
WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization

Adapter

for

JMS

User

Guide

V

2.4.x

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

75.

6February2004

This

edition

of

this

document

applies

to

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization,

version

4.3.1,

IBM

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization,

version

4.3.1,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

IBM

CrossWorlds

documentation,

e-mail

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

New

in

this

release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Prerequisites

for

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. viii

Chapter

1.

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Connector

architecture

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Application-connector

communication

method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Event

handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Guaranteed

event

delivery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Business

object

requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Verb

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Processing

locale-dependent

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Chapter

2.

Installing

and

configuring

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Compatibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Prerequisites

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Overview

of

installation

tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Installing

the

connector

and

related

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Installed

file

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Connector

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Enabling

guaranteed

event

delivery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Meta-object

attributes

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Startup

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Chapter

3.

Creating

or

modifying

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Connector

business

object

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Error

handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Chapter

4.

Troubleshooting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Start-up

problems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Appendix

A.

Standard

configuration

properties

for

connectors

.

.

.

.

.

.

.

.

.

.

. 49

Configuring

standard

connector

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Summary

of

standard

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Standard

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Appendix

B.

Connector

Configurator

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Overview

of

Connector

Configurator

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Starting

Connector

Configurator

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Running

Configurator

Express

from

System

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Creating

a

connector-specific

property

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Creating

a

new

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Using

an

existing

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Completing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Setting

the

configuration

file

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Saving

your

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Completing

the

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

©

Copyright

IBM

Corp.

2004

iii

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

iv

Adapter

for

JMS

User

Guide

New

in

this

release

In

this

release,

version

2.4.x

of

the

Adapter

for

JMS

is

supported

on

the

IBM

WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization

release.

Except

where

noted,

all

the

information

in

this

guide

applies

to

both

IBM(R)

WebSphere(R)

Business

Integration

Express

for

Item

Synchronization

and

IBM(R)

WebSphere(R)

Business

Integration

Express

Plus

for

Item

Synchronization.

The

term

″WebSphere

Business

Integration

Express

for

Item

Synchronization″

and

its

variants

refer

to

both

products.

The

connector

runs

on

the

following

platforms:

v

Microsoft

Windows

2000

v

OS400

V5R2

(5722-SS1)

v

Red

Hat

Enterprise

Linux

WS/ES/AS

for

Intel

2.1,

2.4

Kernel

v

SuSE

Linux

Enterprise

Server

7.3,

2.4

Kernel

©

Copyright

IBM

Corp.

2004

v

vi

Adapter

for

JMS

User

Guide

About

this

document

The

IBM(R)

WebSphere(R)

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization

product

includes

InterChange

Server

Express,

the

associated

Toolset

Express

are

made

up

of

the

following

components—InterChange

Server

Express,

the

associated

Toolset

Express

product,

the

Item

Synchronization

collaboration,

and

a

set

of

software

integration

adapters.

Together,

the

components

provide

business

process

integration

and

connectivity

among

leading

e-business

technologies

and

enterprise

applications

as

well

as

integration

with

the

UCCnet

GLOBALregistry.

This

document

describes

the

installation,

configuration,

and

business

object

development

for

the

adapter

for

JMS.

Except

where

noted,

all

the

information

in

this

guide

applies

to

both

IBM(R)

WebSphere(R)

Business

Integration

Express

for

Item

Synchronization

and

IBM(R)

WebSphere(R)

Business

Integration

Express

Plus

for

Item

Synchronization.

The

term

″WebSphere

Business

Integration

Express

for

Item

Synchronization″

and

its

variants

refer

to

both

products.

Audience

This

document

is

for

consultants,

developers,

and

system

administrators

who

support

and

manage

the

WebSphere

business

integration

system

at

customer

sites.

Prerequisites

for

this

document

Users

of

this

document

should

be

familiar

with

the

WebSphere

business

integration

system,

with

business

object

and

collaboration

development,

and

with

the

JMS

application.

Related

documents

The

complete

set

of

documentation

available

with

this

product

describes

the

features

and

components

common

to

all

WebSphere

Business

Integration

Express

for

Item

Synchronization

and

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

installations,

and

includes

reference

material

on

specific

components.

This

document

contains

many

references

to

two

other

documents:

the

Installing

IBM

WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization

and

the

User

Guide

for

WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization.

If

you

choose

to

print

this

document,

you

may

want

to

print

these

documents

as

well.

To

access

the

documentation,

go

to

the

directory

where

you

installed

the

product

and

open

the

documentation

subdirectory.

If

a

welcome.html

file

is

present,

open

it

for

hyperlinked

access

to

all

documentation.

If

no

documentation

is

present,

you

can

install

it

or

read

it

directly

online

at

http://www.ibm.com/websphere/wbiitemsync/express/infocenter

©

Copyright

IBM

Corp.

2004

vii

The

documentation

set

consists

primarily

of

Portable

Document

Format

(PDF)

files,

with

some

additional

files

in

HTML

format.

To

read

it,

you

need

an

HTML

browser

such

as

Netscape

Navigator

or

Internet

Explorer,

and

Adobe

Acrobat

Reader

4.0.5

or

higher.

For

the

latest

version

of

Adobe

Acrobat

Reader

for

your

platform,

go

to

the

Adobe

website

(www.adobe.com).

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

filename,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

bold

Indicates

a

new

term

the

first

time

that

it

appears.

italic,

italic

Indicates

a

variable

name

or

a

cross-reference.

blue

outline

A

blue

outline,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

inside

the

outline

to

jump

to

the

object

of

the

reference.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

from

which

you

must

choose

one

and

only

one.

[

]

In

a

syntax

line,

square

brackets

surround

an

optional

parameter.

...

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

<

>

In

a

naming

convention,

angle

brackets

surround

individual

elements

of

a

name

to

distinguish

them

from

each

other,

as

in

<server_name><connector_name>tmp.log.

ProductDir

Represents

the

directory

where

the

product

is

installed.

/,

\

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

All

WebSphere

business

integration

system

pathnames

are

relative

to

the

directory

where

the

WebSphere

business

integration

system

is

installed

on

your

system.

%text%

Text

within

percent

(%)

signs

indicates

the

value

of

the

Windows

text

system

variable

or

user

variable.

viii

Adapter

for

JMS

User

Guide

Chapter

1.

Overview

v

“Connector

architecture”

v

“Application-connector

communication

method”

on

page

2

v

“Event

handling”

on

page

4

v

“Guaranteed

event

delivery”

on

page

6

v

“Business

object

requests”

on

page

6

v

“Verb

processing”

on

page

6

v

“Processing

locale-dependent

data”

on

page

10

The

connector

for

JMS

is

a

runtime

component

of

the

IBM

WebSphere

Business

Integration

Adapter

for

JMS.

The

connector

allows

IBM

WebSphere

InterChange

Server

Express

to

exchange

business

objects

with

applications

that

send

or

receive

data

in

the

form

of

JMS

messages.

The

JMS

is

an

open-standard

API

for

accessing

enterprise-messaging

systems.

It

is

designed

to

allow

business

applications

to

asynchronously

send

and

receive

business

data

and

events.

This

chapter

describes

the

connector

component

and

the

relevant

business

integration

system

architecture.

Connectors

consist

of

an

application-specific

component

and

the

connector

framework.

The

application-specific

component

contains

code

tailored

to

a

particular

application.

The

connector

framework,

whose

code

is

common

to

all

connectors,

acts

as

an

intermediary

between

the

integration

broker

and

the

application-specific

component.

The

connector

framework

provides

the

following

services

between

the

integration

broker

and

the

application-specific

component:

v

Receives

and

sends

business

objects

v

Manages

the

exchange

of

startup

and

administrative

messages

This

document

contains

information

about

the

application-specific

component

and

connector

framework.

It

refers

to

both

of

these

components

as

the

connector.

For

more

information

about

the

relationship

of

the

integration

broker

to

the

connector,

see

the

User

Guide

for

WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization.

Note:

All

WebSphere

business

integration

adapters

operate

with

an

integration

broker.

The

connector

for

JMS

operates

with

the

InterChange

Server

Express

integration

broker,

which

is

described

in

the

User

Guide

for

WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization

Connector

architecture

The

connector

is

meta-data-driven.

Message

routing

and

format

conversion

are

initiated

by

an

event

polling

technique.

The

connector

allows

collaborations

to

asynchronously

exchange

business

objects

with

applications

that

issue

or

receive

JMS

messages

when

changes

to

data

occur.

©

Copyright

IBM

Corp.

2004

1

The

connector

retrieves

JMS

messages

from

queues,

calls

data

handlers

to

convert

messages

to

their

corresponding

business

objects,

and

then

delivers

them

to

collaborations.

In

the

opposite

direction,

the

connector

receives

business

objects

from

collaborations,

converts

them

into

JMS

messages

using

the

same

data

handler,

and

then

delivers

the

messages

to

a

JMS

queue.

You

can

configure

the

connector

to

use

any

data

handler

when

processing

messages.

For

more

information,

see

the

Data

Handler

Guide.

The

type

of

business

object

and

verb

used

in

processing

a

message

is

based

on

a

user-configurable

FORMAT

field

contained

in

the

JMS

message

header.

The

connector

uses

meta-object

entries

to

determine

business

object

name

and

verb.

You

construct

a

meta-object

to

store

the

business

object

name

and

verb

to

associate

with

the

JMS

message

header

FORMAT

field

text.

You

can

optionally

construct

a

dynamic

meta-object

that

is

added

as

a

child

to

the

business

object

passed

to

the

connector.

The

child

meta-object

values

override

those

specified

in

the

static

meta-object

that

is

specified

for

the

connector

as

a

whole.

If

the

child

meta-object

is

not

defined

or

does

not

define

a

required

conversion

property,

the

connector,

by

default,

examines

the

static

meta-object

for

the

value.

You

can

specify

one

or

more

dynamic

child

meta-objects

instead

of,

or

to

supplement,

a

single

static

connector

meta-object.

The

connector

can

poll

multiple

input

queues,

polling

each

in

a

round-robin

manner

and

retrieving

a

specified

number

of

messages

from

each

queue.

For

each

message

retrieved

during

polling,

the

connector

adds

a

dynamic

child

meta-object

(if

specified

in

the

business

object).

The

child

meta-object

values

can

direct

the

connector

to

populate

attributes

with

the

format

of

the

message

as

well

as

with

the

name

of

the

input

queue

from

which

the

message

was

retrieved.

When

a

message

is

retrieved

from

the

input

queue,

the

connector

looks

up

the

business

object

name

associated

with

the

FORMAT

field

contained

in

the

message

header.

The

message

body,

along

with

a

new

instance

of

the

appropriate

business

object,

is

then

passed

to

the

data

handler.

If

a

business

object

name

is

not

found

associated

with

the

format,

the

message

body

alone

is

passed

to

the

data

handler.

If

a

business

object

is

successfully

populated

with

message

content,

the

connector

checks

to

see

if

it

is

subscribed,

and

then

delivers

it

to

InterChange

Server

Express

using

the

gotApplEvents()

method.

Application-connector

communication

method

The

subsections

below

discuss

and

illustrate

how

the

connector

interacts

with

InterChange

Server

Express

and

an

application.

Message

request

Figure

1

illustrates

a

message

request

communication.

When

the

doVerbFor()

method

receives

a

business

object

from

a

collaboration,

the

connector

passes

the

business

object

to

the

data

handler.

The

data

handler

converts

the

business

object

into

JMS-suitable

text

and

the

connector

issues

it

as

a

message

to

a

queue.

There,

the

JMS

layer

makes

the

appropriate

calls

to

open

a

queue

session

and

route

the

message.

2

Adapter

for

JMS

User

Guide

Message

return

Figure

2

shows

the

message

return

direction.

The

pollForEvents()

method

retrieves

the

next

applicable

message

from

the

input

queue.

The

message

is

staged

in

the

in-progress

queue

where

it

remains

until

processing

is

complete.

Using

either

the

static

or

dynamic

meta-objects,

the

connector

first

determines

whether

the

message

type

is

supported.

If

so,

the

connector

passes

the

message

to

the

configured

data

handler,

which

converts

the

message

into

a

business

object.

The

verb

that

is

set

reflects

the

conversion

properties

established

for

the

message

type.

The

connector

then

determines

whether

the

business

object

is

subscribed

to

by

a

collaboration.

If

so,

the

gotApplEvents()

method

delivers

the

business

object

to

InterChange

Server

Express,

and

the

message

is

removed

from

the

in-progress

queue.

Request
message Request BO

Adapter for
JMS

Data
handler

Integration
brokerOutput queue

via JMS service
provider

doForVerb()

Figure

1.

Application-connector

communication

method:

Message

request

Chapter

1.

Overview

3

Event

handling

For

event

notification,

the

connector

detects

events

written

to

a

queue

by

an

application

rather

than

a

database

trigger.

An

event

occurs

when

an

application

or

other

MQ-capable

software

generates

JMS

messages

and

stores

them

on

the

MQ

message

queue.

Retrieval

The

connector

uses

the

pollForEvents()

method

to

poll

the

MQ

queue

at

regular

intervals

for

messages.

When

the

connector

finds

a

message,

it

retrieves

it

from

the

MQ

queue

and

examines

it

to

determine

its

format.

If

the

format

has

been

defined

in

the

connector’s

static

object,

the

connector

passes

both

the

message

body

and

a

new

instance

of

the

business

object

associated

with

the

format

to

the

configured

data

handler;

the

data

handler

is

expected

to

populate

the

business

object

and

specify

a

verb.

If

the

format

is

not

defined

in

the

static

meta-object,

the

connector

passes

only

the

message

body

to

the

data

handler;

the

data

handler

is

expected

to

determine,

create

and

populate

the

correct

business

object

for

the

message.

See

“Error

handling”

on

page

44

for

event

failure

scenarios.

The

connector

processes

messages

by

first

opening

a

transactional

session

to

the

input

queue.

This

transactional

approach

allows

for

a

small

chance

that

a

business

object

could

be

delivered

to

a

collaboration

twice

due

to

the

connector

successfully

submitting

the

business

object

but

failing

to

commit

the

transaction

in

the

queue.

To

avoid

this

problem,

the

connector

moves

all

messages

to

an

in-progress

queue.

There,

the

message

is

held

until

processing

is

complete.

If

the

connector

shuts

down

unexpectedly

during

processing,

the

message

remains

in

the

in-progress

queue

instead

of

being

reinstated

to

the

original

input

queue.

Event
message

In-progress
queue

Event BO

Adapter for
JMS

Data
handler

Integration
broker

pollForEvents()
gotApplEvents()

Input queue via
JMS service
provider

Figure

2.

Application-connector

communication

method:

Message

return

4

Adapter

for

JMS

User

Guide

Note:

Transactional

sessions

with

a

JMS

service

provider

require

that

every

requested

action

on

a

queue

be

performed

and

committed

before

events

are

removed

from

the

queue.

Accordingly,

when

the

connector

retrieves

a

message

from

the

queue,

it

does

not

commit

to

the

retrieval

until

three

things

occur:

1)

The

message

has

been

converted

to

a

business

object;

2)

the

business

object

is

delivered

to

InterChange

Server

Express

by

the

gotApplEvents()

method,

and

3)

a

return

value

is

received.

Recovery

Upon

initialization,

the

connector

checks

the

in-progress

queue

for

messages

that

have

not

been

completely

processed,

presumably

due

to

a

connector

shutdown.

The

connector

configuration

property

InDoubtEvents

allows

you

to

specify

one

of

four

options

for

handling

recovery

of

such

messages:

fail

on

startup,

reprocess,

ignore,

or

log

error.

Fail

on

startup

With

the

fail

on

startup

option,

if

the

connector

finds

messages

in

the

in-progress

queue

during

initialization,

it

logs

an

error

and

immediately

shuts

down.

It

is

the

responsibility

of

the

user

or

system

administrator

to

examine

the

message

and

take

appropriate

action,

either

to

delete

these

messages

entirely

or

move

them

to

a

different

queue.

Reprocess

With

the

reprocessing

option,

if

the

connector

finds

any

messages

in

the

in-progress

queue

during

initialization,

it

processes

these

messages

first

during

subsequent

polls.

When

all

messages

in

the

in-progress

queue

have

been

processed,

the

connector

begins

processing

messages

from

the

input

queue.

Ignore

With

the

ignore

option,

if

the

connector

finds

any

messages

in

the

in-progress

queue

during

initialization,

the

connector

ignores

them,

but

does

not

shut

down.

Log

error

With

the

log

error

option,

if

the

connector

finds

any

messages

in

the

in-progress

queue

during

initialization,

it

logs

an

error

but

does

not

shut

down.

Archiving

If

the

connector

property

ArchiveQueue

is

specified

and

identifies

a

valid

queue,

the

connector

places

copies

of

all

successfully

processed

messages

in

the

archive

queue.

If

ArchiveQueue

is

undefined,

messages

are

discarded

after

processing.

For

more

information

on

archiving

unsubscribed

or

erroneous

messages,

see

“Error

handling”

on

page

44.

Note:

By

JMS

conventions,

a

retrieved

message

cannot

be

issued

immediately

to

another

queue.

To

enable

archiving

and

re-delivery

of

messages,

the

connector

first

produces

a

second

message

that

duplicates

the

body

and

the

header

(as

applicable)

of

the

original.

To

avoid

conflicts

with

the

JMS

service

provider,

only

JMS-required

fields

are

duplicated.

Accordingly,

the

format

field

is

the

only

additional

message

property

that

is

copied

for

messages

that

are

archived

or

re-delivered.

Chapter

1.

Overview

5

Guaranteed

event

delivery

The

guaranteed-event-delivery

feature

enables

the

connector

framework

to

ensure

that

events

are

never

lost

and

never

sent

twice

between

the

connector’s

event

store,

the

JMS

event

store,

and

the

destination’s

JMS

queue.

To

become

JMS-enabled,

you

must

configure

the

connectorDeliveryTransport

standard

property

to

JMS.

Thus

configured,

the

connector

uses

the

JMS

transport

and

all

subsequent

communication

between

the

connector

and

the

integration

broker

occurs

through

this

transport.

The

JMS

transport

ensures

that

the

messages

are

eventually

delivered

to

their

destination.

Its

role

is

to

ensure

that

once

a

transactional

queue

session

starts,

the

messages

are

cached

there

until

a

commit

is

issued;

if

a

failure

occurs

or

a

rollback

is

issued,

the

messages

are

discarded.

Note:

Without

use

of

the

guaranteed-event-delivery

feature,

a

small

window

of

possible

failure

exists

between

the

time

that

the

connector

publishes

an

event

(when

the

connector

calls

the

gotApplEvent()

method

within

its

pollForEvents()

method)

and

the

time

it

updates

the

event

store

by

deleting

the

event

record

(or

perhaps

updating

it

with

an

“event

posted”

status).

If

a

failure

occurs

in

this

window,

the

event

has

been

sent

but

its

event

record

remains

in

the

event

store

with

an

“in

progress”

status.

When

the

connector

restarts,

it

finds

this

event

record

still

in

the

event

store

and

sends

it,

resulting

in

the

event

being

sent

twice.

You

can

configure

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

with,

or

without,

a

JMS

event

store.

To

configure

the

connector

for

guaranteed

event

delivery,

see

“Enabling

guaranteed

event

delivery”

on

page

22.

If

connector

framework

cannot

deliver

the

business

object

to

the

InterChange

Server

Express

integration

broker,

then

the

object

is

placed

on

a

FaultQueue

(instead

of

UnsubscribedQueue

and

ErrorQueue)

and

generates

a

status

indicator

and

a

description

of

the

problem.

FaultQueue

messages

are

written

in

MQRFH2

format.

Business

object

requests

Business

object

requests

are

processed

when

InterChange

ServerExpress

sends

a

business

object

to

the

doVerbFor()

method.

Using

the

configured

data

handler,

the

connector

converts

the

business

object

to

a

JMS

message

and

issues

message.

There

are

no

requirements

regarding

the

type

of

business

objects

processed

except

those

of

the

data

handler.

Verb

processing

The

connector

processes

business

objects

passed

to

it

by

a

collaboration

based

on

the

verb

for

each

business

object.

The

connector

uses

business

object

handlers

and

the

doForVerb()

method

to

process

the

business

objects

that

the

connector

supports.

The

connector

supports

the

following

business

object

verbs:

v

Create

v

Update

v

Delete

v

Retrieve

v

Exists

v

Retrieve

by

content

6

Adapter

for

JMS

User

Guide

Note:

Business

objects

with

create,

update,

and

delete

verbs

can

be

issued

either

asynchronously

or

synchronously.

The

default

mode

is

asynchronous.

The

connector

does

not

support

asynchronous

delivery

for

business

objects

with

the

retrieve,

exists,

or

retrieve

by

content

verbs,

Accordingly,

for

retrieve,

exists,

or

retrieve

by

content

verbs,

the

default

mode

is

synchronous.

Create,

update,

and

delete

Processing

of

business

objects

with

create,

update

and

delete

verbs

depends

on

whether

the

objects

are

issued

asynchronously

or

synchronously.

Asynchronous

delivery

This

is

the

default

delivery

mode

for

business

objects

with

Create,

Update,

and

delete

verbs.

A

message

is

created

from

the

business

object

using

a

data

handler

and

then

written

to

the

output

queue.

If

the

message

is

delivered,

the

connector

returns

BON_SUCCESS,

else

BON_FAIL.

Note:

The

connector

has

no

way

of

verifying

whether

the

message

is

received

or

if

action

has

been

taken.

Synchronous

delivery

If

a

replyToQueue

has

been

defined

in

the

connector

properties

and

a

responseTimeout

exists

in

the

conversion

properties

for

the

business

object,

the

connector

issues

a

request

in

synchronous

mode.

The

connector

then

waits

for

a

response

to

verify

that

appropriate

action

was

taken

by

the

receiving

application.

For

JMS,

the

connector

initially

issues

a

message

with

a

header

as

shown

in

Table

1.

Table

1.

JMS

message

header

Field

Description

Value

JMSType

Message

Type

Identifier

Output

format

as

defined

in

the

conversion

properties

if

connector

property

MessageFormatProperty

is

not

defined.

JMSDeliveryMode

Message

delivery

Mode

Persistent.

JMSExpiration

Message

Time-To-Live

No

expiration

(0)*

JMSReplyTo

Destination

where

a

reply

to

this

request

should

be

sent.

Only

if

a

response

message

is

expected

will

this

field

be

populated.

Optional:

property

specified

by

connector

property

MessageFormatProperty

Alternate

user-defined

message

property

specified

to

contain

the

output

format.

Output

format

as

defined

in

the

conversion

properties

if

connector

property

MessageFormatProperty

is

defined.

*

Indicates

current

value

of

constant

defined

by

JMS.

The

message

header

described

in

Table

1

is

followed

by

the

message

body.

The

message

body

is

a

business

object

that

has

been

serialized

using

the

data

handler.

The

thread

that

issued

the

message

waits

for

a

response

message

that

indicates

whether

the

receiving

application

was

able

to

process

the

request.

When

an

application

receives

a

synchronous

request

from

the

connector,

it

processes

the

business

object

and

issues

a

report

message

as

described

in

Table

2

on

page

8

and

Table

3

on

page

8.

Chapter

1.

Overview

7

Table

2.

Response

message

descriptor

header

(MQMD)

Field

Description

Value

JMSType

Message

Type

Identifier

Input

format

of

business

object

as

specified

in

the

conversion

properties

(if

this

field

was

defined

in

the

original

request).

Optional:

property

specified

by

connector

property

MessageFormatProperty

Alternate

user-defined

message

property

specified

to

contain

the

output

format.

Property

specified

by

connector

property

MessageResponse

ResultProperty.

Result

of

original

request

issued

by

connector.

One

of

the

following

strings:

“SUCCESS”

“FAIL”

“VALCHANGE”

“VALDUPES”

“MULTIPLE_HITS”

“FAIL_RETRIEVE_BY_CONTENT”

“BO_DOES_NOT_EXIST”

“UNABLE_TO_LOGIN”

“APP_RESPONSE_TIMEOUT”.

See

the

Connector

Development

Guide

for

Java

for

more

information

on

response

codes.

Table

3.

Population

of

response

message

Verb

Feedback

field

Message

Body

Create,

Update,

or

delete

SUCCESS

VALCHANGE

(Optional)

A

serialized

business

object

reflecting

changes.

VALDUPES

FAIL

(Optional)

An

error

message.

After

processing

the

business

object,

the

receiving

application

creates

a

response

message

with

the

connector

property

MessageResponseResultProperty

set

to

SUCCESS,

FAIL

or

one

of

the

other

values

defined

in

Table

2.

If

the

business

object

was

processed

and

changes

occurred,

the

receiving

application

populates

the

response

message

with

a

serialized

business

object

containing

the

changes.

If

the

business

object

could

not

be

processed,

the

receiving

application

provides

an

explanation

in

the

message

body

that

the

connector

returns

to

InterChange

Server

Express.

In

either

case,

the

application

sets

the

correlationID

field

of

the

message

to

the

messageID

of

the

connector

message

and

issues

it

to

the

queue

specified

by

the

replyTo

field.

Upon

retrieval

of

a

response

message,

the

connector

by

default

matches

the

correlationID

of

the

response

to

the

messageID

of

a

request

message.

The

connector

then

notifies

the

thread

that

issued

the

request.

Depending

on

the

result

field

of

the

response,

the

connector

either

expects

a

business

object

or

an

error

message

in

the

message

body.

If

a

business

object

was

expected

but

the

message

body

is

not

populated,

the

connector

simply

returns

the

same

business

object

that

was

originally

issued

by

InterChange

Server

Express

for

the

Request

operation.

If

an

error

message

was

expected

but

the

message

body

is

not

populated,

a

generic

error

message

will

be

returned

to

InterChange

Server

Express

along

with

the

response

code.

However,

you

can

also

use

a

message

selector

to

identify,

filter

and

otherwise

control

how

the

adapter

identifies

the

response

message

for

a

given

request.

This

message

selector

capability

is

a

JMS

feature.

It

applies

to

synchronous

request

processing

only

and

is

described

below.

Filtering

response

messages

using

a

message

selector:

Upon

receiving

a

business

object

for

synchronous

request

processing,

the

connector

checks

for

the

presence

of

a

response_selector

string

in

the

application-specific

information

of

the

verb.

If

the

response_selector

is

undefined,

the

connector

identifies

response

messages

using

the

correlation

ID

as

described

above.

8

Adapter

for

JMS

User

Guide

If

response_selector

is

defined,

the

connector

expects

a

name-value

pair

with

the

following

syntax:

response_selector=JMSCorrelationID

LIKE

’selectorstring’

The

message

selectorstring

must

uniquely

identify

a

response

and

its

values

be

enclosed

in

single

quotes

as

shown

in

the

example

below:

response_selector=JMSCorrelationID

LIKE

’Oshkosh’

In

the

above

example,

after

issuing

the

request

message,

the

adapter

would

monitor

the

ReplyToQueue

for

a

response

message

with

a

correlationID

equal

to

″Oshkosh.″

The

adapter

would

retrieve

the

first

message

that

matches

this

message

selector

and

then

dispatch

it

as

the

response.

Optionally,

the

adapter

performs

run-time

substitutions

enabling

you

to

generate

unique

message

selectors

for

each

request.

Instead

of

a

message

selector,

you

specify

a

placeholder

in

the

form

of

an

integer

surrounded

by

curly

braces,

for

example:

’{1}’.

You

then

follow

with

a

colon

and

a

list

of

comma-separated

attributes

to

use

for

the

substitution.

The

integer

in

the

placeholder

acts

as

an

index

to

the

attribute

to

use

for

the

substitution.

For

example,

the

following

message

selector:

response_selector=JMSCorrelationID

LIKE

’{1}’:

MyDynamicMO.CorrelationID

would

inform

the

adapter

to

replace

{1}

with

the

value

of

the

first

attribute

following

the

selector

(in

this

case

the

attribute

named

CorrelationId

of

the

child-object

named

MyDynamicMO.

If

attribute

CorrelationID

had

a

value

of

123ABC,

the

adapter

would

generate

and

use

a

message

selector

created

with

the

following

criteria:

JMSCorrelation

LIKE

’123ABC’

to

identify

the

response

message.

You

can

also

specify

multiple

substitutions

such

as

the

following:

response_selector=PrimaryId

LIKE

’{1}’

AND

AddressId

LIKE

’{2}’

:

PrimaryId,

Address[4].AddressId

In

this

example,

the

adapter

would

substitute

{1}

with

the

value

of

attribute

PrimaryId

from

the

top-level

business

object

and

{2}

with

the

value

of

AddressId

from

the

5th

position

of

child

container

object

Address.

With

this

approach,

you

can

reference

any

attribute

in

the

business

object

and

meta-object

in

the

response

message

selector.

For

more

information

on

how

deep

retrieval

is

performed

using

Address[4].AddressId,

see

JCDK

API

manual

(getAttribute

method)

An

error

is

reported

at

run-time

when

any

of

the

following

occurs:

v

If

you

specify

a

non-integer

value

between

the

’{}’

symbols

v

If

you

specify

an

index

for

which

no

attribute

is

defined

v

If

the

attribute

specified

does

not

exist

in

the

business

or

meta-object

v

If

the

syntax

of

the

attribute

path

is

incorrect

For

example,

if

you

include

the

literal

value

’{’

or

’}’

in

the

message

selector,

you

can

use

’{{’

or

″{}″

respectively.

You

can

also

place

these

characters

in

the

attribute

Chapter

1.

Overview

9

value,

in

which

case

the

first

″{″

is

not

needed.

Consider

the

following

example

using

the

escape

character:

response_selector=JMSCorrelation

LIKE

’{1}’

and

CompanyName=’A{{P’:

MyDynamicMO.CorrelationID

The

connector

would

resolve

this

message

selector

as

follows:

JMSCorrelationID

LIKE

’123ABC’

and

CompanyName=’A{P’

When

the

connector

encounters

special

characters

such

as

’{’,

’}’,

’:’

or

’;’

in

attribute

values,

they

are

inserted

directly

into

the

query

string.

This

allows

you

to

include

special

characters

in

a

query

string

that

also

serve

as

application-specific

information

delimiters.

The

next

example

illustrates

how

a

literal

string

substitution

is

extracted

from

the

attribute

value:

response_selector=JMSCorrelation

LIKE

’{1}’

and

CompanyName=’A{{P’:

MyDynamicMO.CorrelationID

If

MyDynamicMO.CorrelationID

contained

the

value

{A:B}C;D,

the

connector

would

resolve

the

message

selector

as

follows:

JMSCorrelationID

LIKE

’{A:B}C;D’

and

CompanyName=’A{P’

For

more

information

on

the

response

selector

code,

see

JMS

1.0.1

specifications.

Retrieve,

exists

and

retrieve

by

content

Business

objects

with

the

retrieve,

exists,

and

retrieve

by

content

verbs

support

synchronous

delivery

only.

The

connector

processes

business

objects

with

these

verbs

as

it

does

for

the

synchronous

delivery

defined

for

create,

update

and

delete.

However,

when

using

Retrieve,

Exists,

and

Retrieve

By

Content

verbs,

the

responseTimeout

and

replyToQueue

are

required.

Furthermore,

for

retrieve

by

content

and

retrieve

verbs,

the

message

body

must

be

populated

with

a

serialized

business

object

to

complete

the

transaction.

Table

4

shows

the

response

messages

for

these

verbs.

Table

4.

Population

of

response

message

Verb

Feedback

field

Message

body

Retrieve

or

RetrieveByContent

FAIL

FAIL_RETRIEVE_BY_CONTENT

(Optional)

An

error

message.

MULTIPLE_HITS

SUCCESS

A

serialized

business

object.

Exist

FAIL

(Optional)

An

error

message.

SUCCESS

Processing

locale-dependent

data

The

connector

has

been

internationalized

so

that

it

can

support

double-byte

character

sets,

and

deliver

message

text

in

the

specified

language.

When

the

connector

transfers

data

from

a

location

that

uses

one

character

code

to

a

location

that

uses

a

different

code

set,

it

performs

character

conversion

to

preserves

the

meaning

of

the

data.

The

Java

runtime

environment

within

the

Java

Virtual

Machine

(JVM)

represents

data

in

the

Unicode

character

code

set.

Unicode

contains

encodings

for

characters

10

Adapter

for

JMS

User

Guide

in

most

known

character

code

sets

(both

single-byte

and

multibyte).

Most

components

in

the

WebSphere

business

integration

system

are

written

in

Java.

Therefore,

when

data

is

transferred

between

most

integration

components,

there

is

no

need

for

character

conversion.

To

log

error

and

informational

messages

in

the

appropriate

language

and

for

the

appropriate

country

or

territory,

configure

the

Locale

standard

configuration

property

for

your

environment.

For

more

information

on

configuration

properties,

see

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

49.

Chapter

1.

Overview

11

12

Adapter

for

JMS

User

Guide

Chapter

2.

Installing

and

configuring

the

connector

v

“Compatibility”

v

“Prerequisites”

v

“Overview

of

installation

tasks”

v

“Installing

the

connector

and

related

files”

on

page

14

v

“Installed

file

structure”

on

page

14

v

“Connector

configuration”

on

page

16

v

“Enabling

guaranteed

event

delivery”

on

page

22

v

“Meta-object

attributes

configuration”

on

page

26

v

“Startup”

on

page

40

This

chapter

describes

how

to

install

and

configure

the

connector

and

how

to

configure

the

message

flows

to

work

with

the

connector.

Compatibility

The

adapter

framework

that

an

adapter

uses

must

be

compatible

with

the

version

of

the

integration

broker

(or

brokers)

with

which

the

adapter

is

communicating.

The

2.4.x

version

of

the

adapter

for

JMS

is

supported

on

the

following

adapter

framework

and

integration

brokers:

v

Adapter

framework:

WebSphere

Business

Integration

Adapter

Framework,

version

2.3.1.

v

Integration

broker:

InterChange

Server

Express,

version

4.3.1.

See

the

Release

Notes

for

any

exceptions.

Prerequisites

Prerequisite

software

v

The

connector

supports

JMS

1.02.

v

In

addition,

you

must

have

the

following

components:

–

Java

CDK

(see

Installing

WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization)

–

JMS

and

JNDI

libraries
v

The

connector

runs

on

the

following

platforms:

–

Microsoft

Windows

2000

–

OS400

V5R2

(5722-SS1)

–

Red

Hat

Enterprise

Linux

WS/ES/AS

for

Intel

2.1,

2.4

Kernel

–

SuSE

Linux

Enterprise

Server

7.3,

2.4

Kernel

Overview

of

installation

tasks

To

install

the

connector

for

JMS,

you

must

perform

the

following

tasks:

v

Install

the

integration

broker

This

task,

which

includes

installing

the

WebSphere

business

integration

system

and

starting

the

integration

broker,

is

described

in

Installing

IBM

WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization.

©

Copyright

IBM

Corp.

2004

13

v

Install

the

adapter

and

related

files

This

task

includes

installing

the

files

for

the

adapter

from

the

software

package

onto

your

system.

See

“Installing

the

connector

and

related

files.”

Installing

the

connector

and

related

files

To

install

adapters

for

Business

Integration

Express

for

Item

Sync:

1.

Insert

the

product

CD.

2.

See

Installing

WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization.

3.

After

installing

adapters,

see

the

Quick

Start

Guide,

which

contains

configuration

information

for

required

adapters.

Installed

file

structure

The

sections

below

describe

the

paths

and

filenames

of

the

product

after

installation.

Windows

connector

file

structure

The

Installer

copies

the

standard

files

associated

with

the

connector

into

your

system.

The

utility

installs

the

connector

agent

into

the

ProductDir\connectors\JMS

directory,

and

adds

a

shortcut

for

the

connector

agent

to

the

Start

menu.

Note

that

ProductDir

represents

the

directory

where

the

IBM

WebSphere

Business

Integration

Adapters

product

is

installed.

The

environment

variable

contains

the

ProductDir

directory

path,

which

is

IBM\WebSphereAdapters

by

default.

Table

5

describes

the

Windows

file

structure

used

by

the

connector,

and

shows

the

files

that

are

automatically

installed

when

you

choose

to

install

the

connector

through

Installer.

Table

5.

Installed

Windows

file

structure

for

the

connector

Subdirectory

of

ProductDir

Description

connectors\JMS\CWJMS.jar

Contains

classes

used

by

the

JMS

connector

connectors\JMS\jms.jar

Third-party

library

required

by

connector

connectors\JMS\start_JMS.bat

The

startup

script

for

the

connector

(NT/2000)

connectors\messages\JMSConnector.txt

Message

file

for

the

connector

repository\JMS\CN_JMS.txt

Repository

definition

for

the

connector

connectors\JMS\Samples\JMSConnector.cfg

Sample

connector

configuration

file

connectors\JMS\Samples\PortConnector.cfg

Sample

port

connector

configuration

file

connectors\JMS\Samples\Sample_JMS_Contact.xsd

connectors\JMS\Samples\Sample_JMS_MO_Config.xsd

Sample

meta-object

connectors\JMS\Samples\Sample_JMS_MO_DataHandler.xsd

Sample

data

handler

meta-object

connectors\JMS\Samples\Sample_JMS_MO_DataHandler_DelimitedConfig.xsd

Sample

delimited

data

handler

meta-object

connectors\JMS\Samples\Sample_JMS_DynMO.xsd

Sample

dynamic

meta-object

connectors\JMS\Samples\JMSPropertyPairs.xsd

Sample

JMS

properties

14

Adapter

for

JMS

User

Guide

Note:

All

product

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

Linux

connector

file

structure

The

Installer

copies

the

standard

files

associated

with

the

connector

into

your

system.

The

utility

installs

the

connector

agent

into

the

ProductDir/connectors/JMS

directory,

and

adds

a

shortcut

for

the

connector

agent

to

the

Start

menu.

Note

that

ProductDir

represents

the

directory

where

the

IBM

WebSphere

Business

Integration

Adapters

product

is

installed.

The

environment

variable

contains

the

ProductDir

directory

path,

which

is

IBM\WebSphereAdapters

by

default.

Table

5

on

page

14

describes

the

Linux

file

structure

used

by

the

connector,

and

shows

the

files

that

are

automatically

installed

when

you

choose

to

install

the

connector

through

Installer.

Table

6.

Installed

Linux

file

structure

for

the

connector

Subdirectory

of

ProductDir

Description

connectors/JMS/CWJMS.jar

Contains

classes

used

by

the

JMS

connector

connectors/JMS/jms.jar

Third-party

library

required

by

connector

connectors/JMS/start_JMS.sh

The

startup

script

for

the

connector

connectors/messages/JMSConnector.txt

Message

file

for

the

connector

repository/JMS/CN_JMS.txt

Repository

definition

for

the

connector

connectors/JMS/Samples/JMSConnector.cfg

Sample

connector

configuration

file

connectors/JMS/Samples/PortConnector.cfg

Sample

port

connector

configuration

file

connectors/JMS/Samples/Sample_JMS_Contact.xsd

connectors/JMS/Samples/Sample_JMS_MO_Config.xsd

Sample

meta-object

connectors/JMS/Samples/Sample_JMS_MO_DataHandler.xsd

Sample

data

handler

meta-object

connectors/JMS/Samples/Sample_JMS_MO_DataHandler_DelimitedConfig.xsd

Sample

delimited

data

handler

meta-object

connectors/JMS/Samples/Sample_JMS_DynMO.xsd

Sample

dynamic

meta-object

connectors/JMS/Samples/JMSPropertyPairs.xsd

Sample

JMS

properties

Note:

All

product

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

OS/400

connector

file

structure

The

Installer

copies

the

standard

files

associated

with

the

connector

into

your

system.

The

utility

installs

the

connector

agent

into

the

ProductDir/connectors/JMS

directory,

and

adds

a

shortcut

for

the

connector

agent

to

the

Start

menu.

Note

that

ProductDir

represents

the

directory

where

the

IBM

WebSphere

Business

Integration

Adapters

product

is

installed.

The

environment

variable

contains

the

ProductDir

directory

path,

which

is

IBM\WebSphereAdapters

by

default.

Table

5

on

page

14

describes

the

OS/400

file

structure

used

by

the

connector,

and

shows

the

files

that

are

automatically

installed

when

you

choose

to

install

the

connector

through

Installer.

Chapter

2.

Installing

and

configuring

the

connector

15

Table

7.

Installed

OS/400

file

structure

for

the

connector

Subdirectory

of

ProductDir

Description

connectors/JMS/CWJMS.jar

Contains

classes

used

by

the

JMS

connector

connectors/JMS/jms.jar

Third-party

library

required

by

connector

connectors/JMS/start_JMS.sh

The

startup

script

for

the

connector

connectors/messages/JMSConnector.txt

Message

file

for

the

connector

repository/JMS/CN_JMS.txt

Repository

definition

for

the

connector

connectors/JMS/Samples/JMSConnector.cfg

Sample

connector

configuration

file

connectors/JMS/Samples/PortConnector.cfg

Sample

port

connector

configuration

file

connectors/JMS/Samples/Sample_JMS_Contact.xsd

connectors/JMS/Samples/Sample_JMS_MO_Config.xsd

Sample

meta-object

connectors/JMS/Samples/Sample_JMS_MO_DataHandler.xsd

Sample

data

handler

meta-object

connectors/JMS/Samples/Sample_JMS_MO_DataHandler_DelimitedConfig.xsd

Sample

delimited

data

handler

meta-object

connectors/JMS/Samples/Sample_JMS_DynMO.xsd

Sample

dynamic

meta-object

connectors/JMS/Samples/JMSPropertyPairs.xsd

Sample

JMS

properties

Note:

All

product

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

Connector

configuration

Connectors

have

two

types

of

configuration

properties:

standard

configuration

properties

and

adapter-specific

configuration

properties.

You

must

set

the

values

of

these

properties

before

running

the

adapter.

You

use

Connector

Configurator

Express

to

configure

connector

properties:

v

For

a

description

of

Connector

ConfiguratorExpress

and

step-by-step

procedures,

see

Appendix

B,

“Connector

Configurator

Express,”

on

page

63.

v

For

information

on

required

connector

configuration,

see

the

Quick

Start

Guide.

v

For

a

description

of

standard

connector

properties,

see

“Standard

connector

properties”

and

then

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

49.

v

For

a

description

of

connector-specific

properties,

see

“Connector-specific

properties”

on

page

17.

A

connector

obtains

its

configuration

values

at

startup.

During

a

runtime

session,

you

may

want

to

change

the

values

of

one

or

more

connector

properties.

Changes

to

some

connector

configuration

properties,

such

as

AgentTraceLevel,

take

effect

immediately.

Changes

to

other

connector

properties

require

component

restart

or

system

restart

after

a

change.

To

determine

whether

a

property

is

dynamic

(taking

effect

immediately)

or

static

(requiring

either

connector

component

restart

or

system

restart),

refer

to

the

Update

Method

column

in

the

Connector

Properties

window

of

Connector

Configurator

Express.

Standard

connector

properties

Standard

configuration

properties

provide

information

that

all

connectors

use.

See

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

49

for

documentation

of

these

properties.

16

Adapter

for

JMS

User

Guide

Note:

When

you

set

configuration

properties

in

Connector

Configurator

Express,

you

specify

your

broker

using

the

BrokerType

property.

Once

this

is

set,

the

properties

relevant

to

your

broker

will

appear

in

the

Connector

Configurator

Express

window.

Connector-specific

properties

Connector-specific

configuration

properties

provide

information

needed

by

the

connector

agent

at

runtime.

connector-specific

properties

also

provide

a

way

of

changing

static

information

or

logic

within

the

connector

agent

without

having

to

recode

and

rebuild

the

agent.

Table

8

lists

the

connector-specific

configuration

properties

for

the

connector.

See

the

sections

that

follow

for

explanations

of

the

properties.

Table

8.

Connector-specific

configuration

properties

Name

Possible

values

Default

value

Required

ArchiveQueue

Queue

to

which

copies

of

successfully

processed

messages

are

sent

CWLD_ARCHIVE

No

CCSID

Character

set

for

queue

manager

connection

null

Yes

ConfigurationMetaObject

Configuration

meta-object

Yes

DataHandlerClassName

Name

of

data

handler

class

No

DataHandlerConfigMO

Name

of

data

handler

configuration

meta-object

MO_DataHandler_

Default

No

DataHandlerMimeType

Mime

type

of

file

No

ErrorQueue

Queue

for

unprocessed

messages

CWLD_ERROR

No

InDoubtEvents

FailOnStartup

Reprocess

Ignore

LogError

Reprocess

No

InProgressQueue

In-progress

event

queue

CWLD_InProgress

No

InputQueue

Name

of

poll

queues

CWLD_Input

Yes

LookupQueuesUsingJNDI

true

or

false

false

No

MessageFormatProperty

Property

name

specifying

message

format

JMSType

No

MessageResponseResultProperty

Property

in

response

message

that

indicates

the

result

of

the

request

operation

CWLD_Result

Yes

PollQuantity

Number

of

messages

to

retrieve

from

each

queue

specified

in

the

InputQueue

property

1

No

QueueConnectionFactoryName

Name

of

connection

factory

to

look

up

using

JNDI

context

Yes

ReplyToQueue

Queue

to

which

response

messages

are

delivered

when

the

connector

issues

requests

CWLD_REPLYTO

No

UnsubscribedQueue

Queue

to

which

unsubscribed

messages

are

sent

CWLD_UNSUBSCRIBED

No

UseDefaults

true

or

false

false

ArchiveQueue

Queue

to

which

copies

of

successfully

processed

messages

are

sent.

The

default

value

is

CWLD_ARCHIVE.

Chapter

2.

Installing

and

configuring

the

connector

17

CCSID

The

character

set

for

the

queue

manager

connection.

Default

=

null.

ConfigurationMetaObject

Name

of

static

meta-object

containing

configuration

information

for

the

connector.

There

is

no

default

value.

DataHandlerClassName

Data

handler

class

to

use

when

converting

messages

to

and

from

business

objects.

DataHandlerConfigMO

Name

of

data

handler

meta-object.

Provides

configuration

information

for

the

data

handler.

The

default

value

is

MO_DataHandler_Default.

DataHandlerMimeType

Allows

you

to

request

a

data

handler

based

on

a

particular

MIME

type.

ErrorQueue

Queue

to

which

messages

that

could

not

be

processed

are

sent.

The

default

value

is

CWLD_ERROR.

InDoubtEvents

Specifies

how

to

handle

in-progress

events

that

are

not

fully

processed

due

to

unexpected

connector

shutdown.

Choose

one

of

four

actions

to

take

if

events

are

found

in

the

in-progress

queue

during

initialization:

v

FailOnStartup

–

Log

an

error

and

immediately

shut

down.

v

Reprocess

–

Process

the

remaining

events

first,

then

process

messages

in

the

input

queue.

v

Ignore

–

Disregard

any

messages

in

the

in-progress

queue.

v

LogError

–

Log

an

error

but

do

not

shut

down

The

default

value

is

Reprocess.

InProgressQueue

Message

queue

where

messages

are

held

during

processing.

You

can

configure

the

connector

to

operate

without

this

queue

by

using

System

Manager

to

remove

the

default

InProgressQueue

name

from

the

connector-specific

properties.

Doing

so

prompts

a

warning

at

startup

that

event

delivery

may

be

compromised

if

the

connector

is

shut

down

while

are

events

pending.

The

default

value

is

CWLD_InProgress.

InputQueue

Message

queues

that

will

be

polled

by

the

connector

for

new

messages.

The

connector

accepts

multiple

semi-colon

delimited

queue

names.

For

example,

to

poll

the

following

three

queues:

MyQueueA,

MyQueueB,

and

MyQueueC,

the

value

for

connector

configuration

property

InputQueue

would

equal:

MyQueueA;MyQueueB;MyQueueC.

18

Adapter

for

JMS

User

Guide

If

the

InputQueue

property

is

not

supplied,

the

connector

will

start

up

properly,

print

a

warning

message,

and

perform

request

processing

only.

It

will

perform

no

event

processing.

The

connector

polls

the

queues

in

a

round-robin

manner

and

retrieves

up

to

pollQuantity

number

of

messages

from

each

queue.

For

example,

if

pollQuantity

equals

2,

and

MyQueueA

contains

2

messages,

MyQueueB

contains

1

message

and

MyQueueC

contains

5

messages,

the

connector

retrieves

messages

in

the

following

manner:

Since

we

have

a

pollQuanity

of

2,

the

connector

will

retrieve

at

most

2

messages

from

each

queue

per

call

to

pollForEvents.

For

the

first

cycle

(1

of

2),

the

connector

retrieves

the

first

message

from

each

of

MyQueueA,

MyQueueB,

and

MyQueueC.

That

completes

the

first

round

of

polling

and

if

we

had

a

pollQuantity

of

1,

the

connector

would

stop.

Since

we

have

a

pollQuanity

of

2,

the

connector

starts

a

second

round

of

polling

(2

of

2)

and

retrieves

one

message

each

from

MyQueueA

and

MyQueueC--it

skips

MqQueueB

since

it

is

now

empty.

After

polling

all

queues

2x

each,

the

call

to

the

method

pollForEvents

is

complete.

Here’s

the

sequence

of

message

retrieval:

1.

1

message

from

MyQueueA

2.

1

message

from

MyQueueB

3.

1

message

from

MyQueueC

4.

1

message

from

MyQueueA

5.

Skip

MyQueueB

since

it’s

now

empty

6.

1

message

from

MyQueueC

The

default

value

is

CWLD_Input.

LookupQueuesUsingJNDI

If

this

property

is

true,

the

connector

assumes

that

queue

names

represent

stored

objects

in

the

JNDI

context,

and

resolves

the

queue

name

by

looking

it

up

in

the

configured

JNDI

store.

A

queue

object

must

exist

in

the

store

and

be

associated

with

the

name

provided.

When

this

property

is

false,

the

connector

passes

the

queue

name

to

the

JMS

provider

and

allows

it

to

resolve

it

in

a

vendor-specific

manner.

The

default

value

is

false.

MessageFormatProperty

Property

name

specifying

message

format.

This

value

determines

the

conversion

properties

used

during

subscription

delivery

and

is

then

set

for

output

messages.

If

value

is

JMSType

or

unspecified,

the

connector

uses

the

JMS

message

type

as

the

format.

The

default

value

is

JMSType.

MessageResponseResultProperty

Property

in

response

message

that

indicates

the

result

of

the

request

operation.

The

default

value

is

CWLD_Result.

PollQuantity

Number

of

messages

to

retrieve

from

each

queue

specified

in

the

InputQueue

property

during

a

pollForEvents

scan.

The

default

value

is

1.

Chapter

2.

Installing

and

configuring

the

connector

19

QueueConnectionFactoryName

Name

of

connection

factory

to

look

up

using

JNDI

context.

ReplyToQueue

Queue

to

which

response

messages

are

delivered

when

the

connector

issues

requests.

You

can

also

use

attributes

in

the

child

dynamic

meta-object

to

ignore

a

response.

For

more

information

on

the

these

attributes,

see

“JMS

headers

and

dynamic

child

meta-object

Attributes”

on

page

35

The

default

value

is

CWLD_REPLYTO.

UnsubscribedQueue

Queue

to

which

unsubscribed

messages

are

sent.

The

default

value

is

CWLD_UNSUBSCRIBED.

UseDefaults

On

a

Create

operation,

if

UseDefaults

is

set

to

true,

the

connector

checks

whether

a

valid

value

or

a

default

value

is

provided

for

each

isRequired

business

object

attribute.

If

a

value

is

provided,

the

Create

operation

succeeds.

If

the

parameter

is

set

to

false,

the

connector

checks

only

for

a

valid

value

and

causes

the

Create

operation

to

fail

if

it

is

not

provided.

The

default

is

false.

JNDI

provider

properties

This

section

describes

connector

properties

for

establishing

the

context

of

a

Java

Naming

and

Directory

Interface

(JNDI)

provider.

This

information

is

taken

from

J2EE

(Java

2

Enterprise

Edition).

For

more

information

on

JNDI

environment

variables

and

configuration,

see

www.javasoft.com.

For

information

on

configuring

JNDI

with

the

MA88

Patch,

see

“Configuring

JNDI

with

WebSphere

MQ

Java

client

libraries”

on

page

21.

Table

9.

Java

Naming

and

Directory

Interface

(JNDI)

provider

properties

Property

Name

Description

CTX_InitialContextFactory

Fully

qualified

class

name

of

the

factory

class

that

will

create

an

initial

context.

(e.g

“com.sun.jndi.fscontext”)

CTX_ProviderURL

Configuration

information

for

the

service

provider

to

use.

The

value

of

the

property

should

contain

a

URL

(e.g.

“ldap://somehost:389”)

CTX_ObjectFactories

CTX_StateFactories

CTX_URLPackagePrefixes

CTX_DNS_URL

CTX_Authoritative

CTX_Batchsize

CTX_Referral

CTX_SecurityProtocol

CTX_SecutiryAuthentication

CTX_SecurityPrincipal

CTX_SecurityCredentials

CTX_Language

Properties

specifying

additional

information

about

security

and

object

lookup

in

the

JNDI

context.

See

J2EE

documentation

for

more

information.

20

Adapter

for

JMS

User

Guide

Configuring

JNDI

with

WebSphere

MQ

Java

client

libraries

This

section

describes

how

to

configure

JNDI

with

WebSphere

MQ

Java

client

libraries.

If

you

are

using

WebSphere

MQ

V5.2

or

earlier,

you

must

download

these

libraries

from

www.ibm.com/support/us/

and

install

them.

Note

that

the

download

may

be

referred

to

on

the

site

as

″SupportPac

MA88.″

If

you

are

using

WebSphere

MQ

V5.3,

the

client

libraries

are

packaged

with

the

product

and

thus

you

are

not

required

to

perform

the

following

steps.

1.

Download

and

install

the

MQ

Java

client

libraries.

2.

Modify

the

classpath

and

variables

as

follows

on

Windows:

SET

PATH=%PATH%;"%MQ_JAVA_INSTALL_PATH%"\lib

SET

CP="%MQ_JAVA_INSTALL_PATH%"\lib\fscontext.jar;

SET

CP=%CP%;"%MQ_JAVA_INSTALL_PATH%"\lib\jms.jar

SET

CP=%CP%;"%MQ_JAVA_INSTALL_PATH%"\lib\jndi.jar

SET

CP=%CP%;"%MQ_JAVA_INSTALL_PATH%"\lib\jta.jar

SET

CP=%CP%;"%MQ_JAVA_INSTALL_PATH%"\lib\ldap.jar

SET

CP=%CP%;"%MQ_JAVA_INSTALL_PATH%"\lib\providerutil.jar

SET

CP=%CP%;%CROSSWORLDS%\rt.jar;

SET

CP=%CP%;"%MQ_JAVA_INSTALL_PATH%"\lib\com.ibm.mq.jar;

SET

CP=%CP%;"%MQ_JAVA_INSTALL_PATH%"\lib\com.ibm.mq.iiop.jar;

SET

CP=%CP%;"%MQ_JAVA_INSTALL_PATH%"\lib\com.ibm.mqbind.jar;

SET

CP=%CP%;"%MQ_JAVA_INSTALL_PATH%"\lib;

SET

CP=%CP%;"%MQ_JAVA_INSTALL_PATH%"\lib\com.ibm.mqjms.jar

SET

CLASSPATH=%CP%;%CLASSPATH%

Modify

the

classpath

and

variables

as

follows

on

OS/400:

MQ_JAVA_INSTALL_PATH=/QIBM/ProdData/mqm/java

EXPORT

PATH=${PATH}:${MQ_JAVA_INSTALL_PATH}/lib

EXPORT

CP=${MQ_JAVA_INSTALL_PATH}/lib/fscontext.jar

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib/jms.jar

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib/jndi.jar

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib/jta.jar

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib/ldap.jar

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib/providerutil.jar

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib/rt.jar

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib/com.ibm.mq.jar

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib/com.ibm.mq.iiop.jar

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib/com.ibm.mqbind.jar

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib

EXPORT

CP=${CP}:${MQ_JAVA_INSTALL_PATH}/lib/com.ibm.mqjms.jar

EXPORT

CLASSPATH=${CP}:${CLASSPATH}

3.

On

Windows,

add

%CP%

to

the

-classpath

in

%MQ_JAVA_INSTALL_PATH%\bin\JMSAdmin.bat

and

start_JMS.bat:

On

OS/400,

add

%CP%

to

the

-classpath

in

%MQ_JAVA_INSTALL_PATH%/bin/JMSAdmin

and

start_JMS.sh:

4.

Modify

%MQ_JAVA_INSTALL_PATH%\bin\JMSAdmin.config

as

follows:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory

PROVIDER_URL=file:/C:/JNDI-Directory

SECURITY_AUTHENTICATION=none

where

PROVIDER_URL

points

to

an

existing

directory

where

the

.bindings

file

will

be

created.

5.

Create

queues

for

the

default

queue

manager.

Chapter

2.

Installing

and

configuring

the

connector

21

6.

Create

the

.jndi

file.

Here

is

a

sample:

*

*

JNDI

Configured

Objects

for

Information

Pipeline

*

Used

by

WebSphere

MQ

JMS*

*

*

DEFINE

QCF(ISSMWS14QCF)

+

TRAN(client)

HOST(MZIBERW2K)

PORT(1414)

+

CHANNEL(CHANNEL1)

CLIENTID(’

’)

*

*

Queues

*

DEFINE

Q(INPUTQ)

+

QUEUE(INPUTQ)

+

TARGCLIENT(JMS)

*

DEFINE

Q(REPLYQ)

+

QUEUE(REPLYQ)

+

TARGCLIENT(JMS)

where

MZIBERW2K

is

the

name

of

the

host

machine,

CHANNEL1

is

the

name

of

the

channel,

and

INPUTQ

and

REPLYQ

are

the

Q

names.
7.

Change

directories

to

%MQ_JAVA_INSTALL_PATH%\bin

and

run

JMSAdmin:

>JMSAdmin.bat<sample.jndi

where

sample.jndi

is

the

file

created

in

step

3.

The

result

should

be

a

.binding

file

in

the

directory

specified

in

PROVIDER_URL.

Enabling

guaranteed

event

delivery

You

can

configure

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

in

one

of

the

following

ways:

v

If

the

connector

uses

a

JMS

event

store

(implemented

as

a

JMS

source

queue),

the

connector

framework

can

manage

the

JMS

event

store.

For

more

information,

see

“Guaranteed

event

delivery

for

connectors

with

JMS

event

stores.”

v

If

the

connector

uses

a

non-JMS

event

store

(for

example,

implemented

as

a

JDBC

table,

Email

mailbox,

or

flat

files),

the

connector

framework

can

use

a

JMS

monitor

queue

to

ensure

that

no

duplicate

events

occur.

For

more

information,

see

“Guaranteed

event

delivery

for

connectors

with

non-JMS

event

stores”

on

page

24.

Guaranteed

event

delivery

for

connectors

with

JMS

event

stores

If

the

JMS-enabled

connector

uses

JMS

queues

to

implement

its

event

store,

the

connector

framework

can

act

as

a

″container″

and

manage

the

JMS

event

store

(the

JMS

source

queue).

In

a

single

JMS

transaction,

the

connector

can

remove

a

message

from

a

source

queue

and

place

it

on

the

destination

queue.

This

section

provides

the

following

information

about

use

of

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

that

has

a

JMS

event

store:

v

“Enabling

the

feature

for

connectors

with

JMS

event

stores”

on

page

23

v

“Effect

on

event

polling”

on

page

24

22

Adapter

for

JMS

User

Guide

Enabling

the

feature

for

connectors

with

JMS

event

stores

To

enable

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

that

has

a

JMS

event

store,

set

the

connector

configuration

properties

to

values

shown

in

Table

10.

Table

10.

Guaranteed-event-delivery

connector

properties

for

a

connector

with

a

JMS

event

store

Connector

property

Value

DeliveryTransport

JMS

ContainerManagedEvents

JMS

PollQuantity

The

number

of

events

to

processing

in

a

single

poll

of

the

event

store

SourceQueue

Name

of

the

JMS

source

queue

(event

store)

which

the

connector

framework

polls

and

from

which

it

retrieves

events

for

processing

Note:

The

source

queue

and

other

JMS

queues

should

be

part

of

the

same

queue

manager.

If

the

connector’s

application

generates

events

that

are

stored

in

a

different

queue

manager,

you

must

define

a

remote

queue

definition

on

the

remote

queue

manager.

WebSphere

MQ

can

then

transfer

the

events

from

the

remote

queue

to

the

queue

manager

that

the

JMS-enabled

connector

uses

for

transmission

to

the

integration

broker.

For

information

on

how

to

configure

a

remote

queue

definition,

see

your

IBM

WebSphere

MQ

documentation.

In

addition

to

configuring

the

connector,

you

must

also

configure

the

data

handler

that

converts

between

the

event

in

the

JMS

store

and

a

business

object.

This

data-handler

information

consists

of

the

connector

configuration

properties

that

Table

11

summarizes.

Table

11.

Data-handler

properties

for

guaranteed

event

delivery

Data-handler

property

Value

Required?

MimeType

The

MIME

type

that

the

data

handler

handles.

This

MIME

type

identifies

which

data

handler

to

call.

Yes

DHClass

The

full

name

of

the

Java

class

that

implements

the

data

handler

Yes

DataHandlerConfigMOName

The

name

of

the

top-level

meta-object

that

associates

MIME

types

and

their

data

handlers

Optional

Note:

The

data-handler

configuration

properties

reside

in

the

connector

configuration

file

with

the

other

connector

configuration

properties.

If

you

configure

a

connector

that

has

a

JMS

event

store

to

use

guaranteed

event

delivery,

you

must

set

the

connector

properties

as

described

in

Table

10

and

Table

11.

To

set

these

connector

configuration

properties,

use

the

Connector

Configurator

Express

tool.

Connector

Configurator

Express

displays

the

connector

properties

in

Table

10

on

its

Standard

Properties

tab.

It

displays

the

connector

properties

in

Table

11

on

its

Data

Handler

tab.

Chapter

2.

Installing

and

configuring

the

connector

23

Note:

Connector

Configurator

Express

activates

the

fields

on

its

Data

Handler

tab

only

when

the

DeliveryTransport

connector

configuration

property

is

set

to

JMS

and

ContainerManagedEvents

is

set

to

JMS.

For

information

on

Connector

Configurator

Express,

see

Appendix

B,

“Connector

Configurator

Express,”

on

page

63.

Effect

on

event

polling

If

a

connector

uses

guaranteed

event

delivery

by

setting

ContainedManagedEvents

to

JMS,

it

behaves

slightly

differently

from

a

connector

that

does

not

use

this

feature.

To

provide

container-managed

events,

the

connector

framework

takes

the

following

steps

to

poll

the

event

store:

1.

Start

a

JMS

transaction.

2.

Read

a

JMS

message

from

the

event

store.

The

event

store

is

implemented

as

a

JMS

source

queue.

The

JMS

message

contains

an

event

record.

The

name

of

the

JMS

source

queue

is

obtained

from

the

SourceQueue

connector

configuration

property.

3.

Call

the

data

handler

to

convert

the

event

to

a

business

object.

The

connector

framework

calls

the

data

handler

that

has

been

configured

with

the

properties

in

Table

11

on

page

23.

4.

Send

the

resulting

message

to

the

JMS

destination

queue.

With

the

WebSphere

ICS

Express

integration

broker,

the

message

sent

to

the

JMS

destination

queue

is

the

business

object.

5.

Commit

the

JMS

transaction.

When

the

JMS

transaction

commits,

the

message

is

written

to

the

JMS

destination

queue

and

removed

from

the

JMS

source

queue

in

the

same

transaction.

6.

Repeat

step

1

through

5

in

a

loop.

The

PollQuantity

connector

property

determines

the

number

of

repetitions

in

this

loop.

Important:

A

connector

that

sets

the

ContainerManagedEvents

property

is

set

to

JMS

does

not

call

the

pollForEvents()

method

to

perform

event

polling.

If

the

connector’s

base

class

includes

a

pollForEvents()

method,

this

method

is

not

invoked.

Guaranteed

event

delivery

for

connectors

with

non-JMS

event

stores

If

the

JMS-enabled

connector

uses

a

non-JMS

solution

to

implement

its

event

store

(such

as

a

JDBC

event

table,

Email

mailbox,

or

flat

files),

the

connector

framework

can

use

duplicate

event

elimination

to

ensure

that

duplicate

events

do

not

occur.

This

section

provides

the

following

information

about

use

of

the

guaranteed-event-delivery

feature

with

a

JMS-enabled

connector

that

has

a

non-JMS

event

store:

v

“Enabling

the

feature

for

connectors

with

non-JMS

event

stores”

v

“Effect

on

event

polling”

Enabling

the

feature

for

connectors

with

non-JMS

event

stores:

To

enable

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

that

has

a

non-JMS

event

store,

you

must

set

the

connector

configuration

properties

to

values

shown

in

Table

12.

24

Adapter

for

JMS

User

Guide

Table

12.

Guaranteed-event-delivery

connector

properties

for

a

connector

with

a

non-JMS

event

store

Connector

property

Value

DeliveryTransport

JMS

DuplicateEventElimination

true

MonitorQueue

Name

of

the

JMS

monitor

queue,

in

which

the

connector

framework

stores

the

ObjectEventId

of

processed

business

objects

If

you

configure

a

connector

to

use

guaranteed

event

delivery,

you

must

set

the

connector

properties

as

described

in

Table

12.

To

set

these

connector

configuration

properties,

use

the

Connector

ConfiguratorExpress

tool.

It

displays

these

connector

properties

on

its

Standard

Properties

tab.

For

information

on

Connector

Configurator

Express,

see

Appendix

B,

“Connector

Configurator

Express,”

on

page

63.

Effect

on

event

polling:

If

a

connector

uses

guaranteed

event

delivery

by

setting

DuplicateEventElimination

to

true,

it

behaves

slightly

differently

from

a

connector

that

does

not

use

this

feature.

To

provide

the

duplicate

event

elimination,

the

connector

framework

uses

a

JMS

monitor

queue

to

track

a

business

object.

The

name

of

the

JMS

monitor

queue

is

obtained

from

the

MonitorQueue

connector

configuration

property.

After

the

connector

framework

receives

the

business

object

from

the

application-specific

component

(through

a

call

to

gotApplEvent()

in

the

pollForEvents()

method),

it

must

determine

if

the

current

business

object

(received

from

gotApplEvents())

represents

a

duplicate

event.

To

make

this

determination,

the

connector

framework

retrieves

the

business

object

from

the

JMS

monitor

queue

and

compares

its

ObjectEventId

with

the

ObjectEventId

of

the

current

business

object:

v

If

these

two

ObjectEventIds

are

the

same,

the

current

business

object

represents

a

duplicate

event.

In

this

case,

the

connector

framework

ignores

the

event

that

the

current

business

object

represents;

it

does

not

send

this

event

to

the

integration

broker.

v

If

these

ObjectEventIds

are

not

the

same,

the

business

object

does

not

represent

a

duplicate

event.

In

this

case,

the

connector

framework

copies

the

current

business

object

to

the

JMS

monitor

queue

and

then

delivers

it

to

the

JMS

delivery

queue,

all

as

part

of

the

same

JMS

transaction.

The

name

of

the

JMS

delivery

queue

is

obtained

from

the

DeliveryQueue

connector

configuration

property.

Control

returns

to

the

connector’s

pollForEvents()

method,

after

the

call

to

the

gotApplEvent()

method.

For

a

JMS-enabled

connector

to

support

duplicate

event

elimination,

you

must

make

sure

that

the

connector’s

pollForEvents()

method

includes

the

following

steps:

v

When

you

create

a

business

object

from

an

event

record

retrieved

from

the

non-JMS

event

store,

save

the

event

record’s

unique

event

identifier

as

the

business

object’s

ObjectEventId

attribute.

The

application

generates

this

event

identifier

to

uniquely

identify

the

event

record

in

the

event

store.

If

the

connector

goes

down

after

the

event

has

been

sent

to

the

integration

broker

but

before

this

event

record’s

status

can

be

changed,

this

event

record

remains

in

the

event

store

with

an

In-Progress

status.

When

the

connector

comes

back

up,

it

should

recover

any

In-Progress

events.

Chapter

2.

Installing

and

configuring

the

connector

25

When

the

connector

resumes

polling,

it

generates

a

business

object

for

the

event

record

that

still

remains

in

the

event

store.

However,

because

both

the

business

object

that

was

already

sent

and

the

new

one

have

the

same

event

record

as

their

ObjectEventIds,

the

connector

framework

can

recognize

the

new

business

object

as

a

duplicate

and

not

send

it

to

the

integration

broker.

v

During

connector

recovery,

make

sure

that

you

process

In-Progress

events

before

the

connector

begins

polling

for

new

events.

Unless

the

connector

changes

any

In-Progress

events

to

Ready-for-Poll

status

when

it

starts

up,

the

polling

method

does

not

pick

up

the

event

record

for

reprocessing.

Meta-object

attributes

configuration

The

connector

for

JMS

can

recognize

and

read

two

kinds

of

meta-objects:

v

a

static

connector

meta-object

v

a

dynamic

child

meta-object

The

attribute

values

of

the

dynamic

child

meta-object

duplicate

and

override

those

of

the

static

meta-object.

Static

meta-object

The

JMS

configuration

static

meta-object

contains

a

list

of

conversion

properties

defined

for

different

business

objects.

To

define

the

conversion

properties

for

a

business

object,

create

a

string

attribute

and

name

it

using

the

syntax

BusObj_Verb.

For

example,

to

define

the

conversion

properties

for

a

Customer

object

with

the

verb

Create,

create

an

attribute

named

Customer_Create.

In

the

application-specific

information

of

the

attribute,

specify

the

actual

conversion

properties.

Additionally,

a

reserved

attribute

named

Default

can

be

defined

in

the

meta-object.

When

this

attribute

is

present,

its

properties

act

as

default

values

for

all

business

object

conversion

properties.

Note:

If

a

static

meta

object

is

not

specified,

the

connector

is

unable

to

map

a

given

message

format

to

a

specific

business

object

type

during

polling.

When

this

is

the

case,

the

connector

passes

the

message

text

to

the

configured

data

handler

without

specifying

a

business

object.

If

the

data

handler

cannot

create

a

business

object

based

on

the

text

alone,

the

connector

reports

an

error

indicating

that

this

message

format

is

unrecognized.

26

Adapter

for

JMS

User

Guide

Table

13

describes

the

static

meta-object

properties.

Table

13.

JMS

static

meta-object

properties

Property

name

Description

DataHandlerConfigMO

Meta-object

passed

to

data

handler

to

provide

configuration

information.

If

specified

in

the

static

meta-object,

this

will

override

the

value

specified

in

the

DataHandlerConfigMO

connector

property.

Use

this

static

meta-object

property

when

different

data

handlers

are

required

for

processing

different

business

object

types.

If

defined

in

a

dynamic

child

meta-object,

this

property

will

override

the

connector

property

and

the

static

meta-object

property.

Use

the

dynamic

child

meta-object

for

request

processing

when

the

data

format

may

be

dependent

on

the

actual

business

data.

The

specified

business

object

must

be

supported

by

the

connector

agent.

DataHandlerMimeType

Allows

you

to

request

a

data

handler

based

on

a

particular

MIME

type.

If

specified

in

the

static

meta-object,

this

will

override

the

value

specified

in

the

DataHandlerMimeType

connector

property.

Use

this

static

meta-object

property

when

different

data

handlers

are

required

for

processing

different

business

object

types.

If

defined

in

a

dynamic

child

meta-object,

this

property

will

override

the

connector

property

and

the

static

meta-object

property.

Use

the

dynamic

child

meta-object

for

request

processing

when

the

data

format

might

be

dependent

on

the

actual

business

data.

The

business

object

specified

in

DataHandlerConfigMO

should

have

an

attribute

that

corresponds

to

the

value

of

this

property.

InputFormat

The

InputFormat

is

the

message

format

to

associate

with

the

given

business

object.

When

a

message

is

retrieved

and

is

in

this

format,

it

is

converted

to

the

given

business

object

if

possible.

Do

not

set

this

property

using

default

conversion

properties;

its

value

is

used

to

match

incoming

messages

to

business

objects.

OutputFormat

The

OutputFormat

is

set

on

messages

created

from

the

given

business

object.

If

the

OutputFormat

is

not

specified,

the

input

format

is

used,

if

available.

An

OutputFormat

defined

in

a

dynamic

child

meta-object

overrides

the

value

defined

in

the

static

meta-object.

InputQueue

The

input

queue

that

the

connector

polls

to

detect

new

messages.

You

can

use

connector-specific

properties

to

configure

multiple

InputQueues

and

optionally

map

different

data

handlers

to

each

queue.

Do

not

set

this

property

using

default

conversion

properties;

its

value

is

used

to

match

incoming

messages

to

business

objects.

OutputQueue

The

OutputQueue

is

the

output

queue

to

which

messages

derived

from

the

given

business

object

are

delivered.

An

OutputQueue

defined

in

a

dynamic

child

meta-object

overrides

the

value

defined

in

the

static

meta-object.

ResponseTimeout

Indicates

the

length

of

time

in

milliseconds

to

wait

before

timing

out

when

waiting

for

a

response.

The

connector

returns

SUCCESS

immediately

without

waiting

for

a

response

if

this

is

left

undefined

or

with

a

value

less

than

zero.

A

ResponseTimeout

defined

in

a

dynamic

child

meta-object

overrides

the

value

defined

in

the

static

meta-object.

Chapter

2.

Installing

and

configuring

the

connector

27

Table

13.

JMS

static

meta-object

properties

(continued)

Property

name

Description

TimeoutFatal

If

this

property

is

defined

and

has

a

value

of

True,

the

connector

returns

APP_RESPONSE_TIMEOUT

when

a

response

is

not

received

within

the

time

specified

by

ResponseTimeout.

All

other

threads

waiting

for

response

messages

immediately

return

APP_RESPONSE_TIMEOUT

to

InterChange

Server.

This

causes

InterChange

Server

to

terminate

the

connector.

A

TimeoutFatal

defined

in

a

dynamic

child

meta-object

overrides

the

value

defined

in

the

static

meta-object.

Table

14.

JMS

static

meta-object

structure

for

Customer_Create

Attribute

name

Application-specific

text

Customer_Create

OutputFormat=CUST_OUT;

OutputQueue=QueueA;

ResponseTimeout=10000;

TimeoutFatal=False

Application-specific

information

The

application-specific

information

is

structured

in

name-value

pair

format,

separated

by

semicolons.

For

example:

InputFormat=CUST_IN;OutputFormat=CUST_OUT

Mapping

data

handlers

to

InputQueues

You

can

use

the

InputQueue

property

in

the

application-specific

information

of

the

static

meta-object

to

associate

a

data

handler

with

an

input

queue.

This

feature

is

useful

when

dealing

with

multiple

trading

partners

who

have

different

formats

and

conversion

requirements.

To

do

so

you

must:

1.

Use

connector-specific

properties

(see

“InputQueue”

on

page

18)

to

configure

one

or

more

input

queues.

2.

For

each

input

queue,

specify

the

queue

manager

and

input

queue

name

as

well

as

data

handler

class

name

and

mime

type

in

the

application-specific

information.

For

example,

the

following

attribute

in

a

static

meta-object

associates

a

data

handler

with

an

InputQueue

named

CompReceipts:

[Attribute]

Name

=

Customer_Create

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

InputQueue=//queue.manager/CompReceipts;DataHandlerClassName=com.crossworlds.

DataHandlers.MQ.disposition_notification;DataHandlerMimeType=message/

disposition_notification

IsRequiredServerBound

=

false

[End]

28

Adapter

for

JMS

User

Guide

Overloading

input

formats

When

retrieving

a

message,

the

connector

normally

matches

the

input

format

to

one

specific

business

object

and

verb

combination.

The

connector

then

passes

the

business

object

name

and

the

contents

of

the

message

to

the

data

handler.

This

allows

the

data

handler

to

verify

that

the

message

contents

correspond

to

the

business

object

that

the

user

expects.

If,

however,

the

same

input

format

is

defined

for

more

than

one

business

object,

the

connector

will

be

unable

to

determine

which

business

object

the

data

represents

before

passing

it

to

the

data

handler.

In

such

cases,

the

connector

passes

the

message

contents

only

to

the

data

handler

and

then

looks

up

conversion

properties

based

on

the

business

object

that

is

generated.

Accordingly,

the

data

handler

must

determine

the

business

object

based

on

the

message

content

alone.

If

the

verb

on

the

generated

business

object

is

not

set,

the

connector

searches

for

conversion

properties

defined

for

this

business

object

with

any

verb.

If

only

one

set

of

conversion

properties

is

found,

the

connector

assigns

the

specified

verb.

If

more

properties

are

found,

the

connector

fails

the

message

because

it

is

unable

to

distinguish

among

the

verbs.

A

sample

meta-object

The

static

meta-object

shown

below

configures

the

connector

to

convert

Customer

business

objects

using

verbs

create,

update,

delete,

and

retrieve.

Note

that

attribute

Default

is

defined

in

the

meta-object.

The

connector

uses

the

conversion

properties

of

this

attribute:

OutputQueue=CustomerQueue1;ResponseTimeout=5000;TimeoutFatal=true

as

default

values

for

all

other

conversion

properties.

Thus,

unless

specified

otherwise

by

an

attribute

or

overridden

by

a

dynamic

child

meta-object

value,

the

connector

will

issue

all

business

objects

to

queue

CustomerQueue1

and

then

wait

for

a

response

message.

If

a

response

does

not

arrive

within

5000

milliseconds,

the

connector

terminates

immediately.

Customer

object

with

verb

create:

Attribute

Customer_Create

indicates

to

the

connector

that

any

messages

of

format

NEW

should

be

converted

to

a

Customer

business

object

with

the

verb

create.

Since

an

output

format

is

not

defined,

the

connector

will

send

messages

representing

this

object-verb

combination

using

the

format

defined

for

input

(in

this

case

NEW).

Customer

object

with

verbs

update

and

delete:

Input

format

MODIFY

is

overloaded—defined

for

both

business

object

customer

with

verb

update

and

business

object

customer

with

verb

delete.

In

order

to

successfully

process

retrieved

messages

of

this

format,

the

business

object

name

and

possibly

the

verb

should

be

contained

in

the

message

content

for

the

data

handler

to

identify

(see

“Overloading

input

formats”).

For

request

processing

operations,

the

connector

will

send

messages

for

either

verb

using

the

input

format

MODIFY

since

an

output

format

is

not

defined.

Customer

object

with

verb

retrieve:

Attribute

Customer_Retrieve

specifies

that

business

objects

of

type

customer

with

verb

retrieve

should

be

sent

as

messages

with

format

retrieve.

Note

that

the

default

response

time

has

been

overridden

so

that

the

connector

will

wait

up

10000

milliseconds

before

timing

out

(it

will

still

terminate

if

a

response

is

not

received).

[BusinessObjectDefinition]

Name

=

Sample_MO

Version

=

1.0.0

Chapter

2.

Installing

and

configuring

the

connector

29

[Attribute]

Name

=

Default

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

OutputQueue=CustomerQueue1;ResponseTimeout=5000;

TimeoutFatal=true

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Customer_Create

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

InputFormat=NEW

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Customer_Update

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

InputFormat=MODIFY

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Customer_Delete

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

InputFormat=MODIFY

IsRequiredServerBound

=

false

[End]

Attribute]

Name

=

Customer_Retrieve

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

OutputFormat=RETRIEVE;ResponseTimeout=10000

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

30

Adapter

for

JMS

User

Guide

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Delete

[End]

[Verb]

Name

=

Retrieve

[End]

[Verb]

Name

=

Update

[End]

[End]

Dynamic

child

meta-object

If

it

is

difficult

or

unfeasible

to

specify

the

necessary

metadata

through

a

static

meta-object,

the

connector

can

optionally

accept

metadata

specified

at

run-time

for

each

business

object

instance.

The

connector

recognizes

and

reads

conversion

properties

from

a

dynamic

meta-object

that

is

added

as

a

child

to

the

top-level

business

object

passed

to

the

connector.

The

attribute

values

of

the

dynamic

child

meta-object

duplicate

the

conversion

properties

that

you

can

specify

via

the

static

meta-object

that

is

used

to

configure

the

connector.

Since

dynamic

child

meta

object

properties

override

those

found

in

static

meta-objects,

if

you

specify

a

dynamic

child

meta-object,

you

need

not

include

a

connector

property

that

specifies

the

static

meta-object.

Accordingly,

you

can

use

a

dynamic

child

meta-object

independently

of

the

static

meta-object

and

vice-versa.

Table

14

on

page

28

and

Table

15

show

sample

static

and

dynamic

child

meta-objects,

respectively,

for

business

object

Customer_Create.

Note

that

the

application-specific

information

consists

of

semi-colon

delimited

name-value

pairs.

Table

15.

JMS

dynamic

child

meta-object

structure

for

Customer_Create

Attribute

name

Value

DataHandlerMimeType1

text/delimited

OutputFormat

CUST_OUT

OutputQueue

QueueA

ResponseTimeout

10000

TimeoutFatal

False

1.

Assumes

that

DataHandlerConfigMO

has

been

specified

in

either

the

connector

configuration

properties

or

the

static

meta-object.

The

connector

checks

the

application-specific

information

of

top-level

business

object

received

to

determine

whether

tag

cw_mo_conn

specifies

a

child

meta-object.

If

so,

the

dynamic

child

meta-object

values

override

those

specified

in

the

static

meta-object.

Chapter

2.

Installing

and

configuring

the

connector

31

Population

of

the

dynamic

child

meta-object

during

polling

In

order

to

provide

collaborations

with

more

information

regarding

messages

retrieved

during

polling,

the

connector

populates

specific

attributes

of

the

dynamic

meta-object,

if

already

defined

for

the

business

object

created.

Table

16

shows

how

a

dynamic

child

meta-object

might

be

structured

for

polling.

Table

16.

JMS

dynamic

child

meta-object

structure

for

polling

Attribute

name

Sample

value

InputFormat

CUST_IN

InputQueue

MYInputQueue

OutputFormat

CxIgnore

OutputQueue

CxIgnore

ResponseTimeout

CxIgnore

TimeoutFatal

CxIgnore

As

shown

in

Table

16,

you

can

define

additional

attributes,

Input_Format

and

InputQueue,

in

a

dynamic

child

meta-object.

The

Input_Format

is

populated

with

the

format

of

the

message

retrieved,

while

the

InputQueue

attribute

contains

the

name

of

the

queue

from

which

a

given

message

has

been

retrieved.

If

these

properties

are

not

defined

in

the

child

meta-object,

they

will

not

be

populated.

Example

scenario:

v

The

connector

retrieves

a

message

with

the

format

CUST_IN

from

the

queue

MyInputQueue.

v

The

connector

converts

this

message

to

a

Customer

business

object

and

checks

the

application-specific

text

to

determine

if

a

meta-object

is

defined.

v

If

so,

the

connector

creates

an

instance

of

this

meta-object

and

populates

the

InputQueue

and

InputFormat

attributes

accordingly,

then

publishes

the

business

object

to

available

collaborations.

Sample

dynamic

child

meta-object

[BusinessObjectDefinition]

Name

=

MO_Sample_Config

Version

=

1.0.0

[Attribute]

Name

=

OutputFormat

Type

=

String

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

CUST

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

OutputQueue

Type

=

String

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

OUT

IsRequiredServerBound

=

false

[End]

32

Adapter

for

JMS

User

Guide

[Attribute]

Name

=

ResponseTimeout

Type

=

String

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

-1

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

TimeoutFatal

Type

=

String

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

InputFormat

Type

=

String

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

InputQueue

Type

=

String

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Delete

[End]

[Verb]

Name

=

Retrieve

[End]

[Verb]

Name

=

Update

[End]

[End]

[BusinessObjectDefinition]

Name

=

Customer

Version

=

1.0.0

Chapter

2.

Installing

and

configuring

the

connector

33

AppSpecificInfo

=

cw_mo_conn=MyConfig

[Attribute]

Name

=

FirstName

Type

=

String

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

LastName

Type

=

String

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Telephone

Type

=

String

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

MyConfig

Type

=

MO_Sample_Config

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Delete

[End]

[Verb]

Name

=

Retrieve

[End]

[Verb]

Name

=

Update

[End]

[End]

34

Adapter

for

JMS

User

Guide

JMS

headers

and

dynamic

child

meta-object

Attributes

You

can

add

attributes

to

a

dynamic

meta-object

to

gain

more

information

about,

and

more

control

over,

the

message

transport.

Adding

such

attributes

allows

you

to

modify

JMS

properties,

to

control

the

ReplyToQueue

on

a

per-request

basis

(rather

than

using

the

default

ReplyToQueue

specified

in

the

adapter

properties),

and

to

re-target

a

message

CorrelationID.

This

section

describes

these

attributes

and

how

they

affect

event

notification

and

request

processing

in

both

synchronous

and

asynchronous

modes.

The

following

attributes,

which

reflect

JMS

and

WebSphere

MQ

header

properties,

are

recognized

in

the

dynamic

meta-object.

Table

17.

Dynamic

meta-object

header

attributes

Header

attribute

name

Mode

Corresponding

JMS

header

CorrelationID

Read/Write

JMSCorrelationID

ReplyToQueue

Read/Write

JMSReplyTo

DeliveryMode

Read/Write

JMSDeliveryMode

Priority

Read/Write

JMSPriority

Destination

Read

JMSDestination

Expiration

Read

JMSExpiration

MessageID

Read

JMSMessageID

Redelivered

Read

JMSRedelivered

TimeStamp

Read

JMSTimeStamp

Type

Read

JMSType

UserID

Read

JMSXUserID

AppID

Read

JMSXAppID

DeliveryCount

Read

JMSXDeliveryCount

GroupID

Read

JMSXGroupID

GroupSeq

Read

JMSXGroupSeq

JMSProperties

Read/Write

Read-only

attributes

are

read

from

a

message

header

during

event

notification

and

written

to

the

dynamic

meta-object.

These

properties

also

populate

the

dynamic

MO

when

a

response

message

is

issued

during

request

processing.

Read/write

attributes

are

set

on

message

headers

created

during

request

processing.

During

event

notification,

read/write

attributes

are

read

from

message

headers

to

populate

the

dynamic

meta-object.

The

interpretation

and

use

of

these

attributes

are

described

in

the

sections

below.

Note:

None

of

the

above

attributes

are

required.

You

may

add

any

attributes

to

the

dynamic

meta-object

that

relate

to

your

business

process.

JMS

properties:

Unlike

other

attributes

in

the

dynamic

meta-object,

JMSProperties

must

define

a

single-cardinality

child

object.

Every

attribute

in

this

Chapter

2.

Installing

and

configuring

the

connector

35

child

object

must

define

a

single

property

to

be

read/written

in

the

variable

portion

of

the

JMS

message

header

as

follows:

1.

The

name

of

the

attribute

has

no

semantic

value.

2.

The

type

of

the

attribute

should

always

be

String

regardless

of

the

JMS

property

type.

3.

The

application-specific

information

of

the

attribute

must

contain

two

name-value

pairs

defining

the

name

and

format

of

the

JMS

message

property

to

which

the

attribute

maps.

The

table

below

shows

application-specific

information

properties

that

you

must

define

for

attributes

in

the

JMSProperties

object.

Table

18.

Application-specific

information

for

JMS

property

attributes

Name

Possible

values

Comments

Name

Any

valid

JMS

property

name

This

is

the

name

of

the

JMS

property.

Some

vendors

reserve

certain

properties

to

provide

extended

functionality.

In

general,

users

should

not

define

custom

properties

that

begin

with

JMS

unless

they

are

seeking

access

to

these

vendor-specific

features.

Type

String,

Int,

Boolean,

Float,

Double,

Long,

Short

This

is

the

type

of

the

JMS

property.

The

JMS

API

provides

a

number

of

methods

for

setting

values

in

the

JMS

Message:

setIntProperty,

setLongProperty,

setStringProperty,

etc.

The

type

of

the

JMS

property

specified

here

dictates

which

of

these

methods

is

used

for

setting

the

property

value

in

the

message.

The

figure

below

shows

attribute

JMSProperties

in

the

dynamic

meta-object

and

definitions

for

four

properties

in

the

JMS

message

header:

ID,

GID,

RESPONSE

and

RESPONSE_PERSIST.

The

application-specific

information

of

the

attributes

defines

the

name

and

type

of

each.

For

example,

attribute

ID

maps

to

JMS

property

ID

of

type

String).

Figure

3.

JMS

properties

attribute

in

a

dynamic

meta-object

36

Adapter

for

JMS

User

Guide

Asynchronous

event

notification:

If

a

dynamic

meta-object

with

header

attributes

is

present

in

the

event

business

object,

the

connector

performs

the

following

steps

(in

addition

to

populating

the

meta-object

with

transport-related

data):

1.

Populates

the

CorrelationId

attribute

of

the

meta-object

with

the

value

specified

in

the

JMSCorrelationID

header

field

of

the

message.

2.

Populates

the

ReplyToQueue

attribute

of

the

meta-object

with

the

queue

specified

in

the

JMSReplyTo

header

field

of

the

message.

Since

this

header

field

is

represented

by

a

Java

object

in

the

message,

the

attribute

is

populated

with

the

name

of

the

queue

(often

a

URI).

3.

Populates

the

DeliveryMode

attribute

of

the

meta-object

with

the

value

specified

in

the

JMSDeliveryMode

header

field

of

the

message.

4.

Populates

the

Priority

attribute

of

the

meta-object

with

the

JMSPriority

header

field

of

the

message.

5.

Populates

the

Destination

attribute

of

the

meta-object

with

the

name

of

the

JMSDestination

header

field

of

the

message.

Since

the

Destination

is

represented

by

an

object,

the

attribute

is

populated

with

the

name

of

the

Destination

object.

6.

Populates

the

Expiration

attribute

of

the

meta-object

with

the

value

of

the

JMSExpiration

header

field

of

the

message.

7.

Populates

the

MessageID

attribute

of

the

meta-object

with

the

value

of

the

JMSMessageID

header

field

of

the

message.

8.

Populates

the

Redelivered

attribute

of

the

meta-object

with

the

value

of

the

JMSRedelivered

header

field

of

the

message.

9.

Populates

the

TimeStamp

attribute

of

the

meta-object

with

the

value

of

the

JMSTimeStamp

header

field

of

the

message.

10.

Populates

the

Type

attribute

of

the

meta-object

with

the

value

of

the

JMSType

header

field

of

the

message.

11.

Populates

the

UserID

attribute

of

the

meta-object

with

the

value

of

the

JMSXUserID

property

field

of

the

message.

12.

Populates

the

AppID

attribute

of

the

meta-object

with

the

value

of

the

JMSXAppID

property

field

of

the

message.

13.

Populates

the

DeliveryCount

attribute

of

the

meta-object

with

the

value

of

the

JMSXDeliveryCount

property

field

of

the

message.

14.

Populates

the

GroupID

attribute

of

the

meta-object

with

the

value

of

the

JMSXGroupID

property

field

of

the

message.

15.

Populates

the

GroupSeq

attribute

of

the

meta-object

with

the

value

of

the

JMSXGroupSeq

property

field

of

the

message.

16.

Examines

the

object

defined

for

the

JMSProperties

attribute

of

the

meta-object.

The

adapter

populates

each

attribute

of

this

object

with

the

value

of

the

corresponding

property

in

the

message.

If

a

specific

property

is

undefined

in

the

message,

the

adapter

sets

the

value

of

the

attribute

to

CxBlank.

Synchronous

event

notification:

For

synchronous

event

processing,

the

adapter

posts

an

event

and

waits

for

a

response

from

the

integration

broker

before

sending

a

response

message

back

to

the

application.

Any

changes

to

the

business

data

are

reflected

in

the

response

message

returned.

Before

posting

the

event,

the

adapter

populates

the

dynamic

meta-object

just

as

described

for

asynchronous

event

notification.

The

values

set

in

the

dynamic

meta-object

are

reflected

in

the

response-issued

header

as

described

below

(all

other

read-only

header

attributes

in

the

dynamic

meta-object

are

ignored.):

v

CorrelationID

If

the

dynamic

meta-object

includes

the

attribute

CorrelationId,

you

must

set

it

to

the

value

expected

by

the

originating

application.

The

Chapter

2.

Installing

and

configuring

the

connector

37

application

uses

the

CorrelationID

to

match

a

message

returned

from

the

connector

to

the

original

request.

Unexpected

or

invalid

values

for

a

CorrelationID

will

cause

problems.

It

is

helpful

to

determine

how

the

application

handles

correlating

request

and

response

messages

before

using

this

attribute.

You

have

four

options

for

populating

the

CorrelationID

in

a

synchronous

request.

1.

Leave

the

value

unchanged.

The

CorrelationID

of

the

response

message

will

be

the

same

as

the

CorrelationID

of

the

request

message.

This

is

equivalent

to

the

WebSphere

MQ

option

MQRO_PASS_CORREL_ID.

2.

Change

the

value

to

CxIgnore.

The

connector

by

default

copies

the

message

ID

of

the

request

to

the

CorrelationID

of

the

response.

This

is

equivalent

to

the

WebSphere

MQ

option

MQRO_COPY_MSG_ID_TO_CORREL_ID.

3.

Change

the

value

to

CxBlank.

The

connector

will

not

set

the

CorrelationID

on

the

response

message.

4.

Change

the

value

to

a

custom

value.

This

requires

that

the

application

processing

the

response

recognize

the

custom

value.

If

you

do

not

define

attribute

CorrelationID

in

the

meta-object,

the

connector

handles

the

CorrelationID

automatically.

v

ReplyToQueue

If

you

update

the

dynamic

meta-object

by

specifying

a

different

queue

for

attribute

ReplyToQueue,

the

connector

sends

the

response

message

to

the

queue

you

specify.

This

is

not

recommended.

Having

the

connector

send

response

messages

to

different

queues

may

interfere

with

communication

because

an

application

that

sets

a

specific

reply

queue

in

a

request

message

is

assumed

to

be

waiting

for

a

response

on

that

queue.

v

JMS

properties

The

values

set

for

the

JMS

properties

attribute

in

the

dynamic

meta-object

when

the

updated

business

object

is

returned

to

the

connector

are

set

in

the

response

message.

Asynchronous

request

processing:

The

connector

uses

the

dynamic

meta-object,

if

present,

to

populate

the

request

message

prior

to

issuing

it.

The

connector

performs

the

following

steps

before

sending

a

request

message:

1.

If

attribute

CorrelationID

is

present

in

the

dynamic

meta-object,

the

connector

sets

the

CorrelationID

of

the

outbound

request

message

to

this

value.

2.

If

attribute

ReplyToQueue

is

specified

in

the

dynamic

meta-object,

the

connector

passes

this

queue

via

the

request

message

and

waits

on

this

queue

for

a

response.

This

allows

you

to

override

the

ReplyToQueuevalue

specified

in

the

connector

configuration

properties.

If

you

additionally

specify

a

negative

ResponseTimeout

(meaning

that

the

connector

should

not

wait

for

a

response),

theReplyToQueue

is

set

in

the

response

message,

even

though

the

connector

does

not

actually

wait

for

a

response.

3.

If

attribute

DeliveryMode

is

set

to

2,

the

message

is

sent

persistently.

If

DeliveryMode

is

set

to

1,

the

message

is

not

sent

persistently.

Any

other

value

may

fail

the

connector.

If

DeliveryMode

is

not

specified

in

the

MO,

then

the

JMS

provider

establishes

the

persistence

setting.

4.

If

attribute

Priority

is

specified,

the

connector

sets

the

value

in

the

outgoing

request.

The

Priority

attribute

can

take

values

0

through

9;

any

other

value

may

cause

the

connector

to

terminate.

5.

If

attribute

JMSProperties

is

specified

in

the

dynamic

meta-object,

the

corresponding

JMS

properties

specified

in

the

child

dynamic

meta-object

are

set

in

the

outbound

message

sent

by

the

connector.

Note:

If

header

attributes

in

the

dynamic

meta-object

are

undefined

or

specify

CxIgnore,

the

connector

follows

its

default

settings.

38

Adapter

for

JMS

User

Guide

Synchronous

request

processing:

The

connector

uses

the

dynamic

meta-object,

if

present,

to

populate

the

request

message

prior

to

issuing

it.

If

the

dynamic

meta-object

contains

header

attributes,

the

connector

populates

it

with

corresponding

new

values

found

in

the

response

message.

The

connector

performs

the

following

steps

(in

addition

to

populating

the

meta-object

with

transport-related

data)

after

receiving

a

response

message:

1.

If

attribute

CorrelationID

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

JMSCorrelationID

specified

in

the

response

message.

2.

If

attribute

ReplyToQueue

is

defined

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

name

of

the

JMSReplyTo

specified

in

the

response

message.

3.

If

attribute

DeliveryMode

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSDeliveryMode

header

field

of

the

message.

4.

If

attribute

Priority

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSPriority

header

field

of

the

message.

5.

If

attribute

Destination

is

defined

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

name

of

the

JMSDestination

specified

in

the

response

message.

6.

If

attribute

Expiration

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSExpiration

header

field

of

the

message.

7.

If

attribute

MessageID

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSMessageID

header

field

of

the

message.

8.

If

attribute

Redelivered

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSRedelivered

header

field

of

the

message.

9.

If

attribute

TimeStamp

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSTimeStamp

header

field

of

the

message.

10.

If

attribute

Type

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSType

header

field

of

the

message.

11.

If

attribute

UserID

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSXUserID

header

field

of

the

message.

12.

If

attribute

AppID

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSXAppID

property

field

of

the

message.

13.

If

attribute

DeliveryCount

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSXDeliveryCount

header

field

of

the

message.

14.

If

attribute

GroupID

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSXGroupID

header

field

of

the

message.

15.

If

attribute

GroupSeq

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSXGroupSeq

header

field

of

the

message.

16.

If

attribute

JMSProperties

is

defined

in

the

dynamic

meta-object,

the

adapter

updates

any

properties

defined

in

the

child

object

with

the

values

found

in

the

response

message.

If

a

property

defined

in

the

child

object

does

not

exist

in

the

message,

the

value

is

set

to

CxBlank.

Chapter

2.

Installing

and

configuring

the

connector

39

Note:

Using

the

dynamic

meta-object

to

change

the

CorrelationID

set

in

the

request

message

does

not

affect

the

way

the

adapter

identifies

the

response

message—the

adapter

by

default

expects

that

the

CorrelationID

of

any

response

message

equals

the

message

ID

of

the

request

sent

by

the

adapter.

Error

handling:

If

a

JMS

property

cannot

be

read

from

or

written

to

a

message,

the

connector

logs

an

error

and

the

request

or

event

fails.

If

a

user-specified

ReplyToQueue

does

not

exist

or

cannot

be

accessed,

the

connector

logs

an

error

and

the

request

fails.

If

a

CorrelationID

is

invalid

or

cannot

be

set,

the

connector

logs

an

error

and

the

request

fails.

In

all

cases,

the

message

logged

is

from

the

connector

message

file.

Startup

For

information

on

starting

a

connector,

stopping

a

connector,

and

the

connector’s

temporary

startup

log

file,

see

the

User

Guide

for

IBM

WebSphere

Business

Integration

Express

and

Express

Plus

for

Item

Synchronization.

40

Adapter

for

JMS

User

Guide

Chapter

3.

Creating

or

modifying

business

objects

v

“Connector

business

object

structure”

v

“Error

handling”

on

page

44

v

“Tracing”

on

page

45

The

connector

comes

with

sample

business

objects

only.

The

systems

integrator,

consultant,

or

customer

must

build

business

objects.

The

connector

is

a

metadata-driven

connector.

In

business

objects,

metadata

is

data

about

the

application,

which

is

stored

in

a

business

object

definition

and

which

helps

the

connector

interact

with

an

application.

A

metadata-driven

connector

handles

each

business

object

that

it

supports

based

on

metadata

encoded

in

the

business

object

definition

rather

than

on

instructions

hard-coded

in

the

connector.

Business

object

metadata

includes

the

structure

of

a

business

object,

the

settings

of

its

attribute

properties,

and

the

content

of

its

application-specific

text.

Because

the

connector

is

metadata-driven,

it

can

handle

new

or

modified

business

objects

without

requiring

modifications

to

the

connector

code.

However,

the

connector’s

configured

data

handler

makes

assumptions

about

the

structure

of

its

business

objects,

object

cardinality,

the

format

of

the

application-specific

text,

and

the

database

representation

of

the

business

object.

Therefore,

when

you

create

or

modify

a

JMS

business

object,

your

modifications

must

conform

to

the

rules

the

connector

is

designed

to

follow,

or

the

connector

cannot

process

new

or

modified

business

objects

correctly.

This

chapter

describes

how

the

connector

processes

business

objects

and

describes

the

assumptions

the

connector

makes.

You

can

use

this

information

as

a

guide

to

implementing

new

business

objects.

Connector

business

object

structure

After

installing

the

connector,

you

must

create

business

objects.

There

are

no

requirements

regarding

the

structure

of

the

business

objects

other

than

those

imposed

by

the

configured

data

handler.

The

business

objects

that

the

connector

processes

can

have

any

name

allowed

by

InterChange

Server

Express.

For

more

on

naming

conventions

see

Naming

IBM

WebSphere

InterChange

Server

Express

Components.

The

connector

retrieves

messages

from

a

queue

and

attempts

to

populate

a

business

object

(defined

by

the

meta-object)

with

the

message

contents.

Strictly

speaking,

the

connector

neither

controls

nor

influences

business

object

structure.

Those

are

functions

of

meta-object

definitions

as

well

as

the

connector’s

data

handler

requirements.

In

fact,

there

is

no

business-object

level

application

text.

Rather,

the

connector’s

main

role

when

retrieving

and

passing

business

objects

is

to

monitor

the

message-to-business-object

(and

vice

versa)

process

for

errors.

Sample

business

object

properties

This

section

describes

sample

business

object

properties

for

a

connector

with

a

Name-Value

data

handler.

[ReposCopy]

Version

=

3.0.0

[End]

©

Copyright

IBM

Corp.

2004

41

[BusinessObjectDefinition]

Name

=

Sample_JMS_LegacyContact

Version

=

1.0.0

[Attribute]

Name

=

ContactId

Type

=

String

MaxLength

=

255

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

true

DefaultValue

=

1001

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

FirstName

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

Jim

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

LastName

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

Smith

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

OfficePhoneArea

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

650

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

OfficePhone

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

555-1234

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

OfficePhoneExt

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

x100

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

FaxArea

Type

=

String

42

Adapter

for

JMS

User

Guide

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

650

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

FaxPhone

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

555-1235

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Department

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

Engineering

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Title

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

Software

Engineer

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

EmailAddr

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

jim.smith@ibm.com

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Delete

[End]

[Verb]

Name

=

Retrieve

Chapter

3.

Creating

or

modifying

business

objects

43

[End]

[Verb]

Name

=

Update

[End]

[End]

Error

handling

All

error

messages

generated

by

the

connector

are

stored

in

a

message

file

named

JMSConnector.txt.

(The

name

of

the

file

is

determined

by

the

LogFileName

standard

connector

configuration

property.)

Each

error

has

an

error

number

followed

by

the

error

message:

Message

number

Message

text

The

connector

handles

specific

errors

as

described

in

the

following

sections.

Application

timeout

The

error

message

ABON_APPRESPONSETIMEOUT

is

returned

when:

v

The

connector

cannot

establish

a

connection

to

the

JMS

service

provider

during

message

retrieval.

v

The

connector

successfully

converts

a

business

object

to

a

message

but

cannot

deliver

it

the

outgoing

queue

due

to

connection

loss.

v

The

connector

issues

a

message

but

times

out

waiting

for

a

response

for

a

business

object

with

conversion

property

TimeoutFatal

equal

to

True.

v

The

connector

receives

a

response

message

with

a

return

code

equal

to

APP_RESPONSE_TIMEOUT

or

UNABLE_TO_LOGIN.

Unsubscribed

business

object

If

the

connector

retrieves

a

message

that

is

associated

with

an

unsubscribed

business

object,

or

if

a

NO_SUBSCRIPTION_FOUND

code

is

returned

by

the

gotApplEvent()

method,

the

connector

delivers

a

message

to

the

queue

specified

by

the

UnsubscribedQueue

property.

Note:

If

the

UnsubscribedQueue

is

not

defined,

unsubscribed

messages

will

be

discarded.

Connector

not

active

When

the

gotApplEvent()

method

returns

a

CONNECTOR_NOT_ACTIVE

code,

the

pollForEvents()

method

returns

an

APP_RESPONSE_TIMEOUT

code

and

the

event

remains

in

the

InProgress

queue.

Data

handler

conversion

If

the

data

handler

fails

to

convert

a

message

to

a

business

object,

or

if

a

processing

error

occurs

that

is

specific

to

the

business

object

(as

opposed

to

the

JMS

provider),

the

message

is

delivered

to

the

queue

specified

by

ErrorQueue.

If

the

ErrorQueue

is

not

defined,

messages

that

cannot

be

processed

due

to

errors

will

be

discarded.

If

the

data

handler

fails

to

convert

a

business

object

to

a

message,

BON_FAIL

is

returned.

44

Adapter

for

JMS

User

Guide

Tracing

Tracing

is

an

optional

debugging

feature

you

can

turn

on

to

closely

follow

connector

behavior.

Trace

messages,

by

default,

are

written

to

STDOUT.

See

the

connector

configuration

properties

in

Chapter

2

for

more

on

configuring

trace

messages.

For

more

information

on

tracing,

including

how

to

enable

and

set

it,

see

the

Connector

Configurator

Express

appendix

to

this

guide.

What

follows

is

recommended

content

for

connector

trace

messages.

Level

0

This

level

is

used

for

trace

messages

that

identify

the

connector

version.

Level

1

Use

this

level

for

trace

messages

that

provide

key

information

on

each

business

object

processed

or

record

each

time

a

polling

thread

detects

a

new

message

in

an

input

queue.

Level

2

Use

this

level

for

trace

messages

that

log

each

time

a

business

object

is

posted

to

InterChange

Server

Express,

either

from

gotApplEvent()

or

executeCollaboration().

Level

3

Use

this

level

for

trace

messages

that

provide

information

regarding

message-to-business-object

and

business-object-to-
message

conversions

or

provide

information

about

the

delivery

of

the

message

to

the

output

queue.

Level

4

Use

this

level

for

trace

messages

that

identify

when

the

connector

enters

or

exits

a

function.

Level

5

Use

this

level

for

trace

messages

that

indicate

connector

initialization,

represent

statements

executed

in

the

application,

indicate

whenever

a

message

is

taken

off

of

or

put

onto

a

queue,

or

record

business

object

dumps.

Chapter

3.

Creating

or

modifying

business

objects

45

46

Adapter

for

JMS

User

Guide

Chapter

4.

Troubleshooting

The

chapter

describes

problems

that

you

may

encounter

when

starting

up

or

running

the

connector.

Start-up

problems

Problem

Potential

solution

/

explanation

The

connector

shuts

down

unexpectedly

during

initialization

and

the

following

message

is

reported:

Exception

in

thread

"main"

java.lang.NoClassDefFoundError:

javax/jms/JMSException...

Connector

cannot

find

file

jms.jar.

The

connector

shuts

down

unexpectedly

during

initialization

and

the

following

message

is

reported:

Exception

in

thread

"main"

java.lang.NoClassDefFoundError:

javax/naming/Referenceable...

Connector

cannot

find

file

jndi.jar.

©

Copyright

IBM

Corp.

2004

47

48

Adapter

for

JMS

User

Guide

Appendix

A.

Standard

configuration

properties

for

connectors

This

appendix

describes

the

standard

configuration

properties

for

the

connector

component

of

the

adapters

in

WebSphere

Business

Integration

Express

for

Item

Synchronization,

running

on

WebSphere

InterChange

Server

Express.

Not

every

connector

makes

use

of

all

these

standard

properties.

When

you

select

a

template

from

Connector

Configurator

Express,

you

will

see

a

list

of

the

standard

properties

that

you

need

to

configure

for

your

adapter.

For

information

about

properties

specific

to

the

connector,

see

the

relevant

adapter

user

guide.

Configuring

standard

connector

properties

Adapter

connectors

have

two

types

of

configuration

properties:

v

Standard

configuration

properties

v

Connector-specific

configuration

properties

This

section

describes

the

standard

configuration

properties.

For

information

on

configuration

properties

specific

to

a

connector,

see

its

adapter

user

guide.

Using

Connector

Configurator

Express

You

configure

connector

properties

from

Connector

Configurator

Express,

which

you

access

from

System

Manager.

For

more

information

on

using

Connector

Configurator

Express,

refer

to

the

Connector

Configurator

Express

appendix.

Setting

and

updating

property

values

The

default

length

of

a

property

field

is

255

characters.

The

connector

uses

the

following

order

to

determine

a

property’s

value

(where

the

highest

number

overrides

other

values):

1.

Default

2.

Repository

3.

Local

configuration

file

4.

Command

line

A

connector

obtains

its

configuration

values

at

startup.

If

you

change

the

value

of

one

or

more

connector

properties

during

a

run-time

session,

the

property’s

Update

Method

determines

how

the

change

takes

effect.

There

are

four

different

update

methods

for

standard

connector

properties:

v

Dynamic

The

change

takes

effect

immediately

after

it

is

saved

in

System

Manager.

v

Component

restart

The

change

takes

effect

only

after

the

connector

is

stopped

and

then

restarted

in

System

Manager.

You

do

not

need

to

stop

and

restart

the

application-specific

component

or

InterChange

Server

Express.

©

Copyright

IBM

Corp.

2004

49

v

Agent

restart

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component.

To

determine

how

a

specific

property

is

updated,

refer

to

the

Update

Method

column

in

the

Connector

Configurator

Express

window,

or

see

the

Update

Method

column

in

the

Property

Summary

table

below.

Summary

of

standard

properties

Table

19

provides

a

quick

reference

to

the

standard

connector

configuration

properties.

You

must

set

the

values

of

some

of

these

properties

before

running

the

connector.

See

the

following

section

for

an

explanation

of

each

property.

Table

19.

Summary

of

standard

configuration

properties

Property

name

Possible

values

Default

value

Update

method

Notes

AdminInQueue

Valid

JMS

queue

name

CONNECTORNAME

/ADMININQUEUE

Component

restart

Delivery

Transport

is

JMS

AdminOutQueue

Valid

JMS

queue

name

CONNECTORNAME/ADMINOUTQUEUE

Component

restart

Delivery

Transport

is

JMS

AgentConnections

1-4

1

Component

restart

Delivery

Transport

is

MQ

or

IDL:

Repository

Directory

is

<REMOTE>

AgentTraceLevel

0-5

0

Dynamic

ApplicationName

application

name

The

value

that

is

specified

for

the

connector

application

name

Component

restart

Value

required

CharacterEncoding

ascii7,

ascii8,

SJIS,

Cp949,

GBK,

Big5,

Cp297,

Cp273,

Cp280,

Cp284,

Cp037,

Cp437

Note:

This

is

a

subset

of

supported

values.

ascii7

Component

restart

ConcurrentEventTriggeredFlows

1

to

32,767

1

Component

restart

Repository

Directory

is

<REMOTE>

ContainerManagedEvents

No

value

or

JMS

No

value

Component

restart

Delivery

Transport

is

JMS

ControllerStoreAndForwardMode

true

or

false

True

Dynamic

Repository

Directory

is

<REMOTE>

ControllerTraceLevel

0-5

0

Dynamic

Repository

Directory

is

<REMOTE>

DeliveryQueue

CONNECTORNAME/DELIVERYQUEUE

Component

restart

JMS

transport

only

DeliveryTransport

MQ,

IDL,

or

JMS

JMS

Component

restart

50

Adapter

for

JMS

User

Guide

Table

19.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

DuplicateEventElimination

True/False

False

Component

restart

JMS

transport

only:

Container

Managed

Events

must

be

<NONE>

FaultQueue

CONNECTORNAME/FAULTQUEUE

Component

restart

JMS

transport

only

jms.FactoryClassName

CxCommon.Messaging.jms

.IBMMQSeriesFactory

or

CxCommon.Messaging

.jms.SonicMQFactory

or

any

Java

class

name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

JMS

transport

only

jms.MessageBrokerName

If

FactoryClassName

is

IBM,

use

crossworlds.queue.

manager.

If

FactoryClassName

is

Sonic,

use

localhost:2506.

crossworlds.queue.manager

Component

restart

JMS

transport

only

jms.NumConcurrentRequests

Positive

integer

10

Component

restart

JMS

transport

only

jms.Password

Any

valid

password

Component

restart

JMS

transport

only

jms.UserName

Any

valid

name

Component

restart

JMS

transport

only

JvmMaxHeapSize

Heap

size

in

megabytes

128m

Component

restart

Repository

Directory

is

<REMOTE>

JvmMaxNativeStackSize

Size

of

stack

in

kilobytes

128k

Component

restart

Repository

Directory

is

<REMOTE>

JvmMinHeapSize

Heap

size

in

megabytes

1m

Component

restart

Repository

Directory

is

<REMOTE>

ListenerConcurrency

1-

100

1

Component

restart

Delivery

Transport

must

be

MQ

Locale

en_US,

ja_JP,

ko_KR,

zh_C,

zh_T,

fr_F,

de_D,

it_I,

es_E,

pt_BR

Note:

This

is

a

subset

of

the

supported

locales.

en_US

Component

restart

LogAtInterchangeEnd

True

or

False

False

Component

restart

Repository

Directory

is

<REMOTE>

MaxEventCapacity

1-2147483647

2147483647

Dynamic

Repository

Directory

is

<REMOTE>

MessageFileName

path/filename

InterchangeSystem.txt

Component

restart

MonitorQueue

Any

valid

queue

name

CONNECTORNAME/MONITORQUEUE

Component

restart

JMS

transport

only:

DuplicateEvent

Elimination

must

be

True

Appendix

A.

Standard

configuration

properties

for

connectors

51

Table

19.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

OADAutoRestartAgent

True

or

False

False

Dynamic

Repository

Directory

is

<REMOTE>

OADMaxNumRetry

A

positive

number

1000

Dynamic

Repository

Directory

is

<REMOTE>

OADRetryTimeInterval

A

positive

number

in

minutes

10

Dynamic

Repository

Directory

is

<REMOTE>

PollEndTime

HH:MM

HH:MM

Component

restart

PollFrequency

a

positive

integer

in

milliseconds

no

(to

disable

polling)

key

(to

poll

only

when

the

letter

p

is

entered

in

the

connector’s

Command

Prompt

window)

10000

Dynamic

PollQuantity

1-500

1

Component

restart

JMS

transport

only:

DuplicateEvent

Elimination

must

be

True

PollStartTime

HH:MM(HH

is

0-23,

MM

is

0-59)

HH:MM

Component

restart

RepositoryDirectory

Location

of

metadata

repository

<remote>

Agent

restart

RequestQueue

Valid

JMS

queue

name

CONNECTORNAME/REQUESTQUEUE

Component

restart

ResponseQueue

Valid

JMS

queue

name

CONNECTORNAME/RESPONSEQUEUE

Component

restart

Delivery

transport

is

JMS

RestartRetryCount

0-99

3

Dynamic

RestartRetryInterval

A

sensible

positive

value

in

minutes

1

-

2147483547:

1

Dynamic

SourceQueue

Valid

WebSphere

MQ

name

CONNECTORNAME/SOURCEQUEUE

Agent

restart

Only

if

Delivery

Transport

is

JMS

and

Container

Managed

Events

is

specified

SynchronousRequestQueue

CONNECTORNAME/

SYNCHRONOUSREQUESTQUEUE

Component

restart

Delivery

transport

is

JMS

SynchronousRequestTimeout

0

-

any

number

(millisecs)

0

Component

restart

Delivery

transport

is

JMS

SynchronousResponseQueue

CONNECTORNAME/

SYNCHRONOUSRESPONSEQUEUE

Component

restart

Delivery

transport

is

JMS

52

Adapter

for

JMS

User

Guide

Table

19.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

WireFormat

CwBO

CwBO

Agent

restart

Standard

configuration

properties

This

section

lists

and

defines

each

of

the

standard

connector

configuration

properties.

AdminInQueue

The

queue

that

is

used

by

InterChange

Server

Express

to

send

administrative

messages

to

the

connector.

The

default

value

is

CONNECTORNAME/ADMININQUEUE.

AdminOutQueue

The

queue

that

is

used

by

the

connector

to

send

administrative

messages

to

InterChange

Server

Express.

The

default

value

is

CONNECTORNAME/ADMINOUTQUEUE.

AgentConnections

The

AgentConnections

property

controls

the

number

of

ORB

connections

opened

by

orb.init[].

By

default,

the

value

of

this

property

is

set

to

1.

There

is

no

need

to

change

this

default.

AgentTraceLevel

Level

of

trace

messages

for

the

application-specific

component.

The

default

is

0.

The

connector

delivers

all

trace

messages

applicable

at

the

tracing

level

set

or

lower.

ApplicationName

Name

that

uniquely

identifies

the

connector’s

application.

This

name

is

used

by

the

system

administrator

to

monitor

the

WebSphere

business

integration

system

environment.

This

property

must

have

a

value

before

you

can

run

the

connector.

CharacterEncoding

Specifies

the

character

code

set

used

to

map

from

a

character

(such

as

a

letter

of

the

alphabet,

a

numeric

representation,

or

a

punctuation

mark)

to

a

numeric

value.

Note:

Java-based

connectors

do

not

use

this

property.

A

C++

connector

currently

uses

the

value

ASCII

for

this

property.

If

you

previously

configured

the

value

of

this

property

to

ascii7

or

ascii8,

you

must

reconfigure

the

connector

to

use

either

ASCII

or

one

of

the

other

supported

values.

Important:

By

default

only

a

subset

of

supported

character

encodings

display

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

Appendix

A.

Standard

configuration

properties

for

connectors

53

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

Connector

Configurator

Express.

The

default

value

is

ascii.

ConcurrentEventTriggeredFlows

Determines

how

many

business

objects

can

be

concurrently

processed

by

the

connector

for

event

delivery.

Set

the

value

of

this

attribute

to

the

number

of

business

objects

you

want

concurrently

mapped

and

delivered.

For

example,

set

the

value

of

this

property

to

5

to

cause

five

business

objects

to

be

concurrently

processed.

The

default

value

is

1.

Setting

this

property

to

a

value

greater

than

1

allows

a

connector

for

a

source

application

to

map

multiple

event

business

objects

at

the

same

time

and

deliver

them

to

multiple

collaboration

instances

simultaneously.

This

speeds

delivery

of

business

objects

to

Interchange

Server

Express,

particularly

if

the

business

objects

use

complex

maps.

Increasing

the

arrival

rate

of

business

objects

to

collaborations

can

improve

overall

performance

in

the

system.

To

implement

concurrent

processing

for

an

entire

flow

(from

a

source

application

to

a

destination

application),

you

must:

v

Configure

the

collaboration

to

use

multiple

threads

by

setting

its

Maximum

number

of

concurrent

events

property

high

enough

to

use

multiple

threads.

v

Ensure

that

the

destination

application’s

application-specific

component

can

process

requests

concurrently.

That

is,

it

must

be

multi-threaded,

or

be

able

to

use

connector

agent

parallelism

and

be

configured

for

multiple

processes.

Set

the

Parallel

Process

Degree

configuration

property

to

a

value

greater

than

1.

The

ConcurrentEventTriggeredFlows

property

has

no

effect

on

connector

polling,

which

is

single-threaded

and

performed

serially.

ContainerManagedEvents

This

property

allows

a

JMS-enabled

connector

with

a

JMS

event

store

to

provide

guaranteed

event

delivery,

in

which

an

event

is

removed

from

the

source

queue

and

placed

on

the

destination

queue

as

a

single

JMS

transaction.

The

default

value

is

JMS.

It

can

also

be

set

to

no

value.

When

ContainerManagedEvents

is

set

to

JMS,

you

must

configure

the

following

properties

to

enable

guaranteed

event

delivery:

v

PollQuantity

=

1

to

500

v

SourceQueue

=

SOURCEQUEUE

You

must

also

configure

a

data

handler

with

the

MimeType,

DHClass,

and

DataHandlerConfigMOName

(optional)

properties.

To

set

those

values,

use

the

Data

Handler

tab

in

Connector

Configurator

Express.

The

fields

for

the

values

under

the

Data

Handler

tab

will

be

displayed

only

if

you

have

set

ContainerManagedEvents

to

JMS.

Note:

When

ContainerManagedEvents

is

set

to

JMS,

the

connector

does

not

call

its

pollForEvents()

method,

thereby

disabling

that

method’s

functionality.

54

Adapter

for

JMS

User

Guide

This

property

only

appears

if

the

DeliveryTransport

property

is

set

to

the

value

JMS.

ControllerStoreAndForwardMode

Sets

the

behavior

of

the

connector

controller

after

it

detects

that

the

destination

application-specific

component

is

unavailable.

If

this

property

is

set

to

true

and

the

destination

application-specific

component

is

unavailable

when

an

event

reaches

Interchange

Server

Express,

the

connector

controller

blocks

the

request

to

the

application-specific

component.

When

the

application-specific

component

becomes

operational,

the

controller

forwards

the

request

to

it.

However,

if

the

destination

application’s

application-specific

component

becomes

unavailable

after

the

connector

controller

forwards

a

service

call

request

to

it,

the

connector

controller

fails

the

request.

If

this

property

is

set

to

false,

the

connector

controller

begins

failing

all

service

call

requests

as

soon

as

it

detects

that

the

destination

application-specific

component

is

unavailable.

The

default

is

true.

ControllerTraceLevel

Level

of

trace

messages

for

the

connector

controller.

The

default

is

0.

DeliveryQueue

The

queue

that

is

used

by

the

connector

to

send

business

objects

to

Interchange

Server

Express.

The

default

value

is

DELIVERYQUEUE.

DeliveryTransport

Specifies

the

transport

mechanism

for

the

delivery

of

events.

Possible

values

are

MQ

for

WebSphere

MQ,

IDL

for

CORBA

IIOP,

or

JMS

for

Java

Messaging

Service.

The

default

is

IDL.

The

connector

sends

service

call

requests

and

administrative

messages

over

CORBA

IIOP

if

the

value

configured

for

the

DeliveryTransport

property

is

MQ

or

IDL.

WebSphere

MQ

and

IDL

Use

WebSphere

MQ

rather

than

IDL

for

event

delivery

transport,

unless

you

must

have

only

one

product.

WebSphere

MQ

offers

the

following

advantages

over

IDL:

v

Asynchronous

communication:

WebSphere

MQ

allows

the

application-specific

component

to

poll

and

persistently

store

events

even

when

the

server

is

not

available.

v

Server

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

server

side.

In

optimized

mode,

WebSphere

MQ

stores

only

the

pointer

to

an

event

in

the

repository

database,

while

the

actual

event

remains

in

the

WebSphere

MQ

queue.

This

saves

having

to

write

potentially

large

events

to

the

repository

database.

Appendix

A.

Standard

configuration

properties

for

connectors

55

v

Agent

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

application-specific

component

side.

Using

WebSphere

MQ,

the

connector’s

polling

thread

picks

up

an

event,

places

it

in

the

connector’s

queue,

then

picks

up

the

next

event.

This

is

faster

than

IDL,

which

requires

the

connector’s

polling

thread

to

pick

up

an

event,

go

over

the

network

into

the

server

process,

store

the

event

persistently

in

the

repository

database,

then

pick

up

the

next

event.

JMS

Enables

communication

between

the

connector

and

client

connector

framework

using

Java

Messaging

Service

(JMS).

If

you

select

JMS

as

the

delivery

transport,

additional

JMS

properties

such

as

jms.MessageBrokerName,

jms.FactoryClassName,

jms.Password,

and

jms.UserName,

appear

in

Connector

Configurator

Express.

The

first

two

of

these

properties

are

required

for

this

transport.

Important:

There

may

be

a

memory

limitation

if

you

use

the

JMS

transport

mechanism

for

a

connector

running

on

InterChange

Server

Express.

In

this

environment,

you

may

experience

difficulty

starting

both

the

connector

controller

(on

the

server

side)

and

the

connector

(on

the

client

side)

due

to

memory

use

within

the

WebSphere

MQ

client.

DuplicateEventElimination

When

you

set

this

property

to

true,

a

JMS-enabled

connector

can

ensure

that

duplicate

events

are

not

delivered

to

the

delivery

queue.

To

use

this

feature,

the

connector

must

have

a

unique

event

identifier

set

as

the

business

object’s

ObjectEventId

attribute

in

the

application-specific

code.

This

is

done

during

connector

development.

This

property

can

also

be

set

to

false.

Note:

When

DuplicateEventElimination

is

set

to

true,

you

must

also

configure

the

MonitorQueue

property

to

enable

guaranteed

event

delivery.

FaultQueue

If

the

connector

experiences

an

error

while

processing

a

message

then

the

connector

moves

the

message

to

the

queue

specified

in

this

property,

along

with

a

status

indicator

and

a

description

of

the

problem.

The

default

value

is

CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize

The

maximum

heap

size

for

the

agent

(in

megabytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

128m.

JvmMaxNativeStackSize

The

maximum

native

stack

size

for

the

agent

(in

kilobytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

128k.

56

Adapter

for

JMS

User

Guide

JvmMinHeapSize

The

minimum

heap

size

for

the

agent

(in

megabytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

1m.

jms.FactoryClassName

Specifies

the

class

name

to

instantiate

for

a

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.MessageBrokerName

Specifies

the

broker

name

to

use

for

the

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies

the

maximum

number

of

concurrent

service

call

requests

that

can

be

sent

to

a

connector

at

the

same

time.

Once

that

maximum

is

reached,

new

service

calls

block

and

wait

for

another

request

to

complete

before

proceeding.

The

default

value

is

10.

jms.Password

Specifies

the

password

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

jms.UserName

Specifies

the

user

name

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

ListenerConcurrency

This

property

supports

multi-threading

in

MQ

Listener

for

InterChange

Server

Express.

It

enables

batch

writing

of

multiple

events

to

the

database,

thus

improving

system

performance.

The

default

value

is

1.

This

property

applies

only

to

connectors

using

MQ

transport.

The

DeliveryTransport

property

must

be

set

to

MQ.

Locale

Specifies

the

language

code,

country

or

territory,

and,

optionally,

the

associated

character

code

set.

The

value

of

this

property

determines

such

cultural

conventions

as

collation

and

sort

order

of

data,

date

and

time

formats,

and

the

symbols

used

in

monetary

specifications.

A

locale

name

has

the

following

format:

Appendix

A.

Standard

configuration

properties

for

connectors

57

ll_TT.codeset

where:

ll

a

two-character

language

code

(usually

in

lower

case)

TT

a

two-letter

country

or

territory

code

(usually

in

upper

case)

codeset

the

name

of

the

associated

character

code

set;

this

portion

of

the

name

is

often

optional.

By

default,

only

a

subset

of

supported

locales

appears

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

Connector

Configurator

Express.

The

default

value

is

en_US.

If

the

connector

has

not

been

globalized,

the

only

valid

value

for

this

property

is

en_US.

LogAtInterchangeEnd

Specifies

whether

to

log

errors

to

InterChange

Server

Express’s

log

destination.

Logging

to

the

server’s

log

destination

also

turns

on

e-mail

notification,

which

generates

e-mail

messages

for

the

MESSAGE_RECIPIENT

specified

in

the

InterchangeSystem.cfg

file

when

errors

or

fatal

errors

occur.

For

example,

when

a

connector

loses

its

connection

to

its

application,

if

LogAtInterChangeEnd

is

set

to

true,

an

e-mail

message

is

sent

to

the

specified

message

recipient.

The

default

is

false.

MaxEventCapacity

The

maximum

number

of

events

in

the

controller

buffer.

This

property

is

used

by

flow

control

and

is

applicable

only

if

the

value

of

the

RepositoryDirectory

property

is

<REMOTE>.

The

value

can

be

a

positive

integer

between

1

and

2147483647.

The

default

value

is

2147483647.

MessageFileName

The

name

of

the

connector

message

file.

The

standard

location

for

the

message

file

is

\connectors\messages.

Specify

the

message

filename

in

an

absolute

path

if

the

message

file

is

not

located

in

the

standard

location.

If

a

connector

message

file

does

not

exist,

the

connector

uses

InterchangeSystem.txt

as

the

message

file.

This

file

is

located

in

the

product

directory.

Note:

To

determine

whether

a

specific

connector

has

its

own

message

file,

see

the

individual

adapter

user

guide.

MonitorQueue

The

logical

queue

that

the

connector

uses

to

monitor

duplicate

events.

It

is

used

only

if

the

DeliveryTransport

property

value

is

JMS

and

DuplicateEventElimination

is

set

to

TRUE.

58

Adapter

for

JMS

User

Guide

The

default

value

is

CONNECTORNAME/MONITORQUEUE

OADAutoRestartAgent

The

Repository

Directory

must

be

set

to

<REMOTE>.

Specifies

whether

the

Object

Activation

Daemon

(OAD)

automatically

attempts

to

restart

the

application-specific

component

after

an

abnormal

shutdown.

This

property

is

required

for

automatic

restart.

The

default

value

is

false.

OADMaxNumRetry

The

Repository

Directory

must

be

set

to

<REMOTE>.

Specifies

the

maximum

number

of

times

that

the

OAD

automatically

attempts

to

restart

the

application-specific

component

after

an

abnormal

shutdown.

The

default

value

is

1000.

OADRetryTimeInterval

The

Repository

Directory

must

be

set

to

<REMOTE>.

Specifies

the

number

of

minutes

for

the

interval

during

which

the

OAD

automatically

attempts

to

restart

the

application-specific

component

after

an

abnormal

shutdown.

If

the

application-specific

component

does

not

start

within

the

specified

interval,

the

OAD

repeats

the

attempt

as

many

times

as

specified

in

“OADMaxNumRetry.”

The

default

is

10.

PollEndTime

Time

to

stop

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-60

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

PollFrequency

The

amount

of

time

between

polling

actions.

Set

PollFrequency

to

one

of

the

following

values:

v

The

number

of

milliseconds

between

polling

actions.

v

The

word

key,

which

causes

the

connector

to

poll

only

when

you

type

the

letter

p

in

the

connector’s

Command

Prompt

window.

Enter

the

word

in

lowercase.

v

The

word

no,

which

causes

the

connector

not

to

poll.

Enter

the

word

in

lowercase.

The

default

is

10000.

Important:

Some

connectors

have

restrictions

on

the

use

of

this

property.

To

determine

whether

a

specific

connector

does,

see

the

installing

and

configuring

chapter

of

its

adapter

guide.

Appendix

A.

Standard

configuration

properties

for

connectors

59

PollQuantity

Designates

the

number

of

items

from

the

application

that

the

connector

should

poll

for.

If

the

adapter

has

a

connector-specific

property

for

setting

the

poll

quantity,

the

value

set

in

the

connector-specific

property

will

override

the

standard

property

value.

PollStartTime

The

time

to

start

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-60

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

RequestQueue

The

queue

that

is

used

by

InterChange

Server

Express

to

send

business

objects

to

the

connector.

The

default

value

is

REQUESTQUEUE.

RepositoryDirectory

The

location

of

the

repository

from

which

the

connector

reads

the

XML

schema

documents

that

store

the

meta-data

for

business

object

definitions.

This

value

must

be

set

to

<REMOTE>

because

the

connector

obtains

this

information

from

the

InterChange

Server

Express

repository.

ResponseQueue

Designates

the

JMS

response

queue,

which

delivers

a

response

message

from

the

connector

framework

to

the

integration

broker.

InterChange

Server

Express

sends

the

request

and

waits

for

a

response

message

in

the

JMS

response

queue.

RestartCount

Causes

the

connector

to

shut

down

and

restart

automatically

after

it

has

processed

a

set

number

of

events.

You

set

the

number

of

events

in

RestartCount.

The

connector

must

be

in

polling

mode

(set

PollFrequency

to

“p”)

for

this

property

to

take

effect.

Once

the

set

number

of

events

has

passed

through

request

processing,

the

connector

is

shut

down

and

restarted

the

next

time

it

polls.

RestartRetryCount

Specifies

the

number

of

times

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

number

of

times

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

The

default

is

3.

60

Adapter

for

JMS

User

Guide

RestartRetryInterval

Specifies

the

interval

in

minutes

at

which

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

interval

at

which

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

The

default

is

1.

SourceQueue

Designates

the

JMS

source

queue

for

the

connector

framework

in

support

of

guaranteed

event

delivery

for

JMS-enabled

connectors

that

use

a

JMS

event

store.

For

further

information,

see

“ContainerManagedEvents”

on

page

54.

The

default

value

is

SOURCEQUEUE.

SynchronousRequestQueue

Delivers

request

messages

that

require

a

synchronous

response

from

the

connector

framework

to

the

broker.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

With

synchronous

execution,

the

connector

framework

sends

a

message

to

the

SynchronousRequestQueue

and

waits

for

a

response

back

from

the

broker

on

the

SynchronousResponseQueue.

The

response

message

sent

to

the

connector

bears

a

correlation

ID

that

matches

the

ID

of

the

original

message.

SynchronousResponseQueue

Delivers

response

messages

sent

in

reply

to

a

synchronous

request

from

the

broker

to

the

connector

framework.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

SynchronousRequestTimeout

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified

time,

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

WireFormat

Message

format

on

the

transport.

The

setting

is

CwBO.

Appendix

A.

Standard

configuration

properties

for

connectors

61

62

Adapter

for

JMS

User

Guide

Appendix

B.

Connector

Configurator

Express

This

appendix

describes

how

to

use

Connector

Configurator

Express

to

set

configuration

property

values

for

your

adapter.

If

you

are

configuring

any

of

the

following

adapters,

you

may

also

want

to

refer

to

the

Quick

Start

Guide:

v

JTextRWLConnector

v

iSoftConnector

v

JTextISoftConnector

v

ERP-source

connector

v

Emailconnector

v

PortConnector

A

more

recent

version

of

the

Quick

Start

Guide

may

be

available

at

the

following

link:

http://www.ibm.com/websphere/wbiitemsync/express/infocenter

You

use

Connector

Configurator

Express

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector

v

Create

a

connector

configuration

file

v

Set

properties,

specify

business

objects

and

associated

maps,

and

establish

tracing

and

logging

values

in

a

configuration

file

The

topics

covered

in

this

appendix

are:

v

“Overview

of

Connector

Configurator

Express”

on

page

63

v

“Starting

Connector

Configurator

Express”

on

page

64

v

“Creating

a

connector-specific

property

template”

on

page

64

v

“Creating

a

new

configuration

file”

on

page

67

v

“Setting

the

configuration

file

properties”

on

page

69

Overview

of

Connector

Configurator

Express

Connector

Configurator

Express

allows

you

to

configure

the

connector

component

of

your

adapter

for

use

with

InterChange

Server

Express.

You

use

Connector

Configurator

Express

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector.

v

Create

a

connector

configuration

file:

You

must

create

one

configuration

file

for

each

connector

you

install.

v

Set

properties

in

a

configuration

file:

You

may

need

to

modify

the

default

values

that

are

set

for

properties

in

the

connector

templates.

You

must

also

designate

supported

business

object

definitions

and,

optionally,

maps

for

use

with

the

Item

Synchronization

Collaboration

as

well

as

specify

any

messaging,

logging

and

tracing,

and

data

handler

parameters.

You

use

Connector

Configurator

Express

to

create

this

configuration

file

and

to

modify

its

settings.

©

Copyright

IBM

Corp.

2004

63

Connector

configuration

properties

include

both

standard

configuration

properties

(the

properties

that

all

connectors

have)

and

connector-specific

properties

(properties

that

are

needed

by

the

connector

for

a

specific

application

or

technology).

The

range

of

standard

properties

may

not

be

the

same

for

all

configurations.

Some

properties

are

available

only

if

other

properties

are

given

a

specific

value.

The

Standard

Properties

window

in

Connector

Configurator

Express

will

show

the

properties

available

for

your

particular

configuration.

Starting

Connector

Configurator

Express

You

can

start

and

run

Connector

Configurator

Express

in

either

of

two

modes:

v

Independently,

in

stand-alone

mode.

v

From

System

Manager.

Running

Configurator

Express

in

stand-alone

mode

You

can

run

Connector

Configurator

Express

independently

to

work

with

connector

configuration

files.

To

do

so:

v

From

Start>Programs,

click

IBM

WebSphere

Business

Integration

Express

for

Item

Sync

v4.3>Toolset

Express

>

Development

>

Connector

Configurator

Express.

v

Select

File

>

New

>

Configuration

File.

If

you

are

creating

a

configuration

file,

you

may

prefer

to

run

Connector

Configurator

Express

independently

to

generate

the

file,

and

then

connect

to

System

Manager

to

save

it

in

an

InterChange

Server

Express

project

(see

“Completing

a

configuration

file”

on

page

69.)

Running

Configurator

Express

from

System

Manager

You

can

run

Connector

Configurator

Express

from

System

Manager.

To

run

Connector

Configurator

Express:

1.

Open

the

System

Manager.

2.

In

the

System

Manager

window,

expand

the

Integration

Component

Libraries

icon

and

highlight

Connectors.

3.

From

the

System

Manager

menu

bar,

click

Tools>Connector

Configurator

Express.

The

Connector

Configurator

Express

window

opens

and

displays

a

New

Connector

dialog

box.

Creating

a

connector-specific

property

template

To

create

a

configuration

file

for

your

connector,

you

first

need

a

connector-specific

property

template

as

well

as

the

system-supplied

standard

properties.

You

can

create

a

brand-new

template

for

the

connector-specific

properties

of

your

connector,

or

you

can

use

an

existing

file

as

the

template.

v

To

create

a

new

template,

see

“Creating

a

new

template”

on

page

65.

v

To

use

an

existing

file,

simply

modify

an

existing

template

and

save

it

under

the

new

name.

64

Adapter

for

JMS

User

Guide

Note:

Connector-specific

templates

are

provided

for

the

iSoft,

JText,

and

e-Mail

connectors

only.

If

you

are

configuring

one

of

these

connectors,

see

the

Quick

Start

Guide,

or

skip

this

section

and

go

to

“Creating

a

new

configuration

file”

on

page

67.

Creating

a

new

template

This

section

describes

how

you

create

properties

in

the

template,

define

general

characteristics

and

values

for

those

properties,

and

specify

any

dependencies

between

the

properties.

You

then

save

the

template

and

use

it

as

the

base

for

creating

a

new

connector

configuration

file.

To

create

a

template:

1.

Click

File>New>Connector-Specific

Property

Template.

2.

The

Connector-Specific

Property

Template

dialog

box

appears,

with

the

following

fields:

v

New

Template

and

Name

Enter

a

unique

name

that

identifies

the

connector,

or

type

of

connector,

for

which

this

template

will

be

used.

You

will

see

this

name

again

when

you

open

the

dialog

box

for

creating

a

new

configuration

file

from

a

template.

v

Old

Template

and

Select

the

existing

template

to

modify

The

names

of

all

currently

available

templates

are

displayed

in

the

Template

Name

display.

v

To

see

the

connector-specific

property

definitions

in

any

template,

select

that

template’s

name

in

the

Template

Name

display.

A

list

of

the

property

definitions

contained

in

that

template

will

appear

in

the

Template

Preview

display.

You

can

use

an

existing

template

whose

property

definitions

are

similar

to

those

required

by

your

connector

as

a

starting

point

for

your

template.
3.

Select

a

template

from

the

Template

Name

display,

enter

that

template

name

in

the

Find

Name

field

(or

highlight

your

selection

in

Template

Name),

and

click

Next.

If

you

do

not

see

any

template

that

displays

the

connector-specific

properties

used

by

your

connector,

you

will

need

to

create

one.

Connector

Configurator

Express

Express

provides

a

template

named

None,

containing

no

property

definitions,

as

a

default

choice.

Specifying

general

characteristics

When

you

click

Next

to

select

a

template,

the

Properties

-

Connector-Specific

Property

Template

dialog

box

appears.

The

dialog

box

has

tabs

for

General

characteristics

of

the

defined

properties

and

for

Value

restrictions.

The

General

display

has

the

following

fields:

v

Edit

properties

Use

the

buttons

provided

(or

right-click

within

the

Edit

properties

display)

to

add

a

new

property

to

the

template,

to

edit

or

delete

an

existing

property,

or

to

add

a

child

property

to

an

existing

property.

A

child

property

is

an

attribute

of

another

property,

the

parent

property.

The

parent

property

can

obtain

simple

values,

or

child

properties,

or

both.

These

property

relationships

are

hierarchical.

When

you

create

a

configuration

file

from

these

properties,

Connector

Configurator

Express

will

identify

hierarchical

property

sets

with

a

plus

sign

in

a

box

at

the

left

of

any

parent

property.

v

Property

type

Appendix

B.

Connector

Configurator

Express

65

Choose

one

of

these

property

types:

Boolean,

String,

Integer,

or

Time.

v

Flags

You

can

set

Standard

Flags

(IsRequired,

IsDeprecated,

IsOverridden)

or

Custom

Flags

(for

Boolean

operators)

to

apply

to

this

property.

After

you

have

made

selections

for

the

general

characteristics

of

the

property,

click

the

Value

tab.

Specifying

values

The

Value

tab

enables

you

to

set

the

maximum

length,

the

maximum

multiple

values,

a

default

value,

or

a

value

range

for

the

property.

To

do

so:

1.

Click

the

Value

tab.

The

display

panel

for

Value

replaces

the

display

panel

for

General.

2.

Select

the

name

of

the

property

in

the

Edit

properties

display.

3.

In

the

fields

for

Max

Length

and

Max

Multiple

Values,

make

any

changes.

The

changes

will

not

be

accepted

unless

you

also

open

the

Property

Value

dialog

box

for

the

property,

described

in

the

next

step.

4.

Right-click

the

box

in

the

left-hand

corner

of

the

adapter

display

panel.

A

Property

Value

dialog

box

appears.

Depending

on

the

property

type,

the

dialog

box

allows

you

to

enter

either

a

value,

or

both

a

value

and

range.

Enter

the

appropriate

value

or

range,

and

click

OK.

5.

The

Value

panel

refreshes

to

display

any

changes

you

made

in

Max

Length

and

Max

Multiple

Values.

It

displays

a

table

with

three

columns:

The

Value

column

shows

the

value

that

you

entered

in

the

Property

Value

dialog

box,

and

any

previous

values

that

you

created.

The

Default

Value

column

allows

you

to

designate

any

of

the

values

as

the

default.

The

Value

Range

shows

the

range

that

you

entered

in

the

Property

Value

dialog

box.

After

a

value

has

been

created

and

appears

in

the

grid,

it

can

be

edited

from

within

the

table

display.

To

make

a

change

in

an

existing

value

in

the

table,

select

an

entire

row

by

clicking

on

the

row

number.

Then

right-click

in

the

Value

field

and

click

Edit

Value.

Setting

dependencies

When

you

have

made

your

changes

to

the

General

and

Value

tabs,

click

Next.

The

Dependencies

dialog

box

appears.

A

dependent

property

is

a

property

that

is

included

in

the

template

and

used

in

the

configuration

file

only

if

the

value

of

another

property

meets

a

specific

condition.

For

example,

PollQuantity

appears

in

the

template

only

if

JMS

is

the

transport

mechanism

and

DuplicateEventElimination

is

set

to

True.

To

designate

a

property

as

dependent

and

to

set

the

condition

upon

which

it

depends,

do

this:

1.

In

the

Available

Properties

display,

select

the

property

that

will

be

made

dependent.

2.

In

the

Select

Property

field,

use

the

drop-down

menu

to

select

the

property

that

will

hold

the

conditional

value.

3.

In

the

Condition

Operator

field,

select

one

of

the

following:

==

(equal

to)

!=

(not

equal

to)

>

(greater

than)

66

Adapter

for

JMS

User

Guide

<

(less

than)

>=

(greater

than

or

equal

to)

<=(less

than

or

equal

to)

4.

In

the

Conditional

Value

field,

enter

the

value

that

is

required

in

order

for

the

dependent

property

to

be

included

in

the

template.

5.

With

the

dependent

property

highlighted

in

the

Available

Properties

display,

click

an

arrow

to

move

it

to

the

Dependent

Property

display.

6.

Click

Finish.

Connector

Configurator

Express

stores

the

information

you

have

entered

as

an

XML

document,

under

\data\app

in

the\bin

directory

where

you

have

installed

Connector

Configurator

Express.

Creating

a

new

configuration

file

You

create

a

connector

configuration

file

from

a

connector-specific

template

or

by

modifying

an

existing

configuration

file.

Creating

a

configuration

file

from

a

connector-specific

template

Once

a

connector-specific

template

has

been

created,

you

can

use

it

to

create

a

connector

configuration

file:

1.

In

the

System

Manager

window,

right-click

on

the

Connectors

folder

and

select

Create

New

Connector.

Connector

Configurator

Express

opens

and

displays

the

New

Connector

dialog

box,

with

the

following

fields:

v

Name

Enter

the

name

of

the

connector

followed

by

the

word

connector.

Names

are

case-sensitive.

The

name

you

enter

must

be

unique

and

consistent

with

the

file

name

for

a

connector

that

is

installed

on

the

system.

For

example,

enter

iSoftconnector

if

the

connector

file

name

is

iSoft.

Important:

Connector

Configurator

Express

does

not

check

the

spelling

of

the

name

that

you

enter.

You

must

ensure

that

the

name

is

correct.

v

Select

Connector-Specific

Property

Template

Type

the

name

of

the

template

that

has

been

designed

for

your

connector.

The

available

templates

are

shown

in

the

Template

Name

display.

When

you

select

a

name

in

the

Template

Name

display,

the

Property

Template

Preview

display

shows

the

connector-specific

properties

that

have

been

defined

in

that

template.

Select

the

template

you

want

to

use

and

click

OK.
2.

A

configuration

screen

appears

for

the

connector

that

you

are

configuring.

The

title

bar

shows

the

integration

broker

and

connector

names.

You

can

fill

in

all

the

field

values

to

complete

the

definition

now,

or

you

can

save

the

file

and

complete

the

fields

later.

3.

To

save

the

file,

click

File>Save>Save

to

the

project.

To

save

to

a

project,

System

Manager

must

be

running.

If

you

save

as

a

file,

the

Save

File

Connector

dialog

box

appears.

Choose

*.cfg

as

the

file

type,

verify

in

the

File

Name

field

that

the

name

is

spelled

correctly

and

has

the

correct

case,

navigate

to

the

directory

where

you

want

to

locate

the

file,

and

click

Save.

The

status

display

in

the

message

panel

of

Connector

Configurator

Express

indicates

that

the

configuration

file

was

successfully

created.

Appendix

B.

Connector

Configurator

Express

67

Important:

The

directory

path

and

name

that

you

establish

here

must

match

the

connector

configuration

file

path

and

name

that

you

supply

in

the

startup

file

for

the

connector.

4.

To

complete

the

connector

definition,

enter

values

in

the

fields

for

each

of

the

tabs

of

the

Connector

Configurator

Express

window,

as

described

later

in

this

appendix.

Using

an

existing

file

To

use

an

existing

file

to

configure

a

connector,

you

must

open

the

file

in

Connector

Configurator

Express,

revise

the

configuration,

and

then

save

the

file

as

a

configuration

file

(*.cfg

file).

You

may

have

an

existing

file

available

in

one

or

more

of

the

following

formats:

v

A

connector

definition

file.

This

is

a

text

file

that

lists

properties

and

applicable

default

values

for

a

specific

connector.

Some

connectors

include

such

a

file

in

a

\repository

directory

in

their

delivery

package

(the

file

typically

has

the

extension

.txt;

for

example,

CN_XML.txt

for

the

XML

connector).

v

An

InterChange

Server

Express

repository

file.

Definitions

already

created

for

the

connector

may

be

available

to

you

in

a

repository

file.

Such

a

file

typically

has

the

extension

.in

or.out.

v

A

previous

configuration

file

for

the

connector.

Such

a

file

typically

has

the

extension

*.cfg.

Although

any

of

these

file

sources

may

contain

most

or

all

of

the

connector-specific

properties

for

your

connector,

the

connector

configuration

file

will

not

be

complete

until

you

have

opened

the

file

and

set

properties,

as

described

later

in

this

appendix.

Follow

these

steps

to

open

a

*.txt,

*.cfg,

or

*.in

file

from

a

directory:

1.

In

Connector

Configurator

Express,

click

File

>

Open

>

From

File.

2.

In

the

Open

File

Connector

dialog

box,

select

one

of

the

following

file

types

to

see

the

available

files:

v

Configuration

(*.cfg)

v

InterChange

Server

Express

Repository

(*.in,

*.out)

Choose

this

option

if

a

repository

file

was

used

to

configure

the

connector.

A

repository

file

may

include

multiple

connector

definitions,

all

of

which

will

appear

when

you

open

the

file.
3.

In

the

directory

display,

navigate

to

the

correct

connector

definition

file,

select

it,

and

click

Open.

Opening

an

existing

file

from

System

Manager

Follow

these

steps

to

open

a

connector

configuration

from

a

System

Manager

project:

1.

Start

System

Manager.

2.

Start

Connector

Configurator

Express.

3.

Click

File

>

Open

>

From

Project.

To

edit

an

existing

configuration

file:

68

Adapter

for

JMS

User

Guide

1.

In

the

System

Manager

window,

select

any

of

the

configuration

files

listed

in

the

Connector

folder

and

right-click

on

it.

Connector

Configurator

Express

opens

and

displays

the

configuration

file

with

the

file

name

at

the

top.

2.

Click

the

Properties

tab

to

see

which

properties

are

included

in

this

configuration

file.

Completing

a

configuration

file

When

you

open

a

configuration

file

or

a

connector

from

a

project,

the

Connector

Configurator

Express

window

displays

the

configuration

screen,

with

the

current

attributes

and

values.

Connector

Configurator

Express

requires

values

for

properties

described

in

the

following

sections:

v

“Setting

standard

connector

properties”

v

“Setting

connector-specific

configuration

properties”

on

page

70

v

“Specifying

supported

business

object

definitions”

on

page

70

v

“Associated

maps”

on

page

72

v

“Setting

trace/log

file

values”

on

page

73

v

“Configuring

messaging”

on

page

73

Note:

For

connectors

that

use

JMS

messaging,

an

additional

category

may

display,

for

special

configuration

of

data

handlers

that

convert

the

data

to

business

objects.

For

further

information,

see

“Data

handlers”

on

page

73.

Setting

the

configuration

file

properties

The

fields

for

Standard

Properties

and

Connector-Specific

Properties

are

color-coded

to

show

which

are

configurable:

v

A

field

with

a

grey

background

indicates

a

standard

property.

You

can

change

the

value

but

cannot

change

the

name

or

remove

the

property.

v

A

field

with

a

white

background

indicates

an

application-specific

property.

These

properties

vary

according

to

the

specific

needs

of

the

application

or

connector.

You

can

change

the

value

and

delete

these

properties.

v

Value

fields

are

configurable.

v

The

Update

Method

field

is

informational

and

not

configurable.

This

field

specifies

the

action

required

to

activate

a

property

whose

value

has

changed.

Setting

standard

connector

properties

To

change

the

value

of

a

standard

property:

1.

Click

in

the

field

whose

value

you

want

to

set.

2.

Either

enter

a

value,

or

select

one

from

the

drop-down

menu

if

it

appears.

v

To

set

values

for

standard

property

values

for

your

connector,

see

the

Standard

Properties

appendix

of

this

guide.
3.

After

entering

all

the

values

for

the

standard

properties,

you

can

do

one

of

the

following:

v

To

discard

the

changes,

preserve

the

original

values,

and

exit

Connector

Configurator

Express,

click

File

>

Exit

(or

close

the

window),

and

click

No

when

prompted

to

save

changes.

v

To

enter

values

for

other

categories

in

Connector

Configurator

Express,

select

the

tab

for

the

category.

The

values

you

enter

for

Standard

Properties

(or

Appendix

B.

Connector

Configurator

Express

69

any

other

category)

are

retained

when

you

move

to

the

next

category.

When

you

close

the

window,

you

are

prompted

to

either

save

or

discard

the

values

that

you

entered

in

all

the

categories

as

a

whole.

v

To

save

the

revised

values,

click

File

>

Exit

(or

close

the

window)

and

click

Yes

when

prompted

to

save

changes.

Alternatively,

click

Save

>

To

File

from

either

the

File

menu

or

the

toolbar.

Setting

connector-specific

configuration

properties

For

connector-specific

configuration

properties,

you

can

add

or

change

property

names,

configure

values,

delete

a

property,

and

encrypt

a

property.

The

default

property

length

is

255

characters.

1.

Right-click

in

the

top

left

portion

of

the

grid.

A

pop-up

menu

bar

will

appear.

Click

Add

to

add

a

property

or

Add

Child

to

add

a

child

property

to

a

property.

2.

Enter

a

value

for

the

property

or

child

property.

v

To

set

values

for

connector-specific

property

values

for

your

connector,

see

the

connector-specific

properties

section

of

this

guide.
3.

To

encrypt

a

property,

select

the

Encrypt

box.

4.

Choose

to

save

or

discard

changes,

as

described

for

“Setting

standard

connector

properties”

on

page

69.

The

Update

Method

displayed

for

each

property

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

For

further

information,

see

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization

Important:

Changing

a

preset

application-specific

connector

property

name

may

cause

a

connector

to

fail.

Certain

property

names

may

be

needed

by

the

connector

to

connect

to

an

application

or

to

run

properly.

Encryption

for

connector

properties

Connector-specific

properties

can

be

encrypted

by

selecting

the

Encrypt

check

box

in

the

Edit

Property

window.

To

decrypt

a

value,

click

to

clear

the

Encrypt

check

box,

enter

the

correct

value

in

the

Verification

dialog

box,

and

click

OK.

If

the

entered

value

is

correct,

the

value

is

decrypted

and

displays.

The

adapter

user

guide

for

each

connector

contains

a

list

and

description

of

each

property

and

its

default

value.

If

a

property

has

multiple

values,

the

Encrypt

check

box

will

appear

for

the

first

value

of

the

property.

When

you

select

Encrypt,

all

values

of

the

property

will

be

encrypted.

To

decrypt

multiple

values

of

a

property,

click

to

clear

the

Encrypt

check

box

for

the

first

value

of

the

property,

and

then

enter

the

new

value

in

the

Verification

dialog

box.

If

the

input

value

is

a

match,

all

multiple

values

will

decrypt.

Update

method

Connector

properties

are

almost

all

static

and

the

Update

Method

is

Component

restart.

For

changes

to

take

effect,

you

must

restart

the

connector

after

saving

the

revised

connector

configuration

file.

For

further

information,

see

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization.

Specifying

supported

business

object

definitions

Use

the

Supported

Business

Objects

tab

in

Connector

Configurator

Express

to

specify

the

business

objects

that

the

connector

will

use.

You

must

specify

both

70

Adapter

for

JMS

User

Guide

generic

business

object

definitions

and

application-specific

business

object

definitions,

and

you

must

specify

associations

for

the

maps

between

the

business

objects.

For

you

to

specify

a

supported

business

object,

the

business

objects

and

their

maps

must

exist

in

the

system.

Business

object

definitions,

including

those

for

data

handler

meta-objects,

and

map

definitions

should

be

saved

into

ICL

projects.

For

further

information

on

ICL

projects,

see

User

Guide

for

WebSphere

Business

Integration

Express

for

Item

Synchronization

Note:

Some

connectors

require

that

certain

business

objects

be

specified

as

supported

in

order

to

perform

event

notification

or

additional

configuration

(using

meta-objects)

with

their

applications.

For

more

information,

see

the

chapter

on

business

objects

in

this

guide

as

well

as

the

Business

Object

Development

Guide.

To

specify

that

a

business

object

definition

is

supported

by

the

connector,

or

to

change

the

support

settings

for

an

existing

business

object

definition,

click

the

Supported

Business

Objects

tab

and

use

the

following

fields.

Business

object

name

To

designate

that

a

business

object

definition

is

supported

by

the

connector,

with

System

Manager

running:

1.

Click

an

empty

field

in

the

Business

Object

Name

list.

A

drop-down

list

displays,

showing

all

the

business

object

definitions

that

exist

in

the

System

Manager

project.

2.

Click

on

a

business

object

to

add

it.

3.

Set

the

Agent

Support

(described

below)

for

the

business

object.

4.

In

the

File

menu

of

the

Connector

Configurator

Express

window,

click

Save

to

Project.

The

revised

connector

definition,

including

designated

support

for

the

added

business

object

definition,

is

saved

to

the

project

in

System

Manager.

To

delete

a

business

object

from

the

supported

list:

1.

To

select

a

business

object

field,

click

the

number

to

the

left

of

the

business

object.

2.

From

the

Edit

menu

of

the

Connector

Configurator

Express

window,

click

Delete

Row.

The

business

object

is

removed

from

the

list

display.

3.

From

the

File

menu,

click

Save

to

Project.

Deleting

a

business

object

from

the

supported

list

changes

the

connector

definition

and

makes

the

deleted

business

object

unavailable

for

use

in

this

implementation

of

this

connector.

It

does

not

affect

the

connector

code,

nor

does

it

remove

the

business

object

definition

itself

from

System

Manager.

Agent

support:

If

a

business

object

has

Agent

Support,

the

system

will

attempt

to

use

that

business

object

for

delivering

data

to

an

application

via

the

connector.

Typically,

application-specific

business

objects

for

a

connector

are

supported

by

that

connector’s

agent,

but

generic

business

objects

are

not.

To

indicate

that

the

business

object

is

supported

by

the

connector

agent,

check

the

Agent

Support

box.

The

Connector

Configurator

Express

window

does

not

validate

your

Agent

Support

selections.

Appendix

B.

Connector

Configurator

Express

71

Maximum

transaction

level

The

maximum

transaction

level

for

a

connector

is

the

highest

transaction

level

that

the

connector

supports.

For

most

connectors,

Best

Effort

is

the

only

possible

choice,

because

most

application

APIs

do

not

support

the

Stringent

level.

You

must

restart

the

server

for

changes

in

transaction

level

to

take

effect.

Associated

maps

Each

connector

supports

a

list

of

business

object

definitions

and

their

associated

maps

that

are

currently

active

in

WebSphere

InterChange

Server.

This

list

appears

when

you

select

the

Associated

Maps

tab.

The

list

of

business

objects

contains

the

application-specific

business

object

which

the

connector

supports

and

the

corresponding

generic

object

that

the

controller

sends

to

the

subscribing

collaboration.

The

association

of

a

map

determines

which

map

will

be

used

to

transform

the

application-specific

business

object

to

the

generic

business

object

or

the

generic

business

object

to

the

application-specific

business

object.

If

you

are

using

maps

that

are

defined

for

specific

source

and

destination

business

objects,

the

maps

will

already

be

associated

with

their

business

objects

when

you

open

the

display,

and

you

will

not

need

to

change

them.

If

more

than

one

map

is

available

for

use

by

a

supported

business

object,

you

will

need

to

explicitly

bind

the

business

object

with

the

map

that

it

should

use.

The

Associated

Maps

tab

displays

the

following

fields:

v

Business

Object

Name

These

are

the

application-specific

and

generic

business

objects

supported

by

this

connector,

as

designated

in

the

Supported

Business

Objects

tab.

If

you

designate

additional

business

objects

under

the

Supported

Business

Objects

tab,

they

will

be

reflected

in

this

list

after

you

save

the

changes

by

choosing

Save

to

Project

from

the

File

menu

of

the

Connector

Configurator

Express

window.

v

Associated

Maps

The

display

shows

all

the

maps

that

have

been

installed

to

the

system

for

use

with

the

supported

business

objects

of

the

connector.

The

source

business

object

for

each

map

is

shown

to

the

left

of

the

map

name,

in

the

Business

Object

Name

display.

To

display

the

maps,

you

must

first

designate

the

supported

business

objects,

and

then

save

the

connector

configuration

to

project.

To

see

the

maps,

you

must

first

designate

the

supported

business

objects

and

save

the

connector

configuration

to

project.

v

Explicit

In

some

cases,

you

may

need

to

explicitly

bind

an

associated

map.

Explicit

binding

is

required

only

when

more

than

one

map

exists

for

a

particular

supported

business

object.

When

InterChange

Server

Express

boots,

it

tries

to

automatically

bind

a

map

to

each

supported

business

object

for

each

connector.

If

more

than

one

map

takes

as

its

input

the

same

business

object,

the

server

attempts

to

locate

and

bind

one

map

that

is

the

superset

of

the

others.

If

there

is

no

map

that

is

the

superset

of

the

others,

the

server

will

not

be

able

to

bind

the

business

object

to

a

single

map,

and

you

will

need

to

set

the

binding

explicitly.

72

Adapter

for

JMS

User

Guide

To

explicitly

bind

a

map:

1.

In

the

Explicit

column,

place

a

check

in

the

check

box

for

the

map

you

want

to

bind.

2.

Select

the

map

that

you

intend

to

associate

with

the

business

object.

Configuring

messaging

The

messaging

properties

are

available

only

if

you

have

set

MQ

as

the

value

of

the

DeliveryTransport.

These

properties

affect

how

your

connector

will

use

queues.

Setting

trace/log

file

values

When

you

open

a

connector

configuration

file,

Connector

Configurator

Express

uses

the

logging

and

tracing

values

of

that

file

as

default

values.

You

can

change

those

values

in

Connector

Configurator

Express.

To

change

the

logging

and

tracing

values:

1.

Click

the

Trace/Log

Files

tab.

2.

For

either

logging

or

tracing,

you

can

choose

to

write

messages

to

one

or

both

of

the

following:

v

To

console

(STDOUT):

Writes

logging

or

tracing

messages

to

the

STDOUT

display.

v

To

File:

Writes

logging

or

tracing

messages

to

a

file

that

you

specify.

To

specify

the

file,

click

the

directory

button

(ellipsis),

navigate

to

the

preferred

location,

provide

a

file

name,

and

click

Save.

Logging

or

tracing

message

are

written

to

the

file

and

location

that

you

specify.

Note:

Both

logging

and

tracing

files

are

simple

text

files.

You

can

use

the

file

extension

that

you

prefer

when

you

set

their

file

names.

For

tracing

files,

however,

it

is

advisable

to

use

the

extension

.trace

rather

than

.trc,

to

avoid

confusion

with

other

files

that

might

reside

on

the

system.

For

logging

files,

.log

and

.txt

are

typical

file

extensions.

Data

handlers

The

data

handlers

section

is

available

for

configuration

only

if

you

have

designated

a

value

of

JMS

for

DeliveryTransport

and

a

value

of

JMS

for

ContainerManagedEvents.

Adapters

that

make

use

of

the

guaranteed

event

delivery

enable

this

tab.

See

the

descriptions

under

ContainerManagedEvents

in

the

Standard

Properties

appendix

for

values

to

use

for

these

properties.

Saving

your

configuration

file

After

you

have

created

the

configuration

file

and

set

its

properties,

you

need

to

deploy

it

to

the

correct

location

for

your

connector.

Save

the

configuration

in

an

ICL

project,

and

use

System

Manager

to

load

the

file

into

InterChange

Server

Express.

For

details

about

using

projects

in

System

Manager,

and

for

further

information

about

deployment,

see

the

User

Guide

for

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization.

Appendix

B.

Connector

Configurator

Express

73

Completing

the

configuration

After

you

have

created

a

configuration

file

for

a

connector

and

modified

it,

make

sure

that

the

connector

can

locate

the

configuration

file

when

the

connector

starts

up.

To

do

so,

open

the

startup

file

used

for

the

connector,

and

verify

that

the

location

and

file

name

used

for

the

connector

configuration

file

match

exactly

the

name

you

have

given

the

file

and

the

directory

or

path

where

you

have

placed

it.

for

more

information

on

the

startup

file,

see

the

appropriate

section

of

your

adapter

user

guide

as

well

as

the

User

Guide

for

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization.

74

Adapter

for

JMS

User

Guide

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

2004

75

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

76

Adapter

for

JMS

User

Guide

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Domino

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

WebSphere

Business

Integration

Express

for

Item

Synchronization

V4.3.1.

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

V4.3.1

Notices

77

	Contents
	New in this release
	About this document
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	Chapter 1. Overview
	Connector architecture
	Application-connector communication method
	Message request
	Message return

	Event handling
	Retrieval
	Recovery
	Archiving

	Guaranteed event delivery
	Business object requests
	Verb processing
	Create, update, and delete

	Processing locale-dependent data

	Chapter 2. Installing and configuring the connector
	Compatibility
	Prerequisites
	Prerequisite software

	Overview of installation tasks
	Installing the connector and related files
	Installed file structure
	Windows connector file structure
	Linux connector file structure
	OS/400 connector file structure

	Connector configuration
	Standard connector properties
	Connector-specific properties
	JNDI provider properties
	Configuring JNDI with WebSphere MQ Java client libraries

	Enabling guaranteed event delivery
	Guaranteed event delivery for connectors with JMS event stores

	Meta-object attributes configuration
	Static meta-object
	Dynamic child meta-object

	Startup

	Chapter 3. Creating or modifying business objects
	Connector business object structure
	Sample business object properties

	Error handling
	Application timeout
	Unsubscribed business object
	Connector not active
	Data handler conversion

	Tracing

	Chapter 4. Troubleshooting
	Start-up problems

	Appendix A. Standard configuration properties for connectors
	Configuring standard connector properties
	Using Connector Configurator Express
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartCount
	RestartRetryCount
	RestartRetryInterval
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat

	Appendix B. Connector Configurator Express
	Overview of Connector Configurator Express
	Starting Connector Configurator Express
	Running Configurator Express in stand-alone mode

	Running Configurator Express from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Opening an existing file from System Manager

	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps
	Configuring messaging
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Completing the configuration

	Notices
	Programming interface information
	Trademarks and service marks

