
IBM WebSphere Business Integration Adapters

Adapter for iSeries User Guide

Version 2.1.x

���

IBM WebSphere Business Integration Adapters

Adapter for iSeries User Guide

Version 2.1.x

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 77.

13September2005

This edition of this document applies to connector version 2.1.x and to all subsequent releases and modifications

until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . v

Audience . v

Related documents . v

Typographic conventions . vi

New in this release . vii

Version 2.1.x . vii

Version 2.0.x . vii

Prior versions . vii

Chapter 1. Overview . 1

An overview of the iSeries and AS/400 systems . 1

How the adapter works . 3

Chapter 2. Installing the iSeries adapter . 5

Adapter for iSeries environment . 5

Installing the iSeries adapter and related files . 7

Installed file structure . 7

Post installation tasks . 7

Chapter 3. Configuring the iSeries adapter . 9

Configuring the connector . 9

Chapter 4. Understanding business objects for the connector 29

Defining connector metadata . 29

Overview of business object structure . 29

Business Object structure for RPG, COBOL, and Java programs 30

Business Object structure for iSeries data queues . 34

Configuring meta objects for polling . 34

Specifying business object attribute properties . 36

Specifying business object attribute level application text . 36

Chapter 5. Creating and modifying business objects 39

Overview of the ODA for iSeries . 39

Generating business object definitions . 39

Specifying business object information . 45

Uploading business objects . 47

Chapter 6. Troubleshooting and error handling 49

Error handling . 49

Logging . 49

Tracing messages . 49

Appendix. Standard configuration properties for connectors 51

New properties . 51

Standard connector properties overview . 51

Standard properties quick-reference . 53

Standard properties . 59

Index . 75

Notices . 77

Programming interface information . 79

© Copyright IBM Corp. 2003, 2005 iii

Trademarks and service marks . 79

iv Adapter for iSeries User Guide

About this document

The IBM(R) WebSphere(R) Business Integration Adapters portfolio supplies

integration connectivity for leading e-business technologies, enterprise applications,

legacy, and mainframe systems. The product set includes tools and templates for

customizing, creating, and managing components for business process integration.

This document describes the installation, configuration, business object

development, and troubleshooting for the IBM WebSphere Business Integration

Adapter for iSeries(TM).

Audience

This document is for WebSphere consultants and customers who are implementing

the connector as part of a WebSphere business integration system. To use the

information in this document, you should be knowledgeable in the following areas:

v Connector development

v Business object development

v OS/400 application architecture

v iSeries Integrated File System

Related documents

The complete set of documentation available with this product describes the

features and components common to all WebSphere Business Integration Adapters

installations, and includes reference material on specific components.

You can install related documentation from the following sites:

For general adapter information; for using adapters with WebSphere message

brokers (WebSphere MQ Integrator, WebSphere MQ Integrator Broker, WebSphere

Business Integration Message Broker); and for using adapters with WebSphere

Application Server, see the following Web site:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

For using adapters with InterChange Server:

http://www.ibm.com/websphere/integration/wicserver/infocenter

For more information about message brokers (WebSphere MQ Integrator Broker,

WebSphere MQ Integrator, and WebSphere Business Integration Message Broker):

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

For more information about WebSphere Application Server:

http://www.ibm.com/software/webservers/appserv/library.html

These sites contain simple directions for downloading, installing, and viewing the

documentation.

© Copyright IBM Corp. 2003, 2005 v

For more information about JT400 and iSeries Access:

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html

Note: Important information about this product may be available in Technical

Support Technotes and Flashes issued after this document was published.

These can be found on the WebSphere Business Integration Support Web

site,

http://www.ibm.com/software/integration/websphere/support/

Select the component area of interest and browse the Technotes and Flashes

sections.

Typographic conventions

This document uses the following conventions:

 courier font Indicates a literal value, such as a command name, filename,

information that you type, or information that the system

prints on the screen.

bold Indicates a new term the first time that it appears.

italic, italic Indicates a variable name or a cross-reference.

blue outline A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click

inside the outline to jump to the object of the reference.

{ } In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameter.

... In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can

enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual

elements of a name to distinguish them from each other, as

in <server_name><connector_name>tmp.log.

/, \ In this document, backslashes (\) are used as the convention

for directory paths. For UNIX installations, substitute slashes

(/) for backslashes. All WebSphere business integration

system product pathnames are relative to the directory

where the product is installed on your system.

%text% and $text Text within percent (%) signs indicates the value of the

Windows text system variable or user variable. The

equivalent notation in a UNIX environment is $text,

indicating the value of the text UNIX environment variable.

ProductDir Represents the directory where the product is installed.

vi Adapter for iSeries User Guide

New in this release

Version 2.1.x

v iSeries ODA supports RPG and RPGLE source programs

v Support for AIX 5.3, Linux RedHat 3.0 Update 1, Linux SuSe 8.1 SP3, and Java

Toolbox V5.3.0.6. For more information on hardware and software support, see

“Adapter for iSeries environment” on page 5.

v Support for IBM Tivoli License Manager (ITLM)

v Adapter can now call .PGMs written in COBOL and JAVA. New verb

″CALLPGM″ has been added to support this function.

v Support for JVM 1.4.2

v Globalization support for iSeries adapter and ODA. The adapter and ODA will

support G1 languages, but the ASI will not.

Version 2.0.x

v Support for accessing data queues on iSeries

v Polling Support to monitor data queues. The adapter is now bi-directional. This

means that the adapter supports both Event and Request Processing

v ODA facility for generating BO Specifications from RPG Source Programs and

data queues on iSeries Machines

v Facility to call a particular RPG PGM multiple times using a single request BO.

The BO can now have values returned from multiple calls to the same RPG

Program

v A problem where in the RPG PGM was called twice in a single call was also

fixed in this version.

Prior versions

Changes in prior versions are described in the sections that follow.

Version 1.1.x

Support for Report Program Generator (RPG) 3 has been added.

Beginning with the 1.1 version, the Adapter for iSeries is no longer supported on

Microsoft Windows NT.

Adapter installation information has been moved from this guide. See Chapter 2,

“Installing the iSeries adapter and related files” on page 7, for the new location of

that information.

Version 1.0.x

Version 1.0.x is the first release of the IBM WebSphere Business Integration Adapter

for iSeries. The adapter provides the ability to execute Report Program Generator

(RPG) 4 programs on an iSeries or AS/400 system.

© Copyright IBM Corp. 2003, 2005 vii

viii Adapter for iSeries User Guide

Chapter 1. Overview

This chapter describes the IBM WebSphere Business Integration Adapter for iSeries.

The adapter, using the IBM Toolbox for Java (a set of Java(TM) classes), provides the

ability to execute RPG programs and access data queues on an iSeries or AS/400

system. IBM’s Toolbox for Java provides a set of classes to access data queues and

run programs. The adapter uses these classes and information from the incoming

business object to build the parameter list for executing the program and

read/write from/to data queues. The iSeries adapter currently supports both

request processing and event processing.

Adapters consist of an application-specific component and the connector

framework. The application-specific component contains code tailored to a

particular application. The connector framework, whose code is common to all

adapters, acts as an intermediary between the integration broker and the

application-specific component. The connector framework provides the following

services between the integration broker and the application-specific component:

v Sends business objects

v Manages the exchange of startup and administrative messages

This document contains information about the application-specific component and

connector framework. It refers to both of these components as the adapter.

For more information about the relationship of the integration broker to the

adapter, see the IBM WebSphere InterChange Server System Administration Guide, or

the IBM WebSphere Business Integration Implementation Guide for WebSphere MQ

Integrator Broker.

This chapter contains the following sections:

v “An overview of the iSeries and AS/400 systems”

v “How the adapter works” on page 3

An overview of the iSeries and AS/400 systems

The IBM iSeries (known as AS/400) is a highly integrated, reliable server platform

that allows businesses to run multiple operating environments simultaneously.

Their integrity and security characteristics allow them to be used in many critical

applications.

RPG has evolved from being a simple Report Program Generator, (from which it

got its name) into a powerful application development procedural language on

iSeries machines. Currently it is supported on the ILE (Integrated Language

Environment) on iSeries.

Host servers handle requests from client PCs or other devices running an

application as illustrated in Figure 1 on page 2 to enable printing a document and

other tasks. The iSeries and AS/400 computers are full function servers capable of

performing many tasks at once, including file, database, applications, mail, print,

multimedia, fax and wireless communications. Each task server runs as a separate

job on the system, and each server job sends and receives data streams on a socket

connection.

© Copyright IBM Corp. 2003, 2005 1

One of these host servers is the Remote Command and Distributed program call

server. This server runs the programs on an iSeries or AS/400 system.

IBM’s Toolbox for JAVA has a multitude of packages that handle different

functionalities. For example, Access classes manage sign-on information, create and

maintain socket connections, and send and receive data, while Command Call

classes run iSeries and AS/400 batch commands.

IBM’s iSeries adapter uses the Access classes, and Program Call classes to call the

RPG program. Data conversion classes provide the capability to convert numeric

and character data between iSeries or AS/400 and Java formats.

 While OS/400 running on an AS/400 is capable of handling many types of tasks,

the iSeries adapter only uses the Remote Command and Distributed program call

server. This server runs the programs on the AS/400 system.

A diagram of the iSeries adapter connection of the client to the server is shown in

Figure 2 on page 3.

AS/400 System

Clients with JVM

Figure 1. Overview of AS/400 client - server architecture

2 Adapter for iSeries User Guide

Data queues

The data queues on iSeries allow fast communications between jobs. Therefore, it is

an excellent way to synchronize and pass data between jobs. With data queues on

iSeries:

v Many jobs can simultaneously access the data queues

v Messages on a data queue are free format

v The data queue can be used for either synchronous or asynchronous processing

v The messages on a data queue can be ordered in one of the following ways:

– Last-in first-out (LIFO)

– First-in first-out (FIFO)

– Keyed

Each message on a keyed data queue has a key associated with it. A message can

be taken off the queue only by specifying the key that is associated with it.

How the adapter works

The following sections describe how the adapter processes business objects.

Business object processing

The adapter receives business object requests from an integration broker and builds

the parameter list for the RPG program, then establishes a connection with an

iSeries or AS/400 system and executes the program.

The incoming business object contains the connection child attribute. The

information in this attribute is used to connect to the iSeries or AS/400 system.

Connector operations

The connector passes business objects between the integration broker and a

business object handler. The connector:

1. Registers the BOHandler with the framework.

AS/400 system

RPG
programs

AS/400
ToolKit

for JAVA
(Jt400.jar)

ADK and Integration broker

WBIA API

WBI iSeries Adapter

iSeries connector

iSeries BOHandler

doVerbFor

Figure 2. Diagram of the iSeries adapter’s connections

Chapter 1. Overview 3

2. The framework sends the BO request to the BOHandler.

3. The BOHandler uses the attribute information in the incoming business object

to build the RPG program parameter list.

4. The BOHandler calls the RPG program running on the iSeries or AS/400

system.

Note: This is essentially a call to execute an RPG program on the iSeries or

AS/400 system which then returns either a success or fail message.

5. The BOHandler then returns the results of the execution of the RPG program to

the adapter framework. It also populates the business object with the returned

parameters.

The adapter is written in Java and consists of two components:

v Connector

v Business object handler

4 Adapter for iSeries User Guide

Chapter 2. Installing the iSeries adapter

This chapter describes the process of installing and configuring the connector. It

contains the following sections:

v “Adapter for iSeries environment”

v “Installing the iSeries adapter and related files” on page 7

v “Installed file structure” on page 7

v “Post installation tasks” on page 7

Adapter for iSeries environment

Before installing, configuring, and using the adapter, you must understand its

environmental requirements.

v Broker compatibility

v Adapter platforms

v Prerequisites

In addition to the sections below, hardware and software requirements are also

available in the following techdoc

http://www.ibm.com/support/docview.wss?uid=swg27006249

Broker compatibility

The adapter framework that an adapter uses must be compatible with the version

of the integration broker (or brokers) with which the adapter is communicating.

Version 2.0 of the adapter for iSeries is supported on the following versions of the

adapter framework and with the following integration brokers:

Adapter framework: WebSphere Business Integration Adapter Framework,

versions 2.6 and 2.7.

Integration brokers:

v WebSphere InterChange Server, version 4.2.2, 4.3

v WebSphere MQ Integrator, version 2.1.0

v WebSphere MQ Integrator Broker, version 2.1.0

v WebSphere Business Integration Message Broker, version 5.0

v WebSphere Application Server Enterprise, version 5.0.2, with WebSphere Studio

Application Developer Integration Edition, version 5.0.1

v WebSphere Business Integration Server Foundation 5.1, 5.1.1

See the Release Notes for any exceptions.

Note: For instructions on installing the integration broker and its prerequisites, see

the following documentation. For WebSphere InterChange Server (ICS), see

the System Installation Guide for UNIX or for Windows.

For message brokers (WebSphere MQ Integrator Broker, WebSphere MQ

Integrator, and WebSphere Business Integration Message Broker), see

Implementing Adapters with WebSphere Message Brokers, and the installation

© Copyright IBM Corp. 2003, 2005 5

documentation for the message broker. Some of this can be found at the

following Web site:

http://www.ibm.com/software/integration/mqfamily/library/manualsa/.

For WebSphere Application Server, see Implementing Adapters with WebSphere

Application Server and the documentation at:

http://www.ibm.com/software/webservers/appserv/library.html.

Adapter platforms

The adapter runs on the following platforms:

v Windows 2000, 2003

v Sun Solaris 8, 9

v AIX 5.2, 5.3

v HP-UX 11i

v Linux RedHat AS/ ES/WS 3.0 with Update 1

v Linux SuSe 8.1 with SP3

Prerequisites

To use the connector, your environment must have the following:

1. Java and jar files:

v JDK 1.3 or later

v Java Secure Socket Extension 1.0 (JSSE)

v Jt400.jar file

Note: The IBM Toolbox for Java (licensed product 5722-JC1) V5R2 file

can be downloaded from the Toolbox Web site at: http://

www-1.ibm.com/servers/eserver/iseries/toolbox/

downloads.htm.

The jt400.jar needs to be

copied to the %Product_dir%\connectors\

iSeries directory.

v WBIA.jar file

v CrossWorlds.jar file

v BIA_iSeries.jar file
2. The iSeries adapter is designed to connect to an AS/400 with one of the

following OS/400 versions:

v Version 5, Releases 1

v Version 4, Releases 1 through 3
3. The Host Servers option of OS/400 must be installed and running.

Note: The OS/400 data queue server requires PTFs to correctly perform peek

functions. You must have the appropriate PTF from the following link:

http://www-1.ibm.com/servers/eserver/iseries/toolbox/

hostservicepackdetail.htm

4. You must be running RPG III or IV.

6 Adapter for iSeries User Guide

Installing the iSeries adapter and related files

For information on installing WebSphere Business Integration adapter products,

refer to the Installing WebSphere Business Integration Adapters guide located in the

WebSphere Business Integration Adapters Infocenter at the following site:

http://www.ibm.com/websphere/integration/wbiadapters/library/infocenter

Installed file structure

The adapter installation copies the standard files associated with the connector into

your system. The utility installs the connector into the

ProductDir\connectors\iSeries directory, and adds a shortcut for the connector to

the Start menu.

Note: ProductDir represents the directory where the product is installed.

Table 1 describes the file structure used by the connector, and shows the files that

are automatically installed when you install the connector through the Installer.

 Table 1. File structure for the connector

Subdirectory of ProductDir Description

\connectors\iSeries\BIA_iSeries.jar Contains classes used by the iSeries

connector only

\connectors\iSeries\start_iSeries.bat The startup script for the iSeries connector

(Windows)

\connectors\iSeries\start_iSeries.sh The startup script for the iSeries connector

(Unix)

\connectors\iSeries\ext\ A directory where the ODA-generated .jar

files can be saved. If you save to this

directory, specify the directory in the startup

script (start_iSeries.bat or start_iSeries.sh).

\connectors\messages\

BIA_iSeriesAdapter.txt

Message file for the connector

\ODA\iSeries\BIA_iSeriesODA.jar The iSeries ODA

\ODA\iSeries\start_iSeriesODA.bat The ODA startup file (Windows)

\ODA\iSeries\start_iSeriesODA.sh The ODA startup file (Unix)

Data\App\BIA_iSeriesAdapterTemplate Repository definition for the connector.

Post installation tasks

After installation and before startup, you must configure the adapter. For details,

see Chapter 3, “Configuring the iSeries adapter,” on page 9.

Chapter 2. Installing the iSeries adapter 7

8 Adapter for iSeries User Guide

Chapter 3. Configuring the iSeries adapter

This chapter describes the process of configuring the connector. It contains the

following sections:

v “Configuring the connector”

Configuring the connector

The iSeries adapter uses standard connector properties for configuration as detailed

in the next section and connector-specific properties as detailed in the following

section.

This section includes the following topics:

v “Overview of Connector Configurator”

v “Starting Connector Configurator” on page 10

v “Running Configurator from System Manager” on page 11

v “Creating a connector-specific property template” on page 11

v “Creating a new configuration file” on page 13

v “Setting the configuration file properties” on page 16

v “Saving your configuration file” on page 22

v “Changing a configuration file” on page 23

v “Completing the configuration” on page 23

v “Using Connector Configurator in a globalized environment” on page 23

v “Starting the connector” on page 24

v “Stopping the connector” on page 25

v “Creating multiple connector instances” on page 26

Overview of Connector Configurator

Connector Configurator allows you to configure the connector component of your

adapter for use with these integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (WMQI)

v WebSphere Application Server (WAS)

You use Connector Configurator to:

v Create a connector-specific property template for configuring your connector.

v Create a connector configuration file; you must create one configuration file for

each connector you install.

v Set properties in a configuration file.

You may need to modify the default values that are set for properties in the

connector templates. You must also designate supported business object

definitions and, with ICS, maps for use with collaborations as well as specify

messaging, logging and tracing, and data handler parameters, as required.

© Copyright IBM Corp. 2003, 2005 9

The mode in which you run Connector Configurator, and the configuration file

type you use, may differ according to which integration broker you are running.

For example, if WMQI is your broker, you run Connector Configurator directly,

and not from within System Manager (see “Running Configurator in stand-alone

mode”).

Connector configuration properties include both standard configuration properties

(the properties that all connectors have) and connector-specific properties

(properties that are needed by the connector for a specific application or

technology).

Because standard properties are used by all connectors, you do not need to define

those properties from scratch; Connector Configurator incorporates them into your

configuration file as soon as you create the file. However, you do need to set the

value of each standard property in Connector Configurator.

The range of standard properties may not be the same for all brokers and all

configurations. Some properties are available only if other properties are given a

specific value. The Standard Properties window in Connector Configurator will

show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties

and then set their values. You do this by creating a connector-specific property

template for your particular adapter. There may already be a template set up in

your system, in which case, you simply use that. If not, follow the steps in

“Creating a new template” on page 11 to set up a new one.

Note: Connector Configurator runs only in a Windows environment. If you are

running the connector in a UNIX environment, use Connector Configurator

in Windows to modify the configuration file and then copy the file to your

UNIX environment.

Starting Connector Configurator

You can start and run Connector Configurator in either of two modes:

v Independently, in stand-alone mode

v From System Manager

Running Configurator in stand-alone mode

You can run Connector Configurator independently and work with connector

configuration files, irrespective of your broker.

To do so:

v From Start>Programs, click IBM WebSphere InterChange Server>IBM

WebSphere Business Integration Tools>Connector Configurator.

v Select File>New>Connector Configuration.

v When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

You may choose to run Connector Configurator independently to generate the file,

and then connect to System Manager to save it in a System Manager project (see

“Completing a configuration file” on page 15.)

10 Adapter for iSeries User Guide

Running Configurator from System Manager

You can run Connector Configurator from System Manager.

To run Connector Configurator:

1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries

icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator. The

Connector Configurator window opens and displays a New Connector dialog

box.

4. When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

To edit an existing configuration file:

v In the System Manager window, select any of the configuration files listed in the

Connector folder and right-click on it. Connector Configurator opens and

displays the configuration file with the integration broker type and file name at

the top.

v From Connector Configurator, select File>Open. Select the name of the

connector configuration file from a project or from the directory in which it is

stored.

v Click the Standard Properties tab to see which properties are included in this

configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific

property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your

connector, or you can use an existing connector definition as the template.

v To create a new template, see “Creating a new template.”

v To use an existing file, simply modify an existing template and save it under the

new name. You can find existing templates in your

\WebSphereAdapters\bin\Data\App directory.

Creating a new template

This section describes how you create properties in the template, define general

characteristics and values for those properties, and specify any dependencies

between the properties. Then you save the template and use it as the base for

creating a new connector configuration file.

To create a template in Connector Configurator:

1. Click File>New>Connector-Specific Property Template.

2. The Connector-Specific Property Template dialog box appears.

v Enter a name for the new template in the Name field below Input a New

Template Name. You will see this name again when you open the dialog box

for creating a new configuration file from a template.

v To see the connector-specific property definitions in any template, select that

template’s name in the Template Name display. A list of the property

definitions contained in that template appears in the Template Preview

display.

Chapter 3. Configuring the iSeries adapter 11

3. You can use an existing template whose property definitions are similar to

those required by your connector as a starting point for your template. If you

do not see any template that displays the connector-specific properties used by

your connector, you will need to create one.

v If you are planning to modify an existing template, select the name of the

template from the list in the Template Name table below Select the Existing

Template to Modify: Find Template.

v This table displays the names of all currently available templates. You can

also search for a template.

Specifying general characteristics: When you click Next to select a template, the

Properties - Connector-Specific Property Template dialog box appears. The dialog

box has tabs for General characteristics of the defined properties and for Value

restrictions. The General display has the following fields:

v General:

Property Type

Updated Method

Description

v Flags

Standard flags

v Custom Flag

Flag

After you have made selections for the general characteristics of the property, click

the Value tab.

Specifying values: The Value tab enables you to set the maximum length, the

maximum multiple values, a default value, or a value range for the property. It

also allows editable values. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for

General.

2. Select the name of the property in the Edit properties display.

3. In the fields for Max Length and Max Multiple Values, enter your values.

To create a new property value:

1. Select the property in the Edit properties list and right-click on it.

2. From the dialog box, select Add.

3. Enter the name of the new property value and click OK. The value appears in

the Value panel on the right.

The Value panel displays a table with three columns:

The Value column shows the value that you entered in the Property Value dialog

box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the

default.

The Value Range shows the range that you entered in the Property Value dialog

box.

After a value has been created and appears in the grid, it can be edited from

within the table display.

12 Adapter for iSeries User Guide

To make a change in an existing value in the table, select an entire row by clicking

on the row number. Then right-click in the Value field and click Edit Value.

Setting dependencies: When you have made your changes to the General and

Value tabs, click Next. The Dependencies - Connector-Specific Property Template

dialog box appears.

A dependent property is a property that is included in the template and used in

the configuration file only if the value of another property meets a specific

condition. For example, PollQuantity appears in the template only if JMS is the

transport mechanism and DuplicateEventElimination is set to True.

To designate a property as dependent and to set the condition upon which it

depends, do this:

1. In the Available Properties display, select the property that will be made

dependent.

2. In the Select Property field, use the drop-down menu to select the property

that will hold the conditional value.

3. In the Condition Operator field, select one of the following:

== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the

dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,

click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator stores the information you have entered

as an XML document, under \data\app in the\bin directory where you have

installed Connector Configurator.

Creating a new configuration file

When you create a new configuration file, you must name it and select an

integration broker.

v In the System Manager window, right-click on the Connectors folder and select

Create New Connector. Connector Configurator opens and displays the New

Connector dialog box.

v In stand-alone mode: from Connector Configurator, select File>New>Connector

Configuration. In the New Connector window, enter the name of the new

connector.

You also need to select an integration broker. The broker you select determines the

properties that will appear in the configuration file. To select a broker:

v In the Integration Broker field, select ICS, WebSphere Message Brokers or WAS

connectivity.

v drop-down the remaining fields in the New Connector window, as described

later in this chapter.

Creating a configuration file from a connector-specific template

Once a connector-specific template has been created, you can use it to create a

configuration file:

Chapter 3. Configuring the iSeries adapter 13

1. Click File>New>Connector Configuration.

2. The New Connector dialog box appears, with the following fields:

v Name

Enter the name of the connector. Names are case-sensitive. The name you

enter must be unique, and must be consistent with the file name for a

connector that is installed on the system.

Important: Connector Configurator does not check the spelling of the name

that you enter. You must ensure that the name is correct.

v System Connectivity

Click ICS or WebSphere Message Brokers or WAS.

v Select Connector-Specific Property Template

Type the name of the template that has been designed for your connector.

The available templates are shown in the Template Name display. When you

select a name in the Template Name display, the Property Template Preview

display shows the connector-specific properties that have been defined in

that template.

Select the template you want to use and click OK.
3. A configuration screen appears for the connector that you are configuring. The

title bar shows the integration broker and connector names. You can fill in all

the field values to complete the definition now, or you can save the file and

complete the fields later.

4. To save the file, click File>Save>To File or File>Save>To Project. To save to a

project, System Manager must be running.

If you save as a file, the Save File Connector dialog box appears. Choose *.cfg

as the file type, verify in the File Name field that the name is spelled correctly

and has the correct case, navigate to the directory where you want to locate the

file, and click Save. The status display in the message panel of Connector

Configurator indicates that the configuration file was successfully created.

Important: The directory path and name that you establish here must match

the connector configuration file path and name that you supply in

the startup file for the connector.

5. To complete the connector definition, enter values in the fields for each of the

tabs of the Connector Configurator window, as described later in this chapter.

Using an existing file

You may have an existing file available in one or more of the following formats:

v A connector definition file.

This is a text file that lists properties and applicable default values for a specific

connector. Some connectors include such a file in a \repository directory in

their delivery package (the file typically has the extension .txt; for example,

CN_XML.txt for the XML connector).

v An ICS repository file.

Definitions used in a previous ICS implementation of the connector may be

available to you in a repository file that was used in the configuration of that

connector. Such a file typically has the extension .in or .out.

v A previous configuration file for the connector.

Such a file typically has the extension *.cfg.

14 Adapter for iSeries User Guide

Although any of these file sources may contain most or all of the connector-specific

properties for your connector, the connector configuration file will not be complete

until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in

Connector Configurator, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:

1. In Connector Configurator, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to

see the available files:

v Configuration (*.cfg)

v ICS Repository (*.in, *.out)

Choose this option if a repository file was used to configure the connector in

an ICS environment. A repository file may include multiple connector

definitions, all of which will appear when you open the file.

v All files (*.*)

Choose this option if a *.txt file was delivered in the adapter package for

the connector, or if a definition file is available under another extension.
3. In the directory display, navigate to the appropriate connector definition file,

select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System

Manager only if System Manager has been started.

2. Start Connector Configurator.

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector

Configurator window displays the configuration screen, with the current attributes

and values.

The title of the configuration screen displays the integration broker and connector

name as specified in the file. Make sure you have the correct broker. If not, change

the broker value before you configure the connector. To do so:

1. Under the Standard Properties tab, select the value field for the BrokerType

property. In the drop-down menu, select the value ICS, WMQI, or WAS.

2. The Standard Properties tab will display the properties associated with the

selected broker. You can save the file now or complete the remaining

configuration fields, as described in “Specifying supported business object

definitions” on page 19..

3. When you have finished your configuration, click File>Save>To Project or

File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location

for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all

of the configurations to file, or click Save All to Project to save all connector

configurations to a System Manager project.

Chapter 3. Configuring the iSeries adapter 15

Before it saves the file, Connector Configurator checks that values have been

set for all required standard properties. If a required standard property is

missing a value, Connector Configurator displays a message that the validation

failed. You must supply a value for the property in order to save the

configuration file.

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open

an existing connector configuration file, Connector Configurator displays a

configuration screen with tabs for the categories of required configuration values.

Connector Configurator requires values for properties in these categories for

connectors running on all brokers:

v Standard Properties

v Connector-specific Properties

v Supported Business Objects

v Trace/Log File values

v Data Handler (applicable for connectors that use JMS messaging with

guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display,

for configuration of data handlers that convert the data to business objects.

For connectors running on ICS, values for these properties are also required:

v Associated Maps

v Resources

v Messaging (where applicable)

Important: Connector Configurator accepts property values in either English or

non-English character sets. However, the names of both standard and

connector-specific properties, and the names of supported business

objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the

same set of standard properties. These properties are described in Appendix A of

each adapter guide. You can change some but not all of these values.

v Application-specific properties apply only to the application-specific component

of a connector, that is, the component that interacts directly with the application.

Each connector has application-specific properties that are unique to its

application. Some of these properties provide default values and some do not;

you can modify some of the default values. The installation and configuration

chapters of each adapter guide describe the application-specific properties and

the recommended values.

The fields for Standard Properties and Connector-Specific Properties are

color-coded to show which are configurable:

v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.

16 Adapter for iSeries User Guide

v A field with a white background indicates an application-specific property. These

properties vary according to the specific needs of the application or connector.

You can change the value and delete these properties.

v Value fields are configurable.

v The Update Method field is displayed for each property. It indicates whether a

component or agent restart is necessary to activate changed values. You cannot

configure this setting.

Setting standard connector properties

Standard configuration properties provide information that all connectors use. See

“Standard configuration properties for connectors,” on page 51 for documentation

of these properties.

Important: Because this connector supports all integration brokers, configuration

properties for all brokers are relevant to it.

You must set at least the following standard connector configuration properties

before running the connector:

v AgentTraceLevel

v ApplicationName

v ControllerStoreAndForwardMode

v ControllerTraceLevel

v DeliveryTransport

To change the value of a standard property:

1. Click in the field whose value you want to set.

2. Either enter a value, or select one from the drop-down menu if it appears.

3. After entering all the values for the standard properties, you can do one of the

following:

v To discard the changes, preserve the original values, and exit Connector

Configurator, click File>Exit (or close the window), and click No when

prompted to save changes.

v To enter values for other categories in Connector Configurator, select the tab

for the category. The values you enter for Standard Properties (or any other

category) are retained when you move to the next category. When you close

the window, you are prompted to either save or discard the values that you

entered in all the categories as a whole.

v To save the revised values, click File>Exit (or close the window) and click

Yes when prompted to save changes. Alternatively, click Save>To File from

either the File menu or the toolbar.

Connector-specific properties: Connector-specific configuration properties

provide information needed by the connector at runtime. Connector-specific

properties also provide a way of changing static information or logic within the

connector agent without having to recode and rebuild the agent.

Table 2 lists the connector-specific configuration properties for the connector. See

the section that follows for explanations of the properties.

Chapter 3. Configuring the iSeries adapter 17

Table 2. Connector-specific configuration properties

Name Possible values Default value Required?

ApplicationName iSeriesAdapter None Yes

UseDefaults default value None Yes

MessageFileName BIA_iSeriesAdapter.txt BIA_iSeriesAdapter.txt No

PollQuantity an integer greater than 1 1 No

ApplicationName: This is a unique name that must be specified for each connector.

UseDefaults: For example, some of the input parameters to a program are constant.

So these attributes can be designed to have default values. If there is no default

value and the UseDefaults property is set to true, the adapter errors out and

throws a VerbProcessingFailedException error message. If UseDefaults is not set or

set to false, and there are no default values, the adapter builds a string of length

MaxLength with padded spaces for the attribute values.

MessageFileName: This is the name and path of the error message file if it is not

located in the standard message location %CROSSWORLDS%\

connectors\messages. If the message file name is not in a fully qualified path, the

message file is assumed to be located in the directory specified by the HOME

environment variable or the startup parameter user.home. If a connector message

file does not exist, the file BIA_iSeriesAdapter.txt is used as the message file.

PollQuantity: PollQuantity is an integer value above 1 specifying the number of

items to poll from the data queues. Note that if n is specified as PollQuantity value

then each queue configured using meta objects is polled n times. The default value

is taken as 1.

Setting application-specific configuration properties

For application-specific configuration properties, you can add or change property

names, configure values, delete a property, and encrypt a property. The default

property length is 255 characters.

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.

Click Add to add a property. To add a child property, right-click on the parent

row number and click Add child.

2. Enter a value for the property or child property.

3. To encrypt a property, select the Encrypt box.

4. Choose to save or discard changes, as described for “Setting standard connector

properties” on page 17.

The Update Method displayed for each property indicates whether a component or

agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may

cause a connector to fail. Certain property names may be needed by

the connector to connect to an application or to run properly.

Encryption for connector properties: Application-specific properties can be

encrypted by selecting the Encrypt check box in the Connector-specific Properties

window. To decrypt a value, click to clear the Encrypt check box, enter the correct

value in the Verification dialog box, and click OK. If the entered value is correct,

the value is decrypted and displays.

18 Adapter for iSeries User Guide

The adapter user guide for each connector contains a list and description of each

property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first

value of the property. When you select Encrypt, all values of the property will be

encrypted. To decrypt multiple values of a property, click to clear the Encrypt

check box for the first value of the property, and then enter the new value in the

Verification dialog box. If the input value is a match, all multiple values will

decrypt.

Update method: Refer to the descriptions of update methods found in the

Standard configuration properties for connectors appendix, under “Configuration

property values overview” on page 52.

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator to specify the

business objects that the connector will use. You must specify both generic business

objects and application-specific business objects, and you must specify associations

for the maps between the business objects.

Note: Some connectors require that certain business objects be specified as

supported in order to perform event notification or additional configuration

(using meta-objects) with their applications. For more information, see the

Connector Development Guide for C++ or the Connector Development Guide for

Java.

If ICS is your broker: To specify that a business object definition is supported by

the connector, or to change the support settings for an existing business object

definition, click the Supported Business Objects tab and use the following fields.

Business object name: To designate that a business object definition is supported by

the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop-down list

displays, showing all the business object definitions that exist in the System

Manager project.

2. Click on a business object to add it.

3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator window, click Save to Project.

The revised connector definition, including designated support for the added

business object definition, is saved to an ICL (Integration Component Library)

project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business

object.

2. From the Edit menu of the Connector Configurator window, click Delete Row.

The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition

and makes the deleted business object unavailable for use in this implementation

of this connector. It does not affect the connector code, nor does it remove the

business object definition itself from System Manager.

Chapter 3. Configuring the iSeries adapter 19

Agent support: If a business object has Agent Support, the system will attempt to

use that business object for delivering data to an application via the connector

agent.

Typically, application-specific business objects for a connector are supported by

that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the

Agent Support box. The Connector Configurator window does not validate your

Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is the

highest transaction level that the connector supports.

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

If a WebSphere Message Broker is your broker: If you are working in

stand-alone mode (not connected to System Manager), you must enter the business

object name manually.

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo

box appears with a list of the business object available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from the list.

The Message Set ID is an optional field for WebSphere Business Integration

Message Broker 5.0, and need not be unique if supplied. However, for WebSphere

MQ Integrator and Integrator Broker 2.1, you must supply a unique ID.

If WAS is your broker: When WebSphere Application Server is selected as your

broker type, Connector Configurator does not require message set IDs. The

Supported Business Objects tab shows a Business Object Name column only for

supported business objects.

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo box

appears with a list of the business objects available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from this list.

Associated maps (ICS only)

Each connector supports a list of business object definitions and their associated

maps that are currently active in WebSphere InterChange Server. This list appears

when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which

the agent supports and the corresponding generic object that the controller sends

to the subscribing collaboration. The association of a map determines which map

20 Adapter for iSeries User Guide

will be used to transform the application-specific business object to the generic

business object or the generic business object to the application-specific business

object.

If you are using maps that are uniquely defined for specific source and destination

business objects, the maps will already be associated with their appropriate

business objects when you open the display, and you will not need (or be able) to

change them.

If more than one map is available for use by a supported business object, you will

need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:

v Business Object Name

These are the business objects supported by this connector, as designated in the

Supported Business Objects tab. If you designate additional business objects

under the Supported Business Objects tab, they will be reflected in this list after

you save the changes by choosing Save to Project from the File menu of the

Connector Configurator window.

v Associated Maps

The display shows all the maps that have been installed to the system for use

with the supported business objects of the connector. The source business object

for each map is shown to the left of the map name, in the Business Object

Name display.

v Explicit

In some cases, you may need to explicitly bind an associated map.

Explicit binding is required only when more than one map exists for a particular

supported business object. When ICS boots, it tries to automatically bind a map

to each supported business object for each connector. If more than one map

takes as its input the same business object, the server attempts to locate and

bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to

bind the business object to a single map, and you will need to set the binding

explicitly.

To explicitly bind a map:

1. In the Explicit column, place a check in the check box for the map you want

to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator window, click Save to

Project.

4. Deploy the project to ICS.

5. Reboot the server for the changes to take effect.

Resources (ICS)

The Resource tab allows you to set a value that determines whether and to what

extent the connector agent will handle multiple processes concurrently, using

connector agent parallelism.

Not all connectors support this feature. If you are running a connector agent that

was designed in Java to be multi-threaded, you are advised not to use this feature,

since it is usually more efficient to use multiple threads than multiple processes.

Chapter 3. Configuring the iSeries adapter 21

Messaging (ICS)

The messaging properties are available only if you have set MQ as the value of the

DeliveryTransport standard property and ICS as the broker type. These properties

affect how your connector will use queues.

Setting trace/log file values

When you open a connector configuration file or a connector definition file,

Connector Configurator uses the logging and tracing values of that file as default

values. You can change those values in Connector Configurator.

To change the logging and tracing values:

1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both

of the following:

v To console (STDOUT):

Writes logging or tracing messages to the STDOUT display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for

connectors running on the Windows platform.

v To File:

Writes logging or tracing messages to a file that you specify. To specify the

file, click the directory button (ellipsis), navigate to the preferred location,

provide a file name, and click Save. Logging or tracing message are written

to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file

extension that you prefer when you set their file names. For tracing

files, however, it is advisable to use the extension .trace rather than

.trc, to avoid confusion with other files that might reside on the

system. For logging files, .log and .txt are typical file extensions.

Data handlers

The data handlers section is available for configuration only if you have designated

a value of JMS for DeliveryTransport and a value of JMS for

ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard

Properties, for values to use for these properties. For additional details, see the

Connector Development Guide for C++ or the Connector Development Guide for Java.

Saving your configuration file

When you have finished configuring your connector, save the connector

configuration file. Connector Configurator saves the file in the broker mode that

you selected during configuration. The title bar of Connector Configurator always

displays the broker mode (ICS, WMQI or WAS) that it is currently using.

The file is saved as an XML document. You can save the XML document in three

ways:

v From System Manager, as a file with a *.con extension in an Integration

Component Library, or

v In a directory that you specify.

v In stand-alone mode, as a file with a *.cfg extension in a directory folder. By

default, the file is saved to \WebSphereAdapters\bin\Data\App.

22 Adapter for iSeries User Guide

v You can also save it to a WebSphere Application Server project if you have set

one up.

For details about using projects in System Manager, and for further information

about deployment, see the following implementation guides:

v For ICS: Implementation Guide for WebSphere InterChange Server

v For WebSphere Message Brokers: Implementing Adapters with WebSphere Message

Brokers

v For WAS: Implementing Adapters with WebSphere Application Server

Changing a configuration file

You can change the integration broker setting for an existing configuration file.

This enables you to use the file as a template for creating a new configuration file,

which can be used with a different broker.

Note: You will need to change other configuration properties as well as the broker

mode property if you switch integration brokers.

To change your broker selection within an existing configuration file (optional):

v Open the existing configuration file in Connector Configurator.

v Select the Standard Properties tab.

v In the BrokerType field of the Standard Properties tab, select the value that is

appropriate for your broker.

When you change the current value, the available tabs and field selections on

the properties screen will immediately change, to show only those tabs and

fields that pertain to the new broker you have selected.

Completing the configuration

After you have created a configuration file for a connector and modified it, make

sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location

and file name used for the connector configuration file match exactly the name you

have given the file and the directory or path where you have placed it.

Using Connector Configurator in a globalized environment

Connector Configurator is globalized and can handle character conversion between

the configuration file and the integration broker. Connector Configurator uses

native encoding. When it writes to the configuration file, it uses UTF-8 encoding.

Connector Configurator supports non-English characters in:

v All value fields

v Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration

properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the

product directory.

For example, to add the locale en_GB to the list of values for the Locale property,

open the stdConnProps.xml file and add the line in boldface type below:

Chapter 3. Configuring the iSeries adapter 23

<Property name="Locale"

isRequired="true"

updateMethod="component restart">

 <ValidType>String</ValidType>

 <ValidValues>

 <Value>ja_JP</Value>

 <Value>ko_KR</Value>

 <Value>zh_CN</Value>

 <Value>zh_TW</Value>

 <Value>fr_FR</Value>

 <Value>de_DE</Value>

 <Value>it_IT</Value>

 <Value>es_ES</Value>

 <Value>pt_BR</Value>

 <Value>en_US</Value>

 <Value>en_GB</Value>

 <DefaultValue>en_US</DefaultValue>

 </ValidValues>

 </Property>

Starting the connector

A connector must be explicitly started using its connector start-up script. On

Windows systems the startup script should reside in the connector’s runtime

directory:

ProductDir\connectors\connName

where connName identifies the connector.

On UNIX systems the startup script should reside in the UNIX ProductDir/bin

directory.

The name of the startup script depends on the operating-system platform, as

Table 3 shows.

 Table 3. Startup scripts for a connector

Operating system Startup script

UNIX-based systems connector_manager

Windows start_connName.bat

When the startup script runs, it expects by default to find the configuration file in

the Productdir (see the commands below). This is where you place your

configuration file.

Note: You need a local configuration file if the adapter is using JMS transport.

You can invoke the connector startup script in any of the following ways:

v On Windows systems, from the Start menu

Select Programs>IBM WebSphere Business Integration

Adapters>Adapters>Connectors. By default, the program name is “IBM

WebSphere Business Integration Adapters”. However, it can be customized.

Alternatively, you can create a desktop shortcut to your connector.

v From the command line

– On Windows systems:

start_connName connName brokerName [-cconfigFile]

– On UNIX-based systems:

24 Adapter for iSeries User Guide

connector_manager -start connName brokerName [-cconfigFile]

where connName is the name of the connector and brokerName identifies your

integration broker, as follows:

– For WebSphere InterChange Server, specify for brokerName the name of the

ICS instance.

– For WebSphere message brokers (WebSphere MQ Integrator, WebSphere MQ

Integrator Broker, or WebSphere Business Integration Message Broker) or

WebSphere Application Server, specify for brokerName a string that identifies

the broker.

Note: For a WebSphere message broker or WebSphere Application Server on a

Windows system, you must include the -c option followed by the name of

the connector configuration file. For ICS, the -c is optional.

v From Adapter Monitor, which is launched when you start System Manager

running with the WebSphere Application Server or InterChange Server broker:

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Manager (available for all brokers):

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector starts when the Windows system boots (for an

Auto service) or when you start the service through the Windows Services

window (for a Manual service).

For more information on how to start a connector, including the command-line

startup options, refer to one of the following documents:

v For WebSphere InterChange Server, refer to the System Administration Guide.

v For WebSphere message brokers, refer to Implementing Adapters with WebSphere

Message Brokers.

v For WebSphere Application Server, refer to Implementing Adapters with WebSphere

Application Server.

Stopping the connector

The way to stop a connector depends on the way that the connector was started,

as follows:

v If you started the connector from the command line, with its connector startup

script:

– On Windows systems, invoking the startup script creates a separate “console”

window for the connector. In this window, type “Q” and press Enter to stop

the connector.

– When using InterChange Server on UNIX-based systems, connectors run in

the background so they have no separate window. Instead, run the following

command to stop the connector:

connector_manager_connName -stop

where connName is the name of the connector.
v From Adapter Monitor (WebSphere Business Integration Adapters product only),

which is launched when you start System Manager:

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Monitor (WebSphere InterChange Server product only):

Chapter 3. Configuring the iSeries adapter 25

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector stops when the Windows system shuts down.

Creating multiple connector instances

Creating multiple instances of a connector is in many ways the same as creating a

custom connector. You can set your system up to create and run multiple instances

of a connector by following the steps below. You must:

v Create a new directory for the connector instance

v Make sure you have the requisite business object definitions

v Create a new connector definition file

v Create a new start-up script

Create a new directory

You must create a connector directory for each connector instance. This connector

directory should be named:

ProductDir\connectors\connectorInstance

where connectorInstance uniquely identifies the connector instance.

If the connector has any connector-specific meta-objects, you must create a

meta-object for the connector instance. If you save the meta-object as a file, create

this directory and store the file here:

ProductDir\repository\connectorInstance

Create business object definitions: If the business object definitions for each

connector instance do not already exist within the project, you must create them.

1. If you need to modify business object definitions that are associated with the

initial connector, copy the appropriate files and use Business Object Designer to

import them. You can copy any of the files for the initial connector. Just rename

them if you make changes to them.

2. Files for the initial connector should reside in the following directory:

ProductDir\repository\initialConnectorInstance

Any additional files you create should be in the appropriate connectorInstance

subdirectory of ProductDir\repository.

Create a connector definition: You create a configuration file (connector

definition) for the connector instance in Connector Configurator. To do so:

1. Copy the initial connector’s configuration file (connector definition) and rename

it.

2. Make sure each connector instance correctly lists its supported business objects

(and any associated meta-objects).

3. Customize any connector properties as appropriate.

Create a start-up script: To create a startup script:

1. Copy the initial connector’s startup script and name it to include the name of

the connector directory:

dirname

2. Put this startup script in the connector directory you created in “Create a new

directory.”

26 Adapter for iSeries User Guide

3. Create a startup script shortcut (Windows only).

4. Copy the initial connector’s shortcut text and change the name of the initial

connector (in the command line) to match the name of the new connector

instance.

You can now run both instances of the connector on your integration server at the

same time.

For more information on creating custom connectors, refer to the Connector

Development Guide for C++ or for Java.

Chapter 3. Configuring the iSeries adapter 27

28 Adapter for iSeries User Guide

Chapter 4. Understanding business objects for the connector

This chapter describes the structure of iSeries business objects, how the connector

processes the business objects, and the assumptions the connector makes about

them. Use this information as a guide to modifying existing business objects for

iSeries or as suggestions for implementing new business objects.

This chapter contains the following sections:

v “Defining connector metadata”

v “Business Object structure for RPG, COBOL, and Java programs” on page 30

v “Business Object structure for iSeries data queues” on page 34

v “Configuring meta objects for polling” on page 34

v “Specifying business object attribute properties” on page 36

v “Specifying business object attribute level application text” on page 36

For information on the Object Discovery Agent (ODA) utility that automates the

creation of business objects for the IBM WebSphere Business Integration Adapter

for iSeries, see Chapter 5, Chapter 5, “Creating and modifying business objects,” on

page 39.

Defining connector metadata

The iSeries connector is metadata-driven. In the WebSphere Business Integration

system, metadata is application-specific information stored in a business object that

helps the connector interact with the application. A metadata-driven connector

handles each business object that it supports based on the metadata encoded in the

business object definition, rather than on instructions hardcoded in the connector.

Business object metadata includes the structure of the business object, the settings

of its attribute properties, and the content of its application-specific information.

Because the connector is metadata-driven, it can handle new or modified business

objects without requiring modifications to the connector code.

The connector makes assumptions about the structure of its supported business

objects and the format of the application-specific information.

Therefore, when you create or modify a business object, your modifications must

conform to the rules the connector is designed to follow, or the connector will not

be able to process new or modified business objects correctly.

Overview of business object structure

In the WebSphere Business Integration system, a business object definition consists

of a type name, supported verbs, and attributes. An application business object is

an instance of a business object definition. It reflects a specific application’s data

structure and attribute properties.

Some attributes, instead of containing data, point to child business objects or

arrays of child business objects that contain the data for these objects.

WebSphere Business Integration Adapter business objects can be flat or

hierarchical. A flat business object contains only simple attributes, that is, attributes

© Copyright IBM Corp. 2003, 2005 29

that represent a single value (such as a String). A hierarchical business object

contains both simple attributes and child business objects or arrays of child

business objects that contain the values.

A cardinality 1 container object, or single-cardinality relationship, occurs when an

attribute in a parent business object contains a single child business object. In this

case, the child business object represents a collection that can contain only one

record. The type of the attribute is the same as that of the child business object.

A cardinality n container object, or multiple-cardinality relationship, occurs when

an attribute in the parent business object contains an array of child business

objects. In this case, the child business object represents a collection that can

contain multiple records. The type of the attribute is the same as the type of the

array of child business objects.

A hierarchical business object can have simple attributes and can also have

attributes that represent either a single-cardinality child business object or an array

of child business objects. In turn, each of these business objects can contain

single-cardinality child business objects and arrays of business objects, and so on.

Business Object structure for RPG, COBOL, and Java programs

The business object for the iSeries adapter is a flat business object. The attributes

can be input, output or inout parameters. One of the attributes needs to be a key

for the business object designer.

 Also, there is a child attribute of type Connection. This contains information about

the connection to the AS/400 machine; the HostName, UserName and Password.

These attributes are all mandatory and thus is Required is set true for all of them.

This Connection business object is a child attribute to all the iSeries business

objects.

Note: In the iSeries business object, the connection business object’s

application-specific information can be blank. This is because the business

object ASI is not processed by the adapter.

The information within brackets in Figure 5 represents the business object’s

application-specific information.

Note: Verb names are not case sensitive. For example, the verb getqueue can be

spelt as GETQUEUE or GetQueue.

iSeries Adapter BO

Supported Verb =
CALLRPG

Connection
Input parameters
Output parameters

Figure 3. The iSeries parent business object

30 Adapter for iSeries User Guide

The RPG business object consists of either of the verbs CALLRPG or CALLPGM

and the program name (the full path of the IFSFile) is set as the verb’s ASI.

CALLRPG is used for calling RPG programs and CALLPGM is used to call any

PGM (including RPG, COBOL, and Java programs). Apart from the Connection

child attribute, the RPG business object has attributes corresponding to the RPG

program parameters. The Name of the attribute is same as the name of the

corresponding parameter specified in the source program. The MaxLength

property of the attributes (representing an RPG Parameter) is derived from the

corresponding parameter length specified in the PARM Spec of the source

program. If the parameter is a number, the corresponding decimal part’s length is

also mentioned in the ASI as DecimalPositions=n and packedDec=true.

The adapter can be used to call a PGM multiple times with a single Request

business object with multiple instances. An example is shown in Figure 6.

Connection BO

Supported Verb =
CALLRPG

HostName
UserName
Password

Figure 4. The iSeries child business object

Verb = CALLRPG

Connection instance
HostName =
UserName = (username)
Password = (password)

(host).(domain).com

Attribute1
[ParamType=Input;
Signed=true;
Datalength=2]

Figure 5. Example of a RPG business object

Chapter 4. Understanding business objects for the connector 31

Figure 7 shows the Parent business object with connection information and the

Child business object with the PGM’s parameter information. The connection

information is available in the Connection business object and the Verb ASI is the

same as the path of the program to be called.

The child business object is shown in Figure 8 with attributes corresponding to

parameter information of the program.

Figure 6. Single Request business object with multiple instances

Figure 7. Parent business object with connection information

32 Adapter for iSeries User Guide

The example in Figure 9 shows a Business object with 2 instances of multi_child

Business Object, thus the program will be executed twice. Make sure you use the

appropriate XSD files for Multi record retrieval.

Connector business object processing

The connector passes business objects between the integration broker and the

AS/400 system.

When an integration broker passes a business object to the connector, the connector

performs the following operations:

1. Uses the information in the connection child attribute to connect to the AS/400

system.

2. Builds the parameter list for the RPG program based on the attributes in the

business object.

3. Executes the RPG program corresponding to the business object.

4. Returns the result of executing the program: success or failure.

Figure 8. Child business object with corresponding parameter information

Figure 9. Business object with 2 instances of a multi-child business object

Chapter 4. Understanding business objects for the connector 33

Use Business Object Designer ODA to create the business objects. Create the

business object definition, and add the required attributes. Then configure the

connector to support the business object. For more information regarding the

Business Object Designer ODA, see Chapter 5, “Creating and modifying business

objects,” on page 39.

Business Object structure for iSeries data queues

For the data queues business object, the attributes represent the data queue fields.

Apart from these, it has a child Connection attribute. There can be parent-child

kind of relationship if there is a AS400Structure as part of the data queue fields.

The valid verbs supported are GETQUEUE and PUTQUEUE.

Note: All verb names are case insensitive. For example, the verb GetQueue can be

spelt as GETQUEUE or GetQueue.

The application-specific information for the queues will be at the business object

level. The value will be the absolute IFSFile path of the data queue. The total

length of the attributes should be equal to the maximum length of an element in

the queue. This value is defined when you create the queue on the iSeries machine.

The parameter type can be Input, Output or InOut. Both the Connection Object

and all its attributes are set as required. The iSeries ODA generates all the

attributes with ASI as ParamType=InOut by default. The user can however change

them to Input or Output after making sure the change is validated against the

program logic.

An example of a data queue business object:

Verb=GETQUEUE

BO LEVEL ASI

QSYS.LIB/MYLIB.LIB/MYQUEUE.DTAQ

Connection Instance

 HostName=ibm.siberia.in.com

 UserName=Prapulla

 Password=Prapulla

Attribute1

Configuring meta objects for polling

The iSeries adapter uses meta-objects for all the data queues that receive complete

data queue message for changes to either the database or to the data files. You

need to configure the meta-objects for all the data queues that receive complete

data queue messages.

The meta-object name always starts with MO_iSeries. Each meta-object holds

information about the data queues. You need to add a dummy verb to all the

meta-objects.

The attributes (hostname, username, and password) within the meta objects have a

static default value. These default attributes cannot be changed dynamically once

the connector is started, since these values are cached in the connector agent. To

access the same data queue on a different machine, you must either change the

default value and restart the iSeries adapter instance or configure another

meta-object for the new machine information.

34 Adapter for iSeries User Guide

The verb in the Business object is set to appropriate string, while the

DataQueueName attribute is set to the IFS File path of the data queue. The

BusObjName attribute contains the name of the corresponding Business object

(which contains the verb mentioned in the metaobject).The details read from the

queue are filled in this Business object. The attributes of the metaobject are shown

in the example below (Figure 11). The corresponding SamplePollBO is shown in

Figure 12.

 For keyed data queues, a key attribute called ″key″ will be added to the meta

object as shown in Figure 13. The poll call will use the key information to get the

corresponding message from the keyed data queue.

Figure 10. Example poll business object for a sequential data queue

Figure 11. Corresponding SamplePollBO

Figure 12. Example poll business object for keyed data queue

Chapter 4. Understanding business objects for the connector 35

The corresponding example poll business object for keyed data queue is shown in

Figure 14.

Specifying business object attribute properties

The iSeries connector has various properties that you can set on its business object

attributes. This section describes how the connector interprets several of these

properties and describes how to set them when modifying a business object.

The following table shows the properties for simple attributes.

 Table 4. Business object attribute properties

Attribute Description

Name Unique name of the attribute

Type All simple attributes should be of type

String

MaxLength If the attribute value length is greater than

the MaxLength specified for the attribute

and the attribute represents an input

parameter, the value is trimmed to the

Maxlength value. If the value length is less

than MaxLength, then spaces are padded.

IsKey Not used

IsForeignKey Not used

Isrequired All the input parameters need to have this

attribute set to true.

AppSpecInfo ParamType=<value>:Offset=<value>:

Signed=<True/False>:DataLength=

<value>:PackedDec=<True/False>:

ZonedDec=<True/False>:

DecimalPositions=<value>

DefaultValue If set for the attribute, this value shall be

used by the connector if one is not set for

the input parameter.

Specifying business object attribute level application text

The following information is part of the business object attribute -level application

text.

Figure 13. Sample poll business object for a keyed data queue

36 Adapter for iSeries User Guide

Table 5. Business object attributes

Property Values Description

ParamType Input/Output/InOut Indicates what type of

parameter the attribute

represents.

Offset Any integer value Indicates the offset in the byte

array from where the parameter

value starts.

Signed True/false For integer/short/long types,

the property indicates if it is

signed. If not set, the value is

taken as unsigned.

DataLength Any integer value Applies to integer/short/long

types. Used to distinguish the

data length for the

signed/unsigned types. If not

set, a default of 4 is assumed.

DecimalPositions Any integer value Applies for zoned decimal and

packed decimal types. The

value represents the number of

decimal positions.

PackedDec True/false If set to true, the attribute

represents a packed decimal.

ZonedDec True/false If set to true, the attribute

represents a zoned decimal.

Data conversion from the iSeries or AS/400 toolbox

The Toolbox for iSeries/AS400 has data conversion classes included. The following

table matches the iSeries/AS400 data types with the corresponding IBM

WebSphere Business Integration datatypes, along with the data conversion class

used.

 Table 6. Conversion datatypes and classes

iSeries/AS400 data type IBM WBI datatype Data conversion class

Signed two byte AS/400

number.

Integer - The app specific info -

Signed=true; DataLength=2

AS400Bin2

Signed four byte AS/400

number.

Integer - The app specific info -

Signed=true; DataLength=4

AS400Bin4

Signed two byte AS/400

floating point number.

Float AS400Float4

Signed four byte AS/400

floating point number.

Double AS400Float8

Unsigned two byte AS/400

number.

Integer - the app specific info

Signed=false; DataLength=2

AS400UnsignedBin2

Unsigned four byte AS/400

number.

Integer - the app specific info

Signed=false; DataLength=4

AS400UnsignedBin4

Packed-Decimal AS/400

number.

String - the MaxLength attribute

property needs to have the number

of digits. App specific info -

DecimalPositions=<number of

decimal positions>; PackedDec=true

AS400PackedDecimal

Chapter 4. Understanding business objects for the connector 37

Table 6. Conversion datatypes and classes (continued)

iSeries/AS400 data type IBM WBI datatype Data conversion class

Zoned-Decimal AS/400

number.

String - the MaxLength attribute

property needs to have the number

of digits. App specific info -

DecimalPositions=<number of

decimal positions>; ZonedDec=true

AS400ZonedDecimal

Character data String - MaxLength has the

maximum length for the character

data.

AS400Text

Date data String - MaxLength has the

maximum length for the date data.

AS400Text

38 Adapter for iSeries User Guide

Chapter 5. Creating and modifying business objects

This chapter describes the Object Discovery Agent (ODA) for iSeries, and how to

use it to generate business object definitions for the IBM WebSphere Business

Integration Adapter for iSeries.

This chapter contains the following sections:

v “Overview of the ODA for iSeries”

v “Generating business object definitions”

v “Specifying business object information” on page 45

v “Uploading business objects” on page 47

Overview of the ODA for iSeries

An Object Discovery Agent (ODA) enables you to generate business object

definitions. A business object definition is a template for a business object. The

ODA examines specified application objects, “discovers” the elements of those

objects that correspond to business object attributes, and generates business object

definitions to represent the information. Business Object Designer provides a

graphical interface to access the Object Discovery Agent and to work with it

interactively.

The ODA for iSeries generates business object definitions for accessing RPG and

RPGLE programs as well as data queue objects on the iSeries system. The Business

Object Designer wizard automates the process of creating these definitions. You use

the ODA to create business objects and Connector Configurator to configure the

connector to support them.

Generating business object definitions

This section describes how to use the iSeries ODA in Business Object Designer to

generate business object definitions. For information on launching and using

Business Object Designer, see IBM WebSphere Business Integration Adapters Business

Object Development Guide.

Starting the iSeries ODA

You can start the iSeries ODA using one of the following scripts:

v Windows – start_iSeriesODA.bat

Note: You can also start the iSeries ODA using the shortcut that the Installer

automatically creates for Windows environments.

v UNIX – start_iSeriesODA.sh

You select, configure, and run the iSeries ODA using Business Object Designer.

Business Object Designer locates each ODA by the name specified in the AGENTNAME

variable of each script or batch file.

Running Business Object Designer

Business Object Designer provides a wizard that guides you through the steps to

generate a business object definition using the ODA.

© Copyright IBM Corp. 2003, 2005 39

Selecting the agent

You must first select the ODA agent.

1. Open Business Object Designer.

2. Click File > New Using ODA. The Business Object Wizard - Step 1 of 6 - Select

Agent window opens.

3. Select the ODA/AGENTNAME (from the start_iSeriesODA script) in the

Located agents list and click Next. (You may have to click Find Agents if

desired agent is not listed.)

Configuring the agent

After you click Next on the Select Agent window, the Business Object Wizard -

Step 2 of 6 - Configure Agent window opens.

Figure 14. Select Agent window

40 Adapter for iSeries User Guide

The properties you set on this screen are described in Table 5. You can save all the

values you enter on this screen to a profile. Instead of retyping the property data

the next time you run the ODA, you simply select a profile from the drop-down

menu and re-use the saved values. You can save multiple profiles, each with a

different set of specified values.

 Table 7. Configure Agent properties

Property name Default value Type Description

iSeriesHostName String (required) The iSeries

host machine name.

iSeriesUserName String (required) The User

name used to connect

to the iSeries

machine.

iSeriesPassword String (required) The

Password used for

connecting to the

iSeries machine.

iSeriesFilePath /QSYS.LIB/ String Absolute IFS path to

the select source.

Figure 15. Configure Agent window

Chapter 5. Creating and modifying business objects 41

Table 7. Configure Agent properties (continued)

Property name Default value Type Description

iSeriesODAOption String The type of resource

to access on iSeries.

Currently there are 3

options: RPGMBR,

RPGLEMBR, and

DTAQ.

If RPGMBR is

selected, the IFSFiles

entered are

considered as RPG

format source

programs. If RPGLE

is entered, the

IFSFiles selected are

considered as RPGLE

format source

programs.

DTAQ implies the

selected IFS file is a

DataQueue, can be a

Sequential or Keyed

Data Queue.

Based on this

selection, the source

files are accessed to

create corresponding

business object

definitions.

Note: RPG and RPGLE source programs of different record lengths are supported

as per language format specifications.

Use the New and Save buttons in the Profiles group box any time you want the

ODA to create a new profile. When you use the ODA again, you can select an

existing profile. Type the value of each property, as defined in Table 7 on page 41.

Whenever any required field is left blank or during any error, (for example an

invalid username), a pop up message is displayed with the corresponding error

message.

Note: If you use a profile, the property values are filled in for you, though you

can modify the values as needed. You can also save new values.

Selecting a business object

The Business Object Wizard - Step 3 of 6 - Select Source window opens, as

illustrated in Figure 17.

This screen lists either the *.MBRs for RPG or RPGLE source files or *.DTAQ files

for data queues, where users can select the names of those files. The file type is

decided by the iSeriesODAOption Agent property. The IFS Directories are

represented as expandable tree nodes while the source names (MBRs or DTAQs)

are shown as leaf nodes. You can select more than one source (leaf nodes only)

either in the same IFS directory or in different IFS directories. Use this screen to

42 Adapter for iSeries User Guide

select any number of source files for which the ODA will generate business object

definitions.

1. If necessary, expand a node to see a list of sub nodes.

2. Select the source file(s) you want to use. Click Next.

3. To select multiple nodes, see the Business Object Development Guide for more

information regarding tree structures.

Confirming the object selection

The Business Object Wizard - Step 4 of 6 - Confirm source nodes for business

object definitions window opens. It shows the object(s) you selected.

Figure 16. Select Source window

Chapter 5. Creating and modifying business objects 43

Click Back to make changes or Next to confirm that the list is correct. The Business

Object Wizard - Step 5 of 6 - Generating business objects... window opens with a

message stating that the wizard is generating the business objects.

Generating the business objects

After you confirm your node sources, the iSeries ODA generates the business

objects. The Business Object Wizard - Step 6 of 6 - Saving business object

definitions... window opens.

1. Check either window Save a copy of the business object definitions to a

separate file, or check Open the new business object definitions in separate

windows. The latter choice launches the Business Object Designer and opens

the business objects in that application.

2. If you are finished and want to close the ODA, check Shutdown ODA and click

Finish.

Figure 17. Confirm source node window

44 Adapter for iSeries User Guide

Specifying business object information

After you create a business object, you can specify the business object-level ASI

and the attribute-level ASI.

This section describes how to specify this information using the ODA with

Business Object Designer. For a detailed description of these categories of

information and what they mean for business object structure in the iSeries

connector, seeChapter 4, “Understanding business objects for the connector,” on

page 29.

Specifying the attribute-level ASI

Business Object Designer displays the attributes for the business object. For details

about the attribute-level ASI in the iSeries connector, see “Specifying business

object attribute level application text” on page 36.

The attributes are listed on the Attributes tab in the order in which they appear in

the business object structure, as defined by the numeric value in the Pos column.

Figure 18. Save business objects window

Chapter 5. Creating and modifying business objects 45

For each attribute, the window provides the name of the attribute, its type, and the

ASI information. On this window, you need to specify a key (required by Business

Object Designer to validate and save a business object) for each business object for

which the ODA has not already specified a key.

In the business objects, passwords are not set as default value and not traced due

to security reasons. The Business object generated for a sequential data queue has

one attribute corresponding to its data length. For keyed data queues, there are 2

attributes of which the first one corresponds to the key while the other has the

remaining length i.e. Data Length - Key Length. For a business object with an

attribute with ASI DataLength = X and DecimalPositions=Y and when a BO is sent

with the value of that attribute with greater than X digits (with the number of

digits in Decimal Positions are greater than Y) the Connector will truncate this

value to a length of decimal part to Y and maintain the Data Length to X and

process the Business object successfully. If the integer part exceeds the length X-Y

then Connector should throw an error. For example, if the ASI for an attribute is

PackedDecimal=True;Datalength=10;DecimalPositions=2, then the values 112345678,

12345678.1, and 12345678.12 are accepted, but the extraneous decimal digits after

the maximum limit of 2 in 12345678.123 will be truncated, and the value is taken

as 12345678.12. A trace message is given for it as ″Truncated String

Value:<12345678.12> for DecimalPositions=2″. The value 123456789.12 will log an

error :″ Length is not valid.″

You can also use this window to set child object keys as needed and specify the

following information:

v Is the attribute required for the connector to process the business object? If so,

click the Required check box.

v Is the maximum length of the attribute different from the value that appears in

the Maximum Length column.

v Does the attribute have a default value? If so, type the value in the Default

column.

Specifying the business object-level ASI

After specifying the attribute-level ASI, you can view and modify the business

object-level ASI. For details about business object-level ASI, see “Specifying

business object attribute level application text” on page 36.

The business object-level ASI is listed on the General tab. The ASI value that

appears in the field Business Object Level Application-specific information contains

Figure 19. Setting the Attribute ASI

46 Adapter for iSeries User Guide

the name of the proxy class that represents this business object. The connector uses

this information to map a proxy class to a business object, and, in the case of a

server-side business object (when the connector also runs as a server), the

connector uses this information to map an implementation class to a business

object.

This screen also lists all the verbs that are supported by the business object and

provides the ASI for each verb. On this screen you can modify the ASI of the

business object and its supporting verbs.

Uploading business objects

The newly created business object definition files must be uploaded to the

integration broker once they have been created. The process for uploading depends

on whether you are running WebSphere InterChange Server, WebSphere MQ

Integrator Broker, or WebSphere Application Server:

v WebSphere InterChange Server: If you have saved your business object

definition files to a local machine and need to upload them to the repository on

the server, refer to the Implementation Guide for WebSphere InterChange Server.

v WebSphere MQ Integrator Broker: You must export the business object

definitions out of Business Object Designer and into the integration broker. For

details, refer to Implementing Adapters with WebSphere MQ Integrator Broker.

v WebSphere Application Server: For details, see Implementing Adapters with

WebSphere Application Server.

Figure 20. Setting the business object-level ASI

Chapter 5. Creating and modifying business objects 47

48 Adapter for iSeries User Guide

Chapter 6. Troubleshooting and error handling

This chapter describes how the adapter for iSeries handles errors. The adapter

generates logging and tracing messages. The chapter contains the following

sections:

This chapter contains the following sections:

v “Error handling”

v “Logging”

v “Tracing messages”

Error handling

All error messages generated by the connector are stored in a message file named

BIA_ISERIESAdapter.txt. (The name of the file is determined by the LogFileName

standard connector configuration property.)

All errors translate to VerbProcessingFailedException.

Logging

The adapter logs an error message whenever it encounters an abnormal condition

during processing, regardless of the trace level. When such an error occurs, the

connector also prints a textual representation of the failed business object as it was

received. It writes the text to the iSeries Adapter log file, whose file name

corresponds to the connector property LogFileName. The message contains a

detailed description of the condition and the outcome and may also include extra

information that may aid in debugging, such as business object dumps or stack

traces (for exceptions).

The message IDs for the iSeries adapter range from 93000 to 94000.

Tracing messages

Tracing is an optional debugging feature you can turn on to closely follow a

connector’s behavior. Tracing messages are configurable and can be changed

dynamically. You set various levels depending on the desired detail. Trace

messages, by default, are written to STDOUT.

You can also configure tracing to write to a file. The following table describes the

types of tracing messages that the iSeries connector outputs at each trace level. All

the trace messages appear in the file specified by the connector property

TraceFileName. These messages are in addition to any tracing messages output by

the IBM WebSphere Business Integration Adapter architecture. For more on

configuring trace messages, see the connector configuration properties in

“Configuring the connector.″ For more information on tracing, including how to

enable and set it, see the Connector Development Guide.

© Copyright IBM Corp. 2003, 2005 49

Table 6 lists the recommended content for connector tracing message levels.

 Table 8. Tracing messages content level description

Tracing level Tracing messages

Level 0 Use this trace level for trace messages that

identify the connector version. No other

tracing is performed at this level.

Level 1 N/A

Level 2 Use this trace level for trace messages that:

v Identify the BO handler used for each

object that the connector processes.

v Log each time a business object is posted

to the integration broker

v Indicate each time a request business

object is received

Level 3 N/A

Level 4 Use this trace level for trace messages that:

v Identify application-specific information.

Examples of this include the values

returned by the methods that process the

application-specific information fields in

business objects.

v Identify when the connector enters or

exits a function. These messages help

trace the process flow of the connector.

v Record any thread-specific processing. For

example, if the connector spawns multiple

threads, a message logs the creation of

each new thread.

Level 5 Use this trace level for trace messages that:

v Indicate connector initialization. This type

of message can include, for example, the

value of each connector configurator

property that has been retrieved from the

broker.

v Detail the status of each thread that the

connector spawns while it is running.

v Represent statements executed in the

application. The connector log file

contains all statements executed in the

target application and the value of any

variables that are substituted, where

applicable.

v Record business object dumps. The

connector should output a text

representation of a business object before

it begins processing (showing the object

that the connector receives from the

collaboration) as well as after it finishes

processing the object (showing the object

that the connector returns to the

collaboration).

50 Adapter for iSeries User Guide

Appendix. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector

component of WebSphere Business Integration adapters. The information covers

connectors running with the following integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (and shown as WMQI in the Connector Configurator).

v Information Integrator (II)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in Table 9 on page 53.)

The properties you set for the adapter depend on which integration broker you

use. You choose the integration broker using Connector Configurator. After you

choose the broker, Connector Configurator lists the standard properties you must

configure for the adapter.

For information about properties specific to this connector, see the relevant section

in this guide.

New properties

This standard property was added in this release:

v BOTrace

Standard connector properties overview

Connectors have two types of configuration properties:

v Standard configuration properties, which are used by the framework

v Application, or connector-specific, configuration properties, which are used by

the agent

These properties determine the adapter framework and the agent run-time

behavior.

This section describes how to start Connector Configurator and describes

characteristics common to all properties. For information on configuration

properties specific to a connector, see its adapter user guide.

Starting Connector Configurator

You configure connector properties from Connector Configurator, which you access

from System Manager. For more information on using Connector Configurator,

refer to the sections on Connector Configurator in this guide.

Connector Configurator and System Manager run only on the Windows system. If

you are running the connector on a UNIX system, you must have a Windows

machine with these tools installed.

© Copyright IBM Corp. 2003, 2005 51

To set connector properties for a connector that runs on UNIX, you must start up

System Manager on the Windows machine, connect to the UNIX integration broker,

and bring up Connector Configurator for the connector.

Configuration property values overview

The connector uses the following order to determine a property’s value:

1. Default

2. Repository (valid only if WebSphere InterChange Server (ICS) is the integration

broker)

3. Local configuration file

4. Command line

The default length of a property field is 255 characters. There is no limit on the

length of a STRING property type. The length of an INTEGER type is determined

by the server on which the adapter is running.

A connector obtains its configuration values at startup. If you change the value of

one or more connector properties during a run-time session, the property’s update

method determines how the change takes effect.

The update characteristics of a property, that is, how and when a change to the

connector properties takes effect, depend on the nature of the property.

There are four update methods for standard connector properties:

v Dynamic

The new value takes effect immediately after the change is saved in System

Manager. However, if the connector is in stand-alone mode (independently of

System Manager), for example, if it is running with one of the WebSphere

message brokers, you can change properties only through the configuration file.

In this case, a dynamic update is not possible.

v Agent restart (ICS only)

The new value takes effect only after you stop and restart the connector agent.

v Component restart

The new value takes effect only after the connector is stopped and then restarted

in System Manager. You do not need to stop and restart the agent or the server

process.

v System restart

The new value takes effect only after you stop and restart the connector agent

and the server.

To determine how a specific property is updated, refer to the Update Method

column in the Connector Configurator window, or see the Update Method column

in Table 9 on page 53.

There are three locations in which a standard property can reside. Some properties

can reside in more than one location.

v ReposController

The property resides in the connector controller and is effective only there. If

you change the value on the agent side, it does not affect the controller.

v ReposAgent

The property resides in the agent and is effective only there. A local

configuration can override this value, depending on the property.

52 Adapter for iSeries User Guide

v LocalConfig

The property resides in the configuration file for the connector and can act only

through the configuration file. The controller cannot change the value of the

property, and is not aware of changes made to the configuration file unless the

system is redeployed to update the controller explicitly.

Standard properties quick-reference

Table 9 provides a quick-reference to the standard connector configuration

properties. Not all connectors require all of these properties, and property settings

may differ from integration broker to integration broker.

See the section following the table for a description of each property.

Note: In the Notes column in Table 9, the phrase “RepositoryDirectory is set to

<REMOTE>” indicates that the broker is InterChange Server. When the

broker is WMQI or WAS, the repository directory is set to

<ProductDir>\repository

 Table 9. Summary of standard configuration properties

Property name Possible values Default value

Update

method Notes

AdapterHelpName One of the valid

subdirectories in

<ProductDir>\bin\Data

\App\Help\ that

 contains a valid

<RegionalSetting>

directory

Template name, if valid,

or blank field

Component

restart

Supported regional

settings.

Include chs_chn,

cht_twn, deu_deu,

esn_esp, fra_fra,

ita_ita, jpn_jpn,

kor_kor, ptb_bra,

and enu_usa (default).

AdminInQueue Valid JMS queue name <CONNECTORNAME>

/ADMININQUEUE

Component

restart

This property is valid

 only when the value

of DeliveryTransport

is JMS

AdminOutQueue Valid JMS queue name <CONNECTORNAME>

/ADMINOUTQUEUE

Component

restart

This property is valid

only when the value

of DeliveryTransport

is JMS

AgentConnections 1 through 4 1 Component

restart

This property is valid

only when the value

of DeliveryTransport

is MQ or IDL, the value

of Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

AgentTraceLevel 0 through 5 0 Dynamic

if broker is

ICS;

otherwise

Component

restart

ApplicationName Application name The value specified for

the connector

application name

Component

restart

Appendix. Standard configuration properties for connectors 53

Table 9. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

BiDi.Application Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value

of BiDi.Transforma tion

is true

BiDi.Broker Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true. If the value of

BrokerType is

ICS, the property

is read-only.

BiDi.Metadata Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true.

BiDi.Transformation true or false false Component

restart

This property is valid

only if the value of

BrokerType is not WAS.

BOTrace none or keys or full none Agent

restart

This property is valid

only if the value of

AgentTraceLevel is

lower than 5.

BrokerType ICS, WMQI, WAS ICS Component

restart

CharacterEncoding Any supported code.

The list shows this subset:

ascii7, ascii8, SJIS,

Cp949, GBK, Big5,

Cp297, Cp273, Cp280,

Cp284, Cp037, Cp437

.

ascii7 Component

restart

This property is valid

only for C++ connectors.

CommonEventInfrastruc

ture

true or false false Component

restart

CommonEventInfrastruc

tureURL

A URL string, for

example,

corbaloc:iiop:

host:2809.

No default value. Component

restart

This property is valid

only if the value of

CommonEvent

Infrastructure is true.

ConcurrentEventTrig

geredFlows

1 through 32,767 1 Component

restart

This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ContainerManagedEvents Blank or JMS Blank Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

54 Adapter for iSeries User Guide

Table 9. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

ControllerEventSequenc

ing

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerStoreAndFor

wardMode

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerTraceLevel 0 through 5 0 Dynamic This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

DeliveryQueue Any valid JMS

queue name

<CONNECTORNAME>

/DELIVERYQUEUE

Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

DeliveryTransport MQ, IDL, or JMS IDL when the value of

RepositoryDirectory is

<REMOTE>, otherwise

JMS

Component

restart

If the value of

RepositoryDirectory is

not <REMOTE>,

the only valid value for

this property is JMS.

DuplicateEventElimina

tion

true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

EnableOidForFlowMoni

toring

true or false false Component

restart

This property is valid

only if the value of

BrokerType is ICS.

FaultQueue Any valid queue name. <CONNECTORNAME>

/FAULTQUEUE

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.FactoryClassName CxCommon.Messaging.jms

.IBMMQSeriesFactory,

CxCommon.Messaging

.jms.SonicMQFactory,

or any Java class name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.ListenerConcurrency 1 through 32767 1 Component

restart

This property is

valid only if the value of

jms.TransportOptimized

is true.

jms.MessageBrokerName If the value of

jms.FactoryClassName

is IBM, use

crossworlds.queue.

manager.

crossworlds.queue.

manager

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.NumConcurrent

Requests

Positive integer 10 Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

Appendix. Standard configuration properties for connectors 55

Table 9. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

jms.Password Any valid password Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.TransportOptimized true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS and the value of

BrokerType is ICS.

jms.UserName Any valid name Component

restart

This property is valid

only if the value of

Delivery Transport is JMS.

JvmMaxHeapSize Heap size in megabytes 128m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMaxNativeStackSize Size of stack in kilobytes 128k Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMinHeapSize Heap size in megabytes 1m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ListenerConcurrency 1 through 100 1 Component

restart

This property is valid

only if the value of

DeliveryTransport is MQ.

Locale This is a subset of the

supported locales:

en_US, ja_JP, ko_KR,

 zh_CN, zh_TW, fr_FR,

de_DE, it_IT,

es_ES, pt_BR

en_US Component

restart

LogAtInterchangeEnd true or false false Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MaxEventCapacity 1 through 2147483647 2147483647 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MessageFileName Valid file name InterchangeSystem.txt Component

restart

56 Adapter for iSeries User Guide

Table 9. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

MonitorQueue Any valid queue name <CONNECTORNAME>

/MONITORQUEUE

Component

restart

This property is valid

only if the value of

DuplicateEventElimination

is true and

ContainerManagedEvents

has no value.

OADAutoRestartAgent true or false false Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADMaxNumRetry A positive integer 1000 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADRetryTimeInterval A positive integer

in minutes

10 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

PollEndTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

PollFrequency A positive integer

(in milliseconds)

10000 Dynamic

if broker is

ICS;

otherwise

Component

restart

PollQuantity 1 through 500 1 Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

PollStartTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

RepositoryDirectory <REMOTE> if the broker

is ICS; otherwise any

valid local directory.

For ICS, the value is set

to <REMOTE>

 For WMQI and WAS,

the value is

<ProductDir

\repository

Agent restart

RequestQueue Valid JMS queue name <CONNECTORNAME>

/REQUESTQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

ResponseQueue Valid JMS queue name <CONNECTORNAME>

/RESPONSEQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

RestartRetryCount 0 through 99 7 Dynamic

if ICS;

otherwise

Component

restart

Appendix. Standard configuration properties for connectors 57

Table 9. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

RestartRetryInterval A value in minutes

from 1 through

2147483647

1 Dynamic

if ICS;

otherwise

Component

restart

ResultsSetEnabled true or false false Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

DeliveryTransport

is JMS, and the value of

BrokerType is WMQI.

ResultsSetSize Positive integer 0 (means the results

set size is unlimited)

Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

ResultsSetEnabled

is true.

RHF2MessageDomain mrm or xml mrm Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS and the value of

WireFormat is CwXML.

SourceQueue Any valid WebSphere

MQ queue name

<CONNECTORNAME>

/SOURCEQUEUE

Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

SynchronousRequest

Queue

Any valid queue name. <CONNECTORNAME>

/SYNCHRONOUSREQUEST

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousResponse

Queue

Any valid queue name <CONNECTORNAME>

/SYNCHRONOUSRESPONSE

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

TivoliMonitorTransaction

Performance

true or false false Component

restart

WireFormat CwXML or CwBO CwXML Agent restart The value of this

property must be CwXML

if the value

of RepositoryDirectory

is not set to <REMOTE>.

The value must

be CwBO if the value of

RepositoryDirectory is set

to <REMOTE>.

WsifSynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value of

BrokerType is WAS.

58 Adapter for iSeries User Guide

Table 9. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

XMLNameSpaceFormat short or long or no short Agent restart This property is valid

only if the value of

BrokerType is

WMQI or WAS

Standard properties

This section describes the standard connector configuration properties.

AdapterHelpName

The AdapterHelpName property is the name of a directory in which

connector-specific extended help files are located. The directory must be located in

<ProductDir>\bin\Data\App\Help and must contain at least the language

directory enu_usa. It may contain other directories according to locale.

The default value is the template name if it is valid, or it is blank.

AdminInQueue

The AdminInQueue property specifies the queue that is used by the integration

broker to send administrative messages to the connector.

The default value is <CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The AdminOutQueue property specifies the queue that is used by the connector to

send administrative messages to the integration broker.

The default value is <CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The AgentConnections property controls the number of ORB (Object Request

Broker) connections opened when the ORB initializes.

It is valid only if the value of the RepositoryDirectory is set to <REMOTE> and the

value of the DeliveryTransport property is MQ or IDL.

The default value of this property is 1.

AgentTraceLevel

The AgentTraceLevel property sets the level of trace messages for the

application-specific component. The connector delivers all trace messages

applicable at the tracing level set and lower.

The default value is 0.

Appendix. Standard configuration properties for connectors 59

ApplicationName

The ApplicationName property uniquely identifies the name of the connector

application. This name is used by the system administrator to monitor the

integration environment. This property must have a value before you can run the

connector.

The default is the name of the connector.

BiDi.Application

The BiDi.Application property specifies the bidirectional format for data coming

from an external application into the adapter in the form of any business object

supported by this adapter. The property defines the bidirectional attributes of the

application data. These attributes are:

v Type of text: implicit or visual (I or V)

v Text direction: left-to-right or right-to-left (L or R)

v Symmetric swapping: on or off (Y or N)

v Shaping (Arabic): on or off (S or N)

v Numerical shaping (Arabic): Hindi, contextual, or nominal (H, C, or N)

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Broker

The BiDi.Broker property specifies the bidirectional script format for data sent from

the adapter to the integration broker in the form of any supported business object.

It defines the bidirectional attributes of the data, which are as listed under

BiDi.Application above.

This property is valid only if the BiDi.Transformation property value is set to true.

If the BrokerType property is ICS, the property value is read-only.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Metadata

The BiDi.Metadata property defines the bidirectional format or attributes for the

metadata, which is used by the connector to establish and maintain a link to the

external application. The attribute settings are specific to each adapter using the

bidirectional capabilities. If your adapter supports bidirectional processing, refer to

the section on adapter-specific properties for more information.

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Transformation

The BiDi.Transformation property defines whether or not the system performs a

bidirectional transformation at run time.

If the property value is set to true, the BiDi.Application, BiDi.Broker, and

BiDi.Metadata properties are available. If the property value is set to false, they

are hidden.

60 Adapter for iSeries User Guide

The default value is false.

BOTrace

The BOTrace property specifies whether or not business object trace messages are

enabled at run time.

Note: It applies only when the AgentTraceLevel property is set to less than 5.

When the trace level is set to less than 5, you can use these command line

parameters to reset the value of BOTrace.

v Enter -xBOTrace=Full to dump all the business object’s attributes.

v Enter -xBOTrace=Keys to dump only the business object’s keys.

v Enter -xBOTrace=None to disable business object attribute dumping.

The default value is false.

BrokerType

The BrokerType property identifies the integration broker type that you are using.

The possible values are ICS, WMQI (for WMQI, WMQIB or WBIMB), or WAS.

CharacterEncoding

The CharacterEncoding property specifies the character code set used to map from

a character (such as a letter of the alphabet, a numeric representation, or a

punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. C++ connectors use the

value ascii7 for this property.

By default, only a subset of supported character encodings is displayed. To add

other supported values to the list, you must manually modify the

\Data\Std\stdConnProps.xml file in the product directory (<ProductDir>). For

more information, see the Connector Configurator appendix in this guide.

CommonEventInfrastructure

The Common Event Infrastructure (CEI) is a simple event management function

handling generated events. The CommonEventInfrastructure property specifies

whether the CEI should be invoked at run time.

The default value is false.

CommonEventInfrastructureContextURL

The CommonEventInfrastructureContextURL is used to gain access to the WAS

server that executes the Common Event Infrastructure (CEI) server application.

This property specifies the URL to be used.

This property is valid only if the value of CommonEventInfrastructure is set to

true.

The default value is a blank field.

Appendix. Standard configuration properties for connectors 61

ConcurrentEventTriggeredFlows

The ConcurrentEventTriggeredFlows property determines how many business

objects can be concurrently processed by the connector for event delivery. You set

the value of this attribute to the number of business objects that are mapped and

delivered concurrently. For example, if you set the value of this property to 5, five

business objects are processed concurrently.

Setting this property to a value greater than 1 allows a connector for a source

application to map multiple event business objects at the same time and deliver

them to multiple collaboration instances simultaneously. This speeds delivery of

business objects to the integration broker, particularly if the business objects use

complex maps. Increasing the arrival rate of business objects to collaborations can

improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application

to a destination application), the following properties must configured:

v The collaboration must be configured to use multiple threads by setting its

Maximum number of concurrent events property high enough to use multiple

threads.

v The destination application’s application-specific component must be configured

to process requests concurrently. That is, it must be multithreaded, or it must be

able to use connector agent parallelism and be configured for multiple processes.

The Parallel Process Degree configuration property must be set to a value larger

than 1.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,

which is single-threaded and is performed serially.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1.

ContainerManagedEvents

The ContainerManagedEvents property allows a JMS-enabled connector with a

JMS event store to provide guaranteed event delivery, in which an event is

removed from the source queue and placed on the destination queue as one JMS

transaction.

When this property is set to JMS, the following properties must also be set to

enable guaranteed event delivery:

v PollQuantity = 1 to 500

v SourceQueue = /SOURCEQUEUE

You must also configure a data handler with the MimeType and DHClass (data

handler class) properties. You can also add DataHandlerConfigMOName (the

meta-object name, which is optional). To set those values, use the Data Handler

tab in Connector Configurator.

Although these properties are adapter-specific, here are some example values:

v MimeType = text\xml

v DHClass = com.crossworlds.DataHandlers.text.xml

v DataHandlerConfigMOName = MO_DataHandler_Default

62 Adapter for iSeries User Guide

The fields for these values in the Data Handler tab are displayed only if you have

set the ContainerManagedEvents property to the value JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its

pollForEvents() method, thereby disabling that method’s functionality.

The ContainerManagedEvents property is valid only if the value of the

DeliveryTransport property is set to JMS.

There is no default value.

ControllerEventSequencing

The ControllerEventSequencing property enables event sequencing in the connector

controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE> (BrokerType is ICS).

The default value is true.

ControllerStoreAndForwardMode

The ControllerStoreAndForwardMode property sets the behavior of the connector

controller after it detects that the destination application-specific component is

unavailable.

If this property is set to true and the destination application-specific component is

unavailable when an event reaches ICS, the connector controller blocks the request

to the application-specific component. When the application-specific component

becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes

unavailable after the connector controller forwards a service call request to it, the

connector controller fails the request.

If this property is set to false, the connector controller begins failing all service

call requests as soon as it detects that the destination application-specific

component is unavailable.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE> (the value of the BrokerType property is ICS).

The default value is true.

ControllerTraceLevel

The ControllerTraceLevel property sets the level of trace messages for the

connector controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE>.

The default value is 0.

Appendix. Standard configuration properties for connectors 63

DeliveryQueue

The DeliveryQueue property defines the queue that is used by the connector to

send business objects to the integration broker.

This property is valid only if the value of the DeliveryTransport property is set to

JMS.

The default value is <CONNECTORNAME>/DELIVERYQUEUE.

DeliveryTransport

The DeliveryTransport property specifies the transport mechanism for the delivery

of events. Possible values are MQ for WebSphere MQ, IDL for CORBA IIOP, or JMS

for Java Messaging Service.

v If the value of the RepositoryDirectory property is set to <REMOTE>, the value

of the DeliveryTransport property can be MQ, IDL, or JMS, and the default is IDL.

v If the value of the RepositoryDirectory property is a local directory, the value

can be only JMS.

The connector sends service-call requests and administrative messages over

CORBA IIOP if the value of the RepositoryDirectory property is MQ or IDL.

If the value of the DeliveryTransport property is MQ, you can set the command-line

parameter WhenServerAbsent in the adapter start script to indicate whether the

adapter should pause or shut down when the InterChange Server is shut down.

v Enter WhenServerAbsent=pause to pause the adapter when ICS is not available.

v Enter WhenServerAbsent=shutdown to shut down the adapter when ICS is not

available.

WebSphere MQ and IDL

Use WebSphere MQ rather than IDL for event delivery transport, unless you must

have only one product. WebSphere MQ offers the following advantages over IDL:

v Asynchronous communication:

WebSphere MQ allows the application-specific component to poll and

persistently store events even when the server is not available.

v Server side performance:

WebSphere MQ provides faster performance on the server side. In optimized

mode, WebSphere MQ stores only the pointer to an event in the repository

database, while the actual event remains in the WebSphere MQ queue. This

prevents writing potentially large events to the repository database.

v Agent side performance:

WebSphere MQ provides faster performance on the application-specific

component side. Using WebSphere MQ, the connector polling thread picks up an

event, places it in the connector queue, then picks up the next event. This is

faster than IDL, which requires the connector polling thread to pick up an event,

go across the network into the server process, store the event persistently in the

repository database, then pick up the next event.

JMS

The JMS transport mechanism enables communication between the connector and

client connector framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as

jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName

64 Adapter for iSeries User Guide

are listed in Connector Configurator. The properties jms.MessageBrokerName and

jms.FactoryClassName are required for this transport.

There may be a memory limitation if you use the JMS transport mechanism for a

connector in the following environment:

v AIX 5.0

v WebSphere MQ 5.3.0.1

v ICS is the integration broker

In this environment, you may experience difficulty starting both the connector

controller (on the server side) and the connector (on the client side) due to memory

use within the WebSphere MQ client. If your installation uses less than 768MB of

process heap size, set the following variable and property:

v Set the LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script is located in the \bin directory below the product directory

(<ProductDir>). Using a text editor, add the following line as the first line in the

CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *

256 MB). If the process memory grows larger than this limit, page swapping can

occur, which can adversely affect the performance of your system.

v Set the value of the IPCCBaseAddress property to 11 or 12. For more

information on this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When the value of this property is true, a JMS-enabled connector can ensure that

duplicate events are not delivered to the delivery queue. To use this feature, during

connector development, the connector must have a unique event identifier set as

the business object ObjectEventId attribute in the application-specific code.

Note: When the value of this property is true, the MonitorQueue property must

be enabled to provide guaranteed event delivery.

The default value is false.

EnableOidForFlowMonitoring

When the value of this property is true, the adapter runtime will mark the

incoming ObjectEventID as a foreign key for flow monitoring.

This property is only valid if the BrokerType property is set to ICS.

The default value is false.

FaultQueue

If the connector experiences an error while processing a message, it moves the

message (and a status indicator and description of the problem) to the queue

specified in the FaultQueue property.

The default value is <CONNECTORNAME>/FAULTQUEUE.

Appendix. Standard configuration properties for connectors 65

jms.FactoryClassName

The jms.FactoryClassName property specifies the class name to instantiate for a

JMS provider. This property must be set if the value of the DeliveryTransport

property is JMS.

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The jms.ListenerConcurrency property specifies the number of concurrent listeners

for the JMS controller. It specifies the number of threads that fetch and process

messages concurrently within a controller.

This property is valid only if the value of the jms.OptimizedTransport property is

true.

The default value is 1.

jms.MessageBrokerName

The jms.MessageBrokerName specifies the broker name to use for the JMS

provider. You must set this connector property if you specify JMS as the delivery

transport mechanism (in the DeliveryTransport property).

When you connect to a remote message broker, this property requires the following

values:
QueueMgrName:Channel:HostName:PortNumber

where:

QueueMgrName is the name of the queue manager.

Channel is the channel used by the client.

HostName is the name of the machine where the queue manager is to reside.

PortNumberis the port number used by the queue manager for listening

For example:

jms.MessageBrokerName = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The default value is crossworlds.queue.manager. Use the default when connecting

to a local message broker.

jms.NumConcurrentRequests

The jms.NumConcurrentRequests property specifies the maximum number of

concurrent service call requests that can be sent to a connector at the same time.

Once that maximum is reached, new service calls are blocked and must wait for

another request to complete before proceeding.

The default value is 10.

jms.Password

The jms.Password property specifies the password for the JMS provider. A value

for this property is optional.

There is no default value.

66 Adapter for iSeries User Guide

jms.TransportOptimized

The jms.TransportOptimized property determines if the WIP (work in progress) is

optimized. You must have a WebSphere MQ provider to optimize the WIP. For

optimized WIP to operate, the messaging provider must be able to:

1. Read a message without taking it off the queue

2. Delete a message with a specific ID without transferring the entire message to

the receiver’s memory space

3. Read a message by using a specific ID (needed for recovery purposes)

4. Track the point at which events that have not been read appear.

The JMS APIs cannot be used for optimized WIP because they do not meet

conditions 2 and 4 above, but the MQ Java APIs meet all four conditions, and

hence are required for optimized WIP.

This property is valid only if the value of DeliveryTransport is JMS and the value of

BrokerType is ICS.

The default value is false.

jms.UserName

the jms.UserName property specifies the user name for the JMS provider. A value

for this property is optional.

There is no default value.

JvmMaxHeapSize

The JvmMaxHeapSize property specifies the maximum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The JvmMaxNativeStackSize property specifies the maximum native stack size for

the agent (in kilobytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128k.

JvmMinHeapSize

The JvmMinHeapSize property specifies the minimum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1m.

Appendix. Standard configuration properties for connectors 67

ListenerConcurrency

The ListenerConcurrency property supports multithreading in WebSphere MQ

Listener when ICS is the integration broker. It enables batch writing of multiple

events to the database, thereby improving system performance.

This property valid only with connectors that use MQ transport. The value of the

DeliveryTransport property must be MQ.

The default value is 1.

Locale

The Locale property specifies the language code, country or territory, and,

optionally, the associated character code set. The value of this property determines

cultural conventions such as collation and sort order of data, date and time

formats, and the symbols used in monetary specifications.

A locale name has the following format:

ll_TT.codeset

where:

ll is a two-character language code (in lowercase letters)

TT is a two-letter country or territory code (in uppercase letters)

codeset is the name of the associated character code set (may be optional).

By default, only a subset of supported locales are listed. To add other supported

values to the list, you modify the \Data\Std\stdConnProps.xml file in the

<ProductDir>\bin directory. For more information, refer to the Connector

Configurator appendix in this guide.

If the connector has not been internationalized, the only valid value for this

property is en_US. To determine whether a specific connector has been globalized,

refer to the user guide for that adapter.

The default value is en_US.

LogAtInterchangeEnd

The LogAtInterchangeEnd property specifies whether to log errors to the log

destination of the integration broker.

Logging to the log destination also turns on e-mail notification, which generates

e-mail messages for the recipient specified as the value of MESSAGE_RECIPIENT

in the InterchangeSystem.cfg file when errors or fatal errors occur. For example,

when a connector loses its connection to the application, if the value of

LogAtInterChangeEnd is true, an e-mail message is sent to the specified message

recipient.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

MaxEventCapacity

The MaxEventCapacity property specifies maximum number of events in the

controller buffer. This property is used by the flow control feature.

68 Adapter for iSeries User Guide

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The value can be a positive integer between 1 and 2147483647.

The default value is 2147483647.

MessageFileName

The MessageFileName property specifies the name of the connector message file.

The standard location for the message file is \connectors\messages in the product

directory. Specify the message file name in an absolute path if the message file is

not located in the standard location.

If a connector message file does not exist, the connector uses

InterchangeSystem.txt as the message file. This file is located in the product

directory.

Note: To determine whether a connector has its own message file, see the

individual adapter user guide.

The default value is InterchangeSystem.txt.

MonitorQueue

The MonitorQueue property specifies the logical queue that the connector uses to

monitor duplicate events.

It is valid only if the value of the DeliveryTransport property is JMS and the value

of the DuplicateEventElimination is true.

The default value is <CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the OADAutoRestartAgent property specifies whether the connector uses the

automatic and remote restart feature. This feature uses the WebSphere

MQ-triggered Object Activation Daemon (OAD) to restart the connector after an

abnormal shutdown, or to start a remote connector from System Monitor.

This property must be set to true to enable the automatic and remote restart

feature. For information on how to configure the WebSphere MQ-triggered OAD

feature. see the Installation Guide for Windows or for UNIX.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

OADMaxNumRetry

The OADMaxNumRetry property specifies the maximum number of times that the

WebSphere MQ-triggered Object Activation Daemon (OAD) automatically attempts

to restart the connector after an abnormal shutdown. The OADAutoRestartAgent

property must be set to true for this property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

Appendix. Standard configuration properties for connectors 69

The default value is 1000.

OADRetryTimeInterval

The OADRetryTimeInterval property specifies the number of minutes in the

retry-time interval for the WebSphere MQ-triggered Object Activation Daemon

(OAD). If the connector agent does not restart within this retry-time interval, the

connector controller asks the OAD to restart the connector agent again. The OAD

repeats this retry process as many times as specified by the OADMaxNumRetry

property. The OADAutoRestartAgent property must be set to true for this

property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 10.

PollEndTime

The PollEndTime property specifies the time to stop polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

PollFrequency

The PollFrequency property specifies the amount of time (in milliseconds) between

the end of one polling action and the start of the next polling action. This is not

the interval between polling actions. Rather, the logic is as follows:

v Poll to obtain the number of objects specified by the value of the PollQuantity

property.

v Process these objects. For some connectors, this may be partly done on separate

threads, which execute asynchronously to the next polling action.

v Delay for the interval specified by the PollFrequency property.

v Repeat the cycle.

The following values are valid for this property:

v The number of milliseconds between polling actions (a positive integer).

v The word no, which causes the connector not to poll. Enter the word in

lowercase.

v The word key, which causes the connector to poll only when you type the letter

p in the connector Command Prompt window. Enter the word in lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. Where

they exist, these restrictions are documented in the chapter on

installing and configuring the adapter.

70 Adapter for iSeries User Guide

PollQuantity

The PollQuantity property designates the number of items from the application

that the connector polls for. If the adapter has a connector-specific property for

setting the poll quantity, the value set in the connector-specific property overrides

the standard property value.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the ContainerManagedEvents property has a value.

An e-mail message is also considered an event. The connector actions are as

follows when it is polled for e-mail.

v When it is polled once, the connector detects the body of the message, which it

reads as an attachment. Since no data handler was specified for this mime type,

it will then ignore the message.

v The connector processes the first BO attachment. The data handler is available

for this MIME type, so it sends the business object to Visual Test Connector.

v When it is polled for the second time, the connector processes the second BO

attachment. The data handler is available for this MIME type, so it sends the

business object to Visual Test Connector.

v Once it is accepted, the third BO attachment should be transmitted.

PollStartTime

The PollStartTime property specifies the time to start polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

RepositoryDirectory

The RepositoryDirectory property is the location of the repository from which the

connector reads the XML schema documents that store the metadata for business

object definitions.

If the integration broker is ICS, this value must be set to set to <REMOTE>

because the connector obtains this information from the InterChange Server

repository.

When the integration broker is a WebSphere message broker or WAS, this value is

set to <ProductDir>\repository by default. However, it may be set to any valid

directory name.

RequestQueue

The RequestQueue property specifies the queue that is used by the integration

broker to send business objects to the connector.

This property is valid only if the value of the DeliveryTransport property is JMS.

Appendix. Standard configuration properties for connectors 71

The default value is <CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The ResponseQueue property specifies the JMS response queue, which delivers a

response message from the connector framework to the integration broker. When

the integration broker is ICS, the server sends the request and waits for a response

message in the JMS response queue.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/RESPONSEQUEUE.

RestartRetryCount

The RestartRetryCount property specifies the number of times the connector

attempts to restart itself. When this property is used for a connector that is

connected in parallel, it specifies the number of times the master connector

application-specific component attempts to restart the client connector

application-specific component.

The default value is 7.

RestartRetryInterval

The RestartRetryInterval property specifies the interval in minutes at which the

connector attempts to restart itself. When this property is used for a connector that

is linked in parallel, it specifies the interval at which the master connector

application-specific component attempts to restart the client connector

application-specific component.

Possible values for the property range from 1 through 2147483647.

The default value is 1.

ResultsSetEnabled

The ResultsSetEnabled property enables or disables results set support when

Information Integrator is active. This property can be used only if the adapter

supports DB2 Information Integrator.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the value of BrokerType is WMQI.

The default value is false.

ResultsSetSize

The ResultsSetSize property defines the maximum number of business objects that

can be returned to Information Integrator. This property can be used only if the

adapter supports DB2 Information Integrator.

This property is valid only if the value of the ResultsSetEnabled property is true.

The default value is 0. This means that the size of the results set is unlimited.

72 Adapter for iSeries User Guide

RHF2MessageDomain

The RHF2MessageDomain property allows you to configure the value of the field

domain name in the JMS header. When data is sent to a WebSphere message

broker over JMS transport, the adapter framework writes JMS header information,

with a domain name and a fixed value of mrm. A configurable domain name lets

you track how the WebSphere message broker processes the message data.

This is an example header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This property is valid only if the value of BrokerType is WMQI or WAS. Also, it is

valid only if the value of the DeliveryTransport property is JMS, and the value of

the WireFormat property is CwXML.

Possible values are mrm and xml. The default value is mrm.

SourceQueue

The SourceQueue property designates the JMS source queue for the connector

framework in support of guaranteed event delivery for JMS-enabled connectors

that use a JMS event store. For further information, see “ContainerManagedEvents”

on page 62.

This property is valid only if the value of DeliveryTransport is JMS, and a value for

ContainerManagedEvents is specified.

The default value is <CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The SynchronousRequestQueue property delivers request messages that require a

synchronous response from the connector framework to the broker. This queue is

necessary only if the connector uses synchronous execution. With synchronous

execution, the connector framework sends a message to the synchronous request

queue and waits for a response from the broker on the synchronous response

queue. The response message sent to the connector has a correlation ID that

matches the ID of the original message.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The SynchronousRequestTimeout property specifies the time in milliseconds that

the connector waits for a response to a synchronous request. If the response is not

received within the specified time, the connector moves the original synchronous

request message (and error message) to the fault queue.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is 0.

Appendix. Standard configuration properties for connectors 73

SynchronousResponseQueue

The SynchronousResponseQueue property delivers response messages in reply to a

synchronous request from the broker to the connector framework. This queue is

necessary only if the connector uses synchronous execution.

This property is valid only if the value of DeliveryTransport is JMS.

The default is <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The TivoliMonitorTransactionPerformance property specifies whether IBM Tivoli

Monitoring for Transaction Performance (ITMTP) is invoked at run time.

The default value is false.

WireFormat

The WireFormat property specifies the message format on the transport:

v If the value of the RepositoryDirectory property is a local directory, the value is

CwXML.

v If the value of the RepositoryDirectory property is a remote directory, the value

is CwBO.

WsifSynchronousRequestTimeout

The WsifSynchronousRequestTimeout property specifies the time in milliseconds

that the connector waits for a response to a synchronous request. If the response is

not received within the specified time, the connector moves the original

synchronous request message (and an error message) to the fault queue.

This property is valid only if the value of BrokerType is WAS.

The default value is 0.

XMLNameSpaceFormat

The XMLNameSpaceFormat property specifies short or long namespaces in the

XML format of business object definitions.

This property is valid only if the value of BrokerType is set to WMQI or WAS.

The default value is short.

74 Adapter for iSeries User Guide

Index

A
Application-specific configuration

properties
setting 18

Attribute-level ASI
specifying 45

B
Business Object Designer

running 39

Business object-level ASI
specifying 46

Business objects
creating and modifying 39

data queue structure 34

generating 44

generating definitions 39

processing 3

specifying attribute properties 36

specifying attribute-level application

text 36

specifying information 45

specifying supported definitions 19

structure overview 29

Understanding 29

uploading 47

Business Objects
RPG programs structure 30

C
Configuration

completing 23

Configuration file
changing 23

completing 15

Creating a new 13

creating from a connector-specific

template 13

saving 22

setting properties 16

using an existing file 14

Connector Configurator
overview 9

running from System Manager 11

running in stand-alone mode 10

starting 10

using in globalized environments 23

Connector instances
creating multiple 26

Connector-specific properties 17

Connector-specific property template
creating 11

D
Data conversion

iSeries or AS/400 toolbox 37

Data handlers 22

Data queues
overview 3

E
Error handling 49

H
How the adapter works 3

I
Installed file structure 7

iSeries adapter
broker compatibility 5

configuring 9

environment 5

installing 5

installing and related files 7

operations 3

overview 1

platforms 6

prerequisites 6

starting the connector 24

stopping the connector 25

troubleshooting 49

iSeries and AS/400 systems
overview 1

L
Logging 49

M
Maps 20

Messaging 22

Meta objects
configuring for polling 34

Metadata
defining 29

O
Object Discovery Agent (ODA)

overview 39

starting 39

P
Post installation

tasks 7

R
Resources 21

S
Standard configuration properties for

connectors 51

Standard connector properties
setting 17

T
Trace/log file values

setting 22

Tracing messages 49

© Copyright IBM Corp. 2003, 2005 75

76 Adapter for iSeries User Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2005 77

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

78 Adapter for iSeries User Guide

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

AIX 5L

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

HelpNow

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

Notes

OS/400

Passport Advantage

pSeries

Redbooks

SupportPac

WebSphere

z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Notices 79

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

WebSphere Business Integration Adapters, Version 6.0

WebSphere Business Integration Adapter Framework V2.4.0

80 Adapter for iSeries User Guide

����

Printed in USA

	Contents
	About this document
	Audience
	Related documents
	Typographic conventions

	New in this release
	Version 2.1.x
	Version 2.0.x
	Prior versions
	Version 1.1.x
	Version 1.0.x

	Chapter 1. Overview
	An overview of the iSeries and AS/400 systems
	Data queues

	How the adapter works
	Business object processing
	Connector operations

	Chapter 2. Installing the iSeries adapter
	Adapter for iSeries environment
	Broker compatibility
	Adapter platforms
	Prerequisites

	Installing the iSeries adapter and related files
	Installed file structure
	Post installation tasks

	Chapter 3. Configuring the iSeries adapter
	Configuring the connector
	Overview of Connector Configurator
	Starting Connector Configurator
	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new configuration file
	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment
	Starting the connector
	Stopping the connector
	Creating multiple connector instances

	Chapter 4. Understanding business objects for the connector
	Defining connector metadata
	Overview of business object structure
	Business Object structure for RPG, COBOL, and Java programs
	Connector business object processing

	Business Object structure for iSeries data queues
	Configuring meta objects for polling
	Specifying business object attribute properties
	Specifying business object attribute level application text
	Data conversion from the iSeries or AS/400 toolbox

	Chapter 5. Creating and modifying business objects
	Overview of the ODA for iSeries
	Generating business object definitions
	Starting the iSeries ODA
	Running Business Object Designer

	Specifying business object information
	Specifying the attribute-level ASI
	Specifying the business object-level ASI

	Uploading business objects

	Chapter 6. Troubleshooting and error handling
	Error handling
	Logging
	Tracing messages

	Appendix. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BOTrace
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat

	Index
	Notices
	Programming interface information
	Trademarks and service marks

