connector

framework

when

it

processes

events.

Request

processing

Independently

of

polling,

the

system-wide

Connector

Framework

can

create

multiple

request-processing

threads,

one

for

each

request

business

object.

Each

request

thread

instantiates

the

appropriate

business

object

handler.

For

example,

when

processing

business

object

requests

from

InterChange

Server,

the

number

and

type

of

business

object

handlers

depends

on

the

number

and

type

of

the

collaborations

sending

the

requests:

v

If

multiple

collaborations

send

business

objects,

each

request

thread

instantiates

a

business

object

handler

of

the

appropriate

type.

v

If

a

multi-threaded

collaboration

sends

multiple

business

objects

of

the

same

type,

the

request

threads

instantiate

an

equal

number

of

business

object

handlers

of

that

type.

If

the

connector’s

MaxNumberOfConnections

configuration

property

evaluates

to

a

number

greater

than

1,

the

vision

connector

framework

dedicates

one

connection

to

SAP

for

polling

and

allocates

the

remaining

connections

to

a

pool

used

only

for

request

processing.

As

illustrated

in

Figure

3,

the

connector

performs

the

following

steps

when

handling

a

business

object

request:

1.

The

system-wide

Connector

Framework

creates

a

separate

thread

for

each

business

object

request.

Each

thread

calls

the

doVerbFor()

method

of

the

Vision

business

object

handler.

2.

If

the

connector’s

MaxNumberOfConnections

configuration

property

evaluates

to

a

number

greater

than

1,

the

Vision

business

object

handler

checks

the

vision

connector

framework’s

connection

pool

to

determine

if

a

connection

handle

is

available.

v

If

the

handle

is

available,

the

thread

sends

the

request

to

SAP,

which

uses

a

dialog

process

to

handle

the

request.

v

If

the

handle

is

not

available,

the

thread

waits

until

one

becomes

available.

Thread

sequencing

determines

the

order

in

which

each

business

object

handler

thread

claims

or

waits

for

an

available

connection

handle.

If

the

connector’s

MaxNumberOfConnections

configuration

property

evaluates

to

1,

the

Vision

business

object

handler

shares

a

connection

with

event

processing.

3.

SAP

releases

the

dialog

process

after

it

completes

processing

and

sends

a

return

code.

4.

The

connector

releases

the

connection

handle

after

it

receives

the

return

code

from

SAP.

Setting

the

number

of

available

connections

Use

the

“MaxNumberOfConnections”

on

page

22

configuration

property

to

specify

the

maximum

number

of

connection

handles

available.

The

number

of

connections

cannot

exceed

the

number

of

dialog

processes.

Chapter

1.

Overview

of

the

connector

9

SAP

locks

the

dialog

process

while

processing

an

interaction,

releasing

it

only

when

the

interaction

completes.

Therefore,

multiple

concurrent

requests

lock

an

equal

number

of

dialog

processes

until

processing

finishes.

Important:

Before

setting

a

value

for

MaxNumberOfConnections,

contact

your

SAP

BASIS

administrator

to

determine

an

appropriate

value

to

maximize

throughput

without

negatively

affecting

performance

on

the

application

server.

Setting

multiple

connections

By

default

the

connector

supports

only

single-threading.

To

cause

the

connector

to

support

multiple

threads,

remove

the

following

flag

from

your

connector

startup

script:

UNIX

-tMAIN_SINGLE_THREADED

End

of

UNIX

Windows

-tSINGLE_THREADED

End

of

Windows

For

more

information,

see

the

Connector

Development

Guide

for

Java.

10

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

2.

Installing

and

configuring

the

connector

This

chapter

describes

the

installation

and

configuration

of

the

connector

component

of

the

Adapter

Guide

for

mySAP.com

(R/3

V.4.x).

The

chapter

assumes

that

all

the

necessary

files

were

installed

when

the

WebSphere

business

integration

system

was

installed.

This

chapter

contains

the

following

sections:

v

“Prerequisites

for

installation”

on

page

12

v

“Installing

the

connector

component”

on

page

13

v

“Configuring

the

connector”

on

page

17

v

“Connector

startup”

on

page

26

v

“Taking

advantage

of

load

balancing”

on

page

26

v

“Starting

multiple

connectors”

on

page

26

v

“Upgrading

the

connector”

on

page

27

Important:

If

you

are

upgrading

versions

of

the

connector,

you

must

replace

the

connector

Java

Archive

files

(.jar).

You

also

need

to

upgrade

the

connector

transport

files

as

well

as

any

business

object

transports

that

you

have

previously

installed.

Depending

on

changes

made

to

the

connector,

you

may

need

to

load

a

new

copy

of

the

SAPConnector.txt

file

into

your

repository.

See

the

Release

Notes

for

more

information.

Compatibility

This

section

contains

compatibility

information

for

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com.

The

adapter

runs

on

the

following

operating

systems:

v

Microsoft

Windows

2000

v

OS400

V5R2

(5722-SS1)

v

Red

Hat

Enterprise

Linux

WS/ES/AS

for

Intel

2.1,

2.4

Kernel

v

SuSE

Linux

Enterprise

Server

7.3,

2.4

Kernel

mySAP.com

compatibility

The

adapter

supports

the

following

mySAP.com

products:

v

SAP

R/3

V.

3.1I

v

SAP

R/3

3.X

systems

v

Other

SAP

solutions

running

on

BAP

with

Application

Server

6.2

(BAPI)

Integration

compatibility

The

adapter

framework

that

an

adapter

uses

must

be

compatible

with

the

version

of

the

integration

broker

(or

brokers)

with

which

the

adapter

is

communicating.

Version

5.4.x

of

the

adapter

for

mySAP.com

V4.x

is

supported

on

the

following

adapter

framework

and

integration

brokers:

Adapter

framework:

WebSphere

Business

Integration

Adapter

Framework

versions

2.1,

2.2,

2.3.x,

and

2.4

©

Copyright

IBM

Corp.

2003,

2004

11

Integration

broker:

WebSphere

InterChange

Server,

version

4.2.x

Prerequisites

for

installation

All

of

the

components

of

the

connector

can

be

found

in

the

\connectors\SAP

directory.

Note:

In

this

document

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

(\).

All

file

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

Prior

to

installing

the

connector

component

of

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com:

v

Download

the

SAP

Java

API.

SAP

calls

their

Java

API

the

Java

Connector

(SAPJCo).

Download

the

SAPJCo

for

the

operating

system

on

which

your

connector

is

running.

The

SAPJCo

is

available

for

download

from

SAP’s

website

at

http://service.sap.com/connectors.

You

must

have

an

SAPNet

account

to

access

the

SAPJCo

(if

you

do

not

already

have

one,

contact

your

local

SAP

BASIS

administrator).

Add

these

files

to

the

\connectors\SAP

directory

after

you

install

the

connector.

For

steps

on

installing

the

connector,

see

“Installing

SAP’s

Java

Connector

(SAPJCo)”

on

page

15.

v

The

SAP

Adapter

currently

supports

SAPJCo

V.2.0.9.

If

the

SAPJCo

version

mentioned

in

this

document

is

not

available

for

download

from

SAP

Service

Marketplace,

please

contact

your

IBM

representative.

v

Install

the

SAP

client

on

the

same

machine

on

which

you

are

installing

the

connector.

v

Install

the

most

recent

SAP

Support

Package

for

your

version

of

SAP.

SAP

delivers

Support

Packages

for:

Basis,

the

R/3

application,

ABAP,

and

HR.

They

provide

bug

fixes

for

the

ABAP

code

in

the

SAP

application.

Use

an

updated

SAP

kernel.

The

kernel

is

the

executables,

written

in

C++,

that

carry

out

transports,

interface

with

the

operating

system,

communicate

with

the

database,

and

run

the

system.

v

Set

up

a

CPIC

user

account

in

the

SAP

application.

Give

this

account

the

necessary

privileges

to

manipulate

the

data

required

by

the

business

objects

supported

by

the

connector.

For

example,

if

the

connector

must

perform

certain

SAP

business

transactions,

the

connector’s

account

in

the

SAP

application

must

have

the

permissions

to

perform

these

transactions.

You

must

set

the

connector-specific

configuration

properties

ApplicationUserName

and

ApplicationPassword

using

this

account

information.

For

more

information

on

how

to

set

these

properties,

see

“Configuring

the

connector”

on

page

17.

v

Set

up

a

user

account

in

SAP

with

privileges

to

install

and

administer

the

connector.

The

account

should

have

the

following

characteristics:

–

A

valid

SAP

user

name

and

password

–

ABAP

developer

access

–

Table

configuration

access

–

Administration

access

for

transactions

SM21

and

SM50

to

administer

and

monitor

the

connector

12

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

If

using

the

ALE

Module,

see

“Prerequisites

to

running

the

ALE

Module”

on

page

131

for

additional

information

on

installing

MQSeries

queues.

Installing

the

connector

component

After

your

WebSphere

business

integration

system

has

been

installed,

you

can

install

additional

adapters

from

the

product

CD

at

any

time.

To

do

this,

insert

the

product

CD,

run

the

installation

program,

and

choose

the

adapters

that

you

want

to

install.

Note:

Unless

otherwise

indicated,

the

remaining

sections

in

this

chapter

apply

to

both

Windows

and

UNIX

installations

of

the

connector.

This

section

describes

only

the

installation

of

the

connector’s

application-specific

component.

By

default,

the

connector

uses

the

ABAP

Extension

Module,

so

you

must

install

the

transport

files

that

support

that

connector

module.

After

you

have

installed

and

configured

the

connector,

you

must

install

the

ABAP

Extension

Module.

For

more

information

on

installing

the

ABAP

Extension

Module,

see

Chapter

4,

“Installing

and

customizing

the

ABAP

Extension

module,”

on

page

47.

The

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

connector

can

be

installed

on

a

UNIX

or

Windows

machine.

The

connector

consists

of

three

parts

that

need

to

be

installed:

the

connector’s

application-specific

component,

SAP’s

RFC

library,

and

any

SAP

transport

files

delivered

with

the

product

and

required

to

support

the

connector.

After

you

have

installed

the

required

connector

files,

you

must

download

and

install

the

Java

Connector

(SAPJCo)

files.

For

more

information

on

downloading

the

SAPJCo

files,

see

“Prerequisites

for

installation”

on

page

12.

For

more

information

on

installing

the

SAPJCo

files,

see

“Installing

SAP’s

Java

Connector

(SAPJCo)”

on

page

15.

The

connector

files

must

be

installed

on

a

machine

that

is

capable

of

acting

as

an

SAP

client.

By

default,

the

connector

JAR

files

are

installed

with

the

integration

broker.

Installing

on

a

UNIX

system

To

install

the

connector

on

a

UNIX

system,

run

the

Installer

for

IBM

WebSphere

business

integration

adapter,

and

select

mySAP.com

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com.

Table

1

lists

the

files

used

by

the

connector

that

runs

in

a

UNIX

environment.

Table

1.

WBIA:

UNIX

file

Directory/Filename

Description

connectors/SAP/bapi/client

Directory

containing

the

BAPI

Module

business

object

handler

files

connectors/SAP/bapi/server

Directory

containing

the

RFC

Server

Module

business

object

handler

files

connectors/SAP/dependencies

Directory

containing

all

version-specific

transport

files

connectors/SAPmessages

Directory

containing

the

SAPConnector.txt

file

connectors/SAP/samples

Directory

containing

sample

ABAP

objects

connectors/SAP/utilities

Directory

containing

the

generatedfiles

subdirectory,

into

which

you

can

put

files

generated

by

SAPODA

connectors/SAP/CWSAP.jar

Connector

class

files

Chapter

2.

Installing

and

configuring

the

connector

13

Table

1.

WBIA:

UNIX

file

(continued)

Directory/Filename

Description

connectors/SAP/start_SAP.sh

System

startup

script

for

the

connector.

This

script

is

called

from

the

generic

connector

manager

script.

The

product

installer

creates

a

customized

wrapper

for

this

connector

manager

script.

When

the

connector

works

with

WebSphere

InterChange

Server,

use

this

customized

wrapper

to

start

and

stop

the

connector.

repository/SAP

Directory

containing

the

CN_SAPSAP.txt

file

/lib

Contains

the

WBIA.jar

file

/bin

Contains

the

CWConnEnv.sh

file

Before

you

can

use

the

connector,

you

must

configure

the

connector

from

the

installer’s

Connector

Configuration

screen.

From

this

screen:

v

Choose

SAP

from

the

Select

Connector

Name

list.

v

Click

Install

to

have

Installer

generate

the

customized

SAP

wrapper,

connector_manager_SAP.

Note:

For

more

information

on

installing

the

connector

component,

refer

to

the

System

Installation

Guide

for

UNIX.

Installing

on

a

Windows

system

To

install

the

connector

on

a

Windows

system,

run

Installer

for

IBM

WebSphere

Business

Integration

Adapter,

and

select

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com.

Installer

installs

standard

files

associated

with

the

connector.

Table

2

lists

the

standard

files

installed

in

a

Windows

environment.

Table

2.

WebSphere

Business

Integration

Adaptor:

Windows

file

Directory/filename

Description

connectors\SAP\bapi\client

Directory

containing

the

BAPI

Module

business

object

handler

files

connectors\SAP\bapi\server

Directory

containing

the

RFC

Server

Module

business

object

handler

files

connectors\SAP\dependencies

Directory

containing

all

version-specific

transport

files

connectors\SAPmessages

Directory

containing

the

SAPConnector.txt

file

connectors\SAP\samples

Directory

containing

sample

ABAP

objects

connectors\SAP\CWSAP.jar

Connector

class

file

connectors\SAP\start_SAP.bat

Batch

file

used

to

start

the

connector

repository\SAP

Directory

containing

the

CN_SAPSAP.txt

file

\lib

Contains

the

WBIA.jar

file

\bin

Contains

the

CWConnEnv.bat

file

Installer

adds

a

menu

option

for

the

connector’s

application-specific

component

to

the

IBM

WebSphere

business

integration

adapters

menu.

For

a

fast

way

to

start

the

connector,

create

a

shortcut

to

this

component

on

the

desktop.

Installing

on

an

iSeries

system

To

install

the

connector

on

an

iSeries

system,

run

Installer

for

IBM

WebSphere

Business

Integration

Adapter,

and

select

the

IBM

WebSphere

Business

Integration

14

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Adapter

for

mySAP.com.

Installer

installs

standard

files

associated

with

the

connector.

Table

3

lists

the

standard

files

installed

in

an

iSeries

environment.

Table

3.

WebSphere

Business

Integration

Adaptor:

iSeries

file

Directory/filename

Description

connectors\SAP\bapi\client

Directory

containing

the

BAPI

Module

business

object

handler

files

connectors\SAP\bapi\server

Directory

containing

the

RFC

Server

Module

business

object

handler

files

connectors\SAP\dependencies

Directory

containing

all

version-specific

transport

files

connectors\SAPmessages

Directory

containing

the

SAPConnector.txt

file

connectors\SAP\samples

Directory

containing

sample

ABAP

objects

connectors\SAP\CWSAP.jar

Connector

class

file

connectors\SAP\start_SAP.sh

Batch

file

used

to

start

the

connector

repository\SAP

Directory

containing

the

CN_SAPSAP.txt

file

\lib

Contains

the

WBIA.jar

file

\bin

Contains

the

CWConnEnv.sh

file

Installer

adds

a

menu

option

for

the

connector’s

application-specific

component

to

the

IBM

WebSphere

business

integration

adapters

menu.

For

a

fast

way

to

start

the

connector,

create

a

shortcut

to

this

component

on

the

desktop.

Installing

SAP’s

Java

Connector

(SAPJCo)

The

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

integration

broker

requires

the

use

of

SAP’s

Java

Connector

(SAPJCo).

If

you

have

already

followed

instructions

for

installing

the

connector

component,

you

should

have

already

downloaded

SAP’s

Java

Connector

(SAPJCo)

as

described

in

“Prerequisites

for

installation”

on

page

12.

If

you

have

not

downloaded

the

SAPJCo,

download

and

unzip

it

now.

After

you

have

installed

the

files

delivered

with

SAPODA,

copy

the

following

unzipped

SAPJCo

files

into

your

environment.

Unix

From

the

zipped

file,

extract

the

executable

jar

file

(.jar

extension)

and

the

runtime

libraries

(.o

for

AIX,

.so

for

Solaris,

and

.a

for

HP-UX).

Chapter

2.

Installing

and

configuring

the

connector

15

Windows

From

the

zip

file,

extract

the

executable

jar

file,

(.jar

extension)

and

the

runtime

libraries

(.dll

extension).

If

you

have

already

followed

instructions

for

installing

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

on

the

same

machine

on

which

you

install

SAPODA,

copy

these

files

from

the

\connectors\SAP

directory

to

the

\ODA\SAP

directory.

If

you

install

SAPODA

on

a

different

machine

from

the

connector,

after

you

unzip

the

SAPJCo

files,

copy

these

four

files

to

the

\ODA\SAP

directory.

For

Windows,

the

librfc32.dll

requires

one

or

more

C

runtime

dlls.

The

C

runtime

dlls

depend

on

the

version

of

the

SAP

release

being

used.

Through

SAP

release

45B,

the

C

runtime

dll

required

is

msvcrt.dll

version

5.00.7022

or

newer.

Starting

with

SAP

release

46A,

the

C

runtime

dlls

required

are

msvcrt.dll

version

6.00.8267.0

or

newer

and

msvcp60.dll

version

6.00.8168.0

or

newer.

The

dll

or

dlls

should

be

copied

into

the

C:\WINNT\system32

directory.

This

dll

or

these

dlls

may

already

be

present

and

if

not,

can

be

found

on

the

“Presentation

CD”

that

contains

the

Windows

SAPGUI

setup

in

the

folder

<cddrive>:\GUI\Windows\Win32\system.

See

SAP

OSS

note

number

0182805

for

more

information.

Installing

connectors

on

remote

machines

You

can

install

and

run

the

connector

on

a

remote

machine.

Install

the

integration

broker

on

one

machine

and

the

connector

on

another

machine.

It

is

recommended

but

not

required

that

both

machines

be

on

the

same

subnet.

Installing

multiple

connectors

To

enable

the

integration

broker

to

handle

multiple

business

objects

for

SAP

at

the

same

time,

you

may

want

to

install

and

configure

multiple

connector

components

for

an

SAP

system

and

customize

each

connector

to

handle

specific

business

objects.

Each

connector

component

can

subscribe

to

certain

business

objects

depending

on

their

type

(such

as

Customer

or

Purchase

Order).

Because

you

can

have

multiple

connectors

accessing

the

same

SAP

application,

each

connector

can

process

events

and

pass

them

on

to

the

integration

broker.

In

addition,

multiple

connectors

can

support

multiple

business

object

requests

at

the

same

time.

This

increases

throughput

and

speeds

up

the

transfer

of

data

into

and

out

of

the

SAP

application.

It

is

recommended

that

you

choose

a

unique

naming

convention

for

each

connector

component.

For

example,

if

you

are

using

two

connectors

you

could

name

them

SAP1Connector

and

SAP2Connector.

To

install

and

set

up

multiple

connector

components,

do

the

following:

1.

Install

each

of

the

connectors

as

described

in

this

chapter.

This

includes

the

connector

shared

library

files.

Give

a

unique

name

to

each

connector

you

install,

and

verify

that

you

have

the

supporting

connector

files.

If

you

are

installing

multiple

connectors

on

the

same

machine,

you

need

only

make

a

copy

of

the

shared

library

files

and

rename

them.

You

do

not

need

to

install

the

transports

again.

2.

Create

a

copy

of

the

startup

script:

16

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

On

UNIX,

make

a

copy

of

the

existing

connector_manager_SAP

file

for

starting

the

connector,

and

rename

the

file

to

match

the

name

of

the

connector.

v

On

Windows,

make

a

copy

of

the

existing

shortcut

to

the

start_SAP.bat

file,

and

rename

the

shortcut

file

to

match

the

name

of

the

connector.

Add

the

name

of

the

connector

as

a

parameter

of

the

connector

shortcut.
3.

Make

a

copy

of

the

connector

definition

file

(CN_ConnectorName),

rename

it

to

match

the

new

connector

name,

and

then

load

it

into

the

IBM

WebSphere

repository

(if

the

IBM

WebSphere

InterChange

Server

is

the

integration

broker).

4.

Make

a

copy

of

the

connector

class

file,

CWSAP.jarand

rename

it

to

the

unique

connector

name,

such

as

CWSAP1.jar.

5.

Initialize

the

connector

configuration

properties

so

that

all

connectors

poll

the

same

SAP

application

for

events.

6.

Only

if

the

the

IBM

WebSphere

InterChange

Server

is

the

integration

broker,

add

map

references

for

each

connector.

7.

Specify

the

business

objects

supported

by

each

connector.

8.

Only

if

WebSphere

InterChange

Server

is

the

integration

broker,

assign

collaborations

to

the

appropriate

connectors.

Currently,

a

collaboration

can

be

handled

by

only

one

connector.

If

collaborations

are

already

set

up,

you

may

need

to

stop

them

and

then

rebind

the

ports.

9.

If

you

are

using

the

ABAP

Extension

Module

for

business

object

handing,

set

up

the

distribution

of

events

to

each

connector

that

you

install.

Use

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

See

“Setting

up

event

distribution”

on

page

53

for

instructions

on

setting

up

event

distribution

for

each

combination

of

business

object,

integration

broker,

and

connector.

Important:

If

a

business

object

is

not

configured

to

go

to

a

particular

connector,

the

business

object

is

sent

to

the

next

connector

that

polls

for

events.

If

a

business

object

is

configured

to

go

to

a

particular

connector,

as

for

example

during

the

testing

phase,

but

the

connector

is

not

used

in

the

production

phase,

the

event

queue

for

the

connector

fills

up.

To

remedy

this

situation,

delete

the

connector/business

object

configuration

in

the

Event

Distribution

window

(transaction

/CWLD/RH).

Configuring

the

connector

You

must

configure

the

connector’s

standard

and

connector-specific

connector

configuration

properties

before

you

can

run

it.

To

configure

connector

properties,

use

Connector

Designer.

Access

this

tool

from

the

System

Manager.

As

you

enter

configuration

values,

they

are

saved

in

the

repository.

Standard

configuration

properties

Standard

configuration

properties

provide

information

that

all

connectors

use.

See

Appendix

B,

“Standard

configuration

properties

for

connectors,”

on

page

241

for

documentation

of

these

properties.

Table

4

on

page

18

provides

information

specific

to

this

connector

about

configuration

properties

in

the

appendix.

Chapter

2.

Installing

and

configuring

the

connector

17

Table

4.

Property

information

specific

to

this

connector

Property

Note

CharacterEncoding

The

connector

does

not

use

this

property.

Locale

Because

this

connector

has

been

internationalized,

you

can

change

the

value

of

this

property.

See

release

notes

for

the

adapter

to

determine

currently

supported

locales.

PollFrequency

If

using

the

RFC

Server

Module

or

the

ALE

Module

for

event

processing,

do

not

set

this

property’s

value

to

key

or

to

no.

Setting

the

value

to

key

or

no

prevents

the

connector

from

instantiating

these

modules

at

startup.

You

must

provide

a

value

for

the

ApplicationName

configuration

property

before

running

the

connector.

Connector-specific

configuration

properties

Connector-specific

configuration

properties

provide

information

needed

by

the

connector

at

runtime.

Connector-specific

properties

also

provide

a

way

of

changing

static

information

or

logic

within

the

connector

framework

and

the

connector’s

application-specific

component

without

having

to

recode

and

rebuild

the

connector.

Table

5

is

a

quick

reference

for

the

connector-specific

configuration

properties.

The

modules

column

contains

a

list

of

the

connector

modules

that

use

the

associated

property.

Table

5.

Quick

reference

for

connector-specific

configuration

properties

Name

Possible

values

Default

value

Modules

ABAPDebug

true

or

false

false

ABAP

Extension

BAPI

HDR

AleEventDir

path

ALE

AleUpdateStatus

true

or

false

false

ALE

AleSelectiveUpdate

IDocType:MessageType

ALE

AleStatusMsgCode

MessageCode

ALE

AleSuccessCode

52

or

53

52

ALE

AleFailureCode

68

or

58

68

ALE

AleSuccessText

SuccessText

ALE

AleFailureText

FailureText

ALE

ApplicationPassword

SOFTWARE

All

ApplicationUserName

CROSSWORLDS

All

ArchiveDays

ALE

Client

All

Group

any

valid

name

of

the

logon

group

that

represents

a

group

of

application

servers

All

gwService

Gateway

server

identifier

sapgw00

RFC

Server

ALE

Hostname

IP-address

or

server-name

All

InDoubtEvents

Reprocess,

FailOnStartUp,

LogError

or

Ignore

Ignore

ABAP

Extension

Language

E

All

MaxNumberOfConnections

2

ABAP

Extension,

ALE,

BAPI

HDR

Modules

ModuleName

All

Namespace

true

or

false

true

ABAP

Extension

18

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

5.

Quick

reference

for

connector-specific

configuration

properties

(continued)

Name

Possible

values

Default

value

Modules

NumberOfListeners

any

positive

integer

1

RFC

Server,

ALE

PollQuantity

any

positive

integer

20

ABAP

Extension,

ALE

RefreshLogonCycle

true

true

All

RfcProgramId

program

ID

CWLDSERVER

RFC

Server

,

ALE

RfcTraceOn

true

or

false

false

All

SAPALE_Archive_Queue

any

valid

MQ

Series

queue

name

ALE

SAPALE_Event_Queue

any

valid

MQ

Series

queue

name

ALE

SAPALE_Wip_Queue

any

valid

MQ

Series

queue

name

ALE

SAPALE_Error_Queue

SAPALE_Unsubscribed_Queue

SAPSystemID

logical

name

of

the

SAP

R/3

System

All

SAPtid_MQChannel

any

valid

MQ

channel

ALE

SAPtid_MQPort

any

valid

MQ

port

ALE

SAPtid_Queue

any

valid

MQ

queue

name

ALE

SAPtid_QueueManager

any

valid

MQ

queue

manager

name

ALE

SAPtid_QueueManagerHost

any

valid

MQ

queue

manager

host

name

ALE

SAPtid_QueueManagerLogin

any

valid

MQ

queue

manager

login

name

ALE

SAPtid_QueueManagerPassword

any

valid

MQ

queue

manager

password

ALE

Sysnr

system-number

00

BAPI,

RFC

Server

DateTimeFormat

nothing

or

legacy

All

TransIdCollabName

No

longer

supported

UseDefaults

true

or

false

false

ABAP

Extension

ALE

BAPI

ABAPDebug

Specifies

whether

the

connector

invokes

the

ABAP

Debugger

for

the

appropriate

function

module

when

the

connector

begins

processing

a

business

object.

When

this

property

is

set

to

true,

the

connector

opens

the

ABAP

Debugger

for

the

following

connector

modules:

v

ABAP

Extension—when

processing

events

out

of

SAP

and

service

call

requests

into

SAP

v

BAPI—only

when

processing

service

call

requests

into

SAP

v

Hierarchical

Dynamic

Retrieve—when

processing

service

call

requests

into

SAP

The

connector

invokes

the

ABAP

Debugger

only

if

you

have:

v

Changed

the

default

value

of

the

“ApplicationUserName”

on

page

22

configuration

property

from

CROSSWORLDS

to

a

Dialog

user

with

proper

user

authorizations.

v

Set

the

ABAPDebug

property

to

true.

Chapter

2.

Installing

and

configuring

the

connector

19

Note:

You

can

add

breakpoints

only

after

the

debugger

opens.

Important:

This

property

should

always

be

set

to

false

in

a

production

environment.

The

default

value

is

false.

AleEventDir

Specifies

the

location

of

the

root

directory

(\ale)

for

the

event

directory

used

by

the

ALE

Module

to

log

and

recover

events.

When

the

connector

starts

for

the

first

time,

if

it

does

not

find

the

root

directory

in

the

directory

from

which

the

connector

is

started,

it

creates

it

and

the

event

subdirectory:

v

If

the

path

is

specified

in

this

property,

it

uses

that

path

to

create

the

directory.

v

If

no

path

is

specified,

it

creates

the

root

directory

in

the

directory

from

which

the

connector

is

started.

For

example,

if

your

connector

is

located

in

\connectors\SapConnector1

(within

the

product

directory),

the

connector

creates

the

following

directory:

\connectors\SapConnector1\ale

UNIX

If

you

are

not

in

the

connector’s

directory

when

you

start

the

connector

for

the

first

time,

the

connector

creates

the

root

directory

in

the

directory

from

which

you

start

the

connector

regardless

of

the

value

of

this

property.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

The

default

value

is:

UNIX

$<ProductNameDir>/connectors/SAP/ale

Windows

%ProductNameDir%\connectors\SAP\ale

AleUpdateStatus

Specifies

whether

an

audit

trail

is

required

for

all

message

types.

This

property

must

be

set

to

true

to

cause

the

connector

to

update

a

standard

SAP

status

code

after

the

ALE

Module

has

retrieved

an

IDoc

object

for

event

processing.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

The

default

value

is

false.

AleSelectiveUpdate

Specifies

which

IDocType

and

MessageType

combinations

are

to

be

updated

when

the

connector

is

configured

to

update

a

standard

SAP

status

code.

You

can

define

values

for

this

property

only

if

AleUpdateStatus

has

been

set

to

true.

20

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

syntax

for

this

property

is:

IDocType:MessageType[,IDocType:MessageType

[,...]]

where

a

colon

(:)

delimiter

separates

each

IDocType

and

MessageType,

and

a

comma

(,)

delimiter

separates

entries

in

a

set.

The

example

below

illustrates

two

sets.

In

the

example,

MATMAS03

and

DEBMAS03

are

the

IDocs,

and

MATMAS

and

DEBMAS

are

the

message

types:

MATMAS03:MATMAS,DEBMAS03:DEBMAS

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

AleStatusMsgCode

If

required,

specifies

the

message

code

to

use

when

the

connector

posts

the

ALEAUD

Message

IDoc

(ALEAUD01).

Configure

this

message

code

in

the

receiving

Partner

Profile.

You

can

set

a

value

for

this

property

only

if

AleUpdateStatus

has

been

set

to

true.

For

more

information,

see

“Configuring

SAP

To

update

IDoc

status”

on

page

133.

AleSuccessCode

Specifies

the

success

status

code

for

Application

Document

Posted.

You

must

specify

a

value

for

this

property

(52

or

53)

to

cause

the

connector

to

update

the

SAP

success

status

code

after

the

ALE

Module

has

retrieved

an

IDoc

object

for

event

processing.

SAP

converts

this

value

to

status

41

(Application

Document

Created

in

Receiving

System).

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

AleFailureCode

Specifies

the

status

code

for

dispatch

failure.

You

must

specify

a

value

for

this

property

(68

or

58)

to

cause

the

connector

to

update

the

SAP

failure

status

code

after

the

ALE

Module

has

retrieved

an

IDoc

object

for

event

processing.

SAP

converts

this

value

to

40.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

AleSuccessText

Specifies

the

descriptive

text

for

successful

Application

Document

Posted.

Specifying

a

value

for

this

property

is

optional,

even

when

you

set

AleUpdateStatus

to

true.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

AleFailureText

Specifies

the

descriptive

text

for

dispatch

failure.

Specifying

a

value

for

this

property

is

optional,

even

when

you

set

AleUpdateStatus

to

true.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

Chapter

2.

Installing

and

configuring

the

connector

21

ApplicationPassword

Password

for

the

connector’s

user

account

on

the

SAP

application.

The

default

is

SOFTWARE.

ApplicationUserName

Name

of

the

connector’s

user

account

on

the

SAP

application.

The

default

is

CROSSWORLDS.

ArchiveDays

The

ArchiveDays

connector

configuration

property

determines

the

number

of

days

after

which

TIDManagement

files

should

be

deleted

from

the

request

directory.

The

default

value

maintained

internally

is

seven

days.

Client

Client

number

under

which

the

connector

logs

in,

often

100.

Group

When

configuring

the

connector

for

load

balancing,

specifies

the

name

of

the

logon

group

that

represents

a

group

of

application

servers.

For

more

information,

see

“Taking

advantage

of

load

balancing”

on

page

26.

gwService

Gateway

server

identifier;

often

sapgw00.

The

00

is

the

system

number

of

the

server

running

the

SAP

Gateway

(usually

an

application

server)

and

may

not

be

00

if

you

have

more

than

one.

The

default

is

sapgw00.

Hostname

When

configuring

the

connector

for

load

balancing,

specifies

the

name

of

the

message

server.

When

configuring

the

connector

to

run

without

load

balancing,

specifies

the

IP

address

or

the

name

of

the

application

server

that

the

connector

logs

in

to.

In

both

cases,

the

connector

assumes

that

the

name

of

the

gateway

host

is

the

same

as

the

value

specified

for

this

property.

InDoubtEvents

InDoubtEvents

describes

how

to

handle

in-progress

events

in

the

events

table.

Reprocess

reprocesses

the

in-progress

events

in

the

events

table.

FailOnStartup

will

shut

down

the

connector

and

log

a

fatal

error

when

in-progress

events

are

found.

LogError

logs

an

error

notifying

that

in-progress

events

are

in

the

event

table.

Ignore,

ignore

the

in-progress

events.

Language

Language

in

which

the

connector

logs

in.

The

default

is

E,

for

English.

MaxNumberOfConnections

The

maximum

number

of

concurrent

interactions

possible

between

the

connector

and

the

SAP

application.

These

interactions

include

polling

for

events

and

handling

service

call

requests.

Only

the

ABAP

Extension,

BAPI,

and

ALE

Modules

use

this

property.

The

ALE

Module

uses

this

property

only

for

service

call

requests.

Because

each

interaction

uses

a

dialog

process

on

the

SAP

application

server,

the

number

of

connections

cannot

exceed

the

number

of

dialog

processes

available.

For

more

information,

see

″Processing

multiple

concurrent

interactions″

in

Chapter

1.

If

no

value

is

specified

for

this

property,

the

connector

uses

the

default

value

of

2.

22

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Modules

Identifies

the

module

used

by

the

connector

to

carry

out

the

init(),

pollForEvents(),

and

Terminate()

requests.

Specifically,

it

specifies

the

connector

module

used

by

the

Vision

Connector

framework.

Specify

multiple

connector

modules

by

separating

each

value

with

a

comma.

Do

not

add

spaces.

The

supported

connector

modules

and

the

syntax

to

specify

them

is

as

follows:

ABAP

Extension

Module—Extension

ALE

Module—ALE

BAPI

Module—Bapi

RFC

Server

Module—RfcServer

Namespace

Specifies

whether

or

not

the

connector

uses

the

ABAP

components

defined

in

the

connector’s

namespace

/CWLD/.

The

value

must

be

set

to

true

in

order

for

the

connector

to

use

the

ABAP

components

defined

in

the

namespace.

The

default

is

true.

NumberOfListeners

Specifies

the

number

of

listener

threads

that

are

created

when

the

connector

is

initialized.

A

listener

thread

can

handle

one

request

at

a

time.

Each

listener

thread

handles

a

single

event

at

a

time;

therefore,

if

you

have

multiple

listener

threads,

the

connector

can

handle

multiple

events

concurrently.

The

default

is

1.

It

is

recommended

that

you

have

no

more

listener

threads

than

the

available

work

processes

in

SAP.

PollQuantity

Defines

the

maximum

number

of

events

picked

up

for

a

single

poll.

The

default

is

20.

RefreshLogonCycle

Specifies

whether

all

resources

are

to

ber

freed

for

an

SAP

client

connection.

The

default

is

false.

RfcProgramId

Identification

that

the

connector

registers

in

the

SAP

Gateway

so

that

the

listener

threads

can

process

events

from

RFC-enabled

functions.

This

value

must

match

the

Program

ID

registered

in

the

SAP

application

(transaction

SM59).

The

default

is

CWLDSERVER.

For

more

information

on

configuring

the

Program

ID

in

the

SAP

application,

see

“Registering

the

RFC

Server

Module

with

the

SAP

gateway”

on

page

189.

RfcTraceOn

Specifies

whether

or

not

to

generate

a

text

file

detailing

the

RFC

activity

for

each

listener

thread.

You

can

specify

a

value

of

true

or

false.

A

value

of

true

activates

tracing,

which

generates

a

text

file.

It

is

recommended

that

you

use

these

text

files

in

a

development

environment

only,

because

the

files

can

grow

rapidly.

The

default

is

false.

Chapter

2.

Installing

and

configuring

the

connector

23

SAPALE_Archive_Queue

Specifies

the

MQ

Series

queue

that

archives

TIDs

and

IDoc

data

after

the

ALE

Module

has

finished

processing

events.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

There

is

no

default

value.

SAPALE_Event_Queue

Specifies

the

MQ

Series

queue

that

stores

TIDs

and

IDoc

data

during

the

ALE

Module’s

processing

of

events.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

There

is

no

default

value.

SAPALE_Wip_Queue

Specifies

the

MQ

Series

work-in-progress

(wip)

queue

that

holds

TIDs

and

IDoc

data

while

the

ALE

Module

builds

the

MQ

message

for

the

event

queue.

After

the

connector

receives

all

data

for

an

event,

it

moves

the

data

in

this

queue

to

the

SAPALE_Event_Queue.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

There

is

no

default

value.

SAPALE_Error_Queue

Defines

a

queue

to

handle

MQ

messages

that

fail

between

the

WIP

Queue

and

the

Event

Queue.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

SAPALE_Unsubscribed_Queue

Defines

a

queue

to

collect

unsubscribed

IDoc

objects.

Unsubscribed

IDoc

objects

previously

were

placed

in

the

Archive

queue.

These

messages

can

be

resubmitted

using

the

event

management

utility.

The

connector

now

checks

for

subscriptions

when

processing

the

data

from

SAP

to

the

connector,

resulting

in

transactions

remaining

in

SAP

until

the

collaboration

is

started.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

SAPSystemID

When

configuring

the

connector

for

load

balancing,

specifies

the

logical

name

of

the

SAP

R/3

System,

which

is

also

known

as

R3name.

For

more

information,

see

“Taking

advantage

of

load

balancing”

on

page

26.

SAPtid_MQChannel

Specifies

the

Client

channel

for

the

MQ

Series

queue

manager.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

There

is

no

default

value.

SAPtid_MQPort

Specifies

the

port

used

to

communicate

with

the

MQ

Series

queue

manager

that

handles

the

queues

for

the

ALE

Module.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

There

is

no

default

value.

24

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

SAPtid_Queue

Specifies

the

MQ

Series

queue

on

which

messages

containing

the

TID

and

TID

status

reside.

This

property

is

used

by

the

ALE

Module

only

when

processing

requests.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

There

is

no

default

value.

SAPtid_QueueManager

Name

of

the

MQ

Series

queue

manager

for

the

queues

that

store

TIDs

and

IDoc

data.

This

property

is

used

by

the

ALE

Module

to

process

events

and

requests.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

There

is

no

default

value.

SAPtid_QueueManagerHost

Name

of

the

host

where

the

MQ

Series

queue

manager

resides.

This

property

is

used

by

the

ALE

Module

to

process

events

and

requests.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

There

is

no

default

value.

SAPtid_QueueManagerLogin

User

name

to

log

into

the

MQ

Series

queue

manager.

This

property

is

used

by

the

ALE

Module

to

process

events

and

requests.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

There

is

no

default

value.

SAPtid_QueueManagerPassword

Password

for

the

user

who

logs

into

the

MQ

Series

queue

manager.

This

property

is

used

by

the

ALE

Module

to

process

events

and

requests.

For

more

information,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

There

is

no

default

value.

Sysnr

System

number

of

the

application

server.

The

value

is

a

two-digit

number,

often

00.

The

default

is

00.

DateTimeFormat

Preserves

the

delimiters

provided

with

DATE

and

TIME

field

values.

If

set

to

Legacy,

the

connector

will

preserve

the

delimiters

for

DATE

and

TIME

fields.

Otherwise,

the

delimiters

will

be

removed

and

the

value’s

length

will

conform

to

the

attribute

defined

length.

TransIdCollabName

Important:

The

connector

no

longer

supports

this

property.

UseDefaults

On

a

Create

or

Update

operation,

if

UseDefaults

is

set

to

true,

the

Adapter

Framework

for

the

integration

broker,

checks

whether

a

valid

value

or

a

default

value

is

provided

for

each

business

object

attribute

marked

as

required.

If

a

value

is

provided,

the

Create

or

Update

operation

succeeds.

If

the

parameter

is

set

to

false,

the

connector

checks

only

for

a

valid

value

and

causes

the

Create

or

Update

operation

to

fail

if

it

is

not

provided.

The

default

is

false.

Chapter

2.

Installing

and

configuring

the

connector

25

Connector

startup

For

information

on

starting

a

connector,

stopping

a

connector,

and

the

connector’s

temporary

startup

log

file,

see

Implementation

Guide

for

WebSphere

InterChange

Server.

Taking

advantage

of

load

balancing

Load

balancing

at

logon

increases

the

efficiency

of

defined

workgroups

by:

v

Improving

performance

v

Decreasing

consumption

of

system

resources

v

Distributing

users

across

available

application

servers

based

on

requirements

for

workgroup

service

and

load

sensitivity

Starting

the

connector

with

the

load

balancing

feature

initiates

communication

with

the

message

server

specified

by

the

Hostname

property.

The

message

server

then

finds

the

application

server

with

the

least

load.

Once

this

application

server

is

determined,

the

message

server

routes

all

future

RFC

communication

with

the

connector

through

this

one

application

server.

The

connector

is

considered

as

one

dialog

user

with

the

message

server.

The

load

balancing

feature

works

best

in

an

SAP

environment

where

the

connector

processes

low

volumes

and

the

number

of

users

is

large.

For

high

volumes

consider

connecting

directly

to

one

of

your

larger

application

servers.

For

information

on

configuring

the

connector

for

load

balancing,

see

the

description

of

the

following

connector

properties:

v

“ApplicationPassword”

on

page

22

v

“ApplicationUserName”

on

page

22

v

“Client”

on

page

22

v

“Group”

on

page

22

v

“Hostname”

on

page

22

v

“InDoubtEvents”

on

page

22

v

“SAPSystemID”

on

page

24

Starting

multiple

connectors

To

start

multiple

connectors,

follow

these

instructions:

1.

Copy

the

connector

definition,

giving

the

new

definition

an

appropriate

name.

For

example,

name

the

new

definition

SAP2Connector.

v

If

the

connector

uses

WebSphere

MQ

Integration

broker

as

the

integration

broker,

use

a

system

command

to

copy

the

definition

file

(by

default,

\repository\Sap\CN_SAP.txt)

to

CN_SAP2.txt.

Then

open

the

definition

file

with

a

text

editor

and

replace

SAPConnectorwith

SAP2Connectorfor

″name″

and

the

attribute

value

of

the

Application

name

Property.

v

If

the

connector

uses

WebSphere

Integration

broker

as

the

integration

broker,

use

System

Manager

to

copy

and

name

the

definition.
2.

Make

a

copy

of

the

entire

\connectors\SAP

directory,

and

change

the

name

to

match

the

new

connector

name,

for

example

\connectors\SAP2.

3.

In

the

new

connector

directory,

make

a

copy

of

the

CWSAP.jar

file,

and

then

rename

it

to

match

the

name

of

the

new

connector,

for

example

CWSAP2.jar.

26

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

4.

For

Windows,

create

a

connector

shortcut

and

point

it

to

the

new

connector

startup

file,

start_SAP2.bat,

in

the

\connectors\SAP2directory,

for

example.

5.

Copy

the

SAPConnector.txt

message

file

in

the

\connectors\messages\

directory,

and

rename

it

to

match

the

new

connector

name,

for

example

SAP2Connector.txt

Repeat

these

steps

for

each

connector.

Upgrading

the

connector

This

section

describes

how

to

upgrade

the

connector:

v

“Upgrading

the

connector

for

the

ALE

Module’s

management

of

TIDs”

v

“Upgrading

to

the

java-based

connector”

on

page

28

Upgrading

the

connector

for

the

ALE

Module’s

management

of

TIDs

The

ALE

Module

persistently

stores

IDoc

objects

and

Transaction

IDs

(TIDs)

for

every

transaction

it

receives

from

the

SAP

application.

In

releases

of

the

connector

prior

to

version

4.8.x,

the

connector

used

IBM

WebSphere

collaborations,

business

objects,

and

maps

to

store

the

data

in

the

repository.

Version

4.8.x

of

the

connector

replaces

the

previous

way

of

TID

management

with

the

use

of

MQSeries

queues.

Attention:

To

enable

the

ALE

Module

to

process

IDocs

to

and

from

the

SAP

application,

you

must

upgrade

the

connector.

However,

it

is

imperative

that

you

allow

the

current

IDoc

processing

cycle

to

complete

before

upgrading

the

connector.

Before

you

upgrade

the

connector

to

enable

the

ALE

Module

to

process

IDocs,

you

must

complete

the

processing

of

current

files

in

the

event

and

WIP

directories.

Also,

check

the

archive

directory

for

failed

and

unsubscribed

events.

To

complete

the

processing

of

current

files

in

the

event

and

WIP

directories:

v

Temporarily

halt

the

transmission

of

IDocs

both

to

and

from

the

connector.

v

Verify

that

there

are

no

IDocs

(files)

in

the

following

directories

when

you

upgrade:

UNIX

$CROSSWORLDS/connectors/SAP/ale/events

$CROSSWORLDS/connectors/SAP/ale/wip

Windows

%CROSSWORLDS%\connectors\SAP\ale\events

%CROSSWORLDS%\connectors\SAP\ale\wip

To

complete

processing

of

any

failed

and

unsubscribed

events:

v

Temporarily

halt

the

transmission

of

IDocs

both

to

and

from

the

connector.

v

Verify

the

status

of

the

IDocs

(files)

in

the

following

directory

when

you

upgrade:

Chapter

2.

Installing

and

configuring

the

connector

27

UNIX

$CROSSWORLDS/connectors/SAP/ale/archive

Windows

%CROSSWORLDS%\connectors\SAP\ale\archive

v

Correct

any

errors

to

the

failed

or

unsubscribed

events.

v

Move

the

corrected

file

to

the

event

directory

for

processing.

Note:

If,

when

using

transaction

SM58,

you

find

unsuccessfully

processed

IDocs

in

the

SAP

system,

wait

until

the

connector

is

upgraded

to

resubmit

these

IDocs.

After

you

complete

the

upgrade

of

the

connector,

correct

the

errors

and

resubmit

the

IDocs

for

processing

through

the

MQSeries

queues

using

the

new

TID

management.

Once

these

directories

are

clear,

apply

the

upgrade

and

follow

the

configuration

instructions

in:

v

“Connector-specific

configuration

properties”

on

page

18

v

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

v

Chapter

12,

“Configuring

the

ALE

module,”

on

page

131

Upgrading

to

the

java-based

connector

The

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

is

delivered

as

a

Java-based

connector

(connector

version

4.0.0

and

later).

In

previous

releases,

the

connector

was

written

in

C++.

The

directory

structure

is

\connectors\SAP.

The

following

procedure

is

for

upgrading

a

C++

version

of

the

connector

to

the

Java

version

of

the

connector.

1.

Rename

the

current

connector

directory.

For

example,

\connectors\SAP

becomes

connectors\SAP.old.

2.

Rename

the

connector

message

file.

For

example,

\connectors\messages\SAPconnector.txt

becomes

\connectors\messages\SAPconnector.txt.old.

3.

Copy

the

new

connector

directory

and

files

to

the

\connectors

directory.

4.

Copy

the

new

connector

message

file

to

the

\connectors\messages

directory.

Windows

Modify

the

connector

shortcut

to

point

to

the

start_SAP.bat

file

in

the

connector

directory.

For

example,

if

you

are

using

the

connector

that

supports

SAP

R/3

version

4.x,

modify

the

shortcut

to

point

to

the

connector

startup

file

\connectors\SAP\start_SAP.bat.

Comprehensive

install

and

uninstall

information

The

information

in

this

section

describes

how

to

install

WebSphere

Business

Integration

Adapters

(WBIA).

28

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Install

the

WBIA

product

by

running

a

platform-specific

executable

for

the

installer.

Table

6

lists

the

installer

executable

for

each

operating

system.

The

installer

executables

are

located

in

the

WebSphereBI

directory

on

the

product

CD.

Table

6.

Platform-specific

executables

for

WBIA

Installer

Operating

system

WBIA

Installer

executable

file

Windows

setupwin32.exe

Linux

setupLinux.bin

iSeries

setupiSeries.bin

Note:

These

procedures

assume

that

you

are

installing

from

a

product

CD.

If

you

obtain

your

software

from

Passport

Advantage,

make

sure

you

have

downloaded

it.

Refer

to

your

Passport

Advantage

information

for

those

downloading

instructions.

Note:

If

you

are

installing

the

adapters

to

communicate

with

InterChange

Server,

you

must

install

the

broker

first.

See

the

installation

guide

for

InterChange

Server

on

the

appropriate

platform

for

information

on

how

to

install

the

broker.

Important:

Make

sure

you

are

logged

in

as

the

WebSphere

business

integration

system

administrator

before

you

install

the

adapters.

When

you

install

on

a

UNIX

computer,

the

permissions

of

the

folders

and

files

that

are

created

are

set

based

on

the

permissions

of

the

user

account

that

performs

the

installation.

Important:

You

must

not

install

WBIA

as

root.

The

entry

that

is

added

to

the

Object

Data

Manager

(ODM)

when

installing

as

root

prevents

you

from

using

SMIT

to

uninstall

other

applications,

so

you

should

not

install

WBIA

as

root.

Chapter

2.

Installing

and

configuring

the

connector

29

30

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Part

2.

ABAP

Extension

module

©

Copyright

IBM

Corp.

2003,

2004

31

32

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

3.

Overview

of

the

ABAP

Extension

module

This

chapter

describes

the

ABAP

Extension

Module

of

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

4.x).

The

ABAP

Extension

Module

enables

an

integration

broker

to

send

business

objects

to

and

receive

events

from

SAP

R/3

application

versions

4.0,

4.5,

and

4.6.

This

chapter

contains

the

following

sections:

v

“ABAP

Extension

Module

components”

v

“How

the

ABAP

Extension

Module

works”

on

page

35

ABAP

Extension

Module

components

The

ABAP

Extension

Module

consists

of

components

written

in

Java

and

ABAP.

The

Java

components

consist

of

the

connector

module

and

the

SAP

RFC

libraries.

SAP

delivers

their

RFC

libraries

in

Java

and

C.

The

ABAP

components

consists

of

various

SAP

application

function

modules,

database

tables,

and

programs.

Some

of

these

ABAP

components

are

developed

and

delivered

as

part

of

the

adapter

and

some

are

native

to

every

SAP

installation.

Figure

4

on

page

34

illustrates

the

overall

architecture

of

the

ABAP

Extension

Module.

©

Copyright

IBM

Corp.

2003,

2004

33

Java

components

The

connector

is

delivered

and

run

as

a

Java

Archive

(JAR)

file.

It

handles

the

event

delivery

and

event

business

object

request

processes.

The

SAP

RFC

library

is

delivered

and

run

as

a

JAR

file

as

well.

It

enables

external

programs

to

execute

ABAP

function

modules

within

an

SAP

application.

The

Java

components:

v

Open

an

RFC

connection

to

the

SAP

application

using

the

SAP

RFC

library

and

the

SAP

Gateway.

v

Handle

requests

from

the

integration

broker

and

pass

the

requests

to

an

ABAP

component

of

the

connector.

v

Poll

the

SAP

application

for

events.

ABAP

components

The

ABAP

components

of

the

connector

are

function

modules,

programs,

and

database

tables.

These

elements

handle

the

event

delivery

and

business

object

request

processes

initiated

by

the

Java

component.

The

ABAP

components

are

delivered

in

connector

transport

files

to

be

loaded

into

an

SAP

application;

once

loaded,

they

run

as

ABAP

repository

objects.

SAP R/3

ABAP

DoVerbFor()

Java

SAP RFC library

pollForEvents()

SAP gateway

Event
Request

Event
Return

Event
table

Function module:
/CWLD/RFC_EVENT_RETURN

Function module:
/CWLD/RFC/EVENT_REQUEST

Function module:
/CWLD/RFC_DO_VERB_NEXTGEN

ABAP handlers

Event
Processing

pollForEvents()

Event
archive
table

Function module:
/CWLD/ADD_TO_QUEUE

Init()

Function module:
/CWLD/RFC_LOGON

WebSphere Business
InterChange Server

Figure

4.

ABAP

Extension

Module

architecture

34

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

ABAP

components:

v

Handle

business

object

requests

from

the

Java

component

by

calling

the

appropriate

function

modules

designed

to

handle

a

particular

business

object

type

and

verb.

v

Detect,

trigger,

and

store

events

in

the

event

table.

v

Handle

event

requests

and

their

subsequent

return

(event

status

update)

from

the

Java

component.

How

the

ABAP

Extension

Module

works

Most

of

the

functionality

provided

by

the

ABAP

Extension

Module

occurs

inside

of

the

SAP

application.

For

most

of

the

virtual

functions

that

every

connector

must

implement,

there

is

a

corresponding

ABAP

function

module

in

the

SAP

application.

However,

SAP

does

not

provide

ABAP

function

modules

that

support

the

specific

requirements

of

the

init(),

doVerbFor(),

and

pollForEvents()

methods,

so

these

function

modules

have

been

developed

and

delivered

as

part

of

the

connector

module.

While

the

Java

components

provide

some

functionality,

the

majority

of

the

processing

for

these

methods

is

done

by

the

ABAP

components

in

the

SAP

application.

Table

7

shows

the

virtual

Java

methods

that

the

connector

module

implements

and

their

corresponding

ABAP

components.

Keep

in

mind

that

this

is

not

a

complete

list

of

the

ABAP

components

used

by

the

connector.

Table

7.

Java

components

and

their

corresponding

ABAP

components

Java

components

ABAP

components

doVerbFor()

/CWLD/RFC_DO_VERB_NEXTGEN

getVersion()

No

implementation

required

getBOHandlerForBO

No

implementation

required

init()

/CWLD/RFC_LOGON

pollForEvents()

/CWLD/RFC_EVENT_REQUEST

/CWLD/RFC_EVENT_RETURN

terminate()

No

implementation

required

Together,

these

ABAP

function

modules

are

the

core

of

the

ABAP

Extension

Module.

The

following

sections

describe

connector

initialization,

business

object

processing,

and

how

the

connector

handles

event

notification.

The

implemented

functions

are

discussed

in

the

rest

of

this

chapter.

Initialization

The

init()

method

calls

the

ABAP

function

module

/CWLD/RFC_LOGON

to

validate

that

the

destination

SAP

application

is

running

and

that

the

RFC

library

can

be

used

to

execute

ABAP

function

modules.

The

/CWLD/RFC_LOGON

function

module

is

also

called

to

process

all

of

the

in-progress

events.

All

events

in

the

event

table

that

are

marked

with

a

status

of

event

retrieved

(status

marked

as

R

in

the

event

table)

will

be

processed

based

on

the

InDoubtEvents

Connector

Property.

The

default

property

value

is

Ignore.

When

event

distribution

is

being

used

only

the

events

belonging

to

that

particular

connector

and

server

with

a

status

of

‘R’

will

be

handled

according

to

the

connector

property.

If

event

distribution

is

not

being

used

then

all

events

with

a

status

of

‘R’

will

be

handled

according

to

the

connector

property.

If

the

connector

property

equals

reprocess,

these

events

will

be

changed

to

a

status

of

queued

(marked

as

Q

in

the

event

table).

When

the

connector

polls

for

events,

all

events

of

‘Q’

status

will

be

processed,

using

/CWLD/RFC_E

Chapter

3.

Overview

of

the

ABAP

Extension

module

35

VENT_REQUEST

function

module.

If

the

connector

property

is

equal

to

FailOnStartUp,

a

fatal

error

is

logged

within

the

SAP

log

and

the

local

log

file

and

the

connector

will

shut

down.

An

email

is

also

sent

notifying

the

user

a

fatal

error

has

occurred.

If

the

connector

property

is

equal

to

LogError

an

error

is

logged

within

the

SAP

log

and

the

local

log

file.

The

in-progress

events

are

not

processed

and

the

connector

does

not

shut

down.

If

the

connector

property

is

equal

to

Ignore,

the

in-progress

events

are

ignored

and

the

connector

polls

as

if

there

weren’t

any

in-progress

events

in

the

event

table.

If

the

function

module

does

not

execute

successfully,

the

connector

terminates.

Business

object

processing

All

service

call

requests

for

SAP

are

initiated

by

the

doVerbFor()

method

in

the

Java

component

of

the

connector

module.

The

connector’s

ABAP

function

module

/CWLD/RFC_DO_VERB_NEXTGEN

and

an

ABAP

handler

in

the

ABAP

component

of

the

connector

module

handle

the

requests.

Figure

5

illustrates

business

object

processing.

doVerbFor()

In

the

Java

component

of

the

connector

module,

the

doVerbFor()

method

of

a

single

business

object

handler

implementation

handles

all

of

the

business

object

WebSphere Business
InterChange Server

SAP R/3

DoVerbFor()

SAP RFC library

SAP gateway

ABAP handlers

Function module:
/CWLD/RFC_DO_VERB_NEXTGEN

ABAP

Java

Figure

5.

Business

object

processing

of

doVerbFor()

36

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

requests

from

the

integration

broker

and

all

business

object

events

from

the

pollForEvents()

method.

In

either

case,

doVerbFor()

executes

in

the

following

manner:

1.

Converts

an

instance

of

a

WebSphere

business

object

for

SAP

to

a

single,

predefined

flat

structure

that

contains

the

business

object

data.

2.

Calls

the

ABAP

function

module

/CWLD/RFC_DO_VERB_NEXTGEN,

passes

the

business

object

data

to

it,

and

then

waits

for

business

object

data

to

be

returned.

3.

Converts

the

returned

business

object

data

back

into

a

WebSphere

business

object.

The

doVerbFor()

method

passes

business

object

data

to

function

module

/CWLD/RFC_DO_VERB_NEXTGEN

and

then

creates

an

entirely

new

business

object

structure

from

the

returned

business

object

data.

/CWLD/RFC_DO_VERB_NEXTGEN

In

the

ABAP

component

of

the

connector

module,

the

connector’s

ABAP

function

module

/CWLD/RFC_DO_VERB_NEXTGEN

is

responsible

for

handling

all

WebSphere

business

object

processing

in

the

SAP

application.

Specifically,

it

routes

business

object

data

to

the

appropriate

ABAP

handler.

In

this

sense,

function

module

/CWLD/RFC_DO_VERB_NEXTGEN

can

be

thought

of

as

a

business

object

router.

It

executes

in

the

following

manner:

1.

Receives

a

business

object.

2.

Dynamically

calls

an

ABAP

handler

to

process

the

business

object

data

and

passes

the

business

object

data

as

a

parameter.

3.

Receives

business

object

data

from

an

ABAP

handler

and

returns

it

to

the

requesting

call.

/CWLD/RFC_DO_VERB_NEXTGEN

uses

ABAP

handlers

to

fulfill

each

object

type

and

verb-specific

request.

/CWLD/RFC_DO_VERB_NEXTGEN

uses

the

value

in

a

business

object’s

verb

application-specific

information

to

determine

which

ABAP

handler

to

call.

It

also

checks

for

the

archive

status.

/CWLD/RFC_DO_VERB_NEXTGEN

can

be

thought

of

as

a

router

from

the

doVerbFor()

method

to

an

ABAP

handler.

ABAP

handlers

ABAP

handlers

are

unique

to

the

connector

module

in

that

they

extend

the

business

object

handler

functionality

from

the

Java

component

of

the

connector

module.

ABAP

handlers

reside

in

the

SAP

application

as

ABAP

function

modules

and

communicate

directly

with

/CWLD/RFC_DO_VERB_NEXTGEN.

ABAP

handlers

are

needed

to

get

business

object

data

into

or

out

of

the

SAP

application

database.

Figure

6

on

page

38

illustrates

the

business

object

processing

components

of

the

ABAP

Extension

Module

and

their

relationship

to

one

another.

Notice

that

for

a

single

business

object

handler

(doVerbFor())

and

business

object

router

(/CWLD/RFC_DO_VERB_NEXTGEN),

there

are

multiple

ABAP

handlers.

Chapter

3.

Overview

of

the

ABAP

Extension

module

37

ABAP

handlers

are

responsible

for

adding

business

object

data

into

the

SAP

application

database

(Create,

Update,

Delete)

or

for

using

the

business

object

data

as

the

keys

to

retrieving

data

from

the

SAP

application

database

(Retrieve).

The

adapter

provides

generic

ABAP

handlers.

For

example,

function

module

/CWLD/DYNAMIC_TRANSACTION

supports

flat

business

objects

for

Create,

Update,

Delete,

and

Retrieve

operations.

The

WebSphere

business

integration

system

provides

a

metadata

repository

and

the

adapter

provides

a

generic

ABAP

handler

to

support

flat

business

objects.

The

adapter

also

provides

an

ABAP

handler

(/CWLD/IDOC_HANDLER)

to

support

hierarchical

business

objects;

however,

you

must

develop

an

additional

business-object-specific

ABAP

handler

for

each

hierarchical

business

object

that

you

need

to

support.

The

WebSphere

business

integration

system

provides

tools

that

facilitate

the

development

process.

For

more

information

on

developing

business

objects

and

ABAP

handlers,

see

Chapter

6,

“Developing

business

objects

for

the

ABAP

Extension

module,”

on

page

69

and

Appendix

E,

“Generating

business

object

definitions

using

SAPODA,”

on

page

291.

Event

notification

Event

notification

refers

to

the

collection

of

processes

that

notify

the

connector

of

SAP

application

object

events.

Notification

includes,

but

is

not

limited

to

the

type

of

the

event

(object

and

verb)

and

the

data

key

required

for

the

external

system

to

retrieve

the

associated

data.

WebSphere Business
InterChange Server

SAP R/3

SAP RFC library

SAP gateway

Business object router:
/CWLD/RFC_DO_VERB_NEXTGEN

Java

ABAP

BOHandler:
doVerbFor()

ABAP Handler:
/CWLD/DYNAMIC
TRANSACTION

ABAP handler:
/CWLD/IDOC_

HANDLER

ABAP handler:
OBJECT

SPECIFIC IDOC

ABAP handler:
/CWLD/DYNAMIC

RETRIEVE

Figure

6.

Adapter-provided

business

object

processing

components

38

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Figure

7

illustrates

the

event

notification

process,

which

uses

the

pollForEvents()

method.

Event

notification

for

the

connector

consists

of

two

functions:

v

“Event

polling”

v

“Event

triggering”

on

page

42

Event

polling

Event

polling

consists

of

three

functions

that

are

carried

out

by

the

pollForEvents()

method:

v

“Event

request”

v

“Event

processing”

on

page

41

v

“Event

return”

on

page

41

Note:

The

roles

of

these

functions

are

distributed

in

the

Java

and

ABAP

components.

However,

the

Java

component

always

initiates

event

polling.

Event

request:

Event

request

is

the

process

of

polling

and

retrieving

events

from

the

event

table

in

the

SAP

application.

The

event

request

mechanism

of

the

Java

component

has

a

counterpart

function

module

in

the

SAP

application,

/CWLD/RFC_EVENT_REQUEST.

This

function

retrieves

events

from

the

connector’s

ABAP

event

table,

/CWLD/EVT_CUR.

WebSphere Business
InterChange Server

SAP R/3

SAP RFC library

SAP gateway

pollForEvents()

Event
request

Event
return

Event
processing

Event
table

Function module:
/CWLD/RFC_EVENT_RETURN

Function module:
/CWLD/RFC_EVENT_REQUEST

Event
archive
table

Function module:
/CWLD/ADD_TO_QUEUE

Java

ABAP

Figure

7.

Event

notification

process

Chapter

3.

Overview

of

the

ABAP

Extension

module

39

Every

triggered

event

enters

the

event

table

with

an

initial

status

of

prequeued

(status

marked

as

P

in

the

event

table)

and

a

default

event

priority

of

zero.

Before

an

event

can

be

processed,

its

status

must

be

changed

to

queued

(Q

in

the

event

table).

The

priority

of

an

event

must

be

zero

before

the

connector

retrieves

the

full

object

that

it

represents.

For

more

information

on

event

priority,

see

on

page

44.

The

status

of

an

event

changes

from

prequeued

to

queued

if

there

are

no

database

locks

for

the

combination

of

the

user

who

created

the

event

and

the

event’s

key.

After

the

event

has

been

retrieved

from

the

event

table

the

status

of

the

event

is

updated

to

event

retrieved

(R

in

the

event

table.

If

locks

exist,

the

status

of

the

event

is

set

to

locked

(L

in

the

event

table)

and

the

event

is

requeued.

An

ABAP

constant,

C_MAXIMUM_REQUEUE,

defines

of

the

number

of

times

that

an

event

can

be

requeued.

If

the

maximum

number

(defaulted

to

100)

is

attained,

then

the

event

is

archived

to

the

event

archive

table.

Note:

Every

event

with

a

prequeued

or

locked

status

is

updated

with

every

poll.

You

can

run

into

performance

issues

when

events

are

triggered

in

batches.

You

can

configure

the

polling

frequency

using

the

PollFrequency

configuration

property.

For

more

information,

see

Appendix

B,

“Standard

configuration

properties

for

connectors,”

on

page

241.

After

preprocessing

all

prequeued

events,

the

ABAP

function

module

/CWLD/RFC_EVENT_REQUEST

selects

the

events

to

return

to

the

event

request

method

in

the

Java

component

of

the

connector

module

(only

events

with

a

status

of

queued

can

be

selected).

The

connector-specific

configuration

property

PollQuantity

(defaulted

to

20)

determines

the

maximum

number

of

events

returned

for

a

single

poll.

For

more

information,

see

Chapter

2,

“Installing

and

configuring

the

connector,”

on

page

11.

The

event

request

mechanism

performs

the

event

selection

process

in

two

steps:

1.

Selects

events

dedicated

to

the

connector

and

the

integration

broker.

Events

are

dedicated

to

a

specific

integration

broker

in

the

event

distribution

table

(/CWLD/EVT_DIS).

The

name

of

the

integration

broker

specified

in

this

table

must

match

the

name

specified

in

the

shortcut

that

starts

the

connector.

For

example,

the

standard

shortcut

for

an

SAP

connector

running

on

Windows

has

the

format:

...\start_SAP.bat

SAPconnectorName

integrationBrokerName

-cConfigFileName

When

WMQI

is

the

integration

broker,

the

WebSphere

business

integration

system

identifies

the

integration

broker

specified

in

the

event

distribution

table

by

getting

values

from

the

connector’s

startup

command:

v

The

value

of

the

integrationBrokerName

parameter

links

the

broker

instance

in

the

startup

command

to

the

broker

specified

in

the

event

distribution

table.

Note:

The

product’s

installation

program

uses

the

integration

broker

name

specified

at

installation

as

the

value

of

the

integrationBrokerName

parameter

in

the

startup

command.

v

The

value

of

the

ConfigFileName

parameter

identifies

the

Queue

Manager

and

queues

configured

for

the

specific

WMQI

instance.
2.

If

fewer

than

the

maximum

number

of

events

have

been

selected,

pulls

the

balance

from

the

events

that

are

not

configured

for

event

distribution.

For

example,

if

the

connector-specific

configuration

property

PollQuantity

is

kept

at

20

and

there

are

8

events

dedicated

to

the

specific

connector

and

the

integration

broker,

the

mechanism

selects

12

additional

events.

40

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

When

WMQI

is

the

integration

broker

and

only

one

Queue

Manager

has

been

configured,

the

names

of

the

queues

must

be

unique

for

each

instance

of

the

integration

broker.

When

WMQI

is

the

integration

broker

and

a

cluster

has

been

configured,

the

names

of

the

queues

must

be

unique

for

each

integration

broker

within

the

cluster.

If

desired,

you

can

incorporate

the

name

of

the

broker

(as

specified

in

the

integrationBrokerName

parameter

of

the

startup

command)

or

the

name

of

the

connector

into

the

names

of

the

queues.

For

example,

if

two

brokers

are

named

WMQI1

and

WMQI2,

their

respective

ADMINOUTQUEUEs

might

be

named

ADMINOUTQUEUE_MQI1

and

ADMINOUTQUEUE_MQI2,

respectively.

Important:

If

you

set

up

multiple

connectors

to

poll,

you

must

configure

every

event

to

be

processed

by

only

one

connector.

Otherwise

the

connector

may

send

duplicate

events,

or

may

archive

events

instead

of

retrieving

them.

Event

processing:

The

event

request

function

produces

an

array

of

events

to

be

processed

from

the

/CWLD/EVT_CUR

event

table.

It

passes

these

events

to

the

event

processing

function,

which

handles

them

one

at

a

time

in

the

following

manner:

1.

Evaluates

if

the

event

is

in

the

connector

subscription

list

using

the

object.verb

value.

If

an

event

is

not

in

the

subscription

list,

sets

the

status

of

the

event

to

not

subscribed.

2.

Creates

a

parentObjectOnly.Retrieve

business

object

if

an

event

is

in

the

subscription

list.

The

event

processing

function

sets

the

key

value

in

one

of

the

following

ways:

v

If

the

event

key

value

does

not

contain

the

|Cx|

delimiter,

the

connector

sets

the

value

of

the

first

key

attribute

to

the

value

specified

in

the

event

key.

In

this

case,

composite

keys

are

treated

as

singletons

and

must

be

interpreted

by

the

ABAP

business

object

processing

function

modules.

v

If

the

event

key

value

contains

one

or

more

instances

of

the

|Cx|

delimiter,

the

connector

sets

the

value

of

each

specified

attribute

to

its

specified

value.

For

more

information

about

specifying

a

composite

key

for

an

event,

see

“Coding

composite

keys

as

name-value

pairs”

on

page

95.

3.

Invokes

doVerbFor()

and

passes

the

business

object

data

to

it.

Once

the

business

object

is

passed,

event

processing

waits

for

business

object

data

to

return.

4.

Updates

the

status

of

the

event

array

based

on

the

doVerbFor()

processing.

5.

Delivers

the

business

object

data

to

the

integration

broker

if

the

business

object

data

is

successfully

retrieved.

Event

return:

After

each

event

is

processed

by

event

request,

it

is

returned

to

the

SAP

application

using

function

module

/CWLD/RFC_EVENT_RETURN.

This

function

module

makes

a

copy

of

the

processed

event,

adds

it

to

the

event

archive

table

(/CWLD/EVT_ARC),

and

then

deletes

the

original

entry

from

the

event

table.

Note:

Events

with

their

new

status

are

all

updated

after

each

event

is

processed.

Archived

events

include

successfully

processed

events,

events

that

were

processed

but

terminated

in

an

error,

and

unsubscribed

events.

Each

event

has

a

status

that

can

indicate

one

of

the

following

conditions:

v

The

business

object

was

successfully

sent

to

the

integration

broker.

v

The

event

produced

an

unknown

Java

return

code

from

the

connector.

Chapter

3.

Overview

of

the

ABAP

Extension

module

41

v

The

event

failed

in

attempting

to

retrieve

data

from

the

SAP

application.

v

The

event

timed

out

because

the

business

object

was

locked.

v

No

collaboration

subscribes

to

the

event—relevant

only

when

the

WebSphere

InterChange

Server

is

the

integration

broker.

Use

the

IBM

CrossWorlds

Station

tool

in

the

SAP

application

to

administer

the

event

archive

table.

IBM

CrossWorlds

Station

enables

an

administrator

to

display

and

truncate

the

archive

table

and

to

resubmit

events

for

processing.

For

more

information

about

maintaining

the

archive

table

and

setting

up

log

truncation,

see

Chapter

9,

“Managing

the

ABAP

Extension

module,”

on

page

107.

Event

triggering

The

connector

is

event-driven.

In

order

to

get

events

out

of

the

SAP

application,

you

need

to

implement

an

event

triggering

mechanism

for

each

IBM

WebSphere-supported

business

object.

Event

triggering

for

the

connector

comprises

three

functions:

v

“Event

detection”

v

“Event

triggering”

v

“Event

persistence”

on

page

45

Event

detection:

Event

detection

is

the

process

of

identifying

that

an

event

was

generated

in

the

SAP

application.

Typically,

connectors

use

database

triggers

to

detect

an

event.

However,

because

the

SAP

application

is

tightly

integrated

with

the

SAP

database,

SAP

allows

very

limited

access

for

direct

modifications

to

its

database.

Therefore,

the

event

detection

mechanisms

are

implemented

in

the

application

transaction

layer

above

the

database.

The

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

commonly

uses

four

mechanisms

to

detect

an

event

in

the

SAP

application:

v

Code

enhancements

v

Batch

programs

v

Business

Workflow

v

Change

Pointer

All

of

these

event

detection

mechanisms

support

real-time

triggering

and

retrieval

of

objects.

In

addition,

code

enhancements

and

batch

programs

provide

functionality

to

delay

the

retrieval

of

events.

An

event

whose

retrieval

is

delayed

is

called

a

future

event.

For

more

information

on

triggering

future

events,

see

“Event

triggering.”

Note:

Each

event

detection

mechanism

has

advantages

and

disadvantages

that

need

to

be

considered

when

designing

and

developing

a

business

object

trigger.

For

more

information

on

implementing

an

event

detection

mechanism,

see

Chapter

7,

“Developing

event

detection

for

the

ABAP

Extension

module,”

on

page

89.

Keep

in

mind

that

these

are

only

a

few

examples

of

event

detection

mechanisms.

There

are

many

different

ways

to

detect

events.

Event

triggering:

Once

an

event

is

identified

by

one

of

the

event

detection

mechanisms,

it

is

triggered

using

one

of

the

adapter-delivered

event

triggers.

v

/CWLD/ADD_TO_QUEUE—function

module

that

triggers

events

to

the

current

event

table

for

immediate

processing

42

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

/CWLD/ADD_TO_QUEUE_IN_FUTURE—

function

module

that

triggers

events

to

the

future

event

table

to

be

processed

at

a

later

time

Note:

Both

functions

are

for

real-time

triggering.

/CWLD/ADD_TO_QUEUE

processes

events

immediately

and

/CWLD/ADD_TO_QUEUE

processes

events

at

a

later

time

If

the

event

will

be

triggered

in

real-time,

then

/CWLD/ADD_TO_QUEUE

commits

the

event

to

the

current

event

table

(/CWLD/EVT_CUR).

Specifically,

it

adds

a

row

of

data

for

the

object

name,

verb,

and

key

that

represents

the

event.

Figure

8

illustrates

events

triggered

by

/CWLD/ADD_TO_QUEUE.

If

an

event

needs

to

be

processed

at

a

future

date,

then

/CWLD/ADD_TO_QUEUE_IN_FUTURE

commits

the

event

to

the

future

event

table

(/CWLD/EVT_FUT).

Specifically,

it

adds

a

row

of

data

for

the

object

name,

verb,

and

key

that

represents

the

event.

In

addition,

it

adds

a

Date

row

which

is

read

by

the

adapter-delivered

batch

program

/CWLD/SUBMIT_FUTURE_EVENTS.

This

batch

program

can

be

scheduled

to

retrieve

events

from

the

future

event

table.

Once

it

retrieves

an

event,

it

calls

/CWLD/ADD_TO_QUEUE

to

trigger

the

event

to

the

current

event

table.

Note:

/CWLD/ADD_TO_QUEUE_IN_FUTURE

uses

the

system

date

as

the

current

date

when

it

populates

the

Date

row

of

the

future

event

table.

Figure

9

illustrates

events

triggered

by

/CWLD/ADD_TO_QUEUE_IN_FUTURE.

Function module:
/CWLD/ADD_TO_QUEUE

Current
event table

Figure

8.

/CWLD/ADD_TO_QUEUE

Future
event tableBatch program:

/CWLD/SUBMIT_FUTURE_EVENTS

Current
event table Retrieve

Function module:
/CWLD/ADD_TO_QUEUE

Function module:
/CWLD/ADD_TO_QUEUE_IN_FUTURE

Figure

9.

/CWLD/ADD_TO_QUEUE_IN_FUTURE

Chapter

3.

Overview

of

the

ABAP

Extension

module

43

For

more

information

on

triggering

events

for

the

future

event

table,

see

Chapter

7,

“Developing

event

detection

for

the

ABAP

Extension

module,”

on

page

89.

All

events

are

added

to

the

current

event

table

using

/CWLD/ADD_TO_QUEUE.

In

addition

to

adding

a

row

of

data

to

the

current

event

table,

/CWLD/ADD_TO_QUEUE

can

be

set

up

for:

v

Event

filtering

v

Event

distribution

v

Event

priority

Event

filtering,

event

distribution,

and

event

priority

are

executed

as

part

of

the

event

trigger

and

by

no

other

program.

They

result

in

either

the

event’s

restriction

(filtering),

or

modification

(event

distribution

and

event

prioritization).

Event

filtering

The

event

trigger

can

be

used

to

filter

out

events

that

you

do

not

want

added

to

the

event

table.

The

adapter

provides

an

ABAP

include

program

(/CWLD/TRIGGERING_RESTRICTIONS)

that

enables

you

to

restrict

specific

events

for

this

purpose.

Event

distribution

Load

balancing

can

be

used

to

distribute

event

processing

across

multiple

connectors

allowing

you

to

process

multiple

events

at

the

same

time.

The

event

trigger

provides

this

capability

through

the

event

distribution

table

(/CWLD/EVT_DIS).

You

can

dedicate

business

objects

to

be

retrieved

by

a

specific

connector.

Also,

event

distribution

can

take

a

single

event

and

replicate

it

one

or

more

times

for

each

subscribed

combination

of

connector

and

integration

broker.

Attention:

If

you

are

using

multiple

connectors

to

poll,

you

must

dedicate

every

subscribed

event

to

a

specific

connector.

Failure

to

do

so

may

result

in

duplicate

events

delivered.

You

must

guarantee

that

there

is

no

dependency

between

objects

dedicated

to

different

connectors,

because

this

may

result

in

events

being

delivered

out

of

sequence.

For

example,

assume

you

have

a

single

integration

broker

named

CrossWorlds1

that

subscribes

to

two

different

business

objects,

BO_A

and

BO_B.

The

BO_A

business

object

is

small

and

can

be

retrieved

quickly

whereas

BO_B

is

large

and

takes

much

longer

to

retrieve.

With

two

connectors

polling,

SAP1connector

and

SAP2connector,

you

can

set

up

the

event

distribution

table

so

that

SAP1connector

retrieves

BO_A

and

SAP2connector

retrieves

BO_B.

SAP1connector

can

continuously

poll

small

objects

of

type

A,

while

SAP2connector

focuses

on

the

larger

type

B

objects.

Note:

For

information

on

how

the

WebSphere

business

integration

system

identifies

each

unique

instance

of

a

WMQI

integration

broker,

see

“Event

request”

on

page

39.

Important:

If

the

event

distribution

table

is

not

configured

for

a

specific

object,

then

each

event

triggered

for

that

object

is

available

for

any

combination

of

connector

and

integration

broker.

Event

priority

You

can

set

the

event

priority

for

each

combination

of

business

object,

connector,

and

integration

broker

by

delaying

the

retrieval

of

events.

An

44

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

event’s

priority

indicates

the

number

of

polls

that

are

needed

before

the

event

is

picked

up

for

delivery.

For

example,

if

you

set

the

priority

of

an

event

to

10,

then

the

connector

polls

the

event

table

ten

times

before

the

event

is

retrieved.

Each

time

the

connector

polls,

the

priority

value

is

reduced

by

one

until

it

reaches

zero.

By

default,

all

events

are

given

a

priority

of

zero.

An

object’s

priority

is

configured

in

the

same

ABAP

table

as

event

distribution.

Figure

10

illustrates

the

event

triggering

functionality

inside

the

SAP

application.

The

events

E1,

E2,

and

E3

are

received

by

the

event

trigger

/CWLD/ADD_TO_QUEUE.

E1

represents

a

Customer

event

and

E3

represents

an

Order

event.

Event

distribution

is

set

up

so

that

all

Customer

objects

are

handled

by

SAP1connector

and

all

Order

objects

are

handled

by

SAP2connector.

In

this

environment,

both

connectors

use

the

same

integration

broker.

Because

E1

is

a

Customer

object,

it

is

polled

by

SAP1connector

and

because

E3

is

an

Order

object,

it

is

polled

by

SAP2connector.

E2

is

an

Inventory

object

that

is

filtered

out

by

code

in

the

restriction

program

/CWLD/TRIGGERING_RESTRICTIONS

that

restricts

inventory

objects

to

a

specific

warehouse.

Event

persistence:

Once

the

event

trigger

inserts

an

event

into

the

event

table,

the

event

is

committed

to

the

database

with

its

event

distribution

and

event

priority

values

set.

At

this

time,

only

polling

can

modify

the

event.

When

the

event

polling

processes

is

completed,

meaning

the

event

was

retrieved

from

the

SAP

application

and

processed

by

the

Java

component

of

the

connector,

a

copy

of

the

processed

event

is

added

to

the

event

archive

table

(/CWLD/EVT_ARC).

The

original

event

is

then

deleted

from

the

event

table.

Note:

You

can

resubmit

an

event

from

the

archive

table.

Keep

in

mind

that

the

event

is

simply

moved

to

the

event

table

and

is

not

triggered

again.

Specifically,

it

does

not

pass

back

through

event

filtering,

event

distribution,

and

event

priority.

Event
distribution

Event
filtering

Current
event
table

/CWLD/ADD_TO_QUEUE

E1

E3

E1

E3

E1
Event

detection
mechanism

E2

E3

SAP1connector

SAP2connector

Figure

10.

Event

priority

with

function

module

/CWLD/ADD_TO_QUEUE

Chapter

3.

Overview

of

the

ABAP

Extension

module

45

46

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

4.

Installing

and

customizing

the

ABAP

Extension

module

This

chapter

describes

the

installation

and

customization

of

the

ABAP

Extension

Module

only

and

assumes

that

you

have

already

installed

and

configured

the

connector.

For

more

information

on

installing

and

configuring

the

connector,

see

Chapter

2,

“Installing

and

configuring

the

connector,”

on

page

11

and

Appendix

B,

“Standard

configuration

properties

for

connectors,”

on

page

241.

Customizing

the

connector

is

optional,

but

recommended.

This

chapter

contains

the

following

sections:

v

“Connector

transport

file

installation”

v

“Verifying

connector

transport

file

installation”

on

page

51

v

“Enabling

the

SAP

application

for

the

connector”

on

page

53

v

“Modifying

adapter-delivered

ABAP

objects”

on

page

55

v

“Preventing

event

ping-pong”

on

page

55

All

of

the

components

of

the

connector

can

be

found

in

the

\connectors\SAP

directory

for

Windows

and

the

/connector/SAPand

/bin

directories

for

UNIX.

The

transports

are

installed

on

an

SAP

R/3

application

or

database

server

as

described

below

in

“Connector

transport

file

installation.”

Note:

In

this

document

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

(\).

All

file

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

Connector

transport

file

installation

The

transport

files

for

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

4.x)

contain

a

variety

of

objects,

such

as

table

structures,

functions,

and

data.

These

development

objects

must

be

imported

into

your

SAP

installation

to

provide

specific

functionality

required

by

the

ABAP

Extension

Module.

Each

transport

file

is

included

in

a

.zip

file.

For

example,

the

transport

file

for

the

SAP

R/3

version

4.x

Primary

transport

is

located

in

the

4_Primary.zip

file.

Once

the

required

transport

files

have

been

successfully

loaded,

the

business

object-specific

transports

can

be

loaded

in

any

order.

See

the

transport

note

included

in

each

transport

.zip

file

for

detailed

information

about

the

transport

file.

Creating

the

namespace

for

connector

transport

installation

Create

the

namespace

for

the

connector

before

installing

the

connector

transport

files.

This

step

is

mandatory

for

SAP

R/3

version

4.0,

as

some

of

the

transports

will

fail

if

the

namespace

is

not

created.

Note:

You

must

create

the

connector’s

namespace

prior

to

modifying

one

of

the

connector’s

ABAP

objects

in

any

SAP

R/3

application

version

4.x.

©

Copyright

IBM

Corp.

2003,

2004

47

Creating

the

/CWLD/

namespace

1.

Open

the

Workbench

Organizer:

Tools

window

(transaction

SE03).

2.

Expand

the

Administration

menu

and

double-click

on

the

Display/change

namespaces

option.

3.

Click

the

Display->Change

button

(Ctrl+F1).

4.

Click

the

Continue

button

to

close

the

Information

window.

5.

Click

the

New

entries

button

(F5)

and

type

/CWLD/

in

the

Namespace

field.

6.

Select

the

Namespace

role

field,

expand

it

(F4)

to

see

options,

and

then

select

Recipient

(C).

7.

Type

CrossWorlds

Namespace

in

the

Short

text

field

and

type

CrossWorlds

in

the

Owner

field.

Click

the

save

button

(Ctrl+S).

If

your

system

is

set

up

to

track

customizing

changes,

you

will

be

prompted

for

a

change

request

which

will

allow

you

to

transport

the

namespace

to

another

system.

Making

the

namespace

available

for

modifications

ABAP

objects

in

the

connector’s

namespace

cannot

be

modified

until

you

make

the

Namespace

available

for

modification.

To

update

SAP4.x

delivered

ABAP

objects,

you

must

have

a

repair

license

to

modify

the

objects.

Contact

IBM

technical

support

to

obtain

the

license.

1.

Open

the

Workbench

Organizer:

Tools

window

(transaction

SE03).

2.

Expand

the

Administration

menu

and

double-click

on

the

Display/change

namespaces

option.

3.

Click

the

Display->Change

button

(Ctrl+F1).

4.

Click

the

Continue

button

to

close

the

Information

window.

5.

Double-click

on

/CWLD/

and

enter

the

repair

license.

Click

the

Save

button

(Ctrl+S).

6.

Click

the

Back

button

(F3)

twice,

expand

the

Administration

menu

and

double-click

on

the

Set

system

change

option.

7.

Place

a

check

mark

in

the

Modifiable

column

of

the

Namespace

row.

Click

the

Save

button

(Ctrl+S).

Connector

transport

files

The

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

includes

seven

connector

transport

files.

Modifications

required

by

the

adapter

are

handled

by

these

connector

transport

files.

The

Primary,

Utilities,

and

Request

transport

files

are

required.

The

following

is

a

list

of

the

SAP

R/3

version

4.x

connector

transport

files.

To

ensure

that

all

necessary

tables

are

created

before

the

data

for

those

tables

is

added,

you

must

install

the

transports

in

the

order

listed.

These

files

can

be

found

in

\connectors\SAP\dependencies\transports_4x.

v

4_Primary

v

4_Utilities

v

4_Request

v

4_Delivery

v

4_NumberRange

v

4_Tools_Maintenance

v

4_Tools_Development

48

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

functionality

provided

by

the

Primary,

Utilities,

Request,

and

Delivery

transport

files

make

up

the

runtime

components.

The

Tools_Maintenance

and

Tools_Development

transport

files

can

be

installed

at

anytime

after

the

required

transport

files

are

installed.

They

are

not

required

for

your

runtime

environment.

4_Primary

This

transport

file

contains

the

development

objects,

which

should

be

loaded

only

once

into

the

system.

It

contains

the

number

range

objects,

the

development

classes,

the

dynamic

transaction

declaration

include

program

as

well

as

the

restriction

include

program,

which

can

be

used

to

make

customer-specific

changes

to

the

triggering

logic.

Important:

If

you

apply

this

transport

file

to

a

system

that

already

has

the

connector

running

on

it,

the

contents

of

the

transport

file

may

overwrite

changes

that

were

made

to

the

existing

environment.

4_Utilities

This

client-independent

transport

file

contains

objects

and

functionality

that

are

shared

among

the

request,

delivery,

development,

and

maintenance

components.

For

example,

it

contains

the

log

and

data

elements.

4_Request

This

client-independent

transport

file

contains

the

functionality

required

to

support

business

object

request

operations.

4_Delivery

This

client-independent

transport

file

contains

the

functionality

required

to

support

event

delivery

operations

including

event

triggering

and

event

polling.

4_Number

Range

This

client-dependent

transport

file

contains

the

four

number

ranges

in

their

initial

state.

You

can

use

these

intervals

or

create

the

number

range

intervals

themselves.

Attention:

Reimporting

the

Number

Range

transport

file

initializes

your

existing

number

range

intervals

for

the

connector.

This

corrupts

the

data

in

the

connector’s

log,

current

event,

future

event,

and

archive

tables

if

those

tables

are

not

refreshed

before

reusing.

This

transport

file

can

be

installed

at

any

time

after

the

Primary

transport

has

been

installed.

4_Tools_Maintenance

This

client-independent

transport

file

contains

the

functionality

required

to

support

maintenance

operations

such

as

displaying

the

log

statistics

and

event

tables.

4_Tools_Development

This

client-independent

transport

file

contains

the

functionality

required

to

support

the

development

of

objects.

Chapter

4.

Installing

and

customizing

the

ABAP

Extension

module

49

Installing

connector

transport

files

The

connector

transport

files

make

all

necessary

modifications

to

SAP

by

importing

programs

and

other

development

objects

delivered

with

theIBM

WebSphere

Business

Integration

Adapter

for

mySAP.com.

They

do

not

alter

any

SAP

programs

or

modify

user

exits.

Attention:

If

you

are

reapplying

transports,

note

that

this

resets

your

environment.

Any

development

done

prior

to

reapplying

the

transport

files

will

be

overwritten.

In

the

following

instructions,

SID

refers

to

the

SAP

system

ID,

and

<TransportFileName>

refers

to

the

name

of

the

transport

file.

However,

the

characters

that

make

up

the

transport

file

name

appear

in

a

different

order

in

the

installation

directory

from

the

way

the

name

is

passed

as

a

parameter

to

the

various

tp

commands.

In

the

\usr\sap\trans\cofiles

directory,

the

format

of

a

transport

file

name

is

K9xxxxx.SID,

but

when

the

filename

is

passed

as

a

parameter

it

has

the

format

SIDK9xxxxx.

For

example,

the

file

name

K912345.D30

is

passed

as

a

parameter

as

D30K912345

because

D30

is

the

SID

of

the

source

system.

Attention:

Do

not

change

the

names

of

the

connector

transport

files.

To

install

the

transports:

1.

Log

in

as

the

SAP

administrator,

<SID>adm.

2.

Copy

the

transports

to

the

SAP

database

server.

There

are

two

kinds

of

transport

files:

a.

Copy

files

that

have

names

beginning

in

K

to

the

\usr\sap\trans\cofiles

directory.

b.

Copy

the

other

files

to

the

\usr\sap\trans

data

directory.
3.

Check

the

connection

to

the

database

and

determine

the

path

of

the

tpparam

file

by

running

the

tp

connect

command:

tp

connect

<SID>

If

this

command

fails,

try

adding

the

path

of

the

tpparam

file

as

a

second

parameter:

tp

connect

<SID>

pf

=

<path

of

tpparam>

For

example,

if

the

SID

is

P11

and

the

path

of

the

tpparam

file

is

\usr\sap\trans\bin\tpparam,

the

command

is:

tp

connect

P11

pf

=

\usr\sap\trans\bin\tpparam

If

tp

connect

succeeds

when

you

specify

the

path

of

the

tpparam

file

and

fails

when

you

do

not,

you

should

specify

the

optional

tpparam

path

in

the

commands

described

in

step

3.

4.

Import

the

transport

files

in

one

of

the

following

two

ways:

v

“Use

adapter-delivered

commands”

v

“Use

an

SAP

transaction

code”

on

page

51

Use

adapter-delivered

commands

In

\usr\sap\trans\bin,

execute

the

following

commands

for

each

transport,

in

the

order

specified:

tp

addtobuffer

<TransportFileName>

<SID>

pf

=

tpparamFilePath

tp

import

<TransportFileName>

<SID>

u023689

CLIENT=<CLIENT#>

pf

=

tpparamFilePath

50

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Use

an

SAP

transaction

code

In

the

Transport

Management

s

ystem

(transaction

STMS):

1.

Click

the

Import

overview

icon

(F5).

2.

Double-click

the

appropriate

queue

to

be

updated.

3.

In

the

menu

bar,

click

Extras,

then

click

Other

requests,

and

then

click

Add.

4.

Populate

the

transport

request

field,

and

then

click

the

check

mark

(enter).

5.

When

the

Add

Transport

Request

confirmation

window

appears,

click

Yes

to

attach

the

import

to

the

queue.

6.

Place

the

cursor

on

the

transport

that

was

just

added.

7.

In

the

menu

bar,

click

Request,

and

then

click

Import.

8.

Populate

the

Target

client

field,

and

click

the

check

mark

to

import

the

transport

file.

You

must

install

the

transports

in

the

order

listed

in

“Connector

transport

file

installation”

on

page

47.

After

the

transports

are

installed,

change

the

development

class

to

follow

the

migration

path

of

your

development

classes.

Use

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME)

to

do

the

following:

1.

Click

the

Tools

tab,

and

then

click

the

Transport

Layer

button.

2.

Select

the

appropriate

Transport

layer

entry,

and

then

click

the

Save

button.

Attention:

Any

changes

you

make

to

development

objects

that

were

in

the

connector

transports

should

be

well

documented

outside

of

SAP.

Changes

can

be

overwritten

by

the

next

release

of

transport

files.

If

changes

are

overwritten,

they

must

be

reapplied

manually.

For

more

information

on

upgrade

issues,

see

Chapter

10,

“Upgrading

the

ABAP

Extension

module,”

on

page

115.

Verifying

connector

transport

file

installation

To

verify

that

the

connector

transport

files

are

installed

properly,

you

must:

v

“Verify

that

transport

files

were

moved

to

the

SAP

application”

v

“Verify

that

SAP

generated

the

objects

successfully”

on

page

52

Verify

that

transport

files

were

moved

to

the

SAP

application

To

verify

that

the

connector

transport

files

were

physically

moved

into

the

SAP

application,

examine

the

transport

logs

in

one

of

the

following

ways:

v

Use

the

Transport

Organizer

(transaction

SE01)

v

Use

the

Transport

Management

System

graphic

interface

(transaction

STMS)

Using

the

Transport

Organizer

(transaction

SE01)

To

use

the

transport

organizer

(transaction

SE01):

1.

Populate

the

number

field

with

the

name

of

the

transport

file.

2.

Click

Display

to

see

the

log.

Using

the

Transport

Management

System

graphic

interface

(transaction

STMS)

To

use

the

Transport

Management

System

graphic

interface

(transaction

STMS):

1.

Click

the

Import

overview

icon

(F5).

2.

Double-click

the

appropriate

queue.

3.

Right-click

the

transport

number,

and

then

select

Logs.

Chapter

4.

Installing

and

customizing

the

ABAP

Extension

module

51

4.

Examine

the

log

to

see

if

the

installation

was

successful.

Verify

that

SAP

generated

the

objects

successfully

To

verify

that

SAP

generated

the

objects

successfully:

1.

Go

to

transaction

SE38

2.

Enter

the

program

/CWLD/CONSTANTS.

3.

Select

Source

Code,

and

then

click

Display.

4.

From

the

Program

menu,

click

Generate.

5.

Click

Select

All,

and

then

click

Continue

(F2).

This

generates

all

of

the

adapter

programs

that

include

these

programs.

If

you

get

the

response

Programs

successfully

generated,

you

can

assume

that

the

transport

was

successful.

Upgrading

the

ABAP

Extension

Module

Upgrading

the

connector

involves

installing

the

latest

adapter

files

and

loading

the

latest

ABAP

transport

files

for

the

ABAP

Extension

Module.

For

additional

upgrade

information,

see

the

System

Installation

Guide

for

UNIX

or

for

Windows.

It

is

recommended

that

you

backup

your

current

connector

files

(for

example

the

configuration

and

message

files

CN_SAP.txt

and

SAPConnector.txt)

before

starting.

Before

loading

the

connector

definition

into

the

repository,

you

may

want

to

remove

all

supported

object

references

except

those

you

need.

Attention:

If

you

install

the

latest

Primary

and

Number

Range

transport

files,

you

will

overwrite

your

existing

number

range

interval

information.

Overwriting

the

number

range

intervals

may

cause

existing

events

and

objects

to

be

out

of

sync

because

the

number

range

interval

is

reset

to

zero

(0).

After

you

install

the

latest

version

of

the

connector,

install

the

latest

ABAP

transport

files

for

the

version

of

SAP

you

are

going

to

use.

Without

these,

you

cannot

transport

the

existing

components

of

the

ABAP

Extension

Module.

Transport

installation

is

described

in

“Connector

transport

file

installation”

on

page

47.

Keep

in

mind

that

installing

new

transport

files

overwrites

any

modifications

to

adapter-delivered

code.

Make

sure

that

you

use

the

correct

transport

files

for

your

environment.

For

example,

if

you

are

using

an

SAP

R/3

version

4.6

environment,

install

the

adapter’s

4.x

transport

files.

Doing

so

ensures

that

any

warning

or

errors

you

get

when

you

load

your

objects

are

in

relation

to

the

SAP

R/3

version

4.x

environment

and

not

anything

else

that

was

brought

over

from

SAP

R/3

version

3.x.

This

allows

you

to

resolve

problems

that

relate

to

differences

in

SAP

R/3

version

4.x.

After

you

install

the

latest

version

of

the

connector

and

the

latest

ABAP

transport

files

for

the

version

of

SAP

you

are

going

to

use.,

configure

the

new

connector.

If

your

are

upgrading

from

the

C++

version

of

the

connector

to

the

latest

Java-based

version,

you

need

to

configure

the

new

connector-specific

configuration

properties

“Modules”

on

page

23

and

“Namespace”

on

page

23.

For

more

information

on

these

properties,

see

“Connector-specific

configuration

properties”

on

page

18.

52

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Enabling

the

SAP

application

for

the

connector

After

installing

the

connector

and

configuring

the

standard

and

connector-specific

configuration

properties,

you

have

the

option

of

modifying

the

event

handling

and

logging

capabilities

for

the

connector

from

within

the

SAP

application.

Setting

up

event

distribution

Load

balancing

distributes

event

and

business

object

request

processing

across

multiple

connectors.

The

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

can

handle

only

one

transaction

at

a

time.

However,

you

can

process

multiple

events

and

business

objects

at

the

same

time

if

you

set

up

multiple

connectors

to

handle

specific

business

objects.

For

more

information

on

setting

up

multiple

connectors,

see

“Installing

multiple

connectors”

on

page

16.

To

set

up

event

distribution

for

multiple

connectors:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

2.

Click

the

Configuration

tab,

and

then

click

the

Event

Distribution

button.

3.

Click

the

New

Entries

button

(F5),

and

in

the

New

Entries

window,

enter

the

business

object

name,

connector

name,

and

integration

broker

name.

4.

Enter

a

number

in

the

counter

field

for

each

business

object.

The

combination

of

the

business

object

and

counter

provides

a

unique

key

for

the

event

distribution

table.

The

counter

can

be

any

number

up

to

six

digits.

Note:

In

a

test

environment,

you

may

have

multiple

users

testing

the

same

business

object

that

is

subscribed

to

by

multiple

connectors.

If

each

user

wants

only

a

certain

event

for

that

business

object,

then

you

can

specify

a

user

name

to

differentiate

between

which

event

is

passed

to

the

combination

of

which

connector

and

which

integration

broker.

In

the

User

(Event

Trigger)

field,

enter

the

appropriate

user

name

for

the

business

objects.

For

information

on

how

the

WebSphere

business

integration

system

identifies

each

unique

instance

of

a

WMQI

integration

broker,

see

“Event

request”

on

page

39.

Setting

up

event

filtering

The

configuration

table

in

the

SAP

application

cannot

accommodate

all

modifications.

Therefore,

the

adapter

provides

an

ABAP

include

program

that

can

be

modified

to

filter

events.

This

program,

/CWLD/TRIGGERING_RESTRICTIONS,

is

called

from

within

the

event

trigger

/CWLD/ADD_TO_QUEUE,

to

enable

additional

filtering

of

events.

Note:

You

must

have

developer

privileges

to

make

changes

because

the

code

needs

to

be

recompiled.

To

view

or

modify

the

include

program

/CWLD/TRIGGERING_RESTRICTIONS:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

2.

Click

the

Configuration

tab,

and

then

click

the

Event

Restriction

button.

Setting

up

event

priority

You

can

set

the

priority

of

an

event

to

be

processed

based

on

its

importance.

By

setting

the

priority

of

each

combination

of

business

object,

integration

broker,

and

connector,

you

can

delay

a

connector’s

retrieval

of

an

event.

For

example,

if

you

set

the

priority

of

an

event

to

10,

the

connector

polls

the

event

table

ten

times

before

retrieving

the

event.

So,

if

the

connector

polls

the

event

table

every

5

seconds,

the

Chapter

4.

Installing

and

customizing

the

ABAP

Extension

module

53

connector

picks

up

the

event

after

50

seconds.

Each

time

the

connector

polls,

the

priority

value

is

reduced

by

one

until

the

event

is

retrieved

and

processed.

To

set

the

priority

of

an

event:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

2.

Click

the

Configuration

tab,

and

then

click

the

Event

Distribution

button.

3.

Fill

in

the

Priority

column

with

a

value

between

1

and

99

for

the

appropriate

business

object.

Increasing

log

tablespace

size

The

connector’s

log

tables

are

located,

by

default,

in

the

tablespace

named

PSAPUSER1D,

and

the

indexes

are

located

in

tablespace

PSAPUSER1I.

The

PSAPUSER1D

and

PSAPUSER1I

SAP

application

tablespaces,

which

are

reserved

for

customer

use,

are

typically

small.

Because

of

the

default

size,

these

tablespaces

can

fill

up

quickly,

depending

on

the

level

of

activity

and

the

logging

level

of

the

SAP

installation

for

the

adapter.

To

view

the

current

size

of

these

tablespaces,

go

to

transaction

DB02,

and

then

click

the

Current

Sizes

button.

The

volume

of

events

captured

by

the

WebSphere

business

integration

system

determines

the

size

needed

for

these

tablespaces.

If

the

default

sizes

are

too

small,

ask

the

SAP

database

administrator

to

modify

them.

Verifying

number

ranges

for

transport

objects

There

are

four

objects

for

the

WebSphere

business

integration

system

that

must

have

an

adequate

number

range

within

the

SAP

application.

When

the

transports

are

installed,

the

following

objects

and

their

default

number

ranges

are

set:

v

/CWLD/EVT

v

/CWLD/IDOC

v

/CWLD/LOG

v

/CWLD/OBJA

Verify

that

the

associated

number

ranges

are

set

correctly.

To

view

the

number

ranges:

1.

Go

to

transaction

SNRO.

2.

Populate

the

Object

field

with

the

object

name

(for

example,

/CWLD/EVT).

3.

Click

Number

Ranges,

and

then

click

Intervals.

Attention:

If

you

reinstall

the

4_Primary

or

4_Delivery

connector

transport

in

an

installation

where

events

have

already

been

generated,

new

events

may

be

created

using

existing

event

IDs.

To

prevent

this

problem,

turn

off

logging

by

going

to

the

Configuration

tab

in

IBM

CrossWorlds

Station,

and

then

truncate

the

log

completely

before

reimporting

the

connector

transport

file.

Once

the

connector

transport

file

has

been

successfully

loaded,

turn

logging

back

on.

For

more

information

on

truncating

the

event

log,

see

“Setting

up

truncation

of

the

event

log”

on

page

110.

54

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Modifying

adapter-delivered

ABAP

objects

All

adapter

objects

such

as

tables,

function

modules,

and

programs

use

the

product

namespace

/CWLD/.

If

you

need

to

modify

adapter-delivered

ABAP

code,

you

must

obtain

a

modification

key

by

contacting

IBM

technical

support.

Preventing

event

ping-pong

Ping-pong

occurs

when

the

successful

execution

of

a

request

to

an

application

triggers

an

event

in

that

application

that

results

in

an

event

being

created

in

the

event

table.

If

the

connector

is

set

to

poll

the

event

table,

it

picks

up

the

new

event,

sends

it

back

to

the

original

source

application,

which

in

turn

triggers

its

own

additional

event.

This

new

event

in

the

source

application

continues

the

cycle.

Note:

When

the

WebSphere

InterChange

Server

is

the

integration

broker,

collaboration

look-up

and

cross-reference

mapping

should

prevent

a

duplicate

record

from

being

created

in

the

source

application.

However,

this

additional

processing

is

unnecessary.

To

prevent

ping-pong

with

the

connector,

do

the

following:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

2.

Click

the

Tools

tab,

and

then

click

the

Config

Objects

button.

3.

Click

the

New

Entries

button

and

enter

the

following

information:

Configuration

name—Trigger:

NoEventForUser

Text—Prevent

triggering

for

certain

users

4.

Return

to

the

Configuration

Tab

in

IBM

CrossWorlds

Station,

and

then

click

the

Configuration

Values

button.

5.

Click

the

New

Entries

button,

and

then

add

an

entry

for

each

User

Id

for

which

you

want

to

prevent

triggering

of

events.

v

Configuration

Name—Trigger:

NoEventForUser

v

Counter—Any

Number

v

Configuration

value—User

Id

(connector

name)

Note:

Keep

in

mind

that

this

prevents

the

connector

from

triggering

events.

Chapter

4.

Installing

and

customizing

the

ABAP

Extension

module

55

56

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

5.

Business

object

processing

in

the

ABAP

Extension

module

This

chapter

discusses

business

object

processing

for

the

ABAP

Extension

Module.

It

provides

a

detailed

description

of

how

the

connector

processes

business

objects.

The

chapter

is

set

up

to

show

the

progression

of

a

business

object

through

the

Java

and

ABAP

components

of

the

connector.

This

chapter

contains

the

following

sections:

v

“Business

object

conversion

to

a

flat

structure”

on

page

58

v

“Business

object

data

routing

to

ABAP

handlers”

on

page

61

v

“How

ABAP

handlers

process

business

object

data”

on

page

63

v

“Flat

structure

conversion

to

a

business

object”

on

page

67

Business

object

processing

for

the

extension

module

of

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

4.x)

is

the

same

for

all

business

objects

regardless

of

the

specific

native

SAP

API

that

is

used.

For

example,

if

you

develop

a

business

object

based

on

a

Call

Transaction

or

an

IDoc,

the

business

object

data

is

processed

the

same

way.

The

processing

is

the

same

whether

a

business

object

is

sent

into

the

SAP

application

as

a

retrieve

performed

as

part

of

event

notification

or

as

a

business

object

request.

The

business

object’s

verb

also

does

not

change

the

processing.

Figure

11

illustrates

the

conversion

and

processing

of

an

application-specific

business

object

to

a

flat

structure

and

then

back

to

an

application-specific

business

object.

Note

that

the

business

object

data

that

is

passed

out

of

the

SAP

application

must

have

the

same

structure

as

the

data

passed

in,

but

the

data

might

not

have

the

same

values.

©

Copyright

IBM

Corp.

2003,

2004

57

Business

object

processing

consists

of

four

steps.

The

four

steps

listed

below

correspond

to

the

numbers

in

Figure

11.

1.

The

connector

converts

an

application-specific

business

object

into

a

flat

structure

containing

business

object

data

and

passes

the

data

to

the

SAP

application.

2.

The

connector’s

function

module

/CWLD/RFC_DO_VERB_NEXTGEN

dynamically

routes

the

business

object

data

to

an

ABAP

handler.

3.

The

ABAP

handler

processes

the

business

object

data,

generates

business

object

response

data,

and

returns

new

business

object

data

to

the

connector

through

/CWLD/RFC_DO_VERB_NEXTGEN.

4.

The

connector

receives

the

new

business

object

data,

and

uses

it

and

the

business

object

definition

of

the

application-specific

business

object

to

create

a

new

business

object

to

pass

to

the

integration

broker.

Business

object

conversion

to

a

flat

structure

As

a

first

step

in

business

object

processing,

the

connector

converts

a

business

object

into

a

flat

structure

that

can

be

processed

in

the

SAP

application.

The

format

of

the

flat

structure

is

the

same

for

all

types

of

business

objects

(such

as

Call

Transaction-based

or

IDoc-based

business

objects).

The

flat

structure

is

reformatted

data

from

an

application-specific

business

object.

The

only

difference

between

the

Business object router
/CWLD/RFC_DO_VERB_NEXTGEN

ABAP handlers

BOHandler

Connector
module

WebSphere Business
InterChange Server

SAP R/3

Flat
Structure

Flat
Structure

3

1

2

4

Application-
Specific

Business Object

Application-
Specific

Business Object

Connector
module

Figure

11.

Business

object

processing

58

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

two

forms

of

data

is

that

the

flat

structure

does

not

maintain

parent

and

child

business

object

relationships.

Therefore,

the

connector

relies

on

a

set

of

rules

to

create

a

flat

structure.

When

converting

a

business

object

into

a

flat

structure,

the

connector

creates

a

structure

in

memory

and

then

populates

it

with

data

from

the

business

object.

In

doing

so,

it

passes

the

following

data

into

the

SAP

application

from

the

business

object:

v

Business

object

name

v

Business

object

application-specific

information

v

Business

object

verb

v

Business

object

verb

application-specific

information

v

Attribute

name

v

Attribute

property

IsKey

v

Attribute

property

AppText

v

Attribute

value

Table

8

shows

the

generic

flat

structure

of

a

business

object.

The

connector

uses

this

flat

structure

when

adding

the

business

object

data

from

a

WebSphere

business

object.

Table

8.

Generic

flat

structure

representation

of

a

WebSphere

business

object

for

SAP

Field

name

Data

type

Length

Description

ATTR_NAME

CHAR

32

Attribute

Name

(example,

CustomerId)

BLANK1

CHAR

1

Delimiter

ATTR_VALUE

CHAR

200

Attribute

Value

(example,

00000103)

BLANK2

CHAR

1

Delimiter

ISKEY

CHAR

1

1=

true,

0

=

false;

attributes

only

BLANK3

CHAR

1

Delimiter

ISNEW

CHAR

1

1

=

BO;

0

=

verb

or

attribute

BLANK4

CHAR

1

Delimiter

PEERS

CHAR

6

Indicates

number

of

peers

of

an

array

of

business

objects

BLANK5

CHAR

1

Delimiter

OBJ_NUMBER

CHAR

6

Not

used

BLANK6

CHAR

1

Delimiter

APPTEXT

CHAR

120

Application-specific

information

of

object,

verb

or

attribute

BLANK7

CHAR

1

Delimiter

Note:

The

BLANKn

field

names

always

contain

a

single

character

(CHAR)

space

and

should

never

be

populated.

In

order

for

the

data

conversion

to

work

properly,

the

business

object

data

in

the

flat

structure

must

strictly

adhere

to

a

set

of

rules.

These

rules

are

defined

in

this

initial

data

conversion

step:

v

Each

business

object

attribute

is

placed

sequentially

into

a

flat

structure,

where

one

row

corresponds

to

one

attribute.

v

Hierarchical

business

objects

are

converted

as

depth

and

then

breadth.

Chapter

5.

Business

object

processing

in

the

ABAP

Extension

module

59

When

the

connector

populates

the

flat

structure

with

business

object

data,

the

connector

loops

through

each

business

object

twice,

beginning

with

the

top-level

business

object.

1.

In

the

first

pass,

it

sets

all

simple

attributes.

Each

attribute

equals

one

row

in

the

flat

structure.

2.

In

the

second

pass,

it

recursively

executes

the

same

processing

in

step

1

for

each

child

business

object.

Attributes

that

represent

child

business

objects

are

not

included

in

their

parents.

Instead,

each

child

that

contains

data

is

created

as

a

complete

business

object.

The

result

is

a

single

list

of

attributes

ordered

by

depth,

then

breadth.

Figure

12

illustrates

the

data

conversion

of

a

WebSphere

business

object

for

SAP

into

a

flat

data

structure.

The

conversion

of

data

always

follows

the

rule

of

depth

first

and

then

breadth.

In

the

example,

the

top-level

parent

business

object,

SAP_Order,

has

two

children,

SAP_LineItem

(1)

and

SAP_LineItem

(2),

which

are

considered

peers.

SAP_LineItem

(1)

has

one

child

business

object,

SAP_ScheduleLines.

It

is

important

to

understand

the

ordering

of

the

business

objects

and

their

attributes

when

designing

a

business

object

definition.

The

following

tables

illustrate

the

result

of

the

conversion

of

an

WebSphere

business

object

to

a

flat

structure.

Table

9

on

page

61

represents

a

flat

structure

for

a

flat

business

object,

SAP_Material,

whose

key

value

is

ItemID.

In

this

example,

there

is

no

Order number

Parent business object

Customer number

SAP_LineItem (2)

SAP_Order

Item number

Material

SAP_ScheduleLines (1)

SAP_LineItem (1)

Delivery date

Quantity

SAP_ScheduleLines

Customer number

Item number

Material

Delivery date

Quantity

Order numberChild business object

Child business object

SAP_Order

SAP_LineItem

SAP_ScheduleLines

Item number

Material

SAP_ScheduleLines

SAP_LineItem (2)

Item number

Material

SAP_LineItem

Flat structure

SAP_ScheduleLines (null)

Figure

12.

Conversion

from

a

business

object

to

a

flat

structure

60

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

application-specific

information

for

the

business

object

or

any

of

the

attributes.

Table

10

represents

a

flat

structure

of

a

hierarchical

business

object

based

on

an

IDoc

Sales

Order.

Table

9.

Flat

business

object

SAP_Material

ATTR_NAME

ATTR_VALUE

ISKEY

ISNEW

PEERS

OBJ_

NUMBER

APPTEXT

BoName

SAP_Material

0

1

1

(blank)

(blank)

BoVerb

Retrieve

0

0

1

(blank)

:/CWLD

/DYNAMIC_RETRIEVE

ItemID

000000000000001179

1

0

1

(blank)

(blank)

ShortDesc

CxIgnore

0

0

1

(blank)

(blank)

ObjectEventID

SAP_124

0

0

1

(blank)

(blank)

In

this

example,

there

is

no

application-specific

information

for

the

business

object

or

any

of

the

attributes.

Table

10.

Hierarchical

business

object

based

on

an

IDoc

sales

order

ATTR_NAME

ATTR_VALUE

ISKEY

ISNEW

PEERS

OBJ_

NUMBER

APPTEXT

BoName

SAP_Order

0

1

1

(blank)

YXRV4B01

BoVerb

Create

0

0

1

(blank)

[archive:methods]

Currency

USD

0

0

1

(blank)

E1EDK01:CURCY

OrderId

CxIgnore

1

0

1

(blank)

E1EDK01:BELNR

ObjectEventId

SAP_124

0

0

1

(blank)

E1EDK01:

ObjectEventId

BoName

SAP_LineItem

0

1

2

(blank)

Z1XRV40

BoVerb

Create

0

0

2

(blank)

(blank)

Createdby

User1

1

2

(blank)

Z1XRV40:ERNAM

ObjectEventId

SAP_125

0

0

2

(blank)

Z1XRV40:

ObjectEventId

BoName

SAP_

ScheduleLines

0

1

1

(blank)

E1EDK14

BoVerb

Create

0

0

1

(blank)

(blank)

Qualifier

001

1

0

1

(blank)

Z1XRV40:QUALF

OrganizationId

1000

0

0

1

(blank)

E1EDK14:ORGID

ObjectEventId

SAP_126

0

0

1

(blank)

E1EDK14:

ObjectEventId

BoName

SAP_LineItem

0

1

2

(blank)

Z1XRV40

BoVerb

Create

0

0

2

(blank)

(blank)

Createdby

User1

1

0

2

(blank)

Z1XRV40:ERNAM

ObjectEventId

SAP_127

0

0

2

(blank)

Z1XRV40:

ObjectEventId

The

first

two

rows,

BoName

and

BoVerb,

are

added

by

the

connector

for

each

business

object.

BoName

and

BoVerb

are

keywords

that

cannot

be

used

as

business

object

attributes.

Business

object

data

routing

to

ABAP

handlers

Once

the

business

object

data

is

converted

into

a

flat

structure,

the

business

object

data

is

passed

into

SAP

memory

by

calling

the

adapter’s

ABAP

function

module

/CWLD/RFC_DO_VERB_NEXTGEN.

/CWLD/RFC_DO_VERB_NEXTGEN

does

not

manipulate

the

business

object

data;

it

simply

routes

it

to

the

appropriate

ABAP

handler

for

Chapter

5.

Business

object

processing

in

the

ABAP

Extension

module

61

further

processing.

After

/CWLD/RFC_DO_VERB_NEXTGEN

passes

the

business

object

data

to

an

ABAP

handler,

it

waits

for

business

object

data

to

be

returned.

Note:

Remember

that

every

business

object

retrieve

and

request

is

processed

through

/CWLD/RFC_DO_VERB_NEXTGEN.

/CWLD/RFC_DO_VERB_NEXTGEN

uses

a

business

object’s

verb

application-specific

information

to

determine

which

ABAP

handler

processes

the

business

object

data.

At

runtime,

/CWLD/RFC_DO_VERB_NEXTGEN

reads

the

verb

application-specific

information

and

passes

the

business

object

data

to

the

specified

ABAP

handler.

Every

ABAP

handler

must

reserve

the

use

of

verb

application-specific

information

for

the

connector.

The

format

for

the

verb

application-specific

information

is:

:function1:function2:function3

where

/CWLD/RFC_DO_VERB_NEXTGEN

executes

function1,

passing

function2

and

function3

as

parameters.

For

example,

Customer

Update

and

Material

Retrieve

execute

only

function1:

For

Create,

Update,

and

Delete

verbs,

specify

:/CWLD/RFC_DYNAMIC_TRANSACTION

For

the

Retrieve

verb,

specify

:/CWLD/RFC_DYNAMIC_RETRIEVE

One

of

the

ABAP

handlers

provided

by

the

adapter

is

function

module

/CWLD/IDOC_HANDLER.

This

ABAP

handler

reformats

the

data

of

the

flat

structure

into

an

instance

of

an

IDoc

definition

and

passes

that

reformatted

data

to

another

ABAP

handler

written

to

handle

that

specific

type

of

IDoc.

The

following

examples

illustrate

the

use

of

the

IDoc

Handler

API:

Sales

Order

Update

=

:/CWLD/IDOC_HANDLER:Y_XR_ORDER_C2

Sales

Order

Retrieve

=

:/CWLD/IDOC_HANDLER:Y_XR_ORDER_C4

In

the

examples,

/CWLD/IDOC_HANDLER

is

executed

and

passes

the

second

function

module

name

as

well

as

the

business

object

data.

/CWLD/IDOC_HANDLER

executes

the

call

to

the

second

ABAP

handler

to

pass

the

business

object

data

in

an

IDoc

format

to

the

Y_XR_ORDER_C2

or

Y_XR_ORDER_C4

function

module

written

specifically

to

handle

Order

objects.

For

steps

on

setting

up

verb

support

for

the

IDoc

handler,

see

“Developing

business

object

definitions

using

object

definition

generator”

on

page

74.

Note:

/CWLD/RFC_DO_VERB_NEXTGEN

uses

the

value

of

function1

only.

function2

and

function3

may

be

used

by

the

ABAP

handler.

To

dynamically

call

an

ABAP

handler,

/CWLD/RFC_DO_VERB_NEXTGEN

requires

the

interface

of

every

ABAP

handler

to

be

exactly

the

same.

This

enables

/CWLD/RFC_DO_VERB_NEXTGEN

to

send

and

receive

business

object

data,

as

well

as

a

return

code

and

a

return

text

message

to

any

ABAP

handler.

For

more

information

on

the

functional

module

interface,

see

“IBM

WebSphere

function

module

interface”

on

page

71.

62

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

How

ABAP

handlers

process

business

object

data

The

function

of

an

ABAP

handler

is

to

get

business

object

data

into

or

out

of

the

SAP

application

database.

When

processing

business

object

data,

ABAP

handlers:

1.

Interpret

business

object

data.

2.

Integrate

data

with

SAP

native

APIs.

3.

Reformat

all

data

returned

from

native

APIs.

Business

object

data

and

ABAP

handlers

Every

ABAP

handler

receives

business

object

data

in

the

same

format

(flat

structure).

However,

each

ABAP

handler

has

specific

requirements

for

business

objects

that

are

determined

by

the

complexity

of

the

WebSphere

business

object

definition,

the

native

API

that

SAP

provides,

and

the

level

of

functionality

that

the

ABAP

handler

provides.

For

these

reasons,

ABAP

handlers

may

interpret

business

object

data

by

parsing

it

into

a

structure

specific

to

the

business

object.

This

enables

the

ABAP

handler

to

more

easily

manipulate

the

data.

Note:

Parsing

the

data

is

not

required.

However,

it

simplifies

the

ABAP

handler’s

processing

of

a

business

object.

The

adapter

provides

several

ABAP

handlers,

such

as

an

IDoc

handler.

The

IDoc

handler

leverages

SAP’s

IDoc

technology

by

providing

an

ABAP

handler

to

interpret

business

object

data

by

reformatting

it

into

an

IDoc-based

structure

for

the

ABAP

handler

to

use.

Business

object

data

and

SAP

native

APIs

Once

the

ABAP

handler

interprets

the

business

object

data,

the

ABAP

handler

must

integrate

it

with

the

SAP

application

database.

It

must

manipulate

the

business

object

data

to

use

SAP

native

APIs

such

as

Call

Transaction

or

ABAP

SQL

to

get

data

into

or

out

of

the

application

database.

Create,

update,

and

delete

processing

The

intent

of

a

Create,

Update,

or

Delete

operation

is

to

modify

the

SAP

application

database.

While

the

SAP

application

database

schema

for

a

given

business

object

defines

the

structure

of

the

data,

the

transactions

provided

by

SAP

that

modify

that

data

have

a

much

broader

scope

of

influence.

As

a

result,

directly

modifying

the

application

database

tables

of

an

SAP

application

can

have

disastrous

results

to

the

application’s

data

integrity.

Instead

of

directly

modifying

the

database

tables,

SAP

provides

a

flexible

ABAP

API

(Call

Transaction)

for

Create,

Update,

and

Delete

operations.

Call

Transaction

is

SAP-provided

functionality

for

entering

data

into

an

SAP

application.

It

guarantees

that

the

data

adheres

to

SAP’s

data

model

by

using

the

same

screens

an

online

user

would

use

in

a

transaction.

This

process

is

commonly

referred

to

as

screen

scraping.

Retrieve

processing

If

the

verb

is

Retrieve,

then

the

connector

uses

ABAP

SQL

statements

to

retrieve

data

from

the

SAP

application

database.

The

business

object

data

provides

the

keys

for

the

where

clause

when

pulling

data.

The

difficulty

in

this

methodology

of

retrieving

data

is

that

the

retrieved

data

must

be

represented

in

a

format

that

represents

the

business

object

structure.

This

is

done

in

the

ABAP

Handler

ABAP

code.

Chapter

5.

Business

object

processing

in

the

ABAP

Extension

module

63

The

connector

supports

the

Retrieve

processing

only

with

a

primary

key

specified.

Return

code

and

returned

business

object

data

Regardless

of

the

verb

of

the

business

object,

the

connector

waits

for

two

types

of

confirmations:

v

Return

code

v

Returned

business

object

data

(for

success

only,

return

code

=

0)

The

ABAP

Extension

Module

uses

three

different

return

codes

to

process

business

object

data;

return

code

0,

21,

and

any

non-zero

code

(other

than

21).

Set

the

return

code

in

the

function

module

interface.

For

more

information

on

the

function

module

interface,

see

“IBM

WebSphere

function

module

interface”

on

page

71.

Return

code

0

Return

code

0

indicates

that

the

business

object

was

successfully

processed

and

returns

VALCHANGE

to

the

connector

infrastructure.

If

ABAP

handler

processing

is

successful,

then

the

connector

expects

new

business

object

data

that

reflects

the

operation

performed.

For

example,

after

a

successful

Create,

the

returned

business

object

is

an

exact

copy

of

the

business

object

initially

sent

in,

except

that

the

keys

are

updated.

Similarly,

a

successful

Retrieve

results

in

a

fully

formed

instance

of

the

business

object.

However,

Create,

Update,

and

Delete

operations

have

different

requirements

for

returned

business

objects

than

do

Retrieve

operations.

When

the

IBM

WebSphere

InterChange

Server

is

the

integration

broker,

the

difference

in

requirements

comes

from

how

the

WebSphere

business

integration

system

handles

business

objects,

specifically

dynamic

cross-referencing

of

object

IDs

during

mapping.

When

the

connector

returns

a

business

object

to

IBM

WebSphere

InterChange

Server

after

a

Create

or

Update

operation,

the

mapping

infrastructure

attempts

to

update

the

cross-reference

tables

with

the

newly

acquired

object

ID.

This

is

accomplished

by

looking

up

the

value

of

the

business

object’s

ObjectEventId

attribute

that

was

set

when

the

business

object

was

originally

sent

to

the

connector.

To

the

ABAP

handlers,

this

is

significant

because

the

ABAP

handlers

are

responsible

for

“stitching”

the

object

IDs

into

the

business

object

that

is

returned

to

the

connector.

Typically,

this

is

not

an

issue

for

Retrieve

operations

because

there

is

no

corresponding

dynamic

cross-referencing.

Retrieve

operations

generate

an

entirely

new

business

object

that

is

returned

to

the

connector.

This

business

object

does

not

have

any

direct

relationship

to

the

structure

of

the

business

object

originally

sent

in.

The

business

object

data

returned

by

the

ABAP

handler

must

be

in

the

same

flat

structure

format

as

when

it

was

initially

passed

in

to

function

module

/CWLD/RFC_DO_VERB_NEXTGEN.

The

ABAP

handler

needs

to

send

out

only

simple

type

attributes

with

the

following

information

for

each:

v

Value

v

Peer

relationship

v

Application-specific

information

The

attribute

name

is

not

required

at

this

point,

because

the

connector

uses

only

the

application-specific

information

to

create

a

business

object

from

this

data.

Identifiers

for

the

beginning

and

ending

of

business

objects

or

object

type

attributes

are

not

used

and

should

not

be

added.

For

example,

the

BoName

and

64

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

BoVerb

rows

are

not

used

in

the

business

object

returned

from

the

ABAP

handler.

They

are

initially

passed

into

the

ABAP

handler

only

to

facilitate

processing.

The

ABAP

handler

must

adhere

to

the

following

set

of

rules

when

populating

a

flat

structure

with

business

object

response

data

representing

an

WebSphere

business

object:

v

Send

only

simple

attributes,

not

object

types.

v

All

attributes

must

exist

in

the

WebSphere

business

object

definition.

v

All

attributes

must

be

sent

in

the

order

they

are

listed

in

the

WebSphere

business

object

definition.

v

No

attribute

of

a

child

business

object

can

be

sent

unless

at

least

one

attribute

is

sent

for

its

parent

business

object.

v

Contained

business

objects

must

communicate

the

number

of

peers

they

have.

v

Attribute

name

(field

ATTR_NAME)

is

not

required.

Figure

13

illustrates

a

flat

business

object

(no

object

type

attributes).

Table

11

represents

the

structure

of

a

flat

business

object,

SAP_Material,

whose

key

value

is

ItemID.

Notice

that

field

ATTR_NAME

is

not

required,

APPTEXT

is

unique

for

each

attribute,

and

because

this

business

object

is

flat,

the

PEERS

field

can

be

left

blank.

Table

11.

Flat

business

object

SAP_Material

ATTR_NAME

ATTR_VALUE

ISKEY

ISNEW

PEERS

OBJ_

NUMBER

APPTEXT

(blank)

000000000000001179

(blank)

(blank)

(blank)

(blank)

ItemId

(blank)

Toaster

6000

(blank)

(blank)

(blank)

(blank)

ShortDesc

(blank)

SAP_124

(blank)

(blank)

(blank)

(blank)

ObjectEventId

Figure

14

illustrates

a

hierarchical

business

object

(containing

object

types).

ItemId

ShortDesc

ObjectEventId

SAP_Material

Figure

13.

Flat

business

object

SAP_Material

Chapter

5.

Business

object

processing

in

the

ABAP

Extension

module

65

Table

12

shows

a

representation

of

a

flat

structure

of

a

hierarchical

business

object

based

on

an

IDoc

Sales

Order.

Notice

that

field

ATTR_NAME

is

not

required,

APPTEXT

is

unique

for

each

attribute,

and

because

this

business

object

is

hierarchical,

the

PEERS

field

lists

the

appropriate

relationship.

Table

12.

Hierarchical

business

object

based

on

an

IDoc

sales

order

ATTR_NAME

ATTR_VALUE

ISKEY

ISNEW

PEERS

OBJ_

NUMBER

APPTEXT

(blank)

USD

0

0

1

(blank)

E1EDK01:CURCY

(blank)

0000000101

0

0

1

(blank)

E1EDK01:BELNR

(blank)

SAP_124

0

0

1

(blank)

E1EDK01:

ObjectEventId

(blank)

User1

0

0

2

(blank)

Z1XRV40:ERNAM

(blank)

SAP_125

0

0

2

(blank)

Z1XRV40:

ObjectEventId

(blank)

001

0

0

1

(blank)

Z1XRV40:QUALF

(blank)

1000

0

0

1

(blank)

E1EDK14:ORGID

(blank)

SAP_126

0

0

1

(blank)

E1EDK14:

ObjectEventId

(blank)

User1

0

0

2

(blank)

Z1XRV40:ERNAM

(blank)

SAP_127

0

0

2

(blank)

Z1XRV40:

ObjectEventId

Createdby

SAP_Organization (1)

ObjectEventId

SAP_LineItem (1)

Qualifier

Organization

ObjectEventId

SAP_Organization

Createdby

SAP_Organization (1)

ObjectEventId

SAP_LineItem (1)

Order umber

Customer number

SAP LineItem (2)

SAP_Sales order

ObjectEventId

Parent business object

Child business object

Child business object

Child business object

Figure

14.

Hierarchical

business

object

SAP

sales

order

(IDoc)

66

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Return

code

21

Return

code

21

indicates

that

the

business

object

was

successfully

processed

and

returns

SUCCESS

to

the

connector

infrastructure.

This

code

returns

only

success

and

does

not

return

any

business

object

data

back

to

the

connector.

The

Object-specific

IDoc

handler

that

process

the

business

object

data

returns

a

return

code

of

21

when

the

business

object

data

is

successfully

entered

into

the

SAP

application.

The

return

code

is

passed

back

to

the

/CWLD/RFC_DO_VERB_NEXTGEN

function

module,

which

returns

success

back

to

the

connector.

The

connector

never

receives

business

object

data.

This

is

useful

when

passing

large

objects

(such

as

an

IDoc

with

multiple

line

items)

and

all

you

want

is

to

know

that

your

business

object

data

was

passed

to

the

SAP

application

successfully.

Performance

is

greatly

improved

because

you

return

only

the

code

and

not

the

business

object.

When

WebSphere

InterChange

Server

is

the

integration

broker,

you

should

use

return

code

21

only

when

the

business

object

does

not

require

cross-referencing

and

when

you

are

simply

passing

data

into

the

SAP

application.

Do

not

use

return

code

21

for

retrieve

operations.

Behavior

of

the

SUCCESS

return

code

means

that

no

business

object

is

returned

to

the

WebSphere

InterChange

Server

for

cross-referencing

or

further

processing.

Non-zero

return

code

A

non-zero

return

code

(other

than

21)

indicates

that

the

object

was

not

processed

successfully

and

returns

FAIL

to

the

connector.

If

the

ABAP

handler

returns

a

non-zero

code

(other

than

21),

then

no

business

object

is

returned

to

the

connector.

Flat

structure

conversion

to

a

business

object

Once

the

flat

structure

has

been

repopulated

with

new

business

object

data,

/CWLD/RFC_DO_VERB_NEXTGEN

returns

the

business

object

data

to

the

calling

connector.

Remember

that

the

connector

is

single-threaded;

therefore,

it

passes

only

one

business

object

at

a

time.

The

connector

must

now

convert

the

business

object

data

from

the

flat

structure

into

a

business

object.

When

processing

data

in

a

flat

structure

into

a

business

object,

the

connector

must:

1.

Initialize

the

original

business

object.

2.

Transfer

the

business

object

data

from

the

flat

structure

to

the

business

object.

3.

Deliver

the

business

object

to

InterChange

Server

(connector

controller).

Business

object

initialization

The

connector

initializes

the

original

business

object

that

it

received

from

the

integration

broker

before

it

populates

it.

When

initializing

the

business

object,

the

connector

sets

every

attribute

in

the

top-level

business

object

to

null.

For

object

type

attributes,

this

action

recursively

deletes

every

contained

business

object,

leaving

only

the

top-level

business

object.

How

the

connector

rebuilds

a

business

object

After

the

connector

initializes

the

original

business

object,

what

remains

is

the

top-level

business

object

containing

the

business

object

name

and

business

object

verb,

but

no

attribute

value

data.

The

attribute

value

data

must

be

transferred

from

the

flat

structure

from

the

ABAP

handler.

The

logic

for

transferring

the

returned

data

is

simple,

but

the

data

must

be

transferred

in

the

exact

order

that

the

connector

expects

it.

Chapter

5.

Business

object

processing

in

the

ABAP

Extension

module

67

The

connector

matches

the

application-specific

information

in

the

returned

data

to

an

attribute’s

application-specific

information

in

the

business

object

definition.

The

connector

attempts

to

set

every

attribute

that

is

in

the

returned

business

object

data.

If

any

attribute

cannot

be

set,

the

connector

returns

FAIL

to

the

connector

infrastructure.

In

order

for

the

returned

data

transfer

to

execute

successfully,

the

connector

expects

the

following

to

be

true

of

the

returned

data:

v

It

contains

only

simple

attributes,

where

one

row

equals

one

attribute.

v

Attributes

must

exist

in

the

WebSphere

business

object

definition.

v

Attributes

must

be

ordered

as

they

are

in

the

WebSphere

business

object

definition

(depth

and

then

breadth).

v

An

attribute’s

application-specific

information

links

its

object’s

application-specific

information

with

another

value

that

uniquely

identifies

the

attribute

within

the

business

object’s

definition.

v

Child

attributes

must

occur

after

their

parent

object’s

attributes

(never

before

their

parents

and

never

after

their

grandparents).

v

An

attribute

must

communicate

its

business

object’s

number

of

peers.

When

the

connector

rebuilds

the

application-specific

business

object,

the

connector

loops

through

the

business

object

twice,

beginning

with

the

top-level

business

object.

1.

In

the

first

pass,

it

sets

all

simple

attributes.

2.

In

the

second

pass,

it

checks

if

the

flat

attribute

exists

in

a

child

object.

If

it

exists

the

connector

recursively

executes

the

same

processing

for

the

child

object.

Attention:

If

the

conversion

of

a

flat

structure

to

a

business

object

fails,

the

connector

reports

a

failure

to

the

integration

broker.

However,

the

data

is

already

posted

in

the

SAP

application

and,

therefore,

cannot

be

rolled

back

at

this

stage.

While

the

rules

are

simple,

implementing

a

complex,

hierarchical

business

object

with

many

attributes

can

be

difficult

to

manage.

Once

the

business

object

is

successfully

rebuilt

with

new

business

object

data,

the

connector

returns

it

to

the

integration

broker.

68

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

This

chapter

discusses

business

object

development

for

the

ABAP

Extension

Module.

It

provides

background

information

as

well

as

steps

for

developing

business

objects

and

ABAP

handlers.

You

should

be

familiar

with

how

the

connector

processes

business

objects.

This

chapter

contains

the

following

sections:

v

“Background

information”

on

page

69

v

“Developing

business

objects

using

dynamic

transaction”

on

page

74

v

“Developing

business

objects

using

IDocs”

on

page

79

v

“Calling

the

ABAP

Extension

Module

and

ABAP

handler”

on

page

88

Background

information

Business

object

development

for

the

ABAP

Extension

Module

consists

of

creating

an

application-specific

business

object

definition

and

an

associated

ABAP

handler

for

each

verb

that

you

want

to

support.

To

develop

an

application-specific

business

object,

you

must

create

a

business

object

definition

that

supports

your

business

needs.

The

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

4.x)

includes

tools

that

facilitate

the

process

of

developing

business

object

definitions

in

the

SAP

application.

Although

you

can

use

Business

Object

Designer

or

a

text

editor

to

create

business

object

definitions

for

the

ABAP

Extension

Module,

it

is

recommended

that

you

initially

use

the

adapter’s

business

object

development

tools.

These

tools

use

the

SAP

application’s

native

definitions

as

a

template.

For

each

application-specific

business

object

definition

that

you

develop,

you

must

support

it

by

using

an

adapter-provided

ABAP

handler

or

by

developing

a

custom

ABAP

handler.

The

ABAP

handler

is

the

mechanism

that

gets

data

into

and

out

of

the

SAP

application

database.

Note:

The

application-specific

business

object

and

the

ABAP

handler

rely

on

each

other’s

consistency

to

pass

data

into

and

out

of

the

SAP

application.

Therefore,

if

you

change

the

business

object

definition,

you

must

also

change

the

ABAP

handler.

An

ABAP

handler

for

the

connector

is

implemented

as

an

ABAP

function

module.

ABAP

handlers

are

one

or

more

function

modules

that

work

together

to

fulfill

a

business

object

request

from

the

business

object

router

/CWLD/RFC_DO_VERB_NEXTGEN.

ABAP

handlers

are

responsible

for

passing

business

object

data

into

and

out

of

the

SAP

application.

Note:

SAP

supports

many

verbs

other

than

those

(Create,

Retrieve,

Update,

and

Delete)

supported

by

the

WebSphere

business

integration

system.

You

can

develop

an

ABAP

handler

to

support

any

verb.

To

develop

an

ABAP

handler,

you

must

understand

how

the

connector

gets

data

into

and

out

of

the

SAP

application

and

what

form

that

data

takes

during

this

©

Copyright

IBM

Corp.

2003,

2004

69

process.

For

a

high-level

description

of

business

object

processing,

see

Chapter

3,

“Overview

of

the

ABAP

Extension

module,”

on

page

33.

For

a

detailed

description

of

business

object

processing,

see

Chapter

5,

“Business

object

processing

in

the

ABAP

Extension

module,”

on

page

57.

Note:

When

you

develop

business

objects,

you

must

make

sure

that

the

objects

are

added

to

the

connector’s

table

/CWLD/OBJECTS

table

in

the

SAP

R/3

application.

If

they

are

not,

then

you

will

not

be

able

to

access

the

objects

for

customization

(for

example,

setting

up

the

object

for

event

distribution).

SAP

native

APIs

Adapter-provided

ABAP

handlers

use

SAP

native

APIs,

which

enable

ABAP

handlers

to

pass

data

into

and

out

of

the

SAP

application.

The

WebSphere

business

integration

system

has

implemented

the

following

native

APIs:

v

“ABAP

SQL”

v

“Call

Transaction”

v

“Batch

data

communication

(BDC)”

on

page

71

v

“Business

application

programming

interface

(BAPI)”

on

page

71

ABAP

SQL

ABAP

SQL

is

SAP’s

proprietary

version

of

SQL.

It

is

database-

and

platform-

independent,

so

that

whatever

SQL

code

you

write,

you

can

run

it

on

any

database

and

platform

combination

that

SAP

supports.

ABAP

SQL

is

similar

in

syntax

to

other

versions

of

SQL

and

supports

all

of

the

basic

database

table

commands

such

as

update,

insert,

modify,

select,

and

delete.

For

a

complete

description

of

ABAP

SQL,

its

use,

syntax

and

functionality,

see

your

SAP

documentation.

Using

ABAP

SQL,

an

ABAP

handler

can

modify

SAP

database

tables

with

business

object

data

for

create,

update,

and

delete

operations.

It

can

also

use

the

business

object

data

in

the

where

clause

of

an

ABAP

select

statement

as

the

keys.

Note:

The

WebSphere

business

integration

system

never

uses

ABAP

SQL

to

modify

SAP

tables,

because

this

may

corrupt

the

integrity

of

the

database.

The

connector

uses

ABAP

SQL

only

to

retrieve

data

and

to

modify

adapter-delivered

database

tables.

Call

Transaction

Call

Transaction

is

SAP-provided

functionality

for

entering

data

into

an

SAP

system.

Call

Transaction

guarantees

that

the

data

adheres

to

SAP’s

data

model

by

using

the

same

screens

an

online

user

sees

in

a

transaction.

This

process

is

commonly

referred

to

as

screen

scraping.

To

use

Call

Transaction,

specify

the

following

types

of

instructions:

v

Initiation—transaction

to

call

v

Navigation—sequence

of

screens

to

process

v

Mapping—input

data

that

should

go

into

each

field

on

a

screen

Initiation

is

passed

as

a

single

value

parameter

in

the

Call

Transaction

call.

Navigation

and

Mapping

instructions

are

passed

in

together

in

a

table

with

a

specific

format.

This

format

is

usable

for

invoking

Call

Transaction

for

any

SAP

transaction.

In

this

format,

these

instructions

are

referred

to

as

the

BDC

data,

BDC

table,

or

BDC

session.

70

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Batch

data

communication

(BDC)

Batch

Data

Communication

(BDC)

is

an

instruction

set

that

SAP

can

follow

to

execute

a

transaction

without

user

intervention.

The

instructions

dictate

the

sequence

in

which

a

transaction’s

screens

are

processed

and

which

fields

should

be

populated

with

data

on

which

screens.

All

of

the

elements

of

an

SAP

transaction

that

are

exposed

to

an

online

user

have

identifications

that

can

be

used

in

a

BDC.

The

elements

are

as

follows:

v

Screens—identified

by

a

program

name

and

screen

number

v

Input

fields—typically

identified

by

the

database

table

and

field

name

to

which

it

refers

v

Commands

in

the

transaction—commands

such

as

save,

new

items,

details,

and

exit

(identified

by

a

one-

to

eight-character

code)

To

get

a

screen’s

BDC

identity,

place

the

cursor

in

any

field

on

the

screen.

Press

F1

for

help

and

then

F9

for

technical

information.

The

program

name

and

screen

number

are

listed

under

Screen

Data.

To

get

an

input

field’s

BDC

identity,

place

the

cursor

in

each

field

on

the

screen

in

which

you

want

to

input

data.

Press

F1

for

help

and

then

F9

for

technical

information.

If

there

is

a

box

named

Field

Description

for

Batch

Input,

then

use

the

information

in

the

Screen

Field

field.

If

this

box

does

not

exist,

from

the

Field

Data

box,

concatenate

the

Table

Name

and

Field

Name

together

with

a

hyphen.

To

get

a

command’s

BDC

identity,

highlight

the

command

in

the

menu

and

press

F1

for

help.

Use

the

value

in

the

Function

field.

Business

application

programming

interface

(BAPI)

Use

the

BAPI

Module

to

support

BAPIs.

For

more

information,

see

Chapter

14,

“Overview

of

the

BAPI

Module,”

on

page

163.

IBM

WebSphere

function

module

interface

Every

ABAP

handler

must

implement

the

same

function

module

interface.

The

function

module

interface

guarantees

that

the

business

object

router

/CWLD/RFC_DO_VERB_NEXTGEN

can

pass

business

object

data

to

and

from

ABAP

handlers.

The

interface

is:

""Local

interface:

*"

IMPORTING

*"

VALUE(PROC_FUNC_1)

LIKE

RS38L-NAME

OPTIONAL

*"

VALUE(PROC_FUNC_2)

LIKE

RS38L-NAME

OPTIONAL

*"

VALUE(OBJECT_NAME)

LIKE

/CWLD/LOG_HEADER-OBJ_NAME

OPTIONAL

*"

VALUE(OBJECT_VERB)

LIKE

/CWLD/WIZ_IN-OBJ_VERB

OPTIONAL

*"

VALUE(ARCHIVE)

OPTIONAL

*"

VALUE(TEXT)

LIKE

T100-TEXT

OPTIONAL

*"

EXPORTING

*"

VALUE(RETURN_TEXT)

LIKE

/CWLD/LOG_HEADER-OBJ_KEY

*"

VALUE(RFCRC)

LIKE

/CWLD/RFCRC_STRU-RFCRC

*"

TABLES

*"

RFC_STRUCTURE

STRUCTURE

/CWLD/OBJ_STRU

*"

EXCEPTIONS

*"

NOT_FOUND

*"

ERROR_PROCESSING

In

the

importing

section

of

the

interface,

you

can

communicate

values

such

as

the

ABAP

handler

name,

business

object

name,

and

business

object.

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

71

The

exporting

section

of

the

interface

is

used

to

communicate

the

results

of

the

ABAP

handler

processing.

The

return

code

RFCRC

parameter

is

a

single

field

used

to

determine

the

code

a

connector

returns.

The

possible

values

are:

RC

=

0

(success,

VALCHANGE)

RC

=

1

(failure,

FAIL)

RC

=

21

(success,

SUCCESS)

The

RETURN_TEXT

parameter

is

a

120-character

free

text

field

that

is

written

to

by

the

connector

or

logged

as

an

error

message

in

the

return

status

descriptor.

If

the

ABAP

handler

does

not

provide

a

value

for

this

parameter,

then

/CWLD/RFC_DO_VERB_NEXTGEN

supplies

default

text

depending

on

the

return

code.

Note:

The

exceptions

section

of

the

interface

defines

two

exceptions.

It

is

recommended

that

you

use

the

exporting

parameters

instead.

IBM

WebSphere

ABAP

handler

APIs

The

adapter

provides

several

APIs

that

facilitate

the

development

of

ABAP

handlers

for

the

WebSphere

business

objects

for

SAP.

These

APIs

were

developed

as

“generic”

ABAP

handlers,

because

they

require

only

metadata

to

support

additional

business

objects

of

any

type.

The

adapter

provides

the

following

ABAP

handler

APIs:

v

Dynamic

Retrieve—/CWLD/DYNAMIC_RETRIEVE

v

Dynamic

Transaction—/CWLD/DYNAMIC_TRANSACTION

v

IDoc

Handler—/CWLD/IDOC_HANDLER

The

adapter

provides

a

set

of

tools

that

support

these

APIs.

For

all

three

ABAP

handler

APIs,

the

tools

can

be

found

in

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

The

adapter

also

provides

SAPODA.

For

more

information,

see

Appendix

E,

“Generating

business

object

definitions

using

SAPODA,”

on

page

291.

The

following

sections

discuss

the

adapter-provided

APIs

and

gives

you

steps

on

how

to

use

IBM

CrossWorlds

Station

tools

and

SAPODA

to

develop

business

objects

for

them.

Important:

You

must

log

on

to

the

SAP

system

in

English

when

using

IBM

CrossWorlds

Station

tools

to

generate

business

object

definitions

or

ABAP

handlers.

The

CrossWorlds

Station

log

is

available

only

in

English.

You

must

also

log

on

to

the

SAP

system

in

English

for

the

SAPODA.

Business

object

attribute

properties

Business

object

architecture

defines

various

properties

for

attributes.

This

section

describes

how

the

connector

interprets

several

of

these

properties

and

describes

how

to

set

them

when

modifying

a

business

object.

Table

13

lists

the

business

object

attribute

properties

for

the

ABAP

Extension

Module.

Table

13.

Business

object

attribute

properties

for

the

ABAP

Extension

Module

Property

name

Description

Name

Each

business

object

attribute

must

have

a

unique

name.

Type

The

value

is

String.

MaxLength

This

property

is

not

used.

72

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

13.

Business

object

attribute

properties

for

the

ABAP

Extension

Module

(continued)

Property

name

Description

IsKey

The

first

simple

attribute

of

a

business

object

is

set

as

the

key

attribute.

All

key

attributes

should

be

of

type

String.

Setting

a

child

object

as

a

key

attribute

is

not

supported.

IsForeignKey

This

property

is

not

used.

IsRequired

This

property

specifies

whether

an

attribute

must

contain

a

value.

AppSpecificInfo

The

value

of

this

property

is

different

depending

on

which

ABAP

handler

supports

the

business

object.

The

adapter

delivers

business

object

generation

tools

that

automatically

provide

this

value.

If

you

modify

the

generated

value,

the

business

object

may

fail

to

process

properly.

DefaultValue

This

property

specifies

the

value

to

assign

to

this

attribute

if

there

is

no

run-time

value.

Adapter

development

tools

The

adapter

provides

business

object

development

tools

that

let

you

generate

a

WebSphere

business

object

definition

file

from

within

the

SAP

application.

This

business

object

definition

file

directly

corresponds

to

the

SAP

business

process

and

API

from

which

it

was

generated.

Note:

When

the

IBM

WebSphere

InterChange

Server

is

the

integration

broker,

verify

that

your

final

business

object

definition

file

contains

the

version

at

the

top.

Early

versions

of

the

WebSphere

InterChange

Server

require

version

text,

which

is

located

in

the

\repository\ReposVersion.txt

file

under

the

product

directory.

Also

verify

that

the

definition

includes

all

of

the

required

business

objects

and

attributes

(including

the

ObjectEventID

attribute).

In

IBM

CrossWorlds

Station,

the

following

development

tools

are

available:

v

Advanced

Outbound

Wizard

v

Inbound

Wizard

v

Object

Definition

Generator

Important:

You

must

log

on

to

the

SAP

system

in

English

when

using

IBM

CrossWorlds

Station

to

generate

business

object

definitions

or

ABAP

handlers.

The

CrossWorlds

Station

log

is

available

only

in

English.

You

must

also

log

on

to

the

SAP

system

in

English

for

the

SAPODA.

Note:

For

information

on

using

Advanced

Outbound

Wizard,

which

creates

hierarchical

or

flat

business

object

definitions

by

stepping

through

the

desired

SAP

transaction,

see

“Generating

business

objects:

Advanced

Outbound

Wizard”

on

page

225.

Inbound

wizard

The

Inbound

Wizard

tool

enables

you

to

define

business

objects

and

the

metadata

required

for

their

processing

by

recording

your

actions

as

you

step

through

an

SAP

transaction

that

supports

your

required

functionality.

You

do

not

need

to

write

any

ABAP

code

nor

do

you

need

to

know

the

underlying

database

schema

for

the

business

object.

The

Inbound

Wizard

generates

the

data

for

the

Dynamic

Transaction

table

by

recording

and

interpreting

user

actions

in

an

SAP

transaction.

It

supports

the

definition

of

flat

(non-hierarchical)

business

objects.

In

other

words,

it

does

not

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

73

support

business

objects

that

contain

child

business

objects.

The

Inbound

Wizard

can

be

used

as

a

code

generator

to

facilitate

the

development

of

more

complex

objects

that

require

static

code.

Note:

You

can

manually

develop

new

business

objects

or

modify

existing

business

objects

by

adding/modifying

entries

to

the

Dynamic

Transaction

table.

For

more

information

on

developing

business

objects

for

business

object

requests,

see

“Developing

business

objects

using

dynamic

transaction.”

Developing

business

object

definitions

using

object

definition

generator

The

Object

Definition

Generator

enables

you

to

build

a

WebSphere

business

object

definition

based

on

an

IDoc

or

on

the

metadata

in

the

Dynamic

Transaction

table.

The

business

object

definition

file

that

is

produced

maintains

the

relationships

and

structure

of

the

IDoc.

The

IDoc

handler

uses

business

objects

developed

from

these

IDocs.

Therefore,

the

generator

allows

you

to

add

your

object-specific

IDoc

handler

function

modules

when

you

generate

the

business

object

definition.

Once

the

business

object

definition

is

generated,

you

need

only

modify

attribute

names

and

make

sure

that

the

definition

supports

all

of

the

desired

functionality.

Note:

This

tool

is

used

primarily

to

generate

business

objects

based

on

IDocs,

but

can

also

be

used

for

Dynamic

Transaction.

For

more

information

on

developing

business

objects

using

the

Object

Definition

Generator,

see

“Developing

business

objects

using

IDocs”

on

page

79.

Developing

business

object

definitions

using

SAPODA

SAPODA

enables

you

to

build

a

WebSphere

business

object

definition

based

on

an

IDoc,

or

the

tables

used

by

Dynamic

Retrieve

and

Dynamic

Transaction.

For

more

information

on

developing

business

objects

using

SAPODA,

see

Appendix

E,

“Generating

business

object

definitions

using

SAPODA,”

on

page

291.

Developing

business

objects

using

dynamic

transaction

The

Dynamic

Transaction

function

module

is

a

mapping

tool

and

dynamic

code

generator.

It

uses

SAP’s

Call

Transaction

API

to

get

data

into

an

SAP

application.

Also,

it

stores

static

definitions

of

Batch

Data

Communication

(BDC)

sessions

by

combinations

of

object

and

verb.

Before

the

BDC

data

is

passed

to

a

Call

Transaction,

the

business

object

attribute

values

are

mapped

into

the

BDC

session.

At

the

completion

of

the

call

transaction,

the

resulting

key

value

is

set

in

the

appropriate

value

of

the

business

object,

and

all

messages

from

the

call

transaction

are

logged.

The

Dynamic

Transaction

function

module

builds

a

BDC

session

to

do

a

call

transaction

by

combining

the

BDC

defined

in

the

Dynamic

Transaction

table,

/CWLD/WIZ_IN,

and

the

values

from

the

incoming

business

object.

When

the

Dynamic

Transaction

function

module

is

called,

the

following

steps

are

performed:

1.

All

entries

are

retrieved

from

/CWLD/WIZ_IN,

where:

object

name

=

objectName

and

verb

=

objectVerb

2.

Field

input

values

are

mapped

from

the

business

object

into

the

BDC

session

based

on

the

attribute

name.

3.

BDC

sessions

are

processed

using

Call

Transaction.

74

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

4.

Key

values

are

captured,

Call

Transaction

messages

are

logged,

and

the

key

is

set

in

the

business

object.

Tips

v

Data

entered

on

an

initial

screen

may

default

for

all

line

items

and

reduce

required

line

item

input.

v

Line

item

overview

screens

may

provide

enough

input

rather

than

drilling

down

to

a

details

screen,

which

may

require

additional

input.

v

Confirmation

messages

usually

do

not

need

to

be

answered

in

BDC;

for

example,

Are

you

sure

you

want

to

save?

v

The

counter

renumbers

in

increments

of

10,

for

each

object

and

verb

combination,

every

time

you

enter

and

exit

the

table

maintenance

in

change

mode.

v

During

execution,

the

Call

Transaction

uses

the

user’s

settings

for

date

formatting.

Be

sure

the

connector’s

user

is

set

up

to

use

a

variation

of

YYYY-MM-DD

date

format,

because

this

is

the

standard

date

format

used

by

the

WebSphere

business

integration

system.

Similarly,

change

your

own

user

settings

if

you

want

to

reprocess

the

business

objects

by

stepping

through

the

transaction.

Composing

a

BDC

session

for

a

business

object

Composing

a

BDC

session

requires

an

understanding

of

an

SAP

transaction’s

design.

An

SAP

transaction

allows

the

same

data

to

be

input

in

various

sequences

and

on

different

screens.

Typically

each

sequence

or

flow

exposes

additional

functionality.

As

a

result,

certain

data

validation

and

input

field

requirements

occur

on

some

screens,

but

not

on

others.

The

challenge

is

to

find

the

sequence

that

does

what

you

need

with

the

least

amount

of

effort.

A

simple

BDC

session

is

more

stable

than

a

complex

BDC

session.

An

SAP

transaction

may

behave

differently

when

accessed

using

the

Call

Transaction

method

in

a

background

process

instead

of

executing

online.

For

example,

different

or

additional

screens

may

appear

or

input

fields

may

reside

on

screens

different

from

those

your

online

investigation

revealed.

The

discrepancy

occurs

because

the

transaction’s

controlling

code

may

dictate

different

behavior

when

executed

in

the

background

from

that

executed

online.

As

a

result,

your

online

test

may

work

when

reprocessing

a

failed

object

event

as

you

step

through

the

transaction;

however,

the

connector

consistently

fails

when

processing

the

same

object.

If

this

occurs,

modify

the

BDC

so

that

it

processes

in

the

background.

If

you

modify

the

BDC,

you

may

encounter

cases

where

the

BDC

processes

in

the

background,

but

fails

when

processed

online.

The

BDC

you

define

in

the

Dynamic

Transaction

table

is

static.

It

cannot

react

during

the

transaction

if

certain

input

data

causes

other

screens

to

pop

up

or

other

fields

become

mandatory

during

runtime.

Proper

investigation

of

a

transaction’s

configuration

is

important

to

be

able

to

predict

consistent

behavior.

Experiment

several

times

with

the

transaction;

repeated

behavior

can

become

your

guideline.

Once

you

have

determined

the

screen

flow,

follow

the

steps

below

and

document

the

information

you

gather

in

a

spreadsheet.

1.

Go

to

the

transaction

that

supports

your

object

and

identify

the

transaction

code.

2.

Identify

the

BDC

elements

for

the

screen

and

input

fields

you

require.

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

75

3.

Identify

the

menu

command

you

need

to

continue

processing

to

the

next

screen.

4.

Repeat

steps

2

and

3

for

each

screen

required.

5.

Conclude

by

noting

the

command

to

save

the

transaction.

Table

14

describes

the

column

names

for

Dynamic

Transaction

table

/CWLD/WIZ_IN.

Table

14.

/CWLD/WIZ_IN

table

entries

for

dynamic

retrieve

Field

name

Description

When

used

Technical

name

Object

name

IBM

WebSphere

business

object

name

Always

OBJ_NAME

Verb

Verb

(Create,

Update,

Delete,

or

Retrieve)

Always

OBJ_VERB

Counter

Counter

Always

POSNR

Program

Program

associated

with

a

screen

BDC

screen

identification

PROG_NAME

Screen

number

Screen

number

associated

with

a

screen

BDC

screen

identification

DYNPRO

Start

Specifies

a

new

screen

BDC

screen

identification

DYNBEGIN

Screen

description

Free

text

description

of

screen,

field,

or

command

User

discretion

SCR_DESCR

BDC

field

name

BDC

input

field

name

BDC

input

fields

FNAM

Field

name

in

business

object

Attribute

in

the

IBM

WebSphere

business

object

to

supply

the

input

value

BDC

input

fields

SOURCEFLD

Default

value

A

static

default

value

to

use

if

no

entry

is

provided

in

the

IBM

WebSphere

business

object

or

if

using

BDC_OKCODE,

because

it

is

the

command

value

A

value

might

not

always

be

passed

in

and

it

is

mandatory

for

the

transaction

DEFLT_VAL

SY

Field

name

A

dynamic

system

field

to

be

used

as

a

default

value

(for

example:

DATUM)

A

value

is

not

passed

in

or

should

be

determined

by

SAP

system

fields

SYFIELD

Return

A

number

between

1

and

4,

that

identifies

which

system

message

field

returns

the

key

value

at

transaction

completion

(SY-MSGV#)

A

business

object

key

attribute

that

should

receive

the

key

value

RETURNFLD

Length

Character

length

from

the

zero

position

of

the

attribute

value

that

should

be

used

for

input

Relevant

only

when

using

an

attribute

that

contains

a

composite

value

LENGTH

To

define

or

modify

a

business

object’s

metadata

(transferring

information

to

/CWLD/WIZ_IN):

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

Important:

You

must

log

on

to

the

SAP

system

in

English

when

using

IBM

CrossWorlds

Station

to

generate

business

object

definitions

or

ABAP

handlers.

The

CrossWorlds

Station

log

is

available

only

in

English.

2.

Click

the

Development

tab.

76

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

3.

Click

the

Modify

BO

Metadata

button

in

the

Transaction

based

-

Inbound

section.

Defining

the

metadata

for

the

business

object

is

simple.

For

each

screen,

the

first

entry

identifies

the

screen,

subsequent

entries

identify

the

input

fields,

and

the

last

entry

must

be

a

command.

This

grouping

repeats

for

each

screen.

Using

the

Counter

column

as

a

line

number

for

discussion,

step

through

the

SAP4_CustomerMaster

example.

100

Begin

with

screen

number

100

of

program

SAPMF02D.

This

is

a

new

screen,

the

first,

so

it

is

flagged

in

the

Start

column.

110

On

screen

110,

use

the

value

from

the

Customer_account_group

attribute

in

the

business

object,

and

add

it

to

the

BDC

field

name

column

(the

value

is

RF02D-KT0KD).

Specify

the

default

value

as

0001.

If

the

Customer_account_group

attribute

contains

CxIgnore,

then

the

BDC

field

name

column

receives

the

default

value

0001

120

The

Customer_Account_Number

attribute

is

the

key

value,

so

it

is

not

set

during

the

Call

Transaction.

SAP

assigns

the

key

value

internally

and

makes

it

available

only

after

the

transaction

is

successfully

posted.

For

this

reason,

leave

the

BDC

field

name

column

blank,

but

include

an

entry

in

the

table

because

the

Customer_Account_Number

attribute

must

be

set

with

this

key

value

when

it

is

returned

at

the

conclusion

of

the

Call

Transaction.

Also

enter

the

word

RETURN

in

the

Program

column

for

CustomerNumber.

Depending

on

the

transaction,

SAP

returns

the

key

value

in

one

of

four

possible

fields:

SY-MSGV1,

SY-MSGV2,

SY-MSGV3

or

SY-MSGV4.

To

specify

that

you

want

the

return

value

set

in

a

particular

attribute,

enter

a

number,

1-4,

in

the

Return

column.

This

number

corresponds

to

the

SY-MSGV#

field

containing

the

key

value.

130

You

are

finished

entering

the

necessary

values

for

the

first

screen,

so

enter

a

command,

/00,

in

the

Default

Value

column

to

simulate

pressing

the

Enter

key.

This

takes

you

to

the

next

transaction

screen.

Commands

are

entered

in

the

screen

input

field,

BDC_OKCODE,

which

is

where

you

enter

in

a

transaction

code.

140

At

this

point,

you

are

at

the

next

transaction

screen.

Enter

the

address

information.

Since

it

is

a

new

screen,

flag

it

in

the

Start

column.

In

this

example,

the

second

screen

is

associated

with

the

same

program

as

the

initial

screen,

and

only

the

screen

number

changed

from

100

to

110.

This

is

not

always

the

case.

150

-210

Use

the

values

from

the

Name_1,

Sort_field,

City,

P_0_Box_postal_code,

Country_key,

Language_keys,

and

Post_office_box

attributes

in

the

business

object,

and

add

corresponding

values

to

the

BDC

field

name

column.

220

Similar

to

line

130,

processing

for

this

screen

is

complete.

However,

rather

than

simply

simulating

the

Enter

key,

enter

the

command

value

UPDA

to

save

the

transaction.

This

takes

you

to

the

next

transaction

screen.

230

At

this

point,

you

are

at

the

third

transaction

screen,

so

flag

it

in

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

77

the

Start

column.

Because

your

business

object

does

not

require

data

from

this

screen,

you

will

complete

processing

for

this

screen

in

the

next

line.

240

Similar

to

line

130,

processing

for

this

screen

is

complete.

Enter

the

command

value

/00

to

simulate

pressing

the

Enter

key.

This

takes

you

to

the

final

transaction

screen.

250

At

this

point,

you

are

at

the

final

transaction

screen.

Flag

it

in

the

Start

column.

260

Similar

to

lines

150-210.

Use

the

value

from

the

business

object

attribute,

Transport_zone_to_which_or_from_which_the_goods_are_delivered,

and

add

its

corresponding

value

(KNA1-LZONE)

to

the

BDC

field

name

column.

270

Similar

to

line

220,

processing

for

this

screen

is

complete

and

the

transaction

is

complete,

so

enter

the

command

value

to

save,

UPDA.

This

is

the

last

action

the

Call

Transaction

API

receives.

280

The

final

entry

for

any

business

object

is

always

the

specification

of

the

transaction

code.

The

keyword

TCODE

goes

in

the

Program

column

and

the

transaction

code

goes

in

the

BDC

field

name

column.

This

completes

the

definition

of

the

BDC

Session

for

the

SAP4_CustomerMaster

business

object.

If

a

call

transaction

returns

an

error

message

when

it

fails,

you

could

have

one

of

the

common

errors

described

below.

v

The

SAP

application

has

called

a

screen

that

the

BDC

did

not

expect,

so

the

SAP

application

returns

the

message,

No

input

available

for

program

XX

and

screen

YY.

If

this

occurs,

add

the

appropriate

entries

to

the

Dynamic

Transaction

table

to

handle

the

input

screen

for

program

XX

and

screen

YY.

v

The

SAP

application

is

instructed

by

the

BDC

to

set

a

field

that

does

not

exist.

Most

likely,

the

SAP

application

executed

its

own

instruction

that

you

did

not

explicitly

set.

As

a

result,

you

are

on

a

different

screen

than

you

intended.

If

this

occurs,

repeat

the

instruction

and

add

only

the

piece

that

sends

you

to

the

appropriate

screen.

Using

the

inbound

wizard

for

dynamic

transaction

The

Inbound

Wizard

records

your

navigation,

actions,

and

field

inputs

in

a

transaction

when

you

click

the

first

field

or

change

screens.

The

recorder

picks

up

every

action

that

occurs,

but

not

everything

you

see.

For

example,

when

the

initial

screen

first

appears,

the

recorder

captures

the

initial

call

to

the

transaction,

but

not

all

of

the

input

fields

that

appear

on

that

screen.

If

you

want

to

be

able

to

use

an

input

field,

you

must

enter

some

data

into

that

field.

Also,

even

though

an

input

field

may

contain

default

data,

that

data

is

not

picked

up

unless

it

is

manually

entered.

To

create

a

new

WebSphere

business

object

definition:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

78

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Important:

You

must

log

on

to

the

SAP

system

in

English

when

using

IBM

CrossWorlds

Station

to

generate

business

object

definitions

or

ABAP

handlers.

The

CrossWorlds

Station

log

is

available

only

in

English.

2.

On

the

Development

tab,

click

the

Inbound

Wizard

Button.

3.

Enter

the

following

information:

v

Business

Object

Name—Name

of

the

business

object

type

as

well

as

the

name

of

every

instance

of

the

object.

If

you

are

creating

a

new

business

object,

then

enter

a

new

name.

It

is

recommended

that

you

use

a

simple

name

that

defines

the

business

object.

If

you

are

using

an

existing

business

object,

then

select

it

from

the

drop-down

list.

v

Verb—Verb

supported

by

the

business

object.

v

Transaction

Code—Transaction

code

for

the

screen

that

supports

the

necessary

functionality

performed

by

the

business

object.

To

get

the

transaction

code

for

a

screen,

Click

Status

from

the

System

menu.

The

code

is

listed

in

the

Transaction

field

under

SAP

data.
4.

Click

Record.

5.

Step

through

the

transaction

that

supports

your

business

object

functionality.

Use

all

necessary

fields

and

screens.

When

you

are

finished,

save

your

transaction.

6.

Choose

the

components

that

you

want

to

include

as

metadata

in

your

business

object.

Place

your

cursor

on

the

component,

and

then

click

the

Select/Deselect

sub-tree

button

(F9).

By

default,

all

components

are

selected.

7.

Generate

a

new

dynamic

object

or

source

code.

v

To

generate

and

insert

the

metadata

for

the

Dynamic

Transaction

table,

click

the

Generate

Meta

data

button

(F6).

You

can

generate

a

WebSphere

business

object

definition

from

this

data.

v

To

generate

a

text

file

with

BDC

data

and

field

descriptions,

click

the

Generate

Code

in

Text

File

button

(F5).

You

cannot

generate

a

WebSphere

business

object

definition

from

this

data.

Developing

business

objects

using

IDocs

WebSphere

business

objects

for

the

ABAP

Extension

Module

can

be

defined

in

SAP

as

an

IDoc.

IDocs

are

part

of

SAP’s

EDI

solution

known

as

ALE

(Application

Link

Enabling).

Their

definitions

are

stored

in

SAP’s

BOR

(Business

Object

Repository)

and

can

be

accessed

globally

within

an

SAP

system.

This

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

leverages

the

definition

part

of

ALE

to

interpret

and

parse

WebSphere

business

objects

in

the

SAP

application

in

preparation

for

use

with

an

SAP

native

API.

The

adapter

provides

an

IDoc

handler

that

supports

business

objects

developed

using

IDocs.

IDoc

handler

consists

of

two

function

modules.

Other

ABAP

handlers

such

as

Dynamic

Retrieve

and

Dynamic

Transaction

consist

of

only

a

single

function

module.

/CWLD/RFC_DO_VERB_NEXTGEN

passes

business

object

data

to

IDoc

handler

/CWLD/IDOC_HANDLER.

This

IDoc

handler,

which

is

generic

to

all

object

types,

uses

the

business

object’s

application-specific

information

to

obtain

the

type

of

IDoc

specified

and

to

reformat

the

business

object

data

into

the

structure

of

that

IDoc.

After

it

reformats

the

data,

the

generic

IDoc

handler

passes

the

business

object

data

to

an

object-specific

IDoc

handler

(based

on

the

combination

of

the

business

object

type

and

its

verb),

which

handles

the

integration

with

an

SAP

native

API.

After

the

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

79

object-specific

IDoc

handler

finishes

processing

the

business

object

data,

it

returns

the

business

object

data

in

IDoc

format

to

/CWLD/IDOC_HANDLER.

This

generic

IDoc

handler

now

converts

the

business

object

data

back

to

its

original

format

and

returns

it

to

/CWLD/RFC_DO_VERB_NEXTGEN.

Figure

15

illustrates

the

basic

architecture

of

IDoc

handler.

To

use

the

adapter-provided

IDoc

handler,

you

must

have

an

IDoc

defined

in

the

SAP

application.

Either

SAP-delivered

or

customer-built

IDocs

can

be

used.

Because

an

IDoc

definition

must

mirror

the

definition

of

the

WebSphere

business

object

for

SAP,

the

adapter

provides

two

tools

to

generate

the

WebSphere

business

object

definition

based

on

an

IDoc:

v

A

tool

in

IBM

CrossWorlds

Station

v

SAPODA

The

following

sections

describe

how

to

use

both

of

these

tools.

Using

IBM

CrossWorlds

Station

to

generate

a

business

object

definition

Before

you

can

use

IBM

CrossWorlds

station

to

generate

a

business

object

definition,

you

must

have

already

created

a

WebSphere

business

object

in

the

SAP

application.

To

create

a

business

object

definition

based

on

an

IDoc:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

Important:

You

must

log

on

to

the

SAP

system

in

English

when

using

IBM

CrossWorlds

Station

to

generate

business

object

definitions

or

ABAP

handlers.

The

CrossWorlds

Station

log

is

available

only

in

English.

2.

Click

the

Tools

tab.

3.

Click

the

CW

Object

Definition

button,

and

then

click

Advanced

Download

(F7).

4.

Fill

in

the

Object

and

Functions

information

as

needed.

You

must

specify

an

existing

IDoc

type

and

WebSphere

Object

Name.

The

fields

in

the

Functions

section

are

the

application-specific

information

for

the

supported

verbs.

Business object router:
/CWLD/RFC_DO_VERB_NEXTGEN

IDoc handler:
Object-Specific
function module

IDoc handler:
/CWLD/IDOC_HANDLER

IDoc handler architecture

Figure

15.

IDoc

h‘andler

architecture

80

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

For

example,

an

SAP4_Order

business

object

based

on

the

Order

IDoc

type

YXRV4B01

could

have

the

following

functions:

v

Create:

/CWLD/IDOC/HANDLER:Y_XR_ORDER_C1

v

Update:

/CWLD/IDOC/HANDLER:Y_XR_ORDER_C2

v

Delete:

/CWLD/IDOC/HANDLER:Y_XR_ORDER_C3

v

Retrieve:

/CWLD/IDOC/HANDLER:Y_XR_ORDER_C4

For

more

information

on

how

the

application-specific

information

is

used

for

the

verb

functions,

see

“Business

object

data

routing

to

ABAP

handlers”

on

page

61.

After

defining

the

IDoc,

create

a

function

module

for

each

verb

the

business

object

must

support.

Each

function

should

have

the

following

interface

to

ensure

that

/CWLD/IDOC_HANDLER

can

call

it:

*"

IMPORTING

*"

VALUE(OBJECT_KEY_IN)

LIKE

/CWLD/LOG_HEADER-OBJ_KEY

OPTIONAL

*"

VALUE(INPUT_METHOD)

LIKE

BDWFAP_PAR-

NPUTMETHD

OPTIONAL

*"

VALUE(LOG_NUMBER)

LIKE

/CWLD/LOG_HEADER-LOG_NR

OPTIONAL

*"

EXPORTING

*"

VALUE(OBJECT_KEY_OUT)

LIKE

/CWLD/LOG_HEADER-OBJ_KEY

*"

VALUE(RETURN_CODE)

LIKE

/CWLD/RFCRC_STRU-RFCRC

*"

VALUE(RETURN_TEXT)

LIKE

/CWLD/LOG_HEADER-OBJ_KEY

*"

TABLES

*"

IDOC_DATA

STRUCTURE

EDID4

Using

SAPODA

to

generate

a

business

object

definition

You

can

use

SAPODA

to

generate

business

object

definitions

for

the

ABAP

Extension

Module

based

upon

an

IDoc:

v

Extracted

as

a

file

v

Defined

in

the

SAP

System

Important:

You

must

log

on

to

the

SAP

system

in

English

to

use

SAPODA.

When

you

use

SAPODA

to

generate

a

business

object

definition,

you

can

use

Business

Object

Designer

to

view

and

modify

the

definition.

For

more

information

on

using

SAPODA,

see

Appendix

E,

“Generating

business

object

definitions

using

SAPODA,”

on

page

291.

After

defining

the

IDoc,

create

a

function

module

for

each

verb

the

business

object

must

support.

Each

function

should

have

the

following

interface

to

ensure

that

/CWLD/IDOC_HANDLER

can

call

it:

*"

IMPORTING

*"

VALUE(OBJECT_KEY_IN)

LIKE

/CWLD/LOG_HEADER-OBJ_KEY

OPTIONAL

*"

VALUE(INPUT_METHOD)

LIKE

BDWFAP_PAR-

NPUTMETHD

OPTIONAL

*"

VALUE(LOG_NUMBER)

LIKE

/CWLD/LOG_HEADER-LOG_NR

OPTIONAL

*"

EXPORTING

*"

VALUE(OBJECT_KEY_OUT)

LIKE

/CWLD/LOG_HEADER-OBJ_KEY

*"

VALUE(RETURN_CODE)

LIKE

/CWLD/RFCRC_STRU-RFCRC

*"

VALUE(RETURN_TEXT)

LIKE

/CWLD/LOG_HEADER-OBJ_KEY

*"

TABLES

*"

IDOC_DATA

STRUCTURE

EDID4

IDoc

handlers

and

create,

update,

and

delete

verbs

IDoc

handlers

that

support

Create,

Update,

and

Delete

operations

receive

business

object

data

formatted

as

an

IDoc.

The

role

of

these

operations

is

to

integrate

the

business

object

data

with

SAP’s

Call

Transaction

API

and

generate

an

object

key.

Only

the

object

key

is

passed

back

through

/CWLD/IDOC_HANDLER

to

the

connector,

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

81

not

the

business

object

data.

/CWLD/IDOC_HANDLER

stores

the

business

object

data

in

memory

and

inserts

the

object

key

into

the

first

attribute

marked

IsKey

in

the

parent

business

object.

Then,

/CWLD/IDOC_HANDLER

passes

the

business

object

data

back

to

the

connector.

Note:

When

the

WebShpere

InterChange

Server

is

the

integration

broker,

it

is

critical

to

maintain

the

business

object

data

because

the

mapping

infrastructure

requires

the

preservation

of

the

ObjectEventId

for

dynamic

cross-referencing.

The

sample

code

below

represents

the

following

flow:

1.

Initializes

global

data.

2.

Deconstructs

the

IDoc

into

working

tables.

v

Initializes

the

target

structure

with

’/’

(CxIgnore)

because

not

all

objects

are

sent

into

the

SAP

application.

Uses

the

form

in

/CWLD/INBIDOC_FRMS0.

v

Uses

the

forms

in

/CWLD/INBIDOC_FRMS0

to

transfer

data

from

the

IDoc

into

internal

tables

for

consistent

behavior

across

objects.
3.

Builds

the

BDC.

Uses

the

forms

in

/CWLD/INBIDOC_FRMS0

to

transfer

data

from

the

internal

tables

into

the

BDC

table

for

consistent

behavior

across

objects.

4.

Creates

a

Call

Transaction.

5.

Captures

the

object

key.

The

following

sample

code

supports

SAP

Sales

Quote

Create:

*-

Initialize

working

variables

and

internal

tables

PERFORM

INITIALIZE_IN.

*-

I01(MF):

Begin

IDoc

interpretation

PERFORM

LOG_UPDATE(/CWLD/SAPLLOG)

USING

C_INFORMATION_LOG

TEXT-I01

SPACE

SPACE

SPACE.

*-

Interpret

IDoc

data

structure

IF

NOT

IDOC_DATA[]

IS

INITIAL.

*-

Move

IDoc

to

internal

tables

PERFORM

INTERPRET_IDOC.

*-

Check

some

of

the

input

fields

PERFORM

CHECK_INPUT.

*-

If

key

values

were

missing,

exit

function

IF

RETURN_CODE

NE

0.

EXIT.

ENDIF.

*-

E01(MF):

No

Idoc

data

lines

sent

for

processing.

ELSE.

RETURN_CODE

=

2.

RETURN_TEXT

=

TEXT-E01.

EXIT.

ENDIF.

*-

Build

the

BDC

session

for

transaction

VA21.

PERFORM

BUILD_BDC_VA21.

*-

Call

Transaction

PERFORM

LOG_UPDATE(/CWLD/SAPLLOG)

USING

C_INFORMATION_LOG

TEXT-I02

’VA21’

C_BLANK

C_BLANK.

82

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

CALL

TRANSACTION

’VA21’

USING

BDCDATA

MODE

INPUT_METHOD

UPDATE

’S’

MESSAGES

INTO

BDC_MESSAGES.

*-

Capture

return

code

and

object

key

from

transaction

PERFORM

PREPARE_RETURNED_MESSAGE.

ENDFUNCTION.

The

Create

logic

has

two

main

functions:

v

Translates

the

IDoc

Data

into

manageable

data

structures

v

Executes

a

Call

Transaction

Translating

IDOC

structure

The

first

part

of

the

Create

logic

is

the

task

of

translating

data

in

the

IDoc

structure

into

working

data

structures.

To

do

this,

you

need

to

create

code

similar

to

the

following:

loop

at

idoc_data.

case

idoc_data-segnam.

when

’ZSQVBAK’.

"

Header

Data

move

idoc_data-sdata

to

zsqvbak.

when

’ZSQVBUK’.

"

Status

Segment

move

idoc_data-sdata

to

zsqvbuk.

when

’ZSQVBP0’.

"

Partner

Header

Level

move

idoc_data-sdata

to

zsqvbp0.

when

’ZSQVBAP’.

"

Item

Detail

move

idoc_data-sdata

to

zsqvbap.

when

’ZSQVBA2’.

"

Item

Detail

Part

2

move

idoc_data-sdata

to

zsqvba2.

when

’ZSQVBUP’.

"

Item

Status

move

idoc_data-sdata

to

zsqvbup.

when

’ZSQVBKD’.

"

Commercial

data

move

idoc_data-sdata

to

zsqvbkd.

when

’ZSQKONV’.

"

Condition

move

idoc_data-sdata

to

zsqkonv.

when

’ZSQVBPA’.

"

Partner

Item

Level

move

idoc_data-sdata

to

zsqvbpa.

endcase.

endloop.

Creating

inbound

call

transaction

logic

The

second

part

of

the

create

logic

performs

the

operation

of

adding

data

to

the

SAP

application

database.

You

can

use

available

functionality

such

as

BAPIs

and

SAP

standard

functions

or

you

can

use

custom-developed

Call

Transaction

functionality.

Keep

in

mind

that

if

you

use

the

available

functionality,

it

may

change

in

future

releases.

It

is

recommended

that

you

use

Call

Transactions

instead

of

writing

to

the

database.

Call

Transactions

allow

you

to

develop

custom

functionality,

independent

of

SAP

database

changes

and

specific

to

the

scope

and

functionality

you

need.

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

83

To

pass

business

object

data

into

SAP,

you

can

generate

some

of

the

ABAP

code

by

using

the

Inbound

Wizard

in

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME),

using

the

SAP

BDC

recorder,

or

developing

it

manually.

The

Inbound

Wizard

records

the

activity

for

your

create

transaction

and

creates

a

text

file

with

the

BDC

logic.

For

the

Sales

Quote

example,

transaction

VA21

is

recorded.

To

record

transaction

VA21

using

Inbound

Wizard:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

Important:

You

must

log

on

to

the

SAP

system

in

English

when

using

IBM

CrossWorlds

Station

to

generate

business

object

definitions

or

ABAP

handlers.

The

CrossWorlds

Station

log

is

available

only

in

English.

2.

On

the

Development

tab,

click

the

Inbound

Wizard

button.

3.

Enter

the

following

information:

v

Business

object

name—Name

of

the

business

object

type

as

well

as

the

name

of

every

instance

of

the

object.

If

you

are

creating

a

new

business

object,

then

enter

a

new

name.

It

is

recommended

that

you

use

a

simple

name

that

defines

the

business

object.

If

you

are

using

an

existing

business

object,

then

select

it

from

the

drop-down

list.

v

Verb—Verb

supported

by

the

business

object.

v

Transaction

code—Transaction

code

for

the

screen

that

supports

the

necessary

functionality

performed

by

the

business

object.

To

get

the

transaction

code

for

a

screen,

Click

Status

from

the

System

menu.

The

code

is

listed

in

the

Transaction

field

under

SAP

data.
4.

Click

Record.

5.

Step

through

the

transaction

that

supports

your

business

object

functionality.

Use

all

necessary

fields

and

screens.

When

you

are

finished,

save

your

transaction.

6.

Choose

the

components

that

you

want

to

include

as

metadata

in

your

business

object.

Place

your

cursor

on

the

component,

and

then

click

the

Select/Deselect

sub-tree

button

(F9).

By

default,

all

components

are

selected.

7.

Generate

a

new

dynamic

object

or

source

code.

v

To

generate

and

insert

the

metadata

for

the

Dynamic

Transaction

table,

click

the

Generate

Meta

data

button

(F6).

You

can

generate

a

WebSphere

business

object

definition

from

this

data.

v

To

generate

a

text

file

with

BDC

data

and

field

descriptions,

click

the

Generate

Code

in

Text

File

button

(F5).

You

cannot

generate

a

WebSphere

business

object

definition

from

this

data.

The

following

sample

code

is

an

excerpt

from

the

first

few

lines

of

the

generated

BDC

session:

*

Sales

doc.

Initial

screen

Create

perform

dynpro_new

using

’SAPMV45A’

’0101’

.

*

Sales

document

type

perform

dynpro_set

using

’VBAK-AUART’

’QT’

.

*

Distribution

channel

perform

dynpro_set

using

’VBAK-VTWEG’

’sourcefield’

.

*

Division

84

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

perform

dynpro_set

using

’VBAK-SPART’

’sourcefield’

.

*

Function

Command

perform

dynpro_set

using

’BDC_OKCODE’

’=ENT2’

.

*

4.0:

Screen

Container

for

Overview

Screens

(normal

header)

perform

dynpro_new

using

’SAPMV45A’

’4001’

.

*

Sold-to

party

perform

dynpro_set

using

’KUAGV-KUNNR’

’238’

.

*

Ship-to

party

perform

dynpro_set

using

’KUWEV-KUNNR’

’238’

.

*

Function

Command

perform

dynpro_set

using

’BDC_OKCODE’

’=KKAU’

.

*

4.0:

Screen

container

for

document

header

screens

perform

dynpro_new

using

’SAPMV45A’

’4002’

.

*

Date

until

which

bid/quotation

is

binding

(valid-to

date)

perform

dynpro_set

using

’VBAK-BNDDT’

’20000630’

.

You

can

also

use

SAP’s

BDC

recorder

(transaction

SHDB).

The

following

sample

code

was

generated

using

the

BDC

recorder:

start-of-selection.

read

dataset

dataset

into

record.

if

sy-subrc

<>

0.

exit.

endif.

perform

bdc_dynpro

using

’SAPMV45A’

’0101’.

perform

bdc_field

using

’BDC_CURSOR’

’VBAK-AUART’.

perform

bdc_field

using

’BDC_OKCODE’

’=ENT2’.

perform

bdc_dynpro

using

’SAPMV45A’

’4001’.

perform

bdc_field

using

’BDC_OKCODE’

’=KKAU’.

perform

bdc_field

using

’BDC_CURSOR’

’KUWEV-KUNNR’.

perform

bdc_field

using

’KUAGV-KUNNR’

record-KUNNR_001.

perform

bdc_field

using

’KUWEV-KUNNR’

The

output

from

this

method

does

not

have

the

business

object

comments

from

the

first

method

and

is

less

preferable.

The

advantage

using

SAP’s

BDC

recorder

is

that

it

produces

an

independent

method

to

verify

your

recording

of

BDC.

Another

method

is

to

generate

the

BDC

manually.

This

is

not

an

advised

approach

for

the

entire

create

functionality

but

rather

as

a

supplement

to

the

previous

methods.

It

is

useful

when

you

need

to

add

logic

for

additional

screens

or

pop

up

boxes

that

may

occur

if

the

input

data

causes

the

SAP

transaction

to

produce

them.

IDoc

handlers

and

the

retrieve

verbs

Object-specific

IDoc

handlers

that

support

the

Retrieve

verb

do

not

receive

business

object

data

from

/CWLD/IDOC_HANDLER.

Instead

/CWLD/IDOC_HANDLER

uses

the

OBJECT_KEY_IN

parameter

of

the

object-specific

IDoc

handler

function

to

pass

only

the

value

of

the

first

attribute

marked

IsKey.

It

is

the

object-specific

IDoc

handler’s

responsibility

to

use

the

value

of

this

attribute

to

retrieve

all

information

relevant

to

the

instance

of

the

business

object

using

ABAP

SQL,

and

to

format

that

data

in

the

appropriate

IDoc

structure.

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

85

Note:

In

cases

where

the

key

is

composed

of

multiple

fields,

the

event

detection

mechanism

(or,

when

the

WebSphere

InterChange

Server

is

the

integration

broker,

the

map)

concatenates

the

values

of

these

fields

into

the

first

key

attribute

of

the

top-level

business

object.

/CWLD/IDOC_HANDLER

takes

this

concatenated

key

and

loads

it

into

its

OBJECT_KEY_IN

parameter.

The

object-specific

IDoc

handler

must

parse

the

value

of

the

OBJECT_KEY_IN

parameter

into

the

multiple

key

fields.

To

maintain

this

functionality,

it

is

important

that

you

do

not

specify

name-value

pairs

for

the

key

when

using

/CWLD/IDOC_HANDLER.

The

code

fragment

below

illustrates

an

object-specific

IDoc

handler

for

retrieval

of

a

Sales

Quote.

The

Sales

Quote

business

object

retrieves

data

from

tables

VBAK,

VBUK,

VBPO,

VBAP,

VBUP,

VBKD,

KNOV,

and

VBPA.

The

tables

follow

the

hierarchy

and

cardinality

of

IDoc

type

ZSLSQUOT.

The

code

does

the

following:

1.

Initializes

global

data.

2.

Returns

business

object

data

from

the

SAP

application

database.

3.

Builds

an

IDoc

from

the

returned

data

and

returns

that

data

to

/CWLD/IDOC_HANDLER.

The

code

fragment

for

an

object-specific

IDoc

handler

for

IDoc

type

ZSLSQUOT

is:

*-

Clear

the

interface

structures.

clear:

g_text,

object_key_out,

return_code,

return_text,

idoc_data.

refresh:

idoc_data.

*

If

no

key

value

is

specified,

log

it

as

an

error

and

exit.

if

object_key_in

is

initial

or

object_key_in

=

c_cxignore_const.

perform

log_update(/cwld/sapllog)

using

c_error_log

text-e02

space

space

space.

return_code

=

1.

return_text

=

text-e02.

exit.

endif.

perform

initialize_global_structures.

perform

fill_internal_tables.

if

not

return_code

is

initial.

exit.

endif.

*

Build

Idoc

segments

from

internal

tables

perform

fill_idoc_inttab.

return_code

=

0.

return_text

=

text-s01.

perform

log_update(/cwld/sapllog)

using

c_information_log

text-s01

space

space

space.

endfunction.

The

two

most

important

parameters

are

OBJECT_KEY_IN

for

the

inbound

key

and

IDOC_DATA

for

the

outbound

data.

Note

that

OBJECT_KEY_IN

may

be

a

concatenated

string

that

represents

a

multiple

key

(depending

on

the

conventions

you

have

defined).

The

object-specific

IDoc

handler

parses

the

concatenated

value

and

loads

its

parts

into

the

appropriate

key

fields.

To

maintain

this

functionality,

it

is

important

that

you

do

not

specify

name-value

pairs

for

the

key

when

using

/CWLD/IDOC_HANDLER.

86

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

VBAK

table

drives

the

selection

criteria

for

the

child

tables,

so

each

table

is

loaded

into

working

tables.

Using

the

VBAK

table,

you

can

retrieve

the

child

tables

with

additional

keys.

So,

for

the

Sales

Quote

example,

the

code

is

as

follows:

form

fill_internal_tables.

*

Get

information

from

VBAK,

VBUK,

VBAP,

VBKD,

KONV,

VBPA

select

single

*

from

vbak

where

vbeln

=

object_key_in.

if

sy-subrc

<>

0.

perform

log_update(/cwld/sapllog)

using

c_error_log

text-e01

object_key_out

c_blank

c_blank.

return_code

=

’1’.

g_text

=

text-e01.

replace

’&’

with

order_number

into

g_text.

return_text

=

g_text.

exit.

endif.

select

single

*

from

vbuk

where

vbeln

=

vbak-vbeln.

select

*

from

vbap

into

table

t_vbap

where

vbeln

=

vbak-vbeln.

*

Continue

for

other

tables

The

following

code

is

used

to

copy

the

requested

data

from

the

application

database

into

internal

tables

and

working

variables.

Then

it

creates

segments

that

directly

correspond

to

the

WebSphere

business

object

definition

and

puts

them

into

the

SAP

segment

structure.

In

some

cases

for

close

matches

on

fields

between

the

IDoc

type

and

the

working

structure,

you

can

do

an

ABAP

move-corresponding

command.

In

other

cases,

it

is

preferable

to

manually

move

fields

from

the

working

table

to

the

IDoc

type

table

because

of

the

relatively

few

fields

to

move

in

comparison

to

the

overall

number

of

fields

in

the

structure.

Simply,

it

is

used

to

transfer

data

from

the

working

data

structures

into

the

IDoc

structures

and

then

into

the

flat

data

field.

The

code

is:

form

fill_idoc_inttab.

perform

fill_zsqvbak.

"

Fill

the

Sales

Quote

Header

perform

fill_zsqvbuk.

"

Fill

the

Sales

Quote

Status

perform

fill_zsqvbap.

"

Fill

Sales

Quote

Lines

endform.

"

FILL_IDOC_INTTAB

*--

fill

the

Sales

Quote

Header

form

fill_zsqvbak.

clear

idoc_data.

clear

zsqvbak.

idoc_data-segnam

=

’ZSQVBAK’.

move-corresponding

vbak

to

zsqvbak.

move

zsqvbak

to

idoc_data-sdata.

append

idoc_data.

endform.

"

FILL_ZSQVBAK

Chapter

6.

Developing

business

objects

for

the

ABAP

Extension

module

87

*--

fill

the

Sales

Quote

Header

Status

form

fill_zsqvbuk.

clear

idoc_data.

clear

zsqvbuk.

idoc_data-segnam

=

’ZSQVBUK’.

move-corresponding

vbuk

to

zsqvbuk.

move

zsqvbuk

to

idoc_data-sdata.

append

idoc_data.

endform.

"

FILL_ZSQVBAK

*--

fill

the

Sales

Quote

Line

and

the

Line

Child

segments

form

fill_zsqvbap.

loop

at

t_vbap.

clear

idoc_data.

clear

zsqvbap.

idoc_data-segnam

=

’ZSQVBAP’.

move-corresponding

t_vbap

to

zsqvbap.

move

zsqvbap

to

idoc_data-sdata.

append

idoc_data.

perform

fill_zsqvba2.

perform

fill_zsqvbup.

perform

fill_zsqvbkd.

perform

fill_zsqkonv.

perform

fill_zsqvbpa.

endloop.

endform.

*--

fill

second

part

of

vbap

form

fill_zsqvba2.

"

etc.

Calling

the

ABAP

Extension

Module

and

ABAP

handler

The

connector

uses

the

value

of

the

verb

application-specific

information

in

a

business

object

to

call

the

appropriate

ABAP

handler

in

the

ABAP

Extension

Module.

To

call

the

appropriate

ABAP

handler

in

the

ABAP

Extension

Module,

you

can

specify

the

classname

for

the

ABAP

Extension

Module

and

must

specify

the

ABAP

handler

function

module

used

by

the

business

object.

For

example,

the

verb

application-specific

information

for

the

Dynamic

Transaction

ABAP

handler

supporting

SAP

R/3

version

4.6

is:

AppSpecificInfo

=

sap.sapextensionmodule.VSapBoHandler,:/CWLD/DYNAMIC_TRANSACTION

Note:

You

must

uses

a

comma

delimiter

between

the

connector

module

(classname)

and

ABAP

handler.

For

more

information

on

business

object

processing

for

the

ABAP

Extension

Module,

see

“Business

object

processing”

on

page

36.

88

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

7.

Developing

event

detection

for

the

ABAP

Extension

module

Event

detection

is

part

of

the

event

triggering

process

in

the

ABAP

component

of

the

ABAP

Extension

Module.

Every

event

detection

mechanism

must

call

an

event

trigger,

which

takes

the

detected

event

and

adds

it

to

an

event

table.

For

more

information

on

triggering

events,

see

“Event

triggering”

on

page

42.

This

chapter

contains

the

following

sections:

v

“Designing

an

event

detection

mechanism”

v

“Implementing

an

event

detection

mechanism”

on

page

93

Designing

an

event

detection

mechanism

You

can

use

many

different

mechanisms

to

detect

events

in

the

SAP

application.

An

event

detection

mechanism

should

have

the

ability

to

make

a

function

module

call.

The

four

event

detection

mechanisms

that

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

has

implemented

are:

v

Code

enhancement—implemented

for

a

business

process

(normally

a

single

SAP

transaction)

by

inserting

event

detection

code

at

an

appropriate

point

within

the

SAP

transaction

v

Batch

program—involves

developing

an

ABAP

program

containing

the

criteria

for

detecting

an

event

v

Business

workflow—uses

SAP’s

own

object-oriented

event

detection

capabilities

v

Change

pointer—implementing

a

change

pointer

mechanism,

which

is

a

variation

of

business

workflow,

uses

the

concept

of

change

documents

to

detect

changes

for

a

business

process

It

is

important

that

you

determine

the

appropriate

event

detection

mechanism

to

implement

for

each

business

object

that

you

develop,

because

some

may

not

be

available

for

a

particular

business

process.

Technical

and

functional

knowledge

of

a

particular

business

process

is

necessary

for

each

transaction

for

which

you

want

to

implement

event

detection.

Review

the

following

implementation

considerations

when

determining

which

event

detection

mechanism

to

implement

for

your

business

process.

Availability

Which

event

detection

mechanisms

are

available

for

this

business

process?

This

should

be

one

of

the

first

questions

that

you

consider.

Code

enhancement

and

batch

program

have

high

availability,

whereas

business

workflow

and

change

pointer

do

not.

Real-time

integration

Do

events

need

to

be

detected

synchronously?

Do

you

need

to

detect

a

large

number

of

events

at

one

time?

All

mechanisms

except

batch

program

are

suitable

for

real-time

integration.

Reliability

Are

all

data

changes

for

this

business

process

detected

when

generating

an

event?

Code

Enhancement,

Batch

Program,

and

Change

Pointer

©

Copyright

IBM

Corp.

2003,

2004

89

provide

the

best

control

of

capturing

all

events

of

an

object.

Business

Workflow

provides

limited

reliability.

For

example,

Business

Workflow

does

not

detect

an

address

change

during

a

Vendor

transaction

update.

Flexibility

Do

certain

criteria

need

to

be

evaluated

before

an

event

is

triggered?

Does

an

event

need

to

be

detected

at

a

certain

point

in

the

transaction?

Code

Enhancement

is

the

most

flexible,

because

you

can

insert

code

at

a

specific

point

before

event

data

is

committed.

Change

Pointer

and

Batch

Program

are

moderately

flexible,

while

Business

Workflow

has

very

little

flexibility

in

its

implementation.

Upgrade

dependency

Does

an

upgrade

to

the

SAP

application

change

the

way

an

event

is

detected

for

this

business

process?

Typically,

this

is

not

known,

but

business

workflow

and

change

pointer

are

affected

by

application

changes

the

most

because

they

are

under

SAP’s

control.

Difficulty

Is

time

or

level

of

difficulty

an

issue?

Each

mechanism

has

its

own

level

of

implementation

difficulty.

In

general,

batch

program

is

the

easiest.

code

enhancement

and

business

workflow

are

moderately

more

difficult,

while

change

pointer

is

the

most

difficult

because

it

requires

a

more

intimate

knowledge

of

SAP

and

the

business

process

being

evaluated.

Future

events

Do

you

need

to

be

able

to

capture

an

event

real-time

and

then

delay

its

retrieval

until

a

specified

date?

For

example,

an

employee

record

may

be

updated

today

with

a

change

of

address

that

is

effective

three

weeks

from

today.

In

this

case,

you

may

want

to

capture

the

event

at

the

time

of

the

update,

but

delay

its

retrieval

until

the

effective

date.

At

this

point,

you

should

have

an

idea

of

the

event

detection

mechanisms

that

you

need

to

consider.

Use

Table

15

as

a

general

guideline

in

determining

which

mechanism

can

be

used

for

each

business

process

you

need

to

support.

Table

15.

Event

detection

mechanism

decision

table

Code

enhancement

Batch

program

Business

workflow

Change

pointer

Availability

High

High

Low

Low

Real-time

integration

Yes

No

Yes

Yes

Reliability

High

High

Low

Medium

Flexibility

High

Medium

Low

Medium

Upgrade

dependency

Low

Low

Medium

Medium

Difficulty

Medium

Low

Medium

High

Future

Events

Yes

Yes

No

No

90

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

A

final

consideration

to

note

is

the

development

methodology

of

your

site.

Perhaps

event

detection

using

only

business

workflow

is

the

preferred

method

and

code

enhancement

cannot

be

used

at

all.

Using

code

enhancement

is

the

recommended

approach

for

event

detection

because

it

is

reliable,

highly

flexible,

synchronous,

and

has

high

availability.

In

contrast,

business

workflow

and

change

pointer

mechanisms

are

not

generally

available

for

all

business

processes.

Batch

program

is

typically

used

when

real-time

integration

is

not

desired.

Each

event

detection

mechanism

has

advantages

and

disadvantages

for

detecting

an

event

in

a

business

process.

The

following

sections

give

more

detail

about

each

of

the

event

detection

mechanisms,

including

the

main

advantages

and

disadvantages

of

each.

All

of

the

event

detection

mechanisms

support

real-time

triggering

and

retrieval

of

events.

However,

only

code

enhancement

and

batch

program

provides

the

additional

functionality

of

delayed

retrieval.

An

event

specified

to

be

retrieved

at

a

later

date

is

called

a

future

event.

Code

enhancement

Code

enhancement

is

implemented

at

specific

points

in

the

code

of

an

SAP

transaction.

By

making

use

of

user

exits,

you

can

insert

event

detection

code

at

the

most

logical

point

in

a

transaction.

The

event

detection

code

allows

for

evaluation

of

criteria

to

determine

whether

an

event

is

generated.

The

general

strategy

of

this

mechanism

is

to

insert

your

event

detection

code

when

the

data

for

a

transaction

is

about

to

be

committed

to

the

database.

Advantages

v

Has

access

to

SAP

transactional

information

for

the

event

detection

process

v

Allows

the

insertion

of

event

detection

code

at

an

appropriate

point

of

a

transaction

v

Provides

synchronous

event

detection

v

Limits

the

reliance

on

SAP

functionality,

so

maintenance

and

enhancements

are

easier

v

Supports

future

events

Disadvantages

v

User

exits

may

not

always

be

in

the

appropriate

location

in

the

transaction

v

SAP

modification

features

may

be

necessary

Batch

program

Batch

program

is

useful

when

a

large

number

of

events

of

the

same

type

(such

as

customer

orders)

need

to

be

triggered,

or

a

business

process

requires

a

large

amount

of

processing

time.

This

mechanism

does

not

require

any

modifications

to

SAP-delivered

code;

however,

you

need

to

use

(write)

an

ABAP

program

that

evaluates

criteria

for

detecting

events.

Advantages

v

Can

be

implemented

for

most

business

processes

v

Accurately

detects

events

v

Is

easy

to

implement

Chapter

7.

Developing

event

detection

for

the

ABAP

Extension

module

91

v

Can

be

scheduled

to

run

at

a

specific

time

if

runtime

resources

are

an

issue

v

Supports

future

events

Disadvantages

v

It

does

not

provide

synchronous

event

detection

v

SAP

transactional

information

is

not

available

v

State

(Create,

Update,

or

Delete)

or

status

changes

cannot

be

detected

or

may

not

be

easily

detected

v

If

a

background

job

is

created

to

automate

a

batch

program,

an

additional

task

needs

to

be

maintained

and

monitored

Business

workflow

Business

workflow

is

a

cross-application

tool

within

the

SAP

application

that

enables

you

to

integrate

business

tasks

between

applications.

This

tool

supplements

the

existing

business

functions

of

the

SAP

application.

The

standard

functions

of

SAP

can

be

adapted

using

business

workflow

to

meet

the

specific

requirements

of

the

desired

business

function.

business

workflow

uses

the

Business

Object

Repository

(BOR),

which

stores

the

definitions

for

each

SAP

object

in

the

application.

Advantages

v

Provides

synchronous

event

detection

v

Makes

use

of

SAP’s

object-oriented

business

object

capability

to

link

the

detection

of

events

to

ABAP

function

modules

v

Is

easy

to

implement

Disadvantages

v

An

SAP

object

does

not

exist

in

the

SAP

BOR

for

every

business

process

v

The

SAP

event

(such

as

Created

or

Deleted)

may

not

exist

for

the

SAP

object

v

It

may

not

detect

all

changes

in

a

business

process

v

It

does

not

always

provide

the

flexibility

for

detecting

events

at

the

proper

time

v

It

depends

on

SAP-provided

functionality,

which

may

change

between

versions

of

SAP

Change

pointer

Change

pointer

is

a

related

feature

of

business

workflow

that

uses

change

documents

to

detect

events.

Change

documents

are

created

for

some

business

processes

so

that

all

changes

for

that

business

process

are

captured.

Advantages

v

Provides

synchronous

event

detection

v

Needs

only

one

SAP

modification

for

an

adapter

function

module

to

handle

all

business

processes

v

Generally

available

for

the

Logistics

module

v

Has

access

to

SAP

change

pointer

information

for

the

event

detection

process

v

If

change

documents

are

already

used

for

a

business

process,

it

needs

only

a

minimal

amount

of

work

to

detect

an

event

Disadvantages

v

It

is

somewhat

flexible,

but

the

event

detection

placement

cannot

be

changed

since

it

is

done

by

SAP

92

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

It

requires

a

solid

understanding

of

change

documents

and

the

business

workflow

environment

v

You

must

do

an

SAP

modification

to

turn

on

the

change

document

flag

for

an

SAP

data

element

v

Change

pointer

information

in

SAP

may

not

be

sufficient

for

the

event

detection

process

Implementing

an

event

detection

mechanism

After

you

determine

the

business

process

to

support

(for

example,

sales

quotes

or

sales

orders),

and

determine

the

preferred

event

detection

mechanism,

implement

the

mechanism

for

your

business

process.

Note:

When

implementing

an

event

detection

mechanism,

it

is

a

good

idea

to

support

all

of

the

functionality

for

a

business

process

in

one

mechanism.

This

limits

the

impact

in

the

SAP

application

and

makes

event

detection

easier

to

manage.

The

following

sections

describe

the

implementation

process

for

the

four

event

detection

mechanisms

implemented

by

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com.

Whenever

applicable,

an

example

is

provided

along

with

sample

code.

Code

enhancement

Code

enhancement

requires

encapsulating

a

portion

of

ABAP

code

in

a

custom

function

module.

The

event

detection

code

is

written

as

a

function

module

to

ensure

that

the

processing

remains

separate

from

the

transaction.

Any

tables

or

variables

used

from

the

transaction

need

to

be

passed

to

the

function

module

by

value

and

not

by

reference.

To

minimize

the

effects

of

locking

a

business

object

when

retrieving

an

event,

the

function

module

typically

executes

in

an

update-task

mode.

To

avoid

inconsistencies,

do

not

use

update

task

if

the

function

module

is

already

being

called

within

a

process

that

is

in

an

update

-task

mode.

To

minimize

the

impact

in

the

transaction,

place

the

function

module

within

another

include

program.

Using

an

include

program

allows

you

to

make

changes

to

custom

code

rather

than

to

SAP

code.

The

event

detection

code

contains

logic

that

identifies

the

object

for

the

event.

For

example,

the

sales

order

transaction

handles

many

types

of

orders,

but

only

one

order

type

is

required.

This

logic

is

in

the

event

detection

code.

The

general

strategy

for

placing

this

event

detection

code

is

to

insert

it

just

before

the

data

is

committed

to

the

database.

The

function

module

containing

the

event

detection

code

is

typically

created

as

a

part

of

the

function

group

for

the

business

object.

To

implement

Code

enhancement

for

event

detection:

v

Determine

which

verbs

to

support:

Create,

Update,

or

Delete.

This

helps

define

which

transactions

to

investigate.

v

Determine

the

business

object

key

for

the

transaction.

This

key

must

be

unique

to

allow

the

connector

to

retrieve

the

business

object

from

the

database.

If

a

composite

key

is

required,

at

triggering

time

you

can

specify

each

key

attribute

and

its

corresponding

value

as

a

name-value

pair.

When

the

business

object

is

Chapter

7.

Developing

event

detection

for

the

ABAP

Extension

module

93

created

at

polling

time,

the

connector

automatically

populates

the

attributes

with

their

values.

For

more

information,

see

“Coding

composite

keys

as

name-value

pairs”

on

page

95.

v

Check

that

an

SAP-provided

user

exit

in

the

transaction

has

all

of

the

information

needed

to

detect

an

event.

For

example,

a

user

exit

may

not

be

able

to

implement

a

Delete

verb

because

the

business

object

is

removed

from

the

database

prior

to

that

point.

v

If

a

user

exit

cannot

be

used,

determine

the

appropriate

location

for

the

event

detection

code,

and

then

add

the

event

detection

code

using

an

SAP

modification.

Select

a

location

that

has

access

to

the

business

object

key

and

other

variables

used

to

make

the

decision.

If

you

are

implementing

the

future

events

capability,

in

addition

to

adding

the

event

detection

code

for

future

events,

contact

your

BASIS

administrator

to

schedule

the

adapter-delivered

batch

program

/CWLD/SUBMIT_IN_FUTURE

to

run

once

every

day.

v

Research

a

business

process

by

looking

for

a

“commit

work

statement”

in

the

code

executed

by

the

transaction

for

the

business

process.

You

can

use

the

ABAP

debugger

to

investigate

the

value

of

different

attributes

at

that

point.

v

Determine

the

criteria

for

detecting

an

event.

v

Create

the

function

module

containing

the

event

detection

code.

v

Create

the

include

program

and

then

add

it

to

the

transaction’s

code.

Test

all

of

the

scenarios

designed

to

detect

an

event.

The

following

steps

describe

the

process

of

creating

an

example

SAP

sales

quote

using

the

code

enhancement

event

detection

mechanism.

The

code

that

follows

it

is

a

result

of

this

process.

1.

Upon

investigation

of

the

SAP

sales

quote

transaction,

transaction

VA21

is

found

to

support

the

desired

sales

quote

creation

business

process.

2.

The

sales

quote

number

is

determined

to

be

the

unique

key.

The

Sales

quote

number

is

stored

in

table/field

VBAK-VBELN.

Note:

Because

this

event

uses

a

single

unique

key,

the

code

example

uses

the

OBJKEY

parameter

to

pass

the

key’s

value.

For

an

example

of

coding

an

event

that

uses

a

composite

key,

see

“Coding

composite

keys

as

name-value

pairs”

on

page

95.

3.

Transaction

VA21

has

a

user

exit

in

the

transaction

flow

as

part

of

the

document

save

process

(Form

Userexit_save_document).

At

this

point

in

the

transaction,

the

quote

number

is

available

when

the

user

exit

is

executed.

4.

The

user

exit

belongs

to

other

business

processes,

so

additional

coding

is

needed

to

differentiate

a

sales

quote

from

other

categories

of

documents.

VBAK-VBTYP

is

available

to

determine

the

document

category.

A

sales

quote

is

saved

in

the

SAP

database

with

a

document

category

of

B.

5.

An

include

statement

is

added

to

the

user

exit

that

points

to

the

include

program.

6.

At

this

time,

the

include

program

and

a

function

module

need

to

be

created.

/CWLD/ADD_TO_QUEUE:

single

key

value

example

The

following

code

fragment

illustrates

the

function

call

to

the

/CWLD/ADD_TO_QUEUE

event

trigger

(using

a

single

key

value).

If

VBAK-VBTYP

=

‘B’.

C_OBJ_ORDER

=

‘SAP4_SalesQuote’.

TMP_OBJKEY

=

XVBAK-VBELN.

TMP_EVENT

=

‘Create’.

94

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

CALL

FUNCTION

’/CWLD/ADD_TO_QUEUE’

EXPORTING

OBJ_NAME

=

C_OBJ_ORDER

OBJKEY

=

TMP_OBJKEY

EVENT

=

TMP_EVENT

GENERIC_RECTYPE

=

’’

IMPORTING

RECTYPE

=

TMP_RECTYPE

TABLES

EVENT_CONTAINER

=

TMP_EVENT_CONTAINER

EXCEPTIONS

OTHERS

=

1.

Endif.

/CWLD/ADD_TO_QUEUE_IN_FUTURE:

single

key

value

example

The

following

code

fragment

illustrates

the

function

call

to

the

/CWLD/ADD_TO_QUEUE_IN_FUTURE

event

trigger

(single

key

value).

DATA:

DATE_IN_FUTURE

LIKE

SY_DATUM.

DATE_IN_FUTURE

=

VBAK-VDATU.

If

VBAK-VBTYP

=

‘B’.

C_OBJ_ORDER

=

‘SAP4_SalesQuote’.

TMP_OBJKEY

=

XVBAK-VBELN.

TMP_EVENT

=

‘Create’.

CALL

FUNCTION

’/CWLD/ADD_TO_QUEUE_IN_FUTURE’

EXPORTING

OBJ_NAME

=

C_OBJ_ORDER

OBJKEY

=

TMP_OBJKEY

EVENT

=

TMP_EVENT

VALID_DATE

=

DATE_IN_FUTURE

IMPORTING

RECTYPE

=

TMP_RECTYPE

TABLES

EVENT_CONTAINER

=

TMP_EVENT_CONTAINER

EXCEPTIONS

OTHERS

=

1.

Endif.

Coding

composite

keys

as

name-value

pairs

If

an

event’s

key

is

composed

of

multiple

fields

rather

than

a

single

key

field,

you

can

specify

the

name

of

each

key

attribute

and

its

corresponding

value.

Because

you

specify

the

attribute’s

name,

the

attribute

need

not

be

marked

as

IsKey

for

the

connector

to

populate

it

and

use

it

for

retrieval.

If

you

specify

more

than

one

name-value

pair,

the

connector

sets

the

value

of

multiple

attributes

in

the

business

object

it

creates

to

retrieve

the

full

object

from

the

application.

If

you

specify

a

single

name-value

pair,

the

connector

sets

the

value

of

the

specified

attribute

rather

than

the

first

attribute

that

is

marked

IsKey.

Because

IDoc

handlers

do

not

use

name-value

pairs,

it

is

important

that

you

not

specify

name-value

pairs

when

using

/CWLD/IDOC_HANDLER.

For

more

information,

see

“IDoc

handlers

and

the

retrieve

verbs”

on

page

85.

The

following

steps

describe

the

process

of

creating

an

example

SAP

sales

quote

that

uses

three

fields

in

its

composite

key.

The

code

that

follows

it

is

a

result

of

this

process.

Chapter

7.

Developing

event

detection

for

the

ABAP

Extension

module

95

1.

Create

a

local

name_value_pairs

internal

table

based

on

the

structure

(/CWLD/NAME_VALUE_PAIRS)

delivered

with

the

adapter.

This

structure

has

two

columns:

ATTR_NAME

and

ATTR_VALUE.

2.

Before

calling

the

function

module

/CWLD/ADD_TO_QUEUE

or

/CWLD/ADD_TO_QUEUE_IN_FUTURE,

write

code

that

adds

the

names

of

the

key

attributes

and

their

values

to

your

internal

table.

3.

Change

the

function

module

/CWLD/ADD_TO_QUEUE

or

/CWLD/ADD_TO_QUEUE_IN_FUTURE:

v

Because

you

will

not

be

using

the

OBJKEY

parameter

to

pass

the

key’s

value,

comment

out

the

line

for

this

parameter.

v

Because

you

will

be

using

the

NAME_VALUE_PAIRS

table

to

pass

the

composite

key’s

value,

add

a

line

for

this

table.
4.

The

triggering

function

automatically

formats

each

event

key.

The

format

uses

the

following

syntax:

attribute1=value1|Cx|attribute2=value2|Cx|[attributeN=valueN|Cx|]

where:

attribute

The

name

of

the

key

attribute

(not

case-sensitive)

value

The

value

of

the

key

attribute

(case-sensitive)

|Cx|

Terminator

for

each

name-value

pair

(used

even

if

only

one

name-value

pair

is

specified)

The

order

in

which

you

specify

name-value

pairs

in

your

code

need

not

match

the

order

of

the

attributes

in

the

business

object.

However,

the

event

fails

if

you

specify

an

attribute

that

does

not

exist

in

the

business

object.

The

following

code

fragment

specifies,

at

the

time

of

triggering,

the

customer

number,

sales

organization,

and

distribution

channel

in

table

KNVV

as

name-value

pairs.

Two

lines

are

highlighted

in

the

code

for

the

function

module

/CWLD/ADD_TO_QUEUE:

v

The

line

that

passes

a

value

to

the

OBJKEY

parameter

(commented

out)

v

The

line

that

specifies

the

NAME_VALUE_PAIRS

table
DATA:

name_value_pairs

LIKE

/cwld/name_value_pairs

OCCURS

5

with

header

line.

MOVE

’CustomerId’

TO

name_value_pairs-attr_name.

MOVE

knvv-kunnr

TO

name_value_pairs-attr_value.

APPEND

name_value_pairs.

MOVE

’SalesOrg’

TO

name_value_pairs-attr_name.

MOVE

knvv-vkorg

TO

name_value_pairs-attr_value.

APPEND

name_value_pairs.

MOVE

’DistributionChannel’

TO

name_value_pairs-attr_name.

MOVE

knvv-vtweg

TO

name_value_pairs-attr_value.

APPEND

name_value_pairs.

If

VBAK-VBTYP

=

‘B’.

C_OBJ_ORDER

=

‘SAP4_SalesQuote’.

TMP_OBJKEY

=

XVBAK-VBELN.

TMP_EVENT

=

‘Create’.

CALL

FUNCTION

’/CWLD/ADD_TO_QUEUE’

EXPORTING

OBJ_NAME

=

C_OBJ_ORDER

*

OBJKEY

=

TMP_OBJKEY

EVENT

=

TMP_EVENT

GENERIC_RECTYPE

=

’’

IMPORTING

96

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

RECTYPE

=

TMP_RECTYPE

TABLES

NAME_VALUE_PAIRS

=

name_value_pairs

EVENT_CONTAINER

=

TMP_EVENT_CONTAINER

EXCEPTIONS

OTHERS

=

1.

Endif.

Batch

program

To

implement

batch

program

as

an

event

detection

mechanism,

you

must

write

an

ABAP

program

that

evaluates

database

information.

If

the

criteria

in

the

ABAP

program

is

fulfilled

when

the

program

executes,

then

an

event

is

triggered.

To

implement

batch

program

for

event

detection:

v

Determine

which

verb

to

support:

Create,

Update,

or

Delete.

v

Determine

the

business

object

key

for

the

transaction.

The

business

object

key

must

be

unique

so

that

the

business

object

can

be

retrieved

from

the

database.

A

composite

key

may

be

required.

For

example,

implementing

a

batch

program

for

inventory

levels

of

materials

at

different

plants

requires

the

key

Material_key

+

Plant_key.

v

Determine

the

criteria

for

detecting

an

event.

You

should

have

knowledge

of

the

database

tables

associated

with

a

business

object.

v

Create

an

ABAP

program

containing

the

criteria

for

generating

an

event.

v

If

you

are

implementing

the

future

events

capability,

in

addition

to

adding

the

event

detection

code

for

future

events,

contact

your

BASIS

administrator

to

schedule

the

adapter-delivered

batch

program

/CWLD/SUBMIT_IN_FUTURE

to

run

once

every

day.

See

“/CWLD/ADD_TO_QUEUE_IN_FUTURE:

single

key

value

example”

on

page

95

for

example

code

that

implements

the

future

events

capability.

v

Determine

if

a

background

job

is

required

to

automate

the

batch

program.

A

background

job

is

useful

if

there

is

an

impact

on

system

resources,

which

makes

it

necessary

to

run

the

batch

program

during

off-peak

hours.

The

following

steps

describe

the

process

of

creating

a

batch

program

that

detects

events

for

all

sales

quotes

created

on

today’s

date.

The

code

that

follows

it

is

a

result

of

this

process.

1.

Create

is

determined

to

be

the

supported

verb.

2.

The

quote

number

is

determined

to

be

the

unique

key

used

to

retrieve

the

events.

3.

The

creation

date

(VBAK-ERDAT)

and

the

document

category

(VBAK-VBTYP)

need

to

be

checked.

The

following

sample

code

supports

the

SAP

sales

quote

as

a

batch

program:

REPORT

ZSALESORDERBATCH.

tables:

vbak.

parameter:

d_date

like

sy-datum

default

sy-datum.

data:

tmp_key

like

/CWLD/LOG_HEADER-OBJ_KEY,

tmp_event_container

like

swcont

occurs

0.

"

retrieve

all

sales

quotes

for

today’s

date

"

sales

quotes

have

vbtyp

=

B

select

*

from

vbak

where

erdat

=

d_date

Chapter

7.

Developing

event

detection

for

the

ABAP

Extension

module

97

and

vbtyp

=

’B’.

tmp_key

=

vbak-vbeln.

CALL

FUNCTION

’/CWLD/ADD_TO_QUEUE’

EXPORTING

OBJ_NAME

=

’SAP4_SalesQuote’

OBJKEY

=

tmp_key

EVENT

=

’Create’

GENERIC_RECTYPE

=

’’

IMPORTING

RECTYPE

=

r_rectype

TABLES

EVENT_CONTAINER

=

tmp_event_container.

write:

/

vbak-vbeln.

endselect.

Business

workflow

Business

workflow

is

a

set

or

sequence

of

logically

related

business

operations.

The

processing

logic

within

a

workflow

detects

events.

The

business

workflow

event

detection

mechanism

relies

on

the

SAP

Business

Object

Repository

(BOR),

which

contains

the

directory

of

objects

along

with

their

related

attributes,

methods,

and

events.

To

implement

business

workflow

for

event

detection:

v

Determine

which

SAP

business

object

represents

the

functionality

that

you

need.

Check

if

the

events

trigger,

start,

or

end

a

workflow.

You

can

use

the

Business

Object

Builder

(transaction

SWO1)

to

search

for

the

appropriate

business

object.

v

Create

a

subtype

of

this

SAP

business

object.

A

subtype

inherits

the

properties

of

the

supertype

and

can

be

customized

for

use.

v

Activate

the

events

(such

as

CREATED,

CHANGED,

and

DELETED)

for

the

business

object

by

customizing

the

subtype.

The

following

example

of

SAP

sales

quote

can

be

used

to

implement

an

event

trigger

using

business

workflow:

1.

Search

the

BOR

for

the

appropriate

sales

quote

business

object.

A

search

can

be

done

using

the

short

description

field

and

the

string

’*quot*’.

BUS2031

(Customer

Quotes)

is

one

of

the

business

objects

returned.

2.

Upon

further

investigation

of

BUS2031,

it

is

determined

that

the

key

field

is

CustomerQuotation.SalesDocument

(VBAK-VBELN).

3.

A

subtype

for

BUS2031

is

created

using

the

following

entries:

Object

type—ZMYQUOTE

Event—SAP4_SalesQuote

Name—SAP4

Sales

Quote

Description—Example

of

an

SAP

4

Sales

Quote

Subtype

Program—ZMYSALESQUOTE

Application—V

4.

The

event

detection

mechanism

is

activated

by

adding

an

entry

to

the

Event

Linkage

table

(transaction

SWE3).

The

create

event

is

activated

using

the

following

entries:

Object

type—ZMYQUOTE

Event—SAP4_SalesQuote

Receiver

FM—/CWLD/ADD_TO_QUEUE_DUMMY

98

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Receiver

type

FM—/CWLD/ADD_TO_QUEUE_WF

Note:

The

Receiver

and

Receiver

type

function

modules

(FM)

point

to

/CWLD/ADD_TO_QUEUE.

The

DUMMY

function

module

is

used

only

because

sometimes

the

SAP

application

requires

that

both

fields

be

populated.

The

WF

function

module

translates

the

SAP

standard

interface

to

the

one

used

by

/CWLD/ADD_TO_QUEUE.

The

business

workflow

event

detection

mechanism

is

created

and

active.

It

is

set

up

to

detect

all

SAP

Customer

Quotes

that

are

created.

Change

pointer

Change

pointer

uses

change

documents

and

is

one

of

the

more

challenging

event

detection

mechanisms

to

implement.

SAP’s

Business

Object

Repository

(BOR)

is

used

as

well

as

Application

Link

Enabled

(ALE)

technology.

A

change

document

always

refers

to

a

business

document

object

having

at

least

one

database

table

assigned

to

it.

If

the

data

element

in

a

table

is

marked

as

requiring

a

change

document

and

the

table

is

assigned

to

a

business

document

object,

then

a

change

in

value

of

the

field

defined

by

the

data

element

generates

a

change

document.

The

changes

are

captured

in

tables

CDHDR

and

CDPOS

and

are

used

for

event

detection.

To

implement

change

pointer

for

event

detection:

v

Activate

the

global

Change

pointers

flag

in

transaction

BD61.

v

Change

the

SAP

function

module

CHANGE_POINTERS_CREATE

to

include

the

function

module

call

to

/CWLD/EVENT_FROM_CHANGE_POINTR.

v

Determine

which

verbs

to

support:

Create,

Update,

or

Delete.

v

Check

if

the

SAP

business

process

(transaction)

utilizes

change

documents:

–

In

the

Environment

menu

for

the

transaction,

does

a

Change

function

exist?

How

about

when

you

click

Go

To,

and

then

click

Statistics?

–

If

you

change

data

in

the

transaction,

is

there

a

new

entry

in

table

CDHDR

that

reflects

the

change?

–

In

the

database

tables

associated

with

a

transaction,

do

any

of

the

data

elements

have

the

Change

Document

flag

set?

If

the

answer

is

Yes

to

any

of

these

questions,

the

transaction

uses

change

documents.

v

Determine

if

the

data

elements

that

set

the

Change

Document

flag

capture

all

of

the

information

needed

to

detect

an

event.

Changing

the

Change

Document

flag

is

not

recommended

because

it

changes

an

SAP-delivered

object.

v

Determine

the

business

object

key

for

the

transaction.

The

business

object

key

must

be

unique

so

that

the

business

object

can

be

retrieved

from

the

database.

A

composite

key

may

be

required.

This

is

normally

table/field

CDHDR-OBJECTID.

v

Determine

the

criteria

for

detecting

an

event.

Use

table/field

CDHDR-OBJECTCLAS

as

the

main

differentiator.

CDPOS-TABNAME

may

also

be

used

to

detect

the

event.

v

Update

function

module

/CWLD/EVENT_FROM_CHANGE_POINTR

with

the

logic

to

detect

the

event.

The

following

example

of

an

SAP

sales

quote

can

be

used

to

implement

an

event

trigger

using

change

pointer:

1.

Update

is

determined

to

be

the

supported

verb.

Investigating

the

sales

quote

create

transaction

shows

that

the

Create

verb

is

not

detected

through

this

mechanism.

Chapter

7.

Developing

event

detection

for

the

ABAP

Extension

module

99

2.

When

performing

the

checks

of

the

business

for

sales

quote:

v

The

Change

function

is

available

from

the

Environment

menu

in

transaction

VA22.

v

Making

a

change

to

a

sales

quote

results

in

a

new

entry

in

table

CDHDR.

v

Looking

at

table

VBAP,

the

field

ZMENG

has

the

Change

Document

flag

set.
3.

No

evaluation

of

data

elements

was

done

for

this

example.

4.

The

sales

quote

number

is

determined

to

be

the

unique

key

in

CDHDR-OBJECTID.

5.

CDHDR-OBJECTCLAS

has

a

value

of

VERKBELEG,

which

is

the

main

differentiator.

Only

sales

quotes

should

be

picked

up.

The

code

checks

the

TCODE

field

in

the

header

table,

but

a

proper

lookup

should

be

done

in

the

VBAK

table.

The

following

sample

code

is

added

to

/CWLD/EVENT_FROM_CHANGE_POINTR:

when

’VERKBELEG’.

data:

skey

like

/cwld/log_header-obj_key,

s_event

like

swetypecou-event,

r_genrectype

like

swetypecou-rectype,

r_rectype

like

swetypecou-rectype,

t_event_container

like

swcont

occurs

1

with

header

line.

"

Quick

check.

Should

check

document

category

(VBTYP)

in

VBAK.

check

header-tcode

=

’VA22’.

"

Event

detection

has

started

perform

log_create

using

c_log_normal

c_blank

c_event_from_change_pointer

c_blank.

"

Set

the

primary

key

skey

=

header-objectid.

"

Set

the

verb

s_event

=

c_update_event.

"

Log

adding

the

event

to

the

queue

perform

log_update

using

c_information_log

text-i44

’SAP4_SalesQuote’

s_event

skey.

"

Event

detection

has

finished.

perform

log_update

using

c_finished_log

c_blank

c_blank

c_blank

c_blank.

call

function

’/CWLD/ADD_TO_QUEUE’

exporting

obj_name

=

’SAP4_SalesQuote’

objkey

=

skey

event

=

s_event

generic_rectype

=

r_genrectype

importing

rectype

=

r_rectype

tables

event_container

=

t_event_container

exceptions

others

=

1.

100

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

8.

Testing

a

business

object

for

the

ABAP

Extension

module

Once

you

have

developed

an

application-specific

business

object

and

a

supporting

ABAP

handler,

you

must

unit

test

to

make

sure

they

support

the

desired

functionality.

IBM

provides

unit

test

tools

that

operate

independently

from

your

WebSphere

business

integration

system.

This

means

that

you

do

not

need

to

have

an

integration

broker

or

the

connector

running

to

test

your

business

object.

However,

these

tools

do

not

replace

full

end-to-end

testing

through

the

WebSphere

business

integration

system

and

are

meant

only

to

be

used

for

unit

testing

of

individual

business

objects

and

ABAP

handlers.

This

chapter

contains

the

following

sections:

v

“Preparing

to

test”

v

“Unit

test

issues”

on

page

103

v

“Testing

an

ABAP

handler”

on

page

104

Preparing

to

test

All

business

object

processing

originates

from

the

Java

component

of

the

connector.

This

applies

to

all

business

objects

and

all

possible

verbs.

To

unit

test,

IBM

provides

an

ABAP

program

that

simulates

the

connector’s

action

of

sending

in

a

business

object

request.

Specifically,

the

program

simulates

the

doVerbFor()

processing

in

the

Java

component

of

the

connector

by

calling

the

ABAP

function

module

/CWLD/RFC_DO_VERB_NEXTGEN.

Like

doVerbFor(),

the

test

program

requires

a

business

object

as

an

input

to

pass

to

the

ABAP

function

module.

The

ABAP

test

program

uses

a

text

file

as

its

input.

All

input

test

files

have

the

same

ASCII

text

format.

From

this

file

format,

the

test

program

restructures

the

data

to

resemble

the

business

object

passed

to

/CWLD/RFC_DO_VERB_NEXTGEN.

The

following

rules

apply

to

business

object

input

files:

v

Business

object

must

have

only

one

parent

business

object

in

a

file.

v

Child

business

objects

are

ordered

first

in

depth,

then

in

breadth.

v

Attributes

and

business

objects

must

be

ordered

in

the

exact

sequence

that

they

occur

in

the

business

object

repository

definition.

v

For

each

attribute,

the

information

described

in

Table

16

must

be

provided

in

the

described

format

and

in

the

sequence

shown

(leading

spaces

after

the

“=”

are

ignored):

Table

16.

Attribute

properties

and

values

Attribute

Property

Description

or

Possible

Values

Name

name

of

the

attribute

Value

value

of

the

attribute

or

CxIgnore

=

‘CxIgnore’or

CxBlank

=

‘

‘

©

Copyright

IBM

Corp.

2003,

2004

101

Table

16.

Attribute

properties

and

values

(continued)

Attribute

Property

Description

or

Possible

Values

IsKey

value

that

specifies

whether

the

attribute

is

a

key:

0

=

no

1

=

yes

Peers

NumberOfPeers

value

expressed

an

integer

that

represents

the

total

number

of

child

business

objects

at

the

same

level

For

example,

if

an

Item

business

object

contains

two

line

items,

each

line

item

would

have

the

value

‘2’.

AppInfo

application-specific

information

that

is

specific

to

each

business

object

In

addition

to

the

test

program,

IBM

also

provides

a

program

for

generating

the

object

test

input

file.

The

Test

File

Generator

builds

the

test

file

based

on

one

of

several

different

inputs.

Table

17

lists

the

Test

File

Generator

options.

Table

17.

Test

file

generator

inputs

and

outputs

Option

Required

inputs

Description

of

output

Dynamic

Ret/Tran

Table

entries

in:

v

/CWLD/WIZ_OUT

(Dynamic

Retrieve)

v

/CWLD/WIZ_IN

(Dynamic

Transaction)

A

test

input

file

containing

either

a

complete

set

or

subset

of

attributes

based

on

their

net

use

in

both

Dynamic

Retrieve

and

Dynamic

Transaction

tables.

This

is

Dynamic

Retrieve

and

Dynamic

Transaction

metadata.

IDoc

Structure

An

IDoc

type

defined

in

your

SAP

application

A

test

input

file

containing

one

instance

of

every

possible

object

(segment)

and

attribute

(segment-field).

This

is

an

IDoc

structure.

IDoc

object

v

An

ABAP

function

module

developed

to

retrieve

IBM

WebSphere

business

objects

v

The

object’s

key

A

test

input

file

with

only

the

attributes

(fields)

and

objects

(segments)

that

exist

for

the

particular

object

identified

with

the

key.

This

is

an

IDoc

object.

Repository

Definition

The

same

text

file

that

used

to

load

the

repository

(when

WebSphere

InterChange

Server

is

the

integration

broker)

or

copied

to

the

repository

(when

WebSphere

WMQ

Integrator

Broker

is

the

integration

broker)

A

test

input

file

containing

one

instance

of

every

possible

object

and

attribute.

This

is

a

repository

definition.

Choosing

to

generate

an

IDoc

object

is

useful

because

the

Generate

test

file

tool

generates

an

input

file

that

has

valid

attribute

values,

making

it

easier

to

test

Create,

Update,

or

Delete

verbs

because

the

values

have

been

validated.

The

other

three

options

(Dynamic

Ret/Tran,

IDoc

Structure,

and

CW

Repository

Definition)

are

similar

because

they

provide

input

files

with

no

attribute

values.

102

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Unit

test

issues

The

unit

test

tools

test

all

SAP

development

work

that

handles

business

object

processing

for

the

connector.

Also,

the

unit

test

tools

enable

you

to

test

the

interaction

of

your

work

with

the

ABAP

components

of

the

connector.

The

test

tools

allow

you

to

test

your

development

work

as

an

online

user

(real-time)

only.

It

is

important

to

understand

the

differences

between

testing

the

connector

as

if

operating

as

a

background

user

and

testing

the

connector

as

an

online

user.

The

main

differences

are

as

follows:

Memory

When

testing

a

business

object,

the

connector

must

log

into

the

SAP

application.

In

addition,

logging

in

is

required

to

test

the

business

objects

by

generating

events

and

using

the

test

tools

in

IBM

CrossWorlds

Station.

The

connector

runs

as

a

background

user,

so

it

processes

in

a

single

memory

space

that

is

never

implicitly

refreshed

until

the

connector

is

stopped

and

then

restarted

(therefore

it

is

critical

in

business

object

development

to

clear

memory

after

processing

is

complete).

Since

you

are

an

online

user,

memory

is

typically

refreshed

after

each

transaction

you

execute.

For

more

information,

see

Chapter

6,

“Developing

business

objects

for

the

ABAP

Extension

module,”

on

page

69.

Any

problems

that

may

occur

because

of

this

(for

example,

return

codes

never

being

initialized)

are

not

detected

using

the

test

tool;

only

testing

with

the

connector

reveals

these

issues.

Screen

flow

behavior

Screen

flow

behavior

is

relevant

only

when

using

the

Call

Transaction

API.

The

precise

screen

and

sequence

of

screens

that

a

user

interacts

with

is

usually

determined

at

runtime

by

the

transaction’s

code.

For

example,

if

a

user

chooses

to

extend

a

material

master

record

to

include

a

sales

view

by

checking

the

Sales

view

check

box,

SAP

queries

the

user

for

the

specific

Sales

Organization

information

by

presenting

an

additional

input

field.

So,

the

transaction

source

code

at

runtime

determines

the

specific

screen

and

its

requirements

based

on

the

data

input

by

the

user.

While

the

test

tool

can

handle

this

type

of

test

scenario,

there

is

a

related

scenario

that

the

test

tool

cannot

handle.

SAP’s

transaction

code

may

present

different

screens

to

background

users

and

online

users

(usually

for

usability

rather

than

performance).

The

test

tool

operates

only

as

an

online

user.

The

connector

operates

only

as

a

background

user.

Despite

this

difference,

unit

testing

allows

you

to

handle

most

testing

situations.

Chapter

8.

Testing

a

business

object

for

the

ABAP

Extension

module

103

Testing

an

ABAP

handler

To

test

an

ABAP

handler,

you

must

first

generate

a

business

object

input

file.

You

may

need

to

modify

the

file

to

contain

attribute

values

and

the

appropriate

application-specific

information.

Once

you

are

ready,

all

you

need

to

do

is

execute

the

test

program

by

pointing

to

your

test

file

as

input.

Creating

a

test

file

To

create

a

test

file:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME),

and

then

click

the

Tools

tab.

2.

Click

the

Create

Test

File

button

under

Test

Tools.

3.

Enter

the

name

of

your

business

object

and

the

verb

you

plan

to

test.

4.

Select

the

source

definition

on

which

to

base

your

input

file.

See

Table

17

for

a

description

of

the

test

file

options.

5.

Enter

the

additional

data

required

for

the

source.

6.

Click

the

Generate

button.

A

dialog

box

appear

asking

if

you

want

to

modify

the

test

file.

This

is

your

opportunity

to

edit

the

test

file

in

SAP’s

editor.

If

you

do

not

wish

to

edit

at

this

time,

click

no;

otherwise,

click

Yes,

and

then

click

the

Back

arrow

(F3)when

finished.

7.

Enter

a

filename

and

location

to

save

your

test

file.

It

is

recommended

that

you

use

the

naming

convention

Object_verb.in.

8.

Once

you

have

saved

your

generated

test

file,

you

must

open

the

file

in

a

test

editor

and

do

the

following:

v

Modify

the

verb

application-specific

information

to

point

to

your

ABAP

handler.

For

example,

:function1:function2.

For

more

information

on

the

proper

syntax,

see

“Business

object

data

routing

to

ABAP

handlers”

on

page

61.

v

Verify

that

the

appropriate

attribute

on

the

parent

business

object

is

marked

isKey.

v

Add

input

values

for

the

attributes,

as

required.

Using

the

test

file

Once

you

have

created

the

test

file,

you

are

now

ready

to

use

it

to

test

the

business

object.

To

use

the

test

file:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME),

and

then

click

the

Tools

tab.

2.

Click

the

Test

Program

button

under

Test

Tools.

3.

In

the

input

file

field,

enter

the

location

and

filename

of

your

input

file.

4.

If

you

want

to

generate

output

data,

enter

a

filename

and

location

for

the

output

data.

The

filename

can

be

the

same

as

the

input

filename,

however,

it

will

overwrite

the

input

data.

This

step

is

optional.

5.

Click

the

Execute

button.

When

finished,

the

program

displays

the

last

message

that

was

raised

during

processing.

In

addition,

the

processed

data

is

displayed

on

the

screen

for

verification.

This

is

the

same

information

that

is

generated

in

the

output

file

of

step

4.

104

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

You

can

look

in

the

adapter’s

ABAP

Log

for

additional

details.

Chapter

8.

Testing

a

business

object

for

the

ABAP

Extension

module

105

106

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

9.

Managing

the

ABAP

Extension

module

The

IBM

CrossWorlds

Station

tool

(transaction

/n/CWLD/HOME)

enables

you

to

maintain

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

4.x)

for

event

processing.

You

can

also

use

this

tool

to

maintain

the

connection

to

the

SAP

application.

You

can

view

the

connector

log

file

and

the

SAP

Gateway

Service

connections.

Also,

you

can

reprocess

archived

objects

from

the

connector

log,

view

events

waiting

to

be

processed,

schedule

specific

events

to

be

processed

at

a

later

time,

and

resubmit

and

delete

events

from

the

archive

table.

This

chapter

contains

the

following

sections:

v

“Managing

the

connector

log

file”

v

“Displaying

the

log”

v

“Reprocessing

archived

objects”

on

page

108

v

“Maintaining

the

event

queue”

on

page

111

v

“Maintaining

the

archive

table”

on

page

112

Managing

the

connector

log

file

The

connector

log

in

the

SAP

application

displays

in

reverse

chronological

order

all

events

and

errors

that

relate

to

the

connector,

such

as

Create

or

Update

operations,

or

events

that

arrive

in

the

event

queue.

The

log

file

lists

the

date,

time,

and

event

for

each

log

entry.

The

log

file

is

a

good

source

to

start

troubleshooting

problems.

Setting

log

options

You

can

set

the

global

and

user

settings

to

the

level

of

detail

you

want

logged

in

the

connector

log

file,

as

well

as

the

number

of

entries

and

type

of

data

you

want

displayed.

To

set

the

connector

logging

levels

using

IBM

CrossWorlds

Station,

click

the

Configuration

tab,

and

then

select

from

level

0

-

3

under

Logging

Level.

The

four

levels

of

logging

are

as

follows:

v

0

—

Off

v

1

—

Log

only

warnings

and

errors

v

2

—

Log

every

event

with

minimal

information

v

3

—

Log

each

event

in

detail,

including

every

attribute

of

every

business

object

Note:

Logging

level

0

is

not

recommended.

Logging

level

1

is

recommended

for

a

production

system.

Logging

level

3

is

recommended

for

a

development

or

debugging

system.

Displaying

the

log

To

view

recently

processed

objects

and

details

associated

with

them,

display

the

connector

log.

To

display

the

connector

log

in

the

SAP

application:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

2.

Click

the

Management

tab,

and

then

click

the

Log

button.

Log

entries

display

the

date,

time,

and

event.

Entries

are

color-coded:

green—indicates

a

successful

event

©

Copyright

IBM

Corp.

2003,

2004

107

yellow—indicates

a

warning

message

red—indicates

an

error

white—

indicates

an

archived

object

Magenta

(SAP

application

GUI

versions

previous

to

4.6)

or

orange

(SAP

application

GUI

version

4.6

and

later)

entries

provide

information

on

the

beginning

and

end

of

the

event.

Click

on

any

arrow

to

link

to

SAP’s

display

transaction

for

that

business

object.

Filtering

log

details

You

can

change

the

amount

of

detail

that

is

displayed

about

each

event.

To

change

the

display

level,

click

the

More

Details

or

Fewer

Details

button

depending

on

the

level

of

detail

desired.

If

the

amount

of

data

displayed

is

more

than

you

currently

need,

narrow

the

information

displayed.

For

example,

you

can

view

business

objects

by

user,

name,

date,

or

log

entry

number.

1.

Click

the

Filter

Data

button.

2.

Populate

the

appropriate

fields

to

filter

the

log

file.

3.

Click

Filter.

In

the

Configuration

tab,

you

can

set

user

settings

for

the

number

of

log

entries

to

display

at

one

time

and

the

default

logging

display

level.

Reprocessing

archived

objects

You

can

reprocess

failed

or

archived

objects

from

the

connector

log

file.

Failed

objects

are

objects

in

SAP

that

fail

to

process

successfully.

Archived

objects

are

objects

that

you

configure

to

be

archived

without

processing.

In

either

case,

you

can

manually

step

through

the

object

by

setting

breakpoints

in

specific

locations

of

the

code.

For

Dynamic

Transaction

and

IDoc

objects

only,

you

can

step

through

the

screens

for

the

transaction.

The

breakpoints

can

be

set

before

the:

v

Function

module

/CWLD/RFC_DO_VERB_NEXTGEN

is

called

v

First

function

module

executes

v

Main

processing

step

executes

The

placement

of

the

breakpoint

is

different

depending

on

the

type

of

object.

–

Dynamic

Retrieve—Before

the

Select

statement

–

Dynamic

Transaction—Before

the

Call

Transaction

statement

–

IDoc—Before

the

IDoc

function

module

is

called

–

BAPI—

Before

the

BAPI-Wrapper

function

module

is

called

Dynamic

Transaction

and

IDoc

objects

use

call

transactions;

therefore

you

can

view

the

screen

processing

for

these

objects.

You

have

the

option

of

viewing:

v

All

screens

v

Only

the

screens

with

errors

v

None

of

the

screens

Dynamic

Retrieve

and

BAPI

objects

do

not

use

screen

processing.

108

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Configuring

an

object

to

be

archived

By

default,

ABAP

Extension

Module

business

objects

that

have

no

archive

option

(A,

X,

or

N)

specified

in

their

verb’s

application-specific

information

are

archived

in

case

of

failures.

In

other

words,

when

processing

yields

return

codes

other

than

0

or

21,

the

business

objects

are

archived

in

the

/cwld/obj_arc_h

and

/cwld/obj_arc_i

tables.

Important:

Because

these

archive

tables

grow,

they

must

have

their

contents

deleted

or

archived

periodically

to

prevent

impacting

overall

database

performance.

Altering

the

archiving

behavior

is

accomplished

at

the

business

object’s

verb

level;

that

is,

for

each

business

object,

the

archiving

activity

can

vary

by

verb.

To

specify

how

an

object

is

archived,

use

the

following

syntax

in

the

verb’s

application-specific

information:

AppSpecificInfo

=

connectormodule.class,

ArchiveParameter:

ABAPhandler

where

ArchiveParameter:

A

Archives

the

object

when

it

first

enters

the

SAP

application.

N

Suppresses

object

archiving.

Even

in

the

case

of

failure,

the

object

is

not

archived.

X

Archives

the

object

immediately.

The

log

is

updated

with

a

warning

message

stating

that

processing

ended.

A

success

code

is

returned

to

the

connector,

so

that

the

requesting

integration

broker

processes

successfully.

You

can

specify

more

than

one

parameter

at

a

time.

The

A

and

X

archive

parameters

add

an

entry

in

the

log

table

with

a

link

to

the

reprocessing

tool

in

IBM

CrossWorlds

Station.

The

status

of

the

archived

object

is

entered

in

the

line

below

the

entry

for

the

archived

business

object.

The

following

example

archives

a

Dynamic

Transaction

object

and

adds

a

entry

in

the

log

table.

AppSpecificInfo

=

sap.sapextensionmodule.VSapBOHandler,

A:/CWLD/DYNAMIC_RETRIEVE

The

following

example

archives

an

IDoc

object,

SAP4_Order

Create,

when

it

enters

the

SAP

application,

and

then

stops

the

processing

of

the

object.

AppSpecificInfo

=

sap.sapextensionmodule.VSapBOHandler,

X:/CWLD/ORDER:ORDER_C1

Note:

In

your

production

environments,

use

only

the

N

parameter

for

business

objects

and

all

their

verbs.

When

WebSphere

InterChange

Server

is

the

integration

broker,

you

should

only

use

System

Manager

to

reprocess

and

resubmit

business

objects;

you

should

not

use

the

IBM

CrossWorlds

Station

reprocessing

tools

in

your

SAP

application.

Using

the

reprocessing

tool

The

Reprocessing

Tool

enables

you

to

reprocess

WebSphere

business

objects

for

SAP

using

the

ABAP

Debugger.

Attention:

This

tool

should

be

used

in

a

development

environment

only.

v

During

development

and

testing,

you

can

specify

that

certain

business

objects

are

archived

as

they

arrive

into

the

SAP

application,

and

then

process

these

business

objects

using

the

ABAP

Debugger.

Chapter

9.

Managing

the

ABAP

Extension

module

109

v

You

can

reprocess

the

same

business

object

as

many

times

as

you

want.

A

business

object

is

always

available

for

reprocessing

until

it

is

deleted.

To

reprocess

archived

objects:

1.

Go

to

the

connector’s

log

in

the

SAP

R/3

application.

2.

Double-click

the

archived

object

entry.

The

“CW

reprocess

objects

from

archive

tables”

window

appears.

Its

Archived

Object

Number

field

is

populated

with

the

object

number.

3.

Click

the

Set

Breakpoint

check

boxes

for

the

breakpoints

that

you

want

to

set.

You

can

set

multiple

breakpoints

if

needed.

4.

For

objects

that

use

Call

Transaction,

you

can

select

the

screen

processing

option.

5.

Click

Execute

(F8).

The

ABAP

Debugger

is

invoked

with

the

archived

object.

6.

Use

the

ABAP

Debugger

to

step

through

the

object.

To

manually

access

the

Reprocessing

Tool

in

IBM

CrossWorlds

Station,

from

the

Tools

tab

click

Reprocess

Object.

Enter

the

appropriate

values

in

the

fields

provided.

Deleting

archived

objects

You

can

delete

archived

objects

from

the

SAP

R/3

application

using

the

adapter-provided

Delete

Archive

Objects

tool.

This

tool

enables

you

to

delete

archived

objects

manually.

Once

you

have

deleted

an

archived

object,

the

object’s

entry

in

the

connector

log

is

updated

with

the

new

status.

The

object

is

physically

deleted

and

only

the

status

of

the

object

is

kept

for

reference.

To

delete

an

archived

object

using

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME):

1.

From

the

Maintenance

tab,

click

the

Del

Object

Archive

button.

2.

Specify

the

objects

to

be

deleted.

You

can

delete

objects

based

on

the

following:

v

Archive

number

v

Object

name

v

User

(connector

name)

v

Creation

date

v

Status
3.

Click

Execute

(F8).

To

schedule

an

archive

object

program

to

delete

objects

automatically,

contact

your

basis

administrator

and

schedule

report

/CWLD/DELETE_OBJECT_ARCHIVE.

Setting

up

truncation

of

the

event

log

SAP

keeps

an

event

log

of

the

connector’s

activity.

This

log

can,

over

time,

take

up

a

lot

of

disk

space.

To

save

disk

space,

you

can

set

this

log

to

automatically

truncate.

When

you

set

automatic

truncation,

by

default

SAP

prints

the

truncated

entries

to

the

default

printer

of

the

user

who

sets

up

the

job.

Therefore,

you

may

also

want

to

control

the

print

options.

To

truncate

the

log

manually:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

2.

Click

the

Maintenance

tab.

110

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

3.

In

the

Online

section,

click

Delete

Log.

4.

Populate

the

applicable

fields.

5.

Click

the

Execute

button

(F8).

To

schedule

the

automatic

truncation

of

the

event

log,

set

up

the

truncation

options,

and

contact

your

basis

administrator

to

schedule

report

/CWLD/DELETE_LOG.

Important:

It

is

recommended

that

you

run

this

report

on

a

regular

basis.

Monitoring

the

SAP

gateway

service

connections

You

can

monitor

the

SAP

gateway

service

connections

between

the

connector

and

the

SAP

application.

Each

entry

displays

information

such

as

connector

host

name,

user

name,

and

connection

status.

To

monitor

the

SAP

Gateway

Service

connections:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

2.

Click

the

Management

tab,

and

then

click

Gateway.

3.

Click

on

a

server

name

to

view

more

details.

Shutting

down

the

connector

It

is

recommended

that

you

shut

down

your

connector

using

System

Manager

(when

WebSphere

InterChange

Server

is

the

integration

broker).

Important:

Do

not

use

the

Gateway

monitor

window.

If

you

use

the

Gateway

monitor

window,

your

connector

may

not

shut

down

properly.

Maintaining

the

event

queue

You

can

check

the

outgoing

current

event

queue

for

events

that

have

not

been

processed

by

the

connector.

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

2.

Click

the

Management

tab,

and

then

click

Current

Events.

3.

Click

the

Execute

button

(F8)

to

display

the

current

event

queue.

To

limit

the

number

of

event

entries

that

are

displayed,

populate

the

applicable

fields

in

the

Current

Event

Selection

section.

For

example,

to

limit

the

displayed

entries

for

a

particular

business

object,

enter

a

business

object

name

in

the

Object

Name

field.

If

you

do

not

know

the

exact

syntax

for

the

business

object

name,

click

the

Object

Name

field,

click

the

arrow

button

(F4),

and

then

select

the

appropriate

business

object

name.

To

see

more

information

about

an

event,

double-click

an

event

field.

Under

normal

conditions,

events

are

picked

up

every

few

seconds.

If

an

event

is

displayed,

it

has

not

been

processed

by

the

connector.

This

may

indicate

that

the

connector

is

not

running.

The

following

is

a

list

of

the

possible

event

status

values

for

the

event

queue:

P

—

Prequeued

When

an

event

is

triggered,

the

status

is

initially

set

to

prequeue

(P),

since

it

has

not

yet

been

determined

whether

the

business

object

is

locked.

Chapter

9.

Managing

the

ABAP

Extension

module

111

L

—

Locked

When

a

user

creates

or

updates

a

business

object

in

SAP,

a

lock

is

placed

against

that

business

object.

Once

the

business

object

has

been

committed

to

the

database,

SAP

removes

the

lock.

If

an

event

is

triggered

while

a

business

object

is

locked,

the

event

remains

in

the

event

queue

with

status

locked

(L)

until

the

lock

has

been

removed.

Q

—

Queued

When

the

business

object

is

no

longer

locked,

the

status

changes

to

queued

(Q),

and

the

event

is

ready

to

be

picked

up

by

the

connector.

The

event

remains

in

this

status

until

a

confirmation

of

a

retrieval

is

received.

R

—

Retrieved

When

the

business

object

is

retrieved

it

is

marked

with

an

R

in

the

event

queue.

The

event

remains

in

the

queue

until

the

event

has

been

processed.

Maintaining

the

archive

table

Using

the

IBM

CrossWorlds

Station

tool,

you

can

display

the

archive

table

and

determine

the

status

of

archived

events.

In

the

table,

you

can

identify

events

that

need

to

be

resubmitted

for

polling

when

an

integration

broker

subscribes

to

them.

To

display

the

archive

table:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME).

2.

Click

the

Management

tab,

and

then

click

Archived

Events.

3.

Click

the

Execute

button

(F8)

to

display

the

archive

queue.

To

limit

the

number

of

archive

entries

that

are

displayed,

populate

the

applicable

fields

in

the

Archived

Event

Selection

section.

For

example,

to

limit

the

displayed

entries

for

a

particular

business

object,

enter

a

business

object

name

in

the

Object

Name

field.

If

you

do

not

know

the

exact

syntax

for

the

business

object

name,

click

the

Object

Name

field,

click

the

arrow

button,

and

then

select

the

appropriate

business

object

name.

To

see

more

information

about

an

event,

double-click

an

event

field.

The

following

is

a

list

of

the

possible

event

status

values

for

the

archive

table:

0

—

Success

The

connector

successfully

processed

the

event

and

sent

the

business

object

to

the

integration

broker.

1

—

Error

in

SAP

The

connector

encountered

an

error

while

retrieving

the

business

object

within

SAP

for

this

event.

2—

Not

Subscribed

No

integration

broker

was

subscribed

to

the

combination

of

the

business

object

and

verb

for

this

event.

3—

Error

in

Java

The

connector

encountered

an

error

during

one

of

the

following:

v

Receiving

the

business

object

from

SAP

v

Converting

the

SAP

business

object

to

a

WebSphere

business

object

for

SAP

v

Inserting

the

business

object

into

the

message

queue

4

—

Max

requeued

The

event

was

requeued

more

than

the

maximum

times

specified

by

the

requeued

constant,

c_maximum_requeue

(usually

100).

An

event

is

requeued

if

its

business

object

is

locked.

5

—

Multiple

Event

Some

business

objects

have

single

events

in

the

event

table

that

cause

multiple

events

to

be

created

at

the

time

of

retrieval.

The

original

single

event

does

not

create

a

business

object

and

is

therefore

archived

using

this

event

status.

6—

Event

Deleted

A

user

manually

deleted

the

event

from

the

event

table.

112

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Resubmitting

events

from

the

archive

table

You

can

resubmit

events

from

the

archive

table

to

the

event

queue

for

reprocessing.

Depending

on

how

you

want

to

handle

the

events

in

the

archive

table,

you

have

the

option

of

resubmitting

a

single

event

or

multiple

events.

Keep

in

mind

that

resubmitting

events

only

moves

the

events

from

the

archive

table

to

the

event

table

and

therefore

the

events

do

not

pass

through

event

distribution,

event

restriction,

or

event

priority.

Follow

these

steps

from

the

Archived

Events

window:

1.

Click

the

Execute

button

(F8)

to

display

the

archive

queue.

2.

Select

the

events

to

be

resubmitted.

3.

Click

the

Resubmit

button,

or

from

the

Archive

Entry

menu,

click

Resubmit

(F8).

A

status

message

displays.

You

can

display

the

connector

log

to

view

the

event

and

its

new

status.

Deleting

events

from

the

archive

table

You

can

delete

archive

events

manually

or

schedule

them

to

be

deleted

automatically.

To

delete

archive

events

manually:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/n/CWLD/HOME)

2.

Click

the

Maintenance

tab.

3.

In

the

Online

section,

click

Delete

Event

Archive.

4.

Populate

the

applicable

fields.

5.

Click

the

Execute

button

(F8).

To

schedule

automatic

deletion

of

archive

events,

contact

your

basis

administrator

and

schedule

report

/CWLD/TRUN_EVENT_ARCHIVE_TAB.

Chapter

9.

Managing

the

ABAP

Extension

module

113

114

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

10.

Upgrading

the

ABAP

Extension

module

v

“Upgrading

within

a

new

version

of

SAP

R/3”

v

“Upgrading

ABAP

handlers”

on

page

116

v

“Upgrade

considerations”

on

page

118

This

chapter

describes

the

upgrade

process

for

the

ABAP

Extension

Module.

It

assumes

that

you

are

not

modifying

the

repository

definitions

for

the

connector

or

any

objects

unless

explicitly

stated

to

do

so.

This

chapter

focuses

on

the

ABAP

components

of

ABAP

Extension

Module

of

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com.

When

upgrading,

you

must

have

the

latest

ABAP

Extension

Module

components

for

your

version

of

SAP

R/3

version.

The

goal

of

the

upgrade

process

is

to

get

your

ABAP

handler

development

to

work

with

the

latest

ABAP

Extension

Module

components.

Upgrading

the

ABAP

Extension

Module

can

be

described

in

two

distinct

scenarios:

v

Upgrading

an

SAP

R/3

system

that

contains

adapter-provided

ABAP

handlers

For

example,

you

may

be

running

an

SAP

R/3

version

3.1

system

that

you

want

to

upgrade

to

SAP

R/3

version

4.6.

After

you

upgrade

the

SAP

R/3

system,

you

must

upgrade

the

adapter

environment.

For

details

on

upgrading

the

adapter

environment

in

a

new

version

of

SAP

R/3,

see

“Upgrading

within

a

new

version

of

SAP

R/3”

on

page

115.

v

Implementing

an

adapter-provided

ABAP

handler

for

an

object

that

supports

an

older

version

of

SAP

R/3

For

example,

you

may

be

using

the

connector

that

supports

the

SAP

R/3

version

4.6

application

and

want

to

use

the

Material

object

that

supports

SAP

R/3

version

4.0

or

4.5.

To

use

this

Material

object,

you

need

to

upgrade

it

to

your

SAP

R/3

version

4.6

system.

For

details

on

how

to

upgrade

an

object

to

a

newer

version

of

SAP

R/3,

see

“Upgrading

ABAP

handlers”

on

page

116.

Upgrading

within

a

new

version

of

SAP

R/3

The

upgrade

process

for

the

SAP

R/3

application

does

not

modify

any

of

the

adapter’s

ABAP

development,

but

it

may

modify

the

SAP

R/3

application

so

that

some

of

the

adapter’s

ABAP

development

does

not

work

properly.

This

section

describes

how

to

upgrade

the

adapter’s

ABAP

development

in

an

upgraded

SAP

R/3

application.

Before

you

can

upgrade

the

adapter,

you

must

have

already

upgraded

your

SAP

R/3

application.

To

upgrade

the

adapter’s

ABAP

development:

1.

Install

the

latest

ABAP

Extension

Module

transport

files

for

the

correct

version

of

the

SAP

R/3

application.

You

must

install

the

correct

version-specific

transport

files.

For

details

on

installing

these

transport

files,

see

“Connector

transport

file

installation”

on

page

47.

2.

Compile

all

programs

and

resolve

syntax

errors

associated

with

the

ABAP

development.

©

Copyright

IBM

Corp.

2003,

2004

115

The

easiest

way

to

find

syntax

errors

is

to

generate

each

function

group

associated

with

each

object

and

fix

the

errors

one

at

time.

Repeat

this

process

until

all

function

groups

compile

successfully.

Be

sure

to

generate

any

other

programs

such

as

triggering

programs

that

are

not

associated

with

a

function

group.

If

you

are

upgrading

to

SAP

R/3

version

4.x,

note

that

the

4.x

ABAP

handlers

use

the

product

namespace

/CWLD/.

For

special

considerations

for

upgrading

to

the

connector

supporting

SAP

R/3

version

4.x,

see

“Connector

for

SAP

R/3”

on

page

118.

3.

Test

the

new

environment

and

make

modifications

as

needed.

Only

a

full

system

test

enables

you

to

work

out

any

problems

with

the

upgrade.

Test

your

event

detection

mechanisms

by

running

the

appropriate

transaction

or

program

and

sending

business

objects

to

the

SAP

system.

Use

the

adapter’s

log

within

the

SAP

system

to

help

identify

other

issues.

For

information

on

testing

business

objects,

see

Chapter

8,

“Testing

a

business

object

for

the

ABAP

Extension

module,”

on

page

101.

Upgrading

ABAP

handlers

Upgrading

ABAP

handlers

has

two

steps.

1.

Resolve

any

compilation

errors

that

may

arise

when

introducing

your

ABAP

handlers

into

an

environment

with

a

different

version

of

the

ABAP

Extension

Module.

2.

Evaluate

the

functionality

that

the

business

object

provides

in

the

newer

SAP

R/3

version.

For

example,

the

business

object

may

operate

properly

but

may

not

return

the

right

information;

or

maybe

the

business

object

no

longer

functions

because

SAP

has

changed

the

screens

for

the

Call

Transaction.

This

section

details

the

processes

of

the

first

step,

such

as

packaging

the

business

object’s

ABAP

handler

and

providing

guidelines

for

possible

compilation

conflict

points.

The

second

step

is

not

addressed

in

this

section.

See

Chapter

6,

“Developing

business

objects

for

the

ABAP

Extension

module,”

on

page

69

for

more

information

on

extending

the

functionality

of

your

objects.

Attention:

Once

you

upgrade

an

object,

it

is

considered

custom

work

even

if

it

was

originally

developed

by

IBM.

Upgrade

ABAP

handlers

when:

v

You

want

to

use

a

previously

implemented

IBM-delivered

SAP

R/3

business

object

in

a

later

version

of

SAP

R/3.

For

example,

you

may

have

already

implemented

a

Customer

business

object

in

your

SAP

R/3

version

3.x

system

that

does

not

exist

in

the

4.6

system.

v

You

want

to

use

an

adapter-provided

SAP

R/3

object

that

supports

an

SAP

R/3

version

other

than

the

version

that

you

need.

For

example,

you

may

want

to

use

the

adapter-provided

Material

business

object

for

SAP

R/3

version

3.x

in

your

SAP

R/3

version

4.6

system.

Essentially

the

upgrade

procedure

is

the

same.

The

only

difference

is

that

upgrading

a

previously

implemented

business

object

requires

you

to

package

the

business

object

into

a

transport

file

as

the

second

step.

Note:

If

you

have

objects

in

SAP

R/3

version

4.6

that

do

not

take

advantage

of

the

IBM

product

namespace,

you

need

to

upgrade

those

objects

to

the

namespace.

116

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

To

upgrade

an

adapter-provide

ABAP

handler

from

one

SAP

R/3

version

to

another:

1.

Verify

that

the

latest

version

of

the

ABAP

Extension

Module

transport

files

for

your

version

of

SAP

R/3

are

installed.

2.

Package

existing

business

objects

into

transport

files.

Note

that

if

you

are

upgrading

an

business

object

that

has

not

been

modified

for

your

implementation,

skip

to

step

3,

because

you

should

be

able

to

use

the

original

transport

that

was

loaded.

Use

the

adapter-delivered

transport

files

as

templates

for

what

should

be

included

for

each

business

object.

This

may

include

function

groups,

IDoc

definitions,

and

Dynamic

Retrieve

and

Dynamic

Transaction

data.

v

Include

any

additional

programs

and

custom

work.

Custom

work

done

in

the

ABAP

component

of

the

connector

needs

to

be

manually

applied

to

the

new

SAP

R/3

ABAP

component

of

the

connector.

For

example,

you

need

to

manually

apply

any

changes

to

adapter-provided

ABAP

handlers

such

as

IDoc

Handler

or

Dynamic

Transaction.

v

Check

to

see

if

changes

were

made

to

program

YXRRESTR.

This

program

is

intended

for

customer

modification.

If

changes

were

made,

you

can

avoid

conflicts

by

downloading

the

custom

work

as

text

files,

not

as

transport

files.

Use

the

corresponding

old

program

as

a

reference

for

updating

/CWLD/TRIGGERING_RESTRICTIONS.

v

Release

the

transports

and

note

the

transport

numbers.

The

BASIS

administrator

needs

this

information

to

load

the

objects

in

the

new

SAP

R/3

system.
3.

For

IDocs

(that

define

ABAP

handler

business

objects)

in

an

SAP

R/3

version

3.x

system

only,

capture

the

structure

and

segment

definitions

of

the

IDocs

and

then

manually

re-create

them

in

the

new

system.

If

you

do

not

have

an

SAP

R/3

version

3.x

environment

and

IDocs,

then

skip

this

step.

4.

Install

the

business

object

transport

files.

You

should

have

your

local

BASIS

administrator

install

the

transports

for

the

business

objects

you

packaged

in

step

1.

The

BASIS

administrator

should

use

all

of

the

override

codes

available

for

the

transport.

This

forces

the

business

objects

into

the

environment

even

if

there

are

compilation

errors.

Before

importing

the

business

objects,

the

BASIS

administrator

should

know

that

you

may

encounter

inconsistencies

during

the

import

process.

v

If

you

packaged

existing

business

objects

in

step

2,

then

install

these

transport

files.

v

If

you

are

using

non-implemented

business

objects,

then

simply

install

the

latest

transport

file

for

the

business

object

that

you

want

to

use.

You

must

install

the

correct

version-specific

transport

files.

For

more

information

on

installing

these

transport

files,

see

“Connector

transport

file

installation”

on

page

47.

5.

Compile

all

programs

and

resolve

syntax

errors

associated

with

the

ABAP

development.

The

easiest

way

to

find

syntax

errors

is

to

generate

each

function

group

associated

with

each

business

object

and

fix

the

errors

one

at

time.

Repeat

this

process

until

all

function

groups

compile

successfully.

Be

sure

to

generate

any

other

programs,

such

as

triggering

programs,

that

are

not

associated

with

a

function

group.

Chapter

10.

Upgrading

the

ABAP

Extension

module

117

If

you

are

upgrading

to

SAP

R/3

version

4.x,

note

that

the

4.x

ABAP

handlers

use

the

product

namespace

/CWLD/.

For

special

considerations

for

upgrading

to

the

connector

supporting

SAP

R/3

version

4.x,

see

“Connector

for

SAP

R/3”

on

page

118.

6.

Apply

the

event

detection

mechanisms.

For

user

exits,

the

precise

location

may

be

different

now.

Search

for

key

SAP

lines

of

code

to

make

a

best

approximation.

7.

Test

the

new

environment

and

make

modifications

as

needed.

Only

a

full

system

test

enables

you

to

work

out

any

problems

with

the

upgrade.

Test

your

event

detection

mechanisms

by

running

the

appropriate

transaction

or

program

and

sending

business

objects

to

the

SAP

system.

Use

the

connector’s

log

within

the

SAP

system

to

help

identify

other

issues.

For

information

on

testing

business

objects,

seeChapter

8,

“Testing

a

business

object

for

the

ABAP

Extension

module,”

on

page

101.

Upgrade

considerations

The

following

sections

provide

reference

information

for

the

upgrade

scenarios.

This

reference

information

is

provided

to

help

with

the

upgrade

process

for

the

connector

for

SAP

R/3

version

4.6

and

IDocs.

Connector

for

SAP

R/3

The

connector

for

SAP

R/3

version

4.x

uses

the

product

namespace

/CWLD/;

the

following

guidelines

facilitate

the

effort

to

make

your

ABAP

handlers

work

in

this

renamed

environment.

See

Chapter

5,

“Business

object

processing

in

the

ABAP

Extension

module,”

on

page

57

for

more

information

on

how

objects

are

processed

and

for

background

information

for

developing

objects.

Business

objects

that

use

dynamic

retrieve

or

dynamic

transaction

The

functionality

for

converting

transaction-based

(Dynamic

Retrieve

and

Dynamic

Transaction)

type

business

objects

is

provided

through

the

new

IBM

WebSphere

InterChange

Server

Station.

The

business

object

can

be

downloaded

to

a

text

file

from

transactions

YXDY

(Dynamic

Retrieve)

and

YXTD

(Dynamic

Transaction)

in

the

old

system

and

then

uploaded

to

the

new

tables

using

IBM

WebSphere

InterChange

Server

Station

in

the

new

system.

Do

this

from

the

Tools

tab

using

the

Object

MetaData

option.

Keep

the

following

in

mind:

v

The

Long

Text

Declarations

for

transaction-based

Dynamic

Retrieve

need

to

be

manually

entered

into

the

new

table.

v

The

Table

Declarations

for

transaction

based

Dynamic

Retrieve

need

to

be

manually

ported

from

the

old

include

program

to

the

new

tables

declaration

include

program.

Business

objects

that

use

IDoc

or

BAPI

handlers,

and

custom

work

You

must

redirect

SAP

R/3

version

3.x

business

objects

that

begin

with

Y*

to

the

product

/CWLD/

namespace.

Only

the

names

have

changed.

SAP’s

“where

used

list”

functionality

greatly

facilitates

the

search

for

all

of

the

references

that

need

to

be

changed.

Following

is

a

list

of

the

most

common

references

that

need

to

be

changed.

Test

to

ensure

your

search

is

complete.

118

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

18

shows

the

changes

for

the

/CWLD/

namespace

naming

convention.

The

parameter

lists

do

not

require

changes.

Table

18.

Namespace

object

name

changes

Old

name

New

name

Interface

parameters

of

the

function

modules

YXR_EVENT-OBJ_KEY

/CWLD/LOG_HEADER-OBJ_KEY

(in

three

places)

YXR_LOG_H-LOG_NR

/CWLD/LOG_HEADER-LOG_NR

YXR_RFCRC-YXR_RFCRC

/CWLD/RFCRC_STRU-RFCRC

Changes

normally

in

the

TOP

include

of

the

business

object

function

group

YXR_CNST

/CWLD/CONSTANTS

YXRIFRM0

/CWLD/INBIDOC_FRMS0

Data

elements

YXR_VERB

/CWLD/OBJ_VERB

Table

structures

YXR_CONFIG

/CWLD/CONF_VAL

YXR_EVENTS

/CWLD/EVT_CUR

YXR_LOG_I

/CWLD/LOG_ITEM

YXR_RFC_S

/CWLD/OBJ_STRU

Program

referenced

in

the

LOG_UPDATE

perform

statement

SAPLYXR1

/CWLD/SAPLLOG

Triggering

function

modules

(the

parameter

lists

do

not

require

changes)

Y_XR_COMMIT_IDOC_RAISE_DELETE

/CWLD/

COMMIT_IDOC_RAISE_DELETE

Y_XR_/ADD_TO_QUEUE

/CWLD/ADD_TO_QUEUE

Additional

IBM

ABAP

components

In

addition

to

upgrading

the

custom

objects

and

custom

work,

you

must:

v

Upgrade

any

ABAP

code

from

the

old

event

restriction

program

to

the

new

event

restriction

program.

v

Manually

upgrade

all

configuration

objects

and

configuration

values

from

the

old

tables

to

the

new

tables.

v

Upgrade

any

event

distribution

entries

from

the

old

table

to

the

new

table.

v

Upgrade

the

log

object

links

from

the

old

table

to

the

new

table.

Give

special

consideration

to

production

sites

that

already

have

events

in

the

existing

SAP

R/3

version

4.x

event

tables.

The

transfer

of

these

events

from

the

existing

event

table

to

the

new

event

table

should

be

coordinated

with

IBM

Technical

Support.

Packaging

and

re-creating

IDocs

This

section

applies

to

IBM

WebSphere

SAP

R/3

version

3.x

objects

only.

Because

you

cannot

transport

IDoc

objects

from

SAP

R/3

version

3.x,

you

must

manually

re-create

them

in

the

new

SAP

R/3

system.

To

do

this,

you

need

to:

v

Capture

the

IDoc

structure

and

segment

definitions

v

Manually

re-create

the

IDocs

Capture

the

IDoc

structure

and

segment

definitions

To

capture

the

most

useful

representation

of

an

IDoc,

capture

the

overall

structure

that

identifies

all

of

the

segments,

and

then

capture

business

object

definitions

for

each

segment.

Once

you

have

a

clear

representation

of

the

IDoc,

you

can

us

it

to

manually

re-create

it

in

the

new

system.

Chapter

10.

Upgrading

the

ABAP

Extension

module

119

If

you

have

access

to

the

old

and

new

systems,

you

can

simply

copy

and

paste

the

business

objects

between

the

systems.

However,

if

both

systems

are

not

available,

then

you

should

record

the

IDoc

and

segment

definitions

outside

of

the

SAP

system

for

reference.

Although

this

is

optional,

it

is

strongly

recommended

that

you

record

the

definitions.

To

download

the

most

useful

representations

of

the

IDocs

and

the

segment

definitions,

first

download

the

overall

structure

of

the

IDoc,

and

then

download

the

IDoc

segment

definitions.

Downloading

the

overall

IDoc

structure:

To

download

the

overall

IDoc

structure:

1.

Go

to

the

Develop

IDocs

Type

screen

(transaction

WE30).

2.

Enter

an

IDoc

object

name,

and

then

click

Display

(F7).

3.

Expand

the

IDoc

structure

so

that

all

segments

are

visible.

a.

Download

a

text

version

of

the

structure.

b.

From

the

System

menu,

click

List,

click

Save,

and

then

click

Local

File.

c.

Accept

the

default

option

unconverted,

and

then

click

Enter.

The

file

is

downloaded

as

a

text

file

and

can

be

viewed

in

any

text

editor.

d.

Specify

the

location

to

download

the

file,

and

then

click

Transfer.

Downloading

the

segment

definitions:

You

can

download

only

one

segment

definition

at

a

time.

Repeat

the

following

steps

for

each

segment.

To

download

a

segment

definition:

1.

Go

to

transaction

SE11

and

enter

the

segment

name.

2.

From

the

Dictionary

Object

menu,

click

Print.

Make

sure

the

Table

Structure

box

is

checked.

3.

Deselect

the

Print

immediately

checkbox,

check

the

new

spool

request

check

box,

and

then

click

Continue.

4.

Go

to

the

Spool

Request

Selection

screen

(transaction

SP01)

to

view

the

print

request.

5.

Click

Execute,

select

the

checkbox

next

to

the

request,

and

then

click

Display

comments.

6.

Convert

the

data

to

a

downloadable

format.

a.

From

the

Goto

menu,

click

List

Display.

b.

Download

a

text

version

of

the

segment.

From

the

System

menu,

point

to

List,

point

to

Save,

and

then

click

Local

File.

c.

Accept

the

default

option

unconverted,

and

click

Enter.

The

file

is

downloaded

as

a

text

file

and

can

be

viewed

in

any

text

editor.

d.

Specify

the

location

to

download

the

file,

and

then

click

Transfer.

Once

you

have

represented

the

object

using

text

files,

you

can

import

them

into

a

spreadsheet

application

to

set

up

the

object

hierarchy.

This

facilitates

the

creation

of

IDoc

segments,

because

you

can

cut

and

paste

the

fields

directly

into

the

segment

editor

in

the

SAP

application.

Manually

re-create

the

IDocs

Once

you

have

a

representation

of

the

IDoc,

you

must

manually

re-create

it

in

the

new

system.

The

SAP

R/3

version

4.x

environment

uses

different

tables

to

store

IDoc

type

and

segment

definitions

than

does

SAP

R/3

version

3.x.

As

a

result,

you

must

use

SAP’s

tools

to

redefine

the

IDoc

definitions

to

update

the

proper

tables.

There

are

two

steps

to

this

process:

120

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

Re-create

the

segment

definitions

using

the

Develop

Segments

screen

(transaction

WE31).

v

Re-create

the

IDoc

type

and

assign

all

of

the

segments

to

it.

A

common

error

message

encountered

when

re-creating

segments

by

assigning

the

SAP

R/3

version

3.x

data

element

to

the

new

segment

field

is

Invalid

data

element.

SAP

replaced

many

of

the

SAP

R/3

version

3.x

data

elements

with

data

elements

that

have

an

underscore

followed

by

the

letter

D

(_D)

at

the

end

of

the

SAP

R/3

version

3.x

name.

For

example,

CHARG

in

SAP

R/3

version

3.x

is

Batch

Number

for

the

data

element

and

is

replaced

in

SAP

R/3

version

4.x

with

CHARG_D.

If

a

data

element

does

not

exist

in

the

new

form,

find

a

new

form

in

the

SAP

R/3

version

4.x

system.

The

data

element

must

have

the

same

type

and

length

as

the

original

in

SAP

R/3

version

3.x

system.

The

description

does

not

affect

processing

and

is

visible

only

in

the

log.

Attention:

Do

not

rename

the

IDoc,

segments,

or

segment

fields

because

there

is

a

direct

relationship

between

the

IDoc

definition

and

the

IBM

WebSphere

business

object

repository.

In

addition,

the

ABAP

functions

used

to

process

the

IDoc

also

rely

on

these

names.

Chapter

10.

Upgrading

the

ABAP

Extension

module

121

122

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Part

3.

ALE

module

©

Copyright

IBM

Corp.

2003,

2004

123

124

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

11.

Overview

of

the

ALE

module

This

chapter

describes

the

ALE

(Application

Link

Enabling)

module

of

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

4.x).

ALE

is

part

of

the

integration

layer

within

SAP’s

business

framework.

The

ALE

Module

enables

businses

process

integration

and

asynchronous

data

communication

between

two

or

more

SAP

R/3

systems

or

between

SAP

R/3

and

external

systems.

This

chapter

contains

the

following

sections:

v

“Overview

of

ALE

technology”

on

page

125

v

“ALE

Module

components”

on

page

126

Overview

of

ALE

technology

The

ALE

Module

is

best

used

for

objects

such

as

batch

objects,

that

are

asynchronous

in

nature.

It

uses

push

technology

that

requires

that

there

be

a

server

listening

for

events.

Processes

called

registering

and

installing

notify

the

server

what

to

listen

to

and

from

whom

to

expect

information.

Registering

involves

using

a

program

itendifier

to

give

the

SAP

Gateway

a

communication

point

with

listener

threads

(servers).

Function

module

definitions

within

the

server

interpret

data

that

is

pushed

out

of

SAP

by

providing

a

template

for

this

data.

The

ALE

module

uses

the

RFC

Server

module

for

event

handling.

The

ALE

module

uses

MQ

Series

queues

for

Transaction

ID

(TID)and

IDocs

management.

The

connector

checks

for

subscriptions

when

processing

the

data

from

SAP

to

the

connector,

resulting

in

transactions

remaining

in

SAP

until

the

collaboration

is

started.

v

The

integration

broker

sends

a

WebSphere

Business

Integration

Adapter

business

object

for

SAP.

The

business

object’s

data

represents

a

processing

request

to

the

connector.

The

connector

converts

the

business

object

to

a

table

format

compatible

with

the

SAP

Intermediate

Document

(IDoc)

format.

The

connector

uses

Remote

Function

Calls

(RFCs)

to

the

ALE

interface

to

pass

the

IDoc

data

to

the

SAP

R/3

system.

v

The

connector

receives

data

representing

an

application

event

from

SAP

in

IDoc

table

format.

It

converts

the

data

to

a

WebSphere

Business

Integration

Adapter

business

object

for

SAP

before

sending

it

to

the

integration

broker.

The

connector

uses

RFCs

to

the

ALE

Module

to

receive

the

data

from

the

ALE

interface.

Important:

In

releases

of

the

connector

prior

to

version

4.8.2,

the

connector

used

collaborations,

business

objects,

and

maps

to

store

Transaction

IDs

(TIDs)

and

their

status

in

the

repository,

and

used

the

local

file

system

to

store

IDoc

data.

Version

4.8.2

of

the

connector

replaces

the

previous

management

of

TIDs

and

IDoc

data

with

the

use

of

MQSeries

queues.

Note:

Because

the

ALE

Module

uses

asynchronous

communication,

it

cannot

be

used

when

cross-referencing

is

required.

©

Copyright

IBM

Corp.

2003,

2004

125

ALE

Module

components

The

ALE

Module

is

written

in

Java

and

extends

the

vision

connector

framework.

The

module

consists

of:

v

Connector

framework

v

Connector’s

application-specific

component

for

ALE

v

Two

ALE

business

object

handler

classes

(one

for

event

processing

and

one

for

request

processing)

v

SAP

RFC

libraries

v

SAP

SAPJCo

connector

v

Application-specific

component

for

the

RFC

Server

(used

for

event

processing

only).

The

ALE

Module

uses

the

RFC

Server

connector

component

because

the

similarities

for

event

processing

both

support

RFC

calls

directly

from

the

SAP

application.

SAP

delivers

the

RFC

libraries

in

Java

and

C.

The

connector

is

delivered

and

run

as

a

Java

archive

(JAR)

file.

Figure

16

illustrates

the

architecture

of

the

ALE

Module.

WebSphere Business
InterChange Server

SAP R/3

Vision connector framework

SAP gateway

Terminate()

ALE
request processing

BO handler

DoVerbFor()

SAP R/3 system

SAP RFC library

PollForEvent()init()terminate()

RFC server
connector component

init()

Function modules:
idoc_inbound_asynchronous

inbound_idoc_process

Function modules:
idoc_inbound_asynchronous

inbound_idoc_process

Listener threads

Main thread

ALE
Event-processing

BO handler

process()

MQSeries
queuesJMS interface

for MQSeries

Connector framework and
ALE connector component

Figure

16.

ALE

Module

architecture

126

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Event

processing

components

When

processing

events

from

SAP,

the

connector

uses

the

components

illustrated

in

Figure

16

on

page

126

in

the

following

ways:

v

The

vision

connector

framework

starts

the

RFC

Server

connector

component,

which

spawns

listener

threads.

Each

listener

thread

uses

the

RFC

library

and

the

SAP

gateway

to

register

a

single

handle

to

the

SAP

application.

v

The

listener

thread

processes

events

from

the

SAP

application.

An

event

is

the

execution

of

an

ABAP

function

that

transfers

data

to

the

listener.

The

event

data

sent

by

SAP

may

represent

one

or

more

such

heterogeneous

executions.

Each

event

from

SAP

is

considered

a

transaction.

The

connector

uses

a

two-step

process

with

a

Transaction

ID

(TID)

to

handle

each

event,

guaranteeing

once-only

delivery

of

data

from

SAP

to

the

connector.

v

MQSeries

queues

persistently

store

a

JMS-MQ

message

for

each

event.

Each

JMS-MQ

message

stores

the

TID

identifying

the

event,

the

status

of

the

TID,

the

IDoc

data

associated

with

the

event,

and

the

processing

status

of

the

IDoc.

v

The

connector’s

polling

process

creates

WebSphere

business

objects

from

the

stored

event

message,

and

sends

the

business

objects

to

the

integration

broker.

v

The

business

integration

system

tracks

unprocessed

events

to

handle

their

recovery

in

case

the

integration

broker

or

the

connector

goes

down.

When

the

integration

broker

or

the

connector

is

restored,

the

connector

automatically

resubmits

these

events.

Request

processing

components

When

processing

requests

from

the

integration

broker,

the

connector

uses

the

components

illustrated

in

Figure

16

in

the

following

ways:

v

The

ALE

Module

uses

the

SAP

RFC

library

and

the

SAP

Gateway

to

open

an

RFC

connection

to

the

SAP

R/3

application.

v

The

ALE

request-processing

business

object

handler

processes

requests

from

the

integration

broker,

converting

them

from

business

object

format

to

IDoc

data

based

on

the

SAP

IDoc

format:

v

For

every

request

sent

to

the

application,

the

ALE

Module

persistently

stores

Transaction

IDs

(TIDs)

in

a

TID

queue

in

a

JMS-MQ

message.

The

TID

guarantees

that

the

request

is

delivered

once

and

only

once.

However,

if

the

intergration

broker

sends

an

object

that

has

the

same

value

in

the

transaction

ID

attribute,

this

object

will

be

processed

again.

Once

an

object

has

been

sucessfully

sent

the

expectation

is

that

the

integration

broker

will

not

send

the

object

again.

v

The

ALE

Module

releases

the

connection

to

the

SAP

R/3

application.

Listener

threads

Listener

threads

handle

all

of

the

ALE-specific

RFC

calls

between

the

ALE

Module

and

the

SAP

application.

When

the

connector

starts

up,

the

init()

method

of

the

RFC

Server

Module

creates

a

main

thread

that

spawns

a

configurable

number

of

listener

threads.

Each

listener

thread

opens

a

handle

to

the

SAP

Gateway.

The

listener

threads

do

the

following:

v

Use

a

program

identifier

to

register

with

the

SAP

Gateway.

v

Identify

to

the

SAP

Gateway

the

ALE-specific

RFC-enabled

functions

that

they

support.

These

functions

are

idoc_inbound_asynchronous

and

inbound_idoc_process.

v

Receive

events

from

the

ALE-specific

function.

Chapter

11.

Overview

of

the

ALE

module

127

v

Instantiate

the

event-processing

ALE

business

object

handler.

A

thread

listens

continuously

in

a

synchronous

manner

for

events

from

the

ALE-specific

functions

that

it

supports.

Transaction

IDs

SAP

uses

a

transaction

and

its

corresponding

ID

to

frame

an

event,

guaranteeing

that

each

piece

of

data

is

delivered

once

and

only

once

from

SAP.

SAP

sends

a

Transaction

ID

(TID)

with

the

event

data.

To

manage

the

TIDs

centrally

for

event

and

request

processing,

the

connector

stores

each

TID

as

a

JMS-MQ

message

on

an

MQSeries

queue.

When

processing

events,

it

also

stores

the

associated

IDoc

data

as

the

message

body.

The

connector

stores

the

TID,

TID

status,

and

the

IDoc’s

processing

status

in

the

message

header.

ALE-specific

business

object

handlers

Two

ALE-specific

business

object

handlers

are

provided,

one

for

event

processing

and

one

for

request

processing.

Event-processing

business

object

handler

A

listener

thread

instantiates

the

event-processing

business

object

handler,

which

does

the

following:

v

Retrieves

the

RFC

event

data

from

SAP.

v

Creates

a

JMS-MQ

message

to

persistently

store

and

manage

the

transaction

ID

that

SAP

sends

with

the

event.

v

Stores

the

data

of

the

one

or

more

IDocs

received

from

SAP

in

the

JMS-MQ

message.

v

Returns

a

response

to

the

ALE-specific

function

through

the

SAP

Gateway.

The

response

indicates

that

the

transaction

has

been

completed.

Request-processing

business

object

handler

The

vision

connector

framework

instantiates

the

ALE

request-processing

business

object

handler,

which

checks

for

a

value

in

the

TransactionId

attribute

in

the

WebSphere

business

object

for

SAP.

If

this

value

exists,

it

continues

with

the

following

steps.

1.

Obtains

a

TID

either

from

the

JMS-MQ

message

or

from

SAP.

2.

Converts

the

business

object

data

to

the

IDoc

data

format

defined

by

the

desired

function

module

interface

for

the

RFC

call

into

SAP.

3.

Makes

the

RFC

call

to

the

ALE

interface.

4.

Updates

the

status

of

the

TID

for

this

request

in

the

JMS-MQ

message.

5.

Returns

a

success

response

to

the

integration

broker.

Structure

of

the

business

object

for

SAP

A

WebSphere

business

object

for

SAP

represents

each

IDoc

as

a

parent

wrapper

business

object

that

contains

two

child

business

objects:

a

control

record

business

object

and

a

data

record

business

object.

The

control

record

business

object

contains

the

metadata

required

by

the

connector

to

process

the

business

object.

The

data

record

business

object

contains

the

actual

business

object

data

to

be

processed

by

the

SAP

application,

and

the

metadata

required

for

the

connector

to

convert

it

to

an

IDoc

structure

for

the

RFC

call.

The

adapterIBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

includes

a

business

object

definition

for

the

control

record.

The

definition

file,

128

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

BO_SAPIDocControl.txt,

is

located

in

the

\repository\SAP

directory.

The

ALE

Module

uses

the

same

business

object

definition

for

3.X

and

4.X

versions

of

SAP.

The

TABNAM

attribute

in

the

control

record

business

object

indicates

which

SAP

function

module

the

parent

wrapper

business

object

calls:

v

A

value

of

EDI_DC40

indicates

the

idoc_inbound_asynchronous

function

module,

which

the

connector

uses

only

for

SAP

4x.

v

A

value

of

EDI_DC

indicates

the

inbound_idoc_process

function

module,

which

is

provided

for

backward

compatibility

with

SAP

3x.

In

addition,

the

following

attributes

must

have

values

for

SAP

to

properly

process

the

object

in

ALE.

These

values

are

based

on

your

ALE

configuration:

v

Name_of_table_structure

v

Client

v

Name_of_basic_type

v

Logical_message_type

v

Partner_type_of_sender

v

Partner_number_of_sender

v

Partner_type_of_recipient

v

Partner_number_of_recipient

The

DOCNUM

attribute

in

both

business

objects

establishes

the

relationship

between

the

data

record

business

object

and

the

control

record

business

object.

When

processing

service

call

requests,

the

ALE

Module

can

handle

multiple

IDocs

in

a

single

business

object.

Before

it

can

do

so,

however,

you

must

add

another

multiple-IDoc

wrapper

business

object

around

two

or

more

parent

wrapper

business

objects.

This

top-level

multiple

IDoc

wrapper

business

object

contains

an

attribute

that

represents

an

array

of

parent

wrapper

business

objects.

For

more

information,

see

“Parent

wrapper

business

object”

on

page

149.

The

adapterIBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

includes

a

business

object

generation

tool,

SAPODA.

This

tool

uses

an

IDoc

definition

text

file

to

generate

business

object

definitions

for

the

ALE

Module.

For

more

information

on

developing

business

objects

for

the

ALE

Module,

see

Chapter

13,

“Developing

business

objects

for

the

ALE

module,”

on

page

145

and

Appendix

E,

“Generating

business

object

definitions

using

SAPODA,”

on

page

291.

Chapter

11.

Overview

of

the

ALE

module

129

130

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

12.

Configuring

the

ALE

module

This

chapter

describes

the

configuration

and

use

of

the

ALE

Module.

The

connector

component

of

the

Adapter

Guide

for

mySAP.com

(R/3

V.4.x)

should

be

installed

before

performing

the

configuration

tasks

described

in

this

chapter.

For

more

information

on

installing

the

connector,

see

Chapter

2,

“Installing

and

configuring

the

connector,”

on

page

11.

This

chapter

contains

the

following

sections:

v

“Prerequisites

to

running

the

ALE

Module”

v

“ALE

Module

directories

and

files”

on

page

132

v

“Configuring

the

ALE

Module”

on

page

132

v

“Checking

the

SAP

configuration”

on

page

133

v

“Configuring

SAP

To

update

IDoc

status”

on

page

133

Prerequisites

to

running

the

ALE

Module

To

enable

the

connector

to

store

the

TID

and

IDoc

data

persistently

during

event

processing,

and

to

store

the

TIDs

persistently

during

request

processing,

you

must

do

the

following:

v

Verify

that

the

following

are

installed

and

running

on

your

system:

–

MQSeries

(not

included)

–

TCP/IP
v

For

event

processing,

create

the

following

MQSeries

queues,

whose

names

are

specified

by

the

corresponding

connector-specific

configuration

properties:

–

Archive

(SAPALE_Archive_Queue

property)

–

Event

(SAPALE_Event_Queue

property)

–

Work-in-Progress

(WIP)

(SAPALE_Wip_Queue

property)

–

Errors

(SAPALE_Error_Queue

property)

–

Unsubscribed

(SAPALE_UnSubscribed_Queue

property)

For

information

about

how

the

connector

uses

these

queues,

see

“Running

the

ALE

Module”

on

page

134.

v

For

request

processing,

create

a

single

MQSeries

queue

whose

name

is

specified

by

the

SAPtid_Queue

configuration

property.

For

information

about

how

the

connector

uses

this

queue,

see

“Running

the

ALE

Module”

on

page

134.

v

To

use

the

ALE

Module

to

process

large

IDocs

or

IDoc

Packets:

–

Increase

the

Maximum

Message

Length

of

the

MQSeries

Queue

Manager

and

its

queues.

This

length

defaults

to

4194304

bytes

–

Increase

the

log

file

size

and

the

number

of

log

files

when

you

create

the

Queue

Manager

–

If

Channels

are

used

for

the

MQ

Series

Queue

Manager,

then

increase

the

Maximum

Message

Length

of

the

channel

Refer

to

the

MQSeries

System

Administration

publication

for

more

information

on

configuring

the

log

files.

©

Copyright

IBM

Corp.

2003,

2004

131

ALE

Module

directories

and

files

Table

19

lists

the

directories

and

files

used

by

the

ALE

Module.

Table

19.

ALE

Module

directories

and

files

Filename

Events

Requests

Description

BO_SAPIDocControl.txt

Yes

Yes

Control

record

business

object

definition

file.

Located

in

the

\repository\SAP

directory.

EventState.log

file

Yes

No

Located

in

the

directory

specified

in

the

AleEventDir

configuration

property,

the

connector

logs

information

to

this

file

about

successfully

processed

IDocs

in

a

JMS-MQ

event

message.

Note:

The

connector

does

not

create

the

log

file

automatically

the

first

time

it

processes

an

event.

You

must

create

this

file

for

before

you

run

the

connector

for

the

first

time.

Note:

In

this

document

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

(\).

All

file

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

Configuring

the

ALE

Module

Before

you

can

use

the

ALE

Module,

you

must:

v

Add

the

module

name

for

the

ALE

Module

to

the

module’s

property.

The

module

name

is

ALE.

v

To

enable

event-processing

with

TID

management,

you

must

configure

the

appropriate

connector-specific

properties.

v

To

cause

the

connector

to

update

a

standard

SAP

status

code

after

the

ALE

Module

has

retrieved

an

IDoc

for

event

processing,

configure

the

specific

properties

and

inbound

parameters

of

the

Partner

Profile

of

the

Logical

System

in

SAP

to

receive

the

ALEAUD

message

type.

For

more

information

and

a

full

listing

of

relevant

properties,

see

“Configuring

SAP

To

update

IDoc

status”

on

page

133.

v

Set

the

remaining

required

standard

and

connector-specific

configuration

properties.

To

set

the

connector

configuration

properties,

use

Connector

Designer.

For

more

information

on

setting

the

connector

configuration

properties,

see

“Configuring

the

connector”

on

page

17

and

Appendix

B,

“Standard

configuration

properties

for

connectors,”

on

page

241.

Important:

Connector

polling

is

required

for

this

module

to

manage

errors

properly

when

it

processes

application

events.

Therefore,

do

not

set

the

value

of

the

connector’s

PollFrequency

property

to

key

or

to

no.

Do

not

allow

the

SAP

application

to

trigger

events

to

the

connector

until

you

have

verified

that

the

connector’s

log

displays

the

installation

of

the

required

RFC

functions.

132

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Checking

the

SAP

configuration

Before

running

the

ALE

Module,

verify

that

the

SAP

system

is

properly

configured

to

process

business

objects:

v

Check

that

the

logical

systems

are

defined

and

assigned

for

the

SAP

system

and

external

system

(transaction

code

SALE).

v

Check

that

the

distribution

model

has

been

maintained,

and

that

the

required

message

types

have

been

added

to

the

model

(transaction

code

BD64).

v

Check

that

there

are

partner

profiles

for

the

logical

system

or

distribution

model

(transaction

code

WE20).

Checking

MQ

configuration

Verify

that

message

queues

are

properly

configured.

For

event

processing:

v

Check

that

the

SAP

application

(transaction

code

SM59)

matches

the

program

ID

specified

in

the

RrcProgrmId

configuration

property.

For

more

information

on

setting

up

a

TCP/IP

port

see

“Registering

the

RFC

Server

Module

with

the

SAP

gateway”

on

page

189..

v

Check

that

the

WIP

(SAPALE_Wip_Queue),

Event

(SAPALE_Event_Queue),

Error

(SAPALE_Error_Queue),

Unsubscribed(SAPALE_Unsubscribed_Queue),

and

Archive

queues

(SAPALE_Archive_Queue)

are

defined

and

running

in

MQSeries.

For

request

processing,

check

that

the

request

queue

(SAPtid_Queue)

is

defined

and

running

in

MQSeries.

Configuring

SAP

To

update

IDoc

status

To

cause

the

connector

to

update

a

standard

SAP

status

code

after

the

ALE

Module

has

retrieved

an

IDoc

for

event

processing:

v

Set

the

AleUpdateStatus

configuration

property

to

true

and

set

values

for

the

AleSuccessCode

and

AleFailureCode

configuration

properties.

v

Configure

the

inbound

parameters

of

the

Partner

Profile

of

the

Logical

System

in

SAP

to

receive

the

ALEAUD

message

type.

For

more

information,

see

“Updating

the

IDoc

status

in

SAP”

on

page

138.

Configuring

SAP

Configure

the

inbound

parameters

of

the

partner

profile

of

the

logical

system

to

receive

the

ALEAUD

message

type.

Set

the

following

properties

to

the

specified

values:

Table

20.

Configuring

SAP

to

receive

IDoc

status

SAP

Property

Value

Basic

Type

ALEAUD01

Logical

Message

Type

ALEAUD

Function

module

IDOC_INPUT_ALEAUD

Process

Code

AUD1

Chapter

12.

Configuring

the

ALE

module

133

Setting

connector-specific

configuration

properties

Set

the

following

required

connector-specific

configuration

properties

to

return

IDoc

status:

v

“AleUpdateStatus”

on

page

20

v

“AleSuccessCode”

on

page

21

v

“AleFailureCode”

on

page

21

Set

the

following

required

connector-specific

configuration

property

to

process

events

and

requests:

“SAPtid_QueueManager”

on

page

25

You

may

also

set

the

following

optional

connector-specific

configuration

properties:

v

“AleSelectiveUpdate”

on

page

20

v

“AleStatusMsgCode”

on

page

21

v

“AleSuccessText”

on

page

21

v

“AleFailureText”

on

page

21

Connecting

to

remote

queue

managers

Set

the

following

required

connector-specific

configuration

properties

for

remote

queue

managers:

v

“SAPtid_MQChannel”

on

page

24

v

“SAPtid_MQPort”

on

page

24

v

“SAPtid_QueueManager”

on

page

25

v

“SAPtid_QueueManagerHost”

on

page

25

v

“SAPtid_QueueManagerLogin”

on

page

25

v

“SAPtid_QueueManagerPassword”

on

page

25

Running

the

ALE

Module

When

processing

application

events,

the

ALE

Module

receives

events

that

the

SAP

application

pushes

to

the

connector.

When

processing

requests,

the

ALE

Module

receives

business

object

requests

from

the

integration

broker

and

sends

them

to

the

SAP

application.

Initialization

and

termination

The

init()

method

opens

an

RFC

connection

to

the

SAP

R/3

application

through

the

SAP

Gateway.

If

the

connector

fails

to

initialize,

it

terminates

the

connection

using

the

terminate()

method.

The

connector

terminates

by

disconnecting

from

the

SAP

Gateway.

When

processing

application

events

or

business

object

requests,

the

connector’s

initialization

process

performs

the

following

tasks:

1.

Registers

with

the

SAP

Gateway

the

Program

ID

specified

in

the

RfcProgramID

connector

configuration

property.

For

information

on

setting

the

Program

ID

as

a

TCP/IP

port

see

“Registering

the

RFC

Server

Module

with

the

SAP

gateway”

on

page

189..

2.

Opens

an

MQSeries

session

to

the

queues

configured

for

the

connector.

3.

Verifies

that

the

required

MQSeries

queues

for

event

and

request

processing

have

been

created.

If

they

have

not

been

created,

the

process

terminates

the

connector.

134

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Because

the

connector

supports

multi-threading,

when

the

ALE

Module

processes

requests

from

the

integration

broker,

it

uses

SAP’s

Java

Connector

(SAPJCo)

connection

pool

of

such

handles.

Important:

When

you

use

the

ALE

module

to

process

application

events,

connector

polling

is

required

to

properly

initialize

the

module

(to

install

the

RFC

functions

on

the

server),

and

for

it

to

properly

manage

errors.

Therefore,

do

not

set

the

value

of

the

PollFrequency

property

to

key

or

to

no.

Do

not

allow

the

SAP

application

to

trigger

events

to

the

connector

until

you

have

verified

that

the

connector’s

log

displays

the

installation

of

the

required

RFC

functions.

Processing

business

objects

The

ALE

Module’s

processing

of

WebSphere

business

objects

for

SAP

is

initiated

either

through

event

processing

or

request

processing.

When

business

object

data

is

returned

from

SAP’s

Java

Connector

(SAPJCo)

API,

the

ALE

Module

receives

values

for

DATS

and

TIMS

fields

in

the

following

formats:

YYYY-MM-DD

(the

hyphens

are

included)

for

the

DATS

data

element,

and

HH:mm:ss

(the

colons

are

included)

for

the

TIMS

data

element.

The

capitalized

HH

denotes

24-hour

time,

and

not

12-hour

time.

When

processing

events,

the

ALE

Module

changes

these

formats

to

fit

the

8-character

and

6-character

maximum

size

of

their

corresponding

business

object

attributes.

The

connector

shortens

the

length

of

the

value

by

removing

the

hyphens

from

the

date

data

and

the

colons

from

the

time

data.

Event

processing

Two

RFC-enabled

functions

in

an

SAP

application

initiate

all

event

processing

for

the

ALE

Module.

The

ALE’s

business

object

handler

for

event

processing

supports

the

functions

idoc_inbound_asynchronous

and

inbound_idoc_process.

When

processing

events,

this

business

object

handler

persistently

stores

business

objects

in

an

MQSeries

queue.

The

connector

maintains

the

Transaction

IDs

(TIDs)

associated

with

the

RFC

call

to

guarantee

that

each

piece

of

data

is

delivered

once

and

only

once.

Important:

A

single

RFC

call

can

send

the

data

for

one

or

more

IDocs.

Therefore,

an

MQSeries

queue

may

contain

a

JMS-MQ

message

that

represents

multiple

IDocs,

each

of

which

represents

a

business

object.

Each

RFC

call

is

associated

with

a

single

TID.

Processing

events

in

the

MQSeries

queue:

Figure

17

on

page

136

illustrates

how

the

ALE

Module

processes

the

MQSeries

queue.

Chapter

12.

Configuring

the

ALE

module

135

Business-object

event

processing

for

the

ALE

Module

executes

in

the

following

manner:

1.

An

RFC

function

pushes

event

data

to

the

SAP

Gateway,

where

a

listener

thread

picks

up

events.

The

thread

checks

the

TID

associated

with

the

event

to

determine

whether

a

JMS-MQ

message

exists

for

the

TID:

v

If

the

TID

has

not

been

sent

previously,

the

connector

continues

to

2.

v

If

the

TID

has

been

sent

previously,

the

connector’s

behavior

depends

on

the

state

of

the

previous

transaction.

If

TidStatus

is

CREATED,

the

connector

removes

the

IDoc

data

from

the

message.

If

the

status

is

ROLLBACK,

the

connector

changes

the

status

to

CREATED,

and

if

IDoc

data

exists

in

the

message,

the

connector

removes

the

IDoc

data

from

the

message.

If

the

status

is

EXECUTED,

the

connector

returns

control

to

SAP.
2.

The

listener

thread

instantiates

the

ALE

event-processing

business

object

handler,

which

retrieves

the

RFC-interface

data

from

the

SAP

Gateway.

3.

The

business

object

handler

formats

each

transaction

into

a

JMS-MQ

message,

which

it

stores

persistently

in

the

queue

specified

by

the

SAPALE_Wip_Queue

configuration

property.

Each

JMS-MQ

message

represents

a

single

RFC

call.

Each

RFC

call

can

represent

one

or

more

business

objects

associated

with

a

single

TID.

The

connector

stores

the

TID

in

the

message’s

CorrelationID

property,

sets

the

TidStatus

to

CREATED,

and

sets

the

IDocProcessStatus

to

unknown.

The

connector

uses

the

message

body

to

store

IDoc

data.

4.

After

each

transaction

completes,

the

connector

changes

the

value

of

TidStatus

and

sends

a

confirmation

back

to

SAP

indicating

that

the

transaction

is

complete.

After

SAP

receives

the

confirmation,

it

removes

the

TID

and

its

associated

data

from

the

SAP

application.

If

the

AleUpdateStatus

configuration

property

evaluates

to

true,

the

connector

updates

the

status

of

the

IDoc

in

SAP.

If

it

retrieves

a

packet

of

IDocs,

it

updates

the

status

of

all

IDocs

in

the

packet.

For

more

information,

see

“Updating

the

IDoc

status

in

SAP”

on

page

138.

SAP gateway

SAP application

SAP RFC library

ALE
event-processing

BO handler

ALE-specific
function

Listener thread

2

4

1

3

5

PollForEvents()

Integration
broker

ALE
data handler

6

8

7

MQSeries
queue

JMS interface
for MQSeries

Figure

17.

Business

object

event

processing

136

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

5.

The

connector

moves

the

JMS-MQ

message

from

the

WIP

queue

to

the

queue

specified

by

the

SAPALE_Event_Queue

configuration

property.

6.

The

ALE

Module’s

polling

thread

picks

up

the

event

message

from

the

Event

queue.

7.

The

connector

instantiates

an

ALE

data

handler

that

will

convert

the

data

in

the

message

body

to

business

objects

for

posting

to

the

integration

broker.

8.

The

connector

attempts

to

post

each

business

object

to

the

integration

broker.

If

the

integration

broker

is

WebSphere

Interchange

Server,

the

connector

first

checks

if

there

are

subscriptions

for

the

business

object.

After

processing

all

the

business

objects

in

the

message

body,

the

message’s

IDocProcessingStatus

and

BOProcessingStatus

are

updated

and

the

message

is

moved

to

the

queue

specified

by

the

SAPALE_Archive_Queue

property.

For

more

information

on

IDocProcessingStatus

see,

″Creating

archive

messages″

and

on

BOProcessingStatus

see,

″Structure

of

JMS-MQ

message

for

event

and

archive

processing″.

The

ALE

module

uses

FIFO

(First

In,

First

Out)

to

maintain

the

processing

order

when

reading

the

messages

from

the

Event

queue.

Important:

Connector

polling

is

required

for

this

module

to

manage

errors

properly

when

it

processes

application

events.

Therefore,

do

not

set

the

value

of

the

connector’s

PollFrequency

property

to

key

or

to

no.

Do

not

allow

the

SAP

application

to

trigger

events

to

the

connector

until

you

have

verified

that

the

connector’s

log

displays

the

installation

of

the

required

RFC

functions.

Structure

of

JMS-MQ

message

for

event

and

archive

processing:

Table

21

describes

the

structure

of

the

message

that

the

connector

sends

to

the

Event

and

Archive

queues.

Table

21.

Structure

of

JMS-MQ

message

for

event

and

archive

processing

JMS

Message

Header

Property

Description

CorrelationId

The

connector

sets

the

value

of

this

property

from

the

Transaction

ID

(TID)

sent

by

SAP.

TidStatus

Maintains

the

status

of

the

TID.

IDocProcessStatus

Maintains

the

status

of

the

IDoc

object

during

event

processing.

BOProcessingStatus

Maintains

the

status

of

all

IDocs

in

the

message

using

the

format,

<CID>

::

<IDoc

sequence

number><Status

symbol>.

Possible

status

symbols

are

S

for

Success,

F

for

fail

and

U

for

unsubscribed.

For

example

″<CID>

::

0S,

1F,

2U″

means

the

first

IDoc

was

successful,

second

failed,

and

third

was

unsubscribed

for

CorrelationId

=

<CID>.

Table

22

describes

the

possible

values

for

the

IDocProcessStatus

property

after

an

event

is

moved

to

the

Archive

queue.

Table

22.

Archive

queue

values

for

the

IDocProcessStatus

message

property

IDocProcessStatus

property

value

Event

status

Description

success

Success

All

business

objects

in

the

message

have

been

posted

with

no

errors.

Chapter

12.

Configuring

the

ALE

module

137

Table

22.

Archive

queue

values

for

the

IDocProcessStatus

message

property

(continued)

IDocProcessStatus

property

value

Event

status

Description

partial

Partial

success

One

or

more

but

not

all

business

objects

in

the

message

have

been

posted

with

an

error.

If

the

integration

broker

is

WebSphere

Interchange

Server,

one

or

more

but

not

all

business

objects

in

the

message

have

been

posted

with

an

error

or

are

unsubscribed.

unsubscribed

Unsubscribed

If

the

integration

broker

is

WebSphere

Interchange

Server,

all

business

objects

in

the

message

are

unsubscribed.

fail

Fail

All

business

objects

in

the

message

have

been

posted

with

an

error.

Creating

archive

messages:

When

the

message

is

moved

from

the

Event

queue

to

the

Archive

queue,

the

IDocProcessingStatus

and

BOProcessingStatus

are

updated.

The

message

body

remains

unchanged.

For

example,

assume

the

connector

processes

an

event

message

with

four

IDocs,

each

of

which

it

transforms

or

attempts

to

transform

into

a

business

object,

with

the

results

illustrated

in

Table

23:

Table

23.

Archive

message

creation

Status

of

IDoc

or

business

object

Resulting

archive

message

Successfully

transforms

the

first

IDoc,

and

posts

the

business

object

to

the

integration

broker

The

IDocProcessStatus

is

updated

to

success

and

the

BOProcessingStatus

is

<CID>

::

0S

Fails

to

transform

the

second

IDoc

into

a

business

object

The

IDocProcessStatus

is

updated

to

partial

and

the

BOProcessingStatus

is

<CID>

::

0S,

1F

Successfully

transforms

the

third

IDoc,

and

posts

the

business

object

to

the

integration

broker

The

IDocProcessStatus

is

set

to

partial

and

the

BOProcessingStatus

is

<CID>

::

0S,

1F,

2S

Successfully

transforms

the

fourth

IDoc,

but

the

business

object

created

is

not

subscribed

in

the

integration

broker

v

The

IDocProcessStatus

is

set

to

partial

and

the

BOProcessingStatus

is

<CID>

::

0S,

1F,

2S,

3U

v

After

processing

the

last

IDoc,

moves

the

message

from

the

Event

queue

to

the

Archive

queue

and

gives

it

IDocProcessStatus

of

partial

and

BOProcessingStatus

of

<CID>

::

0S,

1F,

2S,

3U

Updating

the

IDoc

status

in

SAP:

To

cause

the

connector

to

update

a

standard

SAP

status

code

after

the

ALE

Module

has

retrieved

an

IDoc

for

event

processing,

you

must:

v

Set

the

AleUpdateStatus

configuration

property

to

true

and

set

the

value

of

the

AleSuccessCode

and

AleFailureCode

configuration

properties.

v

Configure

the

inbound

parameters

of

the

Partner

Profile

of

the

Logical

System

in

SAP

to

receive

the

ALEAUD

message

type.

138

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

If

AleUpdateStatus

evaluates

to

true,

the

connector

sends

the

ALEAUD

IDoc

to

SAP

with

status

code

information

and

descriptive

text.

The

ALEAUD

IDoc

calls

the

IDOC_INPUT_ALEAUD

function

module.

The

connector

supports

sending

the

following

status

codes

to

this

function

module:

v

IDoc

has

been

completely

posted

in

the

business

integration

system.

The

AleSuccessCode

connector-specific

configuration

property

can

have

a

value

of

52

or

53.

SAP

converts

this

value

to

41.

v

IDoc

cannot

be

processed

in

the

business

integration

system.

The

AleFailureCode

connector-specific

configuration

property

can

have

a

value

of

68.

SAP

converts

this

value

to

40.

In

both

of

the

cases

above,

the

business

integration

system

does

not

send

further

status

codes

that

would

indicate

further

processing.

For

information

on

setting

the

connector-specific

configuration

properties

that

are

required

to

return

IDoc

status,

see:

v

“AleUpdateStatus”

on

page

20

v

“AleSuccessCode”

on

page

21

v

“AleFailureCode”

on

page

21

For

information

on

setting

the

connector-specific

configuration

properties

that

are

optional

to

return

IDoc

status,

see:

v

“AleSelectiveUpdate”

on

page

20

v

“AleStatusMsgCode”

on

page

21

v

“AleSuccessText”

on

page

21

v

“AleFailureText”

on

page

21

ALE

Module

Queue

Management

utility

for

event

processing

Use

this

command-line

utility

for

maintenance

of

MQ

queues

used

by

the

WebSphere

Business

Integration

adapter

for

mySAP.com’s

(v.

5.3.2)

ALE

module.

The

utility

resubmits

event

messages,

dumps

event

messages

to

a

file

system

for

viewing,

and

archives

messages

to

a

file

system.

An

IDoc

is

processed

in

a

unit

of

work

called

a

transaction.

An

SAP

transaction

containing

more

than

one

IDoc

is

called

a

transaction

packet.

The

adapter

processes

transactions

and

transaction

packets

by

using

an

MQ

message

to

hold

the

IDoc

or

IDocs.

The

adapter

converts

the

IDoc

into

its

corresponding

business

object.

The

ALE

module

handles

processing

of

IDocs

in

a

two-step

process:

SAP

to

the

adapter,

then

the

adapter

to

the

broker.

Exceptions

are

handled

differently

for

each

step.

For

more

information

about

MQ

messages,

see

the

WebSphere

Business

Integration

Library:

http://www.ibm.com/software/integration/wmq/library/.

Processing

IDocs

from

SAP

to

the

adapter:

If

the

adapter

detects

unsubcribed

or

unsupported

business

objects

or

raises

any

exceptions

during

IDoc

transmission,

the

adapter

will

fail

the

SAP

transaction.

Failed

transactions

can

be

viewed

and

resubmitted

from

SAP

transaction

SM58.

Before

resubmitting

the

transaction,

address

the

exception:

v

Unsupported:

add

agent

support

for

the

business

object.

v

Unsubscribed:

restart

the

collaboration

for

the

business

object.

v

Other

exceptions:

view

the

adapter

logs

to

determine

the

exception

and

make

the

necessary

correction.

Chapter

12.

Configuring

the

ALE

module

139

Once

this

step

executes

successfully,

the

transaction

with

SAP

is

complete.

Important:

To

prevent

duplicate

event

delivery,

do

not

resubmit

a

corrected

IDoc

transaction

or

individual

IDoc

within

a

transaction

packet.

Processing

IDocs

from

the

adapter

to

the

broker:

If

an

MQ

message

contains

a

single

business

object

and

is

unsubscribed,

the

MQ

message

will

be

moved

to

the

unsubscribed

queue.

Each

unsubscribed

business

object

within

a

transaction

packet

will

persist

as

its

own

MQ

message

on

the

unsubscribed

queue.

The

original

MQ

message

remains

intact

and

contains

the

processing

status

of

the

individual

IDocs.

Once

the

transaction

packet

for

the

MQ

message

is

completely

processed,

it

is

moved

to

the

archive

queue.

Before

resubmitting

the

transaction,

address

the

exception:

v

Unsubscribed:

restart

the

collaboration

for

the

business

object.

v

Other

exceptions:

view

the

adapter

logs

to

determine

the

exception

and

make

the

necessary

correction.

After

you

complete

the

correction,

use

the

command

utility

AleEventUtil

to

move

the

MQ

message

back

to

the

event

queue,

resubmitting

the

event.

When

an

IDoc

contains

malformed

data

or

contains

’nodata’,

the

IDoc

is

moved

to

the

Error

Queue

as

its

own

message.

Installing

and

configuring

the

ALE

Module

Queue

utility:

The

ALE

Module

Queue

utility

is

packaged

with

the

SAP

adapter.

When

installed,

it

has

the

following

directory

structure:

\Connectors\SAP\Utilities\BIA_AleEventUtil.jar

\Connectors\SAP\Utilities\BIA_AleEventUtil.bat

\Connectors\SAP\Utilities\BIA_AleEventUtil_readme.txt

Modify

the

start

script

file,

BIA_AleEventUtil.bat,

to

capture

the

following

parameters.

To

access

local

queue

managers,

you

need

only

configure

MQQueueManager.

Variable

Description

Comments

MQQueueManager

Name

of

the

Queue

Manager

Required

parameter.

MQChannel

Server

connection

channel

name

Required

for

accessing

remote

queue

manager.

MQPort

Port

on

which

the

channel

is

listening

Required

for

accessing

remote

queue

manager.

MQHost

Host

name

or

IP

address

on

which

the

Queue

Manager

is

running

Required

for

accessing

remote

queue

manager.

MQUser

Valid

username

on

MQHost

Required

for

accessing

remote

queue

manager.

MQPassword

User

password

Required

for

accessing

remote

queue

manager.

Value

not

encrypted.

140

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Running

the

MQ

management

utility:

After

installing

and

configuring

the

utility,

navigate

to

the

directory

where

the

ALE

Module

Queue

Management

Utility

is

installed.

Valid

commands

for

the

utility

are:

-c

<choice>

(valid

options

are

[move,

archive,

dump,

replicate])

-i

<inputq>

-o

<outputq>

-f

<outputfile>

-d

<date>

-u

<unique

message

ID>

-n

<replication

count>

Note:

When

there

is

an

existing

file

with

the

same

name,

the

archive

command

will

raise

an

exception

but

the

dump

command

will

overwrite

the

file.

To

dump

the

contents

of

a

message

to

a

file,

from

a

command

prompt

change

to

the

directory

where

the

utility

is

installed

and

run

the

following

command:

BIA_AleEventUtil

-cdump

-i<QueueName>

-f<OutputFileName>

To

move

messages

from

one

queue

to

another,

run

the

following

command.

This

command

will

move

all

the

messages

in

the

queue:

BIA_AleEventUtil

-cmove

-i<FromQueue>

-o<ToQueue>

To

move

a

single

message,

use

the

additional

paramater

of

MessageIdByte

corresponding

to

the

message

ID

of

the

desired

message:

BIA_AleEventUtil

-cmove

-i<FromQueue>

-o<ToQueue>

-u<MessageIdByte>

To

move

all

the

messages

equal

to

or

earlier

than

a

specified

date,

add

the

Date

parameter:

BIA_AleEventUtil

-cmove

-i<FromQueue>

-o<ToQueue>

-d<date(YYYYMMDD)>

To

archive

messages

from

a

queue

to

a

file,

removing

all

messages

equal

to

or

earlier

than

a

specified

date,

use

this

command:

BIA_AleEventUtil

-carchive

-i<QueueName>

-f<ArchiveFileName>

-d<date(YYYYMMDD)>

BIA_AleEventUtil

-creplicate

-i<QueueName>

-n<Replication_count>

-u<messageID>

-t<Testing>

Request

processing

The

vision

connector

framework

uses

the

value

of

the

verb

AppSpecificInfo

property

of

the

top-level

business

object

to

instantiate

the

ALE

request-processing

business

object

handler.

The

doVerbFor()

method

in

the

request-processing

business

object

handler

initiates

all

business

object

requests.

Chapter

12.

Configuring

the

ALE

module

141

The

business

object

handler

converts

the

business

object

data

into

two

tables

that

represent

the

IDoc

format

and

its

metadata

component,

the

control

record.

Once

the

data

is

in

IDoc

format,

the

business

object

handler

makes

an

RFC

call

to

the

appropriate

SAP

function

module:

either

idoc_inbound_asynchronous

or

inbound_idoc_process.

Because

ALE

is

asynchronous,

the

connector

does

not

wait

for

a

return

response.

Important:

By

default,

parent

wrapper

business

objects

generated

by

SAPODA

contain

a

TransactionId

attribute.

A

value

in

this

attribute

causes

the

connector

to

manage

TIDs

when

processing

service

call

requests.

If

you

do

not

want

TID

management

for

request

processing,

do

not

set

a

value

for

this

attribute.

For

more

information,

see

“Parent

wrapper

business

object”

on

page

149.

Note:

The

value

of

the

TransactionID

attribute

must

be

a

unique

identifier.

The

value

is

not

the

equivalent

of

a

TID

in

the

SAP

application.

These

values

are

stored

in

a

table

within

the

JMS_MQ

message

in

the

queue

specified

by

the

SAPtid_Queue

configuration

property.

The

TransactionID

must

begin

with

an

alphabetic

character.

If

the

TransactionID

attribute

does

not

have

a

value,

the

ALE

Module

sends

the

request

directly

to

SAP.

If

the

TransactionID

attribute

has

a

value,

the

ALE

Module

does

the

following:

1.

The

connector

checks

whether

the

JMS-MQ

message

in

the

queue

specified

by

the

SAPtid_Queue

configuration

property

has

this

value.

v

If

the

value

of

the

business

object’s

TransactionID

attribute,

ObjectID,

does

not

exist

in

the

table

of

the

JMS_MQ

message,

a

new

entry

is

created

in

the

table.

ObjectID

becomes

the

key

to

the

table

entry.

Then

the

connector

retrieves

a

new

TID

from

SAP

and

that

TID

is

assigned

to

this

ObjectID.

The

connector

also

sets

the

TidStatus

for

this

ObjectID

to

CREATED

v

If

ObjectID

does

exist

in

the

table,

the

connector’s

behavior

depends

upon

the

TidStatus

for

this

OjbectID.

If

TidStatus

is

CREATED,

the

connector

continues

to

2.

If

TidStatus

is

ROLLBACK,

the

connector

changes

the

value

to

CREATED,

and

continues

to

2.

If

TidStatus

is

EXECUTED,

the

key

is

removed

and

archived.
2.

The

connector

converts

the

business

object

to

RFC

tables

and

makes

an

RFC

call

to

SAP.

v

If

the

call

posts

successfully,

the

connector

updates

the

key’s

TidStatus

to

EXECUTED.

v

If

the

call

fails

to

post

to

SAP

or

raises

an

exception,

the

connector

updates

the

key’s

TidStatus

to

ROLLBACK.
3.

After

SAP

acknowledges

receipt

of

the

RFC

call,

the

connector

removes

the

key

from

the

table,

archives

the

key,

and

returns

a

success

status

to

the

integration

broker.

Archiving:

After

successfully

processing

a

service

call

request,

the

corresponding

entry

in

the

table

of

the

JMS-MQ

message

in

the

SAPtid_Queue

is

removed

and

archived

to

a

directory.

A

file

is

created

in

the

\ale\request

subdirectory

for

WINNT

or

/ale/request

for

Unix

systems.

The

ale

subdirectory

is

located

in

the

directory

where

the

adapter

is

started.

The

entry

that

has

been

removed

from

the

table

will

be

used

to

create

the

new

file.

The

file

name

will

have

the

following

format:

<ObjectID>_<TID>)_<timestamp>.executed

where

ObjectID

is

the

value

from

the

TransactionId

attribute,

TID

is

the

transaction

ID

from

SAP,

and

timestamp

is

the

time

stamp

of

when

the

file

was

created.

142

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

adapter

itself

manages

the

deletion

of

these

archive

files

using

the

connector

configuration

property

ArchiveDays.

The

value

in

the

connector

configuration

property,

ArchiveDays,

determines

the

amount

of

days

these

archived

files

will

persist

in

the

ale\request

sub-directory.

Any

files

older

than

the

number

of

days

specified

in

ArchiveDays

will

be

deleted.

If

this

property

is

not

configured,

the

default

value

for

ArchiveDays

is

seven

days.

These

archive

files

can

also

managed

manually

by

deleting

the

files

yourself.

Resubmission

of

Failed

Requests:

For

all

failed

requests

indicated

by

the

integration

broker,

check

whether

an

archive

file

has

been

created

for

the

request.

If

the

archive

file

exists

for

the

Object

ID

in

the

request

then

do

not

resubmit

the

request

from

the

integration

broker.

Resubmit

the

request

if

there

is

no

archive

file

for

that

ObjectID.

Ensure

the

ArchiveDays

connector

configuration

property

is

set

to

a

value

that

will

allow

for

verification

of

resubmitted

requests.

Columns

in

the

table

of

the

JMS

MQSeries

message

for

request

processing:

Table

24

describes

the

columns

of

the

JMS-MQSeries

message

that

the

connector

gets

from

the

SAPtid_Queue:

Table

24.

Columns

of

JMS-MQ

message

for

request

processing

Column

name

Description

ObjectID

The

value

that

is

in

the

TransactionID

attribute

of

the

requested

business

object.

This

value

is

used

as

the

key

for

the

table

TID

The

transaction

ID

obtained

from

SAP

TidStatus

Status

of

the

transaction

Chapter

12.

Configuring

the

ALE

module

143

144

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

13.

Developing

business

objects

for

the

ALE

module

This

chapter

describes

the

business

objects

required

for

the

ALE

Module

of

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

4.x).

It

also

discusses

how

the

business

object

generation

utility,

SAPODA,

generates

the

definitions.

The

chapter

assumes

you

are

familiar

with

how

the

connector

processes

business

objects.

For

more

information

on

the

ALE

Module,

see

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

Use

SAPODA

to

generate

business

object

definitions

for

this

module.

SAPODA

uses

the

SAP

application’s

native

IDoc

(Intermediate

Document)

definitions

as

templates

for

business

object

definitions

for

the

ALE

Module.

After

creating

the

definitions,

you

can

use

Business

Object

Designer

or

a

text

editor

to

modify

them.

You

can

use

SAPODA

to

generate

business

object

definitions

for

the

ALE

Module

based

upon

an

IDoc:

v

Extracted

to

a

file

v

Defined

in

the

SAP

system

IDocs

must

adhere

to

a

specific

format

for

SAP

to

process

them

correctly.

Therefore,

when

you

develop

a

business

object

definition

for

the

ALE

Module,

ensure

that

the

definition

follows

the

IDoc

Structure

as

defined

in

SAP.

For

information

on

using

SAPODA,

see

Appendix

E,

“Generating

business

object

definitions

using

SAPODA,”

on

page

291.

This

chapter

contains

the

following

sections:

v

“Creating

the

IDoc

definition

file”

v

“Business

object

structure”

on

page

146

v

“Supported

verbs”

on

page

154

v

“Processing

multiple

IDocs

with

a

wrapper

business

object”

on

page

156

Creating

the

IDoc

definition

file

Before

using

SAPODA

to

generate

a

business

object

definition

from

an

IDoc

definition

file,

you

must

create

the

IDoc

definition

file

for

each

IDoc

you

want

to

support.

SAPODA

uses

this

file

as

input.

Use

transaction

WE63

in

SAP

to

create

the

IDoc

definition

file.

Note:

If

you

use

SAPODA

to

generate

the

definition

from

an

IDoc

defined

in

the

SAP

system,

you

do

not

need

to

create

this

IDoc

definition

file.

To

create

the

IDoc

definition

file:

1.

In

SAP,

select

transaction

WE63

by

entering

/oWE63.

2.

Deselect

the

IDoc

record

types

check

box.

3.

Select

the

Basic

type

field

check

box.

4.

In

the

Basic

type

field,

enter

the

basic

IDoc

type.

5.

Select

the

Output

From

Segment

Fields

checkbox.

6.

Click

the

Execute

icon

at

the

top

of

the

screen.

The

IDoc

definition

is

displayed

on

the

screen.

©

Copyright

IBM

Corp.

2003,

2004

145

7.

Save

the

definition

to

a

local

directory.

Note:

If

the

business

object

is

based

upon

IDoc

extensions,

use

the

Extended

Basic

Types

grouping.

Important:

You

must

log

on

to

the

SAP

system

in

English

to

generate

business

object

definitions

from

IDoc

files.

Because

SAPODA

uses

a

text

field

in

the

IDoc’s

definition

to

generate

attribute

names,

and

because

attribute

names

must

be

in

English,

it

is

important

that

you

generate

definitions

from

English-language

files.

Business

object

structure

The

WebSphere

business

object

for

SAP

for

the

ALE

Module

is

made

up

of

a

top-level

parent

wrapper

object

and

two

child

objects:

the

control

record

object

and

the

data

record

object.

This

section

describes

the

following:

v

“Illustration

of

business

object

structure”

v

“Business

object

naming

conventions”

on

page

147

v

“Parent

wrapper

business

object”

on

page

149

v

“Control

record

business

object”

on

page

150

v

“Data

record

business

object”

on

page

151

Illustration

of

business

object

structure

Figure

18

illustrates

the

structure

of

a

WebSphere

business

object

for

the

ALE

Module.

146

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Business

object

naming

conventions

This

section

describes

the

following:

v

“Standard

naming

conventions”

on

page

148

[BusinessObjectDefinition]
Name = sap_alereq01
Version = 1.1.0
AppSpecificInfo = ALEREQ01

[Attribute]
Name = Dummy_Key
IsKey = true

[Attribute]
Name = TransactionId

[Attribute]
Name = Control_record
Type = sap_idoccontrol
Cardinality = 1

[Attrribute]
Name = Data_record
Type = sap_alereq01_cwdata
Cardinality = 1

[Verb]
Name = Create
AppSpecificInfo = sap.sapalemodule.VSapALEBOHandler,

MsgType=MATFET;MsgCode=;MsgFunction=
[End]
. . .
[Verb]
Name = AleOutboundVerbs
AppSpecificInfo = Create, Update
[End]

sap_alereq01

Name = Name_of_table_structure
AppSpecificInfo = TABNAM

Name = IDoc_number
AppSpecificInfo = DOCNUM
. . .

sap_idoccontrol

sap_alereq01_cwdata

Name = sap_alereq01_e2aler1001
Type = sap_alereq01_e2aler1001
Cardinality = 1
. . .

Parent wrapper business object

Child business objects

sap_alereq01_e2aler1001

Name = Logical_message_type
MaxLength = 6
AppSpecificInfo = 0+MESTYP

Name = Message_type
MaxLength = 30
AppSpecificInfo = o = 6+MESTYP40
. . .

Figure

18.

Relationship

of

WebSphere

business

objects

for

SAP

and

an

IDoc

Chapter

13.

Developing

business

objects

for

the

ALE

module

147

v

“Naming

conventions

for

IDoc

extensions”

on

page

149

Standard

naming

conventions

The

ALE

Module

requires

its

business

objects

to

follow

the

naming

conventions

described

in

Table

25.

SAPODA,

which

generates

all

but

the

control

record

business

object,

derives

the

business

object

and

attribute

names

from

the

IDoc

definition

in

accordance

with

these

conventions.

Table

25.

IBM

WebSphere

SAP

business

object

naming

conventions

IBM

WebSphere

business

object

or

attribute

Name

Type

Parent

wrapper

business

object

BOprefix_BasicIDocType

Note:

The

illustrations

in

this

chapter

use

SAP_

or

sap_

as

the

business

object

prefix.

You

can

specify

your

own

meaningful

prefix

when

you

create

your

business

object

definitions.

n/a

Control

Record

business

object

Control_record

sap_idoccontrol

Data

Record

business

object

Data_record

BOprefix_BasicIDocType_cwdata

Data

Record

child

business

object

BOprefix_BasicIDocType_

IDocSegmentName

BOprefix_BasicIDocType_

IDocSegmentName

Data

Record

attribute

IDocFieldName

or

IDoc

Field

Description

When

generating

the

BOs,

the

user

has

the

choice

to

either

choose

IDoc

segment

field

names

or

field

descriptions

as

the

BO

attribute

names.

Component

names

in

the

WebSphere

business

integration

system

support

only

alphanumeric

characters

and

the

underscore

character

(_).

Therefore,

when

naming

components

in

a

generated

business

object

definition,

SAPODA

replaces

special

characters

in

the

IDoc

segment

field

descriptions

or

field

names

with

underscore

characters.

For

example,

SAPODA

changes

the

spaces,

parentheses,

and

periods

in

the

following

SAP

description

to

underscores

in

the

corresponding

attribute

name:

Partner

function

(e.g.

sold-to

party,

ship-to

party)

SAPODA

represents

the

above

description

in

the

generated

business

object

definition

as:

Partner_function__e_g__sold_to_party__ship_to_party__

SAPODA

guarantees

that

all

attribute

names

in

the

business

object

definition

are

unique.

If

an

IDoc

has

multiple

fields

with

the

same

field

descriptions,

then

SAPODA

adds

a

counter

suffix

to

the

generated

attribute

name.

When

naming

an

attribute,

SAPODA

prepends

a

string

to

the

attribute

name

when

the

changed

attribute

name:

v

Begins

with

a

digit—prepends

A_

v

Begins

with

the

underscore

character

(_)—prepends

A

Important:

You

can

modify

attribute

names

at

any

time

after

you

generate

the

business

object.

However,

when

you

modify

an

attribute

name,

do

not

modify

its

application-specific

information.

The

connector

uses

this

text

to

identify

the

IDoc

field

to

which

the

business

object

attribute

corresponds.

For

more

information,

see

“Application-specific

information:

Data

record

business

object”

on

page

153.

148

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Naming

conventions

for

IDoc

extensions

When

SAPODA

generates

a

business

object

definition

based

on

an

IDoc

extension,

it

uses

slightly

different

naming

conventions

than

those

described

in

“Business

object

naming

conventions”

on

page

147.

In

this

case,

it

includes

the

extension

name

as

described

in

Table

26.

Table

26.

Naming

Conventions

for

Idoc

extensions

IBM

WebSphere

business

object

or

attribute

Name

Type

Parent

wrapper

business

object

BOprefix_BasicIDocType_ExtensionName

n/a

Control

Record

business

object

Control_record

sap_idoccontrol

Data

Record

business

object

Data_record

BOprefix_BasicIDocType_cwdata

Data

Record

child

business

object

BOprefix_BasicIDocType_

ExtensionName_IDocSegmentName

BOprefix_BasicIDocType_

ExtensionName_IDocSegmentName

Data

Record

attribute

IDocFieldText

or

IDocFieldName

String

For

the

syntax

of

AppSpecificInfo

property

that

specifies

the

extension,

see

“Parent

wrapper

business

object.”

Important:

When

InterChange

System

is

the

integration

broker,

be

careful

when

you

load

a

business

object

definition

for

an

IDoc

extension

into

the

repository.

You

might

encounter

conflicts

if

a

business

object

definition

for

the

basic

IDoc

Type

already

exists

in

the

repository

and

its

name

matches

the

basic

IDoc

Type

plus

extension.

You

must

manually

resolve

these

conflicts.

Parent

wrapper

business

object

The

name

of

the

parent

wrapper

business

object

is

the

basic

IDoc

type

prefixed

by

a

user-defined

prefix

followed

by

an

underscore

(_),

for

example

sap_.

The

parent

wrapper

business

object

contains

four

attributes:

Dummy_key,

Control_record,

Data_record,

and

TransactionId.

The

Control_record

and

Data_record

attributes

represent

single-cardinality

child

business

objects.

The

type

of

the

Control_record

attribute

is

sap_idoccontrol.

This

business

object

definition

is

provided

with

the

ALE

Module.

The

type

of

the

Data_record

attribute

is

BOprefix_BasicIDocType_cwdata.

This

business

object

definition

contains

one

or

more

child

business

objects,

depending

on

the

IDoc

segment

definition

of

a

basic

IDoc

type

from

the

SAP

application.

The

value

in

the

TransactionId

attribute

determines

whether

the

connector

manages

TIDs

when

processing

service

call

requests.

If

you

do

not

want

TID

management

for

request

processing,

do

not

set

the

value

for

the

TransactionID

attribute.

The

application-specific

information

of

the

parent

wrapper

business

object

indicates:

v

The

type

of

IDoc

to

be

created

Chapter

13.

Developing

business

objects

for

the

ALE

module

149

v

The

IDoc

extension—Set

only

if

the

business

object

is

generated

from

a

customization

of

a

basic

IDoc

type.

For

more

information

on

generating

the

IDoc

definition

file,

see

“Before

using

SAPODA”

on

page

291.

v

ALE

Communication

Partner

information—Set

only

if

your

data

requires

more

than

one

Partner

type,

Partner

number,

or

Partner

function.

Syntax

The

AppSpecificInfo

property

of

the

parent

wrapper

object

has

the

following

syntax:

BasicIDocType

[,Ext=ExtensionName

[,Pn=PartnerNumberOfRecipient

[,Pt=

PartnerTypeOfRecipient[,Pf=PartnerFunctionOfRecipient

]]

Explanation

of

syntax

BasicIDocType

Specifies

the

basic

IDoc

type

Ext

Specifies

the

extension

type

Pn

Specifies

the

Partner

number

of

the

recipient

Pt

Specifies

the

Partner

type

of

the

recipient

Pf

Specifies

the

Partner

function

of

the

recipient

Example

AppSpecificInfo

=

ALEREQ01,Pn=ALESYS2,Pt=LS,Pf=EL

Control

record

business

object

The

ALE

Module

uses

a

generic

control

record

business

object

definition

for

all

IDocs.

It

contains

a

superset

of

attributes

that

are

present

in

the

3.x

version

(SAP

structure

EDI_DC)

and

the

4.x

version

(SAP

structure

EDI_DC40)

of

the

control

record.

The

control

record

business

object

definition

is

provided

with

the

ALE

Module,

and

must

be

loaded

into

the

business

object

repository.

Use

Business

Object

Designer

to

load

the

business

object

into

the

repository.

Note:

Alternatively,

if

the

IBM

WebShpere

InterChange

Server

is

the

integration

broker,

you

can

use

the

repos_copy

command.

Table

27

lists

the

simple

attribute

properties

of

the

control

record

business

object.

Table

27.

Properties

of

simple

attributes

in

the

control

record

business

object

Property

name

Description

Name

The

value

of

the

Name

property

is

the

modified

value

of

the

TEXT

field

in

the

IDoc

definition.

SAPODA

replaces

special

characters

(such

as

periods,

slashes,

and

spaces)

with

underscores

so

that

the

name

contains

only

alphanumeric

characters

and

the

underscore

character

(_),

as

described

in

“Business

object

naming

conventions”

on

page

147

Type

Specifies

the

type

of

data.

SAPODA

sets

the

value

to

String.

MaxLength

SAPODA

derives

the

value

of

MaxLength

from

the

LENGTH

field

in

the

IDoc

definition.

IsKey

SAPODA

sets

this

property

to

true

on

the

first

attribute

of

a

business

object.

IsForeignKey

SAPODA

sets

the

value

to

false.

150

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

27.

Properties

of

simple

attributes

in

the

control

record

business

object

(continued)

Property

name

Description

IsRequired

The

IsRequired

property

specifies

whether

an

attribute

must

contain

a

value.

SAPODA

sets

this

property

to

true

only

on

the

Name_of_table_structure

attribute

in

the

control

record

object.

AppSpecificInfo

SAPODA

derives

the

value

from

the

NAME

field

in

the

IDoc

definition.

DefaultValue

Specifies

the

value

to

assign

to

this

attribute

if

there

is

no

run-time

value.

SAPODA

does

not

set

a

value

for

this

property.

Important:

When

an

attribute’s

value

is

set

to

either

CxIgnore

or

CxBlank

in

the

control

record

business

object,

the

connector

sets

the

value

to

a

blank

space

for

the

IDoc

control

record.

Data

record

business

object

An

IDoc

definition

file

has

information

about

the

structure

of

the

IDoc,

the

IDoc

segment

hierarchy,

and

the

fields

that

make

up

the

segments.

SAPODA

uses

the

IDoc

as

input

to

generate

the

data

record

business

object

and

its

child

business

objects.

The

number

of

children

depends

on

the

IDoc

segment

definition

of

the

basic

IDoc

type

from

the

SAP

application.

The

top

level

of

the

data

record

business

object

corresponds

to

the

basic

IDoc

type.

This

top-level

business

object

contains

an

attribute

that

represents

a

child

business

object

or

an

array

of

child

business

objects

(one

for

each

IDoc

segment).

The

structure

and

hierarchy

of

the

child

business

objects

match

that

of

the

IDoc

segments

in

the

basic

IDoc

type.

Generating

an

IDoc

from

the

system

using

SAPODA

creates

the

data

record

object

and

its

child

business

objects

by

making

calls

into

the

SAP

system

itself.

Fields

from

an

IDoc

definition

file

are

used

in

this

section

to

help

illustrate

how

different

properties

of

a

business

object

are

set.

Generating

an

IDoc

from

the

system

uses

corresponding

fields

from

the

calls

made

into

the

SAP

system.

This

section

describes:

v

“Attributes:

Data

record

business

object”

v

“Application-specific

information:

Data

record

business

object”

on

page

153

v

“Illustration

of

the

relationship

between

business

object

and

IDoc”

on

page

154

Attributes:

Data

record

business

object

Table

28

describes

the

properties

of

each

simple

attribute

in

the

data

record

business

object.

SAPODA

generates

the

properties

described

below.

Table

28.

Simple

attributes:

data

record

business

object

Property

name

Description

Name

The

value

of

the

Name

property

is

the

modified

value

of

the

NAME

or

TEXT

field

in

the

IDoc

definition.

SAPODA

replaces

special

characters

(such

as

periods,

slashes,

and

spaces)

with

underscores

so

that

the

name

contains

only

alphanumeric

characters

and

the

underscore

character

(_),

as

described

in

“Business

object

naming

conventions”

on

page

147.

Type

Specifies

the

type

of

data.

SAPODA

sets

the

value

to

String.

Chapter

13.

Developing

business

objects

for

the

ALE

module

151

Table

28.

Simple

attributes:

data

record

business

object

(continued)

Property

name

Description

MaxLength

SAPODA

derives

the

value

of

MaxLength

from

the

LENGTH

field

in

the

IDoc

definition.

IsKey

SAPODA

sets

this

property

to

true

on

the

first

attribute

in

each

business

object.

For

every

other

attribute,

SAPODA

sets

the

value

to

false.

IsForeignKey

SAPODA

sets

the

value

to

false.

IsRequired

Specifies

whether

an

attribute

must

contain

a

value.

SAPODA

sets

the

value

to

false.

AppSpecificInfo

SAPODA

sets

the

value

of

the

AppSpecificInfo

property

to

the

value

of

the

Name

field

in

the

IDoc

definition

prepended

by

the

offset

value

and

the

+

character;

for

example,

for

a

segment

field

named

SIGN

with

an

offset

of

40,

it

sets

the

following

value

for

AppSpecificInfo:

40+SIGNFor

more

information,

see

“Application-specific

information:

Data

record

business

object”

on

page

153.

DefaultValue

Specifies

the

value

to

assign

to

this

attribute

if

there

is

no

run-time

value.

SAPODA

does

not

set

a

value

for

this

property.

Important:

Simple

attributes

in

the

data

record

business

object

can

have

two

special

values:

CxIgnore

and

CxBlank.

Simple

attributes

set

to

CxIgnore

or

CxBlank

are

represented

by

blank

spaces

in

the

segment

data

string.

SAP

processes

these

attributes

by

placing

one

space

character

in

the

application

field.

Table

29

describes

the

properties

of

each

attribute

in

the

data

record

business

object

that

represents

a

child

or

array

of

child

business

objects.

SAPODA

generates

the

properties

described

below.

Table

29.

Attributes

that

represent

child

business

objects

Property

name

Description

Name

SAPODA

sets

the

value

to

BOprefix_BasicIDocTypeIdocSegmentName;

for

example,

SAP_E2ALER1001

Type

SAPODA

sets

the

value

to:

BOprefix_BasicIDocTypeIdocSegmentName

ContainedObjectVersion

SAPODA

sets

the

value

to

1.0.0.

Relationship

SAPODA

sets

the

value

to

containment.

IsKey

SAPODA

sets

the

value

to

false.

IsForeignKey

SAPODA

sets

the

value

to

false.

IsRequired

The

IsRequired

property

specifies

whether

a

child

business

object

must

exist.

SAPODA

sets

the

value

to

false

if

the

value

of

the

STATUS

field

for

the

corresponding

segment

in

the

IDoc

definition

has

a

value

of

OPTIONAL.

SAPODA

sets

this

property

to

true

if

the

STATUS

field

in

the

IDoc

definition

has

a

value

of

MANDATORY.

AppSpecificInfo

The

AppSpecificInfo

property

contains

information

on

the

hierarchy

level

and

minimum

and

maximum

number

of

allowed

occurrences

of

a

segment.

For

more

information,

see

“Application-specific

information

in

attributes

that

represent

children”

on

page

153.

Cardinality

If

the

value

of

the

LOOPMAX

field

in

the

IDoc

definition

is

1,

SAPODA

sets

the

value

to

1.

If

the

value

of

LOOPMAX

is

greater

than

1,

SAPODA

sets

the

value

to

n.

152

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Application-specific

information:

Data

record

business

object

This

section

describes

how

connector

uses

the

value

of

the

AppSpecificInfo

property:

v

“Application-specific

information

at

the

business-object

Level”

v

“Application-specific

information

in

simple

attributes”

v

“Application-specific

information

in

attributes

that

represent

children”

Application-specific

information

at

the

business-object

Level:

The

connector

uses

the

value

of

the

AppSpecificInfo

property

at

the

business-object

level

of

the

data

record

and

each

of

its

children

to

obtain

the

name

of

the

associated

Idoc

and

its

segments:

v

The

syntax

of

the

application-specific

information

on

the

data

record

business

object

is:

IDocType_CWDATA

For

example,

given

an

IDoc

named

ALERQ01,

SAPODA

creates

the

value

of

the

AppSpecificInfo

property

as

ALERQ01_CWDATA.

v

The

value

of

the

application-specific

information

on

the

children

of

the

data

record

business

object

is

the

corresponding

segment

name.

For

example,

given

IDoc

ALERQ01

with

two

segments

named

E2ALER1001

and

E2ALEQ1,

SAPODA

automatically

creates

the

value

of

the

AppSpecificInfo

property

for

the

two

child

business

objects

as:

–

First

child:

E2ALER1001

–

Second

child:

E2ALEQ1

Application-specific

information

in

simple

attributes:

The

connector

uses

the

value

of

the

AppSpecificInfo

property

of

simple

attributes

to

obtain

the

field

name

in

SAP

and

its

position

(offset)

in

the

data

string.

The

offset

value

is

the

position

of

the

first

character

of

the

attribute

value

in

the

data

string.

The

offset

value

is

calculated

by

subtracting

the

value

in

the

BYTE_FIRST

value

of

the

first

field

in

the

IDoc

definition

from

the

BYTE_FIRST

value

of

the

given

attribute.

This

value

is

used

with

the

MaxLength

property

to

build

the

data

string

for

the

IDoc

segment.

The

syntax

of

the

AppSpecificInfo

property

of

simple

attributes

is:

OffsetNumber+IDocFieldName

For

example,

a

segment

field

named

SIGN

with

an

offset

of

40

has

the

following

value

for

AppSpecificInfo:

40+SIGN

Application-specific

information

in

attributes

that

represent

children:

The

connector

uses

the

value

of

the

AppSpecificInfo

property

of

attributes

that

represent

a

child

or

array

of

child

business

objects

to

obtain

information

on

the

hierarchy

level

and

minimum

and

maximum

number

of

allowed

occurrences

of

a

segment.

SAPODA

sets

the

AppSpecificInfo

property

for

these

attributes

by

obtaining

information

from

the

LEVEL,

LOOPMIN

and

LOOPMAX

fields

in

the

IDoc

definition.

Chapter

13.

Developing

business

objects

for

the

ALE

module

153

Illustration

of

the

relationship

between

business

object

and

IDoc

Figure

19

illustrates

the

relationship

between

the

WebSphere

data

record

business

object

and

the

IDoc

definition

from

an

SAP

application.

Supported

verbs

Verb

support

for

the

ALE

Module

is

limited

by

the

verbs

that

SAP

supports

through

its

ALE

interface.

SAPODA

generates

the

Create,

Update,

Delete,

and

Retrieve

verbs

in

the

business

object

definition.

Implementation

of

each

verb

requires

knowledge

of

the

ALE

configuration

within

SAP.

SAPODA

generates

the

AppSpecificInfo

for

the

verbs

and

the

AleOutboundVerbs

meta-verb

on

the

parent

wrapper

business

object.

However,

it

populates

only

one

of

the

parameters

of

the

AppSpecificInfo

with

values:

it

specifies

the

business

Name = Data_record
Type = sap_e2alereq01_cwdata
Cardinality = 1
. . .

Sap_aler eq01

Name = sap_e2aler1001

Name =
Logical_message_type

AppSpecificInfo =
0+MESTYP

. . .

MaxLength = 6

Parent wrapper business

. . .

Data record business

IDoc Definition

. . .

BEGIN_IDOCALEREQ01

BEGIN_GROUP

. . .

Begin_Segment E2ALER1001

Level02

Begin_Fields

TextLogical message type

NameMESTYP

Byte_First000064

Length0006

. . .

. . .

End_Segment

Begin_SegmentE2ALEQ1

Level03

Name = sap_e2aleq1

Name = sap_e2aler eq01_cwdata

Name = sap_e2aler1001
Type = sap_e2aler1001
Cardinality = n
. . .

Figure

19.

Relationship

Between

data

record

business

object

and

IDoc

Definition

fields

154

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

object

handler

to

use

for

service-call

request

processing.

For

all

other

processing,

you

must

manually

modify

the

business

object

definition

to

add

or

remove

specific

information:

v

When

using

the

business

object

for

event

processing,

you

must

specify

values

for

the

following

the

AppSpecificInfo

properties:

–

Parent

wrapper

business

object’s

verb—specify

a

value

for

those

parameters

that

uniquely

identify

the

verb.

Depending

on

the

requirements

of

your

ALE

configuration,

specify

the

message

type,

message

code,

and

message

function.

Make

these

changes

after

you

import

the

business

object

definition

into

your

repository.

Important:

SAPODA

inserts

the

AppSpecificInfo

value

that

specifies

the

business

object

handler,

which

the

connector

uses

only

for

request

processing.

SAPODA

does

not

insert

values

for

the

message

parameters.

If

you

are

using

the

ALE

Module

for

event

processing,

you

must

manually

add

the

values

for

the

message

parameters.

–

Parent

wrapper

business

object’s

AleOutboundVerbs

meta-verb—a

comma-separated

list

of

verbs

supported

for

event

processing.
v

When

using

the

business

object

for

request

processing,

you

must

specify

a

value

for

the

following

the

AppSpecificInfo

properties:

–

Parent

wrapper

business

object’s

verb—specify

the

package

and

classname

of

the

business

object

handler

so

that

the

connector

can

determine

the

appropriate

business

object

handler.

SAPODA

inserts

the

following

value

into

the

AppSpecificInfo

property

of

each

standard

verb:

AppSpecificInfo

=

sap.sapalemodule.VSapALEBOHandler.

–

When

using

a

wrapper

business

object

to

process

multiple

IDoc

parent

business

objects,

you

must

add

the

package

and

classname

of

the

business

object

handler

to

the

AppSpecificInfo

property

of

each

verb

in

the

multiple

IDoc

wrapper

business

object.

For

each

parent

wrapper

business

object,

SAPODA

generates

the

Create,

Retrieve,

Update,

and

Delete

verbs.

For

each

of

these

verbs,

it

generates

the

following

AppSpecificInfo

values:

sap.sapalemodule.VSapALEBOHandler,MsgType=;MsgCode=;MsgFunction=

Supporting

multiple

message

types

To

support

multiple

message

types

that

map

to

the

same

basic

IDoc

type:

1.

Generate

as

many

business

objects

from

the

same

IDoc

as

the

number

of

message

types

you

want

to

support.

Note

that

the

same

business

object

needs

to

be

saved

with

different

names.

2.

Configure

the

verb

apptext

to

set

"MsgType=

xxxxx"

to

the

proper

message

type

in

each

object.

The

business

object

level

ASI

will

be

set

to

the

same

IDoc

type

in

all

of

these

objects.

3.

Perform

the

necessary

configurations

in

SAP.

Maintain

transaction

WE82

to

map

message

type

to

basic

type.

Using

the

previous

configuration,

a

single

instance

of

the

adapter

suffices

to

support

multiple

mappings

of

the

same

basic

IDoc

type

to

various

message

types.

Two

instances

of

the

adapter

cannot

use

the

same

set

of

MQ

Queues

for

event

processing.

Create

a

set

of

MQ

Queues

for

each

adapter.

Chapter

13.

Developing

business

objects

for

the

ALE

module

155

AppSpecificInfo

property:

Parent

wrapper

verb

The

syntax

of

the

AppSpecificInfo

property

of

the

parent

wrapper

business

object’s

verb

differs

depending

on

whether

the

business

object

represents

an

application

event

or

a

service

call

request:

Application

event

syntax

[BOHandler],MsgType=messageType;MsgCode=[messageCode];MsgFunction=[messageFunction]

Note:

The

connector

matches

the

values

in

the

control

record

with

the

values

specified

in

the

verb’s

AppSpecificInfo

property

to

determine

the

verb.

Service

call

request

syntax

BOHandler[,MsgType=messageType;MsgCode=[messageCode];MsgFunction=[messageFunction]]

Explanation

of

syntax

BOHandler

Specifies

the

request-processing

business

object

handler;

the

value

defaults

to

the

following:

sap.sapalemodule.VSapALEBOHandler

MsgType

Specifies

the

message

type

configured

for

the

IDoc

in

ALE

MsgCode

Specifies

the

message

code

configured

for

the

IDoc

in

ALE;

the

connector

requires

a

value

only

if

MsgType

does

not

uniquely

identify

the

verb;

however,

specify

a

value

if

required

by

your

ALE

configuration

MsgFunction

Specifies

the

message

function

configured

for

the

IDoc

in

ALE;

the

connector

requires

a

value

only

if

MsgType

and

MsgCode

do

not

uniquely

identify

the

verb;

however,

specify

a

value

if

required

by

your

ALE

configuration

AppSpecificInfo

property:

Parent

wrapper

meta-verb

In

the

AppSpecificInfo

property

of

the

parent

wrapper

business

object’s

AleOutboundVerbs

verb,

specify

those

verbs

the

connector

should

support

for

application-event

processing,

separating

verbs

with

a

comma.

Important:

SAPODA

generates

values

for

the

Create,

Retrieve,

Update,

and

Delete

verbs.

After

the

definition

has

been

generated,

you

must

manually

delete

those

verbs

that

you

do

not

want

the

connector

to

support.

The

following

example

instructs

the

connector

to

support

the

Create

and

Update

verbs

for

processing

application

events:

[Verb]

Name

=

AleOutboundVerbs

AppSpecificInfo

=

Create,

Update

[End]

Processing

multiple

IDocs

with

a

wrapper

business

object

Note:

This

section

is

applicable

only

to

service-call

request

processing.

When

processing

multiple

IDocs,

the

ALE

Module

requires

a

wrapper

business

object

as

the

top-level

business

object.

The

multiple

IDoc

wrapper

business

object

contains

an

attribute

that

represents

an

array

of

IDoc

parent

wrapper

business

objects.

156

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

For

each

parent

wrapper

business

object,

SAPODA

generates

the

Create,

Retrieve,

Update,

and

Delete

verbs.

For

each

of

these

verbs,

it

generates

the

following

AppSpecificInfo

values:

sap.sapalemodule.VSapALEBOHandler,MsgType=;MsgCode=;MsgFunction=

Figure

20

illustrates

the

relationship

between

a

top-level

wrapper

object

and

it’s

child

IDoc

business

objects.

Multiple

IDoc

wrapper

object

example

The

following

is

a

sample

definition

of

a

multiple

IDoc

wrapper

business

object:

[BusinessObjectDefinition]

Name

=

sap_alereq01_wrapper

Version

=

1.0.0

AppSpecificInfo

=

[Attribute]

Name

=

Dummy_key

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

true

AppSpecificInfo

=

DummyKey

DefaultValue

=

[End]

[Attribute]

Name

=

TransactionId

Type

=

String

Name = Dummy_key
IsKey = true
AppSpecificInfo = DummyKey

Name = TransactionId
AppSpecificInfo = CrossWorlds TID

Name = sap_alereq01
Type = sap_alereq01
Cardinality = n

Sap_alereq01_wrapper

Name =

sap_alereq01

sap_alereq01

Name =

Multiple IDoc wrapper business object

Parent wrapper business object

Figure

20.

Wrapper

business

object

containing

child

business

objects

Chapter

13.

Developing

business

objects

for

the

ALE

module

157

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

CrossWorlds

TID

DefaultValue

=

[End]

[Attribute]

Name

=

sap_alereq01

Type

=

sap_alereq01

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

n

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

DefaultValue

=

[End]

[Verb]

Name

=

Create

AppSpecificInfo

=

sap.sapalemodule.VSapALEBOHandler,MsgType=;MsgCode=;MsgFunction=

[End]

[Verb]

Name

=

Retrieve

AppSpecificInfo

=

sap.sapalemodule.VSapALEBOHandler,MsgType=;MsgCode=;MsgFunction=

[End]

[Verb]

Name

=

Update

AppSpecificInfo

=

sap.sapalemodule.VSapALEBOHandler,MsgType=;MsgCode=;MsgFunction=

[End]

[Verb]

Name

=

Delete

AppSpecificInfo

=

sap.sapalemodule.VSapALEBOHandler,MsgType=;MsgCode=;MsgFunction=

[End]

Multiple

IDoc

wrapper:

Attribute

that

represents

the

child

business

object

Table

30

lists

and

describes

the

properties

of

the

attribute

that

represents

the

child

business

object

in

the

multiple

IDoc

wrapper

business

object.

Table

30.

Multiple

IDoc

wrapper:

attribute

that

represents

child

business

object

Property

name

Description

Name

Set

the

value

to

the

name

of

the

parent

business

object

generated

by

SAPODA.

Type

Set

the

value

to

the

name

of

the

parent

business

object

generated

by

SAPODA.

ContainedObjectVersion

Set

the

value

to

1.0.0.

Relationship

A

child

business

object

is

contained

by

a

parent

business

object;

therefore,

the

value

is

containment.

IsKey

Set

the

value

to

false.

IsForeignKey

Set

the

value

to

false.

IsRequired

Set

the

value

to

false.

AppSpecificInfo

This

property

is

not

used

for

the

attribute

that

represents

child

business

objects

in

the

ALE

Module.

158

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

30.

Multiple

IDoc

wrapper:

attribute

that

represents

child

business

object

(continued)

Property

name

Description

Cardinality

Set

the

value

of

the

attribute

in

the

top-level

wrapper

business

object

that

represents

the

IDoc

parent

business

object

to

cardinality

n.

Chapter

13.

Developing

business

objects

for

the

ALE

module

159

160

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Part

4.

BAPI

module

©

Copyright

IBM

Corp.

2003,

2004

161

162

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

14.

Overview

of

the

BAPI

Module

This

chapter

introduces

the

SAP

BAPI

ModuleIBM

WebSphere

Business

Integration

Adapter

for

mySAP.com.

The

BAPI

Module

enables

an

integration

broker

to

send

business

objects

to

SAP

R/3

application

versions

3.x

using

BAPIs.

BAPIs

are

SAP’s

standardized

Business

Application

Programming

Interfaces

that

enable

third

parties

to

interact

with

SAP

R/3

applications.

They

are

implemented

as

RFC-enabled

function

modules

for

an

SAP

business

object’s

methods.

This

chapter

contains

the

following

sections:

v

“BAPI

Module

components”

on

page

163

v

“How

the

BAPI

Module

works”

on

page

164

Note:

A

BAPI

is

an

RFC-enabled

function

in

an

SAP

application.

In

addition

to

BAPIs,

the

BAPI

Module

can

be

used

to

support

any

RFC-enabled

function.

BAPI

Module

components

The

BAPI

Module

is

a

connector

module

written

in

Java

that

supports

native

BAPI

calls

directly

to

an

SAP

R/3

application.

It

extends

the

vision

connector

framework

by

implementing

the

VisionConnectorAgent

and

VisionBOHandler

classes.

The

BAPI

Module

uses

the

SAP

RFC

libraries

written

in

Java

and

C,

which

enables

external

programs

to

communicate

with

an

SAP

R/3

application.

Figure

21

illustrates

the

overall

architecture

of

the

BAPI

Module.

The

BAPI

Module

is

made

up

of

the

connector

framework,

the

connector’s

application-specific

component

for

BAPI,

and

BAPI-specific

business

object

handler

connector

modules,

as

well

as

the

SAP

RFC

Library.

©

Copyright

IBM

Corp.

2003,

2004

163

The

BAPI

Module

components:

v

Open

an

RFC

connection

to

the

SAP

R/3

application

using

the

SAP

RFC

library

and

the

SAP

Gateway.

v

Handle

requests

from

the

integration

broker

and

call

BAPIs

in

an

SAP

R/3

application.

v

Terminate

connections

to

the

SAP

R/3

application.

How

the

BAPI

Module

works

The

BAPI

Module

implements

the

init(),

terminate(),

pollForEvents(),

and

doVerbFor()

methods.

However,

the

pollForEvents()

method

is

not

used

because

the

BAPI

Module

supports

request

operations

only.

Initialization

and

Termination

The

init()

method

opens

an

RFC

connection

with

the

SAP

R/3

application

through

the

SAP

Gateway.

If

the

connector

fails

to

initialize,

it

terminates

using

the

terminate()

method.

The

connector

terminates

by

disconnecting

the

connection

to

the

SAP

Gateway.

Business

object

processing

A

single

implementation

of

the

doVerbFor()

method

in

the

vision

connector

framework’s

business

object

handler

initiates

all

business

object

requests.

The

vision

business

object

handler

processes

all

of

the

business

objects

passed

between

the

BAPI

Module

and

the

integration

broker.

In

the

BAPI

Module,

a

BAPI-specific

SAP R/3 application

Vision connector framework

SAP gateway

SAP RFC library
WebSphere Business
InterChange Server

SAP R/3

BAPI

pollForEvents()terminate()init()

Connector framework and
BAPI connector component

BAPI

BAPI

DoVerbFor()

BAPI-Specific
BO Handler

DoVerbFor()

BAPI-Specific
BO Handler

DoVerbFor()

BAPI-specific
BO handler

Figure

21.

BAPI

Module

architecture

164

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

business

object

handler

supports

only

one

BAPI;

therefore,

for

each

supported

BAPI

in

the

SAP

R/3

application,

you

must

have

an

associated

BAPI-specific

business

object

handler.

The

vision

business

object

handler

uses

the

verb

application-specific

information

of

a

business

object

to

invoke

the

appropriate

BAPI-specific

business

object

handler.

The

BAPI

parameter

names

and

formats

are

hard-coded

in

the

BAPI-specific

business

object

handler

so

that

the

business

object

handler

can

make

an

RFC

call

to

the

appropriate

BAPI.

Figure

22

illustrates

business

object

processing

for

the

BAPI

Module.

Once

invoked

by

the

vision

business

object

handler,

the

BAPI-specific

business

object

handler

executes

in

the

following

manner:

1.

Receives

the

WebSphere

business

object

for

SAP

from

the

vision

business

object

handler.

2.

Populates

the

BAPI

parameters

with

business

object

data.

3.

Executes

a

BAPI

call

using

RFC

and

passes

the

BAPI

parameters

to

the

SAP

R/3

application.

The

business

object

handler

waits

for

the

business

object

data

to

be

returned.

4.

Receives

the

business

object

data

(BAPI

parameters).

5.

Converts

the

BAPI

parameters

back

to

WebSphere

business

object

data.

6.

Passes

the

business

object

to

the

Vision

business

object

handler

and

ultimately

to

the

integration

broker.

WebSphere Business
InterChange Server

SAP R/3

SAP R/3 application

Vision business object handler

SAP gateway

BAPIBAPI

SAP RFC library

BAPI

DoVerbFor()

DoVerbFor()

BAPI-specific
BO handler

DoVerbFor()

BAPI-specific
BO handler

DoVerbFor()

BAPI-specific
BO handler

Figure

22.

Business

object

processing

for

the

BAPI

Module

Chapter

14.

Overview

of

the

BAPI

Module

165

Note:

If

a

BAPI

Module

has

a

Return

Structure

or

Return

Table,

the

connector

checks

for

the

message

types

A

(abort)

and

E

(error)

to

determine

if

the

service

call

request

processed

successfully.

A

message

type

A

or

E

indicates

that

the

service

call

request

failed

to

process.

If

a

BAPI

does

not

have

a

Return

Structure

or

Return

Table,

you

must

implement

your

own

error

handling.

The

error

message

or

messages,

within

the

structure

or

table,

are

returned

in

the

return

status

descriptor.

Supporting

BAPIs

The

business

object

generation

utility,

SAPODA,

generates

business

object

definitions

that

support

BAPIs.

SAPODA

interprets

the

interface

of

a

BAPI,

maps

its

parameters

to

the

business

object

attributes,

and

adds

the

application-specific

information

for

each

attribute.

Also,

for

each

WebSphere

business

object

definition,

you

must

generate

an

associated

BAPI-specific

business

object

handler

using

SAPODA.

For

more

information

on

Developing

business

objects

and

BAPI-specific

business

object

handlers,

see

Chapter

16,

“Developing

business

objects

for

the

BAPI

Module,”

on

page

169.

Note:

Some

BAPIs

do

not

have

single

field

parameters

that

correspond

to

simple

attributes

in

the

WebSphere

business

object.

The

connector

requires

every

top-level

business

object

to

have

a

simple

attribute

that

serves

as

the

key

attribute.

Therefore,

when

generating

a

business

object

and

business

object

handler

from

a

BAPI

without

a

single

field

parameter,

SAPODA

creates

a

key

attribute

named

Dummy_key

in

the

top-level

business

object,

marks

it

as

the

key

attribute,

and

adds

dummy_key

as

the

application-specific

information

of

this

attribute.

Dummy_key

provides

the

connector

with

a

key

attribute

so

that

it

can

process

the

business

object.

However,

the

connector

ignores

the

value

of

the

Dummy_key

attribute

when

modifying

application

data.

166

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

15.

Configuring

the

BAPI

Module

This

chapter

describes

the

configuration

of

the

BAPI

Module

and

assumes

that

all

of

the

necessary

files

were

installed

when

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

was

installed.

For

more

information

on

installing

the

connector,

see

Chapter

2,

“Installing

and

configuring

the

connector,”

on

page

11..

This

chapter

contains

the

following

sections:

v

“BAPI

Module

directories

and

files”

on

page

167

v

“BAPI

Module

configuration

properties”

on

page

167

BAPI

Module

directories

and

files

The

BAPI

Module

directory

and

files

are

contained

in

the

\connectors\SAP\

directory.

Table

31

lists

the

directory

and

file

used

by

the

BAPI

Module.

Table

31.

BAPI

Module

directory

and

file

Directory/filename

Description

\bapi\client

Directory

containing

the

runtime

files

for

the

connector.

All

BAPI-specific

BO

Handler

class

files

must

be

copied

into

this

directory.

CWSAP.jar

Connector

class

file

BAPI

Module

configuration

properties

You

must

configure

the

BAPI

Module

before

it

can

start

operating.

To

configure

the

BAPI

Module,

set

the

standard

and

connector-specific

connector

configuration

properties.

For

more

information

on

configuring

the

connector

configuration

properties,

see

“Configuring

the

connector”

on

page

17

and

Appendix

B,

“Standard

configuration

properties

for

connectors,”

on

page

241..

©

Copyright

IBM

Corp.

2003,

2004

167

168

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

16.

Developing

business

objects

for

the

BAPI

Module

This

chapter

describes

business

objects

required

for

the

BAPI

Module.

It

also

discusses

how

the

business

object

generation

utility,

SAPODA,

generates

the

definitions.

The

chapter

assumes

you

understand

how

the

connector

processes

business

objects.

For

more

information

on

business

object

processing

in

the

BAPI

Module,

see

Chapter

14,

“Overview

of

the

BAPI

Module,”

on

page

163..

This

chapter

contains

the

following

sections:

v

“Background

information”

on

page

169

v

“Business

object

naming

conventions”

on

page

169

v

“Business

object

structure”

on

page

170

v

“Supported

verbs”

on

page

172

v

“Business

object

attribute

properties”

on

page

172

v

“Business

object

application-specific

information”

on

page

174

v

“Using

generated

business

object

definitions

and

business

object

handlers”

on

page

176

Note:

This

chapter

describes

business

objects

that

support

BAPIs;

however,

the

BAPI

Module

can

be

used

to

support

any

RFC-enabled

function.

Background

information

Business

object

development

for

the

BAPI

Module

requires

creation

of

the

following

for

each

supported

BAPI:

v

An

application-specific

business

object

v

An

associated

BAPI-specific

business

object

handler

SAPODA

facilitates

the

process

of

developing

business

objects

and

BAPI-specific

business

object

handlers.

SAPODA

uses

the

SAP

application’s

native

definitions

as

a

template

when

generating

business

object

definitions

for

the

integration

brokerIBM

WebSphere

Business

Integration

Adapter

for

mySAP.com.

Important:

SAPODA

must

have

access

to

the

BAPI

in

an

SAP

R/3

system

to

retrieve

the

BAPI

interface.

Note:

SAP

supports

many

methods

that

can

be

mapped

to

the

standard

verbs

(Create,

Update,

Delete,

and

Retrieve)

that

the

connector

supports.

You

can

develop

business

objects

and

BAPI-specific

business

object

handlers

to

support

any

method

used

by

BAPIs.

Business

object

naming

conventions

A

BAPI

interface

consists

of

importing,

exporting,

and

table

parameters,

where:

v

Importing

parameters

are

passed

to

the

BAPI.

v

Exporting

parameters

are

returned

from

the

BAPI.

v

Table

parameters

are

passed

in

either

direction.

Some

BAPIs

may

not

have

all

of

the

types

of

parameters.

For

example,

a

BAPI

may

have

importing

and

table

parameters

only.

©

Copyright

IBM

Corp.

2003,

2004

169

SAPODA

automatically

maps

the

BAPI

importing,

exporting,

and

table

parameters

to

attributes

in

WebSphere

business

objects

for

SAP

as

described

in

Table

32.

Table

32.

Naming

conventions:

WebSphere

business

objects

for

SAP

Business

object

BAPI

interface

Top-level

business

object

BOprefix_BAPIname

Note:

The

illustrations

in

this

chapter

use

SAP_

or

sap_

as

the

business

object

prefix.

You

can

specify

your

own

meaningful

prefix

when

you

create

your

business

object

definitions.

Attribute

FieldDescription

Child

business

object

BOprefix_BAPIParameterName

SAPODA

guarantees

that

all

attribute

names

in

the

business

object

definition

are

unique.

If

a

BAPI

has

multiple

parameters

with

the

same

field

description,

SAPODA

adds

a

counter

as

the

suffix

to

the

generated

attribute

name.

When

naming

an

attribute

from

a

BAPI

parameter,

SAPODA

prepends

a

string

to

the

attribute

name

when

the

changed

attribute

name:

v

Begins

with

a

digit—prepends

A_

v

Begins

with

the

underscore

character

(_)—prepends

A

Important:

You

can

modify

the

attribute

names

at

any

time

after

you

generate

the

business

object

definition.

However,

when

you

modify

an

attribute

name,

do

not

modify

the

application-specific

information.

The

connector

uses

this

information

to

identify

the

BAPI

parameter

to

which

the

attribute

corresponds.

For

more

information

on

the

application-specific

information,

see

“AppSpecificInfo

for

attributes”

on

page

174.

Business

object

structure

The

connector

uses

a

BAPI-specific

business

object

handler

to

map

each

business

object

attribute

to

a

BAPI

parameter.

The

connector,

each

business

object,

and

each

BAPI-specific

business

object

handler

are

metadata-driven.

The

application-specific

information

provided

in

the

metadata

of

each

business

object

and

business

object

handler

allows

you

to

add

connector

support

for

a

new

business

object

and

its

handler

without

modifying

connector

code.

Instead:

v

The

connector

uses

the

verb

application-specific

information

of

the

top-level

business

object

to

instantiate

the

appropriate

BAPI-specific

business

object

handler

v

The

business

object

handler

uses

the

attribute

application-specific

information

of

each

business

object

to

map

between

each

attribute

and

its

parameter

Each

BAPI-specific

business

object

handler

supports

both

single-

and

multiple-cardinality

relationships

between

business

objects.

A

business

object

based

on

a

BAPI

can

contain

no

more

than

two

levels

of

hierarchy.

Therefore,

all

BAPI

simple

parameters

correspond

to

attributes

of

the

top-level

business

object,

and

BAPI

structure

and

table

parameters

correspond

to

child

business

objects.

170

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

33.

Correspondence

between

BAPIs

and

WebSphere

business

objects

for

SAP

BAPI

interface

parameter

WebSphere

business

object

for

SAP

Simple

field

Attribute

of

the

top-level

business

object

Structure

Single-cardinality

child

business

object

Table

Multiple-cardinality

child

business

objects

Note:

Importing

and

exporting

parameters

can

be

simple

field

or

structure

parameters.

Figure

23

illustrates

the

association

between

a

business

object

and

a

BAPI.

The

figure

illustrates

a

fragment

of

the

sap_bapi_salesorder_createfromdat2

business

object,

which

corresponds

to

the

BAPI_SALESORDER_CREATEFROMDAT2

BAPI.

SALESDOCUMENT (simple field)

ORDER_HEADER_IN (structure)

ORDER_ITEMS_IN (table)

BAPI_SALESORDER_CREATEFROMDAT2

[Attribute]
Name = SALES_DOCUMENT_NUMBER
AppSpecificInfo = ISALESDOCUMENT

Name = sap_order_header_in
Type = sap_order_header_in
Cardinality = 1

Name = sap_order_items_in
Type = sap_order_items_in
Cardinality = n

[Verb]
Name = Create
AppSpecificInfo = sap.bapi.client.
BAPI_SALESORDER_CREATEFROMDAT2

sap_bapi_salesorder_createfromdat2

Name = sap_order_header_in
AppSpecificInfo = IORDER_HEADER_IN:

sap_order_header_in

sap_order_items_in

SAP sales order BAPITop-level business object

Child business objects

Name = sap_order_items_in
AppSpecificInfo =IORDER_ITEMS_IN:EORDER_ITEMS_IN

Figure

23.

Mapping

between

a

business

object

and

a

BAPI

Chapter

16.

Developing

business

objects

for

the

BAPI

Module

171

Supported

verbs

The

BAPI

Module

supports

the

standard

verbs

(Create,

Update,

Delete,

and

Retrieve)

used

by

the

WebSphere

business

integration

system.

For

each

supported

verb,

a

BAPI

can

have

an

associated

method.

Most

BAPIs

support

one

of

the

following

operations:

create,

retrieve,

update,

and

delete.

Business

object

attribute

properties

The

properties

of

the

attributes

of

a

top-level

business

object

differ

depending

on

whether

the

attribute

represents

a

simple

value,

or

a

child

or

an

array

of

child

business

objects.

v

Table

34

lists

and

describes

the

properties

of

simple

attributes

of

a

top-level

business

object.

v

Table

35

lists

and

describes

the

attributes

that

represent

a

child

or

array

of

child

business

objects.

SAPODA

generates

the

attribute

properties

as

described

in

each

table.

Table

34.

Simple

attributes

properties:

Top-level

business

object

Property

name

Description

Name

Derived

from

the

description

or

name

of

the

BAPI

parameter.

SAPODA

replaces

special

characters

(such

as

periods,

slashes,

and

spaces)

with

underscores.

Type

Specifies

the

type

of

data.

SAPODA

sets

the

value

to

String.

MaxLength

Specifies

the

field

length

of

the

BAPI

parameter.

IsKey

Specifies

whether

the

attribute

is

the

key.

The

first

simple

attribute

of

a

business

object

defaults

to

the

key

attribute.

The

connector

does

not

support

using

an

attribute

that

represents

a

child

business

object

or

an

array

of

a

child

business

objects

as

a

key

attribute.

Therefore,

if

the

BAPI

provides

only

structure

and

table

parameters,

you

must

insert

a

simple

attribute

as

the

first

attribute.

SAPODA

inserts

the

Dummy_key

attribute

as

the

first

attribute,

marks

it

as

the

key

attribute,

and

sets

appropriate

values.

Do

not

modify

those

values.

IsForeignKey

SAPODA

sets

the

value

to

false.

IsRequired

Specifies

whether

an

attribute

must

contain

a

value.

SAPODA

sets

the

value

to

false.

AppSpecificInfo

Contains

the

name

of

the

BAPI

parameter

that

corresponds

to

the

associated

attribute.

The

format

is:

IABAPFieldName:EABAPFieldName

For

more

information

on

the

application-specific

information,

see

“Business

object

application-specific

information”

on

page

174.

DefaultValue

Specifies

the

value

to

assign

to

this

attribute

if

there

is

no

run-time

value.

SAPODA

does

not

set

a

value

for

this

property.

Table

35

lists

and

describes

the

attributes

that

represent

a

child

or

array

of

child

business

objects.

SAPODA

generates

the

properties

described

below.

Table

35.

Properties

of

an

attribute

that

represents

a

child

or

children

Property

name

Description

Name

The

value

is

the

name

of

the

structure

or

table

parameter.

The

format

is:

BOprefix_BAPIParameterName.

172

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

35.

Properties

of

an

attribute

that

represents

a

child

or

children

(continued)

Property

name

Description

Type

The

value

is

the

type

of

child

business

object;

in

other

words,

the

type

is

BOprefix_BAPIParameterName.

ContainedObjectVersion

SAPODA

sets

the

value

to

1.0.0.

Relationship

SAPODA

sets

the

value

to

containment.

IsKey

SAPODA

sets

the

value

to

false.

IsForeignKey

SAPODA

sets

the

value

to

false.

IsRequired

Specifies

whether

an

attribute

must

contain

a

value.

SAPODA

sets

the

value

to

false.

AppSpecificInfo

Contains

the

name

of

the

BAPI

parameter

that

corresponds

to

the

associated

attribute.

The

format

is:

IBAPIParameterName:EBAPIParameterName

For

more

information

on

the

application-specific

information,

see

“AppSpecificInfo

for

attributes”

on

page

174.

Cardinality

BAPI

structure

parameters

have

single

cardinality

(1)

and

BAPI

table

parameters

have

multiple

cardinality

(n).

Important:

Simple

attributes

can

have

two

special

values:

CxIgnore

and

CxBlank.

When

a

business

object

is

sent

to

the

BAPI

Module

as

a

service

call

request

and

the

business

object

has

simple

attributes

set

to

CxIgnore

or

CxBlank,

it

is

as

if

those

attributes

are

invisible

to

the

BAPI

Module.

However,

the

SAP

application

initializes

such

an

attribute

to

its

ABAP

data

type.

The

BAPI

Module

converts

all

returned

blank

values

to

CxIgnore.

Initializing

attribute

values

Every

field

in

SAP

has

an

initial

value.

When

the

connector

receives

a

service

call

request,

the

BAPI-specific

business

object

handler

populates

most

of

the

BAPI

interface

parameters

with

the

values

listed

in

Table

36.

The

one

exception

is

the

character

data

type.

The

business

object

handler

converts

a

CxIgnore

in

the

business

object

attribute

to

a

space

in

the

SAP

field.

If

you

want

any

other

value

to

be

converted

to

CxIgnore,

the

component

that

creates

the

business

object

must

perform

the

conversion.

For

example,

when

the

WebSphere

Inter

Change

Server

is

the

integration

broker,

modify

the

map

to

handle

this

conversion.

Table

36

provides

initial

values

set

by

the

business

object

handler.

Table

36.

Initial

field

values

in

SAP

Data

type

Description

Initial

value

set

by

business

object

handler

C

Character

space

N

Numeric

string

000...

D

Date

(YYYMMDD)

00000000

T

Time

(HHMMSS)

000000

X

Byte

(hexadecimal)

X00

I

Integer

0

P

Packed

number

0

F

Floating

point

number

0.0

Chapter

16.

Developing

business

objects

for

the

BAPI

Module

173

Business

object

application-specific

information

Application-specific

information

in

business

object

definitions

provides

the

BAPI

Module

with

application-dependent

instructions

on

how

to

process

business

objects.

These

instructions

are

specified

at

the

business-object

level,

at

the

attribute

level

(both

for

simple

attributes

and

for

attributes

that

represent

a

child

or

array

of

child

business

objects),

and

for

verbs.

AppSpecificInfo

for

the

verb

of

the

top-level

business

object

The

connector

uses

the

value

of

the

verb

application-specific

information

in

the

top-level

business

object

to

call

the

appropriate

BAPI-specific

business

object

handler.

The

value

of

the

AppSpecificInfo

property

specifies

the

package

and

classname

for

the

BAPI-specific

business

object

handler.

The

format

is

as

follows:

AppSpecificInfo

=

bapi.client.BOHandler

where

BOHandler

is

the

name

of

the

class.

By

default,

SAPODA

uses

the

name

of

the

BAPI

as

the

name

of

the

class.

SAPODA

automatically

adds

the

application-specific

information

to

the

top-level

business

object.

Important:

You

must

include

the

value

client

before

the

business

object

handler

name

to

identify

that

the

BAPI-specific

business

object

handler

acts

as

a

client.

For

example,

if

you

are

supporting

the

SALES_ORDER_CREATEFROMDAT2

BAPI,

then

the

application-specific

information

is

as

follows:

AppSpecificInfo

=

bapi.client.sales_order_createfrom

dat2

AppSpecificInfo

for

attributes

The

connector

uses

the

value

of

an

attribute’s

application-specific

information

to

determine

which

importing,

exporting,

and

table

parameters

to

use.

The

value

of

this

property

contains

the

prefix

I

(for

importing

parameters)

or

E

(for

importing

parameters).

The

prefix

indicates

whether

the

attribute

value

is

used

to

pass

data

into

or

out

from

the

SAP

application.

Because

structure

parameters

can

be

either

importing

or

exporting,

they

use

either

an

I

or

an

E

before

the

parameter

value.

Because

table

parameters

can

pass

data

to

and

return

data

from

a

BAPI,

they

can

have

both

I

and

E

parameter

values.

Important:

Always

use

a

colon

(:)

separator

when

you

specify

parameter

values

with

I

and

E.

If

specifying

only

an

importing

value,

the

colon

must

follow

the

value.

If

specifying

only

an

exporting

value,

the

colon

must

precede

the

value.

If

specifying

both

values,

the

colon

follows

the

importing

value

and

precedes

the

exporting

value.

Table

33

illustrates

the

correspondence

between

a

business

object

and

an

example

BAPI

named

BAPI_EXAMPLE.

In

the

example,

the

simple

attributes

(Attribute_1,

Attribute_2,

and

Attribute_3)

specify

only

an

importing

or

exporting

parameter.

The

attribute

that

represents

a

child

business

object

(Child_1)

corresponds

to

an

exporting

structure

parameter.

The

attribute

that

represents

an

array

of

child

business

objects

(Child_2)

corresponds

to

a

table

parameter.

Each

child

business

object

has

a

simple

attribute

that

corresponds

to

a

field

of

the

corresponding

structure

or

table

(Attribute_11

and

Attribute_14,

respectively).

You

can

find

these

fields

by

looking

at

the

details

of

the

BAPI.

174

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

37

identifies

the

format

of

the

application-specific

information

for

specific

kinds

of

attributes.

Table

37.

AppSpecificInfo

format

for

specific

kinds

of

attributes

AppSpecificInfo

Format

Attribute

Type

IParameterName:EParameterName

Simple

ITableName:ETableName

Represents

a

child

business

object

mapped

to

a

table

parameter

IStructureName:EStructureName

Represents

a

child

business

object

mapped

to

a

structure

parameter

BAPI_EXAMPLE

[BusinessObjectDefinition]
Name = Top_Level_BusObj
AppSpecificInfo =

[Attribute]
Name = Attribute_1
AppSpecificInfo = IField_1:

Name = Attribute_2
AppSpecificInfo = :EField_2

Name = Attribute_3
AppSpecificInfo = IField_3:

Name =Child_1
Type =Child_1
Cardinality = 1
AppSpecificInfo = :Ereturn

Name = Child_2
Type = Child_2
Cardinality = n
AppSpecificInfo = ITable_7:ETable_7

TOp_Level_BusObj

WebSphere BAPI business object

Child_2 (1)

[BusinessObjectDefinition]
Name = Child_1
AppSpecificInfo = :Ereturn

[Attribute]
Name = Attribute_11
AppSpecificInfo = IField_11:EField_11

FUNCTION BAPI_EXAMPLE.
*"---
""

*" IMPORTING
*" Field_1 ...
*" Field_3 ...
*" EXPORTING
*" Field_2 ...
*" Return ...
*" TABLES
*" Table_7 ...

ENDFUNCTION.

Child_1

[BusinessObjectDefinition]
Name = Child_2
AppSpecificInfo = ITable_7:ETable_7

[Attribute]
Name = Attribute_14
AppSpecificInfo = IField_14:EField_14

Child_2

Figure

24.

Correspondence

between

a

business

object

and

an

example

BAPI

Chapter

16.

Developing

business

objects

for

the

BAPI

Module

175

Table

37.

AppSpecificInfo

format

for

specific

kinds

of

attributes

(continued)

AppSpecificInfo

Format

Attribute

Type

IFieldName:EFieldName

Represents

an

attribute

of

a

child

business

object

mapped

to

a

field

in

a

table

or

structure

parameter

SAPODA

automatically

generates

the

appropriate

application-specific

information

for

the

business

object

definition.

It

is

recommended

that

you

do

not

change

the

parameter

names

of

the

generated

application-specific

information.

Using

generated

business

object

definitions

and

business

object

handlers

Use

SAPODA

to

generate

business

object

definitions

and

business

object

handlers

for

each

RFC-enabled

function

that

you

want

to

support.

You

can

use

the

generated

objects

without

any

modifications.

However,

you

can

manually

edit

these

objects

to

refine

the

functionality.

After

the

objects

are

generated,

you

must

add

the

business

object

definition

and

its

corresponding

BAPI-specific

business

object

handler

to

your

WebSphere

business

integration

system’s

runtime

environment.

v

Use

Business

Object

Designer

to

copy

the

business

object

definition

into

your

repository.

Note:

Alternatively,

if

the

WebSphere

InterChange

Server

is

the

integration

broker,

you

can

use

the

repos_copy

command

to

load

the

definition

into

the

repository.

v

Use

a

system

command

to

copy

the

BAPI-specific

business

object

handler

files

to

the

following

directory

under

the

product

directory:

\connectors\SAP\bapi\client

The

BAPI-specific

business

object

handler

files

are:

v

BAPI

Name.java

v

BAPI

Name.class

For

example,

given

the

BAPI_SALESORDER_CREATEFROMDAT2

BAPI

and

a

user-specified

prefix

of

sap_,

SAPODA

generates

the

following:

v

sap_bapi_salesorder_createfromdat2

(business

object

definition

that

includes

all

child

business

objects)

v

Bapi_salesorder_createfromdat2.java

v

Bapi_salesorder_createfromdat2.class

Important:

You

can

modify

the

name

of

the

generated

business

object

as

well

as

the

name

of

its

child

business

objects.

To

do

so,

you

must

edit

the

definition

as

a

text

file

rather

than

in

Business

Object

Designer.

If

you

do

change

a

business

object’s

name,

ensure

that

you

also

modify

all

references

to

the

names

that

you

change.

Also,

if

you

modify

the

names

of

the

generated.class

file

for

the

business

object

handler,

you

must

maintain

the

changes

for

the

application-specific

information

for

the

associated

business

object.

Note:

For

BAPIs

and

RFC-enabled

ABAP

functions

that

are

developed

in

a

development

namespace,

SAPODA

removes

or

replaces

″/″

characters

in

the

176

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

function

name

with

″_″

when

naming

the

business

object

definition,

.java,

and

.class

files.

SAPODA

removes

the

″/″

character

only

when

it

is

the

first

character

of

the

name.

Although

the

definition

name

or

file

name

does

not

contain

this

character,

the

code

still

accurately

calls

the

specified

function

with

its

proper

name

containing

the

″/″

characters.

Also,

when

a

function

name

begins

with

a

digit,

SAPODA

prepends

the

name

with

the

string

Rfm_.

Tips

and

tricks

This

section

describes

the

following

tips

and

tricks

for

developing

business

objects

and

BAPI-specific

business

object

handlers:

v

“Multiple

business

objects

contain

the

same

return

business

object”

on

page

177

v

“Generated

business

object

definition

contains

unnecessary

attributes

and

child

business

objects”

on

page

178

v

“Generated

business

object

names

are

too

long

or

fail

your

naming

conventions”

on

page

178

v

“Generated

AppSpecificInfo

for

table

parameters

specify

unnecessary

parameters”

on

page

178

Multiple

business

objects

contain

the

same

return

business

object

Most

BAPIs

use

the

same

name

for

the

return

object.

When

SAPODA

generates

a

business

object

definition,

it

creates

a

child

business

object

to

represent

this

return

object.

If

multiple

business

object

definitions

contain

an

identically

named

child

business

object,

you

can

add

that

child

business

object

into

the

repository

only

once,

or

copy

only

a

single

definition

file

into

the

repository

directory.

To

enable

multiple

business

objects

to

contain

the

return

business

object,

you

must

modify

the

name

of

the

return

business

object

to

be

unique

for

each

business

object.

To

rename

the

return

business

object,

modify

the

definition

of

each

business

object

definition

that

contains

it.

The

definition

of

the

child

business

object

is

contained

in

the

same

definition

file

as

its

parent.

To

rename

the

child,

do

the

following:

1.

Open

the

definition

file

for

the

top-level

business

object

in

a

text

editor.

2.

Locate

the

definition

of

the

BOprefix_return

child

business

object.

3.

Change

the

child’s

name

to

be

unique.

For

example,

append

a

number

to

the

text

(sap_return_2).

4.

Change

all

references

in

the

definition

to

refer

to

the

newly

named

child.

For

example,

change

the

value

of

the

Type

property

for

every

attribute

that

represents

the

child

business

object.

5.

Save

the

changed

definition

file.

6.

Use

Business

Object

Designer

to

load

the

newly

named

child

business

object

into

the

repository.

Note:

Alternatively,

if

the

WebSphere

Integration

Server

is

the

integration

broker,

you

can

use

the

repos_copy

command

to

load

the

definition

into

the

repository.

Chapter

16.

Developing

business

objects

for

the

BAPI

Module

177

Generated

business

object

definition

contains

unnecessary

attributes

and

child

business

objects

SAPODA

interprets

all

BAPI

interface

parameters

and,

for

each

one,

it

creates

a

corresponding

business

object

attribute

or

child

business

object.

To

increase

performance

of

business

object

processing,

remove

from

the

business

object

definition

all

attributes

and

business

objects

that

are

not

required.

Note:

SAPODA

facilitates

graphically

removing

all

optional

attributes

and

child

business

objects

before

definition

generation.

For

more

information,

see

Chapter

16,

“Developing

business

objects

for

the

BAPI

Module,”

on

page

169.

To

increase

performance

of

business

object

processing,

you

can

also

remove

from

the

application-specific

information

all

importing

and

exporting

table

parameter

values

that

are

not

required.

After

definition

generation,

you

can

use

Business

Object

Designer

to

manually

edit

the

business

object

definition

if

you

require

other

changes.

However,

be

careful

that

you

remove

only

attributes

that

you

absolutely

will

not

be

using.

Generated

business

object

names

are

too

long

or

fail

your

naming

conventions

SAPODA

uses

the

name

of

the

BAPI

function

module

to

generate

the

name

of

the

business

object

definition.

You

can

use

a

text

editor

to

modify

a

business

object’s

name.

Important:

If

you

do

change

the

name,

ensure

that

you

modify

all

references

to

the

name

as

well.

However,

do

not

modify

the

parameter

names

of

the

generated

application-specific

information.

To

change

a

generated

business

object’s

name:

1.

Save

the

definition

to

a

file.

2.

Use

a

text

editor

to

shorten

or

change

the

name.

3.

Use

Business

Object

Designer

to

load

the

newly

named

child

business

object

into

the

repository.

Note:

Alternatively,

if

the

WebSphere

Integration

Server

is

the

integration

broker,

you

can

use

the

repos_copy

command

to

load

the

definition

into

the

repository.

Generated

AppSpecificInfo

for

table

parameters

specify

unnecessary

parameters

Table

parameters

can

be

both

importing

and

exporting

parameters.

If

you

do

not

require

importing

or

exporting

of

values

for

a

table

parameter,

you

can

remove

it

from

the

application-specific

information.

For

example,

for

a

create

operation,

if

you

do

not

need

to

return

the

table

data

from

the

SAP

application

after

the

create

operation

has

completed,

you

can

remove

the

exporting

parameter

value

(such

as

Etable

name).

For

a

retrieve

operation,

you

do

not

need

to

specify

any

importing

table

parameters.

Therefore,

you

can

remove

the

importing

parameter

value

(such

as

Itable

name).

178

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Note:

You

must

remove

the

unneeded

value

from

the

AppSpecificInfo

of

the

attribute

in

the

parent

that

represents

the

child

as

well

as

from

the

AppSpecificInfo

at

the

business-object

level

of

the

child

business

object.

Do

not

remove

the

colon

(:).

For

example,

to

remove

the

ETable_7

exporting

parameter

in

Figure

24

on

page

175,

you

would

do

the

following:

1.

In

the

Child_2

attribute

of

the

Top_Level_BusObj

business

object,

change

the

attribute’s

AppSpecificInfo

value

to:

ITable_7:

2.

In

the

AppSpecificInfo

at

the

business-object

level

of

the

Child_2

business

object,

change

the

value

to:

ITable_7:

3.

In

the

AppSpecificInfo

for

each

attribute

of

the

child

business

object,

using

Attribute_14

as

an

example,

change

the

value

to:

IField_14:

Using

custom

business

object

handlers

You

can

use

custom

business

object

handlers

with

the

BAPI

module.

Reasons

for

choosing

to

write

custom

business

object

handlers

include

the

following:

v

Implementing

custom

error

handling.

v

Locking

an

object

before

modifying

it.

To

achieve

this

you

need

to

modify

the

generated

business

object

handler

as

follows:

1.

Call

ENQUEUE

BAPI

to

lock

the

object.

BAPI_EMPLOYEE_ENQUEUE

2.

Call

the

actual

BAPI.

BAPI_EMPLOYEE_UPDATE

3.

Call

DEQUEUE

BAPI

to

unlock

the

object.

BAPI_EMPLOYEE_DEQUEUE

Note:

All

calls

should

go

into

the

same

BAPI

business

object

handler

and

should

use

the

same

JCO.Client

for

making

the

RFC

call.

For

details

on

the

specifics

of

coding

RFC

calls

please

refer

to

the

generated

business

object

handler.

v

Calling

multiple

BAPIs

using

the

same

JCO.Client.

Note:

There

is

no

support

for

custom

business

object

handlers.

Creating

custom

business

object

handlers

There

are

two

ways

to

create

custom

business

object

handlers:

modifying

a

generated

business

object

handler

or

writing

a

business

object

handler

from

scratch.

Modifying

a

generated

business

object

handler

SAP

ODA

by

default

generates

business

object

handlers

when

you

generate

business

objects.

In

addition

to

compiled

class

files,

the

ODA

generates

Java

source

files

for

the

business

object

handlers.

You

can

customize

the

generated

Java

source

and

create

with

your

own

business

object

handler.

Chapter

16.

Developing

business

objects

for

the

BAPI

Module

179

Writing

a

business

object

handler

We

do

not

recommend

you

to

take

this

approach.

If

you

still

need

to

take

this

path

please

use

the

generated

business

object

handler

as

a

template

because

it

provides

calls

to

utility

methods.

You

can

also

use

the

following

template

to

create

a

batch

file

for

Windows

platform

to

compile

the

custom

business

object

handler:

REM

@echo

off

REM

call

″%CROSSWORLDS%″\bin\CWODAEnv.bat

setlocal

set

WBIA=″%CROSSWORLDS%″\lib\WBIA\4.2.0\WBIA.jar

set

CWLIB=″%CROSSWORLDS%″\lib\CrossWorlds.jar

set

AGENT=″%CROSSWORLDS%″\ODA\SAP\SAPODA.jar

set

JCO_JAR=″%CROSSWORLDS%″\ODA\SAP\jCO.jar;

″%CROSSWORLDS%″\ODA\SAP\sapjco.jar

set

JCLASSES=%AGENT%;%JCO_JAR%;%CWLIB%;%WBIA%

echo

classpath

=

%JCLASSES%

javac

-classpath

%JCLASSES%

%1

endlocal

pause

180

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Part

5.

RFC

Server

module

©

Copyright

IBM

Corp.

2003,

2004

181

182

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

17.

Overview

of

the

RFC

Server

Module

This

chapter

introduces

the

RFC

Server

Module

of

the

Adapter

Guide

for

mySAP.com

(R/3

V.3.x).

The

RFC

Server

Module

enables

the

integration

broker

to

receive

business

objects

from

SAP

applications

that

support

RFC

calls.

It

supports

all

SAP

applications

that

use

RFC-enabled

functions

by

acting

as

a

server

to

those

applications.

This

chapter

contains

the

following

sections:

v

“RFC

Server

Module

components”

v

“How

the

RFC

Server

Module

works”

on

page

185

RFC

Server

Module

components

The

RFC

Server

Module

is

a

connector

module

written

in

Java

that

supports

RFC

calls

directly

from

an

SAP

application.

It

extends

the

Vision

Connector

Framework

by

implementing

the

VisionConnectorAgent

class.

The

RFC

Server

Module

uses

the

SAP

RFC

libraries

that

are

written

in

Java

and

C,

which

enables

external

programs

to

communicate

with

an

SAP

application.

Figure

25

on

page

184

illustrates

the

overall

architecture

of

the

RFC

Server

Module.

The

RFC

Server

Module

is

made

up

of

the

connector

framework,

the

connector’s

application-specific

component

for

RFC

Server,

RFC

Server-specific

business

object

handlers,

listener

threads,

and

the

SAP

RFC

Library.

©

Copyright

IBM

Corp.

2003,

2004

183

The

RFC

Server

Module

components:

v

Spawn

listener

threads

that

open

handles

to

the

SAP

application

using

the

SAP

RFC

library

and

the

SAP

Gateway.

Each

listener

thread

opens

a

single

handle

to

the

SAP

application.

v

Process

requests

from

RFC-enabled

functions

in

the

SAP

application.

v

Terminate

connections

to

the

SAP

application.

Listener

threads

Listener

threads

handle

all

of

the

RFC

calls

between

the

RFC

Server

Module

and

the

SAP

application.

When

the

connector

starts

up,

the

init()

method

creates

a

main

thread

that

spawns

a

configurable

number

of

listener

threads.

Each

listener

thread

opens

a

handle

to

the

SAP

Gateway.

The

listener

threads:

v

Register

with

the

SAP

Gateway

using

a

program

identifier.

v

Identify

to

the

SAP

Gateway

the

RFC-enabled

functions

that

they

support.

v

Use

the

first

available

thread

to

pick

up

an

event

from

a

supported

RFC-enabled

function.

v

Instantiate

an

RFC

Server-specific

business

object

handler

based

on

the

Server

verb

in

the

corresponding

business

object,

and

then

retrieve

the

event

data

from

the

SAP

Gateway.

v

Populate

business

objects

with

RFC

event

data,

and

then

convert

returned

business

object

data

to

RFC

event

data.

v

Return

a

response

to

the

RFC-enabled

function

through

the

SAP

Gateway.

WebSphere Business
InterChange Server

SAP R/3

SAP gateway

SAP application

Vision connector framework

SAP RFC library

PollForEvents()Terminate()init()
RFC

server-specific
BO handler

RFC-enabled
function

Listener threads

Main thread

Connector framework and
RFC server connector component

Figure

25.

RFC

Server

Module

architecture

184

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Note:

A

thread

listens

continuously

in

a

synchronous

manner

for

events

from

RFC-enabled

functions

that

it

supports.

RFC

Server-specific

business

object

handlers

The

RFC

Server-specific

business

object

handlers

are

unique

to

each

RFC-enabled

function

in

the

SAP

application.

Each

business

object

handler

is

instantiated

by

a

listener

thread

and

invokes

an

associated

business

object.

Because

the

RFC

Server

Module

acts

as

a

server

to

the

SAP

application,

it

“pushes”

or

sends

events

from

the

SAP

application

to

the

integration

broker.

This

behavior

is

very

different

from

other

modules,

which

poll

the

application

for

events.

Because

of

this

difference,

RFC

Server-specific

business

object

handlers

perform

different

tasks

from

other

business

object

handlers.

Once

instantiated,

the

RFC

Server-specific

business

object

handler:

v

Retrieves

the

RFC

event

data

and

populates

the

associated

WebSphere

business

object

for

SAP.

v

Passes

the

business

object

to

the

integration

broker

and

receives

a

business

object

in

return.

The

business

object

handler

uses

the

application-specific

information

of

the

business

object’s

Server

verb

to

determine

which

collaboration

should

process

the

business

object

data.

–

When

WebSphere

InterChange

Server

is

the

integration

broker,

the

business

object’s

Server

verb

must

specify

a

valid

collaboration.

Because

a

collaboration

cannot

explicitly

subscribe

to

an

event

that

is

pushed

to

the

connector,

the

RFC

Server-specific

business

object

handler

must

determine

the

appropriate

collaboration,

and

then

instantiate

it

–

When

a

WebSphere

message

broker

is

the

integration

broker,

the

business

object’s

Server

verb

must

contain

a

dummy

value

for

the

collaboration.
v

Converts

the

returned

business

object

data

back

to

RFC

event

data.

v

Returns

the

RFC

event

data

back

to

the

SAP

application.

How

the

RFC

Server

Module

works

The

RFC

Server

Module

implements

the

init(),

terminate(),

pollForEvents(),

and

process()

methods.

This

section

describes:

v

“Initialization

and

termination”

on

page

185

v

“Business

object

processing”

on

page

186

v

“Supporting

RFC-enabled

functions”

on

page

187

Initialization

and

termination

The

init()

method

creates

a

main

thread

that

spawns

a

configurable

number

of

listener

threads

which

open

a

handle

to

the

SAP

Gateway.

If

the

connector

fails

to

initialize,

it

terminates

using

the

terminate()

method.

The

connector

terminates

by

disconnecting

the

connection

to

the

SAP

Gateway.

During

the

initialization

process,

the

RFC

Server

Module

registers

with

the

SAP

Gateway

using

a

specified

Program

ID.

This

Program

ID

must

be

set

using

the

RfcProgramID

connector

configuration

property

and

set

up

as

a

TCP/IP

port

in

the

Chapter

17.

Overview

of

the

RFC

Server

Module

185

SAP

application.

For

more

information

on

setting

up

a

TCP/IP

port,

see

“Registering

the

RFC

Server

Module

with

the

SAP

gateway”

on

page

189.

Business

object

processing

All

processing

of

WebSphere

business

objects

for

the

RFC

Server

Module

is

initiated

by

an

RFC-enabled

function

in

an

SAP

application.

In

the

RFC

Server

Module,

an

RFC

Server-specific

business

object

handler

supports

only

one

RFC-enabled

function;

therefore,

for

each

supported

function

in

the

SAP

application,

you

must

have

an

associated

RFC

Server-specific

business

object

handler.

In

addition,

you

must

have

an

associated

business

object

for

each

RFC

Server-specific

business

object

handler.

Figure

26

illustrates

business

object

processing

for

the

RFC

Server

Module.

Business

object

processing

for

the

RFC

Server

Module

executes

in

the

following

manner:

1.

A

listener

thread

picks

up

a

subscribed

event

from

the

SAP

Gateway

and

matches

the

name

of

the

corresponding

RFC-enabled

function

with

an

RFC

Server-specific

business

object

handler.

2.

The

listener

thread

instantiates

the

appropriate

RFC

Server-specific

business

object

handler

based

on

data

from

the

RFC

event

on

the

SAP

Gateway,

and

then

creates

an

instance

of

the

corresponding

business

object.

3.

The

RFC

Server-specific

business

object

handler

retrieves

the

RFC

interface

data

from

the

SAP

Gateway

and

populates

the

WebSphere

business

object

for

SAP.

4.

The

RFC

Server-specific

business

object

handler

passes

the

business

object

to

the

integration

broker.

In

the

RFC

Server

Module,

since

SAP

makes

the

synchronization

calls,

when

a

WebSphere

message

broker

is

the

integration

broker,

the

RFC

Server

Module

uses

SynchronousRequestQueue

and

SynchronousResponseQueue

to

communicate

with

the

WebSphere

message

broker.

SAP gateway

SAP application

SAP RFC library

RFC Server-specific
BO handler

RFC-enabled
function

Listener thread

2

4

1

3

5

Integration broker

Figure

26.

Business

object

processing

186

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

5.

The

business

object

handler

receives

the

returned

business

object

from

the

integration

broker,

converts

it

back

to

the

RFC

interface,

and

then

returns

it

to

the

SAP

Gateway.

The

RFC

Server

Module

uses

the

SAP

Gateway

to

maintain

the

processing

order

of

events

and

to

maintain

the

status

of

events.

Since

the

listener

threads

make

synchronous

calls,

an

event

must

return

to

the

SAP

Gateway

before

it

can

be

considered

successfully

processed.

Note:

If

an

RFC-enabled

module

has

a

Return

Structure

or

Return

Table,

the

connector

checks

for

the

message

types

A

(abort)

and

E

(error)

to

determine

if

the

event

processed

successfully.

A

message

type

A

or

E

indicates

that

the

event

failed

to

process.

If

an

RFC-enabled

function

module

does

not

have

a

Return

Structure

or

Return

Table,

you

must

implement

your

own

error

handling.

The

error

message

or

messages,

within

the

structure

or

table,

are

returned

in

the

return

status

descriptor.

Supporting

RFC-enabled

functions

The

development

environment

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.comincludes

a

utility,

SAPODA,

that

generates

business

object

definitions

based

on

an

RFC-enabled

function.

SAPODA

interprets

the

interface

of

an

RFC-enabled

function,

maps

its

interface

parameters

to

the

business

object

attributes,

and

adds

the

application-specific

information

for

each

attribute.

For

each

business

object

definition,

you

must

generate

an

associated

RFC

Server-specific

business

object

handler,

which

invokes

the

corresponding

business

object.

For

more

information

on

developing

business

objects

and

RFC

Server-specific

business

object

handlers,

see

Chapter

19,

“Developing

business

objects

for

the

RFC

Server

Module,”

on

page

191.

Note:

Some

RFC-enabled

functions

do

not

have

single

field

parameters

that

correspond

to

simple

attributes

in

the

WebSphere

business

object.

The

connector

requires

every

top-level

business

object

to

have

a

simple

attribute

that

serves

as

the

key

attribute.

Therefore,

when

generating

a

business

object

and

business

object

handler

from

a

RFC-enabled

function

without

a

single

field

parameter,

SAPODA

creates

a

key

attribute

named

Dummy_key

in

the

top-level

business

object,

marks

it

as

the

key

attribute,

and

adds

dummy_key

as

the

application-specific

information

of

this

attribute.

Dummy_key

provides

the

connector

with

a

key

attribute

so

that

it

can

process

the

business

object.

However,

the

connector

ignores

the

value

of

the

Dummy_key

attribute

when

modifying

application

data.

Triggering

an

event

To

trigger

an

event

for

the

RFC

Server

Module

the

RFC

destination

must

be

specified

for

the

remote

function

call.

The

remote

function

call

can

be

executed

in

two

ways:

programmatically

and

using

transaction

SE37.

Programmatically,

the

variation

of

the

CALL

FUNCTION

command

that

specifies

a

destination

must

be

used.

The

value

to

specify

for

the

destination

is

the

one

that

is

created

to

register

the

RFC

Server

Module.

See

section

“Registering

the

RFC

Server

Module

with

the

SAP

gateway”

for

more

information.

Using

transaction

SE37,

the

RFC

target

system

must

match

the

RFC

destination.

See

section

“Registering

the

RFC

Server

Module

with

the

SAP

gateway”

for

more

information

on

creating

and

registering

a

RFC

destination

for

the

RFC

Server

Module.

Chapter

17.

Overview

of

the

RFC

Server

Module

187

188

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

18.

Configuring

the

RFC

Server

Module

This

chapter

describes

the

configuration

of

the

RFC

Server

Module

and

assumes

that

all

of

the

necessary

files

were

installed

when

the

Adapter

Guide

for

mySAP.com

(R/3

V.3.x)

was

installed.

For

more

information

on

installing

the

connector,

see

Chapter

2,

“Installing

and

configuring

the

connector,”

on

page

11.

This

chapter

contains

the

following

sections:

v

“RFC

Server

Module

directories

and

files”

v

“RFC

Server

Module

configuration

properties”

v

“Registering

the

RFC

Server

Module

with

the

SAP

gateway”

RFC

Server

Module

directories

and

files

The

RFC

Server

Module

directory

and

files

are

contained

in

the

\connectors\SAP\

directory.

Table

38

lists

the

directory

and

file

used

by

the

RFC

Server

Module.

Table

38.

RFC

Server

Module

directory

and

file

Directory/filename

Description

\bapi\server

Directory

containing

the

runtime

files

for

the

connector.

All

RFC

Server-specific

BO

Handler

class

files

must

be

copied

into

this

directory.

CWSAP.jar

Connector

class

file

RFC

Server

Module

configuration

properties

You

must

configure

the

RFC

Server

Module

before

it

can

start

operating.

To

configure

the

RFC

Server

Module,

set

the

standard

and

connector-specific

connector

configuration

properties.

For

more

information

on

configuring

the

connector

configuration

properties,

see

“Configuring

the

connector”

on

page

17

and

Appendix

B,

“Standard

configuration

properties

for

connectors,”

on

page

241.

Registering

the

RFC

Server

Module

with

the

SAP

gateway

During

initialization,

the

RFC

Server

Module

registers

with

the

SAP

Gateway.

It

uses

the

value

set

for

the

RfcProgramId

connector-specific

configuration

property.

This

value

must

match

the

value

set

in

the

SAP

application.

You

must

configure

the

SAP

application

so

that

the

RFC

Server

Module

can

create

a

handle

to

it.

To

register

the

RFC

Server

Module

as

an

RFC

destination:

1.

In

the

SAP

application,

go

to

transaction

SM59.

2.

Expand

the

TCP/IP

connections

directory.

3.

Click

Create

(F8).

4.

In

the

RFC

destination

field,

enter

the

name

of

the

RFC

destination

system.

It

is

recommended

that

you

use

RFCSERVER.

5.

Set

the

connection

type

to

T

(Start

an

external

program

via

TCP/IP).

6.

Enter

a

description

for

the

new

RFC

destination,

and

then

click

Save.

7.

Click

the

Registration

button

for

the

Activation

Type.

©

Copyright

IBM

Corp.

2003,

2004

189

8.

Set

the

Program

ID.

It

is

recommended

that

you

use

the

same

value

as

the

RFC

destination

(RFCSERVER),

and

then

click

Enter.

Important:

Ensure

that

the

connector-specific

configuration

property

RfcProgramID

is

set

to

the

same

value

as

the

Program

ID

value

in

the

SAP

application.

If

the

values

do

not

match,

business

object

processing

will

fail.

190

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

19.

Developing

business

objects

for

the

RFC

Server

Module

This

chapter

describes

business

objects

and

business

object

handlers

required

for

the

RFC

Server

Module.

It

provides

background

information

and

discusses

how

the

business

object

generation

utility,

SAPODA,

generates

the

definitions.The

chapter

assumes

you

are

familiar

with

how

the

connector

processes

business

objects.

For

more

information

on

business

object

processing

in

the

RFC

Server

Module,

see

Chapter

17,

“Overview

of

the

RFC

Server

Module,”

on

page

183.

This

chapter

contains

the

following

sections:

v

“Background

information”

v

“Business

object

naming

conventions”

v

“Business

object

structure”

on

page

192

v

“Supported

verbs”

on

page

194

v

“Business

object

attribute

properties”

on

page

194

v

“Business

object

application-specific

information”

on

page

196

v

“Using

generated

business

objects

and

business

object

handlers”

on

page

199

Note:

Once

you

have

created

business

objects

and

RFC

Server-specific

business

object

handlers,

you

must

make

sure

that

you

register

the

RFC

Server

Module

with

the

SAP

Gateway.

For

more

information,

see

“Registering

the

RFC

Server

Module

with

the

SAP

gateway”

on

page

189..

Background

information

Business

object

development

for

the

RFC

Server

Module

consists

of

creating

an

application-specific

business

object

definition

and

an

associated

RFC

Server-specific

business

object

handler

for

each

RFC-enabled

function

that

you

want

to

support.

Because

SAPODA

uses

the

SAP

application’s

native

definitions

as

a

template

when

generating

definitions

for

each

of

these,

it

is

recommended

that

you

use

SAPODA

to

generate

these

definitions.

Note:

SAP

supports

many

methods

that

can

be

mapped

to

the

standard

verbs

(Create,

Update,

Delete,

and

Retrieve)

that

the

connector

supports.

You

can

develop

business

objects

and

RFC

Server-specific

business

object

handlers

to

support

any

method

used

by

RFC-enabled

functions.

Business

object

naming

conventions

An

RFC-enabled

function

interface

consists

of

importing,

exporting,

and

table

parameters,

where:

v

Importing

parameters

are

passed

to

the

RFC-enabled

function

v

Exporting

parameters

are

returned

from

the

RFC-enabled

function

v

Table

parameters

are

passed

in

either

direction

Some

RFC-enabled

functions

may

not

have

all

of

the

types

of

parameters.

For

example,

an

RFC-enabled

function

may

have

importing

and

table

parameters

only.

©

Copyright

IBM

Corp.

2003,

2004

191

SAPODA

automatically

maps

the

RFC-enabled

function

importing,

exporting,

and

table

parameters

to

IBM

WebSphere

attributes

as

described

in

Table

39..

Table

39.

Naming

conventions:

WebSphere

Business

Objects

for

SAP

Business

object

Rfc-enabled

function

interface

Top-level

business

object

BOprefix_FunctionNameNote:

The

illustrations

in

this

chapter

use

SAP_

or

sap_

as

the

business

object

prefix.

You

can

specify

your

own

meaningful

prefix

when

you

create

your

business

object

definitions.

Attribute

Field

Description

or

Field

Name

Child

business

object

BOprefix_FunctionParameterName

SAPODA

guarantees

that

all

attribute

names

in

the

business

object

definition

are

unique.

If

an

RFC-enabled

function

has

multiple

parameters

with

the

same

field

description,

SAPODA

adds

a

counter

as

the

suffix

to

the

generated

attribute

name.

When

naming

an

attribute

from

a

RFC-enabled

function

parameter,

SAPODA

prepends

a

string

to

the

attribute

name

when

the

changed

attribute

name:

v

Begins

with

a

digit—prepends

A_

v

Begins

with

the

underscore

character

(_)—prepends

A

Important:

You

can

modify

the

attribute

names

at

any

time

after

you

generate

the

business

object

definition.

However,

when

you

modify

an

attribute

name,

do

not

modify

the

application-specific

information.

The

connector

uses

this

information

to

identify

the

RFC-enabled

function

parameter

to

which

the

attribute

corresponds.

For

more

information

on

the

application-specific

information,

see

“AppSpecificInfo

for

Attributes”

on

page

197.

Business

object

structure

The

connector

uses

an

RFC

Server-specific

business

object

handler

to

map

each

business

object

attribute

to

an

RFC-enabled

function’s

parameter.

The

connector,

each

business

object,

and

each

RFC

Server-specific

business

object

handler

are

metadata-driven.

The

application-specific

information

provided

in

the

metadata

of

each

business

object

and

business

object

handler

allows

you

to

add

connector

support

for

a

new

business

object

and

its

handler

without

modifying

connector

code.

Instead:

v

The

connector

uses

the

verb

application-specific

information

of

the

top-level

business

object

to

instantiate

the

appropriate

RFC

Server-specific

business

object

handler.

Important:

The

RFC

Server

Module

differs

from

other

modules

in

that

it

does

not

poll

SAP

for

events.

Instead,

SAP

pushes

event

data

to

the

connector.

Because

this

module

does

not

use

standard

polling

procedures,

the

RFC

Server-specific

business

object

handler

checks

every

business

object

that

represents

an

event

for

the

name

of

the

collaboration

that

will

process

it.

When

the

WebSphere

InterChange

Server

is

the

integration

broker,

the

RFC

Server-specific

business

object

handler

uses

the

value

obtained

to

instantiate

the

appropriate

collaboration.

v

The

business

object

handler

uses

the

attribute

application-specific

information

of

each

business

object

to

map

between

each

attribute

and

its

parameter.

192

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Each

RFC

Server-specific

business

object

handler

supports

both

single-

and

multiple-cardinality

relationships

between

business

objects.

A

WebSphere

business

object

based

on

an

RFC-enabled

function

can

contain

no

more

than

two

levels

of

hierarchy.

Therefore,

all

simple

parameters

correspond

to

attributes

of

the

top-level

business

object,

and

structure

and

table

parameters

correspond

to

child

business

objects.

Table

40.

Correspondence

between

RFC-enabled

functions

and

business

objects

RFC-enabled

function

interface

parameter

WebSphere

business

object

for

SAP

Simple

field

Attribute

of

the

top-level

business

object

Structure

Single-cardinality

child

business

object

Table

Multiple-cardinality

child

business

objects

Note:

Importing

and

exporting

parameters

can

be

simple

field

or

structure

parameters.

Figure

27

illustrates

the

association

between

a

WebSphere

business

object

and

an

RFC-enabled

function,

in

this

instance,

a

BAPI.

The

figure

illustrates

a

fragment

of

a

user-defined

sap_bapi_po_create

business

object,

which

corresponds

to

the

BAPI_PO_CREATE

BAPI.

Chapter

19.

Developing

business

objects

for

the

RFC

Server

Module

193

Supported

verbs

The

RFC

Server

Module

supports

the

standard

verbs

(Create,

Update,

Delete,

and

Retrieve)

used

by

the

WebSphere

business

integration

system.

For

each

supported

verb,

an

RFC-enabled

function

can

have

an

associated

method.

Most

RFC-enabled

functions

support

one

of

the

following

operations:

create,

retrieve,

update,

and

delete.

Business

object

attribute

properties

The

properties

of

the

attributes

of

a

top-level

business

object

differ

depending

on

whether

the

attribute

represents

a

simple

value,

or

a

child

or

an

array

of

child

business

objects.

PURCHASEORDER (simple field)

PO_HEADER (structure)

PO_ITEMS (table)

BAPI_PO_CREATE

[Attribute]
Name = Purchasing_document_number
AppSpecificInfo = :EPURCHASEORDER

Name = sap_po_header
Type = sap_po_header
Cardinality = 1

Name = sap_po_items
Type = sap_po_items
Cardinality = n

[Verb]
Name = Server
AppSpecificInfo = sap.bapi.server.

Bapi_po_create;Collab=POCollab

sap_bapi_po_create

Name = sap_po_header
AppSpecificInfo = IPO_HEADER:

sap_po_header

sap_po_items

Name = sap_po_items
AppSpecificInfo = IPO_ITEMS:EPO_ITEMS

SAP sales order BAPITop-level business object

Child business objects

Figure

27.

Mapping

between

a

business

object

and

a

BAPI

194

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

Table

41

lists

and

describes

the

properties

of

simple

attributes

of

a

top-level

business

object.

v

Table

42

lists

and

describes

the

attributes

that

represent

a

child

or

array

of

child

business

objects.

SAPODA

generates

the

attribute

properties

as

described

in

each

table.

Table

41.

Simple

attributes:

Top-Level

business

object

Property

name

Description

Name

Derived

from

the

description

or

name

of

the

RFC-enabled

function

parameter.

SAPODA

replaces

special

characters

(such

as

periods,

slashes,

and

spaces)

with

underscores.

Type

Specifies

the

type

of

data.

SAPODA

sets

the

value

to

String.

MaxLength

Specifies

the

field

length

of

the

RFC-enabled

function

parameter.

IsKey

Specifies

whether

the

attribute

is

the

key.

The

first

simple

attribute

of

a

business

object

defaults

to

the

key

attribute.

The

connector

does

not

support

using

an

attribute

that

represents

a

child

business

object

or

an

array

of

a

child

business

objects

as

a

key

attribute.

Therefore,

if

the

function

provides

only

structure

and

table

parameters,

you

must

insert

a

simple

attribute

as

the

first

attribute.

SAPODA

inserts

the

Dummy_key

attribute

as

the

first

attribute,

marks

it

as

the

key

attribute,

and

sets

appropriate

values.

Do

not

modify

those

values.

For

more

information,

see

“Supporting

BAPIs”

on

page

166.

IsForeignKey

SAPODA

sets

the

value

to

false.

IsRequired

Specifies

whether

an

attribute

must

contain

a

value.

SAPODA

sets

the

value

to

false.

AppSpecificInfo

Contains

the

name

of

the

RFC-enabled

function

that

corresponds

to

the

associated

attribute.

The

format

is:

IRFCFunctionParameterName:ERFCFunctionParameterName

For

more

information

on

the

application-specific

information,

see

“Business

object

application-specific

information”

on

page

196.

Default

Value

Specifies

the

value

to

assign

to

this

attribute

if

there

is

no

run-time

value.

SAPODA

does

not

set

a

value

for

this

property.

Table

42

lists

and

describes

the

attributes

that

represent

a

child

or

an

array

of

child

business

objects.

SAPODA

generates

the

properties

described

in

the

table

below.

Table

42.

Properties

of

an

attribute

that

represents

a

child

or

children

Property

Name

Description

Name

The

value

is

the

name

of

the

structure

or

table

parameter

name.

The

format

is:

BOprefix_FunctionParameterName

Type

The

value

is

the

type

of

child

business

object;

in

other

words,

the

type

is

BOprefix_FunctionParameterName

ContainedObjectVersion

SAPODA

sets

the

value

to

1.0.0.

Relationship

SAPODA

sets

the

value

to

containment.

IsKey

SAPODA

sets

the

value

to

false.

IsForeignKey

SAPODA

sets

the

value

to

false.

IsRequired

Specifies

whether

an

attribute

must

contain

a

value.

SAPODA

sets

the

value

to

false.

Chapter

19.

Developing

business

objects

for

the

RFC

Server

Module

195

Table

42.

Properties

of

an

attribute

that

represents

a

child

or

children

(continued)

Property

Name

Description

AppSpecificInfo

Contains

the

name

of

the

RFC-enabled

function

parameter

that

corresponds

to

the

associated

attribute.

The

format

is:

IFieldName:EFieldName

For

more

information

on

the

application-specific

information,

see

“Business

object

application-specific

information.”

Cardinality

Structure

parameters

have

single

cardinality

(1)

and

table

parameters

have

multiple

cardinality

(n).

Initializing

attribute

values

Every

field

in

SAP

has

an

initial

value,

as

listed

in

Table

43.

When

the

connector

receives

an

event,

the

RFC

Server-specific

business

object

handler

moves

these

values

from

each

SAP

field

to

its

corresponding

business

object

attribute.

The

business

object

handler

retains

initial

values

from

SAP

with

one

exception:

the

character

data

type.

The

business

object

handler

converts

a

space

in

the

SAP

field

to

CxIgnore

in

the

business

object

attribute.

If

you

want

any

other

value

to

be

converted

to

CxIgnore,

the

component

that

creates

the

business

object

must

perform

the

conversion.

For

example,

when

the

WebSphere

InterChange

Server

is

the

integration

broker,

modify

the

map

to

handle

this

conversion.

Table

43.

Initial

field

values

in

SAP

Data

type

Description

Initial

Value

Set

by

business

object

handler

C

Character

space

N

Numeric

string

000...

D

Date

(YYYMMDD)

00000000

T

Time

(HHMMSS)

000000

X

Byte

(hexadecimal)

X00

I

Integer

0

P

Packed

number

0

F

Floating

point

number

0.0

Business

object

application-specific

information

Application-specific

information

in

business

object

definitions

provides

the

RFC

Server

Module

with

application-dependent

instructions

on

how

to

process

business

objects.

These

instructions

are

specified

at

the

business-object

level,

at

the

attribute

level

(both

for

simple

attributes

and

for

attributes

that

represent

a

child

or

array

of

child

business

objects),

and

for

verbs.

AppSpecificInfo

for

the

server

verb

of

the

top-level

business

object

The

connector

uses

the

value

of

the

Server

verb’s

application-specific

information

in

the

top-level

business

object

to

call

the

appropriate

RFC

Server-specific

business

object

handler

and

to

determine

the

destination

collaboration

for

event

processing.

The

value

of

the

AppSpecificInfo

property

for

the

Server

verb

specifies:

v

the

package

and

classname

for

the

RFC

Server-specific

business

object

handler

v

the

destination

collaboration

The

format

is

as

follows:

196

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

AppSpecificInfo

=

bapi.server.BOHandler;Collab=CollaborationName

where

BOHandler

is

the

name

of

the

class

and

CollaborationName

is

the

name

of

the

destination

collaboration.

SAPODA

automatically

adds

the

application-specific

information

for

the

Server

verb

in

top-level

business

object.

For

the

value

of

the

business

object

handler’s

classname,

it

uses

the

name

of

the

RFC-enabled

function.

It

does

not

provide

a

value

for

the

collaboration

name

parameter.

Therefore,

you

must

manually

add

the

name

of

the

collaboration.

Note:

There

is

a

one-to-one

relationship

between

the

WebSphere

business

object

for

SAP

and

the

RFC

Server-specific

business

object

handler.

The

business

object

handler

class

files

must

exist

in

the

\connectors\SAP\bapi\server

directory.

Important:

You

must

include

the

value

server

before

the

business

object

handler

name

to

identify

that

the

RFC

Server-specific

business

object

handler

acts

as

a

server.

For

example

if

you

are

supporting

the

BAPI_PO_CREATE

RFC-enabled

function

and

the

destination

collaboration

is

called

POCollab,

then

the

verb

application-specific

information

is

as

follows:

AppSpecificInfo

=bapi.server.Bapi_po_create;Collab=POCollab

AppSpecificInfo

for

Attributes

The

connector

uses

the

value

of

an

attribute’s

application-specific

information

to

determine

which

importing,

exporting,

and

table

parameters

to

use.

The

value

of

this

property

contains

the

prefix

I

(for

importing

parameters)

or

E

(for

importing

parameters).

The

prefix

indicates

whether

the

attribute

value

is

used

to

pass

data

into

or

out

from

the

SAP

application.

Because

structure

parameters

can

be

either

importing

or

exporting,

they

use

either

an

I

or

an

E

before

the

parameter

value.

Because

table

parameters

can

pass

data

to

and

return

data

from

a

RFC-enabled

function,

they

can

have

both

I

and

E

parameter

values.

Important:

Always

use

a

colon

(:)

separator

when

you

specify

parameter

values

with

I

and

E.

If

specifying

only

an

importing

value,

the

colon

must

follow

the

value.

If

specifying

only

an

exporting

value,

the

colon

must

precede

the

value.

If

specifying

both

values,

the

colon

follows

the

importing

value

and

precedes

the

exporting

value.

Figure

28

illustrates

the

mapping

between

a

business

object

and

an

example

RFC-enabled

function

named

BAPI_EXAMPLE.

In

the

example,

the

simple

attributes

(Attribute_1,

Attribute_2,

and

Attribute_3)

specify

only

an

importing

or

exporting

parameter.

The

attribute

that

represents

a

child

business

object

(Child_1)

maps

to

an

exporting

structure

parameter.

The

attribute

that

represents

an

array

of

child

business

objects

(Child_2)

maps

to

a

table

parameter.

Each

child

business

object

has

a

simple

attribute

that

maps

to

a

field

of

the

corresponding

structure

or

table

(Attribute_11

and

Attribute_14,

respectively).

You

can

find

these

fields

by

looking

at

the

details

of

the

BAPI.

Chapter

19.

Developing

business

objects

for

the

RFC

Server

Module

197

Table

44

identifies

the

format

of

the

application-specific

information

for

specific

kinds

of

attributes.

Table

44.

AppSpecificInfo

format

for

specific

kinds

of

attributes

AppSpecificInfo

format

Attribute

type

IParameterName:EParameterName

Simple

ITableName:ETableName

Represents

a

child

business

object

mapped

to

a

table

parameter

IStructureName:EStructureName

Represents

a

child

business

object

mapped

to

a

structure

parameter

IFieldName:EFieldName

Represents

an

attribute

of

a

child

business

object

mapped

to

a

field

in

a

table

or

structure

parameter

[BusinessObjectDefinition]
Name = Top_Level_BusObj
AppSpecificInfo =

[Attribute]

Name = Attribute_2

AppSpecificInfo = IField_1:

AppSpecificInfo = :EField_2

AppSpecificInfo = IField_3:

Name =Child_1
Type =Child_1
Cardinality = 1
AppSpecificInfo = :EReturn

Name = Child_2
Type =Child_2
Cardinality = n
AppSpecificInfo = ITable_7:ETable_7

Top_Level_BusObj

IBM WebSphere BAPI business object

Child_2 (1)

[BusinessObjectDefinition]
Name = Child_1
AppSpecificInfo = :EReturn

Name = Attribute_11

FUNCTION BAPI_EXAMPLE.
*"---
""

*" IMPORTING
*" Field_1 ...
*" Field_3 ...
*" EXPORTING
*" Field_2 ...
*" Return ...
*" TABLES
*" Table_7 ...

ENDFUNCTION.

Child_1

[BusinessObjectDefinition]
Name = Child_2

AppSpecificInfo = IField_14:EField_14

Child_2

Name = Attribute_1

Name = Attribute_2

Name = Attribute_3

AppSpecificInfo = ITable_11:ETable_11

[Attribute]

AppSpecificInfo = ITable_7:ETable_7

[Attribute]
Name = Attribute_14

Figure

28.

Mapping

between

a

business

object

and

an

example

BAPI

198

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

SAPODA

automatically

generates

the

appropriate

application-specific

information

for

your

business

object

definition.

It

is

recommended

that

you

do

not

change

the

parameter

names

of

the

generated

application-specific

information.

Using

generated

business

objects

and

business

object

handlers

Use

SAPODA

to

generate

RFC-enabled

function-specific

business

object

definitions

and

RFC

Server-specific

business

object

handlers

for

each

RFC-enabled

function

you

want

to

support.

You

can

use

the

generated

files

with

minimal

modifications.

The

only

edit

you

must

make

is

specifying

the

name

of

the

destination

collaboration

in

the

verb

application-specific

information

of

the

Server

verb.

v

When

the

WebSphere

InterChange

Server

is

the

integration

broker,

this

information

is

required

because

a

collaboration

cannot

explicitly

subscribe

to

an

event

that

is

pushed

to

the

connector.

Therefore,

the

RFC

Server-specific

business

object

handler

must

determine

the

appropriate

destination

collaboration

from

the

business

object’s

metadata,

and

then

instantiate

the

collaboration.

Important:

If

the

RFC-enabled

function

that

you

are

using

does

not

contain

a

simple

field

attribute,

and

SAPODA

has

created

a

Dummy_key

attribute

as

the

key

attribute,

do

not

modify

the

values

of

this

attribute.

After

the

business

object

definition

and

its

corresponding

RFC

Server-specific

business

object

handler

are

generated,

you

must

add

the

business

object

definition

to

your

WebSphere

business

integration

system’s

runtime

environment.

v

Use

Business

Object

Designer

to

load

the

business

object

definition

into

your

repository.

Note:

Alternatively,

if

the

WebSphere

InterChange

Server

is

the

integration

broker,

you

can

use

the

repos_copy

command

to

load

the

definition

into

the

repository.

v

Use

a

system

command

to

copy

the

RFC

Server-specific

business

object

handler

files

to

the

following

directory

under

the

product

directory:

\connectors\SAP\bapi\server

The

RFC

Server-specific

business

object

handler

files

are:

v

RFC-EnabledFunctionName.java

v

RFC-EnabledFunctionName.class

For

example,

given

the

BAPI_PO_CREATE

RFC-enabled

function

and

a

user-specified

prefix

of

sap_,

SAPODA

generates

the

following:

v

sap_bapi_po_create

(business

object

definition

that

includes

all

child

business

objects)

v

Bapi_po_create.java

v

Bapi_po_create.class

Important:

You

can

modify

the

name

of

the

generated

business

object

as

well

as

the

name

of

its

child

business

objects.

To

do

so,

you

must

edit

the

definition

as

a

text

file

rather

than

in

Business

Object

Designer.

If

you

do

change

a

business

object’s

name,

ensure

that

you

also

modify

all

references

to

the

names

that

you

change.

Also,

if

you

modify

the

names

of

the

generated.class

file

for

the

business

object

handler,

you

Chapter

19.

Developing

business

objects

for

the

RFC

Server

Module

199

must

maintain

the

changes

for

the

Server

verb

application-specific

information

for

the

associated

business

object.

Note:

For

RFC-enabled

ABAP

functions

and

BAPIs

that

are

developed

in

a

development

namespace,

SAPODA

removes

or

replaces

″/″

characters

in

the

function

name

with

″_″

when

naming

the

business

object

definition,

.java,

and

.class

files.

SAPODA

removes

the

″/″

character

only

when

it

is

the

first

character

of

the

name.

Although

the

definition

name

or

file

name

does

not

contain

this

character,

the

code

still

accurately

calls

the

specified

function

with

its

proper

name

containing

the

″/″

characters.

Also,

when

a

function

name

begins

with

a

digit,

SAPODA

prepends

the

name

with

the

string

Rfm_.

Tips

and

tricks

The

following

are

tips

and

tricks

for

developing

business

objects

and

RFC

Server-specific

business

object

handlers.

v

“Multiple

business

objects

contain

the

same

return

business

object”

v

“Generated

business

object

definition

contains

unnecessary

attributes

and

child

business

objects”

on

page

201

v

“Generated

business

object

names

are

too

long

or

fail

your

naming

conventions”

on

page

201

v

“Generated

AppSpecificInfo

for

table

parameters

specify

unnecessary

parameters”

on

page

201

Multiple

business

objects

contain

the

same

return

business

object

Most

RFC-enabled

functions

use

the

same

name

for

the

return

object.

When

SAPODA

generates

a

business

object

definition,

it

creates

a

child

business

object

to

represent

this

return

object.

If

multiple

business

object

definitions

contain

an

identically

named

child

business

object,

you

can

add

the

definition

for

child

business

object

into

the

repository

only

once.

To

enable

multiple

business

objects

to

contain

the

return

business

object,

you

must

modify

the

name

of

the

return

business

object

to

be

unique

for

each

business

object.

To

rename

the

return

business

object,

modify

the

definition

of

each

business

object

definition

that

contains

it.

The

definition

of

the

child

business

object

is

contained

in

the

same

definition

file

as

its

parent.

To

rename

the

child,

do

the

following:

1.

Open

the

definition

file

for

the

top-level

business

object

in

a

text

editor.

2.

Locate

the

definition

of

the

BOprefix_return

child

business

object.

3.

Change

the

child’s

name

to

be

unique.

For

example,

append

a

number

to

the

text

(sap_return_2).

4.

Change

all

references

in

the

definition

to

refer

to

the

newly

named

child.

For

example,

change

the

value

of

the

Type

property

for

every

attribute

that

represents

the

child

business

object.

5.

Save

the

changed

definition

file.

6.

Use

Business

Object

Designer

to

load

the

newly

named

child

business

object

into

the

repository.

200

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Note:

Alternatively,

if

the

WebSphere

InterChange

Server

is

the

integration

broker,

you

can

use

the

repos_copy

command

to

load

the

definition

into

the

repository.

Generated

business

object

definition

contains

unnecessary

attributes

and

child

business

objects

SAPODA

interprets

all

RFC-enabled

function

interface

parameters

and,

for

each

one,

it

creates

a

corresponding

WebSphere

business

object

attribute

or

child

business

object.

To

increase

performance

of

business

object

processing,

remove

all

unneeded

attributes

and

business

objects

from

the

business

object

definition.

Note:

SAPODA

facilitates

graphically

removing

all

optional

attributes

and

child

business

objects

before

definition

generation.

For

more

information,

see

“Provide

additional

information”

on

page

303.

To

increase

performance

of

business

object

processing,

you

can

also

remove

all

unneeded

importing

and

exporting

table

parameter

values

from

the

application-specific

information.

After

definition

generation,

you

can

use

Business

Object

Designer

to

manually

edit

the

business

object

definition

if

you

require

other

changes.

However,

be

careful

that

you

remove

only

attributes

that

you

absolutely

will

not

be

using.

Generated

business

object

names

are

too

long

or

fail

your

naming

conventions

SAPODA

uses

the

name

of

the

RFC-enabled

function

module

to

name

the

generated

business

object.

You

can

use

a

text

editor

to

modify

a

business

object’s

name.

Important:

If

you

do

change

the

name,

ensure

that

you

modify

all

references

to

the

name

as

well.

However,

do

not

modify

the

parameter

names

of

the

generated

application-specific

information.

To

change

a

generated

business

object’s

name:

1.

Save

the

definition

to

a

file.

2.

Use

a

text

editor

to

shorten

or

change

the

name.

3.

Use

Business

Object

Designer

to

copy

the

newly

named

child

business

object

into

the

repository.

Note:

Alternatively,

if

the

WebSphere

InterChange

Server

is

the

integration

broker,

you

can

use

the

repos_copy

command

to

load

the

definition

into

the

repository.

Generated

AppSpecificInfo

for

table

parameters

specify

unnecessary

parameters

Table

parameters

can

be

both

importing

and

exporting

parameters.

If

you

do

not

require

importing

or

exporting

of

values

for

a

table

parameter,

you

can

remove

it

from

the

application-specific

information.

For

example,

for

a

create

operation,

if

you

do

not

need

to

return

the

table

data

from

the

SAP

application

after

the

create

operation

has

completed,

you

can

remove

the

exporting

parameter

value

(such

as

Etable

name).

Chapter

19.

Developing

business

objects

for

the

RFC

Server

Module

201

For

a

retrieve

operation,

you

do

not

need

to

specify

any

importing

table

parameters.

Therefore,

you

can

remove

the

importing

parameter

value

(such

as

Itable

name).

Note:

You

must

remove

the

unrequired

value

from

the

AppSpecificInfo

of

the

attribute

in

the

parent

that

represents

the

child

as

well

as

from

the

AppSpecificInfo

at

the

business-object

level

of

the

child

business

object.

Do

not

remove

the

colon

(:).

For

example,

to

remove

the

ETable_7

exporting

parameter

in

Figure

28,

you

would

do

the

following:

1.

In

the

Child_2

attribute

of

the

Top_Level_BusObj

business

object,

change

the

attribute’s

AppSpecificInfo

value

to:

ITable_7:

2.

In

the

AppSpecificInfo

at

the

business-object

level

of

the

Child_2

business

object,

change

the

value

to:

ITable_7:

3.

In

the

AppSpecificInfo

for

each

attribute

of

the

child

business

object,

using

Attribute_14

as

an

example,

change

the

value

to:

IField_14:

202

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Part

6.

Hierarchical

Dynamic

Retrieve

module

©

Copyright

IBM

Corp.

2003,

2004

203

204

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

20.

Overview

of

the

Hierarchical

Dynamic

Retrieve

Module

This

chapter

describes

the

Hierarchical

Dynamic

Retrieve

moduleIBM

WebSphere

Business

Integration

Adapter

for

mySAP.com.

The

Hierarchical

Dynamic

Retrieve

Module

processes

hierarchical

or

flat

business

objects.

To

process

these

requests,

the

connector

retrieves

data

from

the

SAP

R/3

application

version

3.x.

This

chapter

contains

the

following

sections:

v

“Hierarchical

Dynamic

Retrieve

Module

components”

v

“How

the

connector

works”

on

page

206

Hierarchical

Dynamic

Retrieve

Module

components

The

Hierarchical

Dynamic

Retrieve

Module

is

written

in

Java

and

extends

the

vision

connector

framework.

Because

the

module

does

not

have

its

own

application-specific

component,

it

uses

the

application-specific

component

for

BAPI.

Therefore,

the

module

consists

of

the

connector

framework,

the

application-specific

component

for

BAPI,

the

DynRetBOH

business

object

handler,

and

the

SAP

RFC

libraries.

SAP

delivers

the

RFC

libraries

in

Java

and

C.

The

connector

is

delivered

and

runs

as

a

Java

archive

(JAR)

file.

Figure

29

on

page

206

illustrates

the

architecture

of

the

Hierarchical

Dynamic

Retrieve

Module.

©

Copyright

IBM

Corp.

2003,

2004

205

How

the

connector

works

The

connector

gets

a

business

object’s

processing

information

from

metadata

specified

in

the

business

object

rather

than

from

information

hard-coded

into

the

connector.

To

obtain

processing

information

from

the

business

object,

the

connector

makes

assumptions

about

the

following:

v

The

business

object

structure

v

The

relationships

between

parent

and

child

business

objects

v

The

possible

database

representations

of

business

objects

For

information,

see

“Processing

business

objects”

on

page

6,

and

Chapter

22,

“Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module,”

on

page

211.

When

the

connector

receives

a

request

from

the

integration

broker

to

perform

an

application

operation,

it

obtains

processing

information

from

the

verb

specified

for

the

top-level

business

object.

The

connector

processes

hierarchical

business

objects

recursively;

that

is,

it

performs

the

same

steps

for

each

child

business

object

until

it

has

processed

all

individual

business

objects.

Note:

The

term

hierarchical

business

object

refers

to

a

complete

business

object,

including

all

the

child

business

objects

that

it

contains

at

any

level.

The

term

individual

business

object

refers

to

a

single

business

object,

independent

of

WebSphere Business
InterChange Server

SAP R/3

Vision connector framework

SAP gateway

terminate()init()

Hierarchical dynamic
retrieve BO handler

DoVerbFor()

SAP R/3 system

SAP RFC library

RFC_READ_TABLE

Connector framework and
BAPI connector component

Figure

29.

Hierarchical

Dynamic

Retrieve

Module

architecture

206

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

any

child

business

objects

it

might

contain

or

that

contain

it.

The

term

top-level

business

object

refers

to

the

individual

business

object

at

the

top

of

the

hierarchy

that

does

not

itself

have

a

parent

business

object.

When

the

integration

broker

sends

a

hierarchical

business

object

with

a

Retrieve

verb,

the

connector

attempts

to

return

a

business

object

to

the

integration

broker

that

exactly

matches

the

current

database

representation

of

that

business

object.

In

other

words,

the

value

of

each

simple

attribute

of

every

individual

business

object

that

the

connector

returns

matches

the

value

of

its

corresponding

field

in

the

database.

Also,

the

number

of

individual

business

objects

in

each

array

of

the

returned

business

object

match

the

number

of

children

in

the

database

for

that

array

(unless

the

application-specific

information

limits

the

children

to

a

subset).

To

perform

such

a

retrieval,

the

connector

uses

the

primary

key

values

in

the

top-level

business

object

to

recursively

descend

through

the

corresponding

data

in

the

database.

Chapter

20.

Overview

of

the

Hierarchical

Dynamic

Retrieve

Module

207

208

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

21.

Configuring

the

Hierarchical

Dynamic

Retrieve

Module

This

chapter

describes

the

configuration

of

the

Hierarchical

Dynamic

Retrieve

Module

of

the

Adapter

Guide

for

mySAP.com

(R/3

V.3.x).

The

SAP

connector

should

be

installed

before

performing

the

configuration

tasks

described

in

this

chapter.

For

more

information

on

installing

the

connector,

see

Chapter

2,

“Installing

and

configuring

the

connector,”

on

page

11.

This

chapter

contains

the

following

sections:

v

“Hierarchical

Dynamic

Retrieve

Module

directories

and

files”

v

“Hierarchical

Dynamic

Retrieve

Module

configuration

properties”

Hierarchical

Dynamic

Retrieve

Module

directories

and

files

Table

45

lists

the

directories

and

files

used

by

the

Hierarchical

Dynamic

Retrieve

Module.

Table

45.

Hierarchical

Dynamic

Retrieve

Module

directories

and

files

Filename

Description

CWSAP.jar

Connector

class

file

Note:

In

this

document

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

(\).

All

file

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

Hierarchical

Dynamic

Retrieve

Module

configuration

properties

Before

you

can

run

the

Hierarchical

Dynamic

Retrieve

Module,

you

must

set

the

standard

and

connector-specific

configuration

properties.

At

a

minimum,

you

must

add

the

class

name

for

the

BAPI

Module

to

the

module’s

property.

The

classname

is

sap.bapimodule.VBapiAgent.

For

more

information

on

configuring

the

connector

configuration

properties,

see

“Configuring

the

connector”

on

page

17

and

Appendix

B,

“Standard

configuration

properties

for

connectors,”

on

page

241.

©

Copyright

IBM

Corp.

2003,

2004

209

210

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Chapter

22.

Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

This

chapter

describes

how

the

Hierarchical

Dynamic

Retrieve

Module

processes

business

objects

and

describes

the

assumptions

the

connector

makes

when

retrieving

data.

You

can

use

this

information

as

a

guide

to

modifying

existing

business

objects

or

as

suggestions

for

implementing

new

ones.

In

addition

to

providing

background

information

on

business

objects

and

their

processing,

the

chapter

describes

how

to

develop

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

using:

v

SAPODA

(an

Object

Discovery

Agent)—

generates

business

object

definitions

from

tables

you

specify

graphically.

This

utility

is

most

useful

for

creating

individual

business

object

definitions

rather

than

hierarchical

business

object

definitions.

v

Advanced

Outbound

Wizard—records

and

interprets

your

actions

as

you

step

through

an

SAP

display

transaction.

As

it

generates

the

business

object

definition,

it

automatically

defines

the

relationships

between

parent

and

child

business

objects.

For

a

description

of

the

Hierarchical

Dynamic

Retrieve

Module,

see

Chapter

20,

“Overview

of

the

Hierarchical

Dynamic

Retrieve

Module,”

on

page

205.

This

chapter

contains

the

following

sections:

v

“Business

object

development

utilities”

v

“Business

object

names”

on

page

212

v

“Business

object

structure”

on

page

212

v

“Business

object

attribute

properties”

on

page

219

v

“Business

object

application-specific

information”

on

page

221

v

“Generating

business

objects”

on

page

223

Business

object

development

utilities

Business

object

development

for

the

Hierarchical

Dynamic

Retrieve

Module

requires

you

to

create

an

application-specific

business

object

definition

for

each

type

of

object

you

want

the

connector

to

handle.

The

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

4.x)

includes

the

following:

v

The

vDynRetBOH

business

object

handler,

which

the

connector

uses

to

retrieve

data

from

the

application

v

SAPODA

v

Advanced

Outbound

Wizard

Although

you

can

use

Business

Object

Designer

or

a

text

editor

to

create

business

object

definitions

for

the

connector,

it

is

recommended

that

you

initially

use

SAPODA

or

Advanced

Outbound

Wizard,

because

they

use

the

SAP

application’s

native

definitions

as

a

template.

For

more

information

on

using

Advanced

Outbound

Wizard,

see

“Generating

business

objects:

Advanced

Outbound

Wizard”

on

page

225.

©

Copyright

IBM

Corp.

2003,

2004

211

Business

object

names

SAPODA

and

Advanced

Outbound

Wizard

guarantee

that

all

attribute

names

in

the

business

object

definition

are

unique.

They

derive

the

names

from

SAP’s

data

dictionary

by

appending

the

field’s

name

and

description.

When

naming

an

attribute

from

an

SAP

table,

SAPODA

prepends

a

string

to

the

attribute

name

when

the

changed

attribute

name:

v

Begins

with

a

digit—prepends

A_

v

Begins

with

the

underscore

character

(_)—prepends

A

Attention:

The

attribute

names

can

be

modified

at

any

time

after

the

business

object

has

been

generated.

Changing

the

business

object’s

name

or

attribute

names

does

not

affect

the

processing

of

the

business

object.

However,

changing

the

application-specific

information

does

affect

the

processing

of

the

business

object,

because

the

application-specific

information

identifies

the

SAP

table

and

column

to

which

the

attribute

corresponds.

For

more

information

on

the

application-specific

information,

see

“Business

object

application-specific

information”

on

page

221.

For

information

on

using

the

wizard,

see

“Generating

business

objects:

Advanced

Outbound

Wizard”

on

page

225.

Business

object

structure

The

connector

assumes

that

every

individual

business

object

is

represented

by

one

or

more

database

tables,

and

that

each

simple

attribute

(that

is,

an

attribute

that

represents

a

single

value,

such

as

a

String

or

Integer

or

Date)

within

the

business

object

is

represented

by

a

column

in

one

of

those

tables.

The

following

situations

are

valid:

v

The

database

tables

might

have

more

columns

than

the

corresponding

individual

business

object

has

simple

attributes

(that

is,

some

columns

in

the

database

are

not

represented

in

the

business

object).

Include

in

your

design

only

those

columns

needed

for

the

business

object

processing

v

The

individual

business

object

might

have

more

simple

attributes

than

the

corresponding

database

tables

have

columns

(that

is,

some

attributes

in

the

business

object

are

not

represented

in

the

database).

The

attributes

that

do

not

have

a

representation

in

the

database

have

no

application-specific

information

v

Due

to

a

restriction

in

the

SAP

API,

the

total

number

of

bytes

for

all

of

the

desired

columns

in

each

table

represented

by

a

single

a

business

object

cannot

exceed

512

For

more

information,

see

“Handling

long

data

rows”

on

page

216

v

Due

to

restrictions

in

the

SAP

API,

runtime

HDR

modules

may

not

be

able

to

parse

some

of

the

non-character

based

datatypes.

Please

refer

to

“Troubleshooting

the

Hierarchical

Dynamic

Retrieve

Module”

on

page

287

WebSphere

business

objects

for

SAP

can

be

flat

or

hierarchical.

All

the

attributes

of

a

flat

business

object

are

simple

and

represent

a

single

value.

A

hierarchical

business

object

has

attributes

that

represent

a

single

child

business

object,

an

array

of

child

business

objects,

or

a

combination

of

both.

In

turn,

each

child

business

object

can

contain

a

single

child

business

object

or

an

array

of

business

objects,

and

so

on.

212

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Business

object

relationships

The

Cardinality

property

of

the

attribute

that

represents

the

child

or

array

determines

the

type

of

relationship

between

parent

and

child:

v

A

single-cardinality

relationship

occurs

when

the

attribute

in

the

parent

business

object

represents

a

child

business

object

with

cardinality

1.

v

A

multiple-cardinality

relationship

occurs

when

an

attribute

in

the

parent

business

object

represents

an

array

of

child

business

objects

with

cardinality

n.

The

connector

does

not

process

a

single-cardinality

relationship

differently

from

a

multiple-cardinality

relationship.

However,

there

is

a

structural

difference

in

foreign-key

relationships

when

database

tables

have

single-cardinality

or

multiple-cardinality

relationships.

This

difference

is

important

when

Advanced

Outbound

Wizard

generates

a

business

object

definition

from

an

SAP

Display

Transaction:

v

In

a

single-cardinality

relationship,

the

foreign

key

is

determined

by

the

primary

key

in

the

child

referencing

a

non-

key

attribute

in

the

parent

as

its

foreign

key.

Each

child

has

at

least

one

simple

attribute

that

references

a

non-primary

key

attribute

in

its

parent

as

a

foreign

key.

Figure

30

on

page

214

provides

an

example.

v

In

a

multiple-cardinality

relationship,

the

foreign

key

is

determined

by

the

primary

key

in

the

child

referencing

the

primary

key

attribute

in

the

parent.

Each

child

has

at

least

one

simple

attribute

that

contains

the

parent’s

primary

key

as

a

foreign

key.

The

child

has

as

many

foreign-key

attributes

as

the

parent

has

primary-key

attributes.

Figure

32

on

page

215

provides

an

example.

In

each

case,

the

foreign-key

relationship

between

the

parent

and

child

business

objects

is

specified

by

the

application-specific

information

of

the

key

attributes

of

the

child

business

object.

For

more

information,

see

“Business

object

attribute

properties”

on

page

219

and

“Application-Specific

information

for

simple

attributes”

on

page

221.

For

information

on

how

Advanced

Outbound

Wizard

handles

these

two

cases,

see

“How

does

the

wizard

create

relationships

between

tables?”

on

page

226.

Single-cardinality

relationship

example

Figure

30

on

page

214

provides

an

example

of

a

simple

WebSphere

business

object

developed

to

process

customer

objects

in

SAP.

This

example

SAP_Customer

has

a

single-cardinality

relationship

to

the

example

address

object

that

it

contains

(the

addr_data[1]

attribute

has

cardinality

1).

The

primary

key

attribute

(address_id)

in

the

child

business

object

references

a

non-primary

key

(address_id)

in

the

parent

business

object.

Chapter

22.

Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

213

The

following

SELECT

statements

and

their

output

illustrate

retrieval

of

data

from

the

tables

represented

by

the

business

objects

above:

SELECT

*

FROM

KNA1

KUNNR

NAME1

ADRNR

10254

JOE’S

PIZZA

2208

10255

LARRY’S

HARDWARE

2209

SELECT

*

FROM

ADRC

ADDRNUMBER

CITY1

REGION

2208

BURLINGAME

CA

2209

SAN

FRANCISCO

CA

In

the

example

above,

each

customer

(Joe’s

Pizza

and

Larry’s

Hardware)

has

a

single

address.

If

the

KUNNR

and

ADDRNUMBER

columns

are

defined

as

primary

key

constraints

for

their

respective

tables,

the

above

structure

ensures

that

each

customer

can

have

only

one

associated

address.

Note:

For

the

sake

of

simplicity,

the

illustrations

in

this

document

do

not

display

the

application-specific

information

used

by

the

connector

to

determine

the

tables

and

fields

in

the

SAP

application’s

database.

Multiple-cardinality

relationship

example

Figure

31

on

page

215

illustrates

a

multiple-cardinality

relationship.

In

the

example,

ID=ABC

is

the

simple

attribute

with

the

parent’s

primary

key,

and

child[n]

is

the

attribute

that

represents

the

array

of

child

business

objects.

SAP_Customer

customer_id

Retrieve

address_id SAP_Address

Retrieve

address_id

.

.

.
customer_name

..

addr_data[1]

city
state

Figure

30.

Example

customer

and

address

relationship

214

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Figure

32

provides

an

example

of

a

different

WebSphere

business

object

developed

to

process

customer

objects

in

SAP.

This

example

SAP_Customer

has

a

multiple-cardinality

relationship

to

the

example

sales

view

object

that

it

contains

(the

sales_view_data[n]

attribute

has

cardinality

n).

The

primary

key

attribute

(customer_id)

in

the

child

business

object

references

the

primary

key

(customer_id)

in

the

parent

business

object.

The

following

SELECT

statements

and

their

output

illustrate

retrieval

of

data

from

each

of

these

tables:

SELECT

*

FROM

KNA1

KUNNR

NAME1

10254

JOE’S

PIZZA

10255

LARRY’S

HARDWARE

SELECT

*

FROM

KNVV

KUNNR

VKORG

VTWEG

SPART

10254

EURP

01

12

10255

EURP

01

09

10255

USA

01

13

10255

USA

01

14

Verb

Verb

ID
..

ParentBOName

ID=ABC

Verb

..

child[n]

ID
..

ChildBOName

Verb

ID
..

..

OName

OName

Figure

31.

Multiple-cardinality

business

object

relationship

SAP_Customer

customer_id

Retrieve

SAP_SalesView

Retrieve

customer_id

.

.

.
customer_name

..

sales_view_data[n]

sales_org
disti_channel

..

Figure

32.

Example

customer

and

sales

view

relationship

Chapter

22.

Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

215

In

this

example,

Joe’s

Pizza

has

one

associated

sales

view

record,

whereas

Larry’s

Hardware

has

three

associated

sales

view

records.

The

above

structure

allows

each

customer

to

have

zero

or

more

associated

sales

view

records.

Handling

long

data

rows

SAP’s

RFC_READ_TABLE

function

limits

data

retrieval

to

512

bytes

per

row

of

data.

Many

SAP

tables

have

more

than

512

bytes

of

data

per

row.

However,

most

business

objects

represent

a

small

subset

of

all

the

database

fields.

Therefore,

the

total

length

of

all

attributes

in

a

business

object

rarely

exceeds

the

512

byte

maximum.

In

those

cases

that

require

the

connector

to

retrieve

more

than

512

bytes

of

data

from

a

single

database

table,

the

additional

fields

must

be

represented

in

separate

single-cardinality

child

business

objects.

For

example,

if

a

business

object

must

represent

1500

bytes

of

data

from

a

single

table,

the

top-level

business

object

contains

at

least

two

single-cardinality

child

business

objects.

Neither

the

parent

nor

either

child

has

attributes

whose

total

length

(that

is,

the

sum

of

their

maximum

length)

exceeds

512

bytes.

Note:

If

a

business

object

represents

more

than

one

database

table,

the

total

length

of

the

values

in

the

attributes

that

represent

each

table

cannot

exceed

512

bytes.

However,

this

limit

does

not

pertain

to

the

total

length

of

the

values

of

all

attributes.

For

example,

if

a

business

object

represents

data

from

the

tables

that

store

information

about

Customers

and

CustomerPartners,

the

value

of

those

attributes

representing

Customers

cannot

exceed

512

bytes,

and

the

value

of

those

attributes

representing

CustomerPartners

cannot

exceed

512

bytes,

but

the

combined

value

of

these

attributes

can

exceed

512

bytes.

Important:

When

you

use

Advanced

Outbound

Wizard

to

create

business

object

definitions,

and

it

encounters

an

object

that

represents

more

than

512

bytes

of

data

from

a

single

table,

it

stops

adding

attributes

to

the

child

business

object

when

the

length

exceeds

512

bytes.

If

your

business

processing

requires

a

business

object

to

represent

more

than

512

bytes

of

data

from

a

single

table,

you

must

manually

create

the

additional

child

business

objects.

Business

object

verb

processing

This

section

outlines

the

steps

the

connector

takes

to

handle

a

business

object

request

with

the

Retrieve

verb.

The

connector

processes

hierarchical

business

objects

recursively;

that

is,

it

performs

the

same

steps

for

each

child

business

object

until

it

has

processed

all

individual

business

objects.

Business

object

comparison

When

processing

a

retrieval

request

from

the

integration

broker,

the

connector

tries

to

return

a

business

object

that

matches

the

current

database

representation

of

that

object.

In

other

words:

v

The

value

of

each

simple

attribute

in

all

individual

business

objects

returned

to

the

integration

broker

matches

the

value

of

its

corresponding

field

in

the

database.

v

The

number

of

individual

business

objects

in

each

array

of

the

returned

business

object

matches

the

corresponding

number

of

children

in

the

database.

Therefore,

when

the

Hierarchical

Dynamic

Retrieve

Module

receives

a

business

object

request

with

the

Retrieve

verb,

it

creates

a

response

business

object

by

216

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

recursively

descending

the

entire

object

in

the

application

and

retrieving

the

current

database

representation.

To

perform

the

retrieval,

the

connector

uses

the

specified

key

values

in

the

top-level

request

business

object.

Therefore,

the

response

business

object,

which

contains

all

the

children

of

that

top-level

parent,

may

have

different

values

for

simple

attributes

and

different

child

business

objects

from

the

request

business

object.

For

example,

assume

the

integration

broker

passed

the

following

SAP_Customer

business

object

to

the

Hierarchical

Dynamic

Retrieve

Module:

SAP_Customer

customer_id=2345

Retrieve

sales_view_data[n]

address_id
address_data[1]

SAP_Address

SAP_SalesView

customer_id=2345
sales_org=A

SAP_SalesView

customer_id=2345
sales_org=B

SAP_SalesView

customer_id=2345
sales_org=C

If,

in

the

current

database

representation,

the

array

of

SAP_SalesView

child

business

objects

contained

by

SAP_Customer

2345

does

not

include

sales_org

A,

the

connector’s

response

business

object

does

not

contain

that

child.

Moreover,

if

the

current

database

representation

of

SAP_Customer

2345

includes

sales_org

D

and

sales_org

E,

the

connector

includes

those

children

in

the

response

business

object.

The

business

object

that

the

SAP

Hierarchical

Dynamic

Retrieve

Module

Chapter

22.

Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

217

returns

to

the

integration

broker

at

the

end

of

retrieval

is:

SAP_Customer

customer_id=2345

Retrieve

sales_view_data[n]

address_id
address_data[1]

SAP_Address

SAP_SalesView

customer_id=2345
sales_org=B

SAP_SalesView

customer_id=2345
sales_org=C

SAP_SalesView

customer_id=2345
sales_org=D

SAP_SalesView

customer_id=2345
sales_org=E

Note:

If

the

connector

reads

from

multiple

tables

when

creating

a

particular

response

business

object,

the

business

object

does

not

match

a

single

database

object.

Instead,

it

matches

selected

fields

from

the

specified

tables.

Retrieve

Operation

When

retrieving

a

business

object,

the

connector

returns

a

status

of

either

VALCHANGE

if

the

operation

was

successful

(regardless

of

whether

the

operation

caused

changes

to

the

business

object),

or

FAIL

if

the

operation

failed.

The

connector

performs

the

following

steps

when

retrieving

a

hierarchical

business

object:

1.

Removes

all

child

business

objects

from

the

top-level

business

object

that

it

received

from

the

integration

broker.

2.

Calls

the

RFC_READ_TABLE

function

to

retrieve

the

top-level

business

object

from

the

database.

The

connector

uses

key

values

in

the

request

business

object

to

build

the

SELECT

statement’s

WHERE

clause.

The

result

of

the

retrieval

causes

one

of

the

following

actions:

v

If

the

SELECT

statement

returns

one

record,

the

connector

continues

processing

the

children

and

returns

VALCHANGE

(regardless

of

whether

any

attribute

changed

value).

v

If

the

SELECT

statement

returns

no

records,

indicating

that

the

top-level

business

object

does

not

exist

in

the

database,

the

connector

returns

BO_DOES_NOT_EXIST.

v

If

the

SELECT

statement

returns

more

than

one

record,

the

connector

continues

processing

the

children

and

returns

VALCHANGE.
3.

Recursively

retrieves

all

child

business

objects

(single-cardinality

and

multiple-cardinality).

218

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

connector

calls

the

RFC_READ_TABLE

function,

which

uses

the

appropriate

foreign-key

values

to

build

the

SELECT

statement’s

WHERE

clause.

The

connector

handles

attributes

marked

as

required

in

the

following

way:

v

If

the

business

object‘s

definition

specifies

that

the

child

is

required,

the

retrieval

must

return

a

record.

If

not,

the

connector

returns

FAIL.

v

If

the

child

is

not

required

and

the

retrieval

returns

no

records,

indicating

that

the

child

does

not

exist

in

the

application,

the

connector

leaves

the

parent’s

attribute

empty.

For

each

record

returned,

the

connector

performs

the

following

actions:

a.

Creates

a

new

individual

business

object

of

the

correct

type.

b.

Sets

all

of

the

current

business

object’s

attributes

based

on

the

values

in

the

returned

row.

c.

Recursively

retrieves

all

of

the

current

business

object’s

children.

Attention:

If

the

retrieval

of

a

single-cardinality

child

returns

more

than

one

record,

the

connector

returns

only

the

first

record.

d.

Inserts

the

current

business

object

with

all

of

its

children

into

the

appropriate

single-cardinality

attribute

or

array

attribute

of

the

parent.

Note:

A

business

object

can

have

attributes

that

do

not

correspond

to

any

database

column,

such

as

placeholder

attributes.

During

retrieval,

the

connector

does

not

change

such

attributes

in

the

top-level

business

object;

they

remain

set

to

the

values

received

from

the

integration

broker.

The

application-specific

information

for

these

attributes

must

be

blank.

Business

object

attribute

properties

Business

object

architecture

defines

various

properties

that

apply

to

attributes.

This

section

describes

how

the

connector

interprets

these

properties

and

describes

how

to

set

them

when

modifying

a

business

object.

Name

property

Each

business

object

attribute

must

have

a

unique

name.

Type

property

Each

business

object

attribute

must

be

of

type

String,

or

the

type

of

a

child

business

object

or

an

array

of

child

business

objects.

Cardinality

property

Each

business

object

attribute

has

the

value

of

1

or

n

in

this

property.

All

attributes

that

represent

a

child

business

object

or

an

array

of

child

business

objects

also

have

a

ContainedObjectVersion

property

(which

specifies

the

child’s

version

number)

and

a

Relationship

property

(which

specifies

the

value

Containment).

Max

length

property

The

connector

does

not

use

this

property.

Although

Advanced

Outbound

Wizard

populates

this

property

when

it

generates

the

business

object,

it

does

so

only

to

provide

information.

Key

property

At

least

one

simple

attribute

in

each

business

object

must

be

specified

as

the

key.

To

define

an

attribute

as

a

key,

set

this

property

to

true.

Chapter

22.

Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

219

Important:

The

connector

does

not

support

specifying

an

attribute

that

represents

a

child

business

object

or

an

array

of

child

business

objects

as

a

key

attribute.

If

the

key

property

is

set

to

true

for

a

simple

attribute,

the

connector

adds

that

attribute

to

the

WHERE

clause

of

the

SELECT

SQL

statement

that

it

generates

while

processing

the

business

object.

To

maximize

performance,

it

is

recommended

that

you

provide

data

for

as

many

key

fields

as

possible.

To

retrieve

a

child

business

object

or

children

from

an

array

of

business

objects,

the

connector

uses

foreign

keys

in

the

WHERE

clause

of

the

SELECT

statement.

It

does

not

use

the

Key

property

of

attributes

in

child

business

objects.

For

information

on

how

to

specify

an

attribute

in

a

child

business

object

as

a

foreign

key,

see

“Application-Specific

information

for

simple

attributes”

on

page

221.

Foreign

key

property

The

connector

does

not

use

this

property.

The

connector

obtains

foreign-key

information

from

application-specific

information.

For

more

information,

see

“Application-Specific

information

for

simple

attributes”

on

page

221.

Required

property

The

Required

property

specifies

whether

an

attribute

must

contain

a

value.

v

If

an

attribute

that

represents

a

child

business

object

or

an

array

of

child

business

objects

is

marked

as

required

and

the

connector

fails

to

retrieve

any

child

from

the

application,

the

retrieve

operation

fails.

v

If

a

simple

attribute

is

marked

as

required

and

the

connector

fails

to

retrieve

the

corresponding

row

from

the

database,

the

retrieve

operation

fails.

For

example,

if

the

connector

reads

from

multiple

tables

for

a

business

object

and

it

fails

to

retrieve

a

row

for

a

required

simple

attribute

that

represents

a

value

in

one

of

the

tables,

the

entire

retrieve

fails.

AppSpecificInfo

For

information

on

this

property,

see

“Application-Specific

information

for

simple

attributes”

on

page

221.

Default

value

property

This

property

specifies

a

default

value

that

the

connector

uses

when

generating

the

WHERE

clause

of

a

SELECT

statement.

This

property

is

relevant

only

to

simple

attributes

that

have

been

specified

as

key.

For

example,

to

cause

the

connector

to

use

the

default

value

specified

for

the

Language

attribute,

you

must

specify

the

Language

attribute

as

key.

Special

value

for

simple

attributes

Simple

attributes

in

business

objects

can

have

the

special

value,

CxIgnore.

When

it

receives

a

business

object

from

the

integration

broker,

the

connector

ignores

all

attributes

with

a

value

of

CxIgnore.

It

is

as

if

those

attributes

were

invisible

to

the

connector.

When

the

connector

retrieves

data

from

the

database

and

the

SELECT

statement

returns

a

blank

value

for

an

attribute,

the

connector

sets

the

value

of

that

attribute

to

CxBlank

by

default.

220

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Because

the

connector

requires

every

business

object

to

have

at

least

one

key

attribute,

make

sure

that

business

objects

passed

to

the

connector

have

at

least

one

primary

or

foreign

key

that

is

not

set

to

CxIgnore.

Business

object

application-specific

information

Application-specific

information

in

business

object

definitions

provides

the

connector

with

application-dependent

instructions

on

how

to

process

business

objects.

This

information

includes:

v

The

class

for

the

vDynRetBOH

business

object

handler,

which

is

provided

in

the

application-specific

information

for

the

verb

of

the

top-level

business

object.

This

value

is

identical

for

all

business

objects

that

this

module

processes.

v

Database

and

query

information,

which

is

provided

in

the

application-specific

information

for

simple

attributes.

The

connector

parses

this

information

to

generate

SELECT

queries.

If

you

extend

or

modify

an

application-specific

business

object,

make

sure

that

the

application-specific

information

in

the

business

object

definition

matches

the

syntax

that

the

connector

expects.

The

following

sections

discuss

this

functionality

in

more

detail.

Application-specific

information

for

the

top-level

business

object’s

verb

The

verb

of

the

top-level

business

object

specifies

the

class

for

the

vDynRetBOH

business

object

handler.

This

application-specific

information

should

always

be

the

following:

sap.bapimodule.vDynRetBOH

Application-Specific

information

for

simple

attributes

The

application-specific

information

for

attributes

specifies

the

following

information:

v

The

name

of

the

corresponding

database

table

v

The

name

of

the

corresponding

database

column

v

The

foreign

key

relationship

between

an

attribute

in

the

current

business

object

and

a

parent

or

child

business

object

v

The

operand

The

application-specific

information

format

consists

of

four

name-value

parameters,

each

of

which

includes

the

parameter

name

and

its

value.

Each

parameter

set

is

delimited

from

the

next

by

a

colon

(:).

The

format

of

attribute

application-specific

information

is

shown

below.

Square

brackets

([

])

surround

an

optional

parameter.

A

vertical

bar

(|)

separates

the

members

of

a

set

of

options.

Reserve

the

colon

as

a

delimiter.

TN=TableName:CN=ColumnName:[FK=[..]fk_attributeName]:[OP=GT|GE|EQ|NE|LE|LT|LIKE]

Table

46

describes

each

name-value

parameter.

Table

46.

Name-value

parameters

in

attribute

application-specific

information

Parameter

Description

TN=TableName

The

name

of

the

database

table

Chapter

22.

Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

221

Table

46.

Name-value

parameters

in

attribute

application-specific

information

(continued)

Parameter

Description

CN=ColumnName

The

name

of

the

database

table

column

(field)

FK=[..]fk_attribute

Name

The

value

of

this

property

depends

on

whether

the

foreign-key

relationship

is

stored

in

the

parent

business

object

or

the

current

business

object:

v

attributeName—specifies

an

attribute

in

the

current

business

object;

for

more

information,

see

“Example:

Current

business

object

stores

the

foreign

key”

v

..attributeName—specifies

an

attribute

in

the

parent

business

object

If

an

attribute

is

not

a

foreign

key,

do

not

include

this

parameter

in

the

application-specific

information.

OP=GT|GE|EQ|NE|LE|LT|

LIKE

The

operand

options

are:

v

GT—Greater

Than

v

GE—Greater

than

or

Equal

to

v

EQ—EQual

to

(default

option)

v

NE—Not

Equal

to

v

LE—Less

than

or

Equal

to

v

LT—Less

Than

v

LIKE—Like

It

is

recommended

that

you

specify

EQ

to

maximize

performance.

If

no

operand

is

specified,

the

connector

uses

EQ.

The

required

parameters

for

each

simple

attribute

are

the

table

name

and

column

name.

The

operand

defaults

to

EQ

(equals).

The

following

example

illustrates

the

basic

format:

TN=KNA1:CN=KUNNR

Important:

Case

is

significant

when

specifying

values

for

these

parameters.

It

is

permissible

for

simple

attributes

within

a

business

object

to

have

no

value

specified

(that

is,

zero

length)

for

application-specific

information

fields.

The

connector

ignores

such

attributes.

This

is

a

convenient

way

to

ensure

that

the

connector

does

not

process

placeholder

attributes

used

to

separate

adjacent

arrays

of

child

business

objects.

If

none

of

the

application-specific

information

in

any

of

a

business

object’s

attributes

provide

sufficient

information

for

the

connector

to

build

or

execute

a

query,

the

connector

returns

a

failure.

Example:

Current

business

object

stores

the

foreign

key

Figure

33

on

page

223

provides

an

example

of

a

WebSphere

business

object

with

two

foreign

keys

that

reference

attributes

within

the

business

object.

In

this

case,

the

business

object

represents

data

in

two

tables,

one

containing

address

data

and

the

other

containing

lookup

data

for

state/province

and

country

abbreviations.

To

process

this

data,

the

connector

performs

two

table

reads.

222

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Attribute

information:

Table

47

documents

the

table

name,

column

name,

key,

and

foreign-key

for

each

attribute

in

the

example

SAP_Address:

Table

47.

Description

of

example

business

object

attributes

Attribute

Table

name

Column

name

Key

Foreign

key

Default

address_id

ADRC

ADDRNUMBER

true

city

ADRC

CITY1

false

state

ADRC

REGION

false

country

ADRC

LAND1

false

language

T005U

SPRAS

true

E

fk_country

T005U

LAND1

false

FK=country

fk_state

T005U

BLAND

false

FK=state

state_description

T005U

BEZEI

false

Attribute

application-specific

information:

Given

the

information

in

Table

47,

the

application-specific

information

for

the

fk_state

attribute

is:

TN=T005U:CN=BLAND:FK=state

The

application-specific

information

for

the

fk_country

attribute

is:

TN=T005U:CN=LAND1:FK=country

SQL

Queries:

The

following

SELECT

statements

illustrate

the

WHERE

clause

that

the

connector

builds

to

retrieve

data

from

the

tables

represented

by

SAP_Address:

SELECT

*

FROM

ADRC

WHERE

ADDRNUMBER

=

address_idValue

SELECT

*

FROM

T005U

WHERE

SPRAS

=

‘E‘

AND

LAND1

=

countryValue

AND

BLAND

=

stateValue

Generating

business

objects

The

WebSphere

business

integration

system

provides

two

utilities

that

enable

you

to

define

business

objects

and

the

metadata

required

to

support

the

processing

of

those

business

objects

in

the

SAP

application:

v

SAPODA

generates

business

object

definitions

from

tables

you

specify

graphically.

This

utility

is

most

useful

for

creating

individual

business

object

definitions

rather

than

hierarchical

business

object

definitions.

You

must

manually

define

the

relationships

between

parent

and

child

business

objects.

v

Advanced

Outbound

Wizard

records

and

interprets

your

actions

as

you

step

through

an

SAP

Display

Transaction.

As

it

generates

the

business

object

definition,

it

automatically

defines

the

relationships

between

parent

and

child

business

objects.

SAP_Address

Retrieve

address_id

.

.

city=Burlingame
state=CA
country=USA

fk_state
fk_country

state_description

Figure

33.

Example:

current

business

object

stores

the

foreign

key

Chapter

22.

Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

223

Generating

business

objects:

SAPODA

SAPODA

generates

individual

business

object

definitions

for

the

Hierarchical

Dynamic

Retrieve

Module.

If

you

use

this

utility

to

create

hierarchical

business

object

definitions,

you

must

manually

specify

the

relationships

between

the

generated

parent

and

child

business

object

definitions.

Note:

Table

definition

anomalies

may

produce

definitions

that

require

manual

changes

to

fully

meet

your

needs.

Steps

to

creating

a

business

object

definition

with

SAPODA

To

use

SAPODA

to

generate

a

business

object

definition

for

this

module:

1.

Launch

SAPODA.

2.

Launch

Business

Object

Designer,

which

is

the

utility

that

facilitates

development

of

business

object

definitions,

both

manually

and

automatically

(by

providing

access

to

ODAs).

3.

Follow

a

six-step

process

in

Business

Object

Designer

to

configure

and

run

the

ODA.

4.

Use

Business

Object

Designer

to

manually

modify

the

generated

definition:

v

Remove

unwanted

attributes.

Important:

Because

the

total

number

of

bytes

for

all

columns

in

each

table

represented

by

a

single

a

business

object

cannot

exceed

512,

you

must

remove

unnecessary

attributes

whose

length

causes

the

definition

to

exceed

this

limit.

For

more

information,

see

“Handling

long

data

rows”

on

page

216.

v

If

creating

a

hierarchical

business

object

definition,

specify

the

relationships

between

parent

and

child

business

objects.

v

Remove

undesirable

anomalies.

For

information

on

using

SAPODA,

see

Appendix

E,

“Generating

business

object

definitions

using

SAPODA,”

on

page

291.

For

information

on

launching

Business

Object

Designer

and

using

it

to

manually

modify

a

business

object

definition,

see

the

Business

Object

Development

Guide.

Creating

relationships

between

tables

SAPODA

generates

a

business

object

definition

for

every

table

you

specify.

When

it

completes

generating,

you

can

open

all

tables

in

Business

Object

Designer

for

editing.

To

create

a

hierarchical

business

object

definition

from

the

individual

business

object

definitions

generated

by

SAPODA,

do

the

following:

1.

Determine

the

table

at

the

top

of

the

hierarchy.

Assume,

for

example,

the

top-level

business

object

is

SAP_Customer.

This

business

object

has

a

single

key,

Customer_KUNNR.

SAPODA

specifies

the

following

application-specific

information

for

this

attribute:

TN=KNA1:CN=KUNNR

2.

Locate

and

differentiate

every

child

and

grandchild

business

object.

3.

To

the

top-level

business

object

and

to

each

parent

in

the

hierarchy

below

it,

add

an

attribute

that

represents

each

child

business

object

or

array

of

child

business

objects:

v

Specify

the

name

of

the

child

as

the

type

of

the

attribute.

v

Specify

containment

as

the

relationship.

224

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

Specify

the

appropriate

cardinality,

either

1

or

n.
4.

To

each

child

business

object

definition

that

contains

an

attribute

corresponding

to

the

key

of

its

parent,

specify

the

foreign-key

relationship

in

the

attribute’s

application-specific

information.

For

example,

most

business

objects

that

are

a

direct

child

of

SAP_Customer

contain

the

Customer_KUNNR

attribute.

In

the

application-specific

information

for

Customer_KUNNR,

specify

the

following:

TN=KNVI:CN=KUNNR:FK=..Customer_KUNNR

For

information

on

specifying

foreign

keys,

see

Table

46

on

page

221.

5.

Locate

child

business

object

definitions

whose

corresponding

tables

do

not

contain

the

key

of

the

parent

object.

In

these

definitions,

locate

a

non-key

field

in

the

parent

that

matches

the

child’s

primary

key.

For

example,

SAP_Customer_ADRC

is

a

second-level

business

object

with

no

key

the

same

as

its

parent’s.

SAPODA

generates

this

business

object

definition

with

the

Address_number_ADDRNUMBER

attribute,

which

is

a

non-key

field

in

SAP_Customer.

In

the

application-specific

information

for

this

attribute,

specify

the

foreign-key

relationship

as:

TN=ADRC:CN=ADDRNUMBER:FK=..Address_ADRNR

Note:

Because

SAP

changed

the

name

of

the

ADDNR

field

used

in

tables

(such

as

KNA1)

created

in

SAP

Version

3x

to

ADDRNUMBER

in

tables

(such

as

ADRC)

created

in

SAP

Version

4x,

recognizing

the

relationship

between

these

two

fields

is

more

challenging.

Generating

business

objects:

Advanced

Outbound

Wizard

The

WebSphere

business

integration

system

enables

users

to

define

business

objects

and

the

metadata

required

to

support

the

processing

of

those

business

objects

in

the

SAP

application.

Advanced

Outbound

Wizard

records

and

interprets

your

actions

as

you

step

through

an

SAP

Display

Transaction.

Important:

The

wizard

is

intended

to

assist

business

object

development.

Due

to

table

definition

anomalies,

the

business

object

produced

may

require

manual

changes

to

fully

meet

your

needs.

The

wizard

supports

the

definition

of

flat

and

hierarchical

business

objects

that

use

the

Retrieve

verb.

Note:

Before

you

use

the

wizard,

ensure

that

your

existing

entity

in

SAP

includes

all

the

information

required

for

the

business

object.

For

example,

for

a

sales

order,

ensure

that

the

entity

you

use

has

the

line

items,

schedule

lines,

and

partners

you

require.

Steps

to

Creating

a

business

object

definition

with

advanced

outbound

wizard

To

use

Advanced

Outbound

Wizard

to

generate

a

business

object

definition

for

this

module:

1.

Go

to

IBM

CrossWorlds

Station

(transaction

/N/CWLD/HOME).

Important:

You

must

log

on

to

the

SAP

system

in

English

when

using

IBM

CrossWorlds

Station

to

generate

business

object

definitions.

The

CrossWorlds

Station

log

is

available

only

in

English.

2.

On

the

Development

tab,

click

the

Advanced

Outbound

Wizard

Button.

Chapter

22.

Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

225

3.

In

the

IBM

CrossWorlds

outbound

wizard

window,

enter

the

following

information:

v

IBM

CrossWorlds

business

object

name—Name

of

the

business

object

type

as

well

as

the

name

of

every

instance

of

the

object.

It

is

recommended

that

you

use

a

simple

name

that

identifies

the

business

object;

for

example,

enter

SAP_Customer.

v

Transaction

Code—Transaction

code

for

the

transaction

that

supports

the

necessary

functionality

performed

by

the

business

object;

for

example,

specify

XD03,

the

transaction

that

displays

a

customer

centrally.

4.

Click

Record.

5.

In

the

initial

display

screen,

select

the

information

you

want

the

transaction

to

process.

6.

Step

through

the

transaction.

When

you

reach

the

last

screen,

you

will

be

asked

whether

to

exit

the

display.

Click

the

Yes

button.

The

CW

Hierarchical

Outbound

Wizard

screen

displays.

The

business

object

displays

closed

at

the

top

of

the

screen.

7.

Click

the

plus

button

(+)

to

the

left

of

the

business

object’s

name

to

view

the

business

object’s

attributes.

Scroll

to

the

bottom

of

the

displayed

attributes

and

click

the

plus

button

(+)

to

the

left

of

the

names

of

its

child

business

objects

to

view

their

attributes.

The

wizard

displays

each

field’s

length

to

the

right

of

its

name.

To

the

right

of

the

field’s

length,

the

wizard

displays

cumulative

field

length.

If

the

cumulative

length

exceeds

512

bytes,

the

wizard

marks

the

field

with

a

red

X

and

turns

the

field’s

display

from

yellow

to

red.

By

default,

the

wizard

stops

adding

attributes

to

a

business

object

when

the

length

exceeds

512

bytes.

To

include

desired

attributes

that

are

removed

by

default,

you

can:

v

Remove

unwanted

attributes,

as

described

in

the

next

step.

v

Manually

modify

the

business

object

definition

to

contain

additional

child

business

objects,

as

described

in

“Handling

long

data

rows”

on

page

216.

8.

Remove

unnecessary

attributes

from

the

definition

by

double-clicking

their

row.

The

color

of

deleted

rows

turns

blue.

9.

Verify

that

the

business

object

definition

includes

all

desired

attributes.

When

you

are

satisfied

with

the

definition,

click

the

generate

button.

The

Download

Object

Definition

screen

displays.

10.

On

the

Download

Object

Definition

screen,

specify

the

location

and

name

of

the

business

object

definition

file

and

click

Save.

For

information

on

the

business

object

and

attribute

names

created

by

the

wizard,

see

“Business

object

names”

on

page

212.

How

does

the

wizard

create

relationships

between

tables?

When

generating

the

business

object

definition,

Advanced

Outbound

Wizard

creates

a

list

of

all

tables

involved

in

the

SAP

transaction.

You

can

view

the

list

of

tables

by

pressing

the

Show

Tables

button

at

the

top

of

the

wizard’s

screen.

Table

48

illustrates

the

tables

used

to

generate

SAP_Customer.

Table.

Table

48.

illustrates

the

tables

used

to

generate

SAP_Customer.

Name

Table

Description

TFDIR

Function

module

KNA1

General

Data

in

Customer

Master

T001

Company

Codes

226

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

48.

illustrates

the

tables

used

to

generate

SAP_Customer.

(continued)

Name

Table

Description

KNB1

Customer

Master

(Company

Code)

KNVV

Customer

Master

Sales

Data

TOBJ_OFF

Objects

that

were

disabled

ADRC

Addresses

(central

address

admin.)

ADRCT

Address

texts

(central

address

admin.)

ADRG

Assignment

of

addresses

to

other

address

groups

(cent.adr.)

ADRV

Address

where

used

list

(central

address

administration)

T002

Language

keys

TBE01

Business

Transaction

Events:

Publish

&

Subscribe

Interfaces

TBE31

Application

components

per

Publish

&

Subscribe

interface

TBE32

Partner

function

modules

per

Publish

&

Subscribe

interface

TBE34

Customer

function

modules

per

Publish

&

Subscribe

interface

T100

Messages

DOKIL

Index

for

Documentation

Table

DOKH

KNVI

Customer

Master

Tax

Indicator

TVKWZ

Org.Unit:

Allowed

Plants

per

Sales

Organization

T001W

Plants/branches

KNVL

Customer

Master

Licenses

TSADVC

Customizing

international

address

versions

TMODU

Cross

Reference

Field

Name

-

MODIF1

TCONV_ADR

Conversion

of

Old

Address

Fields

to

CAM

Address

Fields

TSAD7

Address

groups

(central

address

management)

T005T

Country

Names

T005U

Taxes:

Region

Key:

Texts

TZONT

Customers:

Regional

Zone

Texts

TSAD7T

Description

of

address

groups

(central

address

admin.)

TOJTD

Customizing

Object

Types

TOJTB

Business

object

repository:

Basic

data

The

wizard

makes

three

passes

through

the

tables

to

determine

their

hierarchy

and

the

relationship

among

them.

It

uses

the

information

to

specify

foreign-key

relationships

in

the

application-specific

information

of

business

object

attributes.

It

names

the

attributes

based

on

the

field’s

description

in

SAP’s

data

dictionary

in

the

user’s

language.

In

its

three

passes,

the

wizard

does

the

following:

1.

Determines

the

table

at

the

top

of

the

hierarchy.

Typically

this

is

the

first

table

the

wizard

locates

that

has

only

one

key

field.

2.

Determines

child

business

objects

that

contain

the

key

of

the

top-level

business

object,

and

differentiates

child

from

grandchild

relationships

based

on

the

number

of

key

fields.

Chapter

22.

Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module

227

Typically

several

tables

contain

the

parent’s

key

field

as

well

as

multiple

other

keys.

Grandchild

tables

typically

contain

more

keys

than

their

parent.

Tables

with

identical

keys

are

siblings

(peers)

of

the

parent.

3.

Determines

the

relationship

of

tables

that

do

not

contain

the

key

of

the

top-level

business

object.

The

wizard

establishes

the

relationship

by

locating

a

non-key

field

in

the

parent

that

matches

the

child’s

primary

key.

Table

48

on

page

226

illustrates

the

results

of

all

three

of

these

passes

through

the

list

of

display-Customer

tables:

v

Top-level

business

object:

SAP_Customer

It

has

a

single

key,

Customer_KUNNR.

The

wizard

specified

the

following

application-specific

information

for

this

attribute:

TN=KNA1:CN=KUNNR

v

Second-level

business

object

that

contains

its

parent’s

key:

SAP_Customer_KNVI

The

wizard

identified

the

following

three

key

fields,

one

of

which

is

found

as

a

key

field

in

the

parent:

–

Customer_KUNNR

–

Country_ALAND

–

Tax_category_TATYP

In

the

application-specific

information

for

the

Customer_KUNNR

attribute,

the

wizard

specified

the

foreign-key

relationship

to

the

key

field

in

the

parent:

TN=KNVI:CN=KUNNR:FK=..Customer_KUNNR

For

information

on

specifying

foreign

keys,

see

Table

46

on

page

221.

v

Second-level

business

object

with

no

key

the

same

as

its

parent’s:

SAP_Customer_ADRC

The

wizard

identified

the

following

three

key

fields,

one

of

which

is

found

as

a

non-key

field

in

the

parent:

–

Address_number_ADDRNUMBER

–

from_DATE_FROM

–

Address_version_NATION

In

the

application-specific

information

for

the

Address_number_ADDRNUMBER

attribute,

the

wizard

specified

the

foreign-key

relationship

to

a

non-key

field

in

the

parent:

TN=ADRC:CN=ADDRNUMBER:FK=..Address_ADRNR

Note:

Because

SAP

changed

the

name

of

the

ADDNR

field

used

in

tables

(such

as

KNA1)

created

in

SAP

Version

3x

to

ADDRNUMBER

in

tables

(such

as

ADRC)

created

in

SAP

Version

4x,

recognizing

the

relationship

between

these

two

fields

is

more

challenging.

To

handle

the

challenge,

the

wizard

is

coded

to

recognize

the

link

and

create

the

appropriate

foreign-key

relationship.

Attention:

Verify

the

definition

that

the

wizard

generates.

Although

the

wizard

performs

most

of

the

work

in

creating

a

business

object

definition,

the

generated

definition

cannot

meet

the

precise

needs

of

your

implementation.

There

are

anomalies

in

table

relationships

that

may

cause

the

wizard

to

make

incorrect

decisions.

For

example,

if

two

tables

have

the

same

set

of

keys

and

a

child

table

has

the

same

keys

plus

one,

the

wizard

assigns

the

child

to

the

first

table.

228

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Part

7.

Appendixes

©

Copyright

IBM

Corp.

2003,

2004

229

230

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Appendix

A.

Quick

Steps

This

appendix

supplements

information

contained

in

the

Adapter

for

mySAP.com

User

Guide.

It

is

not

intended

to

replace

the

user

guide.

Before

you

begin

these

steps,

you

must:

v

Install

WMQI

as

your

broker.

v

Install

the

SAP

Java

Connector

(SAPjco).

Download

SAPjco

for

your

connector’s

operating

system

from:

http://service.sap.com/connectors.

Add

these

files

to

the

%CROSSWORLDS%\ODA\SAP

and

%CROSSWORLDS%\connectors\SAP

directories.

v

Install

the

JDK.

v

Install

CrossWorlds.

v

Configure

standard

MQ

Queues

Common

configuration

properties

The

following

tables

list

configuration

properties

that

must

be

maintained

for

the

WMQI

broker.

Create

the

SAP

configuration

file

using

CN_SAP.txt.

This

file

is

located

in

%CROSSWORLDS%\repository\SAP.

Open

the

file

using

Connector

Configurator.

Table

49.

Standard

configuration

properties

Property

name

Default

Value

Value

Needed

ApplicationName

none

SAPConnector

BrokerType

ICS

WMQI

AdminInQueue

/ADMININQUEUE

ADMININQUEUE

AdminOutQueue

/ADMINOUTQUEUE

ADMINOUTQUEUE

DeliveryQueue

/DELIVERYQUEUE

DELIVERYQUEUE

FaultQueue

/FAULTQUEUE

FAULTQUEUE

RequestQueue

/REQUESTQUEUE

REQUESTQUEUE

ResponseQueue

/RESPONSEQUEUE

RESPONSEQUEUE

SynchronousRequestQueue

/SYNCHRONOUSREQUESTQUEUE

SYNCHRONOUSREQUESTQUEUE

SynchronousResponseQueue

/SYNCHRONOUSRESPONSEQUEUE

SYNCHRONOUSRESPONSEQUEUE

MessageFileName

SAPConnector.txt

SAPCONNECTOR.TXT

RepositoryDirectory

C:\crossworlds\repository

<location

of

business

object

specifications>

Jms.MessageBrokerName

crossworlds.queue.manager

<Queue

Manager

name>

AgentTraceLevel

0

5

Table

50.

Connector-specific

properties

Property

Name

Default

Value

Value

Needed

ApplicationPassword

SOFTWARE

<password

for

SAP

application>

©

Copyright

IBM

Corp.

2003,

2004

231

Table

50.

Connector-specific

properties

(continued)

Property

Name

Default

Value

Value

Needed

ApplicationUserName

CROSSWORLDS

<username

for

SAP

application>

Client

none

<Client

number>

Hostname

none

<SAP

application

server

name>

Quick

steps

for

the

BAPI

module

Before

configuring

the

BAPI

module,

configure

the

following

connector-specific

property:

Property

Name

Default

Value

Value

Needed

Modules

Extension

BAPI

Generating

a

business

object

in

the

BAPI

module

To

generate

a

business

object

for

the

BAPI

module:

1.

Start

the

SAP

ODA.

2.

Start

the

business

object

designer.

3.

In

the

business

object

designer,

choose

File

>

New.

4.

Select

the

Configure

Discovery:

a.

Enter

the

host

address

for

the

machine

where

Discovery

is

running.

b.

Choose

Add

Host.

c.

Choose

OK.

5.

Choose

Find

Agents.

a.

Highlight

Agent.

Choose

Next.

b.

Populate

the

values

for

UserName,

Password,

Client,

SystemNumber,

ASHostName,

and

FileDestination.

Save

the

profile.

6.

In

Step

3

of

the

wizard,

expand

the

RFC

node.

a.

Right-click

Search

By

Name.

b.

Type

bapi_customer_getdetail.

c.

Highlight

bapi_customer_getdetail.

d.

Choose

Next.

7.

Choose

Next.

8.

Set

Verb

to

Retrieve,

and

Server

Support

to

No.

Choose

OK.

9.

In

Agent

SAPODA

Notification,

choose

No.

10.

Open

the

business

object

in

a

separate

window.

Save

the

generated

business

object

specification

to

the

location

you

specified

in

the

Repository

Directory

standard

property

value.

Configuring

the

BAPI

module

After

you

have

generated

a

business

object,

continue

configuring

the

BAPI

module:

1.

Add

the

parent

object

name

to

the

Supported

Business

Object

section

of

the

configuration

file.

232

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

2.

Copy

the

generated

BOHandler

.class

file

from

the

file

definition

specified

in

the

ODA

configuration

properties

to

%CROSSWORLD%\connectors\SAP\bapi\client.

Preparing

the

BAPI

module

for

testing

To

set

up

the

BAPI

module

for

testing,

use

Port

Connector:

1.

Copy

the

SAP

configuration

file.

Rename

the

copied

file

portconnector.cfg.

2.

Open

portconnector.cfg

in

Connector

Configurator.

3.

Change

the

following

properties

in

the

Standard

tab:

v

ApplicationName

to

PortConnector

v

DELIVERYQUEUE

to

REQUESTQUEUE

v

REQUESTQUEUE

to

RESPONSEQUEUE

4.

Save

changes.

Close

portconnector.cfg.

5.

Open

sapconnector.cfg.

6.

Save

the

change.

Start

mySAP.com.

Testing

the

BAPI

module

To

test

the

BAPI

module:

1.

Open

Test

Connector.

2.

Choose

File

>

Create/Select

Profile.

3.

Choose

File

>

New

Profile.

4.

Select

Browse.

a.

Locate

portconnector.cfg.

Choose

Open.

b.

For

Connector

Name,

enter

PortConnector.

c.

For

Broker

Type,

enter

WMQI.

d.

Choose

OK.

5.

Highlight

PortConnector.

Choose

OK.

6.

Choose

File

>

Connect.

7.

Create

a

Business

Object

Instance:

a.

For

BO

Type

select

SAP_BAPI_customer_getdetail.

b.

Choose

Create.

c.

Enter

New

Object.

Choose

OK.

8.

Change

the

Verb

to

Retrieve.

Populate

Customer_to_be_required

with

an

existing

customer.

9.

Choose

Request

>

Send.

10.

Check

the

log

file

for

a

success

message.

Quick

steps

for

the

RFC

Server

module

Before

configuring

the

RFC

module,

configure

the

following

connector-specific

properties:

Property

Name

Default

Value

Value

Needed

Modules

Extension

Rfcserver

RfcProgramId

CWLDSERVER

<ProgramId

registered

in

SAP

transaction

sm59>

Appendix

A.

Quick

Steps

233

Generating

a

business

object

in

the

RFC

Server

module

To

generate

a

business

object

for

the

RFC

module:

1.

Start

the

SAP

ODA.

2.

Start

the

business

object

designer.

3.

In

the

business

object

designer,

choose

File

>

New.

4.

Select

the

Configure

Discovery:

a.

Enter

the

host

address

for

the

machine

where

Discovery

is

running.

b.

Choose

Add

Host.

c.

Choose

OK.

5.

In

Step

3

of

the

wizard,

expand

the

RFC

node.

a.

Right-click

Search

By

Name.

b.

Type

bapi_customer_getdetail.

c.

Highlight

bapi_customer_getdetail.

d.

Choose

Next.

6.

Choose

Next.

7.

Set

the

Verb

to

Retrieve

and

Server

Support

to

No.

Choose

OK.

8.

In

Agent

SAPODA

Notification,

choose

No.

9.

Open

the

business

object

in

a

separate

window.

Choose

General

>

Set

Collab

=

″RFCCollab″.

10.

Save

the

generated

business

object

specification

to

the

location

you

specified

in

the

Repository

Directory

standard

property

value.

Configuring

the

RFC

Server

module

After

you

have

generated

a

business

object,

continue

configuring

the

RFC

Server

module:

1.

Add

the

parent

object

name

to

the

Supported

Business

Object

section

of

the

configuration

file.

2.

Copy

the

generated

BOHandler

.class

file

from

the

definition

specified

in

the

ODA

configuration

properties

to

%CROSSWORLD%\connectors\SAP\rfc\client.

Creating

a

profile

for

the

SAP

server

To

create

a

profile

for

the

SAP

server:

1.

Open

SAP

Logon.

2.

Choose

New.

3.

Populate

the

following

fields,

then

choose

OK:

Description

Hostname

of

server

Application

server

Hostname

of

server

System

Number

00

Description

Hostname

is

standard.

Enter

a

description

of

your

choice.

4.

Double-click

to

open

the

profile

you

just

created.

5.

Enter

your

username

and

password.

Choose

Transaction

>

Type

/nse37.

Function

Builder

opens.

6.

For

Function

Module,

input

bapi_customer_getdetail.

Choose

Funtion

Module

>Test

>

Single

Test.

234

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

7.

For

the

RFC

target

system,

use

the

value

for

Rfcprogramid

you

set

in

the

connector-specific

properties.

Also

populate

the

following

fields:

Field

Example

Customer

Number

0000000001

PI_SALESORG

0001

PI_DISTR_CHAN

01

PI_DIVISION

01

Testing

the

RFC

server

module

To

set

up

the

BAPI

module

for

testing,

use

Port

Connector:

1.

Copy

the

SAP

configuration

file.

Rename

the

copied

file

portconnector.cfg.

2.

Open

portconnector.cfg

in

Connector

Configurator.

3.

Change

the

following

properties

in

the

Standard

tab:

v

ApplicationName

to

PortConnector

v

REQUESTQUEUE

to

SYNCHRONOUSREQUESTQUEUE.

Save

the

changes

and

close

the

window.

4.

Open

sapconnector.cfg.

5.

Change

REQUESTQUEUE

to

SYNCHRONOUSREQUESTQUEUE.

Save

the

change.

6.

Start

the

connector.

Choose

Function

Module

>

Execute.

7.

In

Test

Connector,

find

the

object

in

BO

Request

List.

Highlight

the

object,

and

choose

Request

>

Reply

>

Success.

8.

Check

the

log

for

a

success

message.

Quick

steps

for

the

ALE

module

Before

you

configure

the

ALE

module,

create

the

following

persistent

WebSphere

MQ

queues:

v

SAPtid_Queue

v

SAPtid_QueueManager

v

SAPALE_Event_Queue

v

SAPALE_Wip_Queue

v

SAPALE_Archive_Queue

v

SAPALE_UnSubscribed_Queue

v

SAPALE_Error_Queue

Refer

to

the

MQ

Series

documentation

for

information

on

creating

MQ

Queues.

Next,

configure

the

following

connector-specific

properties:

Property

Name

Default

Value

Value

Needed

Modules

Extension

Ale

AleEventDir

none

%CROSSWORLDS%\connectors\SAP\ale

SAPtid_QueueManager

none

<Queue

Manager

name>

SAPtid_Queue

none

<Queue

name>

SAPALE_Event_Queue

none

<Event

Queue

name>

SAPALE_Wip_Queue

none

<WIP

Queue

name>

Appendix

A.

Quick

Steps

235

Property

Name

Default

Value

Value

Needed

SAPALE_Archive_Queue

none

<Archive

Queue

name>

SAPALE_UnSubscribed_Queue

none

<UnSubscribed

Queue

name>

SAPALE_Error_Queue

none

<Error

Queue

name>

RfcProgramId

none

<Program

ID

name

defined

in

SAP

Transaction

sm59>

NumberOfListeners

1

1

(for

single-threaded)

For

remote

WebSphere

Queues,

also

configure

the

following

properties:

Property

Name

Default

Value

Value

Needed

SAPtid_QueueManagerLogin

none

<Queue

Manager

login>

SAPtid_QueueManagerPassword

none

<Queue

Manager

password>

SAPtid_QueueManagerHost

none

<Queue

Manager

host>

SAPtid_MQPort

none

<MQ

port>

SAPtid_MQChannel

none

<MQ

channel>

Generating

a

business

object

in

the

ALE

module

To

generate

a

business

object

in

the

ALE

module:

1.

Start

the

SAP

ODA.

2.

Start

the

business

object

designer.

3.

In

the

business

object

designer,

choose

File

>

New.

4.

Select

the

Configure

Discovery:

a.

Enter

the

host

address

for

the

machine

where

Discovery

is

running.

b.

Choose

Add

Host.

c.

Choose

OK.
5.

In

Step

3

of

the

wizard,

expand

IDoc

Types.

a.

Expand

Generate

From

System.

b.

Expand

Basic

IDoc

Types.

c.

Right-click

Select

by

Name...

d.

Select

Search

for

Items...

e.

Type

orders03.

Choose

OK.
6.

Highlight

ORDERS03.

Choose

Next.

7.

Choose

Next.

8.

Choose

OK.

The

business

object

generates.

9.

Select

″Save

a

copy

of

business

object

definitions

to

a

separate

file″

and

select

″Open

new

business

object

definition

to

a

separate

window″.

Choose

Finish.

Editing

the

business

object.

To

edit

the

business

object:

1.

Choose

the

General

tab.

2.

Change

Create

Application-specific

information

message

type

to

MsgType

=

ORDERS.

3.

Open

%CROSSWORLDS\repository\SAP\BO_SAPIDocControl.txt

and

save

it

to

the

Repository

directory.

236

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

4.

Add

the

parent

object

name

to

the

Supported

Business

Objects

section

of

the

configuration

file.

5.

Register

the

RFC

Server

Module

with

the

SAP

Gateway,

using

SAP

transaction

SM59.

6.

Ensure

the

following:

v

That

the

logical

systems

are

defined

and

assigned

for

the

SAP

system

and

external

system

(SALE).

v

That

the

distribution

model

has

been

maintained

and

that

the

required

message

types

have

been

added

to

the

model

(transaction

code

BD64).

v

That

there

are

partner

profiles

for

the

logical

systems

or

distribution

model

(transaction

code

WE20).

v

That

there

are

ports

defined

for

the

logical

systems

or

distribution

model

(transaction

code

WE21).

Preparing

the

ALE

module

for

testing

To

set

up

the

ALE

module

for

testing,

use

Port

Connector:

1.

Copy

the

SAP

configuration

file.

Rename

the

copied

file

portconnector.cfg.

2.

Open

portconnector.cfg

in

Connector

Configurator.

3.

Change

the

following

properties

in

the

Standard

tab:

v

ApplicationName

to

PortConnector

v

DELIVERYQUEUE

to

REQUESTQUEUE

v

REQUESTQUEUE

to

RESPONSEQUEUE

4.

Save

changes.

Close

portconnector.cfg.

5.

Open

sapconnector.cfg.

6.

Save

the

change.

Start

mySAP.com.

Testing

request

processing

for

the

ALE

module

To

test

the

ALE

module:

1.

Open

Test

Connector.

2.

Choose

File

>

Create/Select

Profile.

3.

Choose

File

>

New

Profile.

4.

Select

Browse.

a.

Choose

Open.

b.

For

Connector

Name,

enter

PortConnector.

c.

For

Broker

Type,

enter

WMQI.

d.

Choose

OK.

5.

Highlight

PortConnector.

Choose

OK.

6.

Choose

File

>

Connect.

7.

Create

a

business

object

instance:

a.

For

BO

Type,

select

sap_order03.

b.

Choose

Create.

c.

In

Enter

Name,

type

new

object.

Choose

OK.

8.

Change

the

verb

to

Create.

9.

Right-click

Control

Record.

Choose

Add

Instance.

10.

Expand

Control

Record.

Populate

these

fields:

v

IDoc_number

Appendix

A.

Quick

Steps

237

v

Sender_port

v

Partner_number_of_sender

v

Receiver_port

v

Partner_number_of_recipient

v

Client

v

SAP_Release

11.

Start

the

connector.

12.

In

Test

Connector,

choose

Request

>

Send.

Check

the

log

for

a

success

message.

Testing

event

processing

in

the

ALE

module

To

test

event

processing

in

the

ALE

module:

1.

Go

to

transaction

we19,

Test

Tool

for

IDoc

processing.

2.

Populate

the

field

with

an

existing

IDoc.

Choose

IDoc

>

Create.

3.

Choose

StandardOutboundProcessing

to

send

an

IDoc

to

the

test

connector.

4.

In

the

pop-up

window,

choose

the

check

mark.

5.

To

verify

that

the

IDoc

was

sent

from

SAP,

check

the

mySAP.com

connector

log

file

for

a

success

message.

If

the

event

exists

in

transaction

sm58,

then

it

was

not

sent

correctly.

6.

View

the

message

that

was

sent

to

the

SAPALE_Archive_Queue

to

verify

that

the

ProcessingStatus

was

successful.

If

you

do

not

see

a

success

message,

check

the

SAPALE_Error_Queue

to

see

if

a

failure

occurred.

Quick

steps

for

the

HDR

module

Before

configuring

the

HDR

module,

configure

the

following

connector-specific

property:

Property

Name

Default

Value

Value

Needed

Modules

Extension

BAPI

Generating

a

business

object

in

the

HDR

module

To

generate

a

business

object

in

the

HDR

module:

1.

Start

the

SAP

ODA.

2.

Start

the

business

object

designer.

3.

In

the

business

object

designer,

choose

File

>

New.

4.

Select

the

Configure

Discovery:

a.

Enter

the

host

address

for

the

machine

where

Discovery

is

running.

b.

Choose

Add

Host.

c.

Choose

OK.
5.

In

Step

3

of

the

wizard,

expand

the

Dynamic

Definitions.

a.

Expand

HDR.

b.

Right-click

Search

by

Name....

Choose

Search

for

Items.

c.

Type

kna1.

Choose

OK.

d.

Highlight

kna1.

Choose

Next.

e.

Choose

Next.

f.

Choose

OK.

238

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

6.

In

Notification,

choose

No.

7.

Select

″Open

new

business

object

definition

to

a

separate

window″.

Choose

Finish.

8.

Save

the

new

business

object

to

the

Repository

directory.

Preparing

the

HDR

module

for

testing

To

set

up

the

HDR

module

for

testing,

use

Port

Connector:

1.

Copy

the

SAP

configuration

file.

Rename

the

copied

file

portconnector.cfg.

2.

Open

portconnector.cfg

in

Connector

Configurator.

3.

Change

the

following

properties

in

the

Standard

tab:

v

ApplicationName

to

PortConnector

v

DELIVERYQUEUE

to

REQUESTQUEUE

v

REQUESTQUEUE

to

RESPONSEQUEUE

4.

Save

changes.

5.

Open

sapconnector.cfg.

6.

Change

REQUESTQUEUE

to

SYNCHRONOUSREQUESTQUEUE.

7.

Save

the

change.

Testing

the

HDR

module

To

test

the

BAPI

module:

1.

Open

Test

Connector.

2.

In

Business

Object

Type,

select

SAP_kna1.

Choose

Create.

3.

In

Enter

Name,

type

new

object.

Choose

OK.

4.

Change

the

verb

to

Retrieve.

5.

Populate

customer_number_KUNNR

with

an

existing

SAP

customer

number.

The

number

must

be

10

digits

long,

for

example:

0000000001.

6.

Choose

Request

>

Send.

7.

Check

the

log

file

for

a

success

message.

Appendix

A.

Quick

Steps

239

240

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Appendix

B.

Standard

configuration

properties

for

connectors

This

appendix

describes

the

standard

configuration

properties

for

the

connector

component

of

WebSphere

Business

Integration

adapters.

The

information

covers

connectors

running

on

the

following

integration

brokers:

v

WebSphere

InterChange

Server

(ICS)

v

WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

and

WebSphere

Business

Integration

Message

Broker,

collectively

referred

to

as

the

WebSphere

Message

Brokers

(WMQI).

v

WebSphere

Application

Server

(WAS)

Not

every

connector

makes

use

of

all

these

standard

properties.

When

you

select

an

integration

broker

from

Connector

Configurator,

you

will

see

a

list

of

the

standard

properties

that

you

need

to

configure

for

your

adapter

running

with

that

broker.

For

information

about

properties

specific

to

the

connector,

see

the

relevant

adapter

user

guide.

Note:

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

and

follow

the

conventions

for

each

operating

system.

New

and

deleted

properties

These

standard

properties

have

been

added

in

this

release.

New

properties

v

XMLNameSpaceFormat

Deleted

properties

v

RestartCount

Configuring

standard

connector

properties

Adapter

connectors

have

two

types

of

configuration

properties:

v

Standard

configuration

properties

v

Connector-specific

configuration

properties

This

section

describes

the

standard

configuration

properties.

For

information

on

configuration

properties

specific

to

a

connector,

see

its

adapter

user

guide.

Using

Connector

Configurator

You

configure

connector

properties

from

Connector

Configurator,

which

you

access

from

System

Manager.

For

more

information

on

using

Connector

Configurator,

refer

to

the

Connector

Configurator

appendix.

Note:

Connector

Configurator

and

System

Manager

run

only

on

the

Windows

system.

If

you

are

running

the

connector

on

a

UNIX

system,

you

must

have

a

Windows

machine

with

these

tools

installed.

To

set

connector

properties

©

Copyright

IBM

Corp.

2003,

2004

241

for

a

connector

that

runs

on

UNIX,

you

must

start

up

System

Manager

on

the

Windows

machine,

connect

to

the

UNIX

integration

broker,

and

bring

up

Connector

Configurator

for

the

connector.

Setting

and

updating

property

values

The

default

length

of

a

property

field

is

255

characters.

The

connector

uses

the

following

order

to

determine

a

property’s

value

(where

the

highest

number

overrides

other

values):

1.

Default

2.

Repository

(only

if

WebSphere

InterChange

Server

is

the

integration

broker)

3.

Local

configuration

file

4.

Command

line

A

connector

obtains

its

configuration

values

at

startup.

If

you

change

the

value

of

one

or

more

connector

properties

during

a

run-time

session,

the

property’s

Update

Method

determines

how

the

change

takes

effect.

There

are

four

different

update

methods

for

standard

connector

properties:

v

Dynamic

The

change

takes

effect

immediately

after

it

is

saved

in

System

Manager.

If

the

connector

is

working

in

stand-alone

mode

(independently

of

System

Manager),

for

example

with

one

of

the

WebSphere

message

brokers,

you

can

only

change

properties

through

the

configuration

file.

In

this

case,

a

dynamic

update

is

not

possible.

v

Component

restart

The

change

takes

effect

only

after

the

connector

is

stopped

and

then

restarted

in

System

Manager.

You

do

not

need

to

stop

and

restart

the

application-specific

component

or

the

integration

broker.

v

Server

restart

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component

and

the

integration

broker.

v

Agent

restart

(ICS

only)

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component.

To

determine

how

a

specific

property

is

updated,

refer

to

the

Update

Method

column

in

the

Connector

Configurator

window,

or

see

the

Update

Method

column

in

the

Property

Summary

table

below.

Summary

of

standard

properties

Table

51

on

page

243

provides

a

quick

reference

to

the

standard

connector

configuration

properties.

Not

all

the

connectors

make

use

of

all

these

properties,

and

property

settings

may

differ

from

integration

broker

to

integration

broker,

as

standard

property

dependencies

are

based

on

RepositoryDirectory.

You

must

set

the

values

of

some

of

these

properties

before

running

the

connector.

See

the

following

section

for

an

explanation

of

each

property.

242

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

51.

Summary

of

standard

configuration

properties

Property

name

Possible

values

Default

value

Update

method

Notes

AdminInQueue

Valid

JMS

queue

name

CONNECTORNAME

/ADMININQUEUE

Component

restart

Delivery

Transport

is

JMS

AdminOutQueue

Valid

JMS

queue

name

CONNECTORNAME/ADMINOUTQUEUE

Component

restart

Delivery

Transport

is

JMS

AgentConnections

1-4

1

Component

restart

Delivery

Transport

is

MQ

or

IDL:

Repository

directory

is

<REMOTE>

AgentTraceLevel

0-5

0

Dynamic

ApplicationName

Application

name

Value

specified

for

the

connector

application

name

Component

restart

BrokerType

ICS,

WMQI,

WAS

CharacterEncoding

ascii7,

ascii8,

SJIS,

Cp949,

GBK,

Big5,

Cp297,

Cp273,

Cp280,

Cp284,

Cp037,

Cp437

Note:

This

is

a

subset

of

supported

values.

ascii7

Component

restart

ConcurrentEventTriggeredFlows

1

to

32,767

1

Component

restart

Repository

directory

is

<REMOTE>

ContainerManagedEvents

No

value

or

JMS

No

value

Component

restart

Delivery

Transport

is

JMS

ControllerStoreAndForwardMode

true

or

false

True

Dynamic

Repository

directory

is

<REMOTE>

ControllerTraceLevel

0-5

0

Dynamic

Repository

directory

is

<REMOTE>

DeliveryQueue

CONNECTORNAME/DELIVERYQUEUE

Component

restart

JMS

transport

only

DeliveryTransport

MQ,

IDL,

or

JMS

JMS

Component

restart

If

Repository

directory

is

local,

then

value

is

JMS

only

DuplicateEventElimination

True

or

False

False

Component

restart

JMS

transport

only:

Container

Managed

Events

must

be

<NONE>

FaultQueue

CONNECTORNAME/FAULTQUEUE

Component

restart

JMS

transport

only

Appendix

B.

Standard

configuration

properties

for

connectors

243

Table

51.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

jms.FactoryClassName

CxCommon.Messaging.jms

.IBMMQSeriesFactory

or

CxCommon.Messaging

.jms.SonicMQFactory

or

any

Java

class

name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

JMS

transport

only

jms.MessageBrokerName

If

FactoryClassName

is

IBM,

use

crossworlds.queue.

manager.

If

FactoryClassName

is

Sonic,

use

localhost:2506.

crossworlds.queue.manager

Component

restart

JMS

transport

only

jms.NumConcurrentRequests

Positive

integer

10

Component

restart

JMS

transport

only

jms.Password

Any

valid

password

Component

restart

JMS

transport

only

jms.UserName

Any

valid

name

Component

restart

JMS

transport

only

JvmMaxHeapSize

Heap

size

in

megabytes

128m

Component

restart

Repository

directory

is

<REMOTE>

JvmMaxNativeStackSize

Size

of

stack

in

kilobytes

128k

Component

restart

Repository

directory

is

<REMOTE>

JvmMinHeapSize

Heap

size

in

megabytes

1m

Component

restart

Repository

directory

is

<REMOTE>

ListenerConcurrency

1-

100

1

Component

restart

Delivery

Transport

must

be

MQ

Locale

en_US,

ja_JP,

ko_KR,

zh_CN,

zh_TW,

fr_FR,

de_DE,

it_IT,

es_ES,

pt_BR

Note:

This

is

a

subset

of

the

supported

locales.

en_US

Component

restart

LogAtInterchangeEnd

True

or

False

False

Component

restart

Repository

Directory

must

be

<REMOTE>

MaxEventCapacity

1-2147483647

2147483647

Dynamic

Repository

Directory

must

be

<REMOTE>

MessageFileName

Path

or

filename

InterchangeSystem.txt

Component

restart

MonitorQueue

Any

valid

queue

name

CONNECTORNAME/MONITORQUEUE

Component

restart

JMS

transport

only:

DuplicateEvent

Elimination

must

be

True

OADAutoRestartAgent

True

or

False

False

Dynamic

Repository

Directory

must

be

<REMOTE>

244

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

51.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

OADMaxNumRetry

A

positive

number

1000

Dynamic

Repository

Directory

must

be

<REMOTE>

OADRetryTimeInterval

A

positive

number

in

minutes

10

Dynamic

Repository

Directory

must

be

<REMOTE>

PollEndTime

HH:MM

HH:MM

Component

restart

PollFrequency

A

positive

integer

in

milliseconds

no

(to

disable

polling)

key

(to

poll

only

when

the

letter

p

is

entered

in

the

connector’s

Command

Prompt

window)

10000

Dynamic

PollQuantity

1-500

1

Agent

restart

JMS

transport

only:

Container

Managed

Events

is

specified

PollStartTime

HH:MM(HH

is

0-23,

MM

is

0-59)

HH:MM

Component

restart

RepositoryDirectory

Location

of

metadata

repository

Agent

restart

For

ICS:

set

to

<REMOTE>

For

WebSphere

MQ

message

brokers

and

WAS:

set

to

C:\crossworlds\

repository

RequestQueue

Valid

JMS

queue

name

CONNECTORNAME/REQUESTQUEUE

Component

restart

Delivery

Transport

is

JMS

ResponseQueue

Valid

JMS

queue

name

CONNECTORNAME/RESPONSEQUEUE

Component

restart

Delivery

Transport

is

JMS:

required

only

if

Repository

directory

is

<REMOTE>

RestartRetryCount

0-99

3

Dynamic

RestartRetryInterval

A

sensible

positive

value

in

minutes:

1

-

2147483547

1

Dynamic

RHF2MessageDomain

mrm,

xml

mrm

Component

restart

Only

if

Delivery

Transport

is

JMS

and

WireFormat

is

CwXML.

Appendix

B.

Standard

configuration

properties

for

connectors

245

Table

51.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

SourceQueue

Valid

WebSphere

MQ

name

CONNECTORNAME/SOURCEQUEUE

Agent

restart

Only

if

Delivery

Transport

is

JMS

and

Container

Managed

Events

is

specified

SynchronousRequestQueue

CONNECTORNAME/

SYNCHRONOUSREQUESTQUEUE

Component

restart

Delivery

Transport

is

JMS

SynchronousRequestTimeout

0

-

any

number

(millisecs)

0

Component

restart

Delivery

Transport

is

JMS

SynchronousResponseQueue

CONNECTORNAME/

SYNCHRONOUSRESPONSEQUEUE

Component

restart

Delivery

Transport

is

JMS

WireFormat

CwXML,

CwBO

CwXML

Agent

restart

CwXML

if

Repository

Directory

is

not

<REMOTE>:

CwBO

if

Repository

Directory

is

<REMOTE>

WsifSynchronousRequest

Timeout

0

-

any

number

(millisecs)

0

Component

restart

WAS

only

XMLNameSpaceFormat

short,

long

short

Agent

restart

WebSphere

MQ

message

brokers

and

WAS

only

Standard

configuration

properties

This

section

lists

and

defines

each

of

the

standard

connector

configuration

properties.

AdminInQueue

The

queue

that

is

used

by

the

integration

broker

to

send

administrative

messages

to

the

connector.

The

default

value

is

CONNECTORNAME/ADMININQUEUE.

AdminOutQueue

The

queue

that

is

used

by

the

connector

to

send

administrative

messages

to

the

integration

broker.

The

default

value

is

CONNECTORNAME/ADMINOUTQUEUE.

AgentConnections

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

The

AgentConnections

property

controls

the

number

of

ORB

connections

opened

by

orb.init[].

246

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

By

default,

the

value

of

this

property

is

set

to

1.

There

is

no

need

to

change

this

default.

AgentTraceLevel

Level

of

trace

messages

for

the

application-specific

component.

The

default

is

0.

The

connector

delivers

all

trace

messages

applicable

at

the

tracing

level

set

or

lower.

ApplicationName

Name

that

uniquely

identifies

the

connector’s

application.

This

name

is

used

by

the

system

administrator

to

monitor

the

WebSphere

business

integration

system

environment.

This

property

must

have

a

value

before

you

can

run

the

connector.

BrokerType

Identifies

the

integration

broker

type

that

you

are

using.

The

options

are

ICS,

WebSphere

message

brokers

(WMQI,

WMQIB

or

WBIMB)

or

WAS.

CharacterEncoding

Specifies

the

character

code

set

used

to

map

from

a

character

(such

as

a

letter

of

the

alphabet,

a

numeric

representation,

or

a

punctuation

mark)

to

a

numeric

value.

Note:

Java-based

connectors

do

not

use

this

property.

A

C++

connector

currently

uses

the

value

ascii7

for

this

property.

By

default,

a

subset

of

supported

character

encodings

only

is

displayed

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

Connector

Configurator.

ConcurrentEventTriggeredFlows

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Determines

how

many

business

objects

can

be

concurrently

processed

by

the

connector

for

event

delivery.

Set

the

value

of

this

attribute

to

the

number

of

business

objects

you

want

concurrently

mapped

and

delivered.

For

example,

set

the

value

of

this

property

to

5

to

cause

five

business

objects

to

be

concurrently

processed.

The

default

value

is

1.

Setting

this

property

to

a

value

greater

than

1

allows

a

connector

for

a

source

application

to

map

multiple

event

business

objects

at

the

same

time

and

deliver

them

to

multiple

collaboration

instances

simultaneously.

This

speeds

delivery

of

business

objects

to

the

integration

broker,

particularly

if

the

business

objects

use

complex

maps.

Increasing

the

arrival

rate

of

business

objects

to

collaborations

can

improve

overall

performance

in

the

system.

To

implement

concurrent

processing

for

an

entire

flow

(from

a

source

application

to

a

destination

application),

you

must:

v

Configure

the

collaboration

to

use

multiple

threads

by

setting

its

Maximum

number

of

concurrent

events

property

high

enough

to

use

multiple

threads.

v

Ensure

that

the

destination

application’s

application-specific

component

can

process

requests

concurrently.

That

is,

it

must

be

multi-threaded,

or

be

able

to

use

connector

agent

parallelism

and

be

configured

for

multiple

processes.

Set

the

Parallel

Process

Degree

configuration

property

to

a

value

greater

than

1.

Appendix

B.

Standard

configuration

properties

for

connectors

247

The

ConcurrentEventTriggeredFlows

property

has

no

effect

on

connector

polling,

which

is

single-threaded

and

performed

serially.

ContainerManagedEvents

This

property

allows

a

JMS-enabled

connector

with

a

JMS

event

store

to

provide

guaranteed

event

delivery,

in

which

an

event

is

removed

from

the

source

queue

and

placed

on

the

destination

queue

as

a

single

JMS

transaction.

The

default

value

is

No

value.

When

ContainerManagedEvents

is

set

to

JMS,

you

must

configure

the

following

properties

to

enable

guaranteed

event

delivery:

v

PollQuantity

=

1

to

500

v

SourceQueue

=

CONNECTORNAME/SOURCEQUEUE

You

must

also

configure

a

data

handler

with

the

MimeType,

DHClass,

and

DataHandlerConfigMOName

(optional)

properties.

To

set

those

values,

use

the

Data

Handler

tab

in

Connector

Configurator.

The

fields

for

the

values

under

the

Data

Handler

tab

will

be

displayed

only

if

you

have

set

ContainerManagedEvents

to

JMS.

Note:

When

ContainerManagedEvents

is

set

to

JMS,

the

connector

does

not

call

its

pollForEvents()

method,

thereby

disabling

that

method’s

functionality.

This

property

only

appears

if

the

DeliveryTransport

property

is

set

to

the

value

JMS.

ControllerStoreAndForwardMode

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Sets

the

behavior

of

the

connector

controller

after

it

detects

that

the

destination

application-specific

component

is

unavailable.

If

this

property

is

set

to

true

and

the

destination

application-specific

component

is

unavailable

when

an

event

reaches

ICS,

the

connector

controller

blocks

the

request

to

the

application-specific

component.

When

the

application-specific

component

becomes

operational,

the

controller

forwards

the

request

to

it.

However,

if

the

destination

application’s

application-specific

component

becomes

unavailable

after

the

connector

controller

forwards

a

service

call

request

to

it,

the

connector

controller

fails

the

request.

If

this

property

is

set

to

false,

the

connector

controller

begins

failing

all

service

call

requests

as

soon

as

it

detects

that

the

destination

application-specific

component

is

unavailable.

The

default

is

true.

ControllerTraceLevel

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Level

of

trace

messages

for

the

connector

controller.

The

default

is

0.

248

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

DeliveryQueue

Applicable

only

if

DeliveryTransport

is

JMS.

The

queue

that

is

used

by

the

connector

to

send

business

objects

to

the

integration

broker.

The

default

value

is

CONNECTORNAME/DELIVERYQUEUE.

DeliveryTransport

Specifies

the

transport

mechanism

for

the

delivery

of

events.

Possible

values

are

MQ

for

WebSphere

MQ,

IDL

for

CORBA

IIOP,

or

JMS

for

Java

Messaging

Service.

v

If

ICS

is

the

broker

type,

the

value

of

the

DeliveryTransport

property

can

be

MQ,

IDL,

or

JMS,

and

the

default

is

IDL.

v

If

the

RepositoryDirectory

is

a

local

directory,

the

value

may

only

be

JMS.

The

connector

sends

service

call

requests

and

administrative

messages

over

CORBA

IIOP

if

the

value

configured

for

the

DeliveryTransport

property

is

MQ

or

IDL.

WebSphere

MQ

and

IDL

Use

WebSphere

MQ

rather

than

IDL

for

event

delivery

transport,

unless

you

must

have

only

one

product.

WebSphere

MQ

offers

the

following

advantages

over

IDL:

v

Asynchronous

communication:

WebSphere

MQ

allows

the

application-specific

component

to

poll

and

persistently

store

events

even

when

the

server

is

not

available.

v

Server

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

server

side.

In

optimized

mode,

WebSphere

MQ

stores

only

the

pointer

to

an

event

in

the

repository

database,

while

the

actual

event

remains

in

the

WebSphere

MQ

queue.

This

saves

having

to

write

potentially

large

events

to

the

repository

database.

v

Agent

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

application-specific

component

side.

Using

WebSphere

MQ,

the

connector’s

polling

thread

picks

up

an

event,

places

it

in

the

connector’s

queue,

then

picks

up

the

next

event.

This

is

faster

than

IDL,

which

requires

the

connector’s

polling

thread

to

pick

up

an

event,

go

over

the

network

into

the

server

process,

store

the

event

persistently

in

the

repository

database,

then

pick

up

the

next

event.

JMS

Enables

communication

between

the

connector

and

client

connector

framework

using

Java

Messaging

Service

(JMS).

If

you

select

JMS

as

the

delivery

transport,

additional

JMS

properties

such

as

jms.MessageBrokerName,

jms.FactoryClassName,

jms.Password,

and

jms.UserName,

appear

in

Connector

Configurator.

The

first

two

of

these

properties

are

required

for

this

transport.

Important:

There

may

be

a

memory

limitation

if

you

use

the

JMS

transport

mechanism

for

a

connector

in

the

following

environment:

v

AIX

5.0

v

WebSphere

MQ

5.3.0.1

v

When

ICS

is

the

integration

broker

Appendix

B.

Standard

configuration

properties

for

connectors

249

In

this

environment,

you

may

experience

difficulty

starting

both

the

connector

controller

(on

the

server

side)

and

the

connector

(on

the

client

side)

due

to

memory

use

within

the

WebSphere

MQ

client.

If

your

installation

uses

less

than

768M

of

process

heap

size,

IBM

recommends

that

you

set:

v

The

LDR_CNTRL

environment

variable

in

the

CWSharedEnv.sh

script.

This

script

resides

in

the

\bin

directory

below

the

product

directory.

With

a

text

editor,

add

the

following

line

as

the

first

line

in

the

CWSharedEnv.sh

script:

export

LDR_CNTRL=MAXDATA=0x30000000

This

line

restricts

heap

memory

usage

to

a

maximum

of

768

MB

(3

segments

*

256

MB).

If

the

process

memory

grows

more

than

this

limit,

page

swapping

can

occur,

which

can

adversely

affect

the

performance

of

your

system.

v

The

IPCCBaseAddress

property

to

a

value

of

11

or

12.

For

more

information

on

this

property,

see

the

System

Installation

Guide

for

UNIX.

DuplicateEventElimination

When

you

set

this

property

to

true,

a

JMS-enabled

connector

can

ensure

that

duplicate

events

are

not

delivered

to

the

delivery

queue.

To

use

this

feature,

the

connector

must

have

a

unique

event

identifier

set

as

the

business

object’s

ObjectEventId

attribute

in

the

application-specific

code.

This

is

done

during

connector

development.

This

property

can

also

be

set

to

false.

Note:

When

DuplicateEventElimination

is

set

to

true,

you

must

also

configure

the

MonitorQueue

property

to

enable

guaranteed

event

delivery.

FaultQueue

If

the

connector

experiences

an

error

while

processing

a

message

then

the

connector

moves

the

message

to

the

queue

specified

in

this

property,

along

with

a

status

indicator

and

a

description

of

the

problem.

The

default

value

is

CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize

The

maximum

heap

size

for

the

agent

(in

megabytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

128m.

JvmMaxNativeStackSize

The

maximum

native

stack

size

for

the

agent

(in

kilobytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

128k.

JvmMinHeapSize

The

minimum

heap

size

for

the

agent

(in

megabytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

1m.

250

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

jms.FactoryClassName

Specifies

the

class

name

to

instantiate

for

a

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.MessageBrokerName

Specifies

the

broker

name

to

use

for

the

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies

the

maximum

number

of

concurrent

service

call

requests

that

can

be

sent

to

a

connector

at

the

same

time.

Once

that

maximum

is

reached,

new

service

calls

block

and

wait

for

another

request

to

complete

before

proceeding.

The

default

value

is

10.

jms.Password

Specifies

the

password

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

jms.UserName

Specifies

the

user

name

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

ListenerConcurrency

This

property

supports

multi-threading

in

MQ

Listener

when

ICS

is

the

integration

broker.

It

enables

batch

writing

of

multiple

events

to

the

database,

thus

improving

system

performance.

The

default

value

is

1.

This

property

applies

only

to

connectors

using

MQ

transport.

The

DeliveryTransport

property

must

be

set

to

MQ.

Locale

Specifies

the

language

code,

country

or

territory,

and,

optionally,

the

associated

character

code

set.

The

value

of

this

property

determines

such

cultural

conventions

as

collation

and

sort

order

of

data,

date

and

time

formats,

and

the

symbols

used

in

monetary

specifications.

A

locale

name

has

the

following

format:

ll_TT.codeset

where:

ll

a

two-character

language

code

(usually

in

lower

case)

Appendix

B.

Standard

configuration

properties

for

connectors

251

TT

a

two-letter

country

or

territory

code

(usually

in

upper

case)

codeset

the

name

of

the

associated

character

code

set;

this

portion

of

the

name

is

often

optional.

By

default,

only

a

subset

of

supported

locales

appears

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

Connector

Configurator.

The

default

value

is

en_US.

If

the

connector

has

not

been

globalized,

the

only

valid

value

for

this

property

is

en_US.

To

determine

whether

a

specific

connector

has

been

globalized,

see

the

connector

version

list

on

these

websites:

http://www.ibm.com/software/websphere/wbiadapters/infocenter,

or

http://www.ibm.com/websphere/integration/wicserver/infocenter

LogAtInterchangeEnd

Applicable

only

if

RespositoryDirectory

is

<REMOTE>.

Specifies

whether

to

log

errors

to

the

integration

broker’s

log

destination.

Logging

to

the

broker’s

log

destination

also

turns

on

e-mail

notification,

which

generates

e-mail

messages

for

the

MESSAGE_RECIPIENT

specified

in

the

InterchangeSystem.cfg

file

when

errors

or

fatal

errors

occur.

For

example,

when

a

connector

loses

its

connection

to

its

application,

if

LogAtInterChangeEnd

is

set

to

true,

an

e-mail

message

is

sent

to

the

specified

message

recipient.

The

default

is

false.

MaxEventCapacity

The

maximum

number

of

events

in

the

controller

buffer.

This

property

is

used

by

flow

control

and

is

applicable

only

if

the

value

of

the

RepositoryDirectory

property

is

<REMOTE>.

The

value

can

be

a

positive

integer

between

1

and

2147483647.

The

default

value

is

2147483647.

MessageFileName

The

name

of

the

connector

message

file.

The

standard

location

for

the

message

file

is

\connectors\messages.

Specify

the

message

filename

in

an

absolute

path

if

the

message

file

is

not

located

in

the

standard

location.

If

a

connector

message

file

does

not

exist,

the

connector

uses

InterchangeSystem.txt

as

the

message

file.

This

file

is

located

in

the

product

directory.

Note:

To

determine

whether

a

specific

connector

has

its

own

message

file,

see

the

individual

adapter

user

guide.

MonitorQueue

The

logical

queue

that

the

connector

uses

to

monitor

duplicate

events.

It

is

used

only

if

the

DeliveryTransport

property

value

is

JMS

and

DuplicateEventElimination

is

set

to

TRUE.

252

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

default

value

is

CONNECTORNAME/MONITORQUEUE

OADAutoRestartAgent

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

Specifies

whether

the

connector

uses

the

automatic

and

remote

restart

feature.

This

feature

uses

the

MQ-triggered

Object

Activation

Daemon

(OAD)

to

restart

the

connector

after

an

abnormal

shutdown,

or

to

start

a

remote

connector

from

System

Monitor.

This

property

must

be

set

to

trueto

enable

the

automatic

and

remote

restart

feature.

For

information

on

how

to

configure

the

MQ-triggered

OAD

feature.

see

the

Installation

Guide

for

Windows

or

for

UNIX.

The

default

value

is

false.

OADMaxNumRetry

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

Specifies

the

maximum

number

of

times

that

the

MQ-triggered

OAD

automatically

attempts

to

restart

the

connector

after

an

abnormal

shutdown.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

The

default

value

is

1000.

OADRetryTimeInterval

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

Specifies

the

number

of

minutes

in

the

retry-time

interval

for

the

MQ-triggered

OAD.

If

the

connector

agent

does

not

restart

within

this

retry-time

interval,

the

connector

controller

asks

the

OAD

to

restart

the

connector

agent

again.

The

OAD

repeats

this

retry

process

as

many

times

as

specified

by

the

OADMaxNumRetry

property.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

The

default

is

10.

PollEndTime

Time

to

stop

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

PollFrequency

The

amount

of

time

between

polling

actions.

Set

PollFrequency

to

one

of

the

following

values:

v

The

number

of

milliseconds

between

polling

actions.

v

The

word

key,

which

causes

the

connector

to

poll

only

when

you

type

the

letter

p

in

the

connector’s

Command

Prompt

window.

Enter

the

word

in

lowercase.

v

The

word

no,

which

causes

the

connector

not

to

poll.

Enter

the

word

in

lowercase.

Appendix

B.

Standard

configuration

properties

for

connectors

253

The

default

is

10000.

Important:

Some

connectors

have

restrictions

on

the

use

of

this

property.

To

determine

whether

a

specific

connector

does,

see

the

installing

and

configuring

chapter

of

its

adapter

guide.

PollQuantity

Designates

the

number

of

items

from

the

application

that

the

connector

should

poll

for.

If

the

adapter

has

a

connector-specific

property

for

setting

the

poll

quantity,

the

value

set

in

the

connector-specific

property

will

override

the

standard

property

value.

PollStartTime

The

time

to

start

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

RequestQueue

The

queue

that

is

used

by

the

integration

broker

to

send

business

objects

to

the

connector.

The

default

value

is

CONNECTOR/REQUESTQUEUE.

RepositoryDirectory

The

location

of

the

repository

from

which

the

connector

reads

the

XML

schema

documents

that

store

the

meta-data

for

business

object

definitions.

When

the

integration

broker

is

ICS,

this

value

must

be

set

to

<REMOTE>

because

the

connector

obtains

this

information

from

the

InterChange

Server

repository.

When

the

integration

broker

is

a

WebSphere

message

broker

or

WAS,

this

value

must

be

set

to

<local

directory>.

ResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS

and

required

only

if

RepositoryDirectory

is

<REMOTE>.

Designates

the

JMS

response

queue,

which

delivers

a

response

message

from

the

connector

framework

to

the

integration

broker.

When

the

integration

broker

is

ICS,

the

server

sends

the

request

and

waits

for

a

response

message

in

the

JMS

response

queue.

RestartRetryCount

Specifies

the

number

of

times

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

number

of

times

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

The

default

is

3.

254

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

RestartRetryInterval

Specifies

the

interval

in

minutes

at

which

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

interval

at

which

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

Possible

values

ranges

from

1

to

2147483647.

The

default

is

1.

RHF2MessageDomain

WebSphere

message

brokers

and

WAS

only.

This

property

allows

you

to

configure

the

value

of

the

field

domain

name

in

the

JMS

header.

When

data

is

sent

to

WMQI

over

JMS

transport,

the

adapter

framework

writes

JMS

header

information,

with

a

domain

name

and

a

fixed

value

of

mrm.

A

connfigurable

domain

name

enables

users

to

track

how

the

WMQI

broker

processes

the

message

data.

A

sample

header

would

look

like

this:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

The

default

value

is

mrm,

but

it

may

also

be

set

to

xml.

This

property

only

appears

when

DeliveryTransport

is

set

to

JMSand

WireFormat

is

set

to

CwXML.

SourceQueue

Applicable

only

if

DeliveryTransport

is

JMS

and

ContainerManagedEvents

is

specified.

Designates

the

JMS

source

queue

for

the

connector

framework

in

support

of

guaranteed

event

delivery

for

JMS-enabled

connectors

that

use

a

JMS

event

store.

For

further

information,

see

“ContainerManagedEvents”

on

page

248.

The

default

value

is

CONNECTOR/SOURCEQUEUE.

SynchronousRequestQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

request

messages

that

require

a

synchronous

response

from

the

connector

framework

to

the

broker.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

With

synchronous

execution,

the

connector

framework

sends

a

message

to

the

SynchronousRequestQueue

and

waits

for

a

response

back

from

the

broker

on

the

SynchronousResponseQueue.

The

response

message

sent

to

the

connector

bears

a

correlation

ID

that

matches

the

ID

of

the

original

message.

The

default

is

CONNECTORNAME/SYNCHRONOUSREQUESTQUEUE

SynchronousResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

response

messages

sent

in

reply

to

a

synchronous

request

from

the

broker

to

the

connector

framework.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

Appendix

B.

Standard

configuration

properties

for

connectors

255

The

default

is

CONNECTORNAME/SYNCHRONOUSRESPONSEQUEUE

SynchronousRequestTimeout

Applicable

only

if

DeliveryTransport

is

JMS.

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified

time,

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

WireFormat

Message

format

on

the

transport.

v

If

the

RepositoryDirectory

is

a

local

directory,

the

setting

is

CwXML.

v

If

the

value

of

RepositoryDirectory

is

<REMOTE>,

the

setting

isCwBO.

WsifSynchronousRequest

Timeout

WAS

integration

broker

only.

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified,

time

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

XMLNameSpaceFormat

WebSphere

message

brokers

and

WAS

integration

broker

only.

A

strong

property

that

allows

the

user

to

specify

short

and

long

name

spaces

in

the

XML

format

of

business

object

definitions.

The

default

value

is

short.

256

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Appendix

C.

Connector

configurator

This

appendix

describes

how

to

use

Connector

Configurator

to

set

configuration

property

values

for

your

adapter.

You

use

Connector

Configurator

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector

v

Create

a

configuration

file

v

Set

properties

in

a

configuration

file

Note:

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

and

follow

the

conventions

for

each

operating

system.

The

topics

covered

in

this

appendix

are:

v

“Overview

of

Connector

Configurator”

on

page

257

v

“Starting

Connector

Configurator”

on

page

258

v

“Creating

a

connector-specific

property

template”

on

page

259

v

“Creating

a

new

configuration

file”

on

page

261

v

“Setting

the

configuration

file

properties”

on

page

264

v

“Using

Connector

Configurator

in

a

globalized

environment”

on

page

270

Overview

of

Connector

Configurator

Connector

Configurator

allows

you

to

configure

the

connector

component

of

your

adapter

for

use

with

these

integration

brokers:

v

WebSphere

InterChange

Server

(ICS)

v

WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

and

WebSphere

Business

Integration

Message

Broker,

collectively

referred

to

as

the

WebSphere

Message

Brokers

(WMQI)

v

WebSphere

Application

Server

(WAS)

You

use

Connector

Configurator

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector.

v

Create

a

connector

configuration

file;

you

must

create

one

configuration

file

for

each

connector

you

install.

v

Set

properties

in

a

configuration

file.

You

may

need

to

modify

the

default

values

that

are

set

for

properties

in

the

connector

templates.

You

must

also

designate

supported

business

object

definitions

and,

with

ICS,

maps

for

use

with

collaborations

as

well

as

specify

messaging,

logging

and

tracing,

and

data

handler

parameters,

as

required.

The

mode

in

which

you

run

Connector

Configurator,

and

the

configuration

file

type

you

use,

may

differ

according

to

which

integration

broker

you

are

running.

For

example,

if

WMQI

is

your

broker,

you

run

Connector

Configurator

directly,

and

not

from

within

System

Manager

(see

“Running

Configurator

in

stand-alone

mode”

on

page

258).

©

Copyright

IBM

Corp.

2003,

2004

257

Connector

configuration

properties

include

both

standard

configuration

properties

(the

properties

that

all

connectors

have)

and

connector-specific

properties

(properties

that

are

needed

by

the

connector

for

a

specific

application

or

technology).

Because

standard

properties

are

used

by

all

connectors,

you

do

not

need

to

define

those

properties

from

scratch;

Connector

Configurator

incorporates

them

into

your

configuration

file

as

soon

as

you

create

the

file.

However,

you

do

need

to

set

the

value

of

each

standard

property

in

Connector

Configurator.

The

range

of

standard

properties

may

not

be

the

same

for

all

brokers

and

all

configurations.

Some

properties

are

available

only

if

other

properties

are

given

a

specific

value.

The

Standard

Properties

window

in

Connector

Configurator

will

show

the

properties

available

for

your

particular

configuration.

For

connector-specific

properties,

however,

you

need

first

to

define

the

properties

and

then

set

their

values.

You

do

this

by

creating

a

connector-specific

property

template

for

your

particular

adapter.

There

may

already

be

a

template

set

up

in

your

system,

in

which

case,

you

simply

use

that.

If

not,

follow

the

steps

in

“Creating

a

new

template”

on

page

259

to

set

up

a

new

one.

Note:

Connector

Configurator

runs

only

in

a

Windows

environment.

If

you

are

running

the

connector

in

a

UNIX

environment,

use

Connector

Configurator

in

Windows

to

modify

the

configuration

file

and

then

copy

the

file

to

your

UNIX

environment.

Starting

Connector

Configurator

You

can

start

and

run

Connector

Configurator

in

either

of

two

modes:

v

Independently,

in

stand-alone

mode

v

From

System

Manager

Running

Configurator

in

stand-alone

mode

You

can

run

Connector

Configurator

independently

and

work

with

connector

configuration

files,

irrespective

of

your

broker.

To

do

so:

v

From

Start>Programs,

click

IBM

WebSphere

InterChange

Server>IBM

WebSphere

Business

Integration

Toolset>Development>Connector

Configurator.

v

Select

File>New>Configuration

File.

v

When

you

click

the

pull-down

menu

next

to

System

Connectivity

Integration

Broker,

you

can

select

ICS,

WebSphere

Message

Brokers

or

WAS,

depending

on

your

broker.

You

may

choose

to

run

Connector

Configurator

independently

to

generate

the

file,

and

then

connect

to

System

Manager

to

save

it

in

a

System

Manager

project

(see

“Completing

a

configuration

file”

on

page

263.)

258

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Running

Configurator

from

System

Manager

You

can

run

Connector

Configurator

from

System

Manager.

To

run

Connector

Configurator:

1.

Open

the

System

Manager.

2.

In

the

System

Manager

window,

expand

the

Integration

Component

Libraries

icon

and

highlight

Connectors.

3.

From

the

System

Manager

menu

bar,

click

Tools>Connector

Configurator.

The

Connector

Configurator

window

opens

and

displays

a

New

Connector

dialog

box.

4.

When

you

click

the

pull-down

menu

next

to

System

Connectivity

Integration

Broker,

you

can

select

ICS,

WebSphere

Message

Brokers

or

WAS,

depending

on

your

broker.

To

edit

an

existing

configuration

file:

1.

In

the

System

Manager

window,

select

any

of

the

configuration

files

listed

in

the

Connector

folder

and

right-click

on

it.

Connector

Configurator

opens

and

displays

the

configuration

file

with

the

integration

broker

type

and

file

name

at

the

top.

2.

Click

the

Standard

Properties

tab

to

see

which

properties

are

included

in

this

configuration

file.

Creating

a

connector-specific

property

template

To

create

a

configuration

file

for

your

connector,

you

need

a

connector-specific

property

template

as

well

as

the

system-supplied

standard

properties.

You

can

create

a

brand-new

template

for

the

connector-specific

properties

of

your

connector,

or

you

can

use

an

existing

file

as

the

template.

v

To

create

a

new

template,

see

“Creating

a

new

template”

on

page

259.

v

To

use

an

existing

file,

simply

modify

an

existing

template

and

save

it

under

the

new

name.

Creating

a

new

template

This

section

describes

how

you

create

properties

in

the

template,

define

general

characteristics

and

values

for

those

properties,

and

specify

any

dependencies

between

the

properties.

Then

you

save

the

template

and

use

it

as

the

base

for

creating

a

new

connector

configuration

file.

To

create

a

template:

1.

Click

File>New>Connector-Specific

Property

Template.

2.

The

Connector-Specific

Property

Template

dialog

box

appears,

with

the

following

fields:

v

Template,

and

Name

Enter

a

unique

name

that

identifies

the

connector,

or

type

of

connector,

for

which

this

template

will

be

used.

You

will

see

this

name

again

when

you

open

the

dialog

box

for

creating

a

new

configuration

file

from

a

template.

v

Old

Template,

and

Select

the

Existing

Template

to

Modify

The

names

of

all

currently

available

templates

are

displayed

in

the

Template

Name

display.

Appendix

C.

Connector

configurator

259

v

To

see

the

connector-specific

property

definitions

in

any

template,

select

that

template’s

name

in

the

Template

Name

display.

A

list

of

the

property

definitions

contained

in

that

template

will

appear

in

the

Template

Preview

display.

You

can

use

an

existing

template

whose

property

definitions

are

similar

to

those

required

by

your

connector

as

a

starting

point

for

your

template.
3.

Select

a

template

from

the

Template

Name

display,

enter

that

template

name

in

the

Find

Name

field

(or

highlight

your

selection

in

Template

Name),

and

click

Next.

If

you

do

not

see

any

template

that

displays

the

connector-specific

properties

used

by

your

connector,

you

will

need

to

create

one.

Specifying

general

characteristics

When

you

click

Next

to

select

a

template,

the

Properties

-

Connector-Specific

Property

Template

dialog

box

appears.

The

dialog

box

has

tabs

for

General

characteristics

of

the

defined

properties

and

for

Value

restrictions.

The

General

display

has

the

following

fields:

v

General:

Property

Type

Updated

Method

Description

v

Flags

Standard

flags

v

Custom

Flag

Flag

After

you

have

made

selections

for

the

general

characteristics

of

the

property,

click

the

Value

tab.

Specifying

values

The

Value

tab

enables

you

to

set

the

maximum

length,

the

maximum

multiple

values,

a

default

value,

or

a

value

range

for

the

property.

It

also

allows

editable

values.

To

do

so:

1.

Click

the

Value

tab.

The

display

panel

for

Value

replaces

the

display

panel

for

General.

2.

Select

the

name

of

the

property

in

the

Edit

properties

display.

3.

In

the

fields

for

Max

Length

and

Max

Multiple

Values,

make

any

changes.

The

changes

will

not

be

accepted

unless

you

also

open

the

Property

Value

dialog

box

for

the

property,

described

in

the

next

step.

4.

Right-click

the

box

in

the

top

left-hand

corner

of

the

value

table

and

click

Add.

A

Property

Value

dialog

box

appears.

Depending

on

the

property

type,

the

dialog

box

allows

you

to

enter

either

a

value,

or

both

a

value

and

range.

Enter

the

appropriate

value

or

range,

and

click

OK.

5.

The

Value

panel

refreshes

to

display

any

changes

you

made

in

Max

Length

and

Max

Multiple

Values.

It

displays

a

table

with

three

columns:

The

Value

column

shows

the

value

that

you

entered

in

the

Property

Value

dialog

box,

and

any

previous

values

that

you

created.

The

Default

Value

column

allows

you

to

designate

any

of

the

values

as

the

default.

The

Value

Range

shows

the

range

that

you

entered

in

the

Property

Value

dialog

box.

260

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

After

a

value

has

been

created

and

appears

in

the

grid,

it

can

be

edited

from

within

the

table

display.

To

make

a

change

in

an

existing

value

in

the

table,

select

an

entire

row

by

clicking

on

the

row

number.

Then

right-click

in

the

Value

field

and

click

Edit

Value.

Setting

dependencies

When

you

have

made

your

changes

to

the

General

and

Value

tabs,

click

Next.

The

Dependences

-

Connector-Specific

Property

Template

dialog

box

appears.

A

dependent

property

is

a

property

that

is

included

in

the

template

and

used

in

the

configuration

file

only

if

the

value

of

another

property

meets

a

specific

condition.

For

example,

PollQuantity

appears

in

the

template

only

if

JMS

is

the

transport

mechanism

and

DuplicateEventElimination

is

set

to

True.

To

designate

a

property

as

dependent

and

to

set

the

condition

upon

which

it

depends,

do

this:

1.

In

the

Available

Properties

display,

select

the

property

that

will

be

made

dependent.

2.

In

the

Select

Property

field,

use

the

drop-down

menu

to

select

the

property

that

will

hold

the

conditional

value.

3.

In

the

Condition

Operator

field,

select

one

of

the

following:

==

(equal

to)

!=

(not

equal

to)

>

(greater

than)

<

(less

than)

>=

(greater

than

or

equal

to)

<=(less

than

or

equal

to)

4.

In

the

Conditional

Value

field,

enter

the

value

that

is

required

in

order

for

the

dependent

property

to

be

included

in

the

template.

5.

With

the

dependent

property

highlighted

in

the

Available

Properties

display,

click

an

arrow

to

move

it

to

the

Dependent

Property

display.

6.

Click

Finish.

Connector

Configurator

stores

the

information

you

have

entered

as

an

XML

document,

under

\data\app

in

the\bin

directory

where

you

have

installed

Connector

Configurator.

Creating

a

new

configuration

file

When

you

create

a

new

configuration

file,

your

first

step

is

to

select

an

integration

broker.

The

broker

you

select

determines

the

properties

that

will

appear

in

the

configuration

file.

To

select

a

broker:

v

In

the

Connector

Configurator

home

menu,

click

File>New>Connector

Configuration.

The

New

Connector

dialog

box

appears.

v

In

the

Integration

Broker

field,

select

ICS,

WebSphere

Message

Brokers

or

WAS

connectivity.

v

Complete

the

remaining

fields

in

the

New

Connector

window,

as

described

later

in

this

chapter.

You

can

also

do

this:

v

In

the

System

Manager

window,

right-click

on

the

Connectors

folder

and

select

Create

New

Connector.

Connector

Configurator

opens

and

displays

the

New

Connector

dialog

box.

Appendix

C.

Connector

configurator

261

Creating

a

configuration

file

from

a

connector-specific

template

Once

a

connector-specific

template

has

been

created,

you

can

use

it

to

create

a

configuration

file:

1.

Click

File>New>Connector

Configuration.

2.

The

New

Connector

dialog

box

appears,

with

the

following

fields:

v

Name

Enter

the

name

of

the

connector.

Names

are

case-sensitive.

The

name

you

enter

must

be

unique,

and

must

be

consistent

with

the

file

name

for

a

connector

that

is

installed

on

the

system.

Important:

Connector

Configurator

does

not

check

the

spelling

of

the

name

that

you

enter.

You

must

ensure

that

the

name

is

correct.

v

System

Connectivity

Click

ICS

or

WebSphere

Message

Brokers

or

WAS.

v

Select

Connector-Specific

Property

Template

Type

the

name

of

the

template

that

has

been

designed

for

your

connector.

The

available

templates

are

shown

in

the

Template

Name

display.

When

you

select

a

name

in

the

Template

Name

display,

the

Property

Template

Preview

display

shows

the

connector-specific

properties

that

have

been

defined

in

that

template.

Select

the

template

you

want

to

use

and

click

OK.
3.

A

configuration

screen

appears

for

the

connector

that

you

are

configuring.

The

title

bar

shows

the

integration

broker

and

connector

names.

You

can

fill

in

all

the

field

values

to

complete

the

definition

now,

or

you

can

save

the

file

and

complete

the

fields

later.

4.

To

save

the

file,

click

File>Save>To

File

or

File>Save>To

Project.

To

save

to

a

project,

System

Manager

must

be

running.

If

you

save

as

a

file,

the

Save

File

Connector

dialog

box

appears.

Choose

*.cfg

as

the

file

type,

verify

in

the

File

Name

field

that

the

name

is

spelled

correctly

and

has

the

correct

case,

navigate

to

the

directory

where

you

want

to

locate

the

file,

and

click

Save.

The

status

display

in

the

message

panel

of

Connector

Configurator

indicates

that

the

configuration

file

was

successfully

created.

Important:

The

directory

path

and

name

that

you

establish

here

must

match

the

connector

configuration

file

path

and

name

that

you

supply

in

the

startup

file

for

the

connector.

5.

To

complete

the

connector

definition,

enter

values

in

the

fields

for

each

of

the

tabs

of

the

Connector

Configurator

window,

as

described

later

in

this

chapter.

Using

an

existing

file

You

may

have

an

existing

file

available

in

one

or

more

of

the

following

formats:

v

A

connector

definition

file.

This

is

a

text

file

that

lists

properties

and

applicable

default

values

for

a

specific

connector.

Some

connectors

include

such

a

file

in

a

\repository

directory

in

their

delivery

package

(the

file

typically

has

the

extension

.txt;

for

example,

CN_XML.txt

for

the

XML

connector).

v

An

ICS

repository

file.

Definitions

used

in

a

previous

ICS

implementation

of

the

connector

may

be

available

to

you

in

a

repository

file

that

was

used

in

the

configuration

of

that

connector.

Such

a

file

typically

has

the

extension

.in

or

.out.

262

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

A

previous

configuration

file

for

the

connector.

Such

a

file

typically

has

the

extension

*.cfg.

Although

any

of

these

file

sources

may

contain

most

or

all

of

the

connector-specific

properties

for

your

connector,

the

connector

configuration

file

will

not

be

complete

until

you

have

opened

the

file

and

set

properties,

as

described

later

in

this

chapter.

To

use

an

existing

file

to

configure

a

connector,

you

must

open

the

file

in

Connector

Configurator,

revise

the

configuration,

and

then

resave

the

file.

Follow

these

steps

to

open

a

*.txt,

*.cfg,

or

*.in

file

from

a

directory:

1.

In

Connector

Configurator,

click

File>Open>From

File.

2.

In

the

Open

File

Connector

dialog

box,

select

one

of

the

following

file

types

to

see

the

available

files:

v

Configuration

(*.cfg)

v

ICS

Repository

(*.in,

*.out)

Choose

this

option

if

a

repository

file

was

used

to

configure

the

connector

in

an

ICS

environment.

A

repository

file

may

include

multiple

connector

definitions,

all

of

which

will

appear

when

you

open

the

file.

v

All

files

(*.*)

Choose

this

option

if

a

*.txt

file

was

delivered

in

the

adapter

package

for

the

connector,

or

if

a

definition

file

is

available

under

another

extension.
3.

In

the

directory

display,

navigate

to

the

appropriate

connector

definition

file,

select

it,

and

click

Open.

Follow

these

steps

to

open

a

connector

configuration

from

a

System

Manager

project:

1.

Start

System

Manager.

A

configuration

can

be

opened

from

or

saved

to

System

Manager

only

if

System

Manager

has

been

started.

2.

Start

Connector

Configurator.

3.

Click

File>Open>From

Project.

Completing

a

configuration

file

When

you

open

a

configuration

file

or

a

connector

from

a

project,

the

Connector

Configurator

window

displays

the

configuration

screen,

with

the

current

attributes

and

values.

The

title

of

the

configuration

screen

displays

the

integration

broker

and

connector

name

as

specified

in

the

file.

Make

sure

you

have

the

correct

broker.

If

not,

change

the

broker

value

before

you

configure

the

connector.

To

do

so:

1.

Under

the

Standard

Properties

tab,

select

the

value

field

for

the

BrokerType

property.

In

the

drop-down

menu,

select

the

value

ICS,

WMQI,

or

WAS.

2.

The

Standard

Properties

tab

will

display

the

properties

associated

with

the

selected

broker.

You

can

save

the

file

now

or

complete

the

remaining

configuration

fields,

as

described

in

“Specifying

supported

business

object

definitions”

on

page

266..

3.

When

you

have

finished

your

configuration,

click

File>Save>To

Project

or

File>Save>To

File.

If

you

are

saving

to

file,

select

*.cfg

as

the

extension,

select

the

correct

location

for

the

file

and

click

Save.

Appendix

C.

Connector

configurator

263

If

multiple

connector

configurations

are

open,

click

Save

All

to

File

to

save

all

of

the

configurations

to

file,

or

click

Save

All

to

Project

to

save

all

connector

configurations

to

a

System

Manager

project.

Before

it

saves

the

file,

Connector

Configurator

checks

that

values

have

been

set

for

all

required

standard

properties.

If

a

required

standard

property

is

missing

a

value,

Connector

Configurator

displays

a

message

that

the

validation

failed.

You

must

supply

a

value

for

the

property

in

order

to

save

the

configuration

file.

Setting

the

configuration

file

properties

When

you

create

and

name

a

new

connector

configuration

file,

or

when

you

open

an

existing

connector

configuration

file,

Connector

Configurator

displays

a

configuration

screen

with

tabs

for

the

categories

of

required

configuration

values.

Connector

Configurator

requires

values

for

properties

in

these

categories

for

connectors

running

on

all

brokers:

v

Standard

Properties

v

Connector-specific

Properties

v

Supported

Business

Objects

v

Trace/Log

File

values

v

Data

Handler

(applicable

for

connectors

that

use

JMS

messaging

with

guaranteed

event

delivery)

Note:

For

connectors

that

use

JMS

messaging,

an

additional

category

may

display,

for

configuration

of

data

handlers

that

convert

the

data

to

business

objects.

For

connectors

running

on

ICS,

values

for

these

properties

are

also

required:

v

Associated

Maps

v

Resources

v

Messaging

(where

applicable)

Important:

Connector

Configurator

accepts

property

values

in

either

English

or

non-English

character

sets.

However,

the

names

of

both

standard

and

connector-specific

properties,

and

the

names

of

supported

business

objects,

must

use

the

English

character

set

only.

Standard

properties

differ

from

connector-specific

properties

as

follows:

v

Standard

properties

of

a

connector

are

shared

by

both

the

application-specific

component

of

a

connector

and

its

broker

component.

All

connectors

have

the

same

set

of

standard

properties.

These

properties

are

described

in

Appendix

A

of

each

adapter

guide.

You

can

change

some

but

not

all

of

these

values.

v

Application-specific

properties

apply

only

to

the

application-specific

component

of

a

connector,

that

is,

the

component

that

interacts

directly

with

the

application.

Each

connector

has

application-specific

properties

that

are

unique

to

its

application.

Some

of

these

properties

provide

default

values

and

some

do

not;

you

can

modify

some

of

the

default

values.

The

installation

and

configuration

chapters

of

each

adapter

guide

describe

the

application-specific

properties

and

the

recommended

values.

The

fields

for

Standard

Properties

and

Connector-Specific

Properties

are

color-coded

to

show

which

are

configurable:

264

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

A

field

with

a

grey

background

indicates

a

standard

property.

You

can

change

the

value

but

cannot

change

the

name

or

remove

the

property.

v

A

field

with

a

white

background

indicates

an

application-specific

property.

These

properties

vary

according

to

the

specific

needs

of

the

application

or

connector.

You

can

change

the

value

and

delete

these

properties.

v

Value

fields

are

configurable.

v

The

Update

Method

field

is

informational

and

not

configurable.

This

field

specifies

the

action

required

to

activate

a

property

whose

value

has

changed.

Setting

standard

connector

properties

To

change

the

value

of

a

standard

property:

1.

Click

in

the

field

whose

value

you

want

to

set.

2.

Either

enter

a

value,

or

select

one

from

the

drop-down

menu

if

it

appears.

3.

After

entering

all

the

values

for

the

standard

properties,

you

can

do

one

of

the

following:

v

To

discard

the

changes,

preserve

the

original

values,

and

exit

Connector

Configurator,

click

File>Exit

(or

close

the

window),

and

click

No

when

prompted

to

save

changes.

v

To

enter

values

for

other

categories

in

Connector

Configurator,

select

the

tab

for

the

category.

The

values

you

enter

for

Standard

Properties

(or

any

other

category)

are

retained

when

you

move

to

the

next

category.

When

you

close

the

window,

you

are

prompted

to

either

save

or

discard

the

values

that

you

entered

in

all

the

categories

as

a

whole.

v

To

save

the

revised

values,

click

File>Exit

(or

close

the

window)

and

click

Yes

when

prompted

to

save

changes.

Alternatively,

click

Save>To

File

from

either

the

File

menu

or

the

toolbar.

Setting

application-specific

configuration

properties

For

application-specific

configuration

properties,

you

can

add

or

change

property

names,

configure

values,

delete

a

property,

and

encrypt

a

property.

The

default

property

length

is

255

characters.

1.

Right-click

in

the

top

left

portion

of

the

grid.

A

pop-up

menu

bar

will

appear.

Click

Add

to

add

a

property.

To

add

a

child

property,

right-click

on

the

parent

row

number

and

click

Add

child.

2.

Enter

a

value

for

the

property

or

child

property.

3.

To

encrypt

a

property,

select

the

Encrypt

box.

4.

Choose

to

save

or

discard

changes,

as

described

for

“Setting

standard

connector

properties.”

The

Update

Method

displayed

for

each

property

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

Important:

Changing

a

preset

application-specific

connector

property

name

may

cause

a

connector

to

fail.

Certain

property

names

may

be

needed

by

the

connector

to

connect

to

an

application

or

to

run

properly.

Encryption

for

connector

properties

Application-specific

properties

can

be

encrypted

by

selecting

the

Encrypt

check

box

in

the

Edit

Property

window.

To

decrypt

a

value,

click

to

clear

the

Encrypt

check

box,

enter

the

correct

value

in

the

Verification

dialog

box,

and

click

OK.

If

the

entered

value

is

correct,

the

value

is

decrypted

and

displays.

Appendix

C.

Connector

configurator

265

The

adapter

user

guide

for

each

connector

contains

a

list

and

description

of

each

property

and

its

default

value.

If

a

property

has

multiple

values,

the

Encrypt

check

box

will

appear

for

the

first

value

of

the

property.

When

you

select

Encrypt,

all

values

of

the

property

will

be

encrypted.

To

decrypt

multiple

values

of

a

property,

click

to

clear

the

Encrypt

check

box

for

the

first

value

of

the

property,

and

then

enter

the

new

value

in

the

Verification

dialog

box.

If

the

input

value

is

a

match,

all

multiple

values

will

decrypt.

Update

method

Refer

to

the

descriptions

of

update

methods

found

in

the

Standard

configuration

properties

for

connectors

appendix,

under

“Setting

and

updating

property

values”

on

page

242.

Specifying

supported

business

object

definitions

Use

the

Supported

Business

Objects

tab

in

Connector

Configurator

to

specify

the

business

objects

that

the

connector

will

use.

You

must

specify

both

generic

business

objects

and

application-specific

business

objects,

and

you

must

specify

associations

for

the

maps

between

the

business

objects.

Note:

Some

connectors

require

that

certain

business

objects

be

specified

as

supported

in

order

to

perform

event

notification

or

additional

configuration

(using

meta-objects)

with

their

applications.

For

more

information,

see

the

Connector

Development

Guide

for

C++

or

the

Connector

Development

Guide

for

Java.

If

ICS

is

your

broker

To

specify

that

a

business

object

definition

is

supported

by

the

connector,

or

to

change

the

support

settings

for

an

existing

business

object

definition,

click

the

Supported

Business

Objects

tab

and

use

the

following

fields.

Business

object

name:

To

designate

that

a

business

object

definition

is

supported

by

the

connector,

with

System

Manager

running:

1.

Click

an

empty

field

in

the

Business

Object

Name

list.

A

drop-down

list

displays,

showing

all

the

business

object

definitions

that

exist

in

the

System

Manager

project.

2.

Click

on

a

business

object

to

add

it.

3.

Set

the

Agent

Support

(described

below)

for

the

business

object.

4.

In

the

File

menu

of

the

Connector

Configurator

window,

click

Save

to

Project.

The

revised

connector

definition,

including

designated

support

for

the

added

business

object

definition,

is

saved

to

the

project

in

System

Manager.

To

delete

a

business

object

from

the

supported

list:

1.

To

select

a

business

object

field,

click

the

number

to

the

left

of

the

business

object.

2.

From

the

Edit

menu

of

the

Connector

Configurator

window,

click

Delete

Row.

The

business

object

is

removed

from

the

list

display.

3.

From

the

File

menu,

click

Save

to

Project.

Deleting

a

business

object

from

the

supported

list

changes

the

connector

definition

and

makes

the

deleted

business

object

unavailable

for

use

in

this

implementation

of

this

connector.

It

does

not

affect

the

connector

code,

nor

does

it

remove

the

business

object

definition

itself

from

System

Manager.

266

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Agent

support:

If

a

business

object

has

Agent

Support,

the

system

will

attempt

to

use

that

business

object

for

delivering

data

to

an

application

via

the

connector

agent.

Typically,

application-specific

business

objects

for

a

connector

are

supported

by

that

connector’s

agent,

but

generic

business

objects

are

not.

To

indicate

that

the

business

object

is

supported

by

the

connector

agent,

check

the

Agent

Support

box.

The

Connector

Configurator

window

does

not

validate

your

Agent

Support

selections.

Maximum

transaction

level:

The

maximum

transaction

level

for

a

connector

is

the

highest

transaction

level

that

the

connector

supports.

For

most

connectors,

Best

Effort

is

the

only

possible

choice.

You

must

restart

the

server

for

changes

in

transaction

level

to

take

effect.

If

a

WebSphere

Message

Broker

is

your

broker

If

you

are

working

in

stand-alone

mode

(not

connected

to

System

Manager),

you

must

enter

the

business

name

manually.

If

you

have

System

Manager

running,

you

can

select

the

empty

box

under

the

Business

Object

Name

column

in

the

Supported

Business

Objects

tab.

A

combo

box

appears

with

a

list

of

the

business

object

available

from

the

Integration

Component

Library

project

to

which

the

connector

belongs.

Select

the

business

object

you

want

from

the

list.

The

Message

Set

ID

is

an

optional

field

for

WebSphere

Business

Integration

Message

Broker

5.0,

and

need

not

be

unique

if

supplied.

However,

for

WebSphere

MQ

Integrator

and

Integrator

Broker

2.1,

you

must

supply

a

unique

ID.

If

WAS

is

your

broker

When

WebSphere

Application

Server

is

selected

as

your

broker

type,

Connector

Configurator

does

not

require

message

set

IDs.

The

Supported

Business

Objects

tab

shows

a

Business

Object

Name

column

only

for

supported

business

objects.

If

you

are

working

in

stand-alone

mode

(not

connected

to

System

Manager),

you

must

enter

the

business

object

name

manually.

If

you

have

System

Manager

running,

you

can

select

the

empty

box

under

the

Business

Object

Name

column

in

the

Supported

Business

Objects

tab.

A

combo

box

appears

with

a

list

of

the

business

objects

available

from

the

Integration

Component

Library

project

to

which

the

connector

belongs.

Select

the

business

object

you

want

from

this

list.

Associated

maps

(ICS

only)

Each

connector

supports

a

list

of

business

object

definitions

and

their

associated

maps

that

are

currently

active

in

WebSphere

InterChange

Server.

This

list

appears

when

you

select

the

Associated

Maps

tab.

The

list

of

business

objects

contains

the

application-specific

business

object

which

the

agent

supports

and

the

corresponding

generic

object

that

the

controller

sends

to

the

subscribing

collaboration.

The

association

of

a

map

determines

which

map

Appendix

C.

Connector

configurator

267

will

be

used

to

transform

the

application-specific

business

object

to

the

generic

business

object

or

the

generic

business

object

to

the

application-specific

business

object.

If

you

are

using

maps

that

are

uniquely

defined

for

specific

source

and

destination

business

objects,

the

maps

will

already

be

associated

with

their

appropriate

business

objects

when

you

open

the

display,

and

you

will

not

need

(or

be

able)

to

change

them.

If

more

than

one

map

is

available

for

use

by

a

supported

business

object,

you

will

need

to

explicitly

bind

the

business

object

with

the

map

that

it

should

use.

The

Associated

Maps

tab

displays

the

following

fields:

v

Business

Object

Name

These

are

the

business

objects

supported

by

this

connector,

as

designated

in

the

Supported

Business

Objects

tab.

If

you

designate

additional

business

objects

under

the

Supported

Business

Objects

tab,

they

will

be

reflected

in

this

list

after

you

save

the

changes

by

choosing

Save

to

Project

from

the

File

menu

of

the

Connector

Configurator

window.

v

Associated

Maps

The

display

shows

all

the

maps

that

have

been

installed

to

the

system

for

use

with

the

supported

business

objects

of

the

connector.

The

source

business

object

for

each

map

is

shown

to

the

left

of

the

map

name,

in

the

Business

Object

Name

display.

v

Explicit

In

some

cases,

you

may

need

to

explicitly

bind

an

associated

map.

Explicit

binding

is

required

only

when

more

than

one

map

exists

for

a

particular

supported

business

object.

When

ICS

boots,

it

tries

to

automatically

bind

a

map

to

each

supported

business

object

for

each

connector.

If

more

than

one

map

takes

as

its

input

the

same

business

object,

the

server

attempts

to

locate

and

bind

one

map

that

is

the

superset

of

the

others.

If

there

is

no

map

that

is

the

superset

of

the

others,

the

server

will

not

be

able

to

bind

the

business

object

to

a

single

map,

and

you

will

need

to

set

the

binding

explicitly.

To

explicitly

bind

a

map:

1.

In

the

Explicit

column,

place

a

check

in

the

check

box

for

the

map

you

want

to

bind.

2.

Select

the

map

that

you

intend

to

associate

with

the

business

object.

3.

In

the

File

menu

of

the

Connector

Configurator

window,

click

Save

to

Project.

4.

Deploy

the

project

to

ICS.

5.

Reboot

the

server

for

the

changes

to

take

effect.

Resources

(ICS)

The

Resource

tab

allows

you

to

set

a

value

that

determines

whether

and

to

what

extent

the

connector

agent

will

handle

multiple

processes

concurrently,

using

connector

agent

parallelism.

Not

all

connectors

support

this

feature.

If

you

are

running

a

connector

agent

that

was

designed

in

Java

to

be

multi-threaded,

you

are

advised

not

to

use

this

feature,

since

it

is

usually

more

efficient

to

use

multiple

threads

than

multiple

processes.

268

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Messaging

(ICS)

The

messaging

properties

are

available

only

if

you

have

set

MQ

as

the

value

of

the

DeliveryTransport

standard

property

and

ICS

as

the

broker

type.

These

properties

affect

how

your

connector

will

use

queues.

Setting

trace/log

file

values

When

you

open

a

connector

configuration

file

or

a

connector

definition

file,

Connector

Configurator

uses

the

logging

and

tracing

values

of

that

file

as

default

values.

You

can

change

those

values

in

Connector

Configurator.

To

change

the

logging

and

tracing

values:

1.

Click

the

Trace/Log

Files

tab.

2.

For

either

logging

or

tracing,

you

can

choose

to

write

messages

to

one

or

both

of

the

following:

v

To

console

(STDOUT):

Writes

logging

or

tracing

messages

to

the

STDOUT

display.

Note:

You

can

only

use

the

STDOUT

option

from

the

Trace/Log

Files

tab

for

connectors

running

on

the

Windows

platform.

v

To

File:

Writes

logging

or

tracing

messages

to

a

file

that

you

specify.

To

specify

the

file,

click

the

directory

button

(ellipsis),

navigate

to

the

preferred

location,

provide

a

file

name,

and

click

Save.

Logging

or

tracing

message

are

written

to

the

file

and

location

that

you

specify.

Note:

Both

logging

and

tracing

files

are

simple

text

files.

You

can

use

the

file

extension

that

you

prefer

when

you

set

their

file

names.

For

tracing

files,

however,

it

is

advisable

to

use

the

extension

.trace

rather

than

.trc,

to

avoid

confusion

with

other

files

that

might

reside

on

the

system.

For

logging

files,

.log

and

.txt

are

typical

file

extensions.

Data

handlers

The

data

handlers

section

is

available

for

configuration

only

if

you

have

designated

a

value

of

JMS

for

DeliveryTransport

and

a

value

of

JMS

for

ContainerManagedEvents.

Not

all

adapters

make

use

of

data

handlers.

See

the

descriptions

under

ContainerManagedEvents

in

Appendix

A,

Standard

Properties,

for

values

to

use

for

these

properties.

For

additional

details,

see

the

Connector

Development

Guide

for

C++

or

the

Connector

Development

Guide

for

Java.

Saving

your

configuration

file

When

you

have

finished

configuring

your

connector,

save

the

connector

configuration

file.

Connector

Configurator

saves

the

file

in

the

broker

mode

that

you

selected

during

configuration.

The

title

bar

of

Connector

Configurator

always

displays

the

broker

mode

(ICS,

WMQI

or

WAS)

that

it

is

currently

using.

The

file

is

saved

as

an

XML

document.

You

can

save

the

XML

document

in

three

ways:

v

From

System

Manager,

as

a

file

with

a

*.con

extension

in

an

Integration

Component

Library,

or

v

In

a

directory

that

you

specify.

v

In

stand-alone

mode,

as

a

file

with

a

*.cfg

extension

in

a

directory

folder.

Appendix

C.

Connector

configurator

269

For

details

about

using

projects

in

System

Manager,

and

for

further

information

about

deployment,

see

the

following

implementation

guides:

v

For

ICS:

Implementation

Guide

for

WebSphere

InterChange

Server

v

For

WebSphere

Message

Brokers:

Implementing

Adapters

with

WebSphere

Message

Brokers

v

For

WAS:

Implementing

Adapters

with

WebSphere

Application

Server

Changing

a

configuration

file

You

can

change

the

integration

broker

setting

for

an

existing

configuration

file.

This

enables

you

to

use

the

file

as

a

template

for

creating

a

new

configuration

file,

which

can

be

used

with

a

different

broker.

Note:

You

will

need

to

change

other

configuration

properties

as

well

as

the

broker

mode

property

if

you

switch

integration

brokers.

To

change

your

broker

selection

within

an

existing

configuration

file

(optional):

v

Open

the

existing

configuration

file

in

Connector

Configurator.

v

Select

the

Standard

Properties

tab.

v

In

the

BrokerType

field

of

the

Standard

Properties

tab,

select

the

value

that

is

appropriate

for

your

broker.

When

you

change

the

current

value,

the

available

tabs

and

field

selections

on

the

properties

screen

will

immediately

change,

to

show

only

those

tabs

and

fields

that

pertain

to

the

new

broker

you

have

selected.

Completing

the

configuration

After

you

have

created

a

configuration

file

for

a

connector

and

modified

it,

make

sure

that

the

connector

can

locate

the

configuration

file

when

the

connector

starts

up.

To

do

so,

open

the

startup

file

used

for

the

connector,

and

verify

that

the

location

and

file

name

used

for

the

connector

configuration

file

match

exactly

the

name

you

have

given

the

file

and

the

directory

or

path

where

you

have

placed

it.

Using

Connector

Configurator

in

a

globalized

environment

Connector

Configurator

is

globalized

and

can

handle

character

conversion

between

the

configuration

file

and

the

integration

broker.

Connector

Configurator

uses

native

encoding.

When

it

writes

to

the

configuration

file,

it

uses

UTF-8

encoding.

Connector

Configurator

supports

non-English

characters

in:

v

All

value

fields

v

Log

file

and

trace

file

path

(specified

in

the

Trace/Log

files

tab)

The

drop

list

for

the

CharacterEncoding

and

Locale

standard

configuration

properties

displays

only

a

subset

of

supported

values.

To

add

other

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

example,

to

add

the

locale

en_GB

to

the

list

of

values

for

the

Locale

property,

open

the

stdConnProps.xml

file

and

add

the

line

in

boldface

type

below:

270

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

<Property

name="Locale"

isRequired="true"

updateMethod="component

restart">

<ValidType>String</ValidType>

<ValidValues>

<Value>ja_JP</Value>

<Value>ko_KR</Value>

<Value>zh_CN</Value>

<Value>zh_TW</Value>

<Value>fr_FR</Value>

<Value>de_DE</Value>

<Value>it_IT</Value>

<Value>es_ES</Value>

<Value>pt_BR</Value>

<Value>en_US</Value>

<Value>en_GB</Value>

<DefaultValue>en_US</DefaultValue>

</ValidValues>

</Property>

Appendix

C.

Connector

configurator

271

272

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Appendix

D.

Troubleshooting

the

connector

The

appendix

describes

problems

that

you

may

encounter

when

starting

up

or

running

the

connector

component

of

the

Adapter

Guide

for

mySAP.com

(R/3

V.3.x).

This

chapter

contains

the

following

sections:

v

“Generic

troubleshooting”

v

“Troubleshooting

for

the

ABAP

Extension

Module”

on

page

278

v

“Troubleshooting

for

the

BAPI

module”

on

page

281

v

“Troubleshooting

for

the

RFC

Server

Module”

on

page

282

v

“Troubleshooting

for

the

ALE

Module”

on

page

284

v

“Troubleshooting

the

Hierarchical

Dynamic

Retrieve

Module”

on

page

287

v

“Troubleshooting

SAPODA”

on

page

289

Generic

troubleshooting

This

section

describes

problems

that

you

may

encounter

when

starting

up

or

running

any

module

of

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com.

It

covers

three

troubleshooting

areas:

v

“Startup

problems”

v

“Connector

dies”

on

page

274

v

“Collaborations

not

subscribing

to

business

objects

(WebSphere

InterChange

Server

only)”

on

page

274

Startup

problems

The

following

subsections

provide

suggestions

for

common

startup

problems.

Connector

fails

to

start

If

you

encounter

difficulties

when

trying

to

start

the

connector:

v

Check

to

make

sure

that

the

integration

broker

is

up

and

running.

v

Check

that

the

SAP

application

is

running.

v

Verify

that

the

standard

and

connector-specific

configuration

properties

are

set

properly.

For

more

information,

see

“Configuring

the

connector”

on

page

17,

and

Appendix

D,

“Troubleshooting

the

connector,”

on

page

273.

Connector

cannot

log

on

to

the

SAP

application

If

the

connector

cannot

log

on

to

the

SAP

application:

v

Check

that

the

SAP

application

is

available.

v

Ensure

that

you

have

properly

set

the

standard

and

connector-specific

connector

configuration

properties

by

checking

the

Sysnr,

Client,

Hostname,

and

Modules

properties.

For

more

information,

see

“Configuring

the

connector”

on

page

17

and

Appendix

B,

“Standard

configuration

properties

for

connectors,”

on

page

241.

v

Verify

that

the

user

name

and

password

set

up

for

the

connector

has

the

appropriate

level

of

privileges.

©

Copyright

IBM

Corp.

2003,

2004

273

Connector

logs

on

and

the

session

closes

If

the

connector

successfully

logs

on

to

the

SAP

application

and

then

the

session

closes

immediately,

there

may

be

a

database

problem.

Check

that

PSAPUSER1D

and

PSAPUSER1I

tablespaces

have

sufficient

space

allocated

to

them.

By

default,

the

SAP

system

provides

minimal

space

for

these

two

tablespaces.

The

connector

requires

more

than

the

default

amount

of

space.

For

more

information,

see

“Increasing

log

tablespace

size”

on

page

54..

Note:

This

problem

is

relevant

to

all

connector

modules

except

the

RFC

Server

Module.

Connector

dies

If

the

connector

dies

with

a

message

“connection

to

the

SAP

application

is

lost“or

you

get

an

RFC

system

exception,

then

you

may

have

a

network

problem.

Check

the

short

dump

for

the

connector

user

or

the

time

when

the

error

occurred.

Use

the

IBM

CrossWorlds

Station

tool

or

go

to

transaction

ST22.

If

you

still

need

more

information,

check

the

system

log

by

going

to

transaction

SM21.

Default

values

are

not

being

set

Default

values

have

been

set

in

a

business

object

but

the

connector

is

not

picking

up

the

values.

This

is

a

configuration

issue.

For

default

values

to

be

used,

the

UseDefaults

connector

property

needs

to

be

set

to

true

and

each

attribute

requiring

a

default

value

needs

to

be

marked

as

required

in

the

business

object

definition.

Collaborations

not

subscribing

to

business

objects

(WebSphere

InterChange

Server

only)

If

a

collaboration

is

not

subscribing

to

a

particular

business

object

on

a

specified

WebSphere

InterChange

Server,

then:

v

Check

that

the

collaboration

is

configured

to

subscribe

to

that

particular

business

object.

v

Verify

that

the

collaboration

is

running.

v

Verify

that

the

map

references

have

the

correct

business

object

specified

as

the

source

business

object.

Encoding

of

binary

data

(message

brokers

only)

For

fields

with

binary

data

(RAW

data

type

in

an

SAP

system),

the

adapter

will

encode

the

value

for

the

fields

in

hexadecimal

rather

than

the

more

typical

base64

encoding

in

the

XML

MQ

message.

As

well,

the

adapter

also

expects

data

from

a

service

call

request

to

be

in

hexadecimal

encoding

in

the

XML

MQ

message.

WBI

performance

tuning

and

memory

management

Java

Virtual

Machines

(JVMs)

externalize

multiple

tuning

knobs

which

may

be

used

to

improve

WebSphere

Business

Integration

application

performance.

These

knobs

control

issues

related

to

garbage

collection,

heap

size,

threading,

and

locking.

Because

the

ICS

server

and

its

components

(maps,

collaborations)

as

well

as

most

of

the

adapters

are

written

in

Java,

the

performance

of

the

JVM

has

a

significant

impact

on

the

performance

delivered

by

an

ICS

application.

This

section

addresses

potential

issues

with

garbage

collection,

heap

size,

and

thread

stack

size.

The

following

URL

provides

a

useful

summary

of

JVM

options:

http://java.sun.com/docs/hotspot/VMOptions.html

274

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

following

URL

provides

a

useful

FAQ

about

the

HotSpot

Engine:

http://java.sun.com/docs/hotspot/PerformanceFAQ.html#20

For

a

detailed

description

of

the

IBM

JVM

the

reader

should

consult

the

Java

Performance

issue

of

the

″IBM

Systems

Journal″,

Vol.

1,

2000:

http://www.research.ibm.com/journal/sj39-1.html

Setting

heap

size

quick

start

v

Make

sure

that

the

heap

never

pages.

v

To

optimize

memory

usage,

analyze

verbose:gc

trace.

v

Aim

for

less

than

10%

execution

time

in

GC.

v

For

optimal

performance,

the

heap

should

be

run

with

50%

-

60%

occupancy.

v

Avoid

finalizers.

v

Avoid

compaction.

v

Analyze

requests

for

large

memory

allocations

and

devise

a

method

for

reusing

the

object.

Setting

the

heap

and

nursery

size

for

garbage

collection

Garbage

collection

is

the

process

of

freeing

unused

objects

in

the

JVM

so

that

portions

of

the

heap

can

be

reused.

Garbage

collection

occurs

when

there

is

a

request

for

memory,

and

the

request

cannot

be

readily

satisfied

from

the

free

memory

available

in

the

heap

(allocation

failure).

Garbage

collection

also

occurs

when

a

Java

class

library

System.gc()

call

is

made.

In

this

case

garbage

collection

occurs

immediately

and

synchronously.

While

the

function

provided

by

the

SUN

HotSpot

and

IBM

garbage

collectors

is

the

same,

the

underlying

technology

is

different.

For

both

JVMs

garbage

collection

takes

place

in

three

phases:

mark,

sweep,

and

an

optional

compact

phase.

The

implementation

of

the

garbage

collection

phases

is

different

because

the

Sun

HotSpot

engine

is

a

generational

collector

and

the

IBM

JVM

is

not.

A

detailed

discussion

of

the

HotSpot

generational

collector

can

be

found

at

the

following

URL:

http://java.sun.com/docs/hotspot/gc/index.html

With

the

IBM

JVM,

the

full

heap

is

consumed

before

a

garbage

collection

is

triggered.

The

first

phase

is

to

mark

all

referenced

objects

in

the

region

being

collected,

which

leaves

all

un-referenced

objects

unmarked

and

the

space

they

occupy

free

to

be

collected

and

reused.

Following

the

mark

phase,

free

chunks

of

memory

are

added

to

a

freelist.

This

phase

is

referred

to

as

sweeping.

For

performance

reasons,

the

IBM

JVM

only

frees

chunks

of

heap

space

greater

than

512

bytes.

Following

the

sweep

phase,

a

compact

phase

is

sometimes

performed.

The

compact

phase

moves

objects

closer

together

to

create

larger

contiguous

free

chunks.

Because

compaction

is

time-consuming,

avoid

it

when

possible

For

most

System.gc()

calls

compaction

is

performed.

The

IBM

JVM

has

been

optimized

to

avoid

compaction.

The

following

table

explains

which

phases

of

garbage

collection

are

multi-threaded

and

which

are

concurrent.

Concurrent

means

the

process

runs

while

the

application

threads

continue

to

execute.

If

the

process

is

not

concurrent

it

means

that

the

program

pauses

during

that

phase

of

garbage

collection.

Appendix

D.

Troubleshooting

the

connector

275

Table

52.

JVM

Release

Mark

Sweep

Compact

JVM

release

Type

Mark

Sweep

Compact

Sun

HotSpot

1.3.1

Multithreaded

No

No

No

Sun

HotSpot

1.3.1

Concurrent

No

No

No

IBM

JVM

1.3.1

Multithreaded

Yes

Yes

No

IBM

JVM

1.3.1

Concurrent

Optional

No

No

Monitoring

garbage

collection

A

verbosegc

trace

prints

garbage

collection

actions

and

statistics

to

stderr.

The

verbosegc

trace

is

activated

by

using

the

Java

run

time

option

of

-verbose:gc.

Output

from

-verbose:gc

is

different

for

the

Sun

HotSpot

and

IBM

JVMs.

Below

are

sample

output

from

a

verbosegc

trace

with

embedded

explanations

of

key

pieces

of

information

for

both

an

IBM

JVM

and

Sun

HotSpot.

IBM

JVM

-verbose:gc

output

<AF[8]:

Allocation

Failure.

need

1572744

bytes

<-amount

of

memory

requested,

5875

ms

since

last

AF>

<AF[8]:

managing

allocation

failure,

action=1

(23393256

<-free

at

alloc

failure)/131070968

<-

heapsize)

(2096880/3145728)>

<GC:

Tue

Dec

18

17:32:26

2001

<GC(12):

freed

75350432

bytes

in

168

ms

<-

duration

of

GC,

75%

free

(100840568

<-free)/134216696

<-

total

heapsize)>

<GC(12):

mark:

129

ms,

sweep:

39

ms,

compact:

0

ms

<-compact

did

not

run>

<GC(12):

refs:

soft

0

(age

>=

32),

weak

0,

final

0

<-no

finalizers,

phantom

0>

<AF[8]:

completed

in

203

ms>

SUN

JVM

-verbosgc

(young

and

old)

[GC

325816K->83372K(776768K),

0.2454258

secs

<-duration

of

GC]

[Full

GC

267628K->83769K

<-

live

data

(776768K

<-size

of

heap),

1.8479984

secs]

Setting

the

heap

size

for

most

configurations

This

section

contains

guidelines

for

determining

the

appropriate

Java

heap

size

for

most

WBI

configurations.

For

many

applications,

the

default

heap

size

setting

for

the

IBM

JVM

is

sufficient

for

good

performance.

In

general,

the

HotSpot

JVM

default

Heap

and

Nursery

sizes

are

too

small.

To

set

the

optimal

heap

size

for

the

IBM

JVM

on

AIX,

follow

these

guidelines.

In

order

to

effectively

use

rate-trigger

heap

growth

just

set

the

-ms

to

64MB

or

96MB,

and

the

-mx

to

256-512MB.

Ensure

that

-mx

does

not

force

the

heap

to

page.

The

JVM

will

try

to

control

the

GC

time

by

growing

and

shrinking

the

heap.

The

output

from

-verbose:gc

monitors

the

GC

actions.

A

similar

process

can

be

used

to

set

HotSpot

heaps.

In

addition

to

setting

the

minimum

and

maximum

heap

size,

one

should

also

increase

the

Nursery

size

to

approximately

1/4

of

the

heap

size.

Note:

Note

that

one

should

never

increase

the

Nursery

to

more

than

1/2

the

full

heap.

The

nursery

size

is

set

using

the

MaxNewSize

andNewSize

parameters

(i.e.,

-XX:MaxNewSize=128m,

-XX:NewSize=128m).

276

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Once

the

heap

sizes

are

set,

verbose:gc

traces

monitor

the

GC

actions.

If

the

percentage

of

time

in

GC

is

too

high

and

the

heap

has

grown

to

its

maximum,

increase

-mx.

Note:

This

setting

will

not

always

solve

the

problem,

which

is

normally

a

memory

over-usage

problem.

If

pause

time

is

too

long

then

decrease

heap

size.

If

both

problems

are

observed,

analyze

the

application

heap

usage.

Setting

heap

size

when

running

many

JVMs

on

one

system

Each

running

Java

program

has

an

associated

heap.

If

the

sum

of

all

of

the

Java

heap

sizes

and

all

other

usages

of

virtual

memory

exceeds

the

size

of

physical

memory,

then

the

heap

page,

causing

performance

to

degrade.

To

minimize

the

paging,

use

the

following

guidelines:

v

For

a

trial

run,

activate

verbosegc

for

each

running

JVM.

v

Based

on

the

verbosegc

output,

set

the

initial

heap

size

to

a

relatively

low

value.

For

example,

assume

that

the

verbosegc

report

shows

that

the

heap

size

grows

quickly

to

32

MB,

then

grows

more

slowly

to

40

MB.

Based

on

this,

set

the

initial

heap

size

to

32

MB

(-Xms32m).

v

Based

on

the

verbosegc

output,

set

the

maximum

heap

size

large

enough

to

allow

for

peak

throughput.

In

the

previous

example,

a

maximum

heap

size

of

64

MB

may

be

appropriate

(-Xmx64m).

v

Do

not

set

the

heap

sizes

too

low,

so

that

garbage

collections

do

not

occur

too

often

but

large

enough

to

avoid

paging.

Reducing

or

increasing

heap

size

if

java.lang.OutOfMemoryError

occurs

The

java.lang.OutofMemoryError

is

used

by

the

JVM

in

a

variety

of

circumstances.

The

exception

occurs

if

there

is

not

enough

heap

space

for

an

object

in

the

heap,

or

if

other

resources

outside

the

Java

heap

have

been

exhausted.

Read

the

output

from

java.lang.OutofMemoryError

to

see

if

the

problem

is

due

to

a

lack

of

memory

in

the

heap.

If

so,

increase

the

size

of

the

heap.

If

the

heap

appears

to

be

large

enough,

check

the

finalized

count

from

the

-verbose:gc.

If

the

count

appears

high,

resources

outside

the

heap

might

be

held

by

objects

within

the

heap

and

cleaned

by

finalizers.

Reduce

the

size

of

the

heap

and

increase

the

frequency

with

which

finalizers

are

run.

Setting

AIX

threading

parameters

The

IBM

JVM

threading

and

synchronization

components

are

based

upon

the

AIX

Posix

compliant

Pthread

implementation.

The

following

environments

variables

have

been

found

to

improve

Java

performance

in

many

situations

and

have

been

used

for

the

benchmarks

in

this

document.

The

variables

control

the

mapping

of

Java

threads

to

AIX

Native

threads,

turn

off

mapping

information,

and

allow

for

spinning

on

Mutex

locks.

v

export

AIXTHREAD_COND_DEBUG=OFF

v

export

AIXTHREAD_MUTEX_DEBUG=OFF

v

export

AIXTHREAD_RWLOCK_DEBUG=OFF

v

export

AIXTHREAD_SCOPE=S

v

export

SPINLOOPTIME=2000

Appendix

D.

Troubleshooting

the

connector

277

More

information

on

AIX

specific

Java

tuning

information

can

be

found

at:

http://tesch.aix.dfw.ibm.com/java/perftips.html

Using

HotSpot

Server

instead

of

Client

The

Sun

HotSpot

JVM

can

be

configured

to

run

as

a

server

or

as

a

client.

When

configured

as

a

server

the

JIT

(Just-In-Time

Compiler)

uses

extra

processor

cycles

and

memory

to

create

more

highly

optimized

code.

Since

the

ICS

is

a

long

running

process

the

extra

time

and

memory

spent

JITting

at

initial

instantiation

is

well

worth

the

increased

performance

during

run

time.

Therefore,

when

using

the

Sun

HotSpot

JVM,

the

ICS

should

always

be

run

as

a

server.

To

do

this,

the

–server

parameter

is

added

to

the

invocation

of

the

ICS

process.

Setting

thread

stack

size

if

using

many

threads

As

mentioned

in

the

section

on

ICS

threading,

Java

threads

consume

memory

in

the

heap.

In

addition,

the

threads

themselves

use

virtual

memory

for

their

thread

stacks.

If

a

configuration

is

using

an

excessive

number

of

threads,

memory

in

either

place

may

become

a

problem.

The

JVM

allows

a

user

to

configure

the

amount

of

virtual

memory

set

aside

for

the

thread

stack.

The

default

thread

stack

size

is

different

depending

on

the

JVM

version

and

the

operating

system.

However,

the

mechanism

to

set

the

value

is

the

same.

To

set

the

thread

stack

size

to

128KB,

the

parameter

-ss128k

is

passed

in

on

the

invocation

of

the

JVM.

Care

should

be

taken

not

to

set

this

value

to

small.

It

is

recommend

that

at

least

128KB

be

given

to

each

thread

stack,

although

the

system

may

operate

successfully

with

a

lower

setting.

SAP

notes

about

memory

management

Refer

to

the

following

SAP

notes

for

resolving

memory

related

issues:

v

SAP

Note

558250:

Memory

problems

with

SAP

Java

Connector

v

SAP

Note

634689:

Central

Note

for

Memory

Issues

Troubleshooting

for

the

ABAP

Extension

Module

This

section

describes

problems

that

you

may

encounter

when

starting

up

or

running

the

ABAP

Extension

Module.

It

covers

three

troubleshooting

areas:

v

“Transport

files”

v

“Startup

problems”

on

page

279

v

“Event

handling”

on

page

280

v

“Event

distribution

problem

on

Microsoft

Windows

(connector

version

4.2.7

only)”

on

page

279

Transport

files

If

you

get

errors

when

installing

the

adapter’s

transport

files

for

the

ABAP

Extension

Module:

v

Verify

that

you

installed

the

correct

transport

files.

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

You

must

install

version

3.x

transport

files

on

an

R/3

version

3.x

system

and

version

4.x

transport

files

on

an

R/3

version

4.x

system.

Transport

files

are

installed

in

their

own

directories

(transports_3x

and

transports_4x).

v

Verify

that

you

installed

the

transports

in

the

correct

order.

Some

transport

files

have

dependencies

such

as

existing

tables.

278

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

For

example,

one

transport

file

creates

a

data

element

for

a

table

and

another

transport

creates

a

table

for

that

data

element.

If

the

table

is

not

created

first,

the

system

returns

an

error.

v

Verify

that

all

of

the

necessary

transport

files

were

installed

properly.

Each

transport

file

adds

specific

functionality

for

the

connector.

For

example,

IBM

CrossWorlds

Station

is

separated

into

two

transports

(_Tools_Development

and

_Tools_Maintenance).

The

two

transport

files

enable

you

to

tailor

your

installation

so

that

you

do

not

have

to

install

all

of

the

IBM

CrossWorlds

Station

tools

on

your

systems.

For

example,

you

may

not

want

to

install

development

tools

in

a

production

environment.

You

must

install

at

least

the

Primary,

Utilities,

Request,

and

Delivery

transport

files.

For

more

information,

see

“Connector

transport

files”

on

page

48..

Startup

problems

If

the

connector

logs

in

to

the

SAP

application

successfully,

but

the

connector’s

log

in

the

SAP

application

is

empty:

v

Check

that

logging

is

turned

on.

If

logging

is

turned

off,

use

IBM

CrossWorlds

Station

to

turn

it

on.

By

default,

logging

is

set

to

1.

For

more

information,

see

Chapter

9,

“Managing

the

ABAP

Extension

module,”

on

page

107.

v

Check

that

the

connector

is

logged

on

to

the

same

machine

where

you

are

viewing

the

connector

log

file.

v

Check

that

the

Namespace

configuration

property

is

set

to

true.

If

you

have

upgraded

to

the

connector’s

namespace

from

the

previous

YXR

environment,

the

connector

may

still

be

logging

into

the

YXR

environment.

If

this

is

the

case,

set

the

Namespace

configuration

property

to

true.

For

more

information,

see

the

“Namespace”

on

page

23

property

in

the

“Connector-specific

configuration

properties”

on

page

18.

v

Check

that

the

number

range

in

the

connector

log

is

in

sync.

If

you

have

upgraded

the

NumberRange

transport

number,

then

number

range

intervals

may

be

out

of

sync.

Verify

that

the

number

range

object

number

is

lower

than

the

first

number

in

the

connector

log.

To

check

the

number

ranges,

go

to

transaction

SNRO

and

enter

/CWLD/LOG

in

the

Number

Range

Object

field.

Click

the

Number

Ranges

button,

click

the

Display

Intervals

button,

and

note

the

number

range

object

number.

Open

the

connector

log

and

note

the

number

of

the

first

entry.

If

this

number

is

higher

than

the

number

range

object

number,

then

the

log

entry

number

in

the

connector

log

needs

to

be

modified

to

be

one

number

higher.

For

more

information,

see

“Verifying

number

ranges

for

transport

objects”

on

page

54..

Event

distribution

problem

on

Microsoft

Windows

(connector

version

4.2.7

only)

After

upgrading

to

the

IBM

CrossWorlds

Connector

for

SAP

Version

4.2.7

on

Windows,

events

remain

in

the

event

table

and

are

not

picked

up

and

processed

by

the

connector

in

the

following

circumstances:

v

You

configured

event

distribution

across

multiple

connectors.

v

The

connector

is

running

against

an

SAP

3.x

system

that

loaded

the

NON-namespace

(yxr).

This

problem

is

caused

by

a

change

SAP

has

made

in

their

java

API

(SAPJCo).

To

fix

the

problem,

load

a

patch

transport

that

changes

only

the

event

request

and

event

return

function

modules

provided

by

the

IBM

WebSphere

Business

Appendix

D.

Troubleshooting

the

connector

279

Integration

Adapter

for

mySAP.com.

Load

this

patch

transport

in

4.0

and

4.5

SAP

systems

that

do

not

have

the

namespace

(/CWLD/)

infrastructure.

Note:

The

namespace

ABAP

infrastructure

does

not

have

this

problem.

Event

handling

The

following

subsections

provide

suggestions

for

event

handling

problems.

ABAP

Extension

Module

is

not

invoked

by

subscribing

business

objects

If

a

subscribing

business

object

is

not

being

processed

by

the

ABAP

Extension

Module,

then:

v

Check

that

the

vision

connector

framework

is

set

to

call

the

ABAP

Extension

Module.

The

Modules

property

must

be

set

to

Extension.

v

Check

that

the

connector

subscribes

to

the

business

object.

Connector

is

not

picking

up

events

If

your

connector

is

not

picking

up

events

from

the

SAP

application:

v

Check

the

connector’s

event

table

in

the

SAP

application

to

see

if

the

event

is

queued

for

your

connector.

v

In

a

multiple

connector

environment,

if

the

event

is

not

queued,

make

sure

there

is

an

entry

in

the

Event

Distribution

table

(/CWLD/EVT_DIS)

for

the

combination

of

your

connector

and

business

object.

Check

to

see

that

this

combination

is

unique.

If

you

have

multiple

connectors

subscribed

to

the

same

business

object,

then

one

connector

might

be

processing

the

wrong

events.

For

more

information

on

distributing

events

between

multiple

connectors,

see

on

page

44..

v

If

you

have

a

lock

object

for

an

event

in

the

SAP

application,

then

the

SAP

application

may

not

finish

processing

the

save

process

for

that

event.

Check

the

connector’s

event

table

in

the

SAP

application

to

see

if

the

event

has

a

status

of

L

(Locked).

If

the

status

is

L,

then

you

most

likely

have

a

problem

in

the

SAP

application

and

not

the

connector.

v

The

connector

might

have

died

while

processing

the

event.

Check

the

status

of

the

event

in

the

connector’s

event

table

in

the

SAP

application.

If

the

status

is

R

(Retrieved),

then

the

event

has

not

been

moved

to

the

archive

table.

If

the

event’s

status

is

R,

verify

that

the

event

did

not

make

it

to

the

destination.

If

the

event

did

not

make

it

to

the

destination,

change

the

status

from

R

to

Q

(Queued).

Events

with

a

status

of

Q

are

picked

up

by

the

connector

at

the

next

poll

interval.

To

change

the

status

from

R

to

Q,

go

to

the

event

table,

select

the

event,

and

then

click

the

Edit

button.

In

the

window

that

appears,

change

the

Event

Status

field

from

R

to

Q.

Business

object

fails

to

process

If

a

business

object

fails

to

process

successfully,

check

the

connector

log

in

the

SAP

application.

Entries

for

failed

events

appear

in

red.

Reprocess

events

using

the

reprocessing

tool,

which

enables

you

to

set

breakpoints

in

the

code

as

you

step

through

the

transaction.

Attention:

Do

not

use

the

reprocessing

tool

in

a

production

environment,

because

it

causes

the

WebSphere

business

integration

system

and

the

SAP

application

to

be

out

of

sync.

280

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Deadlock

with

Event

Table

The

current

event

table

and

the

future

event

table,

may

encounter

a

deadlock

situation

if

there

are

many

events

being

added

at

one

time.

This

situation

occurs

if

the

provided

indices

for

the

event

table

are

not

used

because

of

database

tuning.

Tuning

normally

occurs

during

off-peak

hours

when

there

are

few

or

no

events

in

the

event

table.

When

a

database

table

has

no

or

few

entries,

it

is

more

efficient

not

to

use

an

index

for

reading

the

table.

To

avoid

a

deadlock

situation,

exclude

the

current

event

and

future

event

tables

when

running

a

database

tuning

utility.

Large

Objects

Large

objects

may

require

additional

changes

to

process

successfully.

ABAP

Extension

Module

objects

are

converted

to

a

flat

structure

before

passing

the

data

to

the

SAP

application

or

converted

from

a

flat

structure

when

receiving

the

data

from

the

SAP

application.

See

“Business

object

conversion

to

a

flat

structure”

on

page

58

for

more

information.

This

flat

structure

is

held

in

memory

with

each

attribute

for

an

object

instance

being

a

row

in

the

structure.

For

each

attribute,

373

bytes

of

data

are

passed

between

the

connector

and

the

SAP

application.

The

number

of

attributes

multiplied

by

373

gives

an

approximation

of

the

size

of

the

flat

structure.

As

well,

an

instance

of

the

object

is

also

in

memory.

Therefore,

an

object

with

many

child

objects

(segments)

may

require

a

change

to

the

Java

heap

size

in

the

startup

script

for

the

connector’s

Java

process

in

order

to

avoid

an

out-of-memory

error.

Windows

In

the

start_SAP.bat

script,

change

the

-mx128m

Java

heap

size

options

parameter

default

value

to

a

value

large

enough

to

handle

the

flat

structure

and

the

instance

of

the

object.

A

value

larger

than

the

available

memory

on

the

machine

running

the

Java

process

will

also

result

in

an

out-of-memory

error.

The

128m

represents

a

maximum

Java

heap

size

of

128

MB.

Unix:

The

SAP

application

may

also

require

changes

to

the

ABAP

timeout

parameter

to

process

a

large

object

successfully.

Troubleshooting

for

the

BAPI

module

This

section

describes

problems

that

you

may

encounter

when

running

the

BAPI

module.

Event

handling

The

following

subsections

provide

suggestions

for

common

event

handling

problems.

BAPI

module

is

not

invoked

by

subscribing

business

objects

If

a

subscribing

business

object

is

not

being

processed

by

the

BAPI

module,

then:

v

Check

that

the

vision

connector

framework

is

set

to

call

the

BAPI

module.

The

Modules

property

must

be

set

as

follows:

Bapi.

v

Check

that

the

connector

subscribes

to

the

business

object.

v

Check

that

the

SAPODA-generated

BAPI-specific

business

object

handler

class

file

is

in

the

\bapi\client

directory.

If

the

class

file

is

not

in

this

directory,

then

Appendix

D.

Troubleshooting

the

connector

281

the

BAPI

business

object

handler

is

not

invoked

to

process

the

business

object.

For

more

information,

see

“Using

generated

business

objects

and

business

object

handlers”

on

page

199..

v

Check

that

the

BAPI

business

object

handler

name

in

the

business

object

verb

application-specific

information

is

correct.

For

more

information,

see

“Business

object

application-specific

information”

on

page

174..

v

Ensure

that

when

you

generated

the

business

object

handler,

you

specified

the

appropriate

verb

to

match

the

BAPI.

Business

object

fails

to

process

If

a

business

object

fails

to

process

successfully:

v

Check

that

the

BAPI

you

are

using

has

a

return

business

object.

The

BAPI

module

looks

in

the

return

business

object

for

messages

with

the

key

e

(error)

or

a

(abort).

If

the

module

finds

one

of

these

keys,

then

it

notes

that

the

event

has

failed.

If

the

BAPI

does

not

have

a

return

business

object,

make

sure

you

implement

your

own

error

handling.

v

Use

transaction

SE37

to

test

the

BAPI

associated

with

the

failed

event.

This

should

enable

you

to

reproduce

the

failure.

If

this

does

not

work,

then

you

may

have

a

problem

in

the

conversion

from

internal

formats

to

external

formats.

Check

that

you

are

specifying

values

in

the

correct

format.

For

example,

for

dates,

SAP’s

internal

format

is

YYYYMMDD

and

you

may

be

specifying

the

format

MMDDYYYY.

This

causes

the

BAPI

to

fail,

because

the

specified

format

is

not

understood.

v

Check

that

the

application-specific

information

of

each

attribute

is

correct.

If

these

values

are

not

correct,

then

the

BAPI

module

does

not

populate

the

object

correctly

before

sending

it

back

to

the

SAP

application.

v

Check

that

the

I

and

E

parameters

are

specified

properly.

Remember

that

I

identifies

the

import

parameter

and

E

identifies

the

export

parameter.

For

more

information,

see

“Business

object

fails

to

process”

on

page

283.

Connector

appears

to

be

polling

but

events

are

not

being

picked

up

The

BAPI

module

includes

a

dummy

implementation

of

the

pollForEvents()

method.

The

connector

appears

to

be

polling

because

it

returns

a

polling

message.

The

BAPI

module

does

not

support

polling,

so

ignore

these

messages.

If

you

want

to

implement

polling

for

the

BAPI

module,

you

must

use

the

polling

capabilities

in

the

ABAP

Extension

Module.

For

more

information,

see

Chapter

3,

“Overview

of

the

ABAP

Extension

module,”

on

page

33..

Troubleshooting

for

the

RFC

Server

Module

This

section

describes

problems

that

you

may

encounter

when

starting

up

or

running

the

RFC

Server

Module.

It

covers:

v

“Startup

problems”

on

page

273

v

“Connector

dies”

on

page

274

v

“Event

handling”

on

page

280

Startup

problems

If

the

connector

cannot

register

with

the

SAP

application:

v

Check

that

the

SAP

application

is

available.

v

Check

that

you

have

properly

set

the

standard

and

connector-specific

connector

configuration

properties.

Specifically,

check

the

gwService,,

Hostname,,

282

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

RfcProgramId,,

and

Modules,

properties.

For

more

information,

see

“Configuring

the

connector”

on

page

17

and

Appendix

D,

“Troubleshooting

the

connector,”

on

page

273.

Connector

dies

If

your

connector

dies,

check

the

following:

v

Check

that

threads

are

being

spawned

by

the

RFC

Server

Module.

Verify

that

the

NumberOfListeners

property

is

set

properly.

For

more

information,

see

the

“NumberOfListeners”

on

page

23..

v

Verify

that

the

RFC

program

ID

is

set

up

so

that

the

RFC

Server

Module

registers

itself

with

the

SAP

Gateway.

For

more

information,

see

the

“RfcProgramId”

on

page

23

and

“Registering

the

RFC

Server

Module

with

the

SAP

gateway”

on

page

189..

Event

handling

The

following

subsections

provide

suggestions

for

common

event

handling

problems.

RFC

Server

Module

is

not

invoked

by

subscribing

business

objects

If

a

subscribing

business

object

is

not

being

processed

by

the

RFC

Server

Module,

then:

v

Check

that

the

vision

connector

framework

is

set

to

call

the

RFC

Server

Module.

The

“Modules”

on

page

23

property

must

be

set

as

follows:

RfcServer.

v

Check

that

the

connector

subscribes

to

the

business

object.

v

Check

that

the

SAPODA-generated

BAPI-specific

business

object

handler

class

file

is

in

the

\bapi\server

directory.

If

the

class

file

is

not

in

this

directory,

then

the

BAPI

business

object

handler

is

not

invoked

to

process

the

business

object.

For

more

information,

see

“Using

generated

business

objects

and

business

object

handlers”

on

page

199.

v

Check

that

the

BAPI

business

object

handler

name

in

the

business

object

verb

application-specific

information

is

correct.

For

more

information,

see

“Business

object

fails

to

process”

on

page

280.

v

Check

that

the

specified

verb

for

your

BAPI-specific

business

object

handler

is

correct

for

the

type

of

processing

you

need.

Specifically,

make

sure

that

when

you

generated

the

business

object

handler,

you

specified

the

appropriate

verb

to

match

the

BAPI.

Business

object

fails

to

process

If

a

business

object

fails

to

process

successfully:

v

Check

that

the

BAPI

you

are

using

has

a

return

business

object.

The

RFC

Server

Module

looks

in

the

return

business

object.

for

messages

with

the

key

e

(error)

or

a

(abort).

If

the

module

finds

one

of

these

keys,

then

it

notes

that

the

event

has

failed.

If

the

BAPI

does

not

have

a

return

business

object.,

make

sure

you

implement

your

own

error

handling.

v

Use

transaction

SE37

to

test

the

BAPI

associated

with

the

failed

event.

This

should

enable

you

to

reproduce

the

failure.

If

this

does

not

work,

then

you

may

have

a

problem

in

the

conversion

from

internal

formats

to

external

formats.

Check

that

you

are

specifying

values

in

the

correct

format.

For

example,

for

dates,

SAP’s

internal

format

is

YYYYMMDD

and

you

may

be

specifying

the

format

MMDDYYYY.

This

causes

the

BAPI

to

fail,

because

the

specified

format

is

not

understood.

Appendix

D.

Troubleshooting

the

connector

283

v

Check

that

the

application-specific

information

of

each

attribute

is

correct.

If

these

values

are

not

correct,

then

the

RFC

Server

Module

does

not

populate

the

object

correctly

before

sending

it

back

to

the

SAP

application.

v

Check

that

the

I

and

E

parameters

are

specified

properly.

The

I

parameter

identifies

the

import

parameter

and

the

E

parameter

identifies

the

export

parameter.

For

more

information,

see

“Business

object

fails

to

process”

on

page

282.

Troubleshooting

for

the

ALE

Module

This

section

describes

problems

that

you

may

encounter

when

starting

up

or

running

the

ALE

Module.

It

covers

the

following

subjects:

v

“Startup

problems”

on

page

284

v

“Connector

is

not

polling

events”

on

page

284

v

“Event

handling”

on

page

285

v

“Failure

recovery”

on

page

286

v

“Request

processing”

on

page

287

Startup

problems

The

following

subsections

provide

suggestions

for

common

startup

problems.

Connector

cannot

log

on

to

or

register

with

the

SAP

application

If

the

connector

cannot

log

on

to

or

register

with

the

SAP

application:

v

Check

that

the

SAP

application

is

available.

v

Check

that

you

have

properly

set

the

standard

and

connector-specific

connector

configuration

properties:

–

Check

that

the

required

MQSeries

queues

have

been

created

and

that

their

corresponding

configuration

property

correctly

specifies

their

name.

–

For

request

processing,

check

the

Sysnr,

Client,

Hostname,

and

Modules

properties.

–

For

event

processing,

check

the

gwService,

Hostname,

RfcProgramId,

and

Modules

properties.

For

more

information,

see

“Configuring

the

connector”

on

page

17

and

Appendix

D,

“Troubleshooting

the

connector,”

on

page

273.

v

Verify

that

the

user

name

and

password

set

up

for

the

connector

has

the

appropriate

level

of

privileges.

Connector

is

not

polling

events

If

your

connector

is

not

polling

events

from

the

SAP

application:

v

Check

that

the

verb

application-specific

information

for

the

desired

verb

has

been

modified

to

have

the

correct

message

type,

message

code,

and

message

function.

v

Check

that

the

verb

AleOutboundVerbs

exists

and

has

a

list

of

valid

verbs.

Connector

appears

to

be

polling

but

events

are

not

being

picked

up

v

Check

that

the

event

queues

(SAPALE_Event_Queue

and

SAPALE_Wip_Queue)

have

been

created

correctly

and

that

polling

is

being

done

on

the

event

queue.

v

Verify

that

the

following

are

running

on

your

system:

–

MQSeries

–

TCP/IP

284

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

Verify

that

the

ALE

configuration

within

the

SAP

application

is

correct;

for

more

information

see,

Chapter

11,

“Overview

of

the

ALE

module,”

on

page

125.

v

Check

that

the

connector

has

made

at

lease

one

poll

call;

doing

so

installs

the

function

modules

for

event

processing.

v

Check

that

a

message

has

been

written

to

the

wip

queue

and

has

been

moved

to

the

event

queue.

Event

handling

The

connector

logs

information

about

successfully

processed

IDocs

in

a

JMS-MQ

event

message

(in

the

queue

specified

in

the

SAPALE_Event_Queue

configuration

property)

to

the

EventState.log

file.

This

file

is

located

in

the

directory

specified

in

the

AleEventDir

configuration

property.

Note:

Each

event

message

can

contain

multiple

IDocs,

each

of

which

represents

a

business

object.

If

the

connector

goes

down

before

it

processes

all

IDocs

in

the

current

event

message,

it

uses

the

EventState.log

file

during

recovery

to

ensure

that

it

sends

each

IDoc

only

once

to

the

integration

broker.

Important:

The

connector

does

not

create

the

log

file

automatically

the

first

time

it

processes

an

event.

You

must

create

this

file

for

before

you

run

the

connector

for

the

first

time.

The

format

of

the

log

file

is:

TID:

OS,

1S,

2F,

3U

where

<TID>

is

the

current

transaction

ID

being

processed,

and

each

number

represents

the

sequence

number

of

all

work

units

in

the

event

message.

For

example,

if

the

connector

has

successfully

processed

three

of

the

first

four

IDocs

in

the

current

event

message,

the

second

IDoc

failed

processing,

and

the

connector

has

not

yet

finished

processing

the

current

event

message

the

EventState.log

file

might

show:

<TID>

::

OS,

1F,

2S,

3S

If

the

connector

went

down

before

processing

the

entire

event

message,

at

startup

the

connector

will

use

the

information

in

the

log

file

to

resume

processing

the

events

in

the

message

at

the

point

where

it

had

stopped

processing.

The

connector

reads

the

log

to

get

the

transaction

ID

of

the

event

to

be

recovered,

the

latest

work

unit,

and

the

status

of

each

work

unit.

Then

the

connector

begins

sending

to

the

integration

broker

the

business

objects

that

represent

each

IDoc

in

the

event

message

with

a

sequence

number

greater

than

the

last

number

in

the

log

file.

In

the

previous

example,

the

connector

will

processing

the

fifth

IDoc

in

the

current

event

message.

The

connector

keeps

the

contents

of

the

log

file

in

memory

to

enhance

performance.

It

accesses

the

file

on

disk

only

to

update

it

with

a

new

entry.

The

connector

reads

the

log

file

only

at

recovery

time.

For

information

on

how

the

connector

uses

the

EventState.log

file

in

the

recovery

process,

see

“Failure

recovery”

on

page

286.

Appendix

D.

Troubleshooting

the

connector

285

Failure

recovery

Note:

These

recovery

steps

do

not

apply

if

a

disk

failure

occurs

or

if

a

disk

is

full.

To

recover

from

failures

during

event

notification,

the

connector:

1.

The

connector

processes

IDocs

from

the

JMS-MQ

message

in

the

event

queue

(specified

in

the

SAPALE_Event_Queue

configuration

property).

When

it

successfully

processes

a

IDoc,

the

connector

logs

an

entry

in

the

EventState.log

file.

v

If

none

of

the

work

units

in

the

event

message

fails

processing,

the

connector

moves

the

event

message

to

the

archive

queue

with

an

IDocProcessStatus

value

of

success.

v

If

any

of

the

work

units

in

the

event

queue

message

fails

processing,

the

connector

will

move

the

event

message

to

the

archive

queue

and

update

the

IDocProcessStatus

value

of

partial.
2.

After

the

connector

processes

all

IDocs

in

an

event

message,

it

clears

the

EventState.log

file

and

begins

writing

entries

to

it

for

the

next

event

message.

3.

If

the

connector

goes

down

before

it

processes

all

IDocs

in

an

event

message,

it

uses

the

information

in

EventState.log

to

determine

where

to

begin

processing

during

the

recovery

process.

When

it

comes

back

up,

the

connector

checks

whether

there

are

any

entries

in

the

log

file.

v

If

there

are

no

entries,

the

connector

sends

all

IDocs

in

the

event

message

to

the

integration

broker.

v

If

there

are

entries,

the

connector

will

use

this

information

to

resume

processing

an

event

message

at

the

point

where

it

had

stopped

processing.

The

connector

reads

the

log

to

get

the

name

of

the

event

message

to

be

recovered

and

the

latest

IDoc

sequence

number.

Then

the

connector

sends

to

the

integration

broker

each

IDoc

in

the

event

message

with

a

sequence

number

greater

than

the

last

number

in

the

log

file.

In

this

example,

the

event

message

is

moved

to

the

archive

queue

and

the

IDocProcessStatus

is

updated

according

to

the

status

of

each

work

unit

in

the

EventState.log.

Using

the

log

file

prevents

the

connector

from

sending

the

same

IDoc

multiple

times

to

the

integration

broker.

The

connector

keeps

the

log

file

in

memory

to

enhance

performance.

The

connector

accesses

the

file

on

disk

only

to

update

it

with

a

new

entry,

and

reads

the

log

file

only

at

recovery

time.

Note:

If

there

is

no

IDoc

in

the

event

message

whose

sequence

number

is

greater

than

the

last

number

in

the

log

file,

the

connector

went

down

after

processing

the

last

event

but

before

archiving

the

event

file.

In

this

case,

the

event

message

is

moved

to

the

archive

queue

and

the

IDocProcessStatus

is

updated

according

to

the

status

of

each

work

unit

in

the

EventState.log.

Recovery

from

business

object

creation

errors

If

the

connector

has

created

only

the

header

portion

of

the

message

in

the

WIP

queue

but

not

the

data

portion,

this

procedure

will

recover

the

data

portion

of

the

message.

1.

Examine

the

SAP

connector

log

for

error

messages

pertaining

to

the

business

object’s

name,

message

type,

or

verb.

2.

Make

the

appropriate

corrections

to

the

business

object

definition

or

the

connector

configuration.

286

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Note:

Configuration

changes

may

include

changes

to

MQSeries

queues.

For

more

information,

see

“Prerequisites

to

running

the

ALE

Module”

on

page

131..

3.

Restart

the

connector.

Request

processing

If

a

subscribing

business

object

is

not

being

processed

by

the

ALE

Module,

then:

v

Check

that

the

vision

connector

framework

is

set

to

call

the

ALE

Module.

The

Modules

property

must

be

set

to

ALE.

v

Check

that

the

connector

subscribes

to

the

business

object.

Troubleshooting

the

Hierarchical

Dynamic

Retrieve

Module

This

section

describes

problems

that

you

may

encounter

when

starting

up

or

running

the

Hierarchical

Dynamic

Retrieve

Module.

It

covers

the

following

areas:

v

“Error

handling

and

logging”

v

“SQL

SELECT

fails”

on

page

288

Error

handling

and

logging

The

connector

logs

an

error

message

when

it

encounters

a

condition

that

causes

the

retrieval

to

fail.

When

such

an

error

occurs,

the

connector

also

prints

a

textual

representation

of

the

failed

business

object

as

it

was

received

from

the

integration

broker.

It

writes

the

text

to

the

connector

log

file

or

the

standard

output

stream,

depending

on

its

configuration.

You

can

use

the

text

to

find

the

source

of

the

error.

Error

types

Table

53

describes

the

types

of

tracing

messages

that

the

Hierarchical

Dynamic

Retrieve

Module

outputs

at

each

trace

level.

These

messages

are

in

addition

to

any

tracing

messages

output

by

the

WebSphere

business

integration

system’s

architecture,

such

as

the

Java

connector

execution

wrapper

and

the

WebSphere

MQSeries

message

interface.

Table

53.

Connector

tracing

messages

Tracing

level

Tracing

messages

Level

0

Message

that

identifies

the

connector

version.

No

other

tracing

is

done

at

this

level.

Level

1

Function

module

entry

and

exit

messages.

These

messages

are

written

whenever

the

connector

execution

thread

enters

or

exits

from

a

function.

The

messages

help

to

trace

the

process

flow

of

the

connector.

Level

2

Business

object

handler

messages

that

contain

information

such

as

the

arrays

and

child

business

objects

that

the

connector

encounters

or

retrieves

during

the

processing

of

a

business

object

Level

3

v

Foreign

key

processing

messages

that

contain

such

information

as

when

the

connector

has

found

or

has

set

a

foreign

key

in

a

business

object

v

Messages

that

provide

information

about

business

object

processing.

For

example,

these

messages

are

delivered

when

the

connector

finds

a

match

between

business

objects,

finds

a

business

object

in

an

array

of

child

business

objects,

or

removes

child

business

objects

during

a

retrieval.

Appendix

D.

Troubleshooting

the

connector

287

Table

53.

Connector

tracing

messages

(continued)

Tracing

level

Tracing

messages

Level

4

v

Application-specific

information

messages,

for

example,

messages

showing

the

values

returned

by

the

functions

that

parse

the

business

object’s

application-specific

information

properties

v

Messages

that

identify

when

the

connector

enters

or

exits

a

Java

method,

which

helps

trace

the

process

flow

of

the

connector

v

SQL

statements.

At

this

level

and

above,

the

connector

prints

out

all

SQL

statements

that

it

executes.

v

Changes

to

an

attribute

value

during

a

retrieve.

At

this

level

and

above,

the

connector

prints

out

the

name

of

the

attribute

and

its

new

value.

Level

5

v

Messages

that

indicate

connector

initialization,

for

example,

messages

showing

the

value

of

each

configuration

property

retrieved

from

the

integration

broker

v

Messages

that

comprise

a

business

object

dump

v

Messages

that

comprise

a

representation

of

a

business

object

before

the

connector

begins

processing

it

(displaying

its

state

as

the

connector

receives

it

from

the

integration

broker)

and

after

the

connector

has

completed

its

processing

(displaying

its

state

as

the

connector

returns

it

to

the

integration

broker)

Connector

message

file

Error

messages

that

the

connector

generates

are

stored

in

a

message

file

named

SAPConnector.txt.

Each

error

has

an

error

number

followed

by

the

error

message.

For

example:

1210

SAP

Hierarchical

Dynamic

Retrieve

module

unable

to

initialize.

1211

SAP

Hierarchical

Dynamic

Retrieve

module

failed

to

locate...

Fails

to

call

RFC_READ_TABLE

The

SAP

RFC_READ_TABLE

function

doesn’t

handle

character-based

datatypes.

The

module

may

fail

while

retrieving

data

if

the

fields

use

the

following

datatypes:

v

CURR

v

DEC

v

FLTP

v

INT1

v

INT2

v

INT4

v

LRAW

v

RAW

v

RAWSTRING

SQL

SELECT

fails

If

a

SELECT

statement

fails,

check

whether

any

simple

attribute

that

is

marked

as

key

or

is

used

as

a

foreign

key

contains

a

single

quotation

mark

(’).

If

so,

revise

the

business

object’s

map

to

convert

the

single

quotation

mark

(’)

to

two

single

quotation

marks

(’’).

288

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Troubleshooting

SAPODA

There

are

two

known

problems

you

might

encounter

when

using

SAPODA:

v

SAPODA

runs

without

messages.

If

the

message

file

specified

for

the

ODA

does

not

exist,

the

ODA

runs

without

messages.

This

problem

is

caused

during

configuration

of

the

ODA

when

Business

Object

Designer

displays

a

default

name

for

the

message

file.

The

default

name

follows

the

naming

convention:

AgentNameAgent.txt

If

the

name

of

the

actual

message

file

does

not

follow

this

convention

and

the

default

value

is

not

overwritten

with

the

actual

value,

Business

Object

Designer

displays

an

error

message

in

the

window

from

which

the

ODA

was

launched.

This

message

does

not

pop

up

in

Business

Object

Designer.

For

more

information,

see“Working

with

error

and

trace

message

files”

on

page

295..

v

On

a

Windows

system,

if

Business

Object

Designer

cannot

find

required

library

files

in

the

Path

environment

variable

or

the

files

are

not

on

the

system,

it

displays

a

CORBA

Exception

while

attempting

to

get

the

tree

nodes.

For

information

about

these

files,

see“Before

using

SAPODA”

on

page

291..

Appendix

D.

Troubleshooting

the

connector

289

290

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Appendix

E.

Generating

business

object

definitions

using

SAPODA

v

“Installation

and

usage”

v

“Using

SAPODA

in

Business

Object

Designer”

on

page

296

v

“After

using

SAPODA”

on

page

311

This

chapter

describes

SAPODA,

an

object

discovery

agent

(ODA),

which

generates

business

object

definitions

for

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

(SAP

R/3

Version

4.x).

Because

the

connector

works

with

objects

that

are

based

on

IDoc

types,

BAPIs,

and

RFC-enabled

function

modules

defined

in

an

SAP

system,

SAPODA

uses

these

objects

to

discover

business

object

requirements

specific

to

its

SAP

data

source.

Note:

Familiarity

with

IDoc

types,

BAPIs,

and

RFC-enabled

function

modules

within

an

SAP

system

can

aid

in

understanding

how

SAPODA

operates.

Installation

and

usage

This

section

discusses

the

following:

v

“Installing

SAPODA”

v

“Before

using

SAPODA”

on

page

291

v

“Launching

SAPODA”

on

page

293

v

“Running

SAPODA

on

multiple

machines”

on

page

294

v

“Working

with

error

and

trace

message

files”

on

page

295

Installing

SAPODA

To

install

SAPODA,

use

Installer

for

IBM

WebSphere

Business

Integration

Adapters.

Follow

the

instructions

in

the

WebSphere

Business

Integration

Adapters

Implementation

Guide

for

MQ

Integrator,

or,

for

InterChange

System

(ICS),

the

System

Installation

Guide

for

UNIX

or

for

Windows.

When

the

installation

is

complete,

the

following

files

are

installed

in

the

product

directory

on

your

system:

v

ODA\SAP\SAPODA.jar

v

ODA\messages\SAPODAAgent.txt

v

ODA\messages\SAPODAAgent_ll_TT.txt

(message

files

specific

to

a

to

a

language

(_ll)country

or

territory

(_TT))

v

ODA\SAP\start_SAPODA.bat

(Windows

only)

v

ODA/SAP/start_SAPODA.sh

(UNIX

only)

Note:

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

product

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

Before

using

SAPODA

This

section

describes

the

following:

v

“Before

running

SAPODA”

on

page

292

v

“Before

using

SAPODA”

on

page

293

v

“How

to

use

SAPODA”

on

page

293

©

Copyright

IBM

Corp.

2003,

2004

291

Before

running

SAPODA

Before

you

can

run

SAPODA,

you

must:

v

Have

a

valid

logon

ID

to

the

SAP

system

v

Have

downloaded

the

SAP

Java

API,

which

SAP

calls

their

Java

Connector

(SAPJCo).

–

If

you

have

already

followed

instructions

for

installing

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

on

the

same

machine

on

which

you

install

SAPODA,

you

should

have

already

completed

this

step.

–

If

you

are

installing

SAPODA

prior

to

installing

the

adapter

or

on

a

different

machine,

you

must

download

the

SAP

Java

Connector.

Make

sure

that

you

download

the

SAPJCo

for

the

operating

system

that

your

connector

is

running

on.

The

SAPJCo

is

available

for

download

from

SAP’s

website

at

http://service.sap.com/connectors.

You

must

have

a

SAPNet

account

to

access

the

SAPJCo

(if

you

do

not

already

have

one,

contact

your

local

SAP

BASIS

administrator).
v

Have

copied

the

following

SAPJCo

files

to

the

appropriate

directory

and

verified

that

they

are

in

the

Path

environment

variable.

Important:

If

you

cannot

find

these

SAPJCo

files

for

an

earlier

version

of

SAPJCo

than

1.1,

contact

technical

support.

Unix

–

jCO.jar

–

librfccm.so

(AIX)

or

librfccm.so

(Solaris)

–

jCO.jar

librfccm.so(LINUX)

–

libjRFC11.so

–

libjRFC12.so

If

you

have

already

followed

instructions

for

installing

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

on

the

same

machine

on

which

you

install

SAPODA,

copy

these

files

from

the

/connectors/SAP

directory

to

the

/ODA/SAP

directory.

If

you

install

SAPODA

on

a

different

machine

from

the

connector,

after

you

unzip

the

SAPJCo

file,

copy

these

four

files

to

the

/ODA/SAP

directory.

292

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Windows

–

jCO.jar

–

librfc32.dll

–

jRFC11.dll

–

jRFC12.dll

If

you

have

already

followed

instructions

for

installing

the

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

on

the

same

machine

on

which

you

install

SAPODA,

copy

these

files

from

the

\connectors\SAP

directory

to

the

\ODA\SAP

directory.

If

you

install

SAPODA

on

a

different

machine

from

the

connector,

after

you

unzip

the

SAPJCo

files,

copy

these

four

files

to

the

\ODA\SAP

directory.

For

Windows,

the

librfc32.dll

requires

one

or

more

C

runtime

dlls.

The

C

runtime

dlls

depend

on

the

version

of

the

SAP

release

being

used.

Through

SAP

release

45B,

the

C

runtime

dll

required

is

msvcrt.dll

version

5.00.7022

or

newer.

Starting

with

SAP

release

46A,

the

C

runtime

dlls

required

are

msvcrt.dll

version

6.00.8267.0

or

newer

and

msvcp60.dll

version

6.00.8168.0

or

newer.

The

dll

or

dlls

should

be

copied

into

the

C:\WINNT\system32

directory.

This

dll

or

these

dlls

may

already

be

present

and

if

not,

can

be

found

on

the

“Presentation

CD”

that

contains

the

Windows

SAPGUI

setup

in

the

folder

<cddrive>:\GUI\Windows\Win32\system.

See

SAP

OSS

note

number

0182805

for

more

information.

Before

using

SAPODA

Before

using

SAPODA

to

generate

a

business

object

definition

from

an

SAP

Intermediate

Document

(IDoc)

format,

you

must

create

the

IDoc

definition

file

for

each

IDoc

you

want

supported.

SAPODA

uses

this

file

as

input.

How

to

use

SAPODA

After

installing

SAPODA,

you

must

do

the

following

to

generate

business

objects:

1.

Launch

the

ODA.

2.

Launch

Business

Object

Designer.

3.

Follow

a

six-step

process

in

Business

Object

Designer

to

configure

and

run

the

ODA.

The

following

sections

describe

these

steps

in

detail.

Launching

SAPODA

You

can

launch

SAPODA

in

either

of

the

following

ways:

v

If

you

registered

SAPODA

with

the

Object

Activation

Daemon,

you

do

not

need

to

manually

start

SAPODA.

OAD

maintains

a

list

of

registered

ODA

names,

and

listens

for

requests

to

start

the

ODA.

When

you

select

the

ODA’s

name

in

Business

Object

Designer,

OAD

starts

the

ODA.

For

information

on

registering

SAPODA,

see

the

installation

guide

for

your

WebSphere

business

integration

system.

Appendix

E.

Generating

business

object

definitions

using

SAPODA

293

v

If

you

have

not

registered

SAPODA

with

the

Object

Activation

Daemon,

start

it

by

running

the

appropriate

file:

UNIX

start_SAPODA.sh

End

of

UNIX

Windows

start_SAPODA.bat

End

of

Windows

Important:

If

you

register

the

ODA

with

OAD,

but

run

the

script

or

batch

file

before

selecting

the

ODA

in

Business

Object

Designer,

Business

Object

Designer

may

display

two

names

when

you

press

Find

Agents:

the

one

registered

with

OAD

and

the

one

in

the

script

or

batch

file.

If

the

two

names

are

identical,

two

identical

names

display.

However,

if

both

names

represent

the

ODA

in

the

same

subnet

and

the

ODA

has

been

started

manually,

Business

Object

Designer

connects

only

to

the

manually

started

ODA.

In

this

case,

Business

Object

Designer

does

not

call

OAD.

Attempting

to

start

the

second

identically

named

ODA

in

the

same

subnet

causes

the

second

ODA

to

quit

with

an

error.

For

information

on

changing

the

name

of

an

ODA,

see

“Running

SAPODA

on

multiple

machines”

on

page

294.

You

configure

and

run

SAPODA

using

Business

Object

Designer.

Business

Object

Designer

locates

each

ODA

by

the

name

specified

in

the

AGENTNAME

variable

of

each

script

or

batch

file.

The

default

ODA

name

for

this

connector

is

SAPODA.

During

installation,

if

you

register

the

ODA

with

an

Object

Activation

Daemon,

the

wizard

automatically

prefixes

the

hostname

to

the

AGENTNAME

value

to

make

it

unique.

Running

SAPODA

on

multiple

machines

It

is

recommended

that

you

change

the

name

of

the

ODA

when

you

run

multiple

instances

of

it

on

different

machines.

To

create

additional

uniquely

named

instances

of

SAPODA,

specify

a

unique

name

in

the

AGENTNAME

variable

of

the

script

or

batch

file

on

each

machine

on

which

the

ODA

is

installed.

To

run

the

desired

ODA,

you

select

it

by

name

from

a

list

of

available

ODAs

in

Business

Object

Designer,

which

displays

all

active

ODAs.

Non-unique

names

can

cause

confusion

when

selecting

the

appropriate

ODA

to

run.

A

naming

convention

for

assigning

unique

names

is

prefixing

each

name

with

the

name

of

the

host

machine

on

which

the

ODA

runs.

If

you

registered

the

ODA

with

an

Object

Activation

Daemon,

you

can

use

an

ORB

finder

(osfind)

to

locate

existing

CORBA

object

names

on

your

network.

Figure

34

on

page

297

illustrates

the

window

in

Business

Object

Designer

from

which

you

select

the

ODA

to

run.

294

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Working

with

error

and

trace

message

files

Error

and

trace

message

files

(the

default

is

SAPODAAgent.txt)

are

located

in

\ODA\messages\,

which

is

under

the

product

directory.

These

files

are

language

and

country

or

territory

specific

and

use

the

following

naming

convention:

AgentNameAgent_ll_TT.txt

Where

_ll

is

the

language,

and

_TT

is

the

country

or

territory,

and

where,

when

taken

together,

constitiute

a

locale.

For

instance,

a

Chinese

mainland

file

name

would

be:

SAPODAAgent_zh_CN.txt.

The

same

file

name

for

Taiwan

would

be:

SAPODAAgent_zh_TW.txt.

The

Business

Object

Designer

uses

this

information

when

selecting

a

message

file.

The

default

search

order

is

to

first

look

for

the

locale-specific

file

that

matches

the

locale

in

which

the

Business

Object

Designer

is

running.

If

that

is

not

found,

the

Business

Object

Designer

defaults

to

the

English-US

(en_US)

version,

and

finally,

the

Business

Object

Designer

looks

for

the

file

name

without

any

locale

or

language

information.

If

you

create

multiple

instances

of

the

ODA

script

or

batch

file

and

provide

a

unique

name

for

each

represented

ODA,

you

can

have

a

message

file

for

each

ODA

instance.

Alternatively,

you

can

have

differently

named

ODAs

use

the

same

message

file.

There

are

two

ways

to

specify

a

valid

message

file:

v

If

you

change

the

name

of

an

ODA

and

do

not

create

a

message

file

for

it,

you

must

change

the

name

of

the

message

file

in

Business

Object

Designer

as

part

of

ODA

configuration.

Business

Object

Designer

provides

a

name

for

the

message

file

but

does

not

actually

create

the

file.

If

the

file

displayed

as

part

of

ODA

configuration

does

not

exist,

change

the

value

to

point

to

an

existing

file.

v

You

can

copy

the

existing

message

file

for

a

specific

ODA,

and

modify

it

as

required.

Business

Object

Designer

assumes

you

name

each

file

according

to

the

naming

convention.

For

example,

if

the

AGENTNAME

variable

specifies

SAPODA1,

the

tool

assumes

that

the

name

of

the

associated

message

file

is

SAPODA1Agent.txt.

Therefore,

when

Business

Object

Designer

provides

the

filename

for

verification

as

part

of

ODA

configuration,

the

filename

is

based

on

the

ODA

name.

Verify

that

the

default

message

file

is

named

correctly,

and

correct

it

as

necessary.

Note:

If

a

non-English

locale

is

required,

the

same

naming

convention

is

still

applicable;

for

example,

SAPODA1Agent_zh_TW.txt.

Important:

Failing

to

correctly

specify

the

message

file’s

name

when

you

configure

the

ODA

causes

it

to

run

without

messages.

For

more

information

on

specifying

the

message

file

name,

see

“Configure

initialization

properties”

on

page

297

During

the

configuration

process,

you

specify:

v

The

name

of

the

file

into

which

SAPODA

writes

error

and

trace

information

v

The

name

of

the

message

file

v

The

level

of

tracing,

which

ranges

from

0

to

5.

Appendix

E.

Generating

business

object

definitions

using

SAPODA

295

Table

54

describes

the

tracing

level

values.

Table

54.

Tracing

levels

Trace

Level

Description

0

Logs

all

errors

1

Traces

all

entering

and

exiting

messages

for

method

2

Traces

the

ODA’s

properties

and

their

values

3

Traces

the

names

of

all

business

objects

4

Traces

details

of

all

spawned

threads

5

v

Indicates

the

ODA

initialization

values

for

all

of

its

properties

v

Traces

a

detailed

status

of

each

thread

that

SAPODA

spawned.

v

Traces

the

business

object

definition

dump

For

information

on

where

you

configure

these

values,

see

“Configure

initialization

properties”

on

page

297.

Using

SAPODA

in

Business

Object

Designer

This

section

describes

how

to

use

SAPODA

in

Business

Object

Designer

to

generate

business

object

definitions.

For

information

on

launching

Business

Object

Designer,

see

the

Business

Object

Development

Guide.

After

you

launch

an

ODA,

you

must

launch

Business

Object

Designer

to

configure

and

run

it.

There

are

six

steps

in

Business

Object

Designer

to

generate

a

business

object

definition

using

an

ODA.

Business

Object

Designer

provides

a

wizard

that

guides

you

through

each

of

these

steps.

After

starting

the

ODA,

do

the

following

to

start

the

wizard:

1.

Open

Business

Object

Designer.

2.

From

the

File

menu,

select

the

New

Using

ODA...

submenu.

Business

Object

Designer

displays

the

first

window

in

the

wizard,

named

Select

Agent.

Figure

34

on

page

297

illustrates

this

window.

To

select,

configure,

and

run

the

ODA,

follow

these

steps:

1.

“Select

the

ODA.”

2.

“Configure

initialization

properties”

on

page

297.

3.

“Expand

nodes

and

select

objects”

on

page

299.

4.

“Confirm

selection

of

objects”

on

page

301.

5.

“Generate

the

definition”

on

page

302

and,

optionally,

“Provide

additional

information”

on

page

303.

6.

“Save

the

definition”

on

page

310.

Select

the

ODA

Figure

34

illustrates

the

first

dialog

box

in

Business

Object

Designer’s

six-step

wizard.

From

this

window,

select

the

ODA

to

run.

296

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

To

select

the

ODA:

1.

Click

the

Find

Agents

button

to

display

all

registered

or

currently

running

ODAs

in

the

Located

agents

field.

Note:

If

Business

Object

Designer

does

not

locate

your

desired

ODA,

enter

the

Agent’s

name

directly

into

the

Agent’s

name

field.

If

it

still

does

not

locate

the

ODA,

check

the

setup

of

the

ODA.

2.

Select

the

desired

ODA

from

the

displayed

list.

Business

Object

Designer

displays

your

selection

in

the

Agent’s

name

field.

Configure

initialization

properties

The

first

time

Business

Object

Designer

communicates

with

SAPODA,

it

prompts

you

to

enter

a

set

of

initialization

properties

as

shown

in

Figure

35.

You

can

save

these

properties

in

a

named

profile

so

that

you

do

not

need

to

re-enter

them

each

time

you

use

SAPODA.

For

information

on

specifying

an

ODA

profile,

see

the

Business

Object

Development

Guide.

Figure

34.

Selecting

the

ODA

Appendix

E.

Generating

business

object

definitions

using

SAPODA

297

Configure

the

SAPODA

properties

described

in

Table

55.

Table

55.

SAPODA

Properties

Row

#

Property

Name

Property

Type

Description

1

UserName

String

SAP

logon

user

name

(not

required

when

generating

a

definition

only

from

an

IDoc)

2

Password

String

SAP

logon

password

(not

required

when

generating

a

definition

only

from

an

IDoc)

3

Client

String

SAP

logon

client

number

(not

required

when

generating

a

definition

only

from

an

IDoc)

4

Language

String

SAP

logon

language

(not

required

when

generating

a

definition

only

from

an

IDoc)

5

SystemNumber

String

SAP

system

number

(not

required

when

generating

a

definition

only

from

an

IDoc)

6

ASHostName

String

Host

name

of

the

SAP

application

server

(not

required

when

generating

a

definition

only

from

an

IDoc)

7

RFCTrace

Single-card,

multi-value

RFC

tracing

for

the

SAP

system

8

DefaultBOPrefix

String

Text

that

is

prepended

to

the

name

of

the

business

object

to

make

it

unique.

You

can

change

this

later,

if

required,

when

Business

Object

Designer

prompts

you

for

Business

Object

Specific

Properties.

For

more

information,

see

“Provide

additional

information”

on

page

303.

9

MaximumHits

String

Maximum

number

of

objects

returned

during

a

node

search.

For

more

information,

see

“Expand

nodes

and

select

objects”

on

page

299.

Default

is:

100

Figure

35.

Configuring

Agent

Properties

298

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Table

55.

SAPODA

Properties

(continued)

Row

#

Property

Name

Property

Type

Description

10

TraceFileName

String

Name

of

the

trace

file.

If

the

file

does

not

exist,

SAPODA

creates

it

in

the

\ODA\SAP

directory.

If

the

file

already

exists,

SAPODA

appends

to

it.

SAPODA

names

the

file

according

to

the

naming

convention.

For

example,

if

the

agent

is

named

SAPODA,

it

generates

a

trace

file

named

SAPODAtrace.txt.

Use

this

property

to

specify

a

different

name

for

this

file.

11

TraceLevel

Integer

Level

of

tracing

enabled

for

SAPODA

For

more

information

on

tracing,

see

“Working

with

error

and

trace

message

files”

on

page

295.

12

MessageFile

String

Name

of

the

error

and

message

file.

SAPODA

names

the

file

according

to

the

naming

convention.

For

example,

if

the

agent

is

named

SAPODA,

it

names

the

message

file

SAPODAAgent.txt.Important:

The

error

and

message

file

must

be

located

in

the

\ODA\messages

directory.

Use

this

property

to

verify

or

specify

an

existing

file.

13

File

destination

Directory

Directory

where

ODA-generated

files

are

stored.

Default

is

the

default

directory

on

the

Windows

system.

It

is

recommended

that

you

change

the

default

setting

to

the

\connectors\SAP\utilities\generatedfiles

directory.

Important:

Correct

the

name

of

the

message

file

if

the

default

value

displayed

in

Business

Object

Designer

represents

a

non-existent

file.

If

the

name

is

not

correct

when

you

move

forward

from

this

dialog

box,

Business

Object

Designer

displays

an

error

message

in

the

window

from

which

the

ODA

was

launched.

This

message

does

not

popup

in

Business

Object

Designer.

Failing

to

specify

a

valid

message

file

causes

the

ODA

to

run

without

messages.

Expand

nodes

and

select

objects

After

you

configure

all

properties

for

SAPODA,

Business

Object

Designer

displays

a

tree

with

the

following

the

initial

nodes:

v

IDoc

types—You

can:

–

browse

for

extracted

IDoc

definition

files

–

select

IDocs

in

the

SAP

system

(Basic

IDoc

Types

and

Extension

Types)

Note:

Extension

Types

are

customer-defined

IDoc

Types.
v

BOR—select

objects

that

represent

BAPIs

from

the

SAP

application

v

RFC—select

objects

that

represent

RFC-enabled

functions

from

the

SAP

application

v

Dynamic

Transaction

and

Retrieve—select

the

definitions

that

represent

objects

from

the

dynamic

transaction

and

dynamic

retrieve

metadata

tables

Appendix

E.

Generating

business

object

definitions

using

SAPODA

299

–

HDR—select

the

tables

required

to

represent

an

entity

for

SAP

transactions

processed

by

the

Hierarchical

Dynamic

Retrieve

module

The

nodes

whose

names

are

preceded

by

a

plus

sign

(+)

are

expandable.

Click

on

them

to

display

more

nodes

or

leaves.

SAPODA

generates

business

object

definitions

only

from

leaves.

Figure

36

illustrates

this

dialog

box

as

originally

displayed

and

with

some

nodes

expanded.

When

a

leaf’s

name

is

displayed

in

bold

type,

you

can

select

the

leaf

as

the

basis

for

its

business

object

to

be

generated.

Use

standard

Windows

procedures

to

select

multiple

leaves.

In

other

words,

depress

the

CTRL

key

while

you

use

the

mouse

to

select

multiple

leaves.

Important:

On

a

Windows

system,

if

Business

Object

Designer

cannot

find

required

library

files

in

the

Path

environment

variable

or

the

files

are

not

on

the

system,

it

displays

a

CORBA

Exception

while

attempting

to

get

the

tree

nodes.

For

information

about

these

files,

see

“Before

running

SAPODA”

on

page

292.

SAPODA

uses

a

polymorphic

node

type

that

allows

you

to

associate

a

flat

file

with

a

node.

Initially

the

node

displays

without

any

leaves.

You

can

browse

a

file

system

and

select

files

to

add

to

that

node.

The

node

is

called

polymorphic

because

its

nature

changes

from

a

leaf

to

a

branch

when

you

associate

it

to

one

or

more

files.

Figure

37

illustrates

two

ways

of

limiting

the

number

of

leaves

that

Business

Object

Designer

returns:

1

2

Figure

36.

Tree

of

schema

with

expanded

nodes

300

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

A

context-sensitive

menu

that

allows

you

to

open

a

window

for

browsing

files.

From

this

window,

you

can

select

which

files

to

associate.

v

A

wizard

that

allows

you

to

specify

search

characters

in

the

objects’

names.

After

you

have

selected

all

desired

leaves

for

object

generation,

click

the

Next

button.

For

information

on

how

to

filter

the

objects

returned,

see

the

Business

Object

Development

Guide.

Confirm

selection

of

objects

After

you

identify

all

the

objects

to

be

associated

with

a

generated

business

object

definition,

Business

Object

Designer

displays

the

dialog

box

with

only

the

selected

leaves

and

their

node

paths.

Figure

38

illustrates

this

dialog

box.

Examples of associating files to an IDOC

Example of searching
by RFC function name

Figure

37.

Associating

a

file

and

entering

search

criteria

Appendix

E.

Generating

business

object

definitions

using

SAPODA

301

This

window

provides

the

following

options:

v

To

confirm

the

selection,

click

Next.

v

If

the

selection

is

not

correct,

click

Back

to

return

to

the

previous

window

and

make

the

necessary

changes.

When

the

selection

is

correct,

click

Next.

Generate

the

definition

After

you

confirm

the

selected

objects,

the

next

dialog

box

informs

you

that

Business

Object

Designer

is

generating

the

definitions.

Figure

39

illustrates

this

dialog

box.

Figure

38.

Confirming

selection

of

nodes

and

leaves

302

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Provide

additional

information

SAPODA

prompts

for

additional

information.

The

type

of

the

top-level

node

(IDoc

types,

BOR,

RFC,

or

Dynamic

Definitions)

determines:

v

The

set

of

properties

that

Business

Object

Designer

displays

in

the

BO

Properties

window.

v

Whether

Business

Object

Designer

displays

a

second

window

that

prompts

you

for

additional

object

generation

information.

This

section

describes:

v

“IDoc

Type:

Providing

additional

information”

v

“BOR

or

RFC:

Providing

additional

information”

on

page

306

v

“HDR:

Providing

additional

information”

on

page

308

Note:

No

additional

information

is

required

for

the

Dynamic

Transaction

and

Retrieval

nodes.

IDoc

Type:

Providing

additional

information

SAPODA

displays

the

BO

Properties

window

to

enable

you

to

specify

information

required

for

business

objects

based

on

IDoc

types.

The

properties

displayed

in

this

window

differ

depending

on

the

source

of

the

IDoc

(an

extracted

file

or

a

definition

in

the

SAP

system)

and

whether

the

definition

is

being

defined

for

the

ABAP

Extension

module.

This

section

describes

the

following

topics:

v

“The

BO

Properties

Window—Common

Properties”

on

page

304

Figure

39.

Generating

the

Definition

Appendix

E.

Generating

business

object

definitions

using

SAPODA

303

v

“The

BO

Properties

Window—Property

for

IDoc

Defined

in

the

SAP

System”

v

“The

BO

Properties

Window—Specifying

a

Function

module

for

the

ABAP

Handler”

on

page

305

The

BO

Properties

Window—Common

Properties:

Regardless

of

whether

SAPODA

is

generating

the

business

object

definition

from

an

IDoc

file

or

an

IDoc

defined

in

the

SAP

system,

the

BO

Properties

window

for

an

IDoc

type

allows

you

to

specify

or

change:

v

Prefix

information.

The

prefix

is

text

prepended

to

the

name

of

the

business

object

to

make

it

unique.

If

you

are

satisfied

with

the

value

you

entered

for

the

DefaultBOPrefix

property

in

the

Configure

Agent

window

(Figure

35

on

page

298),

you

do

not

need

to

change

the

value

here.

v

Module

type

The

module

type

choices

are

ALE

or

Extension.

Because

the

ALE

and

the

ABAP

Extension

modules

have

different

requirements

for

their

business

object

definitions,

it

is

important

to

specify

which

module

will

be

using

the

business

object.

Note:

If

there

are

multiple

segments

at

the

top-level

of

the

IDoc,

when

SAPODA

generates

the

business

object

definition

for

the

ABAP

Extension

module,

it

uses

the

first

IDoc

segment

to

represent

the

top-level

business

object.

SAPODA

represents

the

other

top-level

segments

as

child

business

objects

The

BO

Properties

Window—Property

for

IDoc

Defined

in

the

SAP

System:

In

addition

to

the

Prefix

and

module

properties,

the

BO

Properties

window

representing

an

IDoc

defined

in

the

SAP

system

also

displays

the

Release

property.

You

can

use

this

property

to

identify

an

earlier

version

of

the

IDoc

type.

Important:

If

the

earlier

version

of

the

IDoc

type

has

fewer

segments

than

the

current

version,

SAPODA

might

create

a

definition

with

missing

segments

or

SAPODA

might

display

an

error

indicating

that

the

generation

of

the

business

object

definition

was

unsuccessful.

This

inconsistency

is

due

to

different

versions

of

SAP

requiring

different

API

calls.

Figure

40

illustrates

the

two

versions

of

the

BO

Properties

window,

one

for

an

extracted

IDoc

Type

definition

file

and

one

for

an

IDoc

defined

in

the

SAP

system.

304

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

The

BO

Properties

Window—Specifying

a

Function

module

for

the

ABAP

Handler:

If

you

select

Extension

as

the

module

type,

SAPODA

prompts

whether

you

want

to

enter

function

module

names

for

any

of

the

default

verbs.

By

default,

when

generating

a

definition

for

the

ABAP

Extension

module,

SAPODA

specifies

the

following

text

for

verb

application-specific

information

at

the

business

object

level

of

the

top-level

business

object:

:/CWLD/IDOC_HANDLER

If

you

already

know

the

function

module

names

to

pass

to

the

ABAP

handler,

select

Yes

at

this

prompt.

SAPODA

displays

the

window

illustrated

in

Figure

41.

BO Properties for an IDoc file

BO Properties for
an IDoc file defined
in SAP system

Figure

40.

Providing

additional

information

for

an

IDoc

type

business

object

Appendix

E.

Generating

business

object

definitions

using

SAPODA

305

Figure

41

illustrates

a

BO

Properties

window

in

which

two

function

modules

have

been

specified.

After

you

save

the

business

object

definition,

the

General

tab

in

Business

Object

Designer

displays

the

required

application-specific

information

at

the

business

object

level

of

the

topmost

business

object.

Figure

42

illustrates

such

a

window

with

the

two

specified

function

modules.

BOR

or

RFC:

Providing

additional

information

There

are

two

BO

Properties

windows

for

a

BOR

or

RFC

Type.

The

properties

displayed

in

the

first

window

allow

you

to

specify

or

change:

Figure

41.

Specifying

function

modules

for

the

ABAP

handler

Figure

42.

Specifying

the

ABAP

handler

in

Business

Object

Designer

306

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

v

Prefix

—If

you

are

satisfied

with

the

value

you

entered

for

the

DefaultBOPrefix

property

in

the

Configure

Agent

window

(Figure

35

on

page

298),

you

do

not

need

to

change

the

value

here.

v

Verb

—Specify

the

verb.

v

Server

Support—If

the

definition

is

to

be

generated

for

the

connector’s

RFC

Server

module,

specify

yes.

If

the

definition

is

to

be

generated

for

the

connector’s

BAPI

module,

specify

no.

After

you

click

OK

to

move

forward

from

the

first

BO

Properties

window,

SAPODA

gives

you

the

opportunity

to

reduce

the

size

of

the

generated

definition.

You

are

prompted

whether

you

want

to

remove

from

the

definition

any

attributes

that

represent

optional

parameters.

This

prompt

displays

only

if

there

are

optional

parameters

to

remove.

Reducing

the

size

of

the

definition

can

enhance

performance

later

when

the

connector

processes

instances

of

the

business

object.

Figure

43

illustrates

the

properties

displayed

for

a

BOR

or

RFC-type

object

and

the

prompt

that

displays

after

you

click

OK.

If

you

click

Yes

in

the

prompt

illustrated

above,

the

second

BO

Properties

window

displays.

You

can

specify

removal

of

each

optional

parameter

of

a

BAPI/RFC

interface

by

changing

its

Value

from

Yes

(include

a

corresponding

attribute

in

the

generated

definition)

to

No

(do

not

include

an

attribute).

If

you

click

No

in

the

prompt

illustrated

above,

the

final

wizard

displays.

For

more

information,

see

“Save

the

definition”

on

page

310.

Figure

44

illustrates

the

second

BO

Properties

window.

1

2

Figure

43.

Providing

sdditional

iInformation

for

BOR

or

RFC

business

objects

Appendix

E.

Generating

business

object

definitions

using

SAPODA

307

Important:

A

business

object

definition

for

a

RFC-enabled

function

beginning

with

“Bapi”

must

have

an

attribute

that

represents

a

business

object

corresponding

to

a

return

structure

or

table.

If

a

definition

lacks

such

an

attribute,

an

error

occurs

when

its

corresponding

generated

code

is

compiled.

If

you

get

this

compile

error,

examine

the

BAPI

to

determine

if

SAP

was

using

a

different

return

structure.

In

this

case,

change

the

generated

Java

code

to

point

to

the

proper

parameter.

In

addition

to

the

specifications

you

provide

in

SAPODA,

when

you

create

a

definition

for

the

RFC

Server

module,

you

may

want

to

modify

application-specific

information

after

you

save

the

business

object

definition.

For

more

information,

see

Chapter

19,

“Developing

business

objects

for

the

RFC

Server

Module,”

on

page

191.

HDR:

Providing

additional

information

There

are

two

BO

Properties

window

for

an

HDR

table-based

object.

The

property

displayed

in

the

first

window

allows

you

to

specify

or

change

the

business

object’s

prefix.

If

you

are

satisfied

with

the

value

you

entered

for

the

DefaultBOPrefix

property

in

the

Configure

Agent

window

(Figure

35

on

page

298),

you

do

not

need

to

change

the

value

here.

Figure

45

illustrates

this

window.

Return parameter

Optional parameter

Figure

44.

Specifying

attributes

for

removal

from

the

definition

308

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

In

addition,

only

512

bytes

of

information

from

a

table

can

be

returned.

When

a

table

returns

more

than

512

bytes,

you

will

be

presented

with

the

dialog

found

in

Figure

46.

Answering

“No”

returns

attributes

(column

descriptions)

from

the

beginning

of

the

table

until

the

512

byte

maximum

is

reached.

Answering

“Yes”

displays

the

second

BO

properties

windows

noted

in

Figure

47.

The

length

in

bytes

for

each

attribute

is

provided

in

the

window

description.

You

can

specific

the

inclusion

or

exclusion

of

an

attribute

for

the

business

object

by

toggling

its

value

between

“Yes”

and

“No.”

Figure

45.

Providing

additional

information

for

an

HDR

business

object

Figure

46.

512

byte

warning

Appendix

E.

Generating

business

object

definitions

using

SAPODA

309

For

more

information,

see

Chapter

22,

“Developing

business

objects

for

the

Hierarchical

Dynamic

Retrieve

Module,”

on

page

211.

Save

the

definition

After

you

provide

all

required

information

in

the

BO

Properties

dialog

box

and

click

OK,

Business

Object

Designer

displays

the

final

dialog

box

in

the

wizard.

Here,

you

can

save

the

definition

to

the

server

or

to

a

file,

or

you

can

open

the

definition

for

editing

in

Business

Object

Designer.

For

more

information,

and

to

make

further

modifications,

see

the

Business

Object

Development

Guide.

Note:

When

this

step

completes,

Business

Object

Designer

ends

a

manually-started

ODA.

To

generate

another

definition,

you

must

restart

the

ODA.

Figure

48

illustrates

this

dialog

box.

Figure

47.

Size

and

type

of

BO

properties

for

an

HDR

business

object

310

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

After

using

SAPODA

The

business

object

definition

that

SAPODA

generates

from

an

IDoc

Type,

BAPI

interface,

or

RFC-enabled

function

does

not

contain

all

the

information

required

for

the

connector

to

process

the

business

object.

Therefore,

after

SAPODA

finishes

generating

the

definition,

you

must

add

all

required

information

to

the

definition.

Use

Business

Object

Designer

to

examine

and

modify

the

business

object

definition,

and

to

reload

or

copy

a

revised

definition

into

the

repository.

For

information

on

modifying

a

business

object

definition,

see

the

Business

Object

Development

Guide.

For

information

on

the

business

object

definition

that

a

specific

connector

module

requires,

and

the

modifications

you

must

make

before

the

connector

can

process

it,

see

the

appropriate

module’s

documentation:

v

Chapter

13,

“Developing

business

objects

for

the

ALE

module,”

on

page

145

v

Chapter

16,

“Developing

business

objects

for

the

BAPI

Module,”

on

page

169

v

Chapter

19,

“Developing

business

objects

for

the

RFC

Server

Module,”

on

page

191

Figure

48.

Saving

business

object

definition

Appendix

E.

Generating

business

object

definitions

using

SAPODA

311

312

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Index

A
ABAP

Extension

Module

36,

61

ABAP

components

34

and

ABAP

Handlers

37

and

Do_Verb_Nextgen

37

and

doVerbFor()

36

and

pollForEvents()

38

business

object

conversion

58

business

object

development

69

business

object

processing

57

calling

88

components

33

enabling

53

event

notification

38

how

it

works

35

initialization

35

Java

components

34

testing

business

objects

101

troubleshooting

273,

278,

284,

287

upgrading

115

verb

application-specific

text

88

ABAP

Handlers

37

and

create

processing

63

and

delete

processing

63

and

retrieve

processing

63

and

update

processing

63

business

object

data

reformatting

64

data

routing

61

development

APIs

72

flat

structure

conversion

67

processing

business

object

data

63

testing

104

ABAP

objects,

modifying

55

ALE

Module
supported

verbs

154

Architecture

of

the

connector

3

Archive

object

program
automatic

deletion

110

Archive

objects

deleting

automatically

110

Archive

table
automatic

deletion

113

deleting

events

113

event

resubmission

113

maintaining

112

Archived

objects
configuring

109

deleting

110

reprocessing

108

B
BAPI

Module

164

business

object

development

169,

191,

211

business

object

naming

conventions

170,

192

components

163

configuration

167

files

167

how

it

works

164

initialization

164

supported

verbs

172

BAPI

Module

(continued)
troubleshooting

281

verb

application-specific

text

174,

196

BAPI-Specific

BOHandler
calling

174,

196

Batch

program.
See

Event

detection

mechanism

BDC

session,

for

Dynamic

Transaction

75

Business

object

data
and

ABAP

Handlers

63

and

SAP

Native

APIs

63

reformatting

64

routing

61

Business

object

development
ABAP

Extension

Module

overview

69

ABAP

Handler

APIs

72

BAPI

Module

overview

169,

191,

211

Inbound

Wizard

overview

73,

225

Object

Definition

Generator

74

Outbound

Wizard

overview

73,

225

testing

101

tools

73

using

Dynamic

Transaction

74

using

IDocs

79

Business

object

naming

conventions
BAPI

Module

170,

192

Business

object

processing

6,

36,

164,

186

ABAP

Extension

Module

36,

57

BAPI

Module

164

conversion

to

flat

structure

67

RFC

Server

Module

186

verb

application-specific

text

6

Vision

Connector

Framework

6

Business

workflow.
See

Event

detection

mechanism

C
Call

Transaction

logic,

creating

83

Change

pointer.
See

Event

detection

mechanism

Class
visionBOHandler

4

visionConnector

4

Code

enhancement.
See

Event

detection

mechanism

Configuration

properties
connector-specific

18

Configuring
the

BAPI

Module

167

Configuring,

objects

for

archiving

109

Connector
architecture

3

components

3

Enabling

the

application

for

the

ABAP

Extension

Module

53

installing

13

overview

3

upgrading

to

Java-based

version

28

Vision

Connector

Framework

4

Connector

components

4

©

Copyright

IBM

Corp.

2003,

2004

313

Connector

components

(continued)
ABAP

Extension

Module

33

BAPI

Module

163

connector

modules

3,

5

RFC

Server

Module

183

Vision

Connector

Framework

3

Connector

log

file
displaying

107

managing

107

setting

options

107

truncating

the

event

log

110

Connector

manager

script

14

Connector

modules

5

Connector

transport

files
installation

50

overview

47

verifying

installation

51

CPIC

user

account

12

Create

processing
and

ABAP

Handlers

63

and

IDoc

Handlers

81

Current

event

queue.
See

Event

queue

D
Data

routing,

ABAP

Handler

61

Delete

processing
and

ABAP

Handlers

63

and

IDoc

Handlers

81

Deleting,

archived

objects

110

Developing

business

objects.
See

Business

object

development

Dynamic

Transaction
composing

a

BDC

session

75

developing

business

objects

74

tips

74,

75

using

Inbound

Wizard

78

E
Event

detection

42

distribution

53

filtering

44,

53

notification

38

persistence

45

polling

39

priority

44,

53

request

39

return

41

trigger

42

Event

archive

table.
See

Archive

table

Event

detection

mechanism
designing

89

implementing
batch

program

97

business

workflow

98

change

pointer

99

code

enhancement

93

future

events

for

Batch

Program

97

future

events

for

Code

Enhancement

94

overview
batch

program

91

business

workflow

92

Event

detection

mechanism

(continued)
overview

(continued)
change

pointer

92

code

enhancement

91

Event

detection.
See

Event

detection

mechanism

Event

distribution,

setting

up

53

Event

filtering,

setting

up

53

Event

log
automatic

truncation

111

Event

notification
ABAP

Extension

Module

38

event

polling

39

event

triggering

42

Event

polling
event

request

39

event

return

41

Event

priority,

setting

up

53

Event

queue
maintaining

111

Event

resubmission,

from

archive

table

113

Event

trigger
event

filtering

44

Event

triggering

42

event

detection

42

event

persistence

45

event

priority

44

event

trigger

42

Events
deleting

from

archive

table

113

truncating

the

event

log

111

F
Flat

structure,

business

object

conversion

58

Function

module

interface,

CrossWorlds

71

Future

events
implementing

94

G
Gateway

service.
See

SAP

Gateway

service

I
IDoc

Handlers
and

create

processing

81

and

delete

processing

81

and

retrieve

processing

85

and

update

processing

81

architecture

80

object-specific

85

translating

data

structures

83

IDocs
creating

inbound

logic

83

developing

business

objects

79

Inbound

Wizard
for

Dynamic

Transaction

78

overview

73,

225

Initializing

the

ABAP

Extension

Module

35

Initializing

the

BAPI

Module

164

Initializing

the

RFC

Server

Module

185

Installing
connector

prerequisites

12

Java

Connector

(JCO)

12,

15,

292

314

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Installing

(continued)
overview

of

connector

transport

files

47

the

BAPI

Module

167

J
Java

Connector

installation

15

JCO,
See

Java

Connector

L
Log

file.
See

connector

log

file

Log,

increasing

tablespace

size

54

M
Modules,

connector

5

Multiple

connectors,

starting

26

N
Naming

conventions.
See

Business

object

naming

conventions

Number

ranges,

verifying

54

O
Object

Definition

Generator

74

Outbound

Wizard
overview

73,

225

Overview
ABAP

Extension

Module

33

ABAP

Extension

Module

business

object

development

69

BAPI

Module

163

BAPI

Module

business

object

development

169,

191,

211

connector

3

RFC

Server

Module

183

P
Ping-pong,

preventing

55

Prerequisites,

connector

installation

12

R
Remote

Function

Call.
See

RFC

Reprocessing,

archived

objects

108

Resubmission
events

from

archive

table

113

Retrieve

processing
and

ABAP

Handlers

63

and

IDoc

Handlers

85

Return

code
non-zero

67

return

code

0

64

return

code

21

67

RFC

API,

SAP’s

5

RFC

Library

5

RFC

Server

Module

186

components

183

configuration

189

RFC

Server

Module

(continued)
files

189

how

it

works

185

initialization

185

troubleshooting

282

RFC

ServerI

Module
supported

verbs

194

S
SAP

Gateway

service,

monitoring

connections

111

SAP

Native

APIs
ABAP

SQL

70

Batch

Data

Communication

(BDC)

71

Call

Transaction

70

CrossWorlds

implemented

70

SAP

Native

APIs,

and

business

object

data

63

SAP

RFC

API

5

Script
connector

manager

14

Starting

multiple

connectors

26

T
Testing

ABAP

Handlers

104

business

objects

101

creating

a

test

file

104

preparing

101

Transport

files.
See

Connector

transport

files

Troubleshooting

273

ABAP

Extension

Module

273,

278,

284,

287

BAPI

Module

281

RFC

Server

Module

282

Truncating,

event

log

110

U
Unprocessed

events,

checking

the

event

queue

111

Update

processing
and

ABAP

Handlers

63

and

IDoc

Handlers

81

Upgrading
ABAP

Extension

Module

115

to

the

Java-based

connector

28

V
Verb

application-specific

text

6

ABAP

Extension

Module

88

ABAP

Handlers

62

BAPI

Module

165,

174,

196

VerbAppText.
See

Verb

application-specific

text

Verbs
ALEI

Module

support

154

BAPI

Module

support

172

RFC

Server

support

194

Vision

Connector

Framework

3,

4,

6

how

it

works

5

overview

4

Vision

Connector

Framework

class
visionBOHandler

4

visionConnector

4

Index

315

visionBOHandler

class

4

visionConnector

class

4

316

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

2003,

2004

317

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

318

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Domino

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

WebSphere

Business

Integration

Express

for

Item

Synchronization

V4.3.1,

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

V4.3.1

Notices

319

320

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization:

Adapter

for

mySAP.com

(SAP

R/3

V.

3.x)

User

Guide

����

Printed

in

USA

	Contents
	About this document
	Audience
	Related documents
	Typographic conventions
	Naming conventions

	New in this release
	New in V4.3.1

	Part 1. Connector overview and setup
	Chapter 1. Overview of the connector
	Connector components
	Vision connector framework
	Connector modules

	How the vision connector framework works
	Communication between the connector and an SAP application
	Processing business objects
	Processing multiple concurrent interactions

	Chapter 2. Installing and configuring the connector
	Compatibility
	mySAP.com compatibility
	Integration compatibility

	Prerequisites for installation
	Installing the connector component
	Installing on a UNIX system
	Installing on a Windows system
	Installing on an iSeries system
	Installing SAP’s Java Connector (SAPJCo)
	Installing connectors on remote machines
	Installing multiple connectors

	Configuring the connector
	Standard configuration properties
	Connector-specific configuration properties

	Connector startup
	Taking advantage of load balancing
	Starting multiple connectors
	Upgrading the connector
	Upgrading the connector for the ALE Module’s management of TIDs
	Upgrading to the java-based connector

	Comprehensive install and uninstall information

	Part 2. ABAP Extension module
	Chapter 3. Overview of the ABAP Extension module
	ABAP Extension Module components
	Java components
	ABAP components

	How the ABAP Extension Module works
	Initialization
	Business object processing
	Event notification

	Chapter 4. Installing and customizing the ABAP Extension module
	Connector transport file installation
	Creating the namespace for connector transport installation
	Connector transport files
	Installing connector transport files

	Verifying connector transport file installation
	Verify that transport files were moved to the SAP application
	Verify that SAP generated the objects successfully

	Upgrading the ABAP Extension Module
	Enabling the SAP application for the connector
	Setting up event distribution
	Setting up event filtering
	Setting up event priority
	Increasing log tablespace size
	Verifying number ranges for transport objects

	Modifying adapter-delivered ABAP objects
	Preventing event ping-pong

	Chapter 5. Business object processing in the ABAP Extension module
	Business object conversion to a flat structure
	Business object data routing to ABAP handlers
	How ABAP handlers process business object data
	Business object data and ABAP handlers
	Business object data and SAP native APIs
	Return code and returned business object data

	Flat structure conversion to a business object
	Business object initialization
	How the connector rebuilds a business object

	Chapter 6. Developing business objects for the ABAP Extension module
	Background information
	SAP native APIs
	IBM WebSphere function module interface
	IBM WebSphere ABAP handler APIs
	Business object attribute properties
	Adapter development tools

	Developing business objects using dynamic transaction
	Tips
	Composing a BDC session for a business object
	Using the inbound wizard for dynamic transaction

	Developing business objects using IDocs
	Using IBM CrossWorlds Station to generate a business object definition
	Using SAPODA to generate a business object definition
	IDoc handlers and create, update, and delete verbs
	IDoc handlers and the retrieve verbs

	Calling the ABAP Extension Module and ABAP handler

	Chapter 7. Developing event detection for the ABAP Extension module
	Designing an event detection mechanism
	Code enhancement
	Batch program
	Business workflow
	Change pointer

	Implementing an event detection mechanism
	Code enhancement
	Batch program
	Business workflow
	Change pointer

	Chapter 8. Testing a business object for the ABAP Extension module
	Preparing to test
	Unit test issues
	Testing an ABAP handler
	Creating a test file
	Using the test file

	Chapter 9. Managing the ABAP Extension module
	Managing the connector log file
	Setting log options
	Displaying the log
	Reprocessing archived objects
	Setting up truncation of the event log

	Monitoring the SAP gateway service connections
	Shutting down the connector
	Maintaining the event queue
	Maintaining the archive table
	Resubmitting events from the archive table
	Deleting events from the archive table

	Chapter 10. Upgrading the ABAP Extension module
	Upgrading within a new version of SAP R/3
	Upgrading ABAP handlers
	Upgrade considerations
	Connector for SAP R/3
	Packaging and re-creating IDocs

	Part 3. ALE module
	Chapter 11. Overview of the ALE module
	Overview of ALE technology
	ALE Module components
	Event processing components
	Request processing components
	Listener threads
	Transaction IDs
	ALE-specific business object handlers
	Structure of the business object for SAP

	Chapter 12. Configuring the ALE module
	Prerequisites to running the ALE Module
	ALE Module directories and files
	Configuring the ALE Module
	Checking the SAP configuration
	Checking MQ configuration
	Configuring SAP To update IDoc status
	Configuring SAP
	Setting connector-specific configuration properties
	Connecting to remote queue managers

	Running the ALE Module
	Initialization and termination
	Processing business objects

	Chapter 13. Developing business objects for the ALE module
	Creating the IDoc definition file
	Business object structure
	Illustration of business object structure
	Business object naming conventions
	Standard naming conventions
	Naming conventions for IDoc extensions
	Parent wrapper business object
	Control record business object
	Data record business object

	Supported verbs
	Supporting multiple message types
	AppSpecificInfo property: Parent wrapper verb
	AppSpecificInfo property: Parent wrapper meta-verb

	Processing multiple IDocs with a wrapper business object
	Multiple IDoc wrapper object example
	Multiple IDoc wrapper: Attribute that represents the child business object

	Part 4. BAPI module
	Chapter 14. Overview of the BAPI Module
	BAPI Module components
	How the BAPI Module works
	Initialization and Termination
	Business object processing
	Supporting BAPIs

	Chapter 15. Configuring the BAPI Module
	BAPI Module directories and files
	BAPI Module configuration properties

	Chapter 16. Developing business objects for the BAPI Module
	Background information
	Business object naming conventions
	Business object structure
	Supported verbs
	Business object attribute properties
	Initializing attribute values

	Business object application-specific information
	AppSpecificInfo for the verb of the top-level business object
	AppSpecificInfo for attributes

	Using generated business object definitions and business object handlers
	Tips and tricks

	Using custom business object handlers
	Creating custom business object handlers

	Part 5. RFC Server module
	Chapter 17. Overview of the RFC Server Module
	RFC Server Module components
	Listener threads
	RFC Server-specific business object handlers

	How the RFC Server Module works
	Initialization and termination
	Business object processing
	Supporting RFC-enabled functions
	Triggering an event

	Chapter 18. Configuring the RFC Server Module
	RFC Server Module directories and files
	RFC Server Module configuration properties
	Registering the RFC Server Module with the SAP gateway

	Chapter 19. Developing business objects for the RFC Server Module
	Background information
	Business object naming conventions
	Business object structure
	Supported verbs
	Business object attribute properties
	Initializing attribute values

	Business object application-specific information
	AppSpecificInfo for the server verb of the top-level business object
	AppSpecificInfo for Attributes

	Using generated business objects and business object handlers
	Tips and tricks

	Part 6. Hierarchical Dynamic Retrieve module
	Chapter 20. Overview of the Hierarchical Dynamic Retrieve Module
	Hierarchical Dynamic Retrieve Module components
	How the connector works

	Chapter 21. Configuring the Hierarchical Dynamic Retrieve Module
	Hierarchical Dynamic Retrieve Module directories and files
	Hierarchical Dynamic Retrieve Module configuration properties

	Chapter 22. Developing business objects for the Hierarchical Dynamic Retrieve Module
	Business object development utilities
	Business object names
	Business object structure
	Business object relationships
	Handling long data rows
	Business object verb processing

	Business object attribute properties
	Name property
	Type property
	Cardinality property
	Max length property
	Key property
	Foreign key property
	Required property
	AppSpecificInfo
	Default value property
	Special value for simple attributes

	Business object application-specific information
	Application-specific information for the top-level business object’s verb
	Application-Specific information for simple attributes

	Generating business objects
	Generating business objects: SAPODA
	Generating business objects: Advanced Outbound Wizard

	Part 7. Appendixes
	Appendix A. Quick Steps
	Common configuration properties
	Quick steps for the BAPI module
	Generating a business object in the BAPI module
	Configuring the BAPI module
	Preparing the BAPI module for testing
	Testing the BAPI module

	Quick steps for the RFC Server module
	Generating a business object in the RFC Server module
	Configuring the RFC Server module
	Creating a profile for the SAP server
	Testing the RFC server module

	Quick steps for the ALE module
	Generating a business object in the ALE module
	Editing the business object.
	Preparing the ALE module for testing
	Testing request processing for the ALE module
	Testing event processing in the ALE module

	Quick steps for the HDR module
	Generating a business object in the HDR module
	Preparing the HDR module for testing
	Testing the HDR module

	Appendix B. Standard configuration properties for connectors
	New and deleted properties
	Configuring standard connector properties
	Using Connector Configurator
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat
	WsifSynchronousRequest Timeout
	XMLNameSpaceFormat

	Appendix C. Connector configurator
	Overview of Connector Configurator
	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting application-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS only)
	Resources (ICS)
	Messaging (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Appendix D. Troubleshooting the connector
	Generic troubleshooting
	Startup problems
	Connector dies
	Default values are not being set
	Collaborations not subscribing to business objects (WebSphere InterChange Server only)

	WBI performance tuning and memory management
	Setting heap size quick start
	Setting the heap and nursery size for garbage collection
	Monitoring garbage collection
	Setting the heap size for most configurations
	Setting heap size when running many JVMs on one system
	Reducing or increasing heap size if java.lang.OutOfMemoryError occurs
	Setting AIX threading parameters
	Using HotSpot Server instead of Client
	Setting thread stack size if using many threads
	SAP notes about memory management

	Troubleshooting for the ABAP Extension Module
	Transport files
	Startup problems
	Event distribution problem on Microsoft Windows (connector version 4.2.7 only)
	Event handling

	Troubleshooting for the BAPI module
	Event handling

	Troubleshooting for the RFC Server Module
	Startup problems
	Connector dies
	Event handling

	Troubleshooting for the ALE Module
	Startup problems
	Event handling
	Failure recovery
	Request processing

	Troubleshooting the Hierarchical Dynamic Retrieve Module
	Error handling and logging
	SQL SELECT fails

	Troubleshooting SAPODA

	Appendix E. Generating business object definitions using SAPODA
	Installation and usage
	Installing SAPODA
	Before using SAPODA
	Launching SAPODA
	Running SAPODA on multiple machines
	Working with error and trace message files

	Using SAPODA in Business Object Designer
	Select the ODA
	Configure initialization properties
	Expand nodes and select objects
	Confirm selection of objects
	Generate the definition
	Provide additional information
	Save the definition

	After using SAPODA

	Index
	Notices
	Programming interface information
	Trademarks and service marks

