
IBM

WebSphere

Business

Integration

Adapters

IBM

WebSphere

InterChange

Server

Connector

Development

Guide

for

C++

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

351.

19December2003

This

edition

of

this

document

applies

to

IBM

WebSphere

InterChange

Server,

version

4.2.2,

IBM

WebSphere

Business

Integration

Adapters,

version

2.4,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

this

document,

email

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1997,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

Markup

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

New

in

this

release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

New

in

WebSphere

InterChange

Server

v4.2.2

and

WebSphere

Business

Integration

Adapters

v2.4.0

.

.

.

.

.

. xi

New

in

WebSphere

InterChange

Server

v4.2.1

and

WebSphere

Business

Integration

Adapters

2.3.1

.

.

.

.

.

. xi

New

in

WebSphere

Business

Integration

Adapters

2.2.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

New

in

WebSphere

Business

Integration

Adapters

2.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

New

in

WebSphere

Business

Integration

Adapters

2.0.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

New

in

WebSphere

Business

Integration

Adapters

2.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

Part

1.

Getting

started

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Introduction

to

connector

development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Adapters

in

the

WebSphere

business

integration

system

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Connector

components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Event-triggered

flow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Tools

for

adapter

development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Overview

of

the

connector

development

process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Part

2.

Building

a

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Chapter

2.

Designing

a

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Scope

of

a

connector

development

project

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Designing

the

connector

architecture

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Designing

application-specific

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Event

notification

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Communication

across

operating

systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Summary

set

of

planning

questions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

An

internationalized

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Chapter

3.

Providing

general

connector

functionality

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Running

a

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Extending

the

connector

base

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Using

connector

configuration

property

values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Handling

loss

of

connection

to

an

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Chapter

4.

Request

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Designing

business

object

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Extending

the

business-object-handler

base

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Handling

the

request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Performing

the

verb

action

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Handling

the

Create

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Handling

the

Retrieve

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Handling

the

RetrieveByContent

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Handling

the

Update

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Handling

the

Delete

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Handling

the

Exists

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Processing

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

©

Copyright

IBM

Corp.

1997,

2003

iii

Indicating

the

connector

response

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Handling

loss

of

connection

to

the

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Chapter

5.

Event

notification

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Overview

of

an

event-notification

mechanism

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Implementing

an

event

store

for

the

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Implementing

event

detection

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Implementing

event

retrieval

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Implementing

the

poll

method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Special

considerations

for

event

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Chapter

6.

Message

logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Error

and

informational

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Trace

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Message

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Chapter

7.

Implementing

a

C++

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Extending

the

C++

connector

base

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Beginning

execution

of

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Creating

a

business

object

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Polling

for

events

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Shutting

down

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Handling

errors

and

status

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Chapter

8.

Adding

a

connector

to

the

business

integration

system

.

.

.

.

.

.

.

.

. 197

Naming

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Compiling

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

Creating

the

connector

definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Creating

the

initial

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Starting

up

a

new

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Part

3.

C++

connector

library

API

reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Chapter

9.

Overview

of

the

C++

connector

library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Classes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Chapter

10.

BOAttrType

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

Attribute-type

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

Member

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

BOAttrType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

getAppText()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

getBOVersion()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

getCardinality()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

getDefault()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

getMaxLength()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

getRelationType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

getTypeName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

getTypeNum()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

hasCardinality()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

hasName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

hasTypeName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

isForeignKey()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

isKey()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

isMultipleCard()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

isObjectType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

isRequired()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

isType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

iv

Connector

Development

Guide

for

C++

Chapter

11.

BOHandlerCPP

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

BOHandlerCPP()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

doVerbFor()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

generateAndLogMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

generateAndTraceMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

generateMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

getConfigProp()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

getTheSubHandler()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

logMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

traceWrite()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

Chapter

12.

BusinessObject

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Attribute-value

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Member

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

BusinessObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

clone()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

doVerbFor()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

dump()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

getAttrCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

getAttrDesc()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

getAttrName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

getAttrType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

getAttrValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

getBlankValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

getDefaultAttrValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

getIgnoreValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

getLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

getParent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

getSpecFor()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

getVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

getVersion()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

initAndValidateAttributes()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

isBlank()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

isBlankValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

isIgnore()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

isIgnoreValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

makeNewAttrObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

setAttrValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

setDefaultAttrValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

setLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

setVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Chapter

13.

BusObjContainer

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

getObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

getObjectCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

getTheSpec()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

insertObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

removeAllObjects()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

removeObjectAt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

setObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

Chapter

14.

BusObjSpec

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

getAppText()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

getAttribute()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

getAttributeCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

getAttributeIndex()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

getMyBOHandler()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

getVerbAppText()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Contents

v

getVersion()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

isVerbSupported()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Chapter

15.

CxMsgFormat

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Message-type

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

generateMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Deprecated

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

Chapter

16.

CxVersion

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

CxVersion()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

compareMajor()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

compareMinor()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

comparePoint()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

compareTo()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

getDELIMITER()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

getLATESTVERSION()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

getMajorVer()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

getMinorVer()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

getPointVer()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

setMajorVer()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

setMinorVer()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

setPointVer()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

toString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Chapter

17.

GenGlobals

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

GenGlobals()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

executeCollaboration()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

generateAndLogMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

generateAndTraceMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

generateMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

getBOHandlerforBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

getCollabNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

getConfigProp()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

getEncoding()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

getLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

getTheSubHandler()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

getVersion()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

init()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

isAgentCapableOfPolling()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

logMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

pollForEvents()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

terminate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

traceWrite()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Deprecated

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Chapter

18.

ReturnStatusDescriptor

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

getErrorMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

getStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

seterrMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

setStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

Chapter

19.

SubscriptionHandlerCPP

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

SubscriptionHandlerCPP()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

gotApplEvent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

isSubscribed()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

Chapter

20.

StringMessage

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

hasMoreTokens()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

vi

Connector

Development

Guide

for

C++

nextToken()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Deprecated

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Chapter

21.

Tracing

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Trace-level

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

getIndent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

getTraceLevel()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

setIndent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

write()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

Appendix

A.

Standard

configuration

properties

for

connectors

.

.

.

.

.

.

.

.

.

.

. 309

New

and

deleted

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Configuring

standard

connector

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Summary

of

standard

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

Standard

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

Appendix

B.

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

Overview

of

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

Starting

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

Running

Configurator

from

System

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

Creating

a

connector-specific

property

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

Creating

a

new

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Using

an

existing

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 330

Completing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

Setting

the

configuration

file

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

Saving

your

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Changing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

Completing

the

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

Using

Connector

Configurator

in

a

globalized

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

Appendix

C.

Connector

Script

Generator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

Appendix

D.

Connector

feature

checklist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Guidelines

for

using

the

connector

feature

checklist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Standard

behavior

for

request

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Standard

behavior

for

the

event

notification

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

General

standards

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 352

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 352

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

Contents

vii

viii

Connector

Development

Guide

for

C++

About

this

document

The

IBM(R)

WebSphere(R)

Business

Integration

Adapters

portfolio

supplies

integration

connectivity

for

leading

e-business

technologies

and

enterprise

applications.

The

system

includes

tools

and

templates

for

customizing,

creating,

and

managing

components

for

business

process

integration.

This

document

describes

the

development

of

C++

connectors

in

the

IBM

WebSphere

business

integration

system.

Audience

This

document

is

for

connector

developers.

It

assumes

proficiency

in

the

C++

programming

language.

The

document

also

assumes

a

basic

familiarity

with

the

IBM

WebSphere

business

integration

system,

including

connectors

and

business

objects.

Related

documents

The

complete

set

of

documentation

describes

the

features

and

components

common

to

all

WebSphere

Business

Integration

Adapters

installation,

and

includes

reference

material

on

specific

components.

Note:

This

document

covers

the

development

of

connectors

written

in

C++.

The

development

of

Java

connectors

is

documented

in

the

Connector

Development

Guide

for

Java.

You

can

install

the

documentation

or

read

it

directly

online

at

the

following

sites:

v

For

general

adapter

information,

for

using

adapters

with

WebSphere

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker),

and

for

using

adapters

with

WebSphere

Application

Server,

you

can

refer

to

the

IBM

WebSphere

Business

Integration

Adapters

InfoCenter

at:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

v

For

using

adapters

with

IBM

WebSphere

InterChange

Server

as

your

integration

broker,

you

can

refer

to

the

IBM

WebSphere

InterChange

Server

InfoCenter

at:

http://www.ibm.com/websphere/integration/wicserver/infocenter

v

For

more

information

about

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker):

http://www.ibm.com/sofware/integration/mqfamily/library/manualsa/

v

For

more

information

about

WebSphere

Application

Server:

http://www.ibm.com/sofware/webservers/appserver/library.html

These

sites

contain

simple

directions

for

downloading,

installing,

and

viewing

the

documentation.

©

Copyright

IBM

Corp.

1997,

2003

ix

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

file

name,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

bold

Indicates

a

new

term

the

first

time

that

it

appears.

italic,

italic

Indicates

a

variable

name

or

a

cross-reference.

blue

outline

A

blue

outline,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

inside

the

outline

to

jump

to

the

object

of

the

reference.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

from

which

you

must

choose

one

and

only

one.

[

]

In

a

syntax

line,

square

brackets

surround

an

optional

parameter.

...

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

<

>

In

a

naming

convention,

angle

brackets

surround

individual

elements

of

a

name

to

distinguish

them

from

each

other,

as

in

<server_name><connector_name>tmp.log.

/,

\

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

WebSphere

Business

Integration

Adapters

product

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

%text%

and

$text

Text

within

percent

(%)

signs

indicates

the

value

of

the

Windows

text

system

variable

or

user

variable.

The

equivalent

notation

in

a

UNIX

environment

is

$text,

indicating

the

value

of

the

text

UNIX

environment

variable.

ProductDir

Represents

the

directory

where

the

product

is

installed.

For

the

IBM

WebSphere

InterChange

Server

environment,

the

default

product

directory

is

″IBM\WebSphereICS″.

For

the

IBM

WebSphere

Business

Integration

Adapters

environment,

the

default

product

directory

is

″WebSphereAdapters″.

Markup

conventions

In

some

chapters,

you

will

find

text

identified

by

the

following

markup:

WebSphere

InterChange

Broker

Describes

functionality

of

the

IBM

WebSphere

business

integration

system

when

InterChange

Server

is

the

integration

broker.

WebSphere

MQ

Integrator

Broker

Describes

functionality

of

the

IBM

WebSphere

business

integration

system

when

WebSphere

MQ

Integrator

Broker

is

the

integration

broker.

x

Connector

Development

Guide

for

C++

New

in

this

release

This

chapter

describes

the

new

features

of

IBM

WebSphere

business

integration

systemthat

are

covered

in

this

document.

New

in

WebSphere

InterChange

Server

v4.2.2

and

WebSphere

Business

Integration

Adapters

v2.4.0

The

IBM

WebSphere

InterChange

Server

4.2.2

release

and

the

IBM

WebSphere

Business

Integration

Adapter

2.4.0

release

provide

the

following

new

functionality

in

the

C++

connector

library:

v

A

C++

connector

now

uses

the

IBM

Java

Object

Request

Broker

(ORB)

instead

of

the

third-party

VisiBroker

ORB.

v

A

C++

connector

now

uses

STL

libraries

instead

of

the

Cayenne

libraries.

You

no

longer

need

to

include

the

cayenne_include

directory

in

source

files

of

your

C++

connector.

v

The

C++

Connector

Development

Kit

(CDK)

now

provides

a

more

consistent

way

to

create

startup

scripts

for

C++

connectors.

It

also

provides

a

template

for

the

creation

of

this

startup

script.

For

more

information,

see

“Starting

up

a

new

connector”

on

page

203.

New

in

WebSphere

InterChange

Server

v4.2.1

and

WebSphere

Business

Integration

Adapters

2.3.1

The

IBM

WebSphere

InterChange

Server

4.2.1

release

and

the

IBM

WebSphere

Business

Integration

Adapter

2.3.1

release

provide

the

following

new

functionality

in

the

C++

connector

library:

v

The

setLocale()

method

(in

the

BusinessObject

class)

allows

you

to

set

the

locale

that

is

associated

with

a

business

object.

This

new

method

complements

the

getLocale()

method

that

has

already

been

defined

in

this

same

class.

New

in

WebSphere

Business

Integration

Adapters

2.2.0

The

IBM

WebSphere

Business

Integration

Adapter

2.2.0

release

provides

the

following

new

functionality

in

the

C++

connector

library:

v

The

″CrossWorlds″

name

is

no

longer

used

to

describe

an

entire

system

or

to

modify

the

names

of

components

or

tools,

with

are

otherwise

mostly

the

same

as

before.

For

example

″CrossWorlds

System

Manager″

is

now

″System

Manager″

and

″CrossWorlds

InterChange

Server″

is

now

″WebSphere

InterChange

Server″.

v

The

C++

connector

library

now

supports

duplicate

event

elimination

to

provide

guaranteed

event

delivery.

Duplicate

event

elimination

is

most

often

used

by

JMS-enabled

adapters

that

have

event

stores

that

are

not

implemented

as

JMS

queues.

Use

the

DuplicateEventElimination

connector

property

to

enable

this

functionality.

For

more

information,

see

“Guaranteed

event

delivery

for

connectors

with

non-JMS

event

stores”

on

page

129.

v

Chapter

2,

“Designing

a

connector,”

on

page

35

now

provides

more

information

on

how

to

internationalize

a

connector.

©

Copyright

IBM

Corp.

1997,

2003

xi

v

Chapter

8,

“Adding

a

connector

to

the

business

integration

system,”

on

page

197

now

provides

more

information

on

how

to

add

a

C++

connector

to

the

WebSphere

business

integration

system,

including:

–

How

to

create

an

initial

configuration

file

for

a

connector

–

How

to

create

a

startup

script

for

a

C++

connector

from

a

sample

startup

file

–

Use

of

the

new

CWConnEnv.bat

(Windows)

or

CWConnEnv.sh

(UNIX)

file

for

system-variable

settings
v

The

C++

connector

library

new

supports

two

new

methods

in

the

ReturnStatusDescriptor

class

to

provide

access

to

the

status

value

in

the

return-status

descriptor:

–

getStatus()

–

setStatus()

New

in

WebSphere

Business

Integration

Adapters

2.1

The

changes

made

in

the

IBM

WebSphere

Business

Integration

Adapter

2.1

release

do

not

affect

the

content

of

this

document.

New

in

WebSphere

Business

Integration

Adapters

2.0.1

The

IBM

WebSphere

Business

Integration

Adapter

2.0.1

release

provides

an

internationalized

version

of

the

C++

connector

library.

This

internationalized

connector

library

enables

you

to

develop

adapters

that

can

be

localized

for

many

different

locales

(A

locale

includes

culture-specific

conventions

and

a

character

code

set.).

The

structure

of

connectors

has

changed

in

the

following

ways

to

accommodate

locales:

v

The

connector

framework

now

has

a

locale

associated

with

it.

This

locale

is

determined

either

from

the

operating

system

locale

or

from

configuration

properties.

The

C++

connector

library

provides

the

getEncoding()

and

getLocale()

methods

in

the

GenGlobals

class

to

access

this

information

from

within

the

connector.

v

A

business

object

has

a

locale

associated

with

it.

This

locale

is

associated

with

the

data

in

the

business

object,

not

with

the

name

of

the

business

object

definition

or

its

attributes.

The

C++

connector

library

provides

the

getLocale()

method

in

the

BusinessObject

class

to

obtain

the

name

of

this

locale

from

within

the

connector.

For

more

information,

see

“An

internationalized

connector”

on

page

53.

New

in

WebSphere

Business

Integration

Adapters

2.0

The

IBM

WebSphere

Business

Integration

Adapter

2.0

release

provides

support

for

adapters.

An

adapter

is

a

set

of

software

modules

that

communicate

with

an

integration

broker

and

with

applications

or

technologies

to

perform

tasks

such

as

executing

application

logic

and

exchanging

data.

For

an

introduction

to

adapters

and

integration

brokers,

see

“Adapters

in

the

WebSphere

business

integration

system”

on

page

3.

In

addition,

the

structure

of

IBM

WebSphere

business

integration

system

documentation

for

the

development

of

connectors

has

changed

in

this

release.

The

following

guides

have

been

combined

to

create

a

single

document

that

covers

the

development

of

C++

connectors:

xii

Connector

Development

Guide

for

C++

Connector

Development

Guide

Material

on

how

to

develop

a

connector

is

now

found

in

Parts

I

and

II

of

this

new

document.

Connector

Reference:

C++

Class

Library

Reference

material

on

the

C++

connector

library

is

now

found

in

Part

III.

New

in

this

release

xiii

xiv

Connector

Development

Guide

for

C++

Part

1.

Getting

started

©

Copyright

IBM

Corp.

1997,

2003

1

2

Connector

Development

Guide

for

C++

Chapter

1.

Introduction

to

connector

development

This

chapter

provides

a

brief

overview

of

connectors

in

the

IBM

WebSphere

business

integration

system.

It

also

introduces

the

C++

Connector

Development

Kit

(CDK)

and

summarizes

the

development

steps

you

need

to

follow

to

implement

a

connector.

This

chapter

contains

the

following

sections:

v

“Adapters

in

the

WebSphere

business

integration

system”

v

“Connector

components”

on

page

7

v

“Event-triggered

flow”

on

page

19

v

“Tools

for

adapter

development”

on

page

27

v

“Overview

of

the

connector

development

process”

on

page

29

Adapters

in

the

WebSphere

business

integration

system

The

IBM

WebSphere

business

integration

system

consists

of

the

following

components,

which

allow

heterogeneous

business

applications

to

exchange

data:

v

A

set

of

IBM

WebSphere

Business

Integration

Adapters

An

IBM

WebSphere

Business

Integration

Adapter,

called

simply

an

adapter,

provides

the

components

to

support

communication

between

an

integration

broker

and

either

applications

or

technologies

to

perform

tasks

such

as

executing

application

logic

and

exchanging

data.

v

An

integration

broker

The

task

of

an

integration

broker

is

to

integrate

data

among

heterogeneous

applications.

The

IBM

WebSphere

business

integration

system

can

include

either

of

the

integration

brokers

in

Table

1..

Table

1.

Integration

brokers

in

the

WebSphere

business

integration

system

Integration

broker

For

more

information

Documentation

set

WebSphere

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker)

Implementing

Adapters

for

WebSphere

Message

Brokers

WebSphere

Business

Integration

Adapters

WebSphere

Application

Server

Implementing

Adapters

for

WebSphere

Application

Server

WebSphere

Business

Integration

Adapters

IBM

WebSphere

InterChange

Server

(ICS)

Implementation

Guide

for

WebSphere

InterChange

Server

WebSphere

InterChange

Server

In

the

IBM

WebSphere

business

integration

system,

the

integration

broker

communicates

to

these

applications

through

adapters.

The

following

adapter

components

actually

provide

this

communication:

v

“Business

objects”

on

page

5,

whose

role

is

to

hold

information

about

an

application

event

v

“Connectors”

on

page

6,

whose

role

is

to

send

information

about

an

application

event

to

an

integration

broker

or

to

receive

information

about

a

request

from

the

integration

broker.

©

Copyright

IBM

Corp.

1997,

2003

3

Figure

1

shows

how

these

components

transfer

information

from

an

application

to

an

integration

broker.

Note:

An

adapter

also

includes

configuration

and

development

components.

For

more

information,

see

“Tools

for

adapter

development”

on

page

27.

Figure

2

shows

the

WebSphere

business

integration

system

and

the

role

that

connectors

play

within

this

system.

Connector
framework

Application

Integration broker

Connector

Runtime components
of an

adapter

Business object

Application-specific
component

Business object

Figure

1.

Adapter

components

that

provide

information

transfer

4

Connector

Development

Guide

for

C++

Business

objects

As

Table

2

shows,

a

business

object

is

a

two-part

entity,

consisting

of

a

repository

definition

and

a

runtime

object.

Table

2.

Parts

of

a

Business

Object

Repository

entity

Runtime

object

Business

object

definition

Business

object

instance

(often

called

a

“business

object”)

Business

object

definition

A

business

object

definition

represents

a

group

of

attributes

that

can

be

treated

as

a

collective

unit.

For

example,

a

business

object

definition

can

represent

an

application

entity

and

the

operations

that

can

be

performed

on

the

entity,

such

as

create,

retrieve,

update,

or

delete.

A

business

object

definition

can

also

represent

other

programmatic

entities,

such

as

the

data

contents

of

a

business

transaction

form

submitted

from

a

Web

browser.

A

business

object

definition

contains

attributes

for

each

piece

of

data

in

the

collective

unit.

Note:

For

more

information

on

the

structure

of

a

business

object

definition,

see

“Processing

business

objects”

on

page

98..

Integration broker

Custom connector

Web server

Web client

`Sales Order Processing
enterprise application

IBM WebSphere
Business Integration Adapter

for XML

Legacy
application

Application connector

Order Management
enterprise application

Application connector

Sales Order

Legacy data Order data

Order Status for
display on Web site

o

Figure

2.

WebSphere

business

integration

system

Chapter

1.

Introduction

to

connector

development

5

When

you

“develop

a

business

object,”

you

create

a

business

object

definition.

You

can

create

business

objects

definitions

with

the

Business

Object

Designer

tool,

which

provides

an

easy-to-use,

graphical

user

interface

(GUI)

that

allows

you

to

define

attributes

of

the

business

object.

It

supports

saving

the

business

object

definition

in

the

repository

or

in

an

external

XML

file.

Within

Business

Object

Designer,

you

can

create

the

business

object

definition

in

either

of

two

ways:

v

Manually,

by

using

the

dialogs

of

Business

Object

Designer

to

define

attributes

and

other

information

for

the

business

object

definition.

v

With

an

Object

Discovery

Agent

(ODA),

which

automatically

generates

a

business

object

definition

by:

–

Examining

specified

entities

within

the

application

–

“Discovering”

the

elements

of

these

entities

that

correspond

to

business

object

attributes

Note:

For

information

on

how

to

use

Business

Object

Designer

to

create

business

object

definitions

in

either

of

these

ways,

see

the

Business

Object

Development

Guide.

Business

object

instance

While

the

business

object

definition

represents

the

collection

of

data,

a

business

object

instance

(often

just

called

a

“business

object”)

is

the

runtime

entity

that

contains

the

actual

data.

For

example,

to

represent

a

customer

entity

in

your

application,

you

can

create

a

Customer

business

object

definition

that

defines

the

information

in

the

customer

entity

that

needs

to

be

sent

to

other

applications.

At

runtime,

the

Customer

business

object,

which

is

an

instance

of

this

business

object

definition,

contains

the

information

for

a

particular

customer.

Connectors

The

role

of

a

connector

is

to

send

information

about

an

application

event

to

an

integration

broker

or

to

receive

information

about

a

request

from

the

integration

broker.

WebSphere

InterChange

Server

When

InterChange

Server

is

the

integration

broker,

a

connector

is

a

set

of

software

modules

and

data

maps

that

connect

WebSphere

Business

Integration

collaborations

to

an

enterprise

application

or

an

external

application.

A

collaboration

represents

a

business

process

that

can

involve

several

applications.

The

connector

acts

as

an

intermediary

for

one

or

more

collaborations,

using

an

enterprise

application’s

API,

or

some

other

program

logic,

to

support

a

business

process.

The

information

that

the

connector

sends

or

receives

is

in

the

form

of

a

business

object.

Therefore,

each

connector

supports

one

or

more

business

object

definitions.

These

business

object

definitions

have

been

designed

to

correspond

to

application

data

models

or

to

other

types

of

external

entities.

The

business

object

closely

reflects

the

data

entity

that

it

represents.

Its

structure

and

content

match

that

of

the

entity.

6

Connector

Development

Guide

for

C++

WebSphere

InterChange

Server

When

InterChange

Server

is

the

integration

broker,

the

business

integration

system

uses

two

kinds

of

business

objects.

The

business

object

that

a

connector

processes

is

called

an

application-specific

business

object.

The

business

object

that

a

collaboration

processes

is

called

a

generic

business

object.

For

more

information,

see

“Mapping

services”

on

page

11..

Other

integrator

brokers

When

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Intregration

Message

Broker)

or

WebSphere

Application

Server

is

the

integration

broker,

the

business

integration

system

uses

a

single

kind

of

business

object,

the

business

object

that

a

connector

processes.

Although

this

business

object

is

an

application-specific

business

object,

the

“application-specific”

qualifier

is

often

omitted

because

this

is

the

only

kind

of

business

object

used.

The

connector

uses

information

in

its

supported

business

object

definitions

to

perform

its

major

roles,

as

Table

3

shows.

Table

3.

Operations

on

business

objects

for

the

different

roles

of

a

connector

Connector

role

Operation

on

business

object

“Event

notification”

on

page

21

When

an

event

that

affects

an

application

entity

occurs

(such

as

when

a

user

of

the

application

creates,

updates,

or

deletes

application

data),

a

connector:

v

Creates

a

business

object,

based

on

the

information

in

its

business

object

definition

v

Fills

this

business

object

with

data

from

an

application

entity

v

Sends

this

business

object

as

an

event

to

an

integration

broker

“Request

processing”

on

page

24

When

the

integration

broker

requests

a

change

to

the

connector’s

application

or

when

the

broker

needs

information

from

the

connector’s

application,

the

connector:

v

Receives

a

business

object

from

an

integration

broker

v

Uses

information

in

the

business

object

and

its

business

object

definition

to

create

the

appropriate

application

command

that

performs

an

operation

v

Sends

any

appropriate

response

information

back

to

the

integration

broker

Note:

Every

connector

must

implement

request

processing.

Implementation

of

event

notification

is

optional

(though

does

require

some

minor

coding).

Connector

components

The

connector

represents

the

application

in

the

WebSphere

business

integration

system,

performing

tasks

in

support

of

the

application.

For

example,

the

connector

polls

the

application

for

events

and

sends

business

objects

that

represent

events

to

the

integration

broker.

The

connector

also

performs

tasks

in

support

of

integration-broker

requests,

such

as

retrieving

or

modifying

application

data.

Chapter

1.

Introduction

to

connector

development

7

Figure

3

illustrates

the

components

of

a

C++

connector.

The

figure

includes

the

C++

translation

layer,

which

translates

business

objects

between

the

C++

and

Java

environments.

The

figure

also

shows

the

C++

connector

library

in

the

generic

services

that

the

connector

framework

provides.

As

Figure

3

shows,

a

connector

has

the

following

components:

v

“Connector

framework”—Provided

as

part

of

the

WebSphere

Business

Integration

Adapters

product

to

communicate

with

the

integration

broker.

v

“Application-specific

component”

on

page

19—Contains

code

you

write

to

specify

the

actions

of

the

application-specific

tasks

of

the

connector,

such

as

basic

initialization

and

setup

methods,

business

object

handling,

and

event

notification.

Connector

framework

The

connector

framework

manages

interactions

between

the

connector

and

the

integration

broker.

IBM

provides

this

component

to

ease

connector

development.

The

connector

framework

is

written

in

Java

and

includes

a

C++

extension

to

allow

the

development

of

the

application-specific

component

in

C++.

Generic services (C++ class library)

Global
functions

Business
object
handler

Application
event
notification

Connector
framework

Application-
specific
component

Transport layer

Java-to-C++ translation (C++ only)

Application

Application interface functionsa

Integration broker

Connector

Figure

3.

Components

of

a

C++

connector

8

Connector

Development

Guide

for

C++

Other

integration

brokers

In

an

IBM

WebSphere

business

integration

system

that

uses

WebSphere

MQ

Integrator

Broker

or

WebSphere

Application

Server

as

its

integration

broker,

the

connector

framework

is

a

nondistributed

component;

that

is,

it

resides

entirely

on

the

adapter

machine.

Figure

4

shows

the

high-level

connector

architecture

with

the

WebSphere

MQ

Integrator

Broker

or

WebSphere

Application

Server.

For

information

on

the

connector

architecture

with

InterChange

Server

as

the

integration

broker,

see

“Connector

controller”

on

page

10..

The

connector

framework

provides

the

services

that

Table

4

summarizes.

Table

4.

Services

of

the

connector

framework

Component

Services

“Connector

controller”

on

page

10

(InterChange

Server

only)

v

Provides

mapping

between

application-specific

and

generic

business

objects,

and

manages

business

object

transfers

between

the

connector

and

collaborations

running

in

InterChange

Server.

v

Provides

other

management

services,

such

as

monitoring

the

status

of

the

connector

“Transport

layer”

on

page

14

v

Handles

the

exchange

of

business

objects

between

the

connector

and

the

integration

broker

v

Manages

the

exchange

of

startup

and

administrative

messages

between

the

connector

controller

and

the

client

connector

framework

v

Keeps

a

list

of

subscribed

business

objects

Application A

Connector A

Application-specific
component

Connector framework

Data
handler

BO

Integration broker

Delivery
queue

Business
data

Event
delivery

message

BO

Figure

4.

High-level

connector

architecture

with

WebSphere

MQ

Integrator

Broker

Chapter

1.

Introduction

to

connector

development

9

Table

4.

Services

of

the

connector

framework

(continued)

Component

Services

C++

translation

layer

v

Provides

a

Java-to-C++

translation

layer

that

translates

business

objects

between

the

C++

and

Java

environments.

C++

connector

library

on

page

“C++

connector

library”

on

page

18.

v

Provides

generic

services

to

the

application-specific

component

in

the

form

of

C++

classes

and

methods

Connector

controller

In

an

IBM

WebSphere

business

integration

system

that

uses

InterChange

Server

as

its

integration

broker,

the

connector

framework

is

distributed

to

take

advantage

of

services

that

InterChange

Server

provides.

This

distributed

connector

framework

contains

the

following

components:

v

The

client

connector

framework

runs

as

part

of

the

connector

process

on

the

client

machine.

It

includes

a

transport

layer,

the

C++

translation

layer,

and

the

C++

connector

library.

For

more

information

on

these

components,

see

Table

4

on

page

9..

v

The

connector

controller

runs

within

InterChange

Server

on

the

server

machine.

Figure

5

illustrates

the

basic

components

of

a

connector

within

the

InterChange

Server

system.

InterChange

Server,

collaborations,

and

connector

controllers

run

as

a

single

process,

and

each

connector

runs

as

a

separate

process.

Collaborationa Collaborationa

InterChange Server

Connector
controller

Connector
controller

Connector
controller

Client
Connector
Framework

Application-specific
component

Connector
framework

Application 1 Application 2 Application 3

CORBA IIOP
or Messaging

Connector

Application
libraries

Application-specific
component

Application
libraries

Application-specific
component

Application
libraries

Client
Connector
Framework

Client
Connector
Framework

Figure

5.

High-level

connector

architecture

with

WebSphere

InterChange

Server

10

Connector

Development

Guide

for

C++

The

connector

controller

manages

communication

between

the

connector

framework

and

collaborations.

The

primary

type

of

information

that

connector

components

exchange

is

a

business

object.

Other

types

of

connector

communication

include

startup

information

and

administrative

messages.

Note:

A

connector

controller

is

instantiated

by

InterChange

Server

for

each

connector

that

has

been

defined

in

the

InterChange

Server

repository.

You

do

not

need

to

provide

code

for

the

connector

controller,

as

this

component

is

internal

to

InterChange

Server.

In

addition

to

the

features

that

the

client

connector

framework

provides,

the

connector

controller

provides

the

services

that

Table

5

summarizes.

Table

5.

Services

of

the

connector

controller

Connector

controller

service

Description

“Mapping

services”

The

connector

controller

calls

the

map

associated

with

each

business

object

to

transfer

data

between

generic

business

objects

and

application-specific

business

objects.

“Business

object

subscription

and

publishing”

on

page

13

The

connector

controller

manages

collaboration

subscriptions

to

business

object

definitions.

It

also

manages

connector

queries

about

subscription

status

for

a

business

object.

Service

call

requests

(For

more

information,

see

“Initiating

a

request

with

InterChange

Server”

on

page

25.)

The

connector

controller

delivers

collaboration

service

call

requests

to

connectors.

It

also

accepts

return

status

messages

and

business

objects

from

the

connector

and

forwards

them

to

InterChange

Server.

Communication

between

components

(For

more

information,

see

“Transport

mechanism

with

InterChange

Server”

on

page

14.)

The

connector

controller

contains

a

transport

driver

to

handle

its

side

of

the

mechanism

for

exchanging

business

objects

and

administrative

messages

between

the

connector

controller

and

client

connector

framework.

It

also

performs

remote-end

synchronization

to

manages

high-level

synchronization

between

itself

and

the

client

connector

framework.

These

services

enable

the

connector

controller

to

communicate

with

the

connector,

which

might

be

installed

remotely.

Note:

The

connector

controller

handles

its

own

internal

errors

as

well

as

errors

from

the

client

connector

framework.

In

general,

the

connector

controller

logs

exceptions

and

then

evaluates

whether

further

action

is

needed.

When

status

messages

are

returned

by

the

client

connector

framework,

the

connector

controller

forwards

the

messages

to

the

collaboration.

Mapping

services:

The

client

connector

framework

sends

and

receives

information

in

an

application-specific

business

object.

However,

a

collaboration

generates

information

in

a

generic

business

object.

Because

application-specific

business

objects

can

differ

from

generic

business

objects,

the

InterChange

Server

system

must

convert

business

objects

from

one

form

to

another

so

that

data

can

be

transmitted

across

the

system.

Data

is

transformed

between

generic

and

application-specific

business

objects

by

data

mapping.

Chapter

1.

Introduction

to

connector

development

11

Data

mapping

converts

business

objects

from

generic

to

application-specific

and

from

application-specific

to

generic

forms.

An

application-specific

business

object

closely

reflects

the

data

entity

that

it

represents.

Its

structure

and

content

match

that

of

the

entity.

A

generic

business

object,

on

the

other

hand,

typically

contains

a

superset

of

attributes

that

represents

a

typical,

cross-application

view

of

an

entity’s

data.

This

type

of

business

object

is

a

composite

of

common

information

that

many

applications

have

about

a

particular

entity.

A

generic

business

object

serves

as

an

intermediate

point

between

data

models.

Mapping

is

initiated

by

the

connector

and

executed

at

runtime.

For

example,

when

a

connector

needs

to

map

an

application-specific

business

object

to

a

generic

business

object,

it

runs

an

associated

map

to

transfer

data

between

the

application-specific

business

object

and

the

generic

business

object

before

sending

the

generic

business

object

to

a

collaboration.

Mapping

is

handled

by

the

connector

controller.

Figure

6

illustrates

the

connector

in

the

InterChange

Server

system

and

shows

the

components

of

the

connector.

For

more

information

on

data

mapping,

refer

to

the

Map

Development

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

InterChange Server

Collaboration

Generic
business
objects

App A
business
objects

App A
client connector

framework

App A
connector
controller

App B
connector
controller

App C
connector
controller

Mapping
execution

Application A Application B Application C

App B
business
objects

App B
client connector

framework

App C
business
objects

App C
client connector

framework

Figure

6.

Mapping

in

the

InterChange

Server

System

12

Connector

Development

Guide

for

C++

Business

object

subscription

and

publishing:

Subscription

handling

is

managed

through

a

subscription

list,

which

is

a

list

of

business

objects

to

which

collaborations

have

subscribed.

Both

the

connector

framework

and

the

connector

controller

maintain

a

subscription

list,

as

follows:

v

The

connector

controller

maintains

a

list

of

business

objects

to

which

collaborations

have

subscribed.

When

collaborations

start,

they

subscribe

to

the

business

objects

that

they

are

interested

in

by

informing

the

connector

controller

of

their

interest.

The

connector

controller

stores

this

information

in

a

subscription

list,

which

contains

the

name

of

the

subscribing

collaboration

and

the

business

object

definition

name

and

verb.

When

the

connector

controller

receives

a

business

object

from

the

client

connector

framework,

it

checks

its

own

subscription

list

to

determine

which

collaborations

have

subscribed

to

this

type

of

business

object.

It

then

forwards

the

business

object

to

the

subscribing

collaboration.

v

The

connector

framework

also

maintains

a

list

of

business

objects

to

which

collaborations

have

subscribed.

However,

this

subscription

list

is

a

consolidated

version

of

the

connector

controller’s

subscription

list.

At

initialization,

the

connector

downloads

its

business

object

definitions

and

configuration

properties

from

the

InterChange

Server

repository.

It

also

requests

the

subscription

list

from

the

connector

controller.

The

subscription

list

that

the

connector

controller

sends

to

the

client

connector

framework

contains

only

the

names

of

the

business

object

definitions

and

verbs

for

these

subscribed

business

objects.

The

connector

framework

stores

this

subscription

list

locally.

Whenever

a

new

collaboration

starts

up

and

subscribes

to

a

business

object,

the

connector

controller

notifies

the

connector

framework

so

that

the

local

subscription

list

is

kept

current.

As

part

of

the

initialization

of

the

client

connector

framework,

the

connector

framework

instantiates

a

subscription

manager.

The

subscription

manager

tracks

all

subscribe

and

unsubscribe

messages

that

arrive

from

the

connector

controller

and

maintains

a

list

of

active

business

object

subscriptions.

Through

the

subscription

manager,

the

application-specific

connector

component

can

query

the

connector

framework

to

find

out

whether

any

collaborations

are

interested

in

a

particular

kind

of

business

object.

Figure

7

illustrates

the

connector

architecture

for

subscription

handling.

Chapter

1.

Introduction

to

connector

development

13

For

more

information

on

subscriptions,

see

“Request

processing”

on

page

24.

Transport

layer

The

transport

layer

of

the

connector

framework

handles

the

exchange

of

information

between

the

connector

and

the

integration

broker.

The

transport

layer

of

the

connector

framework

provides

the

following

services:

v

Receives

business

objects

from

the

integration

broker

and

sends

business

objects

to

the

integration

broker:

Message

service

Description

“Request

processing”

on

page

24

Receives

a

business

object

from

the

integration

broker

and

sends

it

to

the

application-specific

component

of

the

connector

“Event

notification”

on

page

21

Receives

a

business

object

from

the

application-specific

component

of

the

connector

and

sends

it

to

the

integration

broker

v

Manages

the

exchange

of

startup

and

administrative

messages

between

the

connector

and

the

integration

broker.

v

Keeps

a

list

of

business

objects

that

are

subscribed

to

The

transport

mechanism

of

the

transport

layer

depends

on

the

integration

broker

in

your

business

integration

system:

v

“Transport

mechanism

with

InterChange

Server”

v

“Transport

mechanism

with

other

integration

brokers”

on

page

18

Transport

mechanism

with

InterChange

Server:

If

the

integration

broker

is

InterChange

Server

(ICS),

the

transport

layer

handles

the

exchange

of

information

between

the

connector

controller,

which

resides

within

ICS,

and

the

client

connector

framework.

InterChange Server

Collaboration

Collaboration

Collaboration

Connector
controller

Bus Obj Name

Bus Obj Name

Application

Bus Obj Verb

Bus Obj Verb
Subscriber

Connector framework
subscription list

Connector controller
subscription list

Client connector
framework

Application-specific
component

Figure

7.

Subscription

handling

14

Connector

Development

Guide

for

C++

Note:

For

more

information,

see

“Connector

controller”

on

page

10.

As

Figure

8

shows,

the

transport

layer

for

a

connector

that

communicates

with

InterChange

Server

might

include

two

transport

drivers,

one

for

the

Common

Object

Request

Broker

(CORBA)

and

one

for

some

message-oriented

middleware

(MOM).

Table

6

summarizes

the

tasks

that

the

transport

layer

performs

and

the

transport

mechanisms

it

can

use.

Table

6.

Tasks

of

the

transport

layer

Transport-layer

task

Transport

mechanism

Connector

startup

and

exchange

of

startup

messages

between

the

connector

controller

and

the

client

connector

framework

CORBA

Administrative

messages

about

the

state

of

the

client

connector

framework

CORBA

Sending

business

objects

to

the

connector,

initiated

with

a

collaboration

service

call

request

CORBA

Generic services (C++ class library)

Global
functions

Business
object

handler

Application
event

notification

Connector
framework

Application-
specific
component

Transport layer

Java-to-C++ translation (C++ only)

Connector controller

Application

Application interface functions

InterChange Server

Connector

Message transport
driver

CORBA IIOP
transport driver

Figure

8.

Connector

architecture

for

communicating

with

InterChange

Server

Chapter

1.

Introduction

to

connector

development

15

Table

6.

Tasks

of

the

transport

layer

(continued)

Transport-layer

task

Transport

mechanism

Sending

business

objects

from

the

connector,

initiated

with

an

event

delivery

CORBA

A

message-oriented

middleware

system,

including

one

of

the

following:

v

WebSphere

MQ

v

Java

Messaging

Service

(JMS)

This

transport

mechanism

has

the

following

tasks:

v

At

connector

startup,

the

transport

layer

uses

the

Common

Object

Request

Broker

Architecture

(CORBA)

to

transfer

information

from

InterChange

Server

to

the

memory

of

the

connector

process.

In

the

CORBA

architecture,

objects

communicate

through

the

Object

Request

Broker

(ORB).

The

ORB

is

a

set

of

libraries

and

services

that

connects

an

object,

such

as

a

connector

controller,

with

another

object,

such

as

a

client

connector

framework.

The

ORB

enables

objects

to

find

each

other

at

startup

and

to

invoke

methods

on

each

other

at

runtime.

With

the

ORB,

the

CORBA

architecture

provides

a

Naming

Service

that

allows

an

object

on

the

ORB

to

locate

another

object

by

name.

At

startup,

the

client

connector

framework

uses

the

Naming

Service

to

connect

to

the

InterChange

Server.

The

client

connector

framework

then

uses

the

ORB

to

request

its

application-specific

connector

configuration

properties

and

its

list

of

supported

business

object

definitions

from

the

repository.

For

more

information,

see

“Starting

up

a

connector”

on

page

61..

Once

the

client

connector

framework

and

connector

controller

are

active

and

connected,

the

client

connector

framework

requests

its

list

of

business

object

subscriptions.

At

this

point,

connector

initialization

is

complete,

and

the

connector

starts

polling

for

events.

v

For

administrative

messages

about

the

state

of

the

connector,

the

transport

layer

uses

CORBA

to

send

and

receive

state

information

for

the

connector

controller.

Changes

in

state

of

the

client

connector

framework

can

be

initiated

from

System

Manager

in

the

WebSphere

Business

Integration

Toolset.

Such

changes

include

start,

stop,

pause,

and

resume

operations,

as

well

as

retrieving

the

status.

In

addition,

administrative

messages

can

specify

remote

message

logging.

v

For

sending

business

objects

to

the

connector,

initiated

with

a

collaboration

service

call

request,

the

transport

layer

also

uses

CORBA.

CORBA

technology

includes

the

Internet

Inter-ORB

Protocol

(IIOP)

transport

protocol.

CORBA

IIOP

provides

a

lightweight,

high-performance,

synchronous

communication

mechanism

that

the

connector

controller

and

the

client

connector

framework

use

to

interact.

Because

the

IIOP

communication

mechanism

is

synchronous,

connector

components

can

quickly

determine

whether

a

business

object

exchange

was

successful

and

can

take

appropriate

action

if

necessary.

v

For

sending

business

objects

from

the

connector,

initiated

with

an

event

delivery,

the

connector

can

be

configured

to

use

either

CORBA

or

a

message-oriented

middleware

(MOM)

system.

When

CORBA

is

used

for

business

object

subscription

delivery,

multiple

business

objects

can

be

delivered

concurrently,

improving

performance

for

subscription

delivery.

Using

CORBA

as

a

communication

mechanism

provides

particularly

good

performance

on

a

high-bandwidth

LAN

network.

A

messaging

system

provides

asynchronous

message

delivery

across

a

network,

enabling

connector

components

to

send

a

message

and

continue

processing

16

Connector

Development

Guide

for

C++

without

waiting

for

a

response.

The

messaging

system

also

provides

persistent

messaging,

allowing

the

connector

controller

and

client

connector

framework

to

operate

independently.

Note:

In

this

case,

connector

components

continue

to

use

CORBA

for

startup

and

administrative

messages.

In

the

messaging

communication

mechanism,

message

transport

is

handled

by

transport

drivers

in

the

client

connector

framework

and

the

connector

controller.

The

message

transport

driver

implements

the

low-level

mechanism

for

exchanging

data

between

InterChange

Server

and

the

underlying

message

queuing

software.

Messages

between

the

components

of

the

connector

are

transported

in

a

format

defined

by

the

messaging

software.

This

business

integration

system

uses

CORBA

technology

provided

by

the

IBM

Object

Request

Broker

(ORB).

Figure

9

illustrates

the

CORBA

communication

mechanism.

Supported

message-oriented

middleware

includes:

v

IBM

WebSphere

MQ

messaging

suite.

In

this

system,

each

active

connector

requires

one

unidirectional

message

queue.

WebSphere

MQ

manages

the

queue

using

a

queue

manager.

In

this

business

integration

system,

each

InterChange

Server

has

one

queue

manager

for

all

system

components.

v

Java

Messaging

Service

(JMS)

Note:

To

configure

a

connector’s

transport

mechanism

for

event

delivery,

set

the

DeliveryTransport

standard

property.

For

more

information

on

this

property,

see

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

309

Connector controller

InterChange Server

Transport driver

Transport driver

Connector application-specific
component

IBM ORB
Transient

Naming Server

Application

IBM Java ORB package

IBM Java ORB package

CORBA IIOP ORB

Figure

9.

Communication

within

a

connector

using

CORBA

IIOP

Chapter

1.

Introduction

to

connector

development

17

Transport

mechanism

with

other

integration

brokers:

If

the

integration

broker

is

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

transport

layer

handles

the

exchange

of

information

between

the

connector

framework

and

the

integration

broker.

The

transport

layer

for

a

connector

that

communicates

with

the

broker

includes

a

single

transport

driver

for

the

IBM

WebSphere

MQ

messaging

suite.

Data

is

exchanged

between

applications

by

means

of

application-specific

business

objects,

which

are

transported

between

the

connector

framework

and

the

integration

broker

as

WebSphere

MQ

messages.

The

integration

broker

removes

the

message

from

the

MQ

queue,

and

passes

it

through

the

message

flow

for

the

queue.

This

transport

mechanism

uses

WebSphere

MQ

messages

to

perform

the

following

tasks:

v

For

sending

business

objects

to

the

connector,

which

initiates

request

processing,

the

transport

layer

converts

the

business

object

to

an

MQ

message

and

puts

this

message

onto

the

appropriate

WebSphere

MQ

queue.

v

For

sending

business

objects

from

the

connector,

which

initiates

an

event

delivery,

the

transport

layer

takes

the

MQ

message

off

the

appropriate

WebSphere

MQ

queue

and

converts

it

to

an

application-specific

business

object.

The

connector

framework

uses

a

custom

data

handler

to

transform

the

application-specific

business

object

to

and

from

an

MQ

message

of

the

appropriate

wire

format

for

the

destination

WebSphere

MQ

queue.

For

more

detailed

information

on

the

use

of

MQ

messages

and

a

connector,

see

the

implementation

guide

for

your

integration

broker.

C++

connector

library

The

connector

framework

includes

the

C++

connector

library,

which

provides

generic

services

and

utilities

for

connector

development.

The

primary

services

provided

by

the

C++

connector

library

are:

v

Business

object

definition

directory

–

Manages

access

to

the

business

object

definitions

supported

by

a

connector.

Business

object

definitions

are

cached

to

improve

connector

performance

in

a

distributed

environment.

v

Business

object

class

–

Provides

methods

for

processing

application

information.

This

class

allows

the

connector

to

handle

application

data

in

an

object-oriented

manner.

v

Subscription

manager

–

Enables

the

connector

to

check

whether

any

collaborations

are

interested

in

a

particular

kind

of

business

object.

v

Logging

utility

–

Enables

the

connector

to

post

messages

to

the

connector’s

standard

output.

Functionality

includes

configurable

output

destination

and

allows

assigning

error

levels

for

all

logged

messages.

v

Tracing

utility

–

Enables

the

connector

to

generate

trace

messages

for

debugging

purposes.

Note:

For

a

summary

of

the

C++

connector

library

and

its

classes,

see

Chapter

9,

“Overview

of

the

C++

connector

library,”

on

page

213.

The

C++

connector

library

is

available

on

both

Windows

and

UNIX

operating

systems

to

support

the

execution

of

C++

connectors:

v

For

Windows

systems,

the

C++

connector

library

is

a

dynamic

link

library

(DLL)

called

CwConnector.dll.

It

resides

in

the

following

directory:

ProductDir\bin

18

Connector

Development

Guide

for

C++

Development

versions

of

this

library

are

included

in

the

Connector

Development

Kit

for

C++

(CDK).

Important:

The

CDK

is

supported

only

on

Windows

systems.

For

more

information,

see

“Connector

Development

Kit”

on

page

29.

v

For

UNIX-based

systems,

the

C++

connector

library

is

a

shared

library

called

libCwConnector.

The

file

extension

depends

on

the

particular

UNIX

system

you

are

using.

This

shared

library

file

resides

in

the

following

directory:

ProductDir/lib

Because

Java

is

operating-system-independent,

the

Java

connector

library

is

available

on

all

systems

that

the

WebSphere

Business

Integration

Adapters

product

supports

Application-specific

component

The

application-specific

component

of

the

connector

contains

code

tailored

to

a

particular

application.

This

is

the

part

of

the

connector

that

you

design

and

code.

The

application-specific

component

includes:

v

A

connector

base

class

to

initialize

and

set

up

the

connector

v

A

business

object

handler

to

respond

to

request

business

objects

initialized

by

integration-broker

requests

v

If

needed,

an

event

notification

mechanism

to

detect

and

respond

to

application

events.

You

develop

your

code

for

the

application-specific

component

to

use

services

provided

by

the

connector

framework.

The

connector

class

library

provides

access

to

these

services.

You

can

write

your

connector

code

in

C++

or

Java

depending

on

the

API

provided

by

the

application.

If

the

application

API

is

written

in

C

or

C++,

you

write

the

application-specific

portion

of

the

connector

in

C++,

accessing

services

of

the

connector

framework

through

the

C++

connector

library.

At

runtime,

the

application-specific

component

is

invoked

from

a

Java

class

in

the

connector

framework.

Event-triggered

flow

The

C++

connector

library

contain

an

API

that

allows

a

user-defined

application-specific

component

to

communicate

with

an

integration

broker

through

business

objects.

Applications

can

exchange

information

with

other

applications

that

the

integration

broker

handles.

Chapter

1.

Introduction

to

connector

development

19

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

can

communicates

with

other

applications

through

executing

a

collaboration.

A

collaboration

represents

a

business

process

that

can

involve

several

applications.

A

connector

transforms

data

and

logic

into

a

business

object

that

carries

information

about

an

event

in

the

connector’s

application.

The

business

object

triggers

a

collaboration

business

process

and

provides

the

collaboration

with

information

that

it

needs

for

the

business

process.

Note:

An

external

process

can

also

initiate

execution

of

collaborations

through

a

call-triggered

flow.

For

more

information,

see

the

Access

Development

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

WebSphere

Message

Brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker),

the

connector

might

request

information

from

or

send

information

to

other

applications

through

WebSphere

MQ

workflows.

The

MQ

workflow

routes

the

information

as

appropriate.

When

an

event

occurs

in

the

application,

the

connector’s

application-specific

component

creates

a

business

object

to

represent

this

event

and

sends

the

event

to

the

integration

broker.

An

application

event

is

any

event

that

affects

an

entity

associated

with

a

business

object

definition.

To

send

an

event

to

an

integration

broker,

the

connector

initiates

an

event

delivery.

This

event

contains

a

business

object.

Therefore,

the

flow

trigger

that

a

connector

initiates

is

called

an

event-triggered

flow

(see

Figure

10).

Figure

10

shows

event-triggering

flow

within

the

IBM

WebSphere

business

integration

system,

which

involves

the

following

steps:

1.

The

connector

creates

the

triggering

event,

which

it

sends

to

the

integration

broker

during

event

delivery.

When

an

event

that

affects

an

application

entity

occurs

(such

as

when

a

user

of

the

application

creates,

updates,

or

deletes

application

data),

a

connector

creates

a

business

object,

which

contains

data

from

the

application

entity

and

a

verb

that

indicates

the

operation

performed

on

this

data.

Integration Broker

Connector

Connector
framework

Event delivery

Request

Response

Connector

Connector
framework

Information-routing
mechanism

Figure

10.

Event-triggered

flow

for

WebSphere

business

integration

system

20

Connector

Development

Guide

for

C++

2.

The

application-specific

component

of

the

connector

calls

the

gotApplEvent()

method

of

the

C++

connector

library

to

send

the

triggering

event

to

the

connector

framework.

Through

this

method

call,

the

connector

performs

an

event

delivery,

which

initiates

the

event-triggered

flow.

3.

The

connector

framework

performs

any

needed

conversion

of

the

triggering

event

to

a

business

object,

then

sends

this

event

to

the

integration

broker.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

controller

receives

the

triggering

event,

performing

any

needed

mapping

of

the

application-specific

business

object

data

to

the

appropriate

generic

business

object.

The

connector

controller

then

sends

the

triggering

event

to

the

specified

collaboration

to

trigger

its

execution.

This

collaboration

is

one

that

has

subscribed

to

the

business

object

that

the

event

represents.

The

collaboration

receives

this

business

object

in

its

incoming

port.

4.

The

integration

broker

uses

whatever

logic

it

provides

to

route

the

event

to

the

appropriate

application.

If

it

is

so

programmed,

it

might

perform

a

request,

routing

the

event

information

to

the

connector

of

some

destination

application,

which

would

receive

the

event

containing

its

request

business

object.

In

addition,

this

destination

connector

might

send

a

request

response

back

to

the

integration

broker.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

collaboration

might

perform

a

service

call

request

to

send

a

business

object

to

the

connector

controller

of

the

destination

connector,

which

is

bound

to

its

outgoing

port.

This

connector

controller

performs

any

needed

conversion

from

the

resulting

generic

business

object

to

the

appropriate

application-specific

business

object.

It

then

performs

a

service

call

response

to

send

the

event

response

to

the

connector

controller,

which

routes

it

back

to

the

collaboration.

As

Figure

10

shows,

a

connector

can

participate

in

one

of

two

roles:

v

“Event

notification”—the

connector

sends

an

event

(in

the

form

of

a

business

object)

to

the

integration

broker

to

notify

it

of

some

operation

that

has

occurred

in

the

application.

v

“Request

processing”

on

page

24—the

connector

receives

a

request

business

object

from

an

integration

broker.

Each

of

these

connector

roles

is

described

in

more

detail

in

the

following

sections.

Event

notification

One

role

of

a

connector

is

to

detect

changes

to

application

business

entities.

When

an

event

that

affects

an

application

entity

occurs,

such

as

when

a

user

of

the

application

creates,

updates,

or

deletes

application

data,

a

connector

sends

an

event

to

the

integration

broker.

This

event

contains

a

business

object

and

a

verb.

This

role

is

called

event

notification.

This

section

provides

the

following

information

about

event

notification:

v

“Publish-and-subscribe

model”

on

page

22

Chapter

1.

Introduction

to

connector

development

21

v

“Event-notification

mechanism”

Publish-and-subscribe

model

A

connector

assumes

that

the

business

integration

system

uses

a

publish-and-subscribe

model

to

move

information

from

an

application

to

an

integration

broker

for

processing:

v

An

integration

broker

subscribes

to

a

business

object

that

represents

an

event

in

an

application.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

a

collaboration

subscribes

to

a

business

object

that

represents

an

event

in

an

application,

and

then

the

collaboration

waits.

v

A

connector

uses

an

event-notification

mechanism

to

monitor

when

application

events

occur.

When

an

application

event

does

occur,

the

connector

publishes

a

notification

of

the

event

in

the

form

of

a

business

object

and

a

verb.

When

the

integration

broker

receives

an

event

in

the

form

of

the

business

object

that

it

has

subscribed

to,

it

can

begin

the

associated

business

logic

on

this

data.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

controller

checks

its

own

subscription

list

when

it

receives

a

business

object

from

the

connector

framework

to

determine

which

any

collaborations

have

subscribed

to

this

type

of

business

object.

If

so,

it

then

forwards

the

business

object

to

the

subscribing

collaboration.

When

a

collaboration

receives

the

subscribed

event,

it

begins

executing.

Event-notification

mechanism

An

event-notification

mechanism

enables

a

connector

to

determine

when

an

entity

within

an

application

changes.

When

an

event

occurs

in

an

application,

the

connector

application-specific

component

processes

the

event,

retrieves

related

application

data,

and

returns

the

data

to

the

integration

broker

in

an

business

object.

Note:

This

section

provides

an

introduction

to

event

notification.

For

more

information

on

how

to

implement

an

event-notification

mechanism,

see

Chapter

5,

“Event

notification,”

on

page

107.

The

following

steps

outline

the

tasks

of

an

event-notification

mechanism:

1.

An

application

performs

an

event

and

puts

an

event

record

into

the

event

store.

The

event

store

is

a

persistent

cache

in

the

application

where

event

records

are

saved

until

the

connector

can

process

them.

The

event

record

contains

information

about

the

change

to

an

event

store

in

the

application.

This

information

includes

the

data

that

has

been

created

or

changed,

as

well

as

the

operation

(such

as

create,

delete,

or

update)

that

has

been

performed

on

the

data.

2.

The

connector’s

application-specific

component

monitors

the

event

store,

usually

through

a

polling

mechanism,

to

check

for

incoming

events.

When

it

finds

an

event,

it

retrieves

its

event

record

from

the

event

store

and

converts

it

into

an

application-specific

business

object

with

a

verb.

22

Connector

Development

Guide

for

C++

3.

Before

sending

the

business

object

to

the

integration

broker,

the

application-specific

component

can

verify

that

the

integration

broker

is

interested

in

receiving

the

business

object.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

does

not

assume

that

the

integration

broker

is

always

interested

in

every

supported

business

objects.

At

initialization,

the

connector

framework

requests

its

subscription

list

from

the

connector

controller.

At

runtime,

the

application-specific

component

can

query

the

connector

framework

to

verify

that

some

collaboration

subscribes

to

a

particular

business

object.

The

application-specific

connector

component

can

send

the

event

only

if

some

collaboration

is

currently

subscribed.

The

application-specific

component

sends

the

event,

in

the

form

of

a

business

object

and

a

verb,

to

the

connector

framework,

which

in

turn

sends

it

to

the

connector

controller

within

ICS.

For

more

information,

see

“Mapping

services”

on

page

11.

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework

assumes

that

the

integration

broker

is

interested

in

all

the

connector’s

supported

business

objects.

If

the

application-specific

connector

component

queries

the

connector

framework

to

verify

whether

to

send

the

business

object,

it

will

receive

a

confirmation

for

every

business

object

that

the

connector

supports.

4.

If

the

integration

broker

is

interested

in

the

business

object,

the

connector

application-specific

component

sends

the

event,

in

the

form

of

a

business

object

and

a

verb,

to

the

connector

framework,

which

in

turn

sends

it

to

the

integration

broker.

Figure

11

illustrates

the

components

of

the

event-notification

mechanism.

In

event

notification,

the

flow

of

information

is

from

the

application

to

the

connector

and

then

to

the

integration

broker.

Chapter

1.

Introduction

to

connector

development

23

Request

processing

In

addition

to

detecting

application

events,

another

role

of

a

connector

is

to

respond

to

requests

from

the

integration

broker.

A

connector

receives

a

request

business

object

from

a

integration

broker

when

the

broker

requests

a

change

to

the

connector’s

application

or

needs

information

from

the

connector’s

application.

In

general,

connectors

perform

create,

retrieve,

and

update

operations

on

application

data

in

response

to

requests

from

a

collaboration.

Depending

on

the

application’s

policies,

the

connector

might

also

support

delete

operations.

This

role

is

called

request

processing.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

request

processing

can

sometimes

be

called

“service

call

request

processing”.

The

connector

receives

a

business

object

from

its

connector

controller,

which

receives

it

from

a

service

call

of

a

collaboration.

Note:

This

section

provides

an

introduction

to

request

processing.

For

more

information

on

how

to

implement

request

processing

in

your

connector,

see

Chapter

4,

“Request

processing,”

on

page

71.

Request

processing

involves

the

following

steps:

1.

As

Figure

10

on

page

20

shows,

an

integration

broker

initiates

request

processing

by

sending

a

request

to

the

connector

framework.

This

request

is

in

the

form

of

a

business

object,

called

the

request

business

object,

and

a

verb.

For

more

information,

see

“Initiating

a

request”

on

page

25.

2.

The

connector

framework

has

the

task

of

determining

which

business

object

handler

in

the

application-specific

component

should

process

the

request

business

object.

For

more

information,

see

“Choosing

a

business

object

handler”

on

page

25.

3.

The

connector

framework

passes

the

request

business

object

to

the

business

object

handler

defined

for

it

in

its

business

object

definition.

Application

Connector
framework

Integration
broker

Event
record

Event

Event
detection

Event
store

User
action

Application
entity

Event
retrieval

Information flow

Figure

11.

Event

detection

and

retrieval

24

Connector

Development

Guide

for

C++

The

connector

framework

does

this

by

calling

the

doVerbFor()

method

defined

in

the

business

object

class

and

passing

in

the

request

business

object.

The

business

object

handler

then

processes

the

business

object,

converting

it

to

one

or

more

application

requests.

4.

When

the

business

object

handler

completes

the

interaction

with

the

application,

it

returns

a

return-status

descriptor

and

possibly

a

response

business

object

to

the

connector

framework.

For

more

information,

see

“Handling

a

request

response”

on

page

26.

Initiating

a

request

The

way

a

request

is

initiated

depends

on

the

integration

broker

in

your

IBM

WebSphere

business

integration

system:

v

“Initiating

a

request

with

InterChange

Server”

v

“Initiating

a

request

with

other

integration

brokers”

Initiating

a

request

with

InterChange

Server:

If

your

business

integration

system

uses

InterChange

Server,

the

collaboration

initiates

a

service

call

request,

sending

the

request

over

one

of

its

collaboration

ports.

When

you

bind

a

port

of

a

collaboration

object,

you

associate

the

port

with

a

connector

(or

another

collaboration

object).

Collaboration

ports

enable

communication

between

bound

entities,

so

that

the

collaboration

object

can

accept

the

business

object

that

triggers

its

business

processes,

and

then

send

and

receive

business

objects

as

service

call

requests

and

responses.

Note:

For

more

information

on

how

to

define

collaboration

ports,

see

the

Collaboration

Development

Guide.

For

information

on

how

to

bind

ports

of

a

collaboration

object,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

Both

these

documents

are

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

One

the

service

call

request

is

initiated,

the

InterChange

Server

system

takes

the

following

steps:

1.

The

connector

controller

for

the

connector

bound

to

the

collaboration

port

receives

the

service

call

request.

If

necessary,

the

connector

controller

maps

the

generic

business

object

to

an

application-specific

business

object

before

sending

the

request

to

the

connector

framework.

2.

The

connector

controller

forwards

the

service

call

request

to

the

connector

framework.

The

connector

controller

sends

the

request

business

object

as

a

C++

object.

Initiating

a

request

with

other

integration

brokers:

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

integration

broker

initiates

a

request

by

sending

a

message

to

the

WebSphere

MQ

queue

associated

with

the

connector.

One

the

request

is

initiated,

the

connector

framework

gets

the

WebSphere

MQ

message

off

using

its

transport

layer

and

converts

the

message

to

the

appropriate

business

object

using

a

custom

data

handler.

For

more

information

on

the

IBM

WebSphere

business

integration

system

and

request

processing,

see

the

implementation

guide

for

your

integration

broker.

Choosing

a

business

object

handler

A

business

object

handler

is

the

Java

class

that

is

responsible

for

transforming

the

request

business

object

into

a

request

for

the

appropriate

application

operation.

An

Chapter

1.

Introduction

to

connector

development

25

application-specific

component

includes

one

or

more

business

object

handlers

to

perform

tasks

for

the

verbs

in

the

connector’s

supported

business

objects.

Depending

on

the

active

verb,

a

business

object

handler

can

insert

the

data

associated

with

a

business

object

into

an

application,

update

an

object,

retrieve

the

object,

delete

it,

or

perform

another

task.

Based

on

this

response

business

object’s

business

object

definition,

the

connector

framework

obtains

the

correct

business

object

handler

for

the

associated

business

object:

v

When

the

connector

starts

up,

the

connector

framework

receives

from

the

connector

controller

the

list

of

business

objects

that

the

connector

supports.

v

The

connector

framework

calls

the

getBOHandlerforBO()

method

(defined

in

the

connector

base

class)

to

instantiate

one

or

more

business

object

handlers.

v

For

each

supported

business

object,

the

getBOHandlerforBO()

method

returns

a

reference

to

a

business

object

handler,

and

this

reference

is

stored

in

the

business

object

definition

in

the

memory

of

the

connector

process.

All

conversions

between

business

objects

and

application

operations

take

place

within

the

business

object

handler

(or

handlers).

For

more

information

about

how

to

implement

the

getBOHandlerforBO()

method,

see

“Obtaining

the

business

object

handler”

on

page

64..

Handling

a

request

response

Once

a

connector

has

processed

this

request

and

completed

the

interaction

with

the

application,

it

can

return

a

response

to

the

integration

broker.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

returns

a

service

call

response

to

the

collaboration.

Using

information

in

the

return-status

descriptor,

the

collaboration

can

determine

the

state

of

its

service

call

request

and

take

appropriate

actions.

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework’s

response

includes:

v

A

status

indicator,

which

contains

the

information

return-status

descriptor

v

Any

business

object

messages,

which

contain

the

optional

response

business

objects

The

connector

framework

puts

this

response

information

onto

the

connector’s

queue.

However,

for

the

message

transport

to

be

synchronous

(that

is,

for

some

program

to

wait

for

a

response),

a

program

must

post

its

request

message

to

the

integration

broker

on

a

synchronous

request

queue

and

expect

its

response

from

the

broker

on

a

synchronous

response

queue.

A

correlation

ID

on

the

response

message

identifies

the

message

request

to

which

it

is

responding.

26

Connector

Development

Guide

for

C++

Tools

for

adapter

development

In

the

IBM

WebSphere

business

integration

system,

the

connector

is

a

component

of

a

WebSphere

Business

Integration

adapter.

As

discussed

in

“Adapters

in

the

WebSphere

business

integration

system”

on

page

3,

an

adapter

includes

runtime

components

to

support

communication

between

an

integration

broker

and

applications

or

technologies.

The

adapter

also

includes

an

adapter

framework,

which

includes

components

for

the

configuration,

runtime,

and

development

of

custom

adapters

in

cases

where

a

prebuilt

adapter

for

a

particular

legacy

or

specialized

application

is

not

currently

available

as

part

of

the

WebSphere

Business

Integration

Adapters

product.

The

adapter

framework

includes

configuration

tools

that

assist

in

the

development

of

the

adapter

components

listed

in

Table

7..

Table

7.

Adapter

framework

support

for

the

development

of

a

connector

Adapter

component

Configuration

tool

API

Business

object

Business

Object

Designer

Not

applicable

Object

Discovery

Agent

(ODA)

Business

Object

Designer

Object

Discovery

Agent

Development

Kit

(ODK)

Connector

Connector

Configurator

C++

Connector

Library

In

addition

to

the

adapter

framework,

the

WebSphere

Business

Integration

Adapters

product

also

provides

the

Adapter

Development

Kit

(ADK).

The

ADK

is

a

toolkit

that

provides

code

samples

of

connectors,

ODAs,

and

data

handlers.

For

more

information,

see

“Adapter

Development

Kit”

on

page

28.

Development

support

for

business

objects

Table

8

shows

the

tools

that

the

WebSphere

Business

Integration

Adapters

product

provides

to

assist

in

the

development

of

business

objects.

Table

8.

Development

tools

for

business

object

development

Development

tool

Description

Business

Object

Designer

Graphical

tool

that

assists

in

the

creation

of

business

object

definitions,

either

manually

or

through

an

ODA.

For

a

brief

introduction

to

business

objects,

see

“Business

objects”

on

page

5.

For

more

information

on

the

use

of

the

Business

Object

Designer,

see

the

Business

Object

Development

Guide.

Development

support

for

ODAs

Table

8

shows

the

tools

that

the

WebSphere

Business

Integration

Adapters

product

provides

to

assist

in

the

development

of

an

ODA.

Table

9.

Development

tools

for

ODA

development

Development

tool

Description

Business

Object

Designer

Graphical

tool

that

assists

in

the

creation

of

business

object

definitions,

either

manually

or

through

an

ODA.

Object

Discovery

Agent

Development

Kit

(ODK)

Set

of

Java

classes

with

which

you

can

create

a

custom

ODA.

Chapter

1.

Introduction

to

connector

development

27

In

addition,

the

ADK

provides

sample

ODAs

in

the

following

product

subdirectory:

DevelopmentKits\Odk

For

a

brief

introduction

to

ODAs,

see

“Business

objects”

on

page

5.

For

more

information

on

the

use

of

the

Business

Object

Designer

and

the

development

of

ODAs,

see

the

Business

Object

Development

Guide.

Development

support

for

connectors

Table

10

shows

the

tools

that

the

WebSphere

Business

Integration

Adapters

product

provides

to

assist

in

the

development

of

connectors.

Table

10.

Development

tools

for

connector

development

Development

tool

Description

Connector

Configurator

Graphical

tool

that

assists

in

the

configuration

of

the

connector

Adapter

Development

Kit

Includes

sample

code

for

C++

connectors

and

ODAs

The

supported

operating-system

environment

for

connector

development

is

Windows

2000.

Connectors

can

be

written

in

either

C++

or

Java,

depending

on

the

language

of

your

application

API.

Connector

Configurator

Connector

Configurator

is

a

graphical

tool

that

allows

you

to

configure

a

connector.

It

provides

the

ability

to

set

the

following

information:

v

Connector

configuration

properties

v

Supported

business

objects

v

Associated

maps

(with

InterChange

Server

only)

v

Log

and

message

files

v

Data-handler

configuration

(for

guaranteed

event

delivery)

This

graphical

tool

runs

on

Windows

2000.

Therefore,

this

platform

is

for

connector

configuration.

Note:

For

more

information

on

the

use

of

Connector

Configurator,

see

Appendix

B,

“Connector

Configurator,”

on

page

325.

Adapter

Development

Kit

The

Adapter

Development

Kit

(ADK)

provides

files

and

samples

to

assist

in

the

development

of

an

adapter.

It

provides

samples

for

many

of

the

adapter

components,

including

an

Object

Discovery

Agent

(ODA),

a

connector,

and

a

data

handler.

The

ADK

provides

these

samples

in

the

DevelopmentKits

subdirectory

of

your

product

directory.

Note:

The

ADK

is

part

of

the

WebSphere

Business

Integration

Adapters

product

and

it

requires

its

own

separate

Installer.

Therefore,

to

have

access

to

the

development

samples

in

the

ADK,

you

must

have

access

to

the

WebSphere

Business

Integration

Adapters

product

and

install

the

ADK.

Please

note

that

the

ADK

is

available

only

on

Windows

systems.

Table

11

lists

the

samples

that

the

ADK

provides

for

the

development

of

a

connector,

as

well

as

the

subdirectory

of

the

DevelopmentKits

directory

in

which

they

reside.

28

Connector

Development

Guide

for

C++

Table

11.

ADK

samples

for

connector

development

Adapter

Development

Kit

component

Description

DevelopmentKits

subdirectory

C++

Connector

Development

Kit

(CDK)

Provides

sample

code

for

a

C++

connector.

cdk

Connector

Development

Kit:

The

ADK

includes

the

C++

Connector

Development

Kit

(CDK),

which

provides

components

for

use

in

the

development

of

a

connector.

The

components

of

the

CDK

reside

in

the

following

ProductDir\DevelopmentKits

subdirectory:

DevelopmentKits\cdk

Table

12

describes

the

contents

of

the

subdirectories

in

the

cdk

directory.

Table

12.

Components

of

the

Connector

Development

Kit

Connector

Development

Kit

component

Description

Subdirectory

C++

connector

library

Provides

development

versions

of

the

C++

connector

library,

which

you

need

to

use

when

you

create

a

C++

connector.

For

more

information,

see

Chapter

9,

“Overview

of

the

C++

connector

library,”

on

page

213.

lib

Code

samples

Sample

code

for

a

simple

C++

connector

samples

Connector-class

header

files

Provide

definitions

for

the

classes

of

the

C++

connector

library

generic_include

The

CDK

includes

the

following

code

samples

to

help

in

the

development

of

your

C++

connector:

DevelopmentKits\cdk\samples

The

CDK

is

supported

only

on

Windows

systems.

To

compile

a

C++

connector,

use

the

compiler

in

the

Microsoft

Visual

C++

6.0

development

environment.

For

more

information,

see

“Compiling

the

connector”

on

page

198.

Note:

The

WebSphere

Business

Integration

Adapters

product

also

provides

a

Java

version

of

the

Connector

Development

Kit

for

use

in

development

connectors

in

the

Java

programming

language.

For

more

information,

see

the

Connector

Development

Guide

for

Java.

ODA

samples:

The

Adapter

Development

Kit

includes

samples

for

an

Object

Discovery

Agent

(ODA).

These

samples

reside

in

the

following

directory:

DevelopmentKits\Odk

For

more

information,

see

“Development

support

for

ODAs”

on

page

27.

Overview

of

the

connector

development

process

This

section

provides

an

overview

of

the

connector

development

process,

which

includes

the

following

high-level

steps:

1.

Install

and

set

up

the

IBM

WebSphere

business

integration

system

software.

2.

Design

and

implement

the

connector.

Chapter

1.

Introduction

to

connector

development

29

Setting

up

the

development

environment

Before

you

start

the

development

process,

the

following

must

be

true:

v

The

IBM

WebSphere

business

integration

system

software

is

installed

on

a

machine

that

you

can

access.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

refer

to

the

System

Installation

Guide

for

UNIX

or

for

Windows

for

information

on

how

to

install

and

start

up

the

InterChange

Server

system.

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker),

refer

to

the

installation

chapter

of

the

Implementing

Adapters

for

WebSphere

Message

Brokers

for

information

on

how

to

install

and

start

up

the

IBM

WebSphere

business

integration

system.

If

your

business

integration

system

uses

WebSphere

Application

Server,

refer

to

the

installation

chapter

of

the

Implementing

Adapters

for

WebSphere

Application

Server

for

information

on

how

to

install

and

start

up

the

IBM

WebSphere

business

integration

system.

v

Ensure

that

the

development

environment

can

access

the

directories

that

contain

the

connector

library

files.

To

compile

the

connector,

the

compiler

must

be

able

to

access

the

connector

library.

For

information

on

compiling

a

connector,

see

“Compiling

the

connector”

on

page

198.

InterChange

Server

v

If

your

business

integration

system

uses

InterChange

Server,

the

InterChange

Server

repository’s

database

server

and

ICS

are

running.

Note:

This

step

is

required

only

when

you

are

ready

to

configure

the

connector

with

Connector

Configurator.

For

development

only,

you

can

create

the

connector

class,

without

connecting

to

ICS.

For

an

overview

of

how

to

configure

a

connector,

see

Chapter

8,

“Adding

a

connector

to

the

business

integration

system,”

on

page

197.

For

information

on

starting

up

the

IBM

WebSphere

business

integration

system,

see

your

system

installation

guide.

End

of

InterChange

Server

Note:

To

create

a

connector,

you

do

not

need

to

run

the

messaging

software.

However,

the

messaging

software

must

be

running

before

you

can

execute

and

test

the

connector.

Stages

of

connector

development

As

part

of

the

connector

development

process,

you

code

the

application-specific

component

of

the

connector

and

then

compile

and

link

the

connector

source

files.

In

addition,

the

overall

process

of

developing

a

connector

includes

other

tasks,

30

Connector

Development

Guide

for

C++

such

as

developing

application-specific

business

objects.

Here

is

an

overview

of

the

tasks

in

the

connector

development

process:

1.

Identify

the

application

entities

that

the

connector

will

make

available

to

other

applications,

and

investigate

the

integration

features

provided

by

the

application.

InterChange

Server

2.

If

your

business

integration

system

uses

InterChange

Server,

identify

generic

business

objects

that

the

connector

will

support,

and

define

application-specific

business

objects

that

correspond

to

the

generic

objects.

3.

If

your

business

integration

system

uses

InterChange

Server,

analyze

the

relationship

between

the

generic

business

objects

and

the

application-specific

business

objects,

and

implement

the

mapping

between

them.

End

of

InterChange

Server

4.

Define

a

connector

base

class

for

the

application-specific

component,

and

implement

functions

to

initialize

and

terminate

the

connector.

5.

Define

a

business

object

handler

class

and

code

one

or

more

business

object

handlers

to

handle

requests.

6.

Define

a

mechanism

to

detect

events

in

the

application,

and

implement

the

mechanism

to

support

event

subscriptions.

7.

Implement

error

and

message

handling

for

all

connector

methods.

8.

Build

the

connector.

9.

Configure

the

connector.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

use

Connector

Configurator

to

create

the

connector

definition

and

save

it

in

the

InterChange

Server

repository.

You

can

call

Connector

Configurator

from

System

Manager.

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

use

Connector

Configurator

to

define

and

create

the

connector

configuration

file.

10.

If

WebSphere

MQ

will

be

used

for

messaging

between

connector

components,

add

message

queues

for

the

connector.

11.

Create

a

startup

script

for

the

new

connector.

12.

Test

and

debug

the

connector,

recoding

as

necessary.

Figure

12

provides

a

visual

overview

of

the

connector

development

process

and

provides

a

quick

reference

to

chapters

where

you

can

find

information

on

specific

topics.

Note

that

if

a

team

of

people

is

available

for

connector

development,

the

major

tasks

of

developing

a

connector

can

be

done

in

parallel

by

different

members

of

the

connector

development

team.

Chapter

1.

Introduction

to

connector

development

31

Task: Steps:

Design connector
architecture

* Identify application entities to export

* Investigate application integration

Refer to:

Design and develop
business objects

Code the connector

Add the connector
to the business
integration system

Test and debug

* Design structure of business objects

* Implement business objects

* Derive the connector base class and
implement init() and terminate()
functions

* Derive business-object-handler class
and implement business object
processing

* Implement event notification

* Configure the connector definition

* Add message queues, if necessary

* Configure the connector

* Test connector in the IBM WebSphere
business integration system

Chapter 2

Chapter 3

Chapter 8

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Develop maps generic and application-specific business

Map
Development
Guide

* Implement error and message handling

* Implement the connector

* (ICS only) Implement mapping between
generic and application-specific business
objects

* Create a startup script

* Recode as needed

Figure

12.

Overview

of

the

C++

connector

development

process

32

Connector

Development

Guide

for

C++

Part

2.

Building

a

connector

©

Copyright

IBM

Corp.

1997,

2003

33

34

Connector

Development

Guide

for

C++

Chapter

2.

Designing

a

connector

This

chapter

provides

an

overview

of

analysis

and

design

issues

to

consider

when

planning

a

connector

development

project.

The

chapter

presents

topics

that

can

help

you

judge

the

complexity

of

building

a

connector

for

your

application

or

technology.

As

with

most

software

development

projects,

careful

planning

early

in

the

connector

development

cycle

helps

prevent

problems

during

later

implementation

phases.

This

chapter

contains

the

following

sections:

v

“Scope

of

a

connector

development

project”

v

“Designing

the

connector

architecture”

on

page

36

v

“Designing

application-specific

business

objects”

on

page

41

v

“Event

notification”

on

page

49

v

“Communication

across

operating

systems”

on

page

50

v

“Summary

set

of

planning

questions”

on

page

50

v

“An

internationalized

connector”

on

page

53

Scope

of

a

connector

development

project

IBM

provides

a

connector

framework

as

part

of

the

C++

Connector

Development

Kit.

The

connector

framework

contains

all

the

code

necessary

for

the

connector

to

interact

with

an

integration

broker

and

provides

a

basic

infrastructure

for

interaction

with

the

application.

Your

task

as

a

connector

developer

is

to

code

the

application-specific

component

of

a

connector,

and

if

necessary,

develop

the

event

notification

mechanism.

The

complexity

of

the

design

for

your

connector

and

the

time

required

for

the

connector’s

implementation

will

vary

based

on

the

application.

To

understand

the

scope

and

complexity

of

a

connector

development

project,

you

may

want

to

develop

a

project

plan

before

beginning

a

new

connector.

As

you

develop

the

project

plan,

you

need

to

identify

the

business

requirements

for

the

connector,

define

the

application

data

that

the

connector

will

handle,

and

determine

what

application

business

processes

the

connector

and

business

objects

will

work

with.

Developing

a

project

plan

can

help

you

understand

application

functionality

in

the

areas

of

business

objects,

business

object

processing,

and

event

management.

Working

through

the

topics

in

this

chapter

can

help

you

estimate

the

time

and

effort

needed

to

complete

the

connector

development

task.

Each

topic

provides

a

set

of

questions

that

are

intended

to

develop

understanding

of

specific

aspects

of

an

application

that

might

increase

or

decrease

the

complexity

of

the

connector

development

task.

A

complete

set

of

answers

to

the

questions

for

each

topic

provides

a

high-level

architecture

for

your

connector.

Step

in

connector

design

For

more

information

Obtain

information

about

the

application

that

is

relevant

to

the

design

of

the

connector

architecture.

“Designing

the

connector

architecture”

on

page

36

©

Copyright

IBM

Corp.

1997,

2003

35

Step

in

connector

design

For

more

information

Ensure

that

application-specific

business

objects

adequately

represent

the

application

entities

that

the

connector

needs

to

export.

“Designing

application-specific

business

objects”

on

page

41

Design

the

event

notification

mechanism

so

that

the

application

can

notify

the

connector

of

relevant

events.

“Event

notification”

on

page

49

Designing

the

connector

architecture

To

design

the

connector

architecture,

consider

evaluating

the

following

areas

of

the

application

that

the

connector

is

to

support:

v

“Understanding

the

application

environment”

on

page

37

v

“Determining

connector

directionality”

on

page

38

v

“Getting

data

in

and

out

of

the

application”

on

page

39

The

specific

areas

within

an

application

that

affect

connector

design

are

illustrated

in

Figure

13..

In

this

figure,

the

clouds

show

the

high-level

tasks

required

for

connector

development.

36

Connector

Development

Guide

for

C++

Understanding

the

application

environment

Understanding

the

application

environment

is

the

first

step

in

assessing

the

feasibility

of

a

connector

development

project.

To

obtain

an

understanding

of

the

aspects

of

an

application

that

affect

connector

development,

consider

these

topics

and

questions:

Operating

system

v

What

operating

system

does

the

application

run

on?

Programming

languages

v

What

programming

languages

were

used

to

create

the

application?

Generic services (C++ class library)

Global
functions

Business
object

handler

Application
event

notification

Transport driver

Java-to-C++ translation (C++ only)

Connector controller

Application interface functions

Transport driver

Mapping services
Application

Application database

Application entities

Event management
and

notification

Application
object interface

mechanism

Connector OS to Application OS
communication mechanism

InterChange Server -
Operating system

Application
operating system

Requires definition
for connector design

Structure defined;
requires implementation
based on application

Component part of
IBM business integration
system

Connector

Application libraries

Figure

13.

Areas

of

an

application

that

affect

connector

design

Chapter

2.

Designing

a

connector

37

Application

execution

architecture

v

What

is

the

execution

architecture

of

the

application?

For

example,

in

a

centralized

architecture,

the

application

and

its

database

might

both

reside

on

a

mainframe

system.

In

this

case,

both

application

processing

and

database

processing

occur

on

this

central

system.

Alternatively,

in

a

client-server

architecture,

the

database

might

reside

on

a

server,

and

the

application

front-end

program

might

be

a

client

running

on

another

machine,

such

as

a

personal

computer.

Other

types

of

application

execution

architecture

are

online

transaction

processing

and

file

server

architecture.

Database

type

v

Is

there

a

central

database

for

application

data?

If

application

data

is

stored

in

a

central

database,

what

type

of

database

is

it?

Example

database

types

are

RDMS

and

flat

file.

Distributed

application

v

Is

the

application

distributed

across

multiple

servers?

v

Is

the

application

database

distributed

across

multiple

servers?

During

project

assessment,

you

may

want

to

identify

and

work

with

an

application

expert.

This

person

can

also

provide

assistance

during

business

object

development

and

connector

development.

Determining

connector

directionality

Early

on

in

the

project

planning

phase,

you

need

to

determine

what

roles

the

connector

will

perform

for

the

application:

v

Request

processing—Update

application

data

at

the

request

of

an

integration

broker.

For

more

information,

see

“Request

processing”

on

page

24..

v

Event

notification—Detect

application

events

and

send

notification

of

events

to

the

integration

broker.

For

more

information,

see

“Event

notification”

on

page

21..

These

roles

determine

the

directionality

that

the

connector

supports:

v

Unidirectional—

some

connectors

might

need

to

operate

in

only

one

direction,

passing

data

from

the

application

to

the

integration

broker,

or

from

the

integration

broker

to

the

application.

–

To

inform

an

integration

broker

that

changes

have

occurred

in

the

application,

a

connector

must

support

event

notification.

–

To

receive

data

from

an

integration

broker,

a

connector

must

support

request

processing,

in

which

it

interacts

with

the

application

to

support

Create,

Retrieve,

Update,

or

Delete

operations

as

requested

by

the

integration

broker.

For

example,

a

connector

might

simply

need

to

receive

request

business

objects

from

an

integration

broker

and

pass

them

to

an

application.

The

connector

for

an

application

that

serves

only

as

the

destination

is

a

unidirectional

connector

–

it

implements

request

handling

to

pass

data

to

the

application,

but

it

does

not

implement

event

notification.

Knowing

early

in

the

development

cycle

that

your

connector

will

operate

unidirectionally

can

save

a

significant

amount

of

development

time.

v

Bidirectional—most

connectors

need

to

operate

in

both

directions,

passing

data

from

the

application

to

an

integration

broker

and

receiving

data

back

from

the

integration

broker.

38

Connector

Development

Guide

for

C++

To

be

bidirectional,

your

connector

needs

to

support

both

event

notification

and

request

processing.

For

information

on

how

to

provide

event

notification

support

in

your

connector,

see

Chapter

5,

“Event

notification,”

on

page

107.

Getting

data

in

and

out

of

the

application

An

important

aspect

of

the

connector

development

project

plan

is

to

determine

how

the

connector

will

get

data

into

and

out

of

the

application.

Ideally,

an

application

provides

an

application

programming

interface

(API)

that

includes

all

of

the

following

features:

v

Support

for

Create,

Retrieve,

Update,

and

Delete

(CRUD)

operations

at

the

object

level

v

Encapsulation

of

all

of

the

application

business

logic

v

Support

for

delta

and

after-image

operations

v

An

event-management

strategy

that

allows

external

notification

at

the

subobject

level.

Typically,

however,

an

application

interface

falls

short

of

this

ideal.

In

your

project

plan,

you

need

to

establish

whether

a

formal

application

API

exists

and

evaluate

its

robustness,

or,

if

an

API

does

not

exist,

determine

whether

there

is

a

suitable

workaround.

Keep

in

mind

that

an

application

CRUD

interface

can

be

anything

from

batch

file

imports

and

extracts

to

a

COM/DCOM

server,

so

be

sure

to

explore

all

possible

avenues.

Refer

to

the

application

business

object

scope

specified

in

Table

13

when

exploring

the

application

object

CRUD

interface.

Consider

the

following

tasks:

v

“Examining

previous

integration

efforts”—Have

there

been

any

other

efforts

to

integrate

with

this

application?

v

“Determining

whether

application

data

is

shared

with

other

applications”

on

page

40—Is

the

application

data

shared

by

other

applications?

v

“Examining

an

application

API”

on

page

40—Is

there

an

existing

mechanism

that

the

connector

can

use

to

communicate

with

the

application?

v

“Application

use

of

batch

clean-up

or

merge

programs”

on

page

41—Does

the

application

use

batch

clean-up

or

merge

programs?

These

questions

are

discussed

in

more

detail

in

the

following

sections.

Examining

previous

integration

efforts

If

you

have

access

to

previous

efforts

to

integrate

other

applications

with

your

application,

you

might

be

able

to

find

ways

of

getting

data

into

and

out

of

the

application.

Even

if

you

decide

to

implement

another

approach

to

application

integration,

the

previous

integration

effort

may

provide

useful

design

information.

When

examining

previous

integration

efforts,

consider

these

questions:

v

What

was

the

purpose

of

the

integration?

v

Does

the

integration

use

interfaces

that

modify

or

retrieve

information

from

the

application?

If

so,

describe

the

mechanism

used

to

modify

or

retrieve

information.

v

If

the

integration

can

process

an

event

generated

in

the

application,

what

is

the

mechanism

used

to

trigger

event

processing?

v

What

is

the

mode

of

the

existing

integration?

(batch,

asynchronous,

and

so

on)

Chapter

2.

Designing

a

connector

39

v

Will

your

connector

replace

the

pre-existing

integration?

If

not,

will

previous

integrations

work

with

the

data

entities

that

your

connector

will

be

working

with?

In

your

answers,

include

information

on

all

previous

integration

efforts

that

interact

with

the

application

in

different

ways.

Determining

whether

application

data

is

shared

with

other

applications

Your

application

might

be

one

of

several

applications

creating

or

updating

data

in

a

single

database.

In

this

case,

your

connector

might

have

to

consider

an

application

data

entity

based

on

work

that

other

applications

are

also

doing.

If

you

determine

that

your

connector

will

be

sharing

application

data

with

other

applications,

consider

these

questions:

v

What

is

the

mechanism

used

by

the

other

applications

to

gain

access

to

the

application

data?

v

Do

other

applications

create,

retrieve,

update,

or

delete

application

data?

If

so,

what

mechanism

do

other

applications

use

for

each

verb?

v

Is

there

object-specific

business

logic

used

by

other

applications?

Is

the

logic

consistent

throughout

all

of

the

applications?

Provide

answers

to

these

questions

for

all

applications

that

share

the

application

data.

Examining

an

application

API

If

the

application

provides

an

API

or

other

mechanism

that

the

connector

can

use

to

communicate

with

the

application,

examine

the

API

and

review

any

available

documentation.

Keep

in

mind

the

following

questions

about

the

API:

v

Does

the

API

allow

access

for

Create,

Retrieve,

Update,

and

Delete

operations?

v

Does

the

API

provide

access

to

all

attributes

of

a

data

entity?

v

Are

there

inconsistencies

in

the

API

implementation?

Is

the

navigation

to

Create/Retrieve/Update/Delete

the

same

regardless

of

the

entity?

v

Describe

the

transaction

behavior

of

the

API.

For

example,

an

API

might

simply

enable

the

connector

to

run

a

report,

which

the

connector

can

then

read

and

use

for

processing.

Or

the

API

might

be

more

robust,

providing

ways

of

performing

asynchronous

or

synchronous

Create

and

Update

operations.

v

Does

the

API

allow

access

to

the

application

for

event

detection?

For

example,

if

an

application

event-notification

mechanism

uses

a

database

table

as

an

event

store,

does

the

API

allow

access

to

this

table?

v

Is

the

API

suited

for

metadata

design?

APIs

that

are

forms-based,

table-based,

or

object-based

are

good

candidates.

For

information

on

metadata

design,

see

“Assessing

support

for

metadata-driven

design”

on

page

45.

v

Does

the

API

enforce

application

business

rules?

In

other

words,

is

it

an

API

that

interacts

at

the

table

level,

form

level,

or

object

level?

The

recommended

approach

to

connector

development

is

to

use

whatever

API

the

application

provides.

The

use

of

an

API

helps

ensure

that

connector

interactions

with

the

application

abide

by

application

business

logic.

In

particular,

a

high-level

API

is

usually

designed

to

include

support

for

the

business

logic

in

the

application,

whereas

a

low-level

API

might

bypass

application

business

logic.

As

an

example,

a

high-level

API

call

to

create

a

new

record

in

a

database

table

might

evaluate

the

input

data

against

a

range

of

values,

or

it

might

update

several

40

Connector

Development

Guide

for

C++

associated

tables

as

well

as

the

specified

table.

Using

SQL

statements

to

write

directly

to

the

database

may

bypass

the

data

evaluation

and

related

table

updates

performed

by

an

API.

If

no

API

is

provided,

the

application

might

allow

its

clients

to

access

its

database

directly

using

SQL

statements.

If

you

use

SQL

statements

to

update

application

data,

work

closely

with

someone

who

knows

the

application

well

so

that

you

can

be

sure

that

your

connector

will

not

bypass

application

business

logic.

This

aspect

of

the

application

has

a

major

impact

on

connector

design

because

it

affects

the

amount

of

coding

that

the

connector

requires.

The

easiest

application

for

connector

development

is

one

that

interacts

with

its

database

through

a

high-level

API.

If

the

application

provides

a

low-level

API

or

has

no

API,

the

connector

will

probably

require

more

coding.

Application

use

of

batch

clean-up

or

merge

programs

A

final

aspect

of

the

application

business

object

interface

that

you

need

to

investigate

is

whether

the

application

uses

any

batch

clean-up

or

merge

programs

to

purge

redundant

or

invalid

data.

For

example,

an

application

may

run

a

batch

program

once

a

day

to

standardize

site

names

that

operators

may

have

typed

in

incorrectly

or

incompletely.

This

program

might,

for

example,

change

all

sites

named

IBM

WebSphere

to

IBM

WebSphere

Software.

When

this

type

of

batch

program

runs,

all

changes

to

the

database

may

also

need

to

flow

through

an

InterChange

Server

customer

synchronization

system.

A

program

like

this

may

result

in

hidden

requirements

for

your

connector.

For

example,

even

if

it

appears

initially

that

your

connector

does

not

need

to

provide

Delete

functionality,

you

may

need

to

provide

Delete

functionality

to

support

a

batch

clean-up

program

that

deletes

all

sites

named

IBM

WebSphere.

You

may

decide

that

you

want

to

handle

batch

clean-up

tasks

periodically,

such

as

once

a

month,

rather

than

synchronously.

In

any

case,

an

important

planning

task

is

to

gather

information

about

any

programs

that

result

in

unanticipated

requirements

for

your

connector.

Designing

application-specific

business

objects

Application-specific

business

objects

are

the

units

of

work

that

are

triggered

within

the

application,

created

and

processed

by

the

connector,

and

sent

to

the

integration

broker.

A

connector

uses

these

business

objects

to

export

data

from

its

application

to

other

applications

and

to

import

data

from

other

applications.

The

connector

exposes

all

the

information

about

an

application

entity

that

is

necessary

to

allow

other

applications

to

share

the

data.

Once

the

connector

makes

the

entity

available

to

other

applications,

the

integration

broker

can

route

the

data

to

any

number

of

other

applications

through

their

connectors.

Designing

the

relationship

between

the

connector

and

its

supported

application-specific

business

objects

is

one

of

the

tasks

in

connector

development.

Application-specific

business

object

design

can

generate

requirements

for

connector

programming

logic

that

must

be

integrated

into

the

connector

development

process.

Therefore,

business

object

and

connector

developers

must

work

together

to

develop

specifications

for

the

connector

and

its

business

objects.

Consider

the

following

design

guidelines

when

you

design

your

application-specific

business

objects:

Chapter

2.

Designing

a

connector

41

1.

Determine

what

application

entities

the

connector

will

work

with.

2.

Determine

the

scope

of

business

object

development.

3.

Determine

support

for

a

metadata-driven

design.

Note:

For

more

information

about

the

design

of

application-specific

business

objects,

see

the

Business

Object

Development

Guide.

Determining

the

application

entities

The

complexity

of

business

objects

can

have

a

significant

impact

on

the

amount

of

work

that

is

necessary

to

build

a

connector.

A

first

step

in

identifying

application-specific

business

objects

is

to

determine

what

application

entities

the

connector

will

work

with.

You

can

identify

application

entities

that

the

connector

will

work

with

in

two

ways:

v

Focus

on

existing

InterChange

Server

collaborations

whose

business

processes

correspond

to

those

of

your

application.

v

Focus

on

other

applications

that

you

want

to

integrate

with

your

application.

Design

focus

on

InterChange

Server

collaborations

If

you

are

using

InterChange

Server

as

your

integration

broker,

one

way

to

begin

identifying

application-specific

business

objects

is

to

list

the

InterChange

Server

collaborations

that

you

want

the

application

to

work

with.

Consider

the

features

of

each

collaboration,

and

note

which

generic

business

objects

each

collaboration

references.

Using

this

list,

you

can

decide

what

kinds

of

business

objects

allow

your

application

to

work

with

the

collaboration.

For

example,

you

may

decide

that

you

want

to

use

your

application

with

the

Customer

Manager

collaboration.

In

this

case,

the

connector

must

handle

customer

entities.

The

connector

might

extract

customer

data

from

the

application

to

forward

to

the

collaboration

or

receive

customer

data

from

the

collaboration

to

pass

back

to

the

application.

Design

focus

on

other

applications

Alternatively,

you

might

start

the

connector

development

task

by

looking

at

other

applications

with

which

you

want

to

integrate.

As

you

examine

your

application

and

other

applications,

you

can

determine

what

business

processes

you

want

to

share

across

applications

and

identify

what

data

you

want

to

exchange.

The

goal

is

to

determine

what

entities

in

your

application

make

sense

to

implement

as

business

objects

to

enable

integration

with

other

applications.

For

example,

if

your

application

stores

customer

data,

you

may

want

to

keep

the

customer

database

consistent

with

the

customer

database

in

another

application.

To

synchronize

customer

data,

you

need

to

know

about

the

customer

entity

that

each

application

publishes.

Figure

14

illustrates

a

design

approach

that

focuses

on

integrating

with

other

applications.

42

Connector

Development

Guide

for

C++

Design

focus

on

the

application

Use

the

following

topics

and

questions

to

gather

more

information

about

application

entities

and

business

objects:

v

“Contained

entities”

v

“Database

representation

of

entities”

v

“Denormalization

of

application

entities”

on

page

44

v

“Batch

processing

of

application

entities”

on

page

44

Contained

entities:

v

Do

the

application

entities

have

contained

entities?

For

example,

in

many

applications

a

contract

entity

has

one

to

many

line

items.

The

IBM

WebSphere

Business

Integration

Contract

business

object

contains

child

line

items

as

business

objects.

Determine

whether

the

entities

your

connector

will

work

with

have

related

entities

that

will

be

defined

as

child

business

objects.

Database

representation

of

entities:

v

Are

there

application

business

entities

that

are

the

same

type

but

that

have

different

physical

representations

in

the

application?

For

example,

an

application

may

have

two

types

of

contracts:

hardware

contracts

and

software

contracts.

Both

are

of

type

Contract,

but

they

are

stored

in

different

tables

in

the

application

database.

In

addition,

the

attributes

for

each

Contract

type

differ.

Because

a

single

set

of

maps

can

convert

between

only

one

generic

business

object

and

one

application-specific

business

object,

developers

for

this

application

must

design

business

objects

to

account

for

the

different

entities

in

the

application.

For

example,

they

may

need

to

redesign

the

IBM

WebSphere

Business

Integration

generic

business

object,

create

new

generic

child

business

objects,

and

create

new

maps.

Figure

15

shows

the

business

objects

that

may

result

from

multiple

application

entities

of

the

same

type.

It

illustrates

the

creation

of

two

generic

child

business

objects,

one

that

contains

data

specific

to

hardware

contracts

and

one

that

contains

data

specific

to

software

contracts.

Application A Application B

Application entities
correspond

Order
entity

SalesReps
entity

Customer
entity

Customer
entity

Invoice
entity

Offices
entity

Figure

14.

Design

focus:

identify

applications

with

which

to

integrate

Chapter

2.

Designing

a

connector

43

Denormalization

of

application

entities:

Are

there

application

entities

that

reside

in

more

than

one

location

in

the

database

but

that

correspond

to

the

same

logical

entity?

For

example,

Contract,

Customer,

and

Contact

entities

might

each

have

Customer

address

fields

as

part

of

the

physical

table

definition

for

each

entity.

If

the

Customer

address

field

changes

in

one

entity,

it

must

be

updated

in

all

entities.

However,

the

address

fields

might

be

consolidated

into

an

Address

business

object

that

needs

to

be

updated

for

the

Contact,

Customer,

and

Contract

business

objects

if

the

address

changes

for

any

of

the

entities.

In

this

case,

the

Address

business

object

would

be

referenced

rather

than

contained

by

the

top-level

business

objects

that

use

the

data.

Batch

processing

of

application

entities:

Are

there

batch

processes

associated

with

the

creation

of

application

entities?

In

some

applications,

batch

processing

may

add

data

to

entities.

As

an

example,

a

data

entry

operator

may

enter

a

new

customer

into

the

application

database

at

11:00

AM,

but

the

customer

record

will

not

be

complete

until

a

7:00

PM

batch

job

runs

to

fill

in

some

remaining

values.

If

a

batch

process

is

associated

with

application

entities

and

the

process

adds

important

or

required

data,

you

need

to

determine

when

the

business

object

is

generated.

For

example:

v

If

the

batch

process

generates

the

event

notification,

the

event

will

trigger

the

connector

to

send

a

complete

business

object

into

the

IBM

WebSphere

business

integration

system.

v

If

the

operator’s

Save

operation

generates

the

event

notification,

the

event

may

trigger

the

connector

to

send

an

incomplete

business

object.

If

there

is

a

need

for

real-time

data

synchronization,

but

there

are

batch

processes

running

in

the

background,

your

connector

development

plans

must

account

for

this.

HW_CONTRACT

SW_CONTRACT

Application database

SW_Contract

Type =

App_HWContract

App_SWContract

InterChange Server

Generic
business
objects

Application
Contract

HW_Contract

Mapping

Mapping

Application-specific
business objects

Figure

15.

Database

representation

of

application

entities

44

Connector

Development

Guide

for

C++

Determining

the

scope

of

business

object

development

When

you

have

determined

at

a

high

level

what

business

objects

you

need

to

define,

you

then

need

to

determine

the

verb

support

for

the

business

object

development,

as

follows:

1.

Use

Table

13

to

create

a

verb-scope

summary

for

each

business

object

and

verb

combination

that

your

connector

will

support.

2.

Use

the

completed

scope

summary

to

assemble

information

about

each

business

object.

Table

13.

Business

Object

Verb-Scoping

Summary

Business

object

name

Required

request

Verbs

(request

processing)

Required

delivery

verbs

(application

event

notification)

Object

1

O

Create

O

Update

O

Delete

O

Create

O

Update

O

Delete

Object

2

O

Create

O

Update

O

Delete

O

Create

O

Update

O

Delete

Object

n

O

Create

O

Update

O

Delete

O

Create

O

Update

O

Delete

Important:

Most

connectors

must

support

the

Retrieve

verb

for

each

business

object;

therefore,

it

is

not

included

in

Table

13..

Assessing

support

for

metadata-driven

design

In

addition

to

its

structure

and

attributes,

a

business

object

definition

can

contain

application-specific

information,

which

can

provide

processing

instructions

or

information

on

how

the

business

object

is

represented

in

the

application.

Such

information

is

called

metadata.

Metadata

can

include

any

information

that

the

connector

needs

in

its

interactions

with

the

application.

For

example,

if

a

business

object

definition

for

a

table-based

application

includes

metadata

that

provides

the

application

table

and

column

names,

the

connector

can

locate

requested

data

using

this

information,

and

the

application

column

names

do

not

need

to

be

encoded

in

the

connector.

Because

the

connector

has

access

to

its

supported

business

object

definitions

at

runtime,

it

can

use

the

metadata

in

the

business

object

definition

to

dynamically

determine

how

to

process

a

particular

business

object.

Depending

on

the

application

and

its

programming

interface

(API),

a

connector

and

its

business

objects

might

be

designed

based

on

the

ability

to

support

the

use

of

metadata,

as

Table

14

shows.

Table

14.

Connector

support

for

metadata

Connector’s

use

of

metadata

Business

object

handlers

required

For

more

information

Entirely

driven

by

the

processing

instructions

in

the

metadata

of

its

business

object

definitions

One

generic

metadata-drive

business

object

handler

“Metadata-driven

connectors”

on

page

46

Partially

driven

by

the

metadata

in

its

business

object

definitions

One

partially

metadata-driven

business

object

handler

“Partially

metadata-driven

connectors”

on

page

47

Cannot

use

metadata

Separate

business

object

handler

for

each

business

object

that

does

not

use

metadata

“Connectors

that

do

not

use

metadata”

on

page

48

While

some

application

interfaces

have

constraints

that

restrict

the

use

of

metadata

in

connector

and

business

object

design,

a

worthwhile

goal

for

connector

Chapter

2.

Designing

a

connector

45

development

is

to

make

the

connector

as

metadata

driven

as

possible.

Advantages

and

disadvantages

of

the

approaches

in

Table

14

are

discussed

below.

Metadata-driven

connectors

To

be

able

to

support

metadata-driven

design,

the

application

API

must

be

able

to

specify

what

objects

in

the

application

are

to

be

acted

upon.

In

general,

this

means

that

you

can

use

the

business

object

metadata

to

provide

information

about

the

application

entity

to

be

acted

upon

and

the

attribute

data

as

the

values

for

that

object.

A

metadata-driven

connector

can

then

use

the

business

object

values

and

the

metadata

(the

application-specific

information

that

the

business

object

definition

contains)

to

build

the

appropriate

application

function

calls

or

SQL

statements

to

access

the

entity.

The

function

calls

perform

the

required

changes

in

the

application

for

the

business

object

and

verb

the

connector

is

processing.

Applications

based

on

forms,

tables,

or

objects

are

well

suited

for

metadata-driven

connectors.

For

example,

applications

that

are

forms-based

consist

of

named

forms.

Programmatic

interaction

with

a

forms-based

application

consists

of

opening

a

form,

reading

or

writing

fields

on

the

form,

and

then

saving

or

dismissing

the

form.

The

connector

for

such

an

application

can

be

driven

directly

by

the

business

object

definitions

that

the

connector

supports.

The

main

benefit

to

a

metadata-driven

connector

is

that

the

connector

can

use

one

generic

business

object

handler

for

all

business

objects.

In

this

approach,

the

business

object

definition

contains

all

the

information

that

the

connector

needs

to

process

the

business

object.

Because

the

business

object

itself

contains

the

application-specific

information,

the

connector

can

handle

new

or

modified

business

objects

without

requiring

modifications

to

the

connector

source

code.

The

connector

can

be

written

in

a

generic

manner,

with

a

single

metadata-driven

business

object

handler,

which

does

not

contain

hard-coded

logic

for

processing

specific

business

objects.

Note:

Business

object

names

should

not

have

semantic

value

to

the

connector.

The

connector

should

process

identically

two

business

objects

with

the

same

structure,

data,

and

application-specific

information

with

different

names.

WebSphere

InterChange

Server

Figure

16

shows

an

application-specific

business

object

and

a

connector

with

a

meta-data-driven

business

object

handler.

The

processing

instructions

in

the

application-specific

information

of

the

App_Order

business

object

tell

the

connector

how

to

process

the

business

object.

46

Connector

Development

Guide

for

C++

Because

a

metadata-driven

connector

derives

its

processing

instructions

from

its

application-specific

business

objects,

the

business

objects

must

be

designed

with

this

type

of

processing

in

mind.

This

approach

to

connector

and

business

object

design

provides

flexibility

and

easy

extensibility,

but

it

requires

more

planning

in

the

design

phase.

When

connectors

are

designed

to

work

with

business

object

metadata,

the

business

object

itself

can

be

changed

without

requiring

corresponding

changes

in

the

connector.

For

more

information

on

designing

a

metadata-driven

business

object

handler,

see

“Implementing

metadata-driven

business

object

handlers”

on

page

72.

Partially

metadata-driven

connectors

IBM

encourages

the

metadata

approach

for

designing

connectors

and

application-specific

business

object

definitions.

However,

some

applications

might

not

be

suited

for

this

approach.

Application

APIs

that

are

specific

for

each

entity

in

an

application

make

it

more

difficult

to

write

a

metadata-driven

connector.

Often

the

issue

is

that

the

call

itself

differs

between

objects

in

some

structural

way,

rather

than

just

in

the

name

of

the

method

or

the

data

that

is

passed.

Sometimes

you

can

still

drive

a

connector

with

metadata,

though

this

metadata

does

not

contain

the

actual

processing

instructions.

This

partially

metadata-driven

connector

can

use

the

metadata

in

the

business

object

definition

or

attributes

to

help

determine

what

processing

to

perform.

For

example,

an

application

that

has

a

large

amount

of

business

logic

embedded

in

its

user

interface

might

have

restrictions

on

how

an

external

program,

such

as

a

connector,

can

get

information

into

and

out

of

its

database.

In

some

cases,

it

may

be

necessary

to

provide

an

extension

to

the

application

using

the

application

environment

and

application

programming

interface.

You

may

need

to

add

object-specific

modules

to

the

application

to

handle

the

processing

for

each

business

object.

The

application

may

require

the

use

of

its

application

environment

and

interface

to

ensure

that

application

business

logic

is

enforced

and

not

bypassed.

In

this

case,

the

business

object

and

attribute

application-specific

information

can

still

contain

metadata

for

the

connector.

This

metadata

specifies

the

name

of

the

module

or

API

call

needed

to

perform

operations

for

the

business

object

in

the

application.

The

connector

can

still

be

implemented

with

a

single

business

object

handler,

but

it

is

a

partially

metadata-driven

business

object

handler

because

this

metadata

does

not

contain

the

processing

instructions.

Connector

Collaboration

InterChange
Server

Connector
controller

Metadata-driven
business

object handler

App_Order
business

object

Application

Processing instructions
in the metadata of the

business object

Figure

16.

Using

metadata

in

the

business

object

for

processing

instructions

Chapter

2.

Designing

a

connector

47

Figure

17

illustrates

an

application

extension

that

is

responsible

for

handling

requests

from

the

connector.

The

extension

contains

separate

modules

for

each

business

object

supported

by

the

connector.

The

benefit

to

the

partially

metadata-driven

connector

is

that

it

still

uses

just

one

business

object

handler.

However,

unlike

with

a

metadata-driven

connector,

there

is

coding

to

do

when

new

business

objects

are

created

for

the

connector.

In

this

case,

new

object

functions

must

be

written

and

added

to

the

application,

but

the

connector

does

not

need

to

be

recoded

or

recompiled.

Connectors

that

do

not

use

metadata

If

the

application

API

does

not

provide

the

ability

to

specify

what

entities

in

the

application

are

to

be

acted

upon,

the

connector

cannot

use

metadata

to

support

a

single

business

object

handler.

Instead,

it

must

provide

multiple

business

object

handlers,

one

for

each

business

object

the

connector

supports.

In

this

approach,

each

business

object

handler

contains

specific

logic

and

code

to

process

a

particular

business

object.

In

Figure

18,,

the

connector

has

multiple,

object-specific

business

object

handlers.

When

the

connector

receives

a

business

object,

it

calls

the

appropriate

business

object

handler

for

that

business

object.

The

drawback

of

this

non-metadata

approach

is

that

when

a

business

object

is

changed

or

a

new

business

object

is

added,

this

type

of

connector

must

be

recoded

to

handle

the

new

or

changed

business

object.

Connector

App_Order
business

object

Your extension
to the application

Order Handler

Partially
metadata-driven

business
object handler

Application

Processing instructions in the application

Figure

17.

Application-specific

processing

in

the

application

Connector

Cust Handler

Order Handler

Item Handler
App_Order
business

object

Processing instructions in the connector

Application extension

Application

Cust Module

Order Module

Item Module

Figure

18.

Application-specific

processing

in

the

connector

48

Connector

Development

Guide

for

C++

Event

notification

The

IBM

WebSphere

business

integration

system

is

an

event-driven

system,

and

connectors

need

some

way

to

detect

and

record

events

that

occur

in

the

application.

When

you

examine

the

application,

determine

whether

it

provides

an

event-notification

mechanism

that

can

notify

the

connector

of

changes

to

application

data.

Event

notification

typically

consists

of

a

collection

of

processes

that

allows

a

connector

to

be

notified

of

internal

application

events.

The

event

record

should

include

the

type

of

the

event,

the

business

object

name

and

verb,

such

as

Customer

and

Create,

and

the

data

key

required

for

the

connector

to

retrieve

associated

data.

In

addition,

an

event-notification

strategy

must

incorporate

the

necessary

mechanisms

to

ensure

the

data

integrity

between

event

records

and

the

corresponding

event

data.

In

other

words,

an

event

notification

should

not

occur

until

all

the

required

data

transactions

for

the

event

have

completed

successfully.

The

design

of

an

event

notification

mechanism

varies

depending

on

the

extent

to

which

the

application

reports

application

events

and

enables

clients

to

retrieve

event

data.

If

the

application

provides

an

event

notification

interface

such

as

an

API,

IBM

recommends

that

you

use

this

to

implement

the

event-notification

mechanism.

The

use

of

an

API

helps

ensure

that

connector

interactions

with

the

application

abide

by

application

business

logic.

If

the

application

provides

an

event-notification

mechanism,

use

the

following

topics

and

questions

to

gather

more

information.

Event

notification

level

of

detail

v

Does

the

application’s

event-notification

mechanism

provide

enough

detail

about

the

event

to

establish

the

discrete

business

object

and

verb?

If

not,

can

the

event

notification

component

be

configured

to

provide

this

level

of

detail?

For

example,

if

a

new

record

is

added

or

an

existing

customer

is

updated,

determine

whether

the

event-notification

mechanism

can

provide

information

on

the

type

of

operation,

such

as

Create

or

Update

operations.

If

the

connector

supports

delta

operations,

determine

whether

the

event

mechanism

can

provide

information

on

exactly

which

subobjects

or

attributes

changed.

Event

notification

support

for

business

logic

v

Does

event

notification

occur

at

a

level

that

adequately

supports

business

requirements?

In

other

words,

an

event-notification

mechanism

would

ideally

include

support

for

application

business

logic.

In

your

project

plan,

describe

the

event-notification

mechanism.

If

there

is

no

existing

event

mechanism,

determine

what

alternatives

are

available

to

detect

changes

to

application

data.

For

example,

you

might

be

able

to

provide

event

notification

by

setting

up

database

triggers

on

tables

in

a

relational

database.

Or

the

application

might

provide

a

batch-export

capability

that

exports

all

database

modifications

to

a

file

from

which

the

connector

can

extract

information

about

application

events.

Note:

For

more

information

on

the

stages

of

implementing

an

event-notification

mechanism,

see

“Overview

of

an

event-notification

mechanism”

on

page

107.

Chapter

2.

Designing

a

connector

49

Communication

across

operating

systems

Communication

between

the

application

and

the

connector

is

a

major

component

in

the

overall

connector

design.

If

the

application

runs

on

a

different

operating

system

from

InterChange

Server

and

the

connector,

you

must

ensure

that

a

mechanism

is

in

place

to

allow

the

connector

access

to

the

application.

If

the

application

provides

an

API,

determine

whether

the

API

handles

the

communication

between

the

operating

system

of

application

and

that

of

the

connector.

For

example,

if

the

application

runs

on

UNIX

and

the

connector

and

InterChange

Server

run

on

Windows

2000,

the

application

API

might

enable

the

connector

and

application

to

communicate

across

operating

systems.

Figure

19

shows

an

example

communication

mechanism

between

an

ODBC

connector

running

on

Windows

2000

and

an

ODBC-based

application

running

on

UNIX.

The

connector

builds

dynamic

SQL

statements

and

executes

them

using

the

ODBC

API.

The

ODBC

driver

enables

the

connector

to

establish

a

connection

with

the

application

database

and

to

access

the

database

using

ODBC

SQL

statements.

Summary

set

of

planning

questions

The

following

table

lists

the

set

of

planning

questions

provided

in

this

chapter.

You

can

use

this

table

as

a

worksheet

for

gathering

information

about

your

application.

As

you

gather

information,

get

copies

of

any

documentation

that

can

help

in

the

planning,

design,

or

development

phases

of

the

project.

Global
functions

Business
object

handler

Application
event

notification

ODBC interaction functions

ODBC-based application

Event management
and

notification

Application
CRUD

mechanism

InterChange Server - Windows Application OS - UNIX

Connector

ODBC
driver

Protocol
adapter TCP/IP

Figure

19.

Sample

Windows-to-UNIX

communication

50

Connector

Development

Guide

for

C++

1.

Understanding

the

Application

v

What

is

the

application

operating

system?

v

What

programming

languages

were

used

to

create

the

application?

v

What

is

the

execution

architecture

of

the

application?

v

Is

there

a

central

database

for

application

data?

What

type

of

database

is

it?

v

Is

the

application

or

its

database

distributed

across

multiple

servers?

2.

Identifying

the

Directionality

of

the

Connector

v

Does

the

connector

need

to

send

data,

receive

data,

or

both?

3.

Identifying

the

Application-Specific

Business

Objects

v

Do

application

entities

have

contained

entities?

v

Are

there

application

business

entities

that

are

the

same

type

but

have

different

physical

representations

in

the

application?

v

Are

there

application

entities

that

reside

in

more

than

one

location

in

the

database

but

correspond

to

the

same

logical

entity?

v

Are

there

batch

processes

associated

with

the

creation

of

application

entities?

4.

Investigating

the

Application

Data

Interaction

Interface

v

Have

there

been

any

other

efforts

to

integrate

with

this

application?

–

What

was

the

purpose

of

the

integration?

–

Does

the

integration

use

interfaces

that

modify

or

retrieve

information?

–

If

the

integration

is

able

to

process

an

event

generated

in

the

application,

what

is

the

mechanism

used

to

trigger

event

processing?

–

Will

your

connector

replace

the

pre-existing

integration?

v

Is

application

data

shared

by

other

applications?

–

Do

other

applications

create,

retrieve,

update,

or

delete

this

application’s

data?

–

What

is

the

mechanism

used

by

other

applications

to

gain

access

to

the

data?

–

Is

there

object-specific

business

logic

used

by

other

applications?

v

Is

there

a

mechanism

that

the

connector

can

use

to

communicate

with

the

application?

–

Does

the

API

allow

access

for

create,

retrieve,

update,

and

delete

operations?

–

Does

the

API

provide

access

to

all

data

entity

attributes?

–

Does

the

API

allow

access

to

the

application

for

event

detection?

–

Are

there

inconsistencies

in

the

API

implementation?

–

Describe

the

transaction

behavior

of

the

API.

–

Is

the

API

suited

for

meta-data

design?

–

Does

the

API

enforce

application

business

rules?

v

Are

there

batch

clean-up

or

merge

programs

used

to

purge

redundant

or

invalid

data?

5.

Investigating

the

Event

Management

and

Notification

Mechanism

v

Describe

the

event

management

mechanism.

v

Does

it

provide

the

necessary

granularity

to

establish

the

distinct

object

and

verb?

v

Does

event

notification

occur

at

a

level

that

can

support

application

business

logic?

6.

Investigating

Communication

Across

Operating

Systems

v

Does

the

API

handle

the

communication

mechanism

between

the

application

operating

system

and

the

connector

operating

system?

v

If

not,

is

there

a

mechanism

available

to

handle

communication

across

operating

systems?

Figure

20.

Summary

set

of

planning

question

Chapter

2.

Designing

a

connector

51

Evaluating

the

findings

As

you

assemble

the

answers

to

the

questions

presented

in

this

chapter,

you

acquire

essential

information

about

application

data

entities,

business

object

processing,

and

event

management.

These

findings

become

the

basis

for

a

high-level

architecture

for

the

connector.

When

you

have

determined

what

entities

your

connector

will

support

and

have

examined

the

application

functionality

for

database

interaction

and

event

notification,

you

should

have

a

clear

understanding

of

the

scope

of

the

connector

development

project.

At

this

point,

you

can

continue

with

the

next

phases

of

connector

development—defining

application-specific

business

objects

and

coding

the

connector.

Figure

21

shows

a

partial

write-up

of

information

about

a

sample

connector.

Figure

22

illustrates

a

high-level

architecture

diagram

for

an

ODBC-based

connector.

1.

Understanding

the

Application

v

Application

is

running

on

UNIX.

v

Programming

language

used

is

Visual

C++

with

the

Microsoft

MFC

libraries.

v

Application

is

client-server.

v

Application

has

a

central

database.

Type

is

RDMS.

v

Application

is

not

distributed.

2.

Identifying

the

Directionality

of

the

Connector

v

Connector

will

be

bidirectional.

3.

Identifying

the

Application-Specific

Business

Objects

v

Business

objects

have

contained

objects.

Contained

business

objects

are:

–

Customer

”Address

”Site

Use

and

Site

Profile

–

Item

”Status

–

Contact

”n

Phones

and

n

Roles

v

Application

business

entities

do

not

have

different

physical

representations

in

the

application.

v

Application

entities

do

not

reside

in

more

than

one

location

in

the

database.

v

No

batch

processes

are

associated

with

the

creation

of

these

objects.

4.

Examining

the

Application

Data

Interaction

Interface

v

No

previous

efforts

to

integrate

with

this

application.

v

Application

data

is

not

shared

by

other

applications.

v

The

application

provides

the

OpenProduct

API.

–

OpenProduct

allows

for

Creates

and

Updates

but

not

Retrieves

and

Deletes.

–

The

API

provide

access

to

all

data

entity

attributes.

–

The

API

allows

access

to

the

application

for

event

detection.

We

can

create

an

event

table

and

poll

for

events

at

a

specified

interval.

–

There

are

no

inconsistencies

in

the

API.

–

The

API

has

a

batch

interface.

–

The

application

is

table-based,

and

the

API

is

suited

for

meta-data

design.

–

...

Figure

21.

Sample

results

write-up

52

Connector

Development

Guide

for

C++

An

internationalized

connector

An

internationalized

connector

is

a

connector

that

has

been

written

so

that

it

can

be

customized

for

a

particular

locale.

A

locale

is

the

part

of

a

user’s

environment

that

brings

together

information

about

how

to

handle

data

that

is

specific

to

the

end

user’s

particular

country,

language,

or

territory.

The

locale

is

typically

installed

as

part

of

the

operating

system.

Creating

a

connector

that

handles

locale-sensitive

data

is

called

the

internationalization

(I18N)

of

the

connector.

Preparing

an

internationalized

connector

for

a

particular

locale

is

called

the

localization

(L10N)

of

the

connector.

This

section

provides

the

following

information

on

an

internationalized

connector:

v

“What

is

a

locale?”

on

page

54

v

“Design

considerations

for

an

internationalized

connector”

on

page

54

Generic services (C++ class library)

Global
functions

Business
object

handler

Application
event

notification

Connector controller

ODBC interaction functions

Transport Driver

Mapping Services Oracle-based application

Oracle database

InterChange Server
Windows

Application OS
UNIX

Application
tables

Event
table

Archive
table

Database
triggers

Polling to
event table

Database
CRUD
operations

Transport driver

Java-to-C++ translation (C++ only)

Connector

ODBC
driver

Oracle
protocol
adapter

TCP/IPSQL*Net

Figure

22.

Sample

ODBC-based

connector

architecture

Chapter

2.

Designing

a

connector

53

What

is

a

locale?

A

locale

provides

the

following

information

for

the

user

environment:

v

Cultural

conventions

according

to

the

language

and

country

(or

territory):

–

Data

formats:

-

Dates:

define

full

and

abbreviated

names

for

weekdays

and

months,

as

well

as

the

structure

of

the

date

(including

date

separator).

-

Numbers:

define

symbols

for

the

thousands

separator

and

decimal

point,

as

well

as

where

these

symbols

are

placed

within

the

number.

-

Times:

define

indicators

for

12-hour

time

(such

AM

and

PM

indicators)

as

well

as

the

structure

of

the

time.

-

Monetary

values:

define

numeric

and

currency

symbols,

as

well

as

where

these

symbols

are

placed

within

the

monetary

value.
–

Collation

order:

how

to

sort

data

for

the

particular

character

code

set

and

language.

–

String

handling

includes

tasks

such

as

letter

“case”

(upper

case

and

lower

case)

comparison,

substrings,

and

concatenation.
v

A

character

encoding

—

the

mapping

from

a

character

(a

letter

of

the

alphabet)

to

a

numeric

value

in

a

character

code

set.

For

example,

the

ASCII

character

code

set

encodes

the

letter

“A”

as

65,

while

the

EBCIDIC

character

set

encodes

this

letter

as

43.

The

character

code

set

contains

encodings

for

all

characters

in

one

or

more

language

alphabets.

A

locale

name

has

the

following

format:

ll_TT.codeset

where

ll

is

a

two-character

language

code

(usually

in

lower

case),

TT

is

a

two-letter

country

and

territory

code

(usually

in

upper

case),

and

codeset

is

the

name

of

the

associated

character

code

set.

The

codeset

portion

of

the

name

is

often

optional.

The

locale

is

typically

installed

as

part

of

the

installation

of

the

operating

system.

Design

considerations

for

an

internationalized

connector

This

section

provides

the

following

categories

of

design

considerations

for

internationalizing

a

connector:

v

“Locale-sensitive

design

principles”

v

“Character-encoding

design

principles”

on

page

58

Locale-sensitive

design

principles

To

be

internationalized,

a

connector

must

be

coded

to

be

locale-sensitive;

that

is,

its

behavior

must

take

the

locale

setting

into

consideration

and

perform

the

task

appropriate

to

that

locale.

For

example,

for

locales

that

use

English,

the

connector

should

obtain

its

error

messages

from

an

English-language

message

file.

The

WebSphere

Business

Integration

Adapters

product

provides

you

with

an

internationalized

version

of

the

connector

framework.

To

complete

the

internationalization

(I18N)

of

a

connector

you

develop,

you

must

ensure

that

your

application-specific

component

is

internationalized.

Table

15

lists

the

locale-sensitive

design

principles

that

an

internationalized

application-specific

component

must

follow.

54

Connector

Development

Guide

for

C++

Table

15.

Locale-sensitive

design

principles

for

application-specific

components

Design

principle

For

more

information

The

text

of

all

error,

status,

and

trace

messages

should

be

isolated

from

the

application-specific

component

in

a

message

file

and

translated

into

the

language

of

the

locale.

“Text

strings”

The

locale

of

a

business

object

must

be

preserved

during

execution

of

the

connector.

“Business

object

locales”

on

page

56

Properties

of

connector

configuration

properties

must

be

handled

to

include

possible

inclusion

of

multibyte

characters.

“Connector

configuration

properties”

on

page

57

Other

locale-specific

tasks

must

be

considered.

“Other

locale-sensitive

tasks”

on

page

57

Text

strings:

It

is

good

programming

practice

to

design

a

connector

so

that

it

refers

to

an

external

message

file

when

it

needs

to

obtain

text

strings

rather

than

hardcoding

text

strings

in

the

connector

code.

When

a

connector

needs

to

generate

a

text

message,

it

retrieves

the

appropriate

message

by

its

message

number

from

the

message

file.

Once

all

messages

are

gathered

in

a

single

message

file,

this

file

can

be

localized

by

having

the

text

translated

into

the

appropriate

language

or

languages.

This

section

provides

the

following

information

on

how

to

internationalize

text

strings:

v

“Handling

logging

and

tracing”

v

“Handling

miscellaneous

strings”

on

page

56

Handling

logging

and

tracing:

To

internationalize

the

logging

and

tracing,

make

sure

that

all

these

operations

use

message

files

to

generate

text

messages.

By

putting

message

strings

in

a

message

file,

you

assign

a

unique

identifier

to

each

message.

Table

16

lists

the

types

of

operations

that

use

a

message

file

and

the

associated

C++

connector

library

methods

in

the

GenGlobals

class

that

the

application-specific

component

uses

to

retrieve

their

messages

from

a

message

file.

Table

16.

Methods

to

log

and

trace

messages

from

a

message

file

Message-file

operation

Connector

library

method

Logging

generateAndLogMsg()

Tracing

generateAndTraceMsg()

or

traceWrite()

Log

messages

should

display

in

the

language

of

the

customer’s

locale.

Therefore,

log

messages

should

always

be

isolated

into

a

connector

message

file

and

retrieved

with

the

generateAndLogMsg()

method.

Because

trace

messages

are

intended

for

the

product

debugging

process,

they

often

do

not

need

to

display

in

the

language

of

the

customer’s

locale.

Therefore,

whether

trace

messages

are

contained

in

a

message

file

is

left

at

the

discretion

of

the

developer:

v

If

non-English-speaking

users

need

to

view

trace

messages,

you

need

to

internationalize

these

messages.

Therefore,

you

must

put

the

trace

messages

in

a

message

file

and

extract

them

with

the

generateMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

message

specific

to

your

Chapter

2.

Designing

a

connector

55

connector.

The

generateMsg()

method

generates

the

message

string

for

traceWrite().

It

retrieves

a

predefined

trace

message

from

a

message

file,

formats

the

text,

and

returns

a

generated

message

string.

v

If

only

English-speaking

users

need

to

view

trace

messages,

you

do

not

need

to

internationalize

these

messages.

Therefore,

you

can

include

the

trace

message

(in

English)

directly

in

the

call

to

traceWrite().

You

do

not

need

to

use

the

generateMsg()

method.

However,

storing

trace

messages

in

the

message

file

makes

it

easy

to

locate

and

maintain

them.

Handling

miscellaneous

strings:

In

addition

to

handling

the

message-file

operations

in

Table

16,,

an

internationalized

connector

must

not

contain

any

miscellaneous

hardcoded

strings.

You

must

isolate

these

strings

into

the

message

file

as

well.

Table

17

shows

the

method

that

the

application-specific

component

can

use

to

retrieve

a

message

from

a

message

file.

Table

17.

Method

to

retrieve

a

message

from

the

message

file

Connector

library

class

Method

GenGlobals

generateMsg()

To

internationalize

hardcoded

strings,

take

the

following

steps:

v

Generate

a

uniquely

numbered

message

in

the

connector

message

file

for

the

hardcoded

string.

Note:

In

the

message

file,

you

can

also

include

an

optional

explanation

to

the

isolated

string.

In

this

explanation,

you

can

put

the

method

name

where

the

string

is

used.

This

information

can

help

to

track

the

position

of

the

source

and

make

changes

when

needed.

v

In

the

application-specific

component,

use

the

generateMsg()

method

to

specify

the

isolated

string

by

its

message

number.

For

example,

suppose

your

application-specific

component

contains

the

following

hardcoded

string

in

a

line

of

code:

********Before

updating

the

event

status********

To

isolate

this

hardcoded

string

from

the

connector

code,

create

a

message

in

the

message

file

and

assign

it

a

unique

message

number

(100):

100

********Before

updating

the

event

status********

[EXPL]

Hardcoded

message

in

pollForEvents()

The

application-specific

component

retrieves

the

isolated

string

(message

100)

from

the

message

file

and

replaces

the

hardcoded

string

with

this

retrieved

string:

char

*

msg;

//retrieve

the

message

numbered

’100’

msg

=

generateMsg(100,

CxMsgFormat::XRD_INFO,

NULL,

0,

NULL);

MyClassObject::formatMsg(msg);

//

send

retrieved

message

to

a

custom

method

For

more

information

on

the

use

of

message

files,

see

Chapter

6,

“Message

logging,”

on

page

133.

Business

object

locales:

The

connector

might

need

to

perform

locale-sensitive

processing

(such

as

data

format

conversions)

when

it

converts

from

application

56

Connector

Development

Guide

for

C++

data

to

the

application-specific

business

object.

During

processing

of

a

business

object

in

a

connector,

there

are

two

different

locale

settings:

v

The

connector

inherits

a

locale,

called

the

connector-framework

locale,

from

the

connector

framework

with

which

it

runs.

The

connector-framework

locale

determines

the

locale

of

text

messages

that

the

connector

uses

for

logging

and

exceptions.

v

The

connector

also

can

access

the

locale

that

is

associated

with

a

business

object

it

is

processing.

This

business-object

locale

identifies

the

locale

associated

with

the

data

in

the

business

object.

Table

18

shows

the

method

that

the

connector

can

use

to

retrieve

the

locale

associated

with

the

connector

framework.

Table

18.

Method

to

retrieve

the

connector

framework’s

locale

Connector

library

class

Method

GenGlobals

getLocale()

When

a

business

object

is

created,

it

can

have

a

locale

associated

with

its

data.

Your

connector

can

access

this

business-object

locale

in

either

of

the

following

ways:

v

To

obtain

the

name

of

the

business-object

locale,

use

the

getLocale()

method,

which

is

defined

in

the

BusinessObject

class.

v

To

associate

a

locale

with

the

business

object,

use

the

BusinessObject()

constructor,

which

is

also

defined

in

the

BusinessObject

class.

Connector

configuration

properties:

As

discussed

in

“Using

connector

configuration

property

values”

on

page

67,,

an

application-specific

component

can

use

two

types

of

configuration

properties

to

customize

its

execution:

v

Standard

configuration

properties

are

available

to

all

connectors.

v

Connector-specific

configuration

properties

are

unique

to

the

particular

connector

in

which

they

are

defined.

The

names

of

all

connector

configuration

properties

must

use

only

characters

defined

in

the

code

set

associated

with

the

U.S

English

(en_US)

locale.

However,

the

values

of

these

configuration

properties

can

contain

characters

from

the

code

set

associated

with

the

connector

framework

locale.

The

application-specific

component

obtains

the

values

of

configuration

properties

with

the

methods

described

in

“Retrieving

connector

configuration

properties”

on

page

69..

These

methods

correctly

handle

characters

from

multibyte

code

sets.

However,

to

ensure

that

your

connector

is

internationalized,

its

code

must

correctly

handle

these

configuration-property

values

once

it

retrieves

them.

The

application-specific

component

must

not

assume

that

configuration-property

values

contain

only

single-byte

characters.

Other

locale-sensitive

tasks:

An

internationalized

connector

must

also

handle

the

following

locale-sensitive

tasks:

v

Sorting

or

collation

of

data:

the

collaboration

must

use

a

collation

order

appropriate

for

the

language

and

country

of

the

locale.

v

String

processing

(such

as

comparison,

substrings,

and

letter

case):

the

collaboration

must

ensure

that

any

processing

it

performs

is

appropriate

for

characters

in

the

locale’s

language.

Chapter

2.

Designing

a

connector

57

v

Formats

of

dates,

numbers,

and

times:

the

collaboration

must

ensure

that

any

formatting

it

performs

is

appropriate

for

the

locale.

Character-encoding

design

principles

If

data

transfers

from

a

location

that

uses

one

code

set

to

a

location

that

uses

a

different

code

set,

some

form

of

character

conversion

needs

to

be

performed

for

the

data

to

retain

its

meaning.

The

Java

runtime

environment

within

the

Java

Virtual

Machine

(JVM)

represents

data

in

Unicode.

The

Unicode

character

set

is

a

universal

character

set

that

contains

encodings

for

characters

in

most

known

character

code

sets

(both

single-byte

and

multibyte).

There

are

several

encoding

formats

of

Unicode.

The

following

encodings

are

used

most

frequently

within

the

integration

business

system:

v

Universal

multiple

octet

Coded

Character

Set:

UCS-2

The

UCS-2

encoding

is

the

Unicode

character

set

encoded

in

2

bytes

(octets).

v

UCS

Transformation

Format,

8-bit

form:

UTF-8

The

UTF-8

encoding

is

designed

to

address

the

use

of

Unicode

character

data

in

UNIX

environments.

It

supports

all

ASCII

code

values

(0...127)

so

that

they

are

never

interpreted

as

anything

except

a

true

ASCII

code.

Each

code

value

is

usually

represented

as

a

1-,

2-,

or

3-

byte

value.

Most

components

in

the

WebSphere

business

integration

system,

including

the

connector

framework,

are

written

in

Java.

Therefore,

when

data

is

transferred

between

most

system

components,

it

is

encoded

in

the

Unicode

code

set

and

there

is

no

need

for

character

conversion.

However,

a

C++

connector

works

with

a

C++

application

(or

technology).

This

application

(or

technology)

might

not

have

data

already

in

the

Unicode

code

set.

Therefore,

the

application-specific

component

of

the

connector

(written

in

C++,

and

converted

by

the

connector

framework

to

Java)

might

need

to

perform

character

conversion

on

application

data

for

the

application-specific

business

object.

Figure

23

shows

the

character

encoding

for

a

C++

connector.

Note:

A

connector

obtains

the

character

encoding

of

its

application

from

the

CharacterEncoding

connector

configuration

property.

If

your

connector

performs

character

conversion,

make

sure

you

instruct

the

connector

end

user

to

set

this

connector

property

to

the

correct

value.

To

obtain

the

character

encoding

at

runtime,

Table

19

shows

the

method

in

the

C++

connector

library

that

the

connector

can

use.

Connector
controller

InterChange Server

UTF-8C++
application

C++
connector

(client side)

Native encoding

Character conversion
required

Figure

23.

Character

encoding

with

a

C++

connector

58

Connector

Development

Guide

for

C++

Table

19.

Method

to

retrieve

the

connector

framework’s

character

encoding

Connector

library

class

Method

GenGlobals

getEncoding()

Note:

Connector

configuration

properties

with

String

values

do

not

require

character

conversion

because

they

originate

from

the

InterChange

Server

repository

and

are

therefore

in

the

UCS-2

encoding.

Chapter

2.

Designing

a

connector

59

60

Connector

Development

Guide

for

C++

Chapter

3.

Providing

general

connector

functionality

This

chapter

presents

information

on

how

to

implement

a

connector

base

class,

which

performs

the

initialization

and

setup

for

the

application-specific

component

of

a

connector.

It

also

discusses

some

basic

functionality

that

your

connector

might

need.

Note:

Writing

code

for

the

application-specific

component

is

only

one

part

of

the

overall

task

for

developing

a

connector.

Before

you

begin

to

write

your

application-specific

component,

you

should

clearly

understand

the

connector

design

issues

as

well

as

the

design

of

any

application-specific

business

objects.

A

thorough

understanding

of

the

design

issues

can

help

you

complete

the

coding

task

successfully.

For

information

on

connector

design,

refer

to

Chapter

2,

“Designing

a

connector,”

on

page

35.

This

chapter

contains

the

following

sections:

v

“Running

a

connector”

v

“Extending

the

connector

base

class”

on

page

66

v

“Handling

errors”

on

page

67

v

“Using

connector

configuration

property

values”

on

page

67

v

“Handling

loss

of

connection

to

an

application”

on

page

70

Running

a

connector

When

the

connector

runs,

it

performs

the

tasks

summarized

in

Table

20..

Table

20.

Steps

for

executing

a

connector

Execution

step

For

more

information

1.

Start

the

connector

with

the

startup

script

to

initialize

the

connector

framework

and

application-specific

component

of

the

connector.

“Starting

up

a

connector”

on

page

61

2.

If

polling

is

turned

on,

the

connector

framework

calls

pollForEvents()

at

the

interval

defined

by

the

connector’s

PollFrequency

connector

configuration

property.

“Polling

for

events”

on

page

65

3.

If

the

connector

implements

request

processing,

call

the

business-object

handler

associated

with

the

request

business

object

that

the

connector

receives.

Request

processing

is

implemented

by

the

doVerbFor()

method

in

the

connector’s

business

object

handler.

For

more

information,

see

Chapter

4,

“Request

processing,”

on

page

71.

4.

When

the

connector

is

shut

down,

the

connector

framework

calls

terminate().

“Shutting

down

the

connector”

on

page

66

The

following

sections

provide

more

information

about

each

of

the

execution

steps

Table

20..

Starting

up

a

connector

Each

connector

has

a

connector

startup

script

to

begin

its

execution.

This

startup

script

invokes

the

connector

framework.

Note:

For

more

information

on

how

to

create

a

connector

startup

script,

see

“Creating

startup

scripts”

on

page

204..

©

Copyright

IBM

Corp.

1997,

2003

61

Once

the

connector

framework

is

executing,

it

performs

the

appropriate

steps

to

invoke

the

application-specific

component

of

the

connector,

based

on

the

integration

broker.

Starting

connectors

with

InterChange

Server

When

InterChange

Server

is

the

integration

broker,

the

connector

framework

takes

the

following

steps

to

invoke

the

application-specific

component:

1.

Use

the

Object

Request

Broker

(ORB)

to

establish

contact

with

InterChange

Server.

2.

From

the

repository,

load

the

following

connector-definition

information

into

memory

for

the

connector’s

process:

v

The

connector

configuration

properties

v

A

list

of

the

connector’s

supported

business

object

definitions
3.

Begin

execution

of

the

connector’s

application-specific

component

by

instantiating

the

connector

base

class

and

calling

methods

of

this

base

class

that

initialize

the

application-specific

component.

When

the

connector

is

started,

the

connector

framework

instantiates

the

connector

base

class

and

then

calls

the

connector-base-class

methods

in

Table

21..

Table

21.

Beginning

execution

of

the

connector

Initialization

task

For

more

information

1.

Initialize

the

connector

to

perform

any

necessary

initialization

for

the

application-specific

component,

such

as

opening

a

connection

to

the

application.

“Initializing

the

connector”

on

page

62

2.

For

each

business

object

that

the

connector

supports,

obtain

the

business

object

handler.

“Obtaining

the

business

object

handler”

on

page

64

Once

these

methods

have

been

called,

the

connector

is

operational.

4.

Contact

the

connector

controller

to

obtain

the

subscription

list

for

business

objects

to

which

collaborations

have

subscribed.

For

more

information,

see

“Business

object

subscription

and

publishing”

on

page

13..

Starting

connectors

with

other

integration

brokers

When

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server

is

the

integration

broker,

the

connector

framework

takes

the

following

steps

to

invoke

the

application-specific

component:

1.

From

the

local

repository,

load

the

following

connector-definition

information

into

memory

for

the

connector’s

process:

v

The

connector

configuration

properties

v

A

list

of

the

connector’s

supported

business

object

definitions
2.

Begin

execution

of

the

connector’s

application-specific

component

by

instantiating

the

connector

base

class

and

calling

methods

of

this

base

class

that

initialize

the

application-specific

component.

When

the

connector

is

started,

the

connector

framework

instantiates

the

connector

base

class

and

then

calls

the

connector-base-class

methods

in

Table

21..

Once

these

methods

have

been

called,

the

connector

is

operational.

Initializing

the

connector

To

begin

connector

initialization,

the

connector

framework

calls

the

initialization

method

of

the

connector

base

class.

Table

22

shows

the

initialization

method

for

the

connector.

62

Connector

Development

Guide

for

C++

Table

22.

Connector

base

class

methods

to

initialize

the

connector

Class

Method

GenGlobals

init

As

part

of

the

implementation

of

the

connector

class,

you

must

implement

an

initialization

method

for

your

connector.

The

main

tasks

of

the

initialization

method

include:

v

“Establishing

a

connection”

v

“Checking

the

connector

version”

v

“Recovering

In-Progress

events”

Important:

During

execution

of

the

initialization

method,

business

object

definitions

and

the

connector

framework’s

subscription

list

are

not

yet

available.

Establishing

a

connection:

The

main

task

of

the

initialization

method

is

to

establish

a

connection

to

the

application.

To

establish

the

connection,

the

initialization

method

can

perform

the

following

tasks:

v

Read

from

the

repository

the

connector’s

configuration

properties

that

provide

connector

information

(such

as

ApplicationUserID

and

ApplicationPassword)

and

use

them

to

send

login

information

to

the

application.

If

a

required

connector

property

is

empty,

your

initialization

method

can

provide

a

default

value.

Use

the

getConfigProp()

method

to

obtain

the

value

of

a

connector

configuration

property.

For

more

information,

see

“Using

connector

configuration

property

values”

on

page

67.

v

Obtain

any

required

connections

or

files.

For

example,

the

initialization

method

usually

opens

a

connection

with

the

application.

It

returns

“success”

if

the

connector

succeeds

in

opening

a

connection.

If

the

connector

cannot

open

a

connection,

the

initialization

method

must

return

the

appropriate

failure

status

to

indicate

the

cause

of

the

failure.

In

a

C++

connector,

typical

return

codes

used

in

init()

are

BON_SUCCESS,

BON_FAIL,

and

BON_UNABLETOLOGIN.

For

information

on

these

and

other

return

codes,

see

“C++

return

codes”

on

page

193.

Checking

the

connector

version:

The

getVersion()

method

returns

the

version

of

the

connector.

It

is

called

in

both

of

the

following

contexts:

v

The

initialization

method

should

call

getVersion()

to

check

the

connector

version.

v

The

connector

framework

calls

the

getVersion()

method

when

it

needs

to

get

a

version

for

the

connector.

Note:

A

connector

should

keep

track

of

which

application

versions

it

supports.

It

should

check

the

application

version

when

it

logs

on

to

the

application.

Recovering

In-Progress

events:

Processing

an

event

during

event

notification

includes

performing

a

retrieve

on

the

application

entity,

creating

a

new

business

object

for

the

event,

and

sending

the

business

object

to

the

connector

framework.

If

the

connector

terminates

while

processing

an

event

and

before

updating

the

event

status

to

indicate

that

the

event

was

either

sent

or

failed,

the

In-Progress

event

will

remain

in

the

event

store.

When

a

connector

is

restarted,

it

should

check

the

event

store

for

events

that

have

an

In-Progress

status.

Chapter

3.

Providing

general

connector

functionality

63

If

the

connector

finds

events

with

the

In-Progress

status,

it

can

choose

to

do

one

of

the

tasks

outlined

in

Table

23..

This

behavior

should

be

configurable.

Several

connectors

use

the

InDoubtEvents

connector

configuration

property

for

this

purpose.

Its

settings

are

also

shown

in

Table

23..

Table

23.

Actions

to

take

to

recover

In-Progress

events

Event-recovery

action

taken

Value

of

InDoubtEvents

Change

the

status

of

the

In-Progress

events

to

Ready-for-Poll

so

they

can

be

submitted

to

the

connector

framework

in

subsequent

poll

calls.

Note:

If

events

are

resubmitted,

duplicate

events

might

be

generated.

If

you

want

to

ensure

that

duplicate

events

are

not

generated

during

recovery,

use

another

recovery

response.

Reprocess

Log

a

fatal

error,

shutting

down

the

connector.

If

LogAtInterchangeEnd

is

set

to

True,

this

triggers

an

email

notification

about

the

error.

FailOnStartup

Log

an

error

without

shutting

down

the

connector.

LogError

Ignore

the

In-Progress

event

records

in

the

event

store.

Ignore

For

a

C++

connector,

you

must

use

the

application-specific

interface

to

obtain

event

records

with

an

In-Progress

status

from

the

event

store

and

take

the

appropriate

recovery

action.

Note:

For

more

information

on

event

notification,

the

event

store,

and

In-Progress

events,

see

Chapter

5,

“Event

notification,”

on

page

107.

Obtaining

the

business

object

handler

As

the

final

step

in

connector

initialization,

the

connector

framework

obtains

the

business

object

handler

for

each

business

object

definition

that

the

connector

supports.

A

business

object

handler

receives

request

business

objects

from

the

connector

framework

and

performs

the

verb

operations

defined

in

these

business

objects.

Each

connector

must

have

a

getBOHandlerforBO()

method

defined

in

its

connector

base

class

to

retrieve

the

business

object

handler.

This

method

returns

a

reference

to

the

business

object

handler

for

a

specified

business

object

definition.

Important:

As

part

of

the

implementation

of

the

connector

base

class,

you

must

implement

the

getBOHandlerforBO()

to

obtain

business

object

handlers

for

your

connector.

To

instantiate

the

business

object

handler

(or

business

object

handlers),

the

connector

framework

takes

the

following

steps:

1.

During

initialization,

the

connector

framework

receives

a

list

of

business

object

definitions

that

the

connector

supports.

For

more

information,

see

“Starting

up

a

connector”

on

page

61.

2.

The

connector

framework

then

calls

the

getBOHandlerforBO()

method,

once

for

every

supported

business

object.

3.

The

getBOHandlerforBO()

method

instantiates

the

appropriate

business

object

handler

for

that

business

object,

based

on

the

name

of

the

business

object

definition

it

receives

as

an

argument.

It

returns

the

business

object

handler

to

the

connector

framework.

The

number

of

business

object

handlers

that

are

instantiated

depends

on

the

overall

design

of

your

connector’s

business

object

handling:

64

Connector

Development

Guide

for

C++

v

If

the

business

object

definitions

for

application-specific

business

objects

contain

metadata

that

follows

consistent

rules,

the

connector

is

metadata-driven.

It

can

be

designed

to

use

a

metadata-driven

business

object

handler.

A

metadata-driven

connector

handles

all

business

objects

in

a

single,

generic

business

object

handler,

called

a

metadata-driven

business

object

handler.

Therefore,

the

getBOHandlerforBO()

method

can

simply

instantiate

one

business

object

handler,

regardless

of

the

number

of

business

objects

the

connector

supports.

It

can

create

a

business

object

handler

the

first

time

it

is

called

and

return

a

pointer

to

the

same

handler

for

each

subsequent

call.

v

If

some

or

all

application-specific

business

objects

require

special

processing,

then

you

must

set

up

multiple

business

object

handlers

for

those

objects.

If

your

connector

requires

a

separate

business

object

handler

for

each

business

object,

the

getBOHandlerforBO()

method

can

instantiate

the

appropriate

business

object

handler,

based

on

the

name

of

the

business

object

being

passed

in.

In

this

case,

getBOHandlerforBO()

instantiates

multiple

business

object

handlers,

one

for

each

business

object

definition

that

requires

a

separate

business

object

handler.

Each

time

the

business-object-handler

retrieval

method

is

called,

it

instantiates

a

separate

business

object

handler.
4.

The

connector

framework

stores

the

reference

to

this

business

object

handler

in

the

associated

business

object

definition

(which

resides

in

the

memory

of

the

connector’s

process).

Important:

Before

you

implement

the

getBOHandlerforBO()

method,

you

want

to

complete

the

design

for

business

object

handling

for

your

connector.

For

information

on

designing

application-specific

business

object,

see

“Assessing

support

for

metadata-driven

design”

on

page

45..

For

more

information

on

how

to

implement

the

getBOHandlerforBO()method,

see

“Obtaining

the

C++

business

object

handler”

on

page

146..

For

information

on

how

to

implement

business

object

handlers,

see

Chapter

4,

“Request

processing,”

on

page

71.

Polling

for

events

If

a

connector

is

to

implement

event

notification,

it

must

implement

an

event

notification

mechanism.

Event

notification

contains

methods

that

interact

with

an

application

to

detect

changes

to

application

business

entities.

These

changes

are

represented

as

events,

which

the

connector

sends

to

the

connector

framework

for

routing

to

a

destination

(such

as

InterChange

Server).

If

the

connector

uses

a

polling

mechanism

for

event

notification,

the

connector

must

implement

the

pollForEvents()

method

to

periodically

to

retrieve

event

information

from

the

event

store,

which

holds

events

that

the

application

generates

until

the

connector

can

process

them.

When

polling

is

turned

on,

the

connector

framework

calls

the

poll

method

pollForEvents().

The

pollForEvents()

method

returns

an

integer

indicating

the

status

of

the

polling

operation.

In

the

C++

connector

library,

the

pollForEvents()

method

is

defined

in

the

GenGlobals

class.

Typical

return

codes

used

in

pollForEvents()

are

BON_SUCCESS,

BON_FAIL,

and

BON_APPRESPONSETIMEOUT.

For

more

information

on

return

codes,

see

“C++

return

codes”

on

page

193.

Important:

The

developer

must

provide

an

implementation

of

the

pollForEvents()

method.

If

the

connector

supports

only

request

processing,

you

do

not

Chapter

3.

Providing

general

connector

functionality

65

need

to

fully

implement

pollForEvents().

However,

because

the

poll

method

is

a

required

method,

you

must

implement

a

stub

for

the

method.

For

a

more

thorough

discussion

of

event

notification

and

the

implementation

of

pollForEvents(),

see

Chapter

5,

“Event

notification,”

on

page

107.

Shutting

down

the

connector

The

administrator

shuts

down

a

connector

with

by

terminating

the

connector

startup

script.

When

the

connector

is

shut

down,

the

connector

framework

calls

the

terminate()

method

of

the

connector

base

class.

The

main

task

of

the

terminate()

method

is

to

close

the

connection

with

the

application

and

to

free

any

allocated

resources.

Extending

the

connector

base

class

To

create

a

connector,

you

extend

the

connector

base

class,

available

in

the

connector

library.

The

base

class

for

the

connector

includes

methods

for

initialization

and

setup

of

the

connector’s

application-specific

component.

Your

derived

connector

class

contains

the

code

for

the

application-specific

component

of

the

connector.

Note:

For

information

on

naming

conventions

for

a

connector,

see

Naming

IBM

WebSphere

InterChange

Server

Components

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

The

connector

base

class

includes

the

methods

shown

in

Table

24..

You

must

implement

these

methods

in

your

connector.

Table

24.

Methods

to

implement

in

the

connector

base

class

Description

Connector

base

class

method

For

more

information

Initializes

the

connector’s

application-specific

component

init()

“Initializing

the

connector”

on

page

62

Returns

the

version

of

the

connector

getVersion()

“Checking

the

connector

version”

on

page

63

Sets

up

one

or

more

business

object

handlers

getBOHandlerforBO()

“Obtaining

the

business

object

handler”

on

page

64

Polls

for

application

events

pollForEvents()

“Polling

for

events”

on

page

65

Performs

cleanup

tasks

upon

connector

termination

terminate()

“Shutting

down

the

connector”

on

page

66

Figure

24

illustrates

the

complete

set

of

methods

that

the

connector

framework

calls,

and

shows

which

methods

are

called

at

startup

and

which

are

called

at

runtime.

All

but

one

of

the

methods

that

the

connector

framework

calls

are

in

the

connector

base

class.

The

remaining

method,

doVerbFor(),

is

in

the

business

object

handler

class;

for

information

on

implementing

the

doVerbFor()

method,

see

Chapter

4,

“Request

processing,”

on

page

71.

66

Connector

Development

Guide

for

C++

For

more

information

on

extending

the

connector

base

class,

see

“Extending

the

C++

connector

base

class”

on

page

143.

Handling

errors

The

methods

of

the

connector

class

library

indicate

error

conditions

in

the

following

ways:

v

Return

codes—The

connector

class

library

includes

a

set

of

defined

outcome-status

values

that

your

virtual

methods

can

use

to

return

information

on

the

success

or

failure

of

a

method.

The

return

codes

are

defined

as

integer

values

and

outcome-status

constants.

In

your

code,

IBM

recommends

use

of

the

predefined

constants

to

prevent

a

problem

if

the

IBM

changes

the

values

of

the

constants.

For

information

on

C++

return

codes,

see

“C++

return

codes”

on

page

193.

v

Return-status

descriptor—during

request

processing,

the

connector

framework

sends

status

information

back

to

the

integration

broker

in

a

return-status

descriptor.

The

business

object

handler

can

save

a

message

and

status

code

in

this

descriptor

to

provide

the

integration

broker

about

the

status

of

the

verb

processing.

For

more

information,

see

“Return-status

descriptor”

on

page

195.

v

Error

and

message

logging—The

connector

class

library

also

provides

the

following

features

to

assist

in

providing

notification

of

errors

and

noteworthy

conditions:

–

Logging

allows

you

to

send

an

informational

or

error

message

to

a

log

destination.

–

Tracing

allows

you

to

include

statements

in

your

code

that

generate

trace

messages

at

different

trace

levels.

For

more

information

on

how

to

implement

logging

and

tracing,

see

Chapter

6,

“Message

logging,”

on

page

133.

Using

connector

configuration

property

values

This

section

provides

the

following

information

about

connector

configuration

properties:

v

“What

is

a

connector

configuration

property?”

on

page

68

v

“Defining

and

setting

connector

configuration

properties”

on

page

68

Connector
framework

Application-specific connector component

Startup

Runtime

init()

getVersion()

getBOHandlerForBO()

pollForEvents()

doVerbFor()

terminate()

Figure

24.

Summary

of

methods

called

by

the

connector

framework

Chapter

3.

Providing

general

connector

functionality

67

v

“Retrieving

connector

configuration

properties”

on

page

69

What

is

a

connector

configuration

property?

A

connector

configuration

property

(sometimes

called

just

a

connector

property)

allows

you

to

create

named

place

holders

(similar

to

variables)

that

the

connector

can

use

to

access

information

it

needs.

Connectors

have

two

categories

of

configuration

properties:

v

Standard

configuration

properties

v

Connector-specific

configuration

properties

Standard

connector

configuration

properties

Standard

configuration

properties

provide

information

that

is

typically

used

by

the

connector

framework.

These

properties

are

usually

common

to

all

connectors

and

usually

represent

well-defined

behavior

that

is

the

WebSphere

business

integration

system

enforces.

Connector-specific

configuration

properties

Connector-specific

configuration

properties

provide

information

needed

by

a

particular

connector

at

runtime.

These

configuration

properties

provide

a

way

of

changing

static

information

or

logic

within

the

connector’s

application-specific

component

without

having

to

recode

and

rebuild

it.

For

example,

configuration

properties

can

be

used

to:

v

Hold

the

value

of

constants,

such

as

the

name

of

the

application

server

or

database,

the

name

of

the

event

table,

or

the

name

of

files

the

connector

needs

to

read.

v

Set

behavior

for

the

connector

in

a

particular

situation.

For

example,

a

configuration

property

can

indicate

that

the

connector

should

not

fail

a

business

object

Retrieve

operation

for

a

hierarchical

business

object

if

a

child

object

is

missing.

As

another

example,

a

configuration

property

can

determine

whether

the

application

or

the

connector

should

create

an

ID

for

a

new

object

on

a

Create

operation.

You

can

create

any

number

of

connector-specific

configuration

properties

for

your

connector.

When

you

have

identified

needed

connector-specific

properties,

you

define

them

as

part

of

the

connector

configuration

process.

Use

Connector

Configurator

to

specify

connector

configuration

properties

as

part

of

the

information

stored

in

the

local

repository.

You

can

also

add

configuration

properties

later

on

as

needed.

In

general,

your

connector

code

needs

only

to

query

for

the

values

of

the

connector-specific

properties

such

as

ApplicationUserID

and

ApplicationPassword.

Defining

and

setting

connector

configuration

properties

The

Connector

Configurator

tool

provides

you

with

the

ability

to

perform

the

following

tasks

on

connector

configuration

properties:

v

Assign

a

value

to

a

standard

configuration

property.

v

Define

and

assign

a

value

to

a

connector-specific

configuration

property.

You

invoke

Connector

Configurator

from

the

System

Manager

tool.

68

Connector

Development

Guide

for

C++

WebSphere

InterChange

Server

If

WebSphere

InterChange

Server

is

your

integration

broker,

refer

to

the

Implementation

Guide

for

WebSphere

InterChange

Server

for

information

about

the

Connector

Configurator

tool.

Other

integration

brokers

If

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

is

your

integration

broker,

refer

the

Implementation

Guide

for

WebSphere

Message

Brokers

for

information

about

Connector

Configurator.

If

WebSphere

Application

Server

is

your

integration

broker,

refer

to

the

Implementation

Guide

for

WebSphere

Application

Server

for

information

about

Connector

Configurator.

Retrieving

connector

configuration

properties

Connector

configuration

properties

are

downloaded

to

the

connector

as

part

of

the

connector

initialization

(For

more

information,

see

“Starting

up

a

connector”

on

page

61).

Your

connector

application-specific

component

retrieves

the

values

of

any

configuration

properties

that

it

needs

for

initialization

based

on

the

type

of

the

connector

property.

A

connector

can

use

a

connector

configuration

property

that

has

one

of

the

following

types:

v

A

simple

connector

configuration

property

contains

only

string

values.

It

does

not

contain

any

other

properties.

A

single-valued

simple

property

contains

only

one

string

value.

v

A

hierarchical

connector

configuration

property

contains

other

properties

and

their

values.

A

given

connector

property

can

contain

multiple

values.

Note:

For

the

IBMWebSphere

Business

Integration

Adapters

product,

single-valued

simple

connector

configuration

properties

are

the

only

kind

of

connector

properties

that

a

C++

connector

supports.

C++

connectors

do

not

support

hierarchical

properties.

To

retrieve

a

single-valued

simple

connector

configuration

property,

you

can

use

the

getConfigProp()

method.

In

the

C++

connector

library,

the

getConfigProp()

method

takes

as

input

a

character

string

for

the

name

of

the

property

value,

which

is

case-sensitive.

It

also

takes

a

pointer

to

a

buffer

to

which

the

method

can

write

the

property

value

and

the

number

of

bytes

in

the

buffer.

The

getConfigProp()

method

is

defined

in

the

GenGlobals

class.

The

code

fragment

below

shows

the

use

of

getConfigProp()

to

retrieve

the

value

of

a

Hostname

configuration

property:

char

*

hostnameBuffer

=

new

char[512];

if

(getConfigProp("Hostname”,

hostnameBuffer,

511)

==

0)

logMsg("Invalid

or

empty

property

name.”);

else

hostName

=

hostnameBuffer;

Chapter

3.

Providing

general

connector

functionality

69

Handling

loss

of

connection

to

an

application

A

good

design

practice

is

to

code

the

connector

application-specific

code

so

that

it

shuts

down

whenever

the

connection

to

the

application

is

lost.

To

respond

to

a

lost

connection,

the

connector’s

application-specific

component

should

take

the

following

steps:

v

Log

a

fatal

error

message

so

that

email

notification

is

triggered

if

the

LogAtInterchangeEnd

connector

configuration

property

is

set

to

True.

v

Return

the

BON_APPRESPONSETIMEOUT

outcome

status

inform

the

connector

controller

that

the

application

is

not

responding.

When

this

occurs,

the

process

in

which

the

connector

runs

is

stopped.

A

system

administrator

must

fix

the

problem

with

the

application

and

restart

the

connector

to

continue

processing

events

and

business

object

requests.

The

following

user-implemented

virtual

methods

should

check

for

a

loss

of

connection

to

the

application:

v

For

event

notification,

the

pollForEvents()

method

should

verify

the

connection

before

it

accesses

the

event

store.

For

more

information,

see

“Verifying

the

connection

before

accessing

the

event

store”

on

page

177.

v

For

request

processing,

the

doVerbFor()

method

should

verify

the

connection

before

it

begins

verb

processing.

For

more

information,

see

“Verifying

the

connection

before

processing

the

verb”

on

page

150.

70

Connector

Development

Guide

for

C++

Chapter

4.

Request

processing

This

chapter

presents

information

on

how

to

provide

request

processing

in

a

connector.

Request

processing

implements

a

mechanism

to

receive

requests,

in

the

form

of

request

business

objects,

from

an

integration

broker

and

to

initiate

the

appropriate

changes

in

the

application

business

entities.

The

mechanism

for

implementing

request

processing

is

a

business

object

handler,

which

contains

methods

that

interact

with

an

application

to

transform

request

business

objects

into

requests

for

application

operations.

This

chapter

contains

the

following

sections:

v

“Designing

business

object

handlers”

v

“Extending

the

business-object-handler

base

class”

on

page

74

v

“Handling

the

request”

on

page

74

v

“Handling

the

Create

verb”

on

page

78

v

“Handling

the

Retrieve

verb”

on

page

81

v

“Handling

the

RetrieveByContent

verb”

on

page

87

v

“Handling

the

Update

verb”

on

page

89

v

“Handling

the

Delete

verb”

on

page

96

v

“Handling

the

Exists

verb”

on

page

97

v

“Processing

business

objects”

on

page

98

v

“Indicating

the

connector

response”

on

page

105

v

“Handling

loss

of

connection

to

the

application”

on

page

106

Note:

For

an

introduction

to

request

processing,

see

“Request

processing”

on

page

24..

Designing

business

object

handlers

The

business

object

handler

implements

request

processing

for

the

connector.

Therefore,

the

defining

and

coding

of

business

object

handlers

is

one

of

the

primary

tasks

in

connector

development.

A

business

object

handler

is

an

instance

of

a

subclass

of

the

BOHandlerCPP

class.

Each

business

object

definition

refers

to

a

business

object

handler,

which

contains

a

set

of

methods

to

perform

the

tasks

for

the

verbs

that

the

business

object

definition

supports.

You

need

to

code

one

or

more

business

object

handlers

to

process

the

business

objects

that

the

connector

supports.

The

way

to

implement

a

business

object

handler

depends

on

the

application

programming

interface

(API)

that

you

are

using

and

how

this

interface

exposes

application

entities.

To

determine

how

many

business

object

handlers

your

connector

requires,

you

need

to

take

a

look

at

the

application

that

the

connector

will

interact

with:

v

If

the

application

is

form-based,

table-based,

or

object-based

and

has

a

standard

access

method

across

entities,

you

might

be

able

to

design

business

objects

that

store

information

about

application

entities.

The

business

object

handler

can

process

the

application

entities

in

a

metadata-driven

business

object

handler.

You

can

derive

one

generic

business-object-handler

class

to

implement

a

metadata-driven

business

object

handler,

which

handles

processing

of

all

business

objects.

For

more

information,

see

“Implementing

metadata-driven

business

object

handlers”

on

page

72.

©

Copyright

IBM

Corp.

1997,

2003

71

v

If

the

application

has

different

access

methods

for

different

kinds

of

entities,

some

or

all

of

the

application

entities

might

require

individual

business

object

handlers.

You

can:

–

Derive

a

generic

business-object-handler

class

to

implement

a

metadata-driven

business

object

handler

for

some

business

objects,

and

separate

business-object-handler

classes

to

implement

business

object

handlers

for

other

business

objects.

–

Derive

multiple

business-object-handler

classes,

one

for

each

business

object

definition

that

the

connector

supports.

For

more

information,

see

“Implementing

multiple

business

object

handlers”

on

page

73.

Implementing

metadata-driven

business

object

handlers

If

the

application

API

is

suitable

for

a

metadata-driven

connector,

and

if

you

design

business

object

definitions

to

include

metadata,

you

can

implement

a

metadata-driven

business

object

handler.

This

business

object

handler

uses

the

metadata

to

process

all

requests.

A

business

object

handler

can

be

completely

metadata-driven

if

the

application

is

consistent

in

its

design,

and

the

metadata

follows

a

consistent

syntax

for

each

supported

business

object.

Note:

For

an

introduction

to

metadata

and

metadata-driven

design,

see

“Assessing

support

for

metadata-driven

design”

on

page

45..

This

section

provides

the

following

information

about

metadata-driven

design

for

a

business

object

handler:

v

“Metadata

in

business

objects”

v

“Benefits

of

metadata

design”

on

page

73

Metadata

in

business

objects

Business

object

definitions

have

specific

locations

for

different

types

of

application-specific

data.

For

example,

business

object

attributes

have

a

set

of

properties,

such

as

Key,

Foreign

Key,

Required,

Type,

and

so

on,

that

provide

the

business

object

handler

with

information

that

it

can

use

to

drive

business

object

processing.

In

addition,

the

AppSpecificInfo

property

can

provide

the

business

object

handler

with

application-specific

information,

which

can

specify

how

to

access

data

in

the

application

and

how

to

process

application

entities.

The

AppSpecificInfo

property

is

available

for

the

business

object

definition,

attributes,

and

verbs.

Table

25

shows

some

typical

schemes

for

encoding

application-specific

information

in

business

objects.

Table

25.

Example

schemes

for

storage

of

application

information

in

business

objects

Scope

of

application-specific

information

Table-based

application

Form-based

application

The

whole

business

object

Table

name

Form

name

An

individual

attribute

Column

name

Field

name

The

business

object

verb

SQL

statement

or

other

verb-processing

instructions

Action

to

be

performed

Using

application-specific

information,

a

metadata-driven

business

object

handler

might

simply:

72

Connector

Development

Guide

for

C++

v

Examine

the

verb

of

an

incoming

business

object

to

identify

the

operation

to

perform.

v

Examine

the

contents

of

the

business

object

metadata

to

identify

the

name

of

the

associated

application

entity

(such

as

an

application

table

or

form).

v

Examine

the

contents

of

the

attribute

metadata

to

identify

fields,

columns,

or

other

information

about

the

attributes.

If

a

business

object

definition

contains

the

table

name

and

column

names,

you

do

not

have

to

explicitly

code

those

names

in

the

business

object

handler.

Benefits

of

metadata

design

Encoding

application

information

in

a

business

object

accomplishes

two

things:

v

One

business

object

handler

class

can

perform

all

operations

for

all

business

objects

supported

by

the

connector.

You

do

not

have

to

code

a

separate

business

object

handler

for

each

supported

business

object.

v

Changes

to

a

business

object

definition

do

not

require

recoding

the

connector

as

long

as

the

changes

conform

to

existing

metadata

syntax.

This

benefit

means

that

you

can

add

attributes

to

a

business

object

definition,

remove

attributes,

or

reorder

attributes

without

recompiling

or

recoding

the

connector.

If

information

about

application

entities

is

encoded

consistently

in

the

business

object

definition,

all

request

business

objects

can

be

handled

by

a

single

business-object-handler

class

in

the

connector.

Also,

you

need

to

implement

only

a

single

getBOHandlerforBO()

method

to

return

the

single

business

object

handler

and

a

single

doVerbFor()

method

to

implement

this

business

object

handler.

This

approach

is

recommended

for

connector

development

because

it

provides

flexibility

and

automatic

support

for

new

business

object

attributes.

Implementing

multiple

business

object

handlers

For

each

business

object

definition

that

does

not

encapsulate

all

the

metadata

and

business

logic

for

an

application

entity,

you

need

a

separate

business-object-handler

class.

You

can

derive

separate

handler

classes

directly

from

the

business-object-handler

base

class,

or

you

can

derive

a

single

utility

class

and

derive

subclasses

as

needed.

You

must

then

implement

the

getBOHandlerforBO()

method

to

return

business

object

handler

that

corresponds

to

particular

business

object

definitions.

Each

business

object

handler

must

contain

a

doVerbFor()

method.

If

you

implement

multiple

business

object

handlers,

you

must

implement

a

doVerbFor()

method

for

each

business-object-handler

class.

In

each

doVerbFor()

method,

include

code

to

handle

any

parts

of

the

application

entity

or

operations

on

the

application

entity

that

the

business

object

definition

does

not

describe.

This

approach

results

in

higher

maintenance

requirements

and

longer

development

time

than

designing

a

single

business

object

handler

for

a

metadata-driven

connector.

For

this

reason,

this

approach

should

be

avoided

if

possible.

However,

if

the

application

has

different

access

methods

for

different

kinds

of

entities,

coding

multiple,

entity-specific

business

object

handlers

might

be

unavoidable.

Chapter

4.

Request

processing

73

Extending

the

business-object-handler

base

class

The

C++

connector

library

provides

the

business-object-handler

base

class,

BOHandlerCPP.

This

base

class

includes

methods

for

handling

request

processing,

including

the

doVerbFor()

method.

To

create

a

business

object

handler,

you

must

extend

this

business-object-handler

base

class

and

implement

its

virtual

method

doVerbFor().

For

information

specific

to

the

C++

connector

library,

see

“Extending

the

C++

business-object-handler

base

class”

on

page

147.

Handling

the

request

Once

you

have

derived

your

business-object-handler

class,

you

must

implement

the

business-object-handler

method,

doVerbFor().

It

is

the

doVerbFor()

method

that

provides

request

processing

for

the

business

objects

that

the

connector

supports.

At

startup,

the

connector

framework

calls

getBOHandlerforBO()

to

obtain

the

business

object

handler

implemented

for

each

of

the

business

object

definitions

that

the

connector

supports.

Important:

All

connectors

must

implement

a

business-object-handler

method,

doVerbFor(),

that

implements

the

Retrieve

verb.

This

method

and

verb

must

be

implemented

even

if

your

connector

will

not

perform

request

processing.

This

section

provides

the

following

information

on

how

to

implement

the

doVerbFor()

method:

v

“Basic

logic

for

doVerbFor()”

v

“General

recommendations

on

verb

implementations”

on

page

76

Basic

logic

for

doVerbFor()

For

a

C++

connector,

the

BOHandlerCPP

class

defines

the

doVerbFor()

method,

which

is

a

virtual

method

defined.

The

doVerbFor()

method

typically

follows

a

basic

logic

for

request

processing.

Figure

25

shows

a

flow

chart

of

the

method’s

basic

logic.

74

Connector

Development

Guide

for

C++

For

an

implementation

of

this

basic

doVerbFor()

logic,

see

“Implementing

the

doVerbFor()

method”

on

page

148.

When

the

connector

framework

receives

a

request,

it

calls

the

doVerbFor()

method

for

the

business-object-handler

class

associated

with

the

business

object

definition

of

the

request

business

object.

To

this

doVerbFor()

method,

the

connector

framework

passes

the

request

business

object.

Table

26

summarizes

the

tasks

that

the

doVerbFor()

method

performs

once

it

has

received

a

request

business

object

from

the

connector

framework.

Table

26.

Tasks

of

the

doVerbFor()

method

Task

of

business

object

handler

For

more

information

1.

Determine

the

verb

processing

to

perform,

based

on

the

active

verb

in

the

request

business

object.

“Performing

the

verb

action”

on

page

77

Receive request
business object
(with active verb)

Request processing
failed: "application-timeout"

Is the active
verb valid?

NO

YES

NO

YESYES

Branch on the value of the
active verb: one branch
for each verb supported
by the business object

Create

Retrieve, RetrieveByContent

Update

Delete

Other verbs: Exist, custom

NO

Was verb
processing
successful?

Verb processing
failed: fail status" "

Verb processing
failed: "fail" status

Verb processing was
successful: success status" "Is the

connector still
connected to the

application?

Figure

25.

Flow

chart

for

basic

logic

of

doVerbFor()

Chapter

4.

Request

processing

75

Table

26.

Tasks

of

the

doVerbFor()

method

(continued)

Task

of

business

object

handler

For

more

information

2.

Obtain

information

from

the

request

business

object

to

build

and

send

requests

for

operations

to

the

application.

“Processing

business

objects”

on

page

98

General

recommendations

on

verb

implementations

This

section

provides

the

following

general

recommendations

for

implementing

your

doVerbFor()

method:

v

“Verb

stability”

v

“Transaction

support”

v

“ObjectEventId

attribute”

Verb

stability

Verbs

in

a

business

object

should

remain

stable

throughout

the

request

and

response

cycle.

When

a

connector

receives

a

request,

the

hierarchical

business

object

that

is

returned

to

InterChange

Server

should

have

the

same

verbs

as

the

original

request

business

object,

with

the

exception

of

verbs

in

child

business

objects

that

were

not

set

in

the

original

request.

Verbs

in

child

business

objects

might

or

might

not

be

set

in

request

business

objects:

v

When

a

verb

is

set

in

a

child

business

object,

the

connector

should

perform

the

operation

that

the

child

verb

indicates,

regardless

of

the

verb

on

the

top-level

business

object.

v

If

a

verb

in

a

child

business

object

request

is

not

set,

the

connector

can

either

leave

the

child

verb

as

NULL,

set

the

child

verb

to

the

verb

in

the

top-level

business

object,

or

set

the

value

of

the

verb

to

the

operation

that

the

connector

needs

to

perform.

Transaction

support

An

entire

business

object

request

must

be

wrapped

in

a

single

transaction.

In

other

words,

all

Create,

Update,

and

Delete

transactions

for

a

top-level

business

object

and

all

of

its

children

must

be

wrapped

in

a

single

transaction.

If

any

failure

is

detected

during

the

life

of

the

transaction,

the

whole

transaction

should

be

rolled

back.

For

example,

if

a

Create

operation

on

a

top-level

business

object

succeeds,

but

the

transaction

for

one

of

the

child

business

objects

fails,

the

connector

application-specific

component

should

roll

back

the

entire

Create

transaction

to

the

previous

state.

In

this

case,

the

connector’s

application-specific

component

should

return

failure

from

the

verb

method.

ObjectEventId

attribute

The

ObjectEventId

attribute

is

used

in

the

IBM

WebSphere

business

integration

system

to

identify

an

event-trigger

flow

in

the

system.

In

addition,

it

is

used

to

keep

track

of

child

business

objects

across

requests

and

responses,

as

the

position

of

child

business

objects

in

a

hierarchical

business

object

request

might

be

different

from

the

position

of

the

child

business

objects

in

the

response

business

object.

Connectors

are

not

required

to

populate

ObjectEventId

attributes

for

either

a

parent

business

object

or

its

children.

If

business

objects

do

not

have

values

for

ObjectEventId

attributes,

the

IBM

WebSphere

business

integration

system

76

Connector

Development

Guide

for

C++

generates

values

for

them.

When

connectors

generate

ObjectEventId

values,

this

is

done

by

the

source

connector

as

part

of

the

event-notification

mechanism.

When

processing

request

business

objects,

connectors

should

preserve

ObjectEventId

values

in

all

levels

of

a

hierarchical

business

object

between

the

request

business

object

and

the

response

business

object.

If

a

connector

method

changes

the

values

of

child

business

object

ObjectEventIds,

the

IBM

WebSphere

business

integration

system

may

not

be

able

to

correctly

track

the

child

business

objects.

For

information

on

generating

ObjectEventIds

in

the

event

notification

mechanism,

see

“Event

identifier”

on

page

109..

Performing

the

verb

action

The

standard

verbs

that

IBM

WebSphere

business

integration

system

expect

connectors

to

handle

are

Create,

Retrieve,

Update,

and

Delete.

IBM

recommends

that

you

implement

these

verbs

according

to

standard

behaviors

documented

in

the

sections

listed

in

the

For

More

Information

column

of

Table

27..

These

sections

provide

information

about

the

standard

behavior,

implementation

notes,

and

the

appropriate

outcome-status

values.

Table

27

lists

the

standard

verbs

that

IBM

WebSphere

business

integration

system

defines.

Your

doVerbFor()

method

should

implement

those

verbs

appropriate

for

its

application.

Table

27.

Verbs

implemented

by

the

doVerbFor()

method

Verb

Description

For

more

information

Create

Make

a

new

entity

in

the

application.

“Handling

the

Create

verb”

on

page

78

Retrieve

Using

key

values,

return

a

complete

business

object.

“Handling

the

Retrieve

verb”

on

page

81

RetrieveByContent

Using

non-key

values,

return

a

complete

business

object.

“Handling

the

RetrieveByContent

verb”

on

page

87

Update

Change

the

value

in

one

or

more

fields

in

the

application.

“Handling

the

Update

verb”

on

page

89

Delete

Remove

the

entity

from

the

application.

This

operation

must

be

a

true

physical

delete.

“Handling

the

Delete

verb”

on

page

96

Exists

Check

whether

the

entity

exists

in

the

application.

“Handling

the

Exists

verb”

on

page

97

Custom

verbs

Perform

some

application-specific

operation.

None

Note:

Although

the

sections

listed

in

the

″For

more

information″

column

of

Table

27

present

suggested

behavior

for

verb

methods,

your

connector

might

need

to

implement

some

aspects

of

verb

processing

differently

to

support

a

particular

application.

Once

the

connector

framework

passes

a

request

business

object

to

your

connector’s

doVerbFor()

method,

the

doVerbFor()

method

can

implement

verb

processing

in

any

way

that

is

necessary.

Your

verb

processing

code

is

not

limited

to

the

suggestions

presented

in

this

chapter.

InterChange

Server

When

InterChange

Server

is

the

integration

broker

and

you

design

your

own

collaborations,

you

can

implement

any

custom

verbs

that

you

need.

Your

Chapter

4.

Request

processing

77

collaborations

and

connectors

are

not

limited

to

the

standard

list

of

verbs.

End

of

InterChange

Server

This

basic

verb-processing

logic

consists

of

the

following

steps:

1.

Get

the

verb

from

the

request

business

object.

The

doVerbFor()

method

must

first

retrieve

the

active

verb

from

the

business

object

with

the

getVerb()

method.

For

a

C++

connector,

getVerb()

is

defined

in

the

BusinessObject

class.

2.

Perform

the

verb

operation.

In

the

business

object

handler,

you

can

design

the

doVerbFor()

method

in

either

of

the

following

ways:

v

Implement

verb

processing

for

each

supported

verb

directly

within

the

doVerbFor()

method.

You

can

modularize

the

verb

processing

so

that

each

verb

operation

is

implemented

in

a

separate

verb

method

called

from

doVerbFor().

The

method

should

also

take

appropriate

action

if

the

verb

is

not

a

supported

verb

by

returning

a

message

in

the

return-status

descriptor

and

a

“fail”

status.

v

Handle

all

verb

processing

in

the

same

method

using

a

metadata-driven

doVerbFor()

method.

Handling

the

Create

verb

When

the

business

object

handler

obtains

a

Create

verb

from

the

request

business

object,

it

must

ensure

that

a

new

application

entity,

whose

type

is

indicated

by

the

business

object

definition,

is

created,

as

follows:

v

For

a

flat

business

object,

the

Create

verb

indicates

that

the

specified

entity

must

be

created.

v

For

a

hierarchical

business

object,

the

Create

verb

indicates

that

one

or

more

application

entities

(to

match

the

entire

business

object)

must

be

created.

The

business

object

handler

must

set

all

the

values

in

the

new

application

entities

to

the

attribute

values

in

the

request

business

object.

To

ensure

that

all

required

attributes

in

the

request

business

object

have

values

assigned,

you

can

call

the

initAndValidateAttributes()

method,

which

assigns

the

attribute’s

default

value

to

each

required

attribute

that

does

not

have

its

value

set

(when

the

UseDefaults

connector

configuration

property

is

set

to

true).

The

initAndValidateAttributes()

method

is

defined

in

the

BusinessObject

class.

Call

initAndValidateAttributes()

before

performing

the

Create

operation

in

the

application.

Note:

For

a

table-based

application,

the

entire

application

entity

must

be

created

in

the

application

database,

usually

as

a

new

row

to

the

database

table

associated

with

the

business

object

definition

of

the

request

business

object.

This

section

provides

the

following

information

to

help

process

a

Create

verb:

v

“Standard

processing

for

a

Create

verb”

on

page

79

v

“Implementation

of

a

Create

verb

operation”

on

page

79

v

“Outcome

status

for

Create

verb

processing”

on

page

80

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

C++

method.

If

you

follow

this

structure,

a

Create

method

handles

processing

for

the

Create

verb.

78

Connector

Development

Guide

for

C++

Standard

processing

for

a

Create

verb

The

following

steps

outline

the

standard

processing

for

a

Create

verb:

1.

Create

the

application

entity

corresponding

to

the

top-level

business

object.

2.

Handle

the

primary

key

or

keys

for

the

application

entity:

v

If

the

application

generates

its

own

primary

key

(or

keys),

get

these

key

values

for

insertion

in

the

top-level

business

object.

v

If

the

application

does

not

generate

its

own

primary

key

(or

keys),

insert

the

key

values

from

the

request

business

object

into

the

appropriate

key

column

(or

columns)

of

the

application

entity.
3.

Set

foreign

key

attributes

in

any

first-level

child

business

objects

to

the

value

of

the

top-level

primary

key.

4.

Recursively

create

the

application

entities

corresponding

to

the

first-level

child

business

objects,

and

continue

recursively

creating

all

child

business

objects

at

all

subsequent

levels

in

the

business

object

hierarchy.

In

Figure

26,,

a

verb

method

sets

the

foreign

key

attributes

(FK)

in

child

business

objects

A,

B,

and

C

to

the

value

of

the

top-level

primary

key

(PK1).

The

method

then

recursively

sets

the

foreign

key

attributes

in

child

business

objects

D

and

E

to

the

value

of

the

primary

key

(PK3)

in

their

parent

business

object,

object

B.

Implementation

of

a

Create

verb

operation

A

typical

implementation

of

a

Create

operation

first

traverses

the

top-level

business

object

and

processes

the

business

object’s

simple

attributes.

It

gets

the

values

of

the

attributes

from

the

business

object

and

generates

the

application-specific

action

(such

as

an

API

call

or

SQL

statement)

that

inserts

an

entity

in

the

application

to

represent

the

top-level

business

object.

Once

this

top-level

entity

is

created,

the

verb

operation

takes

the

following

steps:

1.

Retrieve

any

primary

keys

for

the

entity

from

the

application.

2.

Use

the

keys

to

set

the

foreign

key

attributes

in

the

first-level

child

business

objects

to

the

value

of

the

parent

primary

keys.

3.

Set

the

verb

in

each

child

business

object

to

Create

and

recursively

create

application

entities

to

represent

the

child

business

objects.

ID = PK6

FK = PK3ID = PK4

FK = PK1

ID = PK3

FK = PK1

ID = PK1

ID = PK2

FK = PK1

ID = PK5

FK = PK3

Top-level
bus object

Child A

Child C

Child B

Child D

Child E

Figure

26.

Creating

parent/child

relationships

Chapter

4.

Request

processing

79

A

recommended

approach

for

creating

child

business

objects

is

to

design

a

submethod

to

recursively

create

child

entities.

The

submethod

might

traverse

the

business

object,

looking

for

attributes

of

type

OBJECT.

If

the

submethod

finds

attributes

that

are

objects,

it

calls

the

main

Create

method

to

create

the

child

entities.

The

way

that

the

main

method

provides

primary

key

values

to

the

submethod

can

vary.

For

example,

the

main

Create

method

might

pass

the

parent

business

object

to

the

submethod,

and

the

submethod

can

then

retrieve

the

primary

key

from

the

parent

business

object

to

set

the

foreign

key

in

the

child

business

object.

Alternatively,

the

main

method

might

traverse

the

parent

object,

find

first-level

children,

set

the

foreign

key

attributes

in

the

child

business

objects,

and

then

call

the

submethod

on

each

child.

In

either

case,

the

main

Create

method

and

its

submethod

interact

to

set

the

interdependencies

between

the

parent

business

object

and

its

first-level

children.

Once

the

foreign

keys

are

set,

the

operation

can:

v

Insert

new

rows

into

the

application.

v

Set

foreign

keys

for

the

next

level

of

child

business

objects.

v

Create

the

child

entities.

v

Descend

the

business

object

hierarchy,

recursively

creating

child

entities

until

there

are

no

more

child

business

objects

to

process.

Note:

For

an

example

Create

verb

method,

see

“Example:

Create

method

for

a

flat

business

object”

on

page

169.

Note:

For

a

table-based

application,

the

order

of

the

steps

for

setting

the

relationships

between

a

top-level

object

and

its

children

may

vary,

depending

on

the

database

schema

for

the

application

and

on

the

design

of

the

application-specific

business

objects.

For

example,

if

foreign

keys

for

a

hierarchical

business

object

are

located

in

the

top-level

business

object,

the

verb

operation

might

need

to

process

all

child

business

objects

before

processing

the

top-level

business

object.

Only

when

the

child

entities

are

inserted

into

the

application

database

and

the

primary

keys

for

these

entities

are

returned

can

the

top-level

business

object

be

processed

and

inserted

into

the

application

database.

Therefore,

be

sure

to

consider

the

structure

of

data

in

the

application

database

when

you

implement

connector

verb

methods.

Outcome

status

for

Create

verb

processing

The

Create

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

28.

Table

28.

Possible

outcome

status

for

C++

Create

verb

processing

Create

condition

C++

outcome

status

If

the

Create

operation

is

successful

and

the

application

generates

new

key

values,

the

connector:

v

fills

the

business

object

with

the

new

key

values;

this

business

object

is

returned

to

the

connector

framework

through

the

request

business

object

parameter.

v

returns

the

“Value

Changed”

outcome

status

to

indicate

that

the

connector

has

changed

the

business

object

BON_VALCHANGE

If

the

Create

operation

is

successful

and

the

application

does

not

generate

new

key

values,

the

connector

can

simply

return

“Success”.

BON_SUCCESS

80

Connector

Development

Guide

for

C++

Table

28.

Possible

outcome

status

for

C++

Create

verb

processing

(continued)

Create

condition

C++

outcome

status

If

the

application

entity

already

exists,

the

connector

can

either

of

the

following

actions:

v

Fail

the

Create

operation.

BON_FAIL

v

Return

an

outcome

status

that

indicates

the

application

entity

already

exists.

BON_VALDUPES

If

the

Create

operation

fails,

the

verb

method:

v

fills

a

return-status

descriptor

with

information

on

the

failure

v

returns

the

“Fail”

outcome

status

BON_FAIL

Note:

When

the

connector

framework

receives

the

BON_VALCHANGE

outcome

status,

it

includes

a

business

object

in

its

response

to

InterChange

Server.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

166.

Handling

the

Retrieve

verb

When

the

business

object

handler

obtains

a

Retrieve

verb

from

the

request

business

object,

it

must

ensure

that

an

existing

application

entity,

whose

type

is

indicated

by

the

business

object

definition,

is

retrieved,

as

follows:

v

For

a

flat

business

object,

the

Retrieve

verb

indicates

that

the

specified

entity

is

retrieved

by

its

key

values.

The

verb

operation

returns

a

business

object

that

contains

the

current

values

for

the

application

entity.

v

For

a

hierarchical

business

object,

the

Retrieve

verb

indicates

that

one

or

more

application

entities

(to

match

the

entire

business

object)

are

retrieved

by

the

key

values

of

the

top-level

business

object.

The

verb

operation

returns

a

business

object

in

which

all

simple

attributes

of

each

business

object

in

the

hierarchy

match

the

values

of

the

corresponding

entity

attributes,

and

the

number

of

individual

business

objects

in

each

child

business

object

array

matches

the

number

of

child

entities

in

the

application.

Note:

For

a

table-based

application,

the

entire

application

entity

must

be

retrieved

from

the

application

database.

For

the

Retrieve

verb,

the

business

object

handler

obtains

the

key

value

(or

values)

from

the

request

business

object.

These

key

values

uniquely

identify

an

application

entity.

The

business

object

handler

then

uses

these

key

values

to

retrieve

all

the

data

associated

with

an

application

entity.

The

connector

retrieves

the

entire

hierarchical

image

of

the

entity,

including

all

child

objects.

This

type

of

retrieve

operation

might

be

referred

to

as

an

after-image

retrieve.

Important:

All

connectors

must

implement

a

doVerbFor()

method

with

verb

processing

for

the

Retrieve

verb.

This

requirement

holds

even

if

your

connector

will

not

perform

request

processing.

An

alternative

way

of

retrieving

data

is

to

query

using

a

subset

of

non-key

attribute

values,

none

of

which

uniquely

define

a

particular

application

record.

This

type

of

retrieve

processing

is

performed

by

the

RetrieveByContent

verb

method.

For

information

on

retrieving

by

non-key

values,

see

“Handling

the

RetrieveByContent

verb”

on

page

87.

This

section

provides

the

following

information

to

help

process

a

Retrieve

verb:

v

“Standard

processing

for

a

Retrieve

verb”

on

page

82

Chapter

4.

Request

processing

81

v

“Implementation

of

a

Retrieve

verb

operation”

v

“Example:

Retrieve

operation”

v

“Retrieving

child

objects”

on

page

84

v

“Outcome

status

for

Retrieve

verb

processing”

on

page

86

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

C++

method.

If

you

follow

this

structure,

a

Retrieve

method

handles

processing

for

the

Retrieve

verb.

Standard

processing

for

a

Retrieve

verb

The

following

steps

outline

the

standard

processing

for

a

Retrieve

verb:

1.

Create

a

new

business

object

of

the

same

type

as

the

request

business

object.

This

new

business

object

is

the

response

business

object,

which

will

hold

the

retrieved

copy

of

the

request

business

object.

2.

Set

the

primary

keys

in

the

new

top-level

business

object

to

the

values

of

the

top-level

keys

in

the

request

business

object.

3.

Retrieve

the

application

data

for

the

top-level

business

object

and

fill

the

response

top-level

business

object’s

simple

attributes.

4.

Retrieve

all

the

application

data

associated

with

the

top-level

entity,

and

create

and

fill

child

business

objects

as

needed.

Note:

By

default,

the

Retrieve

method

returns

failure

if

it

cannot

retrieve

application

data

for

all

the

child

objects

in

a

hierarchical

business

object.

This

behavior

can

be

made

configurable;

for

information,

see

“Configuring

a

Retrieve

to

ignore

missing

child

objects”

on

page

86.

Implementation

of

a

Retrieve

verb

operation

A

typical

Retrieve

operation

can

use

one

of

the

following

methods:

v

Create

a

new

response

business

object

from

the

business

object

definition

for

that

object

and

sets

the

top-level

primary

keys

in

this

new

business

object.

Using

the

top-level

primary

keys,

the

verb

operation

can

retrieve

all

data

associated

with

the

top-level

entity.

v

Start

by

pruning

all

child

business

objects

from

the

top-level

business

object.

Using

the

top-level

keys

in

the

pruned

object,

the

verb

operation

can

retrieve

the

top-level

data

and

all

associated

data.

The

goal

of

each

of

these

approaches

is

the

same:

Start

with

the

top-level

business

object

and

rebuild

the

complete

business

object

hierarchy.

This

type

of

implementation

ensures

that

all

children

in

the

request

business

object

that

are

no

longer

in

the

database

are

removed

and

are

not

passed

back

in

the

response

business

object.

This

implementation

also

ensures

that

the

hierarchical

response

business

object

exactly

matches

the

database

state

of

the

application

entity.

At

each

level,

the

Retrieve

operation

rebuilds

the

request

business

object

so

that

it

accurately

reflects

the

current

database

representation

of

the

entity.

Example:

Retrieve

operation

In

a

Retrieve

operation,

an

integration

broker

requests

the

complete

set

of

data

that

is

associated

with

an

application

entity.

The

request

business

object

might

contain

any

of

the

following:

v

A

top-level

business

object

but

no

child

objects,

even

though

the

business

object

definition

includes

children

82

Connector

Development

Guide

for

C++

v

A

business

object

that

contains

the

top-level

business

object

and

some

of

its

defined

children

v

A

complete

hierarchical

business

object

containing

all

child

business

objects

Figure

27

shows

a

request

business

object

for

a

Contact

entity.

The

Contact

business

object

includes

a

multiple

cardinality

array

for

the

ContactProfile

attribute.

In

this

request

business

object,

the

ContactProfile

business

object

array

includes

two

child

business

objects.

Application

tables

associated

with

the

Contact

and

ContactProfile

business

objects

might

look

like

the

tables

in

Figure

28..

This

illustration

also

shows

the

foreign-key

relationship

between

the

tables.

As

you

can

see,

the

contact_profile

table

has

a

row

for

the

ContactId

of

100

that

is

not

reflected

in

the

Contact

request

business

object

in

Figure

26..

The

Retrieve

operation

uses

the

primary

key

in

the

Contact

business

object

(100)

to

retrieve

the

data

for

the

simple

attributes

in

the

response

business

object:

values

for

the

Name

and

JobTitle

attributes.

To

be

sure

that

it

retrieves

the

correct

number

of

child

business

objects,

the

verb

operation

must

either

create

a

new

business

object

or

prune

child

objects

from

the

existing

request

business

object.

For

the

tables

in

Figure

28,,

the

Retrieve

operation

would

need

to

create

a

new

ContactProfile

business

object

for

the

contact_profile

row

with

a

profile_id

ContactProfile

ProfileId = 276

ContactId =
...

ProfileId = 275

ContactId =
...

ContactId = 100

Name =

JobTitle =

ContactProfile =

Contact

ContactProfile

Figure

27.

Example

business

object

content

for

a

Retrieve

request

contact_profile table

100

100

42

53

contact_id job_code department

422

422

100 78 422

contact_id

contact table

name job_title

100

200

Jones

Smith

VP

Manager

profile_id

275

276

277

200 156 537278

Figure

28.

Foreign-key

relationships

between

tables

Chapter

4.

Request

processing

83

value

of

277.

In

this

way,

the

Retrieve

operation

properly

creates

and

populates

all

arrays

based

on

the

current

state

of

the

application

entities.

Retrieving

child

objects

To

retrieve

entities

associated

with

the

top-level

entity,

the

Retrieve

operation

might

be

able

to

use

the

application

API:

v

Ideally,

the

API

will

navigate

the

relationships

between

application

entities

and

return

all

related

data.

The

verb

operation

can

then

encapsulate

the

related

data

as

child

business

objects.

v

If

the

API

does

not

provide

information

on

associated

entities,

you

might

need

to

access

the

application

(for

example,

with

generated

SQL

statements)

to

retrieve

related

data.

The

SQL

statements

might

use

foreign

keys

to

navigate

through

application

tables.

If

the

attribute

application-specific

information

in

the

business

object

definition

contains

information

on

foreign

keys,

the

verb

operation

can

use

this

information

to

generate

command

to

access

the

application

(such

as

SQL

statements).

For

example,

application-specific

information

for

the

foreign

key

attribute

of

the

ContactProfile

child

business

object

might

specify:

v

The

parent

table:

contact

v

The

child

table’s

column

for

the

foreign

key:

contact_id

v

The

attribute

in

the

parent

business

object

that

contains

the

primary

key

value

that

serves

as

a

foreign

key

in

the

child

business

object:

ContactId

Figure

29

shows

example

application-specific

information

for

the

primary

key

attribute

of

the

Contact

business

object

and

the

primary

and

foreign

key

attributes

of

the

ContactProfile

child

business

object.

84

Connector

Development

Guide

for

C++

Using

the

application-specific

information,

the

verb

operation

can

find

the

name

of

the

child

table

(contact_profile)

and

the

column

for

the

foreign

key

(contact_id)

in

the

child

table.

The

verb

operation

can

also

find

the

value

of

the

foreign

key

for

the

child

business

object

by

obtaining

the

value

of

the

primary

key

attribute

(ContactId)

in

the

parent

business

object

(100).

With

this

information,

the

verb

operation

can

generate

a

SQL

SELECT

statement

that

retrieves

all

the

records

in

the

child

table

associated

with

the

parent

key.

The

SELECT

statement

to

retrieve

the

data

associated

with

the

missing

contact_profile

row

might

be:

SELECT

profile_id,

job_code,

department

FROM

contact_profile

WHERE

contact_id

=

100

The

SELECT

statement

returns

three

rows

from

the

example

contact_profile

table,

as

shown

in

Figure

30..

Name = ContactId

AppSpecificInfo = contact.contact_id
...

[Attribute]

Name = ProfileId

AppSpecificInfo = contact_profile.profile_id
...

[Attribute]

IsKey = true

[Attribute]
Name = ContactId
IsForeignKey = true
AppSpecificInfo = contact_profile.contact_id:ContactId
...

Primary key attribute
in parent

Foreign key table
and column

Contact

ContactProfile

Figure

29.

Foreign-key

relationships

in

business

objects

contact_profile table

contact_id job_code department
contact_id

contact table

name job_title

100

200

Jones

Smith

VP

Manager

profile_id

275

276

277

200 156 537278

100

100

42

53

422

422

100 78 422

Figure

30.

Results

of

SELECT

statement

for

example

Retrieve

operation

Chapter

4.

Request

processing

85

If

a

Retrieve

operation

returns

multiple

rows,

each

row

becomes

a

child

business

object.

The

verb

operation

might

process

retrieved

rows

as

follows:

1.

For

each

row,

create

a

new

child

business

object

of

the

correct

type.

2.

Set

attributes

in

the

new

child

business

object

based

on

the

values

that

a

SELECT

statement

returns

for

the

associated

row.

3.

Recursively

retrieve

all

children

of

the

child

business

object,

creating

the

business

object

and

setting

the

attributes

for

each

one.

4.

Insert

the

array

of

child

business

objects

into

the

multiple-cardinality

attribute

in

the

parent

business

object.

The

response

business

object

for

the

Retrieve

operation

on

the

two

example

tables

might

look

like

Figure

31..

The

verb

operation

has

retrieved

the

current

database

entity

and

has

added

a

child

to

the

hierarchical

business

object.

Configuring

a

Retrieve

to

ignore

missing

child

objects

By

default,

the

Retrieve

operation

should

return

failure

if

it

cannot

retrieve

application

data

for

the

complete

set

of

child

business

objects

in

a

hierarchical

business

object.

However,

you

can

implement

the

verb

operation

so

that

the

behavior

of

the

connector

is

configurable

when

one

or

more

of

the

children

in

a

business

object

are

not

found

in

the

application.

To

do

this,

define

a

connector-specific

configuration

property

named

IgnoreMissingChildObject,

whose

values

are

True

and

False.

The

Retrieve

operation

obtains

the

value

of

this

property

to

determine

how

to

handle

missing

child

business

objects.

When

the

property

is

True,

the

Retrieve

operation

should

simply

move

on

to

the

next

child

in

the

array

if

it

fails

to

find

a

child

business

object.

In

this

case,

the

verb

operation

should

return

BON_VALCHANGE

if

it

is

successful

in

retrieving

the

top-level

object,

regardless

of

whether

it

is

successful

in

retrieving

its

children.

Outcome

status

for

Retrieve

verb

processing

The

Retrieve

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

29.

ProfileId = 277

ContactId = 100
...

ProfileId = 276

ContactId = 100
...

ContactId = 100 ProfileId = 275

ContactId = 100Name = Jones
...

JobTitle = VP

ContactProfile

Contact ContactProfile

ContactProfile

ContactProfile

Figure

31.

Business

object

response

to

example

Retrieve

request

86

Connector

Development

Guide

for

C++

Table

29.

Possible

outcome

status

for

C++

Retrieve

verb

Processing

Retrieve

condition

C++

outcome

status

When

the

Retrieve

operation

is

successful,

it:

v

fills

the

entire

business

object

hierarchy,

including

all

child

business

objects;

this

business

object

is

returned

to

the

connector

framework

through

the

request

business

object

parameter.

v

returns

the

“Value

Changed”

outcome

status

to

indicate

that

the

connector

has

changed

the

business

object

BON_VALCHANGE

If

the

IgnoreMissingChildObject

connector

property

is

True,

the

Retrieve

operation

returns

the

“Value

Changed”

outcome

status

for

the

business

object

if

it

is

successful

in

retrieving

the

top-level

object,

regardless

of

whether

it

is

successful

in

retrieving

its

children.

BON_VALCHANGE

If

the

entity

that

the

business

object

represents

does

not

exist

in

the

application,

the

connector

returns

a

special

outcome

status

rather

than

“Fail”.

BON_BO_DOES_NOT_EXIST

If

the

request

business

object

does

not

provide

a

key

for

the

top-level

business

object,

the

Retrieve

operation

can

take

either

of

the

following

actions:

v

Fill

a

return-status

descriptor

with

information

about

the

cause

of

Request

failure

and

return

a

“Fail”

outcome

status.

v

Call

the

RetrieveByContent

method

to

retrieve

using

the

content

of

the

top-level

business

object.

BON_FAIL

Note:

When

the

connector

framework

receives

the

BON_VALCHANGE

outcome

status,

it

includes

a

business

object

in

its

response

to

InterChange

Server.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

166.

Handling

the

RetrieveByContent

verb

An

integration

broker

might

need

to

retrieve

a

business

object

for

which

it

has

a

set

of

attribute

values

without

having

the

key

attribute

(or

attributes)

that

uniquely

identifies

an

application

entity.

Such

a

retrieve

is

called

“retrieve

by

non-key

values”

or

“retrieve

by

content.”

As

an

example,

if

a

business

object

handler

receives

a

Customer

business

object

with

the

verb

RetrieveByContent

and

with

the

non-key

attributes

Name

and

City

set

to

Smith

and

San

Diego,

the

RetrieveByContent

operation

can

attempt

to

retrieve

a

customer

entity

that

matches

the

values

of

the

Name

and

City

attributes.

When

the

business

object

handler

obtains

a

RetrieveByContent

verb

from

the

request

business

object,

it

must

ensure

that

an

existing

application

entity,

whose

type

is

indicated

by

the

business

object

definition,

is

retrieved,

as

follows:

v

For

a

flat

business

object,

the

RetrieveByContent

verb

indicates

that

the

specified

entity

is

retrieved

by

its

non-key

values.

The

verb

operation

returns

a

business

object

that

contains

the

current

values

for

the

application

entity.

v

For

a

hierarchical

business

object,

the

RetrieveByContent

verb

indicates

that

one

or

more

application

entities

(to

match

the

entire

business

object)

are

retrieved

by

the

non-key

values

of

the

top-level

business

object.

The

verb

operation

returns

a

business

object

in

which

all

simple

attributes

of

each

business

object

in

the

hierarchy

match

the

values

of

the

corresponding

entity

attributes,

and

the

number

of

individual

business

objects

in

each

child

business

object

array

matches

the

number

of

child

entities

in

the

application.

Chapter

4.

Request

processing

87

This

section

provides

the

following

information

to

help

process

a

RetrieveByContent

verb:

v

“Implementation

for

a

RetrieveByContent

verb

operation”

v

“Outcome

status

for

RetrieveByContent

processing”

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

C++

method.

If

you

follow

this

structure,

a

RetrieveByContent

method

handles

processing

for

the

RetrieveByContent

verb.

Implementation

for

a

RetrieveByContent

verb

operation

RetrieveByContent

functions

the

same

as

the

Retrieve

verb

except

that

it

uses

a

subset

of

non-key

values,

instead

of

key

values,

to

retrieve

application

data.

In

its

most

robust

implementation,

a

top-level

business

object

and

its

child

business

objects

would

independently

support

the

RetrieveByContent

verb.

However,

not

all

application

APIs

enable

retrieve

by

non-key

values

for

hierarchical

business

objects.

A

more

common

implementation

is

to

provide

RetrieveByContent

support

only

in

the

top-level

business

object.

When

a

top-level

business

object

supports

retrieve

by

non-key

values

and

this

retrieve-by-content

is

successful,

the

RetrieveByContent

operation

can

retrieve

the

keys

for

the

entity

matching

the

request

business

object.

The

verb

operation

can

then

perform

a

Retrieve

operation

to

retrieve

the

complete

business

object.

You

might

want

to

specify

which

attributes

are

to

be

used

in

RetrieveByContent

operations.

To

do

this,

you

can

implement

attribute

application-specific

information

to

specify

those

attributes

that

will

contain

a

value

that

is

to

be

used

in

the

RetrieveByContent

operation

or

receive

a

value

as

a

result

of

the

operation.

Outcome

status

for

RetrieveByContent

processing

The

RetrieveByContent

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

30.

Table

30.

Possible

outcome

status

for

C++

RetrieveByContent

verb

processing

RetrieveByContent

condition

C++

outcome

status

If

the

RetrieveByContent

operation

finds

a

single

entity

that

matches

the

query,

it:

v

fills

the

entire

business

object

hierarchy,

including

all

child

business

objects;

this

business

object

is

returned

to

the

connector

framework

through

the

request

business

object

parameter.

v

returns

a

“Value

Changed”

outcome

status

BON_VALCHANGE

If

the

IgnoreMissingChildObject

connector

property

is

True,

the

RetrieveByContent

operation

returns

the

“Value

Changed”

outcome

status

for

the

business

object

if

it

is

successful

in

retrieving

the

top-level

object,

regardless

of

whether

it

is

successful

in

retrieving

its

children.

BON_VALCHANGE

88

Connector

Development

Guide

for

C++

Table

30.

Possible

outcome

status

for

C++

RetrieveByContent

verb

processing

(continued)

RetrieveByContent

condition

C++

outcome

status

If

the

RetrieveByContent

operation

finds

multiple

entries

that

match

the

query,

it

returns:

v

retrieves

only

the

first

occurrence

of

the

match;

this

business

object

is

returned

to

the

connector

framework

through

the

request

business

object

parameter.

v

fills

a

return-status

descriptor

with

further

information

about

the

search

v

returns

a

status

of

“Multiple

Hits”

to

notify

the

connector

framework

that

there

are

additional

records

that

match

the

specification

BON_MULTIPLE_HITS

If

the

RetrieveByContent

operation

does

not

find

matches

for

retrieve

by

non-key

values,

it:

v

fills

a

return-status

descriptor

containing

additional

information

about

the

cause

of

the

RetrieveByContent

error

v

returns

a

“RetrieveByContent

Failed”

outcome

status

BON_FAIL_RETRIEVE_BY_CONTENT

Note:

When

the

connector

framework

receives

the

BON_VALCHANGE

outcome

status,

it

includes

a

business

object

in

its

response

to

InterChange

Server.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

166.

Handling

the

Update

verb

When

the

business

object

handler

obtains

an

Update

verb

from

the

request

business

object,

it

must

ensure

that

an

existing

application

entity,

whose

type

is

indicated

by

the

business

object

definition,

is

updated,

as

follows:

v

For

a

flat

business

object,

the

Update

verb

indicates

that

the

data

in

the

specified

entity

must

be

modified

as

necessary

until

the

application

entity

exactly

matches

the

request

business

object.

v

For

a

hierarchical

business

object,

the

Update

verb

indicates

that

updates

the

application

entity

must

be

updated

to

match

the

entire

business

object

hierarchy.

To

do

this,

the

connector

might

need

to

create,

update,

and

delete

application

entities:

–

If

child

entities

exist

in

the

application,

they

are

modified

as

needed.

–

Any

child

business

objects

contained

in

the

hierarchical

business

object

that

do

not

have

corresponding

entities

in

the

application

are

added

to

the

application.

–

Any

child

entities

that

exist

in

the

application

but

are

not

contained

in

the

business

object

are

deleted

from

the

application.

Note:

For

a

table-based

application,

the

entire

application

entity

must

be

updated

in

the

application

database,

usually

as

a

new

row

to

the

database

table

associated

with

the

business

object

definition

of

the

request

business

object.

This

section

provides

the

following

information

to

help

process

an

Update

verb:

v

“Standard

processing

for

an

Update

verb”

on

page

90

v

“Implications

of

business

objects

representing

logical

Delete

events”

on

page

93

v

“Outcome

status

for

Update

verb

processing”

on

page

95

Chapter

4.

Request

processing

89

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

C++

method.

If

you

follow

this

structure,

an

Update

method

handles

processing

for

the

Update

verb.

Standard

processing

for

an

Update

verb

The

following

steps

outline

the

standard

processing

for

an

Update

verb:

1.

Create

a

new

business

object

of

the

same

type

as

the

request

business

object.

This

new

business

object

is

the

response

business

object,

which

will

hold

the

retrieved

copy

of

the

request

business

object.

2.

Retrieve

a

copy

of

the

request

business

object

from

the

application.

Recursively

retrieve

the

data

for

the

entire

entity

from

the

application

using

the

primary

keys

from

the

request

business

object:

v

For

a

flat

business

object,

retrieve

the

single

application

entity.

v

For

a

hierarchical

business

object,

use

the

Retrieve

operation

to

descend

into

the

application

business

object,

expanding

all

paths

in

the

business

object

hierarchy.
3.

Place

the

retrieved

data

in

the

response

business

object.

This

response

business

object

is

now

a

representation

of

the

current

state

of

the

entity

in

the

application.

The

Update

operation

can

now

compare

the

two

hierarchical

business

objects

and

update

the

application

entity

appropriately.

4.

Update

the

simple

attributes

in

the

application

entity

to

correspond

to

the

top-level

source

business

object.

5.

Compare

the

response

business

object

(created

in

step

2)

with

the

request

business

object.

Perform

this

comparison

down

to

the

lowest

level

of

the

business

object

hierarchy.

Recursively

update

the

children

of

the

top-level

business

object

following

these

rules:

v

If

a

child

business

object

is

present

in

both

the

response

business

object

and

the

request

business

object,

recursively

update

the

child

by

performing

the

Update

operation.

v

If

a

child

business

object

is

present

in

the

request

business

object

but

not

in

the

response

business

object,

recursively

create

the

child

by

performing

the

Create

operation.

v

If

a

child

business

object

is

not

present

in

the

request

business

object

but

is

present

in

the

response

business

object,

recursively

delete

the

child

using

either

the

Delete

operation

(physical)

or

a

logical

delete,

depending

on

the

functionality

of

the

connector

and

the

application.

For

more

information

on

logical

deletes,

see

“Implications

of

business

objects

representing

logical

Delete

events”

on

page

93.

Note:

Only

the

existence

or

non-existence

of

the

child

objects

are

compared,

not

the

attributes

of

the

child

business

objects.

If

the

connector’s

application

supports

logical

delete,

the

connector

recursively

retrieves

the

complete

business

object

hierarchy;

then

the

Update

operation

sets

status

attributes

and

recursively

updates

the

status

of

the

children.

Note:

The

Update

operation

should

fail

if

an

application

entity

does

not

exist

for

any

foreign

key

(Foreign

Key

is

set

to

true)

referenced

in

the

request

business

object.

The

connector

should

verify

that

the

foreign

key

is

a

valid

key

(it

references

an

existing

application

entity).

If

the

foreign

key

is

invalid,

90

Connector

Development

Guide

for

C++

the

Update

operation

should

return

BON_FAIL.

A

foreign

key

is

assumed

to

be

present

in

the

application,

and

the

connector

should

never

try

to

create

an

application

object

marked

as

a

foreign

key.

Figure

32

shows

a

set

of

associated

application

entities

that

represent

a

customer

in

the

application

database.

The

entities

contain

customer,

address,

phone,

and

customer

profile

data.

Note

that

the

sample

customer,

Acme

Construction,

has

no

phone

number

in

the

database.

Assume

that

an

integration

broker

sends

an

update

request

that

consists

of

the

request

business

object

as

shown

in

Figure

33..

Customer table

Name

StreetID City State

Acme Construction

Status

ID

ID

Address table

Phone table

CustomerProfile table

CustID

PhoneNo CustID

CustIDType Role Contact

Active
...

107 65 Elm Denver Colorado 22

108 279 Vine Altos Idaho 22

109 835 High Akron Ohio 22

978 72 Cust Sam Jones 22
...

ID

22

...

...

A

B

C

Figure

32.

Customer

entities

before

Update

request

Chapter

4.

Request

processing

91

This

request

business

object

indicates

that

the

Acme

Construction

customer

has

undergone

the

changes

listed

in

Table

31..

Table

31.

Updates

to

Acme

Construction

in

the

Request

business

object

Update

made

to

Acme

Construction

Representation

in

request

business

object

Acquired

a

new

phone

number

The

child

business

object

for

the

PhoneArray

attribute

(Phone

object

A)

has

a

Create

verb.

Moved

to

new

offices

in

Denver

and

Altos

Two

child

business

objects

(Address

objects

A

and

B)

exist

in

the

AddressArray

attribute,

each

with

an

Update

verb.

Closed

the

office

in

Akron

No

child

business

object

exists

in

the

AddressArray

attribute

for

the

Akron

address.

Changed

the

name

of

the

contact

person

The

child

business

object

for

the

CustProfileArray

attribute

(CustProfile

object

A)

has

an

Update

verb.

Your

connector’s

task

is

to

keep

the

application

database

for

this

destination

application

synchronized

with

the

source

application.

Therefore,

to

respond

to

this

request,

the

connector

would

need

to

perform

the

following

tasks

as

part

of

its

Update

operation:

v

Update

any

columns

in

Customer

table

that

have

updated

values

in

the

corresponding

simple

attributes

of

the

Customer

business

object.

v

Update

the

rows

in

the

Address

table

that

correspond

to

Address

objects

A

and

B.

Update

the

columns

in

each

of

these

rows

with

any

new

values

from

the

corresponding

simple

attributes

in

the

appropriate

Address

object.

In

this

case,

the

Street

column

has

changed

for

the

Denver

and

Altos

offices.

v

Delete

the

row

in

the

Address

table

that

corresponds

to

the

Akron

address.

v

Update

the

Contact

column

of

the

CustomerProfile

table

to

the

value

of

the

corresponding

simple

attribute

in

the

CustProfile

object

A

business

object.

v

Create

a

row

in

the

Phone

table

with

column

values

from

the

simple

attributes

of

the

Phone

object

A

business

object.

Make

sure

that

the

CustID

column

of

this

new

row

is

created

with

the

foreign-key

value

that

identifies

the

appropriate

Customer

row

(22).

Address

B

A

A

CustomerID

AddressArray

CustProfileArray

PhoneArray

ObjectEventId

CustomerType

A

Update

Update

Update

Create

Update

Customer

Address

Phone

CustProfile

Figure

33.

Customer

request

business

object

for

an

Update

92

Connector

Development

Guide

for

C++

Figure

34

shows

the

set

of

associated

application

entities

that

represent

a

customer

after

the

Update

operation

has

completed.

Implications

of

business

objects

representing

logical

Delete

events

If

your

application

supports

physical

delete,

but

an

integration

broker

sends

requests

from

a

source

application

that

supports

only

logical

delete,

you

might

need

to

handle

a

business

object

that

represents

a

logical

delete

request.

Connectors

for

applications

that

perform

logical

delete

operations,

where

an

entity

is

marked

as

deleted

by

updating

a

status

value,

should

handle

logical

deletes

in

the

Update

method.

A

system

view

of

this

implementation

is

as

follows:

v

Events

that

represent

the

deletion

of

data

in

the

source

application

should

be

sent

as

application-specific

business

objects

with

the

Delete

verb.

Similarly,

maps

on

the

source

application

side

should

set

the

verb

of

generic

business

objects

to

Delete.

v

On

the

destination

side,

maps

for

connectors

supporting

logical

delete

applications

can

transform

Delete

verbs

in

generic

business

objects

to

Update

verbs

in

application-specific

business

objects.

Business

object

attributes

representing

entity

status

values

can

be

set

to

the

inactive

status.

In

this

way,

a

connector

representing

a

logical

delete

application

receives

an

application-specific

business

object

with

an

Update

verb

and

the

status

value

marked

appropriately.

Customer table

Name

StreetID City State

Acme Construction

Status

ID

ID

Address table

Phone table

CustomerProfile table

CustID

PhoneNo CustID

CustIDType Role Contact

Active
...

107 3 Tashi Denver Colorado 22

108 300 Vine Altos Idaho 22

978 72 Cust Dexter Haven 22
...

ID

22

...

4 (650) 231-5542 22

Figure

34.

Customer

entities

after

Update

request

Chapter

4.

Request

processing

93

For

example,

assume

that

a

source

application

entity

has

been

updated

to

look

like

the

business

object

representation

in

Figure

35..

Components

in

the

source

application

entity

have

been

updated,

created,

and

deleted.

If

the

source

application

connector

has

implemented

event

notification

as

recommended

in

Chapter

5,

“Event

notification,”

on

page

107,

deleted

child

business

objects

are

not

present

in

the

business

object

hierarchy,

and

the

business

object

simply

contains

the

updated

and

new

child

business

objects.

An

example

of

a

business

object

representing

an

Update

request

might

look

like

Figure

36..

In

this

figure,

the

parent

object

is

set

to

update,

and

all

entities

that

have

been

deleted

are

no

longer

present

in

the

business

object

hierarchy.

In

this

case,

the

connector

compares

the

source

and

destination

business

objects

and

deletes

the

entities

that

are

not

present

in

the

source

business

object.

However,

if

the

source

application

supports

logical

delete,

the

source

connector

might

send

a

business

object

with

deletes

tagged

as

updates

and

status

attribute

values

set

to

an

inactive

value.

This

business

object

might

look

like

Figure

37,,

where

updates

that

are

delete

operations

are

identified

by

“[D]”.

Update

Delete

Delete

Delete

Delete

Update

Create

No Change

Top-level
bus object

Figure

35.

Updated

entity

in

the

source

application

Update Update
Create

No Change

Top-level
bus object

Figure

36.

Update

request

business

object

from

a

physical-delete

connector

94

Connector

Development

Guide

for

C++

There

are

several

ways

to

handle

a

source

business

object

that

represents

a

logical

delete

request:

v

Implement

mapping

to

examine

the

status

of

child

business

objects.

If

the

status

of

a

particular

child

business

object

is

inactive,

the

business

object

can

be

removed

in

mapping.

v

Implement

the

Update

operation

to

determine

whether

an

update

operation

is

actually

a

delete

operation.

In

a

logical

delete

source

application,

an

entity

may

be

marked

as

active

or

inactive

by

a

status

value.

In

the

source’s

application-specific

business

objects,

the

status

value

is

usually

an

attribute.

Although

entities

in

an

application

that

supports

physical

delete

might

not

include

status

information,

you

can

extend

your

application-specific

business

objects

to

include

status

information.

v

Extend

a

business

object

by

adding

an

additional

status

attribute

or

by

overloading

an

existing

attribute

with

a

status

value.

When

the

Update

operation

receives

a

request,

it

can

check

the

status

attribute.

If

it

is

set

to

the

inactive

value,

the

operation

is

really

a

delete.

The

Update

operation

can

then

set

the

business

object

verb

to

Delete

and

call

the

Delete

operation

to

handle

deleted

child

business

objects.

Outcome

status

for

Update

verb

processing

The

Update

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

32.

Table

32.

Possible

outcome

status

for

C++

Update

verb

processing

Update

condition

C++

outcome

status

If

the

application

entity

exists,

the

Update

operation:

v

modifies

the

data

in

the

application

entity

v

returns

a

“Success”

outcome

status

BON_SUCCESS

If

a

row

or

entity

does

not

exist,

the

Update

operation:

v

creates

the

application

entity

v

returns

the

“Value

Changed”

outcome

status

to

indicate

that

the

connector

has

changed

the

business

object

BON_VALCHANGE

Update

Update [D]

Update [D]

Update

Update [D]

Update

Create

No Change

Top-level
bus object

Figure

37.

Update

request

business

object

from

a

logical-delete

connector

Chapter

4.

Request

processing

95

Table

32.

Possible

outcome

status

for

C++

Update

verb

processing

(continued)

Update

condition

C++

outcome

status

If

the

Update

operation

is

unable

to

create

the

application

entity,

it:

v

fills

a

return-status

descriptor

with

information

about

the

cause

of

the

update

error

v

returns

a

“Fail”

outcome

status

BON_FAIL

If

any

object

identified

as

a

foreign

key

is

missing

from

the

application,

the

Update

operation:

v

fills

a

return-status

descriptor

with

information

about

the

cause

of

the

update

error

v

returns

a

“Fail”

outcome

status

BON_FAIL

Note:

When

the

connector

framework

receives

the

BON_VALCHANGE

outcome

status,

it

includes

a

business

object

in

its

response

to

InterChange

Server.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

166.

Handling

the

Delete

verb

For

a

delete,

an

application

might

support

either

of

the

implementations

shown

in

Table

33..

Table

33.

Delete

Implementations

Delete

implementation

Description

Verb-processing

support

Physical

delete

Physically

removes

the

specified

application

entity.

Delete

operation

Logical

delete

Does

not

actually

remove

the

entity;

instead,

it

marks

it

with

a

special

“deleted”

status.

Update

operation

Note:

If

the

application

does

not

allow

any

type

of

delete

operation,

the

connector

can

return

a

“Fail”

outcome

status.

The

Delete

operation,

discussed

in

this

section,

performs

a

true

physical

deletion

of

data

in

the

application.

Connectors

for

applications

that

perform

logical

delete

operations

should

handle

logical

deletes

in

the

Update

operation.

For

more

information,

see

“Implications

of

business

objects

representing

logical

Delete

events”

on

page

93.

When

the

business

object

handler

obtains

a

Delete

verb

from

the

request

business

object,

it

must

ensure

that

a

physical

delete

is

performed;

that

is,

the

application

deletes

the

application

entity

whose

type

is

indicated

by

the

business

object

definition,

as

follows:

v

For

a

flat

business

object,

the

Delete

verb

indicates

that

the

specified

entity

must

be

deleted.

v

For

a

hierarchical

business

object,

the

Delete

verb

indicates

that

the

top-level

business

object

must

be

deleted.

Depending

on

the

application

policies,

the

it

might

delete

associated

entities

representing

child

business

objects.

Note:

For

a

table-based

application,

the

entire

application

entity

must

be

deleted

from

the

application

database,

usually

deleting

a

row

in

one

or

more

database

tables.

This

section

provides

the

following

information

to

help

process

a

Delete

verb:

96

Connector

Development

Guide

for

C++

v

“Standard

processing

for

a

Delete

verb”

v

“Outcome

status

for

Delete

verb

processing”

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

C++

method.

If

you

follow

this

structure,

a

Delete

method

handles

processing

for

the

Delete

verb.

Standard

processing

for

a

Delete

verb

The

following

steps

outline

the

standard

processing

for

a

Delete

verb:

1.

Perform

a

recursive

retrieve

on

the

request

business

object

to

get

all

data

in

the

application

that

is

associated

with

the

top-level

business

object.

2.

Perform

a

recursive

delete

on

the

entities

represented

by

the

request

business

object,

starting

from

the

lowest

level

entities

and

ascending

to

the

top-level

entity.

Note:

Delete

operations

might

be

limited

by

application

functionality.

For

example,

cascading

deletes

might

not

always

be

the

desired

operation.

If

you

are

using

an

application

API,

it

might

automatically

complete

the

delete

operation

appropriately.

If

you

are

not

using

an

application

API,

you

might

need

to

determine

whether

the

connector

should

delete

child

entities

in

the

application.

If

a

child

entity

is

referenced

by

other

entities,

it

might

not

be

appropriate

to

delete

it.

Outcome

status

for

Delete

verb

processing

The

Delete

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

34.

Table

34.

Possible

outcome

status

for

C++

Delete

verb

processing

Delete

condition

C++

outcome

status

InterChange

Server

only:

In

most

cases,

the

connector

returns

a

“Value

Changed”

outcome

status

to

enable

the

system

to

clean

up

the

relationship

tables

after

a

delete

operation.

BON_VALCHANGE

All

integration

brokers:

If

the

Delete

operation

is

unsuccessful,

it:

v

fills

a

return-status

descriptor

with

additional

information

about

the

cause

of

the

delete

error

v

returns

a

“Fail”

outcome

status

BON_FAIL

Note:

When

the

connector

framework

receives

the

BON_VALCHANGE

outcome

status,

it

includes

a

business

object

in

its

response

to

InterChange

Server.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

166.

Handling

the

Exists

verb

When

the

business

object

handler

obtains

an

Exists

verb

from

the

request

business

object,

it

must

determine

whether

an

application

entity,

whose

type

is

indicated

by

the

business

object

definition,

exists.

This

operation

enables

an

integration

broker

to

verify

that

an

entity

exists

before

the

integration

broker

performs

an

operation

on

the

entity.

As

an

example,

assume

that

a

customer

site

wants

to

synchronize

Order,

Customer,

and

Item

entities

in

the

source

and

destination

applications.

Before

synchronizing

an

order,

the

user

wants

to

ensure

that

the

customer

entity

referenced

by

the

Order

business

object

already

exists

in

the

destination

application

Chapter

4.

Request

processing

97

database.

In

addition,

the

user

wants

to

ensure

that

each

Item

entity

referenced

by

the

OrderLineItem

child

business

objects

also

exists

in

the

destination

application.

Note:

For

a

table-based

application,

the

Exists

method

checks

for

the

existence

of

an

entity

in

an

application

database,

usually

checking

for

a

row

in

a

database

table.

The

user

can

configure

the

integration

broker

to

call

the

connector

with

a

Customer

business

object

that

has

the

Exists

verb

and

the

primary

keys

set.

In

this

way,

the

integration

broker

can

verify

that

the

customer

already

exists

in

the

application.

Similarly,

the

user

can

configure

the

integration

broker

to

call

the

connector

with

referenced

Item

business

objects

that

have

the

Exists

verb

and

primary

keys

set.

The

user

might

decide

to

halt

the

synchronization

of

the

Order

if

the

verification

of

the

existence

of

the

application

entities

fails.

This

section

provides

the

following

information

to

help

implement

an

Exists

verb:

v

“Standard

processing

for

an

Exists

verb”

v

“Outcome

status

for

Exists

verb

processing”

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

C++

method.

If

you

follow

this

structure,

an

Exists

method

handles

processing

for

the

Exists

verb.

Standard

processing

for

an

Exists

verb

The

standard

behavior

of

the

Exists

method

is

to

query

the

application

database

for

the

existence

of

a

top-level

business

object.

Outcome

status

for

Exists

verb

processing

The

Exists

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

35.

Table

35.

Possible

outcome

status

for

C++

Exists

verb

processing

Exists

condition

C++

outcome

status

If

the

application

entity

exists,

the

Exists

operation

returns

“Success”.

BON_SUCCESS

If

the

Exists

operation

is

unsuccessful

in

retrieving

the

top-level

object,

it:

v

fills

a

return-status

descriptor

with

additional

information

about

the

cause

of

the

“exist”

error

v

returns

a

“Fail”

outcome

status

BON_FAIL

Processing

business

objects

A

business

object

handler’s

role

is

to

deconstruct

a

request

business

object,

process

the

request,

and

perform

the

requested

operation

in

the

application.

To

do

this,

a

business

object

handler

extracts

verb

and

attribute

information

from

the

request

business

object

and

generates

an

API

call,

SQL

statement,

or

other

type

of

application

interaction

to

perform

the

operation.

Basic

business

object

processing

involves

extracting

metadata

from

the

business

object’s

application-specific

information

(if

it

exists)

and

accessing

the

attribute

values.

The

actions

to

take

on

the

attribute

value

depend

on

whether

the

business

98

Connector

Development

Guide

for

C++

object

is

flat

or

hierarchical.

This

section

provides

an

overview

on

how

a

business

object

handler

can

process

the

following

kinds

of

business

objects:

v

“Processing

flat

business

objects”

v

“Processing

hierarchical

business

objects”

on

page

101

Processing

flat

business

objects

This

section

provides

the

following

information

on

how

to

process

flat

business

objects:

v

“Representing

a

flat

business

object”

v

“Accessing

simple

attributes”

on

page

100

Representing

a

flat

business

object

If

a

business

object

does

not

contain

any

other

business

objects

(called

child

business

objects),

it

is

called

a

flat

business

object.

All

the

attributes

in

a

flat

business

object

are

simple

attribute;

that

is,

each

attribute

contains

an

actual

value,

not

a

reference

to

another

business

object.

Suppose

you

have

to

perform

verb

processing

on

an

example

business

object

named

Customer.

This

business

object

represents

a

single

database

table

in

a

sample

table-based

application.

The

database

table

is

named

customer,

and

it

contains

customer

data.

Figure

38

shows

the

Customer

business

object

definition

and

the

corresponding

customer

table

in

the

application.

As

Figure

38

shows,

the

example

Customer

business

object

has

four

simple

attributes:

CustomerId,

CustomerName,

CustomerStatus,

and

CustomerRegion.

These

attributes

correspond

to

columns

in

the

customer

table.

The

business

object

also

includes

the

required

ObjectEventId

attribute.

Note:

The

ObjectEventId

attribute

is

used

by

the

IBM

WebSphere

business

integration

system

and

does

not

correspond

to

a

column

in

an

application

table.

This

attribute

is

automatically

added

to

business

objects

by

Business

Object

Designer.

Figure

39

shows

an

expanded

business

object

definition

and

an

instance

of

the

business

object.

The

business

object

definition

contains

the

business

object

name,

and

the

attribute

name,

properties,

and

application-specific

information.

The

business

object

instance

contains

only

the

business

object

name,

the

active

verb,

and

the

attribute

names

and

values.

Application customer tableBusiness object definition

CustomerId

CustomerName

Name Status RegionID

CustomerStatus

CustomerRegion

ObjectEventId

Customer

Figure

38.

A

Flat

business

object

and

corresponding

application

table

Chapter

4.

Request

processing

99

Accessing

simple

attributes

After

the

verb

operation

has

accessed

information

it

needs

within

the

business

object

definition,

it

often

needs

to

access

information

about

attributes.

Attribute

properties

include

the

cardinality,

key

or

foreign

key

designation,

and

maximum

length.

For

example,

the

example

Create

method

needs

to

obtain

the

attribute’s

application-specific

information.

A

connector

business

object

handler

typically

uses

the

attribute

properties

to

decide

how

to

process

the

attribute

value.

Figure

40

illustrates

business

object

attribute

properties

of

the

CustomerId

attribute

from

the

business

object

in

Figure

39..

Each

attribute

has

a

zero-based

integer

index

(ordinal

position)

within

the

business

object

definition.

For

example,

as

Figure

40

shows,

the

CustomerId

attribute

would

be

accessed

with

an

ordinal

position

of

zero

(0),

the

CustomerName

attribute

with

an

CustomerId

ObjectEventId

CustomerStatus

CustomerName

AppSpecificInfo = cust_key

AppSpecificInfo = cust_name

AppSpecificInfo = cust_status

Business object definition

CustomerId = 1150

CustomerStatus = Active

CustomerName = Jones

Verb = Create

Type = Integer

Type = String

Type = String

CustomerRegion

AppSpecificInfo = cust_region

CustomerRegion = North

Business object instance

IsKey = True

Customer Customer

Type = String

ObjectEventId

Figure

39.

A

flat

business

object

with

application-specific

information

Business Object Name
Version
AppSpecificInf o =

Attribute 0

Name = CustomerId

Type = simple

Key = true

Foreign Key = false

Max Length

Required = true

Cardinality = 1

Attribute properties

Default Value

Customer
business object definition

AppSpecificInf o =

AppSpecificInf o =

Attribute 1

Figure

40.

Business

object

attribute

properties

100

Connector

Development

Guide

for

C++

ordinal

position

of

one

(1),

and

so

on.

The

C++

connector

library

provides

access

to

an

attribute

through

its

name

or

ordinal

position.

For

the

business

object

handler

that

handles

the

flat

Customer

business

object,

deconstructing

a

business

object

includes

the

following

steps:

1.

Extract

the

table

and

column

names

from

the

application-specific

information

in

the

business

object

definition.

2.

Extract

the

values

of

the

attributes

from

the

business

object

instance.

As

Figure

39

shows,

the

Customer

business

object

definition

is

designed

for

a

metadata-driven

connector.

Its

business

object

definition

includes

application-specific

information

that

the

verb

operation

uses

to

locate

the

application

entity

upon

which

to

operation.

The

application-specific

information

is

designed

as

shown

in

Table

36..

Table

36.

Application-specific

information

for

a

table-based

application

Application-specific

information

Purpose

Business

object

definition

The

name

of

application

database

table

associated

with

this

business

object

Attribute

The

name

of

the

application

table’s

column

associated

with

this

attribute

Note:

Application-specific

information

is

also

used

to

store

information

on

foreign

keys

and

other

kinds

of

relationships

between

entities

in

the

application

database.

A

metadata-driven

connector

can

use

this

information

to

build

a

SQL

statement

or

an

application

API

call.

Processing

hierarchical

business

objects

Business

objects

are

hierarchical:

parent

business

objects

can

contain

child

business

objects,

which

can

in

turn

contain

child

business

objects,

and

so

on.

A

hierarchical

business

object

is

composed

of

a

top-level

business

object,

which

is

the

business

object

at

the

very

top

of

the

hierarchy,

and

child

business

objects,

which

are

all

business

objects

under

the

top-level

business

object.

A

child

business

object

is

contained

in

a

parent

object

as

an

attribute.

This

section

provides

the

following

information

on

how

to

process

hierarchical

business

objects:

v

“Representing

Top-Level

and

Child

Business

Objects”

v

“Accessing

child

business

objects”

on

page

103

Representing

Top-Level

and

Child

Business

Objects

If

a

top-level

business

object

has

child

business

objects,

it

is

the

parent

of

its

children.

Similarly,

if

a

child

business

object

has

children,

it

is

the

parent

of

its

children.

The

parent/child

terminology

describes

the

relationships

between

business

objects,

and

it

may

also

be

used

to

describe

the

relationship

between

application

entities.

There

are

two

types

of

containment

relationships

between

parent

and

child

business

objects:

v

Cardinality

1

containment—the

attribute

contains

a

single

child

business

object.

v

Cardinality

n

containment—the

attribute

contains

several

child

business

objects

in

a

structure

called

a

business

object

array.

Chapter

4.

Request

processing

101

Figure

41

shows

a

typical

hierarchical

business

object.

The

top-level

business

object

has

both

cardinality

1

and

cardinality

n

relationships

with

child

business

objects.

In

a

typical

table-based

application,

relationships

between

entities

are

represented

by

primary

keys

and

foreign

keys

in

the

database,

where

the

parent

entity

contains

the

primary

keys

and

the

child

entity

contains

the

foreign

keys.

An

hierarchical

business

object

can

be

organized

in

a

similar

way:

v

In

a

cardinality

1

type

(single

cardinality)

of

relationship,

each

parent

business

object

relates

to

a

single

child

business

object.

The

child

business

object

typically

contains

one

or

more

foreign

keys

whose

values

are

the

same

as

the

corresponding

primary

keys

in

the

parent

business

object.

Although

applications

might

structure

the

relationships

between

entities

in

different

ways,

a

single

cardinality

relationship

for

an

application

that

uses

foreign

keys

might

be

represented

as

shown

in

Figure

42..

v

In

a

cardinality

n

type

(multiple

cardinality)

relationship,

each

parent

business

object

can

relate

to

zero

or

more

child

business

objects

in

an

array

of

child

business

objects.

Each

child

business

object

within

the

array

contains

foreign

key

attributes

whose

values

are

the

same

as

the

corresponding

values

in

the

primary

key

attributes

of

the

parent

business

object.

A

multiple

cardinality

relationship

might

be

represented

as

shown

in

Figure

43..

Name

Verb

Attribute

Name

Verb

Cardinality n
containment Name

Verb

Cardinality 1
containment

Attribute

Attribute

Attribute

Attribute

Figure

41.

Hierarchical

business

object

102

Connector

Development

Guide

for

C++

Note:

In

Figure

42

and

Figure

43,,

the

string

“PK”

appears

next

to

an

attribute

that

serves

as

a

primary

key

in

the

business

object.

The

string”FK”

appears

next

to

an

attribute

that

serves

as

a

foreign

key.

Accessing

child

business

objects

As

part

of

its

verb

processing,

the

doVerbFor()

method

needs

to

handle

any

hierarchical

business

objects.

To

process

a

hierarchical

business

object,

the

doVerbFor()

method

takes

the

same

basic

steps

as

it

does

to

process

a

flat

business

object:

it

obtains

any

application-specific

information

and

then

accesses

the

attribute.

However,

if

the

attribute

contains

a

child

business

object,

doVerbFor()

must

take

the

following

steps

to

access

the

child

business

object:

1.

Determine

whether

the

attribute

type

is

type

OBJECT

by

calling

the

isObjectType()

method.

The

OBJECT

type

indicates

that

the

attribute

is

a

complex

attribute;

that

is,

it

contains

a

business

object

rather

than

a

simple

value.

The

OBJECT

attribute-type

constant

is

defined

in

the

BOAttrType

class.

The

isObjectType()

method

returns

True

if

an

attribute

is

complex;

that

is,

if

it

contains

a

business

object.

2.

When

the

doVerbFor()

method

finds

an

attribute

contains

a

business

object,

it

checks

the

cardinality

of

the

attribute

using

isMultipleCard().

InvoiceId (PK)

AddressId

InvoiceId (FK)

InvoiceNumber

City

InvoiceDate

Child business object

Parent business object

State

SoldToAddress

Foreign key
relationship

Invoice

SoldToAddress

Figure

42.

Business

objects

with

single

cardinality

Verb

AddressId

CustomerName
Array of child

business objects

Parent business object

CustomerId (PK)

CustomerId (FK)

Address

Address

Foreign key
relationship

Customer

Address

Verb

Figure

43.

Business

objects

with

multiple

cardinality

Chapter

4.

Request

processing

103

If

the

attribute

has

single

cardinality

(cardinality

1),

the

method

can

perform

the

requested

operation

on

the

child.

One

way

to

perform

an

operation

on

a

child

business

object

is

to

recursively

call

doVerbFor()

or

a

verb

method

on

the

child

object.

However,

such

a

recursive

call

assumes

that

the

child

business

object

is

set

as

follows:

v

If

the

verb

on

a

child

business

object

is

set,

the

method

should

perform

the

specified

operation.

v

If

the

verb

on

the

child

business

object

is

not

set,

the

verb

method

should

set

the

verb

in

the

child

business

object

to

the

verb

in

the

top-level

business

object

before

calling

another

method

on

the

child.

If

an

attribute

has

multiple

cardinality

(cardinality

n),

the

attribute

contains

an

array

of

child

business

objects.

In

this

case,

the

connector

must

access

the

contents

of

the

array

before

it

can

process

individual

child

business

objects.

From

the

array,

the

doVerbFor()

method

can

access

individual

business

objects:

v

To

access

individual

business

objects,

the

method

can

get

the

number

of

child

business

objects

in

the

array

with

the

getObjectCount()

method

and

then

iterate

through

the

objects.

v

To

get

an

individual

child

business

object,

the

method

can

obtain

the

business

object

at

one

element

of

the

array.

Once

the

doVerbFor()

method

has

access

to

a

child

business

object,

it

can

recursively

process

the

child

as

needed.

Note:

A

connector

should

never

create

arrays

for

child

business

objects.

An

array

is

always

associated

with

a

business

object

definition

when

cardinality

is

n.

When

a

connector

a

request

business

object,

the

business

object

includes

all

its

arrays

even

though

some

or

all

of

the

arrays

might

be

empty.

If

an

array

contains

no

child

business

objects,

it

is

an

array

of

size

0.

You

might

want

to

modularize

your

verb

operation

so

that

the

main

verb

method

calls

a

submethod

to

process

child

objects.

For

a

business

object

such

as

the

one

shown

in

Figure

44,,

a

Create

method

might

first

create

the

application

entity

for

the

parent

Customer

business

object,

and

then

call

the

submethod

to

traverse

the

parent

business

object

to

find

attributes

referring

to

contained

business

objects.

104

Connector

Development

Guide

for

C++

When

the

submethod

finds

an

attribute

that

is

an

OBJECT

type,

it

can

process

the

attribute

as

needed.

For

example,

the

submethod

processes

the

Address

attribute

by

retrieving

each

child

business

object

in

the

Address

array

and

recursively

calling

doCreate().

One

by

one,

the

main

method

creates

each

address

entity

in

the

database

until

all

Address

children

in

the

array

are

processed.

Finally,

the

submethod

processes

the

single

cardinality

CustProfile

business

object.

For

more

information

about

how

to

access

a

child

business

object,

see

“Accessing

child

business

objects”

on

page

173.

Indicating

the

connector

response

Before

the

doVerbFor()

method

exits,

it

must

prepare

the

response

it

sends

back

to

the

connector

framework.

This

response

indicates

the

success

(or

lack

thereof)

of

the

verb

processing.

The

connector

framework,

which

has

invoked

doVerbFor(),

uses

this

information

to

determine

its

next

action

and

to

build

the

response

it

returns

to

the

integration

broker.

The

doVerbFor()

method

can

provide

the

response

information

in

Table

37

to

the

connector

framework.

Table

37.

Response

information

from

the

doVerbFor()

method

Response

information

How

the

response

is

returned

Outcome

status

Integer

return

code

of

doVerbFor()

CustomerId

ObjectEventId

CustomerStatus

CustomerName

AppSpecificInfo = cust_key

AppSpecificInfo = cust_name

AppSpecificInfo = cust_status

Address

Place Holder

CustProfile

Type = Address
Relationship = Containment
Cardinality = n

Type = CustProfile
Relationship = Containment
Cardinality = 1

AddressId

ObjectEventId

AddressInfo

CustomerId

AppSpecificInfo = addr_key

AppSpecificInfo = address

CustProfileId

CustomerId

AppSpecificInfo = profile_key

Cardinality 1

Cardinality n
arrayCustomer Address

AppSpecificInfo= address

CustProfile
AppSpecificInfo = profile

AppSpecificInfo = cust_key

AppSpecificInfo= cust_key

ObjectEventId

Figure

44.

Example

of

a

hierarchical

business

object

definition

Chapter

4.

Request

processing

105

Table

37.

Response

information

from

the

doVerbFor()

method

(continued)

Response

information

How

the

response

is

returned

Return-status

descriptor

Return-status

descriptor

that

was

passed

in

as

an

argument—Connector

framework

passes

in

an

empty

return-status

descriptor

as

an

argument

to

doVerbFor().

The

method

can

update

this

descriptor

with

a

message

and

status

value

to

provide

informational,

warning,

or

error

status.

Response

business

object

Request

business

object

that

was

passed

in

as

an

argument—Connector

framework

passes

in

the

request

business

object

as

an

argument

to

doVerbFor().

The

method

can

update

this

request

business

object

with

attribute

values

to

provide

a

response

business

object.

For

information

on

how

to

send

this

response

information

for

a

C++

connector,

see

“Sending

the

verb-processing

response”

on

page

166.

Handling

loss

of

connection

to

the

application

Each

time

the

connector

framework

calls

the

connector

application-specific

component,

the

application-specific

code

validates

that

the

connection

with

the

application

is

still

open.

For

a

business

object

handler,

this

check

should

be

done

in

either

the

doVerbFor()

method

or

in

each

verb

method.

If

the

connection

has

been

lost,

the

doVerbFor()

method

should

log

a

fatal

error

message

so

that

email

notification

is

triggered

if

the

LogAtInterchangeEnd

connector

configuration

property

is

set

to

True.

The

method

should

also

return

a

BON_APPRESPONSETIMEOUT

outcome

status

to

inform

the

connector

controller

that

the

application

is

not

responding.

When

this

occurs,

the

process

in

which

the

connector

runs

is

stopped.

A

system

administrator

must

fix

the

problem

with

the

application

and

restart

the

connector

to

continue

processing

of

business

object

requests.

For

more

information,

see

“Verifying

the

connection

before

processing

the

verb”

on

page

150.

106

Connector

Development

Guide

for

C++

Chapter

5.

Event

notification

This

chapter

presents

information

on

how

to

provide

event

notification

in

a

connector.

Event

notification

implements

a

mechanism

to

interact

with

an

application

to

detect

changes

made

to

application

business

entities.

This

chapter

provides

the

following

information

about

how

to

implement

an

event-notification

mechanism:

v

“Overview

of

an

event-notification

mechanism”

v

“Implementing

an

event

store

for

the

application”

on

page

108

v

“Implementing

event

detection”

on

page

113

v

“Implementing

event

retrieval”

on

page

118

v

“Implementing

the

poll

method”

on

page

120

v

“Special

considerations

for

event

processing”

on

page

124

Note:

For

an

introduction

to

event

notification,

see

“Event

notification”

on

page

21..

Overview

of

an

event-notification

mechanism

An

event-notification

mechanism

enables

a

connector

to

determine

when

an

entity

within

an

application

changes.

Implementation

of

an

event-notification

mechanism

is

a

three-stage

process,

as

Table

38

shows.

Table

38.

Stages

of

an

event-notification

mechanism

Stage

of

event-notification

mechanism

For

more

information

Create

an

event

store

that

the

application

uses

to

hold

notifications

of

events

that

have

changed

application

business

entities.

“Implementing

an

event

store

for

the

application”

on

page

108

Implement

an

event

detection

mechanism

within

the

application.

Event

detection

notices

a

change

in

an

application

entity

and

writes

an

event

record

containing

information

about

the

change

to

an

event

store

in

the

application.

“Implementing

event

detection”

on

page

113

Implement

an

event

retrieval

mechanism

(such

as

a

polling

mechanism)

within

the

connector

to

retrieve

events

from

the

event

store

and

take

the

appropriate

action

to

notify

other

applications.

“Implementing

an

event

store

for

the

application”

on

page

108

Note:

For

design

considerations

for

an

event-notification

mechanism,

see

“Event

notification”

on

page

21..

In

many

cases,

an

application

must

be

configured

or

modified

before

the

connector

can

use

the

event-notification

mechanism.

Typically,

this

application

configuration

occurs

as

part

of

the

installation

of

the

connector’s

application-specific

component.

Modifications

to

the

application

might

include

setting

up

a

user

account

in

the

application,

creating

an

event

store

and

event

table

in

the

application

database,

inserting

stored

procedures

in

the

database,

or

setting

up

an

inbox.

If

the

application

generates

event

records,

it

might

be

necessary

to

configure

the

text

of

the

event

records.

©

Copyright

IBM

Corp.

1997,

2003

107

The

connector

might

also

need

to

be

configured

to

use

the

event-notification

mechanism.

For

example,

a

system

administrator

might

need

to

set

connector-specific

configuration

properties

to

the

names

of

the

event

store

and

event

table.

Implementing

an

event

store

for

the

application

An

event

store

is

a

persistent

cache

in

the

application

where

event

records

are

saved

until

the

connector

can

process

them.

The

event

store

might

be

a

database

table,

application

event

queue,

email

inbox,

or

any

type

of

persistent

store.

If

the

connector

is

not

operational,

a

persistent

event

store

enables

the

application

to

detect

and

save

event

records

until

the

connector

becomes

operational.

This

section

provides

the

following

information

about

an

event

store:

v

“Standard

contents

of

an

event

record”

v

“Possible

implementations

of

an

event

store”

on

page

110

Standard

contents

of

an

event

record

Event

records

must

encapsulate

everything

a

connector

needs

to

process

an

event.

Each

event

record

should

include

enough

information

that

the

connector

poll

method

can

retrieve

the

event

data

and

build

a

business

object

that

represents

the

event.

Note:

Although

different

event

retrieval

mechanisms

might

exist,

this

section

describes

event

records

in

the

context

of

the

most

common

mechanism,

polling.

If

the

application

provides

an

event

detection

mechanism

that

writes

event

records

to

an

event

store,

the

event

record

should

provide

discrete

detail

on

the

object

and

verb.

If

the

application

does

not

provide

sufficient

detail,

it

might

be

possible

to

configure

it

to

provide

this

level

of

detail.

Table

39

lists

the

standard

elements

for

event

records.

The

sections

that

follow

include

more

information

on

certain

fields.

Table

39.

Standard

elements

of

an

event

record

Element

Description

For

more

information

Event

identifier

(ID)

A

unique

identifier

for

the

event.

“Event

identifier”

on

page

109

Business

object

name

The

name

of

the

business

object

definition

as

it

appears

in

the

repository.

“Business

object

name”

on

page

109

Verb

The

name

of

the

verb,

such

as

Create,

Update,

or

Delete.

“Event

verb”

on

page

109

Object

key

The

primary

key

for

the

application

entity.

“Object

key”

on

page

109

Priority

The

priority

of

the

event

in

the

range

0

-

n,

where

0

is

the

highest

priority.

“Processing

events

by

event

priority”

on

page

123

Timestamp

The

time

at

which

the

application

generated

the

event.

None.

Status

The

status

of

the

event.

This

is

used

for

archiving

events.

“Event

status”

on

page

110

Description

A

text

string

describing

the

event.

None

Connector

identifier

(ID)

An

identifier

for

the

connector

that

will

process

the

event.

“Event

distribution”

on

page

124

108

Connector

Development

Guide

for

C++

Note:

A

minimal

set

of

information

in

an

event

record

includes

the

event

ID,

business

object

name,

verb,

and

object

key.

You

may

also

want

to

set

a

priority

for

an

event

so

that

if

large

numbers

of

events

are

queued

in

the

event

store,

the

connector

can

select

events

in

order

of

priority.

Business

object

name

You

can

use

the

name

of

the

business

object

definition

to

check

for

event

subscriptions.

Note

that

the

event

record

should

specify

the

exact

name

of

the

business

object

definition,

such

as

SAP_Customer

rather

than

Customer.

Event

verb

The

verb

represents

the

kind

of

event

that

occurred

in

the

application,

such

as

Create,

Update,

or

Delete.

You

can

use

the

verb

to

check

for

event

subscriptions.

Note:

Events

that

represent

deletion

of

application

data

should

generate

event

records

with

the

Delete

verb.

This

is

true

even

for

logical

delete

operations,

where

the

delete

is

an

update

of

a

status

value

to

inactive.

For

more

information,

see

“Processing

Delete

events”

on

page

124.

The

verb

that

the

connector

sets

in

the

business

object

should

be

same

verb

that

was

specified

in

the

event

record.

Object

key

The

entity’s

object

key

enables

the

connector

to

retrieve

the

full

set

of

entity

data

if

the

object

has

subscribing

events.

Note:

The

only

data

from

the

application

entity

that

event

records

should

include

are

the

business

object

name,

active

verb,

and

object

key.

Storing

additional

entity

data

in

the

event

store

requires

memory

and

processing

time

that

might

be

unneeded

if

no

subscriptions

exist

for

the

event.

The

object

key

column

must

use

name/value

pairs

to

set

data

in

the

event

record.

For

example,

if

ContractId

is

the

name

of

an

attribute

in

the

business

object,

the

object

key

field

in

the

event

record

would

be:

ContractId=45381

Depending

on

the

application,

the

object

key

may

be

a

concatenation

of

several

fields.

Therefore,

the

connector

should

support

multiple

name/value

pairs

that

are

separated

by

a

delimiter,

for

example

ContractId=45381:HeaderId=321.

The

delimiter

should

be

configurable

as

set

by

the

PollAttributeDelimiter

connector

configuration

property.

The

default

value

for

the

delimiter

is

a

colon

(:).

Event

identifier

Each

event

must

have

a

unique

identifier.

This

identifier

can

be

an

number

generated

by

the

application

or

a

number

generated

by

a

scheme

that

your

connector

uses.

As

an

example

of

an

event

ID

numbering

scheme,

the

event

may

generate

a

sequential

identifier,

such

as

00123,

to

which

the

connector

adds

its

name.

The

resulting

object

event

ID

is

ConnectorName_00123.

Another

technique

might

be

to

generate

a

timestamp,

resulting

in

an

identifier

such

as

ConnectorName_06139833001001.

Your

connector

can

optionally

store

the

event

ID

in

the

ObjectEventId

attribute

in

a

business

object.

The

ObjectEventId

attribute

is

a

unique

value

that

identifies

each

event

in

the

IBM

WebSphere

business

integration

system.

Because

this

attribute

is

required,

the

connector

framework

generates

a

value

for

it

if

the

application-specific

connector

does

not

provide

a

value.

If

no

values

for

Chapter

5.

Event

notification

109

ObjectEventIds

are

provided

for

hierarchical

business

objects,

the

connector

framework

generates

values

for

the

parent

business

object

and

for

each

child.

If

the

connector

generates

ObjectEventId

values

for

hierarchical

business

objects,

each

value

must

be

unique

across

all

business

objects

in

the

hierarchy

regardless

of

level.

Event

status

IBM

recommends

that

a

C++

connector

use

the

event-status

values

that

Table

40

lists.

To

improve

readability

of

your

C++

code,

you

might

want

to

define

constants

for

each

of

these

event-status

values.

Table

40.

Suggested

event-status

values

for

a

C++

connector

Event-status

value

Description

0

Ready

for

poll

1

Sent

to

the

integration

broker

2

No

subscriptions

for

event

3

Event

is

in

progress

-1

Error

in

processing

the

event.

A

description

of

the

error

can

be

appended

to

the

event

description

in

the

event

record.

-2

Error

in

sending

the

event

to

the

integration

broker.

A

description

of

the

error

can

be

appended

to

the

event

description

in

the

event

record.

Possible

implementations

of

an

event

store

The

application

might

use

any

of

the

following

as

the

event

store:

v

“Event

inbox”

v

“Event

table”

on

page

111

v

“Email”

on

page

112

v

“Flat

files”

on

page

113

Note:

Some

applications

might

provide

multiple

ways

of

keeping

track

of

changes

to

application

entities.

For

example,

an

application

might

provide

workflow

for

some

database

tables

and

user

exits

for

other

tables.

If

this

is

the

case,

you

may

have

to

piece

together

an

event

notification

mechanism

that

handles

events

in

one

way

for

some

business

objects

and

another

way

for

other

business

objects.

Event

inbox

Some

applications

have

a

built-in

inbox

mechanism.

This

inbox

mechanism

can

be

used

to

transfer

information

about

application

events

to

the

connector,

as

follows:

v

Event

detection—you

might

need

to

identify

the

entities

and

events

that

trigger

entries

in

the

inbox.

v

Event

retrieval—the

connector’s

application-specific

component

can

retrieve

the

entries.

If

an

API

is

available

that

provides

interfaces

to

access

the

inbox,

the

application-specific

component

can

use

this

API.

Figure

45

illustrates

this

interaction.

110

Connector

Development

Guide

for

C++

Event

table

An

application

can

use

its

application

database

to

store

event

information.

It

can

create

a

special

event

table

in

this

database

to

use

as

the

event

store

for

event

records.

This

table

is

created

during

the

installation

of

the

connector.

With

an

event

table

as

an

event

store:

v

Event

detection—when

an

event

of

interest

to

the

connector

occurs,

the

application

places

an

event

record

in

the

event

table.

v

Event

retrieval—the

connector

application-specific

component

polls

the

event

table

periodically

and

processes

any

events.

Applications

often

provide

database

(DB)

APIs

that

enable

the

connector

to

gain

access

to

the

contents

of

the

event

table.

Figure

46

illustrates

this

interaction.

Note:

Avoid

full

table

scans

of

existing

application

tables

as

a

way

of

determining

whether

application

tables

have

changed.

The

recommended

approach

is

to

populate

an

event

table

with

event

information

and

poll

the

event

table.

If

your

connector

supports

archiving

of

events,

you

can

also

create

an

archive

table

in

the

application

database

to

hold

the

archived

events.

Table

41

shows

a

recommended

schema

for

event

and

archive

tables.

You

can

extend

this

schema

as

needed

for

your

application.

Table

41.

Recommended

schema

for

event

and

archive

tables

Column

name

Type

Description

event_id

Use

appropriate

type

for

database

The

unique

key

for

the

event.

System

constraints

determine

format.

object_name

Char

80

Complete

name

of

the

business

object.

object_verb

Char

80

Event

verb.

Application

Inbox Inbox
API

Connector

User action

Figure

45.

An

event

inbox

as

an

event

store

Event table

Application

User
action

Application database

Connector
D

B
in

te
rf

ac
e

Event detection Event retrieval

Figure

46.

An

event

table

as

an

event

store

Chapter

5.

Event

notification

111

Table

41.

Recommended

schema

for

event

and

archive

tables

(continued)

Column

name

Type

Description

object_key

Char

80

The

primary

key

of

the

object.

event_priority

Integer

The

priority

of

the

event,

where

0

is

the

highest

priority.

event_time

DateTime

The

timestamp

for

the

event

(time

at

which

the

event

occurred).

event_processed

DateTime

For

the

archive

table

only.

The

time

at

which

the

event

was

handed

to

the

connector

framework.

event_status

Integer

For

possible

status

values,

see

“Event

status”

on

page

110.

event_description

Char

255

Event

description

or

error

string

connector_id

Integer

Id

for

the

connector

(if

applicable)

Email

You

can

use

an

email

system

as

an

event

store:

v

Event

detection—the

application

sends

an

email

message

to

a

mailbox

when

an

application

event

occurs.

v

Event

retrieval—the

connector’s

application-specific

component

checks

the

mailbox

and

retrieves

the

event

message.

Figure

47

illustrates

this

interaction.

For

an

email-based

event

store,

the

mailbox

used

for

a

connector

must

be

configurable,

and

the

actual

name

of

the

inbox

used

should

reflect

its

usage.

The

following

list

specifies

the

format

and

recommended

names

for

fields

in

event

messages.

v

Message

attributes

–

Email

messages

usually

have

certain

attributes,

such

as

a

creation

date

and

time,

and

a

priority.

You

may

be

able

to

use

these

attributes

in

the

event

notification

mechanism.

For

example,

you

may

be

able

to

use

the

date

and

time

attributes

to

represent

the

date

and

time

at

which

the

event

occurred.

v

Subject

–

The

subject

of

an

event

message

might

have

the

following

format.

In

this

example,

fields

are

separated

by

spaces

for

human-readability,

but

connectors

can

use

a

different

field

delimiter.

object_name

object_verb

event_id

The

event_id

is

the

unique

key

for

the

event.

Depending

on

the

application,

the

event_id

key

may

or

may

not

be

included

in

the

mail

message.

The

event_id

can

Application

Mail
client

Sen
ds

ev
en

t

inf
or

m
at

ion

Receives event

information

Mail
system

ConnectorMail
client

Figure

47.

A

mailbox

as

an

event

store

112

Connector

Development

Guide

for

C++

be

derived

from

a

combination

of

the

connector

name,

business

object

name,

and

either

the

message

timestamp

or

the

system

time.

v

Body

–

The

body

of

an

event

message

might

contain

a

sequence

of

key/value

pairs

separated

by

delimiters.

These

key/value

pairs

are

the

elements

of

the

object

key.

For

example,

if

a

particular

customer

and

address

are

uniquely

identified

by

the

combination

of

CustomerId

and

AddrSeqNum,

the

body

of

the

mail

message

might

look

like

this:

CustomerId

34225

AddrSeqNum

2

The

body

of

the

event

message

can

be

a

list

of

attribute

names

for

the

business

object,

and

the

values

that

should

be

inserted

into

those

attributes.

Flat

files

If

no

other

event

detection

mechanism

is

available,

it

might

be

possible

to

set

up

an

event

store

using

flat

files.

With

this

type

of

event

store:

v

Event

detection—the

event

detection

mechanism

in

the

application

writes

event

records

to

a

file.

v

Event

retrieval—the

connector’s

application-specific

component

locates

the

file

and

reads

the

event

information.

If

the

file

is

not

directly

accessible

by

the

connector

(if,

for

example,

it

was

generated

on

a

mainframe

system),

the

file

must

be

transferred

to

a

location

that

the

connector

can

access.

One

way

of

transferring

files

is

to

use

File

Transfer

Protocol

(FTP).

This

can

be

done

either

internally

in

the

connector

or

using

an

external

tool

to

copy

the

file

from

one

location

to

another.

There

are

other

ways

to

transfer

information

between

files;

the

approach

that

you

choose

depends

on

your

application

and

connector.

Figure

48

illustrates

event

detection

and

retrieval

using

flat

files.

In

this

example,

FTP

is

used

to

transfer

the

event

information

to

a

location

accessible

by

the

connector.

Implementing

event

detection

For

most

connectors,

the

application

must

be

configured

to

implement

the

event

detection

mechanism.

A

system

administrator

does

this

as

part

of

the

connector

installation.

Once

the

application

has

been

configured,

it

can

detect

entity

changes

and

write

event

records

to

the

event

store.

The

information

is

then

picked

up

by

the

connector

and

processed.

In

this

way,

an

event

notification

mechanism

is

implemented

in

both

the

application

and

the

connector.

This

section

provides

the

following

information

about

event

detection:

v

“Event

detection

mechanisms”

on

page

114

v

“Event

detection:

standard

behavior”

on

page

117

Application

Event
information

File
writer

File
reader

Connector
FTP

Event
information

Figure

48.

Retrieving

event

records

from

flat

files

Chapter

5.

Event

notification

113

Event

detection

mechanisms

Events

can

be

triggered

by

user

actions

in

the

application,

by

batch

processes

that

add

or

modify

application

data,

or

by

database

administrator

actions.

When

an

event

detection

mechanism

is

set

up

in

an

application

and

an

application

event

associated

with

a

business

object

occurs,

the

application

must

detect

the

event

and

write

it

to

the

event

store.

Event

detection

mechanisms

are

application

dependent.

Some

applications

provide

an

event

detection

mechanism

for

use

by

clients

such

as

connectors.

The

event

detection

mechanism

may

include

an

event

store

and

a

defined

way

of

inserting

information

about

application

changes

into

the

event

store.

For

example,

one

type

of

implementation

uses

an

event

message

box,

where

the

application

sends

a

message

every

time

it

processes

an

event

in

which

the

connector

is

interested.

The

connector’s

application-specific

component

periodically

polls

the

message

box

for

new

event

messages.

Other

applications

have

no

built-in

event

detection

mechanism

but

have

other

ways

of

providing

information

on

changes

to

application

entities.

If

an

application

does

not

provide

an

event

detection

mechanism,

you

must

use

whatever

mechanism

is

available

to

extract

information

on

entity

changes

for

the

connector.

For

example,

you

may

be

able

to

implement

database

triggers,

use

user

exits

to

call

out

to

a

program

that

writes

to

an

event

store,

or

extract

information

on

application

changes

from

flat

files.

Note:

Although

the

way

in

which

events

are

generated

can

vary

significantly

from

application

to

application,

certain

aspects

of

an

event

notification

mechanism

should

be

consistent

across

all

types

of

applications.

For

example,

all

types

of

event

detection

mechanisms

should

create

event

records

that

have

similar

contents.

Three

common

ways

in

which

events

are

detected

and

written

to

an

event

store

are

discussed

in

the

following

sections:

v

“Form

events”

v

“Workflow”

on

page

115

v

“Database

triggers”

on

page

116

Form

events

Some

form-based

applications

provide

form

events

that

are

executed

when

a

special

user

action

occurs.

To

set

up

event

detection

in

this

way,

you

must

create

a

script

that

executes

when

a

particular

type

of

event

occurs.

When

a

user

opens

a

form

and

performs

an

action

that

has

an

associated

script,

the

script

places

event

records

in

the

event

store.

In

most

cases,

form

events

are

integrated

in

application

business

processes

and

therefore

support

application

business

logic.

However,

only

application

events

that

are

triggered

by

user

actions

are

detected;

if

the

application

database

is

updated

directly

in

other

ways,

such

as

by

a

batch

process,

these

events

are

not

detected.

Figure

49

shows

a

form-based

event

detection

mechanism.

When

a

user

enters

a

new

customer

on

the

Customer

form

and

clicks

OK,

a

script

generates

an

event

record

and

places

it

in

the

event

store.

114

Connector

Development

Guide

for

C++

Workflow

Some

applications

use

an

internal

workflow

system

to

keep

track

of

their

business

processes.

You

may

be

able

to

use

the

workflow

system

to

generate

events

for

event

detection.

For

example,

you

may

be

able

to

define

a

workflow

process

that

inserts

an

entry

in

an

event

store

when

a

particular

operation

occurs.

Alternatively,

the

event

detection

mechanism

might

be

able

to

intercept

information

from

a

workflow

process

and

use

the

information

to

place

an

event

record

in

the

event

store.

In

designing

a

workflow-based

event

detection

mechanism,

you

need

to

determine

at

what

point

in

the

workflow

an

event

record

should

be

written

to

the

event

store

and

then

use

the

available

application

mechanism

to

generate

the

event

record.

Using

a

workflow

system

for

event

detection

ensures

that

event

detection

is

integrated

into

an

application

business

process.

The

workflow

system

can

also

detect

application

events

that

are

generated

automatically

without

user

involvement.

Figure

50

shows

a

workflow-based

event

detection

mechanism.

When

a

particular

operation

occurs,

the

workflow

process

is

started.

The

event

detection

mechanism

receives

the

information

about

the

event

and

writes

a

record

to

the

event

store.

The

workflow

process

continues

with

other

tasks.

ApplicationCustomer

Name:

OK

Form
 event Script

Event
store

Application form

Event
information

Figure

49.

Form-based

event

detection

Chapter

5.

Event

notification

115

Database

triggers

If

the

application

has

no

built-in

method

for

detecting

events

and

the

database

that

the

application

is

running

on

provides

database

triggers,

you

may

be

able

to

implement

row-level

triggers

to

detect

changes

to

application

tables.

The

triggers

are

inserted

in

application

tables

that

correspond

to

business

object

definitions

supported

by

the

connector.

With

this

mechanism,

you

also

need

to

set

up

an

event

table

in

the

application

database

to

store

the

event

records

that

the

triggers

generate.

Whenever

an

application

entity

is

created,

updated,

or

deleted,

a

trigger

inserts

a

row

into

the

event

table.

Each

row

represents

one

event

record,

and

the

event

table

queues

the

events

for

processing

by

the

connector.

Figure

51

shows

a

user

action

that

updates

an

application

Customer

table.

When

the

Customer

table

is

updated,

a

trigger

on

the

table

executes

and

writes

an

event

record

to

the

event

table

in

the

application

database.

If

you

use

database

triggers,

keep

the

following

in

mind:

Event
information

Event
store

Workflow
task

Application

Workflow process

Workflow
task

Workflow
task

Workflow
task

Figure

50.

Workflow-based

event

detection

Event
information

Event
table

Application

User sction
in Customer

entity

customer table

Application database

DB
trigger

Figure

51.

Event

detection

using

database

triggers

116

Connector

Development

Guide

for

C++

v

Make

sure

that

any

triggers

you

provide

do

not

overwrite

triggers

already

in

use

in

the

application.

v

Make

sure

that

the

application

is

suitable

for

the

use

of

triggers

for

event

notification.

For

example,

if

an

application

has

implemented

complex

business

rules

in

its

database,

a

simple

trigger

on

a

particular

table

might

not

accurately

reflect

the

complete

application

event.

v

A

drawback

to

database

triggers

is

that

if

table

schemas

change

in

the

application

database,

you

may

need

to

modify

the

triggers

that

you

have

created.

If

table

schemas

change

frequently

and

you

have

set

up

many

database

triggers,

you

may

need

to

spend

considerable

time

maintaining

the

triggers.

Event

detection:

standard

behavior

An

application

event

detection

mechanism

should

take

the

following

steps:

v

Detect

an

event

on

an

application

entity

for

a

business

object

supported

by

the

connector.

v

Create

an

event

record.

To

create

the

record,

the

event

detection

mechanism

should:

–

Set

the

name

of

the

object

to

the

complete

name

of

the

business

object

in

the

repository.

–

Set

the

verb

to

the

action

that

occurred

in

the

database.

–

Set

the

object

key

to

the

primary

key

of

the

application

entity.

–

Generate

a

unique

event

identifier

(ID).

–

Set

the

event

priority.

–

Set

the

event

timestamp.

–

Set

the

event

status

to

Ready-for-Poll.
v

Insert

the

completed

event

record

into

the

event

store.

Note:

An

event

detection

mechanism

can

optionally

query

the

event

store

for

existing

duplicate

events

before

inserting

a

record

for

a

new

event.

For

more

information,

see

“Filtering

the

event

store

for

duplicate

event

records”

on

page

117.

Once

event

records

are

in

the

event

store,

the

event

store

queues

events

for

pickup

by

the

connector’s

poll

method.

The

event

store

should

be

internal

to

the

application.

If

the

application

terminates

unexpectedly,

the

event

store

can

be

restored

to

its

preceding

state

when

the

application

is

restored,

and

the

connector

application-specific

code

can

then

pick

up

queued

events.

The

event

detection

mechanism

should

ensure

data

integrity

between

an

application

event

and

the

event

record

written

to

the

event

store.

For

example,

generation

of

an

event

record

should

not

take

place

until

all

required

data

transactions

for

the

event

have

completed

successfully.

Subsequent

sections

provide

the

following

information

about

issues

to

handle

in

the

event

detection

mechanism:

v

“Filtering

the

event

store

for

duplicate

event

records”

v

“Future

event

processing”

on

page

118

Filtering

the

event

store

for

duplicate

event

records

The

event

detection

mechanism

can

be

implemented

so

that

duplicate

events

are

not

saved

in

the

event

store.

This

behavior

can

minimize

the

amount

of

processing

that

the

integration

broker

has

to

perform.

As

an

example,

if

an

application

Chapter

5.

Event

notification

117

updates

a

particular

Address

object

several

times

between

connector

polls,

all

the

events

might

be

stored

in

the

event

store,

and

the

connector

will

then

create

business

objects

for

all

events

and

send

them

to

InterChange

Server.

To

prevent

this,

the

event

detection

mechanism

can

filter

the

events

such

that

only

a

single

Update

event

is

stored.

Before

storing

a

new

event

as

a

record

in

the

event

store,

the

event

detection

mechanism

can

query

the

event

store

for

existing

events

that

match

the

new

event.

The

event

detection

mechanism

should

not

generate

a

record

for

a

new

event

in

these

cases:

Case

1

The

business

object

name,

verb,

key,

status,

and

ConnectorId

(if

applicable)

in

a

new

event

match

those

of

another

unprocessed

event

in

the

event

store.

Case

2

The

business

object

name,

key,

and

status

for

a

new

event

match

an

unprocessed

event

in

the

event

table;

in

addition,

the

verb

for

the

new

event

is

Update,

and

the

verb

for

the

unprocessed

event

is

Create.

Case

3

The

business

object

name,

key,

and

status

for

a

new

event

match

an

unprocessed

event

in

the

event

table;

in

addition,

the

verb

in

the

unprocessed

event

in

the

event

table

is

Create,

and

the

verb

in

the

new

event

is

Delete.

In

this

case,

remove

the

Create

record

from

the

event

store.

Note:

If

event

detection

is

implemented

with

stored

procedures

and

triggers,

the

stored

procedures

can

perform

the

query

before

inserting

records

for

new

events.

Future

event

processing

The

event

detection

mechanism

can

be

set

up

to

specify

a

date

and

time

in

the

future

to

process

an

event.

To

implement

this

feature,

you

may

need

to

set

up

an

additional

event

store

for

these

events.

Event

records

in

the

future

event

store

should

include

a

date

that

identifies

when

they

will

be

processed.

This

feature

is

required

for

applications

with

records

that

include

effective

dates.

As

an

example,

suppose

that

an

existing

employee

will

receive

a

promotion

in

a

month

and

that,

at

that

time,

he

will

receive

a

raise.

Because

the

paperwork

for

his

increased

compensation

is

completed

prior

to

the

date

of

his

promotion,

the

change

to

his

status

generates

an

event

with

an

effective

date,

which

is

stored

in

the

future

event

table.

Implementing

event

retrieval

For

most

connectors,

the

application-specific

component

of

the

connector

implements

the

event

retrieval

mechanism.

The

connector

developer

does

this

as

part

of

the

connector

design

and

implementation.

This

mechanism

works

in

conjunction

with

the

event

detection

mechanism,

which

detects

entity

changes

and

writes

event

records

to

the

event

store.

Event

retrieval

transfers

information

about

application

events

from

the

event

store

to

the

connector’s

application-specific

component.

This

section

provides

the

following

information

about

event

retrieval:

v

“Event

retrieval

mechanisms”

v

“Using

a

polling

mechanism”

on

page

119

Event

retrieval

mechanisms

Two

common

mechanisms

use

to

retrieve

event

records

from

an

event

store

are:

118

Connector

Development

Guide

for

C++

v

Event

callback

mechanism—connectors

can

be

notified

of

application

events

through

an

event-callback

mechanism;

however,

few

applications

currently

provide

event

callback

APIs

for

application

events.

v

Polling

mechanism—the

most

common

type

of

event

retrieval

mechanism

is

a

polling

mechanism.

Using

a

polling

mechanism

In

a

polling

mechanism,

the

application

provides

a

persistent

event

store,

such

as

an

database

table

or

inbox,

where

it

writes

event

records

when

changes

to

application

entities

occur.

The

connector

periodically

checks,

or

polls,

the

event

store

for

changes

to

entities

that

correspond

to

business

object

definitions

that

the

connector

supports.

In

general,

the

only

information

about

the

business

object

that

is

kept

in

the

event

store

is

the

type

of

operation

and

the

key

values

of

the

application

entity.

As

the

connector

processes

the

event,

it

retrieves

the

remainder

of

the

application

entity

data.

After

the

connector

has

processed

the

event,

it

removes

the

event

record

from

the

event

store

and

places

it

in

an

archive

store.

To

implement

a

polling

mechanism

to

perform

event

retrieval,

the

connector’s

application-specific

component

uses

a

poll

method,

called

the

pollForEvents()

method.

The

poll

method

checks

the

event

store,

retrieves

new

events,

and

processes

each

event

before

returning.

This

section

provides

the

following

information

about

the

poll

method:

v

“Polling

interval”

v

“Event

polling:

standard

behavior”

Polling

interval

The

connector

framework

calls

the

poll

method

at

a

specified

polling

interval

as

defined

by

the

PollFrequency

connector

configuration

property.

This

property

is

initialized

at

connector

installation

time

with

Connector

Configurator.

Typically,

the

polling

interval

is

about

10

seconds.

Note:

If

your

connector

does

not

need

to

poll

to

retrieve

event

information,

polling

can

be

turned

off

by

setting

the

PollFrequency

property

to

zero

(0).

Therefore,

the

connector

framework

calls

the

pollForEvents()

method

in

either

of

the

following

conditions:

v

The

PollFrequency

is

set

to

a

value

greater

than

zero.

v

The

connector

startup

script

specifies

a

value

for

the

-fPollFreq

option.

Event

polling:

standard

behavior

Figure

52

illustrates

the

basic

behavior

of

a

poll

method:

1.

The

connector

framework

calls

the

application-specific

component’s

pollForEvents()

method

to

begin

polling.

2.

The

pollForEvents()

method

checks

the

event

store

in

the

application

for

new

events

and

retrieves

the

events.

3.

The

poll

method

then

queries

the

connector

framework

to

determine

whether

an

event

has

subscribers.

4.

If

an

event

has

subscribers,

the

poll

method

retrieves

the

complete

set

of

data

for

the

business

object

from

the

application.

5.

The

poll

method

sends

the

business

object

to

the

connector

framework,

which

routes

it

to

its

destination

(such

as

InterChange

Server).

Chapter

5.

Event

notification

119

Each

time

the

poll

method

is

called,

it

checks

for

and

retrieves

new

events,

determines

whether

the

event

has

subscribers,

retrieves

application

data

for

events

with

subscribers,

and

sends

business

objects

to

InterChange

Server.

For

information

on

how

to

implement

the

pollForEvents()

method,

see

“Implementing

the

poll

method”

on

page

120.

Implementing

the

poll

method

Regardless

of

whether

the

application

provides

is

an

event

store

in

a

table,

inbox,

or

other

location,

the

connector

must

poll

periodically

to

retrieve

event

information.

The

connector’s

poll

method,

pollForEvents(),

polls

the

event

store,

retrieves

event

records,

and

processes

events.

To

process

an

event,

the

poll

method

determines

whether

the

event

has

subscribers,

creates

a

new

business

object

containing

application

data

that

encapsulates

the

event,

and

sends

the

business

object

to

the

connector

framework.

Note:

If

your

connector

will

be

implementing

request

processing

but

not

event

notification,

you

might

not

need

to

fully

implement

pollForEvents().

However,

since

the

poll

method

is

defined

as

a

pure

virtual

method

in

the

C++

connector

library,

you

must

at

least

implement

a

stub

for

this

method.

This

section

provides

the

following

information

on

how

to

implement

the

pollForEvents()

method:

v

“Basic

logic

for

pollForEvents()”

on

page

121

v

“Other

polling

issues”

on

page

121

Connector
framework Application

Begin polling

Check for subscription

Send object to framework

Return from polling

Check for events

Retrieve changed entity

Get next event

Connector
application-specific

pollForEvents()
method

Check return status

Check for subscription

Send object to framework

Check return status

Retrieve changed entity

Figure

52.

Basic

behavior

of

pollForEvents()

method

120

Connector

Development

Guide

for

C++

Basic

logic

for

pollForEvents()

The

pollForEvents()

method

typically

uses

a

basic

logic

for

event

processing.

Figure

53

shows

a

flow

chart

of

the

poll

method’s

basic

logic.

For

an

implementation

of

this

basic

polling

logic,

see

“Polling

for

events”

on

page

175.“Implementing

an

event-notification

mechanism”

on

page

189.

Other

polling

issues

This

section

provides

information

on

the

following

polling

issues:

v

“Archiving

events”

v

“Threading

issues”

on

page

123

v

“Processing

events

by

event

priority”

on

page

123

v

“Event

distribution”

on

page

124

Archiving

events

Once

a

connector

has

processed

an

event,

it

can

archive

the

event.

Archiving

processed

or

unsubscribed

events

ensures

that

events

are

not

lost.

Archiving

usually

involves

the

following

steps:

v

Copy

the

event

record

from

the

event

store

to

the

archive

store.

The

archive

store

serves

the

same

basic

purpose

as

an

event

store:

it

saves

archive

records

in

a

persistent

cache

until

the

connector

can

process

them.

An

archive

record

contains

the

same

basic

information

as

an

event

record.

v

Update

the

event

status

of

the

event

in

the

archive

store.

Retrieve
event(s)

Retrieve name of
business object
and verb

Send event to
connector framework

Does the event
have a
subscription?

NO

YES

Retrieve entity
information and
create business object

Was the
event sent to
the connector
framework?

Archive
event

YES

NO Poll
method
failed

Figure

53.

Flow

chart

for

basic

logic

of

pollForEvents()

Chapter

5.

Event

notification

121

The

archive

record

should

be

updated

with

one

of

the

event-status

values

in

Table

42..

v

Delete

the

event

record

from

the

event

store.

Table

42.

Event-status

values

in

an

archive

record

Status

Description

Success

The

event

was

detected,

and

the

connector

created

a

business

object

for

the

event

and

sent

the

business

object

to

the

connector

framework.

Unsubscribed

The

event

was

detected,

but

there

were

no

subscriptions

for

the

event,

so

the

event

was

not

sent

to

the

connector

framework

and

on

to

the

integration

broker.

Error

The

event

was

detected,

but

the

connector

encountered

an

error

when

trying

to

process

the

event.

The

error

occurred

either

in

the

process

of

building

a

business

object

for

the

event

or

in

sending

the

business

object

to

connector

framework.

This

section

provides

the

following

information

about

event

archiving:

v

“Creating

an

archive

store”

v

“Configuring

a

connector

for

archiving”

v

“Accessing

the

archive

store”

Creating

an

archive

store:

If

the

application

provides

archiving

services,

you

can

use

those;

otherwise,

an

archive

store

is

usually

implemented

using

the

same

mechanism

as

the

event

store:

v

For

an

event-notification

mechanism

that

uses

database

triggers,

one

way

to

set

up

event

archiving

is

to

install

a

delete

trigger

on

the

event

table.

When

the

connector’s

application-specific

component

deletes

a

processed

or

unsubscribed

event

from

the

event

table,

the

delete

trigger

moves

the

event

to

the

archive

table.

For

information

on

event

tables,

see

“Event

table”

on

page

111.

Note:

If

a

connector

uses

an

event

table,

an

administrator

might

need

to

clean

up

the

archive

periodically.

v

With

an

email

event

notification

scheme,

archiving

might

consist

of

moving

a

message

to

a

different

folder.

A

folder

called

Archive

might

be

used

for

archiving

event

messages.

Configuring

a

connector

for

archiving:

Archiving

can

have

performance

impact

in

the

form

of

the

archive

store

and

moving

the

event

records

into

this

store.

Therefore,

you

might

want

to

design

event

archiving

to

be

configurable

at

install

time,

so

that

a

system

administrator

can

control

whether

events

are

archived.

To

make

archiving

configurable,

you

can

create

a

connector-specific

configuration

property

that

specifies

whether

the

connector

archives

unsubscribed

events.

IBM

suggests

a

name

of

ArchiveProcessed

for

this

configuration

property.

If

the

configuration

property

specifies

no

archiving,

the

connector

application-specific

component

can

delete

or

ignore

the

event.

If

the

connector

is

performance-
constrained

or

the

event

volume

is

extremely

high,

archiving

events

is

not

required.

Accessing

the

archive

store:

A

connector

performs

archiving

as

part

of

the

event

processing

in

its

poll

method,

pollForEvents().

Once

a

connector

has

processed

an

event,

the

connector

must

move

the

event

to

an

archive

store

whether

or

not

the

event

was

successfully

delivered

to

the

connector

framework.

Events

that

have

no

subscriptions

are

also

moved

to

the

archive.

Archiving

processed

or

unsubscribed

events

ensures

that

events

are

not

lost.

122

Connector

Development

Guide

for

C++

Your

poll

method

should

consider

archiving

an

event

when

any

of

the

following

conditions

occur:

v

When

the

poll

method

has

processed

the

event

and

the

connector

framework

has

delivered

the

business

object

v

When

no

subscriptions

exist

for

the

event

Note:

If

a

connector

uses

an

event

table,

an

administrator

might

need

to

clean

up

the

archive

periodically.

For

example,

the

administrator

may

need

to

truncate

the

archive

to

free

disk

space.

Threading

issues

By

default,

C++

connectors

are

single-threaded.

Therefore,

the

connector

framework

does

not

accept

business

objects

from

InterChange

Server

while

the

poll

method

is

running.

The

connector

framework

calls

the

poll

method

only

when

it

is

not

processing

request

business

objects

or

other

messages.

Therefore,

the

poll

method

should

not

take

a

long

time

to

complete.

Because

request

processing

is

blocked

when

the

poll

method

is

processing

events,

you

need

to

be

careful

implementing

the

poll

method

to

process

multiple

events

per

poll:

v

Implementing

the

poll

method

to

return

after

processing

a

single

event

minimizes

the

amount

of

time

required

for

polling.

However,

if

the

application

generates

a

large

number

of

events,

processing

one

event

at

a

time

may

not

provide

adequate

performance.

v

If

you

implement

polling

to

process

multiple

events

per

poll,

make

sure

that

the

poll

implementation

balances

the

need

to

process

large

numbers

of

events

with

the

need

to

handle

business

object

requests

from

the

integration

broker.

Note:

If

a

connector

is

configured

to

run

in

parallel-process

mode

(with

ParallelProcessDegree

greater

than

1),

it

consists

of

several

processes,

each

with

a

particular

purpose,

as

shown

in

Table

107

on

page

288..

Such

a

connector

does

not

block

request

processing

while

it

executes

the

poll

method.

Processing

events

by

event

priority

Event

priority

enables

the

connector

poll

method

to

handle

situations

where

the

number

of

events

in

the

event

store

exceeds

the

maximum

number

of

events

the

connector

retrieves

in

a

single

poll.

In

this

type

of

polling

implementation,

the

poll

method

polls

and

processes

events

in

order

of

priority.

Event

priority

is

defined

as

an

integer

value

in

the

range

0

-

n,

with

0

as

the

highest

priority.

To

process

events

by

event

priority,

the

following

tasks

must

be

implemented

in

the

event

notification

mechanism:

v

The

event

detection

mechanism

must

assign

a

priority

value

to

an

event

record

when

it

saves

it

to

the

event

store.

v

The

event

retrieval

mechanism

(the

polling

mechanism)

must

specify

the

order

in

which

it

retrieves

event

records

to

process,

based

on

the

event

priority.

Note:

As

events

are

picked

up,

event

priority

values

are

not

decremented.

In

rare

circumstances,

this

might

lead

to

low

priority

events

being

not

picked

up.

The

following

example

SQL

SELECT

statement

shows

how

a

connector

might

select

event

records

based

on

event

priority.

The

SELECT

statement

sorts

the

events

by

priority,

and

the

connector

processes

each

event

in

turn.

Chapter

5.

Event

notification

123

SELECT

event_id,

object_name,

object_verb,

object_key

FROM

event_table

WHERE

event_status

=

0

ORDER

BY

event_priority

The

logic

for

a

poll

method

is

then

the

same

as

discussed

in

“Basic

logic

for

pollForEvents()”

on

page

121.

Event

distribution

The

event

detection

and

retrieval

mechanisms

can

be

implemented

so

that

multiple

connectors

can

poll

the

same

event

store.

Each

connector

can

be

configured

to

process

certain

events,

create

specific

business

objects

and

pass

those

business

objects

to

InterChange

Server.

This

can

streamline

the

processing

of

certain

types

of

events

and

increase

the

transfer

of

data

out

of

an

application.

To

implement

event

distribution

so

that

multiple

connectors

can

poll

the

event

store,

do

the

following:

v

Add

a

column

to

the

event

record

for

an

integer

connector

identifier

(ID),

and

design

the

event

detection

mechanism

to

specify

which

connector

will

pick

up

the

event.

This

might

be

done

per

application

entity.

For

example,

the

event

detection

mechanism

might

specify

that

all

Customer

events

be

picked

up

by

the

connector

that

has

the

connectorId

field

set

to

4.

v

Add

an

application-specific

connector

property

named

ConnectorId.

Assign

each

connector

a

unique

identifier

and

store

this

value

in

its

ConnectorId

property.

v

Implement

the

poll

method

to

query

for

the

value

of

the

ConnectorId

property.

If

the

property

is

not

set,

the

poll

method

can

retrieve

all

event

records

from

the

event

store

as

usual.

If

the

property

is

set

to

a

connector

identifier

value,

the

poll

method

retrieves

only

those

events

that

match

the

ConnectorId.

Special

considerations

for

event

processing

This

section

contains

the

following

information

about

event

processing:

v

“Processing

Delete

events”

v

“Using

guaranteed

event

delivery”

on

page

126

Processing

Delete

events

An

application

can

support

one

of

the

following

types

of

delete

operations:

v

Physical

delete—Data

is

physically

deleted

from

the

database.

v

Logical

delete—A

status

column

in

a

database

entity

is

set

to

an

inactive

or

invalid

status,

but

the

data

is

not

deleted

from

the

database.

It

may

be

tempting

to

implement

delete

event

processing

in

a

manner

that

is

consistent

with

the

application.

For

example,

when

an

application

entity

is

deleted,

a

connector

poll

method

for

an

application

that

supports

physical

deletes

might

publish

a

business

object

with

the

Delete

verb.

A

connector

poll

method

for

an

application

that

supports

logical

deletes

might

publish

a

business

object

with

the

Update

verb

and

the

status

value

changed

to

inactive.

Problems

can

arise

with

this

approach

when

a

source

application

and

a

destination

application

support

different

delete

models.

Suppose

that

the

source

application

supports

logical

delete

and

the

destination

application

supports

physical

delete.

Assume

that

an

enterprise

is

synchronizing

between

the

source

and

destination

applications.

If

the

source

connector

sends

a

change

in

status

(in

other

words,

a

124

Connector

Development

Guide

for

C++

delete

event)

as

a

business

object

with

the

Update

verb,

the

destination

connector

might

be

unable

to

determine

that

the

business

object

actually

represents

a

delete

event.

Therefore,

event

publishing

must

be

designed

so

that

source

connectors

for

both

types

of

applications

can

publish

delete

events

in

such

a

way

that

destination

connectors

can

handle

the

events

appropriately.

The

Delete

verb

in

an

event

notification

business

object

should

represent

an

event

where

data

was

deleted,

whether

the

delete

operation

was

a

physical

or

logical

delete.

This

ensures

that

destination

connectors

will

be

correctly

informed

about

a

delete

event.

This

section

provides

the

following

information

on

how

to

implement

event

processing

for

delete

events:

v

“Setting

the

verb

in

the

event

record”

v

“Setting

the

verb

in

the

business

object”

v

“Setting

the

verb

during

mapping”

on

page

126

Setting

the

verb

in

the

event

record

The

event

detection

mechanism

for

both

logical

and

physical

delete

connectors

should

set

the

verb

in

the

event

record

to

Delete:

v

For

a

physical

delete

connector,

this

is

the

standard

implementation.

v

For

a

connector

whose

application

supports

logical

deletes,

the

event

detection

mechanism

must

be

designed

to

determine

when

update

events

actually

represent

deletion

of

data.

In

other

words,

it

must

differentiate

update

events

for

modified

entities

from

update

events

for

logically

deleted

entities.

For

logically

deleted

entities,

the

event

detection

mechanism

should

set

the

verb

in

the

event

record

to

Delete

even

if

the

event

in

the

application

was

an

Update

event

that

updated

a

status

column.

Setting

the

verb

in

the

business

object

The

poll

method

for

both

logical

and

physical

delete

connectors

should

generate

a

business

object

with

the

Delete

verb:

v

If

the

application

supports

logical

deletes,

the

connector

poll

method

retrieves

the

delete

event

from

the

event

store,

creates

an

empty

business

object,

sets

the

key,

sets

the

verb

to

Delete,

and

sends

the

business

object

to

the

connector

framework.

For

hierarchical

business

objects,

the

connector

should

not

send

deleted

children.

The

connector

can

constrain

queries

to

not

include

entities

with

status

of

inactive,

or

child

business

objects

with

a

status

of

inactive

can

be

removed

in

mapping.

v

If

the

application

supports

physical

deletes,

the

connector

might

not

be

able

to

retrieve

the

application

data.

In

this

case,

the

connector

poll

method

retrieves

the

delete

event

from

the

event

store,

creates

an

empty

business

object,

sets

the

key

values,

sets

the

values

of

other

attributes

to

the

special

Ignore

value

(CxIgnore),

sets

the

verb

in

the

business

object

to

Delete,

and

sends

the

business

object

to

the

connector

framework.

Chapter

5.

Event

notification

125

Setting

the

verb

during

mapping

WebSphere

InterChange

Server

Mapping

between

the

application-specific

business

object

and

the

generic

business

object

should

map

the

verb

as

Delete.

This

ensures

that

the

correct

information

about

an

event

is

sent

to

the

collaboration,

which

may

perform

special

processing

based

on

the

verb.

Follow

these

recommendations

for

relationship

tables:

v

For

delete

events

for

a

logical

delete

application,

leave

relationship

entries

in

the

relationship

table.

v

For

delete

events

for

a

physical

delete

application,

delete

relationship

entries

from

the

relationship

table.

Using

guaranteed

event

delivery

The

guaranteed-event-delivery

feature

enables

the

connector

framework

to

guarantee

that

events

are

never

sent

twice

between

the

connector’s

event

store

and

the

integration

broker.

Important:

This

feature

is

available

only

for

JMS-enabled

connectors;

that

is,

those

connectors

that

use

Java

Messaging

Service

(JMS)

to

handle

queues

for

their

message

transport.

A

JMS-enabled

connector

always

has

its

DeliveryTransport

connector

property

set

to

JMS.

When

the

connector

starts,

it

uses

the

JMS

transport;

all

subsequent

communication

between

the

connector

and

the

integration

broker

occurs

through

this

transport.

The

JMS

transport

ensures

that

the

messages

are

eventually

delivered

to

their

destination.

Without

use

of

the

guaranteed-event-delivery

feature,

a

small

window

of

possible

failure

exists

between

the

time

that

the

connector

publishes

an

event

(when

the

connector

calls

the

gotApplEvent()

method

within

its

pollForEvents()

method)

and

the

time

it

updates

the

event

store

by

deleting

the

event

record

(or

perhaps

updating

it

with

an

“event

posted”

status).

If

a

failure

occurs

in

this

window,

the

event

has

been

sent

but

its

event

record

remains

in

the

event

store

with

a

“ready

for

poll”

status.

When

the

connector

restarts,

it

finds

this

event

record

still

in

the

event

store

and

sends

it,

resulting

in

the

event

being

sent

twice.

You

can

provide

the

guaranteed-event-delivery

feature

to

a

JMS-enabled

connector

in

one

of

the

following

ways:

v

With

the

container-managed-events

feature:

If

the

connector

uses

a

JMS

event

store

(implemented

as

a

JMS

source

queue),

the

connector

framework

act

as

a

container

and

manage

the

JMS

event

store.

For

more

information,

see

“Guaranteed

event

delivery

for

connectors

with

JMS

event

stores.”

v

With

the

duplicate-event-elimination

feature:

The

connector

framework

can

use

a

JMS

monitor

queue

to

ensure

that

no

duplicate

events

occur.

This

feature

is

usually

used

for

a

connector

that

uses

a

non-JMS

event

store

(for

example,

implemented

as

a

JDBC

table,

Email

mailbox,

or

flat

files).

For

more

information,

see

“Guaranteed

event

delivery

for

connectors

with

non-JMS

event

stores”

on

page

129.

Guaranteed

event

delivery

for

connectors

with

JMS

event

stores

If

the

JMS-enabled

connector

uses

JMS

queues

to

implement

its

event

store,

the

connector

framework

can

act

as

a

″container″

and

manage

the

JMS

event

store

(the

JMS

source

queue).

One

of

the

roles

of

JMS

is

to

ensure

that

once

a

transactional

126

Connector

Development

Guide

for

C++

queue

session

starts,

the

messages

are

cached

there

until

a

commit

is

issued;

if

a

failure

occurs

or

a

rollback

is

issued,

the

messages

are

discarded.

Therefore,

in

a

single

JMS

transaction,

the

connector

framework

can

remove

a

message

from

a

source

queue

and

place

it

on

the

destination

queue.

This

container-managed-events

feature

of

guaranteed

event

delivery

enables

the

connector

framework

to

guarantee

that

events

are

never

sent

twice

between

the

JMS

event

store

and

the

destination’s

JMS

queue.

This

section

provides

the

following

information

about

use

of

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

that

has

a

JMS

event

store:

v

“Enabling

the

feature

for

connectors

with

JMS

event

stores”

v

“Effect

on

event

polling”

on

page

128

Enabling

the

feature

for

connectors

with

JMS

event

stores:

To

enable

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

that

has

a

JMS

event

store,

set

the

connector

configuration

properties

shown

in

Table

43..

Table

43.

Guaranteed-event-delivery

connector

properties

for

a

connector

with

a

JMS

event

store

Connector

property

Value

DeliveryTransport

JMS

ContainerManagedEvents

JMS

PollQuantity

The

number

of

events

to

processing

in

a

single

poll

of

the

event

store

SourceQueue

Name

of

the

JMS

source

queue

(event

store)

which

the

connector

framework

polls

and

from

which

it

retrieves

events

for

processing

Note:

The

source

queue

and

other

JMS

queues

should

be

part

of

the

same

queue

manager.

If

the

connector’s

application

generates

events

that

are

stored

in

a

different

queue

manager,

you

must

define

a

remote

queue

definition

on

the

remote

queue

manager.

WebSphere

MQ

can

then

transfer

the

events

from

the

remote

queue

to

the

queue

manager

that

the

JMS-enabled

connector

uses

for

transmission

to

the

integration

broker.

For

information

on

how

to

configure

a

remote

queue

definition,

see

your

IBM

WebSphere

MQ

documentation.

Note:

A

connector

can

use

only

one

of

these

guaranteed-event-delivery

features:

container

managed

events

or

duplicate

event

elimination.Therefore,

you

cannot

set

the

ContainerManagedEvents

property

to

JMS

and

the

DuplicateEventElimination

property

to

true.

In

addition

to

configuring

the

connector,

you

must

also

configure

the

data

handler

that

converts

between

the

event

in

the

JMS

store

and

a

business

object.

This

data-handler

information

consists

of

the

connector

configuration

properties

that

Table

44

summarizes.

Chapter

5.

Event

notification

127

Table

44.

Data-handler

properties

for

guaranteed

event

delivery

Data-handler

property

Value

Required?

MimeType

The

MIME

type

that

the

data

handler

handles.

This

MIME

type

identifies

which

data

handler

to

call.

Yes

DHClass

The

full

name

of

the

Java

class

that

implements

the

data

handler

Yes

DataHandlerConfigMOName

The

name

of

the

top-level

meta-object

that

associates

MIME

types

and

their

data

handlers

Optional

Note:

The

data-handler

configuration

properties

reside

in

the

connector

configuration

file

with

the

other

connector

configuration

properties.

End

users

that

configure

a

connector

that

has

a

JMS

event

store

to

use

guaranteed

event

delivery

must

be

instructed

to

set

the

connector

properties

as

described

in

Table

43

and

Table

44..

To

set

these

connector

configuration

properties,

use

the

Connector

Configurator

tool.

Connector

Configurator

displays

the

connector

properties

in

Table

43

on

its

Standard

Properties

tab.

It

displays

the

connector

properties

in

Table

44

on

its

Data

Handler

tab.

Note:

Connector

Configurator

activates

the

fields

on

its

Data

Handler

tab

only

when

the

DeliveryTransport

connector

configuration

property

is

set

to

JMS

and

ContainerManagedEvents

is

set

to

JMS.

For

information

on

Connector

Configurator,

see

Appendix

B,

“Connector

Configurator,”

on

page

325.Appendix

B,

“Connector

Configurator,”

on

page

527.

Effect

on

event

polling:

If

a

connector

uses

guaranteed

event

delivery

by

setting

ContainedManagedEvents

to

JMS,

it

behaves

slightly

differently

from

a

connector

that

does

not

use

this

feature.

To

provide

container-managed

events,

the

connector

framework

takes

the

following

steps

to

poll

the

event

store:

1.

Start

a

JMS

transaction.

2.

Read

a

JMS

message

from

the

event

store.

The

event

store

is

implemented

as

a

JMS

source

queue.

The

JMS

message

contains

an

event

record.

The

name

of

the

JMS

source

queue

is

obtained

from

the

SourceQueue

connector

configuration

property.

3.

Call

the

appropriate

data

handler

to

convert

the

event

to

a

business

object.

The

connector

framework

calls

the

data

handler

that

has

been

configured

with

the

properties

in

Table

44..

4.

When

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server

is

the

integration

broker,

convert

the

business

object

to

a

message

based

on

the

configured

wire

format

(XML).

5.

Send

the

resulting

message

to

the

JMS

destination

queue.

WebSphere

InterChange

Server

The

message

sent

to

the

JMS

destination

queue

is

the

business

object.

128

Connector

Development

Guide

for

C++

Other

integration

brokers

The

message

sent

to

the

JMS

destination

queue

is

an

XML

message.

6.

Commit

the

JMS

transaction.

When

the

JMS

transaction

commits,

the

message

is

written

to

the

JMS

destination

queue

and

removed

from

the

JMS

source

queue

in

the

same

transaction.

7.

Repeat

step

1

through

6

in

a

loop.

The

PollQuantity

connector

property

determines

the

number

of

repetitions

in

this

loop.

Important:

A

connector

that

sets

the

ContainerManagedEvents

property

is

set

to

JMS

does

not

call

the

pollForEvents()

method

to

perform

event

polling.

If

the

connector’s

base

class

includes

a

pollForEvents()

method,

this

method

is

not

invoked.

Guaranteed

event

delivery

for

connectors

with

non-JMS

event

stores

The

connector

framework

can

use

duplicate

event

elimination

to

ensure

that

duplicate

events

do

not

occur.

This

feature

is

usually

enabled

for

JMS-enabled

connectors

that

use

a

non-JMS

solution

to

implement

an

event

store

(such

as

a

JDBC

event

table,

Email

mailbox,

or

flat

files).

This

duplicate-event-elimination

feature

of

guaranteed

event

delivery

enables

the

connector

framework

to

guarantee

that

events

are

never

sent

twice

between

the

event

store

and

the

destination’s

JMS

queue.

Note:

JMS-enabled

connectors

that

use

a

JMS

event

store

usually

use

the

container-managed-events

feature.

However,

they

can

use

duplicate

event

elimination

instead

of

container

managed

events.

This

section

provides

the

following

information

about

use

of

the

guaranteed-event-delivery

feature

with

a

JMS-enabled

connector

that

has

a

non-JMS

event

store:

v

“Enabling

the

feature

for

connectors

with

non-JMS

event

stores”

v

“Effect

on

event

polling”

on

page

128

Enabling

the

feature

for

connectors

with

non-JMS

event

stores:

To

enable

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

that

has

a

non-JMS

event

store,

you

must

set

the

connector

configuration

properties

shown

in

Table

45..

Table

45.

Guaranteed-event-delivery

connector

properties

for

a

connector

with

a

non-JMS

event

store

Connector

property

Value

DeliveryTransport

JMS

DuplicateEventElimination

true

MonitorQueue

Name

of

the

JMS

monitor

queue,

in

which

the

connector

framework

stores

the

ObjectEventId

of

processed

business

objects

Note:

A

connector

can

use

only

one

of

these

guaranteed-event-delivery

features:

container

managed

events

or

duplicate

event

elimination.Therefore,

you

Chapter

5.

Event

notification

129

cannot

set

the

DuplicateEventElimination

property

to

true

and

the

ContainerManagedEvents

property

to

JMS.

End

users

that

configure

a

connector

to

use

guaranteed

event

delivery

must

be

instructed

to

set

the

connector

properties

as

described

in

Table

45..

To

set

these

connector

configuration

properties,

use

the

Connector

Configurator

tool.

It

displays

these

connector

properties

on

its

Standard

Properties

tab.

For

information

on

Connector

Configurator,

see

Appendix

B,

“Connector

Configurator,”

on

page

325.Appendix

B,

“Connector

Configurator,”

on

page

527.

Effect

on

event

polling:

If

a

connector

uses

guaranteed

event

delivery

by

setting

DuplicateEventElimination

to

true,

it

behaves

slightly

differently

from

a

connector

that

does

not

use

this

feature.

To

provide

the

duplicate

event

elimination,

the

connector

framework

uses

a

JMS

monitor

queue

to

track

a

business

object.

The

name

of

the

JMS

monitor

queue

is

obtained

from

the

MonitorQueue

connector

configuration

property.

After

the

connector

framework

receives

the

business

object

from

the

application-specific

component

(through

a

call

to

gotApplEvent()

in

the

pollForEvents()

method),

it

must

determine

if

the

current

business

object

(received

from

gotApplEvents())

represents

a

duplicate

event.

To

make

this

determination,

the

connector

framework

retrieves

the

business

object

from

the

JMS

monitor

queue

and

compares

its

ObjectEventId

with

the

ObjectEventId

of

the

current

business

object:

v

If

these

two

ObjectEventIds

are

the

same,

the

current

business

object

represents

a

duplicate

event.

In

this

case,

the

connector

framework

ignores

the

event

that

the

current

business

object

represents;

it

does

not

send

this

event

to

the

integration

broker.

v

If

these

ObjectEventIds

are

not

the

same,

the

business

object

does

not

represent

a

duplicate

event.

In

this

case,

the

connector

framework

copies

the

current

business

object

to

the

JMS

monitor

queue

and

then

delivers

it

to

the

JMS

delivery

queue,

all

as

part

of

the

same

JMS

transaction.

The

name

of

the

JMS

delivery

queue

is

obtained

from

the

DeliveryQueue

connector

configuration

property.

Control

returns

to

the

connector’s

pollForEvents()

method,

after

the

call

to

the

gotApplEvent()

method.

For

a

JMS-enabled

connector

to

support

duplicate

event

elimination,

you

must

make

sure

that

the

connector’s

pollForEvents()

method

includes

the

following

steps:

v

When

you

create

a

business

object

from

an

event

record

retrieved

from

the

non-JMS

event

store,

save

the

event

record’s

unique

event

identifier

as

the

business

object’s

ObjectEventId

attribute.

The

application

generates

this

event

identifier

to

uniquely

identify

the

event

record

in

the

event

store.

If

the

connector

goes

down

after

the

event

has

been

sent

to

the

integration

broker

but

before

this

event

record’s

status

can

be

changed,

this

event

record

remains

in

the

event

store

with

an

In-Progress

status.

When

the

connector

comes

back

up,

it

should

recover

any

In-Progress

events.

When

the

connector

resumes

polling,

it

generates

a

business

object

for

the

event

record

that

still

remains

in

the

event

store.

However,

because

both

the

business

object

that

was

already

sent

and

the

new

one

have

the

same

event

record

as

their

ObjectEventIds,

the

connector

framework

can

recognize

the

new

business

object

as

a

duplicate

and

not

send

it

to

the

integration

broker.

A

C++

connector

can

use

the

setAttrValue()

method

of

the

BusinessObject

class

to

assign

the

event

identifier

to

the

ObjectEventId

attribute,

as

follows:

pBusObj->setAttrValue("ObjectEventId",

strngEventId,

BOATTRTYPE::STRING);

130

Connector

Development

Guide

for

C++

v

During

connector

recovery,

make

sure

that

you

process

In-Progress

events

before

the

connector

begins

polling

for

new

events.

Unless

the

connector

changes

any

In-Progress

events

to

Ready-for-Poll

status

when

it

starts

up,

the

polling

method

does

not

pick

up

the

event

record

for

reprocessing.

Chapter

5.

Event

notification

131

132

Connector

Development

Guide

for

C++

Chapter

6.

Message

logging

This

chapter

presents

information

on

message

logging.

A

message

is

a

string

of

information

that

the

connector

can

send

to

an

external

connect

log,

where

it

can

be

reviewed

by

the

system

administrator

or

the

developer

to

provide

information

about

the

runtime

state

of

the

connector.

There

are

two

different

categories

of

messages

that

a

connector

can

send

to

the

connector

log:

v

Error

or

informational

messages

v

Trace

messages

Messages

can

be

generated

within

the

connector

code

or

obtained

from

a

message

file.

This

chapter

contains

the

following

sections:

v

“Error

and

informational

messages”

v

“Trace

messages”

on

page

135

v

“Message

file”

on

page

138

Error

and

informational

messages

A

connector

can

send

information

about

its

state

to

a

log

destination.

The

following

types

of

information

are

recommended

for

logging:

v

Errors

and

fatal

errors

from

your

code

to

a

log

file.

v

Warnings

require

a

system

administrator’s

attention,

from

your

code

to

a

log

file.

v

Informational

messages

such

as:

–

Connector

startup

and

termination

messages

–

Important

messages

from

the

application

Although

a

connector

can

send

informational

or

error

messages,

this

logging

process

is

referred

to

as

error

logging.

Note:

These

messages

are

independent

of

any

trace

messages

defined

for

the

connector.

Indicating

a

log

destination

A

connector

sends

its

log

messages

into

its

log

destination.

The

log

is

an

external

destination

that

is

available

for

viewing

by

those

needing

to

review

the

execution

state

of

the

connector.

The

log

destination

is

defined

at

connector

configuration

time

by

the

setting

of

the

Logging

field

in

the

Trace/Log

Files

tab

of

Connector

Configurator

as

one

of

the

following:

v

To

File:

The

absolute

pathname

of

an

external

file,

which

must

reside

on

the

same

machine

as

the

connector’s

process

(with

its

connector

framework

and

application-specific

component)

v

To

console

(STDOUT):

The

command

prompt

window

generated

when

the

connector

startup

script

starts

the

connector

By

default,

the

connector’s

log

destination

is

set

to

the

console,

which

indicates

use

of

the

startup

script’s

command

prompt

window

as

the

log

destination.

Set

this

log

destination

as

appropriate

for

your

connector.

©

Copyright

IBM

Corp.

1997,

2003

133

WebSphere

InterChange

Server

You

can

also

set

the

LogAtInterchangeEnd

connector

configuration

property

to

indicate

whether

messages

are

also

logged

to

the

InterChange

Server’s

log

destination:

v

Messages

logged

locally

only:

LogAtInterchangeEnd

is

false.

v

Messages

are

logged

both

locally

and

sent

to

InterChange

Server’s

log

destination:

LogAtInterchangeEnd

is

true.

By

default,

LogAtInterchangeEnd

is

set

to

false,

so

that

messages

are

only

logged

locally.

If

messages

are

sent

to

InterChange

Server,

they

are

written

to

the

destination

specified

for

InterChange

Server

messages.

Note:

Logging

to

InterChange

Server’s

log

destination

also

turns

on

email

notification,

which

generates

email

messages

for

the

MESSAGE_RECIPIENT

parameter

specified

in

the

InterchangeSystem.cfg

file

when

errors

or

fatal

errors

occur.

As

an

example,

when

a

connector

loses

its

connection

to

its

application,

if

LogAtInterchangeEnd

is

set

to

true,

an

email

message

is

sent

to

the

specified

message

recipient.

These

connector

properties

are

set

with

Connector

Configurator.

For

more

information

on

InterChange

Server’s

message

logging,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

Sending

a

message

to

the

log

destination

Table

46

shows

the

ways

that

a

connector

sends

an

error,

warning,

and

information

message

to

its

log

destination.

Table

46.

Methods

for

sending

a

message

to

the

log

destination

Connector

library

method

Description

logMsg()

and

generateMsg()

Takes

as

input

a

text

string

or

a

string

generated

from

a

message

in

a

message

file.

Optionally,

it

can

take

a

message-type

constant

to

indicate

whether

the

message

is

an

error,

warning,

or

informational.

To

generate

a

character

string

from

the

message

text

in

a

message

file,

use

the

generateMsg()

method.

generateAndLogMsg()

Combines

the

functionality

of

the

logMsg()

and

generateMsg()

methods

into

a

single

call.

For

more

information

on

how

to

generate

a

message,

see

“Generating

a

message

string”

on

page

139.

In

the

C++

connector

library,

the

logMsg(),

generateMsg(),

and

generateAndLogMsg()

methods

are

defined

in

two

classes:

v

In

the

GenGlobals

for

access

to

logging

from

within

the

connector

base

class

v

In

the

BOHandlerCPP

class

for

access

to

logging

from

within

a

business

object

handler.

Both

the

generateMsg()

and

generateAndLogMsg()

methods

require

a

message

type

as

an

argument.

This

argument

indicates

the

severity

of

the

message.

For

more

information,

see

“Generating

a

message

string”

on

page

139.

134

Connector

Development

Guide

for

C++

Trace

messages

Tracing

is

an

optional

troubleshooting

and

debugging

feature

that

can

be

turned

on

for

connectors.

When

tracing

is

turned

on,

system

administrators

can

follow

events

as

they

work

their

way

through

the

IBM

WebSphere

business

integration

system.

WebSphere

InterChange

Server

When

InterChange

Server

is

the

integration

broker,

you

can

also

use

tracing

on

connector

controllers,

and

other

components

of

the

InterChange

Server

system.

Tracing

in

an

application-specific

component

allows

you

and

other

users

of

your

connector

code

to

monitor

the

behavior

of

the

connector.

Tracing

can

also

track

when

specific

connector

functions

are

called

by

the

connector

framework.

Trace

messages

that

you

provide

for

the

connector

application-specific

code

augment

the

trace

messages

provided

for

the

connector

framework.

Enabling

tracing

By

default,

tracing

on

a

connector

is

turned

off.

Tracing

is

turned

on

for

a

connector

when

the

connector

configuration

property

TraceLevel

is

set

to

a

non-zero

value

in

Connector

Configurator.

You

can

set

TraceLevel

to

a

value

from

1

to

5

to

obtain

the

appropriate

level

of

detail.

Level

5

tracing

logs

the

trace

messages

of

all

lower

trace

levels.

WebSphere

InterChange

Server

Tip:

For

information

on

turning

on

tracing

for

connector

controllers

or

for

other

components

of

the

InterChange

Server

system,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

Identifying

a

trace

destination

A

connector

sends

its

trace

messages

into

its

trace

destination,

which

is

an

external

destination

that

is

available

for

viewing

by

those

needing

to

review

the

execution

state

of

the

connector.

The

trace

destination

is

defined

at

connector

configuration

time

by

the

setting

of

the

Tracing

field

in

the

Trace/Log

Files

tab

of

Connector

Configurator

as

one

of

the

following:

v

To

File:

The

absolute

pathname

of

an

external

file,

which

must

reside

on

the

same

machine

as

the

connector’s

process

(with

its

connector

framework

and

application-specific

component)

v

To

console

(STDOUT):

The

command

prompt

window

generated

when

the

connector

startup

script

starts

the

connector

By

default,

the

connector’s

trace

destination

is

set

to

the

console,

which

indicates

use

of

the

startup

script’s

command

prompt

window

as

the

trace

destination.

Set

this

trace

destination

as

appropriate

for

your

connector.

Sending

a

trace

message

to

the

trace

destination

Table

47

shows

the

ways

that

a

connector

sends

a

trace

message

to

its

trace

destination.

Chapter

6.

Message

logging

135

Table

47.

Methods

for

sending

a

trace

message

to

the

trace

destination

Connector

library

method

Description

traceWrite()

and

generateMsg()

Takes

as

input

a

text

string

or

a

string

generated

from

a

message

in

a

message

file

and

a

trace-level

constant

to

indicate

the

trace

level.

This

method

writes

a

trace

message

for

the

specified

trace

level

or

greater

to

the

trace

destination.

To

generate

a

character

string

from

the

message

text

in

a

message

file,

use

the

generateMsg()

method

with

the

message

type

set

to

XRD_TRACE.

generateAndTraceMsg()

Combines

the

functionality

of

the

traceWrite()

and

generateMsg()

methods

into

a

single

call.

For

information

on

the

generateMsg()

method,

see

“Generating

a

message

string”

on

page

139.

Note:

It

is

not

required

that

trace

messages

be

localized

in

the

message

file.

Whether

trace

messages

are

contained

in

a

message

file

is

left

at

the

discretion

of

the

developer.

For

more

information,

see

“Locale-sensitive

design

principles”

on

page

54..

In

the

C++

connector

library,

the

traceWrite(),

generateMsg(),

and

generateAndTraceMsg()

methods

are

defined

in

two

classes:

v

In

the

GenGlobals

for

access

to

tracing

from

within

the

connector

base

class

v

In

the

BOHandlerCPP

class

for

access

to

tracing

from

within

a

business

object

handler

The

traceWrite()

and

generateAndTraceMsg()

require

a

trace

level

as

an

argument.

This

argument

specifies

the

trace

level

to

use

for

a

trace

message.

When

you

turn

on

tracing

at

runtime,

you

specify

a

trace

level

at

which

to

run

the

tracing.

All

trace

messages

in

your

code

with

trace

levels

at

or

below

the

runtime

trace

level

are

sent

to

the

trace

destination.

For

more

information,

see

“Recommended

content

for

trace

messages”

on

page

137.

To

specify

a

trace

level

to

associate

with

a

trace

message,

use

a

trace-level

constant

of

the

form

LEVELn

where

n

can

be

a

trace

level

from

1

to

5.

Trace-level

constants

are

defined

in

the

Tracing

class.

The

C++

code

fragment

below

uses

traceWrite()

to

write

a

level

4

trace

message

to

log

the

number

of

records

retrieved

from

the

application.

sprintf(msg,

"Fetched

%d

record(s).",

rCount);

traceWrite(Tracing::LEVEL4,

msg,

NULL);

The

trace

message

written

to

the

trace

destination

contains

the

date,

time,

connector

name,

and

message,

as

shown

by

the

output

of

this

code

sample:

[1999/05/28

12.36:48.105]

[ConnectorAgent

MyConnector]

Trace:

Fetched

2

record(s).

Both

the

generateMsg()

and

generateAndTraceMsg()

methods

require

a

message

type

as

an

argument.

This

argument

indicates

the

severity

of

the

message.

Because

trace

messages

do

not

have

severity

levels,

you

just

use

the

XRD_TRACE

message-type

constant.

Message-type

constants

are

defined

in

the

CxMsgFormat

class.

136

Connector

Development

Guide

for

C++

Recommended

content

for

trace

messages

You

are

responsible

for

defining

what

kind

of

information

your

connector

returns

at

each

trace

level.

Table

48

shows

the

recommended

content

for

application-specific

connector

trace

messages.

Table

48.

Content

of

application-specific

connector

trace

messages

Level

Content

0

Trace

message

that

identifies

the

connector

version.

No

other

tracing

is

done

at

this

level.

1

Trace

messages

that:

v

Log

status

messages

and

identifying

(key)

information

for

each

business

object

processed.

v

Record

each

time

the

pollForEvents()

method

is

executed.

2

Trace

messages

that:

v

Identify

the

business

object

handlers

used

for

each

object

the

connector

processes.

v

Log

each

time

a

business

object

is

posted

to

InterChange

Server,

either

from

gotApplEvent()

or

executeCollaboration().

v

Indicate

each

time

a

request

business

object

is

received.

3

Trace

messages

that:

v

Identify

the

foreign

keys

being

processed

(if

applicable).

These

messages

appear

when

the

connector

has

encountered

a

foreign

key

in

a

business

object

or

when

the

connector

sets

a

foreign

key

in

a

business

object.

v

Relate

to

business

object

processing.

Examples

of

this

include

finding

a

match

between

business

objects,

or

finding

a

business

object

in

an

array

of

child

business

objects.

4

Trace

message

that:

v

Identify

application-specific

information.

Examples

of

this

information

include

the

values

returned

by

the

methods

that

process

the

application-specific

information

fields

in

business

objects.

v

Identify

when

the

connector

enters

or

exits

a

function.

These

messages

help

trace

the

process

flow

of

the

connector.

v

Record

any

thread-specific

processing.

For

example,

if

the

connector

spawns

multiple

threads,

a

message

should

log

the

creation

of

each

new

thread.

5

Trace

message

that:

v

Indicate

connector

initialization.

Examples

of

this

message

include

the

value

of

each

connector

configuration

property

that

has

been

retrieved

from

InterChange

Server.

v

Detail

the

status

of

each

thread

the

connector

spawns

while

it

is

running.

v

Represent

statements

executed

in

the

application.

The

connector

log

file

contains

all

statements

executed

in

the

target

application

and

the

value

of

any

variables

that

are

substituted

(where

applicable).

v

Record

business

object

dumps.

The

connector

should

output

a

text

representation

of

a

business

object

before

it

begins

processing

(showing

the

object

the

connector

receives

from

the

integration

broker)

and

after

it

has

processed

the

object

(showing

the

object

the

connector

returns

to

the

integration

broker).

Note:

The

connector

should

deliver

all

the

trace

messages

at

the

specified

trace

level

and

lower.

For

information

on

the

content

and

level

of

detail

for

connector

framework

trace

messages,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

Chapter

6.

Message

logging

137

Message

file

You

can

provide

message

input

to

the

connector

error

logging

or

tracing

method

be

as

text

strings

or

as

references

to

a

message

file.

A

message

file

is

a

text

file

containing

message

numbers

and

message

text.

The

message

text

can

contain

positional

parameters

for

passing

runtime

data

out

of

your

connector.

You

can

provide

a

message

file

by

creating

a

file

and

defining

the

messages

that

you

need.

WebSphere

InterChange

Server

Important:

Do

not

add

your

messages

to

the

InterChange

Server

message

file,

InterchangeSystem.txt.

Access

only

existing

messages

from

this

system

message

file.

This

section

provides

the

following

information

about

a

message

file:

v

“Message

format”

v

“Name

and

location

of

a

message

file”

v

“Generating

a

message

string”

on

page

139

Message

format

Within

a

message

file,

messages

have

the

following

format:

message

number

message

text[EXPL]explanation

text

The

message

number

is

an

integer

that

uniquely

identifies

the

message.

This

message

number

must

appear

on

one

line.

The

message

text

can

span

multiple

lines,

with

a

carriage

return

terminating

each

line.

The

explanation

text

is

a

more

detailed

explanation

of

the

condition

that

causes

the

message

to

occur.

As

an

example

of

message

text,

a

connector

can

call

the

following

message

when

it

determines

that

its

version

differs

from

the

version

of

the

connector

infrastructure.

20017

Connector

Infrastructure

version

does

not

match.

Messages

can

contain

parameters

whose

values

are

replaced

at

runtime

by

values

from

the

program.

The

parameters

are

positional

and

are

indicated

in

the

message

file

by

a

number

in

braces.

For

example,

the

following

message

has

two

parameters

to

record

an

unsubscribed

event.

20026

Warning:

Unsubscribed

event:

Object

Name:{1},

Verb:

{2}.

For

information

on

how

to

provide

values

to

message

parameters,

see

“Using

parameter

values”

on

page

141.

Note:

For

additional

examples

of

messages,

see

the

InterChange

Server

message

file

InterchangeSystem.txt.

Name

and

location

of

a

message

file

A

connector

can

obtain

its

messages

from

one

of

two

message

files:

v

A

connector

message

file

is

named

AppnameConnector.txt

and

is

stored

in

the

following

subdirectory

of

the

product

directory:

connectors\messages

138

Connector

Development

Guide

for

C++

For

example,

the

connector

message

file

for

the

IBM

WebSphere

Business

Integration

Adapter

for

Clarify

is

named

ClarifyConnector.txt.

v

The

InterChange

Server

message

file

is

named

InterchangeSystem.txt

and

is

located

in

the

product

directory.

All

methods

that

generate

messages

(see

Table

49

on

page

139)

first

search

the

connector

message

file

for

the

specified

message

number.

WebSphere

InterChange

Server

If

a

connector

message

file

does

not

exist,

the

InterChange

Server

message

file

InterchangeSystem.txt

(located

in

the

product

directory)

is

used

as

the

message

file.

The

connector

message

file

should

contain

all

text

strings

that

the

application-specific

component

uses.

These

strings

include

those

for

logging

as

well

as

hardcoded

strings.

Note:

Connector

standards

suggest

that

trace

messages

are

not

included

in

a

connector

message

file

because

end

users

do

not

normally

view

them.

For

an

internationalized

connector,

it

is

important

that

text

strings

are

isolated

into

the

connector

message

file.

This

message

file

can

be

translated

and

the

messages

can

then

be

easily

available

in

different

languages.

The

name

of

the

translated

connector

message

file

should

include

the

name

of

the

associated

locale,

as

follows:

AppnameConnector_ll_TT.txt

In

the

preceding

line,

ll

is

the

two-letter

abbreviation

for

the

locale

(by

convention

in

lowercase

letters)

and

TT

is

the

two-letter

abbreviation

for

the

territory

(by

convention

in

uppercase

letters).

For

example,

the

version

of

the

connector

message

file

for

the

WBI

Adapter

for

Clarify

that

contains

U.S.

English

messages

would

have

the

following

name:

ClarifyConnector_en_US.txt

At

runtime,

the

connector

framework

locates

the

appropriate

message

file

for

the

connector

framework

locale

from

the

connectors\messages

subdirectory.

For

example,

if

the

connector

framework’s

locale

is

U.S.

English

(en_US),

the

connector

framework

retrieves

messages

from

the

AppnameConnector_en_US.txt

file.

For

more

information

on

how

to

internationalize

the

text

strings

of

a

connector,

see

“An

internationalized

connector”

on

page

53..

Generating

a

message

string

The

methods

in

Table

49

retrieve

a

predefined

message

from

a

message

file,

format

the

text,

and

return

a

generated

message

string.

Table

49.

Methods

that

generate

a

message

string

Message

method

Description

generateMsg()

Generates

a

message

of

the

specified

severity

from

a

message

file.

You

can

use

the

message

as

input

to

the

logMsg()

or

traceWrite()

method.

Chapter

6.

Message

logging

139

Table

49.

Methods

that

generate

a

message

string

(continued)

Message

method

Description

generateAndLogMsg()

Generates

a

message

of

the

specified

severity

from

a

message

file

and

sends

it

to

the

log

destination

generateAndTraceMsg()

Generates

a

trace

message

from

a

message

file

and

sends

it

to

the

log

destination

Tip:

Before

using

generateMsg()

for

tracing,

check

that

tracing

is

enabled

with

the

isTraceEnabled()

method.

If

tracing

is

not

enabled,

you

need

not

generate

the

trace

message.

In

the

C++

connector

library,

the

generateMsg(),

generateAndLogMsg(),

and

generateAndTraceMsg()

methods

are

defined

in

two

classes:

v

In

the

GenGlobals

for

access

to

logging

from

within

the

connector

base

class

v

In

the

BOHandlerCPP

class

for

access

to

logging

from

within

a

business

object

handler.

The

message-generation

methods

in

Table

49

require

the

following

information:

v

“Specifying

a

message

number”

v

“Specifying

a

message

type”

v

“Using

parameter

values”

on

page

141

(optional)

Specifying

a

message

number

The

methods

in

Table

49

require

a

message

number

as

an

argument.

This

argument

specifies

the

number

of

the

message

to

obtain

from

the

message

file.

As

described

in

“Message

format”

on

page

138,

each

message

in

a

message

file

must

have

a

unique

integer

message

number

(identifier)

associated

with

it.

The

methods

in

Table

49

search

the

message

file

for

the

specified

message

number

and

extract

the

associated

message

text.

The

IBM

WebSphere

business

integration

system

generates

the

date

and

time

and

displays

the

following

message:

[1999/05/28

11:54:15.990]

[ConnectorAgent

ConnectorName]

Error

1100:

Failed

to

connect

to

application

Note:

If

the

connector

logs

to

its

local

log

file,

the

connector

infrastructure

adds

the

timestamp.

WebSphere

InterChange

Server

If

the

connector

logs

to

InterChange

Server,

InterChange

Server

adds

the

timestamp.

Specifying

a

message

type

The

methods

in

Table

49

also

require

a

message

type

as

an

argument.

This

argument

indicates

the

severity

of

the

message.

Table

50

lists

the

valid

message

types

and

their

associated

message-type

constants.

140

Connector

Development

Guide

for

C++

Table

50.

Message

types

Message

type

Severity

level

Description

XRD_FATAL

Fatal

Error

Indicates

an

error

that

stops

program

execution.

XRD_ERROR

Error

Indicates

a

error

that

should

be

investigated.

XRD_WARNING

Warning

Indicates

a

condition

that

might

represent

a

problem

but

that

can

be

ignored.

XRD_INFO

Informational

Information

message

only;

no

action

required.

XRD_TRACE

--

Use

for

trace

messages.

To

specify

a

message

type

to

associate

with

a

message,

use

one

of

the

message-type

constants

in

Table

50

as

an

argument

to

the

message-generation

method,

as

follows:

v

For

a

log

message,

use

a

message-type

constant

that

indicates

the

message

severity

(in

decreasing

level

of

severity):

XRD_FATAL,

XRD_ERROR,

XRD_WARNING,

XRD_INFO.

v

For

a

trace

message,

use

the

XRD_TRACE

message-type

constant.

Message-type

constants

are

defined

in

the

CxMsgFormat

class.

The

following

C++

code

fragment

logs

an

error

message

when

it

cannot

connect

to

an

application.

The

error

message

is

defined

in

a

connector

message

file

as

message

1100,

Error:

Failed

to

connect

to

application.

The

code

example

includes

a

comment

explaining

the

message

number;

this

makes

code

more

readable.

The

example

also

calls

freeMemory()

to

release

memory

allocated

by

generateMsg().

char

*

msg;

ret_code

=

connect_to_app(userName,

password);

//

Message

1100

-

Failed

to

connect

to

application

if

(ret_code

==

-1)

{

msg

=

generateMsg(1100,

CxMsgFormat::XRD_ERROR,

NULL,

0,

NULL);

logMsg(msg);

JToCPPVeneer::getTheHandlerStuff()->freeMemory(msg);

return

BON_FAIL;

}

Note:

For

a

C++

connector,

after

generating

a

message

with

generateMsg()

and

logging

the

message,

call

void

freeMemory(char

*

mem)

to

release

memory

allocated

by

generateMsg().

Using

parameter

values

With

the

message-generation

methods

in

Table

49,

you

can

specify

an

optional

number

of

values

for

message-text

parameters.

The

number

of

parameter

values

must

match

the

number

of

parameters

defined

in

the

message

text.

For

information

on

how

to

define

parameters

in

a

message,

see

“Message

format”

on

page

138.

To

specify

parameter

values,

you

must

include

the

following

arguments:

v

An

argument

count

to

indicate

the

number

of

parameters

within

the

message

text;

to

determine

the

number,

refer

to

the

message

in

the

message

file.

v

A

comma-separated

list

of

parameter

values;

each

parameter

is

represented

as

a

character

string.

Suppose

you

have

the

following

informational

message

in

your

connector

message

file

that

contains

one

parameter:

2887

Initializing

connector

{1}

Chapter

6.

Message

logging

141

Because

this

message

contains

a

single

parameter,

a

call

to

one

of

the

message-generation

methods

must

specify

an

argument

count

of

1

and

then

provide

the

name

of

the

connector

as

a

character

string.

In

the

code

fragment

below,

generateAndLogMsg()

is

called

to

format

a

message

that

contains

one

parameter

and

send

this

message

to

the

log:

char

val[512];

getConfigProp("ConnectorName",

val,

512);

//

Message

2887

-

Initializing

connector

generateAndLogMsg(2887,

CxMsgFormat::XRD_INFO,

1,

val);

The

parameter

value

of

val

is

combined

with

the

message

in

the

message

file.

If

val

is

set

to

MyConnector,

the

resulting

message

is:

[1999/05/28

11:54:15.990]

[ConnectorAgent

MyConnector]

Info

2887:

Initializing

connector

MyConnector

You

can

also

locate

trace

messages

in

the

connector

message

file.

Suppose

you

have

the

following

trace

message

in

your

connector

message

file

that

contains

one

parameter:

3033

Opened

main

form

for

{1}

object.

Because

this

message

contains

a

single

parameter,

a

call

to

one

of

the

message-generation

methods

must

specify

an

argument

count

of

1

and

then

provide

the

name

of

the

form

as

a

character

string.

In

the

code

fragment

below,

generateAndTraceMsg()

is

called

to

format

a

message

that

contains

one

parameter

and

send

this

trace

message

to

the

log:

char

*

formName[512];

if(getFormName(theObj,formName)==0)

return

BON_FAIL;

if(tracePtr->getTraceLevel()>=

Tracing::LEVEL3)

{

//

Message

3033

-

Opened

main

form

for

object

generateAndTraceMsg(3033,CxMsgFormat::XRD_TRACE,

Tracing::LEVEL3,

1,

formName);

}

This

code

fragment

retrieves

the

application

form

name

and

calls

Tracing::getTraceLevel()

to

retrieve

the

current

tracing

level

as

set

in

the

repository.

If

the

trace

level

is

at

least

3,

the

routine

uses

generateAndTraceMsg()

to

generate

a

message

string

and

write

the

trace

message

to

the

log

destination.

The

call

to

generateMsg()

specifies

that

the

value

of

argCount

is

1

and

val

contains

a

character

string

for

the

form

name.

For

the

Item

object,

the

trace

message

displayed

is:

[1999/05/28

12:00:00.000]

[ConnectorAgent

MyConnector]

Trace

3033:

Opened

main

form

for

Item

object

142

Connector

Development

Guide

for

C++

Chapter

7.

Implementing

a

C++

connector

This

chapter

presents

information

on

how

to

implement

a

connector’s

application-specific

component

in

C++.

It

provides

language-specific

details

for

the

general

tasks

discussed

in

earlier

chapters

of

this

guide.

This

chapter

contains

the

following

sections:

v

“Extending

the

C++

connector

base

class”

v

“Beginning

execution

of

the

connector”

on

page

144

v

“Creating

a

business

object

handler”

on

page

147

v

“Polling

for

events”

on

page

175

v

“Shutting

down

the

connector”

on

page

193

v

“Handling

errors

and

status”

on

page

193

Extending

the

C++

connector

base

class

In

the

C++

connector

library,

the

connector

base

class

is

named

GenGlobals.

For

a

C++

connector,

the

base

class

methods

are

pure

virtual

methods.

The

GenGlobals

class

provides

methods

for

connector

startup

and

shut

down,

access

to

connector

configuration

properties,

and

utility

methods

for

logging

and

tracing.

To

implement

your

own

connector,

you

extend

this

connector

base

class

to

create

your

own

connector

class.

Note:

For

general

information

about

the

methods

of

the

connector

base

class,

see

“Extending

the

connector

base

class”

on

page

66..

To

derive

a

connector

class

for

a

C++

connector,

follow

these

steps.

1.

Create

a

connector

class

that

extends

the

GenGlobals

class,

and

include

the

header

file

GenGlobals.hpp.

A

suggested

name

for

this

class

is:

connectorNameGlobals.cpp

where

connectorName

uniquely

identifies

the

application

or

technology

with

which

the

connector

communicates.

For

example,

to

create

a

connector

that

communicates

with

a

Baan

application,

you

could

name

the

connector

class

BaanGlobals.cpp.

Note:

For

information

on

naming

conventions

for

a

connector,

see

Naming

IBM

WebSphere

InterChange

Server

Components

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

2.

Implement

the

GenGlobals

pure

virtual

methods

for

the

connector

methods.

For

more

information

on

how

to

create

these

virtual

methods,

see

Table

51..

3.

Provide

the

connector

framework

with

a

handle

to

your

global

connector

class.

Table

51.

Extending

virtual

methods

of

the

GenGlobals

class

Virtual

GenGlobals

method

Description

For

more

information

init()

Initializes

the

application-specific

component

of

the

connector.

“Initializing

the

connector”

on

page

144

getVersion()

Obtain

the

version

of

the

connector’s

application-specific

component.

“Checking

the

connector

version”

on

page

145

getBOHandlerforBO()

Obtain

the

business-object

handler

for

the

business

objects.

“Obtaining

the

C++

business

object

handler”

on

page

146

©

Copyright

IBM

Corp.

1997,

2003

143

Table

51.

Extending

virtual

methods

of

the

GenGlobals

class

(continued)

Virtual

GenGlobals

method

Description

For

more

information

doVerbFor()

Process

the

request

business

object

by

performing

its

verb

operation.

“Creating

a

business

object

handler”

on

page

147

pollForEvents()

Poll

event

store

to

obtain

application

events

and

send

them

to

the

connector

framework.

“Polling

for

events”

on

page

175

terminate()

Perform

cleanup

operations

for

the

connector

shut

down.

“Shutting

down

the

connector”

on

page

193

Beginning

execution

of

the

connector

When

the

connector

is

started,

the

connector

framework

instantiates

the

associated

connector

class

and

then

calls

the

connector

class

methods

in

Table

52..

Table

52.

Beginning

execution

of

the

connector

Initialization

task

For

more

information

1.

Initialize

the

connector’s

application-specific

component

to

perform

any

necessary

initialization

for

the

connector,

such

as

opening

a

connection

to

the

application.

“Initializing

the

connector”

on

page

144

2.

For

each

business

object

that

the

connector

supports,

obtain

the

business

object

handler.

“Obtaining

the

C++

business

object

handler”

on

page

146

Initializing

the

connector

To

begin

connector

initialization,

the

connector

framework

calls

the

initialization

method,

init(),

in

the

connector

class,

(derived

from

GenGlobals).

This

method

performs

initialization

steps

for

the

connector’s

application-specific

component.

Important:

As

part

of

the

implementation

of

your

connector

class,

you

must

implement

an

init()

method

for

your

connector.

As

discussed

in

“Initializing

the

connector”

on

page

62,,

the

main

tasks

of

the

init()

initialization

method

include:

v

“Establishing

a

connection”

v

“Checking

the

connector

version”

on

page

145

v

“Recovering

In-Progress

events”

on

page

145

In

addition

to

the

above

topics,

this

section

provides

an

example

C++

init()

method

in

“Example

C++

initialization

method”

on

page

145.

Important:

During

execution

of

the

initialization

method,

business

object

definitions

and

the

connector

framework’s

subscription

list

are

not

yet

available.

Establishing

a

connection

The

main

task

of

the

init()

method

is

to

establish

a

connection

to

the

application.

It

returns

“success”

if

the

connector

succeeds

in

opening

a

connection.

If

the

connector

cannot

open

a

connection,

the

init()

method

must

return

the

appropriate

failure

status

to

indicate

the

cause

of

the

failure.

In

a

C++

connector,

typical

return

codes

used

in

init()

are

BON_SUCCESS,

BON_FAIL,

and

BON_UNABLETOLOGIN.

For

information

on

these

and

other

return

codes,

see

“Handling

errors

and

status”

on

page

193.

144

Connector

Development

Guide

for

C++

Note:

For

an

overview

of

the

steps

in

an

initialization

method,

see

“Establishing

a

connection”

on

page

63..

Checking

the

connector

version

The

getVersion()

method

returns

the

version

of

the

connector’s

application-specific

component.

Note:

For

a

general

description

of

getVersion(),

see

“Checking

the

connector

version”

on

page

63..

In

the

C++

connector

library,

the

getVersion()

method

is

defined

in

the

GenGlobals

class.

It

returns

a

pointer

to

a

character

string

indicating

the

version

of

the

connector.

When

returning

a

version

string

for

the

connector,

you

can

choose

to

return

the

default

version

as

defined

by

the

connector

framework.

To

do

this,

return

the

string

CX_CONNECTOR_VERSIONSTRING,

as

shown

in

Figure

54

below.

Alternatively,

you

can

override

the

default

version

by

setting

a

version

string

in

a

file

named

ConnectorVersion.h.

Include

the

following

lines,

or

something

similar,

in

ConnectorVersion.h.

#ifndef

CX_CONNECTOR_VERSIONSTRING

#define

CX_CONNECTOR_VERSIONSTRING

"3.0.0"

#endif

Recovering

In-Progress

events

To

recover

In-Progress

events,

a

C++

connector

must

use

whatever

technique

the

application

provides

to

access

event

records

in

the

event

store.

For

example,

the

connector

could

use

the

ODBC

API

and

ODBC

SQL

commands.

Once

the

In-Progress

event

record

has

been

retrieved,

the

connector

can

take

one

of

the

actions

in

Table

23

to

handle

the

In-Progress

event.

Note:

For

a

general

discussion

of

how

to

recover

In-Progress

events,

see

“Recovering

In-Progress

events”

on

page

63..

Example

C++

initialization

method

For

a

C++

connector,

the

init()

method

provides

the

initialization

for

the

connector’s

application-specific

component.

This

method

returns

an

integer

that

indicates

the

status

of

the

initialization

operation.

Figure

55

shows

an

example

of

the

initialization

method

for

a

C++

connector.

In

this

example,

the

init()

method

calls

GenGlobals::getConfigProp()

to

retrieve

the

properties

of

the

connector

configuration

from

the

repository.

The

connector’s

application-specific

component

uses

the

configuration

values

to

log

on

to

the

application

and

perform

any

other

required

initialization

tasks.

char

*

ExampleGenGlob::getVersion()

{

return

(char

*)

CX_CONNECTOR_VERSIONSTRING;

}

Figure

54.

A

getVersion()

method

for

a

C++

connector

Chapter

7.

Implementing

a

C++

connector

145

Obtaining

the

C++

business

object

handler

In

a

C++

connector,

the

business-object-handler

base

class

is

BOHandlerCPP.

To

obtain

an

instance

of

a

business

object

handler

for

a

supported

business

object,

the

connector

framework

calls

the

getBOHandlerforBO()

method,

which

is

defined

as

part

of

the

GenGlobals

class.

Note:

For

general

information

about

the

getBOHandlerforBO()

method,

see

“Obtaining

the

business

object

handler”

on

page

64..

For

a

general

discussion

of

how

to

design

business

object

handlers,

see

“Designing

business

object

handlers”

on

page

71..

The

number

of

business

object

handlers

that

the

connector

framework

obtains

through

its

calls

to

the

getBOHandlerforBO()

method

depends

on

the

overall

design

for

business

object

handling

in

your

connector:

v

If

the

connector

is

metadata-driven,

it

can

be

designed

to

use

a

generic,

metadata-driven

business

object

handler.

Figure

56

contains

an

implementation

of

the

getBOHandlerforBO()

method

that

returns

a

metadata-driven

business

object

handler.

It

calls

the

constructor

for

the

business-object-handler

class

(derived

from

the

GenBOHandler

class),

which

instantiates

a

single

business-object-handler

class

that

handles

all

the

business

objects

supported

by

the

connector.

v

If

some

or

all

application-specific

business

objects

require

special

processing,

then

you

must

set

up

multiple

business

object

handlers

for

those

objects.

Figure

57

contains

an

implementation

of

the

getBOHandlerforBO()

method

that

creates

unique

business

object

handlers

for

Invoice

and

Item

business

objects,

and

creates

a

generic

business

object

handler

for

all

other

business

objects.

Important:

During

execution

of

the

getBOHandlerforBO()

method,

the

business-object

class

methods

are

not

yet

available.

int

ExampleGenGlob::init(CxVersion

*version)

{

char

val[512];

char

val1[512];

int

return_code

=

BON_SUCCESS;

//

get

values

for

connector

configuration

properties

getConfigProp("ConnectorName",

val,

512);

//Log

trace

message

"Initializing

{ConnectorName}”

traceWrite(Tracing::LEVEL5,

generateMsg(20050,

CxMsgFormat::XRD_INFO,

NULL,

1,

val),

NULL);

.

.

.

getConfigProp("Hostname",val1,

512);

//

use

configuration

values

to

log

in

to

the

application

//

If

log

in

fails,

log

error

message.

logMsg(generateMsg(21000,CxMsgFormat::XRD_ERROR,

NULL,

1,

name));

return

return_code;

}

Figure

55.

Initializing

a

C++

connector

146

Connector

Development

Guide

for

C++

Figure

56

calls

the

constructor

for

the

GenBOHandler

class

to

instantiate

a

single

business

object

handler

class

that

handles

all

the

business

objects

supported

by

the

connector.

Figure

57

calls

the

constructor

for

the

appropriate

business

object

handler,

based

on

the

business

object

name

that

is

passed

in:

v

If

the

name

of

the

business

object

is

“App_Invoice”,

call

the

constructor

for

the

Invoice_Handler

business

object

handler

class.

v

If

the

name

of

the

business

object

is

“App_Item”,

call

the

constructor

for

the

Item_Handler

business

object

handler

class.

v

If

the

name

of

the

business

object

is

some

other

string,

call

the

constructor

for

the

Generic_Handler

business

object

handler

class.

Creating

a

business

object

handler

Creating

a

business

object

handler

involves

the

following

steps:

v

“Extending

the

C++

business-object-handler

base

class”

v

Implementing

a

Business-Object-Handler

Retrieval

Method—For

more

information,

see

“Obtaining

the

C++

business

object

handler”

on

page

146.

v

“Implementing

the

doVerbFor()

method”

on

page

148

Note:

For

an

introduction

to

request

processing,

see

“Request

processing”

on

page

24..

For

a

discussion

of

request

processing

and

the

implementation

of

doVerbFor(),

see

Chapter

4,

“Request

processing,”

on

page

71.

Extending

the

C++

business-object-handler

base

class

In

the

C++

connector

library,

the

base

class

for

a

business

object

handler

is

named

BOHandlerCPP.

The

BOHandlerCPP

class

provides

methods

for

defining

and

accessing

a

business

object

handler.

To

implement

your

own

business

object

handler,

you

extend

this

business-object-handler

base

class

to

create

your

own

business-object-handler

class.

BOHandlerCPP

*ExampleGenGlob::getBOHandlerforBO(char

*

BOName)

{

//

If

a

business

object

handler

does

not

exist,

//

create

one;

otherwise,

return

the

existing

pointer

if(pHandlr

==

NULL)

{

pHandlr

=

new

GenBOHandler();

}

return

pHandlr;

}

Figure

56.

A

getBOHandlerforBO()

method

for

a

generic

business

object

handler

BOHandlerCPP

*ExampleGenGlob::getBOHandlerforBO(char

*

BOName)

{

if

(strcmp(BOName,

App_Invoice)==0)

return

new

Invoice_Handler();

else

if

(strcmp(BOName,

App_Item)==0)

return

new

Item_Handler();

else

return

new

Generic_Handler();

}

}

Figure

57.

A

getBOHandlerforBO()

method

for

multiple

business

object

handlers

Chapter

7.

Implementing

a

C++

connector

147

Note:

For

general

information

about

the

methods

of

the

business-object-handler

base

class,

see

“Extending

the

business-object-handler

base

class”

on

page

74..

To

derive

a

business-object-handler

class

for

a

C++

connector,

follow

these

steps:

1.

Create

a

class

that

extends

the

BOHandlerCPP

class.

Name

this

class:

connectorNameBOHandler.cpp

where

connectorName

uniquely

identifies

the

application

or

technology

with

which

the

connector

communicates.

For

example,

to

create

a

business

object

handler

for

a

Baan

application,

you

can

create

a

business-object-handler

class

called

BaanBOHandler.

If

your

connector

design

implements

multiple

business

object

handlers,

include

the

name

of

the

handled

business

objects

in

the

name

of

the

business-object-handler

class.

2.

Implement

the

virtual

method,

doVerbFor(),

to

define

the

behavior

of

the

business

object

handler.

Other

methods

in

the

BOHandlerCPP

class

are

already

implemented.

For

more

information

on

how

to

implement

this

virtual

method,

see

“Implementing

the

doVerbFor()

method”

on

page

148.

Note:

The

other

methods

in

the

BOHandlerCPP

class

have

their

implementations

provided.

The

doVerbFor()

method

is

the

only

virtual

method

in

this

class.

For

more

information,

see

Chapter

11,

“BOHandlerCPP

class,”

on

page

227.

You

might

need

to

implement

more

than

one

business

object

handler

for

your

connector,

depending

on

the

application

and

its

API.

For

a

discussion

of

some

issues

to

consider

when

implementing

business

object

handlers,

see

“Designing

business

object

handlers”

on

page

71..

Implementing

the

doVerbFor()

method

The

doVerbFor()

method

provides

the

functionality

for

the

business

object

handler.

When

the

connector

framework

receives

a

request

business

object,

it

calls

the

doVerbFor()

method

in

the

appropriate

business

object

handler

to

perform

the

action

of

this

business

object’s

verb.

For

a

C++

connector,

the

BOHandlerCPP

class

defines

the

doVerbFor()

virtual

method.

You

must

provide

an

implementation

of

this

virtual

method

as

part

of

your

business-object-handler

class.

Note:

For

a

general

description

of

the

role

of

the

doVerbFor()

method,

see

“Handling

the

request”

on

page

74..

Figure

25

on

page

75

provides

the

method’s

basic

logic.

The

role

of

the

business

object

handler

is

to

perform

the

following

tasks:

1.

Receive

business

objects

from

the

connector

framework

2.

Process

each

business

object

based

on

the

active

verb

3.

Send

requests

for

operations

to

the

application.

4.

Return

status

to

the

connector

framework.

Table

53

summarizes

the

steps

in

the

basic

logic

for

the

verb

processing

that

the

doVerbFor()

method

typically

performs.

Each

of

the

sections

listed

in

the

For

More

Information

column

provides

more

detailed

information

on

the

associated

step

in

the

basic

logic.

148

Connector

Development

Guide

for

C++

Table

53.

Basic

logic

of

the

doVerbFor()

method

Business-object-handler

step

For

more

information

1.

Obtain

the

active

verb

from

the

request

business

object.

“Obtaining

the

active

verb”

on

page

149

2.

Verify

that

the

connector

still

has

a

valid

connection

to

the

application.

“Verifying

the

connection

before

processing

the

verb”

on

page

150

3.

Branch

on

the

value

of

the

valid

active

verb.

“Branching

on

the

active

verb”

on

page

151

4.

For

a

given

active

verb,

perform

the

appropriate

request

processing:

v

Perform

verb-specific

tasks.

“Performing

the

verb

operation”

on

page

154

v

Process

the

business

object.

“Processing

business

objects”

on

page

155

5.

Send

the

appropriate

status

to

the

connector

framework.

“Sending

the

verb-processing

response”

on

page

166

In

addition

to

the

processing

steps

in

Table

53,,

this

section

also

provides

additional

processing

information

in

“Additional

processing

issues”

on

page

171.

Obtaining

the

active

verb

To

determine

which

actions

to

take,

the

doVerbFor()

method

must

first

retrieve

the

verb

from

the

business

object

that

it

receives

as

an

argument.

This

incoming

business

object

is

called

the

request

business

object.

The

verb

that

this

business

object

contains

is

the

active

verb,

which

must

be

one

of

the

verbs

that

the

business

object

definition

supports.

Table

54

lists

the

method

that

the

C++

connector

library

provides

to

retrieve

the

active

verb

from

the

request

business

object.

Table

54.

Method

for

obtaining

the

active

verb

C++

connector

library

class

Method

BusinessObject

getVerb()

Obtaining

the

active

verb

from

the

request

business

object

generally

involves

the

following

steps:

1.

Verify

that

the

request

business

object

is

valid.

Before

the

connector

calls

getVerb(),

it

should

verify

that

the

incoming

request

business

object

is

not

null.

The

incoming

business

object

is

passed

into

the

doVerbFor()

method

as

a

BusinessObject

object.

2.

Obtain

the

active

verb

with

the

getVerb()

method.

Once

the

request

business

object

is

valid,

you

can

use

the

getVerb()

method

in

the

BusinessObject

class

to

obtain

the

active

verb

from

this

business

object.

3.

Verify

that

the

active

verb

is

valid.

When

the

connector

has

obtained

the

active

verb,

it

should

verify

that

this

verb

is

neither

null

nor

empty.

If

either

the

request

business

object

or

the

active

verb

is

invalid,

the

connector

should

not

continue

with

verb

processing.

Instead,

it

should

take

the

steps

outlined

in

Table

55..

Table

55.

Handling

a

verb-processing

error

Error-handling

step

Method

or

code

to

use

1.

Log

an

error

message

to

the

log

destination

to

indicate

the

cause

of

the

verb-processing

error.

BOHandlerCPP.logMsg(),

BOHandlerCPP.

generateAndLogMsg()

Chapter

7.

Implementing

a

C++

connector

149

Table

55.

Handling

a

verb-processing

error

(continued)

Error-handling

step

Method

or

code

to

use

2.

Set

a

message

within

the

return-status

descriptor

to

indicate

the

cause

of

the

verb-processing

failure.

ReturnStatusDescriptor.seterrMsg()

3.

Return

a

BON_FAIL

outcome

status

from

the

doVerbFor()

method.

return

BON_FAIL;

Figure

58

contains

a

fragment

of

the

doVerbFor()

method

that

obtains

the

active

verb

with

the

getVerb()

method.

This

code

ensures

that

the

request

business

object

and

its

active

verb

are

not

null.

If

either

of

these

conditions

exists,

the

code

fragment

stores

a

message

in

the

return-status

descriptor

and

exits

with

an

outcome

status

of

BON_FAIL.

Verifying

the

connection

before

processing

the

verb

When

the

init()

method

in

the

connector

class

initializes

the

application-specific

component,

one

of

its

most

common

tasks

is

to

establish

a

connection

to

the

application.

The

verb

processing

that

doVerbFor()

performs

requires

access

to

the

application.

Therefore,

before

the

doVerbFor()

method

begins

processing

the

verb,

it

should

verify

that

the

connector

is

still

connected

to

the

application.

The

way

to

perform

this

verification

is

application-specific.

Consult

your

application

documentation

for

more

information.

A

good

design

practice

is

to

code

the

connector

application-specific

component

so

that

it

shuts

down

whenever

the

connection

to

the

application

is

lost.

If

the

connection

has

been

lost,

the

connector

should

not

continue

with

verb

processing.

Instead,

it

should

take

the

steps

outlined

in

Table

56

to

notify

the

connector

framework

of

the

lost

connection.

int

ExampleBOHandler::doVerbFor(BusinessObject

&theObj,

ReturnStatusDescriptor

*rtnStatusMsg)

{

int

status

=

BON_SUCCESS;

//make

sure

that

the

incoming

business

object

is

not

null

if

(theObj

==

null)

{

generateAndLogMsg(1100,

CxMsgFormat::XRD_ERROR,

NULL,

0,

NULL);

char

errorMsg[512];

sprintf(errorMsg,

"doVerbFor:

Invalid

request

business

object

.");

rtnStatusMsg->seterrorMsg(errorMsg);

status

=

BON_FAIL;

}

//

obtain

the

active

verb

char

*verb

=

theObj.getVerb();

//

make

sure

the

active

verb

is

neither

null

nor

empty

if

(verb

==

null

||

strcmp(verb,

"")){

generateAndLogMsg(6548,

CxMsgFormat::XRD_ERROR,

NULL,

0,

NULL);

sprintf(errorMsg,"doVerbfor:

Invalid

active

verb.");

rtnStatusMsg->seterrorMsg(errorMsg);

status

=

BON_FAIL;

//

perform

verb

processing

here

...

}

Figure

58.

Obtaining

the

active

verb

150

Connector

Development

Guide

for

C++

Table

56.

Handling

a

lost

connection

Error-handling

step

Method

or

code

to

use

1.

Log

an

error

message

to

the

log

destination

to

indicate

the

cause

of

the

verb-processing

error.

The

connector

logs

a

fatal

error

message

so

that

email

notification

is

triggered

if

the

LogAtInterchangeEnd

connector

configuration

property

is

set

to

True.

BOHandlerCPP.logMsg(),

BOHandlerCPP.generateAndLogMsg()

2.

Set

a

message

within

the

return-status

descriptor

to

indicate

the

cause

of

the

lost

connection.

ReturnStatusDescriptor.seterrMsg()

3.

Return

the

BON_APPRESPONSETIMEOUT

outcome

status

from

the

doVerbFor()

method.

return

BON_APPRESPONSETIMEOUT;

Note:

This

return-status

descriptor

object

is

part

of

the

verb-processing

response

that

doVerbFor()

sends

to

the

connector

framework.

For

information

on

these

methods,

see

Chapter

18,

“ReturnStatusDescriptor

class,”

on

page

295.

After

the

connector

returns

BON_APPRESPONSETIMEOUT

to

inform

the

connector

controller

that

the

application

is

not

responding,

it

stops

the

process

in

which

the

connector

runs.

A

system

administrator

must

fix

the

problem

with

the

application

and

restart

the

connector

to

continue

processing

events

and

business

object

requests.

Figure

59

contains

code

to

handle

the

loss

of

connection

to

the

application.

In

this

example,

error

message

20018

is

issued

to

inform

an

administrator

that

the

connection

from

the

connector

to

the

application

has

been

lost

and

that

action

needs

to

be

taken.

Branching

on

the

active

verb

The

main

task

of

verb

processing

is

to

ensure

that

the

application

performs

the

operation

associated

with

the

active

verb.

The

action

to

take

on

the

active

verb

depends

on

whether

the

doVerbFor()

method

has

been

designed

as

a

basic

method

or

a

metadata-driven

method:

v

“Basic

verb

processing”

on

page

152

v

“Metadata-driven

verb

processing”

on

page

153

int

ExampleBOHandler::doVerbFor(BusinessObject

&theObj,

ReturnStatusDescriptor

*rtn)

{

...

if

(//application

is

not

responding

)

{

//

Lost

connection

to

the

application

//

Log

an

error

message

logMsg(generateMsg(20018,

CxMsgFormat::XRD_FATAL,

NULL,

0,

"MyConnector"));

//

Populate

a

ReturnStatusDescriptor

object

char

errorMsg[512];

sprintf(errorMsg,

"Lost

connection

to

application");

rtnObj->seterrMsg(errorMsg);

return

BON_APPRESPONSETIMEOUT;

}

....

//

if

connection

is

open,

continue

processing

...

}

Figure

59.

Example

of

loss

of

connection

in

doVerbFor()

Chapter

7.

Implementing

a

C++

connector

151

Basic

verb

processing:

For

verb-processing

that

is

not

metadata-driven,

you

branch

on

the

value

of

the

active

verb

to

perform

the

verb-specific

processing.

Your

doVerbFor()

method

must

handle

all

verbs

that

the

business

object

supports.

Note:

As

part

of

the

verb-branching

logic,

make

sure

you

include

a

test

for

an

invalid

verb.

If

the

request

business

object’s

active

verb

is

not

supported

by

the

business

object

definition,

the

business

object

handler

must

take

the

appropriate

recovery

actions

to

indicate

an

error

in

verb

processing.

For

a

list

of

steps

to

handle

a

verb-processing

error,

see

Table

55

on

page

149..

Figure

60

shows

a

basic

doVerbFor()

method

that

handles

create,

update,

retrieve,

and

delete

operations.

This

code

that

branches

off

the

active

verb’s

value

for

the

Create,

Update,

Retrieve,

and

Delete

verbs.

For

each

verb

your

business

object

supports,

you

must

provide

a

branch

in

this

code.

It

then

calls

the

corresponding

verb

method

to

continue

the

business

object

processing.

At

the

top

of

this

code

fragment,

this

C++

doVerbFor()

method

defines

special

constants

to

identify

the

different

verbs.

Use

of

these

verb

constants

make

it

easier

to

identify

the

active

verbs

in

the

code

as

well

as

to

change

their

string

representations.

If

your

connector

handles

additional

verbs,

IBM

recommends

that

you

define

String

constants

as

part

of

your

extended

BOHandlerCPP

class.

#define

CREATE

"Create"

#define

UPDATE

"Update"

#define

RETRIEVE

"Retrieve"

#define

DELETE

"Delete"

int

ExampleBOHandler::doVerbFor(BusinessObject

&theObj,

ReturnStatusDescriptor

*rtnStatusMsg)

{

int

status

=

BON_SUCCESS;

//

Determine

the

verb

of

the

incoming

business

object

char

*verb

=

theObj.getVerb();

if

(strcmp(verb,

CREATE)

==

0)

status

=

doCreate(theObj);

else

if

(strcmp(verb,

UPDATE)

==

0)

status

=

doUpdate(theObj);

else

if

(strcmp(verb,

RETRIEVE)

==

0)

status

=

doRetrieve(theObj);

else

if

(strcmp(verb,

DELETE)

==

0)

status

=

doDelete(theObj);

else

{

//

This

verb

is

not

supported.

//

Send

the

collaboration

a

message

to

that

effect

//

in

the

ReturnStatusDescriptor

object.

char

errorMsg[512];

sprintf(errorMsg,"doVerbFor:

verb

’%s’

is

not

supported

",

verb);

rtnStatusMsg->setErrorMsg(errorMsg);

status

=

BON_FAIL;

}

//

Return

status

to

connector

framework

return

status;

}

Figure

60.

Branching

on

the

active

verb’s

value

152

Connector

Development

Guide

for

C++

The

code

fragment

in

Figure

60

is

modularized;

that

is,

it

puts

the

actual

processing

of

each

supported

verb

into

a

separate

verb

method:

doCreate(),

doUpdate(),

doRetrieve(),

and

doDelete().

Each

verb

method

should

meet

the

following

minimal

guidelines:

v

Define

a

BusinessObject

parameter,

so

the

verb

method

can

receive

the

request

business

object,

and

possibly

send

this

updated

business

object

back

to

the

calling

method.

v

Return

an

outcome

status,

which

doVerbFor()

can

then

return

to

the

connector

framework.

This

modular

structure

greatly

simplifies

the

readability

and

maintainability

of

the

doVerbFor()

method.

Metadata-driven

verb

processing:

For

metadata-driven

verb-processing

method,

the

application-specific

information

for

the

verb

contains

metadata,

which

provides

processing

instructions

for

the

request

business

object

when

that

particular

verb

is

active.

Table

57

lists

the

method

that

the

C++

connector

library

provides

to

obtain

application-specific

information

for

the

verb

of

a

business

object.

Table

57.

Method

for

retrieving

the

verb’s

application-specific

information

C++

connector

library

class

Method

BusObjSpec

getVerbAppText()

The

verb

application-specific

information

can

contain

the

name

of

the

method

to

call

to

process

the

request

business

object

for

that

particular

verb.

In

this

case,

the

doVerbFor()

method

does

not

need

to

branch

off

the

value

of

the

active

verb

because

the

processing

information

resides

in

the

verb’s

application-specific

information.

Figure

61

shows

a

forms-based,

metadata-driven

doVerbFor()

method

that

implements

all

verb

processing

for

a

business

object.

Using

the

business

object

application-specific

information,

the

method

identifies

a

form

name

and

loops

through

the

business

object

attributes

to

retrieve

attribute

descriptions.

Each

attribute

description

is

an

instance

of

the

BOAttrType

class.

Through

this

class,

the

method

can

obtain

attribute

application-specific

information

and

other

information

about

the

attribute,

such

as

whether

it

is

a

key.

Note:

For

more

information

on

how

to

process

business

objects,

see

“Processing

business

objects”

on

page

155.

The

method

retrieves

the

attribute

values

from

the

business

object

instance,

and

fills

in

the

form

using

the

attribute

metadata

to

identify

the

fields

of

the

form

for

each

attribute.

The

method

identifies

the

verb

operation

in

the

business

object,

retrieves

the

verb

metadata

to

get

any

processing

instructions,

and

sends

the

complete

form

to

the

application.

If

this

is

a

Create

operation

and

the

application

creates

new

data,

such

as

keys,

the

method

retrieves

the

data

from

the

application

and

processes

it.

Chapter

7.

Implementing

a

C++

connector

153

Note:

Another

use

of

verb

application-specific

information

can

be

to

specify

the

application’s

API

method

to

call

to

update

the

application

entity

for

the

particular

verb.

Performing

the

verb

operation

Table

58

lists

the

standard

verbs

that

a

doVerbFor()

method

can

implement,

as

well

as

an

overview

of

how

each

verb

operation

processes

the

request

business

object.

For

more

information

on

processing

business

objects,

see

“Processing

business

objects”

on

page

155.

Table

58.

Performing

the

verb

operation

Verb

Use

of

request

business

object

For

more

information

Create

v

Use

any

application-specific

information

in

the

business

object

definition

to

determine

in

which

application

structure

to

create

the

entity

(for

example,

a

database

table).

v

Use

any

application-specific

information

for

each

attribute

to

determine

in

which

application

substructure

to

add

the

attribute

values

(for

example,

a

database

column).

v

Use

attribute

values

as

values

to

save

in

new

application

entity.

If

the

application

generates

key

values

for

the

new

entity,

save

the

new

key

values

in

the

request

business

object,

which

should

then

be

included

as

part

of

the

verb-processing

response.

“Handling

the

Create

verb”

on

page

78

int

ExampleBOHandler::doVerbFor(BusinessObject

&theObj,

ReturnStatusDescriptor

*rtnObj)

{

BusObjSpec

*theSpec;

int

status

=

BON_SUCCESS;

//

Get

the

business

object

definition

and

its

metadata:

//

the

name

of

the

form.

Open

the

specified

form

theSpec

=

theObj.getSpecFor();

form

=

OpenForm(theObj.getAppText());

//

For

each

attribute,

retrieve

the

attribute

description,

//

get

the

attribute

values

and

application-specific

information,

//

and

set

the

field

of

the

form

for

(int

i

=

0;

i

<

theObj.getAttrCount;

i++)

{

BOAttrType

*

curAttr

=

theObj.getAttrDesc(i);

Form.setfield(curAttr->getAppText(),theObj.getAttrValue(i));

}

//

Get

the

verb

and

the

verb

metadata:

the

type

of

operation

//

to

perform.

Tell

the

application

to

do

the

operation

Form.doOperation(theSpec->getVerbAppText(theObj.getVerb()));

//

Process

returned

attributes

if

any

for

(int

k=O;

k

<

theObj.getAttrCount()

-1;

k++)

{

BOAttrType

*

curAttr

=

theObj.getAttrDesc(k);

value

=

Form.getField(curAttr->getAppText();

theObj.setAttrValue(k,

value);

}

return

status;

}

Figure

61.

Metadata-driven

verb

processing

154

Connector

Development

Guide

for

C++

Table

58.

Performing

the

verb

operation

(continued)

Verb

Use

of

request

business

object

For

more

information

Retrieve

v

Use

any

application-specific

information

in

the

business

object

definition

to

determine

from

which

application

structure

(for

example,

a

database

table)

to

retrieve

the

entity.

v

Use

attribute

key

value

(or

values)

to

identify

which

application

entity

to

retrieve.

If

the

application

finds

the

requested

entity,

save

its

values

in

the

request

business

object’s

attributes.

The

request

business

object

should

then

be

included

as

part

of

the

verb-processing

response.

“Handling

the

Retrieve

verb”

on

page

81

Update

v

Use

any

application-specific

information

of

the

business

object

definition

to

determine

in

which

application

structure

(for

example,

a

database

table)

to

update

the

entity.

v

Use

any

application-specific

information

for

each

attribute

to

determine

which

application

substructure

to

update

with

the

attribute

values

(for

example,

a

database

column).

v

Use

attribute

key

value

(or

values)

to

identity

which

application

entity

to

update.

v

Use

the

attribute

values

as

values

to

update

the

existing

application

entity.

If

the

application

is

designed

to

create

an

entity

if

the

one

specified

for

update

does

not

exist,

save

the

new

entity

values

in

the

request

business

object’s

attributes.

The

request

business

object

should

then

be

included

as

part

of

the

verb-processing

response.

“Handling

the

Update

verb”

on

page

89

Delete

v

Use

any

application-specific

information

in

the

business

object

definition

to

determine

from

which

application

structure

(for

example,

a

database

table)

to

delete

the

entity.

v

Use

attribute

key

value

(or

values)

to

identify

which

application

entity

to

delete.

The

request

business

object

should

then

be

included

as

part

of

the

verb-processing

response

so

that

InterChange

Server

can

perform

any

required

cleanup

of

relationship

tables.

“Handling

the

Delete

verb”

on

page

96

Processing

business

objects

Most

verb

operations

involve

obtaining

information

from

the

request

business

object.

This

section

provides

information

about

the

steps

your

doVerbFor()

method

needs

to

take

to

process

the

request

business

object.

Note:

These

steps

assume

that

your

connector

has

been

designed

to

be

metadata-driven;

that

is,

they

describe

how

to

extract

application-specific

information

from

the

business

object

definition

and

attributes

to

obtain

the

location

within

the

application

associated

with

each

attribute.

If

your

connector

is

not

metadata-driven,

you

probably

do

not

need

to

perform

any

steps

that

extract

application-specific

information.

Table

59

summarizes

the

steps

in

the

basic

program

logic

for

deconstructing

a

request

business

object

that

contains

metadata.

Table

59.

Basic

logic

for

processing

a

request

business

object

with

metadata

Step

For

more

information

1.

Obtain

the

business

object

definition

for

the

request

business

object.

“Accessing

the

business

object

definition”

on

page

156

Chapter

7.

Implementing

a

C++

connector

155

Table

59.

Basic

logic

for

processing

a

request

business

object

with

metadata

(continued)

Step

For

more

information

2.

Obtain

the

application-specific

information

in

the

business

object

definition

to

obtain

the

application

structure

to

access.

“Extracting

business

object

application-specific

information”

on

page

157

3.

Obtain

the

attribute

information.

“Accessing

the

attributes”

on

page

158

4.

For

each

attribute,

get

the

attribute

application-specific

information

in

the

business

object

definition

to

obtain

the

application

substructure

to

access.

“Extracting

attribute

application-specific

information”

on

page

160

5.

Make

sure

that

processing

occurs

only

for

those

attributes

that

are

appropriate.

“Determining

whether

to

process

an

attribute”

on

page

161

6.

Obtain

the

value

of

each

attribute

whose

value

needs

to

be

sent

to

the

application

entity.

“Extracting

attribute

values

from

a

business

object”

on

page

163

7.

Notify

the

application

to

perform

the

appropriate

verb

operation.

“Initiating

the

application

operation”

on

page

165

8.

Save

any

attribute

values

in

the

request

business

object

that

are

required

for

the

verb-processing

response.

“Saving

attribute

values

in

a

business

object”

on

page

166

The

section

walks

through

the

basic

logic

of

an

example

Create

method,

explaining

in

detail

how

it

works.

This

example

verb

method

uses

the

basic

program

logic

in

Table

59

to

deconstruct

a

business

object

and

build

an

ODBC

SQL

command.

To

see

the

complete

verb

method,

go

to

“Example:

Create

method

for

a

flat

business

object”

on

page

169.

Accessing

the

business

object

definition:

For

a

C++

connector,

the

doVerbFor()

method

receives

the

request

business

object

as

an

instance

of

the

BusinessObject

class.

However,

to

begin

verb

processing,

the

doVerbFor()

method

often

needs

information

from

the

business

object

definition,

which

is

an

instance

of

the

BusObjSpec

class.

Therefore,

the

first

step

in

a

typical

C++

verb

operation

is

to

retrieve

the

pointer

to

the

business

object

definition

for

the

request

business

object.

Table

60

lists

the

method

that

the

C++

connector

library

provides

to

obtain

the

business

object

definition

for

the

current

business

object

(a

BusinessObject

instance).

Table

60.

Method

for

obtaining

a

business

object

definition

C++

connector

library

class

Method

BusinessObject

getSpecFor()

Suppose

a

verb

method

called

doSimpleCreate()

implements

processing

for

the

Create

verb

for

a

table-based

application.

Figure

62

shows

one

way

to

call

getSpecFor()

to

obtain

the

business

object

definition

(theSpec)

for

the

request

business

object

(theObj).

int

doSimpleCreate(BusinessObject

&theObj)

{

...

BusObjSpec

*theSpec

=

theObj.getSpecFor()

Figure

62.

Obtaining

the

business

object

definition

156

Connector

Development

Guide

for

C++

Note:

At

connector

startup,

the

connector

instantiates

BusObjSpec

instances

for

all

business

object

definitions

that

the

connector

supports.

The

getSpecFor()

method

returns

a

pointer

to

the

instance

of

the

business

object

definition

associated

with

the

request

business

object.

Once

getSpecFor()

obtains

a

reference

to

the

BusObjSpec

instance,

the

doVerbFor()

method

can

use

methods

of

the

BusObjSpec

class

to

obtain

information

from

the

business

object

definition,

such

as

its

application-specific

information

and

access

to

the

attribute

descriptors.

The

business

object

definition

includes

the

information

shown

in

Table

61..

For

a

complete

list

of

BusObjSpec

methods,

see

Chapter

14,

“BusObjSpec

class,”

on

page

261.

Table

61.

Methods

for

obtaining

information

from

the

business

object

definition

Business

object

definition

information

BusObjSpec

method

The

name

of

the

business

object

definition

getName()

A

verb

list—contains

the

verbs

that

the

business

object

supports.

isVerbSupported()

A

list

of

attributes—for

each

attribute,

the

BusObjSpec

object

provides:

getAttributeCount()

v

position

in

the

list

of

attributes

getAttributeIndex()

v

the

attribute

descriptors

(BOAttrType

instances)

for

each

attribute;

for

more

information,

see

“Accessing

the

attributes”

on

page

158.

getAttribute()

Application-specific

information:

v

business

object

definition

getAppText()

v

verb

getVerbAppText()

Note:

Access

to

application-specific

information

for

an

attribute

is

provided

in

the

BOAttrType

class.

A

business

object

handler

typically

uses

the

business

object

definition

to

get

information

on

the

business

object’s

attributes

or

to

get

the

application-specific

information

from

the

business

object

definition,

attribute,

or

verb.

Extracting

business

object

application-specific

information:

Business

objects

for

metadata-driven

connectors

are

often

designed

to

have

application-specific

information

that

provides

information

about

the

application

structure.

For

such

connectors,

a

typical

verb

operation

must

retrieve

the

application-specific

information

from

the

business

object

definition

associated

with

the

request

business

object.

Table

62

lists

the

method

that

the

C++

connector

library

provides

to

retrieve

application-specific

information

from

the

business

object

definition.

Table

62.

Method

for

obtaining

business

object

application-specific

information

C++

connector

library

class

Method

BusObjSpec

getAppText()

Note:

The

method

to

obtain

application-specific

information,

shown

in

Table

62,,

uses

deprecated

terminology

in

its

method

name.

This

method

name

refers

to

“application-specific

text”.

The

more

current

name

for

“application-specific

text”

is

“application-specific

information”.

As

Table

62

shows,

the

connector

uses

the

getAppText()

method

to

obtain

the

application-specific

information

for

the

business

object

definition.

Chapter

7.

Implementing

a

C++

connector

157

char

*

appInfo

=

theSpec->getAppText());

The

getAppText()

method

retrieves

a

character

string

containing

the

application-specific

information

from

the

business

object

definition.

Using

the

example

business

object

shown

in

Figure

38

on

page

99,,

the

preceding

line

of

code

copies

the

table

name

customer

into

the

variable

appText.

For

the

doSimpleCreate()

method

in

Figure

62,,

the

verb

method

implements

processing

for

the

Create

verb

for

a

a

table-based

application.

For

such

an

application,

the

business

objects

have

usually

been

designed

to

have

application-specific

information

provide

the

verb

operations

with

information

about

the

application

structure

(For

more

information,

see

Table

36

on

page

101).

The

application-specific

information

in

a

business

object

definition

can

contain

the

name

of

the

database

table

associated

with

the

business

object.

The

verb

method

first

accesses

application-specific

information

through

the

business

object

definition.

Therefore,

the

verb

method

calls

BusObjSpec::getAppText()

to

obtain

the

name

of

the

database

table

to

access.

The

connector

can

then

use

the

retrieved

table

name

to

begin

building

the

SQL

statement

that

accesses

the

application

database.

For

a

Create

operation,

the

SQL

statement

is

INSERT.

Using

the

example

Customer

business

object

shown,

the

code

fragment

in

connector

Figure

63

constructs

an

INSERT

statement

that

adds

a

new

row

to

an

application

database

table

named

customer.

At

this

point

in

the

execution

of

the

verb

method,

this

SQL

statement

is:

INSERT

INTO

customer

Accessing

the

attributes:

For

a

C++

connector,

the

doVerbFor()

method

receives

the

request

business

object

as

an

instance

of

the

BusinessObject

class.

However,

if

the

verb

operation

needs

to

obtain

information

about

attribute

properties,

it

needs

to

access

an

attribute

descriptor,

which

is

an

instance

of

the

BOAttrType

class.

Therefore,

a

typical

C++

verb

operation

must

retrieve

a

pointer

to

each

attribute

descriptor

that

it

needs

to

access

in

the

request

business

object.

Table

63

lists

the

methods

that

the

C++

connector

library

provides

to

obtain

the

attribute

descriptors

from

the

current

business

object.

int

doSimpleCreate(BusinessObject

&theObj)

{

char

table_name[64];

char

insertStatement[1024];

BusObjSpec

*theSpec;

//

Retrieve

pointer

to

the

business

object

definition

theSpec

=

theObj.getSpecFor();

//

Retrieve

the

table

name

from

the

AppSpecificInfo

property

//

for

the

business

object

definition

strcpy(table_name,

theSpec->getAppText());

//

Begin

building

the

SQL

INSERT

statement

sprintf(insertStatement,

"INSERT

INTO

%s

(",

table_name);

...

}

Figure

63.

Obtaining

the

name

of

the

database

table

158

Connector

Development

Guide

for

C++

Table

63.

Classes

and

methods

for

obtaining

an

attribute

descriptor

C++

connector

library

class

Method

BusObjSpec

getAttribute(),,

getAttributeCount(),,

getAttributeIndex()

BusinessObject

getAttrDesc(),,

getAttrCount()

To

access

an

attribute

descriptor,

the

connector

can

use

either

of

the

following

methods:

v

The

getAttribute()

method

of

the

BusObjSpec

class

obtains

an

attribute

descriptor

from

a

business

object

definition.

v

The

getAttrDesc()

method

of

the

BusinessObject

class

obtains

an

attribute

descriptor

from

a

business

object.

The

getAttribute()

and

getAttrDesc()

methods

can

access

an

attribute

descriptor

in

one

of

two

ways:

v

Its

attribute

name—you

can

identify

the

attribute

by

its

Name

property

to

obtain

its

attribute

descriptor:

theAttr

=

theSpec->getAttribute(attrName);

v

Its

integer

index—to

obtain

the

attribute

index

(its

ordinal

position),

you

can

either:

–

Obtain

a

count

of

all

attributes

in

the

business

object

definition

with

getAttributeCount()

and

loop

through

them

one

at

a

time,

passing

each

index

value

to

getAttribute()

to

get

an

attribute

descriptor.

Note:

Alternatively,

you

can

obtain

an

attribute

count

from

the

business

object

itself

with

the

BusinessObject::getAttrCount()

method.

–

Obtain

the

index

for

a

particular

attribute.

You

can

obtain

the

index

for

an

attribute

by

specifying

its

name

to

getAttributeIndex()

The

following

call

to

getAttribute()

returns

a

pointer

to

the

BOAttrType

instance

that

represents

the

attribute

at

the

specified

ordinal

position

of

the

business

object

definition,

indicated

by

the

variable

i:

for

(i

=

0;

i

<

theSpec->getAttributeCount(),

i++)

{

theAttr

=

theSpec->getAttribute(i);

//

do

processing

on

the

attribute

descriptor

}

Once

the

attribute

descriptor

exists,

the

connector

can

use

methods

of

the

BOAttrType

class

to

obtain

information

about

the

properties

of

the

associated

attribute,

such

as

its

cardinality

or

maximum

length.

Table

64

lists

the

methods

that

the

C++

connector

library

provides

to

retrieve

information

from

an

attribute

descriptor.

For

a

complete

list

of

methods

in

the

BOAttrType

class,

see

Chapter

10,

“BOAttrType

class,”

on

page

215.

Table

64.

Methods

for

obtaining

information

about

attribute

properties

Attribute

property

BusObjAttr

method

Name

getName(),,

hasName()

Type

getRelationType(),,

getTypeName(),,

getTypeNum(),,

hasTypeName(),,

isObjectType(),,

isType()

Key

isKey()

Foreign

key

isForeignKey()

Max

Length

getMaxLength()

Required

isRequired()

Chapter

7.

Implementing

a

C++

connector

159

Table

64.

Methods

for

obtaining

information

about

attribute

properties

(continued)

Attribute

property

BusObjAttr

method

Cardinality

getCardinality(),,

hasCardinality(),,

isMultipleCard()

Default

Value

getDefault()

Attribute

application-specific

information

getAppText()

Important:

The

attribute

value

is

not

available

from

within

the

attribute

descriptor

(BOAttrType

instance)

in

the

business

object

definition.

You

must

access

an

attribute

value

through

the

attribute

in

the

BusinessObject

instance.

For

more

information,

see

“Extracting

attribute

values

from

a

business

object”

on

page

163.

Extracting

attribute

application-specific

information:

If

business

objects

for

metadata-driven

connectors

are

designed

to

have

application-specific

information

that

provides

information

about

the

application

structure,

the

next

step

after

extracting

the

application-specific

information

from

the

business

object

definition

is

to

extract

the

application-specific

information

from

each

attribute

in

the

request

business

object.

Table

65

lists

the

method

that

the

C++

connector

library

provides

to

retrieve

application-specific

information

from

an

attribute

descriptor.

Table

65.

Method

for

obtaining

attribute

application-specific

information

C++

connector

library

class

Method

BOAttrType

getAppText()

Note:

The

method

to

obtain

application-specific

information,

shown

in

Table

65,,

uses

deprecated

terminology

in

its

method

name.

This

method

name

refers

to

“application-specific

text”.

The

more

current

name

for

“application-specific

text”

is

“application-specific

information”.

The

connector

uses

the

getAppText()

method

to

obtain

the

application-specific

information

for

an

attribute.

If

business

objects

have

been

designed

to

have

application-specific

information

provide

information

for

a

table-based

application,

the

application-specific

information

for

the

attribute

contains

the

name

of

the

application

table’s

column

associated

with

this

attribute

(For

more

information,

see

Table

36

on

page

101).

Using

the

example

business

object

shown

in

Figure

38

on

page

99,,

the

code

fragment

in

connector

Figure

63

begins

construction

of

an

INSERT

statement

that

adds

a

new

row

to

an

application

database

table

named

customer.

After

extracting

the

application-specific

information

from

the

business

object

definition,

the

next

step

is

to

determine

what

columns

in

the

application

table

will

be

updated

by

the

business

object

request.

The

connector

can

then

use

the

retrieved

column

name

to

continue

building

the

SQL

statement.

It

would

append

each

column

name

to

the

column

list

of

the

INSERT

statement

that

adds

a

new

row

to

an

application

database

table

named

customer.

After

all

attributes

are

processed,

this

SQL

statement

is:

INSERT

INTO

customer

(cust_key,

cust_name,

cust_status,

cust_region)

For

a

C++

connector,

the

verb

method

calls

BusinessObject::getAttrCount()

on

the

current

business

object

to

determine

the

number

of

attributes

in

a

business

object.

To

obtain

the

application-specific

information

for

each

attribute

involves

the

following

steps:

160

Connector

Development

Guide

for

C++

1.

The

verb

method

then

traverses

the

business

object

definition

and

calls

BusObjSpec::getAttribute()

to

retrieve

each

attribute

descriptor.

The

getAttribute()

method

returns

a

pointer

to

an

instance

of

the

BOAttrType

class.

Each

BOAttrType

instance

represents

a

single

attribute

descriptor

for

an

attribute

in

a

business

object

definition.

2.

Through

the

attribute

descriptor,

the

connector

can

retrieve

information

about

attribute

properties,

such

as

whether

the

attribute

is

a

key

or

foreign

key.

For

each

attribute,

the

method

extracts

the

application-specific

information

for

the

attribute

from

the

attribute

descriptor

with

the

getAppText()

method,

which

is

defined

in

the

BOAttrType

class.

In

Figure

64,,

the

verb

method

copies

the

column

name

for

each

attribute

into

the

column

variable

as

it

traverses

through

the

business

object.

The

for

loop

in

Figure

64

performs

the

following

tasks:

v

Loop

index

is

initialized

to

zero.

In

this

example,

the

destination

application

uses

the

same

key

value

that

was

generated

by

the

source

application.

This

key

value

is

simply

passed

to

the

destination

application

in

the

business

object.

If

the

destination

application

generates

its

own

keys,

the

business

object

typically

does

not

contain

values

for

keys,

and

the

key

attribute

might

be

set

to

the

special

Ignore

value.

If

the

Create

verb

method

processes

the

first

attribute,

which

contains

the

key,

the

loop

index

variable

starts

at

0.

However,

if

your

application

generates

keys,

your

Create

verb

method

will

not

process

attributes

containing

keys.

In

this

case,

the

loop

index

variable

starts

at

a

value

other

than

0.

v

Loop

index

increments

until

it

reaches

the

total

number

of

attributes

in

the

business

object

definition.

The

getAttrCount()

method

returns

the

total

number

of

attributes

in

the

business

object

definition.

However,

this

total

includes

the

ObjectEventId

attribute.

Because

the

ObjectEventId

attribute

is

used

by

the

IBM

WebSphere

business

integration

system

and

is

not

present

in

application

tables,

a

verb

method

does

not

need

to

process

this

attribute.

Therefore,

when

looping

through

business

object

attributes,

you

loop

from

zero

to

one

less

than

the

total

number

of

attributes:

getAttrCount()

-

1

v

Loop

index

increments

by

one.

This

increment

of

the

index

obtains

the

next

attribute

descriptor

when

getAttribute(i)

is

called.

Determining

whether

to

process

an

attribute:

Up

to

this

point,

the

verb

processing

has

been

using

the

application-specific

information

to

obtain

the

application

location

for

each

attribute

of

the

request

business

object.

Once

it

has

this

location

information,

the

doVerbFor()

method

can

begin

processing

the

attribute.

As

the

verb

operation

loops

through

the

business

object

attributes,

you

might

want

to

confirm

that

the

method

processes

only

certain

attributes.

Table

66

lists

some

of

the

methods

that

the

C++

connector

library

provides

to

determine

whether

an

for

(i

=

0;

i

<

theObj.getAttrCount()

-

1;

i++)

strcpy(column,

theSpec->getAttribute(i)->getAppText());

Figure

64.

Obtaining

attribute

application-specific

information

Chapter

7.

Implementing

a

C++

connector

161

attribute

should

be

processed.

Table

66.

Classes

and

methods

for

determining

attribute

processing

Attribute

test

C++

connector

library

class

and

method

An

attribute

is

a

simple

attribute

and

not

an

attribute

that

represents

a

contained

business

object.

BOAttrType

isObjectType()

The

value

of

the

attribute

in

the

business

object

instance

is

not

the

special

value

of

Blank

(a

zero-length

string)

or

Ignore

(a

null

pointer).

BusinessObject

getAttrValue(),,

isIgnoreValue(),,

isIgnore(),,

isBlankValue(),,

isBlank()

The

attribute

is

not

a

place-holder

attribute.

Place-holder

attributes

are

used

in

business

object

definitions

to

separate

attributes

that

contain

child

business

objects.

BOAttrType

getAppText()

Using

the

methods

in

Table

66,,

a

verb

operation

can

determine

that

an

attribute

is

one

that

the

operation

wants

to

process:

v

Is

the

attribute

simple

or

complex?

The

BOAttrType::isObjectType()

method

checks

that

the

attribute

value

does

not

represent

a

contained

business

object.

For

more

information

on

how

to

handle

an

attribute

that

does

contain

a

business

object,

see

“Accessing

child

business

objects”

on

page

173.

v

Is

the

attribute

a

place-holder

attribute

or

the

ObjectEventId

attribute?

You

can

use

the

getAppText()

method

to

determine

if

the

attribute

in

the

business

object

definition

has

application-specific

information.

Because

neither

of

these

special

types

of

attributes

represent

columns

in

an

application

entity,

there

is

no

need

for

the

business

object

definition

to

include

application-specific

information

for

them.

v

Is

the

attribute

set

to

a

value

other

than

the

special

Blank

or

Ignore

values?

The

verb

operation

can

compare

the

attribute’s

value

to

the

Ignore

and

Blank

values

with

the

isIgnoreValue()

and

isBlankValue()

methods,

respectively.

For

more

information

on

the

Ignore

and

Blank

values,

see

“Handling

the

Blank

and

Ignore

values”

on

page

171.

The

code

fragment

in

Figure

65

shows

how

the

sample

Create

verb

method

determines

that

an

attribute

is

one

that

the

method

wants

to

process.

The

method

first

gets

the

attribute

value

from

the

current

business

object

by

calling

BusinessObject::getAttrValue().

It

then

performs

the

tests

to

determine

if

the

attribute

should

be

processed.

162

Connector

Development

Guide

for

C++

For

single

attributes

that

have

application-specific

information

and

that

contain

values

that

are

not

Ignore

or

Blank,

the

connector

retrieves

the

column

name

from

the

attribute

application-specific

information

in

the

business

object

definition

and

appends

the

names

to

the

SQL

statement.

Extracting

attribute

values

from

a

business

object:

Once

the

verb

operation

has

confirmed

that

the

attribute

is

ready

for

processing,

it

usually

needs

to

extract

the

attribute

value:

v

For

a

Create

or

Update

verb,

the

verb

operation

needs

the

attribute

value

to

send

it

to

the

application,

where

it

can

be

added

to

the

appropriate

application

entity.

For

an

Update

verb,

the

verb

operation

also

needs

the

attribute

value

from

any

key

attribute

that

holds

search

information.

The

application

uses

this

search

information

to

locate

the

entity

to

update.

Note:

If

the

Create

or

Update

operation

sends

information

back

to

the

connector,

the

verb

operation

needs

to

store

the

returned

information

as

values

in

the

appropriate

attributes.

For

more

information,

see

“Saving

attribute

values

in

a

business

object”

on

page

166.

v

For

a

Retrieve,

RetrieveByContent,

or

Exist

verb,

the

verb

operation

needs

the

attribute

value

from

any

key

attribute

(Retrieve

or

Exist)

or

non-key

attribute

(RetrieveByContent)

that

holds

search

information.

The

application

uses

this

search

information

to

retrieve

the

entity.

Note:

For

a

Retrieve

or

RetrieveByContent,

the

verb

operation

also

needs

to

set

the

attribute

value

for

any

attribute

associated

with

retrieved

data.

For

more

information,

see

“Saving

attribute

values

in

a

business

object”

on

page

166.

v

For

a

Delete

verb,

the

verb

operation

needs

the

attribute

value

from

any

key

attribute

that

holds

search

information.

The

application

uses

this

search

information

to

locate

the

entity

to

delete.

The

value

of

an

attribute

is

part

of

the

attribute

information

in

the

business

object

(BusinessObject

instance).

Table

67

lists

the

methods

that

the

C++

connector

library

provides

to

obtain

attribute

values

from

a

business

object.

Table

67.

Methods

for

obtaining

attribute

values

C++

connector

library

class

Method

BusinessObject

getAttrCount(),,

getAttrValue()

for

(i

=

0;

i<

theObj.getAttrCount()-1;

i++)

{

theAttr

=

theSpec->getAttribute(i);

theAttrVal

=

theObj.getAttrValue(i);

if

(!theAttr->isObjectType()

&&

strlen(theAttr->getAppText())

>

0)

{

//

Use

only

columns

that

contain

a

valid

value

if

(!(theObj.isIgnoreValue((char

*)theAttrVal))

&&

!(theObj.isBlankValue((char

*)theAttrVal)))

{

//

Get

the

column

name

from

the

AppSpecificInfo

text

strcpy(column,

theSpec->getAttribute(i)->getAppText());

}

}

Figure

65.

Determining

whether

to

process

an

attribute

Chapter

7.

Implementing

a

C++

connector

163

As

in

the

business

object

definition,

each

attribute

in

the

business

object

can

be

accessed

in

one

of

two

ways:

v

Its

attribute

name—you

can

obtain

the

attribute

name

if

you

know

its

ordinal

position

with

the

getAttrName()

method.

v

Its

integer

index—to

obtain

the

attribute

index

(its

ordinal

position),

you

can

obtain

a

count

of

all

attributes

in

the

business

object

definition

with

getAttrCount()

and

loop

through

them

one

at

a

time,

passing

each

index

value

to

getAttrValue()

to

get

an

attribute

value.

As

Table

67

shows,

the

BusinessObject

class

provides

a

single

method

for

obtaining

attribute

values

of

all

valid

data

types,

getAttrValue().

Because

the

type

of

an

attribute

in

a

business

object

definition

can

be

any

supported

type,

the

return

value

of

getAttrValue()

is

defined

as

a

void

pointer.

You

should

check

the

type

of

the

attribute

in

the

business

object

definition,

and

based

on

the

attribute

type,

cast

the

void

pointer

to

a

character

pointer,

a

business

object

pointer,

or

a

business

object

array

before

you

assign

the

returned

value

to

a

variable.

Note:

Attribute

values

that

are

neither

business

objects

nor

business

object

arrays

are

stored

as

pointers

to

character

strings

in

the

C++

connector

library.

If

the

value

of

an

attribute

is

not

a

business

object

or

business

object

array,

you

need

to

cast

the

void

pointer

to

a

character

pointer.

After

identifying

the

attributes

to

process,

the

doSimpleCreate()

method

(see

Figure

62,,

Figure

63,,

and

Figure

65)

must

obtain

the

data

values

to

insert

into

columns

in

the

application

table.

As

the

method

processes

each

attribute,

it

adds

the

attribute

value

to

the

SQL

statement.

To

create

the

list

of

attribute

values,

the

verb

method

traverses

the

attributes

of

the

business

object

definition

a

second

time.

For

each

attribute,

it

obtains

the

attribute

value

from

the

business

object

instance.

In

this

second

traversal

of

the

business

object,

the

verb

method

again

checks

the

type

and

value

of

each

attribute

to

determine

whether

it

wants

to

process

the

attribute.

Note:

Although

this

connector

traverses

a

business

object

twice

to

construct

a

database

query,

if

you

are

using

an

application

API

to

set

values

in

the

application,

the

API

might

not

need

to

loop

through

the

business

object

in

this

way.

The

connector

can

then

use

the

retrieved

column

value

to

continue

building

the

SQL

statement.

Using

the

example

business

object

shown

in

Figure

38

on

page

99,,

the

connector

would

append

each

column

value

to

the

VALUES

clause

of

the

INSERT

statement

that

adds

a

new

row

to

an

application

database

table

named

customer.

Suppose

the

doSimpleCreate()

method

processed

a

sample

Customer

business

object

with

the

following

data:

CustomerId

87975

CustomerName

Trievers

Inc.

CustomerStatus

3

CustomerRegion

NE

After

all

attributes

are

processed,

this

SQL

statement

might

be:

INSERT

INTO

customer

(cust_key,

cust_name,

cust_status,

cust_region)

VALUES

(87975,

’Trievers

Inc.’,

3,

’NE’)

164

Connector

Development

Guide

for

C++

For

a

C++

connector,

the

verb

method

calls

BusinessObject::getAttrValue()

to

retrieve

the

value

of

each

attribute

from

the

business

object

instance.

The

verb

method

casts

returned

attribute

values

to

character

pointers

to

generate

the

VALUES

clause

of

the

INSERT

statement.

Figure

66

shows

a

code

fragment

of

the

Create

verb

method

that

accesses

the

attribute

values

and

appends

them

to

the

VALUES

clause

of

the

INSERT

statement.

Initiating

the

application

operation:

Once

the

verb

operation

has

obtained

the

information

it

needs

from

the

request

business

object,

it

is

ready

to

send

the

application-specific

command

so

that

the

application

performs

the

appropriate

operation.

The

command

must

be

appropriate

for

the

verb

of

the

request

business

object.

For

a

table-based

application,

this

command

might

be

an

SQL

statement

or

a

ODBC

call.

Consult

your

application

documentation

for

more

information.

Important:

Your

doVerbFor()

method

must

ensure

that

the

application

operation

completes

successfully.

If

this

operation

is

unsuccessful,

the

doVerbFor()

method

must

return

the

appropriate

outcome

status

(such

as

BON_FAIL)

to

the

connector

framework.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

166.

When

the

doSimpleCreate()

method

has

built

the

SQL

statement,

it

is

ready

to

execute

it.

When

the

INSERT

statement

is

executed,

the

application

creates

a

new

row

in

the

customer

database

table.

To

execute

the

SQL

statement,

you

must

use

the

application

API

that

provides

table

access.

The

doSimpleCreate()

verb

method

uses

the

standard

ODBC

API

to

execute

the

SQL

statement.

If

your

application

has

an

API

that

executes

SQL

statements,

use

the

application

API.

The

code

fragment

in

Figure

67

finishes

the

SQL

statement

and

executes

it

using

an

ODBC

call.

for

(i

=

0;

i<

theObj.getAttrCount()-1;

i++)

{

theAttr

=

theSpec->getAttribute(i);

theAttrVal

=

theObj.getAttrValue(i);

//

Process

simple

attributes

if

(!theAttr->isObjectType()

&&

strlen

(theAttr->getAppText())

>

0)

{

//

Use

columns

that

contain

a

valid

value

in

//

the

business

object

if

(!(theObj.isIgnoreValue((char

*)theAttrVal))

&&

!(theObj.isBlankValue((char

*)theAttrVal)))

{

//

Set

the

quote

character

for

attributes

that

//

are

STRING

type

quote_str[0]

=

(theObj.getAttrType(i)

==

BOAttrType::STRING)

?

’\’’

:

’

’;

//

Build

the

value

and

add

it

to

insertStatement

sprintf(clause,

"%s

%s%s%s",

firstLoop

?

"

"

:

",",

quote_str,

(char

*)theAttrVal,

quote_str);

strcat(insertStatement,

clause);

firstLoop

=

0;

}

}

}

Figure

66.

Accessing

the

attribute

values

in

a

C++

connector

Chapter

7.

Implementing

a

C++

connector

165

Saving

attribute

values

in

a

business

object:

Once

the

application

operation

has

completed

successfully,

the

verb

operation

might

need

to

save

new

attribute

values

retrieved

from

the

application

into

the

request

business

object:

v

For

a

Create

verb,

the

verb

operation

needs

to

save

the

new

key

values

if

the

application

has

generated

them

as

part

of

its

Create

operation.

v

For

an

Update

verb,

the

verb

operation

needs

to

save

all

attribute

values,

including

any

generated

key

values

(if

the

application

has

been

designed

to

create

a

new

entity

when

it

does

not

find

the

specified

entity

to

update).

v

For

a

Retrieve

or

RetrieveByContent,

the

verb

operation

needs

to

save

the

attribute

value

for

any

attributes

retrieved.

Table

68

lists

the

methods

that

the

C++

connector

library

provides

to

save

attribute

values

in

a

business

object.

Table

68.

Methods

for

saving

attribute

values

C++

connector

library

class

Method

BusinessObject

getAttrCount(),,

setAttrValue()

An

attribute

in

the

business

object

can

be

accessed

by

its

name

or

its

index

(its

ordinal

position).

You

can

obtain

a

count

of

all

attributes

in

the

business

object

definition

with

getAttrCount()

and

loop

through

them

one

at

a

time,

passing

each

index

value

to

setAttrValue()

to

get

an

attribute

value.

As

Table

68

shows,

the

BusinessObject

class

provides

a

single

method

for

saving

attribute

values

of

all

valid

data

types:

setAttrValue().

Because

the

type

of

an

attribute

in

a

business

object

definition

can

be

any

supported

type,

the

parameter

value

of

setAttrValue()

is

defined

as

a

void

pointer.

Sending

the

verb-processing

response

The

C++

connector

must

send

a

verb-processing

response

to

the

connector

framework,

which

in

turn

sends

a

response

to

the

integration

broker.

This

verb-processing

response

includes

the

following

information:

v

The

integer

return

code

of

doVerbFor()

v

A

message

in

the

return-status

descriptor,

if

there

is

an

information,

warning,

or

error

return

message

v

A

response

business

object

The

following

sections

provide

additional

information

about

how

a

C++

connector

provides

each

of

the

pieces

of

response

information.

For

general

information

about

the

connector

response,

see

“Indicating

the

connector

response”

on

page

105..

//

Finish

the

INSERT

statement

strcat(insertStatement,

")");

//

Allocate

an

ODBC

statement

rc

=

SQLAllocStmt(hdbc,

&hstmt);

//

Execute

the

SQL

statement

rc

=

SQLExecDirect(hstmt,

(unsigned

char

*)insertStatement,

SQL_NTS);

//

Free

the

ODBC

statement

handle

Figure

67.

Executing

the

INSERT

statement

in

a

C++

connector

166

Connector

Development

Guide

for

C++

Returning

the

outcome

status:

The

doVerbFor()

method

provides

an

integer

outcome

status

as

its

return

code.

As

Table

69

shows,

the

C++

connector

library

provides

constants

for

the

outcome-status

values

that

doVerbFor()

is

mostly

likely

to

return.

Important:

The

doVerbFor()

method

must

return

an

integer

outcome

status

to

the

connector

framework.

Table

69.

Outcome-status

values

for

a

C++

doVerbFor()

Condition

in

doVerbFor()

C++

outcome

status

The

verb

operation

succeeded.

BON_SUCCESS

The

verb

operation

failed.

BON_FAIL

The

application

is

not

responding.

BON_APPRESPONSETIMEOUT

At

least

one

value

in

the

business

object

changed.

BON_VALCHANGE

The

requested

operation

found

multiple

records

for

the

same

key

value.

BON_VALDUPES

The

connector

finds

multiple

matching

records

when

retrieving

using

non-key

values.

The

connector

will

only

return

the

first

matching

record

in

a

business

object.

BON_MULTIPLE_HITS

The

connector

was

not

able

to

find

matches

for

Retrieve

by

non-key

values.

BON_FAIL_RETRIEVE_BY_CONTENT

The

requested

business

object

entity

does

not

exist

in

the

database.

BON_BO_DOES_NOT_EXIST

Note:

The

C++

connector

library

provides

additional

outcome-status

constants

for

use

by

other

connector

methods.

For

a

complete

list

of

outcome-status

constants,

see

Table

69

on

page

167..

The

outcome

status

that

doVerbFor()

returns

depends

on

the

particular

active

verb

it

is

processing.

Table

70

lists

the

tables

in

this

manual

that

provide

possible

return

values

for

the

different

verbs.

Table

70.

Return

values

for

different

verbs

Verb

For

more

information

Create

Table

28

on

page

80

Retrieve

Table

29

on

page

87

RetrieveByContent

Table

30

on

page

88

Update

Table

32

on

page

95

Delete

Table

34

on

page

97

Exist

Table

35

on

page

98

Using

the

outcome

status

that

doVerbFor()

returns,

the

connector

framework

determines

its

next

action:

v

If

the

outcome

status

is

BON_APPRESPONSETIMEOUT,

the

connector

framework

shuts

down

the

connector.

For

more

information,

see

“Verifying

the

connection

before

processing

the

verb”

on

page

150.

v

For

all

other

outcome-status

values,

the

connector

framework

continues

in

its

present

state.

It

includes

the

outcome

status

in

its

response

to

the

integration

broker.

For

some

outcome-status

values,

the

connector

framework

also

includes

a

response

business

object.

For

more

information,

see

“Updating

the

request

business

object”

on

page

168.

Populating

the

return-status

descriptor:

The

return-status

descriptor

is

a

structure

that

holds

additional

information

about

the

state

of

the

doVerbFor()

method

when

this

method

exits.

The

connector

framework

passes

in

an

empty

return-status

Chapter

7.

Implementing

a

C++

connector

167

descriptor

as

an

argument

to

doVerbFor().

The

doVerbFor()

method

can

update

this

return-status

descriptor

with

a

message.

This

updated

return-status

descriptor

is

then

accessible

by

the

connector

framework

when

doVerbFor()

exits.

The

connector

framework

then

includes

the

return-status

descriptor

in

the

response

it

sends

to

the

integration

broker.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

returns

the

response

to

the

connector

controller,

which

routes

it

to

the

collaboration.

For

a

C++

connector,

the

return-status

descriptor

is

a

ReturnStatusDescriptor

object.

Table

71

lists

the

status

information

that

this

structure

provides.

Table

71.

Information

in

the

return-status

descriptor

Return-status

descriptor

information

Description

C++

accessor

method

Error

message

A

string

to

provide

a

description

of

the

error

condition

getErrorMsg(),,

seterrMsg()

Status

value

An

integer

status

value

to

detail

the

cause

of

the

error

condition

getStatus(),,

setStatus()

The

return-status

descriptor

is

filled

in

one

of

two

ways:

v

Explicitly—when

the

verb

processing

in

the

doVerbFor()

method

is

successful,

the

method

can

set

values

in

this

descriptor

before

it

completes

execution.

v

Implicitly—when

the

connector

framework

copies

the

outcome

status

value

into

the

status

field

of

the

return-status

descriptor.

For

example

code

that

fills

the

return-status

descriptor

before

exiting,

see

Figure

58

on

page

150..

Updating

the

request

business

object:

The

connector

framework

passes

in

the

request

business

object

as

an

argument

to

doVerbFor().

The

doVerbFor()

method

can

update

this

business

object

with

attribute

values.

This

updated

business

object

is

then

accessible

by

the

connector

framework

when

doVerbFor()

exits.

The

connector

framework

uses

the

outcome

status

to

determine

whether

to

return

a

business

object

as

part

of

the

connector’s

response,

as

follows:

v

If

the

connector

framework

receives

one

of

the

following

outcome-status

values,

it

includes

the

request

business

object

as

part

of

its

response:

–

BON_VALCHANGE

–

BON_MULTIPLE_HITS

If

your

doVerbFor()

method

returns

one

of

these

outcome-status

values,

make

sure

it

updates

the

request

business

object

with

response

information.

v

For

any

other

outcome-status

value,

the

connector

framework

does

not

include

the

request

business

object

in

its

response.

Important:

The

value

that

the

doVerbFor()

method

returns

affects

what

the

connector

framework

sends

to

InterChange

Server.

If

the

value

is

BON_VALCHANGE

or

BON_MULTIPLE_HITS,

the

connector

framework

returns

a

changed

business

object.

You

must

ensure

that

the

request

business

object

is

updated

as

appropriate

for

the

returned

outcome

status.

168

Connector

Development

Guide

for

C++

Example:

Create

method

for

a

flat

business

object

The

C++

code

sample

in

Figure

68

shows

a

Create

method

that

uses

the

Open

Database

Connectivity

(ODBC)

API

to

insert

a

new

record

in

an

application

database.

The

ODBC

interface

is

a

standard

API

for

accessing

a

variety

of

database

systems.

This

code

sample

illustrates

the

basic

logic

of

extracting

information

from

a

business

object.

It

shows

how

the

connector

can

use

the

metadata

in

the

business

object

definition

and

the

content

of

the

business

object

instance

to

build

a

SQL

INSERT

statement.

The

connector

first

calls

BusinessObject::getSpecFor()

to

retrieve

a

pointer

to

the

business

object

definition

for

the

business

object

instance

passed

in

as

an

argument

to

the

Create

method.

Using

BusObjSpec::getAppText(),

the

connector

retrieves

the

name

of

the

application

table

from

the

business

object

definition

application-specific

information

and

begins

building

the

SQL

statement.

For

each

attribute

in

the

business

object

instance

that

is

a

value

other

than

the

special

Blank

or

Ignore

value,

the

connector

retrieves

the

column

name

from

the

attribute

application-specific

information

in

the

business

object

definition

and

appends

it

to

the

SQL

statement.

The

connector

then

calls

BusinessObject::getAttrValue()

to

retrieve

the

value

of

each

attribute

from

the

business

object

instance.

When

the

SQL

INSERT

statement

is

complete,

the

method

calls

the

ODBC

API

SQLExecDirect()

to

submit

the

statement.

Typically,

a

Create

method

gets

keys

for

new

entities

from

an

application,

returns

the

keys

to

InterChange

Server

in

a

business

object,

and

returns

BON_VALCHANGE.

However,

because

this

method

sets

the

key

to

the

value

in

the

source

application,

it

simply

returns

BON_SUCCESS.

Chapter

7.

Implementing

a

C++

connector

169

int

doSimpleCreate(BusinessObject

&theObj)

{

char

table_name[64];

char

column[64];

char

columnList[256];

char

clause[256];

char

insertStatement[1024];

char

quote_str[2]

=

"

";

int

firstLoop

=

1;

int

j;

BusObjSpec

*theSpec;

void

*theAttrVal;

BOAttrType

*theAttr;

RETCODE

rc;

/*

return

code

for

ODBC

functions

*/

HSTMT

hstmt;

/*

pointer

to

ODBC

statement

handle

*/

//

Retrieve

pointer

to

the

business

object

definition

theSpec

=

theObj.getSpecFor();

//

Retrieve

the

table

name

from

the

AppSpecificInfo

property

//

for

the

business

object

definition

strcpy(table_name,

theSpec->getAppText());

//

Begin

building

the

SQL

INSERT

statement

sprintf(insertStatement,

"INSERT

INTO

%s

(",

table_name);

//

Build

the

list

of

column

names

for

the

INSERT

statement

//

For

each

attribute,

extract

the

column

name

from

the

//

attribute

AppSpecificInfo

property

for

(j

=

0;

j

<

theObj.getAttrCount()-1;

j++)

{

theAttr

=

theSpec->getAttribute(j);

theAttrVal

=

theObj.getAttrValue(j);

//

Process

non-child

objects

only

if

(!theAttr->isObjectType()

&&

strlen

(theAttr->getAppText())

>

0)

{

//

Use

only

columns

that

contain

a

valid

value

//

in

the

Business

Object

if

(!(theObj.isIgnoreValue((char

*)theAttrVal))

&&

!(theObj.isBlankValue((char

*)theAttrVal)))

{

//

Get

the

column

name

from

the

AppSpecificInfo

text

strcpy(column,

theSpec->getAttribute(j)->getAppText());

sprintf(columnList,

"%s

%s",

firstLoop

?

"

"

:

",",

column);

strcat(insertStatement,

columnList);

firstLoop

=

0;

}

}

}

//

Add

the

VALUES

SQL

keyword

sprintf(clause,

")

VALUES

(");

strcat(insertStatement,

clause);

//

Build

the

values

to

be

inserted

//

For

each

attribute,

extract

the

value

from

the

business

object

firstLoop

=

1;

for

(j

=

0;

j

<

theObj.getAttrCount()-1;

j++)

{

theAttr

=

theSpec->getAttribute(j);

theAttrVal

=

theObj.getAttrValue(j);

Figure

68.

Example

Create

method

(Part

1

of

2)

170

Connector

Development

Guide

for

C++

Note:

The

code

sample

in

Figure

68

shows

a

general

approach

to

metadata-driven

connector

design.

However,

much

of

the

example

is

specific

to

an

ODBC-based

connector.

The

ODBC

(Open

Database

Connectivity)

API

was

used

because

it

is

a

standard

API

for

accessing

a

database.

If

your

application

provides

an

API

that

allows

a

connector

to

modify

application

data,

it

is

best

to

use

the

application

API.

When

using

an

application

API,

the

implementation

of

verb

operations

might

differ

from

the

implementation

shown

in

this

example.

Additional

processing

issues

This

section

provides

the

following

additional

information

about

how

to

process

the

request

business

object:

v

“Handling

the

Blank

and

Ignore

values”

v

“Accessing

child

business

objects”

on

page

173

Handling

the

Blank

and

Ignore

values:

In

addition

to

a

regular

attribute

value,

simple

attributes

in

business

objects

can

have

either

of

the

special

values

shown

in

Table

72..

Table

72.

Special

attribute

values

for

simple

attributes

Special

attribute

value

Represents

Blank

A

zero-length

string

value

Ignore

A

value

that

the

connector

should

ignore

//

Process

non-child

objects

only

if

(!theAttr->isObjectType()

&&

strlen

(theAttr->getAppText())

>

0)

{

//

Use

columns

that

contain

a

valid

value

in

//

the

business

object

if

(!(theObj.isIgnoreValue((char

*)theAttrVal))

&&

!(theObj.isBlankValue((char

*)theAttrVal)))

{

//

Set

the

quote

character

if

this

is

a

STRING

attribute

quote_str[0]

=

(theObj.getAttrType(j)

==

BOAttrType::STRING)

?

’\’’

:

’

’;

//

Build

the

value

and

add

it

to

insertStatement

sprintf(clause,

"%s

%s%s%s",

firstLoop

?

"

"

:

",",

quote_str,

(char

*)theAttrVal,

quote_str);

strcat(insertStatement,

clause);

firstLoop

=

0;

}

}

}

//

Finish

the

INSERT

statement

strcat(insertStatement,

")");

//

Allocate

an

ODBC

statement

rc

=

SQLAllocStmt(hdbc,

&hstmt);

//

Execute

the

SQL

statement

rc

=

SQLExecDirect(hstmt,

(unsigned

char

*)insertStatement,

SQL_NTS);

//

Free

the

ODBC

statement

handle

SQLFreeStmt(hstmt,

SQL_DROP);

return

BON_SUCCESS;

}

Figure

68.

Example

Create

method

(Part

2

of

2)

Chapter

7.

Implementing

a

C++

connector

171

WebSphere

InterChange

Server

Important:

If

your

business

integration

system

uses

InterChange

Server,

in

the

third-party

maps,

the

string

CxIgnore

represents

an

Ignore

value,

and

the

string

CxBlank

represents

a

Blank

value.

These

strings

should

be

used

only

in

maps.

They

should

not

be

stored

in

business

objects

as

attribute

values

because

they

are

reserved

keywords

in

the

InterChange

Server

system.

The

connector

can

call

C++

connector

library

methods

to

determine

whether

a

business

object

attribute

is

set

to

a

special

value:

v

Blank—to

process

attributes

with

the

Blank

value,

a

connector

can

use

any

of

the

methods

shown

in

Table

73..

Table

73.

Methods

for

determining

if

an

attribute

contains

the

Blank

value

BOAttrType

method

Description

isBlankValue(value)

Determines

whether

a

specified

attribute

value

is

equal

to

the

Blank

value

isBlank(attributeName)isBlank(position)

Determines

whether

a

specified

attribute

contains

the

Blank

value.

When

an

attribute

contains

the

Blank

value,

the

doVerbFor()

method

should

process

the

attributes

as

Table

75

shows.

v

Ignore—

to

process

attributes

with

the

Ignore

value,

a

connector

can

use

any

of

the

methods

shown

in

Table

74..

Table

74.

Methods

for

determining

if

an

attribute

contains

the

Ignore

value

BOAttrType

method

Description

isIgnoreValue(value)

Determines

whether

a

specified

attribute

value

is

equal

to

the

Ignore

value

isIgnore(attributeName)

isIgnore(position)

Determines

whether

a

specified

attribute

contains

the

Ignore

value.

When

attributes

are

set

to

the

Ignore

value,

the

connector

should

process

the

attributes

shown

in

Table

76..

Table

75.

Processing

actions

for

the

Blank

Value

Verb

Processing

action

for

Blank

value

Create

Create

the

entity

with

an

appropriate

blank

value

for

the

attributes.

The

blank

value

might

be

configurable,

or

it

might

be

specific

to

the

application.

Update

Update

the

entity

fields

to

“empty”

for

those

attributes

that

are

set

to

the

Blank

value.

Retrieve

If

the

attribute

is

a

key

or

the

connector

is

doing

a

retrieve

by

non-key

values,

retrieve

an

entity

where

this

attribute

is

a

zero-length

string.

Delete

If

the

attribute

is

a

key,

delete

an

entity

where

this

field

is

set

to

the

Blank

value.

172

Connector

Development

Guide

for

C++

Table

76.

Processing

actions

for

the

Ignore

value

Verb

Processing

action

for

Ignore

Value

Create

If

the

attribute

is

not

a

key,

do

not

set

a

value

in

the

application

for

the

attribute.

For

key

attributes,

if

the

application

generates

keys,

the

key

attributes

might

be

set

to

the

Ignore

value.

In

this

case,

create

the

entity,

retrieve

the

application-generated

keys,

and

return

the

keys

to

the

integration

broker.

Note

that

if

the

application

does

not

generate

key

values,

then

all

key

attributes

are

expected

to

have

valid

values.

Update

If

the

attribute

is

not

a

key,

do

not

set

a

value

in

the

application

for

the

attribute.

Retrieve

Do

not

match

for

Retrieve

operations

based

on

an

attribute

set

to

Ignore.

Delete

Do

not

match

for

Delete

operations

based

on

an

attribute

set

to

Ignore.

When

a

connector

creates

a

new

business

object,

all

attribute

values

are

set

to

Ignore

internally.

A

connector

must

set

appropriate

values

for

attributes,

since

all

unset

attribute

values

remain

defined

as

Ignore.

To

set

attribute

values

to

the

special

Ignore

or

Blank

values,

you

use

the

setAttrValue()

method

(defined

in

the

BusinessObject

class),

passing

it

a

special

attribute-value

constant,

as

follows:

Blank

constant

BusinessObject::BlankValue

Ignore

constant

BusinessObject::IgnoreValue

For

example,

the

following

C++

code

fragment

sets

all

non-key

attributes

to

the

Ignore

value.

for

(i

=

0;

i

<

theObj.getAttrCount()-1;

i++)

{

if

(!theAttr->isKey())

{

attrname

=

theObj.getAttrName(i);

theObj.setAttrValue(attrname,

BusinessObject::IgnoreValue,

theObj.getAttrType(i));

}

}

As

another

example,

the

C++

code

fragment

below

retrieves

application

data

and

sets

business

object

attributes

that

have

NULL

values

in

the

application

database

to

the

Blank

attribute

value.

//

Fetch

application

data

into

appdata

variable

//

Process

record

for

(i

=

0;

i

<

theObj.getAttrCount()-1;

i++)

{

if

(!theSpec->getAttribute(i)->isObjectType())

{

if

(strlen(appdata)==0)

sprintf(attrValue,

theObj.getBlankValue());

theObj.setAttrValue(i,

(void*)attrValue,theObj.getAttrType(i));

}

}

Accessing

child

business

objects:

As

discussed

in

“Processing

hierarchical

business

objects”

on

page

101,,

a

C++

connector

uses

the

methods

of

the

C++

connector

library

shown

in

Table

77

to

access

a

child

object.

Chapter

7.

Implementing

a

C++

connector

173

Table

77.

Classes

and

methods

for

accessing

child

business

objects

C++

connector

library

class

Method

BOAttrType

isObjectType(),,

isMultipleCard()

OBJECT

attribute-type

constant

BusinessObject

getAttrValue()

BusObjContainer

getObjectCount(),,

getObject()

The

verb

processing

in

the

doVerbFor()

method

uses

the

isObjectType()

method

to

determine

if

the

attribute

contains

a

business

object

(its

attribute

type

is

set

to

the

OBJECT

attribute-type

constant).

When

doVerbFor()

finds

an

attribute

that

is

a

business

object,

the

method

checks

the

cardinality

of

the

attribute

using

isMultipleCard().

Based

on

the

results

of

isMultipleCard(),

the

method

takes

one

of

the

following

actions:

v

If

the

attribute

has

single

cardinality,

the

verb

operation

can

perform

the

requested

operation

on

the

single

child

business

object.

v

If

an

attribute

has

multiple

cardinality,

the

verb

operation

must

first

access

the

business

object

array

using

the

getAttrValue()

method,

which

returns

values

as

follows:

–

If

the

attribute

is

a

simple

attribute,

getAttrValue()

returns

a

void

pointer

to

the

value.

–

If

the

attribute

is

a

business

object,

getAttrValue()

returns

a

void

pointer

to

the

business

object.

–

If

the

attribute

is

an

array

of

business

objects,

getAttrValue()

returns

a

void

pointer

to

the

BusObjContainer

object

containing

the

array.

The

return

value

of

getAttrValue()

must

be

cast

to

the

correct

type

to

use

the

data.

For

example,

to

access

the

contents

of

a

business

object

array,

the

return

value

must

be

cast

to

the

BusObjContainer

type,

as

shown

in

this

code

fragment:

theAttr

=

theSpec->getAttribute(i);

if

(theAttr->isObjectType())

{

if(theAttr->isMultipleCard())

{

//

Multiple

cardinality

object

so

cast

attribute

value

//

to

a

BusObjContainer

object

BusObjContainer

*busObjContnr

=

(BusObjContainer

*)

theObj.getAttrValue(i);

If

the

attribute

contains

a

business

object

array,

the

doVerbFor()

method

obtains

access

to

this

array

through

the

casted

BusObjContainer

object

that

getAttrValue()

has

returned.

Note:

The

deprecated

name

for

an

array

of

business

objects

is

a

“business

object

container”.

This

term

is

also

used

to

name

the

connector

library

class

that

provides

methods

for

accessing

the

child

business

objects

in

a

business

object

array

(BusObjContainer).

You

can

think

of

this

class

as

providing

methods

for

handling

an

array

of

business

objects.

To

access

individual

business

objects

within

the

business

object

array,

take

the

following

steps:

1.

Call

BusObjContainer::getObjectCount()

to

get

the

number

of

child

business

objects

in

the

array.

2.

As

it

iterates

through

the

business

object

array,

the

verb

processing

can

get

each

individual

child

object

within

the

business

object

array

using

the

BusObjContainer::getObject(index)

method,

where

index

is

the

array

element

174

Connector

Development

Guide

for

C++

index.

This

method

returns

a

pointer

to

a

child

business

object

or

NULL

if

there

is

no

business

object

at

the

specified

position.

Figure

69

shows

the

C++

code

to

access

child

business

objects.

Figure

70

shows

a

C++

submethod,

doVerbMethod(),

that

might

be

called

by

a

main

verb

method

to

process

child

objects.

For

a

business

object

such

as

the

one

shown

in

Figure

43

on

page

103,,

a

Create

method

might

first

create

the

application

entity

for

the

parent

Customer

business

object,

and

then

call

the

submethod

to

traverse

the

parent

business

object

to

find

attributes

referring

to

contained

business

objects.

Polling

for

events

For

a

C++

connector,

the

GenGlobals

class

defines

the

pollForEvents()

method.

You

must

provide

an

implementation

of

this

virtual

method

as

part

of

your

connector

class.

for

(int

i=0;

i

<

busObjContnr->getObjectCount();

i++)

{

BusinessObject

*currBusObj

=

busObjContnr->getObject(i);

status

=

doVerbMethod(*currBusObj);

}

Figure

69.

Accessing

child

business

objects

in

a

C++

connector

int

GenBOHandler::doChildCreate(BusinessObject

&theObj)

{

int

i,

k;

int

status

=

BON_SUCCESS;

for

(i

=

0;

i

<

theObj.getAttrCount()

-1;

i++)

{

theAttr

=

theSpec->getAttribute(i);

theAttrVal

=

theObj.getAttrValue(i);

if

(theAttr->isObjectType())

{

if(theAttr->isMultipleCard())

{

//

Multiple

cardinality

object

so

cast

attribute

value

//

to

a

BusObjContainer

object

BusObjContainer

*Cont

=

(BusObjContainer

*)

theAttrVal;

if

(theAttrVal

!=

NULL)

{

for

(k=0;

k

<

Cont->getObjectCount();

k++)

{

BusinessObject

*curObj

=

Cont->getObject(k);

status

=

doCreate(*curObj);

if

(status

==

BON_FAIL)

return

status;

}

}

}

else

{

//

Single

cardinality

object

if

(theAttrVal

!=

NULL)

{

status

=

doCreate(*(BusinessObject

*)theAttrVal);

if

(status

==

BON_FAIL)

return

status;

}

}

}

}

return

status;

}

Figure

70.

Processing

child

business

objects

in

a

C++

submethod

Chapter

7.

Implementing

a

C++

connector

175

Note:

For

an

introduction

to

event

notification,

see

“Event

notification”

on

page

21..

For

a

discussion

of

event-notification

mechanisms

and

the

implementation

of

pollForEvents(),

see

Chapter

5,

“Event

notification,”

on

page

107.

The

C++-based

pseudo-code

in

Figure

71

shows

the

basic

logic

flow

for

a

pollForEvents()

method.

This

method

first

retrieves

a

pointer

to

the

subscription

manager.

The

subscription

manager

manages

subscriptions

to

business

objects

supported

by

the

connector.

The

pollForEvents()

method

then

retrieves

a

set

of

events

from

the

event

store

and,

for

each

event,

the

method

calls

the

subscription

manager

class

method

isSubscribed()

to

determine

whether

any

subscriptions

exist

for

the

corresponding

business

object.

If

there

are

subscriptions,

the

method

retrieves

the

data

from

the

application,

creates

a

new

business

object,

and

calls

the

subscription

manager

method

gotApplEvent()

to

send

the

business

object

to

InterChange

Server.

If

there

are

no

subscriptions,

the

method

archives

the

event

record

with

a

status

value

of

unprocessed.

Note:

For

a

flow

chart

of

the

poll

method’s

basic

logic,

see

Figure

52

on

page

120..

This

section

provides

more

detailed

information

on

each

of

the

steps

in

the

basic

logic

for

the

event

processing

that

the

pollForEvents()

method

typically

performs.

Table

78

summarizes

these

basic

steps.

Table

78.

Basic

logic

of

the

pollForEvents()

method

Step

For

more

information

1.

Set

up

a

subscription

manager

for

the

connector.

“Accessing

the

subscription

manager”

on

page

177

2.

Verify

that

the

connector

still

has

a

valid

connection

to

the

event

store.

“Verifying

the

connection

before

accessing

the

event

store”

on

page

177

int

ExampleGenGlob::pollForEvents()

{

SubscriptionHandlerCPP

*mySubHandler

=

GenGlobals::getTheSubHandler();

int

status

=

0;

get

the

events

from

the

event

list

for

events

0

to

PollQuantity

in

eventlist

{

extract

BOName,

verb,

and

key

from

the

event

record

if(mySubHandler->isSubscribed(BOName,BOverb)

{

BO

=

new

BusinessObject(BOName)

BO.setAttrValue(key)

retrieve

application

data

using

doVerbFor()

BO.setVerb(Retrieve)

BO.doVerbFor()

BO.setVerb(BOverb)

status

=

mySubHandler->gotApplEvent(BusinessObject);

archive

event

record

with

success

or

failure

status

}

else

{

archive

event

record

with

unprocessed

status

}

return

status;

}

Figure

71.

C++

pollForEvents()

example

176

Connector

Development

Guide

for

C++

Table

78.

Basic

logic

of

the

pollForEvents()

method

(continued)

Step

For

more

information

3.

Retrieve

specified

number

of

event

records

from

the

event

store

and

store

them

in

an

events

array.

Cycle

through

the

events

array.

For

each

event,

mark

the

event

in

the

event

store

as

In-Progress

and

begin

processing.

“Retrieving

event

records”

on

page

178

4.

Get

the

business

object

name,

verb,

and

key

data

from

the

event

record.

“Getting

the

business

object

name,

verb,

and

key”

on

page

180

5.

Check

for

subscriptions

to

the

event.

“Checking

for

subscriptions

to

the

event”

on

page

181

If

the

event

has

subscribers:

v

Retrieve

application

data

and

create

the

business

object.

“Retrieving

application

data”

on

page

182

v

Send

the

business

object

to

the

connector

framework

for

event

delivery.

“Sending

the

business

object

to

the

connector

framework”

on

page

184

v

Complete

event

processing.

“Completing

the

processing

of

an

event”

on

page

186

If

the

event

does

not

have

subscribers,

update

the

event

status

to

Unsubscribed.

“Checking

for

subscriptions

to

the

event”

on

page

181

6.

Archive

the

event.

“Archiving

the

event”

on

page

187

Accessing

the

subscription

manager

As

part

of

connector

initialization,

the

connector

framework

instantiates

a

subscription

manager.

This

subscription

manager

keeps

the

subscription

list

current.

(For

more

information,

see

“Business

object

subscription

and

publishing”

on

page

13.)

A

C++

connector

has

access

to

the

subscription

manager

and

the

connector

subscription

list

through

a

subscription

handler,

which

is

encapsulated

by

the

SubscriptionHandlerCPP

class.

It

can

use

methods

of

this

class

to

determine

whether

business

objects

have

subscribers

and

to

send

business

objects

to

the

connector

controller.

Table

79

lists

the

method

that

the

C++

connector

library

provides

to

obtain

a

reference

to

a

subscription

handler.

Table

79.

Method

for

obtaining

a

subscription

handler

C++

connector

library

class

Method

GenGlobals

getTheSubHandler()

For

a

C++

connector,

the

pollForEvents()

method

first

sets

up

a

subscription

manager

for

the

connector

by

calling

the

GenGlobals::getTheSubHandler().

For

example:

SubscriptionHandlerCPP

*mySub

=

GenGlobals::getTheSubHandler();

The

getTheSubHandler()

method

returns

a

pointer

to

the

subscription

manager,

which

is

an

instance

of

the

SubscriptionHandlerCPP

class.

Through

this

subscription

handler,

the

connector

can

query

its

subscription

manager

to

find

out

whether

the

integration

broker

is

interested

in

a

particular

type

of

business

object.

Verifying

the

connection

before

accessing

the

event

store

When

the

init()

method

in

the

connector

class

initializes

the

application-specific

component,

one

of

its

most

common

tasks

is

to

establish

a

connection

to

the

application.

The

poll

method

requires

access

to

the

event

store.

Therefore,

before

Chapter

7.

Implementing

a

C++

connector

177

the

pollForEvents()

method

begins

processing

events,

it

should

verify

that

the

connector

is

still

connected

to

the

application.

The

way

to

perform

this

verification

is

application-specific.

Consult

your

application

documentation

for

more

information.

A

good

design

practice

is

to

code

the

connector

application-specific

component

so

that

it

shuts

down

whenever

the

connection

to

the

application

is

lost.

If

the

connection

has

been

lost,

the

connector

should

not

continue

with

event

polling.

Instead,

it

should

take

the

steps

in

Table

56

on

page

151

to

notify

the

connector

framework

of

the

lost

connection.

The

pollForEvents()

method

should

return

BON_APPRESPONSETIMEOUT

to

notify

the

connector

framework

of

the

loss

of

connection

to

the

application.

Figure

72

contains

code

to

handle

the

loss

of

connection

to

the

application.

In

this

example,

error

message

20018

is

issued

to

inform

an

administrator

that

the

connection

from

the

connector

to

the

application

has

been

lost

and

that

action

needs

to

be

taken.

Retrieving

event

records

To

send

event

notifications

to

the

connector

framework,

the

poll

method

must

first

retrieve

event

records

from

the

event

store.

For

a

C++

connector,

you

must

use

an

application-specific

interface

to

retrieve

event

records

from

the

event

store.

The

poll

method

can

retrieve

one

event

record

at

a

time

and

process

it

or

it

can

retrieve

a

specified

number

of

event

records

per

poll

and

cache

them

to

an

events

array.

Processing

multiple

events

per

poll

can

improve

performance

when

the

application

generates

large

numbers

of

events.

The

number

of

events

picked

up

in

any

polling

cycle

should

be

configurable

using

the

connector

configuration

property

PollQuantity.

At

install

time,

a

system

administrator

sets

the

value

of

PollQuantity

to

an

appropriate

number,

such

as

50.

The

poll

method

can

use

the

getConfigProp()

to

retrieve

the

value

of

the

PollQuantity

property,

and

then

retrieve

the

specified

number

of

event

records

and

process

them

in

a

single

poll.

int

ExampleGlobals::pollForEvents()

{

...

if

(//application

is

not

responding

)

{

//

Lost

connection

to

the

application

//

Log

an

error

message

logMsg(generateMsg(20018,

CxMsgFormat::XRD_FATAL,

NULL,

0,

"MyConnector"));

//

Populate

a

ReturnStatusDescriptor

object

char

errorMsg[512];

sprintf(errorMsg,

"Lost

connection

to

application");

rtnObj->seterrMsg(errorMsg);

return

BON_APPRESPONSETIMEOUT;

}

....

//

if

connection

is

open,

continue

processing

...

}

Figure

72.

Loss

of

connection

in

pollForEvents()

178

Connector

Development

Guide

for

C++

Note:

Because

many

C++

connectors

are

single-threaded,

the

connector

framework

does

not

accept

request

business

objects

while

the

poll

method

is

running.

This

means

that

request

processing

is

blocked

while

the

poll

method

is

processing

events.

Keep

this

in

mind

when

implementing

the

processing

of

multiple

events

per

poll.

For

more

information

on

single-

and

multi-threaded

C++

connectors,

see

“Threading

issues”

on

page

123..

The

connector

should

assign

the

In-Progress

status

to

any

event

that

it

has

read

out

of

the

event

store

and

has

started

to

process.

If

the

connector

terminates

while

processing

an

event

and

before

updating

the

event

status

to

indicate

that

the

event

was

either

sent

or

failed,

it

will

leave

an

In-Progress

event

in

the

event

store.

For

more

information

on

how

recover

these

In-Progress

events,

see

“Recovering

In-Progress

events”

on

page

63..

To

retrieve

event

records

from

the

event

store,

a

C++

connector

must

use

whatever

technique

the

application

provides.

As

an

example,

an

implementation

for

a

table-based

application

might

create

an

event

table

from

which

the

connector

application-specific

code

retrieves

event

data.

The

code

fragment

in

Figure

73

shows

how

a

connector

for

this

kind

of

implementation

can

retrieve

events

from

an

event

table

using

the

ODBC

API

and

ODBC

SQL

commands.

The

program

initially

defines

the

macro

for

a

SQL

SELECT

statement

that

retrieves

event

records

from

the

event

table.

#define

GET_EVENT_QUERY

\

"SELECT

event_id,

object_name,

object_verb,

object_key

\

FROM

cw_events

WHERE

event_status

=

0

\

ORDER

BY

event_time"

This

SELECT

statement

retrieves

the

event

identifier,

business

object

name,

verb,

and

key

data

from

those

event

records

whose

status

is

0

(Ready-for-Poll).

These

event

records

are

ordered

by

their

timestamp.

For

information

on

retrieving

event

records

by

event

priority,

see

“Processing

events

by

event

priority”

on

page

123..

The

poll

method

allocates

memory

for

the

data,

binds

the

memory

to

specific

columns

of

data,

and

retrieves

the

data

one

event

record

at

a

time.

For

the

complete

example

program,

see

“Example

of

a

basic

pollForEvents()

method”

on

page

188..

Chapter

7.

Implementing

a

C++

connector

179

Note:

This

example

uses

the

standard

ODBC

API

to

retrieve

event

data

from

the

event

table.

If

your

application

has

an

API

that

provides

access

to

data

in

the

event

table,

use

the

application

API.

Getting

the

business

object

name,

verb,

and

key

Once

the

connector

has

retrieved

an

event,

it

extracts

the

event

ID,

the

object

key,

and

the

name

and

verb

of

the

business

object

from

the

event

record.

The

connector

uses

the

business

object

name

and

verb

to

determine

whether

the

integration

broker

is

interested

in

this

type

of

business

object.

If

the

business

object

and

its

active

verb

have

subscribers,

the

connector

uses

the

entity

key

to

retrieve

the

complete

set

of

data.

For

a

C++

connector,

you

must

use

an

application-specific

interface

to

obtain

this

information

from

the

event

records

in

the

event

store.

Figure

73

showed

one

way

that

a

C++

connector

can

process

event

data.

In

the

example,

the

appropriate

event

data

is

retrieved

into

the

connector

variables:

Event

ID

ev_id

//

Allocate

a

statement

handle

for

the

SQL

statement

rc

=

SQLAllocStmt(gHdbc1,

&hstmt1);

//

Execute

the

SELECT

query.

Use

the

macro

GET_EVENT_QUERY

rc

=

SQLExecDirect(hstmt1,

GET_EVENT_QUERY,

SQL_NTS);

//

Allocate

memory

for

event

data

ev_id

=

new

char[80];

obj_name

=

new

char[80];

obj_verb

=

new

char[80];

obj_key

=

new

char[80];

query

=

new

char[255];

key_value

=

new

char[80];

//

Bind

all

results

set

columns

to

event

variables

rc

=

SQLBindCol(hstmt1,

1,

SQL_C_CHAR,

ev_id,

80,

&cbValue);

rc

=

SQLBindCol(hstmt1,

2,

SQL_C_CHAR,

obj_name,

80,

&cbValue);

rc

=

SQLBindCol(hstmt1,

3,

SQL_C_CHAR,

obj_verb,

80,

&cbValue);

rc

=

SQLBindCol(hstmt1,

4,

SQL_C_CHAR,

obj_key,

80,

&cbValue);

//

Fetch

the

event

data

while

(rc

==

SQL_SUCCESS

||

rc

!=

SQL_SUCCESS_WITH_INFO)

{

ev_id

=

’\0’;

obj_name

=

’\0’;

obj_verb

=

’\0’;

obj_key

=

’\0’;

rc

=

SQLFetch(hstmt1);

if

(rc

==

SQL_SUCCESS)

{

//

Process

the

record

if

((cp

=

strchr(ev_id,

’

’))

!=

NULL)

*cp

=

NULL;

if

((cp

=

strchr(obj_name,

’

’))

!=

NULL)

*cp

=

NULL;

if

((cp

=

strchr(obj_verb,

’

’))

!=

NULL)

*cp

=

NULL;

if

((cp

=

strchr(obj_key,

’

’))

!=

NULL)

*cp

=

NULL;

}

Figure

73.

Retrieving

an

event

180

Connector

Development

Guide

for

C++

Business

object

name

obj_name

Verb

obj_verb

Object

key

obj_key

The

connector

should

send

the

business

object

with

the

same

verb

that

was

in

the

event

record.

Checking

for

subscriptions

to

the

event

To

determine

whether

the

integration

broker

is

interested

in

receiving

a

particular

business

object

and

verb,

the

poll

method

calls

the

isSubscribed()

method.

The

isSubscribed()

method

takes

the

name

of

the

current

business

object

and

a

verb

as

arguments.

The

name

of

the

business

object

and

verb

must

match

the

name

of

the

business

object

and

verb

in

the

repository.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

poll

method

can

determine

if

any

collaboration

subscribes

to

the

business

object

with

a

particular

verb.

At

initialization,

the

connector

framework

requests

its

subscription

list

from

the

connector

controller

at

connector

initialization.

At

runtime,

the

application-specific

component

can

use

isSubscribed()

to

query

the

connector

framework

to

verify

that

some

collaboration

subscribes

to

a

particular

business

object.

The

application-specific

connector

component

can

send

the

event

only

if

some

collaboration

is

currently

subscribed.

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework

assumes

that

the

integration

broker

is

interested

in

all

the

connector’s

supported

business

objects.

If

the

poll

method

uses

the

isSubscribed()

method

to

query

the

connector

framework

about

subscriptions

for

a

particular

business

object,

the

method

returns

true

for

every

business

object

that

the

connector

supports.

Table

80

lists

the

method

that

the

C++

connector

library

provides

to

check

for

subscriptions

to

the

event.

Table

80.

Method

for

checking

subscriptions

C++

connector

library

class

Method

SubscriptionHandlerCPP

isSubscribed()

Based

on

the

value

that

isSubscribed()

returns,

the

poll

method

should

take

one

of

the

following

actions:

v

If

there

are

subscribers

for

an

event,

the

connector

takes

the

following

actions:

Connector

action

taken

For

more

information

Retrieve

the

complete

set

of

business

object

data

from

the

entity

in

the

application

database.

“Retrieving

application

data”

on

page

182

Chapter

7.

Implementing

a

C++

connector

181

Connector

action

taken

For

more

information

Send

the

business

object

to

the

connector

framework,

which

routes

it

to

the

integration

broker.

“Sending

the

business

object

to

the

connector

framework”

on

page

184

Archive

the

event

(if

archiving

is

implemented)

in

case

an

integration

broker

subscribes

at

a

later

time.

“Archiving

the

event”

on

page

187

v

If

there

are

no

subscriptions

for

the

event,

the

connector

should

take

the

following

actions:

–

Update

the

status

of

the

event

to

“Unsubscribed”

to

indicate

that

there

were

no

subscribers.

–

Archive

the

event

(if

archiving

is

implemented)

in

case

the

integration

broker

subscribes

at

a

later

time.

Moving

the

event

record

to

the

archive

store

prevents

the

poll

method

from

picking

up

unsubscribed

events.

For

more

information,

see

“Archiving

the

event”

on

page

187.

–

Return

“fail”

(BON_FAIL

outcome

status

for

a

C++

connector)

to

indicate

there

are

events

pending

for

which

no

subscriptions

currently

exist.

IBM

suggests

that

the

connector

return

“fail”

if

no

subscriptions

exist

for

the

event.

However,

you

can

return

the

outcome

status

that

your

design

dictates.

No

other

processing

should

be

done

with

unsubscribed

events.

If

at

a

later

date,

the

integration

broker

subscribes

to

these

events,

a

system

administrator

can

move

the

unsubscribed

event

records

from

the

archive

store

back

to

the

event

store.

As

Table

80

shows,

the

isSubscribed()

method

is

provided

in

the

subscription

manager,

the

SubscriptionHandlerCPP

object.

The

method

returns

1

if

there

are

subscribers,

and

0

if

there

are

no

subscribers.

An

example

of

a

C++

connector

checking

for

subscriptions

follows:

if

(mySubHndlr->isSubscribed(obj_name,

obj_verb)

=

TRUE)

{

//

handle

event

}

else

{

//

archive

the

event

(if

archiving

is

supported)

}

Retrieving

application

data

If

there

are

subscribers

for

an

event,

the

poll

method

must

take

the

following

steps:

1.

Retrieve

the

complete

set

of

data

for

the

entity

from

the

application.

To

retrieve

the

complete

set

of

entity

data,

the

poll

method

must

use

name

of

the

entity’s

key

information

(which

is

stored

in

the

event)

to

locate

the

entity

in

the

application

database.

The

poll

method

must

retrieve

the

complete

set

of

application

data

when

the

event

has

the

following

verbs:

v

Create

v

Update

v

Delete

event

for

an

application

that

supports

logical

deletes

For

a

Delete

event

from

an

application

that

supports

physical

deletes,

the

application

may

have

already

deleted

the

entity

from

the

database,

and

the

connector

may

not

be

able

to

retrieve

the

entity

data.

For

information

on

delete

processing,

see

“Processing

Delete

events”

on

page

124..

2.

Package

the

entity

data

in

a

business

object.

Once

the

populated

business

object

exists,

the

poll

method

can

publish

the

business

object

to

subscribers.

182

Connector

Development

Guide

for

C++

Table

80

lists

the

methods

that

the

C++

connector

library

provides

to

retrieve

entity

data

from

the

application

database

and

populate

a

business

object.

Table

81.

Methods

for

retrieving

business

object

data

C++

Connector

Library

Class

Method

BusinessObject

doVerbFor(),,

getAttrCount(),,

getAttrType(),,

getAttrValue(),,

setAttrValue(),,

setVerb()

Note:

If

the

event

is

a

delete

operation

and

the

application

supports

physical

deletions

of

data,

the

data

has

most

likely

been

deleted

from

the

application,

and

the

connector

cannot

retrieve

the

data.

In

this

case,

the

connector

simply

creates

a

business

object,

sets

the

key

from

the

object

key

of

the

event

record,

and

sends

the

business

object.

For

more

information

on

handling

delete

events,

see

“Processing

Delete

events”

on

page

124..

For

a

C++

connector,

the

standard

way

of

retrieving

application

data

from

within

pollForEvents()

is

to

use

the

Retrieve

method

in

the

connector’s

business

object

handler.

With

this

approach,

you

do

not

have

to

recode

data

retrieval

in

the

pollForEvents()

method.

To

retrieve

application

data

using

the

doVerbFor()

method

of

the

BusinessObject

class,

follow

these

general

steps:

1.

Create

a

new

business

object

instance

for

the

business

object

that

corresponds

to

the

application

entity.

2.

Call

BusinessObject::setVerb()

to

set

the

verb

of

the

business

object

to

Retrieve.

3.

Get

the

key

or

keys

for

the

application

entity

from

the

event

record.

4.

Call

BusinessObject::setAttrValue()

to

set

the

key

values

in

the

business

object.

The

setAttrValue()

method

takes

as

arguments

the

name

of

the

attribute,

a

string

representation

of

the

value

or

pointer

to

the

value

of

the

attribute,

and

the

attribute

type.

5.

Call

BusinessObject::doVerbFor()

on

this

business

object.

The

BusinessObject

class

implementation

of

the

doVerbFor()

method

calls

the

business

object

handler

specified

in

the

business

object

definition

to

perform

the

action

of

the

verb.

The

doVerbFor()

method

operates

on

the

current

business

object,

filling

the

business

object

with

the

current

values

of

the

application

entity.

The

C++

code

fragment

in

Figure

74

illustrates

this

approach.

Chapter

7.

Implementing

a

C++

connector

183

The

code

fragment

in

Figure

74

uses

getAttrName()

to

get

the

name

of

each

attribute

that

is

a

key.

It

then

calls

getAttrType()

to

get

the

type

of

the

key

attribute.

The

setAttrValue()

method

verifies

that

the

new

value

has

the

correct

data

type

before

changing

the

attribute

value.

The

ObjectEventId

attribute

is

used

in

the

IBM

WebSphere

business

integration

system

to

track

the

flow

of

business

objects

through

the

system.

In

addition,

it

is

used

to

keep

track

of

child

business

objects

across

requests

and

responses,

as

child

business

objects

in

a

hierarchical

business

object

request

might

be

reordered

in

a

response

business

object.

Connectors

are

not

required

to

populate

ObjectEventId

attributes

for

either

a

parent

business

object

or

its

children.

If

business

objects

do

not

have

values

for

ObjectEventId

attributes,

the

IBM

WebSphere

business

integration

system

generates

values

for

them.

However,

if

a

connector

populates

child

ObjectEventIds,

the

values

must

be

unique

across

all

other

ObjectEventId

values

for

that

particular

business

object

regardless

of

level

of

hierarchy.

ObjectEventId

values

can

be

generated

as

part

of

the

event

notification

mechanism.

For

suggestions

on

how

to

generate

ObjectEventId

values,

see

“Event

identifier”

on

page

109..

Sending

the

business

object

to

the

connector

framework

Once

the

data

for

the

business

object

has

been

retrieved,

the

poll

method

performs

the

following

tasks:

v

“Setting

the

business

object

verb”

on

page

185

v

“Sending

the

business

object”

on

page

185

Table

80

lists

the

methods

that

the

C++

connector

library

provides

to

set

the

business

object

verb

and

send

the

business

object.

//

Create

a

new

business

object

pBusObj

=

new

BusinessObject(obj_name);

//

Set

verb

to

Retrieve

pBusObj->setVerb("Retrieve");

//

Extract

value

of

key

from

key:value

pair

if

((cp

=

strchr(obj_key,

’:’))

!=

NULL)

{

cp++;

strcpy(key_value,

cp);

cp--;

*cp

=

NULL;

}

//

Find

the

key

attribute

in

the

business

object

and

//

set

it

to

the

key

value

for

(i

=

0;

i

<

pObj->getAttrCount()-1;

i++)

{

if

(pBusObj->getSpecFor()->getAttribute(i)->isKey())

{

pBusObj->setAttrValue(pBusObj->getAttrName(i),key_value,

pBusObj->getAttrType(pBusObj->getAttrName(i)));

}

}

//

Call

the

business

object

handler

doVerbFor()

if

(pBusObj->doVerbFor()

==

BON_FAIL)

{

//

Log

error

message

if

retrieve

fails

retcode

=

BON_FAIL;

}

Figure

74.

Retrieving

application

data

184

Connector

Development

Guide

for

C++

Table

82.

Classes

and

methods

for

setting

verb

and

sending

business

object

C++

connector

library

class

Method

BusinessObject

setVerb()

SubscriptionHandlerCPP

gotApplEvent()

Setting

the

business

object

verb

To

set

the

verb

in

a

business

object

to

the

verb

specified

in

the

event

record,

the

poll

method

calls

the

business

object

method

setVerb().

The

poll

method

should

set

the

verb

to

the

same

verb

that

was

in

the

event

record

in

the

event

store.

Note:

If

the

event

is

a

physical

delete,

use

the

object

keys

from

the

event

record

to

set

the

keys

in

the

business

object,

and

set

the

verb

to

Delete.

For

a

C++

connector,

the

populated

BusinessObject

object

that

the

doVerbFor()

method

returns

still

has

a

verb

of

Retrieve.

The

poll

method

must

set

the

business

object’s

verb

to

its

original

value

with

the

setVerb()

method,

as

the

following

code

fragment

shows:

//

Set

verb

to

action

as

indicated

in

the

event

record

pBusObj->setVerb(obj_verb);

In

this

code

fragment,

obj_verb

is

the

verb

value

that

has

previously

been

obtained

from

the

event

record,

as

shown

in

Figure

73..

Sending

the

business

object

The

poll

method

uses

the

method

gotApplEvent()

to

send

the

business

object

to

the

connector

framework.

This

method

takes

the

following

steps:

v

Check

that

the

connector

is

active.

v

Check

that

there

are

subscriptions

for

the

event.

v

Send

the

business

object

to

the

connector

framework.

The

connector

framework

does

some

processing

on

the

event

object

to

serialize

the

data

and

ensure

that

it

is

persisted

properly.

It

then

makes

sure

the

event

is

sent.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

makes

sure

the

event

is

either

sent

to

the

ICS

through

CORBA

IIOP

or

written

to

a

queue

(if

you

are

using

queues

for

event

notification).

If

sending

the

event

to

ICS,

the

connector

framework

forwards

the

business

object

to

the

connector

controller,

which

in

turn

performs

any

mapping

required

to

transform

the

application-specific

business

object

to

a

generic

business

object.

The

connector

controller

can

then

send

the

generic

business

object

to

the

appropriate

collaboration.

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework

makes

sure

the

event

is

converted

to

an

WebSphere

MQ

message

and

written

to

the

appropriate

MQ

queue.

Chapter

7.

Implementing

a

C++

connector

185

The

poll

method

should

check

the

return

code

from

gotApplEvent()

to

ensure

that

returned

errors

are

handled

appropriately.

For

example,

until

the

event

delivery

is

successful,

the

poll

method

should

not

remove

the

event

from

the

event

table.

Table

83

shows

the

possible

event-status

values,

based

on

whether

event

delivery

is

successful.

Table

83.

Possible

event

status

after

event

delivery

State

of

Event

Delivery

Event

Status

If

the

event

delivery

is

successful

1

(see

Table

40

on

page

110)

If

the

event

delivery

fails

-2

(see

Table

40

on

page

110)

The

following

code

fragment

shows

the

call

to

gotApplEvent()

for

a

C++

connector:

//

Send

business

object

to

connector

framework

if

((

retcode

=

mySub->gotApplEvent(*pBusObj))

==

BON_FAIL)

{

//

Log

an

error

message

//

Update

event

status

to

"error

posting

event"

//

Event

remains

in

event

table

and

is

not

archived

}

//

Update

event

status

to

"event

successfully

posted”

The

gotApplEvent()

method

returns

BON_SUCCESS

if

the

connector

framework

successfully

delivers

the

business

object,

and

returns

a

nonzero

value

(such

as

BON_FAIL)

if

the

delivery

fails.

Note:

If

this

call

is

not

successful,

the

event

must

be

archived.

Completing

the

processing

of

an

event

The

processing

of

an

event

is

complete

when

the

tasks

in

Table

84

complete.

Table

84.

Steps

in

processing

an

event

Processing

task

For

more

information

The

poll

method

has

retrieved

the

application

data

for

the

event

and

created

a

business

object

that

represents

the

event.

“Retrieving

application

data”

on

page

182

The

poll

method

has

sent

the

business

object

to

the

connector

framework.

“Sending

the

business

object

to

the

connector

framework”

on

page

184

Note:

For

hierarchical

business

objects,

the

event

processing

is

complete

when

the

poll

method

has

retrieved

the

application

data

for

the

parent

business

object

and

all

child

business

objects

and

sent

the

complete

hierarchical

business

object

to

the

connector

framework.

The

event

notification

mechanism

must

retrieve

and

send

the

entire

hierarchical

business

object,

not

just

the

parent

business

object.

The

poll

method

must

ensure

that

the

event

status

correctly

reflects

the

completion

of

the

event

processing.

Therefore,

it

must

handle

both

of

the

following

conditions:

v

“Handling

successful

event

processing”

on

page

187

v

“Handling

unsuccessful

event

processing”

on

page

187

186

Connector

Development

Guide

for

C++

Handling

successful

event

processing

The

processing

of

an

event

is

successful

when

the

tasks

in

Table

84

successfully

complete.

The

following

steps

show

how

the

poll

method

should

finish

processing

a

successful

event:

1.

Receive

a

“success”

return

code

from

the

gotApplEvent()

method

signifying

the

connector

framework’s

successful

delivery

of

the

business

object

to

the

messaging

system.

2.

Copy

the

event

to

the

archive

store.

For

more

information,

see

“Archiving

the

event”

on

page

187.

3.

Set

the

status

of

the

event

in

the

archive

store.

4.

Delete

the

event

record

from

the

event

store.

Until

the

event

delivery

is

successful,

the

poll

method

should

not

remove

the

event

from

the

event

table.

Note:

The

order

of

the

steps

might

be

different

for

different

implementations.

Handling

unsuccessful

event

processing

If

an

error

occurs

in

processing

an

event,

the

connector

should

update

the

event

status

to

indicate

that

an

error

has

occurred.

Table

85

shows

the

possible

event-status

values,

based

on

errors

that

can

occur

during

event

processing.

Table

85.

Possible

event

status

after

unsuccessful

event

processing

State

of

Event

Delivery

Event

Status

If

an

error

occurs

in

processing

an

event

-1

(see

Table

40

on

page

110)

If

the

event

delivery

fails

-2

(see

Table

40

on

page

110)

For

example,

if

there

are

no

application

entities

matching

the

entity

key,

the

event

status

should

be

updated

to

“error

processing

event”.

As

discussed

in

“Sending

the

business

object”

on

page

185,

the

poll

method

should

check

the

return

code

from

gotApplEvent()

to

ensure

that

any

errors

that

are

returned

are

handled

appropriately.

If

the

event

cannot

be

successfully

delivered,

its

event

status

should

be

updated

to

“error

posting

event”.

In

either

case,

the

event

should

be

left

in

the

event

store

to

be

analyzed

by

a

system

administrator.

When

the

poll

method

queries

for

events,

it

should

exclude

events

with

the

error

status

so

that

these

events

are

not

picked

up.

Once

an

event’s

error

condition

has

been

resolved,

the

system

administrator

can

manually

reset

the

event

status

so

that

the

event

is

picked

up

by

the

connector

on

the

next

poll.

Archiving

the

event

Archiving

an

event

consists

of

creating

an

archive

record

by

moving

the

event

record

from

the

event

store

to

an

archive

store.

To

archive

event

records

to

the

archive

store,

a

C++

connector

must

use

whatever

technique

the

application

provides.

Usually,

the

connector

uses

whatever

method

it

used

to

access

event

records

in

the

event

store,

such

as

the

ODBC

API

and

ODBC

SQL

commands.

Consult

your

application

documentation

for

more

information.

Note:

For

a

general

introduction

to

archiving,

see

“Archiving

events”

on

page

121..

To

archive

event

records

from

this

event

store,

the

poll

method

takes

the

following

actions:

Chapter

7.

Implementing

a

C++

connector

187

1.

Ensure

that

archiving

is

implemented

by

checking

the

value

of

the

appropriate

connector

configuration

property,

such

as

ArchiveProcessed.

For

more

information,

see

“Configuring

a

connector

for

archiving”

on

page

122..

2.

Copy

the

event

record

from

the

archive

store

to

the

event

store.

3.

Update

the

event

status

of

the

archive

record

to

reflect

the

reason

for

archiving

the

event.

Table

86

shows

the

event-status

values

that

the

archive

record

will

usually

have.

Table

86.

Event-status

values

in

an

archive

record

Event-status

value

Description

1

The

event

was

detected,

and

the

connector

created

a

business

object

for

the

event

and

sent

the

business

object

to

the

connector

framework.

For

more

information,

see

“Handling

successful

event

processing”

on

page

187.

2

The

event

was

detected,

but

there

were

no

subscriptions

for

the

event,

so

the

event

was

not

sent

to

the

connector

framework

and

on

to

the

integration

broker.

For

more

information,

see

“Checking

for

subscriptions

to

the

event”

on

page

181.

-1

The

event

was

detected,

but

the

connector

encountered

an

error

when

trying

to

process

the

event.

The

error

occurred

either

in

the

process

of

building

a

business

object

for

the

event

or

in

sending

the

business

object

to

connector

framework.

For

more

information,

see

“Handling

unsuccessful

event

processing”

on

page

187.

4.

Delete

the

event

record

from

the

event

store.

After

archiving

is

complete,

your

poll

method

should

set

the

appropriate

return

code:

v

If

the

archiving

takes

place

after

an

event

is

successfully

delivered,

the

return

code

is

“success”,

indicated

with

the

BON_SUCCESS

outcome-status

constant.

v

If

archiving

is

due

to

some

error

condition

(such

as

unsubscribed

events

or

an

error

in

processing

the

event),

the

poll

method

might

need

to

return

a

“fail”

status,

indicated

with

the

BON_FAIL

outcome-status

constant.

Example

of

a

basic

pollForEvents()

method

The

section

provides

implementations

of

the

basic

logic

for

the

pollForEvents()

method

in

a

C++

connector.

The

code

sample

in

Figure

75

demonstrates

event

handling

in

a

C++

connector

that

uses

the

ODBC

API

to

communicate

with

an

application

database.

In

this

example,

the

connector

retrieves

one

event

at

a

time

and

processes

it.

Note:

This

code

assumes

that

the

connector’s

init()

method

has

initialized

the

ODBC

interface

before

the

pollForEvents()

method

is

called.

As

a

first

step

in

the

pollForEvents()

method,

a

utility

function

allocates

handles

for

two

ODBC

connections

to

the

application

database.

The

connector

uses

these

connection

handles

to

interact

with

the

database.

The

pollForEvents()

method

gets

a

pointer

to

the

subscription

manager

using

GenGlobals::getTheSubHandler().

It

then

executes

a

SQL

SELECT

statement

using

the

ODBC

SQLExecDirect()

interface

to

determine

what

data

is

returned.

When

the

SQL

statement

returns,

the

method

allocates

memory

for

the

data,

assigns

the

memory

to

specific

columns

of

data,

and

retrieves

the

data

one

event

record

at

a

time

into

allocated

memory.

188

Connector

Development

Guide

for

C++

For

each

event,

the

connector

calls

the

subscription

manager

method

isSubscribed()

to

determine

whether

there

are

subscribers

to

this

particular

business

object

and

verb.

If

there

are

subscribers,

the

connector

builds

a

new

business

object,

sets

the

key,

sets

the

business

object’s

verb

to

Retrieve,

and

calls

the

business

object’s

doVerbFor()

method

to

retrieve

the

complete

set

of

data

for

the

application

entity.

If

doVerbFor()

returns

success,

the

poll

method

sets

the

appropriate

verb

in

the

business

object

and

sends

the

business

object

to

InterChange

Server

using

the

method

gotApplEvent().

Once

the

business

object

is

sent,

the

poll

method

executes

a

SQL

statement

to

remove

the

event

from

the

event

table.

This

action

causes

a

delete

trigger

to

store

the

event

in

the

archive

table.

Chapter

7.

Implementing

a

C++

connector

189

//

The

event

table

is

named

cw_events.

#define

GET_EVENT_QUERY

\

"SELECT

event_id,

object_name,

object_verb,

object_key

\

FROM

cw_events

WHERE

status

=

0

AND

priority

=

1

\

ORDER

BY

event_time"

#define

REMOVE_EVENT_QUERY

\

"DELETE

FROM

cw_events

WHERE

event_id

=

’%s’";

int

ExampleGlobals::pollForEvents()

{

SubscriptionHandlerCPP

*mySub;

BusinessObject

*pObj

=

NULL;

char

*ev_id

=

0;

char

*obj_name

=

0;

char

*obj_verb

=

0;

char

*obj_key

=

0;

char

*query

=

0;

char

*key_value

=

0;

char

*cp;

int

i;

RETCODE

rc;

HSTMT

hstmt1

=

0;

HSTMT

hstmt2

=

0;

SDWORD

cbValue

=

SQL_NO_TOTAL;

int

retcode

=

BON_SUCCESS;

//

Private

function

for

establishing

and

checking

the

two

//

database

connections

that

the

poll

function

needs

checkOdbcConnections();

//

Set

up

the

subscription

manager

mySub

=

GenGlobals::getTheSubHandler();

//

Allocate

a

statement

handle

for

the

SQL

statement

rc

=

SQLAllocStmt(gHdbc1,

&hstmt1);

if

(rc

!=

SQL_SUCCESS

&&

rc

!=

SQL_SUCCESS_WITH_INFO)

{

//

handle

odbc

errors

return

(BON_APPRESPONSETIMEOUT);

}

//

Execute

the

event

SQL

SELECT

query

to

determine

//

what

data

will

be

returned.

//

Use

the

macro

GET_EVENT_QUERY

rc

=

SQLExecDirect(hstmt1,

GET_EVENT_QUERY,

SQL_NTS);

if

(rc

!=

SQL_SUCCESS

&&

rc

!=

SQL_SUCCESS_WITH_INFO)

{

//

handle

odbc

errors

rc

=

SQLFreeStmt(hstmt1,

SQL_CLOSE);

return

(BON_APPRESPONSETIMEOUT);

}

//

Allocate

memory

for

event

table

columns

ev_id

=

new

char[80];

obj_name

=

new

char[80];

obj_verb

=

new

char[80];

obj_key

=

new

char[80];

query

=

new

char[255];

key_value

=

new

char[80];

Figure

75.

Implementation

of

basic

logic

for

pollForEvents()

(Part

1

of

4)

190

Connector

Development

Guide

for

C++

//

Bind

all

results

set

columns

to

variables

rc

=

SQLBindCol(hstmt1,

1,

SQL_C_CHAR,

ev_id,

80,

&cbValue);

rc

=

SQLBindCol(hstmt1,

2,

SQL_C_CHAR,

obj_name,

80,

&cbValue);

rc

=

SQLBindCol(hstmt1,

3,

SQL_C_CHAR,

obj_verb,

80,

&cbValue);

rc

=

SQLBindCol(hstmt1,

4,

SQL_C_CHAR,

obj_key,

80,

&cbValue);

//

Fetch

the

results

while

(rc

==

SQL_SUCCESS

||

rc

!=

SQL_SUCCESS_WITH_INFO)

{

ev_id

=

’\0’;

obj_name

=

’\0’;

obj_verb

=

’\0’;

obj_key

=

’\0’;

rc

=

SQLFetch(hstmt1);

if

(rc

==

SQL_SUCCESS

||

rc

!=

SQL_SUCCESS_WITH_INFO)

{

//

Process

the

record

//

Trim

off

rest

of

string

at

the

first

//

space

character

found

if

((cp

=

strchr(ev_id,

’

’))

!=

NULL)

*cp

=

NULL;

if

((cp

=

strchr(obj_name,

’

’))

!=

NULL)

*cp

=

NULL;

if

((cp

=

strchr(obj_verb,

’

’))

!=

NULL)

*cp

=

NULL;

if

((cp

=

strchr(obj_key,

’

’))

!=

NULL)

*cp

=

NULL;

//

Determine

whether

there

are

subscribers

to

the

event

if

(mySub->isSubscribed(obj_name,

obj_verb)

!=

TRUE)

{

//

log

message

//

delete

event

from

event

table

//

add

event

to

archive

table

continue;

}

//

Prepare

to

retrieve

data

into

the

business

object

pObj

=

new

BusinessObject(obj_name);

pObj->setVerb("Retrieve");

//

Get

key:value

pair

if

((cp

=

strchr(obj_key,

’:’))

!=

NULL)

{

cp++;

strcpy(key_value,

cp);

cp--;

*cp

=

NULL;

}

//

Find

the

first

key

in

the

object

and

set

it

for

(i

=

0;

i

<

pObj->getAttrCount()-1;

i++)

{

if

(pObj->getSpecFor()->getAttribute(i)->isKey())

{

pObj->setAttrValue(pObj->getAttrName(i),

key_value,

pObj->getAttrType(pObj->getAttrName(i)));

break;

}

}

Figure

75.

Implementation

of

basic

logic

for

pollForEvents()

(Part

2

of

4)

Chapter

7.

Implementing

a

C++

connector

191

//

Call

the

business

object

handler

doVerbFor()

//

to

retrieve

application

data

if

(pObj->doVerbFor()

==

BON_FAIL)

{

//

Log

error

message

if

retrieve

fails

//

Handle

retrieve

errors

retcode

=

BON_FAIL;

break;

}

//

Call

gotApplEvent()

to

send

the

business

object

//

with

the

info

pObj->setVerb(obj_verb);

if

((mySub->gotApplEvent(*pBusObj))

==

BON_FAIL)

{

//

Log

error

message

retcode

=

BON_FAIL;

break;

}

//

Allocate

statement

handle

for

the

SQL

//

statement

on

the

second

connection

rc

=

SQLAllocStmt(gHdbc2,

&hstmt2);

if

(rc

!=

SQL_SUCCESS

&&

rc

!=

SQL_SUCCESS_WITH_INFO)

{

//

Handle

ODBC

errors

hstmt2

=

(HSTMT)0;

retcode

=

BON_APPRESPONSETIMEOUT;

break;

}

//

Remove

the

event

from

the

event

table

//

This

will

execute

a

trigger

that

will

archive

//

the

event

in

the

archive

table

//

Use

the

REMOVE_EVENT_QUERY

macro.

sprintf(query,

REMOVE_EVENT_QUERY,

ev_id);

rc

=

SQLExecDirect(hstmt2,

query,

SQL_NTS);

if

(rc

!=

SQL_SUCCESS

&&

rc

!=

SQL_SUCCESS_WITH_INFO)

{

//

Handle

odbc

errors

retcode

=

BON_APPRESPONSETIMEOUT;

break;

}

else

{

//

Handle

odbc

errors

retcode

=

BON_APPRESPONSETIMEOUT;

break;

}

}

//

Clean

up

and

free

resources

associated

with

//

the

statement

handles

if

(hstmt1)

{

rc

=

SQLFreeStmt(hstmt1,

SQL_DROP);

}

if

(hstmt2)

{

rc

=

SQLFreeStmt(hstmt2,

SQL_DROP);

}

Figure

75.

Implementation

of

basic

logic

for

pollForEvents()

(Part

3

of

4)

192

Connector

Development

Guide

for

C++

Shutting

down

the

connector

In

the

C++

connector

library,

the

terminate()

method

is

defined

in

the

GenGlobals

class.

Typical

return

codes

used

in

terminate()

are

BON_SUCCESS

and

BON_FAIL.

Note:

It

is

important

that

the

terminate()

method

for

a

C++

connector

free

allocated

memory

and

close

the

connection

with

the

application.

Figure

76

shows

a

sample

terminate()

method

for

a

C++

connector.

Handling

errors

and

status

This

section

provides

the

following

information

about

how

the

methods

of

the

C++

connector

library

indicate

error

conditions:

v

“C++

return

codes”

v

“Return-status

descriptor”

on

page

195

Note:

You

can

also

use

error

logging

and

message

logging

to

handle

error

conditions

and

messages

in

your

connector.

For

more

information,

see

Chapter

6,

“Message

logging,”

on

page

133.

C++

return

codes

In

the

C++

connector

library,

the

outcome-status

constants

in

the

BusObjStatus.h

file

define

the

C++

return

codes.

Table

87

lists

the

C++

outcome-status

constants.

if

(ev_id)

{

delete

ev_id;

}

if

(obj_name)

{

delete

obj_name;

}

if

(obj_verb)

{

delete

obj_verb;

}

if

(query)

{

delete

query;

}

if

(key_value)

{

delete

key_value;

}

return

(retcode);

}

Figure

75.

Implementation

of

basic

logic

for

pollForEvents()

(Part

4

of

4)

int

ExampleGenGlob::terminate()

{

//

log

off

application

and

//

release

memory

and

other

resources

...

traceWrite(Tracing::LEVEL3,

“terminate()

completed.”,

0);

return

BON_SUCCESS;

}

Figure

76.

C++

terminate()

method

Chapter

7.

Implementing

a

C++

connector

193

Table

87.

C++

return

codes

Outcome-status

constant

Description

BON_SUCCESS

The

operation

succeeded.

BON_FAIL

The

operation

failed.

BON_APPRESPONSETIMEOUT

The

application

is

not

responding.

BON_BO_DOES_NOT_EXIST

The

connector

performed

a

Retrieve

operation,

but

the

entity

that

the

business

object

represents

does

not

exist

in

the

application

database.

BON_MULTIPLE_HITS

The

connector

found

multiple

matching

records

when

retrieving

using

non-key

values.

The

connector

returns

only

the

first

matching

record

in

a

business

object.

BON_FAIL_RETRIEVE_BY_CONTENT

The

connector

was

not

able

to

find

matches

for

retrieve

by

non-key

values.

BON_UNABLETOLOGIN

The

connector

is

unable

to

log

in

to

the

application.

BON_VALCHANGE

At

least

one

value

in

a

business

object

has

changed.

BON_VALDUPES

There

are

multiple

records

in

the

application

database

with

the

same

key

values.

BON_CONNECTOR_NOT_ACTIVE

The

connector

is

not

active;

it

has

been

paused.

BON_NO_SUBSCRIPTION_FOUND

No

subscriptions

exist

for

the

event.

Outcome-status

constants

are

provided

for

use

in

user

implementations

of

many

of

the

C++

virtual

methods,

as

Table

88

shows.

Although

your

code

can

return

these

values

from

within

any

method,

some

of

the

return

codes

were

designed

with

specific

uses

in

mind.

For

example,

VALCHANGE

informs

an

integration

broker

that

the

connector

is

sending

a

business

object

with

changed

values.

Table

88.

Outcome-status

values

for

C++

virtual

methods

Virtual

method

Possible

outcome-status

codes

init()

BON_SUCCESS,

BON_FAIL,

BON_UNABLETOLOGIN

doVerbFor()

BON_SUCCESS,

BON_FAIL,

BON_APPRESPONSETIMEOUT,

BON_VALCHANGE,

BON_VALDUPES,

BON_MULTIPLE_HITS,

BON_FAIL_RETRIEVE_BY_CONTENT,

BON_BO_DOES_NOT_EXIST

gotApplEvent()

BON_SUCCESS

,

BON_FAIL,

BON_CONNECTOR_NOT_ACTIVE,

BON_NO_SUBSCRIPTION_FOUND

pollForEvents()

BON_SUCCESS,

BON_FAIL,

BON_APPRESPONSETIMEOUT

terminate()

BON_SUCCESS

,

BON_FAIL

The

outcome-status

constant

that

the

connector

framework

receives

helps

to

determine

its

next

action,

as

follows:

v

If

the

outcome

status

is

BON_APPRESPONSETIMEOUT,

the

connector

framework

shuts

down

the

connector.

When

the

connector

framework

receives

this

outcome

status,

it

copies

the

BON_APPRESPONSETIMEOUT

status

into

the

return-status

descriptor

and

returns

this

descriptor

to

inform

the

connector

controller

that

the

application

is

not

responding.

Once

it

has

sent

this

return-status

descriptor,

the

connector

framework

stops

the

process

in

which

the

connector

runs.

A

system

administrator

must

fix

the

problem

with

the

application

and

restart

the

connector

to

continue

processing

events

and

business

object

requests.

v

For

all

other

outcome-status

values,

the

connector

framework

continues

execution

of

the

connector.

194

Connector

Development

Guide

for

C++

During

request

processing,

the

connector

framework

copies

the

outcome

status

into

the

status

field

of

the

return-status

descriptor

and

includes

this

descriptor

in

its

response

to

the

integration

broker.

It

continues

execution

of

the

connector.

For

some

outcome-status

values,

the

connector

framework

also

includes

a

response

business

object

in

its

response.

For

more

information,

see

“Updating

the

request

business

object”

on

page

168.

Important:

The

connector

framework

does

not

stop

execution

of

the

connector

when

it

receives

the

BON_FAIL

outcome-status

constant.

Return-status

descriptor

During

request

processing,

the

connector

framework

sends

an

empty

structure,

called

a

return-status

descriptor,

into

the

business

object

handler’s

doVerbFor()

method.

When

doVerbFor()

completes

verb

processing

(either

successfully

or

otherwise),

the

connector

framework

includes

the

return-status

descriptor

as

part

of

its

response

to

the

integration

broker.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

collaboration

can

access

the

information

in

this

return-status

descriptor

to

obtain

the

status

of

its

service

call

request.

Therefore,

the

doVerbFor()

can

provide

status

information

about

verb

processing

to

the

collaboration

by

setting

the

message

and

status

code

within

the

return-status

descriptor.

The

connector

framework

automatically

copies

the

outcome

status

that

doVerbFor()

returns

into

the

status

field

of

the

return-status

descriptor.

Therefore,

the

doVerbFor()

method

can

set

a

message

in

the

return-status

descriptor

but

it

should

not

set

the

status,

as

this

status

will

be

overwritten

when

the

connector

framework

copies

the

outcome

status

into

this

status

field.

For

more

information

about

the

return-status

descriptor

and

the

doVerbFor()

method,

see

“Populating

the

return-status

descriptor”

on

page

167.

Chapter

7.

Implementing

a

C++

connector

195

196

Connector

Development

Guide

for

C++

Chapter

8.

Adding

a

connector

to

the

business

integration

system

To

run

in

the

IBM

WebSphere

business

integration

system,

a

connector

must

be

defined

in

the

repository.

Pre-defined

adapters,

which

the

WebSphere

Business

Integration

Adapters

product

provides,

have

predefined

connector

definitions

in

the

repository.

A

system

administrator

need

only

configure

the

application

and

set

the

connector’s

configuration

properties

to

run

the

connector.

For

the

IBM

WebSphere

business

integration

system

to

be

able

to

access

a

connector

that

you

have

developed,

you

must

take

the

following

steps:

1.

Create

the

connector

definition

in

the

repository.

2.

If

WebSphere

MQ

will

be

used

for

messaging

between

connector

components,

add

message

queues

for

the

connector.

3.

Create

the

connector’s

initial

configuration

file.

4.

Create

the

connector’s

startup

script.

This

chapter

provides

information

on

adding

a

new

connector

to

the

IBM

WebSphere

business

integration

system.

This

chapter

includes

the

following

sections:

v

“Naming

the

connector”

v

“Compiling

the

connector”

on

page

198

v

“Creating

the

connector

definition”

on

page

200

v

“Creating

the

initial

configuration

file”

on

page

202

v

“Starting

up

a

new

connector”

on

page

203

Naming

the

connector

This

chapter

provides

suggested

naming

conventions

for

the

files

and

directories

used

in

connector

development.

Naming

conventions

provide

a

way

to

make

you

connector

files

more

easy

to

locate

and

identify.

Table

89

summarizes

the

suggested

naming

conventions

for

connector

files.

Many

of

these

files

are

based

on

the

connector

name,

which

should

uniquely

identify

it

within

the

WebSphere

business

integration

system.

This

name

(connName)

can

identify

the

application

or

technology

with

which

the

connector

communicates.

Table

89.

Suggested

naming

conventions

for

a

connector

Connector

file

Name

Connector

definition

connNameConnector

Connector

directory

ProductDir\connectors\connName

Initial

connector

configuration

file

File

name:

CN_connName.txt

Directory

name:

ProductDir\repository\connName

User-customized

connector

configuration

file

File

name:

CN_connName.txt

Directory

name:

ProductDir\connectors\connName

Connector

class

connNameGlobals.cpp

©

Copyright

IBM

Corp.

1997,

2003

197

Table

89.

Suggested

naming

conventions

for

a

connector

(continued)

Connector

file

Name

Connector

library

connDir\connName.dll

Java

package:

com.crossworlds.connectors.connName.

where

connDir

is

the

name

of

the

connector

directory,

as

defined

above.

Connector

startup

script

Windows

platforms:

connDir\start_connName.bat

UNIX-based

platforms:

connDir\connector_manager_connName.sh

where

connDir

is

the

name

of

the

connector

directory,

as

defined

above.

For

more

information

on

naming

conventions

for

connectors,

see

the

Naming

IBM

WebSphere

InterChange

Server

Components

guide.

Compiling

the

connector

Once

you

have

written

the

connector’s

application-specific

component,

you

must

compile

it

into

an

executable

format,

its

connector

library.

This

section

provides

information

on

how

to

compile

and

link

a

connector.

This

section

provides

the

following

information:

v

“Compiling

and

linking

a

C++

connector”

v

“Running

a

debug

version

of

a

C++

connector”

on

page

199

Compiling

and

linking

a

C++

connector

To

build

the

application-specific

component

of

the

connector,

you

need

to

include

the

connector

header

file,

include

any

other

required

header

files,

compile

the

source

files,

and

link

CwConnector.lib

to

create

the

connector’s

dynamically

loadable

library

(DLL).

Important:

1.

Previous

releases

of

IBM

WebSphere

InterChange

Server

and

WebSphere

Business

Integration

Adapters

provided

the

Cayenne

libraries

for

use

in

C++

connectors.

However,

with

this

release

(version

2.4

of

the

WebSphere

Business

Integration

Adapter

Framework)

the

Cayenne

libraries

have

been

replaced

by

Standard

Template

Libraries

(STL).

Therefore,

you

must

recompile

any

existing

custom

C++

connectors

so

that

they

use

the

new

STL.

2.

On

Windows

systems,

the

CwConnector.lib

file

is

provided

as

part

of

the

C++

Connector

Development

Kit

(CDK).

The

CDK

is

supported

only

on

Windows

systems.

Therefore,

creation

of

a

C++

connector

is

supported

only

on

Windows

systems.

On

a

UNIX-based

system,

you

cannot

compile

and

link

a

C++

connector;

however,

you

can

run

existing

C++

connectors.

On

a

Windows

system,

use

the

MicroSoft

Visual

C++

6.0

programming

environment

to

build

your

connector,

and

follow

these

instructions:

1.

Make

sure

that

the

system

PATH

variable

includes

the

C++

connector

library,

CwConnector.dll,

which

resides

in

the

bin

subdirectory

of

the

product

directory.

2.

In

the

Project

Settings

window

under

C/C++,

add

CDKIMPORT

to

the

Preprocessor

definitions

for

the

project.

198

Connector

Development

Guide

for

C++

3.

In

Project

Settings,

C/C++,

Additional

include

directories

under

the

Preprocessor

category,

add:

..\..\generic_include

Important:

Because

of

the

replacement

of

the

Cayenne

libraries

with

STL,

you

no

longer

need

to

include

the

cayenne_include

directory

in

your

C++

files.

In

addition,

you

can

no

longer

use

any

Cayenne

classes

or

methods

in

your

C++

connector.

4.

Define

the

information

displayed

in

the

Version

tab

of

the

Properties

window

for

your

connector

DLL.

Follow

these

steps:

a.

Create

a

file

named

ConnectorVersion.h

and

define

the

constants

for

your

connector,

such

as

Product

Name

and

Product

Version.

A

sample

for

this

file

is

located

in

the

following

subdirectory

of

the

product

directory:

DevelopmentKits\cdk\samples\sampleconnector\include

Note:

This

sample

ConnectorVersion.h

file

provides

values

for

the

Product

Name

and

Product

Version.

Make

sure

you

change

these

sample

values

to

values

that

are

appropriate

for

your

connector.

To

check

the

version

of

a

DLL,

right-click

on

the

DLL

and

choose

the

Properties>Version

tab.

The

correct

version

must

appear

here.

b.

In

the

project

file,

make

sure

that

the

following

file

is

added

to

the

project:

DevelopmentKits\cdk\ConnectorVersion.rc

c.

In

the

Additional

Resources

Include

section,

make

sure

the

following

include

directories

exist:

v

..\..\generic_include

v

the

include

directory

for

your

connector

The

Version

window

uses

the

files

ConnectorVersion.rc

and

generic_include\CxResourceVersion.h,

which

are

shipped

with

the

CDK.

You

need

to

define

the

ConnectorVersion.h

file

for

your

connector.

5.

In

the

Project

Setting

Link

tab,

add

the

appropriate

version

of

the

C++

connector

library

(CwConnector.lib)

to

your

project,

as

follows:

v

If

you

are

building

a

debug

version

of

your

connector,

add:

ProductDir\DevelopmentKits\cdk\lib\Debug\CwConnector.lib

v

If

you

are

building

a

release

version

of

your

connector,

add:

ProductDir\DevelopmentKits\cdk\lib\Release\CwConnector.lib

6.

Compile

and

link

the

connector.

7.

Create

the

C++

connector’s

library

file,

which

is

a

dynamically

loadable

library

(DLL).

The

suggested

naming

convention

for

the

connector

DLL

file

is

to

have

it

match

the

connector

name

(Table

89

on

page

197).

For

more

information,

see

“Naming

the

connector”

on

page

197.

For

example,

for

a

C++

connector

with

a

connector

name

of

MyCPP,

the

name

of

its

DLL

is:

MyCPP.dll

Running

a

debug

version

of

a

C++

connector

Use

the

MicroSoft

Visual

C++

6.0

programming

environment

to

run

a

debug

version

of

a

C++

connector.

Assuming

that

the

WebSphere

Business

Integration

Adapters

product

is

installed

into

a

directory

that

ProductDir

represents,

to

run

a

debug

version

of

a

C++

connector,

set

the

executable

for

the

debug

session

under

Project

Settings

to

the

following:

Chapter

8.

Adding

a

connector

to

the

business

integration

system

199

ProductDir\bin\java.exe

In

the

program

arguments,

set

the

debug

parameters

to:

-Duser.home=ProductDir

-classpath

ProductDir\lib\crossworlds.jar;ProductDir\lib\rt.jar;

ProductDir\lib\mq.jar

AppEndWrapper

-ddllName

-nconnectorName

-sICSinstanceName

Creating

the

connector

definition

To

run

in

the

IBM

WebSphere

business

integration

system,

a

connector

must

be

defined

in

the

repository.

Pre-defined

adapters,

which

the

WebSphere

Business

Integration

Adapters

product

provides,

have

predefined

connector

definitions

that

are

loaded

in

the

repository

at

installation

time.

To

run

a

predefined

connector,

a

system

administrator

need

only

configure

the

application

and

set

the

connector’s

configuration

properties.

However,

before

the

IBM

WebSphere

business

integration

system

can

access

a

connector

that

you

have

developed,

you

must

take

the

following

steps:

v

Create

a

connector

definition

to

define

the

connector

within

the

repository.

v

Create

an

initial

configuration

file

to

assist

users

in

connector

configuration

(optional).

Defining

the

connector

To

define

the

connector

within

the

WebSphere

business

integration

system,

you

create

a

connector

definition.

This

connector

definition

includes

the

following

information

to

define

the

connector

in

the

repository:

v

The

name

of

the

connector

definition

v

Supported

business

objects

and

associated

maps

v

Connector

configuration

properties

A

tool

called

Connector

Configurator

collects

this

information

and

stores

it

in

the

repository.

WebSphere

InterChange

Server

When

your

integration

broker

is

InterChange

Server,

the

repository

is

a

database

that

InterChange

Server

communicates

with

to

obtain

information

about

components

in

the

WebSphere

business

integration

system.

In

this

repository,

connector

definitions

reside.

These

connector

definitions

include

both

standard

and

connector-specific

connector

configuration

properties

that

the

connector

controller

and

the

client

connector

framework

require.

The

connector

can

also

have

a

local

configuration

file,

which

provides

configuration

information

for

the

connector

locally.

When

a

local

configuration

file

exists,

it

takes

precedence

over

the

information

in

the

InterChange

Server

repository.

You

update

the

connector

definitions

in

the

InterChange

Server

repository

with

Connector

Configurator

from

within

the

System

Manager

tool.

You

can

update

the

locale

configuration

file

with

the

standalone

version

of

Connector

Configurator,

which

resides

in

the

bin

subdirectory

of

your

product

directory.

200

Connector

Development

Guide

for

C++

WebSphere

MQ

Integrator

Broker

When

your

integration

broker

is

WebSphere

MQ

Integrator

Broker,

the

repository

is

a

directory

of

files

that

the

connector

framework

uses

to

obtain

information

about

components

of

the

WebSphere

business

integration

system.

In

this

repository,

connector

definitions

for

each

adapter

in

the

system

resides.

You

update

the

connector

definitions

in

the

local

repository

with

Connector

Configurator,

which

resides

in

the

bin

subdirectory

of

your

product

directory.

For

information

on

how

to

use

Connector

Configurator,

refer

to

Appendix

B,

“Connector

Configurator,”

on

page

325

The

connector

definition

name

The

connector

definition

name

uniquely

identifies

the

connector

within

the

WebSphere

business

integration

system.

By

convention,

a

connector

definition

name

usually

takes

the

following

form:

connNameConnector

where

connName

is

the

connector

name

(see

Table

89

on

page

197).

For

more

information

on

the

connector

name,

see

“Naming

the

connector”

on

page

197.

For

example,

if

the

connector

name

is

MyConn,

the

name

of

its

connector

definition

is

MyConnConnector.

Supported

business

objects

and

maps

A

connector

definition

must

specify

the

following

information

about

the

business

objects

that

the

connector

supports:

v

The

business

object

definitions

Each

business

object

that

the

connector

is

able

to

send

to

or

receive

from

the

integration

broker

must

be

specified

as

a

supported

business

object.

Connector

Configurator

provides

a

Supported

Business

Objects

tab

in

which

you

can

enter

the

connector’s

supported

business

objects.

Note:

All

application-specific

business

objects

that

the

connector

supports

must

be

defined

in

the

repository

before

you

can

include

them

as

supported

business

objects

in

the

connector

definition.

For

information

on

how

to

define

application-specific

business

objects,

see

the

Business

Object

Development

Guide.

v

Associated

maps

WebSphere

InterChange

Server

Only

the

connector

definition

for

a

connector

that

communicates

with

InterChange

Server

as

its

integration

broker

includes

the

maps

associated

with

the

connector.

Associated

maps

are

those

maps

that

convert

between

the

connector’s

application-specific

business

objects

and

the

appropriate

generic

business

objects.

Connector

Configurator

provides

an

Associated

Maps

tab

in

which

you

can

enter

the

connector’s

associated

maps.

Chapter

8.

Adding

a

connector

to

the

business

integration

system

201

Connector

configuration

properties

The

connector

definition

also

contains

the

connector

configuration

properties.

To

initialize

these

properties,

you

must

take

the

following

steps:

v

Assign

values

for

standard

connector

configuration

properties.

v

Define

any

connector-specific

configuration

properties

that

your

connector

uses

and

assign

them

values

as

appropriate.

Connector

Configurator

provides

two

tabs

for

specifying

connector

configuration

properties:

Standard

Properties

and

Connector-Specific

Properties.

For

more

information

on

connector

configuration

properties,

see

“Using

connector

configuration

property

values”

on

page

67..

Creating

the

initial

configuration

file

By

convention,

pre-defined

adapters

provide

an

initial

configuration

file

for

users

to

use

the

first

time

that

they

configure

the

adapter

with

Connector

Configurator.

The

suggested

name

for

this

configuration

file

is:

CN_connName.txt

where

connName

is

the

connector

name

(see

Table

89

on

page

197).

For

more

information

on

the

connector

name,

see

“Naming

the

connector”

on

page

197.

This

initial

configuration

file

resides

in

the

following

directory:

ProductDir\repository\connName

That

is,

the

repository

subdirectory

of

the

product

directory

contains

directories

for

each

connector.

Each

connector’s

directory

(connName)

is

named

with

its

unique

connector

name

and

within

this

directory

resides

the

initial

configuration

file

with

the

following

name.

For

users

to

configure

a

connector

that

you

have

developed,

you

can

provide

an

initial

configuration

file

for

your

new

connector.

As

part

of

your

connector

development,

you

have

probably

specified

the

settings

for

the

standard

configuration

properties

as

well

as

defining

any

connector-specific

configuration

properties.

This

connector

configuration

information

should

reside

in

your

repository.

However,

once

your

connector

is

moved

to

some

other

environment,

it

loses

access

to

this

repository.

Therefore,

you

should

create

an

initial

configuration

file

that

is

part

of

your

released

connector.

To

create

this

initial

configuration

file,

bring

up

Connector

Configurator

for

your

connector

and

save

its

configuration

in

the

following

file:

ProductDir\repository\connName\CN_connName.txt

Note:

These

steps

assume

that

during

the

course

of

development,

you

have

already

created

a

connector

configuration

file

(.cfg)

for

your

connector.

The

preceding

step

just

saves

this

connector

configuration

information

in

a

separate

file,

which

is

included

as

part

of

the

released

connector.

202

Connector

Development

Guide

for

C++

Starting

up

a

new

connector

To

start

up

the

connector,

you

execute

a

connector

startup

script.

As

Table

90

shows,

the

name

of

this

startup

script

depends

on

the

operating

system

which

you

are

using.

Table

90.

Startup

scripts

for

a

connector

Operating

system

Startup

script

UNIX-based

systems

connector_manager_connName

Windows

start_connName.bat

The

startup

script

supports

those

adapters

that

the

WebSphere

Business

Integration

Adapters

product

provides.

To

start

up

a

predefined

connector,

a

system

administrator

runs

its

startup

script.

The

startup

scripts

for

most

predefined

connectors

expect

the

following

command-line

arguments:

1.

The

first

argument

is

the

connector

name,

which

identifies

the

following:

v

The

name

of

the

connector’s

directory

under

the

connectors

subdirectory

of

the

product

directory

v

The

connector

library,

which

resides

in

the

connector’s

directory
2.

The

second

argument

is

the

name

of

the

integration

broker

instance

against

which

the

connector

runs.

WebSphere

InterChange

Server

When

your

integration

broker

is

InterChange

Server

(ICS),

the

startup

script

specifies

the

name

of

the

ICS

instance

against

which

your

connector

runs.

On

Windows

systems,

this

ICS

instance

name

(which

was

specified

in

the

installation

process)

appears

in

each

of

the

connector

shortcuts

of

the

startup

script.

WebSphere

MQ

Integrator

Broker

When

your

integration

broker

is

WebSphere

MQ

Integrator

Broker,

the

startup

script

specifies

the

name

of

the

WebSphere

MQ

Integrator

Broker

instance

against

which

your

connector

runs.

On

Windows

systems,

this

instance

name

(which

was

specified

in

the

installation

process)

appears

in

each

of

the

connector

shortcuts

of

the

startup

script.

3.

Optional

additional

startup

parameters

can

be

specified

on

the

command

line

and

are

passed

to

the

connector

runtime.

For

more

information

about

the

startup

parameters,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set

or

your

implementation

guide

in

the

WebSphere

Business

Integration

Adapters

documentation

set.

WebSphere

InterChange

Server

Before

you

start

a

connector,

InterChange

Server

must

be

running

for

the

connector

to

complete

its

initialization

and

obtain

its

business

objects

from

the

repository.

Chapter

8.

Adding

a

connector

to

the

business

integration

system

203

Before

you

can

start

up

a

connector

that

you

have

developed,

you

need

to

ensure

that

a

startup

script

supports

your

new

connector.

To

enable

a

startup

script

to

start

your

own

connector,

you

must

take

the

following

steps:

1.

Prepare

a

connector

directory

for

your

connector.

2.

Create

the

startup

script

for

your

connector.

For

Windows

systems,

also

create

a

shortcut

for

your

connector

startup.

3.

Set

up

the

startup

script

as

a

Windows

service

(optional).

The

following

sections

describe

each

of

these

steps.

Preparing

the

connector

directory

The

connector

directory

contains

the

runtime

files

for

your

connector.

To

prepare

the

connector

directory,

take

the

following

steps:

1.

Create

a

connector

directory

for

your

new

connector

under

the

connectors

subdirectory

of

the

product

directory:

ProductDir\connectors\connName

By

convention,

this

directory

name

matches

the

connector

name

(connName).

The

connector

name

is

a

string

that

uniquely

identifies

the

connector.

For

more

information,

see

“Naming

the

connector”

on

page

197.

2.

Move

your

connector’s

library

file

to

this

connector

directory.

A

C++

connector’s

library

file

is

a

DLL.

You

created

this

DLL

when

you

compiled

the

connector.

For

more

information,

see

“Compiling

and

linking

a

C++

connector”

on

page

198.

Creating

startup

scripts

As

Table

90

on

page

203

shows,

a

connector

requires

a

startup

script

for

the

system

administrator

to

start

execution

of

the

connector

process.

The

startup

script

to

use

depends

on

the

operating

system

on

which

you

are

developing

your

connector.

Startup

script

and

shortcut

on

Windows

systems

Starting

a

connector

on

a

Windows

system

involves

the

following

steps:

1.

Call

the

connector’s

startup

script,

start_connName.bat.

The

start_connName.bat

script

(where

connName

is

the

name

of

your

connector)

is

a

connector-specific

startup

script.

It

provides

connector-specific

information

(such

as

application-specific

libraries

and

their

locations).

By

convention,

this

script

resides

in

the

connector

directory:

ProductDir\connectors\connName

It

is

this

start_connName.bat

script

that

the

user

invokes

to

start

the

connector

on

a

Windows

system.

2.

Call

the

generic

connector-invocation

script,

start_adapter.bat

The

start_adapter.bat

file

is

generic

to

all

connectors.

It

performs

the

actual

invocation

of

the

connector

within

the

JVM.

It

resides

in

the

bin

subdirectory

of

the

product

directory.

The

start_connName.bat

script

must

call

the

start_adapter.bat

script

to

actually

invoke

the

connector.

Figure

77

shows

the

steps

to

start

a

connector

on

a

Windows

system.

204

Connector

Development

Guide

for

C++

When

a

WebSphere

Business

Integration

Adapters

Installer

installs

a

predefined

connector

on

a

Windows

system,

it

takes

the

following

steps:

v

Install

a

startup

script

for

the

predefined

connector.

v

Create

a

menu

option

for

the

predefined

connector

under

the

Programs

>

IBM

WebSphere

Business

Integration

Adapters

>

Adapters

>

Connectors

menu.

Important:

In

previous

releases,

C++

connectors

required

a

special

startup

script,

called

start_connector.bat.

With

this

release

(4.2.2

of

IBM

WebSphere

InterChange

Server

and

version

2.4

of

WebSphere

Business

Integration

Adapters),

Java

and

C++

connectors

can

use

the

same

startup

script:

start_connName.bat.

New

development

of

C++

connectors

should

use

start_connName.bat

as

the

startup

script.

However,

the

start_connector.bat

script

continues

to

be

supported

for

backward

compatibility.

To

provide

the

ability

to

start

up

your

own

connector,

you

must

duplicate

these

steps

by:

v

Generating

the

start_connName.bat

startup

script

and

putting

it

in

the

connector\connName

subdirectory

of

the

product

directory

v

Providing

a

menu

option

for

the

connector

under

the

Programs

>

IBM

WebSphere

Business

Integration

Adapters

>

Adapters

>

Connectors

menu.

Each

menu

option

is

a

shortcut

that

invokes

the

Windows

startup

script,

start_connName.bat,

for

the

particular

connector.

Creating

the

startup

script:

To

create

a

custom

connector

startup

script,

you

create

a

new

connector-specific

startup

script

called

start_connName.bat

(where

connName

is

your

C++

connector

name).

For

example,

if

your

C++

connector

has

a

connector

name

of

MyCPP,

its

startup

script

name

is

start_MyCPP.bat.

As

a

starting

point,

you

can

copy

the

startup-script

template,

which

is

located

in

the

following

file:

ProductDir\templates\start_connName.bat

Environment file:
CWSharedEnv.bat

Connector startup script:
start_ .batconnName

Connector

JVM

1

3

Connector invocation script:
start_adapter.bat

2

Figure

77.

Starting

a

connector

on

a

Windows

system

Chapter

8.

Adding

a

connector

to

the

business

integration

system

205

Figure

78.

shows

a

sample

of

the

contents

of

the

startup-script

template

for

Windows.

Please

consult

the

version

of

this

file

released

with

your

product

for

the

most

current

contents.

By

convention,

the

start_connName.bat

script

has

the

standard

syntax

shown

in

Figure

79,

with

connName

being

the

name

of

the

connector

and

ICSinstance

being

the

name

of

the

InterChange

Server

instance.

As

the

connector

developer,

you

control

the

content

of

start_connName.bat.

Therefore,

you

can

change

the

syntax

of

your

connector

startup

script.

However,

if

you

change

this

standard

syntax,

make

sure

that

all

information

that

start_adapter.bat

requires

is

available

at

the

time

of

its

invocation

within

start_connName.bat.

The

startup

script

with

the

standard

syntax

makes

the

following

assumptions

about

your

connector’s

runtime

files

based

on

the

connector

name

(connName):

v

The

connector

name

is

the

same

as

name

of

the

connector

directory

under

the

connectors

subdirectory

of

the

product

directory

v

The

connector

name

is

the

same

as

the

C++

connector’s

library

file

(its

DLL:

connName.dll),

which

resides

in

the

connector

directory

For

example,

for

the

MyCPP

connector

to

meet

these

assumptions,

its

runtime

files

must

reside

in

the

ProductDir\connectors\MyCPP

directory

and

its

DLL

must

reside

in

that

directory

with

the

name

MyCPP.dll.

If

y

our

connector

cannot

meet

these

assumptions,

you

must

customize

its

startup

script

to

provide

the

appropriate

information

to

the

generic

connector-invocation

script,

start_adapter.bat.

In

this

start_connName.bat

file,

take

the

following

steps:

1.

Call

the

CWConnEnv.bat

environment

file

to

initialize

the

startup

environment.

REM

A

sample

of

start_connName.bat

which

calls

start_adapter.bat

@echo

off

call

"%ADAPTER_RUNTIME%"\bin\wbia_connEnv.bat

setlocal

REM

If

required,

goto

the

connector

specific

directory.

CONNDIR

is

defined

RED

by

caller

cd

/d

%CONNDIR%

REM

set

variables

that

need

to

pass

to

start_adapter.bat

REM

set

JVMArgs=

REM

set

JCLASSES=

REM

set

LibPath=

REM

set

ExtDirs=

REM

A

sample

to

start

a

C++

connector

REM

call

start_adapter.bat

-nconnName

-sServerName

-dconnectorDLLfile

-f...

REM

-p...

-c...

...

REM

A

sample

to

start

a

Java

connector

call

start_adapter.bat

-nconnName

-sserverName

-lconnectorSpecificClasses

-f...

-p...

-c...

...

endlocal

Figure

78.

Sample

contents

of

the

startup-script

template

for

Windows

start_connName

connName

ICSinstance

Figure

79.

Standard

syntax

for

connector

startup

script

206

Connector

Development

Guide

for

C++

2.

Move

into

the

connector

directory.

3.

Set

the

startup

environment

variables

within

the

startup

script

with

any

connector-specific

information

and

any

connector-specific

variables.

4.

Call

the

start_adapter.bat

script

to

invoke

the

connector.

The

following

sections

describe

each

of

these

steps.

Calling

the

environment

file:

The

CWConnEnv.bat

file

contains

environment

settings

for

the

IBM

Java

Object

Request

Broker

(ORB)

and

the

IBM

Java

Runtime

Environment

(JRE).

The

following

line

invokes

this

environment

file

within

the

startup

script:

call

"%ADAPTER_RUNTIME%"\bin\CWConnEnv

Moving

into

the

connector

directory:

The

start_connName.bat

script

must

change

to

the

connector

directory

before

it

calls

the

start_adapter.bat

script.

The

connector

directory

contains

the

connector-specific

startup

script

as

well

as

other

files

needed

at

connector

startup.

You

can

define

the

name

of

this

connector

directory

any

way

you

wish.

However,

as

discussed

in

“Preparing

the

connector

directory”

on

page

204,

by

convention

the

connector

directory

name

matches

the

connector

name.

If

the

start_connName.bat

script

uses

the

standard

syntax

(see

Figure

79

on

page

206),

the

connector

name

is

passed

in

as

the

first

argument

(%1).

In

this

case,

the

following

lines

move

into

the

connector

directory:

REM

set

the

directory

where

the

specific

connector

resides

set

CONNDIR=%CROSSWORLDS%\connectors\%1

REM

goto

the

connector

specific

drive

&

directory

cd

/d

%CONNDIR%

Alternatively,

because

the

connector

name

is

used

in

several

components

of

the

connector,

you

can

define

an

environment

variable

to

specify

this

connector

name

and

then

evaluate

this

environment

variable

for

all

subsequent

uses

of

the

connector

name

within

the

start_connName.bat

script.

The

lines

to

set

the

environment

variables

for

the

connector

name

and

connector

directory

could

be

as

follows:

REM

set

the

name

of

the

connector

set

CONNAME=%1

REM

set

the

directory

where

the

specific

connector

resides

set

CONNDIR=%CROSSWORLDS%\connectors\%CONNAME%

REM

goto

the

connector

specific

drive

&

directory

cd

/d

%CONNDIR%

Setting

the

environment

variables:

In

the

start_connName.bat

script,

you

must

provide

any

of

the

connector-specific

information

that

the

environment

variables

listed

in

Table

91

specify.

Table

91.

Environment

variables

in

the

connector

startup

script

Variable

name

Value

ExtDirs

Specify

the

location

of

any

application-specific

jar

files.

JCLASSES

Specify

any

application-specific

jar

files.

Jar

files

are

separated

with

a

semicolon

(;).

JVMArgs

Add

any

arguments

to

be

passed

to

the

Java

Virtual

Machine

(JVM).

LibPath

Specify

any

application-specific

library

paths.

Chapter

8.

Adding

a

connector

to

the

business

integration

system

207

The

start_adapter.bat

file

uses

the

information

in

Table

91

as

follows:

v

It

appends

the

JCLASSES

and

LibPath

environment

variables

to

the

appropriate

variables

within

the

connector

framework.

v

It

sets

the

external

directories

(java.ext.dirs)

with

the

ExtDirs

environment

variable.

v

It

includes

the

JVMArgs

environment

variable

in

its

list

of

arguments

it

passes

to

the

JVM.

In

addition

to

the

environment

variables

in

Table

91,

you

can

also

define

your

own

connector-specific

environment

variables.

Such

variables

are

useful

for

information

that

can

change

from

release

to

release.

You

can

set

the

variable

to

a

value

appropriate

for

this

release

and

then

include

the

variable

in

the

appropriate

line

of

the

startup

script.

If

the

information

changes

in

the

future,

you

only

have

to

change

the

variable’s

value.

You

do

not

have

to

locate

all

lines

that

use

this

information.

Invoking

the

connector:

To

actually

invoke

the

connector

within

the

JVM,

the

start_connName.bat

script

must

call

the

start_adapter.bat

script.

The

start_adapter.bat

script

provides

information

to

initialize

the

necessary

environment

for

the

connector

runtime

(which

includes

the

connector

framework)

with

its

startup

parameters.

Therefore,

you

must

provide

the

appropriate

startup

parameters

to

start_adapter.bat,

including:

v

All

required

startup

parameters:

–

To

specify

the

name

of

the

connector

definition:

-n

If

the

name

of

the

connector

is

passed

in

as

the

first

argument

(%1)

to

the

start_connName.bat

script

(see

Figure

79

on

page

206),

the

-n

startup

parameter

can

be

specified

as

follows:

-n%1Connector

If

you

define

an

environment

variable

for

the

connector

name

(such

as

CONNAME),

this

-n

parameter

could

appear

as

follows:

-n%CONNAME%Connector

–

To

specify

the

name

of

the

InterChange

Server

instance:

-s

If

the

name

of

the

ICS

instance

is

passed

in

as

the

second

argument

(%2)

to

the

start_connName.bat

script

(see

Figure

79

on

page

206),

the

-s

startup

parameter

can

be

specified

as

follows:

-s%2

Other

integration

brokers

When

your

integration

broker

is

WebSphere

MQ

Integrator

Broker,

WebSphere

Integration

Message

Broker,

or

WebSphere

Application

Server,

the

-c

option

is

also

a

required

startup

parameter.

v

Language-specific

startup

parameters

required

for

a

C++

connector:

To

specify

the

name

of

the

connector

DLL:

-d

For

example,

if

you

follow

the

recommended

naming

conventions,

the

language-specific

parameter

for

the

C++

connector

name

is

MyCPP

would

be:

-dMyCPP

If

you

define

an

environment

variable

for

the

connector

name

(such

as

CONNAME),

this

-d

parameter

could

appear

as

follows:

-d%CONNAME%

208

Connector

Development

Guide

for

C++

v

Any

optional

startup

parameters

that

apply

to

all

invocations

of

your

connector:

-c,

-f,

-p,

-t,

-x

For

more

information

about

the

startup

parameters,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set

or

your

implementation

guide

in

the

WebSphere

Business

Integration

Adapters

documentation

set.

The

syntax

for

the

call

to

start_adapter.bat

should

have

the

following

format:

call

start_adapter.bat

-nconnName

-sICSinstance

languageSpecificParams

-cCN_connNameConnector.cfg

-...

For

example,

the

following

line

invokes

the

MyCPP

connector:

call

start_adapter.bat

-dMyCPP

-nMyCPP

-sICSserver

-cMyCPPConnector.cfg

-...

Note:

The

preceding

command

line

assumes

that

the

connector

is

running

against

an

InterChange

Server

instance

whose

name

is

ICSserver.

If

the

connector

runs

against

an

instance

of

WebSphere

MQ

Integrator

Broker

or

WebSphere

Message

Broker,

that

instance

name

would

need

to

appear

in

the

command

line.

With

the

use

of

the

CONNAME

environment

variable

to

hold

the

connector

name,

this

call

can

be

generalized

to

the

following:

call

start_adapter.bat

-n%CONNAME%

-s%2

languageSpecificParams

-cCN_%CONNAME%Connector.cfg

-...

For

the

call

to

start_adapter.bat,

keep

the

following

points

in

mind:

v

Make

sure

that

the

line

to

invoke

the

connector

runtime

is

all

on

one

line

in

your

startup

script;

that

is,

no

carriage

returns

should

exist

at

the

line

breaks

shown

in

the

sample

startup

line.

v

The

order

of

the

parameters

listed

in

the

call

to

start_adapter.bat

is

not

important.

Creating

the

shortcut:

A

shortcut

enables

a

connector

to

be

started

from

a

menu

option

within

Programs

>

IBM

WebSphere

Business

Integration

Adapters

>

Adapters

>

Connectors.

The

shortcut

should

list

the

call

to

the

start_connName.bat

script.

If

this

script

uses

the

standard

syntax

(see

Figure

79

on

page

206),

the

shortcut

would

have

the

following

form:

ProductDir\connectors\start_connName

connName

ICSinstance

If

you

define

your

own

syntax

for

your

start_connName.bat

script,

you

must

ensure

that

the

shortcut

uses

this

custom

syntax.

If

your

menu

already

contains

a

shortcut

for

a

C++

connector

that

uses

the

start_connName.bat

startup

script,

an

easy

way

to

create

a

shortcut

is

to

copy

this

existing

connector’s

shortcut

and

edit

the

shortcut

properties

to

change

the

connector

name

or

add

any

other

startup

parameters.

For

example,

for

the

MyCPPconnector

that

uses

the

standard

syntax

for

its

startup

script,

you

could

create

the

following

shortcut:

ProductDir\bin\start_MyCPP.bat

MyCPP

ICSinstance

Chapter

8.

Adding

a

connector

to

the

business

integration

system

209

Note:

The

preceding

command

line

assumes

that

the

connector

is

running

against

an

InterChange

Server

instance

whose

name

is

ICSinstance.

If

the

connector

runs

against

a

WebSphere

MQ

Integrator

Broker

instance,

that

instance

name

would

appear

in

the

shortcut

command

line.

Startup

script

on

UNIX

systems

The

Connector

Development

Kit

(CDK)

is

supported

only

on

Windows

systems.

It

is

not

supported

on

UNIX-based

systems.

Because

creation

of

a

C++

connector

is

not

supported

on

a

UNIX-based

system,

you

do

not

need

to

create

startup

scripts

for

such

a

connector.

Starting

a

connector

as

a

Windows

service

You

can

set

up

a

connector

to

run

as

a

Windows

service

that

can

be

started

and

stopped

by

a

remote

administrator.

For

more

information,

see

the

System

Installation

Guide

for

Windows

in

the

IBM

WebSphere

InterChange

Server

documentation

set

or

your

implementation

guide

in

the

WebSphere

Business

Integration

Adapters

documentation

set.

Note:

If

you

are

using

InterChange

Server

as

your

integration

broker

and

you

want

to

use

the

automatic-and-remote

restart

feature

with

the

connector,

do

not

start

connector

as

a

Windows

service.

Instead,

start

the

MQ

Trigger

Monitor

as

a

service.

For

more

information,

see

the

System

Administration

Guide.

210

Connector

Development

Guide

for

C++

Part

3.

C++

connector

library

API

reference

©

Copyright

IBM

Corp.

1997,

2003

211

212

Connector

Development

Guide

for

C++

Chapter

9.

Overview

of

the

C++

connector

library

The

C++

connector

library

include

class

libraries

that

you

need

to

use

when

developing

a

connector.

This

connector

library

contains

predefined

classes

for

connectors

in

C++.

You

use

these

class

libraries

to

derive

connector

classes

and

methods.

The

class

libraries

also

provide

utilities,

such

as

methods

to

implement

tracing

and

logging

services.

For

the

development

of

a

C++

connector,

the

C++

Connector

Development

Kit

(CDK)

provides

the

following

versions

of

the

C++

connector

library:

v

CwConnector.dll

–

A

dynamic

link

library

that

contains

C++

classes

and

methods

that

provide

connectors

with

interfaces

and

utilities

for

connector

initialization,

business

object

handling,

and

interaction

with

InterChange

Server.

v

CwConnector.lib

–

Export

library

for

CwConnector.dll

Important:

Because

the

CDK

is

supported

only

on

Windows

systems,

creation

of

a

C++

connector

is

supported

only

on

Windows

systems.

These

CwConnector.lib

and

CwConnector.dll

files

reside

in

the

following

subdirectory

of

the

product

directory:

DevelopmentKits\cdk\lib

Within

this

directory,

the

Release

and

Debug

subdirectories

include

release

and

debug

versions

of

these

development

libraries.

Note:

For

instructions

on

building

a

C++

connector

to

run

on

Windows,

see

“Compiling

and

linking

a

C++

connector”

on

page

198..

Classes

Table

92

lists

the

classes

in

the

C++

connector

library.

Table

92.

Classes

in

the

C++

connector

library

Class

Description

Page

BOAttrType

Represents

an

attribute

descriptor,

which

contains

information

about

the

properties

of

an

attribute

215

BOHandlerCPP

Represents

the

base

class

for

a

business

object

handler.

You

extend

this

class

to

define

one

or

more

business

object

handlers

for

your

connector.

227

BusinessObject

Represents

a

business

object

instance.

It

provides

access

to

the

names

and

values

of

attributes

237

BusObjContainer

Represents

an

array

of

business

objects.

It

provides

access

to

elements

of

the

business

object

array

257

BusObjSpec

Represents

a

business

object

definition.

It

provides

access

to

application-specific

information

for

the

business

object

as

well

as

attribute

properties

261

CxMsgFormat

Provides

support

for

internationalized

messages.

This

class

has

been

deprecated.

267

CxVersion

Represents

object

versions

for

business

objects

269

GenGlobals

Represents

the

base

class

for

a

connector.

You

extend

this

class

to

define

your

connector

class

and

implement

the

required

virtual

methods

277

©

Copyright

IBM

Corp.

1997,

2003

213

Table

92.

Classes

in

the

C++

connector

library

(continued)

Class

Description

Page

ReturnStatusDescriptor

Represents

a

return-status

descriptor,

which

contains

error

and

informational

messages

295

StringMessage

Provides

methods

for

accessing

the

contents

of

a

StringMessage

object.

303

SubscriptionHandlerCPP

Represents

a

subscription

handler,

which

handles

subscription

management

for

the

connector.

299

Tracing

Provides

tracing

services

305

Note:

The

BusObjAndSpecSerializer

class

is

part

of

the

CwConnector.dll

file.

However,

it

is

only

for

internal

use.

Do

not

use

this

class

or

its

methods

when

developing

a

connector.

214

Connector

Development

Guide

for

C++

Chapter

10.

BOAttrType

class

The

BOAttrType

class

represents

attributes

of

business

objects.

Each

instance

of

the

BOAttrType

class

is

an

attribute

descriptor,

which

contains

information

about

the

properties

of

an

attribute.

You

can

access

attribute

descriptors

through

either

the

business

object

(BusinessObject

instance)

or

the

business

object

definition

(BusObjSpec

instance).

Through

the

methods

of

the

BOAttrType

class,

you

can

get

property

information,

such

as

the

name,

type,

properties,

and

application-specific

information,

for

each

attribute.

The

header

file

for

this

class

is

BOAttrType.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

The

BOAttrType

class

contains

the

following:

v

“Attribute-type

constants”

v

“Member

methods”

Attribute-type

constants

The

BOAttrType

class

defines

numeric

and

type

equivalents

for

attribute

types.

Table

93

summarizes

the

attribute-type

constants

in

the

BOAttrType

class.

Table

93.

Static

constants

of

the

BOAttrType

class

Attribute

data

type

Numeric

attribute-type

constant

String

attribute-type

value

Boolean

BOOLEAN

“Boolean”

Business

object:

multiple

cardinality

N/A

Business

object:

single

cardinality

N/A

Date

DATE

“Date”

Double

DOUBLE

“Double”

Float

FLOAT

“FLFS

Integer

INTEGER

INTSTRING

Long

text

LONGTEXT

LONGTEXTSTRING

Object

OBJECT

String

STRING

STRSTRING

Member

methods

The

BOAttrType

class

defines

methods

that

provide

access

to

an

attribute

within

a

business

object.

Table

94

summarizes

the

methods

in

the

BOAttrType

class.

Table

94.

Member

methods

of

the

BOAttrType

class

Member

method

Description

Page

BOAttrType()

Creates

an

instance

of

the

BOAttrType

class,

which

a

business

object

definition

can

use

as

an

attribute

of

a

business

object.

216

getAppText()

Retrieves

the

application-specific

information

for

an

attribute.

216

getBOVersion()

Retrieves

the

version

of

an

attribute’s

business

object

definition.

217

getCardinality()

Retrieves

the

number

of

child

business

objects,

1

or

n,

that

an

attribute

can

reference.

217

getDefault()

Retrieves

the

default

value

of

an

attribute.

218

©

Copyright

IBM

Corp.

1997,

2003

215

Table

94.

Member

methods

of

the

BOAttrType

class

(continued)

Member

method

Description

Page

getMaxLength()

Retrieves

the

maximum

length

of

an

attribute

value.

218

getName()

Retrieves

the

name

of

an

attribute.

218

getRelationType()

Retrieves

the

type

of

relationship

between

a

parent

business

object

and

a

child

business

object.

219

getTypeName()

Retrieves

the

name

of

the

data

type

of

an

attribute.

219

getTypeNum()

Retrieves

the

integer

that

specifies

the

data

type

of

an

attribute.

220

hasCardinality()

Determines

whether

an

attribute

has

a

specified

cardinality.

221

hasName()

Determines

whether

an

attribute

has

a

specified

name.

221

hasTypeName()

Determines

whether

the

data

type

of

an

attribute

has

a

specified

type

name.

222

isForeignKey()

Determines

whether

an

attribute

is

a

foreign

key

value

in

the

application.

222

isKey()

Determines

whether

an

attribute

value

is

a

key

value

in

the

application.

222

isMultipleCard()

Determines

whether

an

attribute

can

reference

multiple

child

business

objects.

223

isObjectType()

Determines

whether

the

data

type

of

an

attribute

is

a

business

object

type.

223

isRequired()

Determines

whether

an

attribute

is

required

for

a

business

object.

224

isType()

Determines

whether

an

attribute

has

a

specified

data

type.

224

BOAttrType()

Creates

an

instance

of

the

BOAttrType

class,

which

is

an

attribute

descriptor

a

business

object

definition

can

use

as

an

attribute

of

a

business

object.

Syntax

public

BOAttrType();

Return

values

A

newly

instantiated

attribute

descriptor,

which

is

an

instance

of

the

BOAttrType

class.

Notes

The

BusObjSpec()

constructor

in

the

BusObjSpec

class

instantiates

the

attribute

descriptors

for

each

attribute

in

a

business

object

definition.

To

retrieve

information

about

attribute

properties,

use

the

get

methods

of

the

BOAttrType

class.

See

also

getAttrDesc(),

getAttribute()

getAppText()

Retrieves

the

application-specific

information

for

an

attribute.

Syntax

char

*

getAppText();

216

Connector

Development

Guide

for

C++

Parameters

None.

Return

values

A

character

string

that

contains

application-specific

information

for

the

attribute.

Notes

You

can

use

the

getAppText()

method

to

retrieve

the

value

of

the

AppSpecificText

property

of

a

business

object

definition

attribute.

If

there

is

no

application-specific

information,

the

getAppText()

method

returns

an

empty

string

(“

“).

getBOVersion()

Retrieves

the

version

of

the

business

object

definition

that

a

child

business

object

references.

Syntax

CXVersion

getBOVersion();

Parameters

None.

Return

values

The

version

of

a

business

object

definition.

Notes

You

can

use

the

getBOVersion()

method

to

determine

the

business

object

definition

for

a

child

business

object.

The

getBOVersion()

method

returns

the

version

information

in

a

CxVersion

object.

You

can

use

methods

of

the

CxVersion

class

to

obtainversion

information.

Note:

This

operation

applies

only

to

attributes

that

specify

a

contained

business

object.

If

the

attribute

does

not

contain

a

business

object,

the

getBOVersion()

method

returns

a

version

string

with

a

default

value

of

0.0.0.

getCardinality()

Retrieves

the

cardinality

of

an

attribute.

Syntax

char

*

getCardinality();

Parameters

None.

Return

values

The

cardinality

of

an

attribute:

1

Indicates

that

the

attribute

has

single

cardinality:

it

can

reference

one

child

business

object.

Chapter

10.

BOAttrType

class

217

n

Indicates

that

the

attribute

has

multiple

cardinality:

it

can

reference

multiple

child

business

objects.

Notes

Cardinality

defines

whether

an

attribute

references

a

single

child

business

object

or

an

array

of

child

business

objects.

This

operation

applies

only

to

attributes

that

contain

a

business

object.

If

the

attribute

does

not

contain

a

business

object,

the

getCardinality()

method

returns

the

value

1.

See

also

hasCardinality(),

isMultipleCard()

getDefault()

Retrieves

the

default

value

of

an

attribute.

Syntax

char

*

getDefault();

Parameters

None.

Return

values

The

default

value

of

an

attribute.

If

the

attribute’s

default

value

is

not

set,

the

getDefault()

method

returns

an

empty

string

(“

“).

getMaxLength()

Retrieves

the

maximum

length

of

an

attribute

from

the

business

object

definition.

Syntax

int

getMaxLength();

Parameters

None.

Return

values

An

integer

that

specifies

the

maximum

length,

in

bytes,

that

an

attribute

value

can

have.

Notes

If

the

maximum

length

is

0

(zero)

there

is

no

length

restriction

on

the

attribute.

getName()

Retrieves

the

name

of

an

attribute.

Syntax

char

*

getName();

218

Connector

Development

Guide

for

C++

Parameters

None.

Return

values

A

character

string

that

contains

the

name

of

the

attribute.

Notes

You

can

use

the

getName()

method

to

retrieve

the

name

of

an

attribute.

Examples

//

Get

the

business

object

definition

for

the

business

object

BusinessObject

*pBusObj

=

new

BusinessObject

("Example");

BusObjSpec

*theSpec

=

pBusObj->getSpecFor();

BOAttrType

*theAttr;

for

(int

i=0;

i

<

theSpec->getAttributeCount();

i++)

{

//

Determine

Attribute

Name

theAttr

=

theSpec->getAttribute(i);

//

Set

the

attribute

values

to

Fred

pBusObj->setAttrValue(theAttr->getName(),

"Fred”

BOAttrType::STRING);

}

See

also

hasName()

getRelationType()

Retrieves

the

type

of

relationship

between

a

parent

business

object

and

a

child

business

object.

Syntax

char

*

getRelationType();

Parameters

None.

Return

values

A

relationship

type.

Currently

the

only

relationship

type

is

Containment,

which

indicates

that

the

parent

business

object

contains

one

or

multiple

child

business

objects.

If

the

attribute

is

not

a

child

business

object,

the

getRelationType()

method

returns

a

null

value.

See

also

hasCardinality(),

isMultipleCard(),

isObjectType()

getTypeName()

Retrieves

the

name

of

the

data

type

of

an

attribute

as

a

string.

Chapter

10.

BOAttrType

class

219

Syntax

char

*

getTypeName();

Parameters

None.

Return

values

The

string

type

name

for

the

data

type

of

the

attribute.

The

getTypeName()

method

returns

the

attribute-type

strings

shown

in

Table

96.

Table

95.

String

attribute-type

values

Attribute

data

type

String

attribute

type

Boolean

"Boolean"

Date

"Date"

Double

"Double"

Float

"Float"

Integer

"Integer"

Long

text

"LongText"

Object

"Object"

String

"String"

See

also

getTypeNum(),

hasTypeName(),

isType()

getTypeNum()

Retrieves

the

numeric

type

code

for

the

data

type

of

the

current

attribute.

Syntax

int

getTypeNum();

Parameters

None.

Return

values

The

numeric

type

code

for

the

data

type

of

the

attribute.

Compare

this

integer

value

with

the

attribute-type

constants

shown

in

Table

96

to

determine

the

type.

Table

96.

Numeric

attribute-type

constants

Attribute

data

type

Numeric

attribute-type

constant

Boolean

BOOLEAN

Date

DATE

Double

DOUBLE

Float

FLOAT

Integer

INTEGER

Long

text

LONGTEXT

Object

OBJECT

String

STRING

220

Connector

Development

Guide

for

C++

Note:

The

BOAttrType

class

defines

the

numeric

attribute-type

constants

listed

in

Table

96.

Examples

if

(theSpec->getAttribute(i)->getTypeNum()

==

BOAttrType::STRING)

{

...

}

See

also

getTypeName(),

isType()

hasCardinality()

Determines

whether

an

attribute

has

a

specified

cardinality.

Syntax

unsigned

char

hasCardinality(char

*

card);

Parameters

card

[in]

Is

the

cardinality

value

to

use

for

checking.

Valid

cardinality

values

are:

1

-

single

cardinality

n

-

multiple

cardinality

Return

values

TRUE

if

the

attribute

has

the

specified

cardinality

or

FALSE

if

it

does

not.

Notes

This

operation

applies

only

to

attributes

that

contain

child

business

objects.

If

you

specify

the

cardinality

as

null,

the

hasCardinality()

method

returns

FALSE.

See

also

getCardinality(),

getRelationType(),

isMultipleCard()

hasName()

Determines

whether

an

attribute

has

the

specified

name.

Syntax

unsigned

char

hasName(char

*

name);

Parameters

name

[in]

Is

the

name

of

an

attribute.

Return

values

Returns

TRUE

if

the

attribute

has

the

name

that

you

specify

or

FALSE

if

it

does

not.

Chapter

10.

BOAttrType

class

221

Notes

You

can

use

the

hasName()

method

to

determine

whether

a

business

object

definition

uses

the

attribute

that

you

name.

If

you

specify

the

name

as

null,

the

hasName()

method

returns

FALSE.

See

also

getName()

hasTypeName()

Determines

whether

an

attribute

has

a

specified

data

type.

Syntax

unsigned

char

*

hasTypeName(char

*

name);

Parameters

name

[in]

Is

the

name

of

a

data

type

for

an

attribute.

For

a

list

of

valid

string

attribute-type

values,

see

Table

95

on

page

220.

Return

values

Returns

TRUE

if

the

attribute

has

the

data

type

that

you

specify

or

FALSE

if

it

does

not.

Notes

You

can

use

the

hasTypeName()

method

to

determine

whether

a

business

object

definition

uses

the

data

type

you

have

named

for

this

attribute.

If

you

specify

the

name

as

null,

the

hasTypeName()

method

returns

FALSE.

See

also

getTypeName()

isForeignKey()

Determines

whether

an

attribute

value

is

a

foreign

key

value

in

the

application.

Syntax

unsigned

char

isForeignKey();

Parameters

None.

Return

values

Returns

TRUE

if

the

attribute

is

a

foreign

key

field

of

the

business

object

or

FALSE

if

the

attribute

is

not

a

foreign

key

field.

isKey()

Determines

whether

an

attribute

value

is

a

key

value

in

the

application.

222

Connector

Development

Guide

for

C++

Syntax

unsigned

char

isKey();

Parameters

None.

Return

values

Returns

TRUE

if

the

attribute

is

a

key

field

of

the

business

object

or

FALSE

if

the

attribute

is

not

a

key

field.

Notes

You

can

use

the

isKey()

method

to

find

all

the

key

attributes

for

a

business

object.

isMultipleCard()

Determines

whether

an

attribute

has

multiple

cardinality.

Syntax

unsigned

char

isMultipleCard();

Parameters

None.

Return

values

TRUE

if

the

attribute

has

multiple

cardinality

or

FALSE

if

it

does

not.

Notes

This

operation

applies

only

to

attributes

that

contain

child

business

objects.

If

the

attribute

is

a

simple

one

without

a

child

business

object,

the

isMultipleCard()

method

returns

FALSE.

See

also

See

also

the

descriptions

of

the

getCardinality()

and

hasCardinality()

methods.

isObjectType()

Determines

if

an

attribute’s

data

type

is

an

object

type;

that

is,

if

it

is

a

complex

attribute

(an

array

or

a

subobject).

Syntax

unsigned

char

isObjectType();

Parameters

None.

Return

values

TRUE

if

the

attribute

has

a

business

object

type

or

FALSE

if

it

does

not.

Chapter

10.

BOAttrType

class

223

Notes

An

attribute

that

has

a

business

object

data

type

refers

to

a

child

business

object.

isRequired()

Determines

whether

a

business

object

requires

a

value

for

an

attribute.

Syntax

unsigned

char

isRequired();

Parameters

None.

Return

values

Returns

TRUE

if

the

attribute

is

required

for

the

business

object

or

FALSE

if

it

is

not.

Notes

You

can

use

the

isRequired()

method

to

find

all

the

required

attributes

for

a

business

object.

isType()

Determines

whether

an

attribute

has

the

integer

data

type

that

you

specify.

Syntax

unsigned

char

isType(int

type);

Parameters

type

[in]

Is

one

of

the

following

attribute-type

constants,

which

specifies

an

attribute

data

type:

BOAttrType::OBJECT

BOAttrType::BOOLEAN

BOAttrType::INTEGER

BOAttrType::FLOAT

BOAttrType::DOUBLE

BOAttrType::STRING

BOAttrType::DATE

BOAttrType::LONGTEXT

Notes

You

can

use

the

isType()

method

to

find

an

attribute

of

a

certain

data

type

in

a

business

object

definition.

If

you

specify

an

invalid

data

type,

the

isType()

method

returns

FALSE.

Examples

char

*cp

=

NULL;

if(getTheSpec()->getAttribute(name)->isType(BOAttrType::STRING))

{

cp

=

new

char[strlen(newval)+1];

224

Connector

Development

Guide

for

C++

strcpy(cp,

newval);

Values[getTheSpec()->getAttributeIndex(name)]

=

cp;

}

See

also

getTypeNum()

Chapter

10.

BOAttrType

class

225

226

Connector

Development

Guide

for

C++

Chapter

11.

BOHandlerCPP

class

The

BOHandlerCPP

class

is

the

base

class

for

the

business

object

handlers

of

a

C++

connector.

It

contains

the

code

for

one

business

object

handler.

From

this

class,

a

connector

developer

must

derive

business-object-handler

classes

(as

many

as

needed)

and

implement

the

abstract

method,

doVerbFor(),

for

the

business

object

handler.

Important:

All

C++

connectors

must

extend

this

virtual

class.

Developers

must

implement

the

single

virtual

method,

doVerbFor(),

in

their

derived

business-object-handler

class.

If

your

connector

handles

request

processing,

your

doVerbFor()

method

must

provide

verb

processing

for

all

supported

verbs

for

the

business

object

(or

objects)

it

handles.

If

your

connector

does

not

provide

request

processing,

it

must

still

provide

verb

processing

for

the

Retrieve

verb.

An

connector

includes

one

or

more

business

object

handlers

to

perform

tasks

for

the

verbs

in

business

objects.

Depending

on

the

active

verb,

a

business

object

handler

can

insert

business

object

data

into

an

application,

retrieve

data,

delete

application

data,

or

perform

another

task.

For

an

introduction

to

request

processing

and

business

object

handlers,

see

“Request

processing”

on

page

24.

For

information

on

how

to

implement

a

business

object

handler,

see

Chapter

4,

“Request

processing,”

on

page

71

The

header

file

for

this

class

is

BOHandlerCPP.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

Table

97

summarizes

the

methods

in

the

BOHandlerCPP

class.

Table

97.

Member

methods

of

the

BOHandlerCPP

class

Member

method

Description

Page

BOHandlerCPP()

Creates

a

business

object

handler.

228

doVerbFor()

Performs

the

action

for

the

active

verb

of

a

business

object.

228

generateAndLogMsg()

Generates

a

message

from

a

set

of

predefined

messages

in

a

message

file

and

logs

the

generated

message

in

the

connector’s

log

destination.

230

generateAndTraceMsg()

Generates

a

trace

message

from

a

set

of

predefined

messages

in

a

message

file

and

sends

the

generated

trace

message

to

the

connector’s

log

destination.

230

generateMsg()

Generates

a

message

from

a

set

of

predefined

messages

in

a

message

file.

231

getConfigProp()

Retrieves

a

connector

configuration

property

from

the

repository.

233

getTheSubHandler()

Retrieves

a

pointer

to

the

subscription

handler.

The

caller

can

use

this

pointer

to

determine

whether

any

subscriptions

to

a

particular

business

object

definition

exist

for

the

incoming

business

object.

233

logMsg()

Logs

a

message

to

the

connector’s

log

destination.

Log

messages

must

be

contained

in

a

message

file

that

you

provide

for

your

connector.

234

©

Copyright

IBM

Corp.

1997,

2003

227

Table

97.

Member

methods

of

the

BOHandlerCPP

class

(continued)

Member

method

Description

Page

traceWrite()

Logs

a

message

to

the

connector’s

log

destination.

Log

messages

must

be

contained

in

a

message

file

that

you

provide

for

your

connector.

234

BOHandlerCPP()

Creates

a

business

object

handler.

Syntax

BOHandlerCPP();

Parameters

None.

Return

values

None.

Notes

The

BOHandlerCPP()

constructor

creates

an

instance

of

the

BOHandlerCPP

class,

to

which

business

object

definitions

can

refer

for

performing

the

tasks

of

verbs

in

business

objects.

Typically,

a

connector

developer

derives

a

class

from

BOHandlerCPP

and

implements

the

constructor

and

doVerbFor()

method

for

this

derived

class.

The

developer

can

call

the

constructor

of

this

derived

class

in

the

getBOHandlerforBO()

method

of

the

GenGlobals

class

to

instantiate

one

or

more

business

object

handlers.

See

also

getBOHandlerforBO()

doVerbFor()

Performs

the

action

for

the

active

verb

of

a

business

object.

Syntax

virtual

int

doVerbFor(BusinessObject

&

theBusObj,

ReturnStatusDescriptor

*

rtnStatusDesc);

Parameters

theBusObj

[in]

Is

the

business

object

whose

active

verb

is

to

be

processed.

rtnStatDesc

[out]

Is

the

return-status

descriptor

object

that

doVerbFor()

should

update

with

an

error

or

informational

message

to

send

to

the

integration

broker

to

indicate

the

status

of

the

operation.

228

Connector

Development

Guide

for

C++

Return

values

An

integer

that

indicates

the

outcome

status

of

the

verb

operation.

Compare

this

integer

value

with

the

following

outcome-status

constants

to

determine

the

status:

BON_SUCCESS

The

verb

operation

succeeded.

BON_FAIL

The

verb

operation

failed.

BON_APPRESPONSETIMEOUT

The

application

is

not

responding.

BON_BO_DOES_NOT_EXIST

The

connector

performed

a

Retrieve

operation,

but

the

application

database

does

not

contain

a

matching

entity

for

the

requested

business

object

BON_MULTIPLE_HITS

The

connector

found

multiple

matching

records

when

retrieving

using

non-key

values.

The

connector

returns

a

business

object

only

for

the

first

matching

record.

BON_FAIL_RETRIEVE_BY_CONTENT

The

connector

was

not

able

to

find

matches

for

Retrieve

by

non-key

values.

BON_VALCHANGE

At

least

one

value

in

the

business

object

changed.

BON_VALDUPES

The

requested

operation

found

multiple

records

in

the

application

database

with

the

same

key

values.

Notes

The

doVerbFor()

method

performs

the

action

of

the

business

object’s

active

verb.

This

method

is

the

primary

public

interface

for

the

business

object

handler.

Important:

The

doVerbFor()

method

is

a

virtual

method.Therefore,

the

connector

must

implement

this

method

as

part

of

the

business

object

handler.

When

a

business

object

arrives

from

InterChange

Server,

the

connector

framework

creates

a

return-status

descriptor

object

and

passes

it

(along

with

the

business

object)

to

the

doVerbFor()

method.

This

method

performs

the

verb

operation

and

then

calls

methods

in

the

ReturnStatusDescriptor

class

to

set

the

appropriate

values

in

the

return-status

descriptor,

as

follows:

seterrMsg()

Sets

a

message

in

the

return-status

descriptor

object

if

there

is

an

informational,

warning,

or

error

return

message.

The

connector

framework

returns

this

return-status

descriptor

to

the

integration

broker.

It

also

returns

the

outcome

status,

which

is

the

return

code

of

the

doVerbFor()

method.

See

also

seterrMsg()

Chapter

11.

BOHandlerCPP

class

229

generateAndLogMsg()

Generates

a

message

from

a

set

of

predefined

messages

in

a

message

file

and

logs

the

generated

message

in

the

connector’s

log

destination.

Syntax

void

generateAndLogMsg(int

msgNum,

int

msgType,

int

argCount,

...);

Parameters

msgNum

[in]

Specifies

the

message

number

(identifier)

in

the

message

file.

msgType

[in]

Is

one

of

the

following

message-type

constants

defined

in

the

CxMsgFormat

class:

XRD_WARNING

XRD_ERROR

XRD_FATAL

XRD_INFO

XRD_TRACE

argCount

[in]

Is

an

integer

that

specifies

the

number

of

parameters

within

the

message

text.

...

[in]

Is

a

list

of

message

parameters

for

the

message

text.

Return

values

None.

Notes

The

generateAndLogMsg()

method

combines

the

functionality

of

the

generateMsg()

and

logMsg()

methods.

By

combining

these

two

methods,

generateAndLogMsg()

frees

up

the

memory

required

for

the

message

string

that

generateMsg()

produces.

Note:

The

generateAndLogMsg()

method

is

also

available

in

the

GenGlobals

class.

It

is

provided

in

the

BOHandlerCPP

class

for

access

to

logging

from

within

the

business

object

handler.

Examples

The

following

example

performs

the

same

task

as

the

example

provides

for

the

generateMsg()

method:

ret_code

=

connect_to_app(userName,

password);

//

Message

1100

-

Failed

to

connect

to

application

if

(ret_code

==

-1)

{

msg

=

generateAndLogMsg(1100,

CxMsgFormat::XRD_ERROR,

0,

NULL);

return

BON_FAIL;

}

generateAndTraceMsg()

Generates

a

trace

message

from

a

set

of

predefined

messages

in

a

message

file

and

sends

the

generated

trace

message

to

the

connector’s

log

destination.

Syntax

void

generateAndTraceMsg(int

msgNum,

int

msgType,

int

traceLevel,

int

argCount,

...);

230

Connector

Development

Guide

for

C++

Parameters

msgNum

[in]

Specifies

the

message

number

(identifier)

in

the

message

file.

msgType

[in]

Is

one

of

the

following

message-type

constants

defined

in

the

CxMsgFormat

class:

XRD_WARNING

XRD_ERROR

XRD_FATAL

XRD_INFO

XRD_TRACE

traceLevel

Is

one

of

the

following

trace-level

constants

to

identify

the

trace

level

used

to

determine

which

trace

messages

are

output:

CWConnectorUtil.LEVEL1

CWConnectorUtil.LEVEL2

CWConnectorUtil.LEVEL3

CWConnectorUtil.LEVEL4

CWConnectorUtil.LEVEL5

The

method

writes

the

trace

message

when

the

current

trace

level

is

greater

than

or

equal

to

traceLevel.

Note:

Do

not

specify

a

trace

level

of

zero

(LEVEL0)

with

a

tracing

message.

A

trace

level

of

zero

indicates

that

tracing

is

turned

off.

Therefore,

any

trace

message

associated

with

a

traceLevel

of

LEVEL0

will

never

print.

argCount

[in]

Is

an

integer

that

specifies

the

number

of

parameters

within

the

message

text.

...

[in]

Is

a

list

of

message

parameters

for

the

message

text.

Return

values

None.

Notes

The

generateAndTraceMsg()

method

combines

the

functionality

of

the

generateMsg()

and

traceWrite()

methods.

By

combining

these

two

methods,

generateAndTraceMsg()

frees

up

the

memory

required

for

the

message

string

that

generateMsg()

produces.

You

no

longer

need

to

include

the

call

to

the

freeMemory()

method

to

release

the

memory

allocated

for

the

message

string.

Note:

The

generateAndTraceMsg()

method

is

also

available

in

the

GenGlobals

class.

It

is

provided

in

the

BOHandlerCPP

class

for

access

to

tracing

from

within

the

business

object

handler.

Examples

if(tracePtr->getTraceLevel()>=

Tracing::LEVEL3)

{

//

Message

3033

-

Opened

main

form

for

object

msg

=

generateAndTraceMsg(3033,CxMsgFormat::XRD_FATAL,

Tracing::LEVEL3,0,

NULL);

}

generateMsg()

Generates

a

message

from

a

set

of

predefined

messages

in

a

message

file.

Chapter

11.

BOHandlerCPP

class

231

Syntax

char

*

generateMsg(int

msgNum,

int

msgType,

char

*

info,

int

argCount,

...);

Parameters

msgNum

[in]

Specifies

the

message

number

(identifier)

in

the

message

file.

msgType

[in]

Is

one

of

the

following

message

types

defined

in

the

CxMsgFormat

class:

XRD_WARNING

XRD_ERROR

XRD_FATAL

XRD_INFO

XRD_TRACE

info

[in]

Is

an

informational

value,

such

as

the

name

of

the

class

for

which

the

IBM

WebSphere

business

integration

system

generated

the

message.

argCount

[in]

Is

an

integer

that

specifies

the

number

of

parameters

within

the

message

text

(optional).

...

[in]

Is

an

optional

list

of

message

parameters

for

the

message

text,

separated

by

commas.

Each

parameter

is

a

char

*

value.

Return

values

A

pointer

to

the

generated

message.

Notes

The

generateMsg()

method

allocates

memory

to

store

a

generated

message.

When

the

connector

has

logged

the

message,

it

should

call

the

freeMemory()

method

to

release

the

allocated

memory.

This

method

is

a

member

of

the

connector

framework

class

JToCPPVeneer.

The

syntax

of

the

call

is

void

freeMemory(char

*

mem),

where

mem

is

the

memory

allocated

by

generateMsg().

See

the

sample

code

below

for

an

example

of

how

to

call

this

method.

If

the

msgtype

parameter

is

invalid,

the

message

generation

process

does

not

validate

it.

The

generateMsg()

method

displays

an

alert

that

the

message

is

not

in

the

message

file.

Note:

The

generateMsg()

method

is

also

available

in

the

GenGlobals

class.

It

is

provided

in

the

BOHandlerCPP

class

for

access

to

message-file

messages

from

within

the

business

object

handler.

Examples

char

*

msg;

ret_code

=

connect_to_app(userName,

password);

//

Message

1100

-

Failed

to

connect

to

application

if

(ret_code

==

-1)

{

msg

=

generateMsg(1100,

CxMsgFormat::XRD_ERROR,

NULL,

0,

NULL);

logMsg(msg);

JToCPPVeneer::getTheHandlerStuff()->freeMemory(msg);

return

BON_FAIL;

}

232

Connector

Development

Guide

for

C++

getConfigProp()

Retrieves

a

connector

configuration

property

from

the

repository.

Syntax

int

getConfigProp(char

*

prop,

char

*

val,

int

nMaxCount);

Parameters

prop

[in]

Is

the

name

of

the

property

to

retrieve.

val

[out]

Is

a

pointer

to

a

buffer

to

which

the

method

can

write

the

property

value.

nMaxCount

[in]

Is

the

number

of

bytes

in

the

value

buffer.

Return

values

An

integer

that

specifies

the

number

of

bytes

that

the

method

copied

to

the

value

buffer.

Notes

When

you

call

getConfigProp("ConnectorName")

in

a

parallel-process

connector

(one

that

has

the

ParallelProcessDegree

connector

property

set

to

a

value

greater

than

1),

the

method

always

returns

the

name

of

the

connector-agent

master

process,

regardless

of

whether

it

is

called

in

the

master

process

or

a

slave

process.

Examples

if

(getConfigProp("LoginId",

val,

255)

==

0);

{

logMsg("Invalid

LoginId";

traceWrite(Tracing::LEVEL3,

"Invalid

LoginId",

NULL);

}

getTheSubHandler()

Retrieves

a

pointer

to

the

subscription

handler.

The

caller

can

use

this

pointer

to

determine

whether

any

subscriptions

to

a

particular

business

object

definition

exist

for

the

incoming

business

object.

Syntax

SubscriptionHandlerCPP

*

getTheSubHandler()

const;

Parameters

None.

Return

values

A

pointer

to

the

subscription

handler.

Chapter

11.

BOHandlerCPP

class

233

Notes

Through

the

subscription

handler,

the

connector

keeps

track

of

the

subscribers

for

every

verb

of

each

business

object

definition

that

the

connector

publishes,

in

a

consolidated

list

of

all

active

subscriptions.

Examples

if

(getTheSubHandler->isSubscribed(theObj->getName(),

"Create"){

}

See

also

See

the

descriptions

of

the

BusinessObject

and

BusObjSpec

classes.

logMsg()

Logs

a

message

to

the

connector’s

log

destination.

Syntax

void

logMsg(char

*

msg);

Parameters

msg

[in]

Is

a

pointer

to

the

message

text.

Return

values

None.

Notes

To

generate

the

message

string

for

logMsg(),

use

the

generateMsg()

method.

The

generateMsg()

method

retrieves

a

predefined

message

from

a

message

file,

formats

the

text,

and

returns

a

pointer

to

a

generated

message

string.

Connector

messages

logged

with

logMsg()

are

viewable

using

LogViewer

if

the

message

strings

were

generated

with

generateMsg().

Trace

messages

logged

with

traceWrite()

are

not

displayed

in

the

LogViewer.

Note:

The

logMsg()

method

is

also

available

in

the

GenGlobals

class.

It

is

provided

in

the

BOHandlerCPP

class

for

access

to

logging

from

within

the

business

object

handler.

Examples

if

((form

=

CreateMainForm(conn,

getFormName(theObj)))

<

0)

{

msg

=

generateMsg(10,

CxMsgFormat::XRD_FATAL,

NULL,

0,

NULL);

logMsg(msg);

}

See

also

See

the

description

of

the

GenGlobals::generateMsg()

utility.

traceWrite()

Writes

a

tracing

message

to

the

log

destination.

234

Connector

Development

Guide

for

C++

Syntax

void

traceWrite(int

traceLevel,

char

*

info,

char

*

filterName);

Parameters

traceLevel

[in]

Is

one

of

the

following

trace

levels,

to

use

for

writing

the

message:

Tracing::LEVEL1

Tracing::LEVEL2

Tracing::LEVEL3

Tracing::LEVEL4

Tracing::LEVEL5

The

method

writes

the

trace

message

when

the

current

trace

level

is

greater

than

or

equal

to

traceLevel.

Note:

Do

not

specify

a

trace

level

of

zero

(LEVEL0)

with

a

tracing

message.

A

trace

level

of

zero

indicates

that

tracing

is

turned

off.

Therefore,

any

trace

message

associated

with

a

traceLevel

of

LEVEL0

will

never

print.

info

[in]

Is

a

pointer

to

the

message

text.

filterName

[in]

Is

a

pointer

to

the

filter

to

use

for

writing

the

message.

Return

values

None.

Notes

You

can

use

the

traceWrite()

method

to

write

your

own

tracing

messages

for

an

application.

To

write

a

tracing

message

without

a

filter,

specify

NULL

for

filterName.

Note:

The

traceWrite()

method

is

also

available

in

the

GenGlobals

class.

It

is

provided

in

the

BOHandlerCPP

class

for

access

to

tracing

from

within

the

business

object

handler.

Examples

traceWrite(Tracing::LEVEL3,

"Invalid

LoginId”,

NULL);

See

also

See

also

the

description

of

the

Tracing

class.

Chapter

11.

BOHandlerCPP

class

235

236

Connector

Development

Guide

for

C++

Chapter

12.

BusinessObject

class

The

BusinessObject

class

represents

a

the

business

objects

for

an

application.

Each

instance

of

the

BusinessObject

class

represents

a

single

business

object

and

references

a

single

instance

of

the

BusObjSpec

class.

The

header

file

for

this

class

is

BusinessObject.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

The

BusinessObject

class

contains

the

following:

v

“Attribute-value

constants”

v

“Member

methods”

Attribute-value

constants

Table

98

summarizes

the

attribute-value

constants

in

the

BusinessObject

class.

Table

98.

Static

constants

of

the

BusinessObject

class

Special

attribute

value

Attribute-value

constant

Blank

BlankValue

Ignore

IgnoreValue

Member

methods

Table

99

summarizes

the

methods

in

the

BusinessObject

class.

Table

99.

Member

methods

of

the

BusinessObject

class

Member

method

Description

Page

BusinessObject()

Creates

a

new

business

object

that

refers

to

the

business

object

definition

(BusObjSpec).

238

clone()

Copies

an

existing

business

object.

239

doVerbFor()

Calls

the

business

object

handler

(instance

of

the

BOHandlerCPP

class)

to

perform

the

actions

of

the

business

object’s

active

verb.

239

dump()

Formats

and

returns

business

object

information

in

a

standard

or

defined

format

for

logging,

and

tracing.

240

getAttrCount()

Retrieves

the

number

of

attributes

that

the

business

object

has.

241

getAttrDesc()

Retrieves

an

attribute

description

(BOAttrType)

by

name

or

position.

241

getAttrName()

Retrieves

the

name

of

an

attribute

by

position.

242

getAttrType()

Retrieves

an

attribute

type

by

name

or

position.

242

getAttrValue()

Retrieves

an

attribute

value

by

name

or

position.

243

getBlankValue()

Retrieves

the

special

blank

value.

250

getDefaultAttrValue()

Retrieves

the

default

value

of

an

attribute

value

by

name

or

position.

245

getIgnoreValue()

Retrieves

the

special

“ignore”

value.

246

getLocale()

Retrieves

the

locale

associated

with

the

business

object.

246

getName()

Retrieves

the

name

of

the

business

object

specification

that

the

business

object

references.

247

©

Copyright

IBM

Corp.

1997,

2003

237

Table

99.

Member

methods

of

the

BusinessObject

class

(continued)

Member

method

Description

Page

getParent()

Retrieves

the

parent

business

object

of

the

current

business

object.

247

getSpecFor()

Retrieves

a

pointer

to

the

name

of

the

business

object

definition

(BusObjSpec)

to

which

the

business

object

refers.

247

getVerb()

Retrieves

the

active

verb

for

the

business

object.

248

getVersion()

Retrieves

the

version

of

the

business

object

specification

that

the

business

object

references.

248

initAndValidateAttributes()

If

the

connector

configuration

property

UseDefaults

is

TRUE,

this

method

sets

any

attributes

with

NULL

values

with

the

default

values

from

the

business

object

definition.

248

isBlank()

Determines

whether

the

value

of

the

attribute

with

the

specified

name

or

position

is

blank.

250

isBlankValue()

Determines

whether

a

specified

value

is

blank.

250

isIgnore()

Determines

whether

the

value

of

the

attribute

with

the

specified

name

or

position

is

“ignore”.

251

isIgnoreValue()

Determines

whether

a

specified

value

is

the

“ignore”

value.

251

makeNewAttrObject()

Creates

a

new

object

of

the

correct

type

for

the

attribute

with

the

specified

name

or

position.

This

operation

typically

applies

only

to

attributes

that

contain

child

objects.

252

setAttrValue()

Sets

the

value

of

an

attribute

by

name

or

position.

252

setDefaultAttrValues()

Initializes

the

business

object’s

attributes

with

their

default

values.

253

setLocale()

Sets

the

locale

associated

with

the

business

object.

253

setVerb()

Sets

the

active

verb

for

the

business

object.

254

BusinessObject()

Creates

an

instance

of

the

BusinessObject

class

(a

business

object).

The

new

business

object

refers

to

an

instance

of

the

BusObjSpec

class

(a

business

object

definition),

either

the

latest

version

of

the

business

object

definition

or

a

version

that

you

specify.

Syntax

BusinessObject(char

*

busObjName);

BusinessObject(char

*

busObjName,

CxVersion

&

version);

BusinessObject(char

*

busObjName,

char

*

localeName);

Parameters

busObjName

[in]

Is

the

name

of

the

new

business

object.

version

[in]

Is

the

version

number

of

the

business

object

definition

to

which

the

new

business

object

refers.

If

you

do

not

specify

version,

the

new

business

object

refers

to

the

latest

version

of

the

business

object

definition.

The

version

number

is

a

String

value.

localeName[in]

Is

the

name

of

the

locale

to

associate

with

the

business

object.

238

Connector

Development

Guide

for

C++

Return

values

None.

Notes

The

BusinessObject()

constructor

creates

a

new

business

object

instance

whose

type

is

the

business

object

definition

you

specify

in

busObjName.

A

business

object

(instance

of

the

BusinessObject

class)

contains

a

set

of

attribute

values.

The

definitions

of

the

attributes

are

in

the

business

object

definition

to

which

the

business

object

refers.

For

each

attribute,

the

business

object

definition

defines

a

name,

a

position

in

the

list

of

attributes,

a

data

type,

and

several

properties.

The

business

object

definition

also

contains

the

list

of

verbs

that

the

business

object

supports.

If

you

specify

a

localeName,

this

locale

applies

to

the

data

in

the

business

object,

not

to

the

name

of

the

business

object

definition

or

its

attributes

(which

must

be

in

English

characters).

For

a

description

of

the

format

for

locale,

see

“Design

considerations

for

an

internationalized

connector”

on

page

54

To

determine

whether

the

business

object

constructor

has

failed,

check

the

business

object

definition

pointer

using

the

getSpecFor()

method

in

this

class.

The

getSpecFor()

method

will

return

NULL

if

the

constructor

has

failed.

The

constructor

might

fail

if

an

invalid

name

is

specified.

Examples

BusinessObject

*pObj

=

new

BusinessObject("Customer");

See

also

See

also

the

description

of

the

BusObjSpec

class.

clone()

Copies

an

existing

business

object.

Syntax

BusinessObject

*

clone();

Parameters

None.

Return

values

A

copy

of

the

current

business

object.

See

also

See

also

the

description

of

the

BusinessObject()

constructor.

doVerbFor()

Calls

the

business

object

handler

(instance

of

the

BOHandlerCPP

class)

to

perform

the

action

of

the

business

object’s

active

verb.

Chapter

12.

BusinessObject

class

239

Syntax

int

doVerbFor(ReturnStatusDescriptor

*

retStatusMsg);

Parameters

retStatusMsg

[out]

Is

the

name

of

the

status

descriptor

object

containing

an

error

or

informational

message

for

the

integration

broker.

Return

values

An

integer

that

specifies

the

outcome

status

of

the

verb

operation.

Notes

The

business

object

provides

all

the

operations

for

the

verbs

that

the

BusinessObject

definition

supports.

The

active

verb

is

one

of

the

list

of

verbs

that

the

business

object

definition

contains.

To

determine

the

active

verb

for

a

business

object,

you

can

use

the

getVerb()

method.

Examples

BusinessObject

*pObj;

...

pObj

=

new

BusinessObject(“Customer”);

pObj->SetVerb

("Create”);

pObj->setDefaultAttrValues();

retval

=

pObj->doVerbFor();

See

also

getVerb(),

setVerb()

See

also

the

description

of

the

BOHandler

class.

dump()

Returns

business

object

information

in

a

format

for

logging

and

tracing.

Syntax

char

*

dump(char

*

buf,

int

bufSize);

Parameters

buf

[in]

Is

the

address

of

a

buffer

in

which

to

store

the

business

object

information.

bufSize

[in]

Is

the

size

of

the

buffer.

Return

values

An

integer

that

indicates

the

outcome

of

the

operation.

Notes

If

the

saved

business

object

does

not

fit

in

the

buffer,

the

dump()

method

returns

the

error

code

-1.

240

Connector

Development

Guide

for

C++

Examples

BusinessObject

*pObj;

int

status;

.

.

.

status

=

pObj->dump(buf,

255);

See

also

See

also

the

description

of

the

Tracing

class.

getAttrCount()

Retrieves

the

number

of

attributes

that

are

in

the

business

object’s

attribute

list.

Syntax

int

getAttrCount();

Parameters

None.

Return

values

An

integer

that

specifies

the

number

of

attributes

in

the

attribute

list.

Examples

for(i=0;

i<pObj.getAttrCount();

i++){

char*cp;

...

pObj.setAttrValue(i,cp,theObj.getAttrType(i));

}

See

also

See

also

the

description

of

the

getAttrIndex()

method

under

Chapter

14,

“BusObjSpec

class,”

on

page

261

getAttrDesc()

Retrieves

the

attribute

descriptor

for

an

attribute

of

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

BOAttrType

*

getAttrDesc(char

*

attrName);

BOAttrType

*

getAttrDesc(int

position);

Parameters

attrName

[in]

Is

the

name

of

the

attribute

whose

attribute

descriptor

is

retrieved.

position

[in]

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

Chapter

12.

BusinessObject

class

241

Return

values

A

pointer

to

an

instance

of

the

BOAttrType

class.

The

methods

return

NULL

if

an

invalid

attribute

name

or

position

is

specified.

Notes

The

getAttrDesc()

method

returns

an

attribute

descriptor,

which

is

an

instance

of

the

BOAttrType

class,

for

an

attribute

in

the

business

object

(BusinessObject

instance).

The

BOAttrType

class

provides

methods

to

obtain

information

about

the

attribute

properties.

To

retrieve

the

attribute

descriptor

for

an

attribute,

you

can

identify

the

attribute

by

its

name

or

its

ordinal

position

in

the

list

of

attributes.

If

you

specify

an

empty

string

(“

“)

or

NULL

as

the

attribute

name,

the

getAttrDesc()

method

returns

0

(zero).

Note:

If

the

connector

is

running

at

a

trace

level

of

5,

an

appropriate

trace

message

is

also

printed.

See

also

getAttribute()

getAttrName()

getAttrType()

getAttrValue()

For

the

methods

of

the

BOAttrType

class,

see

Chapter

10,

“BOAttrType

class,”

on

page

215

getAttrName()

Retrieves

the

name

of

an

attribute

that

you

specify

by

its

position

in

the

business

object’s

attribute

list.

Syntax

char

*

getAttrName(int

position);

Parameters

position

[in]

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

Return

values

The

name

of

the

specified

attribute.

The

method

will

return

NULL

if

an

invalid

position

is

specified.

Examples

strcpy(attr_name,

pObj.getAttrName(1));

for

(int

i

=

0;

i<pObj.getAttrCount();

i++)

{

name

=

pObj.getAttrName(i);

value

=

pObj.getAttrValue(i);

cout

<<

"name:

"

<<

name

<<

"value

"

<<

value;

}

getAttrType()

Retrieves

the

data

type

of

an

attribute

of

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

242

Connector

Development

Guide

for

C++

Syntax

int

getAttrType(char

*

attrName);

int

getAttrType(int

position);

Parameters

attrName

[in]

Is

the

name

of

the

attribute

whose

data

type

is

retrieved.

position

[in]

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

Return

values

An

integer

that

represents

the

data

type

of

an

attribute.

Attribute

data

types

are

defined

in

BOAttrType.hpp.

0

=

BOAttrType::OBJECT1

=

BOAttrType::BOOLEAN2

=

BOAttrType::INTEGER3

=

BOAttrType::FLOAT4

=

BOAttrType::DOUBLE5

=

BOAttrType::STRING6

=

BOAttrType::DATE7

=

BOAttrType::LONGTEXT

Notes

To

retrieve

the

data

type

of

an

attribute

of

the

business

object,

you

can

specify

the

attribute

name

or

its

position

in

the

list

of

attributes.

If

you

pass

an

empty

string

(“

“)

as

an

attribute

name,

or

an

invalid

attribute

position,

the

getAttrType()

method

returns

-1.

If

the

connector

is

running

at

a

trace

level

of

5,

an

appropriate

trace

message

is

also

generated.

Examples

pObj.setAttrValue("sti_address.docid","1234",

pObj.getAttrType("sti_address.docid"));

See

also

See

also

the

descriptions

of

the

getAttrDesc()

and

getAttrName()

methods.

getAttrValue()

Retrieves

the

value

of

an

attribute

of

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

void

*

getAttrValue(char

*

attrName);

void

*

getAttrValue(int

position);

Parameters

name

[in]

Is

the

name

of

an

attribute

whose

value

is

retrieved.

position

[in]

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

value

of

the

specified

attribute,

in

the

format

defined

for

the

attribute’s

data

type.

The

method

will

return

NULL

if

an

invalid

position

is

specified.

Chapter

12.

BusinessObject

class

243

Notes

When

you

use

getAttrValue(),

make

sure

that

you

check

the

type

of

the

attribute

with

getAttrType()

before

you

assign

the

returned

value

to

a

variable.

Based

on

the

attribute

type,

cast

the

void

pointer

to

a

character

pointer,

a

business

object

pointer,

or

a

business

object

container

before

assigning

the

returned

value

to

a

variable.

WebSphere

InterChange

Server

Attribute

values

that

are

not

business

objects

or

business

object

containers

are

stored

as

strings

in

C++

to

handle

the

special

“Blank”or

“Ignore”

values.

The

Blank

value

means

“Clear

this

field;

there

is

no

data

in

it.”

The

Ignore

value

means

“The

collaboration

doesn’t

know

or

care

what

is

in

this

field.”

To

handle

attribute

values

that

are

not

business

objects

or

business

object

containers,

cast

the

void

pointer

to

a

character

pointer,

and

then

determine

whether

the

attribute

is

a

special

value.

If

the

attribute

value

is

not

a

special

value

and

is

a

data

type

other

than

a

string,

you

will

need

to

convert

the

value

to

the

correct

type.

If

you

pass

an

empty

string

(“

“)

or

NULL

as

a

parameter

for

the

attribute

name

or

position,

the

getAttrValue()

method

displays

Error

Message

73:

Failed

to

set

the

attribute

value

because

the

attribute

position

"{1}"

or

attribute

type

"{2}"

is

invalid.

If

a

business

object

has

a

specific

attribute

whose

value

has

not

been

set,

the

getAttrValue()

method

returns

NULL.

Examples

BusinessObject

*pObj;

void

*attr;

...

attr

=

pObj->getAttrValue(0):

if

(pObj->getAttrType(0)

==

BOAttrType::STRING)

{

char

*attrStr

=

(char

*)

attr;

if

(pObj->isIgnoreValue(attrStr))

{

//

ignore

this

value

}

else

if

(pObj->isBlankValue(attrStr))

{

//

value

should

be

blank

}

...

}

See

also

getAttrName()

getDefaultAttrValue()

setAttrValue()

getBlankValue()

Retrieves

the

special

Blank

attribute

value.

244

Connector

Development

Guide

for

C++

Syntax

static

char

*

getBlankValue();

Parameters

None.

Return

values

The

special

Blank

attribute

value.

See

also

getIgnoreValue()

isBlank()

isBlankValue()

getDefaultAttrValue()

Retrieves

the

default

value

of

a

business

object

attribute,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

char

*

getDefaultAttrValue(char

*

attrName);

char

*

getDefaultAttrValue(int

position);

Parameters

name

[in]

Is

the

name

of

an

attribute

whose

default

value

is

retrieved.

position

[in]

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

default

value

of

the

specified

attribute,

in

the

format

defined

for

the

attribute’s

data

type.

The

methods

will

return

NULL

in

the

following

cases:

v

If

an

invalid

position

or

name

is

specified

v

If

the

default

value

is

NULL

v

If

the

attribute

type

is

BOAttrType::OBJECT

Notes

To

retrieve

the

default

value

of

an

attribute

of

the

business

object,

you

can

specify

the

attribute

name

or

its

position

in

the

list

of

attributes.

If

you

pass

an

empty

string

or

NULL

as

a

parameter,

the

getDefaultAttrValue()

method

returns

the

“ignore

value”

0

(zero).

An

attribute

can

have

a

special

default

value,

either

blank

or

“ignore”.

Blank

means

“clear

this

field;

there

is

no

data

in

it.”

Ignore

means

“I

don’t

know

or

don’t

care

what

is

in

this

field.”

Examples

tempStr

=

pObj->getDefaultAttrValue(i);

See

also

getAttrValue()

setDefaultAttrValues()

Chapter

12.

BusinessObject

class

245

getIgnoreValue()

Retrieves

the

special

Ignore

value.

Syntax

static

char

*

getIgnoreValue();

Parameters

None.

Return

values

A

string

that

contains

the

special

Ignore

attribute

value.

Notes

The

Ignore

value

indicates

that

the

connector

can

ignore

the

value

of

this

attribute.

See

also

getBlankValue()

isIgnore(),

isIgnoreValue()

getLocale()

Retrieves

the

locale

associated

with

the

business

object.

Syntax

char

*

getLocale();

Parameters

None.

Return

values

A

string

that

contains

the

name

of

the

locale

associated

with

the

current

business

object.

For

information

on

the

format

of

a

locale

name,

see

“What

is

a

locale?”

on

page

54

Notes

The

getLocale()

method

returns

the

locale

that

is

associated

with

the

flow

for

the

business

object,

when

the

business

object

is

created.

This

locale

indicates

the

language

and

code

set

associated

with

the

data

in

the

business

object,

not

to

the

name

of

the

business

object

definition

or

its

attributes

(which

must

be

characters

in

the

code

set

associated

with

the

U.S.

English

locale,

en_US).

If

the

business

object

does

not

have

a

locale

associated

with

it,

the

connector

framework

uses

the

connector

framework’s

locale

for

the

business

object.

See

also

BusinessObject(),

setLocale()

246

Connector

Development

Guide

for

C++

getName()

Retrieves

the

name

of

the

business

object

definition

that

the

business

object

references.

Syntax

char

*

getName();

Parameters

None.

Return

values

The

name

of

a

business

object

definition.

See

also

getVersion()

getParent()

Retrieves

the

parent

business

object

of

the

current

business

object.

Syntax

BusinessObject

*getParent()

const;

Return

values

The

business

object

that

contains

the

current

business

object.

The

method

will

return

NULL

if

the

business

object

is

the

top-level

object

in

a

hierarchy.

getSpecFor()

Retrieves

a

pointer

to

the

business

object

definition

(BusObjSpec

instance)

to

which

the

business

object

refers.

Syntax

BusObjSpec

*

getSpecFor();

Return

values

Pointer

to

the

business

object

definition

to

which

the

business

object

refers.

Notes

You

can

use

the

getSpecFor()

method

to

retrieve

information

about

attributes

of

a

business

object.

Examples

int

i

=

pObj.getSpecFor()->getAttributeIndex(name);

See

also

See

also

the

description

of

the

BusObjSpec

class.

Chapter

12.

BusinessObject

class

247

getVerb()

Retrieves

the

active

verb

for

the

business

object.

Syntax

char

*

getVerb();

Parameters

None.

Return

values

The

active

verb

for

the

business

object.

If

the

verb

is

not

set

in

the

business

object,

the

method

returns

NULL.

Notes

The

business

object

definition

contains

the

list

of

verbs

that

the

business

object

supports.

The

getVerb()

method

enables

you

to

determine

which

verb

is

active

for

the

current

business

object

instance.

Examples

char

*

verb

=

pObj->getVerb();

if

((verb!=NULL)

&&

(strcmp(verb,"Create"))

==

0

{

//

perform

the

create

operation

...

}

See

also

doVerbFor(),

setVerb()

getVersion()

Retrieves

the

version

of

the

business

object

definition

that

the

business

object

references.

Syntax

CxVersion

*

getVersion();

Parameters

None.

Return

values

The

version

of

a

business

object

definition.

See

also

getName()

initAndValidateAttributes()

Initializes

attributes

with

default

values

and

validates

that

required

values

exist.

248

Connector

Development

Guide

for

C++

Syntax

bool

initAndValidateAttributes();

Parameters

None.

Return

values

Returns

TRUE

if

after

processing

default

values

if

all

required

attributes

have

been

set

(have

non-null

values).

If

a

required

value

has

not

been

set

and

there

is

no

default

value

specified

for

the

attribute

in

the

business

object

definition,

returns

FALSE.

Notes

The

initAndValidateAttributes()

method

has

two

purposes:

v

It

initializes

attributes

by

setting

the

value

for

each

attribute

to

its

default

value

under

the

following

conditions:

–

When

the

UseDefaults

connector

configuration

property

is

set

to

true

–

When

the

attribute’s

isRequired

property

is

set

to

true

(the

attribute

is

required)

–

When

the

attribute’s

value

is

not

currently

set

(has

the

special

Ignore

value

of

CxIgnore)

–

When

the

attribute’s

Default

Value

property

specifies

a

default

value
v

It

validates

attributes

by

returning

FALSE

under

the

following

conditions:

–

When

the

attribute’s

isRequired

property

is

set

to

true

–

When

the

attribute

does

not

have

a

Default

Value

property

that

defines

its

default

value

In

case

of

failure,

no

value

exists

for

some

attributes

(those

without

default

values)

after

initAndValidateAttributes()

finishes

default-value

processing.

You

might

want

to

code

your

connector’s

application-specific

component

to

catch

this

exception

and

return

BON_FAIL.

The

initAndValidateAttributes()

method

loops

through

every

attribute

in

all

levels

of

a

business

object

and

determines

the

following:

v

Whether

an

attribute

is

required

v

Whether

the

attribute

has

a

value

in

the

business

object

instance

v

Whether

the

UseDefaults

configuration

property

is

set

to

true

If

an

attribute

is

required

and

UseDefaults

is

true,

initAndValidateAttributes()

sets

the

value

of

any

unset

attribute

to

its

default

value.

If

the

attribute

does

not

have

a

default

value,

initAndValidateAttributes()

returns

FALSE.

Note:

If

an

attribute

is

a

key

or

other

attribute

whose

value

is

generated

by

the

application,

the

business

object

definition

should

not

provide

default

values,

and

the

Required

property

for

the

attribute

should

be

set

to

false.

The

initAndValidateAttributes()

method

is

usually

called

from

the

business-object-handler

doVerbFor()

method

to

ensure

that

required

attributes

have

values

before

a

Create

operation

is

performed

in

an

application.

In

the

doVerbFor()

method,

you

can

call

initAndValidateAttributes()

for

the

Create

verb.

You

can

also

call

it

for

the

Update

verb,

before

it

performs

a

Create.

Chapter

12.

BusinessObject

class

249

To

use

initAndValidateAttributes(),

you

must

also

do

the

following:

v

Design

business

object

definitions

so

that

the

IsRequired

attribute

property

is

set

to

true

for

required

attributes

and

that

required

attributes

have

default

values

specified

in

their

Default

Value

property.

v

Add

the

UseDefaults

connector

configuration

property

to

the

list

of

connector-specific

properties

for

the

connector.

Set

this

property

to

true.

Examples

int

ExampleBOHandler::doVerbFor(BusinessObject

&theObj,

ReturnStatusDescriptor

*rtnStatusMsg)

{

int

status

=

BON_SUCCESS;

//

Determine

the

verb

of

the

incoming

business

object

char

*verb

=

theObj.getVerb();

if

(strcmp(verb,

CREATE)

==

0)

{

if

(!theObj->initAndValidateAttributes())

return

BON_FAIL;

}

else

...

isBlank()

Determines

whether

the

value

is

the

special

Blank

value

for

the

attribute

with

the

specified

name

or

at

the

specified

position

in

the

attribute

list.

Syntax

unsigned

char

isBlank(char

*

name);

unsigned

char

isBlank(int

position);

Parameters

name

[in]

Is

the

name

of

an

attribute.

position

[in]

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

TRUE

if

the

attribute

value

equals

the

blank

value

or

FALSE

if

it

does

not.

See

also

getBlankValue()

isBlankValue()

isIgnore()

isBlankValue()

Determines

whether

a

specified

attribute

value

is

the

special

Blank

attribute

value.

Syntax

unsigned

char

isBlankValue(char

*

value);

Parameters

value

[in]

Is

the

attribute

value

to

compare

with

the

special

Blank

value.

250

Connector

Development

Guide

for

C++

Return

values

Returns

TRUE

if

the

passed-in

value

equals

the

blank

value

or

FALSE

if

it

does

not.

See

also

getBlankValue()

isBlank()

isIgnoreValue()

isIgnore()

Determines

whether

the

attribute

value

is

the

special

Ignore

value

for

the

attribute

with

the

specified

name

or

at

the

specified

position

in

the

attribute

list.

Syntax

unsigned

char

isIgnore(char

*

name);

unsigned

char

isIgnore(int

position);

Parameters

name

[in]

Is

the

name

of

an

attribute.

position

[in]

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

1

for

True

if

the

attribute

value

equals

the

special

Ignore

value

or

0

for

False

if

it

does

not.

See

also

getIgnoreValue()

isBlank()

isIgnoreValue()

isIgnoreValue()

Determines

whether

a

specified

attribute

value

is

the

special

Ignore

value.

Syntax

unsigned

char

isIgnoreValue(char

*

value);

Parameters

value

[in]

is

the

attribute

value

to

compare

with

the

special

Ignore

value.

This

argument

is

defined

as

a

char

*

because

the

method

expects

the

special

Ignore

value.

Return

values

Returns

1

for

True

if

the

passed-in

value

equals

the

special

Ignore

value

or

0

for

False

if

it

does

not.

Notes

The

Ignore

value,

which

isIgnoreValue()

checks

for,

is

a

special

attribute

value

that

represents

a

value

that

the

connector

should

ignore.

After

retrieving

the

value

of

an

attribute

with

getAttrValue(),

you

can

pass

the

returned

value

to

isIgnoreValue()

to

determine

whether

the

value

is

the

special

Ignore

value.

Chapter

12.

BusinessObject

class

251

See

also

getIgnoreValue()

isBlankValue()

isIgnore()

makeNewAttrObject()

Creates

a

new

business

object

of

the

correct

type

for

the

attribute

with

the

specified

name

or

at

the

specified

position

in

the

attribute

list.

This

method

is

typically

used

with

attributes

that

contain

child

objects.

Syntax

void

*

makeNewAttrObject(char

*

name);

void

*

makeNewAttrObject(int

position);

Parameters

name

[in]

Is

the

name

of

an

attribute.

pos

ition[in]

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

A

pointer

to

a

newly

created

instance

of

the

BusinessObject

class.

Notes

This

method

should

only

be

used

for

attributes

with

an

attribute

type

of

OBJECT.

The

method

creates

a

new

business

object

of

the

proper

type

for

an

attribute

but

does

not

change

the

existing

attribute.

To

set

the

value

of

the

new

business

object,

use

setAttrValue().

setAttrValue()

Sets

the

value

of

an

attribute.

Syntax

unsigned

char

setAttrValue(char

*

name,

void

*

newval,

int

type);

unsigned

char

setAttrValue(int

position,

void

*

newVal,

int

type);

Parameters

name

[in]

Is

the

name

of

the

attribute

whose

value

you

want

to

set.

position[in]

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

newVal

[in]

Is

either

a

string

representation

of

the

value

for

the

attribute

or

a

pointer

to

the

value.

Must

be

char

*

or

BusinessObject

*.

type

[in]

Is

one

of

the

following

attribute

data

types

for

the

new

value,

as

represented

by

one

of

the

following

constants:

BOAttrType::OBJECT

BOAttrType::BOOLEAN

BOAttrType::INTEGER

BOAttrType::FLOAT

252

Connector

Development

Guide

for

C++

BOAttrType::DOUBLE

BOAttrType::STRING

BOAttrType::DATE

BOAttrType::LONGTEXT

Return

values

Returns

True

when

the

operation

succeeded

or

False

when

the

operation

failed.

Notes

You

can

use

the

name

or

position

method

to

set

an

attribute

value.

These

methods

verify

that

the

new

value

has

the

correct

data

type

before

changing

the

attribute

value.

If

newval

is

a

character

pointer,

the

method

sets

the

value.

If

type

is

OBJECT

and

the

attribute

refers

to

a

single

cardinality

object,

the

setAttrValue()

method

overwrites

the

previous

business

object

with

the

new

business

object.

If

type

is

OBJECT

and

the

attribute

refers

to

a

multiple

cardinality

object,

the

setAttrValue()

method

appends

the

business

object

to

the

container.

You

can

set

an

attribute

to

a

special

value,

either

BusinessObject::BlankValue

or

BusinessObject::IgnoreValue.

Blank

means

“clear

this

field;

there

is

no

data

in

it.”

Ignore

means

“I

don’t

know

or

don’t

care

what

is

in

this

field.”

Examples

unsigned

char

status;

if

(status

=

pObj->setAttrValue("Interest

Rate”,”0.065”,

BOAttrType::FLOAT);)

==

0)

//

continue

See

also

getAttrValue()

setDefaultAttrValues()

setDefaultAttrValues()

Initializes

the

business

object’s

attributes

with

their

default

values.

Syntax

void

setDefaultAttrValues();

Parameters

None.

Return

values

None.

See

also

getDefaultAttrValue()

setAttrValue()

setLocale()

Sets

the

locale

associated

with

the

business

object.

Chapter

12.

BusinessObject

class

253

Syntax

void

setLocale(const

char

*

localeName);

Parameters

localeName

Is

the

name

of

the

locale

to

associate

with

the

current

business

object.

For

information

on

the

format

of

a

locale

name,

see

“What

is

a

locale?”

on

page

54

Return

values

None.

Notes

The

setLocale()

method

sets

the

business-object

locale,

which

identifies

the

locale

that

is

associated

with

the

business

object.

This

locale

indicates

the

language

and

code

encoding

associated

with

the

data

in

the

business

object,

not

with

the

name

of

the

business

object

definition

or

its

attributes

(which

must

be

characters

in

the

code

set

associated

with

the

U.S.

English

locale,

en_US).

If

the

business

object

does

not

have

a

locale

associated

with

it,

the

connector

framework

assigns

the

connector-framework

locale

as

the

business-object

locale.

See

also

getLocale()

setVerb()

Sets

the

active

verb

of

the

current

business

object.

Syntax

void

setVerb(char

*

newVerb);

Parameters

newVerb

[in]

Is

a

verb

that

is

in

the

verb

list

of

the

business

object

definition

to

which

the

business

object

refers.

Return

values

None.

Notes

The

business

object

definition

(BusObjSpec

instance)

contains

the

list

of

verbs

that

the

business

object

supports.

The

verb

that

you

set

as

the

active

verb

must

be

on

this

list.

Only

one

verb

is

active

at

a

time

for

a

business

object.

Business

objects

typically

support

the

Create,

Retrieve,

and

Update

verbs.

A

business

object

might

support

additional

verbs,

such

as

Delete.

Every

connector

that

supports

a

business

object

must

implement

all

the

verbs

that

it

supports.

254

Connector

Development

Guide

for

C++

Examples

BusinessObject

*pObj;

...

pObj

=

new

BusinessObject("Customer");

pObj->setVerb("Create");

See

also

doVerbFor(),

getVerb()

Chapter

12.

BusinessObject

class

255

256

Connector

Development

Guide

for

C++

Chapter

13.

BusObjContainer

class

The

BusObjContainer

class

creates

and

maintains

an

array

of

one

or

more

child

business

objects.

This

class

supports

business

objects

with

a

hierarchical

structure.

Each

BusObjContainer

instance

is

a

container

object

into

which

you

can

insert

business

objects

that

are

instances

of

a

business

object

definition

referenced

by

a

compound

attribute

of

a

parent

business

object.

The

inserted

objects

are

child

business

objects

in

the

hierarchy.

Note:

The

deprecated

name

for

an

array

of

child

business

objects

is

a

“business

object

container”.

This

term

is

also

used

to

name

the

connector

library

class

that

provides

methods

for

accessing

the

child

business

objects

in

a

business

object

array.

You

can

think

of

this

class

as

providing

methods

for

handling

an

array

of

business

objects.

The

header

file

for

this

class

is

BusObjContainer.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

Table

100

summarizes

the

methods

in

the

BusObjContainer

class.

Table

100.

Member

methods

of

the

BusObjContainer

class

Member

method

Description

Page

BusObjContainer()

Creates

a

business

object

array

(container).

You

should

never

use

this

method

to

create

business

object

arrays.

The

IBM

WebSphere

business

integration

system

creates

a

business

object

array

as

needed

for

each

attribute

that

refers

to

child

business

objects.

getObject()

Retrieves

the

child

business

object

that

occupies

a

specified

position

in

a

business

object

array.

257

getObjectCount()

Retrieves

the

number

of

child

business

objects

in

a

business

object

array.

258

getTheSpec()

Retrieves

the

business

object

definition

for

a

business

object

array.

258

insertObject()

Inserts

a

child

business

object

into

a

business

object

array

at

the

next

available

position.

259

removeAllObjects()

Removes

all

business

objects

in

a

business

object

array.

259

removeObjectAt()

Removes

the

business

object

at

the

specified

position

in

a

business

object

array.

260

setObject()

Inserts

a

child

business

object

into

a

business

object

array

at

a

specified

position.

260

getObject()

Retrieves

the

child

business

object

that

occupies

a

specified

position

in

a

business

object

array.

Syntax

BusinessObject

*

getObject(int

index);

©

Copyright

IBM

Corp.

1997,

2003

257

Parameters

index

[in]

Is

an

integer

that

specifies

the

position

of

a

child

business

object

in

a

business

object

array.

Return

values

A

pointer

to

a

child

business

object,

or

NULL

if

there

is

no

business

object

at

the

specified

position

in

the

business

object

array.

Notes

You

can

use

the

setObject()

method

to

specify

the

position

of

the

business

object

in

the

business

object

array.

See

also

See

also

the

description

of

the

setObject()

method.

getObjectCount()

Retrieves

the

number

of

child

business

objects

in

a

business

object

array.

Syntax

int

getObjectCount();

Parameters

None.

Return

values

An

integer

that

indicates

the

number

of

child

business

objects

in

a

business

object

array.

Notes

You

can

use

the

insertObject()

method

to

insert

child

business

objects

into

the

business

object

array.

Examples

//

iterate

through

objects

in

a

BusObjContainer

for(int

i

=

0;

i

<

myCont->getObjectCount();

i++)

BusinessObject

*myObj

=

myCont->getObject(i);

if(myObj

!=

NULL)

myObj->doVerbFor();

}

See

also

See

also

the

description

of

the

insertObject()

method.

getTheSpec()

Retrieves

the

business

object

definition

for

a

business

object

array.

Syntax

BusObjSpec

*

getTheSpec()

const;

258

Connector

Development

Guide

for

C++

Parameters

None.

Return

values

A

pointer

to

a

business

object

definition.

Notes

Every

child

business

object

stored

in

a

BusObjContainer

object

must

have

the

same

business

object

definition

as

the

business

object

array

does.

See

also

See

also

the

description

of

the

BusObjSpec()

class.

insertObject()

Inserts

a

child

business

object

into

a

business

object

array

at

the

next

available

position.

Syntax

void

insertObject(BusinessObject

*

busObj);

Parameters

busObj[in]

Is

a

pointer

to

a

child

business

object.

Return

values

None.

Notes

BusinessObject::SetAttrValue()

calls

this

method

when

you

pass

it

a

child

business

object

as

a

parameter.

See

also

See

also

the

description

of

the

setObject()

method.

removeAllObjects()

Removes

all

business

objects

in

a

business

object

array.

Syntax

void

removeAllObjects();

Parameters

None.

Return

values

None.

Chapter

13.

BusObjContainer

class

259

removeObjectAt()

Removes

a

business

object

at

a

specified

position

in

a

business

object

array.

Syntax

int

removeObjectAt(int

index);

Parameters

index

[in]

Is

an

integer

that

specifies

the

position

for

a

child

business

object

in

a

business

object

array.

Return

values

Returns

-1

for

failure

or

zero

for

success.

Notes

After

the

remove

operation,

the

business

object

array

is

compacted.

Indexes

are

decremented

for

all

business

objects

that

have

an

index

number

higher

than

that

of

the

removed

business

object.

setObject()

Inserts

a

child

business

object

into

a

business

object

array

at

a

specified

position.

Syntax

BusinessObject

*

setObject(int

index,

BusinessObject

*

busObj);

Parameters

index

[in]

Is

an

integer

that

specifies

the

position

for

a

child

business

object

in

a

business

object

array.

busObj

[in]

Is

a

pointer

to

a

child

business

object.

Return

values

A

pointer

to

a

child

business

object.

Notes

If

there

is

already

a

business

object

at

the

specified

position,

the

new

one

replaces

it.

The

old

one

is

deleted.

See

also

See

also

the

description

of

the

getObject()

method.

260

Connector

Development

Guide

for

C++

Chapter

14.

BusObjSpec

class

Each

instance

of

a

BusObjSpec

class

defines

the

content,

format,

and

behavior

of

a

business

object.

This

is

the

business

object

definition.

More

than

one

business

object

can

refer

to

the

same

business

object

definition.

Different

instances

of

the

BusObjSpec

class

describe

different

business

objects,

varying

only

in

the

values

of

their

attributes.

Business

object

definitions

that

have

the

same

name

but

different

versions

are

separate

instances

of

the

BusObjSpec

class.

A

connector

supports

a

set

of

business

object

definitions.

Each

connector’s

configuration

information

in

the

repository

identifies

the

business

object

definitions

that

the

connector

supports.

WebSphere

InterChange

Server

A

collaboration

can

subscribe

to

a

business

object

definition

for

notification

of

events

for

all

verbs

or

for

individual

verbs.

The

business

object

definition

includes

a

list

of

verbs

that

it

supports.

Each

business

object

definition

contains

a

reference

to

a

business

object

handler,

which

performs

the

tasks

for

business

object

verbs.

The

header

file

for

this

class

is

BusObjSpec.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

The

BusObjSpec

class

has

methods

for

retrieving

information

about

business

object

attributes.

Table

101

summarizes

the

methods

in

the

BusObjSpec

class.

Table

101.

Member

methods

of

the

BusObjSpec

class

Member

method

Description

Page

BusObjSpec()

Do

not

call

the

constructor

to

create

business

object

definitions

in

the

repository.

To

create

business

object

definitions,

use

Business

Object

Designer.

getAppText()

Retrieves

the

application-specific

information

for

the

business

object

definition.

262

getAttribute()

Retrieves

a

business

object

attribute

by

name

or

position.

262

getAttributeCount()

Retrieves

the

number

of

attributes

that

are

in

the

attribute

list

of

the

business

object

definition.

263

getAttributeIndex()

Retrieves

the

position

of

a

business

object

attribute

in

the

attribute

list.

263

getMyBOHandler()

Retrieves

the

business

object

handler

to

which

the

business

object

definition

refers.

263

getName()

Retrieves

the

name

of

a

business

object

or

business

object

definition.

264

getVerbAppText()

Retrieves

the

application-specific

information

for

a

verb.

264

getVersion()

Retrieves

the

version

of

the

business

object

definition.

265

isVerbSupported()

Determines

whether

the

business

object

definition

supports

a

particular

verb.

265

©

Copyright

IBM

Corp.

1997,

2003

261

getAppText()

Retrieves

the

application-specific

information

for

the

business

object

definition.

Syntax

char

*

getAppText()

const;

Parameters

None.

Return

values

A

character

string

that

contains

application-specific

information

for

the

business

object

definition.

This

method

can

return

NULL.

Notes

If

the

business

object

definition

has

a

value

for

the

AppSpecificInfo

property,

the

getAppText()

method

retrieves

this

value.

Each

attribute

can

also

have

is

own

application-specific

information.

getAttribute()

Retrieves

an

attribute

descriptor

for

an

attribute

of

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object

definition’s

attribute

list.

Syntax

BOAttrType

*

getAttribute(char

*

name);

BOAttrType

*

getAttribute(int

position);

Parameters

name

[in]

Is

the

attribute

name.

position

[in]

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

Return

values

A

pointer

to

an

instance

of

the

BOAttrType

class.

These

methods

return

NULL

if

an

invalid

attribute

name

or

position

is

specified.

Notes

The

getAttribute()

method

returns

an

attribute

descriptor,

which

is

an

instance

of

the

BOAttrType

class,

for

an

attribute

in

the

business

object

description

(BusObjSpec

instance).

The

BOAttrType

class

provides

methods

to

obtain

information

about

the

attribute

properties,

such

as

its

application-specific

information,

default

value,

and

whether

it

is

required.

See

also

For

the

methods

of

the

BOAttrType

class,

see

Chapter

10,

“BOAttrType

class,”

on

page

215

262

Connector

Development

Guide

for

C++

getAttributeCount()

Retrieves

the

number

of

attributes

that

are

in

the

attribute

list

of

the

business

object

definition.

Syntax

int

getAttributeCount();

Parameters

None.

Return

values

An

integer

that

specifies

the

number

of

attributes

in

the

attribute

list.

Notes

The

number

of

attributes

in

the

attribute

list

is

the

number

of

attributes

that

the

business

object

definition

supports.

See

also

See

also

the

description

of

the

BOAttrType

class.

getAttributeIndex()

Retrieves

the

position

of

a

business

object

attribute

in

the

attribute

list.

Syntax

int

getAttributeIndex(char

*

name);

Parameters

name

[in]

Is

the

name

of

the

attribute.

Return

values

An

integer

that

specifies

the

position

of

the

attribute

in

the

attribute

list

of

the

business

object

definition.

Notes

After

you

retrieve

the

position

of

an

attribute

in

attribute

list,

you

can

use

the

position

to

refer

to

the

attribute.

See

also

See

also

the

description

of

the

BOAttrType

class.

getMyBOHandler()

Retrieves

the

business

object

handler

to

which

the

business

object

definition

refers.

Syntax

BOHandlerCPP

*

getMyBOHandler()

const;

Chapter

14.

BusObjSpec

class

263

Parameters

None.

Return

values

A

pointer

to

the

business

object

handler.

Notes

More

than

one

business

object

definition

can

use

the

same

business

object

handler.

This

method

returns

the

handler

that

you

derived

from

the

BOHandlerCPP

class

and

set

with

a

call

to

the

getBOHandlerforBO()

method

of

the

GenGlobals

class.

See

also

See

also

the

description

of

the

BOHandlerCPP

class.

getName()

Retrieves

the

name

of

the

business

object

definition.

Syntax

char

*

getName()

const;

Parameters

None.

Return

values

A

character

string

that

contains

the

name

of

the

business

object

definition.

See

also

See

also

the

description

of

the

BusinessObject

class.

getVerbAppText()

Retrieves

the

application-specific

information

for

the

business

object

verb.

Syntax

char

*

getVerbAppText(char

*

verb);

Parameters

verb

[in]

Is

the

name

of

the

verb

whose

application-specific

information

is

retrieved.

Return

values

A

character

string

that

contains

application-specific

information

for

the

business

object

verb.

264

Connector

Development

Guide

for

C++

Notes

If

the

business

object

verb

has

a

value

for

the

AppSpecificInfo

property,

the

getVerbAppText()

method

retrieves

this

value.

getVersion()

Retrieves

the

version

of

the

business

object

definition.

Syntax

CxVersion

*

getVersion();

Parameters

None.

Return

values

A

pointer

to

an

instance

of

the

CxVersion

class.

Notes

A

business

object

definition

refers

to

an

instance

of

the

CxVersion

class.

Each

instance

of

this

class

contains

a

version

number,

subversion

number,

and

point

version

number,

separated

by

periods,

as

in

3.0.0.

See

also

See

also

the

description

of

the

CxVersion

class.

isVerbSupported()

Determines

whether

the

business

object

definition

supports

a

particular

verb.

Syntax

unsigned

char

isVerbSupported(char

*

verb);

Parameters

verb

[in]

Is

the

name

of

a

verb

that

the

method

determines

if

the

current

business

object

definition

supports.

Return

values

Returns

TRUE

if

the

business

object

definition

supports

the

verb

and

FALSE

if

it

does

not.

Chapter

14.

BusObjSpec

class

265

266

Connector

Development

Guide

for

C++

Chapter

15.

CxMsgFormat

class

The

CxMsgFormat

class

provides

message-type

constants

to

generate

messages

in

different

languages.

The

header

file

for

this

class

is

CxMsgFormat.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

This

class

provides

the

following:

v

“Message-type

constants”

v

“Methods”

Message-type

constants

T

he

CxMsgFormat

class

defines

the

message-type

constants

shown

in

Table

102..

Table

102.

Message-type

constants

defined

in

the

CxMsgFormat

class

Message-type

constant

Meaning

XRD_WARNING

A

warning

message

XRD_TRACE

A

trace

message

XRD_INFO

An

informational

message

XRD_ERROR

An

error

message

XRD_FATAL

A

fatal

error

message

Methods

Table

103

summarizes

the

methods

in

the

CxMsgFormat

class.

Table

103.

Member

methods

of

the

CxMsgFormat

class

Member

method

Description

Page

CxMsgFormat()

Creates

an

instance

of

the

CxMsgFormat

class.

You

never

call

this

function

to

create

a

message

object;

the

IBM

WebSphere

business

integration

system

creates

a

message

object

automatically.

generateMsg()

Generates

a

message.

267

Important:

The

methods

of

the

CxMsgFormat

class

have

been

deprecated.

For

more

information,

see

“Deprecated

methods”

on

page

268.

generateMsg()

Generates

a

message

with

a

predefined

message

from

a

message

file.

Syntax

char

*

generateMsg(int

msgNum,

int

msgType,

char

*

info,

int

argCount,

va_list

v1);

Parameters

msgNum

[in]

Is

an

integer

that

specifies

the

message

number

in

the

message

file.

msgType

[in]

Is

one

of

the

following

message

types:

©

Copyright

IBM

Corp.

1997,

2003

267

XRD_UNKNOWN

XRD_WARNING

XRD_ERROR

XRD_FATAL

XRD_INFO

XRD_TRACE

info

[in]

Is

an

informational

value,

such

as

the

name

of

the

class

for

which

the

IBM

WebSphere

business

integration

system

generated

the

message.

argCount

[in]

Is

an

integer

that

specifies

the

number

of

parameters

within

the

message

text

(optional).

v1

[in]

Is

an

optional

list

of

parameters

for

the

message

text,

separated

by

commas.

Each

parameter

is

a

char

*

value.

Return

values

A

pointer

to

the

generated

message.

Notes

You

can

use

the

generateMsg()

method

to

generate

messages

in

different

languages.

For

each

language

that

your

application

supports,

you

can

create

a

separate

message

file

for

messages

in

that

language.

With

the

XRD_TRACE

message

type,

you

can

generate

trace

messages.

Important:

The

generateMsg()

method

in

this

class

has

been

deprecated.

Use

the

generateMsg()

method

found

in

the

GenGlobals

and

BOHandlerCPP

classes

instead.

Examples

generateMsg(3160,

XRD_ERROR,

"Logon

ID

is

invalid.",

0);

See

also

See

also

the

description

of

the

generateMsg()

method

under

BOHandlerCPP

Class

and

GenGlobals

Class.

Deprecated

methods

Methods

in

the

CxMsgFormat

class

were

supported

in

earlier

versions

but

are

no

longer

supported.

These

deprecated

methods

will

not

generate

errors,

but

IBM

recommends

that

you

avoid

their

use

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

Table

104

lists

the

deprecated

methods

for

the

CxMsgFormat

class.

If

you

are

writing

a

new

connector

(not

modifying

an

existing

connector),

you

can

ignore

this

section.

Table

104.

Deprecated

methods

of

the

CxMsgFormat

class

Former

method

Replacement

generateMsg()

generateMsg()

in

the

GenGlobals

class

generateMsg()

in

the

BOHandlerCPP

class

268

Connector

Development

Guide

for

C++

Chapter

16.

CxVersion

class

The

CxVersion

class

represents

business

object

versions.

You

can

use

methods

of

this

class

to

set

and

retrieve

version

information.

The

header

file

for

this

class

is

CxVersion.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

Table

105

summarizes

the

methods

in

the

CxVersion

class.

Table

105.

Member

methods

of

the

CxVersion

class

Member

method

Description

Page

CxVersion()

Creates

a

version

object.

269

compareMajor()

Compares

the

major

version

with

an

object

or

an

integer.

270

compareMinor()

Compares

the

minor

version

with

an

object

or

an

integer.

270

comparePoint()

Compares

the

point

versions

with

an

object

or

an

integer.

271

compareTo()

Compares

version

with

an

object

or

an

integer.

271

getDELIMITER()

Retrieves

the

delimiter

character

that

separates

major,

minor,

and

point

versions

in

an

version

object.

272

getLATESTVERSION()

Retrieves

the

latest

version

object.

272

getMajorVer()

Retrieves

the

major

version.

273

getMinorVer()

Retrieves

the

minor

version.

273

getPointVer()

Retrieves

the

point

version.

274

setMajorVer()

Sets

the

major

version.

274

setMinorVer()

Sets

the

minor

version.

274

setPointVer()

Sets

the

point

version

of

a

version

object.

275

toString()

Converts

a

version

object

or

integers

to

a

character

string.

275

CxVersion()

Creates

a

version

object

from

major,

minor,

and

point

numbers

or

from

a

version

string.

Syntax

CxVersion(int

major,

int

minor,

int

point);

CxVersion(char

*

verString);

Parameters

major

[in]

Is

an

integer

that

specifies

the

major

version,

which

precedes

the

first

delimiter

in

the

version.

minor

[in]

Is

an

integer

that

specifies

the

minor

version,

which

follows

the

first

delimiter

in

the

version.

point

[in]

Is

an

integer

that

specifies

the

point

version,

which

follows

the

second

delimiter

in

the

version.

verString

[in]

Is

a

character

string

that

specifies

a

version,

such

as

“2.0.3”.

Return

values

None.

©

Copyright

IBM

Corp.

1997,

2003

269

Notes

Each

business

object

definition

refers

to

an

instance

of

the

CxVersion

class

to

set

its

version.

The

version

to

which

a

BusinessObject

constructor

refers

is

the

version

of

the

business

object

definition.

A

business

object

has

the

same

version

as

its

business

object

definition.

Examples

CxVersion

*

CurrentVersion

=

new

CxVersion(LATEST,

LATEST,

LATEST);

.

.

.

myVersion

=

new

CxVersion(“2.0.3”);

See

also

See

also

the

description

of

the

BusObjSpec

class.

compareMajor()

Compares

major

versions

or

compares

the

major

version

of

an

version

object

with

an

integer.

Syntax

int

compareMajor(CxVersion

&

other);

int

compareMajor(int

major);

Parameters

other

[in]

Is

a

version

object.

major

[in]

Is

an

integer

that

represents

the

major

version

number.

Return

values

An

integer

that

specifies

the

difference

between

the

major

versions.

Notes

You

can

use

the

compareMajor()

method

to

compare

the

major

versions

of

business

objects

or

business

object

definitions.

See

also

See

also

the

descriptions

of

the

compareMinor(),

comparePoint(),

and

compareTo()

methods.

compareMinor()

Compares

the

minor

versions

of

two

version

objects

or

compares

the

minor

version

with

an

integer.

Syntax

int

compareMinor(CxVersion

&

other);

int

compareMinor(int

minor);

270

Connector

Development

Guide

for

C++

Parameters

other

[in]

Is

a

version

object.

minor

[in]

Is

an

integer

that

represents

the

minor

version

number.

Return

values

An

integer

that

specifies

the

difference

between

the

minor

versions.

Notes

You

can

use

the

compareMinor()

method

to

compare

the

minor

versions

of

business

objects

or

business

object

definitions.

See

also

See

also

the

descriptions

of

the

compareMajor(),

comparePoint(),

and

compareTo()

methods.

comparePoint()

Compares

the

point

versions

of

two

version

objects

or

compares

the

point

version

with

an

integer.

Syntax

int

comparePoint(CxVersion

&

other);

int

comparePoint(int

point);

Parameters

other

[in]

Is

a

version

object.

point

[in]

Is

an

integer.

Return

values

An

integer

that

specifies

the

difference

between

the

point

versions.

Notes

You

can

use

the

comparePoint()

method

to

compare

the

point

versions

of

business

objects

or

business

object

definitions.

See

also

See

also

the

descriptions

of

the

compareMajor(),

compareMinor(),

and

compareTo()

methods.

compareTo()

Compares

the

current

version

to

another

version

or

compares

the

current

version

to

a

character

string.

Syntax

int

compareTo(CxVersion

&

other);

int

compareTo(char

*

verString);

Chapter

16.

CxVersion

class

271

Parameters

other

[in]

Is

a

version

object.

verString

[in]

Is

a

character

string

that

specifies

a

version.

Return

values

Returns

0

if

the

versions

match,

or

an

integer

that

specifies

the

difference

between

the

first

of

the

following

versions

that

do

not

match:

major

versions,

minor

versions,

or

point

versions.

Notes

You

can

use

the

compareTo()

method

to

determine

whether

a

business

object

or

business

object

definition

has

a

certain

version.

Examples

compareTo(newVersion);

See

also

See

also

the

descriptions

of

the

compareMajor(),

compareMinor(),

and

compareTo()

methods.

getDELIMITER()

Retrieves

the

delimiter

character

that

separates

major,

minor,

and

point

versions

in

a

version

object.

Syntax

static

char

*

getDELIMITER();

Parameters

None.

Return

values

The

current

delimiter

character

for

separating

major,

minor,

and

point

versions

in

a

version

object.

Notes

You

can

use

the

getDELIMITER()

method

to

determine

which

characters

version

strings

might

contain.

See

also

See

also

the

descriptions

of

the

getLATESTVERSION()

and

toString()

methods.

getLATESTVERSION()

Retrieves

the

latest

version

of

a

version

object.

Syntax

static

const

CxVersion

&

getLATESTVERSION();

272

Connector

Development

Guide

for

C++

Parameters

None.

Return

values

The

latest

version,

including

major,

minor,

and

point

versions

separated

by

the

current

delimiter

character

(default

period).

Notes

You

can

use

the

compareTo()

method

to

determine

whether

a

business

object

or

business

object

definition

has

the

latest

version.

Examples

if(pObj->getVersion()->compareTo(CxVersion::getLATESTVERSION)==0)

See

also

See

also

the

descriptions

of

the

getMajorVer(),

getMinorVer(),

and

getPointVer()

methods.

getMajorVer()

Retrieves

the

major

version

of

a

version

object.

Syntax

int

getMajorVer()

const;

Parameters

None.

Return

values

An

integer

that

specifies

the

major

version

in

the

latest

version

object.

See

also

See

also

the

descriptions

of

the

getLATESTVERSION(),

getMinorVer(),

and

getPointVer()

methods.

getMinorVer()

Retrieves

the

minor

version

of

a

version

object.

Syntax

int

getMinorVer()

const;

Parameters

None.

Return

values

An

integer

that

specifies

the

minor

version

in

the

latest

version.

Chapter

16.

CxVersion

class

273

See

also

See

also

the

descriptions

of

the

getLATESTVERSION(),

getMajorVer(),

and

getPointVer()

methods.

getPointVer()

Retrieves

the

point

version

of

a

version

object.

Syntax

int

getPointVer()

const;

Parameters

None.

Return

values

An

integer

that

specifies

the

point

version

in

the

latest

version.

See

also

See

also

the

descriptions

of

the

getLATESTVERSION(),

getMajorVer(),

and

getMinorVer()

methods.

setMajorVer()

Sets

the

major

version

in

a

version

object.

Syntax

void

setMajorVer(int

newMajorVer);

Parameters

newMajorVer

[in]

Is

an

integer

that

specifies

the

major

version.

Return

values

None.

See

also

See

also

the

descriptions

of

the

setMinorVer()

and

setPointVer()

methods.

setMinorVer()

Sets

the

minor

version

of

a

version

object.

Syntax

void

setMinorVer(int

newMinorVer);

Parameters

newMinorVer

[in]

Is

an

integer

that

specifies

the

minor

version.

274

Connector

Development

Guide

for

C++

Return

values

None.

See

also

See

also

the

descriptions

of

the

setMajorVer()

and

setPointVer()

methods.

setPointVer()

Sets

the

point

version

of

a

version

object.

Syntax

void

setPointVer(int

newPointVer);

Examples

newPointVer

[in]

Is

an

integer

that

specifies

the

point

version.

Return

values

None.

See

also

See

also

the

descriptions

of

the

setMajorVer()

and

setMinorVer()

methods.

toString()

Converts

a

version

object

to

a

character

string

or

converts

major,

minor,

and

point

versions

to

a

character

string.

Syntax

char

*

toString();

static

char

*

toString(int

major,

int

minor,

int

point);

Parameters

major

[in]

Is

an

integer

that

specifies

a

major

version,

which

precedes

the

first

delimiter

in

a

version.

minor

[in]

Is

an

integer

that

specifies

a

minor

version,

which

follows

the

first

delimiter

in

a

version.

point

[in]

Is

an

integer

that

specifies

a

point

version,

which

follows

the

second

delimiter

in

a

version.

Return

values

A

character

string

that

concatenates

the

major,

minor,

and

point

version

numbers,

from

a

version

object

or

from

major,

minor,

and

point

numbers

that

you

specify.

The

delimiter

character

separates

the

major,

minor,

and

point

numbers

in

the

character

string.

See

also

See

also

the

description

of

the

CxVersion

constructors.

Chapter

16.

CxVersion

class

275

276

Connector

Development

Guide

for

C++

Chapter

17.

GenGlobals

class

The

GenGlobals

class

is

a

base

class

for

a

C++

connector.

From

this

class,

a

connector

developer

must

derive

a

connector

class

and

implement

the

virtual

methods

for

the

connector.

This

connector

class

contains

the

code

for

the

application-specific

component

of

the

connector.

Important:

All

C++

connectors

must

extend

this

connector

base

class,

which

contains

the

following

virtual

methods:

init(),

getVersion(),

getBOHandlerforBO(),

pollForEvents(),

and

terminate().

In

their

derived

connector

class,

developers

must

provide

implementations

for

these

virtual

methods.

The

header

file

for

this

class

is

GenGlobals.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

Table

106

summarizes

the

methods

in

the

GenGlobals

class.

Table

106.

Member

methods

of

the

GenGlobals

class

Member

method

Description

Page

GenGlobals()

Creates

an

instance

of

the

GenGlobals

class.

277

executeCollaboration()

Send

business

object

request

to

a

collaboration.

278

generateAndLogMsg()

Generates

a

message

from

a

message

file

and

sends

it

to

the

connector’s

log

destination.

279

generateAndTraceMsg()

Generates

a

trace

message

from

a

message

file

and

sends

it

to

the

connector’s

log

destination.

280

generateMsg()

Generates

a

message

from

a

message

file

that

you

provide.

281

getBOHandlerforBO()

Retrieves

the

handler

for

a

business

object.

282

getCollabNames()

Retrieves

a

list

of

collaboration

names

that

are

available

to

process

business

object

requests.

283

getConfigProp()

Retrieves

a

property

for

the

connector

from

the

repository.

283

getTheSubHandler()

Retrieves

a

subscription

handler

to

determine

which

collaborations

subscribe

to

the

business

object

definition

for

the

incoming

business

object.

286

getVersion()

Retrieves

the

version

of

the

application-specific

component

of

the

connector

framework.

286

init()

Establishes

a

connection

with

the

application.

287

isAgentCapableOfPolling()

Determines

whether

this

connector-agent

process

can

perform

polling.

288

logMsg()

Logs

a

message.

289

pollForEvents()

Polls

an

application

for

changes

to

business

objects.

290

terminate()

Closes

the

connection

with

the

application

and

frees

allocated

resources.

290

traceWrite()

Writes

a

trace

message.

291

GenGlobals()

Creates

an

instance

of

the

GenGlobals

class.

You

should

derive

a

connector

class

from

the

GenGlobals

base

class

and

implement

all

the

virtual

methods

that

are

in

the

GenGlobals

class.

©

Copyright

IBM

Corp.

1997,

2003

277

Syntax

GenGlobals();

Parameters

None.

Return

values

None.

Examples

XYZGlobal::XYZGlobal()

:

GenGlobals()

executeCollaboration()

Sends

a

business

object

request

to

the

connector

framework,

which

sends

it

to

a

business

process

within

the

integration

broker.

This

is

a

synchronous

request.

Syntax

void

executeCollaboration

(char

*

busProcName,

BusinessObject

&

busObj,

ReturnStatusDescriptor

&

rtnStatusDesc);

Parameters

busProcName[in]

Specifies

the

name

of

the

business

process

to

execute

the

business

object

request.

If

InterChange

Server

is

your

integration

broker,

the

business-process

name

is

the

name

of

a

collaboration.Use

the

getCollabNames()

method

to

determine

the

names

of

collaborations

that

are

available

to

process

business

object

requests.

busObj[in/out]

Is

the

triggering

event

and

the

business

object

returned

from

the

business

process.

retStatusDesc[out]

Is

the

return-status

descriptor

containing

a

message

and

status

from

the

business

process.

Return

values

None.

Notes

The

executeCollaboration()

method

sends

the

busObj

business

object

to

the

connector

framework.

The

connector

framework

does

some

processing

on

the

event

object

to

serialize

the

data

and

ensure

that

it

is

persisted

properly.

It

then

sends

the

event

to

the

busProcName

business

process

in

the

integration

broker.

This

method

initiates

a

synchronous

execution

of

an

event,

which

means

that

the

method

waits

for

a

response

from

the

integration

broker’s

business

process.

WebSphere

InterChange

Server

If

your

integration

broker

is

IBM

WebSphere

InterChange

Server,

the

business

process

that

executeCollaboration()

invokes

is

a

collaboration.

278

Connector

Development

Guide

for

C++

To

receive

status

information

about

the

business-process

execution,

pass

in

an

instantiated

return-status

descriptor,

rtnStatusDesc,

as

the

last

argument

to

the

method.

The

integration

broker

can

return

status

information

from

its

business

process

and

send

it

to

the

connector

framework,

which

populates

this

return-status

descriptor

with

it.

You

can

use

the

methods

of

the

ReturnStatusDescriptor

class

to

access

this

status

information.

Note:

To

initiate

an

asynchronous

execution

of

an

event,

use

the

gotApplEvent()

method.

Asynchronous

execution

means

that

the

calling

code

does

not

wait

for

the

receipt

of

the

event,

nor

does

it

wait

for

a

response.

See

also

See

also

the

descriptions

of

the

BusinessObject

and

ReturnStatusDescriptor

classes.

generateAndLogMsg()

Generates

a

message

and

sends

it

to

the

connector’s

log

destination.

Syntax

void

generateAndLogMsg(int

msgNum,

int

msgType,

int

argCount,

...);

Parameters

msgNum

[in]

Specifies

the

message

number

(identifier)

in

the

message

file.

msgType

[in]

Is

one

of

the

following

message-type

constants

defined

in

the

CxMsgFormat

class

to

identify

the

message

severity:

XRD_WARNING

XRD_ERROR

XRD_FATAL

XRD_INFO

XRD_TRACE

argCount

[in]

Is

an

integer

that

specifies

the

number

of

parameters

within

the

message

text.

...

[in]

Is

a

list

of

message

parameters

for

the

message

text.

Return

values

None.

Notes

The

generateAndLogMsg()

method

combines

the

functionality

of

the

generateMsg()

and

logMsg()

methods.

It

generates

a

message

from

a

message

file

and

then

sends

it

to

the

log

destination.

You

establish

the

name

of

a

connector’s

log

destination

through

the

Logging

section

in

the

Trace/Log

File

tab

of

Connector

Configurator.

Important:

By

combining

these

two

methods,

generateAndLogMsg()

frees

up

the

memory

required

for

the

message

string

that

generateMsg()

produces.

You

no

longer

need

to

include

the

call

to

the

freeMemory()

method

to

release

the

memory

allocated

for

the

message

string.

Chapter

17.

GenGlobals

class

279

WebSphere

InterChange

Server

If

severity

is

XRD_ERROR

or

XRD_FATAL

and

the

connector

configuration

property

LogAtInterchangeEnd

is

set,

the

error

message

is

logged

and

an

email

notification

is

sent

when

email

notification

is

on.

See

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set

for

information

on

how

to

set

up

email

notification

for

errors.

IBM

recommends

that

log

messages

be

contained

in

a

message

file

and

extracted

with

the

generateAndLogMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

messages

specific

to

your

connector.

Connector

messages

logged

with

generateAndLogMsg()

are

viewable

using

LogViewer.

Examples

The

following

example

performs

the

same

task

as

the

example

provides

for

the

generateMsg()

method:

ret_code

=

connect_to_app(userName,

password);

//

Message

1100

-

Failed

to

connect

to

application

if

(ret_code

==

-1)

{

msg

=

generateAndLogMsg(1100,

CxMsgFormat::XRD_ERROR,

0,

NULL);

return

BON_FAIL;

}

See

also

generateAndTraceMsg(),

generateMsg(),

logMsg()

generateAndTraceMsg()

Generates

a

trace

message

and

sends

it

to

the

connector’s

trace

destination.

Syntax

void

generateAndTraceMsg(int

msgNum,

int

msgType,

int

traceLevel,

int

argCount,

...);

Parameters

msgNum

[in]

Specifies

the

message

number

(identifier)

in

the

message

file.

msgtype

[in]

Is

one

of

the

following

message-type

constants

defined

in

the

CxMsgFormat

class:

XRD_WARNING

XRD_ERROR

XRD_FATAL

XRD_INFO

XRD_TRACE

traceLevel

[in]

Is

one

of

the

following

trace-level

constants

defined

in

the

Tracing

class

to

identify

the

trace

level

used

to

determine

which

trace

messages

to

output:

280

Connector

Development

Guide

for

C++

Tracing::LEVEL1

Tracing::LEVEL2

Tracing::LEVEL3

Tracing::LEVEL4

Tracing::LEVEL5

The

method

writes

the

trace

message

when

the

current

trace

level

is

greater

than

or

equal

to

traceLevel.

Note:

Do

not

specify

a

trace

level

of

zero

(LEVEL0)

with

a

tracing

message.

A

trace

level

of

zero

indicates

that

tracing

is

turned

off.

Therefore,

any

trace

message

associated

with

a

traceLevel

of

LEVEL0

will

never

print.

argCount

[in]

Is

an

integer

that

specifies

the

number

of

parameters

within

the

message

text.

...

[in]

Is

a

list

of

message

parameters

for

the

message

text.

Return

values

None.

Notes

The

generateAndTraceMsg()

method

combines

the

message

generating

and

tracing

functionality

of

generateMsg()

and

traceWrite(),

respectively.

It

generates

a

message

from

a

message

file

and

then

sends

it

to

the

trace

destination.

You

establish

the

name

of

a

connector’s

trace

destination

through

the

Tracing

section

in

the

Trace/Log

File

tab

of

Connector

Configurator.

Important:

By

combining

these

two

methods,

generateAndTraceMsg()

frees

up

the

memory

required

for

the

message

string

that

generateMsg()

produces.

You

no

longer

need

to

include

the

call

to

the

freeMemory()

method

to

release

the

memory

allocated

for

the

message

string.

Connector

messages

logged

with

generateAndTraceMsg()

are

not

viewable

using

LogViewer.

Examples

if(tracePtr->getTraceLevel()>=

Tracing::LEVEL3)

{

//

Message

3033

-

Opened

main

form

for

object

msg

=

generateAndTraceMsg(3033,CxMsgFormat::XRD_FATAL,

Tracing::LEVEL3,0,

NULL);

}

See

also

generateAndLogMsg(),

generateMsg(),

traceWrite()

generateMsg()

Generates

a

message

from

a

set

of

predefined

messages

in

a

message

file.

Syntax

char

*

generateMsg(int

msgNum,

int

msgType,

char

*

info,

int

argCount,

...);

Chapter

17.

GenGlobals

class

281

Parameters

msgNum

[in]

Specifies

the

message

number

(identifier)

in

the

message

file.

msgType

[in]

Is

one

of

the

following

message-type

constants

defined

in

the

CxMsgFormat

class:

XRD_WARNING

XRD_ERROR

XRD_FATAL

XRD_INFO

XRD_TRACE

info

[in]

Is

an

informational

value,

such

as

the

name

of

the

class

for

which

the

IBM

WebSphere

business

integration

system

generated

the

message.

argCount

[in]

Is

an

integer

that

specifies

the

number

of

parameters

within

the

message

text.

...

[in]

Is

a

list

of

parameters

for

the

message

text.

Return

values

A

character

pointer

to

the

generated

message.

Notes

The

generateMsg()

method

allocates

memory

to

store

a

generated

message.

When

the

connector

has

logged

the

message,

it

should

call

the

freeMemory()

method

to

release

the

allocated

memory.

This

method

is

a

member

of

the

connector

framework

class

JToCPPVeneer.

The

syntax

of

the

call

is:

void

freeMemory(char

*

mem)

where

mem

is

the

memory

allocated

by

generateMsg().

See

the

sample

code

below

for

an

example

of

how

to

call

this

method.

Examples

char

*

msg;

ret_code

=

connect_to_app(userName,

password);

//

Message

1100

-

Failed

to

connect

to

application

if

(ret_code

==

-1)

{

msg

=

generateMsg(1100,

CxMsgFormat::XRD_ERROR,

NULL,

0,

NULL);

logMsg(msg);

JToCPPVeneer::getTheHandlerStuff()->freeMemory(msg);

return

BON_FAIL;

}

getBOHandlerforBO()

Retrieves

the

business

object

handler

for

a

business

object

definition.

Syntax

virtual

BOHandlerCPP

*

getBOHandlerforBO(char

*

busObjName)

=

0;

Parameters

busObjName

[in]

Is

the

name

of

a

business

object.

282

Connector

Development

Guide

for

C++

Return

values

A

pointer

to

a

business

object

handler.

Notes

The

class

library

calls

the

getBOHandlerforBO()

method

to

retrieve

the

business

object

handler

for

a

business

object

definition.

Important:

The

getBOHandlerforBO()

method

is

a

virtual

method

that

you

must

implement

for

the

connector.

You

can

use

one

business

object

handler

for

multiple

business

object

definitions

or

a

business

object

handler

for

each

business

object

definition.

Examples

BOHandlerCPP

*AppGlobal::getBOHandlerforBO(char

*

BOName)

{

static

AppGlobal

&pGlobal

=

NULL;

if

(NULL

==

pGlobal)

{

pGlobal

=

new

AppGlobal();

}

return

pGlobal;

}

See

also

See

also

the

description

of

the

BOHandlerCPP

class.

getCollabNames()

Retrieves

the

names

of

the

collaborations

that

are

available

to

process

business

object

requests.

WebSphere

InterChange

Server

This

method

is

only

valid

when

the

integration

broker

is

InterChange

Server.

Syntax

StringMessage

&

getCollabNames();

Return

values

A

StringMessage

object

containing

a

list

of

collaboration

names.

Notes

The

getCollabNames()

method

returns

the

collaboration

names

in

a

StringMessage

object.

Use

the

methods

of

this

class

to

access

the

collaboration

names.

For

more

information,

see

Chapter

20,

“StringMessage

class,”

on

page

303

getConfigProp()

Retrieves

a

connector

configuration

property

from

the

repository.

Chapter

17.

GenGlobals

class

283

Syntax

int

getConfigProp(char

*

property,

char

*

val,

int

nMaxCount);

Parameters

property

[in]

Is

the

name

of

the

property

to

retrieve.

val

[out]

Is

a

pointer

to

a

buffer

to

which

the

method

can

write

the

property

value.

nMaxCount

[in]

Is

the

number

of

bytes

in

the

value

buffer.

Return

values

An

integer

that

specifies

the

number

of

bytes

that

the

method

copied

to

the

value

buffer.

Notes

When

you

call

getConfigProp("ConnectorName")

in

a

parallel-process

connector

(one

that

has

the

ParallelProcessDegree

connector

property

set

to

a

value

greater

than

1),

the

method

always

returns

the

name

of

the

connector-agent

master

process,

regardless

of

whether

it

is

called

in

the

master

process

or

a

slave

process.

Examples

if

(getConfigProp("LoginId",

val,

255)

==

0);

{

logMsg("Invalid

LoginId");

traceWrite(Tracing::LEVEL3,

"Invalid

LoginId”,

NULL);

}

getEncoding()

Retrieves

the

character

encoding

that

the

connector

framework

is

using.

Syntax

char

*

getEncoding();

Parameters

None.

Return

values

A

string

containing

the

connector

framework’s

character

encoding.

Notes

The

getEncoding()

method

retrieves

the

connector

framework’s

locale,

which

defines

cultural

conventions

for

data

according

to

language,

country

(or

territory),

and

a

character

encoding.

The

connector

framework’s

character

encoding

should

indicate

the

character

encoding

of

the

connector

application.

The

connector

framework’s

locale

is

set

using

the

following

hierarchy:

v

The

CharacterEncoding

connector

configuration

property

in

the

repository

284

Connector

Development

Guide

for

C++

WebSphere

InterChange

Server

If

a

local

configuration

file

exists,

the

setting

of

the

CharacterEncoding

connector

configuration

property

in

this

local

file

takes

precedence.

If

no

local

configuration

file

exists,

the

setting

of

the

CharacterEncoding

property

is

one

from

the

set

of

connector

configuration

properties

downloaded

from

the

InterChange

Server

repository

at

connector

startup.

v

The

character

encoding

from

the

Java

environment,

which

is

Unicode

(UCS-2).

This

method

is

useful

when

the

connector

needs

to

perform

character-encoding

processing,

such

as

character

conversion.

See

also

getLocale()(in

this

class),

getLocale()

(in

the

BusinessObject

class)

getLocale()

Retrieves

the

locale

of

the

connector

framework.

Syntax

char

*

getLocale();

Parameters

None.

Return

values

A

string

containing

the

connector

framework’s

locale

setting.

Notes

The

getLocale()

method

retrieves

the

connector

framework’s

locale,

which

defines

cultural

conventions

for

data

according

to

language,

country

(or

territory),

and

a

character

encoding.

The

connector

framework’s

locale

should

indicate

the

locale

of

the

connector

application.

The

connector

framework’s

locale

is

set

using

the

following

hierarchy:

v

The

Locale

connector

configuration

property

in

the

repository

WebSphere

InterChange

Server

If

a

local

configuration

file

exists,

the

setting

of

the

Locale

connector

configuration

property

in

this

local

file

takes

precedence.

If

no

local

configuration

file

exists,

the

setting

of

the

Locale

property

is

the

one

from

the

set

of

connector

configuration

properties

downloaded

from

the

InterChange

Server

repository

at

connector

startup.

v

The

locale

from

the

Java

environment,

which

is

the

locale

from

the

operating

system.

This

method

is

useful

when

the

connector

needs

to

perform

locale-sensitive

processing.

Chapter

17.

GenGlobals

class

285

See

also

getEncoding(),

getLocale()

(in

the

BusinessObject

class)

getTheSubHandler()

Retrieves

a

pointer

to

the

subscription

manager.

The

calling

routine

can

use

this

pointer

to

determine

whether

any

subscriptions

to

a

particular

business

object

definition

exist

for

the

business

object.

Syntax

SubscriptionHandlerCPP

*

getTheSubHandler()

const;

Parameters

None.

Return

values

A

pointer

to

the

subscription

manager.

Notes

Through

the

subscription

manager,

the

connector

keeps

track

of

the

subscribers

for

every

verb

of

each

business

object

definition

that

the

connector

publishes,

in

a

consolidated

list

of

all

active

subscriptions.

Examples

if

(getTheSubHandler->isSubscribed(theObj->getName(),

"Create"){

}

See

also

See

also

the

description

of

the

SubscriptionHandlerCPP,

BusinessObject,

and

BusObjSpec

classes.

getVersion()

Retrieves

the

version

of

the

connector.

Syntax

CxVersion

*

getVersion()

=

0;

Parameters

None.

Return

values

A

pointer

to

a

character

string

indicating

the

version

of

the

connector’s

application-specific

component.

286

Connector

Development

Guide

for

C++

Examples

char

*

getVersion()

{

return

(char

*)

CX_CONNECTOR_VERSIONSTRING;

}

Notes

The

connector

framework

calls

the

getVersion()

method

to

retrieve

the

version

of

the

connector.

Important:

The

getVersion()

method

is

a

virtual

method

that

you

must

implement

for

the

connector.

See

also

See

also

the

description

of

the

CxVersion

class.

init()

Initializes

the

connector’s

application-specific

component.

Syntax

virtual

int

init(CxVersion

*

version)

=

0;

Parameters

version[in]

Is

the

version

object

of

the

connector

framework.

Return

values

An

integer

that

indicates

the

status

of

the

initialization

operation.

Typical

return

values

are:

BON_SUCCESS

Initialization

succeeded.

BON_FAIL

Initialization

failed.

BON_UNABLETOLOGIN

The

connector

is

unable

to

log

in

to

the

application.

For

other

return

values,

see

228.

Notes

The

class

library

calls

the

init()

method

when

the

connector

comes

up.

Be

sure

to

implement

all

of

the

initialization

for

the

connector,

such

as

logging

on

to

an

application,

in

the

init()

method.

Important:

The

init()

method

is

a

virtual

method

that

you

must

implement

for

the

connector.

As

part

of

the

initialization,

the

init()

method

can

optionally

compare

the

version

of

the

connector

framework

with

the

version

that

it

expects

and

return

success

if

the

versions

match,

or

failure

if

the

connector

cannot

work

with

the

version

of

the

connector

framework.

Chapter

17.

GenGlobals

class

287

See

also

See

also

the

description

of

the

GenGlobals

class.

isAgentCapableOfPolling()

Determines

whether

a

connector-agent

process

is

capable

of

polling.

WebSphere

InterChange

Server

This

method

is

only

valid

when

the

integration

broker

is

InterChange

Server.

Syntax

boolean

isAgentCapableOfPolling();

Parameters

None.

Return

values

A

boolean

value

that

indicates

whether

the

connector

is

capable

of

polling.

This

return

value

depends

on

the

type

of

connector:

Connector

type

Return

value

Master

(serial

processing)

true

Master

(parallel

processing)

false

Slave

(request)

false

Slave

(polling)

true

Notes

If

a

connector

is

configured

to

run

in

a

single-process

mode

(with

ParallelProcessDegree

equal

to

1,

which

is

the

default),

the

isAgentCapableOfPolling()

method

always

returns

true

because

the

same

connector

process

performs

both

event

polling

and

request

processing.

If

a

connector

is

configured

to

run

in

parallel-process

mode

(ParallelProcessDegree

is

greater

than

1),

it

consists

of

several

processes,

each

with

a

particular

purpose,

as

shown

in

Table

107.

Table

107.

Purposes

of

processes

of

a

parallel-process

connector

Connector

process

type

Purpose

of

connector

process

Connector-agent

master

process

Receives

the

incoming

event

from

ICS

and

determines

to

which

of

the

connector’s

slave

processes

to

route

the

event

Request-processing

slave

process

Handles

requests

for

the

connector

Polling

slave

process

Handles

polling

and

event

delivery

for

the

connector

The

return

value

of

isAgentCapableOfPolling()

depends

on

the

purpose

of

the

connector

that

makes

the

call

to

this

method.

For

a

parallel-process

connector,

this

method

returns

true

only

when

called

from

a

connector

whose

purpose

is

to

serve

288

Connector

Development

Guide

for

C++

as

a

polling

slave.

For

more

information

on

parallel-process

connectors,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

logMsg()

Logs

a

message

to

the

connector’s

log

destination.

Log

messages

must

be

contained

in

a

message

file

that

you

provide

for

your

connector.

Syntax

void

logMsg(char

*

msg);

void

logMsg(char

*

msg,

int

severity);

Parameters

msg

[in]

Is

a

pointer

to

the

message.

severity[in]

Is

one

of

the

following

message

types:

XRD_WARNING

XRD_ERROR

XRD_FATAL

XRD_INFO

XRD_TRACE

Return

values

None.

Notes

The

logMsg()

method

sends

the

specified

msg

text

to

the

log

destination.

You

establish

the

name

of

a

connector’s

log

destination

through

the

Logging

section

in

the

Trace/Log

File

tab

of

Connector

Configurator.

IBM

recommends

that

log

messages

be

contained

in

a

message

file

and

extracted

with

the

generateMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

messages

specific

to

your

connector.

The

generateMsg()

method

generates

the

message

string

for

logMsg().

It

retrieves

a

predefined

message

from

a

message

file,

formats

the

text,

and

returns

a

generated

message

string.

Note:

You

can

use

the

generateAndLogMsg()

method

to

combine

the

message

generation

and

logging

steps.

WebSphere

InterChange

Server

If

severity

is

XRD_ERROR

or

XRD_FATAL

and

the

connector

configuration

property

LogAtInterchangeEnd

is

set,

the

error

message

is

logged

and

an

email

notification

is

sent

when

email

notification

is

on.

See

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set

for

information

on

how

to

set

up

email

notification

for

errors.

Connector

messages

logged

with

logMsg()

are

viewable

using

LogViewer

if

the

message

strings

were

generated

with

generateMsg().

Chapter

17.

GenGlobals

class

289

Examples

if

((form

=

CreateMainForm(conn,

getFormName(theObj)))

<

0)

{

msg

=

generateMsg(10,

CxMsgFormat::XRD_FATAL,

NULL,

0,

NULL);

logMsg(msg);

}

See

also

See

the

description

of

the

GenGlobals::generateMsg()

utility.

pollForEvents()

Polls

an

application

for

changes

to

business

objects.

Syntax

virtual

int

pollForEvents()

=

0;

Parameters

None.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

polling

operation.

The

following

return

codes

are

typically

used

by

the

pollForEvents()

method.

BON_SUCCESS

The

poll

action

was

successful.

BON_FAIL

The

method

failed

in

polling.

BON_APPRESPONSETIMEOUT

The

application

is

not

responding.

For

other

return

values,

see

“doVerbFor()”

on

page

228..

Notes

The

connector

infrastructure

calls

the

pollForEvents()

method,

at

a

time

interval

that

you

can

configure,

so

that

the

connector

can

detect

any

event

in

the

application

that

is

interesting

to

a

subscriber.

The

frequency

at

which

the

class

library

calls

this

method

depends

on

the

poll

frequency

value

that

is

configured

by

the

PollFrequency

connector

configuration

property.

Important:

The

pollForEvents()

method

is

an

abstract

method

that

you

must

implement

for

the

connector.

Note:

If

your

connector

executes

in

parallel-process

mode,

it

uses

a

separate

polling

slave

process

to

handle

polling.

See

also

See

also

the

description

of

the

SubscriptionHandlerCPP

class.

terminate()

Performs

clean-up

operations

when

the

connector

is

shutting

down.

290

Connector

Development

Guide

for

C++

Syntax

virtual

int

terminate()

=

0;

Parameters

None.

Return

values

An

integer

that

indicates

the

status

value

of

the

terminate()

operation.

Typical

return

values

are:

BON_SUCCESS

Termination

succeeded.

BON_FAIL

Termination

failed.

For

other

return

values,

see

228.

Notes

The

connector

framework

calls

the

terminate()

method

when

the

connector

is

shutting

down.

In

your

implementation

of

this

method,

be

sure

to

free

all

the

memory

and

log

off

from

the

application.

Important:

The

terminate()

method

is

a

virtual

method

that

you

must

implement

for

the

connector.

traceWrite()

Writes

a

trace

message

to

the

log

destination.

This

is

a

utility

method

for

connector

developers

to

use.

Syntax

void

traceWrite(int

traceLevel,

char

*

info,

char

*

filterName);

Parameters

traceLevel

[in]

Is

one

of

the

following

trace-level

constants

to

identify

the

trace

level

used

to

determine

which

trace

messages

are

output:

Tracing::LEVEL1

Tracing::LEVEL2

Tracing::LEVEL3

Tracing::LEVEL4

Tracing::LEVEL5

The

method

writes

the

trace

message

when

the

current

trace

level

is

greater

than

or

equal

to

traceLevel.

Note:

Do

not

specify

a

trace

level

of

zero

(LEVEL0)

with

a

tracing

message.

A

trace

level

of

zero

indicates

that

tracing

is

turned

off.

Therefore,

any

trace

message

associated

with

a

traceLevel

of

LEVEL0

will

never

print.

info

[in]

Is

a

pointer

to

the

message

text

to

use

for

the

trace

message.

filterName

[in]

Is

a

pointer

to

a

filter

to

use

for

writing

the

message.

Specify

NULL

for

this

parameter.

Chapter

17.

GenGlobals

class

291

Return

values

None.

Notes

You

can

use

the

traceWrite()

method

to

write

your

own

trace

messages

for

a

connector.

Tracing

is

turned

on

for

the

connector

when

the

TraceLevel

connector

configuration

property

is

set

to

a

nonzero

value

(any

trace-level

constant

except

LEVEL0).

The

traceWrite()

method

sends

the

specified

msg

text

to

the

trace

destination

when

the

current

trace

level

is

greater

than

or

equal

to

level.

You

establish

the

name

of

a

connector’s

trace

destination

through

the

Tracing

section

in

the

Trace/Log

File

tab

of

Connector

Configurator.

Because

trace

messages

are

usually

needed

only

during

debugging,

whether

trace

messages

are

contained

in

a

message

file

is

left

at

the

discretion

of

the

developer:

v

If

non-English-speaking

users

need

to

view

trace

messages,

you

need

to

internationalize

these

messages.

Therefore,

you

must

put

the

trace

messages

in

a

message

file

and

extract

them

with

the

generateMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

message

specific

to

your

connector.

The

generateMsg()

method

generates

the

message

string

for

traceWrite().

It

retrieves

a

predefined

trace

message

from

a

message

file,

formats

the

text,

and

returns

a

generated

message

string.

Note:

You

can

use

the

generateAndTraceMsg()

method

to

combine

the

message

generation

and

logging

steps.

v

If

only

English-speaking

users

need

to

view

trace

messages,

you

do

not

need

to

internationalize

these

messages.

Therefore,

you

can

include

the

trace

message

(in

English)

directly

in

the

call

to

traceWrite().

You

do

not

need

to

use

the

generateMsg()

or

generateAndTraceMsg()

method.

Connector

messages

logged

with

traceWrite()

are

not

viewable

using

LogViewer.

Examples

traceWrite(Tracing::LEVEL3,

"Invalid

LoginId",

NULL);

See

also

generateAndTraceMsg(),

generateMsg()

See

also

the

description

of

the

Tracing

class.

Deprecated

methods

Some

methods

in

the

GenGlobals

class

were

supported

in

earlier

versions

but

are

no

longer

supported.

These

deprecated

methods

will

not

generate

errors,

but

IBM

recommends

that

you

avoid

their

use

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

Table

108

lists

the

deprecated

methods

for

the

GenGlobals

class.

If

you

are

writing

a

new

connector

(not

modifying

an

existing

connector),

you

can

ignore

this

section.

292

Connector

Development

Guide

for

C++

Table

108.

Deprecated

methods

of

the

GenGlobals

class

Former

method

Replacement

consumeSync()

executeCollaboration()

Chapter

17.

GenGlobals

class

293

294

Connector

Development

Guide

for

C++

Chapter

18.

ReturnStatusDescriptor

class

The

ReturnStatusDescriptor

class

enables

connectors

to

return

error

and

informational

messages

in

a

return-status

descriptor.

This

descriptor

provides

additional

status

information

is

usually

returned

as

part

of

the

request

response

sent

to

the

integration

broker.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

returns

the

return-status

descriptor

to

the

collaboration

that

initiated

the

request.

The

collaboration

can

access

the

information

in

this

return-status

descriptor

to

obtain

the

status

of

its

service

call

request.

The

header

file

for

this

class

is

ReturnStatusDescriptor.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

Table

109

summarizes

the

methods

in

the

ReturnStatusDescriptor

class.

Table

109.

Member

methods

of

the

ReturnStatusDescriptor

class

Member

method

Description

Page

getErrorMsg()

Retrieves

an

error

message

string

from

a

return-status

descriptor.

295

getStatus()

Retrieves

the

status

value

from

a

return-status

descriptor.

295

seterrMsg()

Sets

a

string

containing

an

error

or

informational

message

in

the

return-status

descriptor.

296

setStatus()

Sets

the

status

value

in

the

return-status

descriptor.

296

getErrorMsg()

Retrieves

an

error

message

string

from

a

return-status

descriptor.

Note:

This

method

is

used

only

by

the

connector

framework.

Syntax

char

*

getErrorMsg();

Parameters

None.

Return

values

A

string

containing

an

error

or

informational

message

for

the

integration

broker.

getStatus()

Retrieves

the

status

value

from

a

return-status

descriptor.

©

Copyright

IBM

Corp.

1997,

2003

295

Syntax

int

getStatus();

Parameters

None.

Return

values

An

integer

containing

status

value

for

the

integration

broker.

seterrMsg()

Sets

a

string

containing

an

error

or

informational

message

in

the

return-status

descriptor.

Syntax

void

seterrMsg(char

*

errMsg);

Parameters

errMsg[in]

Is

the

message

string.

Return

values

None.

Notes

You

can

use

seterrMsg()

to

return

a

string

containing

a

message

to

an

integration

broker.

Examples

int

ExampleBOHandler::doVerbFor(BusinessObject

&theObj,

ReturnStatusDescriptor

*rtnObj)

{

int

status

=

BON_SUCCESS;

char

*verb

=

theObj.getVerb();

if

(strcmp(verb,

CREATE)

==

0)

status

=

doCreate(theObj);

else

if

(strcmp(verb,

Verb)

==

0)

//

Check

for

other

verbs

and

call

verb

routines

else

{

//

Send

the

collaboration

a

message

that

//

this

verb

is

not

supported.

char

errorMsg[512];

sprintf(errorMsg,

"The

verb

’%s’

is

not

supported

",

verb);

rtnObj->seterrMsg(errorMsg);

status

=

BON_FAIL;

}

return

status;

}

setStatus()

Sets

the

status

value

in

a

return-status

descriptor.

296

Connector

Development

Guide

for

C++

Syntax

void

setStatus(int

status);

Parameters

status[in]

Is

the

status

value

to

store

in

the

return-status

descriptor.

Return

values

None.

Chapter

18.

ReturnStatusDescriptor

class

297

298

Connector

Development

Guide

for

C++

Chapter

19.

SubscriptionHandlerCPP

class

The

SubscriptionHandlerCPP

class

represents

subscription

managers,

which

you

can

use

to

determine

whether

the

integration

broker

is

interested

in

a

business

object.

You

can

also

use

a

subscription

manager

method

to

send

business

objects

to

the

integration

broker.

The

header

file

for

this

class

is

SubscriptionHandlerCPP.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

Table

110

summarizes

the

methods

in

the

SubscriptionHandlerCPP

class.

Table

110.

Member

methods

of

the

SubscriptionHandlerCPP

class

Member

method

Description

Page

SubscriptionHandlerCPP()

Creates

a

subscription

manager.

In

general,

you

do

not

call

this

method

to

create

a

subscription

manager.

The

connector

framework

usually

creates

a

subscription

manager

for

the

connector.

299

gotApplEvent()

Sends

a

business

object

to

InterChange

Server.

300

isSubscribed()

Determines

whether

a

subscription

exists

for

a

business

object

definition.

302

SubscriptionHandlerCPP()

Creates

a

subscription

manager,

which

is

an

instance

of

the

SubscriptionHandlerCPP

class.

Syntax

SubscriptionHandlerCPP();

Parameters

None.

Return

values

None.

Notes

A

business

object

handler

uses

a

subscription

manager

to

determine

which

whether

subscriptions

exist

to

a

business

object.

In

general,

you

do

not

use

this

method

to

create

a

subscription

manager.

The

connector

class

framework

creates

a

subscription

manager

for

the

connector.

See

also

See

also

the

description

of

the

BOHandlerCPP

Class.

©

Copyright

IBM

Corp.

1997,

2003

299

gotApplEvent()

Sends

a

business

object

to

the

connector

framework.

This

is

an

asynchronous

request.

Syntax

int

gotApplEvent(BusinessObject

busObj);

Parameters

busObj

[in]

Is

the

business

object

being

sent

to

the

integration

broker.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

event

delivery.

Compare

this

integer

value

with

the

following

outcome-status

constants

to

determine

the

status:

BON_SUCCESS

The

connector

framework

successfully

delivered

the

business

object

to

the

connector

framework.

BON_FAIL

The

event

delivery

failed.

BON_CONNECTOR_NOT_ACTIVE

The

connector

is

paused

and

therefore

unable

to

receive

events.

BON_NO_SUBSCRIPTION_FOUND

No

subscriptions

exist

for

the

event

that

the

business

object

represents.

Notes

The

gotApplEvent()

method

sends

the

busObj

business

object

to

the

connector

framework.

The

connector

framework

does

some

processing

on

the

event

object

to

serialize

the

data

and

ensure

that

it

is

persisted

properly.

It

then

makes

sure

the

event

is

either

sent

to

the

ICS

through

IIOP

or

written

to

a

queue

(if

you

are

using

queues

for

event

notification).

Before

sending

the

business

object

to

the

connector

framework,

gotApplEvent()

checks

for

the

following

conditions

and

returns

the

associated

outcome

status

if

these

conditions

are

not

met:

Condition

Outcome

status

Is

the

status

of

the

connector

active;

that

is,

it

is

not

in

a

“paused”

state?

When

the

connector’s

application-specific

component

is

paused,

it

no

longer

polls

the

application.

BON_CONNECTOR_NOT_ACTIVE

Is

there

any

subscription

for

the

event?

BON_NO_SUBSCRIPTION_FOUND

Note:

Because

gotApplEvent()

makes

sure

that

the

business

object

and

verb

to

be

sent

have

a

valid

subscription,

you

do

not

need

to

call

isSubscribed()

immediately

before

calling

gotApplEvent().

300

Connector

Development

Guide

for

C++

WebSphere

InterChange

Server

Usually,

you

call

the

gotApplEvent()

method

from

the

pollForEvents()

thread.

InterChange

Server

uses

the

pollForEvents()

method

to

request

the

connector

to

send

subscribed

events

to

it.

The

connector

uses

the

gotApplEvent()

method

to

send

business

objects

to

the

connector

framework,

which

in

turn

routes

them

to

InterChange

Server

in

response.

The

poll

method

should

check

the

return

code

from

gotApplEvent()

to

ensure

that

any

errors

that

are

returned

are

handled

appropriately.

For

example,

until

the

event

delivery

is

successful,

the

poll

method

should

not

remove

the

event

from

the

event

table.

The

gotApplEvent()

method

initiates

an

asynchronous

execution

of

an

event.

Asynchronous

execution

means

that

the

method

does

not

wait

for

receipt

of

the

event,

nor

does

it

wait

for

a

response.

Note:

To

initiate

a

synchronous

execution

of

an

event,

use

the

executeCollaboration()

method.

Synchronous

execution

means

that

the

calling

code

waits

for

the

receipt

of

the

event,

and

for

a

response.

Examples

SubscriptionHandlerCPP

*

theSubHandler

=

GenGlobals::getTheSubHandler();

//

Determine

whether

there

are

subscribers

to

the

event

if

(theSubHandler->isSubscribed(obj_name,

obj_verb)

!=

TRUE)

{

//

log

message

//

delete

event

from

event

table

//

add

event

to

archive

table

continue;

}

//

Prepare

to

retrieve

data

into

the

business

object

pObj

=

new

BusinessObject(obj_name);

pObj->setVerb("Retrieve");

//

Set

key

in

business

object

//

Call

the

business

object

handler

doVerbFor()

//

to

retrieve

data

if

(pObj->doVerbFor()

==

BON_FAIL)

{

//

Log

error

message

if

retrieve

fails

retcode

=

BON_FAIL;

break;

}

//

Call

gotApplEvent()

to

send

the

business

object

pObj->setVerb(obj_verb);

theSubHandler->gotApplEvent(*pObj);

if

((theSubHandler->gotApplEvent(*pBusObj))

==

BON_FAIL)

{

//

Log

error

message

retcode

=

BON_FAIL;

break;

}

Chapter

19.

SubscriptionHandlerCPP

class

301

See

also

See

also

the

description

of

the

BusinessObject

Class

and

the

pollForEvents()

method.

isSubscribed()

Determines

whether

the

integration

broker

has

subscribed

to

a

particular

business

object

with

a

particular

verb.

Syntax

int

isSubscribed(char

*

busObjName,

char

*

verb);

Parameters

busObjName

[in]

Is

the

name

of

a

business

object.

verb

[in]

Is

the

active

verb

for

the

business

object.

Return

values

Returns

1

for

True

if

the

integration

broker

is

interested

in

receiving

the

specified

business

object

and

verb;

otherwise,

returns

0

for

False.

Notes

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

poll

method

can

determine

if

any

collaboration

subscribes

to

the

busObjName

business

object

with

the

specified

verb.

At

initialization,

the

connector

framework

requests

its

subscription

list

from

the

connector

controller.

At

runtime,

the

poll

method

can

use

isSubscribed()

to

query

the

connector

framework

to

verify

that

some

collaboration

subscribes

to

a

particular

business

object.

The

poll

method

can

send

the

event

only

if

some

collaboration

is

currently

subscribed.

Other

integration

brokers

If

your

business

integration

system

uses

WebSphere

MQ

Integrator

Broker

or

WebSphere

Application

Server,

the

connector

framework

assumes

that

the

integration

broker

is

interested

in

all

the

connector’s

supported

business

objects.

If

the

application-specific

component

uses

the

isSubscribed()

method

to

query

the

connector

framework

about

subscriptions

for

a

particular

business

object,

the

method

returns

0

(True)

for

every

business

object

that

the

connector

supports.

Examples

SubscriptionHandlerCPP

&theSubHandler

=

GenGlobals::getTheSubHandler();

if

(theSubHandler->isSubscribed(theObj->getName(),

theObj->getVerb()))

{

theSubHandler->gotApplEvent(theObj);

}

302

Connector

Development

Guide

for

C++

Chapter

20.

StringMessage

class

The

StringMessage

class

provides

methods

for

accessing

the

contents

of

a

StringMessage

object.

The

header

file

for

this

class

is

StringMessage.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

Table

111

summarizes

the

methods

in

the

StringMessage

class.

Table

111.

Member

methods

of

the

StringMessage

class

Member

method

Description

Page

hasMoreTokens()

Indicates

whether

a

StringMessage

object

has

more

string

tokens.

303

nextToken()

Returns

the

next

string

or

NULL.

303

hasMoreTokens()

Determines

whether

there

are

more

strings

in

a

StringMessage

object.

You

can

use

this

method

to

loop

through

a

StringMessage

object.

Syntax

unsigned

char

hasMoreTokens();

Parameters

None.

Return

values

Returns

1

if

the

StringMessage

object

has

more

strings

and

0

if

not.

nextToken()

Returns

the

next

string

(token)

in

a

StringMessage

object.

Syntax

char

*

nextToken();

Parameters

None.

Return

values

Returns

the

next

string

in

a

StringMessage

object

or

NULL

if

there

are

no

more

strings.

©

Copyright

IBM

Corp.

1997,

2003

303

Deprecated

methods

Methods

in

the

StringMessage

class

were

supported

in

earlier

versions

but

are

no

longer

supported.

These

deprecated

methods

will

not

generate

errors,

but

IBM

recommends

that

you

avoid

their

use

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

Table

112

lists

the

deprecated

methods

for

the

StringMessage

class.

If

you

are

writing

a

new

connector

(not

modifying

an

existing

connector),

you

can

ignore

this

section.

Table

112.

Deprecated

methods

of

the

StringMessage

class

Deprecated

method

Replacement

getCurrentSize()

None

initTokenizer()

None

304

Connector

Development

Guide

for

C++

Chapter

21.

Tracing

class

The

Tracing

class

provides

tracing

services

for

connectors.

The

header

file

for

this

class

is

Tracing.hpp.

It

resides

in

the

following

subdirectory

of

your

product

directory:

DevelopmentKits\cdk\generic_include

This

class

contains

the

following:

v

“Trace-level

constants”

v

“Methods”

Trace-level

constants

The

Tracing

class

defines

a

the

trace-level

constants

shown

in

Table

113..

Table

113.

Trace-level

constants

defined

in

the

Tracing

class

Trace-level

constant

Meaning

LEVEL0

Level

0

of

tracing

(tracing

is

off)

LEVEL1

Level

1

of

tracing

LEVEL2

Level

2

of

tracing

LEVEL3

Level

3

of

tracing

LEVEL4

Level

4

of

tracing

LEVEL5

Level

5

of

tracing

Methods

Table

114

summarizes

the

methods

in

the

Tracing

class.

Table

114.

Member

methods

of

the

Tracing

class

Member

method

Description

Page

Tracing()

Creates

an

instance

of

the

Tracing

class

for

a

connector.

You

never

call

this

method

to

create

an

instance

of

the

Tracing

class.

The

connector

class

framework

creates

an

instance

of

the

Tracing

class

for

the

connector.

getIndent()

Retrieves

a

character

value

that

specifies

the

indent

for

tracing

messages.

305

getName()

Retrieves

the

name

of

the

business

object

for

which

to

write

tracing

messages.

306

getTraceLevel()

Retrieves

the

current

tracing

level.

306

setIndent()

Sets

the

indent

for

messages.

306

write()

Writes

a

tracing

message.

307

getIndent()

Retrieves

a

character

string

that

specifies

the

indent

for

trace

messages.

Syntax

static

char

*

getIndent();

©

Copyright

IBM

Corp.

1997,

2003

305

Parameters

None.

Return

values

A

character

string

that

specifies

the

indent

for

trace

messages.

Examples

tempStr

=

theObj::getIndent();

getName()

Retrieves

the

name

of

the

subsystem

(connector

name)

to

use

in

trace

messages.

Syntax

char

*

getName()

const;

Parameters

None.

Return

values

A

character

string

that

contains

the

name

of

the

subsystem

being

traced.

getTraceLevel()

Retrieves

the

current

trace

level.

To

set

the

tracing

level,

you

can

use

the

TraceLevel

connector

configuration

property.

Syntax

int

getTraceLevel()

const;

Parameters

None.

Return

values

An

integer

that

indicates

the

current

trace

level:

Tracing::LEVEL0

Tracing::LEVEL1

Tracing::LEVEL2

Tracing::LEVEL3

Tracing::LEVEL4

Tracing::LEVEL5

Examples

if(getTraceLevel()

>

Tracing::LEVEL0)

write(Tracing::LEVEL1,

"Connector

failed

to

initialize.",

NULL);

setIndent()

Sets

the

indent

that

tracing

uses

to

write

trace

messages.

306

Connector

Development

Guide

for

C++

Syntax

static

void

setIndent(char

*

newIndent);

Parameters

newIndent

[in]

Is

a

character

string

that

specifies

the

indent

for

tracing

messages.

Return

values

None.

write()

Writes

a

trace

message

for

the

connector.

Note:

For

most

trace

messages,

you

can

simply

use

the

traceWrite()

utility

methods

provided

in

the

GenGlobals

and

BOHandlerCPP

classes.

Syntax

void

write(int

traceLevel,

char

*

info);

void

write(int

traceLevel,

char

*

info,

char

*

filterName);

Parameters

traceLevel

[in]

Is

one

of

the

following

tracing

levels,

to

use

for

writing

the

message:

Tracing::LEVEL1

Tracing::LEVEL2

Tracing::LEVEL3

Tracing::LEVEL4

Tracing::LEVEL5

Note:

Do

not

specify

a

trace

level

of

zero

(LEVEL0)

with

a

tracing

message.

A

trace

level

of

zero

indicates

that

tracing

is

turned

off.

Therefore,

any

trace

message

associated

with

a

traceLevel

of

LEVEL0

will

never

print.

info

[in]

Is

a

character

string

that

contains

the

text

of

the

tracing

message.

filterName

[in]

Is

the

name

of

a

tracing

filter.

Return

values

None.

Examples

write(Tracing::LEVEL4,

"Connector

failed

to

initialize.”,

NULL);

See

also

See

also

the

description

of

the

traceWrite()

method

under

the

BOHandlerCPP

and

GenGlobals

classes.

Chapter

21.

Tracing

class

307

308

Connector

Development

Guide

for

C++

Appendix

A.

Standard

configuration

properties

for

connectors

This

appendix

describes

the

standard

configuration

properties

for

the

connector

component

of

WebSphere

Business

Integration

adapters.

The

information

covers

connectors

running

on

the

following

integration

brokers:

v

WebSphere

InterChange

Server

(ICS)

v

WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

and

WebSphere

Business

Integration

Message

Broker,

collectively

referred

to

as

the

WebSphere

Message

Brokers

(WMQI).

v

WebSphere

Application

Server

(WAS)

Not

every

connector

makes

use

of

all

these

standard

properties.

When

you

select

an

integration

broker

from

Connector

Configurator,

you

will

see

a

list

of

the

standard

properties

that

you

need

to

configure

for

your

adapter

running

with

that

broker.

For

information

about

properties

specific

to

the

connector,

see

the

relevant

adapter

user

guide.

Note:

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

and

follow

the

conventions

for

each

operating

system.

New

and

deleted

properties

These

standard

properties

have

been

added

in

this

release.

New

properties

v

XMLNameSpaceFormat

Deleted

properties

v

RestartCount

Configuring

standard

connector

properties

Adapter

connectors

have

two

types

of

configuration

properties:

v

Standard

configuration

properties

v

Connector-specific

configuration

properties

This

section

describes

the

standard

configuration

properties.

For

information

on

configuration

properties

specific

to

a

connector,

see

its

adapter

user

guide.

Using

Connector

Configurator

You

configure

connector

properties

from

Connector

Configurator,

which

you

access

from

System

Manager.

For

more

information

on

using

Connector

Configurator,

refer

to

the

Connector

Configurator

appendix.

Note:

Connector

Configurator

and

System

Manager

run

only

on

the

Windows

system.

If

you

are

running

the

connector

on

a

UNIX

system,

you

must

have

a

Windows

machine

with

these

tools

installed.

To

set

connector

properties

©

Copyright

IBM

Corp.

1997,

2003

309

for

a

connector

that

runs

on

UNIX,

you

must

start

up

System

Manager

on

the

Windows

machine,

connect

to

the

UNIX

integration

broker,

and

bring

up

Connector

Configurator

for

the

connector.

Setting

and

updating

property

values

The

default

length

of

a

property

field

is

255

characters.

The

connector

uses

the

following

order

to

determine

a

property’s

value

(where

the

highest

number

overrides

other

values):

1.

Default

2.

Repository

(only

if

WebSphere

InterChange

Server

is

the

integration

broker)

3.

Local

configuration

file

4.

Command

line

A

connector

obtains

its

configuration

values

at

startup.

If

you

change

the

value

of

one

or

more

connector

properties

during

a

run-time

session,

the

property’s

Update

Method

determines

how

the

change

takes

effect.

There

are

four

different

update

methods

for

standard

connector

properties:

v

Dynamic

The

change

takes

effect

immediately

after

it

is

saved

in

System

Manager.

If

the

connector

is

working

in

stand-alone

mode

(independently

of

System

Manager),

for

example

with

one

of

the

WebSphere

message

brokers,

you

can

only

change

properties

through

the

configuration

file.

In

this

case,

a

dynamic

update

is

not

possible.

v

Component

restart

The

change

takes

effect

only

after

the

connector

is

stopped

and

then

restarted

in

System

Manager.

You

do

not

need

to

stop

and

restart

the

application-specific

component

or

the

integration

broker.

v

Server

restart

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component

and

the

integration

broker.

v

Agent

restart

(ICS

only)

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component.

To

determine

how

a

specific

property

is

updated,

refer

to

the

Update

Method

column

in

the

Connector

Configurator

window,

or

see

the

Update

Method

column

in

the

Property

Summary

table

below.

Summary

of

standard

properties

Table

115

on

page

311

provides

a

quick

reference

to

the

standard

connector

configuration

properties.

Not

all

the

connectors

make

use

of

all

these

properties,

and

property

settings

may

differ

from

integration

broker

to

integration

broker,

as

standard

property

dependencies

are

based

on

RepositoryDirectory.

You

must

set

the

values

of

some

of

these

properties

before

running

the

connector.

See

the

following

section

for

an

explanation

of

each

property.

310

Connector

Development

Guide

for

C++

Table

115.

Summary

of

standard

configuration

properties

Property

name

Possible

values

Default

value

Update

method

Notes

AdminInQueue

Valid

JMS

queue

name

CONNECTORNAME

/ADMININQUEUE

Component

restart

Delivery-

Transport

is

JMS

AdminOutQueue

Valid

JMS

queue

name

CONNECTORNAME/ADMINOUTQUEUE

Component

restart

Delivery-

Transport

is

JMS

AgentConnections

1-4

1

Component

restart

Delivery-

Transport

is

MQ

or

IDL:

Repository-

Directory

is

<REMOTE>

AgentTraceLevel

0-5

0

Dynamic

ApplicationName

Application

name

Value

specified

for

the

connector

application

name

Component

restart

BrokerType

ICS,

WMQI,

WAS

CharacterEncoding

ascii7,

ascii8,

SJIS,

Cp949,

GBK,

Big5,

Cp297,

Cp273,

Cp280,

Cp284,

Cp037,

Cp437

Note:

This

is

a

subset

of

supported

values.

ascii7

Component

restart

ConcurrentEventTriggeredFlows

1

to

32,767

1

Component

restart

Repository-

Directory

is

<REMOTE>

ContainerManagedEvents

No

value

or

JMS

No

value

Component

restart

Delivery-

Transport

is

JMS

ControllerStoreAndForwardMode

true

or

false

True

Dynamic

Repository-

Directory

is

<REMOTE>

ControllerTraceLevel

0-5

0

Dynamic

Repository-

Directory

is

<REMOTE>

DeliveryQueue

CONNECTORNAME/DELIVERYQUEUE

Component

restart

JMS

transport

only

DeliveryTransport

MQ,

IDL,

or

JMS

JMS

Component

restart

If

Repository-

Directory

is

local,

then

value

is

JMS

only

DuplicateEventElimination

True

or

False

False

Component

restart

JMS

transport

only:

Container-

ManagedEvents

must

be

<NONE>

FaultQueue

CONNECTORNAME/FAULTQUEUE

Component

restart

JMS

transport

only

jms.FactoryClassName

CxCommon.Messaging.jms

.IBMMQSeriesFactory

or

CxCommon.Messaging

.jms.SonicMQFactory

or

any

Java

class

name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

JMS

transport

only

Appendix

A.

Standard

configuration

properties

for

connectors

311

Table

115.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

jms.MessageBrokerName

If

FactoryClassName

is

IBM,

use

crossworlds.queue.

manager.

If

FactoryClassName

is

Sonic,

use

localhost:2506.

crossworlds.queue.manager

Component

restart

JMS

transport

only

jms.NumConcurrentRequests

Positive

integer

10

Component

restart

JMS

transport

only

jms.Password

Any

valid

password

Component

restart

JMS

transport

only

jms.UserName

Any

valid

name

Component

restart

JMS

transport

only

JvmMaxHeapSize

Heap

size

in

megabytes

128m

Component

restart

Repository-

Directory

is

<REMOTE>

JvmMaxNativeStackSize

Size

of

stack

in

kilobytes

128k

Component

restart

Repository-

Directory

is

<REMOTE>

JvmMinHeapSize

Heap

size

in

megabytes

1m

Component

restart

Repository-

Directory

is

<REMOTE>

ListenerConcurrency

1-

100

1

Component

restart

Delivery-

Transport

must

be

MQ

Locale

en_US,

ja_JP,

ko_KR,

zh_CN,

zh_TW,

fr_FR,

de_DE,

it_IT,

es_ES,

pt_BR

Note:

This

is

a

subset

of

the

supported

locales.

en_US

Component

restart

LogAtInterchangeEnd

True

or

False

False

Component

restart

Repository-

Directory

must

be

<REMOTE>

MaxEventCapacity

1-2147483647

2147483647

Dynamic

Repository-

Directory

must

be

<REMOTE>

MessageFileName

Path

or

filename

InterchangeSystem.txt

Component

restart

MonitorQueue

Any

valid

queue

name

CONNECTORNAME/MONITORQUEUE

Component

restart

JMS

transport

only:

DuplicateEvent-

Elimination

must

be

True

OADAutoRestartAgent

True

or

False

False

Dynamic

Repository-

Directory

must

be

<REMOTE>

OADMaxNumRetry

A

positive

number

1000

Dynamic

Repository-

Directory

must

be

<REMOTE>

OADRetryTimeInterval

A

positive

number

in

minutes

10

Dynamic

Repository-

Directory

must

be

<REMOTE>

PollEndTime

HH:MM

HH:MM

Component

restart

312

Connector

Development

Guide

for

C++

Table

115.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

PollFrequency

A

positive

integer

in

milliseconds

no

(to

disable

polling)

key

(to

poll

only

when

the

letter

p

is

entered

in

the

connector’s

Command

Prompt

window)

10000

Dynamic

PollQuantity

1-500

1

Agent

restart

JMS

transport

only:

Container-

ManagedEvents

is

specified

PollStartTime

HH:MM(HH

is

0-23,

MM

is

0-59)

HH:MM

Component

restart

RepositoryDirectory

Location

of

metadata

repository

Agent

restart

For

ICS:

set

to

<REMOTE>;

For

WebSphere

MQ

message

brokers

and

WAS:

set

to

C:\crossworlds\

repository

RequestQueue

Valid

JMS

queue

name

CONNECTORNAME/REQUESTQUEUE

Component

restart

Delivery-

Transport

is

JMS

ResponseQueue

Valid

JMS

queue

name

CONNECTORNAME/RESPONSEQUEUE

Component

restart

Delivery-

Transport

is

JMS:

required

only

if

Repository-

Directory

is

<REMOTE>

RestartRetryCount

0-99

3

Dynamic

RestartRetryInterval

A

sensible

positive

value

in

minutes:

1

-

2147483547

1

Dynamic

RHF2MessageDomain

mrm,

xml

mrm

Component

restart

Only

if

Delivery-

Transport

is

JMS

and

WireFormat

is

CwXML.

SourceQueue

Valid

WebSphere

MQ

name

CONNECTORNAME/SOURCEQUEUE

Agent

restart

Only

if

Delivery-

Transport

is

JMS

and

Container-

ManagedEvents

is

specified

SynchronousRequestQueue

CONNECTORNAME/

SYNCHRONOUSREQUESTQUEUE

Component

restart

Delivery-

Transport

is

JMS

SynchronousRequestTimeout

0

-

any

number

(millisecs)

0

Component

restart

Delivery-

Transport

is

JMS

Appendix

A.

Standard

configuration

properties

for

connectors

313

Table

115.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

SynchronousResponseQueue

CONNECTORNAME/

SYNCHRONOUSRESPONSEQUEUE

Component

restart

Delivery-

Transport

is

JMS

WireFormat

CwXML,

CwBO

CwXML

Agent

restart

CwXML

if

Repository-

Directory

is

not

<REMOTE>:

CwBO

if

Repository-

Directory

is

<REMOTE>

WsifSynchronousRequest

Timeout

0

-

any

number

(millisecs)

0

Component

restart

WAS

only

XMLNameSpaceFormat

short,

long

short

Agent

restart

WebSphere

MQ

message

brokers

and

WAS

only

Standard

configuration

properties

This

section

lists

and

defines

each

of

the

standard

connector

configuration

properties.

AdminInQueue

The

queue

that

is

used

by

the

integration

broker

to

send

administrative

messages

to

the

connector.

The

default

value

is

CONNECTORNAME/ADMININQUEUE.

AdminOutQueue

The

queue

that

is

used

by

the

connector

to

send

administrative

messages

to

the

integration

broker.

The

default

value

is

CONNECTORNAME/ADMINOUTQUEUE.

AgentConnections

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

The

AgentConnections

property

controls

the

number

of

ORB

connections

opened

by

orb.init[].

By

default,

the

value

of

this

property

is

set

to

1.

There

is

no

need

to

change

this

default.

AgentTraceLevel

Level

of

trace

messages

for

the

application-specific

component.

The

default

is

0.

The

connector

delivers

all

trace

messages

applicable

at

the

tracing

level

set

or

lower.

314

Connector

Development

Guide

for

C++

ApplicationName

Name

that

uniquely

identifies

the

connector’s

application.

This

name

is

used

by

the

system

administrator

to

monitor

the

WebSphere

business

integration

system

environment.

This

property

must

have

a

value

before

you

can

run

the

connector.

BrokerType

Identifies

the

integration

broker

type

that

you

are

using.

The

options

are

ICS,

WebSphere

message

brokers

(WMQI,

WMQIB

or

WBIMB)

or

WAS.

CharacterEncoding

Specifies

the

character

code

set

used

to

map

from

a

character

(such

as

a

letter

of

the

alphabet,

a

numeric

representation,

or

a

punctuation

mark)

to

a

numeric

value.

Note:

Java-based

connectors

do

not

use

this

property.

A

C++

connector

currently

uses

the

value

ascii7

for

this

property.

By

default,

a

subset

of

supported

character

encodings

only

is

displayed

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

Connector

Configurator.

ConcurrentEventTriggeredFlows

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Determines

how

many

business

objects

can

be

concurrently

processed

by

the

connector

for

event

delivery.

Set

the

value

of

this

attribute

to

the

number

of

business

objects

you

want

concurrently

mapped

and

delivered.

For

example,

set

the

value

of

this

property

to

5

to

cause

five

business

objects

to

be

concurrently

processed.

The

default

value

is

1.

Setting

this

property

to

a

value

greater

than

1

allows

a

connector

for

a

source

application

to

map

multiple

event

business

objects

at

the

same

time

and

deliver

them

to

multiple

collaboration

instances

simultaneously.

This

speeds

delivery

of

business

objects

to

the

integration

broker,

particularly

if

the

business

objects

use

complex

maps.

Increasing

the

arrival

rate

of

business

objects

to

collaborations

can

improve

overall

performance

in

the

system.

To

implement

concurrent

processing

for

an

entire

flow

(from

a

source

application

to

a

destination

application),

you

must:

v

Configure

the

collaboration

to

use

multiple

threads

by

setting

its

Maximum

number

of

concurrent

events

property

high

enough

to

use

multiple

threads.

v

Ensure

that

the

destination

application’s

application-specific

component

can

process

requests

concurrently.

That

is,

it

must

be

multi-threaded,

or

be

able

to

use

connector

agent

parallelism

and

be

configured

for

multiple

processes.

Set

the

Parallel

Process

Degree

configuration

property

to

a

value

greater

than

1.

The

ConcurrentEventTriggeredFlows

property

has

no

effect

on

connector

polling,

which

is

single-threaded

and

performed

serially.

ContainerManagedEvents

This

property

allows

a

JMS-enabled

connector

with

a

JMS

event

store

to

provide

guaranteed

event

delivery,

in

which

an

event

is

removed

from

the

source

queue

and

placed

on

the

destination

queue

as

a

single

JMS

transaction.

Appendix

A.

Standard

configuration

properties

for

connectors

315

The

default

value

is

No

value.

When

ContainerManagedEvents

is

set

to

JMS,

you

must

configure

the

following

properties

to

enable

guaranteed

event

delivery:

v

PollQuantity

=

1

to

500

v

SourceQueue

=

CONNECTORNAME/SOURCEQUEUE

You

must

also

configure

a

data

handler

with

the

MimeType,

DHClass,

and

DataHandlerConfigMOName

(optional)

properties.

To

set

those

values,

use

the

Data

Handler

tab

in

Connector

Configurator.

The

fields

for

the

values

under

the

Data

Handler

tab

will

be

displayed

only

if

you

have

set

ContainerManagedEvents

to

JMS.

Note:

When

ContainerManagedEvents

is

set

to

JMS,

the

connector

does

not

call

its

pollForEvents()

method,

thereby

disabling

that

method’s

functionality.

This

property

only

appears

if

the

DeliveryTransport

property

is

set

to

the

value

JMS.

ControllerStoreAndForwardMode

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Sets

the

behavior

of

the

connector

controller

after

it

detects

that

the

destination

application-specific

component

is

unavailable.

If

this

property

is

set

to

true

and

the

destination

application-specific

component

is

unavailable

when

an

event

reaches

ICS,

the

connector

controller

blocks

the

request

to

the

application-specific

component.

When

the

application-specific

component

becomes

operational,

the

controller

forwards

the

request

to

it.

However,

if

the

destination

application’s

application-specific

component

becomes

unavailable

after

the

connector

controller

forwards

a

service

call

request

to

it,

the

connector

controller

fails

the

request.

If

this

property

is

set

to

false,

the

connector

controller

begins

failing

all

service

call

requests

as

soon

as

it

detects

that

the

destination

application-specific

component

is

unavailable.

The

default

is

true.

ControllerTraceLevel

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Level

of

trace

messages

for

the

connector

controller.

The

default

is

0.

DeliveryQueue

Applicable

only

if

DeliveryTransport

is

JMS.

The

queue

that

is

used

by

the

connector

to

send

business

objects

to

the

integration

broker.

The

default

value

is

CONNECTORNAME/DELIVERYQUEUE.

316

Connector

Development

Guide

for

C++

DeliveryTransport

Specifies

the

transport

mechanism

for

the

delivery

of

events.

Possible

values

are

MQ

for

WebSphere

MQ,

IDL

for

CORBA

IIOP,

or

JMS

for

Java

Messaging

Service.

v

If

ICS

is

the

broker

type,

the

value

of

the

DeliveryTransport

property

can

be

MQ,

IDL,

or

JMS,

and

the

default

is

IDL.

v

If

the

RepositoryDirectory

is

a

local

directory,

the

value

may

only

be

JMS.

The

connector

sends

service

call

requests

and

administrative

messages

over

CORBA

IIOP

if

the

value

configured

for

the

DeliveryTransport

property

is

MQ

or

IDL.

WebSphere

MQ

and

IDL

Use

WebSphere

MQ

rather

than

IDL

for

event

delivery

transport,

unless

you

must

have

only

one

product.

WebSphere

MQ

offers

the

following

advantages

over

IDL:

v

Asynchronous

communication:

WebSphere

MQ

allows

the

application-specific

component

to

poll

and

persistently

store

events

even

when

the

server

is

not

available.

v

Server

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

server

side.

In

optimized

mode,

WebSphere

MQ

stores

only

the

pointer

to

an

event

in

the

repository

database,

while

the

actual

event

remains

in

the

WebSphere

MQ

queue.

This

saves

having

to

write

potentially

large

events

to

the

repository

database.

v

Agent

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

application-specific

component

side.

Using

WebSphere

MQ,

the

connector’s

polling

thread

picks

up

an

event,

places

it

in

the

connector’s

queue,

then

picks

up

the

next

event.

This

is

faster

than

IDL,

which

requires

the

connector’s

polling

thread

to

pick

up

an

event,

go

over

the

network

into

the

server

process,

store

the

event

persistently

in

the

repository

database,

then

pick

up

the

next

event.

JMS

Enables

communication

between

the

connector

and

client

connector

framework

using

Java

Messaging

Service

(JMS).

If

you

select

JMS

as

the

delivery

transport,

additional

JMS

properties

such

as

jms.MessageBrokerName,

jms.FactoryClassName,

jms.Password,

and

jms.UserName,

appear

in

Connector

Configurator.

The

first

two

of

these

properties

are

required

for

this

transport.

Important:

There

may

be

a

memory

limitation

if

you

use

the

JMS

transport

mechanism

for

a

connector

in

the

following

environment:

v

AIX

5.0

v

WebSphere

MQ

5.3.0.1

v

When

ICS

is

the

integration

broker

In

this

environment,

you

may

experience

difficulty

starting

both

the

connector

controller

(on

the

server

side)

and

the

connector

(on

the

client

side)

due

to

memory

use

within

the

WebSphere

MQ

client.

If

your

installation

uses

less

than

768M

of

process

heap

size,

IBM

recommends

that

you

set:

v

The

LDR_CNTRL

environment

variable

in

the

CWSharedEnv.sh

script.

This

script

resides

in

the

\bin

directory

below

the

product

directory.

With

a

text

editor,

add

the

following

line

as

the

first

line

in

the

CWSharedEnv.sh

script:

export

LDR_CNTRL=MAXDATA=0x30000000

Appendix

A.

Standard

configuration

properties

for

connectors

317

This

line

restricts

heap

memory

usage

to

a

maximum

of

768

MB

(3

segments

*

256

MB).

If

the

process

memory

grows

more

than

this

limit,

page

swapping

can

occur,

which

can

adversely

affect

the

performance

of

your

system.

v

The

IPCCBaseAddress

property

to

a

value

of

11

or

12.

For

more

information

on

this

property,

see

the

System

Installation

Guide

for

UNIX.

DuplicateEventElimination

When

you

set

this

property

to

true,

a

JMS-enabled

connector

can

ensure

that

duplicate

events

are

not

delivered

to

the

delivery

queue.

To

use

this

feature,

the

connector

must

have

a

unique

event

identifier

set

as

the

business

object’s

ObjectEventId

attribute

in

the

application-specific

code.

This

is

done

during

connector

development.

This

property

can

also

be

set

to

false.

Note:

When

DuplicateEventElimination

is

set

to

true,

you

must

also

configure

the

MonitorQueue

property

to

enable

guaranteed

event

delivery.

FaultQueue

If

the

connector

experiences

an

error

while

processing

a

message

then

the

connector

moves

the

message

to

the

queue

specified

in

this

property,

along

with

a

status

indicator

and

a

description

of

the

problem.

The

default

value

is

CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize

The

maximum

heap

size

for

the

agent

(in

megabytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

128m.

JvmMaxNativeStackSize

The

maximum

native

stack

size

for

the

agent

(in

kilobytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

128k.

JvmMinHeapSize

The

minimum

heap

size

for

the

agent

(in

megabytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

1m.

jms.FactoryClassName

Specifies

the

class

name

to

instantiate

for

a

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

CxCommon.Messaging.jms.IBMMQSeriesFactory.

318

Connector

Development

Guide

for

C++

jms.MessageBrokerName

Specifies

the

broker

name

to

use

for

the

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies

the

maximum

number

of

concurrent

service

call

requests

that

can

be

sent

to

a

connector

at

the

same

time.

Once

that

maximum

is

reached,

new

service

calls

block

and

wait

for

another

request

to

complete

before

proceeding.

The

default

value

is

10.

jms.Password

Specifies

the

password

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

jms.UserName

Specifies

the

user

name

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

ListenerConcurrency

This

property

supports

multi-threading

in

MQ

Listener

when

ICS

is

the

integration

broker.

It

enables

batch

writing

of

multiple

events

to

the

database,

thus

improving

system

performance.

The

default

value

is

1.

This

property

applies

only

to

connectors

using

MQ

transport.

The

DeliveryTransport

property

must

be

set

to

MQ.

Locale

Specifies

the

language

code,

country

or

territory,

and,

optionally,

the

associated

character

code

set.

The

value

of

this

property

determines

such

cultural

conventions

as

collation

and

sort

order

of

data,

date

and

time

formats,

and

the

symbols

used

in

monetary

specifications.

A

locale

name

has

the

following

format:

ll_TT.codeset

where:

ll

a

two-character

language

code

(usually

in

lower

case)

TT

a

two-letter

country

or

territory

code

(usually

in

upper

case)

codeset

the

name

of

the

associated

character

code

set;

this

portion

of

the

name

is

often

optional.

By

default,

only

a

subset

of

supported

locales

appears

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

Appendix

A.

Standard

configuration

properties

for

connectors

319

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

Connector

Configurator.

The

default

value

is

en_US.

If

the

connector

has

not

been

globalized,

the

only

valid

value

for

this

property

is

en_US.

To

determine

whether

a

specific

connector

has

been

globalized,

see

the

connector

version

list

on

these

websites:

http://www.ibm.com/software/websphere/wbiadapters/infocenter,

or

http://www.ibm.com/websphere/integration/wicserver/infocenter

LogAtInterchangeEnd

Applicable

only

if

RespositoryDirectory

is

<REMOTE>.

Specifies

whether

to

log

errors

to

the

integration

broker’s

log

destination.

Logging

to

the

broker’s

log

destination

also

turns

on

e-mail

notification,

which

generates

e-mail

messages

for

the

MESSAGE_RECIPIENT

specified

in

the

InterchangeSystem.cfg

file

when

errors

or

fatal

errors

occur.

For

example,

when

a

connector

loses

its

connection

to

its

application,

if

LogAtInterChangeEnd

is

set

to

true,

an

e-mail

message

is

sent

to

the

specified

message

recipient.

The

default

is

false.

MaxEventCapacity

The

maximum

number

of

events

in

the

controller

buffer.

This

property

is

used

by

flow

control

and

is

applicable

only

if

the

value

of

the

RepositoryDirectory

property

is

<REMOTE>.

The

value

can

be

a

positive

integer

between

1

and

2147483647.

The

default

value

is

2147483647.

MessageFileName

The

name

of

the

connector

message

file.

The

standard

location

for

the

message

file

is

\connectors\messages.

Specify

the

message

filename

in

an

absolute

path

if

the

message

file

is

not

located

in

the

standard

location.

If

a

connector

message

file

does

not

exist,

the

connector

uses

InterchangeSystem.txt

as

the

message

file.

This

file

is

located

in

the

product

directory.

Note:

To

determine

whether

a

specific

connector

has

its

own

message

file,

see

the

individual

adapter

user

guide.

MonitorQueue

The

logical

queue

that

the

connector

uses

to

monitor

duplicate

events.

It

is

used

only

if

the

DeliveryTransport

property

value

is

JMS

and

DuplicateEventElimination

is

set

to

TRUE.

The

default

value

is

CONNECTORNAME/MONITORQUEUE

OADAutoRestartAgent

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

320

Connector

Development

Guide

for

C++

Specifies

whether

the

connector

uses

the

automatic

and

remote

restart

feature.

This

feature

uses

the

MQ-triggered

Object

Activation

Daemon

(OAD)

to

restart

the

connector

after

an

abnormal

shutdown,

or

to

start

a

remote

connector

from

System

Monitor.

This

property

must

be

set

to

trueto

enable

the

automatic

and

remote

restart

feature.

For

information

on

how

to

configure

the

MQ-triggered

OAD

feature.

see

the

Installation

Guide

for

Windows

or

for

UNIX.

The

default

value

is

false.

OADMaxNumRetry

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

Specifies

the

maximum

number

of

times

that

the

MQ-triggered

OAD

automatically

attempts

to

restart

the

connector

after

an

abnormal

shutdown.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

The

default

value

is

1000.

OADRetryTimeInterval

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

Specifies

the

number

of

minutes

in

the

retry-time

interval

for

the

MQ-triggered

OAD.

If

the

connector

agent

does

not

restart

within

this

retry-time

interval,

the

connector

controller

asks

the

OAD

to

restart

the

connector

agent

again.

The

OAD

repeats

this

retry

process

as

many

times

as

specified

by

the

OADMaxNumRetry

property.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

The

default

is

10.

PollEndTime

Time

to

stop

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

PollFrequency

The

amount

of

time

between

polling

actions.

Set

PollFrequency

to

one

of

the

following

values:

v

The

number

of

milliseconds

between

polling

actions.

v

The

word

key,

which

causes

the

connector

to

poll

only

when

you

type

the

letter

p

in

the

connector’s

Command

Prompt

window.

Enter

the

word

in

lowercase.

v

The

word

no,

which

causes

the

connector

not

to

poll.

Enter

the

word

in

lowercase.

The

default

is

10000.

Important:

Some

connectors

have

restrictions

on

the

use

of

this

property.

To

determine

whether

a

specific

connector

does,

see

the

installing

and

configuring

chapter

of

its

adapter

guide.

Appendix

A.

Standard

configuration

properties

for

connectors

321

PollQuantity

Designates

the

number

of

items

from

the

application

that

the

connector

should

poll

for.

If

the

adapter

has

a

connector-specific

property

for

setting

the

poll

quantity,

the

value

set

in

the

connector-specific

property

will

override

the

standard

property

value.

PollStartTime

The

time

to

start

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

RequestQueue

The

queue

that

is

used

by

the

integration

broker

to

send

business

objects

to

the

connector.

The

default

value

is

CONNECTOR/REQUESTQUEUE.

RepositoryDirectory

The

location

of

the

repository

from

which

the

connector

reads

the

XML

schema

documents

that

store

the

meta-data

for

business

object

definitions.

When

the

integration

broker

is

ICS,

this

value

must

be

set

to

<REMOTE>

because

the

connector

obtains

this

information

from

the

InterChange

Server

repository.

When

the

integration

broker

is

a

WebSphere

message

broker

or

WAS,

this

value

must

be

set

to

<local

directory>.

ResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS

and

required

only

if

RepositoryDirectory

is

<REMOTE>.

Designates

the

JMS

response

queue,

which

delivers

a

response

message

from

the

connector

framework

to

the

integration

broker.

When

the

integration

broker

is

ICS,

the

server

sends

the

request

and

waits

for

a

response

message

in

the

JMS

response

queue.

RestartRetryCount

Specifies

the

number

of

times

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

number

of

times

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

The

default

is

3.

RestartRetryInterval

Specifies

the

interval

in

minutes

at

which

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

interval

at

which

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

Possible

values

ranges

from

1

to

2147483647.

322

Connector

Development

Guide

for

C++

The

default

is

1.

RHF2MessageDomain

WebSphere

MQ

Integrator

broker

only.

This

property

allows

you

to

configure

the

value

of

the

field

domain

name

in

the

JMS

header.

When

data

is

sent

to

WMQI

over

JMS

transport,

the

adapter

framework

writes

JMS

header

information,

with

a

domain

name

and

a

fixed

value

of

mrm.

A

connfigurable

domain

name

enables

users

to

track

how

the

WMQI

broker

processes

the

message

data.

A

sample

header

would

look

like

this:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

The

default

value

is

mrm,

but

it

may

also

be

set

to

xml.

This

property

only

appears

when

DeliveryTransport

is

set

to

JMSand

WireFormat

is

set

to

CwXML.

SourceQueue

Applicable

only

if

DeliveryTransport

is

JMS

and

ContainerManagedEvents

is

specified.

Designates

the

JMS

source

queue

for

the

connector

framework

in

support

of

guaranteed

event

delivery

for

JMS-enabled

connectors

that

use

a

JMS

event

store.

For

further

information,

see

“ContainerManagedEvents”

on

page

315.

The

default

value

is

CONNECTOR/SOURCEQUEUE.

SynchronousRequestQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

request

messages

that

require

a

synchronous

response

from

the

connector

framework

to

the

broker.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

With

synchronous

execution,

the

connector

framework

sends

a

message

to

the

SynchronousRequestQueue

and

waits

for

a

response

back

from

the

broker

on

the

SynchronousResponseQueue.

The

response

message

sent

to

the

connector

bears

a

correlation

ID

that

matches

the

ID

of

the

original

message.

The

default

is

CONNECTORNAME/SYNCHRONOUSREQUESTQUEUE

SynchronousResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

response

messages

sent

in

reply

to

a

synchronous

request

from

the

broker

to

the

connector

framework.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

The

default

is

CONNECTORNAME/SYNCHRONOUSRESPONSEQUEUE

SynchronousRequestTimeout

Applicable

only

if

DeliveryTransport

is

JMS.

Appendix

A.

Standard

configuration

properties

for

connectors

323

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified

time,

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

WireFormat

Message

format

on

the

transport.

v

If

the

RepositoryDirectory

is

a

local

directory,

the

setting

is

CwXML.

v

If

the

value

of

RepositoryDirectory

is

<REMOTE>,

the

setting

isCwBO.

WsifSynchronousRequest

Timeout

WAS

integration

broker

only.

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified,

time

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

XMLNameSpaceFormat

WebSphere

message

brokers

and

WAS

integration

broker

only.

A

strong

property

that

allows

the

user

to

specify

short

and

long

name

spaces

in

the

XML

format

of

business

object

definitions.

The

default

value

is

short.

324

Connector

Development

Guide

for

C++

Appendix

B.

Connector

Configurator

This

appendix

describes

how

to

use

Connector

Configurator

to

set

configuration

property

values

for

your

adapter.

You

use

Connector

Configurator

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector

v

Create

a

configuration

file

v

Set

properties

in

a

configuration

file

Note:

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

and

follow

the

conventions

for

each

operating

system.

The

topics

covered

in

this

appendix

are:

v

“Overview

of

Connector

Configurator”

on

page

325

v

“Starting

Connector

Configurator”

on

page

326

v

“Creating

a

connector-specific

property

template”

on

page

327

v

“Creating

a

new

configuration

file”

on

page

329

v

“Setting

the

configuration

file

properties”

on

page

332

v

“Using

Connector

Configurator

in

a

globalized

environment”

on

page

338

Overview

of

Connector

Configurator

Connector

Configurator

allows

you

to

configure

the

connector

component

of

your

adapter

for

use

with

these

integration

brokers:

v

WebSphere

InterChange

Server

(ICS)

v

WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

and

WebSphere

Business

Integration

Message

Broker,

collectively

referred

to

as

the

WebSphere

Message

Brokers

(WMQI)

v

WebSphere

Application

Server

(WAS)

You

use

Connector

Configurator

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector.

v

Create

a

connector

configuration

file;

you

must

create

one

configuration

file

for

each

connector

you

install.

v

Set

properties

in

a

configuration

file.

You

may

need

to

modify

the

default

values

that

are

set

for

properties

in

the

connector

templates.

You

must

also

designate

supported

business

object

definitions

and,

with

ICS,

maps

for

use

with

collaborations

as

well

as

specify

messaging,

logging

and

tracing,

and

data

handler

parameters,

as

required.

The

mode

in

which

you

run

Connector

Configurator,

and

the

configuration

file

type

you

use,

may

differ

according

to

which

integration

broker

you

are

running.

For

example,

if

WMQI

is

your

broker,

you

run

Connector

Configurator

directly,

and

not

from

within

System

Manager

(see

“Running

Configurator

in

stand-alone

mode”

on

page

326).

©

Copyright

IBM

Corp.

1997,

2003

325

Connector

configuration

properties

include

both

standard

configuration

properties

(the

properties

that

all

connectors

have)

and

connector-specific

properties

(properties

that

are

needed

by

the

connector

for

a

specific

application

or

technology).

Because

standard

properties

are

used

by

all

connectors,

you

do

not

need

to

define

those

properties

from

scratch;

Connector

Configurator

incorporates

them

into

your

configuration

file

as

soon

as

you

create

the

file.

However,

you

do

need

to

set

the

value

of

each

standard

property

in

Connector

Configurator.

The

range

of

standard

properties

may

not

be

the

same

for

all

brokers

and

all

configurations.

Some

properties

are

available

only

if

other

properties

are

given

a

specific

value.

The

Standard

Properties

window

in

Connector

Configurator

will

show

the

properties

available

for

your

particular

configuration.

For

connector-specific

properties,

however,

you

need

first

to

define

the

properties

and

then

set

their

values.

You

do

this

by

creating

a

connector-specific

property

template

for

your

particular

adapter.

There

may

already

be

a

template

set

up

in

your

system,

in

which

case,

you

simply

use

that.

If

not,

follow

the

steps

in

“Creating

a

new

template”

on

page

327

to

set

up

a

new

one.

Note:

Connector

Configurator

runs

only

in

a

Windows

environment.

If

you

are

running

the

connector

in

a

UNIX

environment,

use

Connector

Configurator

in

Windows

to

modify

the

configuration

file

and

then

copy

the

file

to

your

UNIX

environment.

Starting

Connector

Configurator

You

can

start

and

run

Connector

Configurator

in

either

of

two

modes:

v

Independently,

in

stand-alone

mode

v

From

System

Manager

Running

Configurator

in

stand-alone

mode

You

can

run

Connector

Configurator

independently

and

work

with

connector

configuration

files,

irrespective

of

your

broker.

To

do

so:

v

From

Start>Programs,

click

IBM

WebSphere

InterChange

Server>IBM

WebSphere

Business

Integration

Toolset>Development>Connector

Configurator.

v

Select

File>New>Configuration

File.

v

When

you

click

the

pull-down

menu

next

to

System

Connectivity

Integration

Broker,

you

can

select

ICS,

WebSphere

Message

Brokers

or

WAS,

depending

on

your

broker.

You

may

choose

to

run

Connector

Configurator

independently

to

generate

the

file,

and

then

connect

to

System

Manager

to

save

it

in

a

System

Manager

project

(see

“Completing

a

configuration

file”

on

page

331.)

326

Connector

Development

Guide

for

C++

Running

Configurator

from

System

Manager

You

can

run

Connector

Configurator

from

System

Manager.

To

run

Connector

Configurator:

1.

Open

the

System

Manager.

2.

In

the

System

Manager

window,

expand

the

Integration

Component

Libraries

icon

and

highlight

Connectors.

3.

From

the

System

Manager

menu

bar,

click

Tools>Connector

Configurator.

The

Connector

Configurator

window

opens

and

displays

a

New

Connector

dialog

box.

4.

When

you

click

the

pull-down

menu

next

to

System

Connectivity

Integration

Broker,

you

can

select

ICS,

WebSphere

Message

Brokers

or

WAS,

depending

on

your

broker.

To

edit

an

existing

configuration

file:

1.

In

the

System

Manager

window,

select

any

of

the

configuration

files

listed

in

the

Connector

folder

and

right-click

on

it.

Connector

Configurator

opens

and

displays

the

configuration

file

with

the

integration

broker

type

and

file

name

at

the

top.

2.

Click

the

Standard

Properties

tab

to

see

which

properties

are

included

in

this

configuration

file.

Creating

a

connector-specific

property

template

To

create

a

configuration

file

for

your

connector,

you

need

a

connector-specific

property

template

as

well

as

the

system-supplied

standard

properties.

You

can

create

a

brand-new

template

for

the

connector-specific

properties

of

your

connector,

or

you

can

use

an

existing

file

as

the

template.

v

To

create

a

new

template,

see

“Creating

a

new

template”

on

page

327.

v

To

use

an

existing

file,

simply

modify

an

existing

template

and

save

it

under

the

new

name.

Creating

a

new

template

This

section

describes

how

you

create

properties

in

the

template,

define

general

characteristics

and

values

for

those

properties,

and

specify

any

dependencies

between

the

properties.

Then

you

save

the

template

and

use

it

as

the

base

for

creating

a

new

connector

configuration

file.

To

create

a

template:

1.

Click

File>New>Connector-Specific

Property

Template.

2.

The

Connector-Specific

Property

Template

dialog

box

appears,

with

the

following

fields:

v

Template,

and

Name

Enter

a

unique

name

that

identifies

the

connector,

or

type

of

connector,

for

which

this

template

will

be

used.

You

will

see

this

name

again

when

you

open

the

dialog

box

for

creating

a

new

configuration

file

from

a

template.

v

Old

Template,

and

Select

the

Existing

Template

to

Modify

The

names

of

all

currently

available

templates

are

displayed

in

the

Template

Name

display.

Appendix

B.

Connector

Configurator

327

v

To

see

the

connector-specific

property

definitions

in

any

template,

select

that

template’s

name

in

the

Template

Name

display.

A

list

of

the

property

definitions

contained

in

that

template

will

appear

in

the

Template

Preview

display.

You

can

use

an

existing

template

whose

property

definitions

are

similar

to

those

required

by

your

connector

as

a

starting

point

for

your

template.
3.

Select

a

template

from

the

Template

Name

display,

enter

that

template

name

in

the

Find

Name

field

(or

highlight

your

selection

in

Template

Name),

and

click

Next.

If

you

do

not

see

any

template

that

displays

the

connector-specific

properties

used

by

your

connector,

you

will

need

to

create

one.

Specifying

general

characteristics

When

you

click

Next

to

select

a

template,

the

Properties

-

Connector-Specific

Property

Template

dialog

box

appears.

The

dialog

box

has

tabs

for

General

characteristics

of

the

defined

properties

and

for

Value

restrictions.

The

General

display

has

the

following

fields:

v

General:

Property

Type

Updated

Method

Description

v

Flags

Standard

flags

v

Custom

Flag

Flag

After

you

have

made

selections

for

the

general

characteristics

of

the

property,

click

the

Value

tab.

Specifying

values

The

Value

tab

enables

you

to

set

the

maximum

length,

the

maximum

multiple

values,

a

default

value,

or

a

value

range

for

the

property.

It

also

allows

editable

values.

To

do

so:

1.

Click

the

Value

tab.

The

display

panel

for

Value

replaces

the

display

panel

for

General.

2.

Select

the

name

of

the

property

in

the

Edit

properties

display.

3.

In

the

fields

for

Max

Length

and

Max

Multiple

Values,

make

any

changes.

The

changes

will

not

be

accepted

unless

you

also

open

the

Property

Value

dialog

box

for

the

property,

described

in

the

next

step.

4.

Right-click

the

box

in

the

top

left-hand

corner

of

the

value

table

and

click

Add.

A

Property

Value

dialog

box

appears.

Depending

on

the

property

type,

the

dialog

box

allows

you

to

enter

either

a

value,

or

both

a

value

and

range.

Enter

the

appropriate

value

or

range,

and

click

OK.

5.

The

Value

panel

refreshes

to

display

any

changes

you

made

in

Max

Length

and

Max

Multiple

Values.

It

displays

a

table

with

three

columns:

The

Value

column

shows

the

value

that

you

entered

in

the

Property

Value

dialog

box,

and

any

previous

values

that

you

created.

The

Default

Value

column

allows

you

to

designate

any

of

the

values

as

the

default.

The

Value

Range

shows

the

range

that

you

entered

in

the

Property

Value

dialog

box.

328

Connector

Development

Guide

for

C++

After

a

value

has

been

created

and

appears

in

the

grid,

it

can

be

edited

from

within

the

table

display.

To

make

a

change

in

an

existing

value

in

the

table,

select

an

entire

row

by

clicking

on

the

row

number.

Then

right-click

in

the

Value

field

and

click

Edit

Value.

Setting

dependencies

When

you

have

made

your

changes

to

the

General

and

Value

tabs,

click

Next.

The

Dependences

-

Connector-Specific

Property

Template

dialog

box

appears.

A

dependent

property

is

a

property

that

is

included

in

the

template

and

used

in

the

configuration

file

only

if

the

value

of

another

property

meets

a

specific

condition.

For

example,

PollQuantity

appears

in

the

template

only

if

JMS

is

the

transport

mechanism

and

DuplicateEventElimination

is

set

to

True.

To

designate

a

property

as

dependent

and

to

set

the

condition

upon

which

it

depends,

do

this:

1.

In

the

Available

Properties

display,

select

the

property

that

will

be

made

dependent.

2.

In

the

Select

Property

field,

use

the

drop-down

menu

to

select

the

property

that

will

hold

the

conditional

value.

3.

In

the

Condition

Operator

field,

select

one

of

the

following:

==

(equal

to)

!=

(not

equal

to)

>

(greater

than)

<

(less

than)

>=

(greater

than

or

equal

to)

<=(less

than

or

equal

to)

4.

In

the

Conditional

Value

field,

enter

the

value

that

is

required

in

order

for

the

dependent

property

to

be

included

in

the

template.

5.

With

the

dependent

property

highlighted

in

the

Available

Properties

display,

click

an

arrow

to

move

it

to

the

Dependent

Property

display.

6.

Click

Finish.

Connector

Configurator

stores

the

information

you

have

entered

as

an

XML

document,

under

\data\app

in

the\bin

directory

where

you

have

installed

Connector

Configurator.

Creating

a

new

configuration

file

When

you

create

a

new

configuration

file,

your

first

step

is

to

select

an

integration

broker.

The

broker

you

select

determines

the

properties

that

will

appear

in

the

configuration

file.

To

select

a

broker:

v

In

the

Connector

Configurator

home

menu,

click

File>New>Connector

Configuration.

The

New

Connector

dialog

box

appears.

v

In

the

Integration

Broker

field,

select

ICS,

WebSphere

Message

Brokers

or

WAS

connectivity.

v

Complete

the

remaining

fields

in

the

New

Connector

window,

as

described

later

in

this

chapter.

You

can

also

do

this:

v

In

the

System

Manager

window,

right-click

on

the

Connectors

folder

and

select

Create

New

Connector.

Connector

Configurator

opens

and

displays

the

New

Connector

dialog

box.

Appendix

B.

Connector

Configurator

329

Creating

a

configuration

file

from

a

connector-specific

template

Once

a

connector-specific

template

has

been

created,

you

can

use

it

to

create

a

configuration

file:

1.

Click

File>New>Connector

Configuration.

2.

The

New

Connector

dialog

box

appears,

with

the

following

fields:

v

Name

Enter

the

name

of

the

connector.

Names

are

case-sensitive.

The

name

you

enter

must

be

unique,

and

must

be

consistent

with

the

file

name

for

a

connector

that

is

installed

on

the

system.

Important:

Connector

Configurator

does

not

check

the

spelling

of

the

name

that

you

enter.

You

must

ensure

that

the

name

is

correct.

v

System

Connectivity

Click

ICS

or

WebSphere

Message

Brokers

or

WAS.

v

Select

Connector-Specific

Property

Template

Type

the

name

of

the

template

that

has

been

designed

for

your

connector.

The

available

templates

are

shown

in

the

Template

Name

display.

When

you

select

a

name

in

the

Template

Name

display,

the

Property

Template

Preview

display

shows

the

connector-specific

properties

that

have

been

defined

in

that

template.

Select

the

template

you

want

to

use

and

click

OK.
3.

A

configuration

screen

appears

for

the

connector

that

you

are

configuring.

The

title

bar

shows

the

integration

broker

and

connector

names.

You

can

fill

in

all

the

field

values

to

complete

the

definition

now,

or

you

can

save

the

file

and

complete

the

fields

later.

4.

To

save

the

file,

click

File>Save>To

File

or

File>Save>To

Project.

To

save

to

a

project,

System

Manager

must

be

running.

If

you

save

as

a

file,

the

Save

File

Connector

dialog

box

appears.

Choose

*.cfg

as

the

file

type,

verify

in

the

File

Name

field

that

the

name

is

spelled

correctly

and

has

the

correct

case,

navigate

to

the

directory

where

you

want

to

locate

the

file,

and

click

Save.

The

status

display

in

the

message

panel

of

Connector

Configurator

indicates

that

the

configuration

file

was

successfully

created.

Important:

The

directory

path

and

name

that

you

establish

here

must

match

the

connector

configuration

file

path

and

name

that

you

supply

in

the

startup

file

for

the

connector.

5.

To

complete

the

connector

definition,

enter

values

in

the

fields

for

each

of

the

tabs

of

the

Connector

Configurator

window,

as

described

later

in

this

chapter.

Using

an

existing

file

You

may

have

an

existing

file

available

in

one

or

more

of

the

following

formats:

v

A

connector

definition

file.

This

is

a

text

file

that

lists

properties

and

applicable

default

values

for

a

specific

connector.

Some

connectors

include

such

a

file

in

a

\repository

directory

in

their

delivery

package

(the

file

typically

has

the

extension

.txt;

for

example,

CN_XML.txt

for

the

XML

connector).

v

An

ICS

repository

file.

Definitions

used

in

a

previous

ICS

implementation

of

the

connector

may

be

available

to

you

in

a

repository

file

that

was

used

in

the

configuration

of

that

connector.

Such

a

file

typically

has

the

extension

.in

or

.out.

330

Connector

Development

Guide

for

C++

v

A

previous

configuration

file

for

the

connector.

Such

a

file

typically

has

the

extension

*.cfg.

Although

any

of

these

file

sources

may

contain

most

or

all

of

the

connector-specific

properties

for

your

connector,

the

connector

configuration

file

will

not

be

complete

until

you

have

opened

the

file

and

set

properties,

as

described

later

in

this

chapter.

To

use

an

existing

file

to

configure

a

connector,

you

must

open

the

file

in

Connector

Configurator,

revise

the

configuration,

and

then

resave

the

file.

Follow

these

steps

to

open

a

*.txt,

*.cfg,

or

*.in

file

from

a

directory:

1.

In

Connector

Configurator,

click

File>Open>From

File.

2.

In

the

Open

File

Connector

dialog

box,

select

one

of

the

following

file

types

to

see

the

available

files:

v

Configuration

(*.cfg)

v

ICS

Repository

(*.in,

*.out)

Choose

this

option

if

a

repository

file

was

used

to

configure

the

connector

in

an

ICS

environment.

A

repository

file

may

include

multiple

connector

definitions,

all

of

which

will

appear

when

you

open

the

file.

v

All

files

(*.*)

Choose

this

option

if

a

*.txt

file

was

delivered

in

the

adapter

package

for

the

connector,

or

if

a

definition

file

is

available

under

another

extension.
3.

In

the

directory

display,

navigate

to

the

appropriate

connector

definition

file,

select

it,

and

click

Open.

Follow

these

steps

to

open

a

connector

configuration

from

a

System

Manager

project:

1.

Start

System

Manager.

A

configuration

can

be

opened

from

or

saved

to

System

Manager

only

if

System

Manager

has

been

started.

2.

Start

Connector

Configurator.

3.

Click

File>Open>From

Project.

Completing

a

configuration

file

When

you

open

a

configuration

file

or

a

connector

from

a

project,

the

Connector

Configurator

window

displays

the

configuration

screen,

with

the

current

attributes

and

values.

The

title

of

the

configuration

screen

displays

the

integration

broker

and

connector

name

as

specified

in

the

file.

Make

sure

you

have

the

correct

broker.

If

not,

change

the

broker

value

before

you

configure

the

connector.

To

do

so:

1.

Under

the

Standard

Properties

tab,

select

the

value

field

for

the

BrokerType

property.

In

the

drop-down

menu,

select

the

value

ICS,

WMQI,

or

WAS.

2.

The

Standard

Properties

tab

will

display

the

properties

associated

with

the

selected

broker.

You

can

save

the

file

now

or

complete

the

remaining

configuration

fields,

as

described

in

“Specifying

supported

business

object

definitions”

on

page

334..

3.

When

you

have

finished

your

configuration,

click

File>Save>To

Project

or

File>Save>To

File.

If

you

are

saving

to

file,

select

*.cfg

as

the

extension,

select

the

correct

location

for

the

file

and

click

Save.

Appendix

B.

Connector

Configurator

331

If

multiple

connector

configurations

are

open,

click

Save

All

to

File

to

save

all

of

the

configurations

to

file,

or

click

Save

All

to

Project

to

save

all

connector

configurations

to

a

System

Manager

project.

Before

it

saves

the

file,

Connector

Configurator

checks

that

values

have

been

set

for

all

required

standard

properties.

If

a

required

standard

property

is

missing

a

value,

Connector

Configurator

displays

a

message

that

the

validation

failed.

You

must

supply

a

value

for

the

property

in

order

to

save

the

configuration

file.

Setting

the

configuration

file

properties

When

you

create

and

name

a

new

connector

configuration

file,

or

when

you

open

an

existing

connector

configuration

file,

Connector

Configurator

displays

a

configuration

screen

with

tabs

for

the

categories

of

required

configuration

values.

Connector

Configurator

requires

values

for

properties

in

these

categories

for

connectors

running

on

all

brokers:

v

Standard

Properties

v

Connector-specific

Properties

v

Supported

Business

Objects

v

Trace/Log

File

values

v

Data

Handler

(applicable

for

connectors

that

use

JMS

messaging

with

guaranteed

event

delivery)

Note:

For

connectors

that

use

JMS

messaging,

an

additional

category

may

display,

for

configuration

of

data

handlers

that

convert

the

data

to

business

objects.

For

connectors

running

on

ICS,

values

for

these

properties

are

also

required:

v

Associated

Maps

v

Resources

v

Messaging

(where

applicable)

Important:

Connector

Configurator

accepts

property

values

in

either

English

or

non-English

character

sets.

However,

the

names

of

both

standard

and

connector-specific

properties,

and

the

names

of

supported

business

objects,

must

use

the

English

character

set

only.

Standard

properties

differ

from

connector-specific

properties

as

follows:

v

Standard

properties

of

a

connector

are

shared

by

both

the

application-specific

component

of

a

connector

and

its

broker

component.

All

connectors

have

the

same

set

of

standard

properties.

These

properties

are

described

in

Appendix

A

of

each

adapter

guide.

You

can

change

some

but

not

all

of

these

values.

v

Application-specific

properties

apply

only

to

the

application-specific

component

of

a

connector,

that

is,

the

component

that

interacts

directly

with

the

application.

Each

connector

has

application-specific

properties

that

are

unique

to

its

application.

Some

of

these

properties

provide

default

values

and

some

do

not;

you

can

modify

some

of

the

default

values.

The

installation

and

configuration

chapters

of

each

adapter

guide

describe

the

application-specific

properties

and

the

recommended

values.

The

fields

for

Standard

Properties

and

Connector-Specific

Properties

are

color-coded

to

show

which

are

configurable:

332

Connector

Development

Guide

for

C++

v

A

field

with

a

grey

background

indicates

a

standard

property.

You

can

change

the

value

but

cannot

change

the

name

or

remove

the

property.

v

A

field

with

a

white

background

indicates

an

application-specific

property.

These

properties

vary

according

to

the

specific

needs

of

the

application

or

connector.

You

can

change

the

value

and

delete

these

properties.

v

Value

fields

are

configurable.

v

The

Update

Method

field

is

informational

and

not

configurable.

This

field

specifies

the

action

required

to

activate

a

property

whose

value

has

changed.

Setting

standard

connector

properties

To

change

the

value

of

a

standard

property:

1.

Click

in

the

field

whose

value

you

want

to

set.

2.

Either

enter

a

value,

or

select

one

from

the

drop-down

menu

if

it

appears.

3.

After

entering

all

the

values

for

the

standard

properties,

you

can

do

one

of

the

following:

v

To

discard

the

changes,

preserve

the

original

values,

and

exit

Connector

Configurator,

click

File>Exit

(or

close

the

window),

and

click

No

when

prompted

to

save

changes.

v

To

enter

values

for

other

categories

in

Connector

Configurator,

select

the

tab

for

the

category.

The

values

you

enter

for

Standard

Properties

(or

any

other

category)

are

retained

when

you

move

to

the

next

category.

When

you

close

the

window,

you

are

prompted

to

either

save

or

discard

the

values

that

you

entered

in

all

the

categories

as

a

whole.

v

To

save

the

revised

values,

click

File>Exit

(or

close

the

window)

and

click

Yes

when

prompted

to

save

changes.

Alternatively,

click

Save>To

File

from

either

the

File

menu

or

the

toolbar.

Setting

application-specific

configuration

properties

For

application-specific

configuration

properties,

you

can

add

or

change

property

names,

configure

values,

delete

a

property,

and

encrypt

a

property.

The

default

property

length

is

255

characters.

1.

Right-click

in

the

top

left

portion

of

the

grid.

A

pop-up

menu

bar

will

appear.

Click

Add

to

add

a

property.

To

add

a

child

property,

right-click

on

the

parent

row

number

and

click

Add

child.

2.

Enter

a

value

for

the

property

or

child

property.

3.

To

encrypt

a

property,

select

the

Encrypt

box.

4.

Choose

to

save

or

discard

changes,

as

described

for

“Setting

standard

connector

properties.”

The

Update

Method

displayed

for

each

property

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

Important:

Changing

a

preset

application-specific

connector

property

name

may

cause

a

connector

to

fail.

Certain

property

names

may

be

needed

by

the

connector

to

connect

to

an

application

or

to

run

properly.

Encryption

for

connector

properties

Application-specific

properties

can

be

encrypted

by

selecting

the

Encrypt

check

box

in

the

Edit

Property

window.

To

decrypt

a

value,

click

to

clear

the

Encrypt

check

box,

enter

the

correct

value

in

the

Verification

dialog

box,

and

click

OK.

If

the

entered

value

is

correct,

the

value

is

decrypted

and

displays.

Appendix

B.

Connector

Configurator

333

The

adapter

user

guide

for

each

connector

contains

a

list

and

description

of

each

property

and

its

default

value.

If

a

property

has

multiple

values,

the

Encrypt

check

box

will

appear

for

the

first

value

of

the

property.

When

you

select

Encrypt,

all

values

of

the

property

will

be

encrypted.

To

decrypt

multiple

values

of

a

property,

click

to

clear

the

Encrypt

check

box

for

the

first

value

of

the

property,

and

then

enter

the

new

value

in

the

Verification

dialog

box.

If

the

input

value

is

a

match,

all

multiple

values

will

decrypt.

Update

method

Refer

to

the

descriptions

of

update

methods

found

in

the

Standard

configuration

properties

for

connectors

appendix,

under

“Setting

and

updating

property

values”

on

page

310.

Specifying

supported

business

object

definitions

Use

the

Supported

Business

Objects

tab

in

Connector

Configurator

to

specify

the

business

objects

that

the

connector

will

use.

You

must

specify

both

generic

business

objects

and

application-specific

business

objects,

and

you

must

specify

associations

for

the

maps

between

the

business

objects.

Note:

Some

connectors

require

that

certain

business

objects

be

specified

as

supported

in

order

to

perform

event

notification

or

additional

configuration

(using

meta-objects)

with

their

applications.

For

more

information,

see

the

Connector

Development

Guide

for

C++

or

the

Connector

Development

Guide

for

Java.

If

ICS

is

your

broker

To

specify

that

a

business

object

definition

is

supported

by

the

connector,

or

to

change

the

support

settings

for

an

existing

business

object

definition,

click

the

Supported

Business

Objects

tab

and

use

the

following

fields.

Business

object

name:

To

designate

that

a

business

object

definition

is

supported

by

the

connector,

with

System

Manager

running:

1.

Click

an

empty

field

in

the

Business

Object

Name

list.

A

drop-down

list

displays,

showing

all

the

business

object

definitions

that

exist

in

the

System

Manager

project.

2.

Click

on

a

business

object

to

add

it.

3.

Set

the

Agent

Support

(described

below)

for

the

business

object.

4.

In

the

File

menu

of

the

Connector

Configurator

window,

click

Save

to

Project.

The

revised

connector

definition,

including

designated

support

for

the

added

business

object

definition,

is

saved

to

the

project

in

System

Manager.

To

delete

a

business

object

from

the

supported

list:

1.

To

select

a

business

object

field,

click

the

number

to

the

left

of

the

business

object.

2.

From

the

Edit

menu

of

the

Connector

Configurator

window,

click

Delete

Row.

The

business

object

is

removed

from

the

list

display.

3.

From

the

File

menu,

click

Save

to

Project.

Deleting

a

business

object

from

the

supported

list

changes

the

connector

definition

and

makes

the

deleted

business

object

unavailable

for

use

in

this

implementation

of

this

connector.

It

does

not

affect

the

connector

code,

nor

does

it

remove

the

business

object

definition

itself

from

System

Manager.

334

Connector

Development

Guide

for

C++

Agent

support:

If

a

business

object

has

Agent

Support,

the

system

will

attempt

to

use

that

business

object

for

delivering

data

to

an

application

via

the

connector

agent.

Typically,

application-specific

business

objects

for

a

connector

are

supported

by

that

connector’s

agent,

but

generic

business

objects

are

not.

To

indicate

that

the

business

object

is

supported

by

the

connector

agent,

check

the

Agent

Support

box.

The

Connector

Configurator

window

does

not

validate

your

Agent

Support

selections.

Maximum

transaction

level:

The

maximum

transaction

level

for

a

connector

is

the

highest

transaction

level

that

the

connector

supports.

For

most

connectors,

Best

Effort

is

the

only

possible

choice.

You

must

restart

the

server

for

changes

in

transaction

level

to

take

effect.

If

a

WebSphere

Message

Broker

is

your

broker

If

you

are

working

in

stand-alone

mode

(not

connected

to

System

Manager),

you

must

enter

the

business

name

manually.

If

you

have

System

Manager

running,

you

can

select

the

empty

box

under

the

Business

Object

Name

column

in

the

Supported

Business

Objects

tab.

A

combo

box

appears

with

a

list

of

the

business

object

available

from

the

Integration

Component

Library

project

to

which

the

connector

belongs.

Select

the

business

object

you

want

from

the

list.

The

Message

Set

ID

is

an

optional

field

for

WebSphere

Business

Integration

Message

Broker

5.0,

and

need

not

be

unique

if

supplied.

However,

for

WebSphere

MQ

Integrator

and

Integrator

Broker

2.1,

you

must

supply

a

unique

ID.

If

WAS

is

your

broker

When

WebSphere

Application

Server

is

selected

as

your

broker

type,

Connector

Configurator

does

not

require

message

set

IDs.

The

Supported

Business

Objects

tab

shows

a

Business

Object

Name

column

only

for

supported

business

objects.

If

you

are

working

in

stand-alone

mode

(not

connected

to

System

Manager),

you

must

enter

the

business

object

name

manually.

If

you

have

System

Manager

running,

you

can

select

the

empty

box

under

the

Business

Object

Name

column

in

the

Supported

Business

Objects

tab.

A

combo

box

appears

with

a

list

of

the

business

objects

available

from

the

Integration

Component

Library

project

to

which

the

connector

belongs.

Select

the

business

object

you

want

from

this

list.

Associated

maps

(ICS

only)

Each

connector

supports

a

list

of

business

object

definitions

and

their

associated

maps

that

are

currently

active

in

WebSphere

InterChange

Server.

This

list

appears

when

you

select

the

Associated

Maps

tab.

The

list

of

business

objects

contains

the

application-specific

business

object

which

the

agent

supports

and

the

corresponding

generic

object

that

the

controller

sends

to

the

subscribing

collaboration.

The

association

of

a

map

determines

which

map

Appendix

B.

Connector

Configurator

335

will

be

used

to

transform

the

application-specific

business

object

to

the

generic

business

object

or

the

generic

business

object

to

the

application-specific

business

object.

If

you

are

using

maps

that

are

uniquely

defined

for

specific

source

and

destination

business

objects,

the

maps

will

already

be

associated

with

their

appropriate

business

objects

when

you

open

the

display,

and

you

will

not

need

(or

be

able)

to

change

them.

If

more

than

one

map

is

available

for

use

by

a

supported

business

object,

you

will

need

to

explicitly

bind

the

business

object

with

the

map

that

it

should

use.

The

Associated

Maps

tab

displays

the

following

fields:

v

Business

Object

Name

These

are

the

business

objects

supported

by

this

connector,

as

designated

in

the

Supported

Business

Objects

tab.

If

you

designate

additional

business

objects

under

the

Supported

Business

Objects

tab,

they

will

be

reflected

in

this

list

after

you

save

the

changes

by

choosing

Save

to

Project

from

the

File

menu

of

the

Connector

Configurator

window.

v

Associated

Maps

The

display

shows

all

the

maps

that

have

been

installed

to

the

system

for

use

with

the

supported

business

objects

of

the

connector.

The

source

business

object

for

each

map

is

shown

to

the

left

of

the

map

name,

in

the

Business

Object

Name

display.

v

Explicit

In

some

cases,

you

may

need

to

explicitly

bind

an

associated

map.

Explicit

binding

is

required

only

when

more

than

one

map

exists

for

a

particular

supported

business

object.

When

ICS

boots,

it

tries

to

automatically

bind

a

map

to

each

supported

business

object

for

each

connector.

If

more

than

one

map

takes

as

its

input

the

same

business

object,

the

server

attempts

to

locate

and

bind

one

map

that

is

the

superset

of

the

others.

If

there

is

no

map

that

is

the

superset

of

the

others,

the

server

will

not

be

able

to

bind

the

business

object

to

a

single

map,

and

you

will

need

to

set

the

binding

explicitly.

To

explicitly

bind

a

map:

1.

In

the

Explicit

column,

place

a

check

in

the

check

box

for

the

map

you

want

to

bind.

2.

Select

the

map

that

you

intend

to

associate

with

the

business

object.

3.

In

the

File

menu

of

the

Connector

Configurator

window,

click

Save

to

Project.

4.

Deploy

the

project

to

ICS.

5.

Reboot

the

server

for

the

changes

to

take

effect.

Resources

(ICS)

The

Resource

tab

allows

you

to

set

a

value

that

determines

whether

and

to

what

extent

the

connector

agent

will

handle

multiple

processes

concurrently,

using

connector

agent

parallelism.

Not

all

connectors

support

this

feature.

If

you

are

running

a

connector

agent

that

was

designed

in

Java

to

be

multi-threaded,

you

are

advised

not

to

use

this

feature,

since

it

is

usually

more

efficient

to

use

multiple

threads

than

multiple

processes.

336

Connector

Development

Guide

for

C++

Messaging

(ICS)

The

messaging

properties

are

available

only

if

you

have

set

MQ

as

the

value

of

the

DeliveryTransport

standard

property

and

ICS

as

the

broker

type.

These

properties

affect

how

your

connector

will

use

queues.

Setting

trace/log

file

values

When

you

open

a

connector

configuration

file

or

a

connector

definition

file,

Connector

Configurator

uses

the

logging

and

tracing

values

of

that

file

as

default

values.

You

can

change

those

values

in

Connector

Configurator.

To

change

the

logging

and

tracing

values:

1.

Click

the

Trace/Log

Files

tab.

2.

For

either

logging

or

tracing,

you

can

choose

to

write

messages

to

one

or

both

of

the

following:

v

To

console

(STDOUT):

Writes

logging

or

tracing

messages

to

the

STDOUT

display.

Note:

You

can

only

use

the

STDOUT

option

from

the

Trace/Log

Files

tab

for

connectors

running

on

the

Windows

platform.

v

To

File:

Writes

logging

or

tracing

messages

to

a

file

that

you

specify.

To

specify

the

file,

click

the

directory

button

(ellipsis),

navigate

to

the

preferred

location,

provide

a

file

name,

and

click

Save.

Logging

or

tracing

message

are

written

to

the

file

and

location

that

you

specify.

Note:

Both

logging

and

tracing

files

are

simple

text

files.

You

can

use

the

file

extension

that

you

prefer

when

you

set

their

file

names.

For

tracing

files,

however,

it

is

advisable

to

use

the

extension

.trace

rather

than

.trc,

to

avoid

confusion

with

other

files

that

might

reside

on

the

system.

For

logging

files,

.log

and

.txt

are

typical

file

extensions.

Data

handlers

The

data

handlers

section

is

available

for

configuration

only

if

you

have

designated

a

value

of

JMS

for

DeliveryTransport

and

a

value

of

JMS

for

ContainerManagedEvents.

Not

all

adapters

make

use

of

data

handlers.

See

the

descriptions

under

ContainerManagedEvents

in

Appendix

A,

Standard

Properties,

for

values

to

use

for

these

properties.

For

additional

details,

see

the

Connector

Development

Guide

for

C++

or

the

Connector

Development

Guide

for

Java.

Saving

your

configuration

file

When

you

have

finished

configuring

your

connector,

save

the

connector

configuration

file.

Connector

Configurator

saves

the

file

in

the

broker

mode

that

you

selected

during

configuration.

The

title

bar

of

Connector

Configurator

always

displays

the

broker

mode

(ICS,

WMQI

or

WAS)

that

it

is

currently

using.

The

file

is

saved

as

an

XML

document.

You

can

save

the

XML

document

in

three

ways:

v

From

System

Manager,

as

a

file

with

a

*.con

extension

in

an

Integration

Component

Library,

or

v

In

a

directory

that

you

specify.

v

In

stand-alone

mode,

as

a

file

with

a

*.cfg

extension

in

a

directory

folder.

Appendix

B.

Connector

Configurator

337

For

details

about

using

projects

in

System

Manager,

and

for

further

information

about

deployment,

see

the

following

implementation

guides:

v

For

ICS:

Implementation

Guide

for

WebSphere

InterChange

Server

v

For

WebSphere

Message

Brokers:

Implementing

Adapters

with

WebSphere

Message

Brokers

v

For

WAS:

Implementing

Adapters

with

WebSphere

Application

Server

Changing

a

configuration

file

You

can

change

the

integration

broker

setting

for

an

existing

configuration

file.

This

enables

you

to

use

the

file

as

a

template

for

creating

a

new

configuration

file,

which

can

be

used

with

a

different

broker.

Note:

You

will

need

to

change

other

configuration

properties

as

well

as

the

broker

mode

property

if

you

switch

integration

brokers.

To

change

your

broker

selection

within

an

existing

configuration

file

(optional):

v

Open

the

existing

configuration

file

in

Connector

Configurator.

v

Select

the

Standard

Properties

tab.

v

In

the

BrokerType

field

of

the

Standard

Properties

tab,

select

the

value

that

is

appropriate

for

your

broker.

When

you

change

the

current

value,

the

available

tabs

and

field

selections

on

the

properties

screen

will

immediately

change,

to

show

only

those

tabs

and

fields

that

pertain

to

the

new

broker

you

have

selected.

Completing

the

configuration

After

you

have

created

a

configuration

file

for

a

connector

and

modified

it,

make

sure

that

the

connector

can

locate

the

configuration

file

when

the

connector

starts

up.

To

do

so,

open

the

startup

file

used

for

the

connector,

and

verify

that

the

location

and

file

name

used

for

the

connector

configuration

file

match

exactly

the

name

you

have

given

the

file

and

the

directory

or

path

where

you

have

placed

it.

Using

Connector

Configurator

in

a

globalized

environment

Connector

Configurator

is

globalized

and

can

handle

character

conversion

between

the

configuration

file

and

the

integration

broker.

Connector

Configurator

uses

native

encoding.

When

it

writes

to

the

configuration

file,

it

uses

UTF-8

encoding.

Connector

Configurator

supports

non-English

characters

in:

v

All

value

fields

v

Log

file

and

trace

file

path

(specified

in

the

Trace/Log

files

tab)

The

drop

list

for

the

CharacterEncoding

and

Locale

standard

configuration

properties

displays

only

a

subset

of

supported

values.

To

add

other

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

example,

to

add

the

locale

en_GB

to

the

list

of

values

for

the

Locale

property,

open

the

stdConnProps.xml

file

and

add

the

line

in

boldface

type

below:

338

Connector

Development

Guide

for

C++

<Property

name="Locale"

isRequired="true"

updateMethod="component

restart">

<ValidType>String</ValidType>

<ValidValues>

<Value>ja_JP</Value>

<Value>ko_KR</Value>

<Value>zh_CN</Value>

<Value>zh_TW</Value>

<Value>fr_FR</Value>

<Value>de_DE</Value>

<Value>it_IT</Value>

<Value>es_ES</Value>

<Value>pt_BR</Value>

<Value>en_US</Value>

<Value>en_GB</Value>

<DefaultValue>en_US</DefaultValue>

</ValidValues>

</Property>

Appendix

B.

Connector

Configurator

339

340

Connector

Development

Guide

for

C++

Appendix

C.

Connector

Script

Generator

The

Connector

Script

Generator

utility

creates

or

modifies

the

connector

script

for

connectors

running

on

the

UNIX

platform.

Use

this

tool

to

do

either

of

the

following:

v

To

generate

a

new

connector

startup

script

for

a

connector

you

have

added

without

using

the

WebSphere

Business

Integration

Adapters

installer.

v

To

modify

an

existing

startup

script

for

a

connector

to

include

the

correct

configuration

file

path.

To

run

the

Connector

Script

Generator,

do

the

following:

1.

Navigate

to

the

ProductDir/bin

directory.

2.

Enter

the

command

./ConnConfig.sh.

The

Connector

Script

Generator

screen

appears

as

shown

in

Figure

80.

3.

From

the

Select

Connector

Name

list,

select

the

connector

for

which

the

startup

script

is

to

be

generated.

4.

For

Agent

Config

File,

specify

the

connector’s

configuration

file

by

entering

its

full-path

name

or

by

clicking

Browse

to

select

a

file.

5.

To

generate

or

update

the

connector

script,

click

Install.

The

connector_manager_ConnectorName

file

(where

ConnectorName

is

the

name

of

the

connector

you

are

configuring)

is

created

in

the

ProductDir/bin

directory.

6.

Click

Close.

Figure

80.

Connector

Script

Generator.

©

Copyright

IBM

Corp.

1997,

2003

341

342

Connector

Development

Guide

for

C++

Appendix

D.

Connector

feature

checklist

This

appendix

describes

the

connector

feature

checklist.

Guidelines

for

using

the

connector

feature

checklist

The

connector

feature

checklist

briefly

describes

each

of

the

standard

features

for

connectors.

The

feature

list

establishes

a

baseline

for

the

behavior

of

a

connector.

Therefore,

as

you

design

a

new

connector,

you

can

use

the

list

as

a

quick

reference

to

standard

connector

features.

During

the

implementation

phase

for

your

connector,

you

can

use

the

feature

list

to

create

a

specification

describing

the

functionality

of

your

connector.

To

use

the

list:

v

Check

Full

for

each

feature

that

your

connector

supports.

v

Check

Partial

for

each

feature

that

your

connector

partially

supports

and

include

notes

describing

the

implementation.

v

Check

No

for

each

feature

that

the

connector

does

not

support.

v

Check

N/A

for

each

feature

that

is

not

relevant

for

the

connector.

For

example,

if

your

connector

does

not

implement

event

notification,

check

N/A

for

all

event

notification

features.

If

a

feature

is

not

supported

according

to

the

standard

behavior,

check

Partial

and

provide

additional

information.

Standard

behavior

for

request

processing

Table

116

lists

the

standard

features

for

connector

handling

of

business

object

requests.

The

table

includes

a

brief

description

of

each

feature

and

a

page

number

of

the

section

in

the

book

containing

more

information

on

the

feature.

Table

116.

Standard

features

for

request

processing

Category

and

name

Description

Supported?

Business

Object

and

Attribute

Naming

Business

object

names

Business

object

names

should

have

no

semantic

value

to

the

connector.

Two

business

objects

with

the

same

structure,

data,

and

application-specific

information

but

with

different

names

should

process

identically

in

the

connector.

__

Full

__

Partial

__

No

__

N/A

Attribute

names

Attribute

names

in

a

business

object

should

have

no

semantic

value

to

the

connector.

Values

such

as

application

table

name

or

column

name

should

be

stored

in

the

application-specific

information

field

of

the

attribute

and

not

in

the

attribute

name.

__

Full

__

Partial

__

No

__

N/A

Create

Create

Verb

The

connector

creates

the

object

in

the

destination

application.

The

application

object

includes

all

values

in

the

business

object,

including

child

objects.

See

“Handling

the

Create

verb”

on

page

78.

__

Full

__

Partial

__

No

__

N/A

Delete

Delete

Verb

The

connector

supports

the

Delete

verb,

and

when

processing

this

verb,

it

does

a

true

physical

delete,

not

a

logical

delete.

See

“Handling

the

Delete

verb”

on

page

96.

__

Full

__

Partial

__

No

__

N/A

©

Copyright

IBM

Corp.

1997,

2003

343

Table

116.

Standard

features

for

request

processing

(continued)

Category

and

name

Description

Supported?

Logical

delete

The

connector

supports

logical

deletes

operations

via

the

Update

verb

only.

The

Delete

verb

is

used

only

for

physical

deletes.

See

“Implications

of

business

objects

representing

logical

Delete

events”

on

page

93.

__

Full

__

Partial

__

No

__

N/A

Exist

Exist

Verb

The

connector

checks

for

the

existence

of

an

entity

in

the

application

database.

It

returns

SUCCEED

if

the

object

passed

in

exists

in

the

application

database,

and

FAIL

if

the

object

does

not

exist

in

the

application

database.

See

“Handling

the

Exists

verb”

on

page

97.

__

Full

__

Partial

__

No

__

N/A

Retrieve

Retrieve

Verb

The

entire

hierarchical

image

(including

all

child

business

objects)

is

retrieved

from

application

when

the

Retrieve

verb

is

processed.

The

retrieve

is

based

only

on

the

key

values

of

the

business

object.

See

“Handling

the

Retrieve

verb”

on

page

81.

__

Full

__

Partial

__

No

__

N/A

Ignore

missing

child

object

If

IgnoreMissingChildObject

is

set

to

true

in

the

business

object

level

application-specific

information,

the

connector

returns

SUCCEED

even

if

not

all

the

children

specified

in

the

business

object

are

found

in

the

application.

See

“Retrieving

child

objects”

on

page

84.

__

Full

__

Partial

__

No

__

N/A

RetrieveByContent

RetrieveBy

Content

Verb

The

entire

hierarchical

image

(including

all

child

objects),

based

solely

on

a

subset

of

non-key

values,

is

retrieved.

See

“Handling

the

RetrieveByContent

verb”

on

page

87.

__

Full

__

Partial

__

No

__

N/A

Multiple

results

If

more

than

one

object

is

retrieved

from

the

application,

RetrieveByContent

should

return

the

first

object

and

use

the

return

code

MULTIPLE_HITS.

See

“Handling

the

RetrieveByContent

verb”

on

page

87.

__

Full

__

Partial

__

No

__

N/A

Ignore

missing

child

object

If

IgnoreMissingChildObject

is

set

to

true

in

the

business

object

level

application-specific

information,

the

connector

returns

SUCCEED

even

if

not

all

the

children

specified

in

the

business

object

are

found

in

the

application.

__

Full

__

Partial

__

No

__

N/A

Update

After-image

support

The

connector

performs

all

the

steps

necessary

to

make

the

object

in

the

destination

application

exactly

match

the

business

object

received

in

the

doVerbFor()call.

See

“Handling

the

Update

verb”

on

page

89.

__

Full

__

Partial

__

No

__

N/A

Delta

support

Connector

processes

exactly

the

objects

and

verbs

that

are

received

in

the

source

business

object.

The

destination

application

object

is

updated

only

by

processing

the

contents

of

source

business

object,

not

by

making

the

application

representation

match

the

source

business

object.

[Not

currently

an

IBM

standard.]

__

Full

__

Partial

__

No

__

N/A

KeepRelations

When

KeepRelations

is

specified,

child

relations

are

not

destroyed

in

the

target

application.

Otherwise,

all

the

child

relations

are

destroyed

first,

then

the

child

objects

sent

in

from

InterChange

Server

are

created

and

the

relations

restored.

“Destroyed”

means

a

logical

or

physical

delete

of

the

relation

to

the

child,

or,

in

some

cases,

deletion

of

the

child

itself,

depending

on

the

functionality

of

the

connector

and

application.

KeepRelations

is

set

as

application-specific

information

on

the

child

array

in

the

parent

object

(not

as

text

on

the

child

itself).

The

syntax

should

be

keeprelations=true.

__

Full

__

Partial

__

No

__

N/A

Verb

Support

344

Connector

Development

Guide

for

C++

Table

116.

Standard

features

for

request

processing

(continued)

Category

and

name

Description

Supported?

Subverb

support

The

connector

supports

processing

of

verbs

on

child

objects

independent

of

the

verb

on

the

parent

object.

When

a

verb

is

set

in

a

child

business

object,

the

connector

performs

the

operation

that

the

child

verb

indicates,

regardless

of

the

verb

on

the

top-level

business

object.

If

a

verb

in

a

child

business

object

request

is

not

set,

the

connector

can

either

leave

the

child

verb

as

NULL,

set

the

child

verb

to

the

verb

in

the

top-level

business

object,

or

set

the

value

of

the

verb

to

the

operation

that

the

connector

needs

to

perform.

See

“Verb

stability”

on

page

76.

__

Full

__

Partial

__

No

__

N/A

Verb

Stability

Verbs

in

a

business

object

should

remain

stable

throughout

the

request

and

response

cycle.

When

a

connector

receives

an

business

object

request,

the

hierarchical

object

returned

to

InterChange

Server

should

have

the

same

verb(s)

as

the

original

request,

with

the

exception

of

verbs

that

are

set

on

child

business

objects

that

were

null

in

the

original

request

__

Full

__

Partial

__

No

__

N/A

Standard

behavior

for

the

event

notification

Table

117

lists

standard

features

for

event

retrieval

and

notification.

Table

117.

Standard

features

for

event

notification

Category

and

name

Description

Supported?

Connector

Properties

Event

distribution

The

event

retrieval

mechanism

includes

a

filter

that

processes

only

events

that

are

associated

with

the

connector

making

the

poll

call.

This

feature

requires

adding

a

ConnectorId

field

to

the

event

table

so

that

multiple

connectors

can

use

the

same

event

table.

Each

connector

also

requires

a

ConnectorId

connector

property.

This

property

sets

the

identifier

for

a

particular

instance

of

a

connector

and

allows

the

connector

to

pick

up

only

the

events

assigned

to

it.

See

“Event

distribution”

on

page

124.

__

Full

__

Partial

__

No

__

N/A

PollQuantity

The

connector

uses

the

PollQuantity

connector

property

to

specify

the

maximum

number

of

events

the

connector

will

process

for

each

poll

call.

If

possible,

the

connector

should

limit

the

number

of

rows

retrieved

in

the

poll

call

to

PollQuantity.

(For

example,

in

SQL

Server,

use

the

set

rowcount

option.)

See

“Retrieving

event

records”

on

page

178.

__

Full

__

Partial

__

No

__

N/A

Event

Table

Event

status

values

Where

applicable,

the

values

are

used

for

event

status

are

described

in

Table

117.

__

Full

__

Partial

__

No

__

N/A

Object

key

The

object

key

column

must

use

name-value

pairs

to

set

data

in

a

new

business

object.

For

example,

if

ContractId

is

the

name

of

an

attribute

in

the

business

object,

the

object

key

is:

ContractId=45381.

The

connector

should

support

multiple

name-value

pairs

separated

by

a

delimiter.

The

delimiter

is

configurable

(PollAttributeDelimiter)

and

should

default

to

a

colon

(:).

See

“Object

key”

on

page

109.

__

Full

__

Partial

__

No

__

N/A

Object

name

The

object

name

field

should

be

set

to

the

exact

business

object

name.

See

“Standard

contents

of

an

event

record”

on

page

108.

__

Full

__

Partial

__

No

__

N/A

Appendix

D.

Connector

feature

checklist

345

Table

117.

Standard

features

for

event

notification

(continued)

Category

and

name

Description

Supported?

Priority

Priority

is

0-n,

with

0

being

the

highest

priority.

The

connector

polls

and

processes

events

in

order

of

priority.

Note

that

no

decrementing

is

done,

which

could,

in

rare

circumstances,

lead

to

low

priority

events

being

shut

out

(not

processed).

See

“Processing

events

by

event

priority”

on

page

123.

__

Full

__

Partial

__

No

__

N/A

Miscellaneous

Features

Archiving

An

event

is

archived

once

the

connector

has

processed

it,

whether

or

not

the

event

was

successfully

delivered

to

InterChange

Server.

The

event

status

is

kept

in

the

archive

table

and

is

one

of

the

following:

v

Success.

The

event

was

detected,

and

an

object

was

created

and

sent

to

InterChange

Server.

v

Unsubscribed.

The

event

was

detected,

but

the

connector

did

not

have

a

subscription

for

that

event/verb

combination,

so

the

event

was

not

sent

to

InterChange

Server.

v

Error.

The

event

was

detected,

but

the

connector

encountered

an

error

in

trying

to

process

the

event,

either

in

the

process

of

building

a

business

object

or

in

posting

the

object

to

InterChange

Server.

__

Full

__

Partial

__

No

__

N/A

CDK

method

gotApplEvent()

The

connector

should

call

gotApplEvent()only

from

within

pollForEvents().

__

Full

__

Partial

__

No

__

N/A

Delta

event

notification

An

event

can

be

created

that

represents

only

the

changes

to

a

hierarchical

business

object,

such

as

the

addition

or

deletion

of

order

lines,

without

creating

an

update

event

for

the

entire

business

object.

[Not

currently

an

IBM

Standard]

__

Full

__

Partial

__

No

__

N/A

Future

event

processing

The

mechanism

for

specifying

a

future

date

or

time

at

which

an

event

should

be

processed.

The

connector

does

not

process

the

event

until

that

date

or

time.

[Not

currently

an

IBM

Standard]

__

Full

__

Partial

__

No

__

N/A

In-Progress

event

recovery

When

restarted,

a

connector

checks

the

event

table

for

events

that

have

a

status

of

IN_PROGRESS.

If

any

exist,

the

connector

does

one

of

the

following:

v

PropValue

=

FailOnStartup:

Logs

a

fatal

error

and

sends

an

email

notification.

v

PropValue

=

Reprocess:

Submits

the

events

to

InterChange

Server.

v

PropValue

=

LogError:

Logs

an

error

but

does

not

shut

down.

v

PropValue

=

Ignore:

Ignores

these

entries

in

the

event

table.

This

behavior

is

configurable

via

the

InDoubtEvents

connector

property.

Use

the

Notes

field

to

describe

exactly

how

the

connector

handles

this

feature.

__

Full

__

Partial

__

No

__

N/A

Physical

delete

event

The

connector

creates

an

empty

business

object

with

the

Delete

verb,

with

key

values

populated

and

the

rest

of

the

attributes

populated

with

CxIgnore,

and

sends

the

object

to

InterChange

Server.

See

“Processing

Delete

events”

on

page

124.

__

Full

__

Partial

__

No

__

N/A

RetrieveAll

The

connector

retrieves

the

entire

hierarchical

business

object

during

subscription

delivery.

See

“Retrieving

application

data”

on

page

182.

__

Full

__

Partial

__

No

__

N/A

346

Connector

Development

Guide

for

C++

Table

117.

Standard

features

for

event

notification

(continued)

Category

and

name

Description

Supported?

Smart

filtering

Duplicate

events

are

not

saved

in

the

event

store.

Before

storing

a

new

event

as

a

record

in

the

event

store,

the

event

detection

mechanism

queries

the

event

store

for

existing

events

that

match

the

new

event.

The

event

detection

mechanism

does

not

generate

a

record

for

a

new

event

in

these

cases:

v

The

business

object

name,

verb,

key,

status,

and

ConnectorId

(if

applicable)

in

a

new

event

match

those

of

another

unprocessed

event

in

the

event

store.

v

The

business

object

name,

key,

and

status

for

a

new

event

match

an

unprocessed

event

in

the

event

store.

In

addition,

the

verb

for

the

new

event

is

Update,

and

the

verb

for

the

unprocessed

event

is

Create.

v

The

business

object

name,

key,

and

status

for

a

new

event

match

an

unprocessed

event

in

the

event

store.

In

addition,

the

verb

in

the

unprocessed

event

in

the

event

store

is

Create,

and

the

verb

in

the

new

event

is

Delete.

In

this

case,

remove

the

Create

record

from

the

event

store.

__

Full

__

Partial

__

No

__

N/A

Verb

stability

The

connector

should

send

a

business

object

with

the

same

verb

that

is

in

the

event

table.

See

“Getting

the

business

object

name,

verb,

and

key”

on

page

180.

__

Full

__

Partial

__

No

__

N/A

General

standards

Table

118

lists

general

standards

for

connector

behavior.

Table

118.

General

standards

Category

and

Name

Description

Supported?

Business

Object

Foreign

key

There

is

no

standard

defined.

If

you

use

this

property,

check

Full

and

describe

how

you

use

it.

If

you

do

not

use

this

property,

check

No.

__

Full

__

Partial

__

No

__

N/A

Foreign

key

attribute

property

If

this

attribute

property

is

set

to

true,

the

connector

verifies

that

the

value

is

a

valid

key.

If

the

key

is

invalid,

the

connector

returns

FAIL.

The

connector

assumes

a

foreign

key

is

present

in

the

application,

and

the

connector

should

never

try

to

create

an

object

marked

as

a

foreign

key.

__

Full

__

Partial

__

No

__

N/A

Key

There

is

no

standard

defined.

If

you

use

this

property,

check

Full

and

describe

how

you

use

it.

If

you

do

not

use

this

property,

check

No.

__

Full

__

Partial

__

No

__

N/A

Max

Length

There

is

no

standard

defined.

If

you

use

this

property,

check

Full

and

describe

how

you

use

it.

If

you

do

not

use

this

property,

check

No.

__

Full

__

Partial

__

No

__

N/A

Required

There

is

no

standard

defined.

If

you

use

this

property,

check

Full

and

describe

how

you

use

it.

If

you

do

not

use

this

property,

check

No.

__

Full

__

Partial

__

No

__

N/A

Metadata

driven

design

The

connector

can

support

new

business

objects

without

recompiling

because

business

object

processing

is

based

on

metadata

in

the

business

object

definition.

See

“Assessing

support

for

metadata-driven

design”

on

page

45.

__

Full

__

Partial

__

No

__

N/A

Appendix

D.

Connector

feature

checklist

347

Table

118.

General

standards

(continued)

Category

and

Name

Description

Supported?

Loss

of

Connection

to

Application

Connection

lost

on

request

processing

The

connector

detects

the

connection

error

when

processing

a

business

object

request

and

shuts

down.

The

connector

logs

a

fatal

error

and

sends

a

return

code

of

APPRESPONSETIMEOUT

so

that

email

notification

can

be

triggered.

See

“Handling

loss

of

connection

to

an

application”

on

page

70.

__

Full

__

Partial

__

No

__

N/A

Connection

lost

on

poll

The

connector

detects

the

connection

error

at

the

time

of

a

poll

call

and

shuts

down.

The

connector

logs

a

fatal

error

and

sends

a

return

code

of

APPRESPONSETIMEOUT

so

that

email

notification

can

be

triggered.

See

“Handling

loss

of

connection

to

an

application”

on

page

70.

__

Full

__

Partial

__

No

__

N/A

Connection

lost

while

idle

Connector

shuts

down

as

soon

as

the

connection

to

the

application

is

lost.

The

connector

logs

a

fatal

error

and

sends

a

return

code

of

APPRESPONSETIMEOUT

so

that

email

notification

can

be

triggered.

__

Full

__

Partial

__

No

__

N/A

Connector

Properties

ApplicationPassword

The

connector

should

use

this

property

value

as

the

password

to

log

in

to

the

application.

__

Full

__

Partial

__

No

__

N/A

ApplicationUser

Name

The

connector

should

use

this

property

value

as

the

user

name

to

log

in

to

the

application.

__

Full

__

Partial

__

No

__

N/A

UseDefaults

connector

property

If

this

connector

property

is

set

to

true,

when

the

connector

processes

a

business

object

request

with

a

Create

verb,

it

calls

the

JCDK

or

CDK

method

initAndValidateAttributes().

__

Full

__

Partial

__

No

__

N/A

Message

Tracing

General

messaging

Messages

that

identify

the

business

object

handlers

used

for

each

object.

Messages

that

log

each

time

a

business

object

is

posted

to

Interchange

Server,

either

from

gotApplEvent()

or

consumeSync().

Messages

that

indicate

each

time

a

business

object

request

is

received.

Guidelines

for

the

trace

messages

at

each

trace

level

0-5

follow.

Note

that

the

connector

should

deliver

all

the

trace

messages

applicable

at

the

level

of

tracing

set

and

lower.

See

“Trace

messages”

on

page

135.

__

Full

__

Partial

__

No

__

N/A

Trace

Level

0

0

-

Message

that

identifies

the

connector

version.

No

other

tracing

is

done

at

this

level.

__

Full

__

Partial

__

No

__

N/A

Trace

Level

1

1

-

Status

messages

and

identifying

(key)

information

for

each

business

object

processed.

A

message

is

sent

each

time

the

pollForEvents()

method

is

executed.

__

Full

__

Partial

__

No

__

N/A

Trace

Level

2

2

-

Messages

that

identify

the

business

object

handlers

used

for

each

object

the

connector

processes.

Messages

that

log

each

time

a

business

object

is

posted

to

InterChange

Server,

either

from

gotApplEvent()or

consumeSync().

Messages

that

indicate

each

time

a

business

object

request

is

received.

__

Full

__

Partial

__

No

__

N/A

348

Connector

Development

Guide

for

C++

Table

118.

General

standards

(continued)

Category

and

Name

Description

Supported?

Trace

Level

3

3

-

Messages

that

identify

the

foreign

keys

being

processed

(if

applicable).

These

messages

appear

when

the

connector

has

encountered

a

foreign

key

in

a

business

object

or

when

the

connector

sets

a

foreign

key

in

a

business

object.

Messages

that

relate

to

business

object

processing.

Examples

of

this

include

finding

a

match

between

business

objects,

or

finding

a

business

object

in

an

array

of

child

business

objects.

__

Full

__

Partial

__

No

__

N/A

Trace

Level

4

4

-

Messages

that

identify

application-specific

information.

Examples

of

this

text

include

the

values

returned

by

the

functions

that

process

the

application-specific

information

fields

in

business

objects.

Messages

that

identify

entry

or

exit

functions.

These

messages

help

trace

the

process

flow

of

the

connector.

Messages

that

trace

any

thread-specific

processing.

For

example,

if

the

connector

spawns

multiple

threads,

a

message

should

log

the

creation

of

each

new

thread.

__

Full

__

Partial

__

No

__

N/A

Trace

Level

5

5

-

Messages

that

indicate

connector

initialization.

The

messages

include

the

value

of

each

configuration

property

that

has

been

retrieved

from

InterChange

Server.

Messages

that

detail

the

status

of

each

thread

the

connector

spawns

while

it

is

running.The

connector

log

file

contains

all

statements

executed

in

the

application

and

the

value

of

any

variables

that

are

substituted

(where

applicable).

Messages

for

business

object

dumps.

The

connector

outputs

a

text

representation

of

a

business

object

before

it

begins

processing

(showing

the

object

the

connector

receives

from

the

integration

broker)

and

after

it

has

processed

the

object

(showing

the

object

the

connector

returns

to

the

integration

broker).

__

Full

__

Partial

__

No

__

N/A

Message

tracing

Do

not

use

the

CDK

method

generateMsg()

for

tracing;

instead,

hard-code

the

message

strings

for

trace

messages.

__

Full

__

Partial

__

No

__

N/A

Miscellaneous

Features

Java

package

names

All

Java-based

connectors

should

follow

these

package

naming

standards:

com.CompanyName.connectors.ConnectorAgentPrefix

Example:

com.crossworlds.connectors.XML

__

Full

__

Partial

__

No

__

N/A

Logging

messages

The

connector

logs

errors

and

other

information

that

the

user

needs

regardless

of

the

trace

level

set

for

the

system.

See

133.

__

Full

__

Partial

__

No

__

N/A

CDK

method

logMsg()

Always

use

the

CDK

method

generateMsg()

before

calling

logMsg().

__

Full

__

Partial

__

No

__

N/A

NT

service

compliance

To

be

NT

service-compliant,

do

not

use

any

method

or

function

that

points

to

STDOUT,

for

example,

the

printf()

method

in

C++.

__

Full

__

Partial

__

No

__

N/A

Transaction

support

An

entire

business

object

request

must

be

wrapped

in

a

single

transaction.

All

Create,

Update,

and

Delete

transactions

for

a

top-level

business

object

and

all

of

its

children

should

be

wrapped

in

a

single

transaction.

If

any

failure

is

detected

during

the

life

of

the

transaction,

the

whole

transaction

should

be

rolled

back.

__

Full

__

Partial

__

No

__

N/A

Special

IBM

CrossWorlds

Values

CxBlank

processing

On

a

Create

operation,

the

connector

inserts

an

appropriate

blank

value

for

attributes

with

the

value

CxBlank.

The

blank

value

may

be

configurable

or

specific

to

the

application.

See

“Handling

the

Blank

and

Ignore

values”

on

page

171.

__

Full

__

Partial

__

No

__

N/A

Appendix

D.

Connector

feature

checklist

349

Table

118.

General

standards

(continued)

Category

and

Name

Description

Supported?

CxIgnore

processing

The

connector

does

not

set

a

value

in

the

application

for

attributes

that

are

passed

in

with

the

value

CxIgnore

when

processing

Create

or

Update

verbs.

See

“Handling

the

Blank

and

Ignore

values”

on

page

171.

__

Full

__

Partial

__

No

__

N/A

350

Connector

Development

Guide

for

C++

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

1997,

2003

351

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

352

Connector

Development

Guide

for

C++

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Domino

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

WebSphere

Business

Integration

Adapter

Framework

V2.4.0

Notices

353

354

Connector

Development

Guide

for

C++

Index

A
Access

request

20

Adapter

3

development

tools

for

27

Adapter

Development

Kit

(ADK)

27,

28

Adapter

framework

27

Application
API

for

40

form-based

46,

71,

72,

114

implementing

event

store

108

initiating

operation

in

165

object-based

46,

71

version

of

63

Application

connection
closing

66

establishing

63,

144

handling

loss

of

70,

106,

150,

178

verifying

150,

177

Application

database

38,

43

creating

entity

in

78

deleting

entity

from

96

event

table

111

keys

in

entities

102

querying

for

entity

in

98

retrieving

entity

from

81

triggers

in

116

updating

entity

in

89

Application-specific

business

object

7,

12

designing

41

mapping

to

generic

business

object

11

scope

of

business

object

development

45

Application-specific

information
for

a

business

object

definition

72,

157

for

a

verb

72,

157

for

an

attribute

72,

84,

160

tracing

137

ApplicationPassword

connector

configuration

property

63,

68

ApplicationUserID

connector

configuration

property

63,

68

AppSpecificInfo

attribute

property

72

Archive

record

121

Archive

store

121

accessing

122

creating

122

Archive

table

111

ArchiveProcessed

connector

configuration

property

122,

188

Attribute
accessing

100,

158

application-specific

information

72,

84,

160,

216

cardinality

223

class

for

158,

159,

215

complex

103,

223

creating

216

creating

business

object

for

252

data

type

integer

242

data

type

name

222

data

type

of

159,

219,

220,

223,

224

descriptor

158,

215,

241,

262

determining

number

of

241,

263

determining

whether

to

process

161

foreign

key

222

initializing

248,

253

Attribute

(continued)
key

222

maximum

length

159,

218,

347

name

of

159,

164,

166,

218,

221,

242

ordinal

position

100,

157,

159,

164,

166

place-holder

162

position

of

263

properties

158,

159,

215,

216,

242,

262

required

159,

224,

248,

249,

347

simple

99,

100,

171

validating

248,

249

Attribute

value
retrieving

163,

243

setting

166,

173,

252

special

171

B
Blank

attribute

value

171

checking

for

172,

250

constant

173,

237

obtaining

244

BlankValue

attribute-value

constant

237

BOAttrType

class

158,

213,

215,

225

attribute-type

constants

215

BOOLEAN

215

constructor

216

creating

instance

of

216

DATE

215

DOUBLE

215

FLOAT

215

getAppText()

161,

216

getBOVersion()

217

getCardinality()

217

getDefault()

218

getMaxLength()

218

getName()

218

getRelationType()

219

getTypeName()

219

getTypeNum()

220

hasCardinality()

221

hasName()

221

hasTypeName()

222

header

file

215

INTEGER

215

INTSTRING

215

isForeignKey()

222

isKey()

222

isMultipleCard()

174,

223

isObjectType()

162,

174,

223

isRequired()

224

isType()

224

LONGTEXT

215

LONGTEXTSTRING

215

method

summary

215

OBJECT

215

STRING

215

STRSTRING

215

BOHandlerCPP

class

146,

147,

213,

227,

235

constructor

228

creating

instance

of

228

©

Copyright

IBM

Corp.

1997,

2003

355

BOHandlerCPP

class

(continued)
doVerbFor()

74,

148,

228

generateAndLogMsg()

134,

140,

230

generateAndTraceMsg()

136,

140,

230

generateMsg()

134,

136,

140,

231

getConfigProp()

233

getTheSubHandler()

233

header

file

227

logMsg()

134,

234

method

summary

227

traceWrite()

136,

234

virtual

method

227

BON_APPRESPONSETIMEOUT

outcome

status

70,

194

doVerbFor()

106,

151,

167,

194,

229

pollForEvents()

65,

178,

194,

290

BON_BO_DOES_NOT_EXIST

outcome

status

87,

167,

194,

229

BON_CONNECTOR_NOT_ACTIVE

outcome

status

194,

300

BON_FAIL

outcome

status

194,

195

Create

verb

81

Delete

verb

97

doVerbFor()

150,

167,

194,

229

Exists

verb

98

gotApplEvent()

194,

300

init()

63,

144,

194,

287

pollForEvents()

65,

188,

194,

290

Retrieve

verb

87

terminate()

193,

194,

291

Update

verb

91,

96

BON_FAIL_RETRIEVE_BY_CONTENT

outcome

status

89,

167,

194,

229

BON_MULTIPLE_HITS

outcome

status

89,

167,

168,

194,

229

BON_NO_SUBSCRIPTION_FOUND

outcome

status

194,

300

BON_SUCCESS

outcome

status

194

Create

verb

80

doVerbFor()

167,

194,

229

Exists

verb

98

gotApplEvent()

194,

300

init()

63,

144,

194,

287

pollForEvents()

65,

188,

194,

290

terminate()

193,

194,

291

Update

verb

95

BON_UNABLETOLOGIN

outcome

status

63,

144,

194,

287

BON_VALCHANGE

outcome

status

194

Create

verb

80

Delete

verb

97

doVerbFor()

167,

168,

194,

229

Retrieve

verb

86,

87

RetrieveByContent

verb

88

Update

verb

95

BON_VALDUPES

outcome

status

81,

167,

194,

229

BOOLEAN

attribute-type

constant

215,

220,

224,

243,

252

Business

object

5,

11

ADK

support

27

business

object

definition

247

business

object

handler

239

checking

subscriptions

of

181,

302

class

for

18,

237

copying

239

creating

new

252

development

support

27

extracting

values

from

163

generic

7,

12

inserting

into

business

object

array

259,

260

instance

6

locale

56,

246,

253

log

information,

dumping

240

Business

object

(continued)
metadata

72

naming

46

parent

101

parent

business

object

219,

247

parts

of

5

processing

98,

155,

166

relationship

between

parent

and

child

101,

219

removing

from

business

object

array

259,

260

request

24,

149,

154,

168

response

82,

90,

106

saving

values

in

166

sending

to

connector

framework

185

sending

to

InterChange

Server

300

supported

16,

26,

62,

64,

71,

74,

146,

201

top-level

101

tracing

information,

dumping

240

Business

object

array

101

business

object

definition

for

258

child

business

objects

in

104

class

for

257

determining

number

of

child

business

objects

258

inserting

business

object

into

259,

260

removing

business

object

from

259,

260

retrieving

child

business

object

from

257

Business

object

definition

5,

6,

261,

265

accessing

156

application-specific

information

72,

157,

262

class

for

156,

261

handler

for

263,

282

in

an

event

108

name

of

157,

247,

264

retrieving

247,

258

supported

verbs

157,

265

version

of

217,

248,

265

Business

Object

Designer

6

Business

object

handler

25,

64,

71,

106

calling

239

class

for

26,

147,

227

creating

147,

175,

228

design

issues

71

instantiating

64,

146

introduction

74

metadata-driven

46,

65,

72,

146

multiple

48,

65,

73,

146,

148

obtaining

26,

64,

146

partially

metadata-driven

47

performing

action

of

active

verb

229

retrieving

263,

282

role

of

71,

148

trace

information

137

verb

processing

in

77

BusinessObject

class

213,

237,

255

attribute-value

constants

237

BlankValue

237

clone()

239

constructor

57,

238

creating

instance

of

238

doVerbFor()

183,

239

dump()

240

getAttrCount()

159,

163,

241

getAttrDesc()

159,

241

getAttrName()

242

getAttrType()

242

getAttrValue()

162,

165,

174,

243

getBlankValue()

244

getDefaultAttrValue()

245

356

Connector

Development

Guide

for

C++

BusinessObject

class

(continued)
getIgnoreValue()

246

getLocale()

57,

246

getName()

247

getParent()

247

getSpecFor()

156,

247

getVerb()

149,

248

getVersion()

248

header

file

237

IgnoreValue

237

initAndValidateAttributes()

248

isBlank()

250

isBlankValue()

162,

250

isIgnore()

251

isIgnoreValue()

162,

251

makeNewAttrObject()

252

method

summary

237

setAttrValue()

173,

183,

252,

253

setLocale()

253

setVerb()

183,

254

BusObjContainer

class

174,

213,

257,

260

getObject()

174,

257

getObjectCount()

174,

258

getTheSpec()

258

header

file

257

insertObject()

259

method

summary

257

removeAllObjects()

259

removeObjectAt()

260

setObject()

260

BusObjSpec

class

156,

213,

261,

265

getAppText()

158,

262

getAttribute()

159,

262

getAttributeCount()

159,

263

getAttributeIndex()

159,

263

getMyBOHandler()

263

getName()

264

getVerbAppText()

264

getVersion()

265

header

file

261

isVerbSupported()

265

method

summary

261

C
C++

connector
library

file

199

C++

Connector

Development

Kit

213

C++

Connector

Development

Kit

(CDK)

29

C++

connector

library

18,

29

BOAttrType

215

BOHandlerCPP

227

BusinessObject

237

BusObjContainer

257

BusObjSpec

261

CxMsgFormat

267

CxVersion

269

GenGlobals

277

outcome-status

values

193

overview

213

return

codes

193

ReturnStatusDescriptor

295

StringMessage

303

SubscriptionHandlerCPP

299

Tracing

305

Cardinality
determining

103,

160,

221

Cardinality

(continued)
multiple

101,

102,

104,

215

obtaining

217

single

101,

102,

104,

215

Character

encoding

54,

284

CharacterEncoding

connector

configuration

property

58,

284

Child

business

object

101

accessing

103,

105,

173

determining

number

of

258

inserting

into

business

object

array

259

relationship

type

101,

219

retrieving

84,

257

verb

support

76

version

of

217

Client

connector

framework

10

clone()

method

239

Collaboration

6,

20,

42,

278,

283

determining

if

subscribed

62,

181,

302

returning

status

to

295

role

in

event

notification

22

role

in

request

processing

25

sending

business

object

to

185

Common

Object

Request

Broker

Architecture

(CORBA)

15,

16

compareMajor()

method

270

compareMinor()

method

270

comparePoint()

method

271

compareTo()

method

271

Connector

6

adding

to

business

integration

system

197

ADK

support

27

application-specific

component

19,

66,

277

associated

maps

201

base

class

for

61,

66,

143

compiling

198

components

7

configuration

file

202

configuration

property

283

configuring

28

connector

communication

9,

14,

18

defining

31,

200

design

issues

35

development

environment

28

development

process

30

development

support

28

directory

203,

204

event

polling

290

general

functionality

61

implementation

questions

50

implementing

143,

197

initialization

13,

16,

137,

144,

287

internationalized

53,

61,

139

JMS-enabled

126

library

198,

203,

204

log

destination

133

logging

messages

230,

234,

279,

281,

289

loss

of

connection

to

application

70,

106,

150,

178

metadata-driven

46,

65,

72,

146,

155,

347

monitoring

135

name

197

naming

conventions

66,

143

parallel-process

123,

233,

284,

288,

290

partially

metadata-driven

47

poll

frequency

290

recovering

In-Progress

events

145

request

processing

71,

106

required

implementation

74,

81

roles

of

6,

21,

38

Index

357

Connector

(continued)
running

61

sample

29

shutting

down

61,

66,

193

starting

61,

203

supported

business

objects

6,

26,

62,

64,

74,

146,

201

terminating

66,

193,

290

threading

issues

123

trace

messages

230,

280,

291,

307

unidirectional

38

version

286

version

of

63,

145

without

metadata

48

Connector

class

library

67

Connector

configuration

property

67

ApplicationPassword

63,

68

ApplicationUserID

63,

68

ArchiveProcessed

122,

188

CharacterEncoding

58,

284

connector-specific

68

ConnectorId

124

ContainerManagedEvents

127

DataHandlerConfigMOName

128

defining

68,

202

DeliveryTransport

17,

127,

129

DHClass

128

DuplicateEventElimination

129

IgnoreMissingChildObject

86,

87,

88,

344

InDoubtEvents

64,

346

internationalizing

57

loading

62

Locale

285

LogAtInterchangeEnd

64,

70,

106,

134,

151,

280,

289

MimeType

128

MonitorQueue

129

ParallelProcessDegree

233,

284,

288

PollAttributeDelimiter

109

PollFrequency

61,

119,

290

PollQuantity

127,

129,

178,

345

retrieving

16,

69,

70,

233,

283

setting

68,

202

simple

69

SourceQueue

127

standard

68,

309,

324

TraceLevel

135,

292,

306

tracing

137

UseDefaults

249,

348

Connector

Configurator

28,

68,

200,

325,

341

Connector

controller

10,

62

role

in

mapping

12

subscription

handling

and

13

subscription

list

13,

22

Connector

definition

31,

200

Connector

development
platform

for

28

tools

for

28

Connector

Development

Kit

29

Connector

framework

8,

19

calling

poll

method

119

character

encoding

284

choosing

business

object

handler

24

determining

connector

response

167

initializing

connector

62,

144

internationalized

54

invoking

61

locale

57,

246,

285

obtaining

business

object

handler

26,

64,

146

Connector

framework

(continued)
receiving

service

call

request

75

response

from

doVerbFor()

105

response

to

outcome-status

values

194

sending

business

object

to

185

services

of

9,

14

starting

up

application-specific

component

62

subscription

handling

and

13,

23,

181,

302

subscription

list

13,

23,

181,

302

tracing

135

transport

layer

14

Connector

identifier

(ID)

108,

124

Connector

message

file
generating

message

from

55,

280,

289,

292

location

138

name

of

138

Connector

Script

Generator

341,

343

Connector

startup

script

119,

133,

135,

203

connector_manager_connector

startup

script

203

ConnectorId

connector

configuration

property

124

Constant
attribute-type

215

attribute-value

237

message-type

141

outcome-status

67,

193

trace-level

136,

305

consumeSync()

method

(deprecated)

293

ContainerManagedEvents

connector

configuration

property

127

Containment

relationship

101,

219

Create

verb
implementation

79

initializing

attributes

249

outcome

status

80,

167

overview

78

processing

blank

values

172

processing

Ignore

values

173

retrieving

application

data

for

182

standard

behavior

79

using

attribute

values

for

154,

163,

166

CwConnector.dll

library

198,

213

CxMsgFormat

class

213,

267,

269

deprecated

methods

268

generateMsg()

267

header

file

267

message-type

constants

136,

141,

230,

231,

232,

267,

279,

280,

282

method

summary

267

CxVersion

class

213,

269,

275

compareMajor()

270

compareMinor()

270

comparePoint()

271

compareTo()

271

constructor

269

creating

instance

of

270

getDELIMITER()

272

getLATESTVERSION()

272

getMajorVer()

273

getMinorVer()

273

getPointVer()

274

header

file

269

method

summary

269

setMajorVer()

274

setMinorVer()

274

setPointVer()

275

toString()

275

358

Connector

Development

Guide

for

C++

D
Database

triggers

116

DataHandlerConfigMOName

connector

configuration

property

128

DATE

attribute-type

constant

215,

220,

224,

243,

253

Debugging

135

Default

attribute

value
initializing

248,

253

obtaining

160,

218,

245

Delete

operation

124

logical

90,

93,

96,

109,

124,

182

physical

96,

124,

182,

183,

185

Delete

verb
outcome

status

97,

167

overview

96

processing

blank

values

172

processing

Ignore

values

173

retrieving

application

data

for

182

standard

behavior

97

using

attribute

values

for

155,

163

DeliveryTransport

connector

configuration

property

17,

127,

129

Denormalization

of

application

entities

44

Deprecated

methods
CxMsgFormat

268

GenGlobals

292

StringMessage

304

Design

issues
application

architecture

37

application

interaction

39

identifying

application-specific

business

objects

41

identifying

connector

roles

38

metadata-driven

design

45

OS

communication

50

summary

set

of

questions

50

use

of

application

API

41

Development

process

30

DHClass

connector

configuration

property

128

DOUBLE

attribute-type

constant

215,

220,

224,

243,

253

doVerbFor()

method

25,

66,

74,

106,

183,

228,

239

basic

logic

74,

78

branching

on

active

verb

151

designing

78

implementing

148,

175

obtaining

active

verb

149

performing

verb

operation

154

processing

business

objects

155

recursive

call

104

returning

outcome

status

167

sending

verb-processing

response

166

verifying

the

connection

150

doVerbFor()

method

(CWConnectorBOHandler)
validating

values

249

dump()

method

240

Duplicate

event

elimination

129

DuplicateEventElimination

connector

configuration

property

129

E
Error

handling

67,

193

Error

logging

133

Error

message

133,

141,

229

Event

20

archiving

121,

187

asynchronous

301

Event

(continued)
business

object

name

108,

109,

111,

180

connector

ID

108,

112,

124

description

108,

112

distribution

of

124

duplicate

64,

117

effective

date

118

future

118

In-Progress

63,

145

Ready-for-Poll

117,

179

synchronous

278

triggering

20

unsubscribed

182

verb

108,

109,

111,

117,

125,

180

Event

detection

107,

113,

118

database

triggers

116

duplicate

events

117

form

events

114

future

events

118

mechanisms

for

114

standard

behavior

of

117

workflow

115

Event

identifier

(ID)

109,

130

event

record

and

108

event

table

and

111

initializing

117

obtaining

180

Event

notification

7,

21,

24,

38,

107,

133

delete

events

124

design

issues

49

error

handling

187

event

detection

107,

113,

118

event

distribution

124

event

retrieval

107,

118,

120

event

store

117

event

table

117

future

events

processing

118

standard

behavior

345

transport

layer

and

16,

18

unsubscribed

events

182

Event

polling

290

Event

priority

123

event

record

and

108

event

table

and

112

initializing

117

Event

record

22,

107

archiving

187

creating

117

inserting

into

event

store

117

object

key

108,

109,

117,

180

retrieving

178

standard

contents

49,

108

Event

retrieval

107,

118,

120

mechanisms

for

118

Event

status

110

event

record

and

108

event

table

and

112

initializing

117

Event

store

22,

107,

108,

113

definition

of

108

Email

mailbox

112,

129

flat

files

113,

129

future

118

inserting

event

record

in

117

JMS

126,

129

possible

implementations

110

Event

table

111,

129

Index

359

Event

timestamp
event

record

and

108

event

table

and

112

initializing

117

usage

179

Event-notification

mechanism

22,

24,

49,

107,

108

Event-triggered

flow

19,

76

Examples
Create

verb

method

169

doVerbFor()

150,

152

freeMemory()

141

generateMsg()

141

getBOHandlerforBO()

147

getVersion()

145

init()

145

logMsg()

141

pollForEvents()

176,

188

terminate()

193

traceWrite()

136

Exception

handling

11

executeCollaboration()

method

137,

278

Exist

verb
outcome

status

167

using

attribute

values

for

163

Exists

verb
outcome

status

98

overview

97

F
Fatal

error

141

Flat

business

object

99

create

operation

169

Create

operation

78

Delete

operation

96

processing

99

Retrieve

operation

81

RetrieveByContent

operation

87

Update

operation

89

FLOAT

attribute-type

constant

215,

220,

224,

243,

252

Foreign

key

attribute

79,

90,

102,

137,

159,

222,

347

freeMemory()

method

141,

231,

232,

279,

281,

282

G
generateAndLogMsg()

method

55,

134,

140,

230,

279

generateAndTraceMsg()

method

55,

136,

140,

230,

280

generateMsg()

method

56,

134,

136,

139,

231,

267,

280,

281,

289

trace

messages

and

55,

292

GenGlobals

class

143,

213,

277,

295

constructor

277

consumeSync()

293

creating

instance

of

277

deprecated

methods

292

executeCollaboration()

278

generateAndLogMsg()

134,

136,

140,

279

generateAndTraceMsg()

140,

280

generateMsg()

134,

136,

140,

281

getBOHandlerforBO()

146,

282

getCollabNames()

283

getConfigProp()

69,

283

getEncoding()

59,

284

getLocale()

57,

285

getTheSubHandler()

177,

286

getVersion()

145,

286

GenGlobals

class

(continued)
header

file

143,

277

init()

63,

287

isAgentCapableOfPolling()

288

logMsg()

134,

289

method

summary

277

pollForEvents()

65,

175,

290

terminate()

193,

290

traceWrite()

136,

291

virtual

methods

277

getAppText()

method

(BOAttrType)

160,

216

getAppText()

method

(BusObjSpec)

157,

262

getAttrCount()

method

159,

163,

166,

241

getAttrDesc()

method

159,

241

getAttribute()

method

157,

159,

262

getAttributeCount()

method

157,

159,

263

getAttributeIndex()

method

157,

159,

263

getAttrName()

method

164,

242

getAttrType()

method

242

getAttrValue()

method

162,

174,

243

getBlankValue()

method

244

getBOHandlerforBO()

method

26,

64,

146,

282

getBOVersion()

method

217

getCardinality()

method

160,

217

getCollabNames()

method

278,

283

getConfigProp()

method

69,

233,

283

getCurrentSize()

(deprecated)

304

getDefault()

method

160,

218

getDefaultAttrValue()

method

245

getDELIMITER()

method

272

getEncoding()

method

59,

284

getErrorMsg()

method

168,

295

getIgnoreValue()

method

246

getIndent()

method

305

getLATESTVERSION()

method

272

getLocale()

method

57,

246,

285

getMajorVer()

method

273

getMaxLength()

method

159,

218

getMinorVer()

method

273

getMyBOHandler()

method

263

getName()

method

(BOAttrType)

159,

218

getName()

method

(BusinessObject)

247

getName()

method

(BusObjSpec)

157,

264

getName()

method

(Tracing)

306

getObject()

method

174,

257

getObjectCount()

method

104,

258

getParent()

method

247

getPointVer()

method

274

getRelationType()

method

159,

219

getSpecFor()

method

247

getStatus()

method

168,

295

getTheSpec()

method

258

getTheSubHandler()

method

233,

286

getTraceLevel()

method

306

getTypeName()

method

159,

219

getTypeNum()

method

159,

220

getVerb()

method

78,

149,

248

getVerbAppText()

method

153,

157,

264

getVersion()

method

63,

145,

248,

265,

286

gotApplEvent()

method

137,

185,

300

H
hasCardinality()

method

160,

221

hasMoreTokens()

method

303

hasName()

method

159,

221

hasTypeName()

method

159,

222

360

Connector

Development

Guide

for

C++

Hierarchical

business

object

101

Create

operation

78

Delete

operation

96

processing

101,

173

Retrieve

operation

81

RetrieveByContent

operation

87

Update

operation

89

I
Ignore

attribute

value

171

changing

to

default

249

checking

for

172,

251

constant

173,

237

obtaining

246

setting

to

125

IgnoreMissingChildObject

connector

configuration

property

86,

87,

88,

344

IgnoreValue

attribute-value

constant

237

InDoubtEvents

connector

configuration

property

64,

346

Informational

message

133,

141,

229

init()

method

62,

63,

144,

150,

177,

287

initAndValidateAttributes()

method

78,

248,

348

initTokenizer()

method

(deprecated)

304

insertObject()

method

259

INTEGER

attribute-type

constant

215,

220,

224,

243,

252

Integration

broker

3

InterChange

Server

(ICS)

3

connecting

to

62

transport

mechanisms

with

14

InterchangeSystem.txt

message

file

138

location

139

INTSTRING

attribute-type

constant

215

isAgentCapableOfPolling()

method

288

isBlank()

method

172,

250

isBlank()

value

162

isBlankValue()

method

162,

172,

250

isForeignKey()

method

159,

222

isIgnore()

method

162,

172,

251

isIgnoreValue()

method

162,

172,

251

isKey()

method

159,

222

isMultipleCard()

method

103,

160,

223

isObjectType()

method

103,

159,

162,

223

isRequired()

method

159,

224

isSubscribed()

method

181,

300,

302

isTraceEnabled()

method

140

isType()

method

159,

224

isVerbSupported()

method

157,

265

J
Java

Messaging

Service

(JMS)

16,

17,

126

K
Key

attribute

159,

222

Key

attribute

property

347

L
LEVEL0

trace-level

constant

306

LEVEL1

trace-level

constant

231,

235,

281,

291,

306,

307

LEVEL2

trace-level

constant

231,

235,

281,

291,

306,

307

LEVEL3

trace-level

constant

231,

235,

281,

291,

306,

307

LEVEL4

trace-level

constant

231,

235,

281,

291,

306,

307

LEVEL5

trace-level

constant

231,

235,

281,

291,

306,

307

Locale

54,

246,

253,

285

business-object

57

connector

framework

57

connector-framework

57

Locale

connector

configuration

property

285

Log

destination

133,

135

LogAtInterchangeEnd

connector

configuration

property

64,

70,

106,

134,

151,

280,

289

Logging

18,

133

internationalizing

55

message

destination

135

sending

a

message

134

Logical

delete

90,

93,

96,

124

logMsg()

method

134,

139,

230,

234,

279,

289

LONGTEXT

attribute-type

constant

215,

220,

224,

243,

253

LONGTEXTSTRING

attribute-type

constant

215

M
makeNewAttrObject()

method

252

Mapping

11,

201

Max

Length

attribute

property

159,

347

Message

133

destination

135

explanation

138

format

138

generating

139

message

text

138,

140

number

138,

140

retrieving

295

source

138

types

140

Message

file

138,

143

location

138

name

of

138

Message

logging

67,

133,

143,

267,

269

generating

messages

140,

231,

267

message

file

138

tracing

135,

234

Message

queues

197

MESSAGE_RECIPIENT

server

configuration

parameter

134

Messaging

system

16

Metadata

45

MimeType

connector

configuration

property

128

MonitorQueue

connector

configuration

property

129

Multipurpose

Internet

Mail

Extensions

(MIME)

format

128

N
nextToken()

method

303

O
OBJECT

attribute-type

constant

103,

215,

220,

224,

243,

252

Object

Discovery

Agent

(ODA)

6

ADK

support

27

development

support

27

Object

Request

Broker

(ORB)

16,

62

Object

version

269

character

string

271

comparing

current

271

converting

275

delimiter

character

272

latest

version

272

major

version

comparisons

270

Index

361

Object

version

(continued)
major

version

for

object

274

major

version

retrieval

273

minor

version

comparison

270

minor

version

of

object

274

minor

version

retrieval

273

point

version

comparison

271

point

version

of

object

274,

275

ObjectEventId

attribute

76,

99,

109,

161,

162,

184

P
ParallelProcessDegree

connector

configuration

property

233,

284,

288

Physical

delete

96,

124

PollAttributeDelimiter

connector

configuration

property

109

pollForEvents()

method

61,

65,

119,

120,

129,

137,

175,

193,

290,

301

PollFrequency

connector

configuration

property

61,

119,

290

Polling

65,

66,

120,

124,

175,

193

archiving

the

event

121,

187

basic

logic

121,

176

checking

for

subscriptions

181

duplicate

event

elimination

129

guaranteed

event

delivery

and

128,

130

interval

for

119

mechanism

for

119

poll

method

120

retrieving

application

data

182

retrieving

event

information

180

retrieving

event

records

178

sending

the

event

184

setting

up

subscription

handler

177

setting

up

subscription

manager

177

standard

behavior

119

verifying

the

connection

177

PollQuantity

connector

configuration

property

127,

129,

178,

345

Primary

key

79,

102

Publish-and-subscript

model

22

R
removeAllObjects()

method

259

removeObjectAt()

method

260

Repository

30,

62,

197,

200

Request

business

object

24,

149,

154,

168

Request

processing

7,

24,

26,

27,

38,

71,

106

extending

business-object-handler

base

class

74,

147

standard

behavior

343

transport

layer

and

16,

18

Required

attribute

property

159,

249,

347

Retrieve

verb
implementation

82

outcome

status

86,

167

overview

81

processing

blank

values

172

processing

Ignore

values

173

standard

behavior

82

using

attribute

values

for

155,

163,

166

RetrieveByContent

verb
implementation

88

outcome

status

88,

167

overview

87

using

attribute

values

for

163,

166

Return-status

descriptor

67

Return-status

descriptor

(continued)
class

for

295

message

150,

151,

168,

295,

296

passing

out

of

doVerbFor()

168

passing

out

of

executeCollaboration()

278

passing

to

doVerbFor()

167,

195,

228

populating

167

status

168,

295,

296

ReturnStatusDescriptor

class

168,

214,

295,

297

getErrorMsg()

295

getStatus()

295

header

file

295

method

summary

295

seterrMsg()

296

setStatus()

296

S
Service

call

request

11,

16,

21,

25

Service

call

response

21,

26

setAttrValue()

method

166,

173,

252,

253

seterrMsg()

method

168,

229,

296

setIndent()

method

306

setLocale()

method

253

setMajorVer()

method

274

setMinorVer()

method

274

setObject()

method

260

setPointVer()

method

275

setStatus()

method

168,

296

setVerb()

method

185,

254

SourceQueue

connector

configuration

property

127

SQL

statement

165

start_connector.bat

file

205

start_connName.bat

file

203

STRING

attribute-type

constant

215,

220,

224,

243,

253

StringMessage

class

214,

303,

305

deprecated

methods

304

getCurrentSize()

304

hasMoreTokens()

303

header

file

303

initTokenizer()

304

method

summary

303

nextToken()

303

STRSTRING

attribute-type

constant

215

Subscription

handler

13,

177,

299,

303

creating

299

retrieving

pointer

to

233

sending

events

to

InterChange

Server

300

Subscription

handling

13

Subscription

manager

18,

177,

189,

286

SubscriptionHandlerCPP

class

177,

214,

299,

303

constructor

299

creating

instance

of

299

gotApplEvent()

300

header

file

299

isSubscribed()

181,

182,

302

method

summary

299

T
Table-based

application
application-specific

information

72

business

object

handler

71

business

object

structure

99,

102

database

triggers

116

metadata-driven

design

and

45,

46

362

Connector

Development

Guide

for

C++

Table-based

application

(continued)
retrieving

event

records

179

terminate()

method

66,

193,

290

Top-level

business

object

101

toString()

method

275

Trace

message

135,

137,

141,

280

TraceLevel

connector

configuration

property

135,

292,

306

traceWrite()

method

136,

139,

231,

234,

281,

291

Tracing

18,

135

character

string

for

indents

305,

306

enabling

135

internationalizing

55

message

234,

291

message

destination

135

retrieving

connector

name

306

sending

a

message

135

trace

level

235,

280,

291,

306

trace

levels

137

writing

trace

message

307

Tracing

class

214,

305,

307

getIndent()

305

getName()

306

getTraceLevel()

306

header

file

305

LEVEL0

305

LEVEL1

305

LEVEL2

305

LEVEL3

305

LEVEL4

305

LEVEL5

305

method

summary

305

setIndent()

306

trace-level

constants

136,

305

write()

307

Transaction

76

Triggering

event

20,

278

Troubleshooting

135

U
Update

verb
outcome

status

95,

167

overview

89

processing

blank

values

172

processing

Ignore

values

173

retrieving

application

data

for

182

standard

behavior

90

using

attribute

values

for

155,

163,

166

UseDefaults

connector

configuration

property

249,

348

V
Verb

active

149,

151,

228,

248

application-specific

information

72,

157,

264

basic

processing

152

branching

on

151

determining

if

supported

265

in

child

business

object

76

metadata-driven

processing

153

method

for

78,

153

performing

operation

for

77,

154,

228

recommendations

76

retrieving

from

request

business

object

149,

248

setting

185

supported

149,

157,

265

verb

stability

76,

181,

185

W
Warning

133,

141

WebSphere

Application

Server

3

starting

connectors

with

62

WebSphere

Business

Integration

Message

Broker

3

starting

connectors

with

62

WebSphere

business

integration

system

3

WebSphere

InterChange

Server
starting

connectors

with

62

WebSphere

MQ

Integrator

Broker

3

business

object

subscriptions

23,

302

starting

connectors

with

62

transport

mechanisms

with

18

write()

method

307

X
XRD_ERROR

message-type

constant

141,

230,

231,

232,

267,

279,

280,

282,

289

XRD_FATAL

message-type

constant

141,

230,

231,

232,

267,

279,

280,

282,

289

XRD_INFO

message-type

constant

141,

230,

231,

232,

267,

279,

280,

282,

289

XRD_TRACE

message-type

constant

136,

141,

230,

231,

232,

267,

279,

280,

282,

289

XRD_WARNING

message-type

constant

141,

230,

231,

232,

267,

279,

280,

282,

289

Index

363

	Contents
	About this document
	Audience
	Related documents
	Typographic conventions
	Markup conventions

	New in this release
	New in WebSphere InterChange Server v4.2.2 and WebSphere Business Integration Adapters v2.4.0
	New in WebSphere InterChange Server v4.2.1 and WebSphere Business Integration Adapters 2.3.1
	New in WebSphere Business Integration Adapters 2.2.0
	New in WebSphere Business Integration Adapters 2.1
	New in WebSphere Business Integration Adapters 2.0.1
	New in WebSphere Business Integration Adapters 2.0

	Part 1. Getting started
	Chapter 1. Introduction to connector development
	Adapters in the WebSphere business integration system
	Business objects
	Connectors

	Connector components
	Connector framework
	Application-specific component

	Event-triggered flow
	Event notification
	Request processing

	Tools for adapter development
	Development support for business objects
	Development support for ODAs
	Development support for connectors

	Overview of the connector development process
	Setting up the development environment
	Stages of connector development

	Part 2. Building a connector
	Chapter 2. Designing a connector
	Scope of a connector development project
	Designing the connector architecture
	Understanding the application environment
	Determining connector directionality
	Getting data in and out of the application

	Designing application-specific business objects
	Determining the application entities
	Determining the scope of business object development
	Assessing support for metadata-driven design

	Event notification
	Event notification level of detail
	Event notification support for business logic

	Communication across operating systems
	Summary set of planning questions
	Evaluating the findings

	An internationalized connector
	What is a locale?
	Design considerations for an internationalized connector

	Chapter 3. Providing general connector functionality
	Running a connector
	Starting up a connector
	Polling for events
	Shutting down the connector

	Extending the connector base class
	Handling errors
	Using connector configuration property values
	What is a connector configuration property?
	Defining and setting connector configuration properties
	Retrieving connector configuration properties

	Handling loss of connection to an application

	Chapter 4. Request processing
	Designing business object handlers
	Implementing metadata-driven business object handlers
	Implementing multiple business object handlers

	Extending the business-object-handler base class
	Handling the request
	Basic logic for doVerbFor()
	General recommendations on verb implementations

	Performing the verb action
	Handling the Create verb
	Standard processing for a Create verb
	Implementation of a Create verb operation
	Outcome status for Create verb processing

	Handling the Retrieve verb
	Standard processing for a Retrieve verb
	Implementation of a Retrieve verb operation
	Example: Retrieve operation
	Retrieving child objects
	Outcome status for Retrieve verb processing

	Handling the RetrieveByContent verb
	Implementation for a RetrieveByContent verb operation
	Outcome status for RetrieveByContent processing

	Handling the Update verb
	Standard processing for an Update verb
	Implications of business objects representing logical Delete events
	Outcome status for Update verb processing

	Handling the Delete verb
	Standard processing for a Delete verb
	Outcome status for Delete verb processing

	Handling the Exists verb
	Standard processing for an Exists verb
	Outcome status for Exists verb processing

	Processing business objects
	Processing flat business objects
	Processing hierarchical business objects

	Indicating the connector response
	Handling loss of connection to the application

	Chapter 5. Event notification
	Overview of an event-notification mechanism
	Implementing an event store for the application
	Standard contents of an event record
	Event status
	Possible implementations of an event store

	Implementing event detection
	Event detection mechanisms
	Event detection: standard behavior

	Implementing event retrieval
	Event retrieval mechanisms
	Using a polling mechanism

	Implementing the poll method
	Basic logic for pollForEvents()
	Other polling issues

	Special considerations for event processing
	Processing Delete events
	Using guaranteed event delivery

	Chapter 6. Message logging
	Error and informational messages
	Indicating a log destination
	Sending a message to the log destination

	Trace messages
	Enabling tracing
	Identifying a trace destination
	Sending a trace message to the trace destination
	Recommended content for trace messages

	Message file
	Message format
	Name and location of a message file
	Generating a message string

	Chapter 7. Implementing a C++ connector
	Extending the C++ connector base class
	Beginning execution of the connector
	Initializing the connector
	Obtaining the C++ business object handler

	Creating a business object handler
	Extending the C++ business-object-handler base class
	Implementing the doVerbFor() method

	Polling for events
	Accessing the subscription manager
	Verifying the connection before accessing the event store
	Retrieving event records
	Getting the business object name, verb, and key
	Checking for subscriptions to the event
	Retrieving application data
	Sending the business object to the connector framework
	Completing the processing of an event
	Archiving the event
	Example of a basic pollForEvents() method

	Shutting down the connector
	Handling errors and status
	C++ return codes
	Return-status descriptor

	Chapter 8. Adding a connector to the business integration system
	Naming the connector
	Compiling the connector
	Compiling and linking a C++ connector
	Running a debug version of a C++ connector

	Creating the connector definition
	Defining the connector

	Creating the initial configuration file
	Starting up a new connector
	Preparing the connector directory
	Creating startup scripts

	Part 3. C++ connector library API reference
	Chapter 9. Overview of the C++ connector library
	Classes

	Chapter 10. BOAttrType class
	Attribute-type constants
	Member methods
	BOAttrType()
	getAppText()
	getBOVersion()
	getCardinality()
	getDefault()
	getMaxLength()
	getName()
	getRelationType()
	getTypeName()
	getTypeNum()
	hasCardinality()
	hasName()
	hasTypeName()
	isForeignKey()
	isKey()
	isMultipleCard()
	isObjectType()
	isRequired()
	isType()

	Chapter 11. BOHandlerCPP class
	BOHandlerCPP()
	doVerbFor()
	generateAndLogMsg()
	generateAndTraceMsg()
	generateMsg()
	getConfigProp()
	getTheSubHandler()
	logMsg()
	traceWrite()

	Chapter 12. BusinessObject class
	Attribute-value constants
	Member methods
	BusinessObject()
	clone()
	doVerbFor()
	dump()
	getAttrCount()
	getAttrDesc()
	getAttrName()
	getAttrType()
	getAttrValue()
	getBlankValue()
	getDefaultAttrValue()
	getIgnoreValue()
	getLocale()
	getName()
	getParent()
	getSpecFor()
	getVerb()
	getVersion()
	initAndValidateAttributes()
	isBlank()
	isBlankValue()
	isIgnore()
	isIgnoreValue()
	makeNewAttrObject()
	setAttrValue()
	setDefaultAttrValues()
	setLocale()
	setVerb()

	Chapter 13. BusObjContainer class
	getObject()
	getObjectCount()
	getTheSpec()
	insertObject()
	removeAllObjects()
	removeObjectAt()
	setObject()

	Chapter 14. BusObjSpec class
	getAppText()
	getAttribute()
	getAttributeCount()
	getAttributeIndex()
	getMyBOHandler()
	getName()
	getVerbAppText()
	getVersion()
	isVerbSupported()

	Chapter 15. CxMsgFormat class
	Message-type constants
	Methods
	generateMsg()
	Deprecated methods

	Chapter 16. CxVersion class
	CxVersion()
	compareMajor()
	compareMinor()
	comparePoint()
	compareTo()
	getDELIMITER()
	getLATESTVERSION()
	getMajorVer()
	getMinorVer()
	getPointVer()
	setMajorVer()
	setMinorVer()
	setPointVer()
	toString()

	Chapter 17. GenGlobals class
	GenGlobals()
	executeCollaboration()
	generateAndLogMsg()
	generateAndTraceMsg()
	generateMsg()
	getBOHandlerforBO()
	getCollabNames()
	getConfigProp()
	getEncoding()
	getLocale()
	getTheSubHandler()
	getVersion()
	init()
	isAgentCapableOfPolling()
	logMsg()
	pollForEvents()
	terminate()
	traceWrite()
	Deprecated methods

	Chapter 18. ReturnStatusDescriptor class
	getErrorMsg()
	getStatus()
	seterrMsg()
	setStatus()

	Chapter 19. SubscriptionHandlerCPP class
	SubscriptionHandlerCPP()
	gotApplEvent()
	isSubscribed()

	Chapter 20. StringMessage class
	hasMoreTokens()
	nextToken()
	Deprecated methods

	Chapter 21. Tracing class
	Trace-level constants
	Methods
	getIndent()
	getName()
	getTraceLevel()
	setIndent()
	write()

	Appendix A. Standard configuration properties for connectors
	New and deleted properties
	Configuring standard connector properties
	Using Connector Configurator
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat
	WsifSynchronousRequest Timeout
	XMLNameSpaceFormat

	Appendix B. Connector Configurator
	Overview of Connector Configurator
	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting application-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS only)
	Resources (ICS)
	Messaging (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Appendix C. Connector Script Generator
	Appendix D. Connector feature checklist
	Guidelines for using the connector feature checklist
	Standard behavior for request processing
	Standard behavior for the event notification
	General standards

	Notices
	Programming interface information
	Trademarks and service marks

	Index

