
WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

Collaboration

Development

Guide

V4.3.1

���

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

Collaboration

Development

Guide

V4.3.1

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

371.

19December2003

This

edition

of

this

document

applies

to

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization,

version

4.3.1,

IBM

WebSphere

Business

Integration

Express

Plus,

version

4.3.1,

and

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

IBM

documentation,

email

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Preface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Scope

of

this

manual

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

How

to

use

this

manual

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Summary

of

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Part

1.

Getting

started

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Introduction

to

collaboration

development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

What

are

collaborations?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Tools

for

collaboration

development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Overview

of

the

development

process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Chapter

2.

Overview

of

Process

Designer

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Starting

Process

Designer

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Process

Designer

Express

layout

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Process

Designer

Express

windows

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Process

Designer

Express

menus

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Process

Designer

Express

toolbars

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Customizing

the

main

window

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Part

2.

Creating

a

collaboration

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Chapter

3.

Designing

a

collaboration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Coding

recommendations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Building

collaboration

groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Designing

for

long-lived

business

processes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Designing

for

parallel

execution

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

An

internationalized

collaboration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Chapter

4.

Building

a

collaboration

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Creating

a

collaboration

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Providing

template

property

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Defining

scenarios

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Creating

an

activity

diagram

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Creating

the

message

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Compiling

a

collaboration

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Converting

templates

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Deleting

a

collaboration

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Testing

a

collaboration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Chapter

5.

Using

activity

diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Using

the

diagram

editor

functionality

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Activity

diagram

symbols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Action

nodes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Transition

Links

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Decision

nodes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Service

calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Subdiagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

©

Copyright

IBM

Corp.

2003

iii

Iterators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Using

other

features

of

the

Symbols

toolbar

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Obtaining

values

of

collaboration

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Using

transactional

features

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Terminating

the

execution

path

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Other

activity

diagram

operations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Chapter

6.

Using

Activity

Editor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Starting

Activity

Editor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

The

Activity

Editor

interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Activity

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Supported

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Example:

Changing

a

date

format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Chapter

7.

Handling

exceptions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

What

is

a

collaboration

exception?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

How

exceptions

are

processed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

How

to

handle

exceptions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Handling

particular

service-call

exceptions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Exceptions

from

the

Collaboration

API

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Chapter

8.

Workspace

and

layout

options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Aligning

symbols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Nudging

symbols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Zooming

or

panning

on

symbols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Using

the

workspace

grid

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Changing

display:

user

preferences

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Hiding

the

Symbol

Properties

dialog

boxes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Chapter

9.

Coding

tips

and

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Operations

on

the

collaboration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Operations

on

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Executing

database

queries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Chapter

10.

Creating

a

message

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Operations

that

use

the

message

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Creating

a

message

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Message

file:

Name

and

location

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Explanations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Message

parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Maintaining

the

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Part

3.

Supported

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Chapter

11.

Business

object

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Copy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

Duplicate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

Equal

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

Equals

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

Exists

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

Get

Boolean

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

Get

Business

Object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Get

Business

Object

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Get

Business

Object

Type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Get

BusObj

At

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Get

Double

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Get

Float

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

Get

Int

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

Get

Locale

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

iv

Collaboration

Development

Guide

Get

Long

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

Get

Long

Text

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

Get

Object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

Get

String

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Get

Verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Is

Blank

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Is

Business

Object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

Is

Key

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

Is

Null

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

Is

Required

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Iterate

Children

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Keys

to

String

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

New

Business

Object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

New

Business

Object

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Set

BusObj

At

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Set

Content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Set

Default

Attribute

Values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Set

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Set

Locale

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Set

Value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Set

Value

with

Create

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Set

Verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Set

Verb

with

Create

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Shallow

Equals

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

To

String

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Valid

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

Verb:Create

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

Verb:Delete

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

Verb:Retrieve

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

Verb:Update

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

Chapter

12.

Business

object

array

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Add

Element

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Duplicate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Equals

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Get

Element

At

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Get

Elements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Get

Last

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Is

Business

Object

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Max

Attribute

Value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Max

Business

Object

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Max

Business

Objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Min

Attribute

Value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Min

Business

Object

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Min

Business

Objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Remove

All

Elements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Remove

Element

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Remove

Element

At

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Set

Element

At

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Sum

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Swap

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

To

String

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Chapter

13.

Collaboration

template

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

AnyException

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

AttributeException

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Get

Locale

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Get

Message

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Contents

v

Get

Message

with

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Get

Name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Get

Property

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Get

Property

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

Implicit

DB

Bracketing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

Is

Trace

Enabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

JavaException

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

ObjectException

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

OperationException

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Property

Exists

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Raise

Collaboration

Exception

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Raise

Collaboration

Exception

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Raise

Collaboration

Exception

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Raise

Collaboration

Exception

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Raise

Collaboration

Exception

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

Raise

Collaboration

Exception

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

Raise

Collaboration

Exception

with

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Send

Email

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

ServiceCallException

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

SystemException

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

TransactionException

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Chapter

14.

Database

connection

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

Begin

Transaction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

Commit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

Execute

Prepared

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Execute

Prepared

SQL

with

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Execute

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Execute

SQL

with

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Execute

Stored

Procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Get

Database

Connection

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Get

Database

Connection

with

Transaction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Get

Next

Row

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

Get

Update

Count

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

Has

More

Rows

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

In

Transaction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

Is

Active

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

Release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Roll

Back

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Chapter

15.

Database

stored

procedure

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Get

Param

Type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Get

Param

Value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

New

DB

Stored

Procedure

Param

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

Chapter

16.

Exception

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Catch

Collaboration

Exception

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Get

Message

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Get

Message

Number

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Get

Subtype

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

Get

Type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

To

String

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Chapter

17.

Execution

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Get

Context

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

MAPCONTEXT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

New

Execution

Context

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Set

Context

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Chapter

18.

Date

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

vi

Collaboration

Development

Guide

Add

Day

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Add

Month

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Add

Year

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

Date

After

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

Date

Before

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

Date

Equals

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

Format

Change

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

Get

Day

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

Get

Month

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

Get

Year

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

Get

Year

Month

Day

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

Now

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

yyyy-MM-dd

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

yyyyMMdd

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

yyyyMMdd

HH:mm:ss

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

Chapter

19.

Logging

and

tracing

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Log

error

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Log

Error

ID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Log

Error

ID

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Log

Error

ID

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Log

Error

ID

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Log

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Log

Information

ID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Log

Information

ID

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Log

Information

ID

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Log

Information

ID

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Log

Warning

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Log

Warning

ID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Log

Warning

ID

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Log

Warning

ID

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Log

Warning

ID

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Trace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Trace

ID

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Trace

ID

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

Trace

ID

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

Trace

on

Level

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

Chapter

20.

String

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Append

Text

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

If

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Is

Empty

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Is

NULL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Left

Fill

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Left

String

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

Lower

Case

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

Object

to

String

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

Repeat

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

Replace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

Right

Fill

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

Right

String

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

Substring

by

Position

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

Substring

by

Value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Text

Equal

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Text

Equal

Ignore

Case

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Text

Length

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Trim

Left

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Trim

Right

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Trim

Text

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Upper

Case

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Contents

vii

Chapter

21.

Utilities

function

blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Add

Element

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Catch

Error

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

Catch

Error

Type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

Condition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

English

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

French

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

German

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Get

Country

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Get

Element

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Get

Language

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Italian

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Iterate

Vector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Japanese

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Korean

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Loop

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Move

Attribute

in

Child

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

New

Locale

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

New

Locale

with

Language

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

New

Vector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Raise

Error

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Raise

Error

Type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Simplified

Chinese

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

To

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Traditional

Chinese

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Part

4.

Collaboration

API

reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Chapter

22.

BaseCollaboration

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

existsConfigProperty()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

getConfigProperty()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

getConfigPropertyArray()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

getCurrentLoopIndex()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

getDBConnection()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

getLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

getMessage()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

implicitDBTransactionBracketing()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

isTraceEnabled()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

logError(),

logInfo(),

logWarning()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

raiseException()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

sendEmail()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

trace()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

Chapter

23.

BusObj

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

copy()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

duplicate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

equalKeys()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

equals()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

equalsShallow()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

exists()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

getLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

getType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

getVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

isBlank()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

isKey()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

isNull()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

viii

Collaboration

Development

Guide

isRequired()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

keysToString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

set()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

setDefaultAttrValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

setKeys()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

setLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

setVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

setWithCreate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

toString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

validData()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

Deprecated

method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Chapter

24.

BusObjArray

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

addElement()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

duplicate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

elementAt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

equals()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

getElements()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

getLastIndex()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

max()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

maxBusObjArray()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

maxBusObjs()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

min()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

minBusObjArray()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

minBusObjs()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

removeAllElements()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

removeElement()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

removeElementAt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

setElementAt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

size()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

sum()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

swap()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

toString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

Chapter

25.

CwDBConnection

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

beginTransaction()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

commit()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

executePreparedSQL()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

executeSQL()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 322

executeStoredProcedure()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

getUpdateCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

hasMoreRows()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

inTransaction()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

isActive()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

nextRow()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

release()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

rollBack()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Chapter

26.

CwDBStoredProcedureParam

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

CwDBStoredProcedureParam()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

getParamType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

getValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Chapter

27.

CxExecutionContext

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Static

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

CxExecutionContext()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

getContext()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

setContext()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

Chapter

28.

CollaborationException

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Contents

ix

getMessage()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

getMsgNumber()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

getSubType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

getType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

toString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

Deprecated

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Chapter

29.

Filter

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

Filter()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

filterExcludes()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

filterIncludes()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

recurseFilter()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

recursePreReqs()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

Chapter

30.

Globals

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

Globals()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 352

callMap()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

Chapter

31.

SmartCollabService

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

SmartCollabService()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

doAgg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

doMergeHash()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

doRecursiveAgg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

doRecursiveSplit()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

getKeyValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 358

merge()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 358

split()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

Chapter

32.

StateManagement

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

beginTransaction()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

commit()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

deleteBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

deleteState()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

persistBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

recoverBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

releaseDBConnection()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

resetData()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

retrieveState()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

saveState()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

setDBConnection()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

StateManagement()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

updateBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

updateState()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

Part

5.

Appendixes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 372

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 372

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

x

Collaboration

Development

Guide

Preface

The

IBM(R)

WebSphere(R)

Business

Integration

Express

for

Item

Synchronization

and

IBM

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

products

are

made

up

of

the

following

components:

InterChange

Server

Express,

the

associated

Toolset

Express

product,

the

Item

Synchronization

collaboration,

and

a

set

of

software

integration

adapters.

Together

they

provide

business

process

integration

and

connectivity

among

leading

e-business

technologies

and

enterprise

applications,

as

well

as

integration

with

the

UCCnet

GLOBALregistry.

This

document

describes

how

to

use

Process

Designer

Express

to

create

collaborations,

which

are

part

of

the

InterChange

Server

Express

infrastructure.

Collaborations

are

programs

that

contain

the

business

logic

for

application

integration.

Audience

This

document

is

for

customers,

consultants,

or

resellers

who

create

or

modify

collaborations.

Before

you

start,

you

should

understand

all

the

concepts

explained

in

the

manual

Technical

Introduction

to

IBM

WebSphere

InterChange

Server.

To

develop

a

collaboration,

you

should

know

standard

programming

concepts

and

practice.

Also,

collaboration

development

requires

some

Java®

programming

language

knowledge.

The

collaboration

API

is

based

on

the

Java

programming

language,

and

it

handles

operations

that

most

collaborations

perform,

such

as

manipulating

business

objects.

If

you

have

some

programming

background,

the

examples

in

this

manual

may

help

you

to

write

simple

collaborations,

even

if

you

do

not

know

Java.

Scope

of

this

manual

The

overall

collaboration

development

process

has

many

phases

and

can

involve

many

people,

including

application

experts,

business

analysts,

and

programmers.

After

analyzing

an

application

integration

problem,

the

collaboration

development

team

builds

the

business

process

for

solving

it

within

the

WebSphere

business

integration

system.

The

team

usually

starts

with

a

flow

chart

and

migrates

the

flow

chart

to

a

collaboration.

This

manual

assumes

that

you

are

starting

with

a

specification,

flow

chart,

or

pencil

design.

It

does

not

cover

analysis

of

business

processes,

development

of

connectors,

or

design

of

business

objects.

Note:

In

this

document

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

file

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

How

to

use

this

manual

This

manual

is

organized

as

follows:

Part

I:

Getting

Started

©

Copyright

IBM

Corp.

2003

xi

Chapter

1,

“Introduction

to

collaboration

development,”

on

page

3

Provides

an

overview

of

collaborations

and

the

collaboration

development

environment.

Chapter

2,

“Overview

of

Process

Designer

Express,”

on

page

15

Provides

detailed

information

about

the

Process

Designer

Express

interface.

Part

II:

Creating

a

Collaboration

Template

Chapter

3,

“Designing

a

collaboration,”

on

page

29

Provides

information

useful

in

the

design

phase

of

collaboration

development.

Chapter

4,

“Building

a

collaboration

template,”

on

page

51

Tells

you

how

to

create

the

definition

of

a

collaboration

template.

Chapter

5,

“Using

activity

diagrams,”

on

page

75

Describes

how

to

use

symbols

and

other

components

to

build

an

activity

diagram.

Chapter

6,

“Using

Activity

Editor,”

on

page

111

Describes

how

to

use

Activity

Editor

to

create

the

business

logic

in

the

collaboration

template.

Chapter

7,

“Handling

exceptions,”

on

page

123

Describes

how

to

implement

exception

handling

in

a

collaboration

template.

Chapter

8,

“Workspace

and

layout

options,”

on

page

139

Describes

some

of

your

options

for

arranging

the

symbols

in

an

activity

diagram

and

the

diagramming

area

itself.

Chapter

9,

“Coding

tips

and

examples,”

on

page

147

Contains

code

snippets

and

tips

that

show

how

to

perform

common

operations.

Chapter

10,

“Creating

a

message

file,”

on

page

183

Explains

how

to

set

up

the

file

that

all

collaborations

need

for

holding

logging

and

tracing

messages.

Part

III:

Supported

function

blocks

Chapter

11,

“Business

object

function

blocks,”

on

page

189

Contains

reference

pages

for

the

function

blocks

supported

in

Activity

Editor.

Chapter

12,

“Business

object

array

function

blocks,”

on

page

207

Chapter

13,

“Collaboration

template

function

blocks,”

on

page

215

Chapter

14,

“Database

connection

function

blocks,”

on

page

225

Chapter

15,

“Database

stored

procedure

function

blocks,”

on

page

231

Chapter

16,

“Exception

function

blocks,”

on

page

233

Chapter

17,

“Execution

function

blocks,”

on

page

237

Chapter

18,

“Date

function

blocks,”

on

page

239

Chapter

19,

“Logging

and

tracing

function

blocks,”

on

page

245

Chapter

20,

“String

function

blocks,”

on

page

253

Chapter

21,

“Utilities

function

blocks,”

on

page

261

Part

IV:

Collaboration

API

Reference

xii

Collaboration

Development

Guide

Chapter

22,

“BaseCollaboration

class,”

on

page

271;

Chapter

23,

“BusObj

class,”

on

page

287;

Chapter

24,

“BusObjArray

class,”

on

page

305;

Chapter

25,

“CwDBConnection

class,”

on

page

319;

Chapter

26,

“CwDBStoredProcedureParam

class,”

on

page

331;

Chapter

27,

“CxExecutionContext

class,”

on

page

335

Chapter

28,

“CollaborationException

class,”

on

page

339;

Chapter

29,

“Filter

class,”

on

page

345;

Chapter

30,

“Globals

class,”

on

page

351;

Chapter

31,

“SmartCollabService

class,”

on

page

355;

Chapter

32,

“StateManagement

class,”

on

page

361

Contain

reference

pages

for

methods

of

classes

in

the

collaboration

API.

Glossary

Defines

terms

used

in

the

manual.

Related

documents

The

complete

set

of

documentation

available

with

this

product

describes

the

features

and

components

common

to

all

WebSphere

Business

Integration

Express

for

Item

Synchronization

and

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

installations,

and

includes

reference

material

on

specific

components.

You

can

install

the

documentation

or

read

it

directly

online

at

www.ibm.com/websphere/integration/wbiitemsync/express/infocenter.

This

site

contains

simple

directions

for

downloading,

installing,

and

viewing

the

documentation.

The

documentation

set

consists

primarily

of

Portable

Document

Format

(PDF)

files,

with

some

additional

files

in

HTML

format.

To

read

it,

you

need

an

HTML

browser

such

as

Netscape

Navigator

or

Internet

Explorer,

and

Adobe

Acrobat

Reader

4.0.5

or

higher.

For

the

latest

version

of

Adobe

Acrobat

Reader

for

your

platform,

go

to

the

Adobe

website

(http://www.adobe.com).

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

file

name,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

bold

Indicates

a

new

term

the

first

time

that

it

appears.

Preface

xiii

italic

Indicates

a

variable

name

or

a

cross-reference.

When

you

view

a

document

as

a

PDF

file,

cross

references

are

both

italic

and

blue.

You

can

click

on

a

cross-reference

to

jump

to

the

target

information.

italic

courier

Indicates

a

variable

name

within

literal

text.

boxed courier

Separates

a

code

fragment

from

the

rest

of

the

text.

blue

text

Blue

outline,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

inside

the

outline

to

jump

to

the

object

of

the

reference.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

from

which

you

must

choose

one

and

only

one.

[

]

In

a

syntax

line,

brackets

surround

an

optional

parameter.

...

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

xiv

Collaboration

Development

Guide

Summary

of

Changes

Process

Designer

Express

is

the

first

release

as

part

of

the

IBM

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

4.3.1

release.

©

Copyright

IBM

Corp.

2003

xv

xvi

Collaboration

Development

Guide

Part

1.

Getting

started

©

Copyright

IBM

Corp.

2003

1

2

Collaboration

Development

Guide

Chapter

1.

Introduction

to

collaboration

development

Welcome

to

Process

Designer

Express

and

to

the

collaboration

development

process.

Process

Designer

Express

is

a

powerful

modeling

and

code

generation

tool

with

which

you

can

create

collaborations,

programs

that

create

enterprise

business

processes

that

involve

multiple

applications.

This

chapter

is

an

introduction

to

the

collaboration

development

process

and

the

tools

used

to

develop

collaborations.

What

are

collaborations?

Collaborations

are

software

modules

that

describe

business

processes

and

that

run

within

IBM

InterChange

Server

Express

(ICS).

These

business

processes

are

programs

that

contain

the

business

logic

for

application

integration.

A

collaboration

can

perform

various

types

of

Java

operations.

However,

most

commonly,

collaborations

perform

operations

on

business

objects,

such

as:

v

Obtaining

and

manipulating

one

or

more

values

in

the

triggering

event

v

Sending

a

business

object

as

a

request

to

an

application

so

that

the

application

creates,

deletes,

or

updates

a

specified

entity

v

Sending

a

request

to

an

application

to

retrieve

an

entity

As

Table

1

shows,

a

collaboration

is

a

two-part

entity,

consisting

of

a

repository

definition

and

a

runtime

object.

Table

1.

Parts

of

a

collaboration

Repository

entity

Runtime

object

Collaboration

template

Collaboration

object

When

you

install

a

collaboration,

you

install

a

collaboration

template.

A

collaboration

template

contains

all

of

the

collaboration’s

execution

logic,

but

it

is

not

executable.

To

execute

a

collaboration,

you

must

first

create

a

collaboration

object

from

the

template.

The

collaboration

object

becomes

executable

after

you

configure

it

by

binding

it

to

connectors

or

to

other

collaboration

objects,

and

specifying

other

configuration

properties.

Note:

For

an

introduction

to

how

collaborations

function

as

a

component

of

the

IBM

InterChange

Server

Express

system,

see

the

chapter

on

collaborations

in

the

Technical

Introduction

to

IBM

WebSphere

InterChange

Server.

This

section

concentrates

on

defining

a

collaboration

in

terms

of

how

it

is

developed.

In

this

book,

both

collaboration

templates

and

collaboration

objects

are

often

referred

to

as

simply

collaborations,

unless

it

is

necessary

to

distinguish

between

a

template

and

an

object.

Collaboration

templates

A

collaboration

begins

as

a

collaboration

template.

A

collaboration

template

is

a

specification

of

the

logic

within

the

collaboration.

You

define

a

collaboration

©

Copyright

IBM

Corp.

2003

3

template

with

the

Process

Designer

Express

tool,

which

stores

the

appropriate

information

in

System

Manager.

Development

of

a

collaboration

template

involves

the

following

steps:

v

Creating

the

collaboration

template

v

Building

the

parts

of

the

collaboration

template

v

Compiling

the

collaboration

template

Creating

a

collaboration

template

When

you

develop

a

collaboration,

you

use

a

tool

called

Process

Designer

Express

to

develop

a

collaboration

template.

Process

Designer

Express

provides

an

easy-to-use,

graphical

user

interface

(GUI)

that

eliminates

much

of

the

coding

usually

required

to

develop

a

program.

This

interface

makes

it

easy

for

you

to

declare

variables,

write

code

fragments,

and

so

on.

IBM

InterChange

Server

Express

also

provides

generic

collaboration

templates

to

facilitate

the

development

process.

Using

Process

Designer

Express,

it

is

simpler

to

develop

a

collaboration

template

than

to

write

a

standard

programming

language

program.

However,

the

end

result

of

collaboration

development

is

a

program,

in

the

form

of

a

Java

class.

Process

Designer

Express

saves

the

collaboration

template

information

in

System

Manager

until

deployment.

After

a

collaboration

is

deployed,

the

collaboration

information

is

available

in

InterChange

Server,

where

it

can

be

accessed

when

the

collaboration

receives

a

triggering

event.

For

more

information

on

Process

Designer

Express,

see

Chapter

2,

“Overview

of

Process

Designer

Express,”

on

page

15.

Building

a

collaboration

template

Within

Process

Designer

Express,

building

a

collaboration

template

involves

a

two-level

development

process:

v

Activity

diagrams

–

You

create

activity

diagrams,

which

are

graphical,

symbolic

descriptions

of

the

business

process

and

its

flow.

–

You

use

Activity

Editor

to

implement

additional

details

of

the

business

process.

Compiling

the

template

converts

the

diagrams

and

their

associated

code

to

an

executable

Java

class.

v

Messages—You

define

messages,

which

hold

the

text

used

in

logging,

tracing,

and

raising

exceptions.

When

a

template

is

compiled,

the

message

content

is

placed

in

a

message

file

within

System

Manager.

After

the

collaboration

is

deployed,

the

message

file

is

also

stored

in

InterChange

Server,

where

it

is

accessed

during

runtime.

For

more

information,

see

Chapter

10,

“Creating

a

message

file,”

on

page

183.

Creating

the

activity

diagrams:

A

collaboration

template

consists

of:

v

scenarios,

which

specify

sets

of

actions.

When

developing

a

collaboration

template,

you

first

divide

the

collaboration’s

business

logic

into

one

or

more

scenarios.

Every

collaboration

template

is

partitioned

into

one

or

more

units

called

scenarios.

A

scenario

specifies

exactly

how

the

collaboration

responds

to

a

particular

flow

trigger.

The

scenario

is

like

a

method

in

that

it

describes

the

actions

that

will

be

taken

by

the

collaboration.

You

can

create

multiple

scenarios

or

put

all

of

the

collaboration’s

logic

into

one

scenario.

v

activity

diagrams,

which

describe

these

actions

using

code

fragments

representing

individual

actions.

4

Collaboration

Development

Guide

For

each

scenario,

you

create

an

activity

diagram

that

graphically

describes

the

scenario’s

process.

An

activity

diagram

is

a

graphical

implementation

of

the

scenario,

including

actions,

execution

flow,

and

external

calls.

Activity

diagrams

are

based

on

Unified

Modeling

Language

(UML),

a

standard

notation

for

modeling

business

processes.

The

use

of

visual

programming

in

diagrams

makes

it

easy

to

create

a

scenario

and

reduces

the

amount

of

actual

coding.

The

various

steps

of

the

activity

diagram

are

the

individual

actions,

or

code

fragments.

Every

scenario

contains

at

least

one,

top-level

diagram

that

represents

the

entry

point

of

the

scenario

during

execution

and

contains

the

overall

logic

flow

of

the

scenario.

Subdiagrams

can

divide

the

details

of

scenario

logic

into

multiple

nested

levels.

An

activity

diagram

looks

somewhat

like

a

flow

chart.

Unlike

a

flow

chart,

however,

an

activity

diagram

can

create

the

executable

Java

code

that

the

activity

diagram

represents.

Figure

1

is

an

example

of

an

activity

diagram.

The

basic

unit

in

an

activity

diagram

is

an

action,

represented

by

a

rectangle.

An

action

specifies

a

unit

of

work

in

the

collaboration

and

is

used

to

create

and

store

Java

code

fragments.

The

activity

diagram

represents

all

the

possible

behavior

at

execution

time.

The

activity

diagram

in

Figure

1

has

multiple

execution

paths.

An

execution

path

is

represented

by

a

set

of

symbols

and

links

that

flow

from

the

top

Start

symbol

to

one

of

the

End

symbols

at

the

bottom.

A

symbol

that

has

multiple

outgoing

links

is

a

decision

node;

it

is

at

this

point

that

the

collaboration

decides

to

follow

one

path

of

logic

instead

of

another.

Figure

1.

Activity

diagram

Chapter

1.

Introduction

to

collaboration

development

5

Implementing

Java

code

fragments:

Each

action

contains

a

Java

programming

language

code

fragment

(called

an

activity

definition)

to

which

a

developer

can

add

custom

code

in

the

form

of

function

blocks.

Process

Designer

Express

embeds

the

activity

definition

in

the

collaboration

template

code

that

it

generates

and

executes

the

generated

code

when

the

collaboration

object

executes,

as

part

of

the

collaboration

flow.

You

can

add

a

custom

activity

definition,

if

desired.

You

can:

v

Write

your

own

activity.

Much

of

the

business

logic

in

a

collaboration

template

consists

of

calls

to

the

InterChange

Server

Express

collaboration

API.

Add

your

own

activity

definition

or

customize

the

activity

included

with

the

Item

Synchronization

collaboration

by

using

Activity

Editor.

Activity

Editor

is

a

GUI

that

facilitates

adding

activity

definitions

by

enabling

you

to

graphically

model

the

programming

logic

with

function

blocks.

v

Import

code

(as

a

function

block)

from

another

Java

class.

You

can

import

external

packages

of

Java

classes

into

the

collaboration

and

use

their

methods

inside

actions.

Note:

The

class

that

Process

Designer

Express

generates

must

run

in

the

execution

context

of

ICS.

Although

you

can

import

or

write

your

own

Java

code,

the

code

should

augment

an

activity

diagram.

Performing

other

operations

that

can

destroy

the

flow

of

execution

or

consume

excessive

resources

is

discouraged.

Compiling

a

collaboration

template

When

you

finish

the

definition

of

a

collaboration

template—you

have

defined

its

scenarios,

built

the

activity

diagrams,

customized

its

code

fragments,

and

created

its

message

file—you

compile

the

entire

template.

The

collaboration

compilation

process

creates

three

types

of

files

(

.class,

.java,

and

.txt)

that

the

collaboration

runtime

uses.

When

you

compile

a

collaboration,

these

files

are

automatically

created

in

your

Integration

Component

Libraries

(ICL)

project

within

System

Manager.

When

you

deploy

your

collaboration

object

to

the

server,

these

files

are

moved

into

the

productDir\collaborations

directory.

Table

2

describes

the

files

and

shows

where

they

are

located

after

compilation

and

deployment.

Table

2.

Collaboration

files

File

type

Description

Location

.class

Final

executable

class

file

that

Process

Designer

Express

produces

during

compilation

After

compilation:

ICLProject\Templates\Classes

After

deployment:

classes\UserCollaborations

.java

Source

code

file

that

Process

Designer

Express

produces

during

code

generation

After

compilation:

ICLProject\Templates\Src

After

deployment:

classes\UserCollaborations

.txt

Message

file

that

contains

all

of

the

message

text

you

added

to

the

template

during

development

After

compilation:

ICLProject\Templates\messages

After

deployment:

\messages

6

Collaboration

Development

Guide

Important

Make

all

changes

to

messages

only

through

Process

Designer;

never

make

changes

directly

to

the

message

text

file.

After

a

collaboration

has

been

deployed,

this

file

is

used

by

the

runtime

environment;

directly

editing

it

can

cause

errors.

After

you

have

compiled

a

collaboration

template,

you

can

use

System

Manager

to

create

collaboration

objects

and

deploy

these

objects

and

the

template

to

InterChange

Server.

See

Implementation

Guide

for

WebSphere

InterChange

Server.

Collaboration

objects

Although

a

collaboration

template

contains

the

collaboration’s

execution

logic,

you

must

take

the

following

steps

before

the

collaboration

can

execute:

1.

Create

a

collaboration

object.

A

collaboration

object

is

an

instance

of

a

collaboration

template.

To

create

a

collaboration

object,

you

use

System

Manager.

2.

Configure

the

collaboration

object.

The

collaboration

object

becomes

executable

after

you

configure

it.

To

configure

the

collaboration

object,

you

bind

it

to

connectors

or

to

other

collaboration

objects,

and

specify

other

configuration

properties

The

process

of

specifying

the

objects

with

which

a

collaboration

object

interacts

is

called

binding.

A

collaboration

object

can

be

bound

to

any

of

the

following:

v

A

connector,

other

collaboration

objects,

or

access

clients

with

which

a

collaboration

object

interacts.

When

you

bind

the

collaboration

object

and

specify

the

values

for

its

configuration

properties,

the

collaboration

object

becomes

executable.

For

more

information

on

using

System

Manager

to

create

and

configure

collaboration

objects,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

Figure

2

illustrates

the

creation

of

a

collaboration

object

called

OrderStat

from

the

template

OrderStatus.

The

OrderStatus

collaboration

template

was

created

with

two

defined

ports,

through

which

the

collaboration

expects

to

communicate

with

its

source

and

destination

objects.

As

part

of

configuring

the

OrderStat

collaboration

object,

you

bind

it

to

two

external

objects.

Figure

3

shows

that

the

OrderStat

collaboration

object

is

bound

to

the

SAP

connector

and

to

the

Vantive

connector.

OrderStatus
Collaboration Template

OrderStat
Collaboration Object

Figure

2.

Creating

a

collaboration

object

Chapter

1.

Introduction

to

collaboration

development

7

After

a

collaboration

object

is

bound

and

configured,

you

can

use

System

Manager

to

test

it

and

deploy

it

in

the

runtime

environment.

A

collaboration

object

can

be

configured

to

run

in

one

thread

or

in

multiple

threads,

with

each

thread

handling

one

triggering

event.

For

concurrent

handling

of

multiple

triggering

events,

you

run

a

collaboration

object

in

multi-threaded

mode.

Collaborations

as

long-lived

business

processes

Collaboration

objects

can

be

deployed

as

long-lived

business

processes,

enabling

asynchronous

communication

between

business

processes.

As

a

result,

business

processes

can

span

a

greater

length

of

time.

In

a

long-lived

business

process,

the

event

flow

context

(including

global

template

or

port

variables

and

business

object

variables

created

in

Process

Designer

Express,

as

well

as

runtime

workflow

information)

persists

throughout

a

service

call.

Service

call

timeout

values

can

be

specified

for

asynchronous

inbound

and

synchronous

service

calls

to

further

define

the

parameters

of

a

long-lived

business

process.

If

you

plan

to

use

a

collaboration

object

as

a

long-lived

business

process,

you

must

configure

the

collaboration

template

accordingly.

Before

building

your

collaboration

template,

see

the

information

in

“Designing

for

long-lived

business

processes”

on

page

35.

After

you

have

designed

your

template,

see

Chapter

4,

“Building

a

collaboration

template,”

on

page

51

for

information

about

the

specific

configuration

tasks

required

to

provide

support

for

long-lived

business

processes.

Collaborations

and

the

IBM

InterChange

Server

Express

system

The

InterChange

Server

business

integration

system

uses

a

business

object

to

carry

data

and

action

requests

from

one

application

to

another.

A

collaboration

begins

execution

when

a

scenario

within

a

collaboration

object

receives

a

particular

business

object

and

an

action

(verb).

This

combination

of

business

object

and

verb

whose

receipt

by

the

collaboration

triggers

the

execution

of

a

scenario

is

called

a

flow

trigger.

As

part

of

the

design

of

the

collaboration

template,

the

collaboration

developer

specifies

the

business

objects

(and

verbs)

that

act

as

flow

triggers

for

each

scenario.

As

part

of

the

configuration

of

the

collaboration

object,

you

bind

the

incoming

port

of

the

collaboration

to

a

particular

source

for

the

flow

trigger.

The

type

of

source

that

sends

the

flow

trigger

to

the

incoming

port

determines

the

type

of

flow

trigger

that

the

collaboration

receives.

Collabor a tion Object

My Customer Manager

SAP
Connector

V ntive
Connector

a

Source

OrderStat
Collaboration Object

Destination

Figure

3.

Collaboration

object

bound

to

connectors

8

Collaboration

Development

Guide

As

Table

3

shows,

a

flow

trigger

can

be

one

of

several

types,

based

on

the

source

of

the

incoming

business

object:

Table

3.

Types

of

flow

triggers

Flow

trigger

Source

of

incoming

business

object

Triggering

event

Connector

or

another

collaboration

Triggering

access

call

Access

client

(through

the

Server

Access

Interface

within

ICS)

Note:

An

access

client

is

an

external

process

that

can

request

execution

of

collaborations

through

the

Server

Access

Interface

API.

For

more

information,

see

the

Access

Development

Guide.

Because

connectors

are

the

most

common

source

of

flow

triggers,

the

term

“triggering

events”

is

often

used

to

refer

to

the

incoming

business

objects

of

a

collaboration.

For

example,

the

Template

Definition

window

includes

a

tab

called

Ports

and

Triggering

Events.

From

this

tab,

you

can

define

collaboration

ports

and

assign

triggering

events

to

its

scenarios.

However,

even

though

the

titles

of

this

tab

and

the

associated

table

within

this

tab

include

the

term

“triggering

events”,

this

tab

handles

assignments

of

either

type

of

flow

trigger:

triggering

events

or

triggering

access

calls.

If

the

scenario

receives

its

business

object

from

a

connector,

its

flow

trigger

is

a

triggering

event

(as

the

name

of

the

tab

indicates).

If

the

scenario

receives

its

business

object

from

an

access

client,

its

flow

trigger

is

a

triggering

access

call.

In

this

case,

you

would

still

use

the

Ports

and

Triggering

Events

table

to

assign

a

triggering

access

call

to

a

scenario.

The

type

of

flow

trigger

for

the

collaboration

is

not

actually

determined

until

the

port

of

the

collaboration

object

is

configured:

v

Internal

port—when

the

port

is

bound

to

a

connector,

it

receives

its

business

object

in

the

form

of

a

triggering

event.

v

External

port—when

the

port

is

bound

to

an

access

client,

it

receives

its

business

object

in

the

form

of

a

triggering

access

call.

For

more

information

on

how

to

configure

a

collaboration

object,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

For

more

information

on

the

Ports

and

Triggering

Events

tab

of

the

Template

Definition

window,

see

“Defining

ports

and

triggering

events

(the

Ports

and

Triggering

Events

tab)”

on

page

64.

Tools

for

collaboration

development

The

platform

for

collaboration

development

is

Windows

2000.

Collaborations

are

written

in

Java.

Table

4

lists

the

tools

that

InterChange

Server

Express

provides

for

collaboration

development.

Table

4.

Tools

for

collaboration

development

Tool

Description

For

more

information

Process

Designer

Express

Graphical

tool

that

assists

in

the

development

of

the

collaboration

template.

“Process

Designer

Express”

on

page

10

IBM

InterChange

Server

Express

Collaboration

API

Set

of

Java

classes

with

which

you

can

customize

the

generated

collaboration

code.

The

methods

in

the

API

are

accessed

through

the

Activity

Editor

function

blocks.

“Collaboration

API”

on

page

10

System

Manager

Tool

that

provides

graphical

windows

to

create

and

configure

a

collaboration

object.

“System

Manager”

on

page

11

Chapter

1.

Introduction

to

collaboration

development

9

Table

4.

Tools

for

collaboration

development

(continued)

Tool

Description

For

more

information

Integrated

Test

Environment

(Test

Connector)

A

suite

of

tools

used

to

test

business

processes.

Use

the

Test

Connector

tool

(available

in

the

Integrated

Test

Environment

and

as

a

standalone

tool)

to

simulate

a

generic

connector

so

you

can

easily

test

a

collaboration’s

design.

“Test

Connector”

on

page

11

Process

Designer

Express

Process

Designer

Express

is

used

for

creating,

editing,

compiling,

and

deleting

collaboration

templates.

When

modifying

an

existing

template,

you

can

use

Process

Designer

Express

to

edit

the

template’s

properties,

as

well

as

to

add

or

edit

scenarios

and

activity

diagrams.

For

detailed

information

about

the

Process

Designer

Express

interface,

see

Chapter

2,

“Overview

of

Process

Designer

Express,”

on

page

15.

Collaboration

API

The

InterChange

Server

Express

collaboration

API

provides

several

classes

whose

methods

you

can

use

in

a

collaboration

template.

The

following

sections

describe

how

these

classes

facilitate

common

collaboration

functionality.

Note:

Access

to

the

methods

in

the

collaboration

API

is

provided

through

the

supported

function

blocks

in

Activity

Editor.

See

Chapter

6,

“Using

Activity

Editor,”

on

page

111

for

more

information.

Interacting

with

a

collaboration

object

The

BaseCollaboration

class

generically

defines

the

behavior

and

functions

of

a

collaboration,

such

as

obtaining

the

values

of

configuration

properties,

writing

messages

to

a

log

file,

and

tracing.

When

you

create

a

collaboration

template,

you

create

a

Java

class

that

is

a

subclass

of

BaseCollaboration.

As

such,

your

collaboration

inherits

all

of

the

methods

of

BaseCollaboration.

These

methods

allow

a

collaboration

to

perform

operations

such

as:

v

Get

the

value

of

a

configuration

property

v

Raise

an

exception

v

Write

informational,

warning,

and

error

messages

to

a

log

file

For

more

information

on

the

methods

of

the

BaseCollaboration

class,

see

Chapter

22,

“BaseCollaboration

class,”

on

page

271.

Interacting

with

business

objects

A

collaboration

generally

interacts

with

and

manipulates

business

objects.

Methods

of

the

BusObj

class

enable

a

collaboration

to

perform

operations

such

as:

v

Get

the

name

of

a

business

object

v

Get

the

key

values

of

a

business

object

v

Get

the

number

of

child

business

objects

contained

in

a

hierarchical

business

object

v

Test

whether

the

attribute

values

of

two

business

objects

are

equal

v

Copy

attribute

values

from

one

business

object

to

another

10

Collaboration

Development

Guide

For

more

information

on

the

methods

of

the

BusObj

class,

see

Chapter

23,

“BusObj

class,”

on

page

287.

Interacting

with

business

object

arrays

Collaborations

frequently

get

and

set

the

values

of

business

object

attributes.

When

a

business

object

is

hierarchical,

one

or

more

of

its

attributes

is

a

child

business

object,

or

perhaps

an

array

of

child

business

objects.

A

child

business

object

appears

as

an

array

to

the

collaboration.

Methods

on

the

BusObjArray

class

let

a

collaboration

interact

with

and

manipulate

business

object

arrays.

These

methods

perform

operations

such

as:

v

Set

or

get

elements

of

the

array

v

Copy

an

array

to

another

array

v

Add

a

business

object

to

the

array

v

Get

the

number

of

elements

in

the

array

For

more

information

on

the

methods

of

the

BusObjArray

class,

see

Chapter

24,

“BusObjArray

class,”

on

page

305.

Interacting

with

exceptions

When

errors

occur

in

a

collaboration,

the

collaboration

or

the

collaboration

runtime

environment

raises

an

exception.

The

exception

is

contained

in

an

object

of

the

CollaborationException

class.

This

class

lets

a

collaboration

object

interact

with

an

exception

object

and

perform

the

following

operations:

v

Get

the

exception

type

or

subtype

v

Get

the

exception

message

For

more

information

on

the

methods

of

the

CollaborationException

class,

see

Chapter

28,

“CollaborationException

class,”

on

page

339.

System

Manager

System

Manager

is

a

graphical

tool

that

provides

an

interface

to

ICS

and

its

repository.

It

enables

you

to

do

the

following

collaboration-related

tasks:

v

Create

a

collaboration

object

v

Bind

a

collaboration

object

v

Set

collaboration-specific

properties

of

a

collaboration

object

v

Test

a

collaboration’s

design

(through

the

Test

Connector

tool)

v

Deploy

a

collaboration

object

to

the

runtime

environment

For

more

information

on

how

to

use

System

Manager

to

create,

configure,

and

deploy

a

collaboration

object,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

Test

Connector

The

Test

Connector

is

a

graphical

tool

for

testing

collaborations

and

connectors.

It

is

available

both

in

the

Integrated

Test

Environment

and

as

a

standalone

tool.

Note:

If

you

are

testing

access

clients,

you

must

use

Test

Connector

through

the

Integrated

Test

Environment.

The

Test

Connector

tool

simulates

an

actual

connector,

allowing

you

to

easily

test

the

design

of

your

collaborations

by

sending

in

a

triggering

event

or

sending

a

Chapter

1.

Introduction

to

collaboration

development

11

service

call

request.

For

more

information

on

how

to

use

Test

Connector,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

Overview

of

the

development

process

This

section

provides

an

overview

of

the

collaboration

development

process,

which

includes

the

following

high-level

steps:

1.

Install

and

set

up

the

IBM

InterChange

Server

Express

software

(including

the

Java

Development

Kit

and

all

other

required

third-party

products).

See

the

InterChange

Server

Express

system

installation

guide

for

your

platform

for

specific

installation

and

configuration

instructions.

2.

Design

and

implement

the

collaboration.

Stages

of

collaboration

development

The

stages

of

collaboration

development

are

as

follows:

1.

Design

the

business

process

that

the

collaboration

will

implement.

2.

Create

the

business

object

definitions.

3.

Create

the

collaboration

template,

including

meta-information

and

definitions.

4.

Create

each

scenario

and

its

activity

diagram.

5.

Customize

any

required

code

fragments.

6.

Create

the

message

text.

7.

Compile

the

template.

8.

Create

a

collaboration

object

from

the

collaboration

template.

9.

Test

and

debug

the

collaboration.

10.

Deploy

the

collaboration

to

the

runtime

environment.

Figure

4

on

page

13

provides

a

visual

overview

of

the

collaboration

development

process

and

a

quick

reference

to

chapters

where

you

can

find

information

on

specific

topics.

Note:

Some

of

the

overall

collaboration

development

tasks

fall

outside

the

somewhat

more

narrow

scope

of

developing

a

collaboration

template,

and

therefore

are

not

documented

in

this

guide.

For

each

of

these

tasks,

Figure

4

provides

a

reference

to

the

appropriate

document

in

the

InterChange

Server

Express

library.

Note

that

if

a

team

of

people

is

available

for

collaboration

development,

the

major

tasks

of

developing

a

collaboration

can

be

done

in

parallel

by

different

members

of

the

development

team.

12

Collaboration

Development

Guide

Task: Steps:

Design collaboration
architecture

Refer to:

Design and develop
business objects

Build the
collaboration template

Chapter 3

Business Object
Development Guide

Chapter 4

Implementation
Guide for WebSphere
InterChange Server

Chapter 5

Chapter 8

Chapter 9

Create the
collaboration object

Implementation
Guide for WebSphere
InterChange Server

• Identify business processes

• Investigate use of collaboration templates

• Customize for special business flows

• Design structure of business objects

• Implement business objects

• Create the collaboration template and edit
its properties

• Create the scenarios and activity diagrams

• Customize the code fragments

• Implement error and message handling

• Test collaboration in IBM WebSphere
InterChange Server system

• Recode as needed

•

• Customize runtime features, if necessary

Create collaboration object definition

Test and debug

Figure

4.

Overview

of

the

collaboration

development

tasks

Chapter

1.

Introduction

to

collaboration

development

13

14

Collaboration

Development

Guide

Chapter

2.

Overview

of

Process

Designer

Express

Process

Designer

Express

enables

you

to

perform

the

following

collaboration

development

tasks:

v

Create,

edit,

compile,

or

delete

a

template

definition

through

the

Template

Definitions

window.

v

Define

or

edit

an

activity

diagram

for

a

scenario

of

the

collaboration

template

through

the

diagram

editor.

This

chapter

provides

an

introduction

to

Process

Designer

Express.

It

describes

the

interface

and

how

to

navigate

through

the

Process

Designer

Express

windows,

menus,

and

toolbars

to

perform

the

tasks

required

for

collaboration

development.

Starting

Process

Designer

Express

The

method

by

which

you

start

Process

Designer

Express

can

vary

depending

on

whether

you

are

creating

a

new

collaboration

template

or

editing

an

existing

collaboration

template.

Important

Before

you

can

start

Process

Designer

Express,

you

must

ensure

that

System

Manager

is

running.

There

are

several

ways

to

start

Process

Designer

Express

from

within

System

Manager,

as

described

in

Table

5.

Table

5.

Starting

Process

Designer

Express

from

within

System

Manager

Method

Result

Right-click

the

Collaboration

Templates

folder

from

the

object

browser

view,

then

click

Create

New

Collaboration

Template

from

the

context

menu.

Process

Designer

Express

opens

and

displays

the

New

Template

dialog

box.

Double-click

a

collaboration

template

within

the

Collaboration

Templates

folder

Process

Designer

Express

opens

and

displays

the

template

definition

you

double-clicked.

Create

and

use

a

user

project

shortcut

to

the

component

in

the

Integration

Component

Libraries

Process

Designer

Express

opens

and

displays

the

template

definition

associated

with

the

shortcut.

You

can

also

launch

Process

Designer

Express

from

the

Start

menu.

Click

Start

—>

Programs

—>

IBM

WebSphere

InterChange

Server

—>

IBM

WebSphere

Business

Integration

Toolset

—>

Development

—>

Process

Designer

Express.

Process

Designer

Express

displays

in

its

own

dockable

window.

You

can

launch

more

than

one

Process

Designer

Express

instance

at

a

time

to

edit

more

than

one

collaboration

template

definition.

©

Copyright

IBM

Corp.

2003

15

Process

Designer

Express

layout

When

you

start

Process

Designer

Express,

by

default

the

main

window

is

displayed

as

shown

in

Figure

5.

The

layout

of

the

Process

Designer

Express

window

consists

of

the

following

areas:

v

Template

tree

(dockable)

The

template

tree

view

in

the

left

pane

uses

a

hierarchical

format

to

list

the

collaboration

template’s

definitions,

scenarios,

and

messages.

Click

the

plus

sign

(+)

next

to

an

existing

scenario

node

in

the

tree

to

expand

its

subtree

and

view

its

existing

scenarios

and

subdiagrams,

if

any.

v

Working

Area

of

the

Main

Window,

which

can

be

blank

or

it

can

display

the

following:

–

Template

Definitions

window

This

window

is

used

to

provide

general

information

about

the

collaboration

template,

variable

declarations,

or

port

information.

See

“Template

Definitions

window”

on

page

17

for

more

information.

–

Diagram

editor

window

This

window

is

used

to

display

the

nodes

of

the

activity

diagram.

For

more

information,

see

“Diagram

editor

window”

on

page

18.

–

Template

Messages

window

This

window

is

used

to

write

or

edit

the

template’s

message

file.

For

more

information,

see

“Template

Messages

window”

on

page

19.

The

Template

Definitions

and

Template

Messages

windows

and

the

Diagram

Editor

can

be

minimized,

maximized,

and

sized

(opened

to

a

user-specified

size)

within

the

working

area.

For

more

information,

see

“Displaying

windows

within

the

working

area”

on

page

25.

v

Compile

output

window

(dockable)

The

compile

output

window

(often

called

just

the

output

window)

displays

results

from

the

compilation

of

a

collaboration

template.

Process

Designer

Express

automatically

displays

this

window

when

you

compile

the

collaboration

template.

For

more

information,

see

“Compiling

a

collaboration

template”

on

page

71.

Figure

5.

Process

Designer

Express

main

window

16

Collaboration

Development

Guide

Note:

Process

Designer

Express

stores

the

configuration

of

its

main

window

when

it

exits.

Therefore,

any

changes

you

make

to

this

configuration

display

when

you

next

open

Process

Designer

Express.

(For

more

information,

see

“Customizing

the

main

window”

on

page

24.)

Figure

5

shows

the

default

configuration

of

the

main

window.

If

previous

invocations

of

Process

Designer

Express

have

changed

this

configuration,

your

main

window

can

be

different.

You

can

access

Process

Designer

Express’s

functionality

in

any

of

the

following

ways:

v

Pull-down

menus

at

the

top

of

the

window

v

Icons

in

the

toolbars

v

Context-sensitive

menu

(a

popup

menu

accessed

through

a

right-mouse

click)

v

Keyboard

shortcuts

Process

Designer

Express

windows

Template

Definitions

window

The

Template

Definitions

window

provides

four

tabs

for

defining

collaboration

properties.

v

General

tab—provides

fields

in

which

you

specify

general

information

about

the

collaboration

template,

such

as

its

name,

description,

minimum

transaction

level,

and

package.

v

Declarations

tab—provides

fields

in

which

you

specify

variable

declarations.

v

Properties

tab—provides

fields

in

which

you

specify

the

name,

type,

and

value

for

user-defined

collaboration

template

properties.

v

Ports

and

Triggering

Events

tab—provides

fields

in

which

you

specify

port

names

and

their

associated

business

objects

and

verbs.

Important

IBM

recommends

that

you

do

not

add,

modify,

or

delete

a

business

object

to

or

from

the

repository

using

Business

Object

Designer

or

System

Manager

after

you

have

bound

the

business

object

to

a

collaboration

object

running

in

a

production

environment.

For

more

information

see

“Defining

ports

and

triggering

events

(the

Ports

and

Triggering

Events

tab)”

on

page

64.

Chapter

2.

Overview

of

Process

Designer

Express

17

There

are

several

ways

to

open

the

Template

Definitions

window,

which

displays

in

the

working

area

of

the

main

window:

v

In

the

template

tree

view,

double-click

Definitions.

v

In

the

template

tree

view,

select

Definitions,

right-click

and

choose

Open

Template

Definitions.

v

From

the

Template

pull-down

menu,

choose

Open

Template

Definitions.

v

Use

the

shortcut

key

combination

Ctrl+T.

The

Template

Definitions

window

contains

Apply

and

Discard

buttons;

these

buttons

appear

at

the

bottom

of

the

window

regardless

of

which

tab

is

currently

displayed.

The

Apply

button

commits

the

changes

to

the

template,

but

does

not

save

them

(you

must

use

the

File

—>

Save

command

to

save

all

changes).

The

Discard

button

lets

you

revert

to

the

previously

saved

definition,

discarding

changes

that

you

have

not

yet

saved.

Note:

The

Discard

and

Apply

buttons

affect

the

data

contained

in

all

tabs,

not

just

the

tab

that

is

currently

visible.

Diagram

editor

window

The

diagram

editor

is

a

tool

within

Process

Designer

Express

Express

that

enables

you

to

create

and

edit

activity

diagrams.

This

window

displays

in

the

working

area

of

the

main

window

when

you

open

an

activity

diagram.

In

the

diagram

editor,

you

can

add

nodes,

service

calls,

and

transition

links

to

an

activity

diagram;

change

the

placement

of

items;

add

and

edit

text

labels

and

fonts;

and

add

and

change

individual

component

properties.

There

are

several

ways

to

open

the

diagram

editor:

Figure

6.

Template

Definitions

window

18

Collaboration

Development

Guide

v

In

the

template

tree

view,

expand

the

Scenarios

node

and

double-click

on

the

name

of

a

diagram;

alternately,

right-click

on

the

name

and

choose

Open

Diagram.

v

In

the

template

tree

view,

expand

the

Scenarios

node,

select

the

name

of

a

diagram,

and

choose

Open

Diagram

from

the

Template

pull-down

menu.

v

From

the

Template

pull-down

menu,

choose

Open

All

Diagrams.

For

more

information

on

how

to

use

the

diagram

editor,

see

“Creating

an

activity

diagram”

on

page

70.

Template

Messages

window

The

Template

Messages

window

provides

an

area

in

which

you

can

write

or

edit

the

template’s

message

file.

When

you

compile

the

template,

the

message

text

is

written

to

the

appropriate

Integration

Component

Library

project’s

Template\messages

directory

within

System

Manager.

There

are

several

ways

to

open

the

Template

Messages

window:

v

In

the

template

tree

view,

double-click

Messages.

v

In

the

template

tree

view,

select

Messages,

right-click

and

choose

Open

Messages.

v

From

the

Template

pull-down

menu,

choose

Open

Template

Messages.

v

Use

the

shortcut

key

combination

Ctrl+M.

Figure

7.

Diagram

editor

window

Chapter

2.

Overview

of

Process

Designer

Express

19

Process

Designer

Express

menus

In

Process

Designer

Express,

the

enabled

menus

and

menu

options

depend

on

what

displays

in

the

Working

Area.

The

following

sections

explain

the

main

menus

of

Process

Designer

Express

when

the

Working

Area

is

empty

or

displays

the

Template

Definitions

window:

v

“Functions

of

the

File

menu”

v

“Functions

of

the

View

menu”

on

page

21

v

“Functions

of

the

Template

menu”

on

page

22

v

“Functions

of

the

Window

menu”

on

page

23

Note:

When

the

Working

Area

displays

the

diagram

editor,

Process

Designer

Express

enables

options

in

the

Edit

menu,

and

enables

different

options

in

some

of

the

other

menus.

Most

of

these

functions

pertain

to

working

with

activity

diagrams,

and

are

discussed

in

“Accessing

diagram

editor

functionality:

Process

Designer

Express

menus”

on

page

75.

Functions

of

the

File

menu

When

the

Working

Area

is

empty

or

it

displays

the

Template

Definitions

or

Template

Messages

window,

the

File

menu

displays

the

following

options:

v

New—Creates

a

new

collaboration

template.

v

Open—Opens

an

existing

collaboration

template

definition.

Contains

the

following

two

options:

–

From

Project—Opens

a

collaboration

template

from

an

Integration

Component

Library

user

project.

–

From

File—Opens

a

collaboration

template

from

a

.cwt

file

stored

in

the

file

system.
v

Close—Closes

the

collaboration

template.

v

Save—Saves

the

current

collaboration

template.

Contains

the

following

two

options:

–

To

Project—Saves

a

collaboration

template

to

an

Integration

Component

Library

user

project.

–

To

File—Saves

a

collaboration

template

to

a

.cwt

file

that

is

stored

in

the

file

system.
v

Save

As—Saves

the

current

collaboration

template

under

a

different

name.

Contains

the

following

two

options:

Figure

8.

Template

Messages

window

20

Collaboration

Development

Guide

–

To

Project—Saves

a

collaboration

template

to

an

Integration

Component

Library

user

project.

–

To

File—Saves

a

collaboration

template

to

a

.cwt

file

that

is

stored

in

the

file

system.
v

Delete—Displays

the

Delete

template

from

Project’

dialog

box,

from

which

you

can

choose

the

collaboration

template

to

delete.

v

Compile—Compiles

the

collaboration

template.

For

more

information,

see

“Compiling

a

collaboration

template”

on

page

71.

v

Compile

All—Enables

you

to

compile

all

collaboration

templates

in

your

project,

or

to

specify

a

subset

for

compilation.

For

more

information,

see

“Compiling

multiple

collaboration

templates”

on

page

71.

v

Import—Imports

files

into

the

template

definition.

The

Process

Designer

Express

Importer

can

import

BPEL

and

UML

(in

XMI

format)

files;

the

files

are

converted

as

necessary

to

InterChange

Server

Express

4.2

template

files.

v

Export—Exports

files.

You

can

export

a

template

file

to

UML

(in

XMI

format)

or

BPEL

format.

The

Process

Designer

Express

Exporter

tool

performs

all

necessary

format

conversions.

v

Exit—Closes

Process

Designer

Express.

When

the

Working

Area

displays

the

diagram

editor,

the

File

menu

displays

additional

options

that

allow

you

to

print

the

activity

diagram.

When

the

Working

Area

displays

the

Template

Messages

window,

the

File

menu

displays

an

additional

option

that

allows

you

to

print

the

message

file.

Functions

of

the

Edit

menu

The

Edit

menu

options

are

available

only

when

the

diagram

editor

is

active.

Options

include

standard

Windows

edit

commands

(for

example,

Undo,

Redo,

Copy,

and

Paste)

and

the

following

special

Process

Designer

Express

options:

v

Select

All—Selects

all

nodes

in

the

current

activity

diagram.

v

Find

ID—Finds

the

activity

diagram

ID.

v

Find

Text—Lets

you

find

text

in

the

current

activity

diagram.

v

Replace

Text—Lets

you

find

and

replace

text

in

the

current

activity

diagram.

v

Properties—Lets

you

edit

the

properties

of

a

selected

symbol.

This

option

is

enabled

only

when

a

symbol

is

selected

in

the

workspace.

v

Font—Lets

you

change

the

font

and

color

of

text

labels

of

selected

symbols

in

an

activity

diagram.

You

can

change

the

font

of

the

currently

selected

symbols

and

links

or

you

can

change

the

font

of

all

components

by

first

using

the

Select

All

option

to

select

all

components

in

a

diagram,

then

applying

the

font

change.

This

option

is

only

activated

when

a

symbol

is

selected

in

the

workspace.

Functions

of

the

View

menu

The

View

menu

functions

are

valid

when

Process

Designer

Express

first

opens

and

when

the

Working

Area

display

pertains

to

the

visual

appearance

of

activity

diagrams.

Many

of

these

functions

can

be

toggled

on

or

off:

v

Preferences—Opens

the

User

Preferences

dialog

box,

which

enables

you

to

specify

how

items

are

represented

in

Process

Designer

Express.

v

Template

Tree—When

this

option

is

on,

Process

Designer

Express

displays

the

template

tree

view

as

the

left

pane

of

the

Process

Designer

Express

window.

v

Output

Window—When

this

option

is

on,

Process

Designer

Express

displays

the

results

of

the

template

compilation.

Chapter

2.

Overview

of

Process

Designer

Express

21

v

Toolbars—Controls

display

of

the

different

toolbars

of

Process

Designer

Express.

The

submenu

options

include:

–

Standard—When

this

option

is

on,

Process

Designer

Express

displays

the

buttons

for

the

Standard

toolbar.

–

Symbols—When

this

option

is

on,

Process

Designer

Express

displays

the

buttons

for

the

Symbols

toolbar.

–

Align—When

this

option

is

on,

Process

Designer

Express

displays

the

buttons

for

the

Alignment

toolbar.

–

Nudge—When

this

option

is

on,

Process

Designer

Express

displays

the

buttons

for

the

Nudge

toolbar.

–

Zoom—When

this

option

is

on,

Process

Designer

Express

displays

the

buttons

for

Zoom/Pan

toolbar.

–

Programs—When

this

option

is

on,

Process

Designer

Express

displays

the

buttons

for

accessing

other

InterChange

Server

Express

programs.
v

Status

bar—When

this

option

is

on,

Process

Designer

Express

can

display

its

single-line

status

message

at

the

bottom

of

the

main

window.

In

addition,

Process

Designer

Express

enables

the

following

diagram

options

when

the

diagram

editor

is

active:

v

View

Types—When

on,

displays

a

symbol’s

type.

This

option

is

useful

to

help

you

learn

to

recognize

a

node

by

its

shape.

v

View

UIDs—When

on,

displays

the

unique

ID

(UID)

of

each

symbol.

v

View

Labels—When

on,

displays

the

user-provided

symbol

label.

v

Lock

(Read

only)—When

on,

puts

the

activity

diagram

into

read-only

mode.

v

Refresh—Refreshes

the

activity

diagram

display.

v

Grid—When

on,

displays

the

workspace

grid

lines.

When

off,

grid

lines

are

hidden.

v

Snap

to

Grid—When

on,

new

symbols

are

automatically

aligned

with

the

grid

lines

when

they

are

placed

in

the

activity

diagram.

v

Grid

Properties—Lets

you

set

the

grid

properties.

(Note

that

Angle

Snap

is

not

applicable

to

activity

diagrams,

though

it

can

be

toggled

on

and

off.)

v

Page

Bounds—Shows

the

page

boundaries

as

dashed

lines.

v

Zoom

commands—Lets

you

enlarge

the

activity

diagram

or

zoom

to

one

section.

You

can

also

perform

zoom

commands

from

the

Zoom

toolbar.

For

more

information

on

zooming,

see

“Zooming

or

panning

on

symbols”

on

page

142.

Functions

of

the

Template

menu

When

the

Working

Area

is

empty

or

it

displays

the

Template

Definitions

or

Template

Messages

windows,

the

Template

menu

displays

the

following

options:

v

Whenever

any

object

except

a

scenario

is

selected

in

the

template

tree

view:

–

Open

All

Diagrams—Opens

all

activity

diagrams

defined

for

the

collaboration

template.

–

Close

All

Diagrams—Closes

all

open

activity

diagrams.

–

New

Scenario—Displays

the

New

Scenario

dialog

box.

–

Open

Template

Definitions—Displays

the

Template

Definitions

window,

from

which

you

can

modify

properties

of

the

collaboration

template.

–

Open

Template

Messages—Displays

the

Template

Messages

window,

from

which

you

can

define

or

modify

the

message

file

associated

with

the

collaboration

template.

22

Collaboration

Development

Guide

v

Whenever

a

scenario

is

selected

in

the

template

tree

view,

the

following

additional

menu

items

are

available:

–

Open

Diagram—Opens

the

activity

diagram

for

the

current

scenario.

–

Rename

Scenario—Enables

you

to

rename

the

current

scenario.

–

Delete

Scenario—Deletes

the

current

selected

scenario

and

its

activity

diagrams.

–

Open

Scenario

Definition—Enables

you

to

edit

scenario-level

variables.
v

When

the

diagram

editor

is

open,

the

following

menu

items

are

available

in

addition

to

those

already

described:

–

Size

Diagram—Resizes

the

activity

diagram

in

units

of

vertical

and

horizontal

page

counts,

and

is

relevant

for

printing

the

activity

diagram.

The

Diagram

size

dialog

contains

spin

controls

for

numeric

page

inputs.

Note

that

diagram

size

is

directly

related

to

paper

orientation

(landscape

or

portrait)

and

paper

selection.

–

Save

Diagram

as

Text

File—Saves

the

current

activity

diagram

to

a

file

in

a

text

format

(.txt).

Functions

of

the

Tools

menu

The

Tools

menu

enables

you

to

launch

other

InterChange

Server

Express

tools.

The

options

are

as

follows:

v

Map

Designer—Opens

Map

Designer.

v

Business

Object

Designer—Opens

Business

Object

Designer.

v

Relationship

Designer—Opens

Relationship

Designer.

Functions

of

the

Window

menu

The

Window

menu

pull-down

options

encompass

the

standard

Multiple

Document

Interface

(MDI)

window

display

functions.

Use

these

options

to

control

display

features

such

as

tiling,

cascading,

and

activating

open

windows.

Process

Designer

Express

toolbars

Process

Designer

Express

provides

toolbars

with

common

tasks

you

need

to

perform.

These

toolbars

are

dockable;

that

is,

you

can

detach

them

from

the

palette

of

the

main

window

and

float

them

over

the

main

window

or

the

desktop.

Table

6

lists

the

toolbars

that

Process

Designer

Express

provides.

Table

6.

Process

Designer

Express

toolbars

Toolbar

name

Toolbar

appearance

For

more

information

Standard

None

Symbols

“Introduction

to

the

symbols”

on

page

76

Alignment

“Aligning

symbols”

on

page

139

Nudge

“Nudging

symbols”

on

page

141

Zoom/Pan

“Zooming

or

panning

on

symbols”

on

page

142

Chapter

2.

Overview

of

Process

Designer

Express

23

Customizing

the

main

window

Process

Designer

Express

provides

the

following

ways

to

customize

its

main

window:

v

Choose

which

windows

display

v

Float

a

dockable

window

v

Choose

how

windows

within

the

working

area

display

Choosing

windows

to

display

As

Figure

5

shows,

when

you

first

open

Process

Designer

Express,

the

template

tree

view

displays

in

the

left

pane.

The

working

area

displays

on

the

right

and

is

empty.

The

output

window

does

not

display.

You

can

customize

the

appearance

of

the

main

window

options

from

the

View

menu.

Table

7

describes

the

options

of

the

View

pull-down

menu

and

how

they

affect

the

appearance

of

the

Process

Designer

Express

main

window.

Table

7.

View

Menu

options

for

main

window

customization

View

Menu

option

Element

displayed

Template

Tree

The

template’s

definitions,

scenarios,

and

messages

as

the

left-hand

pane.

Output

Window

The

output

window

as

a

small

window

under

the

template

tree

view

(if

it

displays)

and

the

working

area.

Toolbars

A

menu

that

provides

options

for

displaying

the

Process

Designer

Express

toolbars:

Standard

The

main

toolbar

in

the

Process

Designer

Express

palette,

which

provides

buttons

that

allow

you

to

connect

to

or

disconnect

from

ICS,

open

a

template

from

the

Server

or

from

a

file,

save

and

compile

a

template,

cut,

copy,

paste,

and

delete

a

template,

and

print.

Symbols

The

Diagram

Symbols

toolbar

provides

the

symbols

to

add

to

an

activity

diagram.

Align

The

Alignment

toolbar

contains

alignment

features

for

activity

diagram

symbols.

Nudge

The

Nudge

toolbar

contains

features

that

slightly

move

selected

symbols

of

an

activity

diagram.

Zoom

The

Zoom/Pan

toolbar

contains

features

that

zoom

or

pan

selected

symbols

of

an

activity

diagram.

Status

Window

A

single-line

pane

in

which

Process

Designer

Express

displays

status

information

When

a

menu

option

appears

with

a

check

mark

to

the

left,

the

associated

element

displays.

To

turn

off

display

of

the

element,

choose

the

associated

menu

option.

The

check

mark

disappears

to

indicate

that

the

element

does

not

currently

display.

Conversely,

you

can

turn

on

display

of

an

undisplayed

element

by

choosing

the

associated

menu

option.

In

this

case,

the

check

mark

appears

beside

the

displaying

element.

24

Collaboration

Development

Guide

Floating

a

dockable

window

Process

Designer

Express

supports

the

following

portions

of

the

main

window

as

dockable

windows:

v

Template

tree

view

v

Output

window

v

Toolbars

By

default,

a

dockable

window

is

usually

placed

along

the

edge

of

the

main

window

and

moves

as

part

of

the

main

window.

When

you

float

a

dockable

window,

you

detach

it

from

the

main

window,

allowing

it

to

function

as

an

independent

window.

To

float

a

dockable

window,

hold

down

the

left

mouse

button,

grab

the

border

of

the

window

and

drag

it

onto

the

main

window

or

desktop.

Displaying

windows

within

the

working

area

The

working

area

of

the

Process

Designer

Express

main

window

allows

you

to

display

windows

within

it

in

any

of

the

following

ways:

v

Maximized—One

window

takes

up

the

entire

working

area.

You

can

switch

between

maximized

windows

by

choosing

the

name

of

the

desired

window

from

the

Windows

pull-down

menu.

If

you

have

kept

the

default

user

preferences

for

Workbook

Diagram

Windows,

you

can

also

switch

between

maximized

windows

by

choosing

the

corresponding

Workbook

tab

below

the

working

area.

For

more

information,

see

“Changing

general

display”

on

page

143.

v

Sizable—Each

window

is

its

own

separate

area

within

the

working

area.

You

can

resize

these

windows

and

can

cause

them

to

overlap

and

move

within

the

working

area.

Sizable

windows

are

useful

when

you

want

simultaneous

display

of

more

than

one

activity

diagram

or

an

activity

diagram

and

the

Template

Definitions

or

Template

Messages

window.

v

Minimized—Each

window

is

represented

as

an

icon

at

the

bottom

of

the

working

area.

You

can

restore

a

minimized

window

by

double-clicking

its

minimized

representation.

Chapter

2.

Overview

of

Process

Designer

Express

25

26

Collaboration

Development

Guide

Part

2.

Creating

a

collaboration

template

©

Copyright

IBM

Corp.

2003

27

28

Collaboration

Development

Guide

Chapter

3.

Designing

a

collaboration

This

chapter

describes

design

guidelines

meant

to

help

you

achieve

reusable,

well-behaved

collaborations.

In

general,

it

is

good

practice

to

develop

a

standard

collaboration

template

to

facilitate

development

of

user-defined

collaborations.

Use

of

such

a

template

ensures:

v

Consistency

of

collaboration

design

When

based

on

a

standard

template,

your

collaborations

can

all:

–

Perform

the

same

verb

operations

on

the

business

object

in

the

destination

application

that

corresponds

to

the

collaboration’s

flow

trigger

–

Handle

errors

using

the

same

error

handling

mechanism,

greatly

simplifying

the

technical

support

of

the

final

collaborations

–

Use

ports

with

identical

names,

types,

and

expected

behavior
v

Simplicity

of

documenting

the

collaboration

Documenting

the

behavior

of

the

collaborations

based

on

the

standard

template

can

become

much

simpler

because

it

too

can

be

based

on

a

template

of

information

that

the

user

needs

to

understand

the

collaboration’s

behavior.

v

Incorporation

of

“best

practices”

Best

practices

that

IBM

recommends

(see

“Coding

recommendations”

on

page

29)

and

that

your

own

site

develops

can

be

incorporated

into

the

standard

template

and

automatically

included

into

collaborations

based

on

this

standard

template.

In

addition,

this

chapter

provides

guidelines

for

the

following

tasks:

v

Creating

collaboration

object

groups.

See

“Building

collaboration

groups”

on

page

33

for

more

information.

v

Handling

parallel

execution,

including

event

sequencing

and

event

isolation.

See

“Designing

for

parallel

execution”

on

page

35

for

more

information.

v

Creating

an

internationalized

collaboration

template.

See

“An

internationalized

collaboration”

on

page

43

for

more

information.

Coding

recommendations

This

section

describes

coding

practices

to

help

you

standardize

your

code

with

that

in

product-delivered

collaborations.

v

“Naming

conventions”

v

“Processing

the

flow

trigger”

on

page

30

v

“Raising

exceptions”

on

page

31

v

“Branching”

on

page

32

v

“Wrapper

collaborations”

on

page

33

Naming

conventions

It

is

good

practice

to

establish

naming

conventions

for

use

in

your

collaboration

templates.

The

following

list

provides

some

naming

conventions:

©

Copyright

IBM

Corp.

2003

29

v

Identify

each

variable’s

type

by

prefixing

its

name

with

a

meaningful

letter.

For

example,

prefix

a

String

variable’s

name

with

the

letter

“s”;

prefix

a

Boolean

variable’s

name

with

the

letter

”b”.

The

following

code

initializes

two

such

variables:

String

sExceptionType

Boolean

bBranch

v

Collaboration

configuration

properties

should

be

in

all

uppercase

letters

to

easily

distinguish

them

from

program

variables.

The

following

code

obtains

the

value

of

the

SEND_EMAIL

property:

bSendEmail

=

getConfigProperty("SEND_EMAIL");

Processing

the

flow

trigger

Process

Designer

Express

automatically

declares

a

variable

of

type

BusObj

called

triggeringBusObj.

This

variable

holds

the

flow

trigger

(usually

a

triggering

event),

which

caused

the

scenario

to

execute.

Several

situations

might

require

you

to

work

with

the

flow

trigger

even

after

it

has

been

through

processing

such

as

having

data

added

to

it

after

being

sent

out

through

service

calls,

or

having

the

values

of

attributes

manipulated.

Such

situations

include

the

following:

v

Sending

the

flow

trigger

out

through

service

calls

to

perform

a

rollback

during

the

compensation

steps

of

a

transactional

collaboration

v

Comparing

the

values

of

attributes

in

the

flow

trigger

with

the

values

of

attributes

in

a

business

object

returned

by

a

service

call

or

database

lookup

To

handle

these

situations,

it

is

recommended

that

you

create

an

intermediate

BusObj

variable

that

is

a

copy

of

the

flow

trigger,

then

manipulate

the

intermediate

variable

and

send

it

out

through

service

calls

as

necessary

rather

than

modify

the

flow

trigger.

Note:

Creating

copies

of

business

objects

consumes

system

resources.

If

your

business

process

does

not

require

an

intermediate

variable

(because

there

are

not

transactional

requirements,

and

you

do

not

ever

have

to

compare

the

values

of

attributes

before

and

after

certain

situations,

for

instance),

use

the

flow

trigger

rather

than

a

copy

of

it

to

preserve

resources.

If

your

collaboration

is

configured

to

be

a

long-lived

business

process,

however,

the

content

of

the

flow

trigger

business

object

(triggeringBusObj)

is

not

preserved

across

service

calls.

In

this

case,

always

make

a

copy

of

the

triggering

flow.

There

are

several

APIs

available

that

enable

you

to

copy

the

contents

of

one

business

object

into

another

and

each

has

advantages

and

disadvantages;

the

sections

“Using

the

copy()

method”

and

“Using

the

duplicate()

method”

on

page

31

address

each

approach.

Using

the

copy()

method

The

copy()

method

can

be

used

to

copy

the

contents

of

one

business

object

variable

into

another

business

object

variable

of

the

same

type.

It

is

recommended

that

you

take

this

approach

because

the

collaboration

templates

delivered

by

InterChange

Server

Express

do

so,

and

having

consistency

between

delivered

and

custom-built

components

results

in

greater

maintainability.

To

follow

this

approach

you

must

instantiate

a

new

BusObj

object

of

the

same

type

as

the

triggering

business

object;

it

is

recommended

that

you

perform

the

30

Collaboration

Development

Guide

instantiation

in

the

scenario

definition

of

the

scenario

and

that

you

name

the

variable

that

stores

the

copy

processingBusObj.

To

satisfy

these

requirements

and

recommendations,

add

the

following

line

of

code

to

the

scenario

definition

of

the

scenario:

BusObj

processingBusObj

=

new

BusObj(triggeringBusObj.getType());

Next

you

must

run

the

copy()

method

on

the

processingBusObj

variable

and

pass

the

triggeringBusObj

variable

to

it

as

an

argument.

It

is

good

practice

to

do

this

in

the

first

action

node

of

the

top-level

diagram

of

the

scenario--one

that

you

dedicate

exclusively

to

initializing

variables.

The

example

code

below

copies

the

contents

of

the

triggeringBusObj

variable

into

the

processingBusObj

variable:

processingBusObj.copy(triggeringBusObj);

Using

the

duplicate()

method

For

example,

the

code

fragment

below

declares

a

variable

of

the

same

type

as

the

flow

trigger

and

sets

its

values

by

duplicating

the

values

in

the

business

object

of

the

flow

trigger:

BusObj

processingBusObj;

processingBusObj

=

triggeringBusObj.duplicate();

The

collaboration

uses

processingBusObj

to

manipulate

data

as

required.

When

it

is

ready

to

send

the

data

to

the

destination

application,

the

collaboration

copies

the

intermediate

variable

to

the

ToBusObj

variable.

It

uses

ToBusObj

in

its

service

call

to

the

destination

application.

The

code

fragment

below

shows

the

statement

that

copies

the

data

to

ToBusObj:

ToBusObj.copy(processingBusObj);

After

the

service

call

returns

successfully

to

the

collaboration,

the

collaboration

copies

ToBusObj’s

values

to

triggeringBusObj,

as

shown

below:

triggeringBusObj.copy(ToBusObj);

InterChange

Server

Express

collaborations

do

not

generally

change

the

original

value

of

triggeringBusObj

until

the

collaboration

has

received

the

returned

ToBusObj

from

the

To

port.

Using

the

intermediate

variable

ensures

that

the

collaboration

changes

the

value

of

triggeringBusObj

only

after

successfully

receiving

values

from

the

destination

application.

Raising

exceptions

Catch

exceptions

at

the

level

at

which

they

occur,

then

raise

them

to

the

top

process

in

the

collaboration.

By

catching

the

exception,

you

can

specify

how

to

handle

the

exception

and

control

how

it

appears

to

the

user;

for

example,

you

can

make

clear

the

context

in

which

the

exception

occurred.

Moreover,

creating

action

nodes

for

exception

handling

provides

visual

documentation

of

each

place

in

the

code

where

exceptions

can

occur.

In

any

collaboration,

you

must

raise

each

trapped

exception

until

it

reaches

the

collaboration

runtime

environment.

If

you

use

a

service

call

that

triggers

another

collaboration,

the

calling

collaboration

must

check

for

exceptions

as

a

result

of

the

service

call.

To

raise

exception

text

to

a

calling

diagram,

declare

separate

string

variables

to

store

the

message

text

and

the

exception

type.

For

example,

the

following

code

declares

two

such

string

variables:

String

sMessage

String

sExceptionType

Chapter

3.

Designing

a

collaboration

31

Use

branching

to

provide

different

behavior

when

the

service

call

succeeds

or

fails.

In

the

branch

that

handles

failure,

assign

values

into

the

two

string

variables.

For

example:

sMessage

=

currentException.getMessage();

sExceptionType

=

currentException.getType();

Before

returning

control

to

the

process

that

made

the

service

call,

raise

the

exception.

For

example:

raiseException(ServiceCallException,

4000,

SendRefBusObj.getType(),

SendRefBusObj.getVerb(),

SendRefBusObj.keysToString(),

sExceptionType,

sMessage);

The

code

above

specifies

error

message

4000,

which

is

the

standard

error

message

for

collaboration

failure.

The

message

file

includes

the

following

text:

4000

Collaboration

Failed:

{1}.{2}

with

keys

({3})

synchronization

failed

and

the

exception

is

{4}.{5}.

[EXPL]

The

business

object

could

not

be

synchronized

in

the

destination.

In

the

preceding

text,

the

raiseException()

method

substitutes

the

values

shown

in

Table

8.

Table

8.

Substituted

values

in

raiseException()

call

Variable

Substituted

text

{1}

The

value

that

SendRefBusObj.getType()

returns

{2}

The

value

that

SendRefBusObj.getVerb()

returns

{3}

The

value

that

SendRefBusObj.keysToString()

returns

{4}

The

value

in

the

sExceptionType

variable

{5}

The

value

in

the

sMessage

variable

If

the

process

that

makes

the

service

call

is

not

the

topmost

process

in

the

collaboration,

the

process

making

the

service

call

must

raise

the

exception

to

its

calling

process.

Each

process

above

the

calling

process

must

also

raise

the

exception

so

that

the

error

message

can

be

logged

from

the

topmost

process.

Branching

The

flow

of

a

collaboration

diagram

is

often

based

on

the

value

of

a

collaboration

configuration

property.

The

collaboration

can

use

the

property

value

to

set

a

boolean

variable,

which

it

later

uses

to

determine

which

path

to

take.

For

example,

the

following

code

declares

and

initializes

a

boolean

variable

named

bBranch:

boolean

bBranch

=

false;

InterChange

Server

Express

sets

the

value

of

the

branching

variable

according

to

conditions

in

the

code.

These

conditions

may

be

based

on

the

value

of

several

boolean

variables.

For

example,

suppose

the

collaboration

evaluates

its

CONDITION_TWO

property

only

if

its

CONDITION_ONE

property

evaluates

to

true.

The

code

below

bases

a

branch

on

the

value

of

two

boolean

variables:

v

bCondition1,

which

contains

the

value

configured

for

the

collaboration’s

CONDITION_ONE

property

v

bCondition2,

which

contains

the

value

configured

for

the

collaboration’s

CONDITION_TWO

property

32

Collaboration

Development

Guide

This

code

sets

the

value

of

bBranch

to

true

if

CONDITION_ONE

evaluates

to

true

and

CONDITION_TWO

evaluates

to

false;

it

sets

the

value

of

bBranch

to

false

if

CONDITION_ONE

evaluates

to

false

or

CONDITION_TWO

evaluates

to

true:

if

(

bCondition1

&&

!bCondition2

)

{

bBranch

=

true;

}

else

{

bBranch

=

false;

}

Wrapper

collaborations

A

wrapper

collaboration

is

a

collaboration

that

handles

the

verification

or

synchronization

of

a

business

object

for

another

collaboration.

The

calling

collaboration

sends

a

top-level

business

object

that

is

referenced

on

its

own

flow

trigger

to

the

wrapper

collaboration.

For

example,

a

SalesOrderProcessing

collaboration

can

synchronize

the

generic

Order

business

object.

Generic

Order

contains

references

to

a

generic

Customer

business

object,

which

represents

the

customer

making

the

order.

Moreover,

generic

Order

contains

an

array

of

generic

OrderLineItem

business

objects.

Each

OrderLineItem

references

a

generic

Item

business

object,

which

represents

the

items

ordered.

To

modularize

collaboration

logic,

you

can

provide

separate

collaboration

templates

to

process

generic

Order

and

the

generic

business

objects

that

it

references.

For

example,

to

process

an

Order

that

references

Customer

and

Item

business

objects,

you

can

provide

the

following

templates:

v

SalesOrderProcessing—processes

the

order.

v

CustomerWrapper

and

CustomerSync—process

the

referenced

customer.

v

ItemWrapper

and

ItemSync—process

the

referenced

items.

Separating

business

object

processing

into

different,

specific

collaborations

not

only

enhances

the

reusability

of

each

collaboration

template,

but

also

prevents

two

collaborations

from

modifying

the

same

data

at

the

same

time.

For

more

information,

see

“Problems

in

concurrent

processing”

on

page

36.

Building

collaboration

groups

A

collaboration

group

is

a

set

of

collaboration

objects

that

represents

a

combined

business

process.

A

collaboration

group

lets

you

combine

discrete

units

of

logic.

The

collaboration

objects

are

bound

to

each

other

through

the

same

types

of

ports

through

which

they

can

also

bind

to

connectors.

Collaboration

groups

provide

the

following

benefits:

v

Enable

you

to

modularize

logic.

You

can

develop

and

test

a

unit

of

logic

once,

and

then

deploy

it

multiple

times.

v

Enable

you

to

expand

existing

collaborations.

You

can

create

collaboration

templates

that

call

or

are

called

by

existing

collaborations.

Collaboration

groups

are

formed

from

two

or

more

collaborations.

Within

a

group,

collaborations

are

bound

to

other

collaborations,

and

there

is

always

the

notion

of

a

caller

collaboration

and

a

called

collaboration.

For

any

two

collaborations

that

are

bound

to

each

other,

one

is

the

caller

collaboration

and

one

is

the

called

Chapter

3.

Designing

a

collaboration

33

collaboration.

A

caller

collaboration

is

bound

such

that

one

of

its

service

calls

sends

a

business

object

that

triggers

the

execution

of

another

collaboration.

The

called

collaboration

receives

the

business

object,

which

is

its

triggering

event.

The

called

collaboration

returns

the

result

to

the

caller

after

executing.

See

Figure

9.

Within

a

collaboration

group,

a

collaboration

that

does

not

support

long-lived

business

processes

cannot

bind

to

a

collaboration

that

is

deployed

as

a

long-lived

business

process.

Example

of

a

collaboration

group:

Customer

Manager

An

example

of

a

collaboration

group

is

the

InterChange

Server

Express

product

Customer

Manager,

which

consists

of

the

following

collaborations:

v

CustomerSync

v

CustomerWrapper

v

CustomerPartnerSync

v

CustomerPartnerWrapper

When

you

install

the

Customer

Manager

collaboration,

you

receive

all

collaboration

templates.

You

can

configure

them

and

bind

them

(establish

the

communication

between

collaborations

using

ports)

in

various

ways

to

form

a

unified

process.

The

CustomerSync

collaboration

synchronizes

a

SoldTo

customer;

that

is,

the

CustomerSync

collaboration

ties

together

events

and

data

with

the

SoldTo

customer.

You

can

also

choose

to

synchronize

data

and

events

about

related

customer

information.

In

that

case,

you

could

bind

CustomerSync

to

the

CustomerPartnerWrapper,

which

performs

some

preprocessing,

and

then

bind

CustomerPartnerWrapper

to

CustomerPartnerSync.

Figure

10

illustrates

this

set

of

bindings.

Creating

a

collaboration

group

Here

are

the

general

steps

for

creating

a

collaboration

group:

v

In

the

calling

collaboration:

–

Create

a

port

for

the

type

of

business

object

to

be

passed

to

the

called

collaboration.

Caller Collaboration
sends business object
triggering event

Called Collaboration
receives triggering event
and executes;
returns results

business
object

results

Figure

9.

Caller

and

called

collaborations

CustomerSync
CustomerPartner

Sync

Bindings

Customer Partner
Wrapper

Figure

10.

Bound

collaboration

group

34

Collaboration

Development

Guide

–

Set

up

a

service

call

that

passes

the

business

object

along

with

the

verb

that

you

want

the

called

collaboration

to

handle.

–

Handle

the

results

of

the

service

call

as

usual.

Note:

If

one

of

the

collaborations

in

a

collaboration

group

is

configured

for

Service

Call

In-Transit

persistence,

all

collaborations

in

that

group

will

be

configured

automatically

by

the

InterChange

Server

Express

system

to

maintain

consistent

recovery

behavior.

For

more

information,

see

“Service

calls

and

exactly-once

requests”

on

page

135.
v

In

the

called

collaboration:

–

Create

a

port

for

the

type

of

business

object

to

be

received

from

the

caller

collaboration.

–

Create

a

scenario

and

assign

the

triggering

event

to

the

scenario.

Designing

for

long-lived

business

processes

If

you

plan

to

deploy

your

collaboration

as

a

long-lived

business

process,

keep

the

following

in

mind

when

designing

and

building

the

collaboration

template:

v

Use

global

template

or

port

variables

for

any

data

that

you

want

to

persist

through

the

business

process.

v

The

references

for

all

CwDBConnection

objects

are

released

before

a

service

call

in

a

long-lived

business

process

environment,

and

all

active

database

transactions

are

implicitly

commited.

If

necessary,

design

your

template

to

re-acquire

the

CwDBConnection

objects

after

the

service

call

has

finished.

In

addition,

reinitialize

the

database

transaction

context

after

the

service

call

if

you

are

using

explicit

database

transaction

bracketing.

v

If

the

collaboration

is

going

to

be

bound

to

an

adapter,

ensure

that

the

adapter

is

configured

to

use

JMS

as

the

transport

mechanism.

Long-lived

business

processes

cannot

use

an

adapter

with

any

other

type

of

transport.

v

Long-lived

business

process

collaborations

cannot

be

bound

to

external

Access

Clients.

v

Within

a

collaboration

group,

collaborations

that

do

not

support

long-lived

business

processes

cannot

bind

to

a

long-lived

business

process

collaboration.

Designing

for

parallel

execution

InterChange

Server

provides

a

parallel-execution

environment:

it

can

run

multiple

collaborations

concurrently

in

separate

threads

and

it

can

also

run

multiple

threads

of

the

same

collaboration

(known

as

multithreading).

Attention:

The

thread

pool

for

collaborations

is

used

only

for

event-triggered

flows

and

not

for

call-triggered

flows.

However,

call-triggered

flows

are

also

multi-threaded

in

execution

in

that

they

use

the

thread

pool

of

the

IBM

Java

Object

Request

Broker

(ORB).

Multithreading

capabilities

Each

server

has

a

maximum

number

of

threads

that

can

be

simultaneously

spawned

to

process

business

object

subscriptions.

You

can

set

your

own

maximum

number

of

threads

to

be

spawned,

based

on

your

individual

situation

and

what

you

determine

to

be

optimal

for

performance.

Of

course,

the

number

you

set

cannot

be

greater

than

the

number

of

threads

allowed

by

the

server.

Chapter

3.

Designing

a

collaboration

35

To

set

the

maximum

number

of

threads

that

can

potentially

be

spawned,

specify

the

number

of

threads

in

System

Manager.

Note:

If

the

destination

connector

is

configured

for

parallel

processing,

code

the

collaboration

template

to

verify

that

the

request

was

successfully

sent

to

the

application.

Add

this

code

to

the

node

immediately

following

the

exception

transition

link

for

the

service

call.

For

more

information,

see

getSubType()

in

Chapter

28,

“CollaborationException

class,”

on

page

339.

Important:

If

the

destination

connector

is

single-threaded,

it

must

be

configured

for

parallel

processing

to

take

advantage

of

a

multi-threaded

collaboration.

For

more

information,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

Problems

in

concurrent

processing

In

any

concurrent

processing

environment,

there

is

always

the

danger

of

data

inconsistency.

Data

inconsistency

can

occur

whether

the

concurrent

processing

is

by

means

of

multiple

processes

or

multiple

threads.

If

two

programs

or

two

threads

access

the

same

data

at

the

same

time,

there

is

always

the

possibility

that

one

may

modify

the

data

and

adversely

affect

the

operations

of

the

other

program

or

thread

in

unexpected

ways.

Concurrent

processing

environments

handle

this

problem

by

synchronizing

access

to

shared

data;

a

thread

or

process

locks

a

portion

of

data

so

that

another

thread

or

process

cannot

simultaneously

access

it.

For

a

simple

example

of

the

problem

as

it

might

occur

in

the

business

integration

environment,

consider

the

following

situation:

v

An

application

user

at

a

InterChange

Server

Express

source

application

must

add

$10,000

to

an

employee’s

$40,000

salary.

v

The

application

user

accidentally

enters

a

salary

increase

of

$100,000.

The

user

realizes

that

the

entry

was

incorrect

and

updates

the

salary

again,

this

time

subtracting

$100,000.

v

Both

operations

result

in

the

sending

of

an

Employee.Update

event

for

the

same

employee

ID

to

the

InterChange

Server

Express

system.

v

The

events

are

processed

out

of

order

and

sent

to

another

application

for

synchronization.

v

In

the

destination

application,

the

first

update

operation

attempts

to

set

the

employee’s

salary

to

-$60,000—it

tries

to

subtract

$100,000

from

the

employee’s

salary

of

$40,000.

This

causes

a

semantic

error

and

unexpected

results,

because

employee

salaries

cannot

fall

below

zero.

The

second

update

could

then

encounter

an

error

also.

InterChange

Server

has

the

following

features

to

ensure

data

consistency

and

address

this

problem:

v

“Event

sequencing”

v

“Event

isolation”

on

page

37

Event

sequencing

Event

sequencing

ensures

that

two

threads

of

the

same

collaboration

do

not

work

on

the

same

data

concurrently.

If

multiple

events

have

the

same

business

object

type

and

key

values,

the

server

queues

them

and

delivers

them

in

order

of

arrival.

The

collaboration

thread

that

receives

the

first

event

must

complete

before

the

36

Collaboration

Development

Guide

collaboration

receives

the

next

event.

Event

sequencing

thereby

preserves

execution

order,

even

in

the

presence

of

multi-threaded

execution,

despite

that

the

various

threads

could

execute

at

varying

speeds.

You

do

not

need

to

design

a

collaboration

in

any

special

way

to

take

advantage

of

event

sequencing;

it

is

done

automatically.

Event

isolation

Event

isolation

ensures

that

two

collaborations

do

not

work

on

the

same

data

concurrently.

Sometimes

multiple

collaborations

handle

the

same

types

of

business

objects.

An

event

arrives

and

triggers

a

particular

collaboration.

This

collaboration

starts

its

execution

and,

while

it

executes,

it

has

sole

access

to

that

business

object

instance

in

InterChange

Server.

If

another

event

relating

to

the

same

data

arrives,

InterChange

Server

queues

the

newly

arrived

event

until

the

executing

collaboration

completes

its

processing

of

the

first

event.

Some

restrictions

apply

to

this

feature;

they

are

described

in

the

following

sections.

InterChange

Server

does

not

do

event

isolation

automatically.

Collaboration

developers

must

design

templates

in

a

certain

way

to

take

advantage

of

event

isolation.

This

section

describes

the

rules

and

gives

some

examples

of

design

decisions

that

help

achieve

this

goal.

Note:

These

guidelines

apply

only

to

collaborations

that

perform

operations

that

change

data

and

operate

in

an

environment

where

multiple

collaborations

are

in

use.

If

you

are

developing

a

collaboration

that

performs

only

retrieve

operations

and

will

always

be

the

sole

collaboration

using

that

business

object

type

on

its

server,

you

can

disregard

these

guidelines.

When

event

isolation

is

applied

InterChange

Server

determines

the

application

of

event

isolation

at

runtime,

based

on

an

analysis

of

the

events

that

arrive

and

the

ports

of

active

collaborations.

The

criteria

for

event

analysis

is

the

same

as

for

event

sequencing:

events

are

the

same

when

the

business

object

type

and

key

values

are

the

same.

The

analysis

of

active

collaborations

considers

the

set

of

each

collaboration’s

ports

that

are

bound

to

connectors.

In

port

matching,

InterChange

Server

checks

whether:

v

Among

any

of

the

collaborations,

the

ports

are

bound

to

the

same

set

of

connectors

v

Among

the

ports

bound

to

the

same

set

of

connectors,

the

ports

bound

to

the

same

connector

have

the

same

business

object

type

For

example,

two

collaborations

have

matching

ports

if

both

have

these

port

bindings:

Connector1/Business

object

type

A

Connector2/Business

object

type

B

It

is

not

important

whether

a

port

is

used

for

incoming

events

or

outgoing

requests

and

responses;

only

the

connector

binding

and

the

business

object

type

matters.

Ports

bound

to

other

collaborations

are

not

considered

when

determining

the

collaborations

for

which

event

isolation

applies.

Chapter

3.

Designing

a

collaboration

37

Port

matching

example:

ports

that

match:

Figure

11

illustrates

two

collaborations,

X

and

Y,

for

which

event

isolation

would

apply.

The

small

black

rectangles

at

the

edges

of

the

collaborations

indicate

ports.

In

Figure

11,

X

has

two

ports

and

Y

has

three

ports.

However,

port

matching

considers

only

the

two

ports

of

Y

that

are

bound

to

connectors;

it

disregards

the

port

that

is

bound

to

collaboration

Z.

Both

collaborations

have

the

following

ports

bound

to

connectors:

v

One

port

defined

for

business

object

type

A

and

bound

to

connector

1.

v

One

port

defined

for

business

object

C

and

bound

to

connector

2.

This

example

meets

the

criteria

for

event

isolation,

and

the

server

isolates

the

incoming

or

triggering

event.

Therefore,

event

A

instances

would

be

subject

to

isolation

in

these

two

collaborations.

Port

matching

example:

ports

that

do

not

match:

Keep

in

mind

that

the

server

considers

all

ports

when

comparing

collaborations;

it

does

not

confine

port

matching

analysis

to

ports

that

receive

triggering

events.

If

two

collaborations

receive

the

same

type

of

event

from

the

same

connector

but

send

an

outgoing

business

object

to

two

different

connectors,

their

events

are

not

isolated.

Figure

12

illustrates

two

collaborations

whose

outgoing

ports

are

bound

to

different

connectors.

Their

event

instances

are

not

isolated.

Connector 1 Connector 2

Connector 1

Connector 2

A C

C

Connector 3

A

B

Collaboration X

Collaboration Y

Collaboration Z

Figure

11.

Matching

ports

Connector 1 Connector 2

Connector 3

A C

CConnector 1 A

Collaboration X

Collaboration Y

Figure

12.

Unmatched

ports

38

Collaboration

Development

Guide

Design

rules

You

must

design

collaborations

in

a

certain

way

if

you

want

to

benefit

from

event

instance

isolation.

This

section

describes

how

to:

v

Use

delegation

to

form

collaboration

groups

v

Handle

child

business

objects

as

reference-valued

objects

Using

delegation:

Each

collaboration

template

that

modifies

a

business

object

should

be

dedicated

to

modifying

only

that

type

of

business

object.

If

the

collaboration

needs

to

modify

another

type

of

business

object,

such

as

a

child

business

object,

then

you

should

create

a

separate

collaboration

whose

purpose

is

to

modify

the

other

business

object.

Then,

have

the

first

collaboration

delegate

(pass)

the

other

business

object

to

the

second

collaboration

for

modification.

The

rule

of

dedicating

a

single

collaboration

to

modifying

only

one

type

of

business

object

helps

maintain

data

consistency.

It

prevents

multiple

collaborations

from

concurrently

modifying

the

same

instance

of

the

same

type

of

business

object.

Delegation

ensures

that

the

data

consistency

of

a

child

business

object

is

maintained

with

respect

to

instances

of

the

same

business

object

that

are

processed

by

other

collaborations.

Remember

that

you

can

use

a

business

object

in

one

context

as

a

child

and

in

another

context

on

its

own.

Imagine

that

you

need

to

write

a

business

process

that

deals

with

a

business

object

A

and

a

set

of

information,

B,

associated

with

it

as

a

child

business

object.

The

business

object

structure

might

look

similar

to

the

illustration

shown

in

Figure

13,

where

the

B

business

object

is

a

child

of

the

A

business

object.

If

a

collaboration

already

exists

that

processes

B

business

objects,

you

should

delegate

work

on

the

B

child

business

object

to

that

collaboration.

Alternatively,

you

might

need

to

create

another

collaboration.

When

you

want

to

work

on

the

data

associated

with

the

A

business

object,

you

must

work

on

both

the

A

business

object

and

its

set

of

B

data,

or

the

child

business

object.

You

would

therefore

create

two

different

collaboration

templates—one

collaboration

modifies

business

object

A

and

the

other

modifies

the

child

business

object

B—and

you

might

combine

these

two

templates

into

a

collaboration

group.

Each

collaboration

template

handles

the

operations

on

one

business

object.

Figure

14

illustrates

a

collaboration

group,

A/B,

that

contains

an

A-Processor

collaboration

and

a

B-Processor

collaboration.

The

A-Processor

collaboration

processes

the

A

business

object.

When

the

A-Processor

collaboration

needs

to

modify

the

B

child

business

object,

it

uses

a

service

call

to

send

the

B

business

object

to

the

B-Processor

collaboration.

In

Figure

14,

a

dotted

line

shows

delegation.

A
B

Figure

13.

Example

of

a

hierarchical

business

object

Chapter

3.

Designing

a

collaboration

39

Handling

child

business

objects

as

reference-valued:

When

a

collaboration

receives

a

delegated

child

business

object

(such

as

the

case

of

the

B-Processor

collaboration

in

Figure

14),

it

should

treat

the

business

object

as

a

reference-valued

business

object.

A

reference-valued

business

object

contains

only

the

values

for

attributes

that

are

defined

as

primary

keys

for

the

business

object.

A

full-valued

business

object,

in

contrast,

contains

values

for

other

attributes.

In

the

figures

in

this

chapter,

reference-valued

business

objects

are

marked

(r)

and

full-valued

business

objects

are

marked

(f).

Figure

15

is

an

example

of

a

business

object

with

a

reference-valued

child.

Depending

on

the

originating

connector,

events

might

be

sent

with

reference-valued

or

full-valued

child

business

objects.

A

collaboration

that

receives

a

delegated

child

business

object

might

therefore

receive

all

of

its

attribute

values

or

only

its

primary

key

values.

However,

the

collaboration

should

always

treat

the

delegated

child

business

object

that

it

receives

as

reference-valued.

It

should

assume

only

that

the

primary

key

values

are

correct;

it

should

ignore

attribute

values

that

are

not

primary

keys.

If

the

collaboration

needs

to

perform

operations

on

the

child

business

object’s

non-key

attributes,

it

must

resolve

the

reference

by

retrieving

the

full-valued

version

of

the

business

object

from

the

source

application.

If

the

child

business

object

is

reference-valued,

the

retrieve

operation

obtains

the

additional

attribute

values.

If

the

child

business

object

is

full-valued,

the

retrieve

operation

ensures

that

the

associated

data

is

current

and

valid.

A-Processor
Collaboration

A/B Collaboration Group

B

A

A

B

B-Processor
Collaboration

Figure

14.

Delegation

of

a

child

business

object

B(r)

A

Figure

15.

Hierarchical

business

object

with

a

reference-valued

child

40

Collaboration

Development

Guide

Figure

14

illustrates

the

delegation

of

B

as

a

reference-valued

business

object

and

the

collaboration’s

resolution

of

the

reference

by

retrieval

from

the

source

collaboration.

Examples

Figure

17

illustrates

an

environment

in

which

event

isolation

is

in

effect

between

two

different

collaborations,

B-Processor

collaboration

and

B-to-C

collaboration.

A-Processor
Collaboration

B-Processor
Collaboration

A/B Collaboration Group

A

B(r)

B(r)

Destination Connector

B(r) B(f)

Source Connector

C

Figure

16.

Resolving

the

reference

Chapter

3.

Designing

a

collaboration

41

Notice

that

both

the

B-Processor

collaboration

and

the

B-to-C

collaboration:

v

receive

events

of

business

object

type

B

v

produce

business

objects

of

type

C

v

are

bound

to

the

same

set

of

connectors

Therefore,

port

matching

would

result

in

event

isolation

for

these

collaborations.

The

next

example

(shown

in

Figure

18)

illustrates

how

you

can

use

collaboration

objects

created

from

the

same

template

in

two

different

ways

in

the

same

environment.

This

practice

enables

you

to

reuse

and

extend

an

existing

collaboration

template,

such

as

when

you

want

to

add

features

to

the

collaboration.

Suppose

that

a

Y-Processor

collaboration

template

exists

and

that

a

collaboration

object

instantiated

from

the

Y-Processor

template,

Y-Processor

Collaboration1,

is

in

use.

You

want

to

create

new

collaboration

features

that

include

and

extend

the

functions

of

the

Y-Processor

collaboration

template.

One

way

to

do

this

is

to

reuse

the

Y-Processor

collaboration

template

and

create

a

new

Y-Processor

collaboration

object

that

you

use

in

a

collaboration

group.

That

is,

you

instantiate

a

second

Y-Processor

collaboration

object,

Y-Processor

Collaboration2,

from

the

Y-Processor

template

and

place

it

in

a

collaboration

group.

There

are

now

two

Y-Processor

collaborations

for

which

event

isolation

is

needed.

An

intermediary

collaboration—Collaboration

Z

in

the

example—can

provide

additional

functions

and

ensure

event

isolation,

without

requiring

changes

to

Y-Processor.

A/B Collaboration Group

C

Destination ConnectorSource Connector

CB(f)

B(r) B(f)

B-to-C
Collaboration

A

B(r)

B(r)

A-Processor
Collaboration

B-Processor
Collaboration

Figure

17.

Two

collaborations

subject

to

event

isolation

42

Collaboration

Development

Guide

In

Figure

18,

the

server

applies

event

isolation

to

the

Y

business

objects

received

by

the

collaborations

with

dark

outlines,

Collaboration

Z

and

Y-Processor

Collaboration1.

The

numbers

indicate

the

sequence

of

processing.

Collaboration

Z

and

Y-Processor

Collaboration2

work

as

a

team,

in

terms

of

event

isolation.

The

guidelines

for

delegated

business

objects

are

followed

by

Collaboration

Z

on

behalf

of

Y-Processor

Collaboration2.

An

internationalized

collaboration

An

internationalized

collaboration

is

a

collaboration

that

has

been

written

so

that

it

can

be

customized

for

a

particular

locale.

A

locale

is

the

part

of

a

user’s

environment

that

brings

together

information

about

how

to

handle

data

that

is

specific

to

the

end

user’s

particular

country,

language,

or

territory.

The

locale

is

typically

installed

as

part

of

the

operating

system.

Creating

a

collaboration

that

handles

locale-sensitive

data

is

called

the

internationalization

(I18N)

of

the

collaboration.

Preparing

an

internationalized

collaboration

for

a

particular

locale

is

called

the

localization

(L10N)

of

the

collaboration.

This

section

provides

the

following

information

on

an

internationalized

collaboration:

v

“What

is

a

locale?”

on

page

44

v

“Design

considerations

for

an

internationalized

collaboration”

on

page

44

X-Processor
Collaboration

Collaboration Gr oup

X

Y(r)

Application

Y(f)
to
destination

to
destination

Y(r) Y(f)

Connector

1 3

4

5

Y(r)

2

Collaboration
Z

Y-Processor
Collaboration2

Y(f)

Y-Processor
Collaboration1

Figure

18.

Retrieving

a

full-valued

business

object

Chapter

3.

Designing

a

collaboration

43

What

is

a

locale?

A

locale

provides

the

following

information

for

the

user

environment:

v

Cultural

conventions

according

to

the

language

and

country

(or

territory):

–

Data

formats:

-

Dates:

define

full

and

abbreviated

names

for

weekdays

and

months,

as

well

as

the

structure

of

the

date

(including

date

separator).

-

Numbers:

define

symbols

for

the

thousands

separator

and

decimal

point,

as

well

as

where

these

symbols

are

placed

within

the

number.

-

Times:

define

indicators

for

12-hour

time

(such

AM

and

PM

indicators)

as

well

as

the

structure

of

the

time.

-

Monetary

values:

define

numeric

and

currency

symbols,

as

well

as

where

these

symbols

are

placed

within

the

monetary

value.
–

Collation

order:

how

to

sort

data

for

the

particular

character

code

set

and

language.

–

String

handling

includes

tasks

such

as

letter

“case”

(upper

case

and

lower

case)

comparison,

substrings,

and

concatenation.
v

A

character

encoding

—

the

mapping

from

a

character

(a

letter

of

the

alphabet)

to

a

numeric

value

in

a

character

code

set.

For

example,

the

ASCII

character

code

set

encodes

the

letter

“A”

as

65,

while

the

EBCIDIC

character

set

encodes

this

letter

as

43.

The

character

code

set

contains

encodings

for

all

characters

in

one

or

more

language

alphabets.

A

locale

name

has

the

following

format:

ll_TT.codeset

where

ll

is

a

two-character

language

code

(usually

in

lower

case),

TT

is

a

two-letter

country

and

territory

code

(usually

in

upper

case),

and

codeset

is

the

name

of

the

associated

character

code

set.

The

codeset

portion

of

the

name

is

often

optional.

The

locale

is

typically

installed

as

part

of

the

installation

of

the

operating

system.

Design

considerations

for

an

internationalized

collaboration

This

section

provides

the

following

categories

of

design

considerations

for

internationalizing

a

collaboration:

v

“Locale-sensitive

design

principles”

v

“Character-encoding

design

principles”

on

page

49

Locale-sensitive

design

principles

To

be

internationalized,

a

collaboration

must

be

coded

to

be

locale-sensitive;

that

is,

its

behavior

must

take

the

locale

setting

into

consideration

and

perform

the

task

appropriate

to

that

locale.

For

example,

for

locales

that

use

English,

the

collaboration

should

obtain

its

error

messages

from

an

English-language

message

file.

IBM

InterChange

Server

Express

provides

you

with

an

internationalized

version

of

InterChange

Server

and

the

collaboration

runtime

environment.

However,

you

must

ensure

that

any

custom

code

that

you

create

is

internationalized.

Note:

The

collaboration

code

that

Process

Designer

Express

creates

is

not

internationalized.

Once

Process

Designer

Express

generates

your

collaboration

code,

you

must

take

the

steps

outlined

in

this

section

to

internationalize

your

collaboration

template.

44

Collaboration

Development

Guide

Table

9

lists

the

locale-sensitive

design

principles

that

an

internationalized

collaboration

must

follow.

Table

9.

Locale-sensitive

design

principles

for

collaborations

Design

principle

For

more

information

The

text

of

all

error

and

status

messages

needs

to

be

isolated

from

the

collaboration

template

in

a

message

file

and

translated

into

the

language

of

the

locale.

“Text

strings”

The

locale

of

a

business

object

must

be

preserved

during

execution

of

the

collaboration.

“Business

object

locales”

on

page

47

Properties

of

collaboration

configuration

properties

must

be

handled

to

include

possible

inclusion

of

multibyte

characters.

“Collaboration

configuration

properties”

on

page

48

Other

locale-specific

tasks

must

be

considered.

“Other

locale-sensitive

tasks”

on

page

49

Text

strings:

It

is

good

programming

practice

to

design

an

internationalized

collaboration

so

that

it

refers

to

an

external

message

file

when

it

needs

to

obtain

text

strings

rather

than

hardcoding

text

strings

in

the

collaboration

code.

When

a

collaboration

needs

to

generate

a

text

message,

it

retrieves

the

appropriate

message

by

its

message

number

from

the

message

file.

Once

all

messages

are

gathered

in

a

single

message

file,

this

file

can

be

localized

by

having

the

text

translated

into

the

appropriate

language

or

languages.

For

more

information

on

globalized

message

files,

see

Chapter

10,

“Creating

a

message

file,”

on

page

183.

To

globalize

the

logging,

exception,

and

email

operations,

make

sure

that

all

these

operations

use

message

files

to

generate

text

messages.

By

putting

message

strings

in

a

message

file,

you

assign

a

unique

identifier

to

each

message.

Table

10

lists

the

types

of

operations

that

use

a

message

file

and

the

associated

Collaboration

API

methods

in

the

BaseCollaboration

class

that

the

collaboration

template

uses

to

retrieve

their

messages

from

a

message

file.

Table

10.

Methods

to

retrieve

messages

from

a

message

file

Message-file

operation

BaseCollaboration

method

Logging

logInfo(),

logError(),

logWarning()

Exception

Handling

raiseException()

Email

Notification

sendMail()

Note:

InterChange

Server

standards

recommend

that

trace

messages

are

not

included

in

a

collaboration

message

file.

Trace

messages

do

not

need

to

display

in

the

language

of

the

customer’s

locale

because

they

are

intended

for

the

product

debugging

process.

Handling

logging

and

exception

messages:

To

ensure

that

logging

and

exception-handling

are

always

obtained

from

the

collaboration

message

file,

do

not

use

the

forms

of

the

methods

in

Table

10

that

allow

you

to

specify

the

message

string

directly

within

the

call.

For

example,

to

log

an

error

to

the

log

destination,

do

not

use

the

following

call

to

logError():

logError("Log

this

message

to

the

log

destination");

Chapter

3.

Designing

a

collaboration

45

Instead,

create

a

unique

identifier

for

the

message

and

place

the

text

within

the

collaboration

message

file.

If

this

message

were

assigned

a

unique

identifier

of

712,

its

entry

in

the

message

file

would

appear

as

follows:

712

Log

this

message

to

the

log

destination.

You

can

optionally

add

message

parameters

to

this

message

as

needed.

In

an

internationalized

collaboration,

the

preceding

call

to

logError()

should

be

replaced

with

the

following

call,

which

obtains

the

log

message

from

the

collaboration

message

file:

logError(712);

Similarly,

you

should

obtain

all

exception

messages

from

the

collaboration

message

file

by

avoiding

use

of

the

following

form

of

raiseException():

void

raiseException(String

exceptionType,

String

message)

Instead,

use

one

of

the

raiseException()

forms

that

includes

a

message

number.

Handling

email

messages:

The

sendEmail()

method

allows

you

to

send

a

message

to

specified

email

recipients.

In

an

internationalized

collaboration,

email

messages

should

go

in

the

collaboration

message

file.

However,

the

sendEmail()

method

does

not

provide

a

form

that

allows

you

to

specify

the

unique

identifier

of

a

message.

Therefore,

to

send

an

email

message,

you

must

first

extract

the

message

from

the

message

file

and

then

use

sendEmail()

to

send

the

retrieved

message

string.

Table

11

shows

the

method

that

the

collaboration

can

use

to

retrieve

a

message

from

a

message

file.

Table

11.

Method

to

retrieve

a

message

from

the

message

file

Collaboration

library

class

BaseCollaboration

method

BaseCollaboration

getMessage()

The

following

code

fragment

retrieves

message

100

from

the

collaboration

message

file

and

includes

this

message

as

part

of

an

email

message:

String

retrievedMsg

=

getMessage(100);

sendEmail(retrievedMsg,

subjectLine,

recipientList);

Handling

miscellaneous

strings:

In

addition

to

handling

the

message-file

operations

in

Table

10,

an

internationalized

collaboration

template

should

not

contain

any

miscellaneous

hardcoded

strings.

You

should

isolate

these

strings

into

the

message

file

as

well.

To

globalize

hardcoded

strings,

take

the

following

steps:

v

Generate

a

uniquely

numbered

message

in

the

collaboration

message

file

for

the

hardcoded

string.

Note:

In

the

message

file,

you

can

also

include

an

optional

explanation

to

the

isolated

string.

In

this

explanation,

you

can

put

the

scenario

name

and

action-node

number

where

the

string

is

used.

This

information

can

easily

track

the

position

of

the

source

and

make

changes

when

needed.

v

In

the

collaboration

template,

use

the

getMessage()

method

to

specify

the

isolated

string

by

its

message

number.

46

Collaboration

Development

Guide

For

example,

suppose

your

collaboration

template

contains

the

following

line

of

code

with

a

hardcoded

string:

String

imsg100

=

"********Before

entering

order-to-ATP

map********";

To

isolate

this

hardcoded

string

from

the

collaboration

code,

create

a

message

in

the

message

file

and

assign

it

a

unique

message

number

(100):

100

********Before

entering

order-to-ATP

map********

[EXPL]

ATP

Transaction:

162

In

the

collaboration

template,

replace

the

code

that

contains

the

hardcoded

string

with

code

that

retrieves

the

isolated

string

(message

100)

from

the

message

file:

String

imsg100

=

getMessage(100);

//retrieve

the

message

numbered

’

100’

String

imsg100

=

getMessage(100);

//display

the

retrieved

message

For

more

information

on

the

use

of

message

files,

see

Chapter

10,

“Creating

a

message

file,”

on

page

183.

Business

object

locales:

During

execution

of

a

collaboration

object,

there

are

two

different

locale

settings:

v

A

collaboration

inherits

its

locale,

called

a

collaboration

locale,

from

the

InterChange

Server

instance

in

which

the

collaboration

is

running.

The

collaboration

locale

determines

the

locale

of

text

messages

that

the

collaboration

uses

for

logging,

tracing,

exceptions,

and

email.

v

A

collaboration

uses

a

flow

locale

for

its

triggering

business

objects.

The

flow

locale

determines

the

locale

settings

of

the

business

objects

that

are

involved

while

the

collaboration

executes.

When

a

business

object

is

created,

it

always

has

a

locale

associated

with

its

data.

By

default,

every

business

object

created

in

a

collaboration

uses

the

collaboration

locale.

However,

a

business

object

often

needs

to

have

the

locale

of

the

triggering

business

object

(the

flow

locale).

Because

this

collaboration

locale

might

be

different

from

the

flow

locale,

you

might

need

to

assign

the

flow

locale

to

business

objects.

Table

12

shows

the

method

that

the

collaboration

can

use

to

retrieve

the

locale

associated

with

the

flow.

Table

12.

Method

to

retrieve

the

collaboration’s

flow

locale

Collaboration

library

class

Method

BaseCollaboration

getLocale()

Your

collaboration

template

must

ensure

that

the

locales

of

the

business

objects

are

well

maintained

and

properly

used

during

the

flow

of

any

collaboration

scenarios.

Your

collaboration

can

access

this

locale

with

the

methods

shown

in

Table

13.

Table

13.

Methods

to

access

the

business

object

locale

Collaboration

library

class

Method

BusObj

getLocale(),

setLocale()

When

Process

Designer

Express

creates

a

new

port

for

a

collaboration

template,

it

creates

a

new

BusObj

object

for

the

port

with

the

name

portNameBusObj,

where

Chapter

3.

Designing

a

collaboration

47

portName

is

the

name

of

the

port.

For

example,

if

you

create

a

port

named

To,

Process

Designer

Express

creates

a

BusObj

object

named

ToBusObj

with

code

that

looks

as

follows:

BusObj

ToBusObj

=

new

BusObj("Item");

The

constructor

of

the

BusObj

class

creates

a

BusObj

object

with

its

locale

set

to

the

collaboration

locale.

If

the

business

object

needs

to

associate

its

data

with

the

flow

locale,

the

collaboration

template

must

modify

the

business

object’s

locale.

For

example,

suppose

Process

Designer

Express

generates

code

in

Figure

19

to

create

BusObj

objects

for

two

ports,

To

and

From.

The

following

code

fragment

internationalizes

the

generated

code

in

Figure

19,

by

ensuring

that

the

flow

locale

is

set

in

these

new

BusObj

objects:

BusObj

ToBusObj

=

new

BusObj(triggeringBusObj.getType());

BusObj

FromBusObj

=

new

BusObj(triggeringBusObj.getType());

//

get

flow

locale

from

BaseCollaboration

triggerLocale

=

getLocale();

//

set

newly

created

BusObj

objects’

locale

to

flow

locale

ToBusObj.setLocale(triggerLocale);

FromBusObj.setLocale(triggerLocale);

The

BusObj()

constructor

also

accepts

a

locale

name

as

an

argument.

Therefore,

an

alternative

way

to

rewrite

the

generated

code

in

Figure

19

is

to

pass

the

flow

locale

directly

to

the

constructor

call,

as

follows:

//

get

flow

locale

from

BaseCollaboration

triggerLocale

=

getLocale();

BusObj

ToBusObj

=

new

BusObj(triggeringBusObj.getType(),

triggerLocale);

BusObj

FromBusObj

=

new

BusObj(triggeringBusObj.getType(),

triggerLocale);

Note:

The

copy()

and

duplicate()

methods

of

the

BusObj

class

automatically

handle

assignment

of

the

business

object

locale.

Therefore,

if

the

source

business

object

has

the

correct

locale,

the

target

business

object

will

have

this

locale

as

well.

Collaboration

configuration

properties:

As

discussed

in

“Defining

collaboration

configuration

properties

(the

Properties

tab)”

on

page

61,

a

collaboration

template

can

use

two

types

of

configuration

properties

to

customize

its

execution:

v

Standard

configuration

properties

are

available

to

all

collaborations.

v

Collaboration-specific

configuration

properties

are

unique

to

the

particular

collaboration

template

in

which

they

are

defined.

The

names

of

all

collaboration

configuration

properties

must

use

only

characters

defined

in

the

code

set

associated

with

the

U.S

English

(en_US)

locale.

However,

the

values

of

these

configuration

properties

can

contain

characters

from

the

code

set

associated

with

the

collaboration

locale.

The

collaboration

template

obtains

the

values

of

configuration

properties

with

the

getConfigProperty()

or

getConfigPropertyArray()

method

of

the

BusObj

ToBusObj

=

new

BusObj(triggeringBusObj.getType());

BusObj

FromBusObj

=

new

BusObj(triggeringBusObj.getType());

Figure

19.

Generated

code

to

create

business

objects

for

ports

48

Collaboration

Development

Guide

BaseCollaboration

class.

These

methods

correctly

handle

characters

from

multibyte

code

sets.

However,

to

ensure

that

your

collaboration

template

is

internationalized,

its

code

must

correctly

handle

these

configuration-property

values

once

it

retrieves

them.

The

collaboration

template

must

not

assume

that

configuration-property

values

contain

only

single-byte

characters.

Other

locale-sensitive

tasks:

An

internationalized

collaboration

must

also

handle

the

following

locale-sensitive

tasks:

v

Sorting

or

collation

of

data:

the

collaboration

must

use

a

collation

order

appropriate

for

the

language

and

country

of

the

locale.

v

String

processing

(such

as

comparison,

substrings,

and

letter

case):

the

collaboration

must

ensure

that

any

processing

it

performs

is

appropriate

for

characters

in

the

locale’s

language.

v

Formats

of

dates,

numbers,

and

times:

the

collaboration

must

ensure

that

any

formatting

it

performs

is

appropriate

for

the

locale.

Character-encoding

design

principles

If

data

transfers

from

a

location

that

uses

one

code

set

to

a

location

that

uses

a

different

code

set,

some

form

of

character

conversion

needs

to

be

performed

for

the

data

to

retain

its

meaning.

The

Java

runtime

environment

within

the

Java

Virtual

Machine

(JVM)

represents

data

in

Unicode.

The

Unicode

character

set

is

a

universal

character

set

that

contains

encodings

for

characters

in

most

known

character

code

sets

(both

single-byte

and

multibyte).

There

are

several

encoding

formats

of

Unicode.

The

following

encodings

are

used

most

frequently

within

the

integration

business

system:

v

Universal

multiple

octet

Coded

Character

Set:

UCS-2

The

UCS-2

encoding

is

the

Unicode

character

set

encoded

in

2

bytes

(octets).

v

UCS

Transformation

Format,

8-bit

form:

UTF-8

The

UTF-8

encoding

is

designed

to

address

the

use

of

Unicode

character

data

in

UNIX

environments.

It

supports

all

ASCII

code

values

(0...127)

so

that

they

are

never

interpreted

as

anything

except

a

true

ASCII

code.

Each

code

value

is

usually

represented

as

a

1-,

2-,

or

3-

byte

value.

Most

components

in

the

WebSphere

business

integration

system,

including

InterChange

Server

and

its

collaboration

runtime

environment,

are

written

in

Java.

Therefore,

when

data

is

transferred

between

a

collaboration

and

other

components

within

InterChange

Server,

it

is

encoded

in

the

Unicode

code

set

and

there

is

no

need

for

character

conversion.

Chapter

3.

Designing

a

collaboration

49

50

Collaboration

Development

Guide

Chapter

4.

Building

a

collaboration

template

This

chapter

describes

how

to

create

and

modify

a

collaboration

template

definition.

You

must

perform

the

following

tasks:

1.

Create

the

template

definition.

See

“Creating

a

collaboration

template”

for

more

information.

2.

Provide

information

about

the

template’s

properties.

See

“Providing

template

property

information”

on

page

53

for

more

information.

3.

Define

a

scenario.

See

“Defining

scenarios”

on

page

66

for

more

information.

4.

Create

an

activity

diagram

for

the

scenario

you

defined.

See

“Creating

an

activity

diagram”

on

page

70

for

general

information,

and

then

refer

to

Chapter

5,

“Using

activity

diagrams,”

on

page

75

for

detailed

instructions.

5.

Define

additional

scenarios

as

needed,

and

create

the

associated

activity

diagrams.

6.

Create

a

message

file

for

the

template.

See

“Creating

the

message

file”

on

page

70

for

more

information.

7.

Compile

the

collaboration

template.

See

“Compiling

a

collaboration

template”

on

page

71

for

more

information.

8.

Optionally,

test

the

collaboration.

You

can

use

the

Test

Connector

in

the

Integrated

Testing

Environment

to

verify

that

your

collaboration

works

as

planned.

See

“Testing

a

collaboration”

on

page

73

for

more

information.

Creating

a

collaboration

template

Use

Process

Designer

Express

to

create,

edit,

and

compile

a

collaboration

template.

The

following

sections

describe

how

to

define

a

new

template

and

provide

the

basic

information

it

requires.

You

must

provide

certain

information

prior

to

building

the

template;

other

types

of

information

can

be

supplied

at

any

time

during

development.

The

following

information

is

required

for

template

creation:

Template

name

See

“Creating

the

template

definition”

on

page

52

Ports

See

“Defining

ports

and

triggering

events

(the

Ports

and

Triggering

Events

tab)”

on

page

64

Scenario

definitions

See

“Defining

scenarios”

on

page

66

The

following

information

is

optional

and

you

can

supply

it

at

any

time

during

the

development

process:

Support

for

long-lived

business

processes

See

“Adding

support

for

long-lived

business

processes”

on

page

54

Package

name

See

“Specifying

a

collaboration

package”

on

page

56

Minimum

transaction

level

See

“Specifying

the

minimum

transaction

level”

on

page

54

Configuration

properties

See

“Defining

collaboration

configuration

properties

(the

Properties

tab)”

on

page

61

©

Copyright

IBM

Corp.

2003

51

Template

variables

See

“Declaring

and

editing

template

variables

(the

Declarations

tab)”

on

page

56

Import

statements

See

“Importing

Java

packages”

on

page

57

Creating

the

template

definition

To

create

a

new

collaboration

template,

do

the

following

from

within

System

Manager:

1.

Right-click

the

Collaboration

Templates

folder

for

your

project,

and

then

click

the

Create

New

Collaboration

Template

option.

Process

Designer

Express

opens

and

displays

the

New

Template

dialog

box,

as

shown

in

Figure

20.

2.

In

the

Project

field,

use

the

drop-down

list

to

select

the

name

of

the

Integration

Component

Library

user

project

the

template

belongs

to.

3.

Type

the

name

of

the

template

in

the

Template

Name

field.

A

template

name

can

include

alphabetic

characters,

numbers,

and

underscores.

Because

Process

Designer

Express

creates

a

source

file

(.java)

and

a

Java

class

file

(.class)

based

on

the

template

name,

it

is

recommended

that

you

follow

these

Java

class

naming

conventions:

v

Start

a

collaboration

template

name

with

an

uppercase

letter.

v

If

the

name

contains

multiple

words,

start

each

word

with

an

uppercase

letter

(for

example,

CustomerSync).

v

Do

not

embed

spaces

in

the

name.

For

more

information,

see

Naming

IBM

WebSphere

InterChange

Server

Components.

4.

If

desired,

include

a

brief

description

of

the

template

in

the

Description

field.

Note:

Do

not

include

a

hard

return

(a

carriage

return)

in

the

template

description.

5.

Click

OK.

Process

Designer

Express

opens

and

displays

the

new

template

and

its

top-level

tree

in

its

Template

Tree

pane.

Figure

20.

New

Template

dialog

box

52

Collaboration

Development

Guide

Providing

template

property

information

A

collaboration’s

Template

Definitions

window

provides

the

four

tabs

listed

in

Table

14

for

defining

a

collaboration

template’s

properties.

Table

14.

Tabs

of

the

Definitions

window

Template

Definitions

tabs

Description

For

more

information

General

Enables

you

to

define

the

following

information

for

a

collaboration

template:

v

Template

description

v

Support

for

Long-lived

business

processes

(LLBP)

v

Minimum

transaction

level

v

Package

information

“Defining

general

property

information

(the

General

tab)”

on

page

53

Declarations

Enables

you

to

define

template

variables

and

view

system-generated

template

variables.

“Declaring

and

editing

template

variables

(the

Declarations

tab)”

on

page

56

Properties

Enables

you

to

specify

the

name,

type,

and

value

of

user-defined

collaboration

template

properties.

“Defining

collaboration

configuration

properties

(the

Properties

tab)”

on

page

61

Ports

and

Triggering

Events

Enables

you

to

define

the

ports

and

triggering

events

for

the

collaboration

template.

“Defining

ports

and

triggering

events

(the

Ports

and

Triggering

Events

tab)”

on

page

64

Defining

general

property

information

(the

General

tab)

The

General

tab

of

the

Template

Definitions

window

(see

Figure

21)

displays

general

property

information

for

the

collaboration

template,

including

that

listed

in

Table

15.

Table

15.

General

template

definition

information

General

template

property

Description

For

more

information

Description

of

the

collaboration

template

This

field

of

a

collaboration

template

is

optional.

In

it,

you

can

enter

text

that

is

available

to

all

users

of

the

collaboration

template.

None

Support

for

long-lived

business

processes

Specifies

whether

the

template

supports

long-lived

business

processes.

“Adding

support

for

long-lived

business

processes”

on

page

54

Transaction

level

(for

transactional

collaborations

only)

Sets

a

minimum

transaction

level

for

all

operations

in

the

collaboration.

“Specifying

the

minimum

transaction

level”

on

page

54

Collaboration

package

The

Java

package

in

which

the

collaboration

resides

“Specifying

a

collaboration

package”

on

page

56

Figure

21

shows

the

General

tab

within

the

Definitions

window.

Chapter

4.

Building

a

collaboration

template

53

Adding

support

for

long-lived

business

processes

Long-lived

business

process

support

enables

you

to

deploy

a

collaboration

as

a

long-lived

business

process,

and

to

specify

a

timeout

value

for

service

calls

in

this

environment.

In

order

to

use

this

functionality,

you

must

do

the

following:

v

Select

the

Long

Lived

Business

Process

Support

option

on

the

General

tab

v

Optionally,

create

a

user-defined

collaboration

template

property

to

represent

the

timeout

value

for

the

service

call

used

in

long-lived

business

processing.

See

“Defining

collaboration

configuration

properties

(the

Properties

tab)”

on

page

61

for

more

information.

Specifying

the

minimum

transaction

level

When

a

collaboration

is

transactional,

InterChange

Server

rolls

back

the

collaboration

upon

failure

of

its

transaction.

The

rollback

executes

template-defined

compensations

to

reverse

the

collaboration’s

data

modifications.

For

an

explanation

of

transactional

collaborations,

see

“Using

transactional

features”

on

page

106.

The

transaction

level

determines

the

mechanisms

by

which

the

collaboration’s

scenarios

are

executed.

Collaboration

objects

execute

at

one

of

the

transaction

levels

described

in

Table

16.

Table

16.

Transaction

levels

Transaction

level

Effect

System

behavior

None

Collaboration

is

not

transactional.

If

an

error

occurs

during

execution

of

the

collaboration,

the

system

just

sends

it

to

the

log

and

then

terminates

execution.

Figure

21.

General

collaboration

properties

54

Collaboration

Development

Guide

Table

16.

Transaction

levels

(continued)

Transaction

level

Effect

System

behavior

Minimal

Effort

Collaboration

is

transactional;

it

has

compensations

defined

for

its

scenario’s

subtransactions.

If

an

error

occurs

during

execution

of

that

scenario,

InterChange

Server

rolls

back

the

scenario,

executing

the

compensation

for

each

subtransactional

step.

Best

Effort

Does

what

Minimal

Effort

does;

in

addition

to

compensations,

data

isolation

is

used

to

ensure

correctness.

InterChange

Server

checks

that

data

is

virtually

isolated

for

the

duration

of

its

use

in

the

transactional

collaboration

by

checking

that

the

data’s

value

has

not

changed

since

its

previous

use.

Best-Effort

isolation

checking

leaves

a

small

window

of

time

during

the

isolation

check

when

the

data

is

vulnerable

to

changes

by

other

application

transactions.

Stringent

Does

everything

that

Best

Effort

does,

but

eliminates

the

data

isolation

window

of

vulnerability.

Application

locks

the

data

when

the

isolation

is

checked.

Supported

by

applications

whose

APIs

support

an

atomic

“test

and

set”

operation.

A

collaboration

template

developer

sets

the

minimum

transaction

level

for

collaboration

objects

created

from

the

template.

For

example,

if

a

collaboration

deals

with

critical

data

and

you

want

to

ensure

it

is

always

rolled

back

when

it

fails,

you

can

set

its

minimum

transaction

level

to

Minimal

Effort.

If

you

design

a

collaboration

for

transactional

execution,

but

it

can

be

used

successfully

without

the

transactional

features,

you

can

set

the

minimum

transaction

level

to

None.

An

administrator

can

raise

the

transaction

level

for

a

collaboration

object

if

its

connectors

support

the

higher

transaction

level.

However,

the

transaction

level

for

a

collaboration

object

cannot

be

lower

than

the

minimum

specified

in

the

template.

Tip

You

can

create

compensation

to

permit

transactional

operation

while

setting

the

minimum

transaction

level

of

the

collaboration

templates

to

None.

If

greater

rigor

is

needed

and

the

connectors

in

use

can

support

a

higher

transaction

level,

an

administrator

can

raise

the

transaction

level

of

the

collaboration

object

at

bind

time.

For

more

information

on

compensation,

see

“Defining

compensation”

on

page

94.

To

assign

a

minimum

transaction

level

to

the

collaboration

template,

do

the

following:

1.

Ensure

the

Template

Definitions

window

is

open

and

the

General

tab

is

displayed.

2.

Use

the

Minimum

Transaction

Level

pull-down

menu

to

select

the

minimum

transaction

level

you

want

to

use.

If

you

are

editing

a

collaboration

template

that

is

not

transactional,

keep

the

default

value

of

None.

3.

Click

Apply

to

save

the

changes.

Chapter

4.

Building

a

collaboration

template

55

Specifying

a

collaboration

package

A

package

is

a

group

of

collaborations

that

have

related

functions.

All

collaborations

that

Process

Designer

Express

accesses

belong

to

the

package

UserCollaborations

or

to

a

subpackage

of

UserCollaborations.

Therefore,

the

UserCollaborations

package

includes:

v

Collaborations

that

are

provided

with

the

InterChange

Server

Express

software

v

Collaborations

that

other

collaboration

developers

have

created

You

can

create

subpackages

under

UserCollaborations

to

group

custom

collaboration

templates.

For

example,

if

you

create

several

collaboration

templates

that

deal

with

office

supply

management,

you

can

create

a

subpackage

called

OfficeSupplyMgmt.

In

it,

you

can

put

the

PaperClipMgmt

collaboration

and

the

PencilInventory

collaboration.

If

you

specify

that

a

collaboration

template

is

part

of

a

package,

Process

Designer

Express

uses

the

package

name

to

create

a

subdirectory

in

your

Integration

Component

Library

project’s

Template\Classes

directory.

(During

deployment,

the

ProductDir\collaborations\classes\UserCollaborations

directory

is

created

to

store

the

package

information.)

The

product

installation

sets

the

CLASSPATH

environment

variable

to

include

all

collaborations

under

UserCollaborations

in

the

class

path.

Process

Designer

Express

places

a

collaboration

template’s

.class

and

.java

files

in

the

subdirectory.

To

specify

a

package

in

which

to

store

the

collaboration

template:

1.

Ensure

the

Template

Definitions

window

is

open,

and

the

General

tab

is

displayed.

2.

In

the

Package

field,

enter

the

name

of

the

package

in

which

to

store

the

collaboration

template.

When

you

specify

the

name

of

an

existing

package,

Process

Designer

Express

adds

the

collaboration

template

to

the

package.

When

you

specify

the

name

of

a

package

that

does

not

yet

exist,

Process

Designer

Express

creates

it.

3.

Click

Apply

to

save

the

changes.

You

can

revise

an

existing

collaboration

template

definition

to

add

or

change

a

package

name

at

any

time.

Declaring

and

editing

template

variables

(the

Declarations

tab)

The

Declarations

tab

of

the

Template

Definitions

window

displays

information

about

the

template

variables

of

the

collaboration

template.

Template

variables

are

collaboration

variables

whose

scope

is

all

scenarios

in

a

collaboration;

that

is,

a

template

variable

is

global

to

all

scenarios

in

a

collaboration.

(They

are

comparable

to

class

variables

in

the

Java

programming

language.)

For

example,

a

collaboration

that

involves

customer

transactions

can

have

a

customerID

template

variable

that

identifies

the

customer

across

all

scenarios.

You

can

create

or

modify

template

variables

at

any

time

during

development.

Figure

22

shows

the

Declarations

tab

within

the

Template

Definitions

window.

56

Collaboration

Development

Guide

Within

the

Declarations

tab,

you

can

do

any

of

the

following

tasks:

v

Specify

the

code

for

any

import

statements.

v

Type

the

declaration

text

for

user-defined

template

variables.

v

View

system-generated

template

variables

(note

that

you

cannot

edit

these).

Importing

Java

packages

You

can

use

the

Declarations

tab

to

import

specific

Java

classes

into

the

collaboration.

A

Java

class

imports

a

package

of

other

classes

to

gain

access

to

their

functions.

For

example,

a

class

imports

the

packages

java.math,

java.security,

and

java.text

to

use

their

arithmetic,

security,

and

internationalization

functions,

respectively.

Because

a

collaboration

template

is

a

class,

it

can

use

classes

or

groups

of

classes

(called

packages)

supplied

by

the

Java

Development

Kit

or

from

third-party

products.

All

Java

classes,

by

default,

implicitly

import

the

classes

in

the

package

java.lang.

In

addition,

Process

Designer

Express

implicitly

imports

the

classes

in

the

package

java.util

for

use

in

all

collaboration

templates.

The

following

import

statement

imports

the

java.math

classes

from

the

JDK.

(The

asterisk

indicates

to

import

all

classes

within

the

specified

package.):

java.math.*;

Alternatively,

the

following

statement

imports

just

the

package’s

BigDecimal

class:

java.math.BigDecimal;

You

can

add

import

statements

to

your

code

at

any

time

during

the

development

of

a

collaboration.

Figure

22.

Declarations

tab

of

the

Template

Definitions

window

Chapter

4.

Building

a

collaboration

template

57

To

import

Java

classes:

1.

Ensure

the

Template

Definitions

window

is

open

and

that

the

Declarations

tab

is

displayed.

2.

Place

the

cursor

in

left

heading

cell

of

the

import

table.

Right-click

and

select

Add,

as

shown

in

Figure

23.

A

new

row

is

added

to

the

table.

Note:

You

can

also

add

a

new

row

by

clicking

on

the

last

row

currently

in

the

table.

3.

Type

the

import

statement

in

the

Import

column.

For

example:

java.math.*

4.

Optionally,

enter

a

brief

description

of

the

import

statement

in

the

Comment

column.

5.

Click

Apply

to

save

the

changes.

6.

Repeat

step

2

through

step

5

to

add

additional

import

statements.

You

can

have

an

unlimited

number

of

import

statements

in

a

collaboration

template.

If

the

imported

classes

are

in

a

third-party

package

rather

than

in

the

JDK,

you

must

edit

the

ProductDir\bin\cwtools.cfg

file

[codeGeneration]

section

to

reflect

the

package

path

before

you

compile

your

template.

Before

you

deploy

a

collaboration

that

uses

classes

imported

from

a

third-party

package,

you

must

update

the

JCLASSES

variable

in

the

system

on

which

the

collaboration

is

deployed.

If

the

imported

classes

are

in

a

third-party

package

rather

than

in

the

JDK,

you

must

add

them

to

the

path

of

the

imported

classes

in

the

JCLASSES

variable.

IBM

recommends

that

you

use

some

mechanism

to

differentiate

those

classes

in

JCLASSES

that

are

standard

from

those

that

are

Figure

23.

Adding

an

import

statement

58

Collaboration

Development

Guide

custom.

For

example,

you

can

create

a

new

variable

to

hold

only

those

custom

classes

and

append

this

new

variable

to

JCLASSES,

as

follows:

1.

Place

the

CwMacroUtils.jar

file

in

its

own

directory.

For

example,

create

a

\dependencies

directory

below

the

product

directory

and

place

the

.jar

file

in

it.

2.

Edit

the

file

used

to

start

ICS

(by

default,

ProductDir\bin\start_server.bat

or

ProductDir/bin/CWSharedEnv.sh)

to

include

the

new

path

for

the

CWMacroUtils.jar

file.

Add

the

following

entry

to

the

file:

set

DEPENDENCIES=ProductDir/dependencies/CwMacroUtils.jar

where

ProductDir

is

the

location

in

which

InterChange

Server

Express

is

installed.

3.

Add

the

new

DEPENDENCIES

variable

to

the

JCLASSES

entry

as

follows,

depending

on

your

operating

system.

On

a

UNIX

system,

use

the

following

syntax,

where

ExistingJarFiles

represents

the

.jar

files

already

included

in

JCLASSES:

set

JCLASSES

=

$JCLASSES:ExistingJarFiles:$DEPENDENCIES

On

a

Windows

system,

use

the

following

syntax,

where

ExistingJarFiles

represents

the

.jar

files

already

included

in

JCLASSES::

set

JCLASSES

=

ExistingJarFiles;%DEPENDENCIES%

4.

In

each

collaboration

that

uses

the

classes,

include

the

PackageName.ClassName

specified

in

the

CwMacroUtils.jar

file.

5.

Restart

ICS

to

make

the

methods

available

to

the

collaborations.

When

importing

a

custom

class,

you

can

get

an

error

message

indicating

that

the

InterChange

Server

software

was

unable

to

find

the

custom

class.

If

this

occurs,

check

the

following:

v

Ensure

that

the

custom

class

is

part

of

a

package.

It

is

good

programming

practice

for

custom

classes

to

be

placed

in

a

package.

Make

sure

that

the

custom

class

code

includes

a

correct

package

statement

and

that

it

is

placed

at

the

beginning

of

the

source

file,

prior

to

any

class

or

interface

declarations.

v

Verify

that

the

import

statement

is

correct

in

the

collaboration

template.

The

import

statement

must

reference

the

correct

package

name;

it

can

further

specify

the

name

of

the

custom

class

or

it

can

reference

all

classes

in

the

package.

For

example,

if

your

package

name

is

COM.acme.graphics

and

the

custom

class

is

Rectangle,

you

can

import

the

entire

package:

COM.acme.graphics.*;

Or,

you

can

import

just

the

Rectangle

custom

class:

COM.acme.graphics.Rectangle;

v

Be

sure

that

you

have

updated

the

CLASSPATH

environment

variable

to

include

the

path

to

the

package

containing

the

custom

class,

or

to

the

custom

class

itself

if

it

is

not

in

a

package.

For

example,

when

importing

a

custom

class,

you

can

create

a

folder

called

ProductDir\lib\com\crossworlds\package,

where

ProductDir

is

the

location

in

which

InterChange

Server

Express

is

installed

and

package

is

the

name

of

your

package.

Then,

place

your

custom

class

file

under

the

folder

you

just

created.

Finally,

in

the

CLASSPATH

variable

in

the

start_server.bat

file,

include

the

path

ProductDir\lib.

Declaring

template

variables

You

can

also

use

the

Declarations

tab

to

declare

your

own

template

variables

that

are

used

by

the

collaboration.

Chapter

4.

Building

a

collaboration

template

59

To

use

a

variable,

you

must

first

declare

it

by

specifying

its

type

and

name.

A

variable

in

a

collaboration

template

can

be

one

of

the

following

data

types:

v

A

basic,

or

primitive,

data

type,

such

as

a

byte,

short,

int,

long,

float,

double,

char,

or

boolean

v

A

Java

class,

such

as

String

or

Integer

v

An

InterChange

Server-defined

class,

such

as

BusObj,

BusObjArray,

or

CollaborationException

v

A

class

that

you

define,

if

you

are

an

advanced

user

Note:

LongText

and

Date

are

product-specific

designations

for

special-purpose

strings

in

business

object

attributes.

Use

the

String

data

type

in

your

code

to

represent

a

variable

for

a

business

object

attribute

whose

type

is

LongText

or

Date.

To

declare

template

variables,

do

the

following:

1.

Ensure

the

Template

Definitions

window

is

open

and

the

Declarations

tab

is

displayed.

2.

Place

the

cursor

in

left

heading

cell

of

the

variable

table.

Right-click

and

select

Add.

A

new

row

is

added

to

the

table.

Note:

You

can

also

add

a

new

row

by

clicking

on

the

last

row

currently

in

the

table.

3.

Use

the

drop-down

menu

in

the

Type

column

to

specify

the

type

of

variable

you

want

to

declare.

4.

Specify

the

variable’s

name

in

the

Name

column.

5.

Specify

the

variable’s

initial

value

in

the

Initial

Value

column.

6.

Specify

any

modifiers

you

want

to

apply

to

the

variable

(for

example,

public,

private,

protected)

in

the

Modifier1,

Modifier2,

and

Modifier3

columns.

Note

that

you

do

not

have

to

specify

a

modifier

in

all

three

columns.

Note:

Do

not

use

the

modifier

Static

when

defining

template

variables.

7.

Click

Update

to

add

the

new

variable

to

the

list

of

declarations

at

the

top

of

the

tab,

and

then

click

Apply

to

save

the

changes.

You

can

declare

variables

whose

values

remain

persistent

across

multiple

invocations

of

a

collaboration.

Suppose

you

want

to

keep

a

counter

of

an

action

within

the

collaboration,

and

you

want

this

counter

to

be

incremented

with

each

separate

run

of

the

collaboration.

Use

the

variable

table

in

the

Declarations

tab

to

create

a

integer

variable

named

ctr

that

is

public.

Later,

within

the

collaboration

code

itself,

increment

the

counter:

ctr

=

ctr+1;

The

ctr

variable

increases

with

each

collaboration

execution.

Special

considerations

for

template

variables

used

with

long-lived

business

processes:

If

a

collaboration

is

to

be

deployed

as

a

long-lived

business

process,

ensure

that

all

variables

you

want

to

persist

are

defined

as

global

template

variables

or

global

port

variables.

In

addition,

ensure

that

those

variables

are

of

one

of

the

following

types:

60

Collaboration

Development

Guide

v

Java

serializable

data

types,

including

byte,

short,

int,

long,

float,

double,

char,

boolean,

string,

Integer,

or

any

user-defined

data

type

that

implements

the

Java

Serializable

or

Externalizable

interface

v

InterChange

Server

Express

BusObj

data

type

v

InterChange

Server

Express

BusObjArray

data

type

Variables

of

other

types

do

not

persist

in

a

long-lived

business

process.

System-generated

variables

Process

Designer

Express

automatically

declares

the

following

collaboration

variables:

v

Two

collaboration

variables

that

are

available

in

all

collaborations:

triggeringBusObj

and

currentException.

v

One

variable

for

each

port.

Table

17

lists

and

describes

these

system-generated

variables.

Table

17.

System-generated

variables

Variable

Description

triggeringBusObj

The

triggeringBusObj

variable

contains

the

flow

trigger

(triggering

event

or

triggering

access

call)

for

a

scenario.

The

flow

trigger

is

a

business

object

and

a

verb.

A

triggering

event

represents

an

application

event

and

its

data.

The

arrival

of

the

flow

trigger

starts

the

execution

of

a

scenario.

This

variable

is

a

template

variable;

that

is,

its

scope

is

the

entire

collaboration.

currentException

The

currentException

variable

contains

an

exception

object

raised

by

the

immediately

preceding

action,

subactivity,

or

iterator.

Process

Designer

Express

implicitly

declares

currentException,

whose

scope

is

the

action

that

immediately

follows

the

raising

of

an

exception.

A

scenario

must

check

the

value

of

currentException

on

the

transition

link

or

code

fragment

that

immediately

follows

the

activity

that

generated

the

exception.

Port

Variables

Process

Designer

Express

declares

a

template

variable

for

the

business

object

associated

with

each

port

in

the

collaboration.

These

generated

declarations

are

visible

under

the

Declarations

tab

of

the

Template

Definitions

window.

The

name

of

each

port

variable

is

the

name

of

the

port

with

BusObj

appended.

For

example,

if

the

port

name

is

SourceInvoice,

the

variable

name

is

SourceInvoiceBusObj.

The

declaration

also

instantiates

a

BusObj

of

the

same

type

for

which

the

port

is

defined.

It

initially

sets

the

attributes

of

the

business

object

to

null.

You

can

use

these

port

variables

to

handle

the

triggering

event.

For

more

information

on

this,

refer

to

“Copying

the

triggering

event”

on

page

159.

Defining

collaboration

configuration

properties

(the

Properties

tab)

Collaboration

templates

have

two

types

of

configuration

properties:

v

Standard

properties

provide

information

that

all

collaborations

need,

such

as

tracing

level

and

an

email

address

for

message

notifications.

All

collaborations

have

the

same

standard

configuration

properties,

which

are

defined

by

InterChange

Server

Express.

v

Collaboration-specific

properties

are

optional;

they

are

defined

by

a

collaboration

developer.

The

collaboration

uses

the

value

of

the

property

to

determine

an

aspect

of

its

behavior.

Properties

can

be

any

of

the

following

types:

Chapter

4.

Building

a

collaboration

template

61

–

Date

–

Double

–

Float

–

Integer

–

Boolean

–

String

–

Time

–

URL

An

administrator

works

with

both

types

of

properties

when

configuring

a

collaboration.

As

a

collaboration

developer,

you

decide

whether

a

collaboration

needs

collaboration-specific

configuration

properties.

If

it

does,

you

define

their

names

and

default

values.

These

configuration

properties

enable

a

collaboration

user

to

specify

data

that

influences

how

the

collaboration

behaves.

Table

18

provides

some

examples

of

the

types

of

properties

you

can

create.

Table

18.

Examples

of

collaboration-specific

configuration

properties

Type

of

property

Example

A

value

that

the

collaboration

uses

to

set

the

value

of

an

attribute.

A

collaboration

can

request

an

application

to

generate

invoices

for

customers.

The

collaboration

can

set

the

value

of

a

Rate

attribute

in

an

Invoice

business

object.

If

the

collaboration

has

a

property

called

BILLING_RATE,

an

administrator

can

raise

or

lower

the

rate

based

on

the

current

business

practice.

Value

of

true

or

false,

which

determines

whether

the

collaboration

takes

a

particular

execution

path.

InterChange

Server

Express

collaborations

that

synchronize

changes

to

entities

across

applications

generally

have

a

property

called

CONVERT_CREATE.

When

the

collaboration

receives

an

Update

event,

it

checks

the

destination

application

for

the

entity

to

be

updated.

If

the

entity

does

not

exist,

the

collaboration

checks

the

value

of

the

CONVERT_CREATE

property.

If

the

property

is

set

to

true,

the

collaboration

converts

the

Update

request

to

a

Create

request.

The

use

of

collaboration-specific

configuration

properties

is

optional,

and

you

can

use

an

unlimited

number

of

them

in

a

template.

You

can

add

these

properties

at

any

time

during

development.

If

you

know

at

the

outset

the

properties

that

the

collaboration

needs,

you

can

create

them

before

modeling

scenarios.

However,

when

you

are

in

the

midst

of

scenario

modeling,

you

can

define

additional

properties

to

support

the

collaboration’s

logic.

To

create

a

collaboration-specific

configuration

property

for

the

collaboration

template:

1.

Ensure

the

Template

Definitions

window

is

open

and

that

the

Properties

tab

is

displayed.

62

Collaboration

Development

Guide

2.

Click

the

Add

button

to

create

a

configuration

property.

The

Name

dialog

box

opens.

3.

Type

the

property’s

name

in

the

Name

field,

and

then

click

OK.

Note:

By

convention,

configuration

property

names

are

uppercase

and

use

underscores

to

separate

words.

IBM

recommends

that

configuration

property

names

clearly

communicate

the

purpose

or

function

of

the

property,

because

administrators

need

to

read

and

understand

each

property.

4.

Use

the

Property

Type

drop-down

menu

to

select

the

property’s

type.

5.

If

desired,

provide

a

description

of

the

new

property

in

the

Description

field.

6.

If

the

property

type

is

a

string,

specify

a

value

in

the

Max

Length

field.

7.

Optionally,

use

the

Max

Multiple

Values

field

to

specify

the

maximum

number

of

multiple

values

accepted

for

the

property.

Note

that

the

number

you

specify

in

this

field

also

limits

the

number

of

default

values

the

property

can

have.

For

example,

if

you

set

Max

Multiple

Values

to

2,

you

can

have

only

two

default

values

for

the

property,

regardless

of

how

many

possible

values

are

associated

with

the

property.

If

you

do

not

specify

a

value

in

this

field,

the

default

is

1.

Note:

The

Max

Multiple

Values

attribute

of

a

collaboration-specific

property

is

not

often

used.

Most

collaboration-specific

properties

accept

only

a

single

value.

8.

Click

Add

in

the

Value

pane.

A

new

row

is

added

to

the

table,

and

the

Property

Value

dialog

box

opens.

9.

Enter

a

value

in

the

Value

field,

or

specify

a

range

of

values

in

the

Range

From

field,

and

then

click

OK.

The

dialog

box

closes

and

the

Value

column

is

populated

with

the

information.

Figure

24.

Adding

collaboration-specific

properties

Chapter

4.

Building

a

collaboration

template

63

10.

If

the

value

is

a

default

value,

click

the

checkbox

in

the

IsDefaultValue

column.

11.

Repeat

step

8

on

page

63

through

step

10

for

each

value

you

want

to

add

to

the

property

definition.

12.

Click

Update.

13.

Repeat

step

2

through

step

12

to

add

as

many

configuration

properties

as

you

need.

14.

When

you

are

finished

adding

configuration

properties,

click

Apply

to

save

the

changes.

To

delete

a

collaboration-specific

configuration

property,

select

the

name

of

the

property

from

the

list

in

the

left

pane

of

the

tab,

then

click

Delete.

Adding

properties

to

support

long-lived

business

processes

If

you

want

to

support

long-lived

business

processes

(LLBP)

with

dynamic

service

call

timeout

values,

you

can

use

either

a

Java

variable

or

a

collaboration-specific

property.

If

you

want

to

use

a

collaboration-specific

property,

you

must

create

it

when

defining

the

collaboration

template.

The

use

of

collaboration-specific

properties

enables

the

timeout

value

to

be

set

during

runtime,

rather

than

using

a

static

value

provided

during

the

initial

creation

of

the

service

call.

Use

an

integer

data

type

when

creating

properties

for

dynamic

timeout

values.

For

example,

if

you

plan

to

have

a

service

call

from

the

To

port

that

sends

a

business

object

with

a

create

request,

you

can

define

a

collaboration

property

called

CreateTimeout.

When

you

define

the

service

call,

use

the

CreateTimeout

property

to

specify

the

point

at

which

that

service

call

times

out.

For

details

on

creating

service

calls,

see

“Service

calls”

on

page

89.

Note

that

you

can

also

used

a

fixed

timeout

value

that

is

specified

during

the

creation

and

definition

of

a

service

call;

in

this

situation,

no

collaboration

property

is

needed.

See

“Defining

the

service

call

type”

on

page

92.

Defining

ports

and

triggering

events

(the

Ports

and

Triggering

Events

tab)

The

Ports

and

Triggering

Events

tab

of

the

Template

Definitions

window

displays

information

about

the

following:

v

The

ports

for

the

collaboration

In

a

collaboration

template,

a

port

is

a

variable

that

represents

a

business

object

that

the

collaboration

object

receives

or

produces

at

runtime.

v

The

triggering

event

for

the

collaboration

A

business

object

represents

the

triggering

event

or

action.

When

a

collaboration

receives

a

business

object

from

a

connector,

it

usually

responds

with

an

action.

These

received

business

objects

are

referred

to

as

triggers

or

triggering

events.

Note:

The

general

term

for

a

business

object

that

a

collaboration

receives

is

a

flow

trigger.

When

a

collaboration

receives

a

business

object

from

a

connector,

this

flow

trigger

is

a

triggering

event.

When

a

collaboration

receives

a

business

object

from

an

access

client,

this

business

object

is

referred

to

as

a

triggering

access

call.

A

port

whose

business

object

is

associated

with

a

triggering

access

call

is

defined

in

the

same

manner

as

one

associated

with

a

triggering

event.

For

detailed

information

on

using

the

Ports

and

Triggering

Events

tab

to

define

a

triggering

event,

see

“Assigning

triggering

events

to

scenarios”

on

page

67.

64

Collaboration

Development

Guide

When

a

collaboration

completes

an

operation,

it

usually

sends

a

business

object

to

the

connector

that

initiated

the

action.

Thus,

InterChange

Server

Express

often

refers

to

ports

in

terms

of

triggering

or

sending

events.

Note:

If

you

add,

modify,

or

delete

a

business

object

to

or

from

the

repository

using

Business

Object

Designer

or

System

Manager,

InterChange

Server

dynamically

updates

the

list

of

business

object

definitions

displayed

in

Process

Designer

Express.

You

do

not

have

to

restart

InterChange

Server

or

Process

Designer

Express

to

see

the

results

of

dynamic

changes

in

the

business-object

field

of

the

Ports

and

Triggering

Events

table

of

the

Template

Definitions

window.

Important

IBM

recommends

use

of

this

dynamic

update

feature

only

in

a

development

environment.

Possible

complications

can

result

from

updating

a

business

object.

Dynamic

update

can

impact

other

functionality

in

the

system,

including

how

to

process

any

events

that

use

the

old

business

object

definition

and

how

to

resubmit

unresolved

flows

that

were

originally

submitted

on

the

old

business

object

definition.

These

and

other

scenarios

can

cause

a

mismatch

between

the

business

object

definitions

being

processed

and

the

business

object

definitions

in

memory.

Therefore,

in

the

production

system,

IBM

recommends

that

you

perform

updates

to

business

object

definitions

only

when

no

events

are

being

processed

on

the

system.

For

more

discussion

of

collaboration

ports,

refer

to

the

chapter

on

collaborations

in

the

Technical

Introduction

to

IBM

WebSphere

InterChange

Server.

Creating

a

port

To

create

a

port,

do

the

following:

1.

Ensure

the

Template

Definitions

window

is

open

and

the

Ports

and

Triggering

Events

tab

is

displayed.

At

the

top

of

the

window

is

a

table

that

contains

port

names,

business

object

types,

and

verbs.

The

table

is

empty

if

you

have

not

yet

created

a

port

for

this

collaboration

template.

2.

Click

Add

Port

to

add

a

new

port

to

the

Ports

table.

3.

Enter

the

port

name

in

the

Port

column

of

the

table.

Follow

these

guidelines

for

defining

a

name

for

a

port:

v

Begin

the

name

with

an

alphabetic

character

and

use

only

alphanumeric

characters

and

the

underscore

symbol

in

the

name.

v

Although

port

names

are

not

case-sensitive,

you

must

always

refer

to

the

port

name

using

the

case

in

which

you

defined

it.

v

In

general,

it

is

useful

to

assign

port

names

that

help

you

remember

the

port’s

purpose.

You

use

the

port

names

throughout

the

development

process,

self-explanatory

port

names

make

the

development

effort

easier.

v

Collaboration

developers

often

create

a

port

name

by

combining

the

business

object

type

and

its

role

designation,

such

as

“In”

and

“Out”

or

“Source”

and

“Destination.”

For

example,

you

can

call

a

port

SourceCase

to

indicate

that

it

is

the

port

to

the

source

application

and

that

it

is

configured

for

Case

business

objects.
4.

Select

the

port’s

type

from

the

drop-down

list

in

the

BO

Type

column.

This

is

the

type

of

business

object

definition

that

this

port

supports.

Chapter

4.

Building

a

collaboration

template

65

5.

Click

Apply

to

save

changes.

Note:

In

some

cases,

not

all

ports

in

a

collaboration

object

are

needed;

in

this

situation

you

must

configure

the

collaboration

logic

to

prevent

the

execution

of

service

calls

to

the

unused

port

or

ports.

Because

InterChange

Server

Express

requires

that

all

collaboration

ports

be

bound,

you

must

also

bind

the

unused

port

or

ports

to

a

Port

connector.

A

Port

connector

is

a

generic

connector

definition

that

is

used

to

close

an

unused

port.

Note

that

the

Port

connector

must

be

used

in

conjunction

with

the

correct

collaboration

logic;

any

service

call

sent

to

a

port

bound

to

a

Port

connector

blocks

the

collaboration

thread.

Changing

a

port

name

To

change

the

name

of

a

port,

you

must

delete

and

re-create

the

port

using

the

new

name;

you

cannot

simply

edit

its

name.

Do

the

following

to

rename

a

port:

1.

Select

the

port

in

the

table

on

the

Ports

and

Triggering

Events

tab.

2.

Click

Delete

Port.

3.

Follow

the

instructions

in

“Creating

a

port”

on

page

65

to

create

a

port

with

the

new

name.

Table

19

summarizes

what

happens

when

you

delete

and

re-create

a

port.

Table

19.

Result

of

changing

a

port

name

What

Process

Designer

Express

does

What

you

must

do

The

system-generated

template

variable

that

uses

the

port

name

changes.

If

you

have

code

that

uses

the

variable

declared

with

the

old

port

name,

change

the

variable

name

in

the

code.

Find

all

action

nodes

and

service

calls

in

which

the

variable

declared

with

the

old

port

name

appears.

The

compiler

catches

any

remaining

incorrect

names.

The

assignment

of

flow

triggers

(triggering

events

or

triggering

access

calls)

is

deleted.

Reassign

the

flow

triggers.

See

“Compiling

a

collaboration

template”

on

page

71.

Defining

scenarios

A

scenario

is

the

collaboration

template

code

that

handles

a

particular

incoming

business

object

or

set

of

business

object.

This

business

object

can

represent

an

event

(from

a

connector)

or

an

access

call

(from

an

access

client).

You

can

think

of

a

scenario

as

an

event-handling

method

of

your

collaboration

template

class.

Activity

diagrams

contain

the

code

specifying

how

to

handle

the

event.

About

scenarios

You

use

scenarios

to

partition

the

business

problem

that

a

collaboration

solves.

You

can

group

all

the

logic

of

the

collaboration

into

a

single

scenario

or

you

can

create

several

scenarios,

each

dealing

with

one

aspect

of

the

problem.

Grouping

all

collaboration

logic

into

a

single

scenario

is

analogous

to

a

program

that

contains

all

of

its

logic

in

a

main()

function,

while

using

multiple

scenarios

is

analogous

to

a

program

that

is

structured

into

separate

functions.

You

typically

name

scenarios

according

to

the

function

they

perform.

When

a

collaboration

contains

multiple

scenarios,

each

of

which

handles

one

type

of

business

object,

consider

naming

each

scenario

according

to

the

business

object

66

Collaboration

Development

Guide

that

it

handles.

For

example,

if

the

collaboration

handles

one

type

of

business

object

with

different

possible

verbs,

you

can

develop

Create,

Update,

and

Delete

scenarios.

If

the

collaboration

handles

different

types

of

business

objects,

you

can

develop

a

scenario

for

each

business

object

definition.

A

scenario

handles

only

one

triggering

flow

(triggering

event

or

triggering

access

call)

with

each

execution.

However,

the

same

scenario

can

potentially

handle

a

set

of

possible

triggering

flows.

For

example,

the

same

scenario

can

handle

a

Create,

Update,

or

Delete

flow.

In

general,

when

identical

logic

handles

different

types

of

business

object,

it

is

more

efficient

to

use

a

single

scenario

for

those

business

objects.

This

eliminates

the

need

to

test

and

debug

multiple

pieces

of

code.

Note:

A

scenario

cannot

pass

control

to

another

scenario

in

the

same

collaboration.

If

your

preliminary

plans

for

partitioning

the

collaboration

logic

indicate

that

one

scenario

must

call

another,

put

all

of

the

collaboration

logic

into

the

same

scenario.

Within

the

scenario,

design

is

very

flexible.

Alternatively,

you

can

create

a

collaboration

group,

dividing

the

logic

among

collaborations

in

the

group.

Creating

a

scenario

Perform

the

following

steps

to

create

a

new

scenario:

1.

From

within

Process

Designer

Express,

click

Template

—>

New

Scenario.

The

Create

Scenario

dialog

box

is

displayed.

2.

Type

the

scenario’s

name

in

the

Scenario

Name

field.

The

name

is

a

string

that

can

contain

alphanumeric

characters

and

underscores.

If

the

scenario

handles

events

with

a

particular

verb,

it

can

be

useful

to

include

the

verb

in

the

scenario

name.

3.

Optionally,

enter

a

description

in

the

Description

field.

4.

Click

OK.

In

the

template

tree

view,

the

name

of

the

new

scenario

displays

in

the

scenario

tree.

In

addition,

the

diagram

editor

opens

in

the

main

window.

5.

You

must

assign

at

least

one

flow

trigger

to

a

scenario.

Failure

to

assign

the

flow

trigger

causes

a

runtime

error.

For

instructions

on

assigning

triggering

events

to

your

new

scenario

definition,

see

“Assigning

triggering

events

to

scenarios.”

Assigning

triggering

events

to

scenarios

You

assign

a

triggering

event

to

a

scenario

in

the

Ports

and

Triggering

Events

table

of

the

Ports

and

Triggering

Events

tab.

For

each

scenario

that

you

create,

you

must

assign

its

triggering

event.

The

triggering

event

is

represented

by

a

business

object

and

a

verb.

Note:

The

general

term

for

the

incoming

business

object

and

verb

that

a

scenario

receives

is

a

“flow

trigger”.

If

the

flow

trigger

originates

from

a

connector,

it

is

called

a

triggering

event.

If

the

flow

trigger

originates

from

an

access

client,

it

is

a

triggering

access

method.

The

Ports

and

Triggering

Events

tab

enables

you

to

assign

a

flow

trigger

to

a

scenario,

regardless

of

whether

it

is

a

triggering

event

or

a

triggering

access

method.

This

section

uses

the

terms

“triggering

event”

and

“event”

because

flow

triggers

received

from

connectors

are

by

far

the

most

common.

Chapter

4.

Building

a

collaboration

template

67

A

collaboration’s

port

definitions

specify

the

types

of

business

objects

that

the

collaboration

can

send

and

receive.

After

defining

the

collaboration’s

ports

and

scenarios,

you

must

specify:

v

The

port

or

ports

through

which

triggering

events

enter

and

exit

In

the

Ports

and

Triggering

Events

tab,

choose

the

row

in

the

table

that

corresponds

to

the

port

name

through

which

the

triggering

event

enters

and

the

business

object

name

that

represents

the

event.

v

The

object

that

triggers

the

collaboration’s

execution

The

flow

trigger

is

represented

by

the

port

business

object

and

a

verb

(business-object.verb

combinations).

In

the

row

of

the

port

and

business

object

for

which

you

are

defining

flow

triggers,

you

specify

the

flow

trigger

by

choosing

its

verb.

v

The

scenario

that

handles

each

flow

trigger

Figure

25

illustrates

these

associations

in

a

collaboration

template

whose

port,

From,

supports

business

object

type

Widget.

The

Create

scenario

handles

triggering

event

Widget.Create

and

the

Delete

scenario

handles

triggering

event

Widget.Delete.

Specify

the

scenario

for

each

flow

trigger

as

follows:

1.

Ensure

the

Template

Definitions

window

is

open

and

that

the

Ports

and

Triggering

Events

tab

is

displayed.

2.

In

the

Ports

and

Triggering

Events

table,

locate

the

row

that

represents

the

port

from

which

the

flow

trigger

arrives,

and

the

business

object

that

represents

the

flow

trigger.

3.

In

that

row,

click

the

drop-down

list

in

the

Create

column.

The

list

contains

all

of

the

scenarios

defined

for

the

template;

select

the

scenario

you

want.

4.

Repeat

step

2

and

step

3

for

each

port,

business

object,

and

verb

whose

flow

trigger

you

want

to

assign.

5.

After

you

have

finished

assigning

triggering

events,

click

Apply

to

save

the

assignments.

Supported
Business

Object
Definition:

Widget

Create
Scenario

π
Widg et.Delete

π
Widg et.Create

From To

Delete
Scenario

Collaboration Object

Figure

25.

Relationship

of

port,

triggering

event,

and

scenario

68

Collaboration

Development

Guide

Defining

scenario

variables

After

the

scenario

has

been

created,

you

can

add

scenario-specific

variables

in

the

Scenario

Definitions

dialog

box

(see

Figure

26).

Scenario

variables

are

collaboration

variables

whose

scope

is

all

actions

and

links

in

a

single

scenario.

(They

are

comparable

to

class

variables

in

the

Java

programming

language.)

You

can

set

scenario

variables

at

any

time

during

the

collaboration

template

development

process.

To

add

variables

to

the

scenario

definition,

do

the

following:

1.

Open

the

Scenario

Definitions

dialog

box

by

doing

one

of

the

following:

v

Select

a

scenario

in

the

template

tree

view

and

click

Template

—>

Open

Scenario

Definition.

v

Select

a

scenario

in

the

template

tree

view

and

right-click

to

bring

up

the

context

menu.

From

the

context

menu,

click

Open

Scenario

Definition.

v

From

an

activity

diagram

in

the

diagram

editor,

right-click

to

bring

up

the

context

menu.

From

the

context

menu,

click

Open

Scenario

Definition.
2.

Right-click

the

left

heading

cell

of

the

variable

table,

and

then

click

Add

from

the

context

menu.

A

new

row

appears

in

the

table.

Note:

You

can

also

add

a

new

row

by

clicking

on

the

last

row

currently

in

the

table.

3.

Use

the

drop-down

list

in

the

Type

column

to

specify

the

type

of

variable

you

want

to

declare.

4.

Specify

the

variable’s

name

in

the

Name

column.

5.

Specify

the

variable’s

initial

value

in

the

Initial

Value

column.

Figure

26.

Scenario

Definitions

dialog

box

Chapter

4.

Building

a

collaboration

template

69

6.

Specify

any

modifiers

you

want

to

apply

to

the

variable

(for

example,

transient,

private,

protected)

in

the

Modifier1,

Modifier2,

and

Modifier3

columns.

Note

that

you

do

not

have

to

specify

a

modifier

in

all

three

columns.

Note:

Do

not

include

the

keywords

public

and

static

in

the

declaration

of

a

scenario

variable.

7.

Click

Update

to

add

the

new

variable

to

the

list

of

declarations

at

the

top

of

the

tab,

and

then

click

Apply

to

save

the

changes.

Special

considerations

for

scenario

variables

in

a

long-lived

business

processes

Scenario

variables

do

not

persist

automatically

as

part

of

the

event

flow

context

of

a

long-lived

business

process.

If

you

want

to

use

scenario

variables

within

a

long-lived

business

process

collaboration,

you

must

manually

set

the

variable

to

null

before

the

service

call,

and

then

re-initialize

the

variable

after

the

service

call

completes.

These

tasks

are

done

in

the

action

node

that

makes

the

service

call.

In

the

following

example,

a

scenario

variable

called

poolName

is

set

to

null

in

the

action

node

before

the

service

call

takes

place:

String

poolName;

poolName

=

null;

After

the

service

call

completes,

poolName

is

re-initialized

in

the

action

node,

as

follows:

poolName

=

getConfigProperty("Pool_A");

Deleting

a

scenario

You

can

use

Process

Designer

Express

to

delete

scenarios.

Deletion

of

scenarios

cannot

be

undone.

To

delete

a

scenario

definition,

do

the

following:

1.

From

the

template

tree

view,

select

the

scenario

you

want

to

delete.

2.

Click

Template

—>

Delete

Scenario.

A

dialog

box

appears

to

confirm

the

deletion.

3.

Click

Yes

to

delete

the

scenario.

Creating

an

activity

diagram

Each

scenario

must

have

an

activity

diagram.

An

activity

diagram

uses

Unified

Modified

Language

(UML)

to

model

the

business

process

of

the

collaboration.

UML

represents

the

steps

and

decisions

of

the

business

process.

You

create

an

activity

diagram

in

the

diagram

editor

of

Process

Designer

Express.

For

detailed

instructions

on

creating

an

activity

diagram,

see

Chapter

5,

“Using

activity

diagrams,”

on

page

75.

Creating

the

message

file

Part

of

the

process

of

creating

a

collaboration

template

is

defining

its

messages.

The

collaboration

runtime

environment

uses

the

contents

of

the

message

file

as

the

text

for

logging,

tracing,

and

exception

messages.

Process

Designer

Express

provides

the

Template

Messages

view

to

facilitate

message

creation.

The

message

text

specified

is

stored

as

part

of

the

collaboration

70

Collaboration

Development

Guide

template.

When

you

compile

and

deploy

the

template,

Process

Designer

Express

extracts

the

message

content

and

creates

or

updates

the

message

file

for

runtime

use.

For

detailed

instructions

on

creating

a

message

file,

see

Chapter

10,

“Creating

a

message

file,”

on

page

183.

Compiling

a

collaboration

template

The

final

task

required

to

build

a

collaboration

template

is

compiling

the

template.

After

you

define

the

template

properties,

scenarios,

activity

diagrams,

and

message

file,

you

must

compile

the

collaboration

template.

The

following

files

are

created

during

compilation:

v

Java

source

file

(CollaborationName.java)

v

Executable

file

(CollaborationName.class)

v

Message

text

file

(CollaborationName.txt)

After

the

template

is

compiled

in

Process

Designer

Express,

these

files

are

created

in

your

Integration

Component

Library

user

project

in

System

Manager.

(For

exact

locations,

see

“Compiling

a

collaboration

template”

on

page

6.)

Process

Designer

Express

offers

two

ways

to

compile

collaboration

templates:

v

“Compiling

a

single

template”

v

“Compiling

multiple

collaboration

templates”

Compiling

a

single

template

There

are

several

ways

to

initiate

compilation

of

a

single

collaboration

template:

v

From

within

Process

Designer

Express,

click

File

—>

Compile.

v

Select

the

template’s

name

in

the

template

tree

view

and

right-click

to

bring

up

the

context

menu,

and

then

click

Compile

Template.

v

Use

the

Ctrl+F7

keyboard

shortcut.

If

the

Compile

Output

window

is

not

already

open,

Process

Designer

Express

opens

it

at

the

bottom

of

the

main

window

to

display

compilation

messages.

If

an

error

occurs

during

compilation,

do

the

following:

1.

Trace

the

error

by

double-clicking

the

error

message

in

the

output

window.

The

activity

diagram

whose

code

generated

the

compilation

error

appears,

with

the

faulty

node

selected.

2.

Fix

the

problem

and

recompile.

Repeat

this

process

until

you

get

the

message:

Code

Generator:

Code

generation

succeeded.

Compiling

multiple

collaboration

templates

The

Process

Designer

Express

File

menu

includes

a

Compile

All

menu

option

that

enables

you

to

compile

all

(or

a

subset)

of

the

collaboration

templates

in

your

Integration

Component

Library

user

project.

Perform

the

following

steps

to

compile

multiple

templates:

1.

If

you

have

a

template

open

in

Process

Designer

Express,

close

it

now.

2.

Click

File

—>

Compile

All.

The

Compile

All

Templates

dialog

box

opens.

It

displays

a

grid

of

all

templates

in

the

user

project.

By

default,

all

templates

are

selected

for

compilation.

Chapter

4.

Building

a

collaboration

template

71

3.

Clear

the

checkboxes

next

to

any

templates

you

do

not

want

to

compile.

4.

Click

Continue.

5.

When

you

are

prompted

to

confirm

the

compilation,

click

Yes.

Converting

templates

Process

Designer

Express

provides

the

following

conversion

functionality:

v

Import—Process

Designer

Express

can

import

Business

Process

Execution

Language

(BPEL)

and

Unified

Modeling

Language

(UML

in

XMI

1.1)

files

for

use

as

a

collaboration

template.

See

“Importing

files.”

v

Export—Process

Designer

Express

can

export

your

collaboration

template

to

BPEL

or

UML

(in

XMI

1.1)

format.

See

“Exporting

a

collaboration

template.”

Importing

files

Process

Designer

Express

can

import

BPEL

and

UML

(in

XMI

1.1)

files

for

use

in

a

collaboration

template.

Use

the

information

in

these

files

to

create

a

new

template

definition.

Perform

the

following

tasks

to

create

a

new

collaboration

template

based

on

existing

BPEL

or

UML

(in

XMI

1.1)

files:

1.

Ensure

Process

Designer

Express

is

open.

2.

Click

File

—>

Import.

The

Process

Designer

Express

Importer

opens.

3.

Select

the

file

type

you

want

to

import,

and

then

click

Next.

4.

Select

the

location

of

the

BPEL

or

UML

source

file

or

files.

5.

Select

the

file

or

files

you

want

to

import.

Note:

If

you

are

planning

to

use

BPEL

files,

you

must

import

all

three

of

the

.bpel,

.wsdl,

and

.bpelGUI.xml

files.

Use

the

Ctrl

key

to

select

all

three

files

for

import.

6.

Click

Next

to

begin

the

import

process.

After

the

import

is

complete,

the

New

Template

dialog

box

opens.

7.

Select

the

name

of

the

user

project

the

template

belongs

to

in

the

Project

field.

8.

Type

the

name

of

the

template

you

are

creating

in

the

Template

Name

field.

A

template

name

can

include

alphabetic

characters,

numbers,

and

underscores.

9.

Click

OK.

Process

Designer

Express

creates

the

new

collaboration

template

and

populates

it

with

all

of

the

information

contained

in

the

source

BPEL

or

UML

files.

Exporting

a

collaboration

template

You

can

export

your

collaboration

template

into

BPEL

or

UML

(in

XMI

1.1)

format

for

use

in

other

applications.

When

a

InterChange

Server

Express

collaboration

template

is

exported

to

BPEL

format,

the

following

files

are

created:

v

*.bpel—This

file

contains

the

main

template

information.

v

*.wsdl—This

file

contains

information

about

the

external

interface.

v

*.bpelGUI.xml—This

file

contains

information

about

the

graphical

representation

of

activity

diagrams.

It

is

used

in

situations

where

BPEL

files

are

imported

back

into

InterChange

Server

Express.

When

a

collaboration

template

is

exported

to

UML

(in

XMI

1.1),

a

*.xmi

file

is

created.

72

Collaboration

Development

Guide

Perform

the

following

steps

to

export

a

InterChange

Server

Express

collaboration

template:

1.

Ensure

that

Process

Designer

Express

is

open

and

that

your

collaboration

template

has

been

saved

and

has

compiled

without

error.

2.

Click

File

—>

Export.

The

Process

Designer

Express

Exporter

opens.

3.

Select

the

format

to

which

you

want

to

export

your

template,

and

then

click

Next.

4.

Select

the

location

in

which

you

want

to

save

the

exported

template

file

or

files.

5.

In

the

File

Name

field,

specify

the

name

for

the

exported

template

file.

If

you

are

exporting

to

BPEL,

do

not

specify

a

file

extension

in

the

File

Name

field.

6.

Click

Next

to

begin

the

export

process.

The

Process

Designer

Express

Exporter

dialog

shows

the

progress

of

the

conversion.

7.

Click

Close

when

the

export

process

has

finished.

Deleting

a

collaboration

template

Important

Do

not

delete

a

collaboration

template

that

has

collaboration

objects

associated

with

it,

unless

you

plan

to

delete

those

collaboration

objects.

Deleting

a

collaboration

template

renders

all

objects

built

from

that

template

unusable.

(For

instructions

on

deleting

collaboration

objects,

and

then

deleting

the

collaboration

template

in

System

Manager,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.)

Use

Process

Designer

Express

to

delete

a

collaboration

template

that

does

not

have

a

collaboration

object

built

from

it.

To

delete

a

template,

do

the

following:

1.

Open

Process

Designer

Express

and

ensure

that

System

Manager

is

running.

2.

Click

File

—>

Delete.

Process

Designer

Express

displays

the

Delete

Template

from

Project

‘ProjectName’

dialog

box.

3.

From

the

Project

drop-down

list,

select

the

name

of

the

project

that

contains

the

template

you

want

to

delete.

4.

From

the

list

of

collaboration

templates,

select

the

name

of

the

template

you

want

to

delete,

and

then

click

OK.

5.

The

tool

prompts

you

to

confirm

the

deletion.

Click

Yes.

Testing

a

collaboration

After

you

have

built

and

successfully

compiled

a

collaboration

template,

you

can

test

its

design.

To

verify

that

your

collaboration

works

as

planned,

you

must

create

a

collaboration

object

and

use

the

Test

Connector

tool

to

test

the

collaboration

object’s

functionality.

The

Test

Connector,

which

is

part

of

the

InterChange

Server

Express

Testing

Environment,

simulates

an

actual

connector.

Use

the

Test

Connector

to

send

events

and

responses

to

collaborations.

It

enables

you

to

set

up

business

objects

and

triggering

events

that

test

the

functionality

of

a

collaboration.

If

the

collaboration

you

are

testing

has

a

port

to

one

connector,

then

you

open

one

instance

of

the

Test

Connector.

If

the

collaboration

uses

an

incoming

port

from

one

connector

and

another

port

to

a

different

connector,

then

you

open

two

instances

of

the

Test

Connector,

one

for

each

connector.

Chapter

4.

Building

a

collaboration

template

73

From

the

Test

Connector

menus,

you

designate

the

configuration

file

and

the

definition

of

the

connector

to

be

emulated.

You

set

up

values

for

the

selected

business

objects,

then

send

and

receive

the

business

object.

For

detailed

information

on

using

the

Integrated

Testing

Environment

and

Test

Connector,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

74

Collaboration

Development

Guide

Chapter

5.

Using

activity

diagrams

This

chapter

shows

how

to

use

Process

Designer

Express

to

edit

an

activity

diagram.

An

activity

diagram

defines

the

control

flow

of

that

particular

part

of

a

collaboration;

it

is

created

automatically

when

you

create

a

scenario.

The

diagram

is

a

set

of

steps

that

execute

in

a

specified

order.

An

activity

diagram

contains

symbols

that

specify

the

steps,

the

order

of

the

steps,

and

the

logic

that

determines

how

they

execute.

For

information

on

laying

out

and

viewing

the

workspace,

refer

to

Chapter

8,

“Workspace

and

layout

options,”

on

page

139.

To

edit

an

activity

diagram

for

a

scenario,

do

the

following

tasks:

1.

Display

the

diagram

editor

in

the

Working

Area.

You

can

bring

up

the

diagram

editor

in

either

of

the

following

ways:

v

Select

a

scenario

name

or

diagram

name

in

the

template

tree

view

and

choose

the

Open

Diagram

option

from

the

Template

pull-down

menu.

v

Select

a

scenario

name

or

diagram

name

in

the

template

tree

view

and

right-click

to

bring

up

the

context

menu.

From

the

context

menu,

choose

Open

Diagram.

v

Double-click

the

scenario

name.

Process

Designer

Express

displays

the

diagram

editor

with

the

activity

diagram

for

the

selected

scenario.

2.

Edit

the

activity

diagram

in

the

diagram

editor,

using

the

symbols

provided

in

the

Symbols

toolbar.

3.

Save

the

activity

diagram

with

the

Save

option

of

the

File

menu,

or

use

the

shortcut

key

combination

Ctrl+S.

Using

the

diagram

editor

functionality

You

can

access

the

diagram

editor’s

functionality

in

either

of

the

following

ways:

v

Toolbars

v

Mouse

movements

on

symbols

in

the

activity

diagram

Accessing

diagram

editor

functionality:

Process

Designer

Express

menus

Process

Designer

Express

has

pull-down

menus

from

which

you

initiate

many

of

the

diagram-related

operations.

There

are

keystroke

shortcuts

and

context

menus

for

some

of

these

functions.

For

detailed

information

about

these

menus,

see

“Process

Designer

Express

menus”

on

page

20.

Accessing

diagram

editor

functionality:

Mouse

movements

The

diagram

editor

recognizes

the

following

mouse

movements:

v

Click

the

left

mouse

button

to

select

a

component

or

symbol

in

an

activity

diagram.

The

diagram

editor

surrounds

the

symbol

with

grey

anchor

squares,

called

the

selection

border,

to

indicate

that

the

symbol

is

selected.

To

deselect

the

symbol,

click

elsewhere

in

the

workspace.

©

Copyright

IBM

Corp.

2003

75

v

Click

the

right

mouse

button

to

select

and

bring

up

a

context

menu

for

the

symbol.

The

context

menu

contains

the

following

options:

–

Properties—Displays

the

appropriate

Symbol

Properties

dialog

for

the

selected

symbol.

Same

as

the

Properties

option

of

the

Edit

menu.

For

more

information,

see

the

description

of

the

Properties

option

in

“Functions

of

the

Edit

menu”

on

page

21.

–

Font—Controls

the

font

in

which

the

symbol

text

displays.

Same

as

the

Font

option

of

the

Edit

menu.

For

more

information,

see

the

description

of

the

Font

option

in

“Functions

of

the

Edit

menu”

on

page

21.
v

Click

the

right

mouse

button

anywhere

within

an

activity

diagram

(but

not

on

a

specific

symbol)

to

navigate

to

the

activity

diagram’s

parent

diagram.

Activity

diagram

symbols

An

activity

diagram

uses

symbols

to

represent

the

steps

of

execution.

This

section

provides

the

following

information

about

the

symbols

of

an

activity

diagram:

v

What

types

of

symbols

exist?

v

How

do

symbols

compare

with

those

in

a

flow

chart?

v

What

are

the

properties

of

every

symbol?

Introduction

to

the

symbols

Figure

27

shows

the

symbols

of

an

activity

diagram

and

their

associated

buttons

in

the

Symbols

toolbar.

This

toolbar

becomes

active

when

the

diagram

editor

displays

in

the

Working

Area.

Activity

diagrams

contain

three

main

types

of

symbols:

nodes,

transition

links,

and

service

calls.

In

addition,

they

contain

start

and

end

symbols.

Action

Subdiagram

Iterator Free-form
transition link

Orthogonal
transition link

Select

Text

Start

Decision

End
Success

End
Failure

Break

Figure

27.

Symbols

toolbar

76

Collaboration

Development

Guide

Start

and

End

symbols

When

an

activity

diagram

is

created,

a

Start

symbol

is

automatically

placed

in

the

diagram.

This

symbol

represents

the

beginning

of

the

flow;

each

activity

diagram

must

have

a

Start

symbol.

The

Start

symbol

can

be

used

to

initialize

a

correlation

attribute.

For

more

information,

see

“Using

a

correlation

attribute”

on

page

95.

Process

Designer

Express

provides

two

end

symbols

for

activity

diagrams:

End

Success

and

End

Failure.

Each

execution

path

in

an

activity

diagram

must

end

with

one

of

these

symbols

(with

the

exception

of

an

iterator

activity

diagram

that

ends

with

a

break

symbol).

For

more

information

on

using

the

end

symbols,

see

“Terminating

the

execution

path”

on

page

106.

Node

symbols

A

node

is

a

symbol

that

represents

a

step

in

a

collaboration.

There

are

four

types

of

nodes:

actions,

decisions,

subdiagrams,

and

iterators.

Each

node

is

represented

by

a

unique

symbol

in

the

Symbols

toolbar

(see

Figure

27

on

page

76).

Table

20

illustrates

the

symbol

placed

in

the

activity

diagram

for

each

type

of

node.

Table

20.

Node

symbols

Node

type

Symbol

in

activity

diagram

For

more

information

Action

“Action

nodes”

on

page

79

Decision

“Decision

nodes”

on

page

84

Subdiagram

“Subdiagrams”

on

page

97

Iterator

“Iterators”

on

page

102

Transition

link

symbols

A

transition

link

represents

control

flow

between

nodes.

Because

the

flow

of

a

diagram

is

from

top

to

bottom,

a

transition

link

is

always

oriented

vertically.

If

multiple

paths

are

available

from

a

node,

the

transition

link

must

be

used

with

a

decision

node.

Logic

in

the

decision

node

determines

which

path

is

taken.

The

diagram

editor

can

represent

a

transition

link

in

one

of

two

ways:

free-form

links

and

orthogonal

links.

Table

21

shows

the

activity

diagram

symbol

that

represents

each

type

of

transition

link.

Table

21.

Transition-link

symbols

Transition

link

type

Symbol

in

activity

diagram

For

more

information

Free-form

transition

link

“Transition

Links”

on

page

81

Chapter

5.

Using

activity

diagrams

77

Table

21.

Transition-link

symbols

(continued)

Transition

link

type

Symbol

in

activity

diagram

For

more

information

Orthogonal

transition

link

“Transition

Links”

on

page

81

Service

call

symbol

A

service

call

represents

a

request

to

or

response

from

an

outside

entity,

through

a

port.

It

is

always

oriented

horizontally.

A

service

call

is

attached

to

an

action

node.

By

default,

the

label

of

a

service

call

describes

the

service

call

type.

Service

calls

can

be

one

of

the

following:

v

Synchronous

Service

Call

v

Asynchronous

Outbound

Service

Call

v

Asynchronous

Inbound

Service

Call

Note

that

the

Symbols

toolbar

does

not

contain

a

symbol

for

service

calls.

Service

call

functionality

is

available

through

the

context

menu

that

appears

when

you

right-click

an

action

node.

For

more

information

on

the

types

of

service

calls

and

how

to

include

them

in

an

activity

diagram,

see

“Service

calls”

on

page

89.

Properties

of

diagram

symbols

A

symbol

in

an

activity

diagram

can

have

the

properties

shown

in

Table

22.

Table

22.

Properties

of

a

symbol

Symbol

property

Description

A

unique

identifier

(UID)

Every

symbol

in

an

activity

diagram

has

a

unique

identifier

(UID).

You

can

choose

whether

or

not

to

display

the

UID

in

your

diagram.

Although

you

can

assign

your

own

labels

to

symbols,

your

own

label

does

not

replace

the

UID.

The

UID

identifies

the

symbol

in

compilation

and

tracing

messages.

You

can

choose

whether

to

display

the

UIDs

with

the

View

UIDs

option

of

the

View

pull-down

menu.

An

optional

label

The

label

serves

as

a

descriptive

name

that

makes

the

activity

diagram

more

readable

(when

labels

display).

You

can

choose

whether

to

display

the

labels

with

the

View

Labels

option

of

the

View

pull-down

menu.

An

optional

description

The

description

is

a

comment.

Type-specific

properties

Some

symbols,

such

as

action

nodes,

have

an

associated

code

fragment.

You

can

edit

properties

of

most

symbols.

Bring

up

the

Symbol

Properties

dialog

in

one

of

these

ways:

v

Right-click

a

symbol

in

an

activity

diagram

to

bring

up

its

context

menu,

from

which

you

select

Properties.

v

Select

a

symbol

in

an

activity

diagram,

then

select

Properties

from

the

Edit

pull-down

menu.

v

Double-click

a

symbol

in

an

activity

diagram

to

open

its

Symbol

Properties

dialog.

v

Use

the

shortcut

combination

Ctrl

+

Enter.

78

Collaboration

Development

Guide

Action

nodes

An

action

node

(often

called

simply

an

action)

represents

a

step

in

a

collaboration.

It

is

the

basic

building

block

of

collaboration

logic.

The

breakdown

of

the

collaboration’s

logic

into

action

nodes

is

completely

up

to

you.

You

can

write

many

lines

of

complex

code

in

a

single

action

or

divide

the

logic

into

numerous

individual

actions.

Breaking

a

collaboration’s

logic

into

action

nodes

is

analogous

to

developing

program

code.

You

can

write

a

program

with

a

short

main

routine

that

invokes

a

series

of

subroutines

or

method

calls

to

carry

out

the

program

function.

Or,

you

can

write

a

longer

main

routine

that

includes

all

program

logic

inline.

Adding

an

action

to

a

diagram

To

add

an

action

node

to

an

activity

diagram:

1.

In

the

Symbols

toolbar,

click

the

Action

button.

2.

Click

in

the

workspace

to

place

the

Action

symbol.

Note:

An

action

node

can

make

a

service

call

if

you

attach

the

Service

Call

symbol

to

the

action.

For

information

on

service

calls,

refer

to

“Service

calls”

on

page

89.

Defining

action

node

properties

After

the

action

node

appears

in

the

activity

diagram,

use

the

Action

Properties

dialog

box

to

define

any

of

the

following

properties

for

the

node:

v

Label—Provides

a

label

for

the

action

node.

Using

descriptive

text

instead

of

the

default

UID

makes

the

diagram

easier

to

read

and

use.

This

property

is

optional.

v

Description—Provides

a

description

of

the

action

node’s

purpose.

This

property

is

optional.

v

Code

fragment—Defines

what

the

action

node

does.

For

more

information,

see

“Adding

code

fragments

to

an

action

node”

on

page

80.

Open

the

Action

Properties

dialog

box

by

doing

one

of

the

following:

v

Double-click

on

the

selected

action

node.

v

Right-click

on

the

action

node

to

bring

up

the

context

menu,

then

choose

Properties.

v

Select

the

action

node;

then

choose

Properties

from

the

Edit

pull-down

menu.

v

Select

the

action

node;

then

use

the

keyboard

shortcut

Ctrl

+

Enter.

The

Action

Properties

dialog

displays

with

the

name

of

the

action

node

at

the

top

of

the

dialog.

This

name

has

the

following

format:

Action_UID

where

UID

specifies

the

unique

identifier

for

the

action

node.

Figure

28

on

page

80

shows

the

Action

Properties

dialog

box.

Chapter

5.

Using

activity

diagrams

79

Adding

code

fragments

to

an

action

node

Action

nodes

contain

code

fragments.

Code

fragments

(also

called

activity

definitions)

consist

of

calls

to

the

collaboration

API

or

other

Java

code,

and

can

contain

operations

such

as

the

following:

v

Getting

and

setting

the

attribute

values

in

business

objects

v

Checking

the

verb

in

an

incoming

event

v

Comparing

attribute

values

to

constants

or

to

other

attribute

values

v

Setting

up

business

object

variables

to

use

in

service

calls

v

Logging

messages

Code

fragments

are

added

to

action

nodes

with

Activity

Editor.

The

Graphical

view

of

the

Activity

Editor

enables

you

to

specify

the

action

node’s

logic

without

having

to

write

Java

code.

Instead,

you

can

drag

and

drop

function

blocks

onto

the

workspace

to

represent

the

flow

of

the

activity

definition.

The

basic

steps

for

adding

business

logic

to

an

action

node

are

as

follows:

1.

Right-click

the

action

node

to

display

its

context

menu.

2.

From

the

context

menu,

click

Properties.

The

Action

Properties

dialog

box

is

displayed.

3.

Click

Edit

to

open

the

Activity

Editor.

4.

Add

the

activity

definition.

5.

Close

the

Activity

Editor.

The

Action

Properties

dialog

box

is

still

open,

and

it

now

displays

the

code

fragment

associated

with

the

activity

definition.

6.

Click

Apply

to

save

your

changes.

For

detailed

information

on

using

Activity

Editor

to

create

business

logic

code

fragments,

see

Chapter

6,

“Using

Activity

Editor,”

on

page

111.

Figure

28.

Action

Properties

dialog

80

Collaboration

Development

Guide

Transition

Links

Transition

links

represent

an

activity

diagram’s

control

flow.

They

connect

nodes

in

which

activities

occur,

such

as

actions,

decisions,

subdiagrams,

and

iterators,

and

connect

these

nodes

to

start

and

completion

symbols.

Transition

links

can

contain

business

object

probes

that

monitor

business

object

instance

values.

Note:

In

activity

diagrams,

transition

links

do

not

represent

data

flow.

Data

passes

from

node

to

node

when

one

node

sets

a

variable

and

another

accesses

the

variable.

The

activity

diagram’s

data-flow

mechanism

is

comparable

to

that

of

a

class

or

program,

in

which

code

sets

a

variable

that

other

code

uses.

This

model

differs

from

the

one

used

by

event-passing

modeling

tools,

which

show

data

moving

along

links.

Process

Designer

Express

provides

both

orthogonal

and

free-form

transition

links.

Use

the

orthogonal

links

whenever

possible.

Use

the

free-form

links

when

you

cannot

get

the

desired

shape

from

the

orthogonal

links.

Right-click

a

link

to

see

a

context

menu

that

shows

the

orthogonality

of

the

link.

Use

this

context

menu

to

toggle

a

link

between

orthogonal

and

free

form.

How

many

links

can

coexist?

Table

23

displays

the

number

of

incoming

and

outgoing

links

that

different

types

of

nodes

can

have.

Table

23.

Permitted

incoming

and

outgoing

links

by

node

type

Node

type

Incoming

links

Outgoing

links

Action

Unlimited

One

Decision

One

Seven

Subdiagram

or

iterator

Unlimited

One

Creating

a

transition

link

To

create

a

transition

link,

the

two

symbols

that

you

want

to

connect

must

be

available

on

the

workspace.

To

add

a

transition

link

to

an

activity

diagram:

1.

In

the

Symbols

toolbar,

click

the

Transition

Link

button.

2.

In

the

workspace,

click

the

bottom

edge

of

the

symbol

where

you

want

the

transition

link

to

start.

3.

Click

the

top

edge

of

the

symbol

where

you

want

the

transition

link

to

end.

Process

Designer

Express

lets

you

place

valid

connections

between

symbols.

It

does

not

permit

you

to

link

two

symbols

for

which

a

link

is

invalid.

Rather

than

displaying

an

error

message,

Process

Designer

Express

does

not

permit

the

invalid

transition

link

to

be

made.

Process

Designer

Express

indicates

whether

an

attempt

to

place

a

transition

link

on

a

symbol

is

valid.

When

you

position

the

mouse

pointer

(with

the

link)

on

the

edge

of

a

symbol,

the

mouse

pointer

changes

to

a

plus

sign

within

a

circle

if

the

connection

is

valid.

You

can

then

click

and

place

the

connection

on

the

symbol.

If

the

connection

is

not

valid,

the

mouse

pointer

does

not

change

to

a

plus

sign

and

you

cannot

place

the

connection.

Chapter

5.

Using

activity

diagrams

81

Cancelling

a

link

Abort

or

cancel

a

transition

link

by

pressing

the

Escape

(ESC)

key.

Each

press

of

the

ESC

key

undoes

the

last

segment

of

the

connection

line.

Using

the

ESC

key

is

the

only

way

to

cancel

a

connection

attempt

for

which

there

is

no

valid

symbol

in

the

activity

diagram.

For

example,

suppose

you

have

placed

two

symbols,

a

start

symbol

and

an

end

symbol,

in

a

diagram.

You

then

select

a

transition

link

and

click

the

start

symbol.

The

transition-link

line

segment

appears,

connected

to

the

start

symbol.

However,

there

are

no

valid

symbols

or

ports

to

which

you

can

connect

the

transition-link

line.

At

this

point,

pressing

the

ESC

key

is

the

only

way

to

cancel

the

connection

activity

and

continue

the

editing

session.

Defining

transition

link

properties

After

the

transition

link

appears

in

the

activity

diagram,

you

can

define

its

properties

in

the

Link

Properties

dialog

(see

Figure

29).

The

Link

Properties

dialog

identifies

the

transition

link

with

a

name

at

the

top

of

the

dialog

in

the

following

format:

LinkTransition_UID

where

UID

is

the

unique

identifier

for

the

link.

The

properties

of

a

transition

link

include

its

label,

definition,

and

whether

it

contains

a

business

object

probe.

To

define

transition

link

properties:

1.

Display

the

Link

Properties

dialog.

You

can

display

this

dialog

in

any

of

the

following

ways:

v

Double-click

on

the

selected

transition

link.

v

Right-click

on

the

transition

link

to

bring

up

the

context

menu,

then

choose

Properties.

v

Select

the

transition

link;

then

choose

Properties

from

the

Edit

pull-down

menu.

Figure

29.

Link

Transition

Properties

dialog

box

82

Collaboration

Development

Guide

v

Select

the

transition

link;

then

use

the

keyboard

shortcut

Ctrl

+

Enter.

The

Link

Properties

dialog

displays.

Figure

29

shows

a

sample

Link

Properties

dialog.

2.

Optionally,

specify

the

label

and

description

for

this

transition

link.

For

more

information

on

link

labels,

see

“Labeling

a

link”

on

page

83.

3.

Click

Apply

to

save

the

link

properties.

Labeling

a

link

Link

labels

can

be

instrumental

in

ensuring

the

readability

of

the

activity

diagram.

Try

to

capture

the

decision

logic

in

the

same

way

that

you

would

when

labeling

a

decision

node

in

a

flow

chart.

Logically

named

link

labels

explain

the

scenario

flow.

For

example:

v

If

two

transition

links

branch

based

on

the

value

of

a

configuration

property

called

CONVERT_VERB,

the

labels

might

be

DoConvert

and

DoNotConvert.

v

If

one

transition

link

handles

a

successful

service

call

and

another

link

handles

a

service

call

exception,

the

labels

might

be

Success

and

ServiceCallException.

To

label

a

transition

link,

enter

the

text

of

the

link

label

in

the

Label

box

of

the

Link

Properties

dialog.

The

label

appears

in

the

activity

diagram

exactly

as

it

does

in

the

text

box.

Use

carriage

returns

in

the

text

box

to

break

a

label

into

multiple

lines

so

that

it

does

not

overlap

other

links.

Using

business

object

probes

A

business

object

probe

monitors

business

object

instance

values

during

runtime.

The

probe

is

placed

on

a

transition

link

during

the

creation

of

an

activity

diagram,

and

is

activated

or

deactivated

during

runtime

through

System

Manager’s

Collaboration

Properties

dialog

box.

Note:

Business

object

probes

cannot

be

used

on

the

incoming

transition

link

for

a

decision

node

or

on

a

service

call

link.

By

default,

a

business

object

probe

appears

as

a

red

square

on

the

transition

link

in

an

activity

diagram.

In

Figure

30,

the

Default

branch

link

contains

a

business

object

probe.

You

can

use

a

business

object

probe

to

monitor

any

business

object

specified

in

the

Ports

and

Triggering

Events

tab

of

the

Template

Definitions

window.

For

each

business

object,

you

can

choose

the

specific

attributes

you

want

to

monitor.

All

of

the

instance

values

for

these

attributes

are

presented

in

a

report

provided

by

System

Monitor.

Perform

the

following

tasks

to

add

a

business

object

probe:

Figure

30.

Transition

link

with

business

object

probe

Chapter

5.

Using

activity

diagrams

83

1.

Ensure

that

Process

Designer

Express

is

open

and

that

the

activity

diagram

is

displayed.

2.

Right-click

the

transition

link

to

which

you

want

to

add

the

business

object

probe.

3.

From

the

context

menu,

click

Properties.

The

Link

Transition

Properties

dialog

box

opens.

4.

Click

the

Enable

Business

Object

Probe

checkbox.

5.

Click

the

plus

sign

(+)

next

to

the

business

object

you

want

to

monitor

to

display

that

object’s

list

of

attributes.

6.

Select

the

specific

attributes

you

want

to

monitor.

7.

Click

Apply

to

save

your

changes.

8.

During

runtime,

use

System

Manager

to

enable

or

disable

the

business

object

probe

as

needed.

Modifying

a

transition

link

You

can

disconnect

and

reconnect

transition

links

as

well

as

modify

the

appearance

of

the

transition-line

segments.

v

To

disconnect

and

reconnect,

select

a

link

point—the

end

of

a

line—with

the

mouse

and

drag

it

in

the

desired

direction.

Disconnecting

and

reconnecting

allows

you

to

move

a

transition

link.

v

To

create

a

new

transition-line

segment

in

an

existing

transition

link,

click

the

middle

section

of

a

line

segment

with

the

Ctrl

key

held

down.

The

join

between

the

two

line

segments

is

marked

with

a

square.

v

To

remove

a

transition-line

segment,

click

the

line

segment

square

with

the

Ctrl

key

held

down.

Note:

Modifying

line

segments

does

not

apply

to

orthogonal

links.

To

ensure

that

transition-line

segments

have

only

right

angles,

hold

down

the

Shift

key

while

creating

a

new

line

segment.

Decision

nodes

If

you

want

one

action

to

flow

to

the

next

regardless

of

conditions,

a

transition

link

is

all

that

is

necessary.

If,

however,

you

want

to

branch

to

more

than

one

action

based

on

a

set

of

conditions,

you

need

to

include

a

decision

node.

In

its

most

common

usage,

a

decision

node

connects

an

action

to

all

of

its

possible

outcomes,

including

other

actions,

subdiagrams,

and

end

symbols.

Decision

nodes

can

be

used

with

the

action,

subdiagram,

and

iterator

nodes.

Do

not

place

a

decision

node

directly

after

a

start

symbol.

A

decision

node

typically

has

at

least

two

branches;

the

maximum

number

of

branches

is

seven.

Each

branch

has

a

condition

associated

with

it

that

determines

whether

that

branch

is

taken

or

not.

Important

When

implementing

a

decision

node,

ensure

that

you

define

the

conditions

such

that

there

will

always

be

one

that

evaluates

to

true.

If

none

of

the

conditions

in

your

decision

node

evaluate

to

true,

a

runtime

error

occurs.

There

are

three

types

of

branches

in

a

decision

node:

84

Collaboration

Development

Guide

v

Normal—A

normal

branch

has

a

condition

associated

with

it;

if

that

condition

is

met,

the

branch

is

taken.

You

can

have

multiple

normal

branches.

By

default,

normal

branches

are

represented

by

a

blue

square.

v

Exception—An

exception

branch

has

a

specific

exception

type

associated

with

it.

The

condition

of

an

exception

branch

tests

that

the

system

variable

currentException

is

equal

to

the

exception

type

to

which

you

set

the

branch.

You

can

have

multiple

exception

branches.

By

default,

exception

branches

are

represented

by

a

red

square.

v

Default—The

default

branch

is

taken

when

none

of

the

other

branch

conditions

are

true.

Each

decision

node

can

have

one

(and

only

one)

default

branch.

This

branch

is

optional.

By

default,

it

is

represented

by

a

black

square.

These

branches

are

defined

and

their

conditions

set

in

the

Decision

Properties

dialog

box,

as

shown

in

Figure

31.

Each

defined

branch

of

a

decision

node

must

have

a

transition

link

that

connects

it

to

its

associated

outcome

(for

example,

an

action

node

or

a

end

symbol).

Figure

32

on

page

86

illustrates

a

sample

activity

diagram

with

a

decision

node.

In

this

example,

the

decision

node

has

three

branches.

The

normal

branch

shifts

the

flow

to

Action

2

if

its

condition

evaluates

to

true.

The

exception

branch

shifts

the

flow

to

End

Failure

if

a

JavaException

exception

is

thrown.

The

default

branch

shifts

the

flow

to

Action

3

if

the

condition

of

the

normal

branch

evaluates

to

false

and

a

JavaException

is

not

encountered.

Figure

31.

Decision

Properties

dialog

box

Chapter

5.

Using

activity

diagrams

85

Perform

the

following

steps

to

add

a

decision

node

to

your

activity

diagram:

1.

Ensure

the

diagram

editor

is

open,

and

that

you

have

already

placed

the

symbol

that

is

going

to

flow

to

the

decision

node.

Decision

nodes

can

be

used

by

any

action,

subdiagram,

or

iterator

node.

2.

Click

the

Decision

Node

button

in

the

Symbols

toolbar.

3.

In

the

diagram,

position

your

cursor

underneath

the

symbol

that

is

going

to

use

the

decision

node,

and

then

click

to

place

the

node

in

the

diagram.

4.

Create

a

transition

link

between

the

decision

node

and

the

symbol

that

calls

it.

See

“Creating

a

transition

link”

on

page

81

for

more

information

on

creating

transition

links.

Defining

a

normal

branch

Each

normal

branch

requires

a

condition.

These

conditions

are

created

with

variables

that

you

define

in

the

collaboration

template

or

the

scenario.

Before

you

can

create

a

normal

branch,

you

must

define

the

necessary

variable

for

the

condition.

See

“Declaring

and

editing

template

variables

(the

Declarations

tab)”

on

page

56

and

“Defining

scenario

variables”

on

page

69

for

more

information.

Perform

the

following

steps

to

define

a

normal

branch

in

a

decision

node:

1.

In

the

activity

editor,

double-click

the

decision

node

symbol.

The

Decision

Properties

dialog

box

opens.

2.

In

the

row

for

the

branch

you

are

creating,

click

the

table

cell

in

the

Type

column

and

select

Normal

from

the

drop-down

list

of

branch

types.

3.

Right-click

the

table

cell

in

the

Condition

column

and

select

Condition

Builder

from

the

context

menu.

Note:

You

can

also

type

the

condition

directly

into

the

Condition

table

cell

instead

of

using

the

Condition

Editor.

The

Condition

Editor

dialog

box

is

displayed.

Figure

32.

Activity

diagram

with

a

decision

node

86

Collaboration

Development

Guide

4.

In

the

Variable

Name

field,

use

the

drop-down

list

to

select

the

variable

you

want

to

evaluate

for

the

condition.

This

list

contains

all

of

the

collaboration

variables

you

have

defined

for

the

scenario.

When

you

select

a

variable,

the

Data

type

field

is

automatically

updated

to

include

the

variable

type

(for

example,

Boolean

or

String).

5.

In

the

Operator

field,

use

the

drop-down

list

to

select

the

appropriate

operator

to

use

for

evaluating

the

variable.

The

list

contains

only

those

operators

supported

by

the

type

of

variable

you

are

using.

6.

In

the

Condition

field,

enter

the

value

you

want

to

use

for

the

condition.

(For

example,

if

you

have

a

Boolean

variable

named

hasValue,

you

can

set

the

condition

to

either

true

or

false.)

7.

Click

Ok

to

close

the

Condition

Editor

and

return

to

the

Decision

Properties

dialog

box.

8.

Optionally,

type

a

label

for

the

branch

in

the

Branch

Label

table

cell.

Labeling

your

branches

can

improve

the

readability

of

your

activity

diagram.

9.

Optionally,

type

a

description

for

the

branch

in

the

Comment

table

cell.

10.

Click

Apply

to

add

the

branch

to

the

decision

node.

In

the

activity

diagram,

the

decision

node

now

contains

a

blue

square

to

indicate

the

normal

branch

you

just

created.

After

you

add

a

normal

branch,

you

must

connect

it

to

its

associated

result

with

a

transition

link.

Defining

an

exception

branch

Perform

the

following

steps

to

define

an

exception

branch

in

a

decision

node:

1.

In

the

activity

editor,

double-click

the

decision

node

symbol.

The

Decision

Properties

dialog

box

opens.

2.

In

the

row

for

the

branch

you

are

creating,

click

the

table

cell

in

the

Type

column

and

select

Exception

from

the

drop-down

list

of

branch

types.

3.

Click

the

table

cell

in

the

Condition

column

and

select

the

type

of

exception

from

the

drop-down

list

of

exception

types.

4.

Optionally,

type

a

label

for

the

branch

in

the

Branch

Label

table

cell.

Labeling

your

branches

can

improve

the

readability

of

your

activity

diagram.

5.

Optionally,

type

a

description

for

the

branch

in

the

Comment

table

cell.

6.

Click

Apply

to

add

the

branch

to

the

decision

node.

In

the

activity

diagram,

the

decision

node

now

contains

a

red

square

to

indicate

the

exception

branch

you

just

created.

Figure

33.

Condition

Editor

Chapter

5.

Using

activity

diagrams

87

After

you

add

an

exception

branch,

you

must

connect

it

to

its

associated

result

with

a

transition

link.

Defining

a

default

branch

Each

decision

node

can

have

only

one

default

branch.

Adding

a

default

branch

is

optional.

Perform

the

following

steps

to

add

a

default

branch

to

your

decision

node:

1.

In

the

activity

editor,

double-click

the

decision

node

symbol.

The

Decision

Properties

dialog

box

opens.

2.

In

the

row

for

the

branch

you

are

creating,

click

the

table

cell

in

the

Type

column

and

select

Default

from

the

drop-down

list

of

branch

types.

3.

Optionally,

type

a

label

for

the

branch

in

the

Branch

Label

table

cell.

Labeling

your

branches

can

improve

the

readability

of

your

activity

diagram.

4.

Optionally,

type

a

description

for

the

branch

in

the

Comment

table

cell.

5.

Click

Apply

to

add

the

branch

to

the

decision

node.

In

the

activity

diagram,

the

decision

node

now

contains

a

black

square

to

indicate

the

default

branch

you

just

created.

Note

that

you

cannot

specify

a

condition

for

the

default

branch.

The

condition

is

implicit;

it

evaluates

to

true

when

all

of

the

conditions

associated

with

the

other

branches

evaluate

to

false.

After

you

add

the

default

branch,

you

must

connect

it

to

its

associated

result

with

a

transition

link.

Combining

an

exception

and

a

condition

in

branching

logic

A

branch

can

be

normal

or

an

exception,

but

not

both.

However,

there

are

times

when

you

might

want

to

specify

the

execution

path

to

take

in

response

to

two

simultaneous

conditions:

an

exception

occurred

and

another

condition

is

true.

This

combination

is

the

equivalent

of

using

an

AND

operator

in

a

conditional

expression.

For

example,

suppose

you

want

to

model

these

two

conditions:

Exception

==

JavaException

&&

hasValue

==

false

Exception

==

JavaException

&&

hasValue

==

true

To

model

such

a

construct,

create

two

levels

of

decision

nodes,

putting

an

action

node

between

them,

as

shown

below:

88

Collaboration

Development

Guide

Service

calls

An

action

node

cannot,

by

itself,

send

a

request

to

a

connector

or

another

collaboration.

Instead,

you

must

connect

the

action

node

to

a

service

call.

InterChange

Server

supports

both

synchronous

and

asynchronous

service

calls.

The

following

is

an

example

of

a

synchronous

service

call

that

uses

a

Retrieve

request:

Status
of
completed
call

Request
type

Data, sent from
and returned to
the same variable

status = retrieve(business-object, port);

A

service

call

always

connects

to

an

action.

The

action

generates

the

service

call

and

handles

the

service

call’s

results

on

its

outgoing

transition

links.

An

action

and

a

service

call

work

as

a

pair;

the

service

call

performs

the

action’s

remote

input/output

function.

Figure

35

illustrates

the

relationship

between

an

action

node

and

service

call.

The

figure

shows

the

order

in

which

the

collaboration

runtime

environment

processes

the

action

and

its

service

call.

Figure

34.

Combining

an

exception

and

a

condition

Chapter

5.

Using

activity

diagrams

89

Figure

35

shows

that

the

collaboration

runtime

environment

first

processes

the

code

in

the

action

and

then

executes

the

service

call.

When

the

service

call

completes,

the

action

node’s

outgoing

transition

links

handle

the

result.

When

an

action

node

generates

a

service

call,

it

is

good

practice

to

include

an

outgoing

exception

link

that

checks

for

ServiceCallException.

Types

of

service

calls

InterChange

Server

supports

three

types

of

service

calls:

synchronous,

asynchronous

outbound,

and

asynchronous

inbound.

The

following

sections

describe

each

type

of

call.

Synchronous

service

call

This

type

of

service

call

uses

a

synchronous

request/response

mechanism.

The

service

call

sends

the

request

but

does

not

complete

until

the

response

arrives

and

is

processed.

Synchronous

service

calls

support

compensation.

In

addition,

they

support

a

timeout

value

for

long-lived

business

processes.

By

default,

all

service

calls

added

to

an

activity

diagram

are

synchronous.

You

can

then

change

the

type

if

required

by

your

scenario.

Asynchronous

outbound

service

call

An

asynchronous

outbound

service

call

sends

a

request

but

does

not

expect

or

wait

for

a

response

before

continuing

its

processing.

A

collaboration

template

must

support

long-lived

business

processes

in

order

to

use

asynchronous

outbound

service

calls.

If

an

asynchronous

outbound

service

call

has

a

port

that

is

bound

to

a

collaboration

instead

of

a

connector,

the

service

call

automatically

becomes

synchronous.

Action

Service Call

Next Action Next Action

3. Handle results
of service call

ExceptionSuccess

1. Process code
in action

2. Process
service call

Figure

35.

Relationship

between

action

node

and

service

call

90

Collaboration

Development

Guide

Asynchronous

outbound

service

calls

support

compensation,

but

do

not

support

a

timeout

value

for

long-lived

business

processes.

Asynchronous

inbound

service

call

An

asynchronous

inbound

service

call

waits

to

receive

an

incoming

event

based

on

a

correlation

attribute

or

set

of

correlation

attributes

that

identify

the

event.

It

is

used

in

conjunction

with

long-lived

business

processes.

(See

“Using

a

correlation

attribute”

on

page

95

for

more

information.)

When

an

asynchronous

inbound

service

call

is

created,

it

is

given

a

timeout

value;

if

the

service

call

does

not

receive

an

incoming

event

before

the

timeout

expires,

the

exception

TimeoutException

is

raised.

Asynchronous

inbound

service

calls

are

available

only

if

the

collaboration

template

supports

long-lived

business

processes.

You

can

enable

this

support

at

any

time

during

the

template

development

processes

by

clicking

the

Long

Lived

Business

Process

Support

option

on

the

Template

Definitions

General

tab.

Asynchronous

inbound

service

calls

do

not

support

compensation.

Creating

a

service

call

Perform

the

following

steps

to

add

a

service

call

to

the

activity

diagram:

1.

Ensure

that

the

diagram

editor

is

open.

2.

In

the

workspace,

right-click

the

symbol

for

the

action

node

with

which

you

want

to

associate

a

service

call.

3.

From

the

context

menu,

click

Add

service

node.

The

service

call

is

added

to

the

activity

diagram;

a

dotted

line

connects

the

service

call

to

the

action

node.

By

default,

the

service

call

is

synchronous.

Defining

a

service

call

After

you

have

created

the

service

call,

you

must

define

it.

Use

the

Service

Call

Properties

dialog

box

to

specify

these

required

properties:

v

The

port

to

which

the

service

call

is

sent

v

The

variable

that

contains

the

business

object

to

send

v

The

verb

of

the

business

object

v

The

correlation

set

(required

for

asynchronous

inbound

service

calls)

Optionally,

you

can

also

specify

the

following:

v

Support

for

compensation

if

you

are

using

a

transactional

collaboration.

For

more

information,

see

“Defining

compensation”

on

page

94

v

The

type

of

service

call

(by

default,

all

service

calls

are

synchronous,

but

can

be

changed

to

asynchronous

outbound

or

asynchronous

inbound

calls).

For

more

information,

see

“Defining

the

service

call

type”

on

page

92.

v

The

time-out

value

to

be

used

with

synchronous

and

asynchronous

inbound

service

calls.

For

more

information,

see

“Defining

the

service

call

type”

on

page

92.

v

The

correlation

set

used

for

attribute

matching

(for

synchronous

and

asynchronous

outbound

service

calls).

Chapter

5.

Using

activity

diagrams

91

Tip

Upon

return

of

a

service

call,

the

business

object

variable

contains

the

result

of

the

call.

The

data

in

the

original

business

object

is

lost

if

the

service

call

retrieves

new

data

for

the

business

object.

Therefore,

if

you

anticipate

needing

the

values

in

the

original,

it

is

useful

to

copy

the

original

business

object

into

a

temporary

variable

in

an

action

that

calls

the

service

call.

Perform

the

following

steps

to

define

a

regular

service

call

(one

that

does

not

use

compensation

or

correlation

sets):

1.

In

the

activity

diagram,

double-click

the

service

call

symbol

you

have

already

created.

The

Service

Call

Properties

dialog

box

is

displayed,

as

shown

in

Figure

36.

Notice

that

you

cannot

directly

enter

a

value

in

the

Label

field

for

a

service

call.

Process

Designer

Express

assigns

the

label

after

you

complete

the

service

call

definition.

2.

Optionally,

specify

the

description

for

this

service

call.

3.

Use

the

Port

drop-down

list

to

select

the

port

the

service

call

is

going

to

use

for

sending

or

receiving

requests.

4.

Use

the

Verb

drop-down

list

to

specify

which

verb

is

going

to

be

used

in

the

request.

For

example,

to

update

an

application

with

the

data

contained

in

the

business

object

the

service

call

sends,

use

the

Update

verb.

5.

Use

the

BO

variable

drop-down

list

to

select

the

variable

that

contains

the

business

object

the

service

call

sends.

If

you

plan

to

support

long-lived

business

processes,

this

variable

must

be

a

global

template

or

port

variable;

scenario

variables

cannot

be

used

in

this

capacity

for

long-lived

business

processes.

6.

Click

Apply

to

save

the

definition.

Defining

the

service

call

type

To

change

the

type

of

the

service

call,

do

the

following:

Figure

36.

Service

Call

Properties

dialog

box

92

Collaboration

Development

Guide

1.

If

the

Service

Call

Properties

dialog

box

is

not

open,

display

it

by

double-clicking

the

service

call

symbol

in

your

activity

diagram.

2.

Ensure

that

you

have

supplied

the

required

port

name,

verb,

and

business

object

variable

name

for

the

service

call.

3.

Click

the

Advanced

button

on

the

Service

Call

Properties

dialog

box.

The

Service

Call

Advanced

Properties

dialog

box

is

displayed.

4.

In

the

Call

Type

box,

click

the

radio

button

next

to

the

type

of

service

call

you

want

to

use.

Note:

The

Async

Inbound

option

is

available

only

if

you

have

enabled

support

for

long-lived

business

processes

in

the

template

definition.

5.

If

you

are

using

a

synchronous

service

call

or

an

asynchronous

inbound

service

call

and

you

want

to

specify

a

timeout

value

to

be

used

with

long-lived

business

processes,

click

the

Time-out

checkbox

and

set

the

timeout

value

to

one

of

the

following:

v

Fixed

—This

option

requires

you

to

specify

the

timeout

value

in

days,

hours,

and

minutes.

Select

this

option

if

you

want

to

always

use

the

same

timeout

value

for

the

service

call.

This

value

cannot

be

changed

during

collaboration

configuration.

v

From

property—This

option

enables

you

to

use

a

collaboration-specific

property

to

dynamically

specify

the

timeout

value

(in

seconds)

during

collaboration

configuration.

In

the

From

Property

drop-down

list,

select

the

property

you

have

created

to

represent

the

timeout

value.

v

From

variable—This

option

enables

you

to

use

a

global

Java

object

type

variable

to

set

the

timeout

value

(measured

in

seconds)

during

runtime.

Select

the

appropriate

variable

name

from

the

From

Variable

drop-down

list.

Figure

37.

Service

Call

Advanced

Properties

dialog

box

Chapter

5.

Using

activity

diagrams

93

Note:

If

the

port

of

a

synchronous

service

call

is

bound

to

a

collaboration

instead

of

a

connector,

any

specified

timeout

value

is

ignored.

6.

Click

Ok

to

close

the

Service

Call

Advanced

Properties

dialog

box.

7.

Click

Apply

in

the

Service

Call

Properties

dialog

box

to

save

your

changes.

Defining

compensation

Subtransaction

steps

of

a

collaboration

define

the

transactional

behavior

of

a

transactional

collaboration.

A

subtransaction

is

an

operation

in

which

the

collaboration

sends

a

request

that

causes

a

transactional

data

change

in

an

application

data

store.

Service

calls

implement

subtransaction

steps.

A

service

call

that

has

a

Create,

Delete,

or

Update

request

is

a

subtransaction

step;

a

Retrieve

request

is

not

(because

it

does

not

change

the

data).

Other

verbs

might

or

might

not

be

transactional,

depending

on

whether

they

change

data

in

an

application

data

store.

Note:

Although

a

service

call

with

a

Retrieve

request

is

not

considered

a

subtransaction

step,

you

can

still

specify

compensation

for

it.

To

create

a

collaboration

template

that

supports

transactional

behavior,

you

define

compensation

for

each

subtransaction

step.

Compensation

is

a

logical

undo

action:

if

execution

of

a

collaboration

object

fails,

it

causes

rollback

of

the

previously

executed

operations.

When

rollback

occurs,

the

collaboration

runtime

environment

steps

backward

through

the

path

of

execution,

executing

a

compensation

step

for

every

normal

step

that

has

already

executed

and

that

has

compensation

defined.

Rollback

thereby

logically

returns

data

to

the

state

that

it

was

in

before

the

transactional

collaboration

started

to

execute.

Viewed

in

Process

Designer

Express,

a

subtransaction

step

is

a

service

call

that

requests

an

operation

such

as

Create,

Update,

or

Delete.

These

operations

always

result

in

data-altering

transactions

within

an

application.

You

can

also

specify

compensation

for

a

service

call

that

requests

a

Retrieve

operation,

though

compensation

is

not

required

since

no

data

is

modified

during

a

Retrieve.

A

service

call

is

defined

by

a

business

object

with

a

particular

verb,

which

the

collaboration

sends

either

to

another

collaboration

or

to

a

connector.

The

compensation

for

that

operation

is

another

business

object

and

verb.

Any

business

object

and

verb

can

compensate

for

a

service

call.

Table

24,

taken

from

the

manual

Technical

Introduction

to

IBM

WebSphere

InterChange

Server,

lists

some

common

types

of

compensation.

Table

24.

Compensation

Examples

Action

Compensation

Create

a

business

object

Delete

a

business

object

Delete

a

business

object

Create

a

business

object

Update

a

business

object

Update

a

business

object,

restoring

the

former

values

Compensation

is

supported

for

both

synchronous

service

calls

and

asynchronous

outbound

service

calls.

If

the

collaboration

is

transactional,

and

if

the

verb

for

this

service

call

requests

a

data

modification,

you

can

specify

the

compensation

operation

that

rolls

back

the

regular

service

call.

Define

the

compensation

as

follows:

1.

If

the

Service

Call

Properties

dialog

box

is

not

open,

display

it

by

double-clicking

the

service

call

symbol

in

your

activity

diagram.

94

Collaboration

Development

Guide

2.

Click

the

Compensation

checkbox.

The

Port,

Verb,

and

BO

Variable

fields

in

the

Compensation

Service

Call

box

become

active.

3.

In

the

Compensation

Service

Call

box,

select

the

port,

verb,

and

business

object

variable

to

be

used

in

the

compensation

service

call.

Compensation

service

calls

can

use

the

same

port,

verb,

and

business

object

as

the

regular

service

call,

or

you

can

specify

a

different

port,

verb,

and

business

object.

4.

Click

Apply

to

save

your

changes.

For

more

information

on

transactional

collaborations,

see

“Using

transactional

features”

on

page

106.

Using

a

correlation

attribute

A

correlation

attribute

is

used

to

identify

a

conversation.

A

conversation

is

a

unit

of

coherent

communication

between

two

business

processes.

Because

there

can

be

multiple

conversations

when

two

or

more

business

processes

communicate

with

each

other,

it

is

necessary

to

identify

a

conversation

with

a

correlation

attribute.

You

can

think

of

a

correlation

attribute

as

a

UID

for

a

conversation.

The

ID

must

be

initialized

when

the

conversation

is

started,

and

all

subsequent

participants

must

use

this

ID

when

involved

in

the

conversation.

InterChange

Server

supports

only

one

conversation

per

scenario.

If

you

need

more

than

one

conversation,

you

must

use

multiple

scenarios

within

the

collaboration

template,

or

use

multiple

collaboration

templates.

In

addition,

a

correlation

attribute

can

be

initialized

only

once

in

the

scenario.

In

order

to

use

a

correlation

attribute,

you

must

ensure

the

following

conditions

are

true:

v

You

have

added

support

for

long-lived

business

processes

when

you

defined

the

collaboration

template.

v

You

have

created

one

or

more

template

variables

that

are

to

be

used

for

capturing

correlation

attribute

values.

For

each

business

object

attribute

you

plan

to

select

for

correlation,

you

must

have

a

unique

template

variable

that

can

capture

that

value.

When

using

a

correlation

attribute

with

a

service

call,

the

business

object

is

determined

automatically;

it

is

always

the

business

object

assigned

to

the

port

used

for

the

service

call.

After

a

correlation

attribute

is

initialized

in

a

scenario,

you

can

set

it

for

outbound

service

calls

(see

“Setting

correlation

attributes”

on

page

96),

match

it

on

asynchronous

inbound

service

calls

(see

“Matching

correlation

attributes”

on

page

96),

or

both.

Initializing

correlation

attributes:

The

first

step

in

using

correlation

attributes

is

initialization.

When

you

initialize

a

correlation

attribute,

you

specify

the

business

object

attribute

and

the

template

variable

to

be

used

to

capture

that

attribute’s

value.

Initialization

must

be

done

prior

to

setting

the

correlation

attribute

on

an

outbound

service

call,

or

matching

the

correlation

attribute

in

the

runtime

environment.

Initialization

can

be

done

in

a

start

node,

an

asynchronous

outbound

service

call,

or

a

synchronous

service

call.

Perform

the

following

steps

to

define

and

initialize

correlation

attributes

in

a

service

call:

Chapter

5.

Using

activity

diagrams

95

1.

Ensure

that

Process

Designer

Express

is

open,

and

that

the

Service

Call

Properties

dialog

box

is

displayed.

2.

Click

Advanced

to

open

the

Service

Call

Advanced

Properties

dialog

box.

3.

Click

Correlation

Set.

Notice

that

the

business

object

variable

is

automatically

defined

as

the

one

assigned

to

the

service

call’s

outbound

port.

4.

Click

Initialize.

5.

Click

the

checkbox

next

to

each

business

object

attribute

you

want

to

use

for

correlation.

6.

For

each

selected

attribute,

use

the

drop-down

list

in

the

Correlation

column

to

select

a

template

variable

to

capture

and

store

the

attribute’s

value.

7.

Click

Apply.

The

procedure

for

initializing

a

correlation

set

from

the

start

node

is

the

same,

with

the

exception

of

clicking

the

Initialize

checkbox.

Since

a

start

node

does

not

participate

in

matching

correlation

attributes,

initialization

is

implicit.

Setting

correlation

attributes:

After

you

have

defined

and

initialized

a

correlation

set,

you

can

assign

it

to

any

outbound

service

call.

The

service

call

then

sends

out

a

request

that

includes

the

correlation

set.

You

can

set

correlation

attributes

on

as

many

outbound

service

calls

as

you

want.

Perform

the

following

steps

to

set

correlation

attributes

on

an

outbound

service

call:

1.

Ensure

that

Process

Designer

Express

is

open,

and

that

the

Service

Call

Properties

dialog

box

is

displayed

for

the

outbound

service

call.

2.

Click

Advanced

to

open

the

Service

Call

Advanced

Properties

dialog

box.

3.

Click

Correlation

Set.

4.

Click

the

checkbox

next

to

each

business

object

attribute

you

defined

in

your

initialized

correlation

set.

5.

For

each

selected

attribute,

use

the

drop-down

list

in

the

Correlation

column

to

select

the

template

variable

used

to

capture

and

store

the

attribute’s

value.

This

variable

must

be

the

same

one

used

when

the

correlation

set

was

initialized.

6.

Click

Apply.

Matching

correlation

attributes:

After

you

have

initialized

a

correlation

set,

you

can

configure

an

asynchronous

inbound

service

call

to

receive

any

response

that

matches

that

particular

correlation

set.

Perform

the

following

steps

to

specify

a

correlation

set

in

an

asynchronous

inbound

service

call:

1.

Ensure

that

Process

Designer

Express

is

open,

and

that

the

Service

Call

Properties

dialog

box

is

displayed

for

the

asynchronous

inbound

service

call.

2.

Click

Advanced

to

open

the

Service

Call

Advanced

Properties

dialog

box.

3.

Click

Correlation

Set.

4.

Click

the

checkbox

next

to

each

business

object

attribute

you

defined

in

your

initialized

correlation

set.

5.

For

each

selected

attribute,

use

the

drop-down

list

in

the

Correlation

column

to

select

the

template

variable

used

to

capture

and

store

the

attribute’s

value.

This

variable

must

be

the

same

one

used

when

the

correlation

set

was

initialized.

6.

Click

Apply.

96

Collaboration

Development

Guide

At

runtime,

if

the

asynchronous

inbound

service

call

has

attributes

that

match

those

defined

in

the

correlation

set,

the

service

call

is

invoked

by

the

scenario.

If

its

attributes

do

not

match,

the

service

call

is

routed

to

another

scenario

or

collaboration

that

has

defined

a

matching

correlation

set.

Handling

results

When

a

service

call

executes,

the

scenario

receives

two

return

values:

a

status

and

a

business

object.

Table

25

describes

the

use

of

each.

Table

25.

Service

call

return

values

Returned

Description

Status

The

normal

outgoing

transition

link

of

the

action

that

generated

the

service

call

tests

for

success

of

the

service

call.

An

exception

transition

link

can

check

for

a

ServiceCallException

exception

to

test

for

failure

of

the

service

call.

A

service

call

can

fail

due

to

transport

problems

as

well

as

application

problems.

Because

transport

failure

can

cause

duplication

of

data,

it

is

important

to

determine

whether

a

service

call

failure

was

due

to

transmission

problems.

For

more

information,

see

“Handling

particular

service-call

exceptions”

on

page

134.

Business

object

Upon

completion

of

a

service

call,

the

business

object

variable

that

the

service

call

used

contains

new

data

values

if

the

service

call

resulted

in

any

application

change.

v

After

a

Create

service

call,

you

need

not

check

the

value

of

the

business

object.

If

the

service

call

returns

successfully,

the

Create

operation

succeeded.

v

A

Delete

request

does

not

necessarily

cause

the

actual

deletion

of

application

data.

Because

many

applications

do

not

support

deletion,

a

connector

handles

Delete

verbs

according

to

the

rules

of

its

application.

For

example,

a

connector

might

translate

a

Delete

request

into

an

Update

request,

updating

the

application

entity

to

inactive

status.

Performance

considerations

Collaboration

performance

is

affected

by

the

number

of

service

calls

and

the

size

of

the

business

objects

passed

by

the

service

calls.

Although

you

cannot

change

business

object

size,

try

to

reduce

the

number

of

service

calls

that

a

collaboration

makes.

For

example,

suppose

the

scenario

needs

to

perform

an

operation

on

child

business

objects

in

a

hierarchical

business

object.

In

some

situations,

it

can

be

more

efficient

to

retrieve

the

entire

hierarchical

object

and

iterate

through

it

locally,

rather

than

creating

a

service

call

for

each

child

business

object

that

needs

to

perform

a

service

call.

Subdiagrams

When

logic

of

the

activity

diagram

gets

complex,

it

is

often

useful

to

partition

the

logic,

separating

discrete

units

of

logic

into

subdiagrams.

Each

subdiagram

is

associated

with

a

particular

main

diagram.

Figure

38

illustrates

a

scenario

in

which

the

main

activity

diagram

contains

references

to

two

subdiagrams,

Retrieve

Subdiagram

and

Delete

Subdiagram.

Chapter

5.

Using

activity

diagrams

97

Note:

An

iterator

is

a

specialized

form

of

subdiagram.

All

basic

information

about

subdiagrams

applies

to

iterators;

for

information

that

applies

specifically

to

iterators,

refer

to

“Iterators”

on

page

102.

The

activity

diagrams

in

a

scenario

are

hierarchically

arranged.

All

subdiagrams

and

iterators

in

a

scenario

descend

from

the

scenario’s

main

activity

diagram.

Figure

39

illustrates

this

relationship.

The

activity

diagram

in

which

the

subdiagram

symbol

appears

is

referred

to

as

the

parent

diagram

for

the

subdiagram.

Scenario

Main Activity Diagram

Retrieve

Delete

Start

EndSuccess

Retrieve
Subdiagram

Delete
Subdiagram

Figure

38.

Scenario

with

two

subdiagrams

98

Collaboration

Development

Guide

A

subdiagram

has

access

to

all

collaboration

template

properties

and

to

all

scenario

variables.

Table

26

summarizes

how

a

subdiagram

differs

from

the

main

diagram.

Table

26.

Comparison

of

main

diagram

and

subdiagrams

Issue

Main

diagram

Subdiagram

How

it

is

created

at

design

time

Automatically

created

when

you

create

a

scenario

Controlled

by

the

subdiagram

symbol

in

the

parent

diagram

Cause

of

execution

at

runtime

Starts

execution

when

the

collaboration

runtime

environment

hands

it

a

triggering

event

Starts

executing

when

the

parent

diagram’s

execution

path

leads

to

it;

has

no

triggering

event

What

happens

to

unhandled

or

raised

exception

Passes

to

the

collaboration

runtime

environment

Passes

to

the

parent

diagram

Completion

at

runtime

Returns

to

the

collaboration

runtime

environment

Returns

to

the

parent

diagram

Creating

a

subdiagram

To

add

a

subdiagram

to

the

activity

diagram:

1.

In

the

Symbols

toolbar,

click

the

Subdiagram

button.

2.

Click

in

an

active

activity

diagram

to

place

the

subdiagram

symbol.

A

unique

identifier

appears

for

the

subdiagram

in

the

scenario

tree,

hierarchically

arranged

under

the

parent

diagram.

The

scenario

tree

displays

the

name

in

the

following

format:

(UID)

If

you

provide

a

label

for

the

subdiagram,

the

scenario

tree

displays

the

name

in

the

following

format:

label

(UID)

The

UID

is

a

unique

identifier

that

is

also

the

name

of

the

subdiagram

object

in

the

scenario

tree.

As

with

UIDs

for

other

symbols,

you

can

choose

whether

or

not

to

display

the

UID

for

the

subdiagram.

To

turn

on

or

off

display

of

the

UID,

use

the

context

menu

on

the

scenarios

node

in

the

template

tree.

3.

Double-click

the

subdiagram

name

in

the

scenario

tree,

or

right-click

its

node

in

the

diagram

editor

window

and

select

Open

Subdiagram.

A

new

window

displays

in

the

Working

Area

in

which

to

define

a

new

activity

diagram.

Scenario’s Main Diagram

Subdiagram

Subdiagram

Subdiagram

Iterator

Figure

39.

Relationship

of

main

diagram

and

subdiagrams

Chapter

5.

Using

activity

diagrams

99

Like

the

main

activity

diagram,

the

subdiagram

starts

with

a

Start

symbol

and

ends

with

an

End

Success

symbol,

and,

optionally,

one

or

more

End

Failure

symbols.

A

subdiagram

can

contain

all

diagramming

components,

including

subdiagrams

and

iterators.

Defining

a

subdiagram

After

the

subdiagram

appears

in

the

activity

diagram,

you

can

define

its

properties

in

the

Subdiagram

Properties

dialog.

The

properties

of

a

subdiagram

are

its

label

and

description.

All

are

optional.

To

define

subdiagram

properties:

1.

Display

the

Subdiagram

Properties

dialog.

You

can

display

this

dialog

in

any

of

the

following

ways:

v

Double-click

on

the

selected

subdiagram.

v

Right-click

to

bring

up

the

context

menu,

then

choose

Properties.

v

Choose

Properties

from

the

Edit

pull-down

menu.

v

Use

the

keyboard

shortcut

Ctrl

+

Enter.
2.

Optionally,

specify

the

label

and

description

for

this

subdiagram.

The

label

makes

the

activity

diagram

more

readable,

by

labeling

the

subdiagram

with

text

that

is

more

descriptive

than

the

UID.

The

description

field

is

a

place

for

a

comment,

which

describes

the

purpose

of

the

subdiagram.

3.

Click

Apply

to

save

the

subdiagram

properties.

Click

Discard

to

clear

the

properties.

Click

Close

to

cancel

this

subdiagram

definition.

Deleting

a

subdiagram

To

delete

a

subdiagram,

display

its

parent

diagram

or

subdiagram

and

do

the

following:

1.

Select

the

symbol

of

the

subdiagram

to

delete.

2.

Choose

the

Delete

option

from

the

Edit

menu.

Alternatively,

you

can

click

the

DEL

(Delete)

key.

If

the

parent

diagram

is

expanded

in

the

scenario

tree,

the

subdiagram

name

disappears

from

the

scenario

tree

when

it

is

deleted.

Handling

subdiagram

completion

status

The

execution

of

a

parent

diagram

responds

to

the

execution

status

of

its

subdiagrams.

It

is

the

subdiagram’s

developer

who

decides

the

subdiagram’s

completion

status,

as

well

as

its

exception-handling

behavior.

A

collaboration

can

intentionally

end

a

subdiagram

in

either

of

the

following

ways:

v

Place

the

End

Success

node

at

the

end

of

the

subdiagram’s

execution

path

to

indicate

successful

subdiagram

execution.

v

Place

an

End

Failure

node

at

the

end

of

the

subdiagram’s

execution

path

to

indicate

unsuccessful

subdiagram

execution.

Handling

successful

subdiagram

execution

The

End

Success

termination

node

indicates

that

execution

has

completed

successfully.

When

a

subdiagram

ends

with

an

End

Success

node,

the

collaboration

runtime

environment

ends

the

subdiagram

and

passes

control

to

the

parent

diagram.

The

flow

of

the

parent

diagram

proceeds

to

the

next

node

after

the

100

Collaboration

Development

Guide

subdiagram

node.

This

next

node

is

usually

a

decision

node

that

tests

the

status

of

the

subdiagram.

This

decision

node

can

include

any

of

the

following

branches

to

test

if

the

subdiagram

execution:

v

Normal

branches

test

for

boolean

conditions

that

you

can

set.

If

the

collaboration’s

execution

is

in

the

Normal

state,

the

collaboration

runtime

environment

evaluates

the

conditions

of

any

normal

branches.

The

default

branch

executes

if

no

other

normal

branches

evaluate

to

true.

v

Exception

branches

test

for

specific

raised

exceptions.

If

the

collaboration’s

execution

is

in

the

Exception

state,

the

collaboration

runtime

environment

evaluates

the

conditions

of

the

exception

branches.

A

subdiagram

can

end

successfully

in

the

following

ways:

v

The

subdiagram

completes

its

task

and

does

not

encounter

any

exceptions.

The

collaboration’s

execution

is

in

the

Normal

state.

When

control

passes

to

the

parent

diagram

and

the

parent

diagram’s

next

node

is

a

decision

node,

the

collaboration

runtime

environment

evaluates

any

normal

branches.

v

The

subdiagram

encounters

an

exception,

handles

it

(without

raising

the

exception),

and

intentionally

ends

in

success.

The

collaboration’s

execution

is

in

the

Normal

state.

When

control

passes

to

the

parent

diagram

and

the

parent

diagram’s

next

node

is

a

decision

node,

the

collaboration

runtime

environment

evaluates

any

normal

branches.

v

The

subdiagram

encounters

an

exception,

handles

it

by

raising

the

exception

to

the

parent

diagram,

and

intentionally

ends

in

success.

In

this

case,

the

collaboration’s

execution

is

in

the

Exception

state.

When

control

passes

to

the

parent

diagram

and

the

parent

diagram’s

next

node

is

a

decision

node,

the

collaboration

runtime

environment

evaluates

any

exception

branches.

The

exception

branch

should

lead

to

an

action

node

that

handles

the

exception.

The

best

way

to

handle

the

exception

is

to

raise

it

again

and

include

the

exception

text

as

the

reason

for

the

exception.

In

a

collaboration

with

multiple

levels

of

activity

diagrams,

you

must

explicitly

use

the

raiseException()

method

to

raise

an

exception

up

through

each

level

in

the

activity

diagram

to

provide

the

original

exception

text

in

the

list

of

unresolved

flows.

Each

subsequent

raiseException()

call

raises

the

exception

and

passes

the

original

exception

text.

When

execution

reaches

the

main

diagram,

the

collaboration

runtime

environment

performs

its

exception-handling

operation,

such

as

writing

to

the

log

or,

if

the

collaboration

is

transactional,

initiating

rollback.

Note:

The

developer

can

have

a

subdiagram

end

in

success

even

if

it

encounters

an

exception,

as

long

as

it

handles

the

exception.

Successful

completion

means

only

that

execution

of

the

subdiagram

reached

an

End

Success

symbol

and

that

code

was

available

to

handle

any

exceptions

that

were

raised.

For

information

on

how

to

create

a

decision

node,

see

“Decision

nodes”

on

page

84.

For

more

information

on

how

to

implement

exception

handling,

see

Chapter

7,

“Handling

exceptions,”

on

page

123.

Handling

unsuccessful

subdiagram

execution

The

End

Failure

termination

node

indicates

that

execution

has

not

completed

successfully.

When

a

subdiagram

ends

with

an

End

Failure

node,

the

collaboration

runtime

environment

ends

the

subdiagram

as

well

as

the

entire

collaboration.

Chapter

5.

Using

activity

diagrams

101

Control

passes

to

the

collaboration

runtime

environment,

which

makes

an

entry

in

the

collaboration’s

log

destination

and

creates

an

unresolved

flow.

A

subdiagram

can

end

unsuccessfully

in

the

following

ways:

v

The

subdiagram

encounters

an

exception,

handles

it,

and

intentionally

ends

in

failure.

In

this

case,

the

subdiagram

should

include

the

exception

text

as

the

reason

for

the

exception.

v

The

subdiagram

encounters

an

unexpected

exception

that

it

does

not

handle,

and

intentionally

ends

in

failure.

Whenever

a

subdiagram

ends

with

the

End

Failure

node,

the

collaboration

runtime

environment

terminates

the

entire

collaboration.

For

information

on

how

to

handle

exceptions

encountered

in

a

subdiagram,

see

“Successfully

ending

a

subdiagram

or

iterator”

on

page

127.

For

information

on

how

the

collaboration

runtime

environment

creates

unresolved

flows,

see

“Successfully

ending

the

main

diagram”

on

page

126.

Iterators

An

iterator

is

a

specialized

form

of

subdiagram

that

implements

loops

or

iterations.

Use

an

iterator

to

perform

an

operation:

v

On

all

the

attributes

of

a

business

object

v

On

all

the

elements

of

a

business

object

array

An

iterator

can

also

be

used

as

a

loop.

Any

values

required

for

initializing,

testing,

and

incrementing

the

loop

must

be

supplied

in

the

Iterator

Properties

dialog

box.

An

iterator

diagram

can

call

subdiagrams

or

other

iterators.

A

hierarchy

of

iterators

is

necessary

to

process

hierarchical

business

objects

or

hierarchical

business

object

arrays.

When

execution

of

the

parent

diagram

reaches

the

Iterator

symbol,

control

passes

to

the

iterator

activity

diagram.

The

collaboration

repeats

execution

of

the

iterator

diagram

for

each

attribute

in

the

business

object

or

each

business

object

in

the

business

object

array.

You

have

access

to

the

item

currently

in

the

iterator

through

the

iterator

variable

specified

in

the

Iterator

Properties

dialog.

After

the

iterator

has

finished

executing,

control

passes

back

to

the

parent

diagram.

Creating

an

iterator

To

add

an

iterator

to

the

activity

diagram:

1.

In

the

Symbols

toolbar,

click

the

Iterator

button.

2.

Click

in

the

workspace

to

place

the

Iterator

symbol.

A

unique

identifier

appears

for

the

iterator

in

the

scenario

tree,

hierarchically

arranged

under

the

parent

diagram.

The

scenario

tree

displays

the

name

in

the

following

format:

(UID)

If

you

provide

a

label

for

the

iterator,

the

scenario

tree

displays

the

name

in

the

following

format:

label

(UID)

The

UID

is

a

unique

identifier

that

is

also

the

name

of

the

iterator

object

in

the

scenario

tree.

As

with

UIDs

for

other

symbols,

you

can

choose

whether

or

not

102

Collaboration

Development

Guide

to

display

the

UID

for

the

iterator.

To

turn

on

or

off

display

of

the

UID,

use

the

context

menu

on

the

scenarios

node

in

the

template

tree.

Creating

iterator

variables

An

iterator

working

on

attributes

of

a

business

object

or

an

array

of

business

objects

needs

to

have

a

variable

to

hold

the

item

being

processed

in

each

iteration.

This

iterator

variable

is

actually

a

scenario

variable

that

is

created

and

initialized

in

the

Scenario

Definitions

dialog

box.

Create

iterator

variables

before

defining

the

properties

of

an

iterator.

If

the

iterator

is

working

on

the

attributes

of

a

business

object,

you

can

use

an

Object

to

hold

the

current

attribute.

For

example,

you

might

have

the

following

declaration:

Object

iterAttr

=

null;

If

the

iterator

is

working

on

business

objects

in

an

array,

you

can

use

a

variable

of

type

BusObj

to

hold

the

current

business

object.

For

example:

BusObj

iterBusObj

=

new

BusObj("LineItem");

If

the

iterator

is

being

used

as

a

loop,

you

do

not

need

to

create

an

iterator

variable.

The

system

creates

one

automatically

during

processing.

The

loop

index

variable

can

then

be

retrieved

with

the

getCurrentLoopIndex()

API.

Defining

an

iterator

After

the

iterator

appears

in

the

activity

diagram,

you

can

define

its

properties

in

the

Iterator

Properties

dialog

box

(see

Figure

40).

Open

the

Iterator

Properties

dialog

box

by

right-clicking

the

iterator

and

selecting

Properties

from

its

context

menu.

You

can

define

the

iterator’s

label

and

provide

a

Figure

40.

Iterator

Properties

dialog

box

Chapter

5.

Using

activity

diagrams

103

description;

both

of

these

properties

are

optional.

However,

you

must

define

certain

other

properties

depending

on

the

type

of

iterator

you

want

to

use.

The

following

sections

describe

the

requirements

for

defining

each

type

of

iterator.

Using

an

iterator

on

attributes

of

a

business

object

If

you

want

to

iterate

attributes

of

a

business

object,

do

the

following:

1.

Use

the

Iterator

Variable

field

to

specify

the

variable

that

is

going

to

hold

the

item

being

processed

during

an

iteration.

The

drop-down

list

in

this

field

contains

all

template

and

scenario

variables.

You

can

select

the

variable

from

the

list,

or

type

the

variable

name

directly

in

the

field.

2.

Click

the

Iterate

attributes

in

a

business

object

radio

button.

3.

Use

the

Iterate

through

this

business

object

field

to

specify

the

business

object

whose

attributes

you

want

to

iterate

through.

Either

type

the

name

directly

in

the

field

or

use

the

drop-down

list

to

select

the

business

object.

4.

Click

Apply.

After

you

have

defined

an

iterator’s

properties,

you

must

edit

its

activity

diagram

to

define

what

the

iterator

does

for

each

attribute

it

processes.

Open

an

iterator’s

activity

diagram

by

double-clicking

the

iterator

name

in

the

template

tree

view

of

Process

Designer

Express.

Using

an

iterator

on

business

objects

in

an

array

If

you

want

to

iterate

business

objects

in

an

array,

do

the

following:

1.

Use

the

Iterator

Variable

field

to

specify

the

variable

that

is

going

to

hold

the

item

being

processed

during

an

iteration.

The

drop-down

list

in

this

field

contains

all

template

and

scenario

variables.

You

can

select

the

variable

from

the

list,

or

type

the

variable

name

directly

in

the

field.

2.

Click

the

Iterate

business

objects

in

an

array

radio

button.

3.

Use

the

Iterate

through

this

array

field

to

specify

the

array

you

want

to

iterate

through.

Either

type

the

name

directly

in

the

field

or

use

the

drop-down

list

to

select

the

array.

Use

the

following

syntax

if

you

type

the

value

directly

in

the

field:

BusinessObjectVariable.AttributeName

where

BusinessObjectVariable

is

the

name

of

the

parent

business

object

and

AttributeName

is

the

name

of

the

attribute

that

represents

the

array

of

child

business

objects.

For

example,

to

iterate

through

business

objects

in

an

array

represented

by

the

Items

attributes

in

a

business

object

contained

in

the

variable

order,

type

order.Items

in

the

Iterate

through

this

array

field.

4.

Click

Apply.

After

you

have

defined

an

iterator’s

properties,

you

must

edit

its

activity

diagram

to

define

what

the

iterator

does

for

each

business

object

it

processes.

Open

an

iterator’s

activity

diagram

by

double-clicking

the

iterator

name

in

the

template

tree

view

of

Process

Designer

Express.

Using

an

iterator

as

a

loop

To

define

a

loop,

do

the

following:

1.

Click

the

Loop

radio

button.

2.

Use

the

Start

Value

field

to

specify

the

initial

value

of

the

counter

variable.

You

can

use

the

drop-down

list

to

select

a

variable

that

holds

the

value,

or

you

can

type

the

value

directly

in

the

field.

104

Collaboration

Development

Guide

3.

In

the

Condition

field,

specify

the

condition

that

must

be

true

in

order

for

the

loop

to

execute.

The

drop-down

list

contains

all

boolean

variables

defined

in

the

template.

Select

the

variable

you

want

to

use,

then

type

the

condition

directly

into

the

field.

4.

Use

the

Increment

field

to

specify

the

method

of

incrementing

the

value

of

the

counter

variable.

5.

Click

Apply.

After

you

have

defined

an

iterator’s

properties,

you

must

edit

its

activity

diagram

to

define

what

the

iterator

does

for

each

attribute

or

business

object

it

processes.

Open

an

iterator’s

activity

diagram

by

double-clicking

the

iterator

name

in

the

template

tree

view

of

Process

Designer

Express.

Adding

a

break

A

break

can

be

added

to

an

iterator’s

activity

diagram

to

force

premature

termination

of

the

iteration.

When

the

iterator’s

execution

path

reaches

the

break

symbol,

the

iterator

terminates

and

control

is

passed

back

to

the

parent

diagram.

Breaks

can

be

used

with

all

types

of

iterators.

Place

a

break

symbol

in

an

iterator’s

activity

diagram

as

follows:

1.

Click

the

Break

button

in

the

Symbols

toolbar.

2.

In

the

activity

diagram,

position

your

cursor

where

you

want

to

place

the

break,

and

then

click.

The

break

symbol

is

added

to

the

diagram.

Optionally,

you

can

add

a

label

and

description

to

a

break

symbol.

Double-click

the

break

symbol

in

an

activity

diagram

to

open

its

Break

Properties

dialog

box

and

edit

the

properties

as

desired.

Using

other

features

of

the

Symbols

toolbar

The

Diagram

Symbols

toolbar

contains

a

Select

button

and

a

Text

button.

Use

the

Text

button

to

add

a

text

box

to

your

activity

diagram,

as

described

in

“Using

the

text

box

feature.”

Use

the

Select

button

to

cancel

an

operation,

as

described

in

“Cancelling

an

operation”

on

page

106.

Using

the

text

box

feature

You

can

insert

a

text

box

in

an

activity

diagram

and

place

text

in

the

box,

or

edit

existing

text.

To

add

text

to

an

activity

diagram:

1.

In

the

Symbols

toolbar,

click

the

Text

button.

2.

Click

in

the

workspace

to

place

the

Text

symbol.

A

text

box

appears

with

the

word

“Text”

within

the

box.

3.

Double-click

the

word

“Text”

and

enter

any

text

you

like.

You

can

select

and

drag

the

text

box

to

position

it

at

a

different

point

within

the

diagram.

Figure

41.

Break

symbol

Chapter

5.

Using

activity

diagrams

105

Cancelling

an

operation

If

you

change

your

mind

about

inserting

a

particular

symbol

in

an

activity

diagram,

you

can

cancel

the

insertion.

To

cancel

an

operation

after

you

have

clicked

its

button

in

the

Diagram

Symbols

toolbar,

click

the

Select

button

in

the

Symbols

toolbar.

To

cancel

a

transition

link,

use

the

Esc

key.

Each

press

of

the

Esc

key

undoes

the

last

segment

of

the

transition

link.

Obtaining

values

of

collaboration

configuration

properties

Action

nodes

and

decision

nodes

commonly

need

to

obtain

and

evaluate

the

values

that

an

implementer

or

developer

configures

for

a

collaboration

object’s

configuration

properties.

The

collaboration

object

inherits

its

configuration

properties

from

the

collaboration

template.

For

more

information

on

how

to

define

collaboration

properties,

see

“Defining

collaboration

configuration

properties

(the

Properties

tab)”

on

page

61.

To

obtain

the

value

of

a

property,

a

scenario

calls

the

getConfigProperty()

method.

If

the

property

is

a

list

of

values,

a

scenario

calls

getConfigPropertyArray().

For

more

information,

see

“Retrieving

a

collaboration

configuration

property”

on

page

151.

Using

transactional

features

A

transactional

collaboration

rolls

back

if

it

encounters

an

error

that

stops

its

execution.

For

rollback

to

be

successful,

each

scenario

must

have

compensation

specified

for

each

subtransaction

step.

To

set

the

transactional

properties

of

a

collaboration,

you

must

take

the

steps

outlined

in

Table

27.

Table

27.

Defining

a

transactional

collaboration

Definition

step

Description

For

more

information

Assign

a

minimum

transaction

level

for

the

collaboration

template.

The

transactional

collaboration

uses

the

minimum

transaction

level

to

determine

when

to

perform

transaction

rollback.

“Specifying

the

minimum

transaction

level”

on

page

54

Specify

compensations

for

subtransaction

steps.

The

transactional

collaboration

uses

the

compensation

defined

for

its

subtransactions

to

perform

the

actual

rollback.

“Defining

compensation”

on

page

94

For

a

more

detailed

explanation

of

transactional

collaborations,

refer

to

the

chapter

on

transactional

collaborations

in

the

Technical

Introduction

to

IBM

WebSphere

InterChange

Server.

Terminating

the

execution

path

Each

execution

path

in

an

activity

diagram

must

terminate

in

either

success

or

failure.

Terminating

in

success

Ending

the

collaboration

in

success

means

that

the

execution

path

for

the

activity

diagram

successfully

handled

the

triggering

event.

Either

all

the

execution

was

successful

or,

if

an

exception

occurred,

the

activity

diagram

handled

it

in

a

way

that

still

allowed

the

collaboration

to

end

in

success.

For

more

information,

see

Chapter

7,

“Handling

exceptions,”

on

page

123.

106

Collaboration

Development

Guide

To

indicate

successful

termination,

place

the

End

Success

symbol

at

the

end

of

the

execution

path.

When

the

collaboration

runtime

environment

executes

the

End

Success,

it

terminates

the

current

execution

path

and

passes

control

to

the

next

higher

level

of

execution

(the

parent

diagram),

if

one

exists.

When

a

subdiagram

or

iterator

reaches

an

End

Success

node,

control

passes

to

the

parent

diagram.

When

the

main

activity

diagram

reaches

an

End

Success

node,

control

passes

to

the

collaboration

runtime

environment,

which

performs

its

own

error-handling

actions.

Adding

the

End

Success

symbol

To

terminate

an

execution

path

in

success,

place

an

End

Success

symbol

in

the

activity

diagram

and

connect

it.

To

add

an

End

Success

symbol

to

an

activity

diagram:

1.

In

the

Diagram

Symbols

toolbar,

click

the

End

Success

button.

2.

Click

in

the

workspace

to

place

the

End

Success

symbol.

Defining

the

End

Success

symbol

After

the

End

Success

symbol

appears

in

the

activity

diagram,

you

can

define

its

properties

in

the

End

Success

Properties

dialog.

The

properties

of

an

End

Success

symbol

are

its

label

and

description.

Both

are

optional.

To

define

End

Success

properties:

1.

Display

the

End

Success

Properties

dialog.

You

can

display

this

dialog

in

any

of

the

following

ways:

v

Double-click

on

the

selected

End

Success

node.

v

Right-click

to

bring

up

the

context

menu,

then

choose

Properties.

v

Choose

Properties

from

the

Edit

pull-down

menu.

v

Use

the

keyboard

shortcut

Ctrl

+

Enter.

The

End

Success

Properties

dialog

displays.

2.

Optionally,

specify

the

label

and

description

for

this

action

node.

The

label

makes

the

activity

diagram

more

readable,

by

labeling

the

End

Success

symbol

with

text

that

is

more

descriptive

than

the

UID.

The

description

field

is

a

place

for

a

comment,

which

describes

the

purpose

of

the

End

Success

symbol.

3.

Click

Apply

to

save

the

End

Success

properties.

Click

Discard

to

clear

the

properties.

Click

Close

to

cancel

this

End

Success

definition.

Terminating

in

failure

Ending

the

collaboration

in

failure

means

that

the

activity

diagram

was

unable

to

execute

properly

and

execution

must

stop.

To

indicate

unsuccessful

termination,

place

the

End

Failure

symbol

at

the

end

of

the

execution

path.

When

the

collaboration

runtime

environment

executes

the

End

Failure,

it

terminates

the

entire

collaboration.

When

a

subdiagram

or

iterator

reaches

an

End

Failure

node,

both

the

subdiagram

or

iterator

terminates

as

well

as

all

parent

diagrams

terminate.

The

collaboration

runtime

environment

then

performs

its

own

error-handling

actions.

Note:

Reaching

an

End

Failure

symbol

always

stops

execution

of

the

collaboration.

However,

ending

in

End

Failure

does

not

automatically

fail

the

triggering

event.

Only

if

the

collaboration’s

execution

is

in

the

Exception

state

does

the

collaboration

runtime

environment

create

an

unresolved

flow

for

the

triggering

event.

For

more

information,

see

Chapter

7,

“Handling

exceptions,”

on

page

123.

Chapter

5.

Using

activity

diagrams

107

Adding

the

End

Failure

symbol

To

terminate

an

execution

path

in

failure,

place

an

End

Failure

symbol

in

the

activity

diagram

and

connect

it.

To

add

an

End

Failure

symbol

to

an

activity

diagram:

1.

In

the

Diagram

Symbols

toolbar,

click

the

End

Failure

button.

2.

Click

in

the

workspace

to

place

the

End

Failure

symbol.

Defining

the

End

Failure

symbol

After

the

End

Failure

symbol

appears

in

the

activity

diagram,

you

can

define

its

properties

in

the

End

Failure

Properties

dialog.

The

properties

of

an

End

Failure

symbol

are

its

label

and

description.

Both

are

optional.

To

define

End

Failure

properties:

1.

Display

the

End

Failure

Properties

dialog.

You

can

display

this

dialog

in

any

of

the

following

ways:

v

Double-click

on

the

selected

End

Failure

node.

v

Right-click

to

bring

up

the

context

menu,

then

choose

Properties.

v

Choose

Properties

from

the

Edit

pull-down

menu.

v

Use

the

keyboard

shortcut

Ctrl

+

Enter.
2.

Optionally,

specify

the

label

and

description

for

this

action

node.

The

label

makes

the

activity

diagram

more

readable,

by

labeling

the

End

Failure

symbol

with

text

that

is

more

descriptive

than

the

UID.

The

description

field

is

a

place

for

a

comment,

which

describes

the

purpose

of

the

End

Failure

symbol.

3.

Click

Apply

to

save

the

End

Failure

properties.

Click

Discard

to

clear

the

properties.

Click

Close

to

cancel

this

End

Failure

definition.

Other

activity

diagram

operations

This

section

provides

information

on

the

following

additional

operations

that

Process

Designer

Express

provides

on

an

activity

diagram:

v

“Opening

and

closing

activity

diagrams”

v

“Documenting

an

activity

Diagram”

on

page

109

v

“Copying

an

activity

diagram”

on

page

109

v

“Deleting

within

an

activity

diagram”

on

page

110

Opening

and

closing

activity

diagrams

Process

Designer

Express

provides

the

ability

to

open

and

close

an

activity

diagram.

Opening

an

activity

diagram

To

open

an

activity

diagram,

you

can

perform

any

of

the

following

actions:

v

Choose

Open

All

Diagrams

from

the

Template

menu.

Open

All

Diagrams

opens

a

window

for

each

activity

diagram

defined

for

the

template.

v

Select

a

scenario,

subdiagram,

or

iterator

in

the

scenario

tree:

–

From

the

Template

menu,

choose

Open

Diagram

to

open

a

window

for

the

associated

activity

diagram.

–

Double-click

on

the

scenario,

subdiagram,

or

iterator

name.

108

Collaboration

Development

Guide

v

If

the

activity

diagram

is

a

subdiagram

or

an

iterator,

you

can

open

its

parent

diagram

by

right-clicking

in

the

workspace

to

display

the

context

menu

and

choosing

Open

Parent

Diagram.

Closing

an

activity

diagram

To

close

an

activity

diagram,

you

can

perform

any

of

the

following

actions:

v

Choose

Close

All

Diagrams

from

the

Template

menu.

When

at

least

one

activity

diagram

is

open,

Close

All

Diagrams

closes

all

windows

for

activity

diagrams.

v

Select

the

close

button

at

the

top

of

the

window

that

displays

the

scenario,

subdiagram,

or

iterator.

Documenting

an

activity

Diagram

There

are

two

ways

to

document

an

activity

diagram:

v

Print

a

graphic

representation

of

a

diagram,

subdiagram,

or

iterator.

v

Save

the

full

activity

diagram

to

a

text

file.

Printing

a

Diagram

You

can

print

a

graphic

representation

of

each

diagram,

subdiagram,

and

iterator.

Long

representations

print

on

multiple

pages.

To

print,

do

the

following:

1.

Open

the

diagram—select

it

in

the

template

tree

view

and

either

right-click

on

its

name

and

click

Open

Diagram

from

the

context

menu

or

select

Open

Diagram

from

the

Template

menu.

2.

Select

Print

from

the

File

menu

or

use

the

shortcut

key

combination

Ctrl+P.

Saving

a

diagram

as

a

text

file

You

can

save

the

entire

activity

diagram

as

a

text

file.

To

do

so:

1.

Choose

Save

Diagram

As

Text

File...

from

the

Template

menu.

2.

In

the

Save

Diagram

As

Text

dialog

box,

specify

the

file

name.

Copying

an

activity

diagram

You

cannot

copy

an

entire

activity

diagram

apart

from

its

scenario,

but

you

can

copy

activity-diagram

contents.

To

copy

the

contents

of

an

activity

diagram:

1.

Display

the

source

activity

diagram.

2.

Select

the

objects

that

you

want

to

copy.

v

To

select

some

of

the

objects,

press

and

hold

the

left

mouse

button

while

moving

the

mouse

to

define

the

rectangular

area

that

you

want

to

copy.

Release

the

mouse

button

when

you

are

done.

v

To

select

specific

objects

one

at

a

time,

click

one

object

and

then,

holding

down

the

Shift

key,

click

the

others.

With

the

Shift

key

pressed,

click

an

object

to

remove

it

from

the

selection.

v

To

select

all

the

objects,

on

the

Edit

menu,

choose

Select

All

(Ctrl+A

shortcut).
3.

On

the

Edit

menu,

choose

Copy

(Ctrl+C

shortcut).

4.

Display

the

destination

activity

diagram.

5.

On

the

Edit

menu,

choose

Paste

(Ctrl+V

shortcut).

6.

Revise

the

definitions

of

the

symbols,

as

necessary,

so

that

references

to

properties,

ports,

and

variables

are

correct.

Note

that

copying

is

not

an

iterative

process.

If

you

copy

and

paste

a

subdiagram

or

iterator,

Process

Designer

Express

creates

an

empty

activity

diagram

in

the

Chapter

5.

Using

activity

diagrams

109

scenario

tree,

subordinate

to

the

current

diagram,

to

represent

the

subdiagram

or

iterator

diagram.

You

must

manually

copy

and

paste

the

contents

of

the

subdiagrams

and

iterator

diagrams.

If

a

break

symbol

is

selected

in

an

iterator

node

during

the

copy

operation,

it

can

be

pasted

only

in

another

iterator

node.

Important:

You

cannot

paste

a

duplicate

Start

symbol

into

an

activity

diagram.

When

selecting

symbols

to

copy

and

paste,

avoid

copying

the

Start

symbol

to

a

diagram

that

already

has

one.

If

you

keep

the

default

User

Preferences

setting

for

diagrams,

Process

Designer

Express

automatically

places

the

Start

symbol

in

each

new

diagram.

For

more

information,

see

“Changing

display:

user

preferences”

on

page

143.

Deleting

within

an

activity

diagram

To

delete

a

symbol

within

an

activity

diagram,

select

the

symbol

to

delete

and

take

one

of

the

following

actions:

v

From

the

Edit

menu,

choose

Delete.

v

Press

the

DEL

(Delete)

key.

To

delete

an

entire

activity

diagram,

delete

the

scenario

in

which

the

activity

diagram

is

defined.

For

more

information,

see

“Deleting

a

scenario”

on

page

70.

For

a

scenario

with

subdiagrams

or

iterators,

you

can

delete

the

subdiagram

or

iterator

by

deleting

its

symbol

from

its

parent

diagram.

110

Collaboration

Development

Guide

Chapter

6.

Using

Activity

Editor

Activity

Editor

is

a

graphical

interface

that

enables

you

to

specify

a

collaboration’s

business

logic

without

writing

Java

code.

This

chapter

describes

the

Activity

Editor

interface,

discusses

the

components

in

activity

definitions,

lists

the

supported

function

blocks

used

to

create

business

logic

and

provides

an

example

of

using

Activity

Editor.

It

contains

the

following

sections:

v

“Starting

Activity

Editor”

v

“The

Activity

Editor

interface”

v

“Activity

definitions”

on

page

115

v

“Supported

function

blocks”

on

page

118

v

“Example:

Changing

a

date

format”

on

page

120

Starting

Activity

Editor

Launch

Activity

Editor

from

within

an

action

node

in

a

collaboration

template

scenario,

as

follows:

1.

Select

the

action

node

to

which

you

want

to

add

business

logic.

2.

Open

the

action

node’s

Action

Properties

dialog

box

by

doing

one

of

the

following:

v

Double-clicking

the

action

node

v

Right-clicking

the

action

node,

and

then

clicking

Properties

from

the

context

menu

that

pops

up
3.

Click

Edit.

Activity

Editor

opens

in

a

new

window.

The

Activity

Editor

interface

Figure

42

on

page

112

shows

a

typical

view

of

Activity

Editor.

©

Copyright

IBM

Corp.

2003

111

Activity

Editor

has

four

main

windows:

the

Activity

Workbook

window,

the

Library

window,

the

Content

window,

and

the

Properties

window.

v

Activity

Workbook

window—This

window,

usually

referred

to

as

the

editing

canvas,

is

where

you

drag

and

drop

the

function

blocks

that

make

up

the

business

logic

for

your

action

node.

v

Library

window—This

window

contains

a

tree

view

of

the

available

function

blocks

and,

optionally,

the

named

groups.

The

function

blocks

are

arranged

in

folders

according

to

their

purpose

(see

“Supported

function

blocks”

on

page

118

for

more

information).

In

addition,

this

window

contains

the

following

folders:

–

System—This

folder

contains

system

elements

that

can

be

added

to

the

editing

canvas.

System

elements

include

comments,

descriptions,

labels,

to-do

tags,

and

constants.

(See

“New

Constant

function

block”

on

page

116

and

“Tags

for

activity

definitions”

on

page

117

for

more

information

on

using

these

components.)

–

Library—This

folder

enables

you

to

customize

the

Library

window.

It

contains

any

user-defined

function

blocks

that

have

been

specified

in

the

Activity

Settings

view

in

System

Manager.

–

My

Collection—This

folder

enables

you

to

create

a

collection

of

the

components

you

use

most

often.

You

can

place

regular

function

blocks

in

this

folder,

or

create

your

own

reusable

component

group

(see

“Component

groups”

on

page

117

for

more

information).

Figure

42.

Activity

Editor

112

Collaboration

Development

Guide

–

Variables—This

folder

contains

global

variables

that

are

available

for

use

in

the

current

activity.

It

typically

contains

the

port’s

business

object

variables,

as

well

as

all

of

the

other

business

objects

and

variables

defined

in

the

scenario.
v

Content

window—This

window

contains

a

large

icon

list

of

the

function

blocks

available

within

the

currently

selected

folder

in

the

Library

window.

You

can

select

a

function

block

to

view

its

description

and

properties

in

the

Properties

window,

or

you

can

drag

and

drop

a

function

block

icon

onto

the

editing

canvas

to

create

part

of

the

activity

flow.

v

Properties

window—This

window

displays

the

properties

of

the

currently

selected

function

block.

Properties

are

displayed

in

a

grid

within

this

window.

Some

properties

can

be

edited

directly

in

the

Properties

window,

while

others

are

read-only.

The

following

sections

describe

the

view

modes,

menus,

toolbars,

and

keyboard

shortcuts

that

are

part

of

the

Activity

Editor

interface.

Activity

Editor

view

modes

Activity

Editor

has

two

view

modes:

Design

mode

and

Quick

View

mode.

When

Activity

Editor

is

in

Design

mode,

it

resembles

a

regular

application;

in

addition

to

the

main

editing

canvas,

it

has

a

menu

bar,

toolbars,

and

the

Library,

Content,

and

Properties

windows.

When

Activity

Editor

is

in

Quick

View

mode,

only

the

main

editing

canvas

is

shown.

The

menu

bar,

the

toolbars,

and

all

other

windows

(Content,

Library,

and

Properties)

are

hidden.

Activity

Editor

menus

This

section

describes

the

functionality

available

from

the

Activity

Editor

menus.

File

menu

The

Activity

Editor

File

menu

provides

the

following

options:

v

Save—Saves

the

activity

to

Process

Designer

Express.

v

Print

Setup—Opens

the

Print

Setup

dialog

box

for

specifying

print

options.

v

Print

Preview—Switches

the

editor

to

print

preview

mode.

v

Print—Opens

the

Print

dialog

box

for

printing

the

current

activity.

v

Close—Closes

the

Activity

Editor.

Edit

menu

The

Activity

Editor

Edit

menu

provides

the

following

options:

v

Cut—Deletes

the

selected

item.

The

item

is

copied

to

the

clipboard.

v

Copy—Copies

the

selected

item

to

the

clipboard.

v

Paste—Pastes

the

object

currently

in

the

clipboard

into

the

activity

at

the

point

where

the

cursor

is

located.

v

Delete—Deletes

the

selected

object.

v

Select

All—Selects

all

objects

in

the

activity.

v

Find—Finds

specified

text

in

the

editing

area.

v

Goto

Line—Moves

the

cursor

to

a

specified

line.

View

menu

The

Activity

Editor

View

menu

provides

the

following

options:

v

Design

mode—Toggles

between

Design

mode

and

Quick

View

mode.

Chapter

6.

Using

Activity

Editor

113

v

Quick

View

mode—Toggles

between

Quick

View

mode

and

Design

mode.

v

Go

To—Opens

the

following

submenu

for

navigating

within

the

activity:

–

Back—Moves

backward

in

the

navigation

history.

–

Forward—Moves

forward

in

the

navigation

history.

–

Up

One

Level—Displays

the

diagram

from

one

higher

level.

–

Home—Goes

to

the

top-level

diagram

in

the

Graphical

view.
v

Zoom

In—Magnifies

content

in

the

editor.

v

Zoom

Out—Minimizes

content

in

the

editor.

v

Zoom

To—Opens

the

Zoom

dialog

box

for

specifying

a

particular

level

of

zoom.

v

Library

window—Toggles

the

Library

window

on

and

off.

v

Content

window—Toggles

the

Content

window

on

and

off.

v

Properties

window—Toggles

the

Properties

window

on

and

off.

v

Toolbars—Opens

the

following

submenu

for

displaying

and

closing

toolbars:

–

Standard—Toggles

the

Standard

toolbar

on

and

off.

–

Graphics—Toggles

the

Graphics

toolbar

on

and

off.
v

Status

Bar—Toggles

the

status

bar

on

and

off.

v

Preferences—Opens

the

Preferences

dialog

box

for

specifying

the

Activity

Editor’s

default

behavior.

Tools

menu

The

Activity

Editor

Tools

menu

provides

the

following

option:

v

Translate—Translates

the

current

activity

to

Java

code

and

opens

the

Java

view.

The

code

shown

in

this

window

is

read-only;

it

cannot

be

edited

directly.

Help

menu

The

Activity

Editor

Help

menu

provides

the

following

options:

v

Help

Topics—Opens

the

help

topics.

v

Documentation—Opens

the

InterChange

Server

Express

documentation.

Context

menu

The

Activity

Editor

Context

menu

is

accessed

by

right-clicking

on

the

editing

canvas.

It

provides

the

following

options:

v

New

Constant—Creates

a

new

Constant

component

on

the

editing

canvas.

v

Add

Label—Creates

a

new

label

component

on

the

editing

canvas.

v

Add

Description—Creates

a

new

description

component

on

the

editing

canvas.

v

Add

Comment—Creates

a

new

comment

component

on

the

canvas.

v

Add

To

Do—Creates

a

new

reminder

component

in

the

activity.

v

Add

To

My

Collection—Creates

a

new

component

group

for

reuse

in

the

Library

window.

Activity

Editor

toolbars

Activity

Editor

has

two

toolbars:

the

Standard

toolbar

and

the

Graphics

toolbar.

The

Standard

toolbar

provides

functionality

for

saving

and

printing

activities,

cutting,

copying,

pasting,

and

deleting

elements

in

the

activity,

and

accessing

help.

The

Graphics

toolbar

provides

functionality

for

navigating

within

activities.

The

buttons

correspond

to

the

View

—>

Zoom

and

View

—>

Go

To

menu

items.

114

Collaboration

Development

Guide

Activity

Editor

keyboard

shortcuts

Table

28

lists

the

Activity

Editor

menu

items

and

the

keyboard

shortcuts

associated

with

them.

Table

28.

Activity

Editor

keyboard

shortcuts

Menu

Menu

item

Keyboard

shortcut

File

menu

Save

Ctrl+S

Print

Setup

Ctrl+Shift+P

Print

Preview

No

shortcut

available

Print

Ctrl+P

Close

No

shortcut

available

Edit

Cut

Ctrl+X

Copy

Ctrl+C

Paste

Ctrl+P

Delete

Del

Select

All

Ctrl+A

Find

Ctrl+F

Goto

Line

Ctrl+G

View

Design

Mode

No

shortcut

available

Quick

View

Mode

No

shortcut

available

Go

To/Back

Alt+Left

Arrow

Go

To/Forward

Alt+Right

Arrow

Go

To/Up

One

Level

No

shortcut

available

Go

To/Home

Alt+Home

Zoom

In

Ctrl++

Zoom

Out

Ctrl+

-

Zoom

To

Ctrl+M

Library

Window

No

shortcut

available

Content

Window

No

shortcut

available

Properties

Window

No

shortcut

available

Toolbars

No

shortcut

available

Status

Bar

No

shortcut

available

Preferences

Ctrl+U

Tools

Translate

Ctrl+T

Help

Help

Topics

F1

Documentation

No

shortcut

available

Activity

definitions

Activity

Editor

is

used

to

create

activity

definitions,

which

specify

the

business

logic

for

each

action

node

in

the

collaboration

template.

Each

action

node

has

one

activity

definition

associated

with

it.

An

activity

definition

is

based

on

function

blocks.

A

function

block

represents

a

discrete

part

of

an

activity

definition,

such

as

a

constant,

a

variable,

or

a

particular

Chapter

6.

Using

Activity

Editor

115

piece

of

functionality

(like

a

programming

method).

Many

of

the

function

blocks

in

Activity

Editor

correspond

to

individual

methods

in

the

Collaboration

API.

Function

blocks

are

placed

on

the

editing

canvas

by

dragging

and

dropping

them

from

either

the

Library

or

Content

window.

Once

a

function

block

is

dropped

on

the

editing

canvas,

you

can

move

it

around

as

needed.

Just

click

the

function

block

icon

on

the

canvas

to

select

it

and

drag

it

to

the

desired

location.

Function

blocks

can

have

inputs,

outputs,

or

both.

The

inputs

and

outputs

for

each

function

block

are

predefined,

and

accept

only

the

specified

value

type.

When

the

function

block

is

dropped

on

the

editing

canvas,

its

input

and

output

ports

are

represented

by

arrows,

as

shown

in

Figure

43.

These

ports

serve

as

connecting

points

for

linking

between

the

function

block

and

other

components.

By

default,

the

name

of

each

input

and

output

is

displayed

next

to

its

connection

port

(you

can

use

the

View

—>

Preferences

option

to

hide

the

names).

Connection

links

Function

blocks

are

connected

by

connection

links.

Connection

links

define

the

flow

of

activity

between

the

various

components

in

the

activity

definition.

They

connect

the

output

port

of

one

function

block

to

the

input

port

of

another

function

block.

Note:

Output

ports

can

connect

to

multiple

connection

links,

but

input

ports

can

accept

only

a

single

connection

link.

Perform

the

following

steps

to

add

a

connection

link

between

two

function

blocks:

v

Click

and

hold

down

the

left

mouse

button

on

the

output

port

of

the

first

function

block

(Function

Block

A).

v

While

holding

down

the

left

mouse

button,

move

the

cursor

onto

the

input

port

of

the

second

function

block

(Function

Block

B).

v

Release

the

mouse

button.

The

connection

link

is

placed

between

the

two

function

blocks.

It

is

represented

graphically

by

a

right-angled

line

between

the

two

components.

If

an

input

port

already

has

an

existing

connection

link

the

newer

connection

link

replaces

it.

New

Constant

function

block

Activity

Editor

has

a

New

Constant

function

that

you

can

drag

and

drop

onto

the

editing

canvas

to

define

a

constant

value

that

you

set

and

use

as

input

to

other

function

blocks.

Figure

43.

A

function

block

with

input

and

output

ports

116

Collaboration

Development

Guide

The

New

Constant

function

block

is

located

in

the

System

folder

in

the

Library

and

Content

windows.

Figure

44

illustrates

what

the

New

Constant

function

block

looks

like

when

it

is

dropped

onto

the

editing

canvas.

The

text

edit

box

is

displayed

on

top

of

the

function

block

so

you

can

enter

the

constant’s

value.

(If

you

need

to

edit

the

value,

click

inside

the

constant

function

block

and

enter

the

new

value.)

Note

that

the

constant

contains

a

single

output

port.

Note:

The

Constant

function

block

is

the

only

activity

definition

component

that

accepts

only

a

single

line

for

the

value.

The

constant

is

translated

into

a

Java

String

object,

and

the

system

cannot

translate

a

multi-line

constant

value.

If

it

is

absolutely

necessary

to

have

multi-line

input,

use

the

″\n″

programming

convention

to

separate

lines

in

the

constant.

(For

example

the

value

″line1\nline2″

indicates

that

the

system

must

output

the

value

in

two

lines.)

Tags

for

activity

definitions

The

System

folder

(located

in

the

Library

and

Content

windows)

contains

function

blocks

for

adding

comment,

description,

label,

and

to-do

tags

to

the

activity

definition.

These

tags

help

identify

each

activity

or

subactivity,

or

serve

as

a

reminder

of

something

that

must

be

done.

You

drag

and

drop

these

function

blocks

onto

the

editing

canvas

as

you

would

any

other

function

block.

However,

there

are

no

input

and

output

ports.

To

edit

a

new

tag,

single-click

in

the

center

of

the

tag.

The

cursor

changes

to

an

I-beam,

and

you

can

enter

your

text.

The

tags

automatically

wrap

lines

of

text

that

are

too

long.

You

can

also

press

Enter

to

type

text

on

a

new

line.

If

you

want

to

resize

a

tag,

left-click

the

lower

right-hand

corner

of

the

tag,

and

then

hold

down

the

mouse

while

dragging

the

tag

to

the

desired

size.

Note

that

the

tags

do

have

a

minimum

size

requirement,

and

cannot

be

resized

smaller

than

that

minimum

size.

Component

groups

A

set

of

function

blocks

on

the

editing

canvas

can

be

grouped

together

and

saved

for

later

reuse

in

another

activity

definition.

In

effect,

this

saved

component

group

acts

as

a

function

block.

After

you

have

created

the

desired

activity

flow

on

the

editing

canvas,

perform

the

following

steps

to

save

all

or

part

of

the

flow

as

a

reusable

component

group:

1.

Select

the

function

blocks

you

want

to

group

together.

Hold

down

the

Ctrl

key

to

select

multiple

function

blocks.

2.

Right-click

the

editing

canvas

to

open

the

context

menu.

3.

Click

Add

to

my

Collection.

The

Add

to

My

Collection

dialog

box

is

displayed.

4.

Enter

a

name

and

(optionally)

a

description

for

the

component

group

you

are

creating.

Figure

44.

New

Constant

function

block

Chapter

6.

Using

Activity

Editor

117

5.

Select

the

icon

you

want

to

use

to

represent

the

component

group,

and

then

click

OK.

The

new

component

group

icon

is

added

to

the

My

Collection

folder

in

the

Library

and

Content

windows.

You

can

drag

and

drop

the

icon

onto

the

editing

canvas

for

any

activity

definition

within

your

collaboration

scenario.

Supported

function

blocks

Activity

Editor’s

function

blocks

are

organized

under

the

General

folder

in

the

Library

window,

and

in

the

corresponding

folders

in

the

Content

window.

Table

29

describes

how

the

function

blocks

are

organized.

Table

29.

Organization

of

function

blocks

Function

block

folder

Description

For

more

information

General\APIs\Business

Object

Function

blocks

for

working

with

business

objects.

Chapter

11,

“Business

object

function

blocks,”

on

page

189

General\APIs\Business

Object\Array

Function

blocks

for

working

with

Java

arrays

in

the

BusObj

class.

Chapter

11,

“Business

object

function

blocks,”

on

page

189

General\APIs\Business

Object\Constants

Function

blocks

for

working

with

Java

constants

in

the

BusObj

class.

Chapter

11,

“Business

object

function

blocks,”

on

page

189

General\APIs\Business

Object

Array

Function

blocks

for

working

with

business

object

arrays.

Chapter

12,

“Business

object

array

function

blocks,”

on

page

207

General\APIs\Collaboration

Exception

Function

blocks

for

handling

collaboration

exceptions.

Chapter

16,

“Exception

function

blocks,”

on

page

233

General\APIs\Collaboration

Template

Function

blocks

for

operating

on

collaboration

objects.

Chapter

13,

“Collaboration

template

function

blocks,”

on

page

215

General\APIs\Collaboration

Template\Exception

Function

blocks

for

creating

new

exception

objects

within

a

collaboration

template.

Chapter

13,

“Collaboration

template

function

blocks,”

on

page

215

General\APIs\Collaboration

Template\Constants

Function

blocks

used

to

represent

specific

exception

types

within

a

collaboration

exception

object.

Chapter

13,

“Collaboration

template

function

blocks,”

on

page

215

General\APIs\Database

Connection

Function

blocks

for

creating

and

maintaining

a

database

connection.

Chapter

14,

“Database

connection

function

blocks,”

on

page

225

General\APIs\DB

Stored

Procedure

Param

Function

blocks

for

working

with

database

stored

procedure

parameters.

Chapter

15,

“Database

stored

procedure

function

blocks,”

on

page

231

General\APIs\Execution

Context

Function

blocks

for

setting

and

maintaining

the

collaboration

execution

context.

Chapter

17,

“Execution

function

blocks,”

on

page

237

General\APIs\Identity

Relationship

Function

blocks

for

working

with

identity

relationships.

Map

Development

Guide

118

Collaboration

Development

Guide

Table

29.

Organization

of

function

blocks

(continued)

Function

block

folder

Description

For

more

information

General\APIs\Maps

Function

blocks

for

querying

and

setting

runtime

values

needed

for

map

execution.

Map

Development

Guide

General\APIs\Maps\Constants

Function

block

constants.

Map

Development

Guide

General\APIs\Maps\Exception

Function

blocks

for

creating

new

exception

objects

in

a

map.

Map

Development

Guide

General\APIs\Participant

Function

blocks

for

setting

and

retrieving

values

for

participants

in

an

identity

relationships.

Map

Development

Guide

General\APIs\Participant\Array

Function

blocks

for

creating

and

working

with

participant

arrays.

Map

Development

Guide

General\APIs\Participant\

Constants

Function

block

constants

for

use

with

participants.

Map

Development

Guide

General\APIs\Relationship

Function

blocks

for

manipulating

runtime

instances

of

relationships.

Map

Development

Guide

General\Date

Function

blocks

for

working

with

dates.

Chapter

18,

“Date

function

blocks,”

on

page

239

General\Date\Formats

Function

blocks

for

specifying

different

date

formats.

Chapter

18,

“Date

function

blocks,”

on

page

239

General\Logging

and

Tracing

Function

blocks

for

handling

log

and

trace

messages.

Chapter

19,

“Logging

and

tracing

function

blocks,”

on

page

245

General\Logging

and

Tracing\Log

Error

Function

blocks

for

formatting

error

messages.

Chapter

19,

“Logging

and

tracing

function

blocks,”

on

page

245

General\Logging

and

Tracing\Log

Information

Function

blocks

for

formatting

informational

messages.

Chapter

19,

“Logging

and

tracing

function

blocks,”

on

page

245

General\Logging

and

Tracing\Log

Warning

Function

blocks

for

formatting

warning

messages.

Chapter

19,

“Logging

and

tracing

function

blocks,”

on

page

245

General\Logging

and

Tracing\Trace

Function

blocks

for

formatting

trace

messages.

Chapter

19,

“Logging

and

tracing

function

blocks,”

on

page

245

General\Mapping

Function

blocks

for

executing

maps

within

a

specified

context.

Map

Development

Guide

General\Math

Function

blocks

for

basic

mathematical

tasks.

Map

Development

Guide

General\Properties

Function

blocks

for

retrieving

configuration

property

values.

Map

Development

Guide

General\Relationship

Function

blocks

for

maintaining

and

querying

identity

relationships.

Map

Development

Guide

Chapter

6.

Using

Activity

Editor

119

Table

29.

Organization

of

function

blocks

(continued)

Function

block

folder

Description

For

more

information

General\String

Function

blocks

for

manipulating

String

objects.

Chapter

20,

“String

function

blocks,”

on

page

253

General\Utilities

Function

blocks

for

throwing

and

catching

exceptions,

as

well

as

looping,

moving

attributes,

and

setting

conditions.

Chapter

21,

“Utilities

function

blocks,”

on

page

261

General\Utilities\Vector

Function

blocks

for

working

with

Vector

objects.

Chapter

21,

“Utilities

function

blocks,”

on

page

261

General\Utilities\Locale

and

General\Utilities\Locale\

Constants

Function

blocks

for

setting

and

querying

the

locale.

Chapter

21,

“Utilities

function

blocks,”

on

page

261

Example:

Changing

a

date

format

This

example

illustrates

how

to

use

Activity

Editor

to

change

a

source

attribute’s

date

format

and

assign

the

reformatted

value

to

a

destination

attribute.

In

this

example,

the

source

attribute

is

QuoteSchedule.ExpireDate

and

the

destination

attribute

is

Invoice.PostingDate.

The

original

date

format

is

yyyyMMdd,

and

the

updated

date

format

is

yyyy-MM-dd.

This

example

assumes

that

the

business

objects

and

attributes

have

already

been

created

and

declared

in

the

collaboration

template

scenario.

The

following

steps

are

required

to

change

the

source

attribute’s

date

format

and

then

assign

it

to

the

destination

attribute:

1.

Ensure

that

Activity

Editor

is

open.

2.

Drag

the

QuoteSchedule.ExpireDate

variable

function

block

onto

the

editing

canvas

and

drop

it.

(The

function

blocks

that

represent

the

business

objects,

attributes,

and

variables

available

in

a

scenario

are

located

in

the

Variables

folder

of

the

Library

and

Content

windows.)

3.

Drag

and

drop

the

Format

Change

function

block

onto

the

editing

canvas

to

the

right

of

the

QuoteSchedule.ExpireDate

function

block,

as

shown

in

Figure

45

on

page

121.

120

Collaboration

Development

Guide

4.

Place

a

connection

link

between

the

output

port

of

the

QuoteSchedule.ExpireDate

function

block

and

the

Date

input

of

the

Format

Change

function

block.

5.

Drag

and

drop

the

yyyyMMdd

function

block

constant

onto

the

editing

canvas,

placing

it

underneath

the

QuoteSchedule.ExpireDate

and

Format

Change

function

blocks.

This

function

block

represents

the

current

format

of

the

QuoteSchedule.ExpireDate

attribute.

6.

Place

a

connection

link

between

the

output

port

of

the

yyyyMMdd

function

block

and

the

Input

Format

input

of

the

Format

Change

function

block,

as

shown

in

Figure

48

on

page

122.

7.

Drag

and

drop

the

yyyy-MM-dd

function

block

constant

onto

the

editing

canvas,

placing

it

near

the

yyyyMMdd

function

block.

This

function

block

represents

the

new

format

of

the

QuoteSchedule.ExpireDate

attribute.

Figure

45.

Placing

the

Format

Change

function

block

Figure

46.

Specifying

the

input

date

format

Chapter

6.

Using

Activity

Editor

121

8.

Place

a

connection

link

between

the

output

port

of

the

yyyy-MM-dd

function

block

and

the

Output

Format

input

of

the

Format

Change

function

block,

as

shown

in

Figure

48.

9.

Drag

and

drop

the

Invoice.PostingDate

function

block

to

the

editing

canvas;

this

is

the

destination

attribute.

Place

it

to

the

right

of

the

Format

Change

function

block.

10.

To

assign

the

output

of

the

Format

Change

function

block

to

the

Invoice.PostingDate

attribute,

place

a

connection

link

between

the

Format

Change

function

block

output

port

and

the

Invoice.PostingDate

input

port

as

shown

in

Figure

48.

11.

Save

the

activity

definition

by

clicking

File

—>

Save.

Figure

47.

Specifying

the

output

date

format

Figure

48.

Assigning

output

to

the

destination

attribute

122

Collaboration

Development

Guide

Chapter

7.

Handling

exceptions

An

exception

represents

an

error

situation

that,

if

not

handled

explicitly

within

the

activity

diagram,

can

stop

execution

of

the

collaboration.

The

goal

of

exception

handling

is

to

ensure

the

following:

v

If

possible,

the

error

condition

that

caused

the

exception

is

corrected

or

reduced

in

scope

so

that

collaboration

can

continue

execution.

v

If

the

error

condition

cannot

be

corrected

and

scenario

must

end

unsuccessfully,

collaboration

execution

must

terminate.

In

this

case,

the

collaboration

should

try

to

provide

as

much

information

as

possible

about

the

cause

of

the

error

condition.

This

information

helps

the

administrator

determine

how

to

fix

this

instance

of

the

error

and

to

prevent

future

occurrences

of

this

error.

Therefore,

it

is

important

to

understand

how

exceptions

are

handled,

both

by

your

collaboration

template

and

by

the

collaboration

runtime

environment.

This

section

provides

the

following

information

about

handling

exceptions:

v

“What

is

a

collaboration

exception?”

v

“How

exceptions

are

processed”

on

page

125

v

“How

to

handle

exceptions”

on

page

128

Important

This

chapter

contains

some

information

about

using

the

SEND_EMAIL

property

to

handle

exceptions.

This

property

is

available

only

in

the

CollaborationFoundation

template,

which

is

not

currently

shipped

as

part

of

Process

Designer

Express.

What

is

a

collaboration

exception?

The

Collaboration

API

provides

an

exception

object

to

represent

an

exception

that

occurs

in

a

collaboration.

As

Figure

49

shows,

this

exception

object

contains

information

about

the

condition

that

caused

the

exception.

This

exception

object

is

an

instance

of

the

CollaborationException

class,

which

is

an

extension

of

the

Java

Exception

class.

Table

30

shows

the

accessor

methods

that

the

CollaborationException

class

provides

to

obtain

information

in

the

exception

object.

Exception Type

Exception Subtype

Message

Message Number

Exception object

Figure

49.

The

CollaborationException

exception

object

©

Copyright

IBM

Corp.

2003

123

Table

30.

Information

in

the

exception

object

Member

Accessor

method

Exception

type

getType()

Exception

subtype

getSubType()

Message

text

getMessage(),

toString()

Message

number

getMsgNumber()

Note:

When

an

exception

occurs,

the

collaboration

runtime

environment

populates

a

system

variable

called

currentException

with

information

about

the

exception.

The

currentException

variable

is

an

instance

of

the

CollaborationException

class.

Therefore,

you

can

use

the

methods

in

Table

30

to

obtain

exception

information

from

the

currentException

variable.

To

identify

the

cause

of

the

collaboration

exception,

the

exception

object

includes

one

of

the

exception

types

listed

in

Table

31.

Exception

types

are

string

values

for

which

Java

static

constants

have

been

declared.

Table

31.

Exception

types

Exception-type

constant

Description

AnyException

Any

type

of

exception.

If

there

are

two

exception

branches—one

that

tests

for

a

specific

type

of

exception

and

one

that

tests

for

AnyException—the

branch

that

tests

for

the

specific

type

of

exception

is

checked

first.

If

the

current

exception

does

not

match

the

specific

exception,

the

branch

that

tests

for

AnyException

is

processed

next.

AttributeException

Attribute

access

problem,

for

example,

the

collaboration

called

getDouble()

on

a

String

attribute

or

called

getString()

on

a

nonexistent

attribute.

JavaException

Problem

with

Java

code

that

is

not

part

of

the

collaboration

API.

ObjectException

Invalid

business

object

passed

to

a

method.

OperationException

Service

call

was

improperly

set

up

and

could

not

be

sent.

ServiceCallException

Service

call

failed

for

reasons

outside

the

collaboration.

For

example,

a

connector

or

application

is

unavailable,

or

the

there

is

a

network

outage.

SystemException

Any

internal

error

within

the

InterChange

Server

Express

system.

TimeoutException

Synchronous

or

asynchronous

inbound

service

call

timed

out.

TransactionException

Error

related

to

the

transactional

behavior

of

a

transactional

collaboration.

For

example,

rollback

failed

or

the

collaboration

could

not

apply

compensation.

Note:

When

you

define

an

exception

branch

in

a

decision

node,

you

specify

the

exception

type

to

check

for

in

the

condition

of

the

exception

branch.

For

more

information,

see

“Catching

the

exception”

on

page

128.

Some

of

these

exception

types

have

numerous

situations

that

can

cause

them.

For

such

exception

types,

the

exception

object

often

includes

an

exception

subtype,

which

provides

additional

information

about

the

cause

of

the

exception.

The

two

124

Collaboration

Development

Guide

main

exception

types

that

use

exception

subtypes

are

JavaException

and

ServiceCallException.

For

more

information,

see

the

description

of

“getSubType()”

on

page

340.

How

exceptions

are

processed

As

a

collaboration

executes,

it

can

be

in

one

of

the

following

two

execution

states:

v

The

Normal

state

indicates

either

of

the

following

conditions:

–

No

exception

has

occurred.

–

An

exception

has

occurred

but

the

collaboration

template

has

caught

the

exception.
v

The

Exception

state

indicates

that

an

exception

has

occurred

and

has

not

been

handled

within

the

collaboration

template.

A

collaboration

enters

an

exception

state

when

either

of

the

following

conditions

occurs:

–

A

collaboration

exception

occurs,

such

as

one

of

the

following

conditions:

-

A

service

call

fails;

that

is,

a

collaboration

exception

with

an

exception

type

of

ServiceCallException

occurs.

-

A

Java

exception

occurs;

that

is,

a

collaboration

exception

with

an

exception

type

of

JavaException

occurs.
–

The

collaboration

template

calls

the

raiseException()

method,

raising

a

collaboration

exception

with

any

valid

exception

type.

The

collaboration

can

switch

back

and

forth

between

these

two

states

during

its

execution.

It

enters

the

Exception

state

when

the

exception

occurs

or

raiseException()

executes.

It

returns

to

the

Normal

state

when

the

collaboration

template

catches

the

exception

with

an

exception

branch.

Regardless

of

the

exception

handling

that

an

activity

diagram

does

(or

does

not)

perform,

the

collaboration

runtime

environment

continues

execution

of

the

diagram’s

logic

after

an

exception

occurs.

This

logic

eventually

ends

in

either

an

End

Success

or

End

Failure

node.

The

collaboration

runtime

environment

uses

the

collaboration’s

execution

state

to

determine

whether

to

create

an

unresolved

flow

once

the

collaboration

ends.

For

more

information

on

terminating

nodes,

see

“Terminating

the

execution

path”

on

page

106.

For

more

information

on

unresolved

flows,

see

“Processing

the

Exception

state”

on

page

126.

Processing

the

Normal

state

While

the

collaboration

runtime

environment

is

successfully

executing

a

collaboration

(as

defined

by

the

logic

in

the

activity

diagrams),

the

collaboration’s

execution

is

in

the

Normal

state.

Possible

ways

to

end

the

execution

path

include:

v

An

End

Success

node

The

collaboration

runtime

environment

stops

execution

of

the

current

diagram

and

passes

control

to

the

next

higher

level

of

execution:

–

If

the

End

Success

node

terminates

the

main

activity

diagram,

the

collaboration

runtime

environment

ends

the

collaboration.

When

the

collaboration’s

execution

is

in

the

Normal

state,

the

collaboration

runtime

environment

does

not

create

an

unresolved

flow.

–

If

the

End

Success

node

terminates

a

subdiagram

or

iterator,

the

collaboration

runtime

environment

takes

the

following

steps:

-

End

the

current

level

of

execution

and

pass

control

to

the

parent

diagram.

-

Continue

execution

of

the

parent

diagram

as

defined

by

its

logic.

However,

when

the

collaboration’s

execution

is

in

the

Normal

state,

the

collaboration

runtime

environment

does

not

check

for

any

exception

branches.

Chapter

7.

Handling

exceptions

125

v

An

End

Failure

node

The

collaboration

runtime

environment

stops

execution

of

the

collaboration

and

performs

the

steps

for

a

collaboration

in

the

Normal

state

(see

“Terminating

in

failure”

on

page

107).

Processing

the

Exception

state

When

the

collaboration’s

execution

enters

the

Exception

state,

the

collaboration

runtime

environment

does

not

stop

execution.

Instead,

it

continues

execution

as

defined

by

the

logic

in

the

activity

diagram,

just

as

it

does

for

execution

in

the

Normal

state.

Possible

ways

to

end

this

execution

path

include:

v

An

End

Success

node

The

collaboration

runtime

environment

stops

execution

of

the

current

diagram

and

passes

control

to

the

next

higher

level

of

execution,

which

can

be:

–

If

the

End

Success

node

terminates

the

main

diagram,

the

next

higher

level

of

execution

is

the

collaboration

runtime

environment.

For

more

information,

see

“Successfully

ending

the

main

diagram.”

–

If

the

End

Success

node

terminates

a

subdiagram

or

iterator,

the

next

higher

level

of

execution

is

the

parent

diagram.

For

more

information,

see

“Successfully

ending

a

subdiagram

or

iterator”

on

page

127.
v

An

End

Failure

node

The

collaboration

runtime

environment

stops

execution

of

the

collaboration.

When

the

collaboration’s

execution

is

in

the

Exception

state,

the

collaboration

runtime

environment

next

handles

the

exception.

For

exception-handling

steps,

see

“Successfully

ending

the

main

diagram.”

Successfully

ending

the

main

diagram

When

the

End

Success

node

terminates

the

main

diagram,

the

collaboration

runtime

environment

ends

the

collaboration.

If

the

collaboration’s

execution

is

in

the

Exception

state,

the

runtime

environment

performs

the

following

steps

to

handle

the

exception:

1.

Log

an

error

to

the

collaboration’s

log

destination,

which

can

be

standard

output

(STDOUT)

or

a

log

file,

depending

on

how

InterChange

Server’s

log

destination

is

configured.

v

If

the

collaboration

is

not

transactional,

the

collaboration

runtime

environment

logs

an

error.

v

If

the

collaboration

is

transactional,

the

collaboration

runtime

environment

rolls

it

back,

executing

the

collaboration’s

compensation

steps.

If

the

exception

occurs

during

rollback,

the

collaboration

runtime

environment

terminates

the

collaboration

and

logs

the

error.

At

this

point,

the

collaboration

object

is

in

an

″in-doubt″

state.

An

administrator

can

manually

resolve

the

collaboration

object’s

transactional

status

by

executing

or

discarding

the

remaining

compensation

steps.
2.

Create

an

unresolved

flow

for

the

unsuccessful

collaboration.

When

a

collaboration

ends

with

its

execution

in

the

Exception

state,

it

leaves

behind

an

unresolved

flow,

which

includes:

v

A

failed

event,

which

is

the

original

event

(business

object

and

verb)

that

triggered

the

unsuccessful

collaboration

v

An

exception

message

to

describe

the

cause

of

the

failure

The

collaboration

runtime

environment

sends

this

unresolved

flow

to

InterChange

Server’s

event

resubmission

queue,

where

the

server

administrator

can

analyze

and

assess

it

for

possible

resubmission.

The

Flow

Manager

tool

provides

the

administrator

with

access

to

the

event

resubmission

queue.

The

126

Collaboration

Development

Guide

administrator

can

examine

information

about

unresolved

flows,

such

as

the

name

of

the

collaboration

that

terminated

and

a

message

that

describes

the

error

condition.

Note:

For

more

information

on

use

of

the

Flow

Manager,

see

the

System

Administration

Guide.

By

default,

the

collaboration

runtime

environment

associates

a

very

simple

exception

message

with

an

unresolved

flow:

Scenario

failed.

This

default

exception

message

does

not

provide

the

administrator

with

much

information

with

which

to

troubleshoot

the

cause

of

the

unresolved

flow.

However,

if

you

code

the

collaboration

template

to

raise

the

exception,

you

can

provide

an

exception

message

with

more

information

about

the

actual

error

condition

that

occurred.

When

the

collaboration

runtime

environment

handles

the

exception,

it

can

associate

this

more

detailed

exception

message

with

the

unresolved

flow.

For

more

information,

see

“Raising

the

exception”

on

page

130.

Successfully

ending

a

subdiagram

or

iterator

When

the

End

Success

node

terminates

a

subdiagram

(or

iterator)

and

the

collaboration’s

execution

is

in

the

Exception

state,

the

collaboration

runtime

environment

takes

the

following

steps:

1.

Pass

control

to

the

parent

diagram.

The

parent

diagram

is

the

diagram

that

includes

the

subdiagram

(or

iterator)

node.

2.

Check

for

any

exception

branches

in

the

parent

diagram’s

decision

node

that

connect

the

subdiagram

(or

iterator)

with

an

exception-handling

node.

Take

one

of

the

following

actions:

v

If

an

exception

branch

exists

that

catches

the

current

exception,

the

collaboration

runtime

environment

passes

control

to

the

exception-handling

node

to

which

the

exception

branch

points.

When

this

exception-handling

node

completes,

execution

continues

as

defined

by

the

branch

of

the

activity

diagram

that

contains

the

exception-handling

node.

Note:

Once

an

exception

branch

executes,

the

collaboration’s

execution

changes

to

the

Normal

state.

Therefore,

unless

the

collaboration

template

raises

the

exception

somewhere

in

the

execution

path,

the

collaboration

runtime

environment

does

not

create

an

unresolved

flow

for

the

collaboration.

For

information

on

how

to

implement

exception-handling

code,

see

“How

to

handle

exceptions”

on

page

128.

v

If

no

exception

branch

catches

the

current

exception,

the

collaboration

runtime

environment

continues

execution

of

the

parent

diagram

as

defined

by

its

logic.

However,

the

collaboration’s

execution

is

still

in

the

Exception

state.

Unless

some

other

level

of

execution

catches

the

exception,

the

collaboration

runtime

environment

creates

an

unresolved

flow

for

the

collaboration

when

the

collaboration

ends.

The

collaboration

runtime

environment

continues

execution

of

the

parent

diagram’s

logic

until

that

diagram

terminates

in

either

an

End

Success

or

End

Failure.

As

long

as

the

collaboration

execution

remains

in

the

Exception

state,

the

runtime

environment

handles

the

exception

when

the

collaboration

ends.

As

long

as

each

level

of

execution

ends

with

an

End

Success,

execution

passes

to

the

next

higher

level

until

it

reaches

the

main

diagram.

Unless

the

main

diagram

catches

the

exception,

this

collaboration

terminates

and

control

passes

to

the

collaboration

runtime

environment.

Chapter

7.

Handling

exceptions

127

How

to

handle

exceptions

There

are

two

categories

of

exceptions

that

a

collaboration

can

handle:

v

Business

process

exceptions

Business

process

exceptions

arise

from

code

that

uses

the

Collaboration

API

methods.

For

example,

a

business

process

exception

can

occur

when

the

scenario

sets

the

value

of

a

business

object

attribute,

sends

a

service

call

request

to

a

connector,

and

so

on.

For

information

on

how

to

handle

certain

service-call

exceptions,

see

“Handling

particular

service-call

exceptions”

on

page

134.

v

Native

Java

exceptions

Java

exceptions

result

from

your

own

code

that

uses

native

Java

methods.

When

such

an

exception

occurs,

you

can

raise

a

collaboration

exception

whose

exception

type

is

JavaException

and

whose

exception

subtype

contains

the

particular

Java

exception.

The

collaboration

runtime

environment

catches

and

handles

the

Java

exceptions

arising

from

its

own

code.

When

an

exception

occurs,

the

exception

handling

at

a

given

level

of

the

activity-diagram

hierarchy

can

handle

this

exception

in

one

of

the

following

ways:

v

Do

not

catch

the

exception

at

the

current

level

of

execution.

v

Catch

the

exception

with

an

exception

branch

in

a

decision

node.

Not

catching

the

exception

If

the

activity

diagram

does

not

explicitly

catch

the

exception

with

an

exception

branch,

the

collaboration’s

execution

remains

in

the

Exception

state

(which

it

entered

when

the

exception

occurred).

The

collaboration

runtime

environment

does

not

stop

execution

in

the

diagram

when

the

exception

occurs.

Instead,

execution

continues

according

to

the

logic

of

the

activity

diagram,

ending

in

either

an

End

Success

or

an

End

Failure

node:

v

If

the

execution

path

ends

in

End

Failure,

the

collaboration

runtime

environment

terminates

the

collaboration

and

creates

an

unresolved

flow.

Therefore,

if

you

want

to

catch

an

exception

in

the

subdiagram

but

also

want

to

traverse

the

End

Failure

node,

you

must

make

sure

that

the

code

catches

the

exception

within

the

subdiagram

(before

the

End

Failure

node).

v

If

the

execution

path

ends

in

End

Success,

the

collaboration

passes

control

to

the

next

higher

level.

In

a

hierarchical

activity

diagram,

if

you

do

not

use

an

exception

branch

to

catch

an

exception

at

one

level

of

execution,

you

can

use

End

Success

to

pass

control

to

the

next

higher

level

diagram.

In

this

higher-level

diagram,

you

can

catch

the

event

and

either

handle

the

exception

or

raise

it

to

the

next

higher

level.

If

the

collaboration

template

has

not

caught

the

exception

anywhere

in

its

execution

path,

its

execution

remains

in

the

Exception

state.

In

this

case,

the

collaboration

runtime

environment

still

handles

the

exception,

as

described

in

“Processing

the

Exception

state”

on

page

126.

Because

the

collaboration

template

has

never

caught

the

exception,

the

collaboration

runtime

environment

must

include

its

own

default

exception

message

(Scenario

failed.)

with

the

unresolved

flow.

Catching

the

exception

A

collaboration

template

can

incorporate

exception

handling

in

its

activity

diagram

with

exception

branches,

which

are

branches

within

a

decision

node

whose

branch

type

is

set

to

Exception.

The

decision

node

connects

the

action

symbol

to

its

possible

decision

outcomes.

An

exception

branch

routes

the

action

symbol

in

which

128

Collaboration

Development

Guide

the

exception

occurs

to

the

action

symbol

in

which

the

exception

is

handled.

An

exception

branch

includes

an

exception

condition,

which

specifies

the

exception

type

that

the

exception

branch

catches.

Table

31

on

page

124

lists

the

collaboration

exception

types

that

you

can

choose

from

when

you

define

the

exception

condition.

Note:

For

more

information

on

how

to

add

an

exception

branch

to

an

activity

diagram,

see

“Defining

an

exception

branch”

on

page

87.

When

an

exception

occurs,

the

collaboration

runtime

environment

populates

the

currentException

system

variable.

To

determine

whether

to

follow

the

exception

branch,

the

collaboration

runtime

environment

evaluates

the

exception

condition

of

the

exception

branch

by

comparing

the

exception

type

in

the

exception

branch’s

condition

with

the

exception

type

in

the

currentException

system

variable:

v

If

these

exception

types

match,

the

exception

condition

is

true

and

the

activity

diagram

catches

the

exception.

The

collaboration

runtime

environment

changes

the

collaboration’s

execution

goes

to

the

Normal

state

and

passes

control

to

the

action

symbol

to

which

the

exception

branch

points.

This

action

symbol

can

contain

the

exception-handling

code

to

handle

the

exception

type

specified

in

the

exception

condition.

This

code

can

access

the

currentException

system

variable

to

obtain

exception

information.

v

If

these

exception

types

do

not

match,

the

exception

condition

is

false

and

the

activity

diagram

does

not

catch

the

exception.

Execution

passes

to

the

default

branch

of

the

decision

node

(if

one

exists)

and

then

on

to

the

next

action

symbol

in

the

logic

of

the

activity

diagram.

Unless

the

exception

is

handled

in

the

default

branch,

this

situation

means

that

the

exception

is

not

handled

at

this

level

of

the

activity

diagram.

It

also

means

that

the

collaboration’s

execution

remains

in

the

Exception

state.

Note:

The

collaboration

runtime

environment

checks

for

exception

branches

only

when

the

collaboration

execution

is

in

the

Exception

state.

A

given

decision

node

can

have

a

maximum

of

seven

branches.

Therefore,

it

can

provide

exception-handling

for

many

exception

types.

Each

exception

branch

can

specify

a

different

exception

type

in

its

exception

condition

and

can

point

to

an

exception-handling

node

for

that

exception

type.

Alternatively,

you

can

handle

all

exception

types

in

a

single

exception

branch

that

has

the

AnyException

exception

type

in

its

exception

condition.

Once

the

collaboration

template

has

caught

the

exception

and

execution

passes

to

the

exception-handling

node,

the

collaboration

template

can

handle

it

in

the

following

ways:

v

Proceed

with

the

logic

of

the

scenario

to

successful

or

unsuccessful

completion.

v

Raise

the

exception

to

the

next

higher

level

in

the

activity

diagram.

Proceeding

with

scenario

logic

To

proceed

with

the

logic

of

the

scenario,

you

take

the

following

steps

in

the

exception-handling

node:

1.

Process

the

exception

in

a

manner

that

does

not

involve

raising

the

exception.

Within

the

node

to

which

the

exception

branch

points,

you

can

include

code

that

processes

the

exception.

Table

32

on

page

130

lists

some

possible

processing

steps.

Chapter

7.

Handling

exceptions

129

2.

End

the

execution

path

in

the

activity

node

with

either

an

End

Success

or

an

End

Failure

node.

As

long

as

the

exception-handling

node

does

not

raise

the

exception

(with

the

raiseException()

method),

the

collaboration’s

execution

remains

in

the

Normal

state.

Therefore,

the

collaboration

runtime

environment

does

not

create

an

unresolved

flow

when

collaboration

execution

completes.

For

more

information

on

how

the

collaboration

runtime

environment

processes

these

termination

nodes,

see

“Processing

the

Normal

state”

on

page

125.

Table

32

lists

some

of

the

possible

processing

steps

that

the

exception-handling

node

can

perform.

None

of

these

steps

changes

the

collaboration’s

execution

state.

Therefore,

the

collaboration’s

execution

remains

in

the

Normal

state.

Table

32.

Possible

processing

steps

for

exception

handling

Exception-handling

step

Methods

For

more

information

Log

a

message

in

the

collaboration’s

log

destination.

logError(),

logWarning(),

logInfo()

“Logging

messages”

on

page

147

Obtain

information

about

the

exception.

Methods

of

the

CollaborationException

class.

Table

30

on

page

124

For

example,

the

logError()

method

logs

errors

to

the

collaboration’s

log

destination.

This

destination

can

be

standard

output

(STDOUT)

or

to

a

log

file,

if

configured

to

do

so.

This

method

also

sends

the

error

message

to

an

email

recipient.

The

collaboration

template

can

use

this

method

to

record

errors

that

the

administrator

can

examine.

The

following

code

fragment

extracts

exception

information

from

the

currentException

variable

with

the

getMessage()

and

getMsgNumber()

methods

of

the

CollaborationException

class.

It

then

uses

this

information

to

format

the

error

to

send

to

the

collaboration’s

log

destination

with

a

call

to

logError().

//

extract

exception

information

sMessage

=

currentException.getMessage();

imsgNumber

=

currentException.getMsgNumber();

//

log

message

and

send

email

(if

configured)

logError(imsgNumber,

sMessage,

...);

For

more

information,

see

the

description

of

the

logError()

method

in

“logError(),

logInfo(),

logWarning()”

on

page

278.

Keep

in

mind

that

merely

sending

an

error

to

the

log

destination

is

often

insufficient

for

associating

a

clear

exception

message

with

the

unresolved

flow.

For

example,

suppose

that

an

exception

occurs,

an

exception

branch

catches

it.

and

the

exception-handling

node

simply

logs

the

error

and

ends

in

failure.

In

this

case,

the

unresolved

flow

for

the

unsuccessful

collaboration

includes

the

failed

event

but

its

exception

message

is

just

the

collaboration

runtime

environment’s

default

message

(Scenario

failed.).

Raising

the

exception

The

raiseException()

method

raises

a

collaboration

exception

to

the

next

higher

level

of

execution.

When

the

collaboration

runtime

environment

executes

the

raiseException()

call,

it

changes

the

collaboration’s

execution

state

to

Exception,

then

proceeds

with

the

logic

of

the

activity

diagram.

To

raise

the

exception

to

the

next

higher

level

in

the

activity

diagram,

you

take

the

following

steps

in

the

exception-handling

node:

1.

Acquire

exception

information

from

the

current

exception

to

include

in

the

raised

exception.

130

Collaboration

Development

Guide

Within

the

exception-handling

node,

you

can

use

methods

of

the

CollaborationException

class

to

extract

exception

information

from

the

currentException

system

variable.

Note:

It

is

important

to

extract

the

message

from

the

currentException

variable

so

that

it

can

be

included

in

the

raised

exception.

By

doing

so,

this

message

can

be

available

to

the

collaboration

runtime

environment

when

it

associates

an

exception

message

with

the

unresolved

flow.

2.

Include

a

call

to

the

raiseException()

method

to

generate

the

exception

to

raise.

When

the

collaboration

runtime

environment

executes

a

call

to

raiseException(),

it

changes

the

collaboration’s

execution

to

the

Exception

state.

The

raiseException()

call

provides

the

exception

to

raise

to

the

next

higher

level

of

execution.

3.

End

the

execution

path

for

the

branch

that

contains

the

exception-handling

code

with

either

an

End

Success

or

an

End

Failure

node.

v

If

you

end

the

execution

path

in

End

Success,

you

raise

the

exception

to

the

next

higher

level

of

execution,

where

it

can

be

caught

or

raised

to

the

next

higher

level.

When

you

use

this

method

at

each

execution

level,

the

collaboration

code

can

raise

trapped

exceptions

to

the

top-level

diagram,

which

can

make

the

final

determination

for

error

handling.

v

If

you

end

the

execution

path

in

End

Failure,

you

raise

the

exception

to

the

collaboration

runtime

environment,

which

includes

the

exception

message

as

part

of

the

unresolved

flow.

Because

you

have

raised

the

exception,

the

collaboration

execution

is

in

the

Exception

state.

As

long

as

each

level

of

execution

raises

the

exception

(with

raiseException()),

the

collaboration’s

execution

remains

in

the

Exception

state.

Therefore,

the

collaboration

runtime

environment

creates

an

unresolved

flow

when

collaboration

execution

completes.

For

information

on

how

the

collaboration

runtime

environment

processes

these

termination

nodes,

see

“Processing

the

Exception

state”

on

page

126.

To

understand

how

you

can

use

the

raiseException()

and

logError()

methods

in

collaboration

templates

to

handle

exceptions,

consider

the

following

example.

Suppose

that

a

collaboration’s

main

diagram

calls

subdiagramA,

which

in

turn

calls

subdiagramB.

SubdiagramB

makes

a

service

call,

which

could

result

in

an

exception.

Therefore,

this

subdiagram

contains

an

action

node

that

invokes

a

service

call.

This

action

node

connects

to

a

decision

node

with

an

exception

branch

that

checks

for

service-call

exceptions.

If

a

service-call

exception

occurs,

the

exception

branch

connects

to

an

action

node

with

the

exception-handling

code.

When

an

exception

occurs,

the

collaboration

runtime

environment

changes

the

collaboration’s

execution

to

the

Exception

state

and

evaluates

the

exception

condition

of

any

exception

branches

that

are

associated

with

the

service

call

in

subdiagramB.

If

an

exception

branch’s

condition

evaluates

to

true,

the

exception

branch

catches

the

exception

and

control

passes

to

the

exception-handling

node

to

which

this

exception

branch

points.

Once

the

exception

branch

catches

the

exception,

the

collaboration’s

execution

returns

to

the

Normal

state.

Figure

50

on

page

132

shows

the

code

fragment

that

performs

the

exception

handling

for

a

service-call

exception

in

subdiagramB.

Chapter

7.

Handling

exceptions

131

The

code

in

this

exception-handling

node

takes

the

following

steps:

1.

Check

the

currentException

system

variable

for

information

about

the

exception.

The

code

obtains

the

exception

message

and

exception

type

from

currentException

and

saves

them

in

two

string

variables

(sMessage

and

sType,

respectively).

2.

Raise

the

exception

to

the

parent

diagram

(in

this

case,

subdiagramA).

Once

it

gathers

the

exception

information,

the

code

calls

the

raiseException()

method

to

raise

the

exception

to

subdiagramA.

This

form

of

the

raiseException()

method

receives

the

exception

information

as

an

exception

type

and

an

error

message

(2345)

with

its

three

message

parameters.

These

message

parameters

include

the

exception

message

that

the

code

obtained

from

the

currentException

system

variable.

The

raiseException()

call

then

creates

an

exception

that

contains

this

exception

information.

It

also

changes

the

collaboration

execution

to

the

Exception

state.

Notes:

a.

The

number

of

message

parameters

that

raiseException()

provides

for

a

message

depends

on

the

particular

format

of

the

message

in

the

collaboration

message

file.

b.

You

can

specify

the

same

exception

types

when

you

raise

an

exception

in

the

exception-handling

code

with

the

raiseException()

method

as

you

can

when

you

define

the

exception

condition

in

the

exception

branch.

For

a

list

of

exception

types,

see

Table

31

on

page

124.

After

raiseException()

executes,

the

action

that

the

collaboration

runtime

environment

takes

depends

on

the

termination

node

that

ends

the

execution

path.

If

the

execution

path

terminates

in

an

End

Success

node,

the

collaboration

runtime

environment

takes

the

following

steps:

v

Pass

control

to

subdiagramA.

v

Check

for

a

decision

node

with

an

exception

branch

that

catches

this

exception

(because

the

execution

state

is

Exception).

This

decision

node

would

connect

to

the

node

for

subdiagram

B

and

its

exception

branch

would

connect

to

the

appropriate

exception-handling

node.

Note:

If

the

execution

path

terminates

in

an

End

Failure

node,

the

collaboration

runtime

environment

terminates

the

entire

collaboration.

Because

the

execution

state

is

Exception,

the

runtime

environment

creates

an

unresolved

flow

using

the

exception

information

in

the

exception

that

the

raiseException()

call

raised.

If

a

decision

node

with

exception

branches

exist

in

subdiagramA,

the

collaboration

runtime

environment

evaluates

each

exception

branch’s

condition.

If

this

exception

condition

evaluates

to

true,

subdiagramA

catches

the

exception

that

subdiagramB

raised.

The

collaboration

execution

changes

to

the

Normal

state

and

control

passes

//

exception

handling

in

subdiagramB

sMessage

=

currentException.getMessage();

sType

=

currentException.getType();

//

raise

the

exception

to

subdiagramA

raiseException(sType,

2345,

parameter1,

parameter2,

sMessage);

}

Figure

50.

Handling

the

service-call

exception

in

subdiagramB

132

Collaboration

Development

Guide

to

the

exception-handling

node,

which

handles

the

exception

by

raising

it

up

to

the

parent

diagram

(the

main

diagram)

with

the

following

call

to

raiseException():

//

exception

handling

in

subdiagramA:

raise

the

exception

to

main

diagram

raiseException(currentException);

This

form

of

the

raiseException()

method

just

raises

the

exception

object

that

it

receives

as

an

argument.

It

does

not

create

an

exception

from

information

passed

in.

In

this

case,

there

is

no

need

for

raiseException()

to

create

an

exception

because

the

exception-handling

code

in

subdiagramB

(Figure

50

on

page

132)

has

already

created

the

exception

with

the

appropriate

exception

information.

The

exception

that

subdiagramA

has

in

its

currentException

variable

is

the

same

exception

that

subdiagramB

raised.

After

the

raiseException()

completes,

the

collaboration

execution

continues

according

to

the

logic

in

subdiagramA.

If

this

exception-handling

branch

of

subdiagramA

ends

in

End

Success,

the

collaboration

runtime

environment

terminates

subdiagramA

and

passes

control

to

its

parent

diagram,

which

is

the

main

diagram.

Therefore,

the

exception

object

that

raiseException()

generates

(the

currentException

exception

object

in

subdiagramA)

is

now

raised

to

the

main

diagram.

Note:

If

this

exception-handling

branch

of

subdiagramA

ended

in

End

Failure,

the

collaboration

ends

and

the

exception

object

is

raised

to

the

collaboration

runtime

environment,

which

includes

its

exception

message

as

part

of

the

unresolved

flow.

Collaboration

execution

is

currently

at

the

subdiagramA

node

in

the

main

diagram.

The

collaboration

execution

is

currently

in

the

Exception

state

because

the

exception-handling

node

in

subdiagramA

called

raiseException().

Therefore,

the

collaboration

runtime

environment

checks

in

the

main

diagram

for

any

exception

branches

that

catch

the

raised

exception.

These

exception

branches

would

be

within

a

decision

node

that

connects

the

call

to

subdiagramA

to

one

or

more

exception-handling

action

nodes.

If

an

exception

branch’s

condition

evaluates

to

true,

the

main

diagram

catches

the

exception

that

subdiagramA

raised.

The

collaboration’s

execution

changes

to

the

Normal

state

and

control

passes

to

the

exception-handling

node,

which

can

take

the

appropriate

high-level

exception-handling

steps.

As

an

example,

suppose

that

this

exception-handling

node

in

the

main

diagram

takes

the

following

steps:

1.

Verify

whether

the

collaboration’s

SEND_EMAIL

configuration

property

is

set

to

either

all

or

a

comma-delimited

list

of

message

numbers.

All

collaboration

objects

can

indicate

the

recipients

of

email

for

errors

that

the

logError()

sends

to

the

log

destination.

If

a

collaboration

is

based

on

CollaborationFoundation,

it

can

take

advantage

of

the

additional

functionality

that

the

SEND_EMAIL

collaboration

property

provides.

If

the

collaboration

object

is

configured

to

send

email

and

SEND_EMAIL

is

set

to

either

all

or

a

list

of

message

numbers,

the

collaboration

sends

email

to

the

specified

recipients

when

any

error

(SEND_EMAIL

is

all)

or

a

specified

error

(SEND_EMAIL

provides

a

message-number

list)

occurs.

If

these

conditions

are

met,

the

exception-handling

node

should

call

logError()

to

log

the

error

and

send

email

to

the

specified

recipient.

Therefore,

the

code

must

first

retrieve

the

exception

information

to

include

in

the

error

message

from

the

current

exception.

Note:

The

SEND_EMAIL

configuration

property

is

a

feature

of

the

CollaborationFoundation.

If

your

collaboration

is

based

on

Chapter

7.

Handling

exceptions

133

CollaborationFoundation,

it

can

perform

this

checking

of

the

SEND_EMAIL

property.

Otherwise,

this

configuration

property

is

not

defined.

2.

Send

the

exception

message

to

the

collaboration’s

log

destination

and

as

an

email

message,

if

appropriate.

If

the

collaboration

object

is

configured

to

send

email,

the

logError()

method

automatically

sends

the

error

message

to

a

specified

email

recipient.

This

branch

uses

the

logError()

method

to

send

the

exception

to

the

collaboration’s

log

destination

(standard

output

or

a

log

file).

The

following

code

fragment

in

the

exception-handling

node

of

the

main

diagram

performs

these

steps:

//

exception

handling

in

main

diagram

//

determine

if

SEND_EMAIL

is

set

to

"all"

or

a

message-number

list;

//

if

so,

obtain

exception

information

from

the

current

exception

sMessage

=

currentException.getMessage();

imsgNumber

=

currentException.getMsgNumber();

//

log

message

and

send

email

logError(imsgNumber,

sMessage,

...);

//

raise

the

exception

to

collaboration

runtime

environment

raiseException(currentException);

When

the

collaboration

runtime

environment

executes

this

raiseException()

call,

it

takes

the

following

steps:

v

Set

the

collaboration

execution

to

the

Exception

state.

v

Proceed

with

the

execution

path

to

determine

how

to

terminate

execution

of

the

main

diagram.

v

Because

the

collaboration’s

execution

is

in

the

Exception

state,

create

an

unresolved

flow

when

the

collaboration

ends.

Obtain

the

exception

message

from

the

exception

and

associate

it

with

the

unresolved

flow.

v

Send

the

unresolved

flow

to

the

unresolved

flow

queue.

When

the

administrator

views

unresolved

flows,

the

Flow

Managers

tools

shows

this

unresolved

flow’s

message

(obtained

from

the

exception

when

it

first

was

thrown,

down

in

subdiagramB).

Handling

particular

service-call

exceptions

When

a

collaboration

sends

a

business

object

request

to

its

destination

application,

the

collaboration

runtime

environment

indicates

any

failure

by

throwing

a

collaboration

exception

with

an

exception

type

of

ServiceCallException.

However,

the

cause

of

a

service-call

failure

can

be

ambiguous.

A

service

call

might

fail

for

the

following

reasons:

v

Application-related

or

logic-related—For

example,

a

problem

occurs

because

the

entity

that

the

collaboration

attempted

to

retrieve

does

not

exist

in

the

application.

In

such

a

case,

the

application

does

not

create

or

modify

the

requested

entity.

v

Transport-related—For

example,

a

problem

occurs

during

the

transmission

of

the

business

object

between

the

collaboration

and

the

application.

In

this

case,

the

application

may

have

processed

the

request

but

transmission

of

the

return

status

fails

to

reach

the

collaboration.

This

section

provides

information

about

how

to

handle

the

following

service-call

error

conditions

in

your

collaboration

template:

134

Collaboration

Development

Guide

v

“Service

calls

and

exactly-once

requests”

v

“Unsent

service

call

requests”

on

page

137

Service

calls

and

exactly-once

requests

The

potential

for

duplication

of

data

can

occur

in

any

of

the

following

situations:

v

If

the

service-call

failure

occurs

during

transmission

of

the

business

object

from

the

application

to

the

collaboration,

and

the

collaboration

object

had

completed

or

was

in

the

process

of

completing

one

or

more

service

calls,

resubmission

of

the

request

during

the

recovery

process

could

cause

duplicate

data.

v

If

InterChange

Server

ICS

crashes

while

a

collaboration

object

is

processing

a

service

call.

In

this

case,

the

flow

is

considered

to

be

In-Progress

and

the

recovery

process

re-executes

the

entire

scenario.

For

transactional

collaborations,

the

failed

service

call

is

executed

only

after

all

compensation

steps

have

been

executed.

Preventing

duplication

of

data

due

to

transport-related

exceptions

must

be

handled

at

both

of

the

following

points:

v

Collaboration

runtime

v

Boot-time

recovery

The

next

sections

describe

how

to

handle

the

transport-related

exceptions.

Handling

runtime

transport-related

exceptions

To

prevent

duplication

of

data

from

a

transport

failure

that

occurs

at

collaboration

runtime,

code

your

collaboration

template

to

distinguish

after

each

service

call

between

a

transport-related

exception

and

one

that

is

not

transport-related.

To

check

for

a

transport-related

exception,

use

the

ServiceCallTransportException

subtype

of

the

ServiceCallException

exception

type.

This

exception

subtype

indicates

that

there

was

an

error

in

the

transport,

and

that

it

cannot

be

determined

with

certainty

whether

the

request

reached

the

application.

Important:

A

subset

of

exception

types

that

previously

were

represented

by

the

AppUnknown

subtype

of

ServiceCallException

are

now

represented

by

the

ServiceCallTransportException

subtype.

Therefore,

a

collaboration

template

that

checks

specifically

for

the

AppUnknown

subtype

must

now

also

check

for

ServiceCallTransportException.

Because

the

AppUnknown

subtype

no

longer

handles

transport

exceptions,

the

collaboration

object

will

not

trap

transport

exceptions

if

it

checks

for

all

subtypes

except

ServiceCallTransportException.

Handle

a

transport-related

exception

in

the

node

immediately

following

the

exception

branch;

that

is,

the

node

to

which

the

exception

branch

points.

Code

the

exception-handling

node

that

catches

an

exception

with

the

ServiceCallException

exception

subtype

to

provide

an

extra

Retrieve

service

call

that

retrieves

the

request

business

object

from

the

destination

application

and

determines

whether

the

application

successfully

created

or

modified

the

object.

If

the

object

was

not

created

or

modified

successfully,

code

the

collaboration

to

re-try

the

request.

The

following

code

fragment

provides

exception

handling

for

a

transport-related

exception.

It

uses

the

getSubType()

method

to

retrieve

the

exception

subtype

from

the

currentException

system

variable.

If

this

exception

subtype

is

ServiceCallTransportException,

the

exception-handling

code

must

perform

a

retrieve

to

determine

whether

data

has

changed

in

the

application

as

a

result

of

the

service

call

request.

Chapter

7.

Handling

exceptions

135

if

(currentException.getType().equals(ServiceCallException))

{

if

(currentException.getSubType().equals(

ServiceCallTransportException))

{

//Perform

a

retrieve

to

determine

whether

data

changed

//in

the

application

reflecting

the

ICS

business

object

request

}

else

raiseException(ServiceCallException,

...);

}

Note:

Checking

for

a

transport-related

exception

is

particularly

important

if

the

collaboration

connects

to

the

destination

application

over

an

unreliable

network.

In

such

a

case,

it

is

important

to

retry

every

time

this

exception

could

occur.

Because

the

code

can

check

specifically

for

exceptions

caused

by

transport

failure,

there

is

a

much

lower

performance

impact

than

if

your

code

performs

the

retry

for

all

exceptions.

Handling

boot-time

recovery

transport-related

exceptions

To

prevent

duplication

of

data

for

a

failure

that

results

from

a

crash

of

InterChange

Server

while

a

collaboration

service

call

was

in

process,

you

can

do

either

of

the

following:

v

Make

the

collaboration

transactional,

providing

compensation

for

every

service

call.

v

Configure

a

non-transactional

collaboration

for

Service

Call

In-Transit

persistence.

Transactional

collaborations:

When

InterChange

Server

recovers

a

transactional

collaboration

that

specifies

compensation

for

every

service

call

includes

rolling

back

the

collaboration

before

resubmitting

the

failed

request.

Because

of

the

rollback,

duplication

of

data

for

a

failure

resulting

from

a

server

crash

is

not

a

problem.

For

more

information,

see

“Using

transactional

features”

on

page

106.

Non-transactional

collaborations:

Recovery

of

a

non-transactional

collaboration

does

not

include

rolling

back

the

collaboration

before

resubmitting

the

failed

request.

Therefore,

duplication

of

data

can

be

a

problem.

To

prevent

data

duplication

for

a

non-transactional

collaboration,

configure

the

collaboration

object

for

Service

Call

In-Transit

persistence.

On

the

Collaboration

Properties

dialog,

check

the

box

labelled:

Persist

Service

Call

In

Transit

State

For

backward

compatibility

with

existing

collaborations

and

because

transactional

collaborations

do

not

benefit

from

persistent

storage

of

each

service

call

state,

the

default

setting

for

Service

Call

In-Transit

persistence

is

off;

that

is,

the

Persist

Service

Call

In

Transit

State

box

is

not

checked

for

a

collaboration

object.

When

a

collaboration

object

that

has

been

configured

for

persistence

enters

a

service

call,

ICS

maintains

the

state

of

the

request

until

it

has

been

completed.

If

the

server

crashes

while

a

collaboration

is

processing

a

service

call,

the

state

of

that

failed

service

call

is

displayed

in

the

Flow

Manager,

with

the

following

status:

v

An

event

status

of

“Service

Call

In

Transit”

v

A

message

with

the

following

text:

Service

Call

In

Transit

136

Collaboration

Development

Guide

In

this

case,

the

administrator

must

manually

determine

whether

the

collaboration

request

was

successfully

processed

before

the

transport

failure.

If

the

request

was

not

successful,

the

administrator

should

resubmit

it.

For

more

information,

see

the

System

Administration

Guide.

Note:

If

a

collaboration

is

not

configured

for

Service

Call

In-Transit

persistence,

all

runtime

failures

and

exceptions

that

cause

the

flow

to

fail

have

an

event

status

of

“Failed”

in

the

Unresolved

Flows

viewer.

Unsent

service

call

requests

To

verify

that

the

service

call

request

has

been

sent

to

the

application,

code

your

collaboration

template

to

check

after

each

service

call.

To

verify

that

the

request

has

been

sent,

use

the

AppRequestNotYetSent

subtype

of

the

ServiceCallException

exception

type.

In

the

case

of

a

parallel

connector

agent,

this

exception

subtype

indicates

that

the

request

was

queued

up

in

the

agent

master

but

never

got

dispatched

to

the

application;

therefore,

you

can

resend

the

request.

Handle

an

unsent

service-call

exception

in

the

node

immediately

following

the

exception

branch;

that

is,

the

node

to

which

the

exception

branch

points.

Code

the

collaboration

template

to

resubmit

the

request.

The

following

code

fragment

provides

exception

handling

for

an

unsent

service

call

request.

It

uses

the

getSubType()

method

to

retrieve

the

exception

subtype

from

the

currentException

system

variable.

If

this

exception

subtype

is

AppRequestNotYetSent,

the

code

must

resubmit

the

event

by

returning

to

the

action

node

with

the

service

call.

if

(currentException.getType().equals(ServiceCallException))

{

if

(currentException.getSubType().equals(

AppRequestNotYetSent))

{

//

Resubmit

the

event

by

returning

execution

to

the

action

node

//

with

the

service

call.

}

else

raiseException(ServiceCallException,

...);

}

Important:

The

collaboration

runtime

environment

does

not

set

a

value

for

the

AppRequestNotYetSent

subtype

if

the

ControllerStoreAndForward

connector

property

of

the

destination

connector

is

set

to

true.

If

this

connector

property

is

set

to

false,

the

collaboration

should

check

for

this

subtype

and

resend

the

request.

Exceptions

from

the

Collaboration

API

When

you

design

for

a

collaboration

template,

you

can

include

decision

nodes

with

exception

branches

to

catch

exceptions

thrown

by

the

methods

of

the

Collaboration

API.

For

those

methods

that

throw

a

CollaborationException

exception,

the

reference

description

has

a

section

entitled

Exceptions,

which

lists

when

exceptions

are

thrown

by

that

method.

Chapter

7.

Handling

exceptions

137

138

Collaboration

Development

Guide

Chapter

8.

Workspace

and

layout

options

This

chapter

contains

information

on

options

for

arranging

symbols

and

customizing

the

workspace

when

you

are

editing

an

activity

diagram.

For

additional

information

about

customizing

the

layout

of

the

Process

Designer

Express

main

window,

see

“Customizing

the

main

window”

on

page

24.

Aligning

symbols

The

alignment

operations

in

the

Alignment

toolbar

(see

Figure

51)

reposition

two

or

more

symbols

to

line

up

specified

edges

or

centers.

The

Alignment

toolbar

becomes

active

when

more

than

one

symbol

is

selected

in

the

activity

diagram.

The

order

for

all

alignment

operations

is:

1.

Select

a

symbol

to

use

as

the

“base”

(or

anchor)

for

the

alignment.

2.

While

holding

down

the

Shift

key,

select

the

other

symbols

that

you

want

to

align

to

the

first.

3.

On

the

Alignment

toolbar,

click

the

operation

you

want

to

perform.

See

Figure

51.

Aligning

edges

Aligning

the

edges

of

multiple

symbols

aligns

the

specified

edge

of

each

symbol

to

an

imaginary

line

that

runs

along

the

specified

edge

of

the

model

symbol.

Edge-alignment

operations

include:

Align

Top,

Align

Bottom,

Align

Left,

and

Align

Right.

For

example,

Figure

52

illustrates

the

result

of

aligning

the

bottoms

of

an

End

Success

symbol

and

an

Action

symbol.

For

the

End

Success

symbol,

the

label

and

the

symbol

together

form

one

object

whose

bottom

is

aligned

to

the

bottom

of

the

Action

symbol.

Align
Top

Align
Bottom

Align
Left

Align
Center

Align
Right

Align
Middle

Figure

51.

Alignment

toolbar

Figure

52.

Aligning

bottoms

©

Copyright

IBM

Corp.

2003

139

To

align

the

top,

bottom,

left,

or

right

edge

of

a

set

of

symbols:

1.

Click

the

symbol

(base

or

anchor)

to

which

you

want

to

align

the

others.

2.

While

holding

down

the

Shift

key,

click

one

or

more

additional

symbols

or

groups

of

symbols.

3.

On

the

Alignment

tool

bar,

click

the

Align

Top,

Align

Bottom,

Align

Left

Sides,

or

Align

Right

Sides

button.

All

symbols

line

up

to

the

target.

Aligning

centers

You

can

center

symbols

along

an

imaginary

horizontal

or

vertical

line

drawn

at

the

center

of

the

first

symbol

that

you

select.

Each

symbol

is

then

centered

horizontally

or

vertically

along

that

line.

Center-alignment

operations

include

Align

Middle

and

Align

Center.

The

dashed

line

in

Figure

53

illustrates

the

Align

Middle

operation:

the

alignment

of

the

vertical

centers

of

two

symbols.

The

dashed

line

in

Figure

54

illustrates

the

Align

Center

operation:

the

alignment

of

the

horizontal

centers

of

two

symbols.

To

align

centers:

1.

Select

the

symbol

or

pregrouped

set

of

symbols

whose

center

you

want

to

use

as

a

base

or

anchor.

2.

While

holding

down

the

Shift

key,

select

the

other

symbols

or

groups

of

symbols

that

you

want

to

align.

3.

On

the

Alignment

toolbar,

click

Align

Middle

or

Align

Center.

For

example,

these

are

two

symbols

before

alignment

of

their

horizontal

centers:

Figure

53.

Align

Middle

operation

Figure

54.

Align

Center

operation

140

Collaboration

Development

Guide

These

are

the

same

symbols

with

their

horizontal

centers

aligned:

Nudging

symbols

The

“nudge”

operations

in

the

Nudge

toolbar

(see

Figure

57)

allow

you

to

slightly

move

selected

symbols

of

an

activity

diagram.

The

Nudge

toolbar

becomes

active

when

a

symbol

is

selected

in

the

activity

diagram.

To

control

finer

movement

of

symbols:

1.

Click

the

symbol

that

you

want

to

move.

2.

While

holding

down

the

Shift

key,

select

the

other

symbols

or

groups

of

symbols

that

you

want

to

move.

3.

On

the

Nudge

tool

bar,

click

the

Nudge

Up,

Nudge

Down,

Nudge

Left,

or

Nudge

Right

button.

By

default,

these

commands

move

the

selected

components

in

the

specified

direction

by

one

pixel

unit.

You

hold

down

the

SHIFT

key

at

the

same

time

to

move

the

selected

components

by

five

pixel

units.

Figure

55.

Unaligned

symbols

Figure

56.

Aligned

symbols

Nudge
Up

Nudge
Down

Nudge
Left

Nudge
Right

Figure

57.

Nudge

toolbar

Chapter

8.

Workspace

and

layout

options

141

Zooming

or

panning

on

symbols

The

operations

in

the

Zoom/Pan

toolbar

(see

Figure

58)

allow

you

to

zoom

or

pan

selected

symbols

of

an

activity

diagram.

The

Zoom/Pan

toolbar

becomes

active

when

a

symbol

is

selected

in

the

activity

diagram.

The

Zoom/Pan

toolbar

provides

the

following

operations:

v

Zoom:

this

operation

allows

you

to

zoom

in

on

selected

symbols

in

the

diagram.

To

perform

a

zoom,

click

and

hold

the

left

mouse

button

while

in

zoom

mode.

When

you

hold

the

mouse

button

and

drag

in

zoom

mode,

zoom-selection

draws

a

rectangle

to

indicate

the

area

into

which

you

are

zooming.

After

you

have

positioned

in

the

area

of

the

diagram,

release

the

mouse

button

to

select

the

area

for

zooming.

v

Zoom-to-Fit:

this

operation

sets

the

diagram

magnification

so

that

all

symbols

in

the

diagram

are

visible.

v

Zoom-to-Selection:

this

operations

lets

you

zoom

on

selected

symbols.

Select

the

symbol

and

click

Zoom-to-Selection

to

magnifies

the

symbol

to

fit

the

frame.

v

Pan:

this

operation

allows

you

to

“pan”

or

move

to

different

areas

of

the

diagram.

After

you

click

Pan,

the

pointer

changes

to

a

hand.

You

then

click

and

drag

the

mouse

to

move

around

the

diagram.

Using

the

workspace

grid

Process

Designer

Express

displays

a

grid

in

the

workspace

of

the

diagram

editor

to

help

you

align

symbols.

In

the

Grid

Properties

dialog

(see

Figure

59),

you

can

set

the

following

grid

options:

v

Set

the

grid

to

be

visible

or

invisible.

You

can

manually

line

up

symbols

to

the

grid

if

it

is

visible.

By

default,

the

grid

is

not

visible.

v

Turn

on

“snap

to

grid”.

v

Set

the

grid

color.

v

Set

grid

spacing.

Zoom

Zoom
To Fit

Zoom to
Selection

Pan

Figure

58.

Zoom/Pan

toolbar

142

Collaboration

Development

Guide

To

change

grid

properties:

1.

Ensure

the

diagram

editor

window

is

open.

2.

Click

View

—>

Grid

Properties

to

open

the

Grid

Properties

dialog

box.

3.

Adjust

any

of

the

following

aspects

of

the

grid,

as

needed:

v

Whether

the

grid

is

visible

or

invisible

v

Whether

to

set

symbol

movement

so

that

it

snaps

to

grid

lines

v

The

color

of

the

grid

v

The

grid

spacing

You

can

adjust

the

size

of

the

squares

in

the

grid

to

your

preferred

measurements.

You

can

adjust

the

grid

size

even

if

the

grid

is

invisible.

Under

Grid

Spacing,

enter

a

number

for

the

width

and

height

of

each

grid

square,

in

inches.

The

Angle

Snap

selection

does

not

affect

symbols

in

the

activity

diagram.

4.

Click

OK

to

save

the

grid

options.

Click

Cancel

to

cancel

any

changes.

Both

options

close

the

dialog.

You

can

also

control

the

following

grid

options

directly

from

the

View

menu:

v

The

Grid

option

controls

the

visibility

of

the

grid.

v

The

Snap

to

Grid

option

controls

whether

symbols

move

to

a

grid

line.

Changing

display:

user

preferences

Process

Designer

Express

provides

several

ways

you

can

change

its

display.

Access

the

User

Preferences

window

by

clicking

View

—>

Preferences,

or

use

the

shortcut

key

combination

Ctrl+U.

The

User

Preferences

window

has

three

tabs

that

allow

the

following

customizations:

v

“Changing

general

display”

v

“Changing

diagram

display”

on

page

144

v

“Changing

the

color

of

symbols

and

links”

on

page

145

Changing

general

display

The

General

tab

of

the

User

Preferences

window

allows

you

to:

v

Enable

and

disable

the

display

of

Workbook

tabs

at

the

bottom

of

Process

Designer

Express’s

working

area.

Figure

5

on

page

16

illustrates

a

working

area

that

displays

three

Workbook

tabs.

Figure

59.

Grid

Properties

dialog

Chapter

8.

Workspace

and

layout

options

143

Note:

Changing

this

display

becomes

effective

only

when

you

restart

Process

Designer

Express.

v

Enable

and

disable

content

validation.

Disabling

content

validation

is

useful

if

a

template

has

become

corrupted

but

you

want

to

inspect

it

anyway.

However,

disabling

content

validation

does

not

guarantee

that

Process

Designer

Express

can

open

a

corrupted

template.

v

Enable

and

disable

template

content

compression.

This

option

is

not

user-configurable.

It

is

provided

to

show

the

current

compression

setting.

Compressed

content

can

enhance

the

client-server

data

transfer

rate

and

storage

requirement.

v

Display

or

hide

the

standard

imports

section

and

Ports

and

Triggering

Events

section

in

the

Template

Definition

Declarations

tab.

v

Set

the

colors

for

each

section

of

the

Template

Defintions

Declarations

tab

and

the

Scenario

Variables

window

of

the

Scenario

Definitions

dialog

box.

Figure

60

illustrates

the

General

tab

of

the

User

Preferences

window.

Changing

diagram

display

The

Diagram

tab

of

the

User

Preferences

window

allows

you

to:

v

Enable

and

disable

automatic

display

of

a

start

node

in

a

blank

new

diagram.

Disabling

this

display

requires

the

developer

to

manually

add

the

start

node

in

each

diagram.

v

Enable

and

disable

the

display

of

connection

points

on

nodes

in

an

activity

diagram.

Displaying

connection

points

facilitates

adding

a

transition

link

between

two

nodes.

v

Enable

and

disable

the

display

of

unused

branches

in

a

decision

node.

v

Enable

in-place

editing

of

code

fragments

in

the

Action

Properties

dialog

box.

If

these

options

are

enabled,

you

can

edit

code

fragments

directly

in

the

Action

Properties

dialog

box

instead

of

using

Activity

Editor.

Figure

61

illustrates

the

Diagram

tab

of

the

User

Preferences

window.

Figure

60.

User

Preferences

dialog

box:

General

tab

144

Collaboration

Development

Guide

Changing

the

color

of

symbols

and

links

The

Diagram

Colors

tab

of

the

User

Preferences

window

allows

you

to

change

the

display

color

of

symbols

and

links

in

an

activity

diagram.

For

each

symbol

or

link,

press

the

arrow

for

the

fill

or

line

color

field

and

make

your

selection

from

the

drop-down

options.

Figure

59

illustrates

the

Diagram

Colors

preferences

window.

Figure

61.

User

Preferences

dialog

box:

Diagram

tab

Chapter

8.

Workspace

and

layout

options

145

Hiding

the

Symbol

Properties

dialog

boxes

When

you

double-click

a

symbol,

its

properties

appear

in

a

small

dialog.

When

you

click

another

symbol,

the

contents

of

the

dialog

display

the

newly-selected

symbol’s

properties.

If

you

prefer

not

to

see

the

Symbol

Properties

window,

close

it.

Figure

62.

User

Preferences

dialog

box:

Diagram

Colors

tab

146

Collaboration

Development

Guide

Chapter

9.

Coding

tips

and

examples

This

chapter

describes

how

to

program

specific

types

of

collaboration

tasks.

Important

Although

this

chapter

describes

general

coding

tips

for

collaboration

templates,

it

focuses

on

the

use

of

Java

code,

not

Activity

Editor

function

blocks.

Because

Process

Designer

Express

does

not

permit

direct

editing

of

Java

code,

many

of

the

examples

in

this

chapter

are

not

directly

applicable

for

those

using

function

blocks.

Operations

on

the

collaboration

This

section

describes

operations

that

affect

the

collaboration

as

a

whole.

It

includes

these

operations:

v

“Logging

messages”

v

“Adding

trace

messages”

on

page

149

v

“Retrieving

a

collaboration

configuration

property”

on

page

151

v

“Reusing

collaboration

object

instances”

on

page

151

v

“Calling

a

native

map”

on

page

153

Each

collaboration

template

must

have

an

associated

message

file.

The

message

file

contains

the

text

for

the

collaboration’s

exception

and

logging

messages.

A

unique

number

identifies

each

message

in

the

message

file.

The

text

of

the

message

may

also

include

placeholder

variables.

When

the

collaboration

calls

a

method

that

displays

a

particular

message,

it

passes

the

method

the

message’s

identifying

number

and

potentially

additional

parameters.

The

method

uses

the

identifying

number

to

locate

the

correct

message

in

the

message

file,

and

it

inserts

the

values

of

the

additional

parameters

into

the

message

text’s

placeholder

variables.

For

example,

a

collaboration’s

message

file

might

include

a

message

identified

as

number

23,

whose

text

includes

two

placeholder

variables,

marked

as

{1}

and

{2}:

23

Customer

ID

{1}

could

not

be

changed:

{2}

When

the

collaboration

wants

to

display

or

log

this

message,

it

passes

the

appropriate

method,

such

as

raiseException(),

the

identifying

number

of

the

message

(23)

and

two

additional

parameters,

the

customer

ID

number

(6701)

and

a

String

variable

containing

some

additional

explanatory

text,

such

as

greater

than

maximum

length.

The

method

locates

the

correct

message,

substitutes

the

parameter

values

for

the

message’s

placeholders,

and

displays

or

logs

the

following

message:

Customer

ID

6701

could

not

be

changed:

greater

than

maximum

length

Logging

messages

A

collaboration

template

can

log

a

message

whenever

something

occurs

that

might

be

of

interest

to

an

administrator.

To

log

a

message,

use

the

logInfo(),

logWarning(),

©

Copyright

IBM

Corp.

2003

147

and

logError()

methods

in

your

collaboration

template.

Each

method

is

associated

with

a

different

message

severity

level.

Table

33

lists

the

severity

levels

and

their

associated

methods.

Table

33.

Message

levels

for

log

methods

Method

Severity

level

Description

logInfo()

Info

Informational

only.

The

user

does

not

need

to

take

action.

logWarning()

Warning

Represents

information

about

a

problem.

Do

not

use

this

level

for

problems

that

the

user

must

resolve.

logError()

Error

Indicates

a

serious

problem

that

the

user

needs

to

investigate.

The

message

text

that

these

methods

send

to

the

log

destination

is

prefixed

with

the

severity

level.

This

section

provides

the

following

information

about

logging

messages:

v

“Using

a

message

file”

v

“Principles

of

good

message

logging”

Using

a

message

file

Every

collaboration

template

must

have

a

message

file

to

hold

its

log

messages.

When

a

collaboration

logs

an

error,

the

text

of

the

error

message

can

come

from

the

collaboration’s

message

file.

The

following

example

logs

an

error

message

whose

text

is

contained

in

the

collaboration’s

message

file:

logError(10,

customer.get("LName"),

customer.get("FName");

The

text

of

error

message

10

has

two

message

parameters

and

appears

as

follows

in

the

message

file:

10

Credit

report

error

for

{1}

{2}.

When

the

logError()

method

executes,

it

obtains

the

text

for

message

10

from

the

message

file,

substituting

the

customer’s

last

name

and

first

name

substituted

for

message

parameters

1

and

2,

and

prefixing

the

message

with

a

severity

of

″Error″.

It

then

writes

this

error

message

to

the

collaboration’s

log

destination.

For

example,

the

logged

message

for

a

customer

named

John

Davidson

looks

like

this:

Error:

Credit

report

error

for

Davidson

John.

If

the

collaboration

is

configured

for

email

notification,

logError()

also

sends

this

error

message

to

the

designated

email

recipient

(or

recipients).

Refer

to

Chapter

10,

“Creating

a

message

file,”

on

page

183,

for

information

on

how

to

set

up

a

message

file.

Principles

of

good

message

logging

When

creating

messages,

keep

in

mind

that

the

way

that

administrators

use

the

logging

feature.

Assigning

severity

levels:

It

is

important

to

be

precise

when

assigning

error

levels

to

messages.

The

InterChange

Server

email

notification

feature

sends

a

message

to

a

designated

person,

usually

the

administrator,

when

it

detects

the

generation

of

an

error

message

or

fatal

error

message

(logError()).

Administrators

use

this

InterChange

Server

email

notification

feature,

and

they

additionally

might

148

Collaboration

Development

Guide

link

it

to

an

email

pager

to

send

a

page

when

an

error

occurs.

By

being

precise

when

assigning

error

levels

to

messages,

you

can

reduce

the

number

of

critical

messages.

Revising

messages:

You

can

revise

the

text

of

a

message

at

any

time,

such

as

to

clarify

or

expand

the

text.

However,

after

you

assign

a

message

number

to

a

certain

type

of

error,

it

is

important

that

you

do

not

reassign

the

number.

Many

administrators

depend

on

scripts

to

filter

log

messages,

and

these

scripts

rely

on

the

message

numbers.

Thus,

it

is

important

that

the

numbers

in

the

message

file

do

not

change

meaning.

If

they

do,

users

can

lose

messages

or

receive

inadvertent

messages.

When

to

use

informational

messages:

You

can

use

the

logInfo()

method

to

create

temporary

messages

for

your

own

debugging.

However,

be

sure

to

remove

these

debugging

method

calls

when

you

are

finished

with

development.

Resist

the

temptation

to

use

the

logInfo()

method

to

document

the

normal

operation

of

the

collaboration.

Doing

so

fills

the

administrator’s

log

files

with

messages

that

are

not

of

interest.

Instead,

use

the

trace()

method

to

give

the

administrator

detailed

information

for

debugging.

Adding

trace

messages

You

can

add

trace

messages

to

your

collaboration

template

so

that

when

a

collaboration

object

runs,

it

generates

a

detailed

description

of

its

actions.

Trace

messages

are

useful

for

your

own

debugging

and

for

on-site

troubleshooting

by

administrators.

Trace

messages

differ

from

log

messages

in

that

trace

messages

are

suppressed

by

default,

whereas

log

messages

cannot

be

suppressed.

Trace

messages

are

generally

more

detailed

and

are

meant

to

be

viewed

only

under

certain

circumstances,

such

as

when

someone

intentionally

configures

the

collaboration

object’s

trace

level

to

a

number

higher

than

zero.

You

can

send

trace

messages

and

log

messages

to

different

files.

There

are

two

types

of

trace

messages

for

a

collaboration:

v

Collaboration-generated

trace

messages,

which

you

code

into

the

collaboration

template

v

InterChange

Server

Express-generated

or

system-generated

tracing

messages

from

the

collaboration

runtime

environment

Use

the

Collaboration

Object

Properties

dialog

box

in

System

Manager

to

set

the

trace

levels

for

both

types

of

trace

messages.

The

collaboration

template

developer

creates

the

levels

for

which

you

can

request

collaboration-generated

tracing,

as

the

next

section

describes.

System-generated

tracing

levels

are

the

same

for

all

collaboration

objects.

They

are

described

under

“InterChange

Server

Express-generated

trace

messages”

on

page

151.

Collaboration-generated

trace

messages

You

can

add

trace

messages

to

a

collaboration

template

to

report

operations

that

are

specific

to

that

collaboration.

Below

are

some

examples

of

information

that

the

collaboration

can

write

to

the

trace

file:

v

Key

values

of

a

business

object

at

the

point

that

the

collaboration

enters

or

exits

a

particular

action

node.

v

The

value

of

a

configuration

option

when

the

collaboration

retrieves

it.

Chapter

9.

Coding

tips

and

examples

149

v

The

decision

to

take

a

particular

branch

in

the

execution

path.

v

The

exception

code

resulting

from

a

service

call.

v

The

value

of

each

attribute

in

a

business

object

at

the

point

that

it

enters

or

exits

a

particular

action

node,

iterator,

or

subdiagram.

Assigning

trace

levels:

Each

trace

message

must

be

associated

with

a

trace

level

between

1

and

5.

The

trace

level

usually

correlates

to

a

level

of

detail:

messages

at

level

1

typically

contain

less

detail

than

messages

at

level

2,

which

contain

less

detail

than

those

at

level

3,

and

so

forth.

Thus,

if

you

turn

on

tracing

at

level

1,

you

see

messages

that

contain

less

detail

than

the

messages

at

level

5.

However,

you

can

assign

levels

in

any

way

that

is

useful

to

you.

Here

are

some

suggestions:

v

You

can

assign

the

same

level

to

all

of

your

trace

messages.

v

You

can

assign

trace

levels

according

to

level

of

detail,

as

the

collaboration

runtime

environment

does.

v

You

can

assign

message

levels

according

to

the

business

object

involved:

level

1

traces

messages

relating

to

a

certain

business

object,

level

2

traces

messages

relating

to

another

business

object,

and

so

on.

When

you

turn

on

tracing

at

a

particular

level,

the

messages

associated

with

the

specified

level

and

those

associated

with

all

lower

levels

appear.

For

example,

tracing

at

level

2

displays

messages

associated

with

both

level

2

and

level

1.

Tip:

Make

sure

to

note

the

tracing

levels

with

your

documentation,

so

users

know

what

level

to

use

when

they

need

to

trace.

Generating

a

trace

message:

The

following

is

an

example

of

a

message

and

the

method

call

that

generates

the

message.

The

message

appears

in

the

message

file

as

follows:

20

Configuration

property

DO_VERIFICATION

=

{1}

The

method

call

obtains

the

value

of

the

configuration

property

DO_VERIFICATION,

then

uses

the

value

to

replace

the

parameter

in

the

message.

The

code

appears

in

the

collaboration

as

follows,

and

the

message

appears

when

the

user

sets

tracing

to

level

3:

String

validateProp

=

getConfigProperty("DO_VERIFICATION");

trace(3,

20,

validateProp);

The

following

example

obtains

the

value

of

an

Employee

business

object’s

Salary

attribute

and

makes

a

branching

decision

based

on

the

amount

of

the

salary.

The

message

in

the

message

file

is:

15

Salary

{1}

{2}

The

example

sends

a

trace

message

documenting

the

salary

amount

and

the

path

taken.

int

newsalary

=

employee.getInt("Salary");

String

sal

=

Integer.toString(newsalary);

if

(newsalary

<150000)

{

trace

(3,

15,

sal,

"do

extra

check");

}

else

{

trace

(3,

15,

sal,

"take

normal

path");

}

150

Collaboration

Development

Guide

InterChange

Server

Express-generated

trace

messages

The

InterChange

Server

Express

collaboration

runtime

environment

has

a

tracing

component

that

provides

messages

about

its

execution

of

a

collaboration.

The

runtime

environment

tracing

component

uses

six

numbers

to

represent

trace

levels.

The

first

level,

zero,

is

the

default

setting,

and

it

indicates

that

no

tracing

is

occurring.

Levels

1

through

5

each

indicate

an

increasing

level

of

detail.

A

level

1

trace

provides

the

least

detail

and

a

level

5

trace

provides

the

most

detail.

To

turn

on

tracing,

change

the

collaboration

object’s

trace

level

from

zero

to

a

higher

number.

Individual

trace

messages

are

associated

with

each

level.

Table

34

describes

the

types

of

messages

that

appear

at

each

level.

Table

34.

Trace

levels

for

system-generated

tracing

Level

InterChange

Server

Express

system-generated

tracing

0

None.

1

The

receipt

of

a

triggering

event

and

the

start

of

a

scenario.

2

The

start

and

completion

of

a

scenario,

reporting

both

forward

execution

and

rollback.

3

The

execution

of

an

action

node.

4

The

sending

of

a

business

object

in

a

service

call

and

the

receipt

of

a

response.

5

A

detailed

version

of

the

trace

at

Level

4.

This

level

trace

prints

the

value

of

each

attribute

in

the

business

object

sent

and

received.

Retrieving

a

collaboration

configuration

property

To

retrieve

the

collaboration’s

configuration

property,

use

the

getConfigProperty()

method.

The

following

example

shows

how

a

collaboration

can

use

a

configuration

property

to

determine

the

code

path.

if

(getConfigProperty("CONVERT_NEGQTY").equals("true"))

{

//

take

this

code

path

}

else

{

//

take

this

code

path

}

To

compare

a

property

value

with

a

specific

value,

always

use

an

equals()

method,

as

shown

in

the

example.

Do

not

use

the

conditional

equality

operator

==,

which

tests

whether

two

variables

refer

to

the

same

object,

rather

than

that

two

objects

contain

the

same

values.

Note

that

the

value

is

case-sensitive.

The

case

of

the

configuration

parameter

must

be

the

same

as

the

case

in

the

code

that

tests

for

equality.

In

the

preceding

example,

a

value

of

True

would

fail

the

comparison.

A

configuration

property

can

also

take

an

array

of

values,

separated

by

semicolons.

For

more

information,

refer

to

“getConfigPropertyArray()”

on

page

272.

Reusing

collaboration

object

instances

Typically,

InterChange

Server

Express

creates

an

instance

of

a

collaboration

object

to

process

each

triggering

event.

When

the

instance

completes

the

handling

of

the

triggering

event,

the

system

frees

up

its

resources

and

returns

them

to

the

Java

free

pool.

However,

the

JDK

does

not

always

clean

up

these

instances

efficiently,

which

can

lead

to

excessive

memory

usage.

Chapter

9.

Coding

tips

and

examples

151

To

reduce

memory

usage,

InterChange

Server

Express

uses

the

Collaboration

Instance

Reuse

option,

which

allows

the

system

to

recycle

an

instance

of

a

collaboration

object

by

caching

it

and

reusing

it

when

the

same

type

of

collaboration

object

is

instantiated

at

some

later

time.

When

InterChange

Server

Express

can

recycle

an

existing

collaboration

instance,

it

can

avoid:

v

The

overhead

of

collaboration-object

instantiation

v

Reliance

on

the

JDK

garbage

collector

for

memory

management

The

system

automatically

uses

the

Collaboration

Instance

Reuse

option

as

long

as

the

collaboration

template

meets

both

of

the

following

requirements:

v

The

collaboration

does

not

contain

any

template

(global)

variables.

v

The

collaboration

has

been

compiled

with

a

version

of

Process

Designer

Express

after

version

3.0.

If

either

of

these

conditions

is

not

met,

the

Collaboration

Instance

Reuse

option

is

not

used.

Therefore,

to

take

advantage

of

this

option,

avoid

use

of

template

(global)

variables

in

the

collaboration-template

code.

A

template

variable

is

a

variable

you

declare

whose

scope

is

the

entire

collaboration

template.

You

declare

a

template

variable

in

the

area

labelled

“Global

Variables:”

in

the

Declarations

tab

of

the

Definitions

window.

If

your

collaboration

requires

template

variables

and

you

still

wish

to

use

the

Collaboration

Instance

Reuse

option,

ensure

that

the

collaboration

template

meets

the

following

programming

requirements:

v

Avoid

initializing

template

variables

at

declaration

time.

Instead,

ensure

that

any

template

variables

are

always

initialized

in

the

first

node

of

the

collaboration

template.

v

If

the

collaboration

template

uses

a

template

variable

to

reference

a

large

object,

make

sure

that

you

reset

this

variable

to

null

before:

–

the

collaboration

exits

–

an

exception

is

thrown

Important

A

collaboration

template

containing

template

variables

that

are

not

initialized

at

the

first

node

cannot

safely

be

recycled

because

the

variable

values

in

the

cached

collaboration

object

instance

persist

when

the

instance

is

reused.

When

the

cached

collaboration

instance

is

reused

and

begins

execution,

each

template

variable

contains

the

value

from

the

end

of

the

previous

use

of

the

collaboration

instance.

After

you

have

coded

your

collaboration

template

to

correctly

initialize

its

template

variables,

perform

the

following

tasks

to

enable

the

Collaboration

Instance

Reuse

option:

1.

Define

a

collaboration-specific

configuration

property

called

EnableInstanceReuse

and

set

its

default

value

to

either

true

or

false.

You

define

collaboration-specific

configuration

properties

in

the

Template

Definition

window.

Set

the

default

value

of

EnableInstanceReuse

according

to

the

desired

behavior

of

the

collaboration

objects:

v

To

force

instance

recycling

of

all

collaboration

objects

of

the

collaboration

template,

set

the

default

value

of

EnableInstanceReuse

to

true.

152

Collaboration

Development

Guide

v

To

force

instance

recycling

of

only

particular

collaboration

objects

of

the

collaboration

template,

set

the

default

value

of

EnableInstanceReuse

to

false.
2.

Make

sure

that

each

collaboration

object

that

is

to

be

recycled

has

its

EnableInstanceReuse

collaboration

property

set

to

true.

You

set

the

values

of

collaboration-specific

configuration

properties

in

the

Properties

tab

of

the

Collaboration

Object

Properties

window

of

System

Manager.

For

more

information,

see

the

System

Administration

Guide.

If

you

cannot

code

your

collaboration

so

that

it

meets

the

preceding

programming

requirements,

do

not

use

the

Collaboration

Instance

Reuse

option.

To

disable

this

option,

do

not

define

the

EnableInstanceReuse

collaboration

configuration

property

for

the

collaboration

template.

Note:

You

must

stop

and

start

the

collaboration

object

to

activate

the

Collaboration

Instance

Reuse

option.

It

takes

effect

only

after

a

subsequent

reactivation

of

the

collaboration.

The

software

uses

a

cache,

called

the

collaboration-instance

cache,

to

hold

instances

of

collaboration

objects.

It

derives

the

size

of

the

collaboration-instance

cache

from

the

value

of

the

“Maximum

number

of

concurrent

events,”

which

you

configure

in

the

General

tab

of

the

Collaboration

Object

Properties

window

of

System

Manager.

You

might

need

to

resize

the

collaboration-instance

cache

depending

on

whether

you

are

using

the

event-triggered

or

call-triggered

flow-processing

model

to

execute

collaborations.

Resizing

the

collaboration-instance

cache

involves

defining

a

collaboration

configuration

property

called

CollaborationInstanceCacheSize.

You

define

this

property

with

other

collaboration

properties,

in

the

area

labelled

“Properties”

in

the

General

tab

of

the

Template

Definition

window.

After

you

define

CollaborationInstanceCacheSize,

set

its

value

to

a

reasonable

default

value

for

the

number

of

collaboration

instances.

For

more

information,

see

the

description

of

the

Collaboration

Instance

Reuse

option

in

the

System

Administration

Guide.

Calling

a

native

map

Normally,

calling

maps

and

submaps

is

done

only

from

within

a

map.

However,

sometimes

your

collaboration

might

need

to

call

a

InterChange

Server

Express

native

map

directly.

Calling

a

native

map

from

a

collaboration

provides

a

number

of

benefits:

v

Easy

generic-to-generic

transformations

v

Convenient

translation

between

different

application

structures

Calling

the

native

map

from

a

collaboration

template

involves

the

following

steps:

v

“Creating

a

collaboration

property

for

the

map

name”

v

“Initializing

the

collaboration”

on

page

154

v

“Calling

the

map”

on

page

154

v

“Populating

the

collaboration

variable”

on

page

156

Creating

a

collaboration

property

for

the

map

name

You

can

create

a

collaboration

property

that

contains

the

name

of

the

map

to

call.

This

step

is

not

required

but

it

frees

the

collaboration

code

from

needing

to

be

recompiled

if

the

map

name

changes.

Instead,

if

the

map

name

changes,

you

only

have

to

change

the

value

of

this

collaboration

property.

For

example,

you

could

define

a

collaboration

property

called

MAP_NAME

to

hold

the

name

of

the

map

you

Chapter

9.

Coding

tips

and

examples

153

need

to

call.

Collaboration

properties

are

defined

in

the

Template

Definitions

window.

For

more

information,

see

“Defining

collaboration

configuration

properties

(the

Properties

tab)”

on

page

61.

Note:

Use

the

getConfigProperty()

method

to

obtain

the

value

of

this

collaboration

property

within

the

collaboration

template’s

code.

Initializing

the

collaboration

Initializing

the

collaboration

template

to

call

the

map

involves

importing

Java

classes

of

the

Mapping

API

into

the

collaboration

template.

InterChange

Server

Express

maps

require

certain

Java

classes

to

execute.

Some

of

these

classes

are

not

automatically

included

in

a

collaboration

template.

For

the

map

to

be

able

to

execute,

you

must

explicitly

import

the

following

map

class

and

packages:

v

CxCommon.CxExecutionContext

class

v

CxCommon.Exceptions

package

v

CxCommon.Dtp

package

v

CxCommon.BaseRunTimes

package

v

DLM

package

Import

each

of

these

items

in

the

Imports

section

of

the

Declarations

tab

in

the

Template

Definitions

window.

For

example,

add

the

following

entries

to

the

import

table

to

import

map

classes

into

the

collaboration

template:

CxCommon.CxExecutionContext

CxCommon.Exceptions.*

CxCommon.Dtp.*

CxCommon.BaseRunTimes.*

DLM.*

Note:

Make

sure

you

follow

the

package

name

with

the

“.*”

syntax

to

import

all

of

the

classes

within

the

package.

For

general

information

about

how

to

import

Java

classes,

see

“Importing

Java

packages”

on

page

57.

Calling

the

map

To

call

a

map,

use

the

runMap()

method

of

the

Mapping

API

class,

DtpMapService.

The

runMap()

method

requires

the

following

information

to

be

passed

in

as

arguments:

v

The

name

of

the

map

to

execute

v

The

type

of

map,

always

represented

as

CWMAPTYPE

for

InterChange

Server

Express

native

maps

v

An

input

array

of

business

objects,

which

contains

the

source

business

objects

for

the

map

v

A

map

execution

context

Therefore,

you

must

initialize

this

information

within

the

collaboration

before

the

call

to

runMap().

Obtaining

the

map

name:

To

pass

in

the

name

of

the

map

to

execute,

you

can

hardcode

the

map

name

in

the

call

to

runMap().

However,

a

more

flexible

design

is

to

use

a

collaboration

property

to

contain

the

name

of

the

map.

This

design

involves

the

following

steps:

v

Set

a

collaboration

property,

as

described

in

“Creating

a

collaboration

property

for

the

map

name”

on

page

153

154

Collaboration

Development

Guide

v

Use

the

getConfigProperty()

method

to

obtain

the

value

of

this

collaboration

property

within

the

collaboration

template’s

code.

Figure

63

shows

a

line

of

code

obtains

the

map

name

stored

in

the

collaboration

property

MAP_NAME.

Note:

This

approach

assumes

that

you

have

created

the

MAP_NAME

collaboration

property

and

assigned

to

it

the

correct

name

of

the

map

to

execute.

Initializing

the

input

array:

The

runMap()

method

requires

an

input

array,

which

contains

the

source

business

objects

for

the

map.

Usually,

a

map

transforms

a

single

source

business

object.

For

such

a

map,

this

input

array

has

only

one

element.

When

calling

a

map

from

within

a

collaboration,

you

usually

want

to

put

a

copy

of

the

triggering

business

object

into

this

input

array.

You

then

pass

this

input

array

as

the

third

argument

to

runMap().

Figure

64

shows

a

line

of

code

that

initializes

the

input

array

with

a

copy

of

the

collaboration’s

triggering

business

object.

Preparing

the

map

execution

context:

A

map

instances

executes

within

a

specific

map

execution

context,

which

contains

information

that

the

map

needs,

such

as

the

following:

v

The

calling

context

indicates

the

condition

that

initiated

this

invocation

of

the

map.

Calling

contexts

are

represented

as

predefined

constants

in

the

MapExeContext

class.

v

The

original-request

business

object

is

a

copy

of

the

business

object

associated

with

this

invocation

of

the

map.

The

Mapping

API

represents

a

map

execution

context

as

a

MapExeContext

object.

Within

map

code,

you

can

always

obtain

the

map’s

execution

context

from

the

system-generated

variable,

cwExecCtx.

However,

no

such

system-generated

variable

is

accessible

from

within

the

collaboration

template.

Instead,

your

collaboration

must

take

the

following

steps:

v

Instantiate

a

MapExeContext

object

with

the

MapExeContext()

constructor.

v

Assign

the

MapExeContext

object

to

the

global

execution

context.

The

CxExecutionContext

class

represents

the

global

execution

context

for

the

collaboration.

Therefore,

to

initialize

the

map

execution

context,

you

must

take

the

following

steps:

–

Instantiate

a

CxExecutionContext

object

with

the

CxExecutionContext()

constructor.

–

Assign

the

MapExeContext

object

to

the

CxExecutionContext

object

with

the

setContext()

method.
v

Provide

the

MapExeContext

object

with

its

calling

context.

String

map_name

=

getConfigProperty("MAP_NAME");

Figure

63.

Obtaining

the

Name

of

the

Map

to

Execute

BusObj[]

sourceBusObjs

=

{

inputBusObj

};

Figure

64.

Initializing

the

Input

Array

with

the

Triggering

Business

Object

Chapter

9.

Coding

tips

and

examples

155

The

setInitiator()

method

of

the

MapExeContext

class

sets

the

calling

context

(its

deprecated

term

is

“map

initiator”).

For

more

information

on

map

execution

contexts

and

the

methods

of

the

MapExeContext

class,

see

the

Map

Development

Guide.

Figure

65

shows

a

code

fragment

that

initializes

the

map

execution

context

with

a

calling

context

of

EVENT_DELIVERY

(converting

from

an

application-specific

business

object

to

a

generic

business

object)

and

an

original-request

business

object

of

the

triggering

business

object.

Calling

the

runMap()

method:

After

the

collaboration

template

has

initialized

the

map

information,

it

can

call

the

map.

Calling

the

runMap()

method

involves

two

steps:

v

Invoke

the

runMap()

method.

This

method

is

a

static

method

within

the

Mapping

API

class,

DtpMapService.

Therefore,

you

do

not

need

to

instantiate

a

DtpMapService

instance.

v

Provide

an

output

array

for

the

runMap()

return

values.

In

addition

to

the

input

array,

the

runMap()

method

also

requires

an

output

array,

which

runMap()

populates

with

the

map’s

destination

business

objects

and

returns

to

the

calling

code.

Usually,

a

map

generates

a

single

destination

business

object.

For

such

a

map,

this

output

array

has

only

one

element.

Figure

66

shows

the

call

to

runMap()

to

execute

the

map

with

the

following

characteristics:

v

Map

name

is

identified

by

the

MAP_NAME

collaboration

property

(Figure

63).

v

Map’s

source

destination

business

object

is

the

collaboration’s

triggering

business

object

(Figure

64).

v

Map’s

execution

context

is

initialized

to

a

calling

context

of

EVENT_DELIVERY

and

the

triggering

business

object

as

the

original-request

business

object

(Figure

65).

Populating

the

collaboration

variable

The

map’s

destination

business

objects

are

available

in

the

output

array

that

runMap()

returns.

To

send

a

destination

business

object

out

of

the

collaboration,

//

Instantiate

objects

for

the

map

execution

context

and

the

global

//

execution

context

map_exe_context

=

new

MapExeContext();

global_exe_context

=

new

CxExecutionContext();

//

Assign

the

map

execution

context

to

the

global

execution

context

global_exe_context.setContext(

CxExecutionContext.MAPCONTEXT,

map_exe_context);

//

Initialize

the

map

execution

context

map_exe_context.setInitiator(MapExeContext.EVENT_DELIVERY);

Figure

65.

Initializing

the

map

execution

context

BusObj[]

destinationBusObjs

=

DtpMapService.runMap(

map_name,

CWMAPTYPE,

sourceBusObjs,

global_exe_context);

Figure

66.

Calling

runMap()

to

execute

the

map

156

Collaboration

Development

Guide

you

must

copy

it

from

the

output

array

and

into

the

appropriate

collaboration

variable.

This

collaboration

variable

is

usually

associated

with

the

collaboration’s

To

port.

Therefore,

the

destination

business

object

is

usually

copied

to

the

ToBusObj

collaboration

variable.

Figure

67

uses

the

BusObj.copy()

method

to

copy

the

single

destination

business

object

returned

by

the

runMap()

call

in

Figure

66

to

the

ToBusObj

collaboration

variable.

Operations

on

business

objects

This

section

describes

operations

that

involve

manipulating

business

objects

and

their

values.

It

includes

these

operations:

v

“Creating

a

new

business

object”

v

“Creating

a

child

business

object

in

a

new

business

object”

on

page

158

v

“Copying

the

triggering

event”

on

page

159

v

“Copying

or

duplicating

a

business

object”

on

page

159

v

“Using

attribute

values”

on

page

160

v

“Setting

attribute

values”

on

page

162

v

“Setting

an

attribute

value

to

null”

on

page

165

Creating

a

new

business

object

Use

the

constructor

method

new

to

create

a

new

business

object.

Syntax

new

BusObj(String

busObjType)

Parameters

busObjType

The

name

of

a

business

object

definition

Return

value

An

object

of

type

BusObj.

Exceptions

ObjectException

–

Raised

if

the

business

object

argument

is

invalid.

Notes

This

method

creates

a

business

object

with

no

values.

You

set

the

values

when

you

populate

the

attributes.

If

an

attribute

in

the

new

business

object

is

defined

as

a

child

business

object

or

child

business

object

array,

you

must

explicitly

create

the

child

business

object

and

associate

it

with

the

attribute;

for

more

information,

refer

to

“Creating

a

child

business

object

in

a

new

business

object”

on

page

158.

Example

The

following

example

uses

the

Customer

business

object

definition

to

create

a

new

business

object

called

destinationCustomer.

The

new

business

object

is

created

but

has

no

attribute

values.

ToBusObj.copy(destinationBusObjs[0]);

Figure

67.

Populating

the

collaboration

variable

Chapter

9.

Coding

tips

and

examples

157

BusObj

destinationCustomer

=

new

BusObj("Customer");

Creating

a

child

business

object

in

a

new

business

object

When

you

create

a

new

business

object,

an

attribute

that

is

defined

to

contain

a

child

business

object

of

cardinality

one

or

n

has

no

value.

For

that

attribute

to

have

value,

you

must

explicitly

create

a

child

business

object

or

child

business

object

array

and

then

associate

it

with

the

attribute.

This

section

shows

how

to

do

that

for

a

single

child

business

object

and

for

an

array.

Creating

a

single

child

business

object

The

following

steps

illustrate

first

creating

a

new

business

object

and

then

creating

a

child

business

object

that

is

contained

in

one

of

its

attributes:

1.

Use

the

new

method

to

create

a

parent

business

object.

2.

Use

the

new

method

to

create

one

child

business

object

of

the

type

for

which

the

attribute

is

defined.

3.

Use

the

BusObj.set()

method

to

set

the

attribute

value

in

the

parent

object

to

the

new

child

business

object.

The

following

example

illustrates

the

creation

of

a

new

Invoice

business

object,

which

has

an

attribute

called

SoldToAddressAttribute.

This

attribute

holds

the

address

of

the

sold-to

customer

and

is

a

business

object

of

type

Address.

The

example

shows

the

association

between

the

parent

business

object

and

the

child

business

object.

//

Declarations

BusObj

invoice

=

new

BusObj("Invoice");

//

Create

child

business

object

in

invoice

invoice.set("SoldToAddressAttribute",

new

BusObj("Address"));

If

the

collaboration

needs

to

manipulate

the

child

business

object,

the

example

might

look

like

this:

//

Declarations

BusObj

invoice

=

new

BusObj("Invoice");

BusObj

soldToAddress

=

new

BusObj("Address");

//

Manipulate

child

business

object

soldToAddress

//

Associate

child

business

object

soldToAddress

with

parent

invoice

invoice.set("SoldToAddressAttribute",

soldToAddress);

Creating

a

child

business

object

array

In

this

section,

the

following

steps

illustrate

creating

a

new

business

object

and

then

creating

a

child

business

object

array

that

is

contained

in

one

of

its

attributes:

1.

Use

the

new

method

to

create

a

business

object.

This

is

the

parent

business

object.

2.

For

the

attribute

in

the

parent

that

is

defined

to

contain

a

business

object

with

cardinality

equal

to

n,

create

one

business

object

of

the

attribute’s

specified

type.

3.

Set

the

parent’s

attribute

value

to

the

new

single

business

object.

4.

Declare

a

BusObjArray

object,

get

the

value

of

the

attribute,

and

assign

it

to

the

array.

You

can

then

use

methods

of

the

BusObjArray

class

to

add

elements

or

perform

other

operations

on

the

business

object

array.

The

following

example

illustrates

the

creation

of

a

new

Bill

of

Materials

business

object,

the

creation

of

a

child

business

object

array

for

its

LineItems

attribute,

and

the

placing

of

additional

business

objects

on

the

array.

158

Collaboration

Development

Guide

//

Declarations

BusObj

bom

=

new

BusObj("Bill_Of_Materials");

BusObjArray

lineItemArray

=

null;

BusObj

singleLineItem

=

new

BusObj

("LineItem");

//

Create

first

child

item

bom.set("LineItemsAttribute",

singleLineItem);

//If

there

are

additional

line

items,

do

this

once

lineItemArray

=

bom.getBusObjArray("LineItemAttribute");

//

Now

do

this

for

each

additional

child

item

lineItemArray.addElement(new

BusObj("singleLineItem"));

Copying

the

triggering

event

The

first

action

of

every

scenario

should

handle

the

scenario’s

flow

trigger.

Process

Designer

Express

automatically

declares

a

variable

of

BusObj

type

called

triggeringBusObj;

this

variable

holds

the

flow

trigger

(triggering

event

or

triggering

access

call)

that

caused

the

scenario

to

execute.

Process

Designer

Express

also

automatically

declares

template

BusObj

variables

for

each

defined

port.

The

name

of

the

BusObj

variable

matches

the

port

name,

with

BusObj

appended.

For

example,

suppose

the

triggering

event

for

a

scenario

is

Customer.Create.

The

port

that

receives

the

triggering

event

is

called

SourceCust.

Process

Designer

Express

automatically

declares

a

variable

named

SourceCustBusObj,

combining

the

port

name

with

the

BusObj

suffix.

In

this

case,

Process

Designer

Express

displays

the

following

variable

declaration:

BusObj

SourceCustBusObj

=

new

BusObj("Customer");

You

can

add

the

following

code

fragment

to

copy

the

triggering

event

to

SourceCustBusObj.

SourceCustBusObj.copy(triggeringBusObj);

Many

collaborations

are

triggered

by

multiple

types

of

business

objects.

You

must

first

determine

the

type

of

the

business

object

before

you

can

create

a

business

object

to

hold

the

flow

trigger.

Use

the

BusObj.getType()

method

on

the

flow

trigger

to

first

ascertain

its

type,

then

create

the

appropriate

type

of

business

object,

and

finally

copy

the

flow

trigger

to

the

newly

created

business

object.

sourceBusObj

=

new

BusObj(triggeringBusObj.getType());

sourceBusObj.copy(triggeringBusObj);

Tip:

It

is

good

programming

practice

to

first

copy

the

triggeringBusObj

variable

to

another

variable

before

you

do

any

operations

on

it.

Copying

or

duplicating

a

business

object

There

are

two

methods

that

move

values

from

one

business

object

into

another

business

object:

copy()

and

duplicate().

Both

methods

deal

with

the

entire

hierarchy

of

a

business

object,

copying

the

parent

business

object

and

all

of

its

children.

Table

35

describes

both

methods.

Table

35.

Comparison

of

the

copy()

and

duplicate()

methods

Method

Description

copy()

Sets

all

the

attribute

values

of

an

existing

business

object

to

those

of

another

business

object.

Chapter

9.

Coding

tips

and

examples

159

Table

35.

Comparison

of

the

copy()

and

duplicate()

methods

(continued)

Method

Description

duplicate()

Creates

a

new

business

object

by

cloning

an

existing

business

object.

Reproduces

both

the

attribute

values

and

the

verb.

The

return

value

for

this

method

must

be

assigned

to

a

variable.

The

difference

between

the

two

methods

is

mainly

the

preexistence

of

the

business

object

where

you

want

to

put

the

copied

values.

Copying

Before

you

use

the

copy()

method,

there

must

be

an

existing

business

object

to

which

you

want

to

copy

values.

Use

the

new

method

to

create

the

business

object

if

it

does

not

exist.

The

following

example

copies

the

attribute

values

contained

in

a

Customer

business

object

received

from

the

source

application

to

a

business

object

that

will

be

sent

to

the

destination

application:

BusObj

destination

=

new

BusObj("Customer");

destination.copy(sourceBusObj);

Note:

The

copy()

method

copies

the

entire

business

object,

including

all

child

business

objects

and

child

business

object

arrays.

This

method

does

not

set

a

reference

to

the

copied

object.

Instead,

it

clones

all

attributes;

that

is,

it

creates

separate

copies

of

the

attributes.

Duplicating

In

contrast

to

the

copy()

method,

duplicate()

creates

a

complete

clone

of

an

existing

business

object

and

returns

it.

The

following

example

clones

the

source

business

object

and

assigns

it

to

a

variable

called

destination:

BusObj

destination

=

sourceBusObj.duplicate();

Using

attribute

values

Collaborations

frequently

retrieve

the

values

of

attributes

contained

in

business

objects

that

they

have

received.

If

a

collaboration

needs

to

do

something

with

an

attribute

value

it

has

received,

it

should

check

to

make

sure

that

the

attribute

value

is

not

null

before

using

it

(see

“Checking

for

nulls”

on

page

160).

Checking

for

nulls

To

check

for

a

null

attribute

value,

a

collaboration

calls

BusObj.isNull(attribute).

A

null

value

usually

appears

for

one

of

the

following

reasons:

v

The

attribute

was

never

set.

Upon

creation

of

a

business

object,

all

attributes

are

null

and

they

remain

null

until

explicitly

set.

These

include

child

business

objects

and

child

business

object

arrays.

v

The

attribute

was

explicitly

set

to

null

by

the

BusObj.set()

method.

v

During

the

mapping

process,

there

was

no

value

in

the

input

business

object

to

map

to

this

attribute.

160

Collaboration

Development

Guide

The

following

code

sample

sets

a

value

in

a

billing

business

object,

using

data

received

in

an

Order

business

object.

If

the

received

order

data

is

itself

null

or

blank,

then

the

code

sets

the

attribute

to

“Unknown.”

//Check

whether

ProductLine

is

null

or

blank;

if

so,

default

it

if

(order.isNull("ProductLine")

||

order.isBlank("ProductLine"))

{

logInfo("Setting

ProductLine

to

default

Unknown");

order.set("ProductLine",

"Unknown");

}

//Now

set

Billing

object’s

equivalent

attribute

to

the

same

value

billing.set("ProductLine",

order.get("ProductLine");

The

isNull()

method

can

be

used

on

all

types

of

attributes,

including

those

that

contain

child

business

objects

or

child

business

object

arrays.

Comparing

an

attribute

value

with

a

known

value

A

collaboration

can

use

the

Java

programming

language

equals()

method

to

check

the

value

of

an

attribute

against

a

specific,

expected

value.

The

equals()

method

compares

the

expected

value

with

the

retrieved

attribute

value,

as

the

following

example

shows.

Call

equals()

on

the

known

object

and

compare

it

to

the

unknown

attribute.

In

this

example,

Smith

is

the

value

expected

in

the

LName

attribute.

String

name

=

"Smith";

boolean

checkName=name.equals(CustBusObj.get("LName"));

Retrieving

the

attribute

This

section

covers

types

of

operations

for

retrieving

attributes.

These

operations

are

presented

in

order

of

increasing

complexity:

v

Retrieving

an

attribute

value

of

basic

type

v

Retrieving

an

attribute

in

a

child

business

object

Retrieving

an

attribute

of

a

basic

type:

The

BusObj.get()

methods

retrieve

attribute

values

that

are

of

basic

types.

Basic

types

for

an

attribute

are

the

supported

primitives,

as

Table

36

shows.

Table

36.

Retrieving

attributes

of

basic

data

types

Basic

data

type

Method

to

set

attribute

boolean

getBoolean()

double

getDouble()

float

getFloat()

int

getInt()

long

getLong()

Object

get()

LongText

getLongText()

String

getString()

The

following

example

retrieves

the

contents

of

the

Credit-Limit

attribute,

which

is

an

int.

int

creditLimit

=

customer.getInt("Credit-Limit");

If

you

do

not

know

the

data

type

of

the

attribute,

use

the

form

of

the

get()

method

that

retrieves

a

Java

Object

data

type.

Chapter

9.

Coding

tips

and

examples

161

Note:

The

get()

method

returns

a

copy

of

the

attribute.

It

does

not

return

an

object

reference

to

this

attribute

in

the

source

business

object.

Therefore,

any

change

to

attribute

in

the

source

business

object

is

not

made

to

the

value

that

get()

returns.

Each

time

this

method

is

called,

it

returns

a

new

copy

(clone)

of

the

attribute.

Retrieving

an

attribute

from

a

child

business

object:

If

an

attribute

is

a

business

object

type,

the

cardinality

defined

in

the

business

object

definition

specifies

whether

the

attribute

contains

a

single

business

object

or

an

array.

If

the

cardinality

is:

v

1,

the

attribute

contains

a

single

business

object.

Assign

the

return

of

getBusObj()

to

a

BusObj

object.

v

n,

the

attribute

contains

an

array

of

business

objects.

Assign

the

return

of

getBusObjArray()

to

a

BusObjArray

object.

The

following

example

retrieves

the

single-cardinality

Address

business

object

contained

in

the

SoldToAddress

attribute

of

a

Bill

of

Materials

business

object.

BusObj

addr

=

new

BusObj("Address");

addr

=

bom.getBusObj("SoldToAddress");

The

following

example

searches

for

sold-to

addresses

in

the

United

States.

The

business

object

structure

is:

v

BusOrg

is

the

top-level

business

object.

v

BusOrg

has

an

attribute

called

SoldToSite,

which

is

a

multiple-cardinality

business

object.

v

SoldToSite

has

an

attribute

called

SoldToAddress,

which

is

a

single-cardinality

business

object.

v

SoldToAddress

contains

an

attribute

called

CountryName.

//Look

for

sold-to

address

in

the

US

//Start

with

the

busOrg

business

object

//Get

the

child

business

object

array

in

the

"SoldToSite"

attribute

if

(!busOrg.isNull("SoldToSite"))

{

BusObjArray

siteAddArray

=

busOrg.getBusObjArray("SoldToSite");

//

//String

to

compare

with

sold-to

country

name

String

countryName

=

"USA";

//Get

size

of

child

business

object

array

int

count

=

siteAddArray.size();

//

//For

each

business

object

in

the

array

get

the

SoldToAddress

//attribute,

which

is

a

business

object,

and

compare

its

//SoldToCountryName

attribute

to

the

string

"USA"

//

for

(int

i

=

0;

i

<

count

;

i

++)

{

BusObj

siteAddr

=

siteAddArray.elementAt(

i

);

if

(!siteAddr.isNull("SoldToAddress"))

{

BusObj

soldToAddress

=

siteAddr.getBusObj("SoldToAddress");

if

(countryName.equalsIgnoreCase(

soldToAddress.getString("SoldToCountryName")))

{

//do

something

}

}//end

if

}//end

for

}//end

if

Setting

attribute

values

This

section

covers

three

types

of

operations

for

setting

attributes.

These

operations

are

presented

in

order

of

increasing

complexity:

v

Setting

an

attribute

value

of

basic

type

v

Setting

an

attribute

in

a

single

child

business

object

v

Setting

an

attribute

in

a

child

business

object

that

is

part

of

a

business

object

array

162

Collaboration

Development

Guide

Setting

an

attribute

of

a

basic

type

The

BusObj.set()

methods

set

attribute

values

that

are

of

basic

types.

Basic

types

for

an

attribute

are

the

supported

primitives:

boolean,

double,

float,

int,

long,

Object,

and

String.

All

the

set()

methods

have

the

same

name

but

their

signatures

differ:

the

first

parameter

is

always

a

String

containing

the

name

of

the

attribute

whose

value

is

to

be

set.

The

second

parameter

is

a

variable

or

constant

that

is

a

primitive

type,

a

String

object,

or

an

Object

type.

You

call

the

same

set()

method

regardless

of

the

type

of

the

variable;

the

method

is

overloaded

so

that

it

accepts

a

variable

of

any

type.

The

compiler

determines

which

variation

of

the

method

to

use.

The

following

example

sets

the

values

of

two

attributes:

FirstName

and

Salary.

Customer.set("FirstName",

"Sue");

Customer.set("Salary",

30500);

You

can

use

the

BusObj.get()

and

BusObj.set()

methods

to

copy

attribute

values

from

one

business

object

to

another.

The

following

example

gets

the

String

variables

HeaderId

and

ServiceId

from

the

source

business

object

and

sets

the

attributes

HeaderId

and

SalesNum

in

the

destination

business

object

to

those

values.

DestinationBusObj.set(

"HeaderId",

SourceBusObj.getString("HeaderId"));

DestinationBusObj.set(

"SalesNum",

SourceBusObj.getString("ServiceId"));

Note:

The

set()

method

sets

an

object

reference

to

the

value

when

it

assigns

the

value

to

the

attribute.

It

does

not

clone

the

attribute

value

from

the

source

business

object.

Therefore,

any

changes

to

the

value

in

the

source

business

object

are

also

made

to

the

attribute

in

the

business

object

that

calls

set().

Setting

an

attribute

in

a

single

child

business

object

To

set

an

attribute

in

a

child

business

object

whose

cardinality

is

equal

to

1,

you

must

first

get

a

handle

to

the

child

business

object.

Use

the

BusObj.getBusObj()

method

to

get

a

handle

or

reference

to

the

child

business

object

and

assign

the

results

to

a

BusObj

type

variable.

Then

call

the

BusObj.set()

method;

this

invokes

the

overloaded

version

of

the

method

that

matches

the

data

type

of

the

attribute.

The

example

that

follows

is

based

on

Figure

68.

The

Customer

business

object

has

an

attribute

called

Address,

which

is

a

reference

to

a

child

business

object

called

CustAddress.

Chapter

9.

Coding

tips

and

examples

163

The

code

example

does

the

following:

1.

Declares

a

variable

called

addr

2.

Retrieves

the

Customer

business

object’s

Address

attribute

and

assigns

it

to

addr

3.

Sets

the

City

attribute

BusObj

addr

=

Customer.getBusObj("Address");

addr.set("City",

"SF");

Setting

an

attribute

in

an

array

of

child

business

objects

To

set

an

attribute

in

an

array

of

child

business

objects

(an

attribute

whose

cardinality

is

equal

to

n),

use

the

BusObj.getBusObjArray()

method

and

assign

the

results

to

a

BusObjArray

type

variable.

Then

use

the

BusObjArray

methods

on

that

variable.

The

code

examples

that

follow

are

based

on

the

following

structure.

The

following

example

sets

the

OrderID

attribute

of

the

business

object

marked

1

in

Figure

69.

BusObjArray[]

orders

=

cust.getBusObjArray("Orders").elementAt(1);

orders[1].set("OrderID",

"x1234");

Customer

LastName

FirstName

ID

Orders

Address CustAddress
Number
Street
City
State

Figure

68.

Single

child

business

object

Item [1]
ItemID
Name
Factory

Order [1]
OrderID
Items

AccountRep
DeliveryDate Item [0]

ItemID
Name

Option

Cust

LastName

FirstName

ID

Orders

Address

OrderID
Items

AccountRep

Item [1]
ItemID
Name
Factory
Option

Item [0]
ItemID
Name
Factory

Factory

Option

1
2

Order [0]

DeliveryDate

Figure

69.

Child

business

object

arrays

164

Collaboration

Development

Guide

The

following

example

sets

the

Factory

attribute

of

the

business

object

marked

2

in

Figure

69.

BusObjArray

items

=

orders[1].getBusObjArray("Items");

BusObj

item

=

items.elementAt(1);

item.set("Factory",

"MyCompany");

Setting

an

attribute

value

to

null

The

following

example

sets

the

value

of

the

Total

attribute

of

the

order

business

object

to

null:

order.set("Total",

null);

You

can

use

this

technique

to

set

any

type

of

attribute

to

null,

whether

the

attribute

value

is

a

basic

type,

BusObj

type,

or

BusObjArray

type.

However,

you

cannot

use

it

to

set

child

business

objects

in

an

array

to

null.

Executing

database

queries

During

execution

of

a

collaboration,

you

might

need

to

obtain

information

from

a

database,

such

as

the

relationship

database.

To

obtain

or

modify

information

from

a

database,

you

query

its

tables.

A

query

is

a

request,

usually

in

the

form

of

an

SQL

(Structured

Query

Language)

statement,

that

you

send

to

the

database

for

execution.

Table

37

shows

the

steps

involved

in

executing

a

query

in

a

database.

Note:

You

can

access

any

external

database

that

InterChange

Server

Express

supports

through

JDBC

through

the

Oracle

thin

type

4

driver

and

a

InterChange

Server

Express

branded

MS-SQL

Server

type

4

driver.

Table

37.

Steps

for

executing

a

query

Task

for

executing

a

query

For

more

information

1.

Obtain

a

connection

(which

is

a

CwDBConnection

object)

to

the

database.

“Obtaining

a

connection”

on

page

165

2.

Through

the

CwDBConnection

object,

send

queries

and

manage

transactions

in

the

database.

“Executing

the

query”

on

page

166“Managing

the

transaction”

on

page

177

3.

Release

the

connection.

“Releasing

a

connection”

on

page

181

Tip:

One

possible

use

of

database

queries

is

to

handle

service

calls

with

long

latency.

After

the

collaboration

issues

a

service

request

that

is

expected

to

take

a

long

time,

the

collaboration

saves

the

execution

context

using

a

database

connection

and

then

exits.

The

actual

response

from

the

service

call,

which

might

occur

hours

or

even

days

later,

returns

as

a

new

event

and

triggers

another

collaboration,

which

restores

the

proper

execution

context

from

the

database

and

resumes

the

business

process

execution.

Obtaining

a

connection

To

be

able

to

query

the

database,

you

must

first

obtain

a

connection

to

this

database

with

the

getDBConnection()

method

of

the

BaseCollaboration

class.

To

identify

the

connection

to

obtain,

specify

the

name

of

the

connection

pool

that

contains

this

connection.

All

connections

in

a

particular

connection

pool

are

to

the

same

database.

The

number

of

connections

in

the

connection

pool

is

determined

as

Chapter

9.

Coding

tips

and

examples

165

part

of

the

connection

pool

configuration.

You

must

determine

the

name

of

the

connection

pool

that

contains

connections

for

the

database

you

want

to

query.

Important:

Connections

are

opened

when

InterChange

Server

boots

or

dynamically,

when

a

new

connection

pool

is

configured.

Therefore,

the

connection

pool

that

contains

connections

to

the

desired

database

must

be

configured

before

the

execution

of

the

collaboration

object

that

requests

the

connection.

You

configure

connection

pools

within

System

Manager.

For

more

information,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

In

Figure

70,

the

call

to

getDBConnection()

obtains

a

connection

to

the

database

that

is

associated

with

connections

in

the

CustDBConnPool

connection

pool.

The

getDBConnection()

call

returns

a

CwDBConnection

object

in

the

connection

variable,

which

you

can

then

use

to

access

the

database

associated

with

the

connection.

Tip:

The

getDBConnection()

method

provides

an

additional

form

that

allows

you

to

specify

the

transaction

programming

model

for

the

connection.

For

more

information,

see

“Managing

the

transaction”

on

page

177.

Executing

the

query

Table

38

shows

the

ways

that

you

can

execute

SQL

queries

with

methods

of

the

CwDBConnection

class.

Table

38.

Executing

SQL

queries

with

CwDBConnection

methods

Type

of

query

Description

CwDBConnection

method

Static

query

The

SQL

statement

is

sent

as

text

to

the

database.

executeSQL()

Prepared

query

After

its

initial

execution,

the

SQL

statement

is

saved

in

its

compiled,

executable

form

so

that

subsequent

executions

can

use

this

precompiled

form.

executePreparedSQL()

Stored

procedure

A

user-defined

procedure

that

contains

SQL

statements

and

conditional

logic

executeSQL()executePreparedSQL()

executeStoredProcedure()

Executing

static

queries

The

executeSQL()

method

sends

a

static

query

to

the

database

for

execution.

A

static

query

is

an

SQL

statement

sent

as

a

string

to

the

database,

which

parses

the

string

and

executes

the

resulting

SQL

statement.

This

section

covers

how

to

send

the

following

kinds

of

SQL

queries

to

a

database

with

executeSQL():

v

Queries

that

return

data

from

the

database

(SELECT)

v

Queries

that

modify

data

in

the

database

(INSERT,

UPDATE,

DELETE)

v

Queries

that

execute

stored

procedures

defined

in

the

database

Executing

static

queries

that

return

data

(SELECT):

The

SQL

statement

SELECT

queries

one

or

more

tables

for

data.

To

send

a

SELECT

statement

to

the

database

for

execution,

specify

a

string

representation

of

the

SELECT

as

an

argument

to

the

executeSQL()

method.

For

example,

the

following

call

to

executeSQL()

sends

a

SELECT

of

one

column

value

from

the

customer

table:

CwDBConnection

connection

=

getDBConnection("CustDBConnPool");

Figure

70.

Obtaining

a

connection

from

a

connection

pool

166

Collaboration

Development

Guide

connection.executeSQL(

"select

cust_id

from

customer

where

active_status

=

1");

Note:

In

the

preceding

code,

the

connection

variable

is

a

CwDBConnection

object

obtained

from

a

previous

call

to

the

getDBConnection()

method

(see

Figure

70).

You

can

also

send

a

SELECT

statement

that

has

parameters

in

it

by

using

the

second

form

of

the

executeSQL()

method.

For

example,

the

following

call

to

executeSQL()

performs

the

same

task

as

the

previous

example

except

that

it

passes

the

active

status

as

a

parameter

to

the

SELECT

statement:

Vector

argValues

=

new

Vector();

String

active_stat

=

"1";

argValues.add(

active_stat

);

connection.executeSQL(

"select

cust_id

from

customer

where

active_status

=

?",

argValues);

The

SELECT

statement

returns

data

from

the

database

tables

as

rows.

Each

row

is

one

row

from

the

data

that

matches

the

conditions

in

the

WHERE

clause

of

the

SELECT.

Each

row

contains

the

values

for

the

columns

that

the

SELECT

statement

specified.

You

can

visualize

the

returned

data

as

a

two-dimensional

array

of

these

rows

and

columns.

Tip:

The

syntax

of

the

SELECT

statement

must

be

valid

to

the

particular

database

you

are

accessing.

Consult

your

database

documentation

for

the

exact

syntax

of

the

SELECT

statement.

To

access

the

returned

data,

follow

these

steps:

1.

Obtain

one

row

of

data.

2.

Obtain

column

values,

one

by

one.

Table

39

shows

the

methods

in

the

CwDBConnection

class

that

provide

access

to

the

rows

of

returned

query

data.

Table

39.

CwDBConnection

methods

for

row

access

Row-access

task

CwDBConnection

method

Check

for

existence

of

a

row.

hasMoreRows()

Obtain

one

row

of

data.

nextRow()

Control

the

loop

through

the

returned

rows

with

the

hasMoreRows()

method.

End

the

row

loop

when

hasMoreRows()

returns

false.

To

obtain

one

row

of

data,

use

the

nextRow()

method.

This

method

returns

the

selected

column

values

as

elements

in

a

Java

Vector

object.

You

can

then

use

the

Enumeration

class

to

access

the

column

values

individually.

Both

the

Vector

and

Enumeration

classes

are

in

the

java.util

package.

Table

40

shows

the

Java

methods

for

accessing

the

columns

of

a

returned

query

row.

Table

40.

Java

methods

for

column-value

access

Column-access

task

Java

method

Determine

number

of

columns.

Vector.size()

Cast

Vector

to

Enumeration.

Vector.elements()

Check

for

existence

of

a

column.

Enumeration.hasMoreElements()

Chapter

9.

Coding

tips

and

examples

167

Table

40.

Java

methods

for

column-value

access

(continued)

Column-access

task

Java

method

Obtain

one

column

of

data.

Enumeration.nextElement()

Control

the

loop

through

the

column

values

with

the

hasMoreElements()

method.

End

the

column

loop

when

hasMoreElements()

returns

false.

To

obtain

one

column

value,

use

the

nextElement()

method.

The

following

code

sample

gets

an

instance

of

the

CwDBConnection

class,

which

is

a

connection

to

a

database

that

stores

customer

information.

It

then

executes

a

SELECT

statement

that

returns

only

one

row,

which

contains

a

single

column,

the

company

name

“CrossWorlds”

for

the

customer

id

of

20987:

CwDBConnection

connectn

=

null;

Vector

theRow

=

null;

Enumeration

theRowEnum

=

null;

String

theColumn1

=

null;

try

{

//

Obtain

a

connection

to

the

database

connectn

=

getDBConnection("sampleConnectionPoolName");

}

catch(CwDBConnectionFactoryException

e)

{

System.out.println(e.getMessage());

throw

e;

}

//

Test

for

a

resulting

single-column,

single-row,

result

set

try

{

//

Send

the

SELECT

statement

to

the

database

connectn.executeSQL(

"select

company_name

from

customer

where

cust_id

=

20987");

//

Loop

through

each

row

while(connectn.hasMoreRows())

{

//

Obtain

one

row

theRow

=

connectn.nextRow();

int

length

=

0;

if

((length

=

theRow.size())!=

1)

{

return

methodName

+

"Expected

result

set

size

=

1,"

+

"

Actual

result

state

size

=

"

+

length;

}

//

Get

column

values

as

an

Enumeration

object

theRowEnum

=

theRow.elements();

//

Verify

that

column

values

exist

if

(theRowEnum.hasMoreElements())

{

//

Get

the

column

value

theColumn1

=

(String)theRowEnum.nextElement();

if

(theColumn1.equals("CrossWorlds")==false)

{

return

"Expected

result

=

CrossWorlds,"

+

"

Resulting

result

=

"

+

theColumn1;

}

}

}

168

Collaboration

Development

Guide

}

//

Handle

any

exceptions

thrown

by

executeSQL()

catch(CwDBSQLException

e)

{

System.out.println(e.getMessage());

}

The

following

example

shows

a

code

fragment

for

a

SELECT

statement

that

returns

multiple

rows,

each

row

containing

two

columns,

the

customer

id

and

the

associated

company

name:

CwDBConnection

connectn

=

null;

Vector

theRow

=

null;

Enumeration

theRowEnum

=

null;

Integer

theColumn1

=

0;

String

theColumn2

=

null;

try

{

//

Obtain

a

connection

to

the

database

connectn

=

getDBConnection("sampleConnectionPoolName");

}

catch(CwDBConnectionFactoryException

e)

{

System.out.println(e.getMessage());

throw

e;

}

//

Code

fragment

for

multiple-row,

multiple-column

result

set.

//

Get

all

rows

with

the

specified

columns,

where

the

//

specified

condition

is

satisfied

try

{

connectn.executeSQL(

"select

cust_id,

company_name

from

customer

where

active_status

=

1");

//

Loop

through

each

row

while(connectn.hasMoreRows())

{

//

Obtain

one

row

theRow

=

connectn.nextRow();

//

Obtain

column

values

as

an

Enumeration

object

theRowEnum

=

theRow.elements();

int

length

=

0;

if

((length

=

theRow.size())

!=

2)

{

return

"Expected

result

set

size

=

2,"

+

"

Actual

result

state

size

=

"

+

length;

}

//

Verify

that

column

values

exist

if

(theRowEnum.hasMoreElements())

{

//

Get

the

column

values

theColumn1

=

((Integer)theRowEnum.nextElement()).intValue();

theColumn2

=

(String)theRowEnum.nextElement();

}

}

}

catch(CwDBSQLException

e)

{

System.out.println(e.getMessage());

}

Chapter

9.

Coding

tips

and

examples

169

Note:

The

SELECT

statement

does

not

modify

the

contents

of

the

database.

Therefore,

you

do

not

usually

need

to

perform

transaction

management

for

SELECT

statements.

Executing

static

queries

that

modify

data:

SQL

statements

that

modify

data

in

a

database

table

include

the

following:

v

INSERT

adds

new

rows

to

a

database

table.

v

UPDATE

modifies

existing

rows

of

a

database

table.

v

DELETE

removes

rows

from

a

database

table.

To

send

one

of

these

statements

as

a

static

query

to

the

database

for

execution,

specify

a

string

representation

of

the

statement

as

an

argument

to

the

executeSQL()

method.

For

example,

the

following

call

to

executeSQL()

sends

an

INSERT

of

one

row

into

the

abc

table

of

the

database

associated

with

the

current

connection:

connection.executeSQL("insert

into

abc

values

(1,

3,

6)");

Note:

In

the

preceding

code,

the

connection

variable

is

a

CwDBConnection

object

obtained

from

a

previous

call

to

the

getDBConnection()

method.

For

an

UPDATE

or

INSERT

statement,

you

can

determine

the

number

of

rows

in

the

database

table

that

have

been

modified

or

added

with

the

getUpdateCount()

method.

Important:

Because

the

INSERT,

UPDATE,

and

DELETE

statements

modify

the

contents

of

the

database,

it

is

good

practice

to

assess

the

need

for

transaction

management

for

these

statements.

For

more

information,

see

“Managing

the

transaction”

on

page

177.

Executing

a

static

stored

procedure:

You

can

use

the

executeSQL()

method

to

execute

a

stored-procedure

call

as

long

as

both

of

the

following

conditions

exist:

v

The

stored

procedure

does

not

use

OUT

parameters.

If

the

stored

procedure

uses

an

OUT

parameter,

you

must

use

executeStoredProcedure()

to

execute

it.

v

The

stored

procedure

is

called

only

once.

The

executeSQL()

method

does

not

save

the

prepared

statement

for

the

stored-procedure

call.

Therefore,

if

you

call

the

same

stored

procedure

more

than

once

(for

example,

in

a

loop),

use

of

executeSQL()

can

be

slower

than

calling

a

method

that

does

save

the

prepared

statement:

executePreparedSQL()

or

executeStoredProcedure().

For

more

information,

see

“Executing

stored

procedures”

on

page

172.

Executing

prepared

queries

The

executePreparedSQL()

method

sends

a

prepared

query

to

the

database

for

execution.

A

prepared

query

is

an

SQL

statement

that

is

already

precompiled

into

the

executable

form

used

by

the

database.

The

first

time

that

executePreparedSQL()

sends

a

query

to

the

database,

it

sends

the

query

as

a

string.

The

database

receives

this

query,

compiles

it

into

an

executable

form

by

parsing

the

string,

and

executes

the

resulting

SQL

statement

(just

as

it

does

for

executeSQL()).

However,

the

database

returns

this

compiled

form

of

the

SQL

statement

to

executePreparedSQL(),

which

stores

it

in

memory.

This

compiled

SQL

statement

is

called

a

prepared

statement.

170

Collaboration

Development

Guide

In

subsequent

executions

of

this

same

query,

executePreparedSQL()

first

checks

whether

a

prepared

statement

already

exists

for

this

query.

If

a

prepared

statement

does

exist,

executePreparedSQL()

sends

it

to

the

database

instead

of

the

query

string.

Subsequent

executions

of

this

query

are

more

efficient

because

the

database

does

not

have

to

parse

the

string

and

create

the

prepared

statement.

You

can

send

the

following

kinds

of

SQL

queries

to

a

database

with

executePreparedSQL():

v

Queries

that

return

data

from

the

database

(SELECT)

v

Queries

that

modify

data

in

the

database

(INSERT,

UPDATE,

DELETE)

v

Queries

that

execute

stored

procedures

defined

in

the

database

Executing

prepared

queries

that

return

data

(SELECT):

If

you

need

to

execute

the

same

SELECT

statement

multiple

times,

use

executePreparedSQL()

to

create

a

precompiled

version

of

the

statement.

Keep

the

following

in

mind

to

prepare

a

SELECT

statement:

v

You

can

use

parameters

in

this

SELECT

statement

to

pass

specific

information

to

each

execution

of

the

prepared

statement.

For

an

example

of

how

to

use

parameters

with

a

prepared

statement,

see

Figure

71.

v

When

you

execute

a

SELECT

statement

with

executePreparedSQL(),

you

still

use

the

same

methods

to

access

the

returned

data

(Table

39

and

Table

40).

For

more

information,

see

“Executing

static

queries

that

return

data

(SELECT)”

on

page

166.

Executing

prepared

queries

that

modify

data:

If

you

need

to

execute

the

same

INSERT,

UPDATE,

or

DELETE

statement

multiple

times,

use

executePreparedSQL()

to

create

a

precompiled

version

of

the

statement.

The

SQL

statement

that

you

reexecute

does

not

need

to

be

exactly

the

same

in

each

time

it

executes

to

take

advantage

of

the

prepared

statement.

You

can

use

parameters

in

the

SQL

statement

to

dynamically

provide

information

to

each

statement

execution.

The

code

fragment

in

Figure

71

inserts

50

rows

into

the

employee

table.

The

first

time

executePreparedSQL()

is

invoked,

it

sends

the

string

version

of

the

INSERT

statement

to

the

database,

which

parses

it,

executes

it,

and

returns

its

executable

form:

a

prepared

statement.

The

next

49

times

that

this

INSERT

statement

executes

(assuming

all

INSERTs

are

successful),

executePreparedSQL()

recognizes

that

a

prepared

statement

exists

and

sends

this

prepared

statement

to

the

database

for

execution.

Chapter

9.

Coding

tips

and

examples

171

Tip:

Executing

the

prepared

version

of

the

INSERT

statement

usually

improves

application

performance,

although

it

does

increase

the

application’s

memory

footprint.

When

you

reexecute

an

SQL

statement

that

modifies

the

database,

you

must

still

handle

transactions

according

to

the

transaction

programming

model.

For

more

information,

see

“Managing

the

transaction”

on

page

177.

Note:

To

simplify

the

code

in

Figure

71

does

not

include

transaction

management.

Executing

a

prepared

stored

procedure:

You

can

use

the

executePreparedSQL()

method

to

execute

a

stored-procedure

call

as

long

as

both

of

the

following

conditions

exist:

v

The

stored

procedure

uses

does

not

contain

OUT

parameters.

If

the

stored

procedure

uses

an

OUT

parameter,

you

must

use

executeStoredProcedure()

to

execute

it.

v

The

stored

procedure

is

called

more

than

once.

The

executePreparedSQL()

method

saves

the

prepared

statement

for

the

stored-procedure

call

in

memory.

Therefore,

if

you

call

the

stored

procedure

only

once,

use

of

executePreparedSQL()

can

use

more

memory

than

calling

the

stored

procedure

with

executeSQL(),

which

does

not

save

the

prepared

statement.

For

more

information,

see

“Executing

stored

procedures”

on

page

172.

Executing

stored

procedures

A

stored

procedure

is

a

user-defined

procedure

that

contains

SQL

statements

and

conditional

logic.

Stored

procedures

are

stored

in

a

database

along

with

the

data.

CwDBConnection

connection;

Vector

argValues

=

new

Vector();

argValues.setSize(2);

int

emp_id

=

1;

int

emp_id

=

2000;

for

(int

=

1;

i

<

50;

i++)

{

argValues.set(0,

new

Integer(emp_id));

argValues.set(1,

new

Integer(emp_num));

try

{

//

Send

the

INSERT

statement

to

the

database

connection.executePreparedSQL(

"insert

into

employee

(employee_id,

employee_number)

values

(?,

?)",

argValues);

//

Increment

the

argument

values

emp_id++;

emp_num++

}

catch(CwDBSQLException

e)

{

System.out.println(e.getMessage());

}

}

Figure

71.

Passing

argument

values

to

a

prepared

statement

172

Collaboration

Development

Guide

Note:

When

you

create

a

new

relationship,

Relationship

Designer

creates

a

stored

procedure

to

maintain

each

relationship

table.

Table

41

shows

the

methods

in

the

CwDBConnection

class

that

call

a

stored

procedure.

Table

41.

CwDBConnection

methods

for

calling

a

stored

procedure

How

to

call

the

stored

procedure

CwDBConnection

method

Use

Send

to

the

database

a

CALL

statement

to

execute

the

stored

procedure.

executeSQL()

To

call

a

stored

procedure

that

does

not

have

OUT

parameters

and

is

executed

only

once

executePreparedSQL()

To

call

a

stored

procedure

that

does

not

have

OUT

parameters

and

is

executed

more

than

once

Specify

the

name

of

the

stored

procedure

and

an

array

of

its

parameters

to

create

a

procedure

call,

which

is

sent

to

the

database

for

execution.

executeStoredProcedure()

To

call

any

stored

procedure,

including

one

with

OUT

parameters

Note:

You

can

use

JDBC

methods

to

execute

a

stored

procedure

directly.

However,

the

interface

that

the

CwDBConnection

class

provides

is

simpler

and

it

reuses

database

resources,

which

can

increase

the

efficiency

of

execution.

You

can

use

of

the

methods

in

the

CwDBConnection

class

to

execute

stored

procedures.

A

stored

procedure

can

return

data

in

the

form

of

one

or

more

rows.

In

this

case,

you

use

the

same

Java

methods

(such

as

hasMoreRows()

and

nextRow())

to

access

these

returned

rows

in

the

query

result

as

you

do

for

data

returned

by

a

SELECT

statement.

For

more

information,

see

“Executing

static

queries

that

return

data

(SELECT)”

on

page

166.

As

Table

41

shows,

the

choice

of

which

method

to

use

to

call

a

stored

procedure

depends

on:

v

Whether

the

procedure

provides

any

OUT

parameters

An

OUT

parameter

is

a

parameter

through

which

the

stored

procedure

returns

a

value

to

the

calling

code.

If

the

stored

procedure

uses

an

OUT

parameter,

you

must

use

executeStoredProcedure()

to

call

the

stored

procedure.

v

The

number

of

times

you

call

the

stored

procedure

The

executeStoredProcedure()

method

saves

the

compiled

version

of

the

stored

procedure.

Therefore,

if

you

call

the

same

stored

procedure

more

than

once

(for

example,

in

a

loop),

use

of

executeStoredProcedure()

can

be

faster

than

executeSQL()

because

the

database

can

reuse

the

precompiled

version.

The

following

sections

describe

how

to

use

the

executeSQL()

and

executeStoredProcedure()

methods

to

call

a

stored

procedure.

Calling

stored

procedures

with

no

OUT

parameters:

To

call

a

stored

procedure

that

does

not

include

any

OUT

parameters,

you

can

use

either

of

the

following

methods

of

CwDBConnection:

v

The

executeSQL()

method

sends

a

static

stored-procedure

call

to

the

database.

This

procedure

call

is

sent

as

a

string

to

the

database,

which

compiles

it

into

a

prepared

statement

before

executing

it.

This

prepared

statement

is

not

saved.

Therefore,

executeSQL()

is

useful

for

a

stored

procedure

that

only

needs

to

be

called

once.

Chapter

9.

Coding

tips

and

examples

173

v

The

executePreparedSQL()

method

sends

a

prepared

stored-procedure

call

to

the

database.

In

its

first

invocation,

this

procedure

call

is

sent

to

the

database,

which

creates

the

prepared

statement

and

executes

it.

However,

the

database

then

sends

this

prepared

statement

back

to

executePreparedSQL(),

which

saves

it

in

memory.

Therefore,

executePreparedSQL()

is

useful

for

a

stored

procedure

that

needs

to

be

called

more

than

once

(for

example,

in

a

loop).

To

call

a

stored

procedure

with

one

of

these

methods,

specify

as

an

argument

to

the

method

a

string

representation

of

the

CALL

statement

that

includes

the

stored

procedure

and

any

arguments.

In

Figure

72,

the

call

to

executeSQL()

sends

a

CALL

statement

to

execute

the

setOrderCurrDate()

stored

procedure.

In

Figure

72,

the

connection

variable

is

a

CwDBConnection

object

obtained

from

a

previous

call

to

the

getDBConnection()

method.

You

can

use

executeSQL()

to

execute

the

setOrderCurrDate()

stored

procedure

because

its

single

argument

is

an

IN

parameter;

that

is,

the

value

is

only

sent

into

the

stored

procedure.

This

stored

procedure

does

not

have

any

OUT

parameters.

You

can

use

the

form

of

executeSQL()

or

executePreparedSQL()

that

accepts

a

parameter

array

to

pass

in

argument

values

to

the

stored

procedure.

However,

you

cannot

use

these

methods

to

call

a

stored

procedure

that

uses

an

OUT

parameter.

To

execute

such

a

stored

procedure,

you

must

use

executeStoredProcedure().

For

more

information,

see

“Calling

stored

procedures

with

executeStoredProcedure()”

on

page

174.

Note:

Use

an

anonymous

PL/SQL

block

if

you

plan

on

calling

Oracle

stored

PL/SQL

objects

via

ODBC

using

the

CwDBConnection

.executeSQL()

method.

The

following

is

an

acceptable

format

(the

stored

procedure

name

is

myproc):

connection.executeSQL("begin

myproc(...);

end;");

Calling

stored

procedures

with

executeStoredProcedure():

The

executeStoredProcedure()

method

can

execute

any

stored

procedure,

including

one

that

uses

OUT

parameters.

This

method

saves

the

prepared

statement

for

the

stored-procedure

call,

just

as

the

executePreparedSQL()

method

does.

Therefore,

executeStoredProcedure()

can

improve

performance

of

a

stored-procedure

call

that

is

executed

multiple

times.

To

call

a

stored

procedure

with

the

executeStoredProcedure()

method,

you:

1.

Specify

as

a

String

the

name

of

the

stored

procedure

to

execute.

2.

Build

a

Vector

parameter

array

of

CwDBStoredProcedureParam

objects,

which

provide

parameter

information:

the

in/out

parameter

type

and

value

of

each

stored-procedure

parameter.

A

parameter

is

a

value

you

can

send

into

or

out

of

the

stored

procedure.

The

parameter’s

in/out

type

determines

how

the

stored

procedure

uses

the

parameter

value:

v

An

IN

parameter

is

for

input

only:

the

stored

procedure

accepts

the

parameter

value

as

input

but

does

not

use

the

parameter

to

return

a

value

to

the

calling

code.

connection.executeSQL("call

setOrderCurrDate(345698)");

Figure

72.

Calling

a

stored

procedure

with

executeSQL()

174

Collaboration

Development

Guide

v

An

OUT

parameter

is

for

output

only:

the

stored

procedure

does

not

interpret

the

parameter

value

as

input

but

uses

the

parameter

to

return

a

value

to

the

calling

code.

v

An

INOUT

parameter

is

for

both

input

and

output:

the

stored

procedure

accepts

the

parameter

value

as

input

and

uses

the

parameter

to

return

a

value

to

the

calling

code.

A

CwDBStoredProcedureParam

object

describes

a

single

parameter

of

a

stored

procedure.

Table

42

shows

the

parameter

information

that

a

CwDBStoredProcedureParam

object

contains

as

well

as

the

methods

to

retrieve

and

set

this

parameter

information.

Table

42.

Parameter

information

in

a

CwDBStoredProcedureParam

object

Parameter

information

CwDBStoredProcedureParam

method

Parameter

value

getValue()

Parameter

in/out

type

getParamType()

To

pass

parameters

to

a

stored

procedure

with

executeStoredProcedure():

1.

Create

a

CwDBStoredProcedureParam

object

to

hold

the

parameter

information.

Use

the

CwDBStoredProcedureParam()

constructor

to

create

a

new

CwDBStoredProcedureParam

object.

To

this

constructor,

pass

the

following

parameter

information

to

initialize

the

object:

v

Parameter

in/out

type

specifies

whether

the

parameter

is

an

IN,

INOUT,

or

OUT

parameter.

v

Parameter

value

is

a

Java

data

type

that

contains

the

value

to

assign

to

the

parameter.

The

CwDBStoredProcedureParam

class

provides

many

versions

of

its

constructor

to

support

the

different

data

types

that

could

be

associated

with

the

parameter

value.

For

an

OUT

parameter,

this

parameter

value

can

be

a

dummy

value

but

the

data

type

should

correspond

to

the

OUT

parameter

data

type

in

the

stored-procedure

declaration.
2.

Repeat

step

1

for

each

stored-procedure

parameter.

3.

Create

a

Vector

object

with

enough

elements

to

hold

all

stored-procedure

parameters.

4.

Add

the

initialized

CwDBStoredProcedureParam

object

to

the

parameter

Vector

object.

Use

the

addElement()

or

add()

method

of

the

Vector

class

to

add

the

CwDBStoredProcedureParam

object.

5.

Once

you

have

created

all

CwDBStoredProcedureParam

objects

and

added

them

to

the

Vector

parameter

array,

pass

this

parameter

array

as

the

second

argument

to

the

executeStoredProcedure()

method.

The

executeStoredProcedure()

method

sends

the

stored

procedure

and

its

parameters

to

the

database

for

execution.

For

example,

suppose

you

have

the

get_empno()

stored

procedure

defined

in

a

database

as

follows:

create

or

replace

procedure

get_empno(emp_id

IN

number,

emp_number

OUT

number)

as

begin

select

emp_no

into

emp_number

from

emp

where

emp_id

=

1;

end;

Chapter

9.

Coding

tips

and

examples

175

This

get_empno()

stored

procedure

has

two

parameters:

v

The

first

parameter,

emp_id,

is

an

IN

parameter.

Therefore,

you

must

initialize

its

associated

CwDBStoredProcedureParam

object

with

an

in/out

type

of

PARAM_IN,

as

well

as

with

the

appropriate

value

to

send

into

the

stored

procedure.

Because

emp_id

is

declared

as

the

SQL

NUMBER

type

(which

holds

an

integer

value),

the

parameter’s

value

is

of

a

Java

Object

that

holds

integer

values:

Integer.

v

The

second

parameter,

emp_number,

is

an

OUT

parameter.

For

this

parameter,

create

an

empty

CwDBStoredProcedureParam

object

to

send

into

the

stored

procedure.

You

initialize

this

object

with

an

in/out

type

of

PARAM_OUT.

However,

you

provide

a

dummy

Integer

value

for

this

parameter.

Once

the

stored

procedure

completes

execution,

you

can

obtain

the

returned

value

from

this

OUT

parameter

with

the

getValue()

method.

Figure

73

executes

the

get_empno()

stored

procedure

with

the

executeStoredProcedure()

method

to

obtain

the

employee

number

for

an

employee

id

of

65:

Tip:

The

Java

Vector

object

is

a

zero-based

array.

In

the

preceding

code,

to

access

the

value

for

this

OUT

parameter

from

the

Vector

parameter

array,

the

get()

call

specifies

an

index

value

of

1

because

this

Vector

array

is

zero-based.

A

stored

procedure

processes

its

parameters

as

SQL

data

types.

Because

SQL

and

Java

data

types

are

not

identical,

the

executeStoredProcedure()

method

must

convert

a

parameter

value

between

these

two

data

types.

For

an

IN

parameter,

executeStoredProcedure()

converts

the

parameter

value

from

a

Java

data

type

to

its

SQL

data

type.

For

an

OUT

parameter,

executeStoredProcedure()

converts

the

parameter

value

from

its

SQL

data

type

to

a

Java

data

type.

CwDBConnection

connectn

=

null;

try

{

//

Get

database

connection

connectn

=

getDBConnection("CustomerDBPool");

//

Create

parameter

Vector

Vector

paramData

=

new

Vector(2);

//

Create

IN

parameter

for

the

employee

id

and

add

to

parameter

//

vector

paramData.add(

new

CwDBStoredProcedureParam(PARAM_IN,

new

Integer(65)));

//

Create

dummy

argument

for

OUT

parameter

and

add

to

parameter

//

vector

paramData.add(

new

CwDBStoredProcedureParam(PARAM_OUT,

new

Integer(0));

//

Call

the

get_empno()

stored

procedure

connectn.executeStoredProcedure("get_empno",

paramData);

//

Get

the

result

from

the

OUT

parameter

CwDBStoredProcedureParam

outParam

=

(CwDBStoredProcedureParam)

paramData.get(1);

int

emp_number

=

((Integer)

outParam.getValue().Intvalue();

}

Figure

73.

Executing

the

get_empno()

stored

procedure

176

Collaboration

Development

Guide

The

executeStoredProcedure()

method

uses

the

JDBC

data

type

internally

to

hold

the

parameter

value

sent

to

and

from

the

stored

procedure.

JDBC

defines

a

set

of

generic

SQL

type

identifiers

in

the

java.sql.Types

class.

These

types

represent

the

most

commonly

used

SQL

types.

JDBC

also

provides

standard

mapping

from

JDBC

types

to

Java

data

types.

For

example,

a

JDBC

INTEGER

is

normally

mapped

to

a

Java

int

type.

The

executeStoredProcedure()

method

uses

the

mappings

shown

in

Table

43.

Table

43.

Mappings

between

Java

and

JDBC

data

types

Java

data

type

JDBC

data

type

String

CHAR,

VARCHAR,

or

LONGVARCHAR

Integer,

int

INTEGER

Long

BIGINT

Float,

float

REAL

Double,

double

DOUBLE

java.math.BigDecimal

NUMERIC

Boolean,

boolean

BIT

java.sql.Date

DATE

java.sql.Time

TIME

java.sql.Timestamp

TIMESTAMP

java.sql.Clob

CLOB

java.sql.Blob

BLOB

byte[]

BINARY,

VARBINARY,

or

LONGVARBINARY

Array

ARRAY

Struct

STRUCT

Managing

the

transaction

A

transaction

is

a

set

of

operational

steps

that

execute

as

a

unit.

All

SQL

statements

that

execute

within

a

transaction

succeed

or

fail

as

a

unit.

This

section

provides

the

following

information

about

managing

transactions:

v

“Determining

the

transaction

programming

model”

v

“Specifying

the

transaction

scope”

on

page

178

Determining

the

transaction

programming

model

The

grouping

of

the

database

operation

execution

steps

into

transactions

is

called

transaction

bracketing.

Associated

with

each

connection

is

one

of

the

following

transaction

programming

models:

v

Implicit

transaction

bracketing—database

operations

are

part

of

an

implicit

transaction,

which

begins

as

soon

as

the

connection

is

acquired

and

ends

when

the

connection

is

released;

transaction

bracketing

is

implicitly

managed

by

InterChange

Server.

v

Explicit

transaction

bracketing—database

operations

are

part

of

an

explicit

transaction,

whose

beginning

and

end

of

each

transaction

is

determined

programmatically.

At

runtime,

a

collaboration

object

determines

which

transaction

programming

model

to

use

for

each

connection

it

acquires.

By

default,

a

collaboration

object

assumes

that

all

connections

it

acquires

use

implicit

transaction

bracketing

as

their

transaction

programming

model.

You

can

override

the

default

transaction

programming

model

in

any

of

the

ways

listed

in

Table

44.

Chapter

9.

Coding

tips

and

examples

177

Table

44.

Overriding

the

transaction

programming

model

for

a

connection

Transaction

programming

model

to

override

Action

to

take

To

specify

a

different

transaction

programming

model

for

all

connections

obtained

by

a

particular

collaboration

object

Check

or

uncheck

the

Implicit

Database

Transaction

box

on

the

Collaboration

Properties

dialog

of

System

Manager.

For

more

information,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

To

specify

a

transaction

programming

model

for

a

particular

connection

Provide

a

boolean

value

to

indicate

the

desired

transaction

programming

model

(for

this

connection

only)

as

the

optional

second

argument

to

the

getDBConnection()

method.

The

following

getDBConnection()

call

specifies

explicit

transaction

bracketing

for

the

connection

obtained

from

the

ConnPool

connection

pool:

conn

=

getDBConnection("ConnPool",

false);

You

can

determine

the

current

transaction

programming

model

that

connections

will

use

with

the

BaseCollaboration.implicitDBTransactionBracketing()

method,

which

returns

a

boolean

value

indicating

whether

the

transaction

programming

model

is

implicit

transaction

bracketing.

Specifying

the

transaction

scope

The

connection’s

transaction

programming

model

determines

how

the

scope

of

the

database

transaction

is

specified.

Therefore,

this

section

provides

the

following

information:

v

“Transaction

scope

with

implicit

transaction

bracketing”

v

“Transaction

scope

with

explicit

transaction

bracketing”

on

page

179

Transaction

scope

with

implicit

transaction

bracketing:

InterChange

Server

handles

transaction

management

for

all

collaborations.

All

actions

in

the

collaboration’s

business

process

are

either

completed

as

a

unit

or

not

completed.

Therefore,

InterChange

Server

handles

the

business

process

as

a

whole

as

a

single

implicit

transaction.

If

any

task

fails,

you

choose

how

to

handle

the

failed

collaboration

through

the

Unresolved

Flow

browser.

If

the

connection

uses

implicit

transaction

bracketing,

InterChange

Server

also

handles

transaction

management

for

operations

performed

on

an

external

database,

one

associated

with

a

connection

from

a

connection

pool.

When

a

collaboration

performs

database

operations,

these

database

operations

are

part

of

the

collaboration’s

business

process.

InterChange

Server

handles

these

database

operations

as

an

implicit

transaction,

which

is

subtransaction

of

the

main

transaction

(the

collaboration’s

business

process).

This

database

subtransaction

begins

as

soon

as

the

collaboration

obtains

the

connection.

ICS

implicitly

ends

the

subtransaction

when

execution

of

the

collaboration

completes.

The

success

or

failure

of

this

database

subtransaction

depends

on

the

success

or

failure

of

the

main

transaction,

as

follows:

v

If

the

collaboration

is

successful,

InterChange

Server

commits

the

database

subtransaction.

v

If

the

collaboration

fails,

InterChange

Server

rolls

back

the

database

subtransaction.

If

this

rollback

fails,

InterChange

Server

throws

the

CwDBTransactionException

exception

and

logs

an

error.

178

Collaboration

Development

Guide

When

a

collaboration

invokes

another

collaboration

directly,

the

first

collaboration

is

called

the

parent,

while

the

second

one

is

called

the

child.

When

a

parent

collaboration

calls

a

child

collaboration,

InterChange

Server

manages

the

transaction

for

the

child

collaboration

separately.

The

success

or

failure

of

this

child

collaboration

is

independent

of

the

success

or

failure

of

the

parent

collaboration.

If

the

child

collaboration

fails,

the

parent

collaboration

can

decide

how

to

handle

this

failure.

For

example,

it

can

decide

it

must

fail

as

well,

or

it

can

decide

to

fix

or

ignore

the

situation

and

continue

execution.

However,

even

though

the

success

and

failure

of

a

child

collaboration

is

independent

of

the

parent

collaboration,

the

same

is

not

true

of

any

implicit

database

transactions

that

the

child

might

perform.

If

the

child

collaboration

performs

database

operations

through

a

database

connection

that

uses

implicit

transaction

bracketing,

the

child

collaboration

inherits

the

transaction

of

the

parent

collaboration.

InterChange

Server

handles

these

database

operations

as

a

subtransaction

of

the

parent

collaboration.

That

is,

the

failure

or

success

of

the

parent

(or

top-level)

collaboration

determines

the

final

transactional

state

of

the

implicit

database

subtransaction

in

the

child

collaboration,

as

follows:

v

If

the

parent

collaboration

is

successful,

InterChange

Server

commits

the

database

subtransaction.

v

If

the

parent

collaboration

fails,

InterChange

Server

rolls

back

the

database

subtransaction.

InterChange

Server

does

not

commit

or

roll

back

the

subtransaction

until

it

knows

the

success

or

failure

of

the

parent

collaboration.

With

this

behavior,

if

the

child

collaboration

failed

and

the

parent

collaboration

chose

to

continue

execution,

InterChange

Server

would

commit

the

implicit

database

transaction

of

the

child

collaboration.

Note:

InterChange

Server

handles

any

explicit

database

subtransactions

that

the

child

collaboration

performs

and

that

are

still

active

(i.e.

those

that

have

been

performed

through

a

database

connection

that

uses

explicit

transaction

bracketing

but

not

been

explicitly

committed

or

rolled

back

in

the

child’s

collaboration

template)

in

the

same

way

as

implicit

database

subtransactions.

This

method

of

handling

child

transactions

provides

the

collaboration

developer

with

a

means

to

perform

a

transactional

join

from

child

to

parent

without

explicitly

using

join

semantics.

If

instead,

child

database

transactions

were

committed

or

rolled

back

at

the

child

level,

the

developer

could

not

correlate

transactions

that

the

child

started

(either

explicitly

or

implicitly)

with

the

global

business

process

transaction

that

the

parent

started.

Note:

Transactional

collaborations

use

this

same

model

for

their

parent

and

child

database

transactions.

Transaction

scope

with

explicit

transaction

bracketing:

If

the

connection

uses

explicit

transaction

bracketing,

ICS

expects

the

collaboration

template

to

explicitly

specify

the

scope

of

each

database

transaction.

Explicit

transaction

bracketing

is

useful

if

you

have

some

database

work

to

perform

that

is

independent

of

the

success

or

failure

of

the

collaboration.

For

example,

if

you

need

to

perform

auditing

to

indicate

that

certain

tables

were

accessed,

this

audit

needs

to

be

performed

regardless

of

whether

the

table

accesses

were

successful

or

not.

If

you

contain

the

auditing

database

operations

in

an

explicit

transaction,

they

are

executed

regardless

of

the

success

or

failure

of

the

collaboration.

Chapter

9.

Coding

tips

and

examples

179

Table

45

shows

the

methods

in

the

CwDBConnection

class

that

provide

management

of

transaction

boundaries

for

explicit

transactions.

Table

45.

CwDBConnection

methods

for

explicit

transaction

management

Transaction-management

task

CwDBConnection

method

Begin

a

new

transaction.

beginTransaction()

End

the

transaction,

committing

(saving)

all

changes

made

during

the

transaction

to

the

database.

commit()

Determine

if

a

transaction

is

currently

active.

inTransaction()

End

the

transaction,

rolling

back

(backing

out)

all

changes

made

during

the

transaction.

rollBack()

To

specify

transaction

scope

of

an

explicit

transaction,

follow

these

steps:

1.

Mark

the

beginning

of

the

transaction

with

a

call

to

the

beginTransaction()

method.

2.

Execute

all

SQL

statements

that

must

succeed

or

fail

as

a

unit

between

this

call

to

beginTransaction()

and

the

end

of

the

transaction.

3.

End

the

transaction

in

either

of

two

ways:

v

Call

commit()

to

end

the

transaction

successfully.

All

modifications

that

the

SQL

statements

have

made

are

saved

in

the

database.

v

Call

rollBack()

to

end

the

transaction

unsuccessfully.

All

modifications

that

the

SQL

statements

have

made

are

backed

out

of

the

database.

You

can

choose

what

conditions

cause

a

transaction

to

fail.

Test

the

condition

and

call

rollBack()

if

any

failure

condition

is

met.

Otherwise,

call

commit()

to

end

the

transaction

successfully.

Important:

If

you

do

not

use

beginTransaction()

to

specify

the

beginning

of

the

explicit

transaction,

the

database

executes

each

SQL

statement

as

a

separate

transaction.

If

you

include

beginTransaction()

but

do

not

specify

the

end

of

the

database

transaction

with

commit()

or

rollback()

before

the

connection

is

released,

InterChange

Server

implicitly

ends

the

transaction

based

on

the

success

of

the

collaboration.

If

the

collaboration

is

successful,

ICS

commits

this

database

transaction.

If

the

collaboration

is

not

successful,

ICS

implicitly

rolls

back

the

database

transaction.

Regardless

of

the

success

of

the

collaboration,

ICS

logs

a

warning.

The

following

code

fragment

updates

three

tables

in

the

database

associated

with

connections

in

the

CustDBConnPool.

If

all

these

updates

are

successful,

the

code

fragment

commits

these

changes

with

the

commit()

method.

If

any

transaction

errors

occur,

a

CwDBTransactionException

exception

results

and

the

code

fragment

invokes

the

rollback()

method.

CwDBConnection

connection

=

getDBConnection("CustDBConnPool",

false);

//

Begin

a

transaction

connection.beginTransaction();

//

Update

several

tables

try

{

connection.executeSQL("update

table1....");

connection.executeSQL("update

table2....");

connection.executeSQL("update

table3....");

180

Collaboration

Development

Guide

//

Commit

the

transaction

connection.commit();

}

catch

(CwDBSQLException

e)

{

//

Roll

back

the

transaction

if

an

executeSQL()

call

throws

//

an

exception

connection.rollback();

}

//

Release

the

database

connection

connection.release();

To

determine

whether

a

transaction

is

currently

active,

use

the

inTransaction()

method.

Attention:

Use

the

beginTransaction(),

commit(),

and

rollback()

methods

only

if

the

connection

uses

explicit

transaction

bracketing.

If

the

connection

uses

implicit

transaction

bracketing,

use

of

any

of

these

methods

results

in

a

CwDBTransactionException

exception.

Releasing

a

connection

Once

a

connection

is

released,

it

is

returned

to

its

connection

pool,

where

it

is

available

for

use

by

other

components.

The

way

that

a

connection

to

the

database

is

released

depends

on

the

transaction

programming

model.

Therefore,

this

section

provides

the

following

information:

v

“Releasing

a

connection

with

implicit

transaction

bracketing”

v

“Releasing

a

connection

with

explicit

transaction

bracketing”

Releasing

a

connection

with

implicit

transaction

bracketing

ICS

automatically

releases

a

connection

that

uses

implicit

transaction

bracketing

once

it

has

ended

the

database

transaction.

ICS

does

not

end

the

database

transaction

until

it

determines

the

success

or

failure

of

the

collaboration

object;

that

is,

ICS

releases

these

connections

when

the

collaboration

finishes

execution.

If

the

collaboration

executes

successfully,

ICS

automatically

commits

any

database

transactions

that

are

still

active.

If

the

collaboration

execution

fails

(for

instance,

if

an

exception

is

thrown

that

is

not

handled

with

a

catch

statement),

ICS

automatically

rolls

back

any

transactions

that

are

still

active.

Releasing

a

connection

with

explicit

transaction

bracketing

For

a

connection

that

uses

explicit

transaction

bracketing,

the

connection

ends

in

either

of

the

following

cases:

v

ICS

automatically

releases

a

connection

that

uses

explicit

transaction

bracketing.

v

You

explicitly

release

a

connection

with

the

release()

method

of

the

CwDBConnection

class.

You

can

use

the

CwDBConnection.isActive()

method

to

determine

whether

a

connection

has

been

released.

If

the

connection

has

been

released,

isActive()

returns

false,

as

the

following

code

fragment

shows:

if

(connection.isActive())

connection.release();

Attention:

Do

not

use

the

release()

method

if

a

transaction

is

currently

active.

With

implicit

transaction

bracketing,

ICS

does

not

end

the

database

transaction

until

it

determines

the

success

or

failure

of

the

collaboration.

Therefore,

use

of

this

method

on

a

connection

that

uses

Chapter

9.

Coding

tips

and

examples

181

implicit

transaction

bracketing

results

in

a

CwDBTransactionException

exception.

If

you

do

not

handle

this

exception

explicitly,

it

also

results

in

an

automatic

rollback

of

the

active

transaction.

You

can

use

the

inTransaction()

method

to

determine

whether

a

transaction

is

active.

ICS

automatically

releases

a

connection

regardless

of

the

transaction

programming

model

it

uses.

In

most

cases,

you

do

not

need

to

explicitly

release

the

connection.

182

Collaboration

Development

Guide

Chapter

10.

Creating

a

message

file

A

collaboration

uses

certain

methods

to

generate

messages.

There

are

two

ways

for

a

collaboration

to

generate

message

text

visible

to

a

user:

v

The

collaboration

calls

a

method

for

message

display

and

includes

the

message

text

as

a

parameter

to

the

call.

v

The

collaboration

calls

the

messaging

method

and

the

call

contains

a

reference

to

an

external

message

file

that

contains

the

message

text.

Generally,

it

is

better

practice

to

design

a

collaboration

to

refer

to

a

message

file

than

to

generate

the

text

itself.

Keeping

messages

in

a

centralized

message

file,

rather

than

within

individual

collaborations,

makes

maintenance,

administration,

and

internationalization

easier.

It

is

good

practice

to

create

a

message

file

for

each

collaboration

template.

Process

Designer

Express

provides

the

Messages

view

to

facilitate

message

creation.

When

InterChange

Server

starts

a

collaboration

object,

it

attempts

to

load

the

associated

message

file

into

memory.

It

logs

a

warning

if

the

message

file

is

missing.

This

chapter

describes

how

message

files

work,

as

well

as

how

to

create

and

maintain

them.

It

covers

the

following

topics:

v

“Operations

that

use

the

message

file”

v

“Creating

a

message

file”

v

“Message

file:

Name

and

location”

on

page

184

v

“Explanations”

on

page

185

v

“Message

parameters”

on

page

185

v

“Maintaining

the

file”

on

page

186

Operations

that

use

the

message

file

A

message

file

can

hold

the

text

for

messages

used

in

several

types

of

operations.

Table

46

lists

the

types

of

operations

that

use

a

message

file

and

the

methods

of

the

BaseCollaboration

class

that

perform

those

operations.

Table

46.

Message-generating

operations

Operation

Methods

Logging

BaseCollaboration.logInfo()
BaseCollaboration.logError()
BaseCollaboration.logWarning()

Tracing

BaseCollaboration.trace()

Raising

exceptions

BaseCollaboration.raiseException()

Creating

a

message

file

Perform

the

following

steps

to

create

a

message

file:

1.

Ensure

that

Process

Designer

Express

is

open.

2.

Click

Template

—>

Open

Template

Messages.

The

Template

Messages

window

is

displayed,

as

shown

in

Figure

74

on

page

184.

©

Copyright

IBM

Corp.

2003

183

3.

For

each

message

you

create,

do

the

following:

a.

In

the

Message

ID

column,

specify

the

message’s

unique

identifier.

b.

In

the

Message

column,

type

the

text

of

the

message.

This

text

is

what

the

user

sees

when

the

message

is

displayed

during

runtim.

You

can

include

parameters

in

the

message

text

to

enable

message

reuse.

See

“Message

parameters”

on

page

185.

c.

Optionally,

make

the

message

self-documenting

by

adding

an

explanation

in

the

Explanation

column.

See

“Explanations”

on

page

185.

d.

Optionally,

add

a

description

for

the

message

in

the

Description

pane.

Text

entered

here

is

not

visible

to

the

user

during

runtime.

Message

file:

Name

and

location

The

content

of

the

collaboration

message

file

is

stored

as

part

of

the

collaboration

template.

When

you

compile

and

deploy

a

collaboration,

Process

Designer

Express

extracts

the

message

content

and

creates

or

updates

the

message

file

for

runtime

use.

After

compilation,

the

message

file

is

located

in

the

\Templates\messages

directory

of

your

Integration

Component

Library

project

in

System

Manager.

After

deployment,

the

message

file

is

copied

and

placed

in

the

productDir\collaborations\messages

directory.

The

name

of

the

message

file

has

the

following

format:

CollaborationName.txt

For

example,

when

you

compile

and

deploy

a

collaboration

template

named

SampleHello,

Process

Designer

Express

creates

a

message

file

called

SampleHello.txt

and

places

it

in

the

collaborations\messages

subdirectory.

Important:

Never

make

changes

directly

to

a

collaboration

message

file.

Always

use

Process

Designer

Express

to

edit

template

messages.

The

collaboration

message

file

contains

all

text

strings

that

the

collaboration

uses.

These

strings

include

those

for

logging,

exception

handling,

and

email

operations.

Note:

InterChange

Server

standards

recommend

that

trace

messages

are

not

included

in

a

collaboration

message

file

because

end

users

do

not

normally

view

them.

Figure

74.

Template

Messages

window

184

Collaboration

Development

Guide

For

an

internationalized

collaboration,

it

is

important

that

these

text

strings

are

isolated

into

the

collaboration

message

file

so

that

this

message

file

can

be

translated.

The

name

of

the

translated

collaboration

message

file

must

include

the

name

of

the

associated

locale

(CollaborationName_ll_TT.txt).

In

the

preceding

line,

ll

is

the

two-letter

abbreviation

for

the

locale

(by

convention

in

lowercase

letters)

and

TT

is

the

two-letter

abbreviation

for

the

territory

(by

convention

in

uppercase

letters).

For

example,

the

version

of

the

SampleHello

collaboration’s

message

file

that

contains

U.S.

English

messages

has

the

name

SampleHello_en_US.txt

At

runtime,

the

collaboration

runtime

environment

locates

the

appropriate

message

file

for

the

collaboration

locale

(inherited

from

InterChange

Server)

from

the

collaborations\messages

subdirectory.

For

example,

if

the

collaboration

locale

is

U.S.

English

(en_US),

the

collaboration

runtime

environment

retrieves

messages

from

the

CollaborationName_en_US.txt

file.

For

more

information

on

how

to

internationalize

the

text

strings

of

a

collaboration,

see

“An

internationalized

collaboration”

on

page

43.

Explanations

Use

the

Explanation

column

in

the

Template

Messages

window

to

add

a

detailed

explanation

of

each

message

to

create

self-documenting

messages.

Explanations

are

optional,

but

can

improve

the

usability

of

your

collaboration.

For

example,

suppose

you

have

a

message

with

the

following

text:

Update

failed.

Destination

application

missing

entry

for

{1}

{2}.

This

message

text

does

not

provide

enough

detail

for

the

user

to

easily

remedy

the

error.

In

this

example,

adding

a

message

explanation

such

as

the

following

can

significantly

enhance

the

value

of

the

message

to

the

user:

An

update

request

was

sent

to

a

connector,

which

successfully

contacted

the

application.

However,

the

application

did

not

return

data

for

the

specified

key

attribute

value.

For

more

examples

of

self-documenting

messages,

view

the

InterchangeSystem.txt

file

that

is

installed

with

InterChange

Server

Express.

Reading

message

explanations

Explanations

are

not

displayed

with

the

message

during

runtime.

Instead,

the

user

must

view

them

in

the

collaboration’s

message

file.

If

the

InterChange

Server

log

has

been

saved

to

a

file,

use

Log

Viewer

to

read

any

message

explanations

written

to

the

log

file.

If

the

log

is

not

saved

to

a

file,

message

explanations

must

be

viewed

directly

in

the

collaboration’s

message

file.

Message

parameters

It

is

not

necessary

to

write

separate

messages

for

each

possible

situation.

Instead,

use

parameters

to

represent

values

that

change

at

runtime.

The

use

of

parameters

allows

each

message

to

serve

multiple

situations

and

helps

to

keep

the

message

file

small.

Chapter

10.

Creating

a

message

file

185

A

parameter

always

appears

as

a

number

surrounded

by

curly

braces:

{number}.

For

each

parameter

you

want

to

add

to

the

message,

insert

the

number

within

curly

braces

into

the

text

of

the

message,

as

follows:

message

text

{number}

more

message

text.

The

API

method

that

is

called

to

log

the

message

must

supply

a

value

for

each

parameter.

For

example,

consider

the

following

message:

6

Update

failed.

Destination

application

missing

entry

for

{1}

{2}

In

the

code

fragment

that

sends

this

message,

the

following

code

appears:

logWarning(6,

"

CustomerID"

,

fromCust.getString("CustomerID"));

InterChange

Server

combines

the

parameter

values

in

the

logWarning()

method

call

with

the

message

in

the

log

file

and

forms

the

message.

Before

writing

the

message

to

the

log

file,

the

server

replaces

the

message

parameters

with

the

following

values:

v

Parameter

1

becomes

the

string

“

Customer

ID”.

v

Parameter

2

becomes

the

value

of

the

customer

ID

attribute

in

the

fromCust

business

object.

The

message

then

appears

in

the

log

file

as

follows:

Update

failed.

Destination

application

missing

entry

for

CustomerID

101961

Because

the

message

text

takes

the

description

of

the

missing

entry

and

its

ID

as

parameters,

rather

than

including

them

as

hardcoded

strings,

you

can

use

the

same

message

for

any

pair

of

missing

attributes.

Maintaining

the

file

At

a

user

site,

an

administrator

can

set

up

a

procedure

for

filtering

collaboration

messages

and

using

email

or

email

pager

to

notify

someone

who

can

resolve

problems.

Because

of

this,

it

is

important

that

the

error

numbers

and

the

meanings

associated

with

the

numbers

remain

the

same

after

the

first

release

of

a

collaboration

template.

You

can

change

the

text

associated

with

an

error

number,

but

you

should

not

change

the

meaning

of

the

text

or

reassign

error

numbers.

If

you

change

the

meanings

associated

with

error

numbers,

make

sure

you

document

the

change

and

notify

users

of

the

collaboration

template.

You

can

change

a

collaboration’s

message

file

while

the

collaboration

object

is

running.

However,

the

changes

do

not

take

effect

until

the

next

time

the

collaboration

object

is

started

and

the

message

file

is

read

into

memory.

If

InterChange

Server

goes

down

while

collaborations

are

running,

the

server

automatically

reads

into

memory

the

message

files

for

all

collaborations

that

were

previously

running.

186

Collaboration

Development

Guide

Part

3.

Supported

function

blocks

©

Copyright

IBM

Corp.

2003

187

188

Collaboration

Development

Guide

Chapter

11.

Business

object

function

blocks

The

function

blocks

in

the

General\APIs\Business

Object

folder

and

its

subfolders

provide

basic

functionality

for

working

with

business

objects.

Function

blocks

in

the

General\APIs\Business

Object

folder

are

based

on

methods

in

the

Collaboration

API’s

BusObj

class.

Function

blocks

in

the

General\APIs\Business

Object\Array

and

General\APIs\Business

Object\Constants

folders

correspond

to

Java

arrays

and

constants

of

the

class

BusObj.

©

Copyright

IBM

Corp.

2003

189

The

following

sections

detail

each

function

block.

Table

47.

Summary

of

function

blocks

in

the

General\APIs\Business

Object

folder

and

its

subfolders

Location

Function

Block

Page

General\APIs\Business

Object

Copy

191

Duplicate

191

Equals

192

Equal

Keys

191

Exists

192

Get

Boolean

192

Get

Business

Object

193

Get

Business

Object

Array

193

Get

Business

Object

Type

194

Get

Double

194

Get

Float

195

Get

Int

195

Get

Locale

195

Get

Long

196

Get

Long

Text

196

Get

Object

196

Get

String

197

Get

Verb

197

Is

Blank

197

Is

Business

Object

198

Is

Key

198

Is

Null

198

Is

Required

199

Iterate

Children

199

Keys

to

String

199

New

Business

Object

199

Set

Content

200

Set

Default

Attribute

Values

201

Set

Keys

201

Set

Locale

201

Set

Value

202

Set

Value

with

Create

202

Set

Verb

202

Set

Verb

with

Create

202

Shallow

Equals

203

To

String

203

Valid

Data

204

190

Collaboration

Development

Guide

Table

47.

Summary

of

function

blocks

in

the

General\APIs\Business

Object

folder

and

its

subfolders

(continued)

Location

Function

Block

Page

General\APIs\Business

Object\Array

Get

BusObj

At

194

New

Business

Object

Array

200

Set

BusObj

At

200

Size

203

General\APIs\Business

Object\Constants

Verb:Create

204

Verb:Delete

204

Verb:Retrieve

204

Verb:Update

205

Copy

Copies

all

attribute

values

from

the

input

business

object.

Inputs

Copy

to

A

BusObj

object

that

represents

the

destination

object

for

the

copy

operation.

Copy

from

A

BusObj

object

that

represents

the

business

object

to

be

copied.

Notes

This

function

block

is

based

on

the

BusObj.copy()

method.

For

more

information,

see

“copy()”

on

page

288.

Duplicate

Creates

a

business

object

exactly

like

the

original

one.

Inputs

original

The

business

object

(a

BusObj

object)

to

be

duplicated.

Output

Returns

the

duplicated

business

object.

Notes

This

function

block

is

based

on

the

BusObj.duplicate()

method.

For

more

information,

see

“duplicate()”

on

page

289.

Equal

Keys

Compares

the

current

business

object’s

key

attribute

values

with

those

in

the

input

business

object

to

determine

if

they

are

equal.

Inputs

Business

object

1

The

first

business

object

(a

BusObj

object)

in

the

comparison.

Chapter

11.

Business

object

function

blocks

191

Business

object

2

The

second

business

object

(a

BusObj

object)

in

the

comparison.

Output

Returns

true

if

the

values

of

all

key

attributes

are

the

same;

returns

false

if

they

are

not

the

same.

Notes

This

function

block

is

based

on

the

BusObj.equalKeys()

method.

For

more

information,

see

“equalKeys()”

on

page

289.

Equals

Compares

the

attributes

of

two

business

objects

(including

child

business

objects)

to

determine

if

they

are

equal.

Inputs

Business

object

1

The

first

business

object

(a

BusObj

object)

in

the

comparison.

Business

object

2

The

second

business

object

(a

BusObj

object)

in

the

comparison.

Output

Returns

true

if

the

values

of

all

attributes

are

the

same;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

BusObj.equals()

method.

For

more

information,

see

“equals()”

on

page

290.

Exists

Checks

for

the

existence

of

a

business

object

attribute

with

a

specified

name.

Inputs

Business

Object

The

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

whose

existence

you

want

to

verify.

Output

Returns

true

if

the

attribute

exists;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

BusObj.exists()

method.

For

more

information,

see

“exists()”

on

page

291.

Get

Boolean

Retrieves

the

value

of

a

single

attribute,

as

a

boolean,

from

a

business

object.

192

Collaboration

Development

Guide

Inputs

Business

object

The

business

object

(a

BusObj

object)

in

which

the

attribute

exists.

Attribute

A

String

that

specifies

the

name

of

the

attribute.

Output

Returns

the

boolean

value

(true

or

false)

of

the

specified

attribute.

Notes

This

function

block

is

based

on

the

BusObj.getBoolean()

method.

For

more

information,

see

“getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()”

on

page

291.

Get

Business

Object

Retrieves

the

value

of

a

single

attribute,

as

a

BusObj

object,

from

a

business

object.

Inputs

Business

Object

The

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

retrieve.

Output

Returns

the

value

of

the

specified

attribute

as

a

BusObj

object.

Notes

This

function

block

is

based

on

the

BusObj.getBusObj()

method.

For

more

information,

see

“getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()”

on

page

291.

Get

Business

Object

Array

Retrieves

the

value

of

a

single

attribute,

as

a

business

object

array,

from

a

business

object.

Inputs

Business

object

The

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

retrieve.

Output

Returns

the

value

of

the

specified

attribute

as

a

business

object

array.

Notes

This

function

block

is

based

on

the

BusObj.getBusObjArray()

method.

For

more

information,

see

“getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()”

on

page

291.

Chapter

11.

Business

object

function

blocks

193

Get

Business

Object

Type

Retrieves

the

name

of

the

business

object

definition

on

which

the

current

business

object

was

based.

Inputs

Business

Object

The

current

business

object

(a

BusObj

object).

Output

Returns

a

String

that

contains

the

name

of

the

business

object

definition.

Notes

This

function

block

is

based

on

the

BusObj.getType()

method.

For

more

information,

see

“getType()”

on

page

294.

Get

BusObj

At

Retrieves

the

element

at

the

specified

index

in

a

business

object

array.

Note:

This

function

block

is

located

in

the

General\APIs\Business

Object\Array

folder.

Inputs

Business

object

array

A

BusObj[]

object

that

represents

the

business

object

array.

Index

An

integer

that

specifies

the

index

location.

Output

Returns

the

business

object

located

at

the

specified

index.

Get

Double

Retrieves

the

value

of

a

single

attribute,

as

a

double,

from

a

business

object.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

retrieve.

Output

Returns

the

value

of

the

specified

attribute

as

a

double

data

type.

Notes

This

function

block

is

based

on

the

BusObj.getDouble()

method.

For

more

information,

see

“getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()”

on

page

291.

194

Collaboration

Development

Guide

Get

Float

Retrieves

the

value

of

a

single

attribute,

as

a

float,

from

a

business

object.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

retrieve.

Output

Returns

the

value

of

the

specified

attribute

as

a

float

data

type.

Notes

This

function

block

is

based

on

the

BusObj.getFloat()

method.

For

more

information,

see

“getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()”

on

page

291.

Get

Int

Retrieves

the

value

of

a

single

attribute,

as

an

integer,

from

a

business

object.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

retrieve.

Output

Returns

the

value

of

the

specified

attribute

as

an

integer.

Notes

This

function

block

is

based

on

the

BusObj.getInt()

method.

For

more

information,

see

“getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()”

on

page

291.

Get

Locale

Retrieves

the

locale

associated

with

the

business

object’s

data.

Inputs

Business

object

The

business

object

(a

BusObj

object).

Output

Returns

a

Java

Locale

object

that

contains

information

about

the

business

object’s

locale.

This

Locale

object

must

be

an

instance

of

the

java.util.Locale

class.

Chapter

11.

Business

object

function

blocks

195

Notes

This

function

block

is

based

on

the

BusObj.getLocale()

method.

For

more

information,

see

“getLocale()”

on

page

293.

Get

Long

Retrieves

the

value

of

a

single

attribute,

as

a

long

data

type,

from

a

business

object.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

retrieve.

Output

Returns

the

value

of

the

specified

attribute

as

a

long

data

type.

Notes

This

function

block

is

based

on

the

BusObj.getLong()

method.

For

more

information,

see

“getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()”

on

page

291.

Get

Long

Text

Retrieves

the

value

of

a

single

attribute,

as

long

text,

from

a

business

object.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

retrieve.

Output

Returns

the

value

of

the

specified

attribute

as

long

text.

Notes

This

function

block

is

based

on

the

BusObj.getLongText()

method.

For

more

information,

see

“getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()”

on

page

291.

Get

Object

Retrieves

the

value

of

a

single

attribute,

as

an

object,

from

a

business

object.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

retrieve.

196

Collaboration

Development

Guide

Output

Returns

the

value

of

the

specified

attribute

as

an

object.

Notes

This

function

block

is

based

on

the

BusObj.get()

method.

For

more

information,

see

“getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()”

on

page

291.

Get

String

Retrieves

the

value

of

a

single

attribute,

as

a

String,

from

a

business

object.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

retrieve.

Output

Returns

a

String

that

contains

the

value

of

the

specified

attribute.

Notes

This

function

block

is

based

on

the

BusObj.getString()

method.

For

more

information,

see

“getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()”

on

page

291.

Get

Verb

Retrieves

the

verb

for

the

current

business

object.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Output

Returns

a

String

that

contains

the

name

of

the

business

object’s

verb.

Notes

This

function

block

is

based

on

the

BusObj.getVerb()

method.

For

more

information,

see

“getVerb()”

on

page

294.

Is

Blank

Determines

whether

the

value

of

an

attribute

is

set

to

a

zero-length

String.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

are

querying.

Chapter

11.

Business

object

function

blocks

197

Output

Returns

true

if

the

attribute

value

is

a

zero-length

String;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

BusObj.isBlank()

method.

For

more

information,

see

“isBlank()”

on

page

295.

Is

Business

Object

Determines

whether

the

value

is

a

business

object.

Inputs

Value

The

object

you

want

to

query.

Output

Returns

true

if

the

value

is

a

business

object;

otherwise,

returns

false.

Is

Key

Determines

whether

a

business

object

attribute

is

defined

as

a

key

attribute.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute.

Output

Returns

true

if

the

attribute

is

a

key

attribute;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

BusObj.isKey()

method.

For

more

information,

see

“isKey()”

on

page

295.

Is

Null

Determines

whether

the

value

of

a

business

object’s

attribute

is

null.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute.

Output

Returns

true

if

the

attribute

value

is

null;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

BusObj.isNull()

method.

For

more

information,

see

“isNull()”

on

page

296.

198

Collaboration

Development

Guide

Is

Required

Determines

whether

a

business

object’s

attribute

is

defined

as

a

required

attribute.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute.

Output

Returns

true

if

the

attribute

is

required;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

BusObj.isRequired()

method.

For

more

information,

see

“isRequired()”

on

page

297.

Iterate

Children

Iterates

through

the

child

business

object

array.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute.

Current

index

An

integer

that

specifies

the

current

index.

Current

element

The

current

element

(a

BusObj

object).

Keys

to

String

Retrieves

the

values

of

a

business

object’s

primary

key

attributes

and

returns

them

as

a

String.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Output

A

String

object

containing

all

the

key

values

in

a

business

object,

concatenated,

and

ordered

by

the

ordinal

value

of

the

attributes.

Notes

This

function

block

is

based

on

the

BusObj.keysToString()

method.

For

more

information,

see

“keysToString()”

on

page

297.

New

Business

Object

Creates

a

new

business

object

instance

(BusObj)

of

the

specified

type.

Chapter

11.

Business

object

function

blocks

199

Inputs

Type

A

String

that

specifies

the

type

of

business

object

you

are

creating.

Output

Returns

a

new

business

object

of

the

type

specified.

Notes

This

function

block

is

based

on

the

Collaboration.BusObj()

constructor.

New

Business

Object

Array

Creates

a

new

business

object

array.

Note:

This

function

block

is

located

in

the

General\APIs\Business

Object\Array

folder.

Inputs

Size

An

integer

that

specifies

the

size

of

the

array.

Output

Returns

a

business

object

array

of

the

specified

size.

Set

BusObj

At

Sets

the

element

at

the

specified

index

in

a

business

object

array.

Note:

This

function

block

is

located

in

the

General\APIs\Business

Object\Array

folder.

Inputs

Business

object

array

A

BusObj[]

object

that

represents

the

business

object

array.

Index

An

integer

that

specifies

the

location

of

the

element.

Business

object

A

BusObj

object

that

represents

the

element

to

be

set.

Set

Content

Sets

the

contents

of

the

current

business

object

to

another

business

object.

The

two

business

objects

then

own

the

content

together.

Changes

made

to

one

business

object

are

reflected

in

the

other

business

object.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Content

The

business

object

(a

BusObj

object)

whose

content

you

want

to

use

for

the

current

business

object.

200

Collaboration

Development

Guide

Notes

This

function

block

is

based

on

the

BusObj.setContent()

method.

For

more

information,

see

the

BusObj

reference

pages

in

the

Map

Development

Guide.

Set

Default

Attribute

Values

Sets

all

attributes

of

a

business

object

to

their

default

values.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Notes

This

function

block

is

based

on

the

BusObj.setDefaultAttrValues()

method.

For

more

information,

see

“setDefaultAttrValues()”

on

page

299.

Set

Keys

Sets

the

values

of

the

current

business

object’s

key

attributes

to

the

values

of

the

key

attributes

in

another

business

object.

Inputs

From

business

object

The

business

object

(a

BusObj

object)

whose

key

attribute

values

you

want

to

use.

To

business

object

The

current

business

object

(a

BusObj

object)

that

is

going

to

receive

the

key

attribute

values

of

the

other

business

object.

Notes

This

function

block

is

based

on

the

BusObj.setKeys()

method.

For

more

information,

see

“setKeys()”

on

page

299.

Set

Locale

Sets

the

locale

of

the

current

business

object.

Inputs

Business

object

The

business

object

(a

BusObj

object)

whose

locale

you

want

to

set.

Locale

The

Java

Locale

object

that

contains

the

information

about

the

locale

to

assign

to

the

business

object.

This

Locale

object

must

be

an

instance

of

the

java.util.Locale

class.

Notes

This

function

block

is

based

on

the

BusObj.setLocale()

method.

For

more

information,

see

“setLocale()”

on

page

300.

Chapter

11.

Business

object

function

blocks

201

Set

Value

Sets

a

business

object’s

attribute

to

a

specified

value

of

a

particular

data

type.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

set.

Value

The

value

for

the

attribute.

Must

be

of

the

appropriate

type

(boolean,

double,

float,

int,

long,

Object,

String,

or

BusObj)

for

the

attribute.

Notes

This

function

block

is

based

on

the

BusObj.set()

method.

For

more

information,

see

“set()”

on

page

298.

Set

Value

with

Create

Sets

the

business

object’s

attribute

to

a

specified

value

of

a

particular

data

type,

creating

an

object

for

the

value

if

one

does

not

already

exist.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute

you

want

to

set.

Verb

A

String

the

specifies

the

verb

Create.

Notes

This

function

block

is

based

on

the

BusObj.setWithCreate()

method.

For

more

information,

see

“setWithCreate()”

on

page

301.

Set

Verb

Sets

the

verb

of

a

business

object.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Verb

A

String

that

specifies

the

verb

to

be

used

with

the

business

object.

Notes

This

function

block

is

based

on

the

BusObj.setVerb()

method.

For

more

information,

see

“setVerb()”

on

page

300.

Set

Verb

with

Create

Sets

the

verb

of

a

child

business

object,

creating

the

child

business

object

if

one

does

not

already

exist.

202

Collaboration

Development

Guide

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute.

Verb

A

String

that

specifies

the

verb

Create.

Notes

This

function

block

is

based

on

the

BusObj.setVerbWithCreate()

method.

Shallow

Equals

Compares

the

values

of

two

business

objects,

excluding

child

business

objects,

to

determine

whether

they

are

equal.

Inputs

Business

object

1

The

first

business

object

(a

BusObj

object)

you

are

comparing.

Business

object

2

The

second

business

object

(a

BusObj

object)

you

are

comparing.

Output

Returns

true

if

the

values

of

all

attributes

are

the

same;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

BusObj.equalsShallow()

method.

For

more

information,

see

“equalsShallow()”

on

page

290.

Size

Retrieves

the

size

of

the

business

object

array.

Note:

This

function

block

is

located

in

the

General\APIs\Business

Object\Array

folder.

Inputs

Business

object

array

A

BusObj[]

object

that

represents

the

business

object

array.

Output

Returns

an

integer

that

specifies

the

size

of

the

array.

To

String

Returns

the

values

of

all

attributes

in

a

business

object

as

a

String.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Chapter

11.

Business

object

function

blocks

203

Output

A

String

object

containing

all

attribute

values

contained

in

a

business

object.

Notes

This

function

block

is

based

on

the

BusObj.toString()

method.

For

more

information,

see

“toString()”

on

page

301.

Valid

Data

Determines

whether

the

specified

value

is

a

valid

data

type

for

a

specified

attribute.

Inputs

Business

object

The

current

business

object

(a

BusObj

object).

Attribute

A

String

that

specifies

the

name

of

the

attribute.

Value

The

value

for

the

attribute.

Can

be

of

type

Object,

BusObj,

BusObjArray,

String,

long,

int,

double,

float,

or

boolean.

Output

Returns

true

if

the

specified

value

is

a

valid

data

type;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

BusObj.validData()

method.

For

more

information,

see

“validData()”

on

page

302.

Verb:Create

The

business

object

verb

Create.

Note:

This

function

block

is

located

in

the

General\APIs\Business

Object\Constants

folder.

Output

Returns

a

String

that

contains

the

verb

Create.

Verb:Delete

The

business

object

verb

Delete.

Note:

This

function

block

is

located

in

the

General\APIs\Business

Object\Constants

folder.

Output

Returns

a

String

that

contains

the

verb

Delete.

Verb:Retrieve

The

business

object

verb

Retrieve.

204

Collaboration

Development

Guide

Note:

This

function

block

is

located

in

the

General\APIs\Business

Object\Constants

folder.

Output

Returns

a

String

that

contains

the

verb

Retrieve.

Verb:Update

The

business

object

verb

Update.

Note:

This

function

block

is

located

in

the

General\APIs\Business

Object\Constants

folder.

Output

Returns

a

String

that

contains

the

verb

Update.

Chapter

11.

Business

object

function

blocks

205

206

Collaboration

Development

Guide

Chapter

12.

Business

object

array

function

blocks

The

function

blocks

in

the

General\APIs\Business

Object

Array

folder

provide

basic

functionality

for

working

with

business

object

arrays.

These

function

blocks

are

based

on

the

Collaboration

API’s

BusObjArray

class.

The

following

sections

detail

each

function

block.

Table

48.

Summary

of

function

blocks

in

the

General\APIs\Business

Object

Array

folder

Function

block

Page

Add

Element

207

Duplicate

208

Equals

208

Get

Element

At

208

Get

Elements

209

Get

Last

Index

209

Is

Business

Object

Array

209

Max

Attribute

Value

210

Max

Business

Object

Array

210

Max

Business

Objects

210

Min

Attribute

Value

211

Min

Business

Object

Array

211

Min

Business

Objects

211

Remove

All

Elements

212

Remove

Element

212

Remove

Element

At

212

Set

Element

At

213

Size

213

Sum

213

Swap

214

To

String

214

Add

Element

Adds

a

business

object

to

the

current

business

object

array.

Inputs

Business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object).

Element

The

business

object

(specified

as

a

BusObj

object)

you

want

to

add.

©

Copyright

IBM

Corp.

2003

207

Notes

This

function

block

is

based

on

the

BusObjArray.addElement()

method.

For

more

information,

see

“addElement()”

on

page

306.

Duplicate

Creates

a

business

object

array

exactly

like

the

original

one.

Inputs

Original

business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object)

you

want

to

duplicate.

Output

Returns

the

duplicate

business

object

array.

Notes

This

function

block

is

based

on

the

BusObjArray.duplicate()

method.

For

more

information,

see

“duplicate()”

on

page

306.

Equals

Compares

two

business

object

arrays

to

determine

whether

they

are

equal.

Inputs

Business

object

array

1

The

first

business

object

array

(specified

as

a

BusObjArray

object)

you

want

to

compare.

Business

object

array

2

The

second

business

object

array

(specified

as

a

BusObjArray

object)

you

want

to

compare.

Output

Returns

true

if

the

arrays

are

equal;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

BusObjArray.equals()

method.

For

more

information,

see

“equals()”

on

page

307.

Get

Element

At

Retrieves

a

single

business

object

from

an

array

by

specifying

that

object’s

position

in

the

array.

Inputs

Business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object).

Index

An

integer

that

specifies

the

index

location.

208

Collaboration

Development

Guide

Output

Returns

the

specified

business

object.

Notes

This

function

block

is

based

on

the

BusObjArray.elementAt()

method.

For

more

information,

see

“elementAt()”

on

page

307.

Get

Elements

Retrieves

the

contents

of

the

business

object

array.

Inputs

Business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object).

Output

Returns

the

business

objects

in

the

array.

Notes

This

function

block

is

based

on

the

BusObjArray.getElements()

method.

For

more

information,

see

“getElements()”

on

page

307.

Get

Last

Index

Retrieves

the

last

available

index

from

a

business

object

array.

Inputs

Business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object).

Output

Returns

the

last

index,

as

an

integer.

Notes

This

function

block

is

based

on

the

BusObjArray.getLastIndex()

method.

For

more

information,

see

“getLastIndex()”

on

page

308.

Is

Business

Object

Array

Determines

whether

an

object

is

a

business

object

array

(BusObjArray).

Inputs

Value

The

name

of

the

object

to

be

tested.

Output

Returns

true

if

the

value

is

a

business

object

array;

otherwise,

returns

false.

Chapter

12.

Business

object

array

function

blocks

209

Max

Attribute

Value

Retrieves

the

maximum

values

for

the

specified

attribute

among

all

elements

in

the

business

object

array.

Inputs

Business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object).

Attribute

A

String

that

specifies

the

attribute

name.

Output

Returns

a

String

that

contains

the

maximum

value

for

the

specified

attribute.

Notes

This

function

block

is

based

on

the

BusObjArray.max()

method.

For

more

information,

see

“max()”

on

page

308.

Max

Business

Object

Array

Returns

the

business

objects

that

have

the

maximum

value

for

the

specified

attribute,

as

a

business

object

array

(BusObjArray

object).

Inputs

Business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object).

Attribute

A

String

that

specifies

the

attribute

name.

Output

A

list

of

business

objects

in

the

form

of

a

BusObjArray

object.

Notes

This

function

block

is

based

on

the

BusObjArray.maxBusObjArray()

method.

For

more

information,

see

“maxBusObjArray()”

on

page

309.

Max

Business

Objects

Returns

the

business

objects

that

have

the

maximum

value

for

the

specified

attribute,

as

an

array

of

BusObj

objects.

Inputs

Business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object).

Attribute

A

String

that

specifies

the

attribute

name.

Output

A

list

of

business

objects

in

the

form

of

a

BusObj[]

object.

210

Collaboration

Development

Guide

Notes

This

function

block

is

based

on

the

BusObjArray.maxBusObjs()

method.

For

more

information,

see

“maxBusObjs()”

on

page

310.

Min

Attribute

Value

Retrieves

the

minimum

value

for

the

specified

attribute

among

all

the

elements

in

the

business

object

array.

Inputs

Business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object).

Attribute

A

String

that

specifies

the

attribute

name.

Output

Returns

a

String

that

contains

the

maximum

value

for

the

specified

attribute.

Notes

This

function

block

is

based

on

the

BusObjArray.min()

method.

For

more

information,

see

“min()”

on

page

311.

Min

Business

Object

Array

Returns

the

business

objects

that

have

the

minimum

value

for

the

specified

attribute,

as

a

business

object

array

(BusObjArray

object).

Inputs

Business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object).

Attribute

A

String

that

specifies

the

attribute

name.

Output

A

list

of

business

objects

in

the

form

of

a

BusObjArray

object.

Notes

This

function

block

is

based

on

the

BusObjArray.minBusObjArray()

method.

For

more

information,

see

“minBusObjArray()”

on

page

312.

Min

Business

Objects

Returns

the

business

objects

that

have

the

minimum

value

for

the

specified

attribute,

as

an

array

of

BusObj

objects.

Inputs

Business

object

array

The

business

object

array

(specified

as

a

BusObjArray

object).

Attribute

A

String

that

specifies

the

attribute

name.

Chapter

12.

Business

object

array

function

blocks

211

Output

A

list

of

business

objects

in

the

form

of

a

BusObj[]

object.

Notes

This

function

block

is

based

on

the

BusObjArray.minBusObjs()

method.

For

more

information,

see

“minBusObjs()”

on

page

313.

Remove

All

Elements

Removes

all

elements

from

the

business

object

array.

Inputs

Business

object

array

The

business

object

array

(BusObjArray)

from

which

the

elements

are

going

to

be

removed.

Notes

This

function

block

is

based

on

the

BusObjArray.removeAllElements()

method.

For

more

information,

see

“removeAllElements()”

on

page

314.

Remove

Element

Removes

a

business

object

element

from

a

business

object

array.

Inputs

Business

object

array

The

business

object

array

(BusObjArray)

from

which

the

element

is

going

to

be

removed.

Element

The

business

object

(BusObj)

element

to

remove

from

the

array.

Notes

This

function

block

is

based

on

the

BusObjArray.removeElement()

method.

For

more

information,

see

“removeElement()”

on

page

314.

Remove

Element

At

Removes

a

business

object

element

from

a

particular

position

in

the

business

object

array.

Inputs

Business

object

array

The

business

object

array

(BusObjArray)

from

which

the

element

is

going

to

be

removed.

Index

The

index

position

(specified

as

an

integer)

of

the

element

to

remove.

Notes

This

function

block

is

based

on

the

BusObjArray.removeElementAt()

method.

For

more

information,

see

“removeElementAt()”

on

page

314.

212

Collaboration

Development

Guide

Set

Element

At

Sets

the

value

of

a

business

object

in

a

business

object

array.

Inputs

Business

object

array

The

business

object

array

(specified

as

an

object

of

type

BusObjArray)

in

which

the

element’s

value

is

going

to

be

set.

Element

The

business

object

element

(specified

as

an

object

of

type

BusObj)

whose

value

you

are

going

to

set.

Index

The

index

position

(specified

as

an

integer)

of

the

business

object

element

to

set.

Notes

This

function

block

is

based

on

the

BusObjArray.setElementAt()

method.

For

more

information,

see

“setElementAt()”

on

page

315.

Size

Determines

the

number

of

elements

in

a

business

object

array.

Inputs

Business

object

array

The

business

object

array

(specified

as

an

object

of

type

BusObjArray)

whose

size

you

want

to

determine.

Output

Returns

an

integer

that

specifies

the

number

of

elements

in

the

array.

Notes

This

function

block

is

based

on

the

BusObjArray.size()

method.

For

more

information,

see

“size()”

on

page

315.

Sum

Adds

the

values

of

the

specified

attribute

for

all

business

objects

in

this

business

object

array.

Inputs

Business

object

array

The

business

object

array

(specified

as

an

object

of

type

BusObjArray).

Attribute

A

String

that

specifies

the

name

of

the

attribute.

Output

Returns

the

sum

(as

a

double

data

type)

of

the

specified

attribute

from

the

list

of

the

business

objects.

Chapter

12.

Business

object

array

function

blocks

213

Notes

This

function

block

is

based

on

the

BusObjArray.sum()

method.

For

more

information,

see

“sum()”

on

page

316.

Swap

Reverses

the

positions

of

two

business

objects

in

the

business

object

array.

Inputs

Business

object

array

The

business

object

array

(specified

as

an

object

of

type

BusObjArray).

Index

1

An

integer

that

specifies

the

position

of

the

first

business

object.

Index

2

An

integer

that

specifies

the

position

of

the

second

business

object.

Notes

This

function

block

is

based

on

the

BusObjArray.swap()

method.

For

more

information,

see

“swap()”

on

page

316.

To

String

Retrieves

the

values

in

the

business

object

array

and

returns

them

as

a

single

String.

Inputs

Business

object

array

The

business

object

array

(specified

as

an

object

of

type

BusObjArray).

Output

Returns

a

String

that

contains

all

of

the

values

in

the

business

object

array.

Notes

This

function

block

is

based

on

the

BusObjArray.sum()

method.

For

more

information,

see

“toString()”

on

page

317.

214

Collaboration

Development

Guide

Chapter

13.

Collaboration

template

function

blocks

The

collaboration

template

function

blocks

provide

basic

functionality

for

operating

on

collaboration

objects.

These

function

blocks

are

organized

into

the

following

folders:

v

General\APIs\Collaboration

Template—Used

to

work

with

collaboration

objects.

v

General\APIs\Collaboration

Template\Exception—Used

to

create

new

exception

objects

within

a

collaboration

template.

v

General\APIs\Collaboration

Template\Exception\Constants—Used

to

represent

specific

exception

types

within

a

collaboration

exception

object.

The

following

sections

provide

more

information

about

each

of

the

collaboration

template

function

blocks.

Table

49.

Summary

of

collaboration

template

function

blocks

Location

Function

block

Page

General\APIs\Collaboration

Template

Get

Locale

216

Get

Message

216

Get

Message

with

Parameter

217

Get

Name

217

Get

Property

217

Get

Property

Array

218

Implicit

DB

Bracketing

218

Is

Trace

Enabled

218

Property

Exists

219

Send

Email

223

General\APIs\Collaboration

Template\Exception

Raise

Collaboration

Exception

220

Raise

Collaboration

Exception

1

221

Raise

Collaboration

Exception

2

221

Raise

Collaboration

Exception

3

221

Raise

Collaboration

Exception

4

222

Raise

Collaboration

Exception

5

222

Raise

Collaboration

Exception

with

Parameter

223

General\APIs\Collaboration

Template\Exception\Constants

AnyException

216

AttributeException

216

JavaException

219

ObjectException

219

OperationException

219

ServiceCallException

224

SystemException

224

TransactionException

224

©

Copyright

IBM

Corp.

2003

215

AnyException

A

constant

that

represents

any

type

of

exception.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception\Constants

folder.

Output

Returns

a

String

with

the

value

″AnyException″.

AttributeException

A

constant

that

represents

an

attribute

access

problem

(for

example,

if

a

collaboration

uses

the

Get

Double

function

block

for

a

String-based

attribute,

or

used

the

Get

String

function

block

on

a

nonexistent

attribute).

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception\Constants

folder.

Output

Returns

a

String

with

the

value

″AttributeException″.

Get

Locale

Retrieves

the

collaboration

locale

for

the

current

collaboration

object.

Inputs

Collaboration

The

current

collaboration

object.

Output

Returns

a

Java

Locale

object

that

contains

the

language

and

country

codes

of

the

collaboration

locale.

This

Locale

object

must

be

an

instance

of

the

java.util.Locale

class.

Notes

This

function

block

is

based

on

the

BaseCollaboration.getLocale()

method.

For

more

information,

see

“getLocale()”

on

page

275.

Get

Message

Retrieves

a

message

from

the

collaboration

message

file.

Inputs

Collaboration

The

current

collaboration

object.

ID

An

integer

that

specifies

the

message

number

of

a

message

in

the

collaboration’s

message

file.

The

message

file

is

indexed

by

message

number.

Output

Returns

a

String

object

that

contains

the

text

for

the

message

specified

by

the

ID

input.

216

Collaboration

Development

Guide

Notes

This

function

block

is

based

on

the

BaseCollaboration.getMessage()

method.

For

more

information,

see

“getMessage()”

on

page

276.

Get

Message

with

Parameter

Retrieves

a

message

from

the

collaboration

message

file.

Inputs

Collaboration

The

current

collaboration

object.

ID

An

integer

that

specifies

the

message

number

of

a

message

in

the

collaboration’s

message

file.

The

message

file

is

indexed

by

message

number.

Parameters

An

array

of

message-parameter

values.

Each

is

sequentially

resolved

to

a

parameter

in

the

message

text.

Within

the

message

(in

the

collaboration

message

file),

message

parameters

are

indicated

by

integers

enclosed

by

braces;

for

example,

{1}.

Output

Returns

a

String

object

that

contains

the

text

for

the

message

identified

by

the

ID

and

Parameters

inputs.

Notes

This

function

block

is

based

on

the

BaseCollaboration.getMessage()

method.

For

more

information,

see

“getMessage()”

on

page

276.

Get

Name

Retrieves

the

name

of

this

collaboration

object.

Inputs

Collaboration

The

current

collaboration

object.

Output

Returns

a

String

that

contains

the

name

of

the

current

collaboration

object.

Notes

This

function

block

is

based

on

the

BaseCollaboration.getName()

method.

For

more

information,

see

“getName()”

on

page

277.

Get

Property

Retrieves

the

value

of

a

collaboration

configuration

property.

Inputs

Collaboration

The

current

collaboration

object.

Property

name

A

String

that

specifies

the

collaboration

configuration

property

you

want

to

query.

Chapter

13.

Collaboration

template

function

blocks

217

Output

Returns

a

String

that

contains

the

value

of

the

specified

collaboration

configuration

property.

Get

Property

Array

Retrieves

the

value

of

a

multi-element

collaboration

configuration

property.

Inputs

Collaboration

The

current

collaboration

object.

Property

name

A

String

that

specifies

the

collaboration

configuration

property

you

want

to

query.

Output

Returns

an

array

of

String

objects;

each

String

object

in

the

array

contains

the

value

for

one

element

of

the

collaboration

configuration

property.

Implicit

DB

Bracketing

Retrieves

the

transaction

programming

model

that

the

collaboration

object

uses

for

any

connection

it

obtains.

Inputs

Collaboration

The

current

collaboration

object.

Output

Returns

a

boolean

value

to

indicate

the

transaction

programming

model

to

be

used

in

all

database

connections.

v

A

value

of

true

indicates

that

all

connections

use

implicit

transaction

bracketing.

v

A

value

of

false

indicates

that

all

connections

use

explicit

transaction

bracketing.

Notes

This

function

block

is

based

on

the

BaseCollaboration.implicitDBTransactionBracketing()

method.

For

more

information,

see

“implicitDBTransactionBracketing()”

on

page

277.

Is

Trace

Enabled

Compares

the

specified

trace

level

with

the

current

trace

level

of

the

collaboration.

Inputs

Collaboration

The

current

collaboration

object.

Trace

level

An

integer

that

specifies

the

trace

level

to

be

compared

with

the

current

trace

level.

Output

Returns

true

if

the

current

system

trace

level

is

set

to

the

specified

trace

level;

returns

false

if

the

two

trace

levels

are

not

the

same.

218

Collaboration

Development

Guide

Notes

This

function

block

is

based

on

the

BaseCollaboration.isTraceEnabled()

method.

For

more

information,

see

“isTraceEnabled()”

on

page

278.

JavaException

A

constant

that

represents

a

problem

with

the

Java

code

in

the

collaboration

template’s

business

logic.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception\Constants

folder.

Output

Returns

a

String

with

the

value

″JavaException″.

ObjectException

A

constant

that

represents

an

error

caused

by

passing

an

invalid

business

object

to

a

function

block

or

by

accessing

a

null

object.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception\Constants

folder.

Output

Returns

a

String

with

the

value

″ObjectException″.

OperationException

A

constant

that

represents

an

error

caused

by

an

improperly

configured

service

call

that

is

unable

to

be

sent.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception\Constants

folder.

Output

Returns

a

String

with

the

value

″OperationException″.

Property

Exists

Determines

whether

a

specified

collaboration

configuration

property

exists.

Inputs

Collaboration

The

current

collaboration

object.

Property

name

A

String

that

specifies

the

name

of

the

collaboration

configuration

property

you

want

to

query.

Output

Returns

True

if

the

collaboration

configuration

property

exists;

otherwise,

returns

False.

Chapter

13.

Collaboration

template

function

blocks

219

Raise

Collaboration

Exception

Prepares

a

collaboration

exception

to

raise

it

to

the

next

higher

level

of

execution.

This

function

block

creates

a

new

exception

object

with

the

specified

exception

type

and

a

message

string.

Use

this

form

to

pass

an

exception

message

stored

as

a

string.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception

folder.

Inputs

Collaboration

The

current

collaboration

object.

Exception

type

A

String

that

specifies

the

exception

type.

messageNum

An

integer

that

specifies

the

number

for

the

message

associated

with

the

exception

object.

Notes

The

Raise

Collaboration

Exception

function

block

prepares

a

collaboration

exception

to

raise

to

the

next

higher

level

of

execution.

When

the

collaboration

runtime

environment

executes

the

Raise

Collaboration

Exception

function

block,

it

changes

the

collaboration’s

execution

to

the

Exception

state,

then

proceeds

with

the

logic

of

the

activity

diagram.

How

the

activity

diagram

responds

to

the

raised

exception

depends

on

the

termination

node

of

its

execution

path,

as

follows:

v

If

the

execution

path

ends

in

End

Success,

control

passes

to

the

next

higher

level

of

execution.

If

this

parent

diagram’s

next

node

is

a

decision

node,

the

collaboration

runtime

environment

checks

for

execution

branches

in

this

decision

node

that

handle

the

raised

exception.

This

parent

diagram

can

access

the

raised

exception

through

the

currentException

system

variable.

v

If

the

execution

path

ends

in

End

Failure,

the

collaboration

runtime

environment

ends

the

collaboration,

makes

an

entry

in

the

collaboration’s

log,

and

creates

an

unresolved

flow.

The

collaboration

runtime

environment

associates

with

the

unresolved

flow

any

exception

text

that

the

raised

exception

contains.

If

this

exception

does

not

contain

any

exception

text,

the

collaboration

runtime

environment

uses

the

default

message:

Scenario

failed.

It

is

best

to

explicitly

raise

an

exception

when

one

occurs,

rather

than

to

just

end

in

failure.

When

the

code

explicitly

raises

the

exception

to

the

collaboration

runtime

environment,

the

administrator

can

use

the

Flow

Manager

to

view

the

exception

text

as

part

of

the

unresolved

flow.

For

more

information,

see

“Raising

the

exception”

on

page

130.

There

is

a

series

of

Raise

Collaboration

Exception

function

blocks,

each

of

which

accomplishes

a

slightly

different

task.

The

Raise

Collaboration

Exception

1,

Raise

Collaboration

Exception

2,

Raise

Collaboration

Exception

3,

Raise

Collaboration

Exception

4,

and

Raise

Collaboration

Exception

5

function

blocks

enable

you

to

specify

up

to

five

message-parameter

values

for

the

exception

message

text.

The

Raise

Collaboration

Exception

with

Parameters

function

block

enables

you

to

specify

an

array

of

message-parameter

values.

220

Collaboration

Development

Guide

Raise

Collaboration

Exception

1

Prepares

a

collaboration

exception

to

raise

to

the

next

higher

level

of

execution.

This

function

block

creates

a

new

exception

object

with

the

specified

exception

type

and

an

exception

message

that

is

obtained

from

the

collaboration’s

message

file.

You

identify

the

message

by

its

message

number

in

the

message

file.

This

function

block

provides

the

ability

to

pass

a

single

message-parameter

value

for

the

message

text.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception

folder.

Inputs

Collaboration

The

current

collaboration

object.

Exception

type

A

String

that

specifies

the

exception

type.

messageNum

An

integer

that

specifies

the

number

for

the

message

associated

with

the

exception

object.

Parameter

1

A

String

that

specifies

the

value

for

a

single

message

parameter.

Raise

Collaboration

Exception

2

Prepares

a

collaboration

exception

to

raise

to

the

next

higher

level

of

execution.

This

function

block

creates

a

new

exception

object

with

the

specified

exception

type

and

an

exception

message

that

is

obtained

from

the

collaboration’s

message

file.

You

identify

the

message

by

its

message

number

in

the

message

file.

This

function

block

provides

the

ability

to

pass

two

message-parameter

values

for

the

message

text.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception

folder.

Inputs

Collaboration

The

current

collaboration

object.

Exception

type

A

String

that

specifies

the

exception

type.

messageNum

An

integer

that

specifies

the

number

for

the

message

associated

with

the

exception

object.

Parameter

1

A

String

that

specifies

the

value

for

a

single

message

parameter.

Parameter

2

A

String

that

specifies

the

value

for

a

single

message

parameter.

Raise

Collaboration

Exception

3

Prepares

a

collaboration

exception

to

raise

to

the

next

higher

level

of

execution.

This

function

block

creates

a

new

exception

object

with

the

specified

exception

type

and

an

exception

message

that

is

obtained

from

the

collaboration’s

message

file.

You

identify

the

message

by

its

message

number

in

the

message

file.

This

function

block

provides

the

ability

to

pass

three

message-parameter

values

for

the

message

text.

Chapter

13.

Collaboration

template

function

blocks

221

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception

folder.

Inputs

Collaboration

The

current

collaboration

object.

Exception

type

A

String

that

specifies

the

exception

type.

messageNum

An

integer

that

specifies

the

number

for

the

message

associated

with

the

exception

object.

Parameter

1

A

String

that

specifies

the

value

for

a

single

message

parameter.

Parameter

2

A

String

that

specifies

the

value

for

a

single

message

parameter.

Parameter

3

A

String

that

specifies

the

value

for

a

single

message

parameter.

Raise

Collaboration

Exception

4

Prepares

a

collaboration

exception

to

raise

to

the

next

higher

level

of

execution.

This

function

block

creates

a

new

exception

object

with

the

specified

exception

type

and

an

exception

message

that

is

obtained

from

the

collaboration’s

message

file.

You

identify

the

message

by

its

message

number

in

the

message

file.

This

function

block

provides

the

ability

to

pass

four

message-parameter

values

for

the

message

text.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception

folder.

Inputs

Collaboration

The

current

collaboration

object.

Exception

type

A

String

that

specifies

the

exception

type.

messageNum

An

integer

that

specifies

the

number

for

the

message

associated

with

the

exception

object.

Parameter

1

A

String

that

specifies

the

value

for

a

single

message

parameter.

Parameter

2

A

String

that

specifies

the

value

for

a

single

message

parameter.

Parameter

3

A

String

that

specifies

the

value

for

a

single

message

parameter.

Parameter

4

A

String

that

specifies

the

value

for

a

single

message

parameter.

Raise

Collaboration

Exception

5

Prepares

a

collaboration

exception

to

raise

to

the

next

higher

level

of

execution.

This

function

block

creates

a

new

exception

object

with

the

specified

exception

type

and

an

exception

message

that

is

obtained

from

the

collaboration’s

message

file.

You

identify

the

message

by

its

message

number

in

the

message

file.

This

function

block

provides

the

ability

to

pass

five

message-parameter

values

for

the

message

text.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception

folder.

222

Collaboration

Development

Guide

Inputs

Collaboration

The

current

collaboration

object.

Exception

type

A

String

that

specifies

the

exception

type.

messageNum

An

integer

that

specifies

the

number

for

the

message

associated

with

the

exception

object.

Parameter

1

A

String

that

specifies

the

value

for

a

single

message

parameter.

Parameter

2

A

String

that

specifies

the

value

for

a

single

message

parameter.

Parameter

3

A

String

that

specifies

the

value

for

a

single

message

parameter.

Parameter

4

A

String

that

specifies

the

value

for

a

single

message

parameter.

Parameter

5

A

String

that

specifies

the

value

for

a

single

message

parameter.

Raise

Collaboration

Exception

with

Parameter

Prepares

a

collaboration

exception

to

raise

to

the

next

higher

level

of

execution.

This

function

block

provides

another

way

to

create

a

new

exception

object

that

contains

a

specified

message

in

a

message

file.

All

parameter

values

are

placed

in

an

array

of

Objects.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception

folder.

Inputs

Collaboration

The

current

collaboration

object.

Exception

type

A

String

that

specifies

the

exception

type.

messageNum

An

integer

that

specifies

the

number

for

the

message

associated

with

the

exception

object.

Parameters

An

array

of

message-parameter

values.

Each

is

sequentially

resolved

to

a

parameter

in

the

message

text.

Within

the

message

(in

the

collaboration

message

file),

message

parameters

are

indicated

by

integers

enclosed

by

braces;

for

example,

{1}.

Notes

This

function

block

is

useful

in

raising

an

exception

object

that:

v

The

collaboration

has

previously

handled.

For

example,

a

scenario

might

get

an

exception,

assign

it

to

a

variable,

and

do

some

other

work.

v

Has

more

than

five

message

parameters.

Whereas

the

other

Raise

Collaboration

Exception

function

blocks

can

handle

no

more

than

five

parameters,

the

parameter

array

can

contain

any

number

of

parameters.

Send

Email

Sends

an

email

message

asynchronously.

Inputs

Collaboration

The

current

collaboration

object.

Chapter

13.

Collaboration

template

function

blocks

223

Message

A

String

that

contains

the

text

of

the

email

message.

Subject

The

subject

line

of

the

email

message.

Recipients

A

Vector

that

contains

email

addresses

of

the

message

recipients.

This

Vector

contains

String

objects.

Notes

This

function

block

is

based

on

the

BaseCollaboration.sendEmail()

method.

For

more

information,

see

“sendEmail()”

on

page

283.

ServiceCallException

A

constant

that

represents

an

error

caused

by

a

service

call

failure

(for

example,

if

an

adapter

or

application

is

unavailable).

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception\Constants

folder.

Output

Returns

a

String

with

the

value

″ServiceCallException″.

SystemException

A

constant

that

represents

an

internal

error

within

the

InterChange

Server

system.

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception\Constants

folder.

Output

Returns

a

String

with

the

value

″SystemException″.

TransactionException

A

constant

that

represents

an

error

related

to

the

transactional

behavior

of

a

transactional

collaboration

(for

example,

a

rollback

failed,

or

the

collaboration

could

not

apply

compensation).

Note:

This

function

block

is

located

in

the

General\APIs\Collaboration

Template\Exception\Constants

folder.

Output

Returns

a

String

with

the

value

″TransactionException″.

224

Collaboration

Development

Guide

Chapter

14.

Database

connection

function

blocks

The

function

blocks

in

the

General\APIs\Database

Connection

folder

provide

basic

functionality

for

managing

database

connections

and

executing

SQL

queries

in

the

database.

The

following

sections

detail

each

function

block.

Table

50.

Summary

of

database

connection

function

blocks

Function

block

Page

Begin

Transaction

225

Commit

225

Execute

Prepared

SQL

226

Execute

Prepared

SQL

with

Parameter

226

Execute

SQL

226

Execute

SQL

with

Parameter

226

Execute

Stored

Procedure

227

Get

Database

Connection

227

Get

Database

Connection

with

Transaction

227

Get

Next

Row

228

Get

Update

Count

228

Has

More

Rows

229

In

Transaction

229

Is

Active

229

Release

230

Roll

Back

230

Begin

Transaction

Begins

an

explicit

transaction

for

the

current

connection.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Notes

This

function

block

is

based

on

the

CwDBConnection.beginTransaction()

method.

For

more

information,

see

“beginTransaction()”

on

page

319.

Commit

Commits

the

active

transaction

associated

with

the

current

connection.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

©

Copyright

IBM

Corp.

2003

225

Notes

This

function

block

is

based

on

the

CwDBConnection.commit()

method.

For

more

information,

see

“commit()”

on

page

320.

Execute

Prepared

SQL

Executes

a

prepared

SQL

query

by

specifying

its

syntax.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Query

A

String

that

represents

the

SQL

query

to

execute

in

the

database.

Notes

This

function

block

is

based

on

the

CwDBConnection.executePreparedSQL()

method.

For

more

information,

see

“executePreparedSQL()”

on

page

321.

Execute

Prepared

SQL

with

Parameter

Executes

a

prepared

SQL

query

by

specifying

its

syntax

and

parameters.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Query

A

String

that

represents

the

SQL

query

to

execute

in

the

database.

Parameters

A

Vector

object

of

arguments

to

pass

to

parameters

in

the

SQL

query.

Notes

This

function

block

is

based

on

the

CwDBConnection.executePreparedSQL()

method.

For

more

information,

see

“executePreparedSQL()”

on

page

321.

Execute

SQL

Executes

a

static

SQL

query

by

specifying

its

syntax.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Query

A

String

that

represents

the

SQL

query

to

execute

in

the

database.

Notes

This

function

block

is

based

on

the

CwDBConnection.executeSQL()

method.

For

more

information,

see

“executeSQL()”

on

page

322.

Execute

SQL

with

Parameter

Executes

a

static

SQL

query

by

specifying

its

syntax

and

parameters.

226

Collaboration

Development

Guide

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Query

A

String

that

represents

the

SQL

query

to

execute

in

the

database.

Parameters

A

Vector

object

of

arguments

to

pass

to

parameters

in

the

SQL

query.

Notes

This

function

block

is

based

on

the

CwDBConnection.executeSQL()

method.

For

more

information,

see

“executeSQL()”

on

page

322.

Execute

Stored

Procedure

Executes

an

SQL

stored

procedure

by

specifying

its

name

and

parameter

array.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Stored

procedure

A

String

that

represents

the

stored

procedure

to

execute

in

the

database.

Parameters

A

Vector

object

of

arguments

to

pass

to

parameters

in

the

SQL

query.

Notes

This

function

block

is

based

on

the

CwDBConnection.executeStoredProcedure()

method.

For

more

information,

see

“executeStoredProcedure()”

on

page

324.

Get

Database

Connection

Establishes

a

connection

to

a

database.

Inputs

Connection

pool

name

A

String

that

specifies

the

name

of

a

valid

connection

pool.

Output

Returns

a

CwDBConnection

object.

Notes

This

function

block

is

based

on

the

BaseCollaboration.getDBConnection()

method.

For

more

information,

see

“getDBConnection()”

on

page

273.

Get

Database

Connection

with

Transaction

Establishes

a

connection

to

a

database

using

a

specific

transaction

programming

model.

Chapter

14.

Database

connection

function

blocks

227

Inputs

Connection

pool

name

A

String

that

specifies

the

name

of

a

valid

connection

pool.

Implicit

transaction

A

boolean

value

to

indicate

the

transaction

programming

model

to

use

for

the

database

associated

with

the

connection.

Valid

values

are:

true

Database

uses

implicit

transaction

bracketing

false

Database

uses

explicit

transaction

bracketing

Output

Returns

a

CwDBConnection

object.

Notes

This

function

block

is

based

on

the

BaseCollaboration.getDBConnection()

method.

For

more

information,

see

“getDBConnection()”

on

page

273.

Get

Next

Row

Gets

the

next

row

from

a

query

result.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Output

Returns

one

row

of

data

from

the

query

result

associated

with

the

current

connection.

Use

this

method

to

retrieve

results

from

a

query

that

returns

data.

Such

queries

include

a

SELECT

statement

and

a

stored

procedure.

Notes

This

function

block

is

based

on

the

CwDBConnection.nextRow()

method.

For

more

information,

see

“nextRow()”

on

page

327.

Get

Update

Count

Determines

the

number

of

rows

affected

by

the

last

write

operation

to

the

database.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Output

Returns

an

integer

that

specifies

the

number

of

rows

affected

by

the

last

write

operation.

228

Collaboration

Development

Guide

Notes

This

function

block

is

based

on

the

CwDBConnection.getUpdateCount()

method.

For

more

information,

see

“getUpdateCount()”

on

page

325.

Has

More

Rows

Determines

whether

the

current

query

result

has

more

rows

to

process.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Output

Returns

true

if

there

are

more

rows

to

process

in

the

query

result;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

CwDBConnection.hasMoreRows()

method.

For

more

information,

see

“hasMoreRows()”

on

page

326.

In

Transaction

Determines

whether

a

transaction

is

in

progress

in

the

current

database

connection.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Output

Returns

true

if

there

is

a

transaction

in

progress;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

CwDBConnection.inTransaction()

method.

For

more

information,

see

“inTransaction()”

on

page

326.

Is

Active

Determines

whether

the

current

connection

is

active.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Output

Returns

true

if

the

current

connection

is

active;

otherwise,

returns

false.

Notes

This

function

block

is

based

on

the

CwDBConnection.isActive()

method.

For

more

information,

see

“isActive()”

on

page

327.

Chapter

14.

Database

connection

function

blocks

229

Release

Releases

use

of

the

current

connection

and

returns

it

to

the

connection

pool.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Notes

This

function

block

is

based

on

the

CwDBConnection.release()

method.

For

more

information,

see

“release()”

on

page

328.

Roll

Back

Rolls

back

the

active

transaction

associated

with

the

current

connection.

Inputs

Database

connection

A

CwDBConnection

object

that

represents

the

database

connection.

Notes

This

function

block

is

based

on

the

CwDBConnection.rollBack()

method.

For

more

information,

see

“rollBack()”

on

page

329.

230

Collaboration

Development

Guide

Chapter

15.

Database

stored

procedure

function

blocks

The

database

stored

procedure

function

blocks

provide

basic

functionality

for

working

with

stored

procedure

parameters.

These

function

blocks

are

located

in

the

\General\APIs\DB

Stored

Procedure

Param

folder.

The

following

sections

detail

each

function

block.

Table

51.

Summary

of

database

stored

procedure

function

blocks

Function

block

Page

Get

Param

Type

231

Get

Param

Value

231

New

DB

Stored

Procedure

Param

232

Get

Param

Type

Retrieves

the

in/out

type

of

the

current

stored-procedure

parameter.

Inputs

CwDBStoredProcedureParam

The

stored-procedure

parameter

(a

CwDBStoredProcedureParam

object)

whose

in/out

type

you

want

to

retrieve.

Output

Returns

the

in/out

type

of

the

associated

stored-procedure

parameter

as

an

integer

constant.

Notes

This

function

block

is

based

on

the

CwDBStoredProcedureParam.getParamType()

method.

For

more

information,

see

“getParamType()”

on

page

333.

Get

Param

Value

Retrieves

the

value

of

the

current

stored-procedure

parameter.

Inputs

CwDBStoredProcedureParam

The

stored-procedure

parameter

(a

CwDBStoredProcedureParam

object)

whose

value

you

want

to

retrieve.

Output

Returns

the

value

of

the

associated

stored-procedure

parameter

as

a

Java

Object

Notes

This

function

block

is

based

on

the

CwDBStoredProcedureParam.getValue()

method.

For

more

information,

see

“getValue()”

on

page

333.

©

Copyright

IBM

Corp.

2003

231

New

DB

Stored

Procedure

Param

Constructs

a

new

instance

of

CwDBStoredProcedureParam

that

holds

argument

information

for

the

parameter

of

a

stored

procedure.

Inputs

Param

Type

The

in/out

parameter

type

of

the

associated

stored-procedure

parameter.

Param

Value

The

argument

value

to

send

to

the

stored

procedure.

This

value

is

one

of

the

following

Java

data

types:

v

String

v

int

v

Integer

v

Long

v

double

v

Double

v

float

v

Float

v

BigDecimal

v

boolean

v

java.sql.Date

v

java.sql.Time

v

java.sql.Timestamp

v

java.sql.Blob

v

java.sql.Clob

v

byte[]

v

Array

v

Struct

Output

Returns

a

new

CwDBStoredProcedureParam

object

to

hold

the

argument

information

for

one

argument

in

the

declaration

of

the

stored

procedure.

Notes

This

function

block

is

based

on

the

CwDBStoredProcedureParam

constructor.

For

more

information,

see

“CwDBStoredProcedureParam()”

on

page

331.

232

Collaboration

Development

Guide

Chapter

16.

Exception

function

blocks

The

function

blocks

in

the

General\APIs\Collaboration

Exception

folder

provide

basic

functionality

for

handling

exceptions.

The

following

sections

detail

each

function

block.

Table

52.

Summary

of

exception

function

blocks

Function

block

Page

Catch

Collaboration

Exception

233

Get

Message

233

Get

Message

Number

233

Get

Subtype

234

Get

Type

235

To

String

236

Catch

Collaboration

Exception

Catches

a

collaboration

exception

thrown

in

the

current

activity

or

its

subactivities.

Inputs

Collaboration

exception

The

collaboration

exception

(a

CollaborationException

object)

the

function

block

is

going

to

catch.

Notes

To

define

a

subactivity,

double

click

the

Catch

Collaboration

Exception

function

block

on

the

editing

canvas.

Get

Message

Retrieves

the

message

text

from

the

exception

object.

Inputs

Collaboration

exception

The

collaboration

exception

(a

CollaborationException

object).

Output

Returns

a

String

that

contains

the

message

text

from

the

exception

object.

Notes

This

function

block

is

based

on

the

collaborationException.getMessage()

method.

For

more

information,

see

“getMessage()”

on

page

339.

Get

Message

Number

Retrieves

the

message

number

for

the

message

associated

with

the

exception

object.

©

Copyright

IBM

Corp.

2003

233

Inputs

Collaboration

exception

The

collaboration

exception

(a

CollaborationException

object).

Output

The

integer

(int)

message

number

associated

with

the

current

exception’s

message.

If

the

exception’s

message

is

not

from

a

message

file,

this

function

block

returns

zero

(0).

Notes

This

function

block

is

based

on

the

collaborationException.getMsgNumber()

method.

For

more

information,

see

“getMsgNumber()”

on

page

340.

Get

Subtype

Retrieves

the

exception

subtype

from

the

exception

object.

Inputs

Collaboration

exception

The

collaboration

exception

(a

CollaborationException

object).

Output

Returns

a

String

that

contains

the

exception

subtype

for

the

current

exception.

For

more

information

on

valid

exception

subtypes,

see

the

Notes

section.

Notes

This

function

block

is

based

on

the

collaborationException.getSubType()

method.

For

more

information,

see

“getSubType()”

on

page

340.

For

exceptions

whose

exception

type

does

not

adequately

identify

the

cause

of

the

exception,

the

exception

subtype

can

provide

more

information.

The

following

exception

types

most

commonly

use

exception

subtypes:

v

JavaException

The

collaboration

runtime

environment

catches

Java

exceptions

and

wraps

them

in

a

collaboration

exception

with

an

associated

type

of

Java

exception.

A

collaboration

can

use

the

Get

Subtype

function

block

on

the

collaboration

exception

to

retrieve

the

original

type

of

the

Java

exception

(that

is,

the

class

name

of

the

captured

Java

exception).

However,

this

is

not

typically

necessary.

v

ServiceCallException

The

ServiceCallException

exception

type

occurs

if

any

failure

results

from

a

service

call.

To

develop

more

robust

collaborations,

you

can

use

the

exception

subtype

to

determine

the

cause

of

the

service-call

failure.

The

valid

exception

subtypes

include:

AppTimeOut

A

connector

was

unable

to

complete

communication

with

its

application.

AppLogOnFailure

A

connector

was

unable

to

log

in

to

the

application.

AppRetrieveByContentFailed

A

Retrieve

by

non-key

values,

performed

on

the

application,

was

not

able

to

find

any

match.

AppMultipleHits

An

application

found

and

retrieved

more

than

one

entity

in

response

to

a

Retrieve

request.

234

Collaboration

Development

Guide

AppBusObjDoesNotExist

A

Retrieve

operation

was

performed

on

the

application,

but

the

entity

that

the

business

object

represents

does

not

exist

in

the

application

database.

AppRequestNotYetSent

In

the

case

of

a

parallel

connector

agent,

the

request

was

queued

up

in

the

agent

master

but

never

got

dispatched

to

the

application;

therefore,

you

can

resend

the

request.

For

more

information,

see

“Unsent

service

call

requests”

on

page

137.

ServiceCallTransportException

There

was

an

error

in

the

transport,

and

it

cannot

be

determined

with

certainty

whether

the

request

reached

the

application.

For

more

information,

see

“Handling

runtime

transport-related

exceptions”

on

page

135.

AppUnknown

Any

type

of

error

that

is

not

one

of

the

other

subtypes.

If

this

exception

subtype

is

present,

the

application

operation

requested

in

the

service

call

might

be

finished

or

not

finished.

Get

Type

Retrieves

the

collaboration

exception

type

from

the

exception

object.

The

exception

type

is

a

String

that

identifies

the

cause

of

the

exception.

Inputs

Collaboration

exception

The

collaboration

exception

(a

CollaborationException

object).

Output

Returns

a

String

that

contains

the

exception

type

for

the

current

exception.

Compare

this

String

value

with

one

of

the

following

exception-type

static

variables:

AnyException

Any

type

of

exception.

If

there

are

two

exception

links,

one

that

tests

for

a

specific

type

of

exception

and

one

that

tests

for

AnyException,

the

link

that

tests

for

the

specific

type

of

exception

is

checked

first.

If

the

current

exception

does

not

match

the

specific

exception,

the

link

that

tests

for

AnyException

is

processed

next.

AttributeException

Attribute

access

problem.

For

example,

the

collaboration

called

getDouble()

on

a

String

attribute

or

called

getString()

on

a

nonexistent

attribute.

JavaException

Problem

with

Java

code

in

the

collaboration

logic.

ObjectException

Business

object

passed

to

a

method

was

invalid

or

a

null

object

was

accessed.

OperationException

Service

call

was

improperly

set

up

and

could

not

be

sent.

ServiceCallException

Service

call

failed.

For

example,

a

connector

or

application

is

unavailable.

SystemException

InterChange

Server

Express

internal

error.

TransactionException

Error

related

to

the

transactional

behavior

of

a

transactional

collaboration.

For

example,

rollback

failed

or

the

collaboration

could

not

apply

compensation.

Notes

This

function

block

is

based

on

the

collaborationException.getType()

method.

For

more

information,

see

“getType()”

on

page

341.

Chapter

16.

Exception

function

blocks

235

To

String

Formats

exception

information,

including

the

exception

type

and

text,

to

a

String.

Inputs

Collaboration

exception

The

collaboration

exception

(a

CollaborationException

object).

Output

Returns

a

String

that

contains

the

exception

type

and

text.

Notes

This

function

block

is

based

on

the

collaborationException.toString()

method.

For

more

information,

see

“toString()”

on

page

342.

236

Collaboration

Development

Guide

Chapter

17.

Execution

function

blocks

The

function

blocks

in

the

General\APIs\Execution

Context

folder

provide

execution

context

functionality.

They

operate

on

the

global

execution

context,

which

is

a

holder

for

user-accessible

context

information

that

is

associated

with

a

given

flow.

The

following

sections

describe

the

function

blocks

in

detail.

Table

53.

Summary

of

execution

context

function

blocks

Function

block

Page

Get

Context

237

MAPCONTEXT

237

New

Execution

Context

237

Set

Context

238

Get

Context

Retrieves

the

specified

execution

context

from

the

global

execution

context.

Inputs

Execution

context

The

global

execution

context

(a

CxExecutionContext

object).

Context

name

A

String

object

containing

the

name

of

a

execution

context

to

obtain

from

the

global

execution

context.

Output

Returns

an

instance

of

the

specified

execution

context.

Notes

This

function

block

is

based

on

the

CwExecutionContext.getContext()

method.

For

more

information,

see

“getContext()”

on

page

336.

MAPCONTEXT

A

String

constant

used

to

indicate

that

the

execution

context

is

map-specific.

Output

Returns

the

MAPCONTEXT

String.

New

Execution

Context

Constructs

a

new

instance

of

a

global

execution

context.

Output

Returns

the

new

instance

of

the

global

execution

context.

©

Copyright

IBM

Corp.

2003

237

Notes

This

function

block

is

based

on

the

CwExecutionContext()

constructor.

For

more

information,

see

“CxExecutionContext()”

on

page

335.

Set

Context

Sets

a

particular

execution

context

to

be

part

of

the

global

execution

context.

Inputs

Execution

context

The

global

execution

context

(a

CxExecutionContext

object).

Context

name

A

String

object

containing

the

name

of

a

execution

context

to

obtain

from

the

global

execution

context.

Context

An

object

that

contains

the

information

for

the

execution

context.

For

map

execution

contexts,

this

object

is

of

type

MapExeContext.

Notes

This

function

block

is

based

on

the

CwExecutionContext.setContext()

method.

For

more

information,

see

“setContext()”

on

page

336.

238

Collaboration

Development

Guide

Chapter

18.

Date

function

blocks

The

function

blocks

in

the

General\Date

folder

and

its

\Formats

subfolder

provide

functionality

for

working

with

dates.

Table

54.

Summary

of

date

function

blocks

Folder

Function

block

Page

General\Date

Add

Day

239

Add

Month

239

Add

Year

240

Date

After

240

Date

Before

240

Date

Equals

241

Format

Change

241

Get

Day

241

Get

Month

241

Get

Year

242

Get

Year

Month

Day

242

General\Date\Formats

yyyy-MM-dd

242

yyyyMMdd

243

yyyyMMdd

HH:mm:ss

243

Add

Day

Adds

additional

days

to

the

original

date

(as

specified

by

the

From

date

input).

Inputs

From

date

A

String

object

that

represents

the

original

date.

Date

format

A

String

object

that

represents

the

date’s

format.

Day

to

add

An

integer

that

specifies

the

number

of

days

to

add

to

the

original

date.

Output

Returns

a

String

object

that

contains

the

updated

date.

Add

Month

Adds

additional

months

to

the

original

date.

Inputs

From

date

A

String

object

that

represents

the

original

date.

Date

format

A

String

object

that

represents

the

date’s

format.

©

Copyright

IBM

Corp.

2003

239

Month

to

add

An

integer

that

specifies

the

number

of

months

to

add

to

the

original

date.

Output

Returns

a

String

object

that

contains

the

updated

date.

Add

Year

Adds

additional

years

to

the

original

date.

Inputs

From

date

A

String

object

that

represents

the

original

date.

Date

format

A

String

object

that

represents

the

date’s

format.

Year

to

add

An

integer

that

specifies

the

number

of

years

to

add

to

the

original

date.

Output

A

String

object

that

contains

the

updated

date.

Date

After

Compares

two

dates

and

determines

whether

Date

1

is

after

Date

2.

Inputs

Date

1

A

String

object

that

represents

the

first

date

to

compare.

Date

1

format

A

String

object

that

represents

the

format

of

Date

1.

Date

2

A

String

object

that

represents

the

second

date

in

the

comparison.

Date

2

format

A

String

object

that

represents

the

format

of

Date

2.

Output

Returns

True

if

Date

1

is

after

Date

2;

otherwise,

returns

False.

Date

Before

Compares

two

dates

and

determines

whether

Date

1

is

before

Date

2.

Inputs

Date

1

A

String

object

that

represents

the

first

date

to

compare.

Date

1

format

A

String

object

that

represents

the

format

of

Date

1.

Date

2

A

String

object

that

represents

the

second

date

in

the

comparison.

Date

2

format

A

String

object

that

represents

the

format

of

Date

2.

Output

Returns

True

if

Date

1

is

before

Date

2;

otherwise,

returns

False.

240

Collaboration

Development

Guide

Date

Equals

Compares

two

dates

and

determines

whether

they

are

equal.

Inputs

Date

1

A

String

object

that

represents

the

first

date

to

compare.

Date

1

format

A

String

object

that

represents

the

format

of

Date

1.

Date

2

A

String

object

that

represents

the

second

date

in

the

comparison.

Date

2

format

A

String

object

that

represents

the

format

of

Date

2.

Output

Returns

True

if

both

dates

are

equal;

otherwise,

returns

False.

Format

Change

Changes

a

date

format.

Inputs

Date

A

String

object

that

represents

the

date

you

want

to

reformat.

Input

format

A

String

object

that

represents

the

original

format

of

the

date.

Output

format

A

String

object

that

represents

the

new

format

for

the

date.

Output

Returns

a

String

object

that

contains

the

reformatted

date.

Get

Day

Returns

the

numeric

day

of

the

month

based

on

date

expression.

Inputs

Date

A

String

object

that

represents

the

date.

Format

A

String

object

that

represents

the

date’s

format.

Output

Returns

an

integer

that

specifies

the

day

of

the

month.

Get

Month

Returns

the

numeric

month

in

the

year

based

on

date

expression.

Inputs

Date

A

String

object

that

represents

the

date.

Format

A

String

object

that

represents

the

date’s

format.

Output

Returns

an

integer

that

specifies

the

numerical

value

for

the

month.

Chapter

18.

Date

function

blocks

241

Get

Year

Returns

the

numeric

year

based

on

date

expression.

Inputs

Date

A

String

object

that

represents

the

date.

Format

A

String

object

that

represents

the

date’s

format.

Output

Returns

an

integer

that

specifies

the

year.

Get

Year

Month

Day

Extracts

the

year,

month,

and

day

elements

from

an

input

date.

Inputs

Date

A

String

object

that

represents

the

date.

Format

A

String

object

that

represents

the

date’s

format.

Output

Returns

three

integers:

one

that

specifies

the

year,

one

that

specifies

the

month,

and

one

that

specifies

the

day.

Now

Retrieves

today’s

date.

Inputs

Format

A

String

object

that

represents

the

format

to

be

used

for

the

date.

Output

Returns

a

String

object

that

contains

today’s

date,

formatted

according

to

the

value

given

to

the

Format

input.

yyyy-MM-dd

Represents

a

date

format

of

yyyy-MM-dd

(for

example,

2003-11-25).

Note:

This

function

block

is

located

in

the

General\Date\Formats

folder.

Output

Returns

a

String

object

that

contains

a

date

formatted

as

yyyy-MM-dd.

Notes

This

function

block

does

not

actually

format

a

date,

and

it

cannot

be

used

as

a

standalone

function

block.

It

must

be

used

in

conjunction

with

one

or

more

of

the

function

blocks

in

the

General\Date

folder

(for

example,

with

the

Format

Change

or

Add

Day

function

block).

242

Collaboration

Development

Guide

yyyyMMdd

Represents

a

date

format

of

yyyyMMdd

(for

example,

20031125).

Note:

This

function

block

is

located

in

the

General\Date\Formats

folder.

Output

Returns

a

String

object

that

contains

a

date

formatted

as

yyyyMMdd.

Notes

This

function

block

does

not

actually

format

a

date,

and

it

cannot

be

used

as

a

standalone

function

block.

It

must

be

used

in

conjunction

with

one

or

more

of

the

function

blocks

in

the

General\Date

folder

(for

example,

with

the

Format

Change

or

Add

Day

function

block).

yyyyMMdd

HH:mm:ss

Represents

a

date

format

of

yyyyMMdd

HH:mm:ss

(for

example,

20031125

12:36:40).

Note:

This

function

block

is

located

in

the

General\Date\Formats

folder.

Output

Returns

a

String

object

that

contains

the

date

formatted

as

yyyyMMdd

HH:mm:ss.

Notes

This

function

block

does

not

actually

format

a

date,

and

it

cannot

be

used

as

a

standalone

function

block.

It

must

be

used

in

conjunction

with

one

or

more

of

the

function

blocks

in

the

General\Date

folder

(for

example,

with

the

Format

Change

or

Add

Day

function

block).

Chapter

18.

Date

function

blocks

243

244

Collaboration

Development

Guide

Chapter

19.

Logging

and

tracing

function

blocks

The

function

blocks

in

the

\General\Logging

and

Tracing

folder

and

its

subfolders

provide

functionality

for

handling

error,

informational,

warning,

and

trace

messages.

The

following

sections

detail

each

function

block.

Table

55.

Summary

of

the

logging

and

tracing

function

blocks

Folder

Function

block

Page

General\Logging

and

Tracing

Log

error

245

Log

Error

ID

245

Log

Information

247

Log

Information

ID

247

Log

Warning

248

Log

Warning

ID

248

Trace

249

General\Logging

and

Tracing\Log

Error

Log

Error

ID

1

246

Log

Error

ID

2

246

Log

Error

ID

3

246

General\Logging

and

Tracing\Log

Information

Log

Information

ID

1

247

Log

Information

ID

2

247

Log

Information

ID

3

248

General\Logging

and

Tracing\Log

Warning

Log

Warning

ID

1

248

Log

Warning

ID

2

249

Log

Warning

ID

3

249

General\Logging

and

Tracing\Trace

Trace

ID

1

249

Trace

ID

2

250

Trace

ID

3

250

Trace

on

Level

251

Log

error

Sends

the

specified

error

message

to

the

InterChange

Server

log

file.

Inputs

Message

The

message

to

be

sent

to

the

log

file.

This

input

can

be

of

type

Sting,

byte,

short,

int,

long,

float,

or

double.

Log

Error

ID

Sends

the

error

message

associated

with

the

specified

ID

to

the

InterChange

Server

log

file.

©

Copyright

IBM

Corp.

2003

245

Inputs

ID

The

ID

of

the

error

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Log

Error

ID

1

Uses

the

specified

parameter

to

format

the

error

message

associated

with

the

ID,

and

then

sends

the

message

to

the

InterChange

Server

log

file.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Log

Error

folder.

Inputs

ID

The

ID

of

the

error

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

The

parameter

used

to

format

the

error

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Log

Error

ID

2

Uses

the

specified

two

parameters

to

format

the

error

message

associated

with

the

ID,

and

then

sends

the

message

to

the

InterChange

Server

log

file.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Log

Error

folder.

Inputs

ID

The

ID

of

the

error

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

1

The

first

parameter

used

to

format

the

error

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

2

The

second

parameter

used

to

format

the

error

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Log

Error

ID

3

Uses

the

specified

three

parameters

to

format

the

error

message

associated

with

the

ID,

and

then

sends

the

message

to

the

InterChange

Server

log

file.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Log

Error

folder.

Inputs

ID

The

ID

of

the

error

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

1

The

first

parameter

used

to

format

the

error

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

2

The

second

parameter

used

to

format

the

error

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

246

Collaboration

Development

Guide

Parameter

3

The

third

parameter

used

to

format

the

error

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Log

Information

Sends

the

specified

informational

message

to

the

InterChange

Server

log

file.

Inputs

Message

The

message

to

be

sent

to

the

log

file.

This

input

can

be

of

type

Sting,

byte,

short,

int,

long,

float,

or

double.

Log

Information

ID

Sends

the

informational

message

associated

with

the

specified

ID

to

the

InterChange

Server

log

file.

Inputs

ID

The

ID

of

the

informational

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Log

Information

ID

1

Uses

the

specified

parameter

to

format

the

informational

message

associated

with

the

ID,

and

then

sends

the

message

to

the

InterChange

Server

log

file.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Log

Information

folder.

Inputs

ID

The

ID

of

the

informational

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

The

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Log

Information

ID

2

Uses

the

two

specified

parameters

to

format

the

informational

message

associated

with

the

ID,

and

then

sends

the

message

to

the

InterChange

Server

log

file.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Log

Information

folder.

Inputs

ID

The

ID

of

the

informational

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

1

The

first

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

2

The

second

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Chapter

19.

Logging

and

tracing

function

blocks

247

Log

Information

ID

3

Uses

the

three

specified

parameters

to

format

the

informational

message

associated

with

the

ID,

and

then

sends

the

message

to

the

InterChange

Server

log

file.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Log

Information

folder.

Inputs

ID

The

ID

of

the

informational

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

1

The

first

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

2

The

second

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

3

The

third

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Log

Warning

Sends

the

specified

warning

message

to

the

InterChange

Server

log

file.

Inputs

Message

The

message

to

be

sent

to

the

log

file.

This

input

can

be

of

type

Sting,

byte,

short,

int,

long,

float,

or

double.

Log

Warning

ID

Sends

the

warning

message

associated

with

the

specified

ID

to

the

InterChange

Server

log

file.

Inputs

ID

The

ID

of

the

warning

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Log

Warning

ID

1

Uses

the

specified

parameter

to

format

the

warning

message

associated

with

the

ID,

and

then

sends

the

message

to

the

InterChange

Server

log

file.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Log

Warning

folder.

Inputs

ID

The

ID

of

the

warning

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

The

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

248

Collaboration

Development

Guide

Log

Warning

ID

2

Uses

the

two

specified

parameters

to

format

the

warning

message

associated

with

the

ID,

and

then

sends

the

message

to

the

InterChange

Server

log

file.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Log

Warning

folder.

Inputs

ID

The

ID

of

the

warning

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

1

The

first

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

2

The

second

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Log

Warning

ID

3

Uses

the

three

specified

parameters

to

format

the

warning

message

associated

with

the

ID,

and

then

sends

the

message

to

the

InterChange

Server

log

file.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Log

Warning

folder.

Inputs

ID

The

ID

of

the

warning

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

1

The

first

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

2

The

second

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

3

The

third

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Trace

Sends

the

specified

trace

message

to

the

InterChange

Server

log

file.

Inputs

Message

The

message

to

be

sent

to

the

log

file.

This

input

can

be

of

type

Sting,

byte,

short,

int,

long,

float,

or

double.

Trace

ID

1

Uses

the

specified

parameter

to

format

the

trace

message

associated

with

the

ID.

Uses

the

specified

level

to

determine

if

the

trace

message

is

displayed;

if

tracing

in

the

collaboration

is

set

to

the

specified

level

or

higher,

the

trace

message

is

displayed.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Trace

folder.

Chapter

19.

Logging

and

tracing

function

blocks

249

Inputs

ID

The

ID

of

the

trace

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Level

The

minimum

trace

level

at

which

the

message

is

going

to

be

displayed.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

The

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Trace

ID

2

Uses

the

two

specified

parameters

to

format

the

trace

message

associated

with

the

ID.

Uses

the

specified

level

to

determine

if

the

trace

message

is

displayed;

if

tracing

in

the

collaboration

is

set

to

the

specified

level

or

higher,

the

trace

message

is

displayed.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Trace

folder.

Inputs

ID

The

ID

of

the

trace

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Level

The

minimum

trace

level

at

which

the

message

is

going

to

be

displayed.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

1

The

first

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

2

The

second

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Trace

ID

3

Uses

the

three

specified

parameters

to

format

the

trace

message

associated

with

the

ID.

Uses

the

specified

level

to

determine

if

the

trace

message

is

displayed;

if

tracing

in

the

collaboration

is

set

to

the

specified

level

or

higher,

the

trace

message

is

displayed.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Trace

folder.

Inputs

ID

The

ID

of

the

trace

message

you

want

to

log.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Level

The

minimum

trace

level

at

which

the

message

is

going

to

be

displayed.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

1

The

first

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

250

Collaboration

Development

Guide

Parameter

2

The

second

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Parameter

3

The

third

parameter

used

to

format

the

message.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Trace

on

Level

Displays

the

trace

message

if

the

collaboration’s

tracing

is

set

to

the

specified

level

or

higher.

Note:

This

function

block

is

located

in

the

General\Logging

and

Tracing\Trace

folder.

Inputs

Message

The

message

to

be

displayed.

This

input

can

be

of

type

Sting,

byte,

short,

int,

long,

float,

or

double.

Level

The

minimum

trace

level

at

which

the

message

is

going

to

be

displayed.

This

input

can

be

of

type

String,

byte,

short,

int,

long,

float,

or

double.

Chapter

19.

Logging

and

tracing

function

blocks

251

252

Collaboration

Development

Guide

Chapter

20.

String

function

blocks

The

function

blocks

in

the

General\String

folder

provide

functionality

for

working

with

String

objects.

The

following

sections

describe

each

function

block

in

detail.

Table

56.

Summary

of

string

function

blocks

Function

block

Page

Append

Text

253

If

254

Is

Empty

254

Is

NULL

254

Left

Fill

254

Left

String

255

Lower

Case

255

Object

to

String

255

Repeat

255

Replace

256

Right

Fill

256

Right

String

256

Substring

by

Position

256

Substring

by

Value

257

Text

Equal

257

Text

Equal

Ignore

Case

257

Text

Length

258

Trim

Left

258

Trim

Right

258

Trim

Text

258

Upper

Case

258

Append

Text

Appends

the

value

of

the

In

String

2

input

to

the

value

of

the

In

String

1

input.

Inputs

In

String

1

A

String

object.

In

String

2

The

String

object

appended

to

the

string

specified

in

In

String

1.

Output

A

String

object

that

contains

the

string

from

In

String

1

with

the

string

from

In

String

2

appended.

For

example,

if

the

value

of

In

String

1

is

″Hello

world.″

and

the

value

of

In

String

2

is

″How

are

you?″,

the

output

of

this

function

block

is

the

string

″Hello

world.

How

are

you?″.

©

Copyright

IBM

Corp.

2003

253

If

Returns

the

first

value

if

the

condition

is

true,

or

the

second

value

if

the

condition

is

false.

Inputs

Condition

The

condition

used

to

determine

the

output.

This

input

can

be

of

type

boolean

or

Boolean.

Value

1

A

String

object.

Value

2

A

String

object.

Output

Returns

the

String

object

associated

with

Value

1

or

Value

2,

depending

on

whether

the

condition

was

met.

Is

Empty

Returns

the

second

value

if

the

first

value

is

empty.

Inputs

Value

1

A

String

object.

Value

2

A

String

object.

Output

Returns

the

String

associated

with

Value

2

if

Value

1

is

empty.

Otherwise,

returns

nothing.

Is

NULL

Returns

the

second

value

if

the

first

value

is

null.

Inputs

Value

1

A

String

object.

Value

2

A

String

object.

Output

Returns

the

String

associated

with

Value

2

if

Value

1

is

null.

Otherwise,

returns

nothing.

Left

Fill

Returns

a

String

object

of

the

specified

length;

fills

the

left

with

the

indicated

value.

Inputs

String

A

String

object.

Fill

string

A

String

object.

Length

An

integer

that

specifies

the

length

of

the

String

object

to

return.

254

Collaboration

Development

Guide

Output

Returns

a

filled

String

object.

Left

String

Returns

the

left

portion

of

the

string

for

the

specified

number

of

positions.

Inputs

String

The

String

object

you

are

retrieving.

Length

An

integer

that

specifies

the

number

of

positions

in

the

String

object

to

return.

Output

Returns

a

String

object

that

contains

the

left

portion

of

the

original

String

object.

Lower

Case

Changes

all

characters

in

a

String

object

to

lower

case.

Inputs

From

string

The

original

String

object.

Output

Returns

the

String

object

with

all

lower-case

characters.

Object

to

String

Retrieves

a

string

representation

of

an

object.

Inputs

Object

The

object

to

retrieve.

Output

Returns

the

specified

object

as

a

String

object.

Repeat

Returns

String

containing

a

specified

character

expression

that

is

repeated

a

specified

number

of

times.

Inputs

Repeating

string

The

repeating

String

object

you

want

to

retrieve.

Repeat

count

An

integer

that

specifies

the

number

of

times

the

specified

character

string

must

be

repeated

before

it

can

be

retrieved.

Output

Returns

the

repeated

character

string.

Chapter

20.

String

function

blocks

255

Replace

Replaces

part

of

a

character

string

with

a

new

character

string.

Inputs

String

A

String

object.

Old

string

A

String

object

that

contains

the

particular

substring

of

characters

you

want

to

replace.

New

string

A

String

object

that

contains

the

new

character

string

you

want

to

use

as

the

replacement.

Output

Returns

a

String

object

that

contains

the

updated

character

string.

Right

Fill

Returns

a

String

object

of

the

specified

length;

fills

the

right

with

the

indicated

value.

Inputs

String

A

String

object.

Fill

string

The

String

object

that

is

used

to

fill

the

right.

Length

An

integer

that

specifies

the

length

of

the

String

object

to

be

returned.

Output

Returns

the

specified

String

object,

filled

with

the

specified

value.

Right

String

Returns

the

right

portion

of

a

String

object

to

the

specified

number

of

positions.

Inputs

String

The

String

object

to

return.

Length

An

integer

that

specifies

the

number

of

positions

within

the

character

string

to

return.

Output

Returns

a

String

object

with

the

right

portion

of

the

specified

string,

to

the

specified

number

of

positions.

Substring

by

Position

Returns

a

portion

of

a

String

object

based

on

start

and

end

parameters.

Inputs

String

The

String

object.

256

Collaboration

Development

Guide

Start

position

An

integer

that

specifies

the

beginning

of

the

portion

of

the

String

to

be

returned.

End

position

An

integer

that

specifies

the

end

of

the

portion

of

the

String

to

be

returned.

Output

Returns

a

String

object

that

contains

the

specified

substring.

Substring

by

Value

Returns

a

portion

of

a

String

object

based

on

specified

start

and

end

values.

Note

that

the

substring

does

not

include

the

start

and

end

values,

but

rather

includes

everything

between

those

two

values.

Inputs

String

The

String

object.

Start

value

An

integer

that

specifies

the

starting

value

for

the

substring.

End

value

An

integer

that

specifies

the

end

value

for

the

substring.

Output

Returns

a

String

object

that

contains

the

specified

substring.

Text

Equal

Compares

the

character

strings

in

two

String

Objects

to

determine

whether

they

are

equal.

Inputs

In

String

1

The

first

String

object

in

the

comparison.

In

String

2

The

second

String

object

in

the

comparison.

Output

Returns

True

if

the

contents

of

both

String

objects

are

equal;

otherwise,

returns

False.

Text

Equal

Ignore

Case

Compares

the

character

strings

in

two

String

Objects

lexicographically

(ignoring

case

considerations)

to

determine

whether

they

are

equal.

Inputs

In

String

1

The

first

String

object

in

the

comparison.

In

String

2

The

second

String

object

in

the

comparison.

Output

Returns

True

if

the

contents

of

both

String

objects

are

equal;

otherwise,

returns

False.

Chapter

20.

String

function

blocks

257

Text

Length

Finds

the

total

number

of

characters

in

a

String

object.

Inputs

String

The

String

object.

Output

Returns

the

length

of

the

String

object

as

one

of

the

following

data

types:

byte,

short,

int,

long,

float,

or

double.

Trim

Left

Trims

the

specified

number

of

characters

from

the

left

side

of

the

String

object.

Inputs

String

The

String

object

you

want

to

trim.

Trim

length

An

integer

that

specifies

the

number

of

characters

to

trim.

Output

Returns

the

trimmed

String

object.

Trim

Right

Trims

the

specified

number

of

characters

from

the

right

side

of

the

String

object.

Inputs

String

The

String

object

you

want

to

trim.

Trim

length

An

integer

that

specifies

the

number

of

characters

to

trim.

Output

Returns

the

trimmed

String

object.

Trim

Text

Trims

white

spaces

before

and

after

the

characters

in

a

String

object.

Inputs

In

String

The

String

object

you

want

to

trim.

Output

Returns

the

trimmed

String

object.

Upper

Case

Changes

all

characters

in

a

String

object

to

upper

case.

258

Collaboration

Development

Guide

Inputs

From

String

The

original

String

object

whose

characters

you

want

to

convert

to

upper

case.

Output

Returns

the

String

object

with

all

characters

converted

to

upper

case.

Chapter

20.

String

function

blocks

259

260

Collaboration

Development

Guide

Chapter

21.

Utilities

function

blocks

The

function

blocks

in

the

General\Utilities

folder

and

its

subfolders

provide

functionality

for

working

with

Vector

objects,

handling

exceptions

in

activities

and

subactivities,

and

managing

locale

issues.

The

following

sections

describe

each

function

block

in

detail.

Table

57.

Summary

of

the

utilities

function

blocks

Folder

Function

block

Page

General\Utilities

Catch

Error

262

Catch

Error

Type

262

Condition

262

Loop

265

Move

Attribute

in

Child

265

Raise

Error

266

Raise

Error

Type

266

General\Utilities\Locale

Get

Country

263

Get

Language

263

New

Locale

265

New

Locale

with

Language

266

General\Utilities\Locale\Constants

English

262

French

262

German

263

Italian

264

Japanese

264

Korean

264

Simplified

Chinese

266

Traditional

Chinese

267

General\Utilities\Vector

Add

Element

261

Get

Element

263

Iterate

Vector

264

New

Vector

266

Size

267

To

Array

267

Add

Element

Adds

the

specified

element

to

the

end

of

the

Vector,

increasing

its

size

by

one.

Note:

This

function

block

is

located

in

the

General\Utilities\Vector

folder.

Inputs

Vector

A

java.util.Vector

object.

©

Copyright

IBM

Corp.

2003

261

Output

Returns

the

element.

Catch

Error

Catches

all

the

exceptions

thrown

in

the

current

activity

and

its

subactivities.

(You

must

double-click

the

function

block

icon

in

the

editing

canvas

to

define

the

subactivity.)

Inputs

Error

name

A

String

object

that

specifies

the

name

of

the

error.

Error

message

A

String

object

that

specifies

the

contents

of

the

error

message.

Catch

Error

Type

Catches

the

specified

exception

type

thrown

in

the

current

activity

and

its

subactivities.

(You

must

double-click

the

function

block

icon

in

the

editing

canvas

to

define

the

subactivity.)

Inputs

Error

type

A

String

object

that

specifies

the

type

of

exception

to

catch.

Error

message

A

String

object

that

specifies

the

contents

of

the

error

message.

Condition

If

the

specified

condition

exists,

executes

the

subactivity

defined

in

″True

Action.″

Otherwise,

executes

the

subactivity

defined

in

″False

Action.″

(You

must

double-click

the

function

block

icon

in

the

editing

canvas

to

define

the

subactivity.)

Inputs

Condition

A

boolean

that

specifies

the

condition

to

be

met.

English

A

constant

that

represents

an

English

locale.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale\Constants

folder.

Output

An

English

java.util.Locale

object.

French

A

constant

that

represents

a

French

locale.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale\Constants

folder.

Output

A

French

java.util.Locale

object.

262

Collaboration

Development

Guide

German

A

constant

that

represents

a

German

locale.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale\Constants

folder.

Output

A

German

java.util.Locale

object.

Get

Country

Determines

the

country/region

code

for

the

current

locale.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale

folder.

Inputs

Locale

A

java.util.Locale

object

that

represents

the

current

locale.

Output

Returns

a

String

object

that

contains

the

country/region

code

for

the

specified

locale.

It

is

typically

either

an

empty

string

or

an

uppercase

ISO

3166

two-letter

code.

Notes

This

function

block

is

based

on

the

java.util.Locale.getCountry()

method.

Get

Element

Gets

the

element

at

the

specified

index

in

the

Vector

object.

Note:

This

function

block

is

located

in

the

General\Utilities\Vector

folder.

Inputs

Vector

A

java.util.Vector

object.

Index

An

integer

that

specifies

the

index

location.

Output

Returns

the

element

located

at

the

specified

index.

Get

Language

Determines

the

language

code

for

the

current

locale.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale

folder.

Inputs

Locale

A

java.util.Locale

object

that

represents

the

current

locale.

Chapter

21.

Utilities

function

blocks

263

Output

Returns

a

String

object

that

contains

the

language

code

for

the

locale.

This

is

either

an

empty

string

or

a

lowercase

ISO

639

code.

Notes

This

function

block

is

based

on

the

java.util.Locale.getLanguage()

method.

Italian

A

constant

that

represents

an

Italian

locale.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale\Constants

folder.

Output

An

Italian

java.util.Locale

object.

Iterate

Vector

Iterates

through

a

Vector

object.

Note:

This

function

block

is

located

in

the

General\Utilities\Vector

folder.

Inputs

Vector

A

java.util.Vector

object.

Current

index

An

integer

that

specifies

the

index

location.

Current

element

An

object

that

specifies

the

element.

Japanese

A

constant

that

represents

a

Japanese

locale.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale\Constants

folder.

Output

A

Japanese

java.util.Locale

object.

Korean

A

constant

that

represents

a

Korean

locale.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale\Constants

folder.

Output

A

Korean

java.util.Locale

object.

264

Collaboration

Development

Guide

Loop

Repeats

the

subactivity

until

the

specified

condition

is

false.

(You

must

double-click

the

function

block

icon

on

the

editing

canvas

to

define

the

subactivity.)

Inputs

Condition

A

boolean

that

specifies

the

condition

to

be

met.

Move

Attribute

in

Child

Moves

the

value

of

one

attribute

to

another

attribute.

Inputs

Source

parent

The

business

object

(a

BusObj

object)

that

contains

the

child

business

object

attribute

to

move.

Source

child

BO

attribute

A

String

that

identifies

the

name

of

the

child

business

object

that

contains

the

attribute

whose

value

you

want

to

move.

From

attribute

A

String

that

identifies

the

name

of

the

attribute

to

be

moved.

Destination

parent

The

business

object

(a

BusObj

object)

to

which

the

original

attribute

value

is

to

be

moved.

Destination

child

BO

attribute

A

String

that

identifies

the

name

of

the

child

business

object

that

contains

the

attribute

whose

value

you

want

to

replace.

To

attribute

A

String

that

identifies

the

name

of

the

attribute

whose

value

you

want

to

replace

with

the

value

of

the

From

attribute.

New

Locale

Constructs

a

new

locale

based

on

the

specified

language

and

county.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale

folder.

Inputs

Language

A

String

object

that

specifies

the

current

language

for

the

locale.

Country

A

String

object

that

specifies

the

current

country

for

the

locale.

Output

Returns

a

java.util.Locale

object.

Notes

This

function

block

is

based

on

the

util.Locale()

method.

Chapter

21.

Utilities

function

blocks

265

New

Locale

with

Language

Constructs

a

new

locale

from

a

language

code.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale

folder.

Inputs

Language

A

String

object

that

specifies

the

language

for

the

locale.

Output

Returns

a

new

java.util.Locale

object.

Notes

This

function

block

is

based

on

the

util.Locale()

method.

New

Vector

Creates

a

new

Vector

object.

Note:

This

function

block

is

located

in

the

General\Utilities\Vector

folder.

Output

Returns

a

new

java.util.Vector

object.

Raise

Error

Throws

a

new

Java

exception

with

the

specified

message.

Inputs

Message

A

String

object

that

contains

the

message

for

the

Java

exception.

Raise

Error

Type

Throws

the

specified

Java

exception

with

the

specified

message.

Inputs

Error

type

A

String

object

that

identifies

the

type

of

Java

exception

to

throw.

Message

A

String

object

that

contains

the

message

for

the

Java

exception.

Simplified

Chinese

A

constant

that

represents

a

Simplified

Chinese

locale.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale\Constants

folder.

Output

Returns

a

Simplified

Chinese

java.util.Locale

object.

266

Collaboration

Development

Guide

Size

Determines

the

number

of

elements

in

a

Vector

object.

Note:

This

function

block

is

located

in

the

General\Utilities\Vector

folder.

Inputs

Vector

A

java.util.Vector

object.

Output

Returns

an

integer

that

specifies

the

number

of

elements

contained

in

the

Vector

object.

To

Array

Gets

the

array

representation

containing

all

of

the

elements

in

the

current

Vector

object.

Note:

This

function

block

is

located

in

the

General\Utilities\Vector

folder.

Inputs

Vector

A

java.util.Vector

object.

Output

Returns

all

elements

in

the

Vector

object

as

an

array

of

type

Object[].

Traditional

Chinese

A

constant

that

represents

a

Traditional

Chinese

locale.

Note:

This

function

block

is

located

in

the

General\Utilities\Locale\Constants

folder.

Output

A

Traditional

Chinese

java.util.Locale

object.

Chapter

21.

Utilities

function

blocks

267

268

Collaboration

Development

Guide

Part

4.

Collaboration

API

reference

©

Copyright

IBM

Corp.

2003

269

270

Collaboration

Development

Guide

Chapter

22.

BaseCollaboration

class

The

methods

documented

in

this

chapter

operate

on

collaboration

objects.

They

are

defined

on

the

InterChange

Server

Express-defined

class

BaseCollaboration.

The

BaseCollaboration

class

is

the

base

class

for

all

collaborations.

All

created

collaborations

are

subclasses

of

BaseCollaboration;

they

all

inherit

these

methods.

Table

58

summarizes

the

methods

of

the

BaseCollaboration

class.

Table

58.

BaseCollaboration

method

summary

Method

Description

Page

existsConfigProperty()

Test

the

existence

of

a

collaboration

configuration

property.

271

getConfigProperty()

Retrieve

the

value

of

a

collaboration

configuration

property.

272

getConfigPropertyArray()

Retrieve

the

value

of

a

multi-element

collaboration

configuration

property.

272

getDBConnection()

Establish

a

connection

to

a

database

and

returns

a

CwDBConnection

object.

273

getLocale()

Retrieve

the

locale

of

the

collaboration.

277

getMessage()

Retrieve

a

message,

identified

by

its

message

number,

from

the

collaboration

message

file.

276

getName()

Retrieve

the

name

of

this

collaboration

object.

277

implicitDBTransactionBracketing()

Retrieve

the

transaction

programming

model

that

the

collaboration

object

uses

for

any

connection

it

obtains.

277

isTraceEnabled()

Compare

the

specified

trace

level

with

the

current

trace

level

of

the

collaboration.

278

logError(),

logInfo(),

logWarning()

Send

an

error,

information,

or

warning

message

to

the

log

file.

278

raiseException()

Raise

a

collaboration

exception.

280

sendEmail()

Send

an

email

message

asynchronously.

283

trace()

Generate

a

trace

message.

284

existsConfigProperty()

Test

the

existence

of

a

collaboration

configuration

property.

Syntax

boolean

existsConfigProperty(String

propertyName)

Parameters

propertyName

The

name

of

a

property

defined

in

the

collaboration

template.

Return

values

Returns

true

if

the

property

exists;

returns

false

if

it

does

not

exist.

©

Copyright

IBM

Corp.

2003

271

Examples

The

following

example

tests

for

the

existence

of

the

VALIDATE_CUSTOMER

property.

boolean

validatePropExists

=

existsConfigProperty("VALIDATE_CUSTOMER");

getConfigProperty()

Retrieve

the

value

of

a

collaboration

configuration

property.

Syntax

String

getConfigProperty(String

propertyName)

Parameters

propertyName

The

name

of

a

property

defined

in

the

collaboration

template.

Return

values

Returns

the

value

of

the

configuration

property.

If

the

property

does

not

exist,

returns

an

empty

string

(“”).

Examples

The

following

example

obtains

the

value

of

the

VALIDATE_CUSTOMER

property

and

assigns

it

to

the

variable

validateProp.

String

validateProp

=

getConfigProperty("VALIDATE_CUSTOMER");

getConfigPropertyArray()

Retrieve

the

value

of

a

multi-element

collaboration

configuration

property.

Syntax

String[]

getConfigPropertyArray(String

propertyName)

Parameters

propertyName

The

name

of

a

property

defined

in

the

collaboration

template.

Return

values

An

array

of

property

values.

Notes

This

method

retrieves

the

value

of

a

multi-element

configuration

property.

A

multi-element

configuration

property

consists

of

a

number

of

values,

separated

by

semicolons.

If

the

property

does

not

exist,

the

array

is

empty.

If

the

property

has

a

single

element,

the

array

has

only

one

element.

You

can

use

a

multi-element

configuration

property

to

get

input

from

a

user.

The

collaboration

can

then

use

this

multi-element

property

to

build

a

Retrieve

request,

in

the

absence

of

a

business

object’s

key

attribute

values.

The

user

can

specify

the

272

Collaboration

Development

Guide

attributes

that

should

be

used

to

retrieve

the

business

object

by

specifying

values

for

the

elements

of

the

configuration

property.

Examples

The

following

example

retrieves

a

list

of

properties

associated

with

the

name

ATTR_LIST.

String[]

list

=

getConfigPropertyArray("ATTR_LIST");

getCurrentLoopIndex()

Retrieve

the

value

of

the

index

variable

when

an

iterator

is

configured

as

a

loop.

Syntax

int

getCurrentLoopIndex()

Parameters

None.

Return

values

Returns

the

value

of

the

loop

index

variable.

Returns

zero

(0)

if

it

is

outside

the

loop.

Examples

The

following

example

obtains

the

current

loop

index:

int

currentIndex

=

getCurrentLoopIndex();

getDBConnection()

Establish

a

connection

to

a

database

and

returns

a

CwDBConnection

object.

Syntax

CwDBConnection

getDBConnection(String

connectionPoolName)

CwDBConnection

getDBConnection(String

connectionPoolName,

boolean

implicitTransaction)

Parameters

connectionPoolName

The

name

of

a

valid

connection

pool.

The

method

connects

to

the

database

whose

connection

is

in

this

specified

connection

pool.

implicitTransaction

A

boolean

value

to

indicate

the

transaction

programming

model

to

use

for

the

database

associated

with

the

connection.

Valid

values

are:

true

Database

uses

implicit

transaction

bracketing

false

Database

uses

explicit

transaction

bracketing

Return

values

Returns

a

CwDBConnection

object.

Chapter

22.

BaseCollaboration

class

273

Exceptions

CwDBConnectionFactoryException

–

If

an

error

occurs

while

trying

to

establish

the

database

connection.

Notes

The

getDBConnection()

method

obtains

a

connection

from

the

connection

pool

that

connectionPoolName

specifies.

This

connection

provides

a

way

to

perform

queries

and

updates

to

the

database

associated

with

the

connection.

All

connections

in

a

particular

connection

pool

as

associated

with

the

same

database.

The

method

returns

a

CwDBConnection

object

through

which

you

can

execute

queries

and

manage

transactions.

See

the

methods

in

the

CwDBConnection

class

for

more

information.

By

default,

all

connections

use

implicit

transaction

bracketing

as

their

transaction

programming

model.

To

specify

a

transaction

programming

model

for

a

particular

connection,

provide

a

boolean

value

to

indicate

the

desired

transaction

programming

model

as

the

optional

implicitTransaction

argument

to

the

getDBConnection()

method.

The

following

getDBConnection()

call

specifies

explicit

transaction

bracketing

for

the

connection

obtained

from

the

ConnPool

connection

pool:

conn

=

getDBConnection("ConnPool",false);

The

connection

is

released

when

the

collaboration

object

finishes

execution.

You

can

explicitly

close

this

connection

with

the

release()

method.

You

can

determine

whether

a

connection

has

been

released

with

the

isActive()

method.

For

more

information,

see

“Releasing

a

connection”

on

page

181.

Examples

The

following

example

establishes

a

connection

to

the

database

associated

with

connections

in

the

CustConnPool

connection

pool.

It

then

uses

an

implicit

transaction

to

insert

and

update

rows

into

a

table

of

the

database.

CwDBConnection

connection

=

getDBConnection("CustConnPool");

//

Insert

a

row

connection.executeSQL("insert...");

//

Update

rows...

connection.executeSQL("update...");

Because

the

preceding

call

to

getDBConnection()

does

not

include

the

optional

second

argument,

this

connection

uses

implicit

transaction

bracketing

as

its

transaction

programming

model

(unless

the

transaction

programming

model

is

overridden

in

the

Collaboration

Properties

dialog

of

System

Manager).

Therefore,

it

does

not

specify

explicit

transaction

boundaries

with

beginTransaction(),

commit(),

and

rollback().

In

fact,

an

attempt

to

call

one

of

these

transaction

methods

with

implicit

transaction

bracketing

generates

a

CwDBTransactionException

exception.

Note:

You

can

check

the

current

transaction

programming

model

with

the

implicitDBTransactionBracketing()

method.

The

following

example

also

establishes

a

connection

to

the

database

associated

with

connections

in

the

CustConnPool

connection

pool.

However,

it

specifies

the

274

Collaboration

Development

Guide

use

of

explicit

transaction

bracketing

for

the

connection.

Therefore,

it

uses

an

explicit

transaction

to

contain

the

inserts

and

updates

on

rows

in

the

database

tables.

CwDBConnection

connection

=

getDBConnection("CustConnPool",

false);

//

Begin

a

transaction

connection.beginTransaction();

//

Insert

a

row

connection.executeSQL("insert...");

//

Update

rows...

connection.executeSQL("update...");

//

Commit

the

transaction

connection.commit();

//

Release

the

connection

connection.release();

The

preceding

call

to

getDBConnection()

includes

the

optional

implicitTransaction

argument

to

set

the

transaction

programming

model

to

explicit

transaction

bracketing.

Therefore,

this

examples

uses

the

explicit

transaction

calls

to

indicate

the

boundaries

of

the

transaction.

If

these

transaction

methods

are

omitted,

InterChange

Server

handles

the

transaction

as

it

would

for

an

implicit

transaction.

See

also

Chapter

25,

“CwDBConnection

class”,

isActive(),

release()

getLocale()

Retrieve

the

collaboration

locale

for

the

current

collaboration

object.

Syntax

java.util.Locale

getLocale()

Parameters

None.

Return

values

A

Java

Locale

object

that

contains

the

language

and

country

codes

of

the

collaboration

locale.

This

Locale

object

must

be

an

instance

of

the

java.util.Locale

class.

Notes

The

getLocale()

method

returns

the

locale

of

the

current

flow.

This

flow

locale

is

the

locale

associated

with

the

collaboration

object’s

triggering

business

object.

Examples

The

following

example

obtains

the

locale

of

the

collaboration,

retrieves

the

country

and

language

codes

from

the

Locale

object,

and

then

reports

their

values

in

a

trace

message:

Chapter

22.

BaseCollaboration

class

275

Locale

collaborationLocale

=

getLocale();

String

collaborationCountry

=

collaborationLocale.getCountry();

String

collaborationLanguage

=

collaborationLocale.getLanguage();

trace(3,

"THE

COUNTRY

CODE

FOR

THE

COLLABORATION

IS

"

+

collaborationCountry

+

",

AND

THE

LANGUAGE

CODE

FOR

THE

COLLABORATION

IS

"

+

collaborationLanguage

+

".");

getMessage()

Retrieve

a

message

from

the

collaboration

message

file.

Syntax

public

String

getMessage(int

messageNum)

public

String

getMessage(int

messageNum,

Object[]

paramArray)

Parameters

messageNum

The

message

number

of

a

message

in

the

collaboration’s

message

file,

which

is

indexed

by

message

number.

For

information

on

how

to

set

up

a

message

text

file,

refer

to

Chapter

10,

“Creating

a

message

file,”

on

page

183.

paramArray

An

array

of

message-parameter

values.

Each

is

sequentially

resolved

to

a

parameter

in

the

message

text.

Within

the

message

(in

the

collaboration

message

file),

message

parameters

are

indicated

by

integers

enclosed

by

braces;

for

example,

{1}.

Return

values

A

String

object

that

contains

the

message

text

for

the

message

identified

by

messageNum.

Notes

The

getMessage()

method

provides

two

forms:

v

The

first

form

takes

a

message

number

and

retrieves

the

associated

message

from

the

collaboration

message

file

as

a

String

object.

v

The

second

form

takes

a

message

number

and

an

array

of

message-parameter

values.

It

retrieves

the

associated

message

from

the

collaboration

message

file,

replaces

its

message

parameters

with

the

objects

in

the

parameter

array,

and

returns

the

resulting

message

as

a

String

object.

For

more

information

on

message

files

and

message

parameters,

see

Chapter

10,

“Creating

a

message

file,”

on

page

183.

Examples

Suppose

your

collaboration

message

file

defines

the

following

two

messages

with

message

numbers

of

8

and

9:

8

Error

occurred

during

JDBC

URL

conversion.

Reason:{1}

[EXPL]

An

error,

indicated

by

the

reason,

occurred

during

the

conversion

of

a

JDBC

URL

string.

9

Invalid

login

encountered

in

command-line

arguments.

A

valid

276

Collaboration

Development

Guide

login

must

contain

a

login

name

and

a

password.

[EXPL]

A

password

has

been

specified

but

a

user

name

has

not.

If

no

login

name

is

specified,

the

default

login

name

"crossworlds"

is

assumed.

The

following

call

to

getMessage()

obtains

the

text

associated

with

message

9:

String

invalidLogin

=

getMessage(9);

The

following

call

to

getMessage()

obtains

the

text

associated

with

message

8

and

includes

a

value

for

the

message’s

Reason

parameter:

String

reason

=

"Invalid

database

table.";

Object[]

paramList

=

new

Object[1];

paramList[0]

=

reason;

badConversion

=

getMessage(8,

paramList);

The

message

obtained

from

the

previous

getMessage()

call

would

be:

Error

occurred

during

JDBC

URL

conversion.

Reason:Invalid

database

table.

getName()

Retrieve

the

name

of

this

collaboration

object.

Syntax

String

getName()

Examples

The

following

example

obtains

the

name

of

the

current

collaboration

object

and

logs

an

informational

message:

String

collabName

=

getname();

logInfo(collabName

+

"

is

starting");

implicitDBTransactionBracketing()

Retrieve

the

transaction

programming

model

that

the

collaboration

object

uses

for

any

connection

it

obtains.

Syntax

boolean

implicitDBTransactionBracketing()

Parameters

None.

Return

values

A

boolean

value

to

indicate

the

transaction

programming

model

to

be

used

in

all

database

connections.

Notes

The

implicitDBTransactionBracketing()

method

returns

a

boolean

value

indicates

which

transaction

programming

model

the

collaboration

object

assumes

is

used

by

all

connections

that

it

obtains,

as

follows:

v

A

value

of

true

indicates

that

all

connections

use

implicit

transaction

bracketing.

v

A

value

of

false

indicates

that

all

connections

use

explicit

transaction

bracketing.

Chapter

22.

BaseCollaboration

class

277

This

method

is

useful

before

obtaining

a

connection

to

see

whether

the

current

transaction

programming

model

is

appropriate

for

that

connection.

Note:

You

can

override

the

transaction

programming

model

for

a

particular

connection

with

the

getDBConnection()

method.

Examples

The

following

example

ensures

that

collaboration

object

uses

explicit

transaction

bracketing

for

the

database

associated

with

the

conn

connection:

if

(implicitDBTransactionBracketing())

CwDBConnection

conn

=

getDBConnection("ConnPool",

false);

See

also

“Managing

the

transaction”

on

page

177

getDBConnection()

isTraceEnabled()

Compare

the

specified

trace

level

with

the

current

trace

level

of

the

collaboration.

Syntax

public

Boolean

isTraceEnabled(int

traceLevel)

Parameters

traceLevel

The

trace

level

to

compare

with

the

current

trace

level.

Return

values

Returns

true

if

the

current

system

trace

level

is

set

to

the

specified

trace

level;

returns

false

if

the

two

trace

levels

are

not

the

same.

Notes

The

isTraceEnabled()

method

is

useful

in

determining

if

a

trace

message

should

or

should

not

be

logged.

Because

tracing

can

decrease

performance,

this

method

is

useful

in

the

development

phase

of

a

project.

Examples

if

(

isTraceEnabled(3)

)

{

trace("Print

this

level-3

trace

message");

}

logError(),

logInfo(),

logWarning()

Write

an

error,

informational,

or

warning

message

to

the

log

destination.

Syntax

void

logError(String

message)

void

logError(int

messageNum)

void

logError(int

messageNum,

String

param

[,...])

void

logError(int

messageNum,

Object[]

paramArray)

278

Collaboration

Development

Guide

void

logInfo(String

message)

void

logInfo(int

messageNum)

void

logInfo(int

messageNum,

String

param

[,...])

void

logInfo(int

messageNum,

Object[]

paramArray)

void

logWarning(String

message)

void

logWarning(int

messageNum)

void

logWarning(int

messageNum,

String

param

[,...])

void

logWarning(int

messageNum,

Object[]

paramArray)

Parameters

message

The

message

text

to

be

logged.

messageNum

The

message

number

of

a

message

in

the

collaboration’s

message

file,

which

is

indexed

by

message

number.

For

information

on

how

to

set

up

a

message

text

file,

refer

to

Chapter

10,

“Creating

a

message

file,”

on

page

183.

param

The

value

for

a

single

message

parameter.

There

can

be

up

to

five

message

parameters,

separated

by

commas.

Each

is

sequentially

resolved

to

a

parameter

in

the

message

text.

paramArray

An

array

of

message-parameter

values.

Each

is

sequentially

resolved

to

a

parameter

in

the

message

text.

Notes

The

logError(),

logWarning(),

and

logInfo()

methods

send

a

message

to

the

collaboration’s

log

destination.

By

default,

the

log

destination

is

the

file

InterchangeSystem.log.

You

can

change

the

log

destination

by

entering

a

value

for

the

LOG_FILE

parameter

in

the

InterChange

Server

configuration

file,

InterchangeSystem.cfg.

The

parameter

value

can

be

a

file

name

or

STDOUT,

which

writes

the

log

to

InterChange

Server’s

command

window.

You

can

also

set

three

other

system

configuration

parameters

related

to

logging.

All

parameters

are

located

in

the

InterChange

Server

configuration

file,

InterchangeSystem.cfg.

v

Set

the

maximum

size

of

the

log

file

with

the

MAX_LOG_FILE_SIZE

parameter.

Because

the

default

file

size

is

unlimited,

you

should

always

set

a

maximum

size.

v

Set

from

one

to

five

archive

log

files

with

the

NUMBER_OF_ARCHIVE_LOGS

parameter.

The

default

is

five

if

the

parameter

is

not

set.

v

Set

the

MIRROR_LOG_TO_STDOUT

parameter

if

you

want

the

error

messages

to

display

to

STDOUT

at

the

same

time

that

they

are

written

to

the

log

file.

For

help

in

deciding

whether

to

use

the

method

that

logs

an

informational,

warning,

or

error

message,

refer

to

“Logging

messages”

on

page

147.

The

message

text

that

appears

in

the

user’s

log

file

is

prefixed

with

the

word

Info,

Warning,

or

Error,

depending

on

the

method

you

use

to

log

the

message.

Each

of

these

logging

methods

has

several

forms:

v

The

first

form

includes

all

of

the

text

necessary

to

generate

a

message.

It

sends

this

message

to

the

log

destination.

v

The

second

form

obtains

a

message

that

does

not

have

parameters

from

the

collaboration’s

message

file

and

sends

this

message

to

the

log

destination.

v

The

third

form

obtains

a

message

that

does

have

parameters

from

the

collaboration’s

message

file.

It

also

provides

a

list

of

message-parameter

values.

Chapter

22.

BaseCollaboration

class

279

v

The

fourth

form

also

obtains

a

message

that

has

parameters

from

the

collaboration’s

message

file.

However,

it

provides

the

message-parameter

values

as

an

array

of

parameter

values.

All

forms

of

the

method

that

take

a

messageNum

parameter

require

the

use

of

a

message

file

that

is

indexed

by

message

number.

For

information

on

how

to

set

up

a

message

text

file,

refer

to

Chapter

10,

“Creating

a

message

file,”

on

page

183.

In

addition

to

sending

a

message

to

the

log

destination,

the

logError()

method

also

sends

the

error

message

to

an

email

recipient

if:

v

An

email

address

has

been

specified

in

the

Email

notification

address

field

in

the

Collaboration

Object

Properties

dialog.

v

The

Email

collaboration

and

Email

connector

are

running.

(The

Email

collaboration

is

instantiated

and

configured

automatically

when

InterChange

Server

starts

up

and

does

not

require

input

from

the

user.)

Note:

The

logError()

method

automatically

sends

an

error

message

to

an

email

recipient

(assuming

that

the

Email

collaboration

and

Email

adapter

are

running).

The

sendEmail()

method

allows

you

to

explicitly

send

an

email

message.

Examples

The

following

example

logs

an

error

message,

using

getString()

to

obtain

an

attribute’s

value

in

the

message.

logError("Incorrect

customer:

CustomerID:

"

+

fromCustomerBusObj.getString("CustomerID"));

The

following

example

logs

an

error

message

whose

text

is

contained

in

the

collaboration’s

message

file.

The

message,

which

is

number

10

in

the

message

file,

takes

two

parameters:

customer

last

name

(LName

attribute)

and

customer

first

name

(FName

attribute).

logError(10,

customer.get("LName"),

customer.get("FName");

The

following

example

logs

an

error

message

using

an

array

of

parameters.

For

the

purpose

of

illustration,

the

example

uses

an

array

with

just

two

parameters.

The

example

declares

the

array

args,

which

has

two

elements,

the

customer

ID

and

the

customer

name.

The

logError()

method

then

logs

an

error,

using

message

number

12

and

the

values

in

the

args

array.

Object[]

args

=

{

fromCustomerBusObj.getString("CustomerID"),

fromCustomerBusObj.getString("CustomerName");

}

logError(12,

args);

raiseException()

Prepare

a

collaboration

exception

to

raise

to

the

next

higher

level

of

execution.

Syntax

void

raiseException(String

exceptionType,

String

message)

void

raiseException(String

exceptionType,

int

messageNum,

String

parameter[,...])

280

Collaboration

Development

Guide

void

raiseException

(String

exceptionType,

int

messageNum,

Object[]

paramArray)

void

raiseException(CollaborationException

exceptionObject)

Parameters

exceptionType

The

exception

type

for

the

exception

to

be

raised.

Specify

this

exception

type

as

one

of

the

following

exception-type

static

variables,

which

identify

the

cause

of

the

collaboration

exception:

AnyException

Any

type

of

exception

AttributeException

Attribute

access

problem.

For

example,

the

collaboration

called

getDouble()

on

a

String

attribute

or

called

getString()

on

a

nonexistent

attribute.

JavaException

Problem

with

Java

code

in

collaboration

logic.

ObjectException

Business

object

passed

to

a

method

was

invalid

or

a

null

object

was

accessed.

OperationException

Service

call

was

improperly

set

up

and

could

not

be

sent.

ServiceCallException

Service

call

failed.

For

example,

a

connector

or

application

is

unavailable.

SystemException

Any

internal

error

within

the

InterChange

Server

system.

TransactionException

Error

related

to

the

transactional

behavior

of

a

transactional

collaboration.

For

example,

rollback

failed

or

the

collaboration

could

not

apply

compensation.

message

A

text

string

that

contains

the

exception

message.

messageNum

The

message

number

of

a

message

in

the

collaboration’s

message

file,

which

is

indexed

by

message

number.

For

information

on

how

to

set

up

a

message

text

file,

refer

to

Chapter

10,

“Creating

a

message

file,”

on

page

183.

parameter

A

value

for

a

single

message

parameter.

There

can

be

up

to

five

message

parameters,

separated

by

commas.

Each

is

sequentially

resolved

to

a

parameter

in

the

message

text.

paramArray

An

array

of

message-parameter

values.

Each

is

sequentially

resolved

to

a

parameter

in

the

message

text.

exceptionObject

The

name

of

a

CollaborationException

exception-object

variable.

The

following

explanations

and

code

examples

need

to

be

provided

in

the

Collaboration

API:

Notes

The

raiseException()

method

prepares

a

collaboration

exception

to

raise

to

the

next

higher

level

of

execution.

When

the

collaboration

runtime

environment

Chapter

22.

BaseCollaboration

class

281

executes

the

raiseException()

call,

it

changes

the

collaboration’s

execution

to

the

Exception

state,

then

proceeds

with

the

logic

of

the

activity

diagram.

How

the

activity

diagram

responds

to

the

raised

exception

depends

on

the

termination

node

of

its

execution

path,

as

follows:

v

If

the

execution

path

ends

in

End

Success,

control

passes

to

the

next

higher

level

of

execution.

If

this

parent

diagram’s

next

node

is

a

decision

node,

the

collaboration

runtime

environment

checks

for

execution

branches

in

this

decision

node

that

handle

the

raised

exception.

This

parent

diagram

can

access

the

raised

exception

through

the

currentException

system

variable.

v

If

the

execution

path

ends

in

End

Failure,

the

collaboration

runtime

environment

ends

the

collaboration,

makes

an

entry

in

the

collaboration’s

log,

and

creates

an

unresolved

flow.

The

collaboration

runtime

environment

associates

with

the

unresolved

flow

any

exception

text

that

the

raised

exception

contains.

If

this

exception

does

not

contain

any

exception

text,

the

collaboration

runtime

environment

uses

the

default

message:

Scenario

failed.

It

is

best

to

explicitly

raise

an

exception

when

one

occurs,

rather

than

to

just

end

in

failure.

When

the

code

explicitly

raises

the

exception

to

the

collaboration

runtime

environment,

the

administrator

can

use

the

Flow

Manager

to

view

the

exception

text

as

part

of

the

unresolved

flow.

For

more

information,

see

“Raising

the

exception”

on

page

130.

The

raiseException()

method

has

several

forms:

v

The

first

form

creates

a

new

exception

object

with

the

specified

exception

type

and

a

message

string.

Use

this

form

to

pass

an

exception

message

stored

as

a

string.

You

might

also

send

this

string

message

to

one

of

the

log

methods

to

log

it.

v

The

second

form

creates

a

new

exception

object

with

the

specified

exception

type

and

an

exception

message

that

is

obtained

from

the

collaboration’s

message

file.

You

identify

the

message

by

its

message

number

in

the

message

file.

This

form

of

the

method

call

provides

the

ability

to

pass

up

to

five

message-parameter

values

for

the

message

text.

Separate

these

message

parameters

with

commas.

In

the

message

text

(within

the

message

file),

parameters

are

specified

by

a

number

within

curly

braces,

such

as

{1}.

The

raiseException()

method

should

provide

a

value

for

each

message

parameter

in

the

message.

v

The

third

form

provides

another

way

to

create

a

new

exception

object

that

contains

a

specified

message

in

a

message

file.

Its

message-parameter

array

of

Objects

behaves

similarly

to

the

String

parameter

list

in

the

second

form

of

this

method.

However,

whereas

each

message-parameter

value

in

the

String

list

is

specified

separately,

this

form

places

all

parameter

values

in

an

array

of

Objects.

This

form

is

useful

in

raising

an

exception

object

that:

–

The

collaboration

has

previously

handled.

For

example,

a

scenario

might

get

an

exception,

assign

it

to

a

variable,

and

do

some

other

work.

–

Has

more

than

five

message

parameters.

Whereas

the

String

list

can

contain

no

more

than

five

parameters,

the

parameter

array

can

contain

any

number

of

parameters.
v

The

fourth

form

does

not

create

an

exception.

Instead,

it

just

raises

the

specified

exception

object

(

CollaborationException

object)

that

is

provided

as

an

argument.

282

Collaboration

Development

Guide

Note:

All

forms

of

the

method

that

take

a

messageNum

parameter

require

the

use

of

a

message

file

indexed

by

message

number.

For

information

on

how

to

set

up

a

message

text

file,

refer

to

Chapter

10,

“Creating

a

message

file,”

on

page

183.

Examples

This

section

provides

examples

of

each

of

the

forms

of

the

raiseException()

method:

1.

The

following

example

uses

the

first

form

of

the

method

to

raise

an

exception

of

ServiceCallException

type.

The

text

is

passed

directly

into

the

method

call.

raiseException(ServiceCallException,

"Attempt

to

validate

Customer

failed.");

2.

The

next

example

uses

the

second

form

of

the

method

to

raise

an

exception

of

OperationException

type,

whose

message

appears

in

the

message

file

is

as

follows:

23

Customer

update

failed

for

CustomerID={1}

CustomerName={2}

This

raiseException()

call

retrieves

message

23

and

retrieves

the

values

of

the

message’s

two

parameters

(customer

ID

and

name)

from

the

fromCustomer

variable

to

generate

the

exception

message:

raiseException(OperationException,

23,

fromCustomer.getString("CustomerID"),

fromCustomer.getString("CustomerName"));

3.

The

following

example

uses

the

third

form

to

send

message-parameter

values

as

an

array

of

Objects.

For

example,

assume

the

message

file

includes

the

following

message

text:

2000

Collaboration

Message:

BOName:

{1}

with

Verb:

{2}

encountered

an

undefined

error.

The

following

code

creates

a

parameter

array

of

Objects,

loads

values

into

it,

and

calls

the

raiseException()

method:

Object[]

myParamArray

=

new

Object[2];

myParamArray[0]

=

triggeringBusObj.getType();

myParamArray[1]

=

triggeringBusObj.getVerb();

raiseException(AnyException,

2000,

myParamArray);

4.

The

final

example

uses

the

fourth

form

of

the

method

to

raise

a

previously

handled

exception.

The

system-defined

variable

currentException

is

the

exception

object

that

contains

the

exception.

raiseException(currentException);

sendEmail()

Send

an

email

message

asynchronously.

Syntax

void

sendEmail(String

message,

String

subject,

Vector

recipients)

Parameters

message

The

text

of

the

email

message.

subject

The

subject

line

of

the

email

message

Chapter

22.

BaseCollaboration

class

283

recipients

A

Vector

that

contains

email

addresses

of

the

message

recipients.

This

vector

contains

String

objects.

Notes

The

sendEmail()

method

can

send

an

email

message

to

the

recipients

specified

in

the

recipients

vector

if:

v

An

email

address

has

been

specified

in

the

Email

notification

address

field

in

the

Collaboration

Object

Properties

dialog.

v

The

Email

collaboration

and

Email

adapter

are

running.

(The

Email

collaboration

is

instantiated

and

configured

automatically

when

InterChange

Server

starts

up

and

does

not

require

input

from

the

user.)

If

the

Email

adapter

is

not

running,

sendEmail()

does

not

cause

execution

of

the

collaboration

to

halt.

Note:

The

logError()

method

automatically

sends

an

error

message

to

an

email

recipient

(assuming

that

the

Email

collaboration

and

adapter

are

running).

The

sendEmail()

method

allows

you

to

explicitly

send

an

email

message.

Examples

//

Initialize

the

Vector

for

the

list

of

email

addresses

Vector

emailList

=

new

Vector();

//

Add

as

many

email

addresses

as

Strings

to

the

Vector

emailList.add("dbadmin@us.ibm.com");

emailList.add("netadmin@us.ibm.com");

emailList.add("cwadmin@us.ibm.com");

//

Initialize

the

message

and

subject

as

Strings

String

message

=

"This

is

the

body

of

the

email";

String

subject

=

"This

is

the

subject

of

the

email";

//

Make

the

call

to

sendEmail()

sendEmail(message,

subject,

emailList);

trace()

Write

a

trace

message

to

the

log

destination.

Syntax

void

trace(String

traceMsg)

void

trace(int

traceLevel,

String

traceMsg)

void

trace(int

traceLevel,

int

messageNum)

void

trace(int

traceLevel,

int

messageNum,

String

param

[,...])

void

trace(int

traceLevel,

int

messageNum,

Object[]

paramArray)

Parameters

traceLevel

The

tracing

level

that

is

used

to

determine

which

trace

messages

are

output.

The

method

writes

the

trace

message

when

the

trace

level

for

the

collaboration

object

is

greater

than

or

equal

to

this

traceLevel

value.

You

should

define

the

trace

levels

for

this

collaboration

and

document

them

so

that

the

administrator

knows

which

level

to

use

for

the

collaboration

object.

traceMsg

The

trace-message

text

that

is

written

to

the

trace

file.

messageNum

The

message

number

of

a

message

in

the

collaboration’s

message

284

Collaboration

Development

Guide

file,

which

is

indexed

by

message

number.

For

information

on

how

to

set

up

a

message

text

file,

refer

to

Chapter

10,

“Creating

a

message

file,”

on

page

183.

param

A

value

for

a

single

message

parameter.

There

can

be

up

to

five

message

parameters,

separated

by

commas.

Each

is

sequentially

resolved

to

a

parameter

in

the

message

text.

paramArray

An

array

of

message-parameter

values.

Each

is

sequentially

resolved

to

a

parameter

in

the

message

text.

Notes

The

trace()

method

sends

a

trace

message

to

the

collaboration’s

log

destination.

By

default,

the

log

destination

is

the

file

InterchangeSystem.log.

You

can

change

the

log

destination

by

entering

a

value

for

the

LOG_FILE

parameter

in

the

InterChange

Server

configuration

file,

InterchangeSystem.cfg.

The

parameter

value

can

be

a

file

name

or

STDOUT,

which

writes

the

log

to

InterChange

Server’s

command

window.

You

can

also

set

three

other

system

configuration

parameters

related

to

trace

logging.

All

parameters

are

located

in

the

configuration

file,

InterchangeSystem.cfg:

v

Set

the

maximum

size

of

the

trace

file

with

the

MAX_TRACE_FILE_SIZE

parameter.

Because

the

default

file

size

is

unlimited,

you

should

always

set

a

maximum

size.

v

Set

from

one

to

five

archive

trace

files

with

the

NUMBER_OF_ARCHIVE_TRACES

parameter.

The

default

is

five

if

the

parameter

is

not

set.

v

Set

the

MIRROR_TRACE_TO_STDOUT

parameter

if

you

want

the

error

messages

to

display

to

STDOUT

at

the

same

time

that

they

are

written

to

the

trace

file.

The

default

value

is

false;

messages

are

not

simultaneously

written

to

STDOUT.

The

trace()

method

has

several

forms:

v

The

first

form

of

the

method

takes

just

a

string

message

that

appears

when

tracing

is

set

to

level

1

or

above.

v

The

second

form

takes

a

trace

level

and

a

string

message

that

appears

when

tracing

is

set

to

the

specified

level

or

a

higher

level.

v

The

third

form

takes

a

trace

level

and

a

number

that

represents

a

message

in

the

collaboration’s

message

file.

The

entire

message

text

appears

in

the

message

file

and

is

printed

as

it

is,

without

parameters,

when

tracing

is

set

to

the

specified

level

or

a

higher

level.

v

The

fourth

form

takes

a

trace

level,

a

number

that

represents

a

message

in

the

collaboration’s

message

file,

and

one

or

more

parameters

to

be

used

in

the

message.

You

can

send

up

to

five

parameter

values

to

be

used

with

the

message

by

separating

the

values

with

commas.

v

The

fifth

form

takes

a

trace

level,

a

number

that

represents

a

message

in

the

collaboration’s

message

file,

and

an

array

of

parameter

values.

A

collaboration

object

can

be

configured

to

generate

a

system-generated

trace

or

a

collaboration-generated

trace.

The

trace()

method

generates

a

message

that

the

collaboration

object

prints

if

configured

to

print

a

collaboration-generated

trace.

For

help

in

deciding

when

to

use

tracing,

refer

to

“Adding

trace

messages”

on

page

149.

Chapter

22.

BaseCollaboration

class

285

Examples

The

following

example

uses

the

second

form

of

the

method

to

generate

a

Level

2

trace

message

with

the

supplied

text

of

the

message:

trace

(2,

"Starting

to

trace

at

Level

2");

The

following

example

uses

the

fourth

form

of

the

method

to

write

message

201

in

the

collaboration’s

message

file,

if

the

collaboration

object

trace

level

is

2

or

higher.

The

message

has

two

parameters,

a

name

and

a

year,

for

which

this

method

call

passes

values.

trace(2,

201,

"DAVID",

"1961");

286

Collaboration

Development

Guide

Chapter

23.

BusObj

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

BusObj

class.

These

objects

represent

InterChange

Server

Express

business

objects.

Note:

The

BusObj

class

is

used

for

both

collaboration

development

and

mapping;

check

the

Notes

section

for

each

method’s

usage

issues.

Table

59

lists

the

methods

of

the

BusObj

class.

Table

59.

BusObj

method

summary

Method

Description

Page

copy()

Copy

all

attributes

values

from

the

input

business

object

to

this

one.

288

duplicate()

Create

a

business

object

(BusObj

object)

exactly

like

this

one.

289

equalKeys()

Compare

this

business

object’s

key

attribute

values

with

those

in

the

input

business

object.

289

equals()

Compare

this

business

object’s

attribute

values

with

those

in

the

input

business

object,

including

child

business

objects.

290

equalsShallow()

Compare

this

business

object’s

attribute

values

with

those

in

the

input

business

object,

excluding

child

business

objects

from

the

comparison.

290

exists()

Check

for

the

existence

of

a

business

object

attribute

with

a

specified

name.

291

getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()

Retrieve

the

value

of

a

single

attribute

from

a

business

object.

291

getLocale()

Retrieves

the

locale

of

the

business

object’s

data.

293

getType()

Retrieve

the

name

of

the

business

object

definition

on

which

this

business

object

was

based.

294

getVerb()

Retrieve

this

business

object’s

verb.

294

isBlank()

Find

out

whether

the

value

of

an

attribute

is

set

to

a

zero-length

string.

295

isKey()

Find

out

whether

a

business

object’s

attribute

is

defined

as

a

key

attribute.

295

isNull()

Find

out

whether

the

value

of

a

business

object’s

attribute

is

null.

296

isRequired()

Find

out

whether

a

business

object’s

attribute

is

defined

as

a

required

attribute.

297

keysToString()

Retrieve

the

values

of

a

business

object’s

primary

key

attributes

as

a

string.

297

set()

Set

a

business

object’s

attribute

to

a

specified

value

of

a

particular

data

type.

298

setDefaultAttrValues()

Set

all

attributes

to

their

default

values.

299

©

Copyright

IBM

Corp.

2003

287

Table

59.

BusObj

method

summary

(continued)

Method

Description

Page

setKeys()

Set

the

values

of

this

business

object’s

key

attributes

to

the

values

of

the

key

attributes

in

another

business

object.

299

setVerb()

Set

the

verb

of

a

business

object.

300

setWithCreate()

Set

a

business

object’s

attribute

to

a

value

of

a

specified

data

type.

301

toString()

Return

the

values

of

all

attributes

in

a

business

object

as

a

string.

301

validData()

Checks

whether

a

specified

value

is

a

valid

data

type

for

a

specified

attribute.

302

copy()

Copy

all

attributes

values

from

the

input

business

object

to

this

one.

Syntax

void

copy(BusObj

inputBusObj)

Parameters

inputBusObj

The

name

of

the

business

object

whose

attributes

values

are

copied

into

the

current

business

object.

Notes

The

copy()

method

copies

the

entire

business

object,

including

all

child

business

objects

and

child

business

object

arrays.

This

method

does

not

set

a

reference

to

the

copied

object.

Instead,

it

clones

all

attributes;

that

is,

it

creates

separate

copies

of

the

attributes.

Examples

The

following

example

copies

the

values

contained

in

sourceCustomer

to

destCustomer.

destCustomer.copy(sourceCustomer);

The

following

example

creates

three

business

objects

(myBusObj,

myBusObj2,

and

mysettingBusObj)

and

sets

the

attr1

attribute

of

myBusObj

with

the

value

in

mysettingBusObj.

It

then

clones

all

attributes

of

myBusObj

to

myBusObj2.

BusObj

myBusObj

=

new

BusObj();

BusObj

myBusObj2

=

new

BusObj();

BusObj

mySettingBusObj

=

new

BusObj();

myBusObj.set("attr1",

mySettingBusObj);

myBusObj2.copy(myBusObj);

After

this

code

fragment

executes,

myBusObj.attr1

and

myBusObj2.attr1

are

both

set

to

the

mySettingBusObj

business

object.

However,

if

mySettingBusObj

is

changed

in

any

way,

myBusObj.attr1

changes

but

myBusObj2.attr1

does

not.

Because

the

attributes

of

myBusObj2

were

set

with

copy(),

their

values

were

cloned.

Therefore,

the

value

of

attr1

in

myBusObj2

is

still

the

original

mySettingBusObj.attr1

value

before

the

change.

288

Collaboration

Development

Guide

duplicate()

Create

a

business

object

(BusObj

object)

exactly

like

this

one.

Syntax

BusObj

duplicate()

Return

values

The

duplicate

business

object.

Exceptions

CollaborationException—The

duplicate()

method

can

set

the

following

exception

type

for

this

exception:

ObjectException.

Notes

This

method

makes

a

clone

of

the

business

object

and

returns

it.

You

must

explicitly

assign

the

return

value

of

this

method

call

to

a

declared

variable

of

BusObj

type.

Examples

The

following

example

duplicates

sourceCustomer

in

order

to

create

destCustomer.

BusObj

destCustomer

=

sourceCustomer.duplicate();

equalKeys()

Compare

this

business

object’s

key

attribute

values

with

those

in

the

input

business

object.

Syntax

boolean

equalKeys(BusObjinputBusObj)

Parameters

inputBusObj

A

business

object

to

compare

with

this

business

object.

Return

values

Returns

true

if

the

values

of

all

key

attributes

are

the

same;

returns

false

if

they

are

not

the

same.

Exceptions

CollaborationException—The

equalKeys()

method

can

set

the

following

exception

type

for

this

exception:

v

ObjectException

–

Set

if

the

business

object

argument

is

invalid.

See

also

equals(),

equalsShallow()

Notes

This

method

performs

a

shallow

comparison;

that

is,

it

does

not

compare

the

keys

in

child

business

objects.

Chapter

23.

BusObj

class

289

Examples

The

following

example

compares

the

key

values

of

order2

to

those

in

order1.

boolean

areEqual

=

order1.equalKeys(order2);

equals()

Compare

this

business

object’s

attribute

values

with

those

in

the

input

business

object,

including

child

business

objects.

Syntax

-boolean

equals(Object

inputBusObj)

Parameters

inputBusObj

A

business

object

to

compare

with

this

business

object.

Return

values

Returns

true

if

the

values

of

all

attributes

are

the

same;

otherwise,

returns

false.

Exceptions

CollaborationException—The

equals()

method

can

set

the

following

exception

type

for

this

exception:

v

ObjectException—Set

if

the

business

object

argument

is

invalid.

Notes

This

method

compares

this

business

object’s

attribute

values

with

those

in

the

input

business

object.

If

the

business

objects

are

hierarchical,

the

comparison

includes

all

attributes

in

the

child

business

objects.

Note:

Passing

in

the

business

object

as

an

Object

ensures

that

this

equals()

method

overrides

the

Object.equals()

method.

In

the

comparison,

a

null

value

is

considered

equivalent

to

any

value

to

which

it

is

compared

and

does

not

prevent

a

return

of

true.

See

also

equalKeys(),

equalsShallow()

Examples

The

following

example

compares

all

attributes

of

order2

to

all

attributes

of

order1

and

assigns

the

result

of

the

comparison

to

the

variable

areEqual.

The

comparison

includes

the

attributes

of

child

business

objects,

if

any.

boolean

areEqual

=

order1.equals(order2);

equalsShallow()

Compare

this

business

object’s

attribute

values

with

those

in

the

input

business

object,

excluding

child

business

objects

from

the

comparison.

Syntax

boolean

equalsShallow(BusObj

inputBusObj)

290

Collaboration

Development

Guide

Parameters

inputBusObj

A

business

object

to

compare

with

this

business

object.

Return

values

Returns

true

if

the

values

of

all

attributes

are

the

same;

otherwise,

returns

false.

Exceptions

CollaborationException—The

equalsShallow()

method

can

set

the

following

exception

type

for

this

exception:

v

ObjectException

–

Set

if

the

business

object

argument

is

invalid.

See

also

equalKeys(),

equals()

Examples

The

following

example

compares

attributes

of

order2

with

attributes

of

order1,

excluding

the

attributes

of

child

business

objects,

if

any.

boolean

areEqual

=

order1.equalsShallow(order2);

exists()

Check

for

the

existence

of

a

business

object

attribute

with

a

specified

name.

Syntax

boolean

exists(String

attribute)

Parameters

attribute

The

name

of

an

attribute

Return

values

Returns

true

if

the

attribute

exists;

returns

false

if

the

attribute

does

not

exist.

Examples

The

following

example

checks

whether

business

object

order

has

an

attribute

called

Notes.

boolean

notesAreHere

=

order.exists("Notes");

getBoolean(),

getDouble(),

getFloat(),

getInt(),

getLong(),

get(),

getBusObj(),

getBusObjArray(),

getLongText(),

getString()

Retrieve

the

value

of

a

single

attribute

from

a

business

object.

Syntax

Object

get(String

attribute)

Object

get(int

position)

boolean

getBoolean(String

attribute)

double

getDouble(String

attribute)

float

getFloat(String

attribute)

int

getInt(String

attribute)

long

getLong(String

attribute)

Chapter

23.

BusObj

class

291

Object

get(String

attribute)

BusObj

getBusObj(String

attribute)

BusObjArray

getBusObjArray(String

attribute)

String

getLongText(String

attribute)

String

getString(String

attribute)

Parameters

attribute

The

name

of

an

attribute.

position

is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

value

of

the

specified

attribute.

Exceptions

CollaborationException—These

get

methods

can

set

the

following

exception

type

for

this

exception:

v

AttributeException—Set

if

an

attribute

access

problem

occurs.

For

example,

this

exception

can

be

caused

if

the

collaboration

calls

getDouble()

on

a

String

attribute

that

does

not

consist

of

digits

or

calls

getString()

on

a

nonexistent

attribute.

Notes

These

″get″

methods

retrieve

an

attribute

value

from

the

current

business

object.

They

return

a

copy

of

the

attribute

value.

They

do

not

return

an

object

reference

to

this

attribute

in

the

source

business

object.

Therefore,

any

change

to

attribute

value

in

the

source

business

object

is

not

made

to

value

that

the

particular

get

method

returns.

Each

time

one

of

these

get

methods

is

called,

it

returns

a

new

copy

(clone)

of

the

attribute.

These

get

methods

provide

the

following

forms:

v

The

first

form

returns

a

value

of

the

type

specified

in

the

method

name.

For

example,

getBoolean()

returns

a

boolean

value,

getBusObj()

returns

a

BusObj

value,

getDouble()

returns

a

double

value,

and

so

on.

However,

getLongText()

returns

a

String

object

because

the

InterChange

Server

Express

longtext

type

is

a

String

object

with

no

maximum

size.

Use

these

forms

to

retrieve

attributes

with

specific

basic

or

InterChange

Server

Express-defined

data

types.

These

methods

provide

the

ability

to

access

an

attribute

value

by

specifying

the

name

of

the

attribute.

v

The

second

form,

get(),

retrieves

the

value

of

an

attribute

of

any

type.

You

can

cast

the

returned

value

to

the

appropriate

value

of

the

attribute

type.

This

method

provides

the

ability

to

access

an

attribute

value

by

specifying

either

the

name

of

the

attribute

or

the

attribute’s

index

position

within

the

business

object

attribute

list.

Examples

The

following

example

illustrates

how

get()

returns

a

copy

(clone)

of

the

attribute

value

instead

of

an

object

reference:

292

Collaboration

Development

Guide

BusObj

mySettingBusObj

=

new

BusObj();

BusObj

myBusObj

=

new

BusObj();

myBusObj.set("attr1",

mySettingBusObj);

BusObj

Extract

=

myBusObj.get("attr1");

After

this

code

fragment

executes,

if

you

change

the

Extract

business

object,

mySettingBusObj

does

not

change

because

the

get()

call

returned

a

copy

of

the

attr1

attribute.

The

following

example

uses

getBusObj()

to

retrieve

a

child

business

object

containing

a

customer

address

from

the

customer

business

object

and

assign

it

to

the

variable

address.

BusObj

address

=

customer.getBusObj("Address");

The

following

example

uses

getString()

to

retrieve

the

value

of

the

CustomerName

attribute.

The

business

object

variable

is

sourceCustomer.

String

customerName

=

sourceCustomer.getString("CustomerName");

The

following

example

uses

getInt()

to

retrieve

the

Quantity

values

from

two

business

objects

whose

variables

are

item1

and

item2.

The

example

then

computes

the

sum

of

both

quantities.

int

sumQuantity

=

item1.getInt("Quantity")

+

item2.getInt("Quantity");

The

following

example

retrieves

the

attribute

Item

from

the

business

object

variable

order.

The

attribute

Item

is

a

business

object

array.

BusObjArray

items

=

order.getBusObjArray("Item");

The

following

example

gets

the

CustID

attribute

value

from

the

source

business

object

and

sets

the

Customer

value

in

the

destination

business

object

to

match.

destination.set("Customer",

source.get("CustID"));

The

following

example

accesses

an

attribute

value

using

the

attribute’s

ordinal

position

within

the

attribute

list:

for(i=0;

i<maxAttrCount;

i++)

{

String

strValue

=

(String)myBusObj.get(i);

...

getLocale()

Retrieve

the

locale

associated

with

the

business

object’s

data.

Syntax

java.util.Locale

getLocale()

Parameters

None.

Return

values

A

Java

Locale

object

that

contains

information

about

the

business

object’s

locale.

This

Locale

object

must

be

an

instance

of

the

java.util.Locale

class.

Chapter

23.

BusObj

class

293

Notes

The

getLocale()

method

returns

the

locale

associated

with

the

data

in

a

business

object.

This

locale

is

often

different

from

the

collaboration

locale

in

which

the

collaboration

is

executing.

See

also

getLocale()

(BaseCollaboration

class),

setLocale()

getType()

Retrieve

the

name

of

the

business

object

definition

on

which

this

business

object

was

based.

Syntax

String

getType()

Return

values

The

name

of

a

business

object

definition.

Notes

The

type

of

a

business

object,

in

terms

of

this

method,

is

the

name

of

the

business

object

definition

from

which

the

business

object

was

created.

Examples

The

following

example

retrieves

the

type

of

a

business

object

called

sourceShipTo.

String

typeName

=

sourceShipTo.getType();

The

following

example

copies

a

triggering

event

into

a

new

business

object

of

the

appropriate

type.

BusObj

source

=

new

BusObj(triggeringBusObj.getType());

getVerb()

Retrieve

this

business

object’s

verb.

Syntax

String

getVerb()

Return

values

The

name

of

a

verb,

such

as

Create,

Retrieve,

Update,

or

Delete.

Notes

This

method

is

useful

for

scenarios

that

handle

multiple

types

of

incoming

events.

The

first

action

node

in

a

scenario

calls

getVerb().

The

outgoing

transition

links

from

that

action

node

then

test

the

contents

of

the

returned

string,

so

that

each

outgoing

transition

link

is

the

start

of

an

execution

path

that

handles

one

of

the

possible

verbs.

294

Collaboration

Development

Guide

Examples

The

following

example

obtains

the

verb

from

a

business

object

called

orderEvent

and

assigns

it

to

a

variable

called

orderVerb.

String

orderVerb

=

orderEvent.getVerb();

isBlank()

Find

out

whether

the

value

of

an

attribute

is

set

to

a

zero-length

string.

Syntax

boolean

isBlank(String

attribute)

Parameters

attribute

The

name

of

an

attribute.

Return

values

Returns

true

if

the

attribute

value

is

a

zero-length

string;

otherwise,

returns

false.

Notes

A

zero-length

string

can

be

compared

to

the

string

″″.

It

is

different

from

a

null,

whose

presence

is

detected

by

the

isNull()

method.

If

a

collaboration

needs

to

retrieve

an

attribute

value

and

then

do

something

with

it,

it

can

call

isBlank()

and

isNull()

to

check

that

it

has

a

value

before

retrieving

the

value.

Examples

The

following

example

checks

whether

the

Material

attribute

of

the

sourcePaperClip

business

object

is

a

zero-length

string.

boolean

key

=

sourcePaperClip.isBlank("Material");

isKey()

Find

out

whether

a

business

object’s

attribute

is

defined

as

a

key

attribute.

Syntax

boolean

isKey(String

attribute)

Parameters

attribute

The

name

of

an

attribute.

Return

values

Returns

true

if

the

attribute

is

a

key

attribute;

returns

false

if

it

is

not

a

key

attribute.

Examples

The

following

example

determines

whether

the

CustID

attribute

of

the

customer

business

object

is

a

key

attribute.

boolean

keyAttr

=

(customer.isKey("CustID"));

Chapter

23.

BusObj

class

295

isNull()

Find

out

whether

the

value

of

a

business

object’s

attribute

is

null.

Syntax

boolean

isNull(String

attribute)

Parameters

attribute

The

name

of

an

attribute.

Return

values

Returns

true

if

the

attribute

value

is

null;

returns

false

if

it

is

not

null.

Notes

A

null

indicates

no

value,

in

contrast

to

a

zero-length

string

value,

which

is

detected

by

calling

isBlank().

Test

an

object

with

isNull()

before

using

it,

because

if

the

object

is

null,

the

operation

could

fail.

An

attribute

value

can

be

null

under

these

circumstances:

v

The

attribute

value

was

explicitly

set

to

null.

An

attribute

value

can

be

set

to

null

using

the

set()

method.

v

The

attribute

value

was

never

set.

When

a

collaboration

uses

the

new()

method

to

create

a

new

business

object,

all

attribute

values

are

initialized

to

null.

If

the

attribute

value

has

not

been

set

between

the

time

of

creation

and

the

time

of

the

isNull()

call,

the

value

is

still

null.

v

The

null

was

inserted

during

mapping.

When

a

collaboration

processes

a

business

object

received

from

a

connector,

the

mapping

process

might

insert

a

null

value.

The

mapping

process

converts

the

application-specific

business

object

received

from

the

connector

to

the

generic

business

object

handled

by

the

collaboration.

For

each

attribute

in

the

generic

business

object

that

has

no

equivalent

in

the

application-specific

object,

the

map

inserts

a

null

value.

Tip:

Always

call

isNull()

before

performing

an

operation

on

an

attribute

that

is

a

child

business

object

or

child

business

object

array,

because

Java

does

not

allow

operations

on

null

objects.

Examples

The

following

example

checks

whether

the

Material

attribute

of

the

sourcePaperClip

business

object

has

a

null

value.

boolean

key

=

sourcePaperClip.isNull("Material");

The

following

example

checks

whether

the

CustAddr

attribute

of

the

contract1

business

object

is

null

before

retrieving

it.

The

attribute

retrieval

proceeds

only

if

the

isNull()

check

is

false,

showing

that

the

attribute

is

not

null.

if

(!

contract1.isNull("CustAddr"))

{

BusObj

customerAddress

=

contract1.getBusObj("CustAddr");

//

do

something

with

the

"customerAddress"

business

object

}

296

Collaboration

Development

Guide

isRequired()

Find

out

whether

a

business

object’s

attribute

is

defined

as

a

required

attribute.

Syntax

boolean

isRequired(String

attribute)

Parameters

attribute

The

name

of

an

attribute.

Return

values

Returns

true

if

the

attribute

is

required;

returns

false

if

it

is

not

required.

Notes

If

an

attribute

is

defined

as

required,

it

must

have

a

value

and

the

value

must

not

be

a

null.

Examples

The

following

example

logs

a

warning

if

a

required

attribute

has

a

null

value.

if

(

(customer.isRequired("Address"))

&&

(customerBusObj.isNull("Address"))

)

{

logWarning(12,

"Address

is

required

and

cannot

be

null.");

}

else

{

//

do

something

else

}

keysToString()

Retrieve

the

values

of

a

business

object’s

primary

key

attributes

as

a

string.

Syntax

String

keysToString()

Return

values

A

String

object

containing

all

the

key

values

in

a

business

object,

concatenated,

and

ordered

by

the

ordinal

value

of

the

attributes.

Notes

The

output

from

this

method

contains

the

name

of

the

attribute

and

its

value.

Multiple

values

are

primary

key

attribute

values,

concatenated

and

separated

by

spaces.

For

example,

if

there

is

one

primary

key

attribute,

SS#,

the

output

might

be:

SS#=100408394

If

the

primary

key

attributes

are

FirstName

and

LastName,

the

output

might

be:

FirstName=Nina

LastName=Silk

Chapter

23.

BusObj

class

297

Examples

The

following

example

returns

the

values

of

key

attributes

of

the

business

object

represented

by

the

variable

name

fromOrder.

String

keyValues

=

fromOrder.keysToString();

set()

Set

a

business

object’s

attribute

to

a

specified

value

of

a

particular

data

type.

Syntax

void

set(String

attribute,

Object

value)

void

set(int

position,

Object

value)

void

set(String

attribute,

boolean

value)

void

set(String

attribute,

double

value)

void

set(String

attribute,

float

value)

void

set(String

attribute,

int

value)

void

set(String

attribute,

long

value)

void

set(String

attribute,

Object

value)

void

set(String

attribute,

String

value)

Parameters

attribute

The

name

of

the

attribute

to

set.

position

An

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

value

An

attribute

value.

Exceptions

CollaborationException—The

set()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException—Set

if

an

attribute

access

problem

occurs.

Notes

These

set()

methods

set

an

attribute

value

in

the

current

business

object.

These

methods

set

an

object

reference

when

it

assigns

the

value

to

the

attribute.

It

does

not

clone

the

attribute

value

from

the

source

business

object.

Therefore,

any

changes

to

value

in

the

source

business

object

are

also

made

to

the

attribute

in

the

business

object

that

calls

set().

The

set()

method

provides

the

following

forms:

v

The

first

form

sets

a

value

of

the

type

specified

by

the

method’s

second

parameter

type.

For

example,

set(String

attribute,

boolean

value)

sets

an

attribute

with

a

boolean

value,

set(String

attribute,

double

value)

sets

an

attribute

with

a

double

value,

and

so

on.

Use

this

form

to

set

attributes

with

specific

basic

or

InterChange

Server

Express-defined

data

types.

These

methods

provide

the

ability

to

access

an

attribute

value

by

specifying

the

name

of

the

attribute.

v

The

second

form

sets

the

value

of

an

attribute

of

any

type.

You

can

send

in

any

data

type

as

the

attribute

value

because

the

attribute-value

parameter

is

of

type

Object.

For

example,

to

set

an

attribute

that

is

of

BusObj

or

LongText

object,

use

this

form

of

the

method

and

pass

in

the

BusObj

or

LongText

object

as

the

attribute

value.

298

Collaboration

Development

Guide

This

form

of

the

set()

method

provides

the

ability

to

access

an

attribute

value

by

specifying

either

the

name

of

the

attribute

or

the

attribute’s

index

position

within

the

business

object

attribute

list.

Examples

The

following

example

sets

the

LName

attribute

in

toCustomer

to

the

value

Smith.

toCustomer.set("LName",

"Smith");

The

following

example

illustrates

how

set()

assigns

an

object

reference

instead

of

cloning

the

value:

BusObj

BusObj

myBusObj

=

new

BusObj();

BusObj

mySettingBusObj

=

new

BusObj();

myBusObj.set("attr1",

mySettingBusObj);

After

this

code

fragment

executes,

the

attr1

attribute

of

myBusObj

is

set

to

the

mySettingBusObj

business

object.

If

mySettingBusObj

is

changed

in

any

way,

myBusObj.attr1

is

changed

in

the

exact

manner

because

set()

makes

an

object

reference

to

mySettingBusObj

when

it

sets

the

attr1

attribute;

it

does

not

create

a

static

copy

of

mySettingBusObj.

The

following

example

sets

an

attribute

value

using

the

attribute’s

ordinal

position

within

the

attribute

list:

for(i=0;

i<maxAttrCount;

i++)

{

myBusObj.set(i,

strValue);

...

setDefaultAttrValues()

Set

all

attributes

to

their

default

values.

Syntax

void

setDefaultAttrValues()

Notes

A

business

object

definition

can

include

default

values

for

attributes.

The

method

sets

the

values

of

this

business

object’s

attributes

to

the

values

specified

as

defaults

in

the

definition.

Examples

The

following

example

sets

the

values

of

the

PaperClip

business

object

to

their

default

values:

PaperClip.setDefaultAttrValues();

setKeys()

Set

the

values

of

this

business

object’s

key

attributes

to

the

values

of

the

key

attributes

in

another

business

object.

Syntax

void

setKeys(BusObj

inputBusObj)

Chapter

23.

BusObj

class

299

Parameters

inputBusObj

The

business

object

whose

values

are

used

to

set

values

of

another

business

object

Exceptions

CollaborationException—The

setKeys()

method

can

set

one

of

the

following

exception

types

for

this

exception:

v

AttributeException

–

Set

if

an

attribute

access

problem

occurs.

v

ObjectException

–

Set

if

the

business

object

argument

is

invalid.

Examples

The

following

example

sets

the

key

values

in

the

business

object

helpdeskCustomer

to

the

key

values

in

the

business

object

ERPCustomer.

helpdeskCustomer.setKeys(ERPCustomer);

setLocale()

Set

the

locale

of

the

current

business

object.

Syntax

void

setLocale(java.util.Locale

locale)

Parameters

locale

The

Java

Locale

object

that

contains

the

information

about

the

locale

to

assign

to

the

business

object.

This

Locale

object

must

be

an

instance

of

the

java.util.Locale

class.

Return

values

None.

Notes

The

setLocale()

method

assigns

a

locale

to

the

data

associated

with

a

business

object.

This

locale

might

be

different

from

the

collaboration

locale

in

which

the

collaboration

executes.

See

also

getLocale()

setVerb()

Set

the

verb

of

a

business

object.

Syntax

void

setVerb(String

verb)

Parameters

verb

The

verb

of

the

business

object.

300

Collaboration

Development

Guide

Notes

This

method

is

used

in

mapping

business

objects.

Do

not

use

this

method

in

a

collaboration

template,

where

you

must

set

the

verb

of

an

outgoing

business

object

interactively

by

filling

in

the

properties

of

a

service

call.

Examples

The

following

example

sets

the

verb

Delete

on

the

business

object

contactAddress.

contactAddress.setVerb("Delete");

setWithCreate()

Set

a

business

object’s

attribute

to

a

value

of

a

specified

data

type.

Syntax

void

setWithCreate(String

attributeName,

BusObj

busObj)

void

setWithCreate(String

attributeName,

BusObjArray

busObjArray)

void

setWithCreate(String

attributeName,

Object

value)

Parameters

attributeName

The

name

of

the

attribute

to

set.

busObj

The

business

object

to

insert

into

the

target

attribute.

busObjArray

The

business

object

array

to

insert

into

the

target

attribute.

value

The

object

to

insert

into

the

target

attribute.

This

object

needs

to

be

one

of

the

following

types:

BusObj,

BusObjArray,

Object.

Exceptions

CollaborationException—The

setWithCreate()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException—Set

if

an

attribute

access

problem

occurs.

Notes

If

the

object

provided

is

a

BusObj

and

the

target

attribute

contains

multi-cardinality

child

business

object,

the

BusObj

is

appended

to

the

BusObjArray

as

its

last

element.

If

the

target

attribute

contains

a

BusObj,

however,

this

business

object

replaces

the

previous

value.

Examples

The

following

example

sets

an

attribute

called

ChildAttrAttr

to

the

value

5.

The

attribute

is

found

in

a

business

object

contained

in

myBO’s

attribute,

ChildAttr.

If

the

childAttr

business

object

does

not

exist

at

the

time

of

the

call,

this

method

call

creates

it.

myBO.setWithCreate("childAttr.childAttrAttr",

"5");

toString()

Return

the

values

of

all

attributes

in

a

business

object

as

a

string.

Chapter

23.

BusObj

class

301

Syntax

String

toString()

Return

values

A

String

object

containing

all

attribute

values

contained

in

a

business

object.

Notes

The

string

that

results

from

a

call

to

this

method

is

similar

to

the

following

example:

Name:

GenEmployee

Verb:

Create

Type:

AfterImage

Attributes:

(Name,

Type,

Value)

LastName:String,

Davis

FirstName:String,

Miles

SS#:String,

041-33-8989

Salary:Float,

15.00

ObjectEventId:String,

MyConnector_922323619411_1

Examples

The

following

example

returns

a

string

containing

the

attribute

values

of

the

business

object

variable

fromOrder.

String

values

=

fromOrder.toString();

validData()

Checks

whether

a

specified

value

is

a

valid

data

type

for

a

specified

attribute.

Syntax

boolean

validData(String

attributeName,

Object

value)

boolean

validData(String

attributeName,

BusObj

value)

boolean

validData(String

attributeName,

BusObjArray

value)

boolean

validData(String

attributeName,

String

value)

boolean

validData(String

attributeName,

long

value)

boolean

validData(String

attributeName,

int

value)

boolean

validData(String

attributeName,

double

value)

boolean

validData(String

attributeName,

float

value)

boolean

validData(String

attributeName,

boolean

value)

Parameters

attributeName

The

attribute.

value

The

value.

Returns

true

or

false

(boolean

return)

Notes

Checks

the

compatibility

of

the

value

passed

in

with

the

target

attribute

(as

specified

by

attributeName).

These

are

the

criteria:

for

primitive

types

(String,

long,

int,

double,

float,

boolean)

the

value

must

be

convertible

to

the

data

type

of

the

attribute

302

Collaboration

Development

Guide

for

a

BusObj

the

value

must

have

the

same

type

as

that

of

the

target

attribute

for

a

BusObjArray

the

value

must

point

to

a

BusObj

or

BusObjArray

with

the

same

(business

object

definition)

type

as

that

of

the

attribute

for

an

Object

the

value

must

be

of

type

String,

BusObj,

or

BusObjArray.

The

corresponding

validation

rules

are

then

applied.

Deprecated

method

Some

methods

in

the

BusObj

class

were

supported

in

earlier

versions

but

are

no

longer

supported.

Use

of

these

deprecated

methods

does

not

generate

an

error.

However,

it

is

highly

recommended

that

you

avoid

their

use

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

Table

60

lists

the

deprecated

methods

for

the

BusObj

class

and

the

replacement

methods.

If

you

have

not

used

Process

Designer

Express

before,

ignore

this

section.

Table

60.

Deprecated

methods,

BusObj

class

Former

method

Replacement

getCount()

BusObjArray.size()

getKeys()

keysToString()

getValues()

toString()

not

standard

Java

NOT

operator,

“!”

set(BusObj

inputBusObj)

copy()

All

methods

that

took

a

child

business

object

or

child

business

object

array

as

an

input

argument

Get

a

handle

to

the

child

business

object

or

business

object

array

and

use

the

methods

of

the

BusObj

or

BusObjArray

class

The

setVerb()

method,

which

was

previously

listed

as

deprecated,

is

now

restored

for

use

in

mapping.

Do

not

use

it

within

a

collaboration.

Chapter

23.

BusObj

class

303

304

Collaboration

Development

Guide

Chapter

24.

BusObjArray

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

BusObjArray

class.

They

are

defined

on

the

InterChange

Server

Express-defined

class

BusObjArray.

The

BusObjArray

class

encapsulates

an

array

of

business

objects.

In

a

hierarchical

business

object,

an

attribute

is

a

reference

to

an

array

of

child

business

objects

when

its

cardinality

is

equal

to

n.

Operations

on

the

BusObjArray

class

can

return

either

a

BusObjArray

object

or

an

actual

array

of

business

objects.

Table

61

lists

the

methods

documented

in

this

chapter.

Table

61.

BusObjArray

method

summary

Method

Description

Page

addElement()

Add

a

business

object

to

this

business

object

array.

306

duplicate()

Create

a

business

object

array

(a

BusObjArray

object)

exactly

like

this

one.

306

elementAt()

Retrieve

a

single

business

object

by

specifying

its

position

in

this

business

object

array.

307

equals()

Compare

another

business

object

array

with

this

one.

307

getElements()

Retrieve

the

contents

of

this

business

object

array.

307

getLastIndex()

Retrieve

the

last

available

index

from

a

business

object

array.

308

max()

Retrieve

the

maximum

value

for

the

specified

attribute

among

all

elements

in

this

business

object

array.

308

maxBusObjArray()

Returns

the

business

objects

that

have

the

maximum

value

for

the

specified

attribute,

as

a

business

object

array

(BusObjArray

object).

309

maxBusObjs()

Returns

the

business

objects

that

have

the

maximum

value

for

the

specified

attribute,

as

an

array

of

BusObj

objects.

310

min()

Retrieve

the

minimum

value

for

the

specified

attribute

among

the

business

objects

in

this

array.

311

minBusObjArray()

Returns

the

business

objects

that

have

the

minimum

value

for

the

specified

attribute,

as

a

BusObjArray

object.

312

minBusObjs()

Returns

the

business

objects

that

have

the

minimum

value

for

the

specified

attribute,

as

an

array

of

BusObj

objects.

313

removeAllElements()

Remove

all

elements

from

this

business

object

array.

314

removeElement()

Delete

an

element

from

a

business

object

array.

314

removeElementAt()

Remove

an

element

at

a

particular

position

in

this

business

object

array.

314

setElementAt()

Set

the

value

of

a

business

object

in

a

business

object

array.

315

©

Copyright

IBM

Corp.

2003

305

Table

61.

BusObjArray

method

summary

(continued)

Method

Description

Page

size()

Return

the

number

of

elements

in

this

business

object

array.

315

sum()

Adds

the

values

of

the

specified

attribute

for

all

business

objects

in

this

business

object

array.

316

swap()

Reverse

the

positions

of

two

business

objects

in

a

business

object

array.

Keep

in

mind

that

the

first

element

in

the

array

is

zero

(0),

the

second

is

1,

the

third

is

2,

and

so

on.

316

toString()

Retrieve

the

values

in

this

business

object

array

and

return

them

in

a

single

string.

317

addElement()

Add

a

business

object

to

this

business

object

array.

Syntax

void

addElement(BusObj

element)

Parameters

element

A

business

object

to

add

to

the

array.

Exceptions

CollaborationException—The

addElement()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

–

Set

if

the

element

is

not

valid.

Examples

The

following

example

uses

the

getBusObArray()

method

to

retrieve

an

array

of

business

objects

called

itemList

from

the

business

object

order.

The

array

is

assigned

to

items,

and

then

a

new

business

object

is

added

to

items.

BusObjArray

items

=

order.getBusObjArray("itemList");

items.addElement(new

BusObj("oneItem"));

duplicate()

Create

a

business

object

array

(a

BusObjArray

object)

exactly

like

this

one.

Syntax

BusObjArray

duplicate()

Return

values

A

business

object

array.

Examples

The

following

example

duplicates

the

items

array,

creating

newItems.

BusObjArray

newItems

=

items.duplicate();

306

Collaboration

Development

Guide

elementAt()

Retrieve

a

single

business

object

by

specifying

its

position

in

this

business

object

array.

Syntax

BusObj

elementAt(int

index)

Parameters

index

The

array

element

to

retrieve.

The

first

element

in

the

array

is

zero

(0),

the

second

is

1,

the

third

is

2,

and

so

on.

Exceptions

CollaborationException—The

elementAt()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

–

Set

if

the

element

is

not

valid.

Examples

The

following

example

retrieves

the

11th

business

object

in

the

items

array

and

assigns

it

to

the

Item

variable.

BusObj

Item

=

items.elementAt(10);

equals()

Compare

another

business

object

array

with

this

one.

Syntax

boolean

equals(BusObjArray

inputBusObjArray)

Parameters

inputBusObjArray

A

business

object

array

to

compare

with

this

business

object

array.

Notes

The

comparison

between

the

two

business

object

arrays

checks

the

number

of

elements

and

their

attribute

values.

Examples

The

following

example

uses

equals()

to

set

up

a

conditional

loop,

the

inside

of

which

is

not

shown.

if

(items.equals(newItems))

{

...

}

getElements()

Retrieve

the

contents

of

this

business

object

array.

Chapter

24.

BusObjArray

class

307

Syntax

BusObj[]

getElements()

Exceptions

CollaborationException—The

getElements()

method

can

set

the

following

exception

type

for

this

exception:

v

ObjectException—Set

if

one

of

the

elements

is

not

valid.

Examples

The

following

example

prints

the

elements

of

the

items

array.

BusObj[]

elements

=

items.getElements();

for

(i=0,

i<size;

i++)

{

trace(1,

elements[i].toString());

}

getLastIndex()

Retrieve

the

last

available

index

from

a

business

object

array.

Syntax

int

getLastIndex()

Returns

The

last

index

to

the

last

element

in

this

BusObjArray.

Notes

Note

that,

previously,

the

size()

method

was

used

to

do

this.

That

is,

the

user

would

use

the

size()

of

the

business

object

array

to

retrieve

the

last

index

available

in

a

BusObjArray.

Unfortunately,

this

approach

yields

incorrect

data

if

the

BusObjArray

contains

gaps.

Like

all

Java

arrays,

BusObjArray

is

a

zero

relative

array.

This

means

that

the

size()

method

will

return

1

greater

than

the

getLastIndex()

method.

Examples

The

following

example

retrieves

the

last

index

in

the

business

object

array.

int

lastElementIndex

=

items.getLastIndex();

max()

Retrieve

the

maximum

value

for

the

specified

attribute

among

all

elements

in

this

business

object

array.

Syntax

String

max(String

attr)

Parameters

attr

A

variable

that

refers

to

an

attribute

in

the

business

object.

The

attribute

must

be

one

of

these

types:

String,

LongText,

int,

float,

and

double.

308

Collaboration

Development

Guide

Returns

The

maximum

value

of

the

specified

attribute

in

the

form

of

a

string,

or

null

if

the

value

for

that

attribute

is

null

for

all

elements

in

this

BusObjArray.

Exceptions

UnknownAttributeException—When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException—When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

max()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Notes

The

max()

method

looks

for

the

maximum

value

for

the

specified

attribute

among

the

business

objects

in

this

BusObjArray.

For

example,

if

three

employee

objects

are

used,

and

the

attribute

is

“Salary”

which

is

of

type

“Float,”

it

will

return

the

string

representing

the

largest

salary.

If

the

value

of

the

specified

attribute

for

an

element

in

BusObjArray

is

null,

then

that

element

is

ignored.

If

the

value

of

the

specified

attribute

is

null

for

all

elements,

then

null

is

returned.

When

the

attribute

type

is

of

type

String,

max()

returns

the

attribute

value

that

is

the

longest

string

lexically.

Examples

String

maxSalary

=

items.max("Salary");

maxBusObjArray()

Returns

the

business

objects

that

have

the

maximum

value

for

the

specified

attribute,

as

a

business

object

array

(BusObjArray

object).

Syntax

BusObjArray

maxBusObjArray(String

attr)

Parameters

attr

A

String,

LongText,

int,

float,

or

double

variable

that

refers

to

an

attribute

in

a

business

object

in

the

business

object

array.

Returns

A

list

of

business

objects

in

the

form

of

BusObjArray

or

null.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

Chapter

24.

BusObjArray

class

309

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

maxBusObjArray()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Notes

The

maxBusObjArray()

method

finds

one

or

more

business

objects

with

the

maximum

value

for

the

specified

attribute,

and

returns

these

business

objects

in

a

BusObjArray

object.

For

example,

suppose

that

this

is

a

business

object

array

containing

Employee

business

objects

and

that

the

input

argument

is

the

attribute

Salary,

a

Float.

The

method

determines

the

largest

value

for

Salary

in

all

the

Employee

business

objects

and

returns

the

business

object

that

contains

that

value.

If

multiple

business

objects

have

that

largest

Salary

value,

the

method

returns

all

of

those

business

objects.

A

business

object

is

ignored

if

the

specified

attribute

contains

null.

If

the

value

is

null

in

all

business

objects

in

the

array,

null

is

returned.

When

the

attribute

is

of

type

String,

the

method

returns

the

longest

string

lexically.

Examples

BusObjArray

boarrayWithMaxSalary

=

items.maxBusObjArray("Salary");

maxBusObjs()

Returns

the

business

objects

that

have

the

maximum

value

for

the

specified

attribute,

as

an

array

of

BusObj

objects.

Syntax

BusObj[]

maxBusObjs(String

attr)

Parameters

attr

A

String,

LongText,

int,

float,

or

double

variable

that

refers

to

an

attribute

in

the

business

object.

Returns

A

list

of

business

objects

in

the

form

of

a

BusObj[]

or

null.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

maxBusObjs()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

310

Collaboration

Development

Guide

Notes

The

maxBusObjs()

method

finds

one

or

more

business

objects

with

the

maximum

value

for

the

specified

attribute,

and

returns

these

business

objects

as

an

array

of

BusObj

objects.

For

example,

suppose

that

this

is

a

business

object

array

containing

Employee

business

objects

and

that

the

input

argument

is

the

attribute

Salary,

a

Float.

The

method

determines

the

largest

value

for

Salary

in

all

the

Employee

business

objects

and

returns

the

business

object

that

contains

that

value.

If

multiple

business

objects

have

that

largest

Salary

value,

the

method

returns

all

of

those

business

objects.

A

business

object

is

ignored

if

the

specified

attribute

contains

null.

If

the

value

is

null

in

all

business

objects

in

the

array,

null

is

returned.

When

the

attribute

is

of

type

String,

the

method

returns

the

longest

string

lexically.

Examples

BusObj[]

bosWithMaxSalary

=

items.maxBusObjs("Salary");

min()

Retrieve

the

minimum

value

for

the

specified

attribute

among

the

business

objects

in

this

array.

Syntax

String

min(String

attr)

Parameters

attr

A

String,

LongText,

int,

float,

or

double

variable

that

refers

to

an

attribute

in

the

business

object.

Returns

The

minimum

value

of

the

specified

attribute

in

the

form

of

a

string,

or

null

if

the

value

for

that

attribute

is

null

for

all

elements

in

this

BusObjArray.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

min()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Notes

The

min()

method

looks

for

the

minimum

value

for

the

specified

attribute

among

the

business

objects

in

this

business

object

array.

For

example,

suppose

that

this

is

a

business

object

array

containing

Employee

business

objects

and

that

the

input

argument

is

the

attribute

Salary,

a

Float.

The

Chapter

24.

BusObjArray

class

311

method

determines

the

smallest

value

for

Salary

in

all

the

Employee

business

objects

and

returns

the

business

object

that

contains

that

value.

If

multiple

business

objects

have

that

lowest

Salary

value,

the

method

returns

all

of

those

business

objects.

A

business

object

is

ignored

if

the

specified

attribute

contains

null.

If

the

value

is

null

in

all

business

objects

in

the

array,

null

is

returned.

When

the

attribute

is

of

type

String,

the

method

returns

the

shortest

string

lexically.

Examples

String

minSalary

=

items.min("Salary");

minBusObjArray()

Returns

the

business

objects

that

have

the

minimum

value

for

the

specified

attribute,

as

a

BusObjArray

object.

Syntax

BusObjArray

minBusObjArray(String

attr)

Parameters

attr

A

String,

LongText,

int,

float,

or

double

variable

that

refers

to

an

attribute

in

the

business

object.

Returns

A

list

of

business

objects

in

the

form

of

BusObjArray

or

null.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

minBusObjArray()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Notes

The

minBusObjArray()

method

finds

one

or

more

business

objects

with

the

minimum

value

for

the

specified

attribute,

and

returns

these

business

objects

in

a

BusObjArray

object.

For

example,

suppose

that

this

is

a

business

object

array

containing

Employee

business

objects

and

that

the

input

argument

is

the

attribute

Salary,

a

Float.

The

method

determines

the

smallest

value

for

Salary

in

all

the

Employee

business

objects

and

returns

the

business

object

that

contains

that

value.

If

multiple

business

objects

have

that

smallest

Salary

value,

the

method

returns

all

of

those

business

objects.

312

Collaboration

Development

Guide

A

business

object

is

ignored

if

the

specified

attribute

contains

null.

If

the

value

is

null

in

all

business

objects

in

the

array,

null

is

returned.

When

the

attribute

is

of

type

String,

the

method

returns

the

shortest

string

lexically.

Examples

BusObjArray

boarrayWithMinSalary

=

items.minBusObjArray("Salary");

minBusObjs()

Returns

the

business

objects

that

have

the

minimum

value

for

the

specified

attribute,

as

an

array

of

BusObj

objects.

Syntax

BusObj[]

minBusObjs(String

attr)

Parameters

attr

A

String,

LongText,

int,

float,

or

double

variable

that

refers

to

an

attribute

in

the

business

object.

Returns

A

list

of

business

objects

in

the

form

of

a

BusObj[]

or

null.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

minBusObjs()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Notes

The

minBusObjs()

method

finds

one

or

more

business

objects

with

the

maximum

value

for

the

specified

attribute,

and

returns

these

business

objects

as

an

array

of

BusObj

objects.

For

example,

suppose

that

this

is

a

business

object

array

containing

Employee

business

objects

and

that

the

input

argument

is

the

attribute

Salary,

a

Float.

The

method

determines

the

smallest

value

for

Salary

in

all

the

Employee

business

objects

and

returns

the

business

object

that

contains

that

value.

If

multiple

business

objects

have

that

smallest

Salary

value,

the

method

returns

all

of

those

business

objects.

A

business

object

is

ignored

if

the

specified

attribute

contains

null.

If

the

value

is

null

in

all

business

objects

in

the

array,

null

is

returned.

When

the

attribute

is

of

type

String,

the

method

returns

the

shortest

string

lexically.

Chapter

24.

BusObjArray

class

313

Examples

BusObj[]

bosWithMinSalary

=

items.minBusObjs("Salary");

removeAllElements()

Remove

all

elements

from

this

business

object

array.

Syntax

void

removeAllElements()

Examples

The

following

example

removes

all

elements

of

the

array

items.

items.removeAllElements();

removeElement()

Delete

an

element

from

a

business

object

array.

Syntax

void

removeElement(BusObj

element)

Parameters

elementReference

A

variable

that

refers

to

an

element

of

the

array.

Exceptions

CollaborationException—The

removeElement()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

–

Set

if

the

element

is

not

valid.

Notes

After

you

delete

an

element

from

the

array,

the

array

resizes,

changing

the

indexes

of

existing

elements.

Examples

The

following

example

deletes

the

element

Child1

from

the

business

object

array

items.

items.removeElement(Child1);

removeElementAt()

Remove

an

element

at

a

particular

position

in

this

business

object

array.

Syntax

void

removeElementAt(int

index)

Notes

After

an

element

is

removed

from

the

array,

the

array

resizes,

possibly

changing

the

indexes

of

existing

elements.

314

Collaboration

Development

Guide

Parameters

index

An

integer

representing

the

element’s

position

within

the

array.

The

first

element

in

an

array

is

at

position

zero

(0),

the

second

element

is

at

position

1,

the

third

is

at

position

2,

and

so

forth.

Exceptions

CollaborationException—The

removeElementAt()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

–

Set

if

the

element

is

not

valid.

Examples

The

following

example

deletes

the

sixth

business

object

in

the

array

items.

items.removeElementAt(5);

setElementAt()

Set

the

value

of

a

business

object

in

a

business

object

array.

Syntax

void

setElementAt

(int

index,

BusObj

element)

Parameters

index

An

integer

representing

the

array

position.

The

first

element

in

the

array

is

zero

(0),

the

second

is

1,

the

third

is

2,

and

so

on.

inputBusObj

The

business

object

containing

the

values

to

which

you

want

to

set

the

array

element.

Exceptions

CollaborationException—The

setElementAt()

method

can

set

the

following

exception

type

for

this

exception:

v

AttributeException

–

Set

if

the

element

is

not

valid.

Notes

This

method

sets

the

values

of

the

business

object

at

a

specified

array

position

to

the

values

of

an

input

business

object.

Examples

The

following

example

creates

a

new

business

object

of

type

Item

and

adds

it

to

the

array

items,

as

the

fourth

element.

items.setElementAt(3,

new

BusObj("Item"));

size()

Return

the

number

of

elements

in

this

business

object

array.

Syntax

int

size()

Chapter

24.

BusObjArray

class

315

Examples

The

following

example

returns

the

number

of

elements

in

the

array

items.

int

size

=

items.size();

sum()

Adds

the

values

of

the

specified

attribute

for

all

business

objects

in

this

business

object

array.

Syntax

double

sum(String

attrName)

Parameters

attr

A

variable

that

refers

to

an

attribute

in

the

business

object.

The

attribute

must

be

of

type

int,

float,

or

double.

Returns

The

sum

of

the

specified

attribute

from

the

list

of

the

business

objects.

Exceptions

UnknownAttributeException

–

When

the

specified

attribute

is

not

a

valid

attribute

in

the

business

objects

passed

in.

UnsupportedAttributeTypeException

–

When

the

type

of

the

specified

attribute

is

not

one

of

the

supported

attribute

types

listed

in

the

note

section.

All

of

the

above

exceptions

are

subclassed

from

CollaborationException.

The

sum()

method

can

set

the

following

exception

type

for

these

exceptions:

AttributeException.

Examples

double

sumSalary

=

items.sum("Salary");

swap()

Reverse

the

positions

of

two

business

objects

in

a

business

object

array.

Keep

in

mind

that

the

first

element

in

the

array

is

zero

(0),

the

second

is

1,

the

third

is

2,

and

so

on.

Syntax

void

swap(int

index1,

int

index2)

Parameters

index1

The

array

position

of

one

element

you

want

to

swap.

index2

The

array

position

of

the

other

element

you

want

to

swap.

316

Collaboration

Development

Guide

Examples

The

following

example

uses

swap()

to

reverse

the

positions

of

BusObjA

and

BusObjC

in

the

following

array:

BusObjA BusObjB BusObjC

swap(0,2);

The

result

of

the

call

to

swap()

is

the

following

array:

BusObjC BusObjB BusObjA

toString()

Retrieve

the

values

in

this

business

object

array

and

return

them

in

a

single

string.

Syntax

String

toString()

Examples

The

following

example

uses

toString()

to

retrieve

the

contents

of

the

items

business

object

array

and

then

uses

logInfo()

to

write

the

contents

to

the

log

file.

logInfo(items.toString());

Chapter

24.

BusObjArray

class

317

318

Collaboration

Development

Guide

Chapter

25.

CwDBConnection

class

The

CwDBConnection

class

provides

methods

for

executing

SQL

queries

in

a

database.

Queries

are

performed

through

a

connection,

which

is

obtained

from

a

connection

pool.

To

instantiate

this

class,

you

must

call

getDBConnection()

in

the

BaseCollaboration

class.

All

collaborations

are

derived

or

subclassed

from

BaseCollaboration

so

they

have

access

to

getDBConnection().

Table

62

summarizes

the

methods

in

the

CwDBConnection

class.

Table

62.

CwDBConnection

method

summary

Method

Description

Page

beginTransaction()

Begins

an

explicit

transaction

for

the

current

connection.

319

commit()

Commits

the

active

transaction

associated

with

the

current

connection.

320

executeSQL()

Executes

a

static

SQL

query

by

specifying

its

syntax

and

an

optional

parameter

array.

322

executePreparedSQL()

Executes

a

prepared

SQL

query

by

specifying

its

syntax

and

an

optional

parameter

array.

321

executeStoredProcedure()

Executes

an

SQL

stored

procedure

by

specifying

its

name

and

parameter

array.

324

getUpdateCount()

Returns

the

number

of

rows

affected

by

the

last

write

operation

to

the

database.

325

hasMoreRows()

Determines

whether

the

query

result

has

more

rows

to

process.

326

inTransaction()

Determines

whether

a

transaction

is

in

progress

in

the

current

connection.

326

isActive()

Determines

whether

the

current

connection

is

active.

327

nextRow()

Retrieves

the

next

row

from

the

query

result.

327

release()

Releases

use

of

the

current

connection,

returning

it

to

its

connection

pool.

328

rollBack()

Rolls

back

the

active

transaction

associated

with

the

current

connection.

329

beginTransaction()

Begins

an

explicit

transaction

for

the

current

connection.

Syntax

void

beginTransaction()

Parameters

None.

Return

values

None.

Exceptions

CwDBConnectionException—If

a

database

error

occurs.

©

Copyright

IBM

Corp.

2003

319

Notes

The

beginTransaction()

method

marks

the

beginning

of

a

new

explicit

transaction

in

the

current

connection.

The

beginTransaction(),

commit()

and

rollBack()

methods

together

provide

management

of

transaction

boundaries

for

an

explicit

transaction.

This

transaction

contains

SQL

queries,

which

include

the

SQL

statements

INSERT,

DELETE,

or

UPDATE,

and

a

stored

procedure

that

includes

one

of

these

SQL

statements.

Important:

Only

use

beginTransaction()

if

the

connection

uses

explicit

transaction

bracketing.

If

the

connection

uses

implicit

transaction

bracketing,

use

of

beginTransaction()

results

in

a

CwDBTransactionException

exception.

Before

beginning

an

explicit

transaction,

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseCollaboration

class.

Make

sure

that

this

connection

uses

explicit

transaction

bracketing

Examples

The

following

example

uses

a

transaction

to

execute

a

query

for

inserting

rows

into

a

table

in

the

database

associated

with

connections

in

the

CustDBConnPool.

CwDBConnection

connection

=

getDBConnection("CustDBConnPool",

false);

//

Begin

a

transaction

connection.beginTransaction();

//

Insert

a

row

connection.executeSQL("insert...");

//

Commit

the

transaction

connection.commit();

//

Release

the

connection

connection.release();

See

also

“Managing

the

transaction”

on

page

177

commit(),

getDBConnection(),

inTransaction(),

rollBack()

commit()

Commits

the

active

transaction

associated

with

the

current

connection.

Syntax

void

commit()

Parameters

None.

Return

values

None.

Exceptions

CwDBConnectionException

–

If

a

database

error

occurs.

320

Collaboration

Development

Guide

Notes

The

commit()

method

ends

the

active

transaction

by

committing

any

changes

made

to

the

database

associated

with

the

current

connection.

The

beginTransaction(),

commit()

and

rollBack()

methods

together

provide

management

of

transaction

boundaries

for

an

explicit

transaction.

This

transaction

contains

SQL

queries,

which

include

the

SQL

statements

INSERT,

DELETE,

or

UPDATE,

and

a

stored

procedure

that

includes

one

of

these

SQL

statements.

Important:

Only

use

commit()

if

the

connection

uses

explicit

transaction

bracketing.

If

the

connection

uses

implicit

transaction

bracketing,

use

of

commit()

results

in

a

CwDBTransactionException

exception.

If

you

do

not

end

an

explicit

transaction

with

commit()

(or

rollback())

before

the

connection

is

released,

InterChange

Server

implicitly

ends

the

transaction

based

on

the

success

of

the

collaboration.

If

the

collaboration

is

successful,

ICS

commits

this

database

transaction.

If

the

collaboration

is

not

successful,

ICS

implicitly

rolls

back

the

database

transaction.

Regardless

of

the

success

of

the

collaboration,

ICS

logs

a

warning.

Before

beginning

an

explicit

transaction,

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseCollaboration

class.

Make

sure

that

this

connection

uses

explicit

transaction

bracketing

Examples

For

an

example

of

committing

a

transaction,

see

the

example

for

beginTransaction().

See

also

“Managing

the

transaction”

on

page

177

beginTransaction(),

getDBConnection(),

inTransaction(),

rollBack()

executePreparedSQL()

Executes

a

prepared

SQL

query

by

specifying

its

syntax

and

an

optional

parameter

array.

Syntax

void

executePreparedSQL(String

query)

void

executePreparedSQL(String

query,

Vector

queryParameters)

Parameters

query

A

string

representation

of

the

SQL

query

to

execute

in

the

database.

queryParameters

A

Vector

object

of

arguments

to

pass

to

parameters

in

the

SQL

query.

Return

values

None.

Chapter

25.

CwDBConnection

class

321

Exceptions

CwDBSQLException

–

If

a

database

error

occurs.

Notes

The

executePreparedSQL()

method

sends

the

specified

query

string

as

a

prepared

SQL

statement

to

the

database

associated

with

the

current

connection.

The

first

time

it

executes,

this

query

is

sent

as

a

string

to

the

database,

which

compiles

the

string

into

an

executable

form

(called

a

prepared

statement),

executes

the

SQL

statement,

and

returns

this

prepared

statement

to

executePreparedSQL().

The

executePreparedSQL()

method

saves

this

prepared

statement

in

memory.

Use

executePreparedSQL()

for

SQL

statements

that

you

need

to

execute

multiple

times.

The

executeSQL()

method

does

not

save

the

prepared

statement

and

is

therefore

useful

for

queries

you

need

to

execute

only

once.

Important:

Before

executing

a

query

with

executePreparedSQL(),

you

must

obtain

a

connection

to

the

desired

database

by

generating

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

The

SQL

statements

you

can

execute

include

the

following

(as

long

as

you

have

the

necessary

database

permissions):

v

The

SELECT

statement

to

request

data

from

one

or

more

database

tables

Use

the

hasMoreRows()

and

nextRow()

methods

to

access

the

retrieved

data.

v

SQL

statements

that

modify

data

in

the

database

–

INSERT

–

DELETE

–

UPDATE

If

the

connection

uses

explicit

transaction

bracketing,

you

must

explicitly

start

each

transaction

with

beginTransaction()

and

end

it

with

either

commit()

or

rollback().

v

The

CALL

statement

to

execute

a

prepared

stored

procedures

with

the

limitation

that

this

stored

procedure

cannot

use

any

OUT

parameters

To

execute

stored

procedures

with

OUT

parameters,

use

the

executeStoredProcedure()

method.

For

more

information,

see

“Calling

stored

procedures

with

executeStoredProcedure()”

on

page

174.

See

also

“Executing

prepared

queries”

on

page

170

beginTransaction(),

commit(),

executeSQL(),

executeStoredProcedure(),

getDBConnection(),

hasMoreRows(),

nextRow(),

rollBack()

executeSQL()

Executes

a

static

SQL

query

by

specifying

its

syntax

and

an

optional

parameter

array.

Syntax

void

executeSQL(String

query)

void

executeSQL(String

query,

Vector

queryParameters)

322

Collaboration

Development

Guide

Parameters

query

A

string

representation

of

the

SQL

query

to

execute

in

the

database.

queryParameters

A

Vector

object

of

arguments

to

pass

to

parameters

in

the

SQL

query.

Return

values

None.

Exceptions

CwDBSQLException

–

If

a

database

error

occurs.

Notes

The

executeSQL()

method

sends

the

specified

query

string

as

a

static

SQL

statement

to

the

database

associated

with

the

current

connection.

This

query

is

sent

as

a

string

to

the

database,

which

compiles

the

string

into

an

executable

form

and

executes

the

SQL

statement,

without

saving

this

executable

form.

Use

executeSQL()

for

SQL

statements

that

you

need

to

execute

only

once.

The

executePreparedSQL()

method

saves

the

executable

form

(called

a

prepared

statement)

and

is

therefore

useful

for

queries

you

need

to

execute

multiple

times.

Important:

Before

executing

a

query

with

executeSQL(),

you

must

obtain

a

connection

to

the

desired

database

by

generating

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

The

SQL

statements

you

can

execute

include

the

following

(as

long

as

you

have

the

necessary

database

permissions):

v

The

SELECT

statement

to

request

data

from

one

or

more

database

tables

Use

the

hasMoreRows()

and

nextRow()

methods

to

access

the

retrieved

data.

v

SQL

statements

that

modify

data

in

the

database

–

INSERT

–

DELETE

–

UPDATE

If

the

connection

uses

explicit

transaction

bracketing,

you

must

explicitly

start

each

transaction

with

beginTransaction()

and

end

it

with

either

commit()

or

rollback().

v

The

CALL

statement

to

statically

execute

a

stored

procedures

with

the

limitation

that

this

stored

procedure

cannot

use

any

OUT

parameters

To

execute

stored

procedures

with

OUT

parameters,

use

the

executeStoredProcedure()

method.

For

more

information,

see

“Calling

stored

procedures

with

executeStoredProcedure()”

on

page

174.

Examples

The

following

example

executes

a

query

for

inserting

rows

into

an

accounting

database

whose

connections

reside

in

the

AccntConnPool

connection

pool.

CwDBConnection

connection

=

getDBConnection("AccntConnPool");

//

Begin

a

transaction

connection.beginTransaction();

Chapter

25.

CwDBConnection

class

323

//

Insert

a

row

connection.executeSQL("insert...");

//

Commit

the

transaction

connection.commit();

//

Release

the

database

connection

connection.release();

For

a

more

complete

code

sample

that

selects

data

from

a

database

table,

see

“Executing

static

queries

that

return

data

(SELECT)”

on

page

166.

See

also

“Executing

static

queries”

on

page

166

executePreparedSQL(),

executeStoredProcedure(),

getDBConnection(),

hasMoreRows(),

nextRow()

executeStoredProcedure()

Executes

an

SQL

stored

procedure

by

specifying

its

name

and

parameter

array.

Syntax

void

executeStoredProcedure(String

storedProcedure,

Vector

storedProcParameters)

Parameters

storedProcedure

The

name

of

the

SQL

stored

procedure

to

execute

in

the

database.

storedProcParameters

A

Vector

object

of

parameters

to

pass

to

the

stored

procedure.

Each

parameter

is

an

instance

of

the

CwDBStoredProcedureParam

class.

For

more

information

on

how

to

pass

parameters

through

this

array,

see

“Calling

stored

procedures

with

executeStoredProcedure()”

on

page

174.

Return

values

None.

Exceptions

CwDBSQLException

–

If

a

database

error

occurs.

Notes

The

executeStoredProcedure()

method

sends

a

call

to

the

specified

storedProcedure

to

the

database

associated

with

the

current

connection.

This

method

sends

the

stored-procedure

call

as

a

prepared

SQL

statement;

that

is,

the

first

time

it

executes,

this

stored-procedure

call

is

sent

as

a

string

to

the

database,

which

compiles

the

string

into

an

executable

form

(called

a

prepared

statement),

executes

the

SQL

statement,

and

returns

this

prepared

statement

to

executeStoredProcedure().

The

executeStoredProcedure()

method

saves

this

prepared

statement

in

memory.

324

Collaboration

Development

Guide

Important:

Before

executing

a

stored

procedure

with

executeStoredProcedure(),

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

To

handle

any

data

that

the

stored

procedure

returns,

use

the

hasMoreRows()

and

nextRow()

methods.

You

can

also

use

the

executeSQL()

or

executePreparedSQL()

method

to

execute

a

stored

procedure

as

long

as

this

stored

procedure

does

not

contain

OUT

parameters.

If

the

stored

procedure

uses

OUT

parameters,

you

must

use

executeStoredProcedure()

to

execute

it.

Unlike

with

executeSQL()

or

executePreparedSQL(),

you

do

not

have

to

pass

in

the

full

SQL

statement

to

execute

the

stored

procedure.

With

executeStoredProcedure(),

you

need

to

pass

in

only

the

name

of

the

stored

procedure

and

a

Vector

parameter

array

of

CwDBStoredProcedureParam

objects.

The

executeStoredProcedure()

method

can

determine

the

number

of

parameters

from

the

storedProcParameters

array

and

builds

the

calling

statement

for

the

stored

procedure.

See

also

“Calling

stored

procedures

with

executeStoredProcedure()”

on

page

174

executePreparedSQL(),

executeSQL(),

getDBConnection(),

hasMoreRows(),

nextRow()

getUpdateCount()

Returns

the

number

of

rows

affected

by

the

last

write

operation

to

the

database.

Syntax

int

getUpdateCount()

Parameters

None.

Return

values

Returns

an

int

representing

the

number

of

rows

affected

by

the

last

write

operation.

Exceptions

CwDBConnectionException

–

If

a

database

error

occurs.

Notes

The

getUpdateCount()

method

indicates

how

many

rows

have

been

modified

by

the

most

recent

update

operation

in

the

database

associated

with

the

current

connection.

This

method

is

useful

after

you

send

an

UPDATE

or

INSERT

statement

to

the

database

and

you

want

to

determine

the

number

of

rows

that

the

SQL

statement

has

affected.

Important:

Before

using

this

method,

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class

and

send

a

query

that

updates

the

database

with

either

the

executeSQL()

or

executePreparedSQL()

method

from

the

CwDBConnection

class.

Chapter

25.

CwDBConnection

class

325

See

also

executePreparedSQL(),

executeSQL(),

getDBConnection()

hasMoreRows()

Determines

whether

the

query

result

has

more

rows

to

process.

Syntax

boolean

hasMoreRows()

Parameters

None.

Return

values

Returns

true

if

more

rows

exist.

Exceptions

CwDBSQLException

–

If

a

database

error

occurs.

Notes

The

hasMoreRows()

method

determines

whether

the

query

result

associated

with

the

current

connection

has

more

rows

to

be

processed.

Use

this

method

to

retrieve

results

from

a

query

that

returns

data.

Such

queries

include

a

SELECT

statement

and

a

stored

procedure.

Only

one

query

can

be

associated

with

the

connection

at

a

time.

Therefore,

if

you

execute

another

query

before

hasMoreRows()

returns

false,

you

lose

the

data

from

the

initial

query.

See

also

“Executing

static

queries

that

return

data

(SELECT)”

on

page

166

executePreparedSQL(),

executeSQL(),

nextRow()

inTransaction()

Determines

whether

a

transaction

is

in

progress

in

the

current

connection.

Syntax

boolean

inTransaction()

Parameters

None.

Return

values

Returns

true

if

a

transaction

is

currently

active

in

current

connection;

returns

false

otherwise.

Exceptions

CwDBConnectionException

–

If

a

database

error

occurs.

326

Collaboration

Development

Guide

Notes

The

inTransaction()

method

returns

a

boolean

value

that

indicates

whether

the

current

connection

has

an

active

transaction;

that

is,

a

transaction

that

has

been

started

but

not

ended.

Important:

Before

beginning

a

transaction,

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseDLM

class.

See

also

“Managing

the

transaction”

on

page

177

beginTransaction(),

commit(),

getDBConnection(),

rollBack()

isActive()

Determines

whether

the

current

connection

is

active.

Syntax

boolean

isActive()

Parameters

None.

Return

values

Returns

true

if

the

current

connection

is

active;

returns

false

if

this

connection

has

been

released.

Exceptions

None.

See

also

getDBConnection(),

release()

nextRow()

Retrieves

the

next

row

from

the

query

result.

Syntax

Vector

nextRow()

Parameters

None.

Return

values

Returns

the

next

row

of

the

query

result

as

a

Vector

object.

Exceptions

CwDBSQLException

–

If

a

database

error

occurs.

Chapter

25.

CwDBConnection

class

327

Notes

The

nextRow()

method

returns

one

row

of

data

from

the

query

result

associated

with

the

current

connection.

Use

this

method

to

retrieve

results

from

a

query

that

returns

data.

Such

queries

include

a

SELECT

statement

and

a

stored

procedure.

Only

one

query

can

be

associated

with

the

connection

at

a

time.

Therefore,

if

you

execute

another

query

before

nextRow()

returns

the

last

row

of

data,

you

lose

the

query

result

from

the

initial

query.

See

also

“Executing

static

queries

that

return

data

(SELECT)”

on

page

166

hasMoreRows(),

executePreparedSQL(),

executeSQL(),

executeStoredProcedure()

release()

Releases

use

of

the

current

connection,

returning

it

to

its

connection

pool.

Syntax

void

release()

Parameters

None.

Return

values

None.

Exceptions

CwDBConnectionException

Notes

The

release()

method

explicitly

releases

use

of

the

current

connection

by

the

collaboration

object.

Once

released,

the

connection

returns

to

its

connection

pool,

where

it

is

available

for

other

components

(maps

or

collaborations)

that

require

a

connection

to

the

associated

database.

If

you

do

not

explicitly

release

a

connection,

the

collaboration

object

implicitly

releases

it

at

the

end

of

the

current

collaboration

run.

Therefore,

you

cannot

save

a

connection

in

a

static

variable

and

reuse

it.

Attention:

Do

not

use

the

release()

method

if

a

transaction

is

currently

active.

With

implicit

transaction

bracketing,

ICS

does

not

end

the

database

transaction

until

it

determines

the

success

or

failure

of

the

collaboration.

Therefore,

use

of

this

method

on

a

connection

that

uses

implicit

transaction

bracketing

results

in

a

CwDBTransactionException

exception.

If

you

do

not

handle

this

exception

explicitly,

it

also

results

in

an

automatic

rollback

of

the

active

transaction.

You

can

use

the

inTransaction()

method

to

determine

whether

a

transaction

is

active.

See

also

“Releasing

a

connection”

on

page

181

getDBConnection(),

inTransaction(),

isActive()

328

Collaboration

Development

Guide

rollBack()

Rolls

back

the

active

transaction

associated

with

the

current

connection.

Syntax

void

rollBack()

Parameters

None.

Return

values

None.

Exceptions

CwDBTransactionException

–

If

Notes

The

rollback()

method

ends

the

active

transaction

by

rolling

back

any

changes

made

to

the

database

associated

with

the

current

connection.

The

beginTransaction(),

commit()

and

rollBack()

methods

together

provide

management

of

transaction

boundaries

for

an

explicit

transaction.

This

transaction

contains

SQL

queries,

which

include

the

SQL

statements

INSERT,

DELETE,

or

UPDATE,

and

a

stored

procedure

that

includes

one

of

these

SQL

statements.

If

the

roll

back

fails,

rollback()

throws

the

CwDBTransactionException

exception

and

logs

an

error.

Important:

Only

use

rollback()

if

the

connection

uses

explicit

transaction

bracketing.

If

the

connection

uses

implicit

transaction

bracketing,

use

of

rollback()

results

in

a

CwDBTransactionException

exception.

If

you

do

not

end

an

explicit

transaction

with

rollback()

(or

commit())

before

the

connection

is

released,

InterChange

Server

implicitly

ends

the

transaction

based

on

the

success

of

the

collaboration.

If

the

collaboration

is

successful,

ICS

commits

this

database

transaction.

If

the

collaboration

is

not

successful,

ICS

implicitly

rolls

back

the

database

transaction.

Regardless

of

the

success

of

the

collaboration,

ICS

logs

a

warning.

Before

beginning

an

explicit

transaction,

you

must

create

a

CwDBConnection

object

with

the

getDBConnection()

method

from

the

BaseCollaboration

class.

Make

sure

that

this

connection

uses

explicit

transaction

bracketing

Examples

For

an

example

of

managing

a

transaction

with

rollback(),

see

the

example

in

“Transaction

scope

with

explicit

transaction

bracketing”

on

page

179.

See

also

“Managing

the

transaction”

on

page

177

beginTransaction(),

commit(),

getDBConnection(),

inTransaction()

Chapter

25.

CwDBConnection

class

329

330

Collaboration

Development

Guide

Chapter

26.

CwDBStoredProcedureParam

class

A

CwDBStoredProcedureParam

object

describes

a

single

parameter

for

a

stored

procedure.

Table

63

summarizes

the

methods

in

the

CwDBStoredProcedureParam

class.

Table

63.

CwDBStoredProcedureParam

method

summary

Method

Description

Page

CwDBStoredProcedureParam()

Constructs

a

new

instance

of

CwDBStoredProcedureParam

that

holds

argument

information

for

the

parameter

of

a

stored

procedure.

331

getParamType()

Retrieves

the

in/out

type

of

the

current

stored-procedure

parameter

as

an

integer

constant.

333

getValue()

Retrieves

the

value

of

the

current

stored-procedure

parameter.

333

CwDBStoredProcedureParam()

Constructs

a

new

instance

of

CwDBStoredProcedureParam

that

holds

argument

information

for

the

parameter

of

a

stored

procedure.

Syntax

CwDBStoredProcedureParam(int

paramType,

String

paramValue);

CwDBStoredProcedureParam(int

paramType,

int

paramValue);

CwDBStoredProcedureParam(int

paramType,

Integer

paramValue);

CwDBStoredProcedureParam(int

paramType,

Long

paramValue);

CwDBStoredProcedureParam(int

paramType,

double

paramValue);

CwDBStoredProcedureParam(int

paramType,

Double

paramValue);

CwDBStoredProcedureParam(int

paramType,

float

paramValue);

CwDBStoredProcedureParam(int

paramType,

Float

paramValue);

CwDBStoredProcedureParam(int

paramType,

BigDecimal

paramValue);

CwDBStoredProcedureParam(int

paramType,

boolean

paramValue);

CwDBStoredProcedureParam(int

paramType,

Boolean

paramValue);

CwDBStoredProcedureParam(int

paramType,

java.sql.Date

paramValue);

CwDBStoredProcedureParam(int

paramType,

java.sql.Time

paramValue);

CwDBStoredProcedureParam(int

paramType,

java.sql.Timestamp

paramValue);

CwDBStoredProcedureParam(int

paramType,

java.sql.Blob

paramValue);

CwDBStoredProcedureParam(int

paramType,

java.sql.Clob

paramValue);

CwDBStoredProcedureParam(int

paramType,

byte[]

paramValue);

CwDBStoredProcedureParam(int

paramType,

Array

paramValue);

CwDBStoredProcedureParam(int

paramType,

Struct

paramValue);

Parameters

paramType

The

in/out

parameter

type

of

the

associated

stored-procedure

parameter.

paramValue

The

argument

value

to

send

to

the

stored

procedure.

This

value

is

one

of

the

following

Java

data

types:

©

Copyright

IBM

Corp.

2003

331

v

String

v

int

v

Integer

v

Long

v

double

v

Double

v

float

v

Float

v

BigDecimal

v

boolean

v

java.sql.Date

v

java.sql.Time

v

java.sql.Timestamp

v

java.sql.Blob

v

java.sql.Clob

v

byte[]

v

Array

v

Struct

Return

values

Returns

a

new

CwDBStoredProcedureParam

object

to

hold

the

argument

information

for

one

argument

in

the

declaration

of

the

stored

procedure.

Exceptions

None.

Notes

The

CwDBStoredProcedureParam()

constructor

creates

a

CwDBStoredProcedureParam

instance

to

describe

one

parameter

for

a

stored

procedure.

Parameter

information

includes

the

following:

v

The

parameter’s

in/out

type

The

constructor’s

first

argument

initializes

this

in/out

parameter

type.

For

a

list

of

valid

in/out

parameter

types,

see

Table

64

on

page

333.

v

The

parameter

value

The

constructor’s

second

argument

initializes

this

parameter

value.

The

CwDBStoredProcedureParam

class

provides

one

form

of

its

constructor

for

each

of

the

parameter-value

data

types

it

supports.

For

a

list

of

the

mappings

between

Java

data

types

and

JDBC

data

types

for

stored-procedure

parameters,

see

Table

43

on

page

177.

You

provide

a

Java

Vector

of

stored-procedure

parameters

to

the

executeStoredProcedure()

method,

which

creates

a

stored-procedure

call

from

a

stored-procedure

name

and

the

parameter

vector,

and

sends

this

call

to

the

database

associated

with

the

current

connection.

See

also

“Calling

stored

procedures

with

executeStoredProcedure()”

on

page

174

executeStoredProcedure()

332

Collaboration

Development

Guide

getParamType()

Retrieves

the

in/out

type

of

the

current

stored-procedure

parameter

as

an

integer

constant.

Syntax

int

getParamType()

Parameters

None.

Return

values

Returns

the

in/out

type

of

the

associated

CwDBStoredProcedureParam

parameter.

Exceptions

None.

Notes

The

getType()

method

returns

the

in/out

parameter

type

of

the

current

stored-procedure

parameter.

The

in/out

parameter

type

indicates

how

the

stored

procedure

uses

the

parameter.

The

CwDBStoredProcedureParam

class

represents

each

in/out

type

as

a

constant,

as

Table

64

shows.

Table

64.

Parameter

In/Out

Types

Parameter

In/Out

Type

Description

In/Out

Type

Constant

IN

parameter

An

IN

parameter

is

input

only;

that

is,

the

stored

procedure

accepts

its

value

as

input

but

does

not

use

the

parameter

to

return

a

value.

PARAM_IN

OUT

parameter

An

OUT

parameter

is

output

only;

that

is,

the

stored

procedure

does

not

read

its

value

as

input

but

does

use

the

parameter

to

return

a

value.

PARAM_OUT

INOUT

parameter

An

INOUT

parameter

is

input

and

output;

that

is,

the

stored

procedure

accepts

its

value

as

input

and

also

uses

the

parameter

to

return

a

value.

PARAM_INOUT

See

also

“Calling

stored

procedures

with

executeStoredProcedure()”

on

page

174

CwDBStoredProcedureParam(),

getValue()

getValue()

Retrieves

the

value

of

the

current

stored-procedure

parameter.

Syntax

Object

getValue()

Parameters

None.

Chapter

26.

CwDBStoredProcedureParam

class

333

Return

Values

Returns

the

value

of

the

associated

CwDBStoredProcedureParam

parameter

as

a

Java

Object.

Exceptions

None.

Notes

The

getParamValue()

method

returns

the

parameter

value

as

a

Java

Object

(such

as

Integer,

Double,

or

String).

If

the

value

returned

to

an

OUT

parameter

is

the

JDBC

NULL,

getParamValue()

returns

the

null

constant.

See

Also

CwDBStoredProcedureParam(),

getParamType()

334

Collaboration

Development

Guide

Chapter

27.

CxExecutionContext

class

The

methods

documented

in

this

chapter

operate

on

the

global

execution

context,

which

is

a

holder

for

user-accessible

context

information

that

is

associated

with

a

given

flow.

It

is

represented

by

the

InterChange

Server

Express-defined

class,

CxExecutionContext.

Currently,

only

the

map-specific

execution

information

is

surfaced

as

the

map

execution

context.

In

the

code

of

a

map,

Map

Designer

automatically

declares

a

special

variable

to

access

the

map

execution

context,

cwExecCtx.

However,

when

you

call

a

map

from

within

a

collaboration,

you

must

instantiate

your

own

global

execution

context

and

map

execution

context.

For

more

information,

see

“Calling

a

native

map”

on

page

153.

Note:

For

more

information

on

the

map

execution

context,

see

the

Map

Development

Guide.

Table

65

summarizes

the

methods

of

the

CxExecutionContext

class.

Table

65.

CxExecutionContext

method

summary

Method

Description

Page

CxExecutionContext()

Constructs

a

new

instance

of

a

global

execution

context.

335

getContext()

Retrieve

the

specified

execution

context

from

the

global

execution

context.

336

setContext()

Sets

a

particular

execution

context

to

be

part

of

the

global

execution

context.

336

Static

constants

The

CxExecutionContext

class

defines

the

static

constants

that

Table

66

shows.

Table

66.

Static

constants

defined

in

the

CxExecutionContext

class

Constant

name

Meaning

MAPCONTEXT

A

string

constant

to

indicate

that

the

execution

context

is

map-specific

CxExecutionContext()

Constructs

a

new

instance

of

a

global

execution

context.

Syntax

CxExecutionContext()

Parameters

None

Return

values

Returns

the

new

instance

of

the

global

execution

context.

©

Copyright

IBM

Corp.

2003

335

Notes

The

CxExecutionContext()

constructor

returns

a

global

execution

context,

which

is

needed

to

hold

the

map

execution

context

before

calling

a

map

from

a

collaboration.

See

also

“Calling

a

native

map”

on

page

153

getContext()

Retrieve

the

specified

execution

context

from

the

global

execution

context.

Syntax

Object

getContext(String

contextName)

Parameters

contextName

The

name

of

a

execution

context

to

obtain

from

the

global

execution

context.

Return

values

Returns

an

instance

of

the

specified

execution

context.

Examples

The

following

example

obtains

a

map

execution

context

from

a

global

execution

context.

(MapExeContext)

mapExeContext

=

globalExeContext.getContext(

CxExecutionContext.MAPCONTEXT);

See

also

“Calling

a

native

map”

on

page

153

setContext()

Sets

a

particular

execution

context

to

be

part

of

the

global

execution

context.

Syntax

void

setContext(String

contextName,

Object

context)

Parameters

contextName

The

name

of

the

specific

execution

context

to

assign

to

the

global

execution

context.

Currently,

MAPCONTEXT

is

the

only

valid

value.

context

An

object

that

contains

the

information

for

the

execution

context.

For

map

execution

contexts,

this

Object

is

of

type

MapExeContext.

Return

values

None

336

Collaboration

Development

Guide

Examples

The

following

example

saves

a

map

execution

context

into

a

global

execution

context:

globalExeContext.setContext(CxExecutionContext.MAPCONTEXT,

mapExeContext);

See

also

“Calling

a

native

map”

on

page

153

Chapter

27.

CxExecutionContext

class

337

338

Collaboration

Development

Guide

Chapter

28.

CollaborationException

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

CollaborationException

class.

These

objects

represent

collaboration

exceptions.

Exceptions

might

occur

during

the

execution

of

a

collaboration

object.

The

scenario

can

catch

and

handle

these

exceptions.

There

are

two

categories

of

exceptions

that

a

collaboration

can

handle:

v

Business

process

exceptions

Business

process

exceptions

arise

from

code

that

uses

the

collaboration

API

methods.

For

example,

a

business

process

exception

can

occur

when

the

scenario

sets

the

value

of

a

business

object

attribute,

sends

a

request

to

a

connector,

and

so

on.

v

Native

Java

exceptions

Java

exceptions

result

from

your

own

code

that

uses

native

Java

methods.

The

collaboration

runtime

environment

catches

and

handles

the

Java

exceptions

arising

from

its

own

code.

Table

67

lists

the

methods

that

this

chapter

describes.

Table

67.

CollaborationException

method

summary

Method

Description

Page

getMessage()

Retrieve

the

message

text

from

the

current

exception.

339

getMsgNumber()

Retrieve

the

message

number

of

the

text

associated

with

the

current

exception.

340

getSubType()

Retrieve

the

subtype

of

an

exception.

340

getType()

Retrieve

the

collaboration

exception

type.

341

toString()

Write

exception

information

to

a

string.

342

getMessage()

Retrieve

the

message

text

from

the

exception

object.

Syntax

String

getMessage()

Return

values

A

String

that

contains

the

message

associated

with

the

exception

object.

Notes

The

getMessage()

method

is

useful

for

extracting

the

exception

text

from

the

currentException

system

variable.

This

exception

text

can

be

included

in

a

call

to

raiseException()

to

ensure

that

the

reason

for

the

exception

is

raised

up

to

the

next

higher

level

of

execution.

Note:

You

can

use

the

toString()

method

to

retrieve

the

exception

type

and

exception

text

from

the

current

exception

as

a

formatted

string.

©

Copyright

IBM

Corp.

2003

339

getMsgNumber()

Retrieve

the

message

number

for

the

message

associated

with

the

exception

object.

Syntax

int

getMsgNumber()

Return

values

The

integer

(int)

message

number

associated

with

the

current

exception’s

message.

If

the

exception’s

message

is

not

from

a

message

file,

this

method

returns

zero

(0).

Notes

The

getMsgNumber()

method

is

useful

for

obtaining

the

message

number

associated

with

an

exception’s

message.

You

can

pass

this

message

number

to

a

call

to

raiseException()

or

logError().

getSubType()

Retrieve

the

exception

subtype

from

the

exception

object.

Syntax

String

getSubType()

Return

values

A

String

that

contains

the

exception

subtype

for

the

current

exception.

For

more

information

on

valid

exception

subtypes,

see

the

Notes

section.

Notes

The

getSubType()

method

retrieves

the

exception

subtype

for

the

current

exception.

For

exceptions

whose

exception

type

does

not

adequately

identify

the

cause

of

the

exception,

the

exception

subtype

can

provide

more

information.

The

following

exception

types

most

commonly

use

exception

subtypes:

v

JavaException

The

collaboration

runtime

environment

catches

Java

exceptions

and

wraps

them

in

a

collaboration

exception

with

an

associated

type

of

Java

exception.

A

collaboration

can

use

getSubType()

on

the

collaboration

exception

to

retrieve

the

original

type

of

the

Java

exception

(that

is,

the

class

name

of

the

captured

Java

exception).

However,

this

should

normally

not

be

necessary.

v

ServiceCallException

The

ServiceCallException

exception

type

occurs

if

any

failure

results

from

a

service

call.

To

develop

more

robust

collaborations,

you

can

use

the

exception

subtype

to

determine

the

cause

of

the

service-call

failure.

The

valid

exception

subtypes

include:

AppTimeOut

Aconnector

was

unable

to

complete

communication

with

its

application.

AppLogOnFailure

Aconnector

was

unable

to

log

in

to

the

application.

AppRetrieveByContentFailed

A

Retrieve

by

non-key

values,

performed

on

the

application,

was

not

able

to

find

any

match.

AppMultipleHits

An

application

found

and

retrieved

more

than

one

entity

in

response

to

a

Retrieve

request.

340

Collaboration

Development

Guide

AppBusObjDoesNotExist

A

Retrieve

operation

was

performed

on

the

application,

but

the

entity

that

the

business

object

represents

does

not

exist

in

the

application

database.

AppRequestNotYetSent

In

the

case

of

a

parallel

connector

agent,

the

request

was

queued

up

in

the

agent

master

but

never

got

dispatched

to

the

application;

therefore,

you

can

resend

the

request.

For

more

information,

see

“Unsent

service

call

requests”

on

page

137.

ServiceCallTransportException

There

was

an

error

in

the

transport,

and

it

cannot

be

determined

with

certainty

whether

the

request

reached

the

application.

For

more

information,

see

“Handling

runtime

transport-related

exceptions”

on

page

135.

AppUnknown

Any

type

of

error

that

is

not

one

of

the

other

subtypes.

If

this

exception

subtype

is

present,

the

application

operation

requested

in

the

service

call

might

be

finished

or

not

finished.

For

more

information,

see

“Handling

particular

service-call

exceptions”

on

page

134.

Important:

The

AppTimeOut,

AppLogOnFailure,

AppRetrieveByContent,

AppMultipleHits,

and

AppUnknown

exception

subtypes

correspond

to

outcome-status

values

that

an

adapter

can

return

to

indicate

the

cause

of

failure.

Older

adapters

might

not

support

all

of

the

corresponding

outcome-status

values.

Make

sure

you

rigorously

test

any

adapters

that

are

bound

to

your

collaboration

with

the

Test

Connector

tool

to

determine

the

actual

outcome-status

values

they

return.

Examples

This

section

provides

examples

of

retrieve

exception

subtypes

for

the

following

exception

types:

v

JavaException

The

code

in

the

following

example

retrieves

a

Java

exception

thrown

by

a

mathematical

function.

//

//

If

the

preceding

division

operation

threw

an

exception,

//

set

the

result

to

0.

//

if

(currentException.getType().equals("JavaException"))

{

String

subType

=

currentException.getSubType();

logWarning("Caught

exception

"

+

subType

+

".

Setting

result

to

0.");

result

=

0;

}

v

ServiceCallException

For

examples

of

how

to

handle

two

of

the

ServiceCallException

subtypes,

see

the

specified

sections:

–

For

AppRequestNotYetSent,

see

“Unsent

service

call

requests”

on

page

137.

–

For

ServiceCallTransportException,

see

“Handling

runtime

transport-related

exceptions”

on

page

135.

getType()

Retrieve

the

collaboration

exception

type

from

the

exception

object.

Chapter

28.

CollaborationException

class

341

Syntax

String

getType()

Return

values

A

String

that

contains

the

exception

type

for

the

current

exception.

Compare

this

string

value

with

one

of

the

following

exception-type

static

variables:

AnyException

Any

type

of

exception.

If

there

are

two

exception

links,

one

that

tests

for

a

specific

type

of

exception

and

one

that

tests

for

AnyException,

the

link

that

tests

for

the

specific

type

of

exception

is

checked

first.

If

the

current

exception

does

not

match

the

specific

exception,

the

link

that

tests

for

AnyException

is

processed

next.

AttributeException

Attribute

access

problem.

For

example,

the

collaboration

called

getDouble()

on

a

String

attribute

or

called

getString()

on

a

nonexistent

attribute.

JavaException

Problem

with

Java

code

in

the

collaboration

logic.

ObjectException

Business

object

passed

to

a

method

was

invalid

or

a

null

object

was

accessed.

OperationException

Service

call

was

improperly

set

up

and

could

not

be

sent.

ServiceCallException

Service

call

failed.

For

example,

a

connector

or

application

is

unavailable.

SystemException

InterChange

Server

Express

internal

error.

TransactionException

Error

related

to

the

transactional

behavior

of

a

transactional

collaboration.

For

example,

rollback

failed

or

the

collaboration

could

not

apply

compensation.

Notes

The

getType()

method

retrieves

the

exception

type

from

the

current

exception.

The

exception

type

is

a

String

that

identifies

the

cause

of

the

exception.

Examples

The

following

example

retrieves

the

collaboration

exception

type

and

uses

it

in

a

call

to

the

raiseException()

method.

String

problem

currentException.getType();

raiseException(problem,

1234);

toString()

Format

exception

information,

including

the

exception

type

and

text,

to

a

string.

Syntax

String

toString()

Parameters

exception

The

variable

holding

an

exception

object.

Notes

The

toString()

method

formats

the

exception

information

for

the

current

exception

as

follows:

exceptionType:

messageText

342

Collaboration

Development

Guide

In

the

line

above,

exceptionType

is

the

exception

object’s

exception

type

and

messageText

is

its

exception

text.

Note:

You

can

use

the

getMessage()

method

to

retrieve

only

the

exception

text

from

the

current

exception.

Examples

The

following

example

writes

the

current

exception

information

to

the

String

variable

newmessage:

String

newmessage

=

currentException.toString();

Deprecated

methods

Table

68

lists

the

deprecated

methods

that

were

available

in

prerelease

versions

of

Process

Designer

Express.

If

you

have

not

used

Process

Designer

Express

previously,

ignore

this

section.

For

an

explanation

of

deprecation,

see

“Deprecated

method”

on

page

303.

Table

68.

Deprecated

methods,

exception

class

Former

method

Replacement

getText()

toString()

Chapter

28.

CollaborationException

class

343

344

Collaboration

Development

Guide

Chapter

29.

Filter

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

Filter

class.

Data

filtering

is

a

common

task

in

collaboration

processing;

these

methods

filter

the

data

contained

in

specified

attributes

of

a

business

object.

The

results

can

then

be

used

to

determine

whether

the

collaboration

needs

to

synchronize

a

business

object

with

specific

data.

Table

69

lists

the

methods

that

this

chapter

describes.

Table

69.

Filter

method

summary

Method

Description

Page

Filter()

Constructs

a

new

instance

of

the

Filter

class.

346

filterExcludes()

Determines

whether

the

given

attribute

value

is

equal

to

the

given

exclusion

value

or

values.

347

filterIncludes()

Determines

whether

the

given

attribute

value

is

equal

to

the

given

inclusion

value

or

values.

348

recurseFilter()

Determines

whether

the

given

attribute

value

is

equal

to

the

given

inclusion

or

exclusion

value

or

values.

349

recursePreReqs()

Recursively

finds

the

vector

position

of

a

specified

business

object

type

within

a

given

vector

of

unique

business

objects.

350

©

Copyright

IBM

Corp.

2003

345

Filter()

Constructs

a

new

instance

of

Filter.

Syntax

Filter(BaseCollaboration

baseCollab)

Parameters

baseCollab

Specifies

the

current

collaboration

instance.

Return

values

Returns

a

newly

instantiated

Filter

object.

346

Collaboration

Development

Guide

filterExcludes()

Determines

whether

the

specified

attribute

value

is

equal

to

that

of

the

exclusion

values.

Syntax

boolean

filterExcludes(String

FilterAttributeValue,

String

ExcludeValues)

Parameters

FilterAttributeValue

The

value

of

the

attribute

being

filtered.

ExcludesValues

The

values

the

collaboration

uses

as

a

filter

to

prevent

synchronization

of

the

business

object.

Return

values

Returns

False

if

the

value

of

FilterAttributeValue

matches

one

of

the

values

listed

in

ExcludesValues.

Otherwise,

the

method

returns

True.

Chapter

29.

Filter

class

347

filterIncludes()

Determines

whether

the

specified

attribute

value

is

equal

to

that

of

the

inclusion

values.

Syntax

boolean

filterIncludes(String

FilterAttributeValue,

String

IncludeValues)

Parameters

FilterAttributeValue

The

value

of

the

attribute

being

filtered.

IncludesValues

The

values

the

collaboration

uses

as

a

filter

to

allow

synchronization

of

the

business

object.

Return

values

Returns

True

if

the

value

of

FilterAttributeValue

matches

one

of

the

values

listed

in

IncludesValues.

Otherwise,

the

method

returns

False.

348

Collaboration

Development

Guide

recurseFilter()

Determines

whether

the

specified

attribute

value

is

equal

to

that

of

the

exclusion

or

inclusion

values.

Syntax

boolean

recurseFilter(BusObj

busObj,

String

filterAttribute,

boolean

stopOnFail,

String

includeValues,

String

excludeValues)

Parameters

busObj

The

business

object

instance

on

which

to

filter.

filterAttribute

The

name

of

the

business

object

attribute

used

when

comparing

values

specified

by

includeValues

and

excludeValues.

The

collaboration

compares

the

value

in

the

filter

attribute

against

the

specified

inclusion

or

exclusion

values

to

either

prevent

or

enable

synchronization

of

the

business

object.

stopOnFail

Specifies

how

to

handle

the

value

of

the

filterAttribute

attribute

if

it

does

not

meet

the

filtering

criteria.

includesValues

The

values

the

collaboration

uses

as

a

filter

to

allow

synchronization

of

the

business

object.

excludesValues

The

values

the

collaboration

uses

as

a

filter

to

prevent

synchronization

of

the

business

object.

Return

values

Returns

True

if

filterAttribute

contains

a

value

specified

in

includesValues

or

a

value

not

specified

in

excludesValues.

Otherwise,

the

method

returns

False.

Exceptions

CollaborationException—This

exception

is

thrown

if

the

attribute

value

of

filterAttribute

is

not

specified

as

an

included

value

but

rather

as

an

excluded

value

and

the

stopOnFail

parameter

is

set

to

True.

Chapter

29.

Filter

class

349

recursePreReqs()

Recursively

finds

the

vector

position

of

a

specified

business

object

type

within

a

given

vector

of

unique

business

objects.

Syntax

int

recursePreReqs(String

Type,

Vector

busObjs)

Parameters

Type

The

type

of

business

object

to

search

for

in

the

busObj

vector.

busObjs

The

vector

of

business

objects

of

unique

business

object

types.

Return

values

Returns

the

position

in

thebusObjs

vector

that

contains

the

business

object

specified

by

Type.

Exceptions

CollaborationException—This

exception

is

thrown

if

the

collaboration

configuration

property

PREQ_Type

is

missing.

350

Collaboration

Development

Guide

Chapter

30.

Globals

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

Globals

class.

The

Globals

class

maintains

a

global

hash

table

to

support

asynchronous

event

processing.

In

previous

releases

of

InterChange

Server,

a

collaboration

communicated

with

other

collaborations

and

connectors

exclusively

through

synchronous

service

calls.

With

the

introduction

of

the

Globals

class,

collaborations

can

now

send

or

receive

a

communication

from

another

collaboration

or

connector,

wait

for

a

specified

amount

of

time

for

the

appropriate

response,

and

then

continue

processing

the

event

in

the

same

thread.

Table

70

lists

the

methods

in

the

Globals

class.

Table

70.

Globals

class

method

summary

Method

Description

Page

Globals()

Constructs

a

new

instance

of

the

Globals

class.

352

callMap()

Provides

a

wrapper

around

the

DtpMapService.runMap

API

to

make

it

easier

to

call

a

map

from

within

a

collaboration.

353

©

Copyright

IBM

Corp.

2003

351

Globals()

Constructs

a

new

instance

of

the

Globals

class.

Syntax

Globals(BaseCollaboration

baseCollab)

Parameters

baseCollab

Specifies

the

current

collaboration

instance.

Return

values

A

newly

instantiated

Globals

object.

352

Collaboration

Development

Guide

callMap()

Provides

a

wrapper

around

the

DtpMapService.runMap

API

to

make

it

easier

to

call

a

map

from

within

a

collaboration.

Syntax

BusObj

callMap(String

mapName,

BusObj

srcBusObj)

Parameters

mapName

Specifies

the

name

of

the

map

you

want

to

run.

srcBusObj

Specifies

the

source

business

object

for

the

map.

Return

values

Returns

the

destination

business

object

for

the

map

specified

by

mapName.

Exceptions

CollaborationException—Thrown

if

an

error

occurs

while

attempting

to

run

the

mapName

map.

Chapter

30.

Globals

class

353

354

Collaboration

Development

Guide

Chapter

31.

SmartCollabService

class

The

methods

documented

in

this

chapter

operate

on

objects

of

the

SmartCollabService

class.

This

class

provides

a

set

of

methods

to

simplify

the

splitting,

merging,

and

aggregation

of

array

attributes

in

a

business

object.

Table

71

lists

the

methods

provided

in

the

SmartCollabService

class.

Table

71.

SmartCollabService

method

summary

Method

Description

Page

SmartCollabService()

Constructs

a

new

instance

of

the

SmartCollabService

class.

355

doAgg()

Aggregates

like

container

attributes

into

one

container

attribute,

based

on

user-specified

criteria

and

attributes.

356

doMergeHash()

Takes

a

collection

of

business

objects

and

groups

them

under

a

new

parent

business

object

specified

by

the

split

level.

The

business

objects

are

grouped

by

like

content

specified

in

the

key

attribute

or

attributes.

356

doRecursiveAgg()

Recursively

aggregates

hierarchical

like

container

attributes

into

one

container

attribute,

based

on

user-specified

criteria

and

attributes.

357

doRecursiveSplit()

Retrieves

the

container

business

objects

from

a

particular

level

of

a

business

object

hierarchy,

and

optionally

returns

within

the

top-level

business

object.

357

getKeyValues()

Calculates

the

key

value

for

the

business

object

to

be

used

by

a

hash

table,

based

on

the

comma-separated

value

specified

in

the

key

attribute

or

attributes.

358

merge()

Merges

a

collection

of

business

objects

under

one

top-level

business

object.

358

split()

Splits

a

business

object

into

container

business

objects,

as

specified

by

the

split

level.

359

SmartCollabService()

Constructs

a

new

instance

of

SmartCollabService.

Syntax

SmartCollabService()

SmartCollabService(com.crossworlds.BaseCollaboration

baseCollab)

Parameters

baseCollab

Specifies

the

current

collaboration

instance.

©

Copyright

IBM

Corp.

2003

355

Return

values

Returns

a

newly

instantiated

SmartCollabService

object.

doAgg()

Aggregates

like

container

attributes

into

a

single

container

attribute

according

to

user-specified

criteria

and

the

list

of

attributes

to

be

aggregated.

Syntax

BusObj

doAgg(BusObj

inBusObj,

String

Level,

String

KeyAttr,

String

Attr)

Parameters

inBusObj

Specifies

the

business

object

to

be

aggregated.

Level

Specifies

the

aggregation

level,

which

comprises

the

type

of

the

business

object

(its

business

object

definition)

and

the

name

of

the

array

attribute

to

aggregate.

Names

are

delimited

by

a

period

(.).

KeyAttr

Specifies

the

key

attributes

of

the

business

object

used

for

aggregation.

Attr

Specifies

the

attributes

to

be

aggregated.

Multiple

names

are

delimited

by

a

comma

(,).

Return

values

Returns

the

aggregated

business

object.

Exceptions

CollaborationException—Thrown

if

an

error

occurs

during

aggregation

of

the

business

object

attributes.

doMergeHash()

Groups

a

collection

of

business

objects

under

a

new

parent

business

object,

as

specified

by

the

split

level.

Business

objects

are

grouped

by

like

content

in

the

key

attribute

or

attributes.

Syntax

java.util.Vector

doMergeHash(java.util.Vector

BusObj,

String

Level,

String

KeyAttr)

Parameters

BusObj

Specifies

a

vector

that

contains

the

collection

of

business

objects

to

be

merged.

Level

Specifies

the

merge

level,

which

comprises

the

type

of

the

parent

business

object

(its

business

object

definition)

and

the

attribute

designated

to

hold

the

child

business

object.

Names

are

delimited

by

a

period

(.).

356

Collaboration

Development

Guide

KeyAttr

Specifies

the

business

object’s

attributes

that

are

used

as

merging

criteria.

Nalues

are

delimited

by

a

comma

(,).

Return

values

Returns

the

vector

of

merged

business

objects.

Exceptions

CollaborationException—Thrown

if

an

error

occurs

while

merging

the

business

objects.

doRecursiveAgg()

Recursively

aggregates

like

hierarchical

array

attributes

into

a

single

container

attribute

according

to

user-specified

criteria

and

the

list

of

attributes

to

be

summed

up.

Syntax

BusObj

doRecursiveAgg(BusObj

inBusObj,

String

Level,

String

KeyAttr,

String

Attr)

Parameters

inBusObj

Specifies

the

business

object

to

be

aggregated.

Level

Specifies

the

aggregation

level,

which

comprises

the

type

of

the

business

object

(its

business

object

definition)

and

the

name

of

the

array

attribute

to

aggregate.

Names

are

delimited

by

a

period

(.).

KeyAttr

Specifies

the

key

attributes

of

the

business

object

used

for

aggregation.

Attr

Specifies

the

attributes

to

be

aggregated.

Multiple

names

are

delimited

by

a

comma

(,).

Return

values

Returns

the

aggregated

business

object.

Exceptions

CollaborationException—Thrown

if

an

error

occurs

during

aggregation

of

the

business

object

attributes.

doRecursiveSplit()

Retrieves

the

container

business

objects

from

a

specified

level

within

the

business

object

hierarchy.

Syntax

java.util.Vector

doRecursiveSplit(BusObj

inBusObj,

String

Level)

java.util.Vector

doRecursiveSplit(BusObj

inBusObj,

String

Level,

boolean

KeepParents)

Chapter

31.

SmartCollabService

class

357

Parameters

inBusObj

Specifies

the

top-level

business

object

whose

array

attribute

the

method

splits.

Level

Specifies

the

path

to

the

array

attribute

on

which

the

business

object

is

to

be

split.

Values

are

delimited

by

a

period

(.).

KeepParents

Specifies

whether

the

split

business

object

is

returned

in

the

parent

business

object

or

as

a

standalone

object.

Set

the

parameter

to

True

to

return

the

split

business

object

within

the

parent

business

object.

Return

values

Returns

a

vector

of

business

objects.

Exceptions

CollaborationException—Thrown

if

an

error

occurs

while

splitting

the

business

object.

getKeyValues()

Calculates

a

business

object’s

key

value

for

use

in

a

hash

table.

Syntax

String

getKeyValues(BusObj

inBusObj,

String

KeyAttr)

Parameters

inBusObj

Specifies

the

business

object

for

which

the

key

value

is

calculated.

KeyAttr

Specifies

the

attribute

name

on

which

the

method

operates.

Multiple

values

are

delimited

by

a

comma

(,).

Return

values

Returns

the

key

value

to

be

used

in

a

Java

hash

table.

Exceptions

CollaborationException—Thrown

if

an

error

occurs

while

calculating

the

business

object’s

key

value.

merge()

Merges

a

collection

of

business

objects

under

one

top-level

business

object.

Syntax

BusObj

merge(java.util.Vector

BusObjs,

String

Level)

BusObj

merge(java.util.Vector

BusObjs,

String

Attr,

BusObj

mergeBusObj)

358

Collaboration

Development

Guide

Parameters

BusObjs

Specifies

the

collection

of

child

business

objects

to

be

merged.

Level

Specifies

the

merge

level,

which

comprises

the

business

object

type

and

the

name

of

its

array

attribute

whose

child

business

objects

are

going

to

be

merged.

Names

are

delimited

by

a

period

(.).

Attr

Specifies

the

name

of

the

array

attribute

in

the

mergeBusObj

business

object

in

which

the

child

business

objects

are

to

be

merged.

mergeBusObj

Specifies

the

top-level

business

object

that

is

going

to

hold

the

merged

collection

of

child

business

objects.

Return

values

Returns

the

top-level

business

object

(either

new

or

specified)

that

contains

the

merged

collection

of

child

business

objects.

Exceptions

CollaborationException—Thrown

if

an

error

occurs

while

merging

business

objects.

split()

Splits

a

business

object

into

the

number

of

container

business

objects

specified

by

the

split

level.

Syntax

Vector

split(BusObj

inBusObj,

Strng

Attr)

Parameters

inBusObj

Specifies

the

parent-level

business

object

on

which

the

split()

method

operates.

Attr

Specifies

the

name

of

the

array

attribute

on

which

the

business

object

is

to

be

split.

Return

values

Returns

a

vector

of

business

objects,

one

business

object

for

each

child

business

object

in

the

parent

business

object’s

array

attribute.

Exceptions

CollaborationException—Thrown

if

an

error

occurs

while

splitting

the

business

object.

Chapter

31.

SmartCollabService

class

359

360

Collaboration

Development

Guide

Chapter

32.

StateManagement

class

The

StateManagement

class

enables

you

to

manage

the

state

of

a

collaboration

and

the

persistence

of

business

objects.

State

management

and

business

object

persistence

are

necessary

for

implementing

long-lived

business

processes.

A

collaboration’s

state

is

managed

by

performing

save,

retrieve,

update,

and

delete

operations

on

the

CxCollabState

database

table.

This

table

contains

the

following

attributes:

v

Id

v

Verb

v

CollabObjName

v

BusinessObjectType

v

PropDocID

v

State

v

Retry

v

BeginTime

v

TimeOut

A

business

object’s

persistence

is

managed

by

performing

save,

retrieve,

update,

and

delete

operations

on

the

CxCollabStateBO

database

table.

This

table

has

the

following

attributes:

v

CollabObjName

v

Verb

v

PropDocID

v

BusinessObjectType

v

BusObj

Table

72

describes

the

methods

in

the

StateManagement

class.

Table

72.

StateManagement

method

summary

Method

Description

Page

beginTransaction()

Marks

the

beginning

of

a

transaction.

362

commit()

Commits

a

transaction.

362

deleteBO()

Deletes

a

persisted

business

object

from

the

CxCollabStateBO

database

table.

362

deleteState()

Deletes

entries

from

the

CxCollabState

database

table.

363

persistBO()

Persists

a

business

object

in

the

CxCollabStateBO

database

table.

363

recoverBO()

Recovers

a

business

object

that

has

been

persisted

in

the

CxCollabStateBO

database

table.

364

releaseDBConnection()

Releases

the

database

connection.

365

resetData()

Resets

the

value

of

the

boolean

variable

bTranStarted.

365

retrieveState()

Retrieves

the

latest

value

of

the

retry

count

stored

in

the

CxCollabState

database

table.

365

©

Copyright

IBM

Corp.

2003

361

Table

72.

StateManagement

method

summary

(continued)

Method

Description

Page

saveState()

Saves

the

collaboration

process

parameters

in

the

CxCollabState

database

table.

366

setDBConnection()

Sets

the

database

connection.

366

StateManagement()

Creates

and

initializes

a

StateManagement

object.

367

updateBO()

Updates

a

persisted

business

object

in

the

CxCollabStateBO

database

table.

367

updateState()

Updates

the

retry

count

value

in

the

CxCollabState

database

table.

367

beginTransaction()

Marks

the

beginning

of

a

transaction.

Syntax

public

void

beginTransaction()

Exceptions

CwDBConnectionException—This

exception

is

thrown

if

the

StateManagement

class

is

unable

to

begin

the

transaction.

commit()

Commits

a

transaction.

Syntax

pubic

void

commit()

Exceptions

Throws

the

following

exceptions:

v

CwDBTransactionException—This

exception

occurs

when

the

StateManagement

class

is

unable

to

commit

the

transaction.

v

CwDBConnectionException—This

exception

occurs

when

the

StateManagement

class

is

unable

to

begin

the

transaction.

deleteBO()

Deletes

a

persisted

business

object

from

the

CxCollabStateBO

database

table.

Syntax

public

void

deleteBO(java.lang.String

Verb,

java.lang.String

PropDocID,

java.lang.String

BusinessObjectType)

Parameters

Verb

Specifies

the

verb

to

use.

In

this

case,

the

value

must

be

Delete.

BusinessObjectType

Specifies

the

type

of

the

business

object

you

are

deleting.

362

Collaboration

Development

Guide

PropDocID

Specifies

identifier

for

the

business

object

you

are

deleting.

Exceptions

Throws

the

following

exceptions:

v

CwDBSQLException—Thrown

if

the

StateManagement

class

is

unable

to

execute

the

SQL

query.

v

CollaborationException—Thrown

if

the

values

of

the

parameters

passed

are

null,

or

of

any

other

unknown

exception

occurs

within

the

method.

deleteState()

Deletes

entries

from

the

CxCollabState

database

table.

Syntax

public

void

deleteState(java.lang.String

Verb,

java.lang.String

BusinessObjectType,

java.lang.String

PropDocID,

int

stateValue)

Parameters

Verb

Specifies

the

verb

to

use.

In

this

case,

the

value

must

be

Delete.

BusinessObjectType

Specifies

the

type

of

the

business

object.

PropDocID

Specifies

identifier

for

the

business

object.

stateValue

Specifies

the

numeric

tag

for

the

state.

Exceptions

Throws

the

following

exceptions:

v

CwDBSQLException—Thrown

if

the

StateManagement

class

is

unable

to

execute

the

SQL

query.

v

CollaborationException—Thrown

if

the

values

of

the

parameters

passed

are

null,

or

of

any

other

unknown

exception

occurs

within

the

method.

persistBO()

Persists

a

business

object

in

the

CxCollabStateBO

database

table.

Syntax

public

void

persistBO(java.lang.String

CollabObjName,

java.lang.String

Verb,

java.lang.String

PropDocID,

java.lang.String

BusinessObjectType,

com.crossworlds.BusObj

BOtoSave)

Parameters

CollabObjName

Specifies

the

name

of

the

collaboration.

Chapter

32.

StateManagement

class

363

Verb

Specifies

the

verb

to

use.

In

this

case,

the

value

must

be

Create.

BusinessObjectType

Specifies

the

type

of

the

business

object.

PropDocID

Specifies

identifier

for

the

business

object.

BOtoSave

Specifies

the

name

of

the

business

object

to

be

persisted.

Exceptions

Throws

the

following

exceptions:

v

CwDBSQLException—Thrown

if

the

StateManagement

class

is

unable

to

execute

the

SQL

query.

v

CollaborationException—Thrown

if

the

values

of

the

parameters

passed

are

null,

or

of

any

other

unknown

exception

occurs

within

the

method.

v

BOFormatException—Thrown

if

there

is

an

error

in

the

data

handler

during

the

conversion

of

the

business

object

to

a

recoverable

string.

Notes

The

persistBO()

method

can

be

used

with

internationalized

collaborations.

Both

DBCS

and

MBCS

characters

can

be

stored

correctly

in

the

CxCollabStateBO

database

table.

In

addition,

a

Locale

column

has

been

added

to

the

CxCollabStateBO

table

to

store

the

locale

information.

recoverBO()

Recovers

a

business

object

that

was

persisted

in

the

CxCollabStateBO

database

table.

Syntax

public

com.crossworlds.BusObj

recoverBO(java.lang.String

Verb,

java.lang.String

PropDocID,

java.lang.String

BusinessObjectType)

Parameters

Verb

Specifies

the

verb

to

use.

In

this

case,

the

value

must

be

Retrieve.

BusinessObjectType

Specifies

the

type

of

the

business

object.

PropDocID

Specifies

identifier

for

the

business

object.

Return

values

Returns

the

stored

business

object

from

the

CxCollabStateBO

database

table.

Exceptions

Throws

the

following

exceptions:

v

CwDBSQLException—Thrown

if

the

StateManagement

class

is

unable

to

execute

the

SQL

query.

v

CollaborationException—Thrown

if

the

values

of

the

parameters

passed

are

null,

or

of

any

other

unknown

exception

occurs

within

the

method.

364

Collaboration

Development

Guide

v

BOFormatException—Thrown

if

there

is

an

error

in

the

data

handler

while

converting

the

recovered

string

to

an

InterChange

Server

business

object.

releaseDBConnection()

Releases

the

database

connection.

Syntax

public

void

releaseDBConnection()

Notes

A

connection

acquired

through

the

getDBConnection()

method

cannot

be

saved

in

a

static

variable

for

later

reuse.

A

connection

is

always

implicitly

released

at

the

end

of

the

process

to

avoid

connection

leaks.

In

order

for

this

to

happen,

the

connection

object

used

inside

the

StateManagement

class

must

be

released

first

with

the

releaseDBConnection()

method.

resetData()

Resets

the

value

of

the

boolean

variable

bTranStarted.

Syntax

public

void

resetData()

retrieveState()

Retrieves

the

latest

value

of

the

retry

count

stored

in

the

CxCollabState

database

table.

Syntax

public

int

retrieveState(java.lang.String

Verb,

java.lang.String

BusinessObjectType,

java.lang.String

PropDocID,

int

State)

Parameters

Verb

Specifies

the

verb

to

use.

In

this

case,

the

value

must

be

Retrieve.

BusinessObjectType

Specifies

the

type

of

the

business

object.

PropDocID

Specifies

identifier

for

the

business

object.

State

Specifies

the

state

value.

Exceptions

Throws

the

following

exceptions:

v

CwDBSQLException—Thrown

if

the

StateManagement

class

is

unable

to

execute

the

stored

procedure.

v

CollaborationException—Thrown

if

the

values

of

the

parameters

passed

are

null,

or

of

any

other

unknown

exception

occurs

within

the

method.

Chapter

32.

StateManagement

class

365

saveState()

Saves

the

collaboration

process

parameters

in

the

CxCollabState

database

table.

Syntax

public

void

saveState(java.lang.String

CollabObjName,

java.lang.String

Verb,

java.lang.String

BusinessObjectType,

java.lang.String

PropDocID,

int

stateValue,

int

retry,

double

hours_to_timeout)

Parameters

CollabObjName

Specifies

the

name

of

the

collaboration.

Verb

Specifies

the

verb

to

use.

In

this

case,

the

value

must

be

Create.

BusinessObjectType

Specifies

the

type

of

the

business

object.

PropDocID

Specifies

the

identifier

for

the

business

object.

stateValue

Specifies

the

numeric

tag

for

the

state.

retry

Specifies

the

retry

value

for

the

business

object.

hours_to_timeout

Specifies

the

number

of

hours

before

the

process

times

out;

the

data

is

stored

in

the

CxCollabState

table

as

a

date

data

type.

Exceptions

Throws

the

following

exceptions:

v

CwDBSQLException—Thrown

if

the

StateManagement

class

is

unable

to

execute

the

SQL

query.

v

CollaborationException—Thrown

if

the

values

of

the

parameters

passed

are

null,

or

of

any

other

unknown

exception

occurs

within

the

method.

setDBConnection()

Sets

a

database

connection.

Syntax

public

void

setDBConnection(com.crossworlds.CwDBConnection

DBConn)

Parameters

DBConn

Specifies

the

database

connection.

Exceptions

Throws

the

CwDBConnectionFactoryException

if

the

value

of

DBConn

is

null.

366

Collaboration

Development

Guide

StateManagement()

Creates

a

StateManagement

object

and

initializes

it.

Syntax

StateManagement()

updateBO()

Updates

a

persisted

business

object

in

the

CxCollabStateBO

database

table.

The

business

object

is

passed

through

the

delimited

data

handler

and

converted

into

a

string.

The

resulting

string

is

then

stored

in

the

database

table.

Syntax

public

void

updateBO(java.lang.String

CollabObjName,

java.lang.String

Verb,

java.lang.String

PropDocID,

java.lang.String

BusinessObjectType,

com.crossworlds.BusObj

BOtoUpdate)

Parameters

CollabObjName

Specifies

the

name

of

the

collaboration.

Verb

Specifies

the

verb

to

use.

In

this

case,

the

value

must

be

Update.

BusinessObjectType

Specifies

the

type

of

the

business

object.

PropDocID

Specifies

identifier

for

the

business

object.

BOtoUpdate

Specifies

the

name

of

the

business

object

to

be

updated.

Exceptions

Throws

the

following

exceptions:

v

CwDBSQLException—Thrown

if

the

StateManagement

class

is

unable

to

execute

the

SQL

query.

v

CollaborationException—Thrown

if

the

values

of

the

parameters

passed

are

null,

or

of

any

other

unknown

exception

occurs

within

the

method.

v

BOFormatException—Thrown

if

there

is

an

error

in

the

data

handler

during

the

conversion

of

the

business

object

to

a

string.

Notes

The

updateBO()

method

can

be

used

with

internationalized

collaborations.

The

CxCollabStateBO

database

table

correctly

stores

DBCS

and

MBCS

characters,

and

it

contains

a

Locale

column

to

store

locale

information.

updateState()

Updates

the

retry

count

value

in

the

CxCollabState

database

table.

When

a

two-hour

timeout

occurs

and

a

retry

is

performed,

this

method

updates

the

retry

count

in

the

24-hour

timeout

row

of

the

table.

Chapter

32.

StateManagement

class

367

Syntax

public

void

updateState(java.lang.String

CollabObjName,

java.lang.String

Verb,

java.lang.String

BusinessObjectType,

java.lang.String

PropDocID,

int

stateValue,

int

retry)

Parameters

CollabObjName

Specifies

the

name

of

the

collaboration.

Verb

Specifies

the

verb

to

use.

In

this

case,

the

value

must

be

Update.

BusinessObjectType

Specifies

the

type

of

the

business

object.

PropDocID

Specifies

the

identifier

for

the

business

object.

stateValue

Specifies

the

numeric

tag

for

the

state.

retry

Specifies

the

retry

value

for

the

business

object.

Exceptions

Throws

the

following

exceptions:

v

CwDBSQLException—Thrown

if

the

StateManagement

class

is

unable

to

execute

the

SQL

query.

v

CollaborationException—Thrown

if

the

values

of

the

parameters

passed

are

null,

or

of

any

other

unknown

exception

occurs

within

the

method.

368

Collaboration

Development

Guide

Part

5.

Appendixes

©

Copyright

IBM

Corp.

2003

369

370

Collaboration

Development

Guide

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

2003

371

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

372

Collaboration

Development

Guide

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Domino

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

InterChange

Server

Express

includes

software

developed

by

the

Eclipse

Project

(http://www.eclipse.org/).

IBM

WebSphere

Business

Integration

Express

for

Item

Synchronization

V4.3.1,

WebSphere

Business

Integration

Express

Plus

for

Item

Synchronization

V4.3.1.

Notices

373

374

Collaboration

Development

Guide

Glossary

action.

An

activity

diagram

symbol

that

indicates

a

single

step

in

the

business

process.

An

action

node

contains

a

code

fragment.

activity

diagram.

Defines

the

control

flow

for

a

collaboration’s

scenario.

An

activity

diagram

consists

of

a

set

of

symbols

that

specify

the

actions

required

by

the

business

process

and

the

logic

that

determines

the

order

in

which

the

actions

execute.

attribute.

A

data

item

in

a

business

object.

BaseCollaboration.

An

InterChange

Server

Express-defined

class

from

which

all

other

collaboration

classes

are

derived.

The

BaseCollaboration

class

contains

methods

for

manipulating

a

collaboration.

binding

.

The

act

of

attaching

a

collaboration

object

to

the

objects

that

can

supply

business

objects

to

it

or

receive

business

objects

from

it.

The

objects

to

which

a

collaboration

attaches

can

be

connectors

or

other

collaboration

objects.

break.

A

symbol

placed

in

an

iterator’s

activity

diagram

to

force

premature

termination

of

the

iteration.

business

object.

A

set

of

data

that

represents

a

business

entity,

along

with

a

verb

that

indicates

an

action

on

the

data.

business

object

definition.

A

description

of

the

format

and

data

contained

in

a

business

object.

A

business

object

definition

contains

a

name,

a

version,

a

set

of

supported

verbs,

and

an

ordered

set

of

attributes.

business

object

probe.

Monitors

and

reports

the

values

of

a

specified

business

object’s

attributes

during

runtime.

Business

object

probes

can

be

placed

on

any

transition

link

(with

the

exception

of

a

decision

node’s

incoming

transition

link

and

a

service

call

link).

BusObj.

An

InterChange

Server

Express-defined

class

that

represents

a

business

object.

BusObjArray.

An

InterChange

Server

Express-defined

class

that

represents

an

array

of

business

objects.

BusObjArray

is

used

for

a

business

object

attribute

whose

value

is

a

reference

to

an

array

of

child

business

objects.

code

fragment.

The

specification

of

an

action

via

a

series

of

code

statement,

using

the

collaboration

API

or

other

Java

code.

collaboration.

Business

logic

that

describes

a

generic

distributed

business

process.

A

collaboration

interacts

with

individual

applications,

tying

together

the

events

and

data

of

these

different

applications

and

extending

their

functionality.

collaboration

group.

An

executable

set

of

collaboration

objects,

formed

by

binding

collaboration

objects.

collaboration

object.

An

object

created

from

a

collaboration

template.

A

collaboration

object

is

executable

when

it

is

configured

and

bound

to

applications,

represented

by

connectors,

or

to

other

collaborations.

collaboration

configuration

property.

Any

configurable

information

about

an

InterChange

Server

Express

object.

A

collaboration

template

has

standard

properties

and

collaboration-specific

properties.

A

collaboration

developer

creates

collaboration-specific

properties

to

enable

an

administrator

to

specify

some

aspect

of

the

collaboration

object’s

runtime

behavior.

collaboration

template.

The

logic

and

framework

of

a

collaboration.

A

collaboration

template

provides

the

definition

of

a

collaboration

and

from

which

a

collaboration

object

may

be

instantiated;

a

collaboration

template

itself

is

never

executable.

CollaborationException.

An

InterChange

Server

Express-defined

exception

object.

compensation.

The

action

that

a

collaboration

takes

during

rollback

of

a

transaction

to

undo

a

previously-executed

service

call.

control

flow.

The

flow

of

business

process

logic.

Within

collaborations,

an

activity

diagram

defines

the

control

flow

for

a

particular

scenario,

specifying

the

actions

required

for

the

business

process.

Decision

nodes

and

iterators

are

used

within

the

activity

diagram

to

further

specify

the

execution

order

of

the

action

nodes.

correlation

attribute.

Identifies

a

conversation

between

two

business

processes

when

a

collaboration

is

used

as

a

long-lived

business

process.

Correlation

attributes

are

initialized

by

a

start

node

or

outbound

service

call;

they

can

then

be

used

by

conversation

participants

to

make

external

calls

or

to

receive

a

matching

event

from

external

sources.

currentException.

An

InterChange

Server

Express-defined

variable

that

holds

the

value

of

the

preceding

exception.

The

scope

of

currentException

is

raised

in

the

preceding

action,

subactivity,

or

iterator.

decision

node.

A

node

that

handles

decision

branching

in

a

scenario.

Decision

nodes

are

used

when

©

Copyright

IBM

Corp.

2003

375

there

are

multiple

possible

outcomes

of

an

action,

subdiagram,

or

iterator

node.

Each

branch

in

a

decision

node

has

a

condition,

and

the

control

flow

shifts

to

the

branch

whose

condition

evaluates

to

true.

declaration.

The

name

and

type

of

a

variable

that

you

intend

to

use.

The

compiler

requires

a

declaration

for

each

variable

used.

event

isolation.

The

assurance

that

multiple

collaborations

do

not

concurrently

process

events

that

relate

to

the

same

business

object

data.

event

sequencing.

InterChange

Server’s

assurance

that

a

collaboration

processes

multiple

events

that

relate

to

the

same

business

object

one

at

a

time,

in

the

same

order

in

which

the

events

arrive.

exception.

An

object

used

to

pass

a

runtime

error

to

some

other

entity

that

can

handle

the

error.

In

an

activity

diagram,

an

exception

is

caught

on

an

exception

transition

link.

failed

event.

This

term

has

been

changed.

See

unresolved

flow.

full-valued

business

object.

A

business

object

that

has

data

values

for

more

attributes

than

just

primary

key

attributes.

import

statement.

A

Java

statement

that

includes

a

class

or

a

package

of

classes

into

the

collaboration

class.

iterator.

An

activity

diagram

symbol

that

embeds

a

reference

to

a

nested

diagram

that

implements

a

looping

operation,

and

the

diagram

that

contains

the

looping

behavior.

An

iterator

can

loop

through

all

attributes

in

a

business

object

or

through

all

elements

of

a

business

object

array.

key

values.

The

values

of

attributes

that

typically

comprise

the

unique

identification

of

a

business

object

or

the

associated

application

entity.

long-lived

business

process.

A

method

of

configuring

and

deploying

a

collaboration

to

enable

asynchronous

communication

between

business

processes.

In

a

long-lived

business

process,

event

flow

context

persists

throughout

the

duration

of

a

service

call.

minimum

transaction

level.

The

transaction

level

set

by

a

collaboration

template

developer,

indicating

the

level

of

transaction

services

required

for

executing

collaboration

objects

created

from

the

template.

package.

A

group

of

related

Java

classes.

A

collaboration

template

can

be

made

part

of

a

package

and

it

can

import

other

packages.

port.

The

interface

between

a

collaboration

and

other

objects

in

the

InterChange

Server

Express

system.

It

is

through

a

port

that

a

collaboration

object

binds

with

a

connector

or

with

another

collaboration

object.

reference-valued

business

object.

A

business

object

that

contains

values

for

only

its

key

attributes.

It

does

not

contain

values

for

non-key

attributes.

scenario.

The

code

that

handles

one

or

more

incoming

events.

Scenarios

can

be

used

to

partition

a

collaboration’s

logic.

scenario

tree.

The

set

of

scenarios,

displayed

hierarchically,

that

includes

composite

scenarios,

subdiagrams,

and

iterators.

scenario

variable.

A

variable

whose

scope

extends

to

all

parts

of

all

diagrams

in

a

scenario.

service

call.

An

activity

diagram

symbol

that

represents

a

request

to

an

InterChange

Server

Express

object

outside

the

collaboration,

such

as

a

connector

or

another

collaboration.

subdiagram.

An

activity

diagram

symbol

that

represents

another,

nested,

activity

diagram,

and

the

nested

diagram

itself.

template

variable.

A

variable

whose

scope

extends

to

all

scenarios

in

a

collaboration

template.

template

tree

view

.

The

tree

viewer

that

displays

the

template

definitions,

scenario

tree,

and

message

file

of

the

collaboration

template.

Display

of

the

template

tree

view

is

optional.

transactional

collaboration.

A

collaboration

that

follows

the

database

transactional

model

and

provides

for

data

consistency

for

business

processes.

A

transactional

collaboration

is

capable

of

rolling

back

when

a

runtime

error

causes

the

collaboration

object

to

fail.

In

a

transactional

collaboration,

the

service

calls

have

compensation

defined.

transition

link.

An

activity

diagram

symbol

that

indicates

control

flow

between

other

symbols

of

an

activity

diagram.

transactional

verb.

A

business

object

verb

that

indicates

a

data

modification,

such

as

Create,

Update,

or

Delete.

Retrieve

is

not

a

transactional

verb

because

it

does

not

modify

data.

triggering

event.

The

business

object

that

a

connector

sends

to

a

subscribing

collaboration

when

an

application

event

occurs.

triggeringBusObj.

The

Designer-declared

variable

that

contains

a

scenario’s

triggering

event

when

the

scenario

starts

to

execute.

UID.

A

unique

identifier

for

each

symbol

in

the

activity

diagrams

of

a

scenario.

unresolved

flow.

The

business

object

whose

receipt

caused

a

collaboration

to

execute

a

scenario

that

ended

unsuccessfully.

An

unresolved

flow

can

be

a

failed

flow

(a

flow

that

failed

due

to

application

or

logic

376

Collaboration

Development

Guide

problems),

a

deferred

flow

(a

flow

whose

recovery

has

been

deferred),

an

in-transit

flow

(a

flow

created

when

the

server

crashes

during

a

service

call

transmission

in

a

collaboration

configured

for

Service

Call

In-Transit

persistence),

or

a

possible

duplicate

flow

(a

flow

that

may

have

already

been

received

by

the

collaboration).

Glossary

377

378

Collaboration

Development

Guide

Index

Special

characters
.class

file

6,

52,

56

.java

file

6,

52,

56

.txt

file

6

A
action

5

adding

code

fragments

to

action

nodes

80

adding

to

an

activity

diagram

79

collaboration

properties

and

106

defined

5,

79,

375

defining

properties

for

action

nodes

79

name

of

action

node

79

restrictions

on

links

81

using

a

service

call

with

79

Action

Properties

dialog

79

activity

diagram

4

adding

a

decision

node

86

adding

action

to

79

adding

and

modifying

transition

links

in

81

adding

failed

termination

to

108

adding

iterator

to

102

adding

service

call

to

91

adding

subdiagram

to

99

adding

successful

termination

to

107

adding

text

to

105

arrangement

of

98

cancelling

operation

in

106

closing

109

copying

contents

of

109

creating

139

defined

5,

70,

75,

375

deleting

110

development

styles

79

documenting

109

enlarging

22

example

of

5

exceptions

and

123

finding

text

in

21

finding

UID

of

21

handling

triggering

event

159

locking

22

main

97

menus

for

75

opening

22,

23,

108

printing

23

read-only

mode

22

refreshing

display

of

22

resizing

23

role

of

links

81

saving

109

saving

as

text

23

selecting

all

nodes

in

21

start

and

end

symbols

in

76

stopping

execution

of

123

symbols

in

76

Activity

Editor

80

addElement()

method

306

Alignment

toolbar

22,

23

AND

operator

88

AnyException

exception

124,

129,

281,

342

AppBusObjDoesNotExist

exception

subtype

341

AppLogOnFailure

exception

subtype

340

AppMultipleHits

exception

subtype

234,

340

AppRequestNotYetSent

exception

subtype

137,

341

AppRetrieveByContentFailed

exception

subtype

340

AppTimeOut

exception

subtype

340

AppUnknown

exception

subtype

135,

341

asynchronous

inbound

service

call

91

matching

correlation

attributes

in

96

asynchronous

outbound

service

call

90

setting

correlation

attributes

for

96

attribute
checking

for

key

295

data

type

of

302

defined

375

required

297

attribute

value
adding

together

316

basic

data

type

161,

163

blank

295

checking

existence

of

291

comparing

290

default

299

null

160,

165,

296

retrieving

161,

291

retrieving

as

string

301

retrieving

maximum

308,

309,

310

retrieving

minimum

311,

312,

313

setting

162,

298,

301

setting

default

value

for

299

using

160

validating

data

type

302

zero-length

string

295

AttributeException

exception

124,

281,

342

B
BaseCollaboration

class

10,

271,

287

defined

271,

375

existsConfigProperty()

271

getConfigProperty()

272

getConfigPropertyArray()

272

getCurrentLoopIndex()

273

getDBConnection()

273

getLocale()

47,

275

getMessage()

46,

276

getName()

277

implicitDBTransactionBracketing()

277

isTraceEnabled()

278

logError()

278

logInfo()

278

logWarning()

278

method

summary

271,

335

rai
See

xception()

sendEmail()

283

trace()

284

beginTransaction()

method

180,

319

Best-effort

transaction

level

55

©

Copyright

IBM

Corp.

2003

379

binding

7

defined

375

blank

attribute

value

295

Boolean

class
as

stored-procedure

parameter

type

331

boolean

data

type

60,

161,

163,

177,

291,

298,

302

as

stored-procedure

parameter

type

331

BPEL
exporting

BPEL

files

from

a

template

72

importing

BPEL

files

to

a

template

72

branch
default

branch

85,

88

exception

branch

85,

87

normal

branch

85,

86

number

of

decision

node

branches

84

types

of

branches

in

decision

nodes

84

branching

32

using

collaboration

properties

to

branch

32

using

decision

nodes

84

break

symbol

375

business

object
adding

to

an

array

306

business

object

definition

for

294

check

for

attribute

291

child

158,

162,

163

class

for

10,

287

comparing

attribute

values

161,

290

comparing

key

attribute

values

289

copying

160,

288

creating

157

defined

375

duplicating

160,

289

full-valued

40,

376

in

flow

trigger

8

in

triggering

event

68

key

attribute

in

295

locale

47

monitoring

values

with

a

business

object

probe

83

moving

values

from

one

to

another

159

null

attribute

in

160,

165,

296

number

in

a

business

object

array

315

operations

on

157

reference-valued

40

removing

from

business

object

array

314

required

attribute

in

297

retrieving

attribute

value

291,

301

retrieving

from

business

object

array

307

retrieving

key

attribute

value

297

setting

attribute

values

162,

298,

301

setting

key

values

299

setting

value

of

315

swapping

in

an

array

316

validating

attribute

data

type

302

Business

object
reference-valued

376

business

object

array
adding

attribute

values

together

316

adding

business

object

to

306

child

158

class

for

11,

305

comparing

with

another

307

creating

158

duplicating

306

iterator

and

102

removing

all

elements

from

314

removing

element

from

314

retrieving

a

business

object

from

307

business

object

array

(continued)
retrieving

contents

of

307

retrieving

last

index

of

308

retrieving

maximum

attribute

value

from

308,

309,

310

retrieving

minimum

attribute

value

from

311,

312,

313

retrieving

size

of

315

retrieving

values

as

string

317

reversing

position

of

elements

in

316

setting

element

of

315

business

object

definition
defined

375

retrieving

name

of

294

business

object

probe
adding

to

a

transition

link

83

defined

83,

375

functions

of

83

BusObj

class

10,

287,

303

constructor

for

157

copy()

288

defined

287,

375

deprecated

methods

303

duplicate()

289

equalKeys()

289

equals()

290

equalsShallow()

290

exists()

291

get()

291

getBoolean()

291

getBusObj()

291

getBusObjArray()

291

getCount()

303

getDouble()

291

getFloat()

291

getInt()

291

getKeys()

303

getLocale()

47,

293

getLong()

291

getLongText()

291

getString()

291

getType()

294

getValues()

303

getVerb()

294

isBlank()

295

isKey()

295

isNull()

296

isRequired()

297

keysToString()

297

method

summary

287

retrieving

value

for

292

set()

298,

303

setDefaultAttrValues()

299

setKeys()

299

setLocale()

47,

300

setVerb()

300

setWithCreate()

301

toString()

301

validData()

302

BusObjArray

class

11,

305,

317

addElement()

306

defined

305,

375

duplicate()

306

elementAt()

307

equals()

307

getElements()

307

getLastIndex()

308

max()

308

maxBusObjArray()

309

380

Collaboration

Development

Guide

BusObjArray

class

(continued)
maxBusObjs()

310

method

summary

305

min()

311

minBusObjArray()

312

minBusObjs()

313

removeAllElements()

314

removeElement()

314

removeElementAt()

314

retrieving

value

for

292

setElementAt()

315

size()

315

sum()

316

swap()

316

toString()

317

C
CALL

statement

173,

174,

322,

323

called

collaboration

33,

35

caller

collaboration

33,

34

character

encoding

44

design

principles

49

CLASSPATH

environment

variable

56,

59

code

fragment

6

adding

to

an

action

node

80

defined

80,

375

collaboration
base

class

for

271

called

33,

35

caller

33,

34

calling

map

from

153

defined

3,

375

deploying

6

designing

29

development

process

of

12

exception

handling

in

31

execution

states

125

handling

successful

subdiagram

100

handling

unsuccessful

subdiagram

101

internationalized

43

operations

on

147

parallel

execution

of

35

performance

considerations

97

recovery

of

126,

136

testing

11

unresolved

flow

126

used

as

a

long-lived

business

process

8

wrapper

33

Collaboration

API

10,

128,

339

BaseCollaboration

271

BusObj

287

BusObjArray

305

CollaborationException

123,

339

CwDBConnection

319

CwDBStoredProcedureParam

331

CxExecution

335

exceptions

339

collaboration

configuration

property
case-sensitivity

of

151

checking

existence

of

271

CollaborationInstanceCacheSize

153

controlling

flow

32

creating

61,

62

defined

375

deleting

64

EnableInstanceReuse

152

collaboration

configuration

property

(continued)
for

long-lived

business

processes

64

naming

30

obtaining

value

of

106,

151,

272

types

of

61

use

with

internationalized

collaborations

48

collaboration

development
platform

for

9

tools

for

9

collaboration

group

33

creating

34

defined

33,

375

example

of

34,

41

using

with

long-lived

business

processes

34

collaboration

locale

47,

275

collaboration

object

7

binding

7

class

for

10,

271

configuring

7

defined

7,

375

in-doubt

126

name

of

277

recycling

151

reusing

151

running

in

threads

8

transaction

programming

model

178,

277

collaboration

runtime

environment
handling

exceptions

100,

101

Java

exceptions

128

processing

action

89

processing

service

call

89

tracing

component

151

collaboration

template

3,

152

adding

support

for

long-lived

business

process

54

coding

recommendations

29

compiling

6,

71

configuration

properties

61

converting

72

creating

52

declaring

variables

for

59

defined

3,

375

deleting

73

description

of

53

design

considerations

for

parallel

execution

35

editing

10

exporting

BPEL

and

UML

files

72

importing

BPEL

and

UML

files

72

importing

classes

into

57

internationalizing

43

message

file

147,

148,

183,

186

naming

29,

52

opening

from

a

.cwt

file

20

ports

64

properties

of

17,

22,

53

saving

as

a

.cwt

file

20

scenarios

66

specifying

a

package

for

56

specifying

the

minimum

transaction

level

54

testing

73

collaboration

variable
naming

30

user-defined

152

collaboration-generated

trace

message

149

collaboration-specific

property

61

CollaborationException

class

11,

123,

339,

343,

345

currentException

and

124

defined

339,

375

Index

381

CollaborationException

class

(continued)
deprecated

methods

343

getMessage()

339

getMsgNumber()

340

getSubType()

340

getText()

343

getType()

341

method

summary

339

toString()

342

CollaborationInstanceCacheSize

collaboration

configuration

property

153

commit()

method

180,

320

comparing
business

object

arrays

307

business

object

attribute

values

161,

290

key

attribute

values

289

compensation

94,

106

common

types

of

94

defined

94,

375

defining

94

Compile

Output

window

16,

21

compiling
collaboration

templates

6

compiling

a

single

template

71

compiling

multiple

templates

71

files

created

during

compilation

71

resolving

compilation

errors

71

concurrent

processing

35

design

considerations

for

35

ensuring

data

consistency

via

event

isolation

37

ensuring

data

consistency

via

event

sequencing

36

problems

in

36

condition

88

Condition

Editor

86

connection
determining

if

active

181,

327

obtaining

165,

273

opening

166

releasing

181,

328

transaction

programming

model

178,

273,

274

transaction

programming

models

177

connection

pool

165,

181,

274,

328

control

flow
branching

32

defined

375

copy()

method

30,

159,

160,

288,

303

copying

160

attribute

values

162

business

object

288

business

object

variables

30,

31

correlation

attribute
defined

95,

375

initializing

95

matching

96

requirements

for

using

95

setting

96

Create

request

62,

67,

94

currentException

system-generated

variable

61,

124,

129,

375

CwDBConnection

class

319,

329

beginTransaction()

319

commit()

320

creating

object

of

166,

273

executePreparedSQL()

321

executeSQL()

322

executeStoredProcedure()

324

getUpdateCount()

325

hasMoreRows()

326

CwDBConnection

class

(continued)
inTransaction()

326

isActive()

327

method

summary

319

methods

for

calling

stored

procedures

173

methods

for

row

access

167

methods

for

transaction

management

180

nextRow()

327

release()

328

rollBack()

329

CwDBStoredProcedureParam

class

175,

331,

334

constructor

331

getParamType()

333

getValue()

333

method

summary

331

CwDBStoredProcedureParam()

constructor

175,

331

CwDBTransactionException

exception

178,

181,

182,

274,

320,

321,

328,

329

CxExecutinoContext

class
MAPCONTEXT

335

CxExecutionContext

class

155,

335,

337

CxExecutionContext()

335

defined

335

getContext()

336

setContext()

336

CxExecutionContext()

constructor

155,

335

D
database

connecting

to

165,

181,

273

executing

a

query

in

166,

322,

323,

324

handling

data

from

167

modifying

170,

171

querying

166,

171,

326,

327

rows

affected

by

last

write

325

Date

class

331

Date

data

type

60,

177

decision

node

84

adding

to

activity

diagram

86

creating

a

default

branch

88

creating

a

normal

branch

86

creating

an

exception

branch

87

default

branch

85

defined

84,

375

defining

branches

and

conditions

85

exception

branch

85

normal

branch

85

number

of

permitted

links

81

types

of

branches

in

84

using

Condition

Editor

to

define

conditions

86

Decision

Properties

dialog

box

85

declaration
defined

376

default

branch
creating

88

defined

85

delegation

39

Delete

request

67,

94

DELETE

statement

170,

322,

323

deprecated

method
BusObj

class

303

CollaborationException

class

343

development

process

12

diagram

editor

18,

19,

142

displaying

75

selecting

and

deselecting

symbols

in

75

382

Collaboration

Development

Guide

diagram

editor

(continued)
using

context

menus

75

Double

class
as

stored-procedure

parameter

type

331

double

data

type

60,

161,

163,

177,

291,

298,

302,

308

as

stored-procedure

parameter

type

331

duplicate()

method

31,

160,

289,

306

duplicating
business

object

160,

289

business

object

array

306

E
Edit

menu

21

elementAt()

method

307

email

notification

280,

284

EnableInstanceReuse

collaboration

configiuration

property

152

End

Failure

Properties

dialog

108

End

Failure

symbol
adding

to

activity

diagram

108

defining

108

description

108

End

Failure

Properties

dialog

for

108

in

subdiagram

100

label

for

108

properties

of

108

End

Success

Properties

dialog

107

End

Success

symbol
adding

to

activity

diagram

107

defining

107

description

107

End

Success

Properties

dialog

for

107

in

subdiagram

100,

101

label

for

107

properties

of

107

Enumeration

class

167

environment

variable
CLASSPATH

56,

59

equalKeys()

method

289

equals()

method

151,

161,

290,

307

equalsShallow()

method

290

error

message

71,

148,

278

event

isolation

37,

41,

376

design

rules

for

39

handling

child

business

objects

as

reference-valued

40

using

delegation

39

event

sequencing

36,

376

exception
categories

of

128

class

for

11,

339

CwDBTransactionException

178,

181,

182,

274,

320,

321,

328,

329

defined

123,

376

formatting

342

message

number

340

raising

32,

280

subtypes

of

340

text

339,

342

types

of

341,

342

exception

branch
creating

87

defined

85

exception

handling

31,

100,

102,

137

exception

object

123

contents

of

123

exception

subtype

124

exception

object

(continued)
exception

text

342

exception

type

124,

342

message

124,

339

message

number

124,

340

executePreparedSQL()

method

170,

174,

321

executeSQL()

method

166,

173,

322

executeStoredProcedure()

method

173,

174,

324

execution

context

335,

337

execution

path

5,

106

choosing

88

of

main

diagram

99

of

subdiagram

99

terminating

in

failure

107

terminating

in

success

106

using

property

to

choose

62

exists()

method

291

existsConfigProperty()

method

271

explicit

transaction

bracketing
releasing

the

connection

181

F
failure

execution

status

107

File

menu

20

Float

class
as

stored-procedure

parameter

type

331

float

data

type

60,

161,

163,

177,

291,

298,

302,

308

as

stored-procedure

parameter

type

331

flow

locale

47

Flow

Manager

tool

126

flow

trigger

8

assigning

to

scenario

67

copying

159

handling

flow

triggers

in

scenarios

67

processing

30

receiving

64

variable

for

159

when

deleted

66

full-valued

business

object

40

defined

376

G
get()

method

161,

291

getBoolean()

method

161,

291

getBusObj()

method

162,

163,

291

getBusObjArray()

method

162,

164,

291

getConfigProperty()

method

106,

151,

154,

272

getConfigPropertyArray()

method

106,

151,

272

getContext()

method

336

getCount()

method

(deprecated)

303

getCurrentLoopIndex()

method

(Base

Collaboration)

273

getDBConnection()

method

165,

178,

273,

274

getDouble()

method

161,

291

getElements()

method

307

getFloat()

method

161,

291

getInt()

method

161,

291

getKeys()

method

(deprecated)

303

getLastIndex()

method

308

getLocale()

method

(Base

Collaboration)

275

getLocale()

method

(BaseCollaboration)

47

getLocale()

method

(BusObj)

47,

293

getLong()

method

161,

291

getLongText()

method

161,

291

getMessage()

method

124

Index

383

getMessage()

method

(BaseCollaboration)

46,

276

getMessage()

method

(CollaborationException)

339

getMsgNumber()

method

124,

340

getName()

method

277

getParamType()

method

175,

333

getString()

method

161,

291

getSubType()

method

124,

135,

137,

340

getText()

method

(deprecated)

343

getType()

method

124,

159,

294,

341

getUpdateCount()

method

170,

325

getValue()

method

175,

333

getValues()

method

(deprecated)

303

getVerb()

method

294

Grid

Properties

dialog

142

H
hasMoreRows()

method

167,

173,

326

hierarchical

business

object
coding

techniques

for

163

comparing

all

290

comparing

top-level

290

I
implicit

transaction

bracketing
releasing

the

connection

181

implicitDBTransactionBracketing()

method

178,

277

import

statement

57,

376

IN

parameter

174,

175,

176,

333

informational

message

148,

149,

278

INOUT

parameter

175,

333

INSERT

statement

170,

322,

323,

325

int

data

type

60,

161,

163,

177,

291,

298,

302,

308

as

stored-procedure

parameter

type

331

Integer

class
as

stored-procedure

parameter

type

331

Integration

Component

Library

user

project

52

InterchangeSystem.log

log

file

279,

285

internationalization
character-encoding

design

principles

49

considerations

for

collaboration

properties

48

defined

43

handling

email

messages

46

handling

hardcoded

strings

46

locale

44

locale-sensitive

design

44

obtaining

exception

messages

45

obtaining

log

messages

45

of

collaboration

template

43

of

collaboration

text

strings

45

using

collaboration

message

file

for

text

strings

45

inTransaction()

method

180,

326

isActive()

method

181,

327

isBlank()

method

295

isKey()

method

295

isNull()

method

296

isRequired()

method

297

isTraceEnabled()

method

278

iterator
creating

102

defined

102,

376

defining

103

Iterator

Properties

dialog

103

restrictions

on

links

81

symbol

102

iterator

(continued)
uses

for

102

Iterator

Properties

dialog

103

J
Java

class
Enumeration

167

importing

57,

154

importing

from

third-party

packages

58

java.sql.Types

177

Object

161,

163,

291,

298,

302

resolving

import

errors

59

Vector

167,

174,

323,

327,

332

Java

operator
AND

88

NOT

303

java.lang

package

57

java.sql.Types

class

177

java.util

package

57,

167

JavaException

exception

124,

128,

281,

340,

342

JDK

57

K
key

attribute

value
checking

for

295

comparing

289

retrieving

as

string

297

setting

299

keysToString()

method

297,

303

L
label

for

End

Failure

108

for

End

Success

107

for

service

call

92

for

subdiagram

100

for

symbols

78

for

transition

link

83

viewing

22

Link

Properties

dialog

82

locale
business

object

47

collaboration

47,

275

defined

43

design

considerations

for

localized

collaborations

44

design

considerations

for

text

strings

45

flow

47

information

provided

by

44

log

destination

279,

285

LOG_FILE

system

configuration

parameter

279,

285

logError()

method

45,

130,

148,

183,

278

logging

45,

147

example

148

levels

148

principles

of

148

severity

levels

148

logical

operator

88,

303

logInfo()

method

45,

147,

148,

149,

183,

278

logWarning()

method

45,

147,

148,

183,

278

long

data

type

60,

161,

163,

177,

291,

298,

302,

331

long-lived

business

process
adding

support

for

54

defined

8,

376

384

Collaboration

Development

Guide

long-lived

business

process

(continued)
design

considerations

35

special

considerations

for

collaboration

groups

34

specifying

service

call

timeout

values

93

using

a

collaboration

as

8

using

collaboration

configuration

properties

with

64

using

correlation

attributes

with

95

using

dynamic

timeout

values

64

using

scenario

variables

with

70

using

template

variables

with

60

LongText

class
setting

attribute

298

LongText

data

type

60,

161,

292,

308

M
main

activity

diagram

97,

98,

107,

125,

126

map

153,

335

MAPCONTEXT

constant

335

MAX_LOG_FILE_SIZE

system

configuration

parameter

279,

285

max()

method

308

maxBusObjArray()

method

309

maxBusObjs()

method

310

menus.
See

Process

Designer

Express

menus

message
parameters

in

185

revising

149

severity

148

message

file

6

defined

147

explanations

185

localized

45

location

of

6,

184

maintaining

186

name

of

184

operations

that

use

183

setting

up

183,

186

using

45,

147,

148

min()

method

311

minBusObjArray()

method

312

minBusObjs()

method

313

Minimal-effort

transaction

level

55

minimum

transaction

level

54

MIRROR_LOG_TO_STDOUT

system

configuration

parameter

279,

285

multithreading

35

use

of

event

sequencing

36

N
name

collaboration

configuration

property

63

for

action

node

79

of

transition

link

82

port

65

template

52

naming

conventions
for

collaboration

configuration

properties

63

for

collaboration

properties

30

for

collaboration

templates

29,

52

for

collaboration

variables

30

for

ports

65

for

scenario

67

for

scenarios

66

nextRow()

method

167,

173,

327

node
defined

77

types

of

77

normal

branch
creating

86

defined

85

using

Condition

Editor

to

define

conditions

86

NOT

operator

303

Nudge

toolbar

22,

23

null

attribute

value

160,

165,

296

NUMBER_OF_ARCHIVE_LOGS

system

configuration

parameter

279,

285

O
Object

class

161,

163,

291,

298,

302

ObjectException

exception

124,

281,

342

OperationException

exception

124,

281,

342

optimization

97

OUT

parameter

173,

175,

176,

333,

334

Output

window

71

P
package

57,

167

defined

56,

376

java.util

57

specifying

for

a

collaboration

template

56

PARAM_IN

constant

176,

333

PARAM_INOUT

constant

333

PARAM_OUT

constant

176,

333

parent

diagram

76,

98,

100,

107,

109

performance

97

port

64

creating

65

defined

64,

376

deleting

66

external

9

for

flow

trigger

68

for

triggering

event

68

internal

9

matching

37

naming

65

renaming

66

type

of

65

using

a

Port

connector

66

variable

for

61,

66,

159

Port

connector

66

port

matching

37,

42

example

of

matching

ports

37

example

of

non-matching

ports

38

Process

Designer

Express
Activity

Editor

80

Compile

Output

window

16,

21

customizing

the

layout

of

24

diagram

editor

18,

19,

75

layout

of

16

main

window

24

menus

of

75

menus.
See

Process

Designer

Express

menus

output

window

71

starting

15

status

bar

22

Template

Definitions

window

17

Index

385

Process

Designer

Express

(continued)
template

tree

view

16,

21

toolbars.
See

Process

Designer

Express

toolbars

Process

Designer

Express

menus
descriptions

of

20

Edit

menu

21

File

menu

20

Template

menu

22

View

menu

21

Window

menu

23

Process

Designer

Express

toolbars
Alignment

toolbar

22,

23

displaying

22,

24

Nudge

toolbar

22,

23

overview

of

23

Standard

toolbar

22,

23

Symbols

toolbar

22,

23,

76

Zoom/Pan

toolbar

22,

23

R
rai

See

xception()

method

reference-valued

business

object

40

defined

376

release()

method

328

removeAllElements()

method

314

removeElement()

method

314

removeElementAt()

method

314

removing
all

elements

of

a

business

object

array

314

element

of

a

business

object

array

314

request

78,

89,

94,

128,

339

Retrieve

request

94,

340

retrieving
business

object

array

contents

307

business

object

array

maximum

value

308,

309,

310

business

object

array

minimum

value

311,

312,

313

business

object

array

values

as

string

317

business

object

attribute

value

161,

291

business

object

from

array

307

business

object

key

attribute

value

as

string

297

business

object

type

294

business

object

verb

294

collaboration

object

name

277

configuration

property

value

106,

151,

272,

335,

336

exception

as

string

342

exception

subtype

340

exception

type

341

last

index

from

business

object

array

308

number

of

elements

in

business

object

array

315

return

value
for

service

call

97

rollBack()

method

180,

329

S
scenario

4

assigning

a

triggering

event

67

creating

67

defined

4,

66,

376

defining

scenario

variables

69

deleting

23,

70

flow

trigger

67,

159

handling

a

flow

trigger

67

scenario

(continued)
naming

66

naming

conventions

67

triggering

event

159

Scenario

Definitions

dialog

69

scenario

variable
defined

69,

376

subdiagram

and

99

using

with

a

long-lived

business

process

70

SELECT

statement

166,

171,

322,

323,

326,

328

sendEmail()

method

46,

283

sendMail()

method

45

service

call
as

subtransaction

step

94

asynchronous

inbound

service

call

91

asynchronous

outbound

service

call

90

compensation

94

creating

91

defined

78,

376

defining

91

exactly-once

requests

135

label

for

92

optional

properties

for

91

overview

of

89

performance

considerations

97

relationship

between

service

call

and

action

node

89

required

properties

for

91

results

of

97

return

values

97

specifying

the

type

of

92

specifying

timeout

value

for

93

subtransaction

steps

and

94

synchronous

service

call

90

transport-related

exceptions

341

types

of

78,

90

unsent

137

using

correlation

attributes

with

95

using

dynamic

timeout

value

for

64

Service

Call

Properties

dialog

91

ServiceCallException

exception

90,

97,

124,

134,

281,

340,

342

ServiceCallTransportException

exception

subtype

135,

341

set()

method

158,

160,

163,

298,

303

setContext()

method

155,

336

setDefaultAttrValues()

method

299

setElementAt()

method

315

setKeys()

method

299

setLocale()

method

47,

300

setVerb()

method

300,

303

setWithCreate()

method

301

size()

method

308,

315

SQL

query

165,

182

checking

for

more

rows

167,

326

executing

166,

321,

322,

324

prepared

170,

321

retrieving

next

row

167,

327

static

166,

322

standard

property

61

Standard

toolbar

22,

23

Start

symbol
initializing

correlation

attributes

in

96

start_server.bat

file

59

stored

procedure
creating

object

for

parameter

175,

331

executing

172,

322,

323,

324

in/out

parameter

type

174,

333

parameter

174

parameter

mapping

from

Java

Object

to

JDBC

177

386

Collaboration

Development

Guide

stored

procedure

(continued)
parameter

value

175,

333

query

result

173,

326,

328

Stored

procedure
in/out

parameter

type

175

String

class
as

stored-procedure

parameter

type

331

String

data

type

60,

161,

163,

177,

292,

298,

302,

308

Stringent

transaction

level

55

subdiagram

5,

97

completion

status

of

100

creating

99

defined

376

defining

100

deleting

100

description

100

label

for

100

naming

99

parent

diagram

of

98

properties

of

100

relationship

to

main

diagram

98

restrictions

on

links

81

Subdiagram

Properties

dialog

for

100

successful

execution

of

100

symbol

78,

99

unsuccessful

execution

101

valid

contents

of

100

Subdiagram

Properties

dialog

100

subpackage

56

subtransaction

step

94,

106

subtype

of

exception

340

successful

execution

status

106

sum()

method

316

swap()

method

316

symbol
adding

an

action

symbol

to

activity

diagrams

79

aligning

139

center

of

140

context

menu

for

76

deleting

110

description

for

78

deselecting

75

display

information

for

22

edges

139

editing

the

properties

of

78

End

Failure

100,

107

End

Failure

symbol

77

End

Success

100,

101,

107

End

Success

symbol

77

font

for

21,

76

introduction

to

76

iterator

102

label

for

22,

78

moving

141

node

symbols

77

nudging

141

orthogonal

transition

link

81

panning

142

properties

of

21,

78,

146

selecting

75

selection

border

of

75

service

call

symbol

78

snapping

to

grid

lines

22,

143

Start

symbol

77

subdiagram

99

Subdiagram

78

text

105

symbol

(continued)
transition

link

81

transition

link

symbols

77

types

of

76

zooming

22,

142

Symbol

Properties

dialog

76,

78,

146

Symbols

toolbar

23,

76

displaying

22

End

Failure

108

End

Success

107

select

106

text

105

synchronous

service

call

90

setting

correlation

attributes

for

96

system

configuration

parameter
LOG_FILE

279,

285

MAX_LOG_FILE_SIZE

279,

285

MIRROR_LOG_TO_STDOUT

279,

285

NUMBER_OF_ARCHIVE_LOGS

279,

285

System

Manager

11

system-generated

trace

message

149,

151

system-generated

variable

61

SystemException

exception

124,

281,

342

T
template

definition
creating

52

Template

Definitions

window

17

Declarations

tab

56,

152,

154

general

description

of

53

General

tab

53,

152,

153

Ports

and

Triggering

Events

tab

64

Properties

tab

61

Template

menu

22

template

tree

view

16,

21

template

variable
affected

by

port

name

change

66

data

types

for

60

declaring

56,

59,

152

defined

56,

376

editing

56

port

66

port

variables

61

special

considerations

for

long-lived

business

processes

60

system-generated

61

used

with

correlation

attributes

95

termination

106

Test

Connector

tool

11,

73

threads

35

timeout

value
dynamic

64

specifying

for

service

calls

93

toolbars
See

Process

Designer

Express

toolbars

toString()

method

124,

301,

303,

317,

342,

343

trace

level

149,

150,

151,

278

trace

message

149,

151

adding

149

assigning

trace

level

to

150

collaboration-generated

149

generating

150,

284

setting

trace

level

for

149

system-generated

149,

151

types

of

149

trace()

method

149,

183,

284

tracing

149,

151

Index

387

tracing

(continued)
code

example

150

collaboration-generated

149

configuration

of

149

generating

message

150

level

for

150

system-generated

151

transaction

levels

54

transactional

collaboration

91,

94,

106

defined

376

transaction

levels

54

TransactionException

exception

124,

281,

342

transactions
beginning

178,

180,

319

committing

178,

180,

181,

320

defined

177

determining

if

in

progress

181,

326

explicit

177

implicit

177

inheriting

179

managing

170,

177

recovery

of

126,

136

rolling

back

126,

178,

180,

329

scope

178

transition

link

81

cancelling

82

connecting

84

creating

81

defined

77,

376

defining

properties

of

82

description

83

determining

if

valid

81

disconnecting

84

functions

of

81

guidelines

for

using

orthogonal

and

free-form

links

81

label

for

83

labeling

83

Link

Properties

dialog

82

modifying

84

number

per

node

type

81

specifying

a

business

object

probe

for

83

symbol

81

types

of

properties

82

triggering

access

call

9,

64,

66,

67

triggering

event

9,

64

assigning

to

scenario

67

copying

159

defined

64,

376

for

called

collaboration

34

initiating

a

map

155,

156

processing

30

simulating

73

variable

for

159

when

deleted

66

triggeringBusObj

system-generated

variable

30,

31,

61,

159,

376

U
UID

(symbol)

78,

376

End

Failure

108

End

Success

107

subdiagram

99,

100,

102

viewing

22

UML

5,

70

exporting

UML

files

from

a

template

72

importing

UML

files

to

a

template

72

unresolved

flow

101,

126

defined

376

Update

request

62,

67,

94

UPDATE

statement

170,

322,

323,

325

user-defined

variable

152

UserCollaborations

package

56

V
validData()

method

302

Vector

class
with

executeStoredProcedure()

174,

323,

332

with

nextRow()

167,

327

verb
in

flow

trigger

8

in

triggering

event

68

retrieving

294

setting

300

View

menu

21

W
warning

message

148,

278

Windows

menu

23

workspace

139

grid

22,

142

wrapper

collaboration

33

Z
zero-length

string

295

Zoom/Pan

toolbar

22,

23

388

Collaboration

Development

Guide

����

Printed

in

USA

	Contents
	Preface
	Audience
	Scope of this manual
	How to use this manual
	Related documents
	Typographic conventions

	Summary of Changes
	Part 1. Getting started
	Chapter 1. Introduction to collaboration development
	What are collaborations?
	Collaboration templates
	Collaboration objects
	Collaborations as long-lived business processes
	Collaborations and the IBM InterChange Server Express system

	Tools for collaboration development
	Process Designer Express
	Collaboration API
	System Manager
	Test Connector

	Overview of the development process
	Stages of collaboration development

	Chapter 2. Overview of Process Designer Express
	Starting Process Designer Express
	Process Designer Express layout
	Process Designer Express windows
	Template Definitions window
	Diagram editor window
	Template Messages window

	Process Designer Express menus
	Functions of the File menu
	Functions of the Edit menu
	Functions of the View menu
	Functions of the Template menu
	Functions of the Tools menu
	Functions of the Window menu

	Process Designer Express toolbars
	Customizing the main window
	Choosing windows to display
	Floating a dockable window
	Displaying windows within the working area

	Part 2. Creating a collaboration template
	Chapter 3. Designing a collaboration
	Coding recommendations
	Naming conventions
	Processing the flow trigger
	Raising exceptions
	Branching
	Wrapper collaborations

	Building collaboration groups
	Example of a collaboration group: Customer Manager
	Creating a collaboration group

	Designing for long-lived business processes
	Designing for parallel execution
	Multithreading capabilities
	Problems in concurrent processing
	Event sequencing
	Event isolation

	Examples
	An internationalized collaboration
	What is a locale?
	Design considerations for an internationalized collaboration

	Chapter 4. Building a collaboration template
	Creating a collaboration template
	Creating the template definition

	Providing template property information
	Defining general property information (the General tab)
	Declaring and editing template variables (the Declarations tab)
	Defining collaboration configuration properties (the Properties tab)
	Defining ports and triggering events (the Ports and Triggering Events tab)

	Defining scenarios
	About scenarios
	Creating a scenario
	Assigning triggering events to scenarios
	Defining scenario variables
	Deleting a scenario

	Creating an activity diagram
	Creating the message file
	Compiling a collaboration template
	Compiling a single template
	Compiling multiple collaboration templates

	Converting templates
	Importing files
	Exporting a collaboration template

	Deleting a collaboration template
	Testing a collaboration

	Chapter 5. Using activity diagrams
	Using the diagram editor functionality
	Accessing diagram editor functionality: Process Designer Express menus
	Accessing diagram editor functionality: Mouse movements

	Activity diagram symbols
	Introduction to the symbols
	Properties of diagram symbols

	Action nodes
	Adding an action to a diagram
	Defining action node properties

	Transition Links
	How many links can coexist?
	Creating a transition link
	Defining transition link properties
	Using business object probes
	Modifying a transition link

	Decision nodes
	Defining a normal branch
	Defining an exception branch
	Defining a default branch
	Combining an exception and a condition in branching logic

	Service calls
	Types of service calls
	Creating a service call
	Defining a service call
	Handling results
	Performance considerations

	Subdiagrams
	Creating a subdiagram
	Defining a subdiagram
	Deleting a subdiagram
	Handling subdiagram completion status

	Iterators
	Creating an iterator
	Creating iterator variables
	Defining an iterator
	Adding a break

	Using other features of the Symbols toolbar
	Using the text box feature
	Cancelling an operation

	Obtaining values of collaboration configuration properties
	Using transactional features
	Terminating the execution path
	Terminating in success
	Terminating in failure

	Other activity diagram operations
	Opening and closing activity diagrams
	Documenting an activity Diagram
	Copying an activity diagram
	Deleting within an activity diagram

	Chapter 6. Using Activity Editor
	Starting Activity Editor
	The Activity Editor interface
	Activity Editor view modes
	Activity Editor menus
	Activity Editor toolbars
	Activity Editor keyboard shortcuts

	Activity definitions
	Connection links
	New Constant function block
	Tags for activity definitions
	Component groups

	Supported function blocks
	Example: Changing a date format

	Chapter 7. Handling exceptions
	What is a collaboration exception?
	How exceptions are processed
	Processing the Normal state
	Processing the Exception state

	How to handle exceptions
	Not catching the exception
	Catching the exception
	Raising the exception

	Handling particular service-call exceptions
	Service calls and exactly-once requests
	Unsent service call requests

	Exceptions from the Collaboration API

	Chapter 8. Workspace and layout options
	Aligning symbols
	Aligning edges
	Aligning centers

	Nudging symbols
	Zooming or panning on symbols
	Using the workspace grid
	Changing display: user preferences
	Changing general display
	Changing diagram display
	Changing the color of symbols and links

	Hiding the Symbol Properties dialog boxes

	Chapter 9. Coding tips and examples
	Operations on the collaboration
	Logging messages
	Adding trace messages
	Retrieving a collaboration configuration property
	Reusing collaboration object instances
	Calling a native map

	Operations on business objects
	Creating a new business object
	Creating a child business object in a new business object
	Copying the triggering event
	Copying or duplicating a business object
	Using attribute values
	Setting attribute values
	Setting an attribute value to null

	Executing database queries
	Obtaining a connection
	Executing the query
	Managing the transaction
	Releasing a connection

	Chapter 10. Creating a message file
	Operations that use the message file
	Creating a message file
	Message file: Name and location
	Explanations
	Reading message explanations

	Message parameters
	Maintaining the file

	Part 3. Supported function blocks
	Chapter 11. Business object function blocks
	Copy
	Inputs
	Notes

	Duplicate
	Inputs
	Output
	Notes

	Equal Keys
	Inputs
	Output
	Notes

	Equals
	Inputs
	Output
	Notes

	Exists
	Inputs
	Output
	Notes

	Get Boolean
	Inputs
	Output
	Notes

	Get Business Object
	Inputs
	Output
	Notes

	Get Business Object Array
	Inputs
	Output
	Notes

	Get Business Object Type
	Inputs
	Output
	Notes

	Get BusObj At
	Inputs
	Output

	Get Double
	Inputs
	Output
	Notes

	Get Float
	Inputs
	Output
	Notes

	Get Int
	Inputs
	Output
	Notes

	Get Locale
	Inputs
	Output
	Notes

	Get Long
	Inputs
	Output
	Notes

	Get Long Text
	Inputs
	Output
	Notes

	Get Object
	Inputs
	Output
	Notes

	Get String
	Inputs
	Output
	Notes

	Get Verb
	Inputs
	Output
	Notes

	Is Blank
	Inputs
	Output
	Notes

	Is Business Object
	Inputs
	Output

	Is Key
	Inputs
	Output
	Notes

	Is Null
	Inputs
	Output
	Notes

	Is Required
	Inputs
	Output
	Notes

	Iterate Children
	Inputs

	Keys to String
	Inputs
	Output
	Notes

	New Business Object
	Inputs
	Output
	Notes

	New Business Object Array
	Inputs
	Output

	Set BusObj At
	Inputs

	Set Content
	Inputs
	Notes

	Set Default Attribute Values
	Inputs
	Notes

	Set Keys
	Inputs
	Notes

	Set Locale
	Inputs
	Notes

	Set Value
	Inputs
	Notes

	Set Value with Create
	Inputs
	Notes

	Set Verb
	Inputs
	Notes

	Set Verb with Create
	Inputs
	Notes

	Shallow Equals
	Inputs
	Output
	Notes

	Size
	Inputs
	Output

	To String
	Inputs
	Output
	Notes

	Valid Data
	Inputs
	Output
	Notes

	Verb:Create
	Output

	Verb:Delete
	Output

	Verb:Retrieve
	Output

	Verb:Update
	Output

	Chapter 12. Business object array function blocks
	Add Element
	Inputs
	Notes

	Duplicate
	Inputs
	Output
	Notes

	Equals
	Inputs
	Output
	Notes

	Get Element At
	Inputs
	Output
	Notes

	Get Elements
	Inputs
	Output
	Notes

	Get Last Index
	Inputs
	Output
	Notes

	Is Business Object Array
	Inputs
	Output

	Max Attribute Value
	Inputs
	Output
	Notes

	Max Business Object Array
	Inputs
	Output
	Notes

	Max Business Objects
	Inputs
	Output
	Notes

	Min Attribute Value
	Inputs
	Output
	Notes

	Min Business Object Array
	Inputs
	Output
	Notes

	Min Business Objects
	Inputs
	Output
	Notes

	Remove All Elements
	Inputs
	Notes

	Remove Element
	Inputs
	Notes

	Remove Element At
	Inputs
	Notes

	Set Element At
	Inputs
	Notes

	Size
	Inputs
	Output
	Notes

	Sum
	Inputs
	Output
	Notes

	Swap
	Inputs
	Notes

	To String
	Inputs
	Output
	Notes

	Chapter 13. Collaboration template function blocks
	AnyException
	Output

	AttributeException
	Output

	Get Locale
	Inputs
	Output
	Notes

	Get Message
	Inputs
	Output
	Notes

	Get Message with Parameter
	Inputs
	Output
	Notes

	Get Name
	Inputs
	Output
	Notes

	Get Property
	Inputs
	Output

	Get Property Array
	Inputs
	Output

	Implicit DB Bracketing
	Inputs
	Output
	Notes

	Is Trace Enabled
	Inputs
	Output
	Notes

	JavaException
	Output

	ObjectException
	Output

	OperationException
	Output

	Property Exists
	Inputs
	Output

	Raise Collaboration Exception
	Inputs
	Notes

	Raise Collaboration Exception 1
	Inputs

	Raise Collaboration Exception 2
	Inputs

	Raise Collaboration Exception 3
	Inputs

	Raise Collaboration Exception 4
	Inputs

	Raise Collaboration Exception 5
	Inputs

	Raise Collaboration Exception with Parameter
	Inputs
	Notes

	Send Email
	Inputs
	Notes

	ServiceCallException
	Output

	SystemException
	Output

	TransactionException
	Output

	Chapter 14. Database connection function blocks
	Begin Transaction
	Inputs
	Notes

	Commit
	Inputs
	Notes

	Execute Prepared SQL
	Inputs
	Notes

	Execute Prepared SQL with Parameter
	Inputs
	Notes

	Execute SQL
	Inputs
	Notes

	Execute SQL with Parameter
	Inputs
	Notes

	Execute Stored Procedure
	Inputs
	Notes

	Get Database Connection
	Inputs
	Output
	Notes

	Get Database Connection with Transaction
	Inputs
	Output
	Notes

	Get Next Row
	Inputs
	Output
	Notes

	Get Update Count
	Inputs
	Output
	Notes

	Has More Rows
	Inputs
	Output
	Notes

	In Transaction
	Inputs
	Output
	Notes

	Is Active
	Inputs
	Output
	Notes

	Release
	Inputs
	Notes

	Roll Back
	Inputs
	Notes

	Chapter 15. Database stored procedure function blocks
	Get Param Type
	Inputs
	Output
	Notes

	Get Param Value
	Inputs
	Output
	Notes

	New DB Stored Procedure Param
	Inputs
	Output
	Notes

	Chapter 16. Exception function blocks
	Catch Collaboration Exception
	Inputs
	Notes

	Get Message
	Inputs
	Output
	Notes

	Get Message Number
	Inputs
	Output
	Notes

	Get Subtype
	Inputs
	Output
	Notes

	Get Type
	Inputs
	Output
	Notes

	To String
	Inputs
	Output
	Notes

	Chapter 17. Execution function blocks
	Get Context
	Inputs
	Output
	Notes

	MAPCONTEXT
	Output

	New Execution Context
	Output
	Notes

	Set Context
	Inputs
	Notes

	Chapter 18. Date function blocks
	Add Day
	Inputs
	Output

	Add Month
	Inputs
	Output

	Add Year
	Inputs
	Output

	Date After
	Inputs
	Output

	Date Before
	Inputs
	Output

	Date Equals
	Inputs
	Output

	Format Change
	Inputs
	Output

	Get Day
	Inputs
	Output

	Get Month
	Inputs
	Output

	Get Year
	Inputs
	Output

	Get Year Month Day
	Inputs
	Output

	Now
	Inputs
	Output

	yyyy-MM-dd
	Output
	Notes

	yyyyMMdd
	Output
	Notes

	yyyyMMdd HH:mm:ss
	Output
	Notes

	Chapter 19. Logging and tracing function blocks
	Log error
	Inputs

	Log Error ID
	Inputs

	Log Error ID 1
	Inputs

	Log Error ID 2
	Inputs

	Log Error ID 3
	Inputs

	Log Information
	Inputs

	Log Information ID
	Inputs

	Log Information ID 1
	Inputs

	Log Information ID 2
	Inputs

	Log Information ID 3
	Inputs

	Log Warning
	Inputs

	Log Warning ID
	Inputs

	Log Warning ID 1
	Inputs

	Log Warning ID 2
	Inputs

	Log Warning ID 3
	Inputs

	Trace
	Inputs

	Trace ID 1
	Inputs

	Trace ID 2
	Inputs

	Trace ID 3
	Inputs

	Trace on Level
	Inputs

	Chapter 20. String function blocks
	Append Text
	Inputs
	Output

	If
	Inputs
	Output

	Is Empty
	Inputs
	Output

	Is NULL
	Inputs
	Output

	Left Fill
	Inputs
	Output

	Left String
	Inputs
	Output

	Lower Case
	Inputs
	Output

	Object to String
	Inputs
	Output

	Repeat
	Inputs
	Output

	Replace
	Inputs
	Output

	Right Fill
	Inputs
	Output

	Right String
	Inputs
	Output

	Substring by Position
	Inputs
	Output

	Substring by Value
	Inputs
	Output

	Text Equal
	Inputs
	Output

	Text Equal Ignore Case
	Inputs
	Output

	Text Length
	Inputs
	Output

	Trim Left
	Inputs
	Output

	Trim Right
	Inputs
	Output

	Trim Text
	Inputs
	Output

	Upper Case
	Inputs
	Output

	Chapter 21. Utilities function blocks
	Add Element
	Inputs
	Output

	Catch Error
	Inputs

	Catch Error Type
	Inputs

	Condition
	Inputs

	English
	Output

	French
	Output

	German
	Output

	Get Country
	Inputs
	Output
	Notes

	Get Element
	Inputs
	Output

	Get Language
	Inputs
	Output
	Notes

	Italian
	Output

	Iterate Vector
	Inputs

	Japanese
	Output

	Korean
	Output

	Loop
	Inputs

	Move Attribute in Child
	Inputs

	New Locale
	Inputs
	Output
	Notes

	New Locale with Language
	Inputs
	Output
	Notes

	New Vector
	Output

	Raise Error
	Inputs

	Raise Error Type
	Inputs

	Simplified Chinese
	Output

	Size
	Inputs
	Output

	To Array
	Inputs
	Output

	Traditional Chinese
	Output

	Part 4. Collaboration API reference
	Chapter 22. BaseCollaboration class
	existsConfigProperty()
	getConfigProperty()
	getConfigPropertyArray()
	getCurrentLoopIndex()
	getDBConnection()
	getLocale()
	getMessage()
	getName()
	implicitDBTransactionBracketing()
	isTraceEnabled()
	logError(), logInfo(), logWarning()
	raiseException()
	sendEmail()
	trace()

	Chapter 23. BusObj class
	copy()
	duplicate()
	equalKeys()
	equals()
	equalsShallow()
	exists()
	getBoolean(), getDouble(), getFloat(), getInt(), getLong(), get(), getBusObj(), getBusObjArray(), getLongText(), getString()
	getLocale()
	getType()
	getVerb()
	isBlank()
	isKey()
	isNull()
	isRequired()
	keysToString()
	set()
	setDefaultAttrValues()
	setKeys()
	setLocale()
	setVerb()
	setWithCreate()
	toString()
	validData()
	Deprecated method

	Chapter 24. BusObjArray class
	addElement()
	duplicate()
	elementAt()
	equals()
	getElements()
	getLastIndex()
	max()
	maxBusObjArray()
	maxBusObjs()
	min()
	minBusObjArray()
	minBusObjs()
	removeAllElements()
	removeElement()
	removeElementAt()
	setElementAt()
	size()
	sum()
	swap()
	toString()

	Chapter 25. CwDBConnection class
	beginTransaction()
	commit()
	executePreparedSQL()
	executeSQL()
	executeStoredProcedure()
	getUpdateCount()
	hasMoreRows()
	inTransaction()
	isActive()
	nextRow()
	release()
	rollBack()

	Chapter 26. CwDBStoredProcedureParam class
	CwDBStoredProcedureParam()
	getParamType()
	getValue()

	Chapter 27. CxExecutionContext class
	Static constants
	CxExecutionContext()
	getContext()
	setContext()

	Chapter 28. CollaborationException class
	getMessage()
	getMsgNumber()
	getSubType()
	getType()
	toString()
	Deprecated methods

	Chapter 29. Filter class
	Filter()
	filterExcludes()
	filterIncludes()
	recurseFilter()
	recursePreReqs()

	Chapter 30. Globals class
	Globals()
	callMap()

	Chapter 31. SmartCollabService class
	SmartCollabService()
	doAgg()
	doMergeHash()
	doRecursiveAgg()
	doRecursiveSplit()
	getKeyValues()
	merge()
	split()

	Chapter 32. StateManagement class
	beginTransaction()
	commit()
	deleteBO()
	deleteState()
	persistBO()
	recoverBO()
	releaseDBConnection()
	resetData()
	retrieveState()
	saveState()
	setDBConnection()
	StateManagement()
	updateBO()
	updateState()

	Part 5. Appendixes
	Notices
	Programming interface information
	Trademarks and service marks

	Glossary
	Index

