
IBM

WebSphere

Business

Integration

Adapters

IBM

WebSphere

InterChange

Server

Data

Handler

Guide

���

IBM

WebSphere

Business

Integration

Adapters

IBM

WebSphere

InterChange

Server

Data

Handler

Guide

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

223.

20September2004

This

edition

of

this

document

applies

to

IBM

WebSphere

InterChange

Server,

version

4.3.0,

IBM

WebSphere

Business

Integration

Adapter

Framework

(5724-G92),

version

2.6.0,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

this

document,

email

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2000,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

©

Copyright

International

Business

Machines

Corporation

2000,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. viii

New

in

this

release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.6.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.4.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

New

in

WebSphere

InterChange

Server

v4.2.2

and

WebSphere

Business

Integration

Adapter

Framework

v2.4.0

.

. ix

New

in

WebSphere

InterChange

Server

v4.2.1

and

WebSphere

Business

Integration

Adapter

v2.3.1

.

.

.

.

.

. x

New

in

WebSphere

InterChange

Server

v4.2

and

WebSphere

Business

Integration

Adapter

v2.2.0

.

.

.

.

.

.

. xi

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.0.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

New

in

release

4.1.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

New

in

release

4.0.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

New

in

release

4.0.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Part

1.

Getting

started

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Data

handler

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

What

is

a

data

handler?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Data

handler

instantiation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Calling

the

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Metadata-driven

data

handler

design

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Chapter

2.

Installing

and

configuring

data

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Installing

data

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Configuring

data

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Configuring

a

connector

to

use

data

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Chapter

3.

XML

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Requirements

for

business

object

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Configuring

the

XML

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

XML

documents

that

use

DTDs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

XML

documents

that

use

schema

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Creating

business

object

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Converting

business

objects

to

XML

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Converting

XML

documents

to

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Customizing

the

XML

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Chapter

4.

EDI

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Configuring

the

EDI

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Business

object

definitions

for

EDI

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

Converting

business

objects

to

EDI

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Converting

EDI

documents

to

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Customizing

the

EDI

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Chapter

5.

Request-Response

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Requirements

for

business

object

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

©

Copyright

IBM

Corp.

2000,

2004

iii

Configuring

the

Request-Response

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Converting

business

objects

with

the

request

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

Converting

business

objects

with

the

response

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

Error

handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Customizing

the

Request-Response

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Chapter

6.

FixedWidth

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Configuring

the

FixedWidth

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Converting

business

objects

to

FixedWidth

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Converting

FixedWidth

documents

to

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Chapter

7.

Delimited

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Configuring

the

Delimited

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Converting

business

objects

to

delimited

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Converting

delimited

data

to

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Chapter

8.

NameValue

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Configuring

the

NameValue

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Converting

business

objects

to

NameValue

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Converting

NameValue

data

to

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Chapter

9.

Complex

Data

data

hander

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Configuring

the

Complex

Data

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Converting

business

objects

to

specified

data

formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

Converting

specified

data

formats

to

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Error

handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Part

2.

Custom

data

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Chapter

10.

Creating

a

custom

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Overview

of

the

data-handler

development

process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Tools

for

data-handler

development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Designing

the

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Extending

the

data

handler

base

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Implementing

the

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Building

a

custom

name

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Adding

a

data

handler

to

the

jar

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Creating

data-handler

meta-objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Setting

up

other

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Configuring

a

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

An

internationalized

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Chapter

11.

Data

Handler

base

class

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

createHandler()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

getBO()

-

abstract

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

getBO()

-

public

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

getBOName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

getBooleanOption()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

getByteArrayFromBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

getEncoding()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

getLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

getOption()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

getStreamFromBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

getStringFromBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

setConfigMOName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

iv

Data

Handler

Guide

setEncoding()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 206

setLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 206

setOption()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

traceWrite()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Appendix.

Using

the

XML

ODA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Installation

and

usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Using

an

XML

ODA

in

Business

Object

Designer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Contents

of

the

generated

business

object

definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Modifying

information

in

the

business

object

definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Enabling

bidirectional

support

in

the

XML

ODA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Contents

v

vi

Data

Handler

Guide

About

this

document

The

IBMR

WebSphereR

Business

Integration

Adapter

portfolio

supplies

integration

connectivity

for

leading

e-business

technologies,

enterprise

applications,

legacy

applications

and

mainframe

systems.

The

product

set

includes

tools

and

templates

for

customizing,

creating,

and

managing

components

for

business

integration.

This

document

describes

delivered

data

handlers

and

custom

data

handler

capabilities.

Audience

This

document

is

for

consultants

and

customers.

You

should

be

familiar

with

business

objects

and

metadata

objects.

To

use

the

XML

data

handler,

you

should

be

familiar

with

XML

documents,

current

XML

standards,

and

with

SAX

(Simple

API

for

XML).

To

use

the

EDI

data

handler,

you

should

be

familiar

with

EDI

documents

and

current

EDI

standards.

If

you

intend

to

expand

the

data

handler

library,

you

should

be

proficient

in

the

Java

programming

language.

Related

documents

The

complete

set

of

documentation

available

with

this

product

describes

the

features

and

components

common

to

all

WebSphere

Business

Integration

Adapters

installations,

and

includes

reference

material

on

specific

components.

Note:

Important

information

about

the

products

documented

in

this

guide

may

be

available

in

Technical

Support

Technotes

and

Flashes

issued

after

this

document

was

published.

These

can

be

found

on

the

WebSphere

Business

Integration

Support

Web

site,

http://www.ibm.com/software/integration/websphere/support/.

Select

the

component

area

of

interest

and

browse

the

Technotes

and

Flashes

sections.

Additional

information

might

also

be

available

in

IBM

Redbooks

at

http://www.redbooks.ibm.com/.

You

can

install

related

documentation

from

the

following

sites:

v

For

general

adapter

information;

for

using

adapters

with

WebSphere

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker);

and

for

using

adapters

with

WebSphere

Application

Server:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

v

For

using

adapters

with

InterChange

Server:

http://www.ibm.com/websphere/integration/wicserver/infocenter

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

v

For

more

information

about

message

brokers

(WebSphere

MQ

Integrator

Broker,

WebSphere

MQ

Integrator,

and

WebSphere

Business

Integration

Message

Broker):

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

v

For

more

information

about

the

WebSphere

Application

Server

http://www.ibm.com/software/webservers/appserv/library.html

©

Copyright

IBM

Corp.

2000,

2004

vii

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html

These

sites

contain

simple

directions

for

downloading,

installing,

and

viewing

the

documentation.

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

file

name,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

new

term

Indicates

a

new

term

the

first

time

that

it

appears.

italic,

italic

Indicates

a

variable

name

or

a

cross-reference.

blue

outline

A

blue

outline,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

inside

the

outline

to

jump

to

the

object

of

the

reference.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

from

which

you

must

choose

one

and

only

one.

[

]

In

a

syntax

line,

square

brackets

surround

an

optional

parameter.

...

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

<

>

In

a

naming

convention,

angle

brackets

surround

individual

elements

of

a

name

to

distinguish

them

from

each

other,

as

in

<server_name><connector_name>tmp.log.

/,

\

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

IBM

WebSphere

product

pathnames

are

relative

to

the

directory

where

the

IBM

WebSphere

product

is

installed

on

your

system.

ProductDir

Represents

the

directory

where

the

product

is

installed.

For

the

IBM

WebSphere

InterChange

Server

environment,

the

default

product

directory

is

″IBM\WebSphereICS″.

For

the

IBM

WebSphere

Business

Integration

Adapters

environment,

the

default

product

directory

is

″WebSphereAdapters″.

%text%

and

$text

Text

within

percent

(%)

signs

indicates

the

value

of

the

Windows

text

system

variable

or

user

variable.

The

equivalent

notation

in

a

UNIX

environment

is

$text,

indicating

the

value

of

the

text

UNIX

environment

variable.

viii

Data

Handler

Guide

New

in

this

release

The

recent

revision

history

of

this

document

is

as

described

in

the

following

sections.

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.6.0

As

of

version

2.6.0,

IBM

WebSphere

Business

Integration

Adapter

Framework

supports

the

following

additional

platforms:

v

Solaris

9

v

Linux

RedHat

3.0

Server

(x86)

v

Linux

SUSE

Enteprise

Server

(SLES)

8.0

(x36)

v

Windows

2003

Additionally,

version

1.4.2

replaces

1.4.1

as

the

required

version

of

the

Java

Development

Kit

(JDK).

As

of

this

release,

the

XML

data

handler

is

also

globalized.

It

supports

bi-directional

character

encoding

formats,

and

the

XML

ODA

handles

XML

schemas

and

DTDs

containing

such

BiDi

characters.

Business

object

definitions

are

stored

in

the

Windows

BiDi

supporting

format,

CWBF.

This

enables

adapters

to

transform

BiDi

encoded

XML

documents

into

business

objects

and

vice

versa.

For

more

information

about

BiDi

enablement

in

the

XML

data

handler

and

the

XML

ODA,

see

“Enabling

bidirectional

support

in

the

XML

ODA”

on

page

222.

XML4J

has

replaced

xerces

as

the

default

XML

parser

used

by

the

XML

data

handler.

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.4.1

As

of

version

2.4.1

of

the

IBM

WebSphere

Business

Integration

Adapter

Framework,

adapters

are

are

not

supported

on

Solaris

7,

so

references

to

that

platform

version

have

been

deleted

from

this

guide.

New

in

WebSphere

InterChange

Server

v4.2.2

and

WebSphere

Business

Integration

Adapter

Framework

v2.4.0

The

FixedWidth

data

handler

has

added

support

for

large

business

objects.

Large

business

objects

are

defined

as

business

objects

between

10

and

100

megabytes

in

size.

The

IBM

WebSphere

InterChange

Server

4.2.2

release

and

the

WebSphere

Business

Integration

Adapter

Framework

2.4

release

provide

the

following

changes

to

the

data

handlers:

v

Both

of

these

products

support

the

following

changes

to

the

Request-Response

data

handler:

–

The

Request-Response

data

handler

supports

the

conversion

of

both

text

and

binary

data.

This

is

possible

because

the

binary

host

data

handler

can

be

used

in

conjunction

with

the

Request-Response

data

handler.

For

more

information

about

the

Request-Response

data

handler

Chapter

5,

“Request-Response

data

handler,”

on

page

115.

©

Copyright

IBM

Corp.

2000,

2004

ix

–

The

Request-Response

data

handler

default

child

meta

object

definition

MO_DataHandler_DefaultRequestResponseConfig

is

delivered

with

the

data

handlers

in

the

default

repository.

This

meta

object

definition

can

be

used

to

configure

the

Request-Response

data

handler.
v

Both

of

these

products

support

the

following

changes

to

the

XML

data

handler:

–

The

XML

data

handler

supports

type

substitution

in

business

objects

created

from

XML

schema.

For

more

information,

see

“Type

substitution

in

business

object

definitions

based

on

schema

documents”

on

page

61.

New

in

WebSphere

InterChange

Server

v4.2.1

and

WebSphere

Business

Integration

Adapter

v2.3.1

The

IBM

WebSphere

InterChange

Server

4.2.1

release

and

the

WebSphere

Business

Integration

Adapter

Framework

2.3.1

release

now

provide

a

new

data

handler,

the

Request-Response

data

handler.

For

more

information,

see

Chapter

5,

“Request-Response

data

handler,”

on

page

115.

Both

these

products

now

support

the

following

changes

to

the

XML

data

handler:

v

New

way

to

specify

names

of

XML

elements

and

attributes

–

The

business-object

attribute

that

represents

an

XML

element

must

now

contain

the

elem_name

tag

in

its

application-specific

information.

For

more

information,

see

“For

XML

elements”

on

page

49

(for

XML

elements

defined

in

DTDs)

or

“For

XML

elements”

on

page

72

(for

XML

elements

defined

in

schema

documents).

–

The

business-object

attribute

that

represents

an

XML

attribute

must

now

contain

the

attr_name

tag

in

its

application-specific

information

(in

addition

to

the

type=attribute

tag).

For

more

information,

see

“For

an

XML

attribute”

on

page

50

(for

XML

attributes

defined

in

DTDs)

or

“For

an

XML

attribute”

on

page

75

(for

XML

attributes

defined

in

schema

documents)

Note:

The

elem_name

and

attr_name

tags

replace

previous

syntax,

which

required

only

the

name

of

the

XML

element

or

attribute

in

the

business-object

attribute’s

application-specific

information.

The

XML

data

handler

still

supports

the

old

syntax

for

backward

compatibility

with

existing

business

object

definitions.

However,

the

XML

ODA

uses

the

new

syntax

when

it

generates

business

object

definitions.

v

New

way

to

specify

the

namespaces

of

a

schema

document

The

business

object

definition

must

now

contain

the

target_ns

tag

in

its

application-specific

information

to

identify

the

target

namespace.

For

more

information,

see

“Schema

namespaces”

on

page

64.

Note:

The

target_ns

tag

replaces

previous

syntax,

which

required

that

the

business

object

definition

contain

attributes

that

defined

the

prefixes

of

each

namespace.

These

attributes

indicated

whether

they

represented

the

default

namespace

or

a

prefixed

namespace

with

the

type=defaultNS

or

type=xmlns

tags

(respectively)

in

their

application-specific

information.

The

XML

data

handler

still

supports

the

old

syntax

for

backward

compatibility

with

existing

business

object

definitions.

However,

the

XML

ODA

uses

the

new

syntax

when

it

generates

business

object

definitions.

v

New

way

to

specify

qualified

XML

element

and

attribute

names

The

XML

data

handler

now

recognizes

the

following

XML

structures:

–

The

elementFormDefault

and

attributeFormDefault

attributes

of

the

schema

element

x

Data

Handler

Guide

Based

on

the

values

of

these

schema

attributes,

the

elem_fd

and

attr_fd

tags

in

the

application-specific

information

of

the

business

object

definition

indicate

whether

XML

element

and

attribute

names

are

qualified.

For

more

information,

see

“Qualified

component

names”

on

page

69

application-specific

information

–

The

form

attribute

of

an

XML

element

or

attribute

Based

on

the

value

of

this

attribute,

the

elem_fd

and

attr_fd

tags

in

the

application-specific

information

of

the

business-object

attribute

indicate

whether

the

particular

XML

element

or

attribute

name

is

qualified.

Note:

The

elem_fd

and

attr_fd

tags

replace

previous

syntax,

which

required

that

some

business

object

definitions

contain

namespace

prefixes

in

the

names

of

the

attributes

that

represented

XML

elements

or

attributes.

The

business

object

definition

no

longer

stores

namespace

prefix

information.

The

XML

data

handler

still

supports

the

old

syntax

for

backward

compatibility

with

existing

business

object

definitions.

However,

the

XML

ODA

uses

the

new

syntax

when

it

generates

business

object

definitions.

v

The

XML

data

handler

now

supports

the

following

XML

structures

of

a

schema

document:

–

Multiple

schema

namespaces

(the

import

element)

by

providing

the

elem_ns

and

attr_ns

tags

in

the

application-specific

information

of

business-object

attributes

that

represent

XML

elements

and

attributes,

respectively.

For

more

information,

see

“Schema

namespaces”

on

page

64.

–

Some

restrictions

on

simple-content

and

complex-content

complex

types

(the

restriction

element).

For

more

information,

see

“Supported

schema-document

structures”

on

page

78.

New

in

WebSphere

InterChange

Server

v4.2

and

WebSphere

Business

Integration

Adapter

v2.2.0

The

IBM

WebSphere

InterChange

Server

4.2

release

and

the

WebSphere

Business

Integration

Adapter

Framework

2.2.0

release

provide

the

following

changes

to

data

handlers:

v

These

releases

no

longer

use

the

″CrossWorlds″

name

to

describe

an

entire

system

or

to

modify

the

names

of

components

or

tools.

For

example

″IBM

CrossWorlds

XML

Data

Handler″

is

now

″IBM

WebSphere

Business

Integration

Data

Handler

for

XML,″

and

″CrossWorlds

InterChange

Server″

is

now

″WebSphere

InterChange

Server.″

v

You

can

now

install

data

handlers

as

part

of

either

of

the

these

IBM

WebSphere

products:

–

IBM

WebSphere

InterChange

Server:

all

IBM-delivered

data

handlers

are

part

of

this

product.

–

IBM

WebSphere

Business

Integration

Adapters:

only

the

XML

data

handler

is

part

of

this

product.

For

more

information,

see

“Installing

data

handlers”

on

page

21.

v

The

WebSphere

InterChange

Server

4.2

release

changes

the

default

configuration

of

the

MO_Server_DataHandler

meta-object.

This

meta-object

now

contains

only

a

dummy

attribute.

Therefore,

by

default

the

Server

Access

Interface

process

(within

InterChange

Server)

does

not

support

any

data

handlers.

For

information

on

how

to

configure

this

meta-object

to

provide

data-handler

support

for

the

Server

Access

Interface

process,

see

“MO_Server_DataHandler

meta-object”

on

page

25.

New

in

this

release

xi

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.1

The

WebSphere

Business

Integration

Adapter

Framework

2.1.0

release

provides

a

new

XML

ODA

to

create

business

object

definitions

from

the

following

XML

data

models:

v

XML

Document

type

definitions

(DTDs)

The

previous

version

of

the

XML

data

handler

performed

conversion

between

XML

DTDs

and

business

object

definitions.

It

used

two

external

tools

to

create

business

object

definitions

from

DTDs.

This

functionality

is

now

provided

by

the

XML

ODA.

For

more

information,

see

“XML

documents

that

use

DTDs”

on

page

42.

v

XML

Schema

documents

Support

for

conversion

between

schema

documents

and

business

object

definitions

is

new

with

the

XML

ODA.

For

more

information,

“XML

documents

that

use

schema

documents”

on

page

55.

For

information

on

the

use

of

the

XML

ODA,

see

“Using

an

XML

ODA

to

create

business

object

definitions”

on

page

80.

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.0.1

The

WebSphere

Business

Integration

Adapter

Framework

2.0.1

release

provides

an

internationalized

version

of

many

adapters

and

data

handlers.

These

internationalized

products

have

been

localized

for

the

English

and

Japanese

locales

(A

locale

includes

culture-specific

conventions

and

a

character

code

set.).

For

details

in

this

guide,

see

the

following

sections:

v

The

Data

Handler

API

now

provides

methods

to

allow

a

custom

data

handler

to

access

the

locale

and

character

encoding

of

the

data

handler

environment:

–

To

access

the

locale:

getLocale()

and

setLocale()

–

To

access

the

character

encoding:

getEncoding()

and

setEncoding()
v

For

an

overview

of

how

to

internationalize

a

data

handler,

see

“An

internationalized

data

handler”

on

page

190.

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.0

Data

handlers

are

now

supported

with

the

WebSphere

MQ

Integrator

integration

broker.

For

more

information

about

this

integration

broker,

see

the

Implementation

Guide

for

WebSphere

MQ

Integrator

Broker

in

the

WebSphere

Business

Integration

Adapters

documentation

set.

Data

handlers

continue

to

support

InterChange

Server

as

an

integration

broker.

New

in

release

4.1.0

v

The

XML

data

handler

now

populates

prolog

information

such

as

the

DOCTYPE

and

XML

declaration,

if

there

are

attributes

that

correspond

to

those

elements

in

the

business

object

definition.

v

The

Delimited

data

handler

can

now

take

a

String

with

multiple

characters

as

the

delimiter.

New

in

release

4.0.1

v

The

tpi_rnif

data

handler

has

been

added

to

the

CwDataHandler.jar

for

TPI

support

of

the

Chem

eStandards.

xii

Data

Handler

Guide

Significant

performance

improvements

have

been

made

to

the

XML

data

handler.

Most

of

these

are

transparent.

Some

are

not:

v

Business

object

attributes

representing

XML

elements

or

XML

attributes

with

content

that

requires

escape

processing

must

now

use

the

escape=true

application-specific

information.

In

previous

versions

of

the

data

handler,

all

attributes

were

escape

processed

by

default.

In

this

latest

version

of

the

XML

data

handler,

an

attribute

will

not

be

escape

processed

unless

it

contains

the

escape=true

application-specific

information.

If

an

attribute

represents

an

XML

element

whose

value

contains

single

quotes,

double

quotes

or

the

&,

<,

or

>

characters,

then

the

attribute

requires

escape

processing.

This

new

application-specific

information

(escape=true)must

be

placed

at

the

end

of

any

existing

text.

For

example:

[Attribute]

Name=Data

Type=String

AppSpecificInfo=Price;type=pcdata;escape=true

[End]

v

A

new

XML

data

handler

child

meta-object

attribute,

InitialBufferSize,

has

been

created

to

define

the

initial

size

of

the

buffer

that

is

used

when

converting

business

objects

to

XML.

Set

this

value

to

the

size,

in

bytes,

of

your

XML

business

objects.

Setting

this

value

to

a

high

number

will

speed

the

conversion

of

business

objects

to

serialized

XML.

The

default

value

is

2

MB.

v

A

new

XML

data

handler

child

meta-object

attribute,

UseNewLine,

has

been

created.

Set

this

attribute

to

true

if

you

want

each

tag

in

the

output

XML

to

be

on

a

new

line.

(The

XML

data

handler

adds

extra

content

in

the

form

of

line

feeds

and

carriage

returns

to

the

XML

document.)

Set

to

false

if

you

do

not

want

to

alter

the

XML

output.

New

in

release

4.0.0

v

The

Xerces

Parser

from

Apache

is

now

the

default

parser

for

the

XML

Data

Handler.

Instructions

are

provided

for

using

the

SAX

Parser

from

IBM

instead

of

the

default.

v

The

Edifecs

SpecBuilder

utility

is

now

the

preferred

XML

data

handler

tool

for

creating

business

object

definitions.

v

The

attribute

OmitObjectEventId

has

been

added

to

the

FixedWidth

and

Delimited

data

handlers.

New

in

this

release

xiii

xiv

Data

Handler

Guide

Part

1.

Getting

started

©

Copyright

IBM

Corp.

2000,

2004

1

2

Data

Handler

Guide

Chapter

1.

Data

handler

overview

This

chapter

introduces

WebSphere

business

integration

system

data

handlers.

A

data

handler

is

responsible

for

converting

business

objects

into

serialized

data

and

for

converting

serialized

data

into

business

objects.

This

serialized

data

is

in

an

application-readable

format

(string

or

input

stream).

This

chapter

contains

the

following

sections:

v

“What

is

a

data

handler?”

v

“Data

handler

instantiation”

on

page

12

v

“Calling

the

data

handler”

on

page

16

v

“Metadata-driven

data

handler

design”

on

page

19

What

is

a

data

handler?

A

data

handler

is

a

Java

class

instance

that

converts

between

a

particular

serialized

format

and

a

business

object.

Data

handlers

are

used

by

components

of

a

business

integration

system

that

transfer

information

between

a

WebSphere

business

integration

broker

and

some

external

process.

Table

1

shows

the

components

that

handle

transfer

of

information

between

a

WebSphere

business

integration

broker

and

an

external

process.

Table

1.

Components

that

transfer

information

in

the

WebSphere

business

integration

system

Component

Purpose

For

more

information

Adapter

Handles

transfer

of

information

between

a

WebSphere

business

integration

broker

and

an

external

process

such

as

an

application

or

technology.

Note:

The

adapter

uses

a

runtime

component

called

a

connector

to

actually

handle

the

transfer

of

information

between

an

integration

broker

and

an

application

(or

technology).

These

external

processes

identify

events

that

occur

within

them

by

sending

an

event

record

to

an

event

store.

The

adapter

detects

events

in

this

event

store.

When

it

finds

a

triggering

event,

the

adapter

creates

a

business

object

that

represents

the

event

and

sends

this

event

asynchronously

to

the

business

integration

broker.

This

business

object

contains

data

and

a

verb

to

indicate

the

type

of

event

(such

as

Create

or

Update).

For

IBM-delivered

adapters:

see

the

individual

adapter

guides.

For

a

custom

adapter,

see

the

Connector

Development

Guide

for

Java

or

the

Connector

Development

Guide

for

C++

(depending

on

the

language

in

which

the

connector

is

implemented)

for

information

about

custom

connectors.

©

Copyright

IBM

Corp.

2000,

2004

3

Table

1.

Components

that

transfer

information

in

the

WebSphere

business

integration

system

(continued)

Component

Purpose

For

more

information

Access

client

Handles

transfer

of

information

between

the

InterChange

Server

integration

broker

and

some

external

process

such

as

a

servlet

within

a

web

server.

An

access

client

is

an

external

process

that

uses

the

Server

Access

Interface

to

communicate

directly

with

InterChange

Server.

When

this

component

receives

some

information

that

needs

to

be

transferred,

it

creates

a

business

object

that

represents

the

event

and

sends

this

event

synchronously

to

a

collaboration

within

InterChange

Server.

As

with

the

adapter,

the

business

object

contains

data

and

a

verb

to

indicate

the

type

of

event

(such

as

Create

or

Update).

Server

Access

Interface

Development

Guide

As

Table

1

shows,

the

task

of

both

these

components

(connector

and

access

client)

is

to

transfer

information

between

a

broker

and

an

external

process,

as

follows:

v

To

send

information

to

an

integration

broker,

these

components

format

it

in

a

business

object.

v

To

send

information

to

an

external

process,

these

components

format

it

in

its

native

serialized

format.

Often,

the

external

process

uses

some

common

format

such

as

XML

for

its

native

serialized

data.

Rather

than

have

every

adapter

(or

access

client)

handle

the

transformation

between

these

common

formats

and

business

objects,

the

WebSphere

business

integration

system

provides

several

IBM-delivered

data

handlers.

In

addition,

you

can

create

custom

data

handlers

to

handler

conversion

between

your

own

native

format.

The

adapter

(or

access

client)

can

then

call

the

appropriate

data

handler

to

perform

the

data

conversion

based

on

the

Multipurpose

Internet

Mail

Extensions

(MIME)

type

of

the

serialized

data.

Note:

A

data

handler

is

implemented

in

a

Java

class

named

DataHandler.

This

class

is

an

abstract

class,

which

the

data-handler

developer

extends

to

implement

a

data

handler

instance.

For

more

information,

see

“Extending

the

data

handler

base

class”

on

page

171.

The

section

provides

the

following

information

about

data

handlers:

v

“IBM-delivered

data

handlers”

v

“Data-handler

meta-objects”

on

page

6

v

“Contexts

for

calling

data

handlers”

on

page

6

IBM-delivered

data

handlers

IBM

delivers

data

handlers

in

the

Java

archive

(jar)

files

shown

in

Table

2.

These

jar

files

reside

in

the

DataHandlers

subdirectory

under

the

product

directory.

4

Data

Handler

Guide

Table

2.

IBM-delivered

data-handler

jar

files

Contents

Description

Data-handler

jar

file

Base

data

handlers

Text-based

data

handlers

and

data

handlers

specific

to

some

IBM-delivered

adapters

CwDataHandler.jar

Special

data

handlers

XML

data

handler

CwXMLDataHandler.jar

EDI

data

handler

CwEDIDataHandler.jar

Custom

data

handlers

Data

handlers

that

you

implement

CustDataHandler.jar

Base

data

handlers

The

base

data-handler

file,

CwDataHandler.jar,

contains

most

of

the

IBM-delivered

data

handlers.

This

file

resides

in

the

DataHandlers

subdirectory

of

the

product

directory.

Table

3

shows

the

base

data

handlers

that

this

base

data-handler

file

contains.

Table

3.

Base

data

handlers

in

the

base

data-handler

file

Data

handler

MIME

type

For

more

information

Request-Response

Data

Handler

text/requestresponse

Chapter

5,

“Request-Response

data

handler,”

on

page

115

FixedWidth

Data

Handler

text/fixedwidth

Chapter

6,

“FixedWidth

data

handler,”

on

page

133

Delimited

Data

Handler

text/delimited

Chapter

7,

“Delimited

data

handler,”

on

page

141

NameValue

Data

Handler

text/namevalue

Chapter

8,

“NameValue

data

handler,”

on

page

149

ContentMaster

Data

Handler

several

Chapter

9,

“Complex

Data

data

hander,”

on

page

157

Note:

This

manual

describes

the

text

data

handlers

that

Table

3

lists.

The

base

data-handler

file

also

contains

several

data

handlers

specific

to

certain

IBM-delivered

adapters.

If

an

IBM

adapter

uses

a

special

data

handler,

its

adapter

guide

describes

the

installation,

configuration,

and

use

of

its

data

handler.

Special

data

handlers

IBM

makes

separate

installers

available

for

a

few

data

handlers.

In

order

to

install

these

special

data

handlers,

you

must

follow

the

steps

provided

in

the

Installation

Guide

for

WebSphere

Business

Integration

Adapters.

The

separation

of

a

data

handler

from

the

base

data-handler

file

allows

many

adapters

to

use

the

data

handler

without

incurring

the

overhead

of

storing

the

other

data

handlers

that

reside

in

the

base

data-handler

file.

Table

4

shows

the

data

handlers

for

which

IBM

provides

separate

installers

and

separate

jar

files.

Table

4.

IBM-delivered

data

handlers

with

separate

jar

files

Data

handler

Data-handler

jar

file

MIME

type

For

more

information

XML

Data

Handler

CwXMLDataHandler.jar

text/xml

Chapter

3,

“XML

data

handler,”

on

page

31

EDI

Data

Handler

CwEDIDataHandler.jar

edi

Chapter

4,

“EDI

data

handler,”

on

page

89

Chapter

1.

Data

handler

overview

5

Custom

data

handlers

If

the

IBM-delivered

data

handlers

to

not

handle

the

conversion

of

serialized

data

to

a

business

object,

you

can

create

your

own

custom

data

handler.

The

CustDataHandler.jar

file

is

intended

to

hold

any

custom

data

handlers

that

you

might

develop.

This

file

resides

in

the

DataHandlers

subdirectory

of

the

product

directory.

For

information

about

how

to

create

a

custom

data

handler,

see

Chapter

10,

“Creating

a

custom

data

handler,”

on

page

167.

Note:

To

assist

in

develop

of

custom

data

handlers,

IBM

also

delivers

source

code

for

the

FixedWidth,

Delimited,

and

NameValue

data

handlers

as

sample

code.

For

more

information,

see

“Sample

data

handlers”

on

page

169.

Data-handler

meta-objects

A

connector

or

Server

Access

Interface

process

(if

InterChange

Server

if

your

integration

broker)

instantiates

a

data

handler

based

on

the

MIME

type

of

an

input

file

or

the

MIME

type

specified

in

a

business

object

request.

A

data-handler

meta-object

is

a

hierarchical

business

object

that

can

contain

any

number

of

child

objects.

The

data-handler

configuration

information

is

arranged

in

the

following

hierarchy:

v

The

top-level

meta-object

contains

information

about

the

MIME

types

that

the

different

data

handlers

can

support.

Each

top-level

attribute

is

a

cardinality

1

attribute

referencing

a

child

meta-object

for

a

data

handler

instance.

Each

attribute

represents

one

MIME

type

and

indicates

which

data

handler

can

manipulate

it.

v

The

child

meta-object

contains

the

actual

configuration

information

for

a

particular

data

handler.

Each

attribute

represents

a

configuration

property

and

provides

information

such

as

its

default

value

and

type.

Note:

A

data

handler

is

not

required

to

use

meta-objects

to

hold

configuration

information.

However,

all

IBM-delivered

data

handlers

are

designed

to

use

meta-objects

for

their

configuration

information.

Data-handler

meta-objects

allow

a

connector

or

Server

Access

Interface

process

(if

InterChange

Server

if

your

integration

broker)

to

instantiate

a

data

handler

based

on

the

MIME

type

of

an

input

file

or

the

MIME

type

specified

in

a

business

object

request.

To

configure

a

data

handler,

you

must

ensure

that

its

meta-objects

are

correctly

initialized

and

available

to

the

callers

(a

connector

or

an

access

client).

Note:

Each

IBM-delivered

data

handler

uses

configuration

properties

that

are

defined

in

data-handler

meta-objects.

However,

a

custom

data

handler

might

or

might

not

use

meta-objects

for

its

configuration

properties.

For

more

information,

see

“Using

data-handler

meta-objects”

on

page

171.

Contexts

for

calling

data

handlers

As

Table

1

on

page

3

describes,

a

component

that

needs

to

transfer

data

in

the

WebSphere

business

integration

system

can

invoke

a

data

handler.

Table

5

provides

additional

information

about

the

components

that

can

invoke

a

data

handler.

Table

5.

Context

for

calling

data

handlers

Component

Type

of

event

communication

Type

of

flow

Software

that

invokes

the

data

handler

Adapter

Asynchronous

Event-triggered

flow

Connector

6

Data

Handler

Guide

Table

5.

Context

for

calling

data

handlers

(continued)

Component

Type

of

event

communication

Type

of

flow

Software

that

invokes

the

data

handler

Access

client

(InterChange

Server

integration

broker

only)

Synchronous

Call-triggered

flow

Server

Access

Interface

(within

InterChange

Server)

As

Table

5

shows,

in

an

event-triggered

flow,

an

adapter

calls

a

data

handler

directly.

In

a

call-triggered

flow,

an

external

process

that

uses

the

Server

Access

Interface

(called

an

access

client)

initiates

a

call

to

the

data

handler.

A

data

handler

operates

the

same

whether

it

is

called

directly

by

an

adapter

or

indirectly

by

an

access

client.

These

contexts

are

described

in

the

next

sections.

Data

handlers

in

a

connector

context

In

an

event-triggered

flow,

the

runtime

component

of

an

adapter,

called

the

connector,

interacts

directly

with

a

data

handler

to

convert

data.

Note:

For

IBM-delivered

adapters,

see

the

individual

adapter

guides.

For

a

custom

adapter,

see

the

Connector

Development

Guide

for

Java

or

the

Connector

Development

Guide

for

C++,

depending

on

the

language

in

which

the

adapter

is

implemented.

These

guides

are

part

of

the

WebSphere

Business

Integration

Adapters

documentation

set.

When

a

connector

calls

a

data

handler,

the

data

handler

runs

as

part

of

the

connector

process.

Figure

1

illustrates

the

data

handler

in

the

context

of

a

connector.

The

data

conversion

reflects

the

business

object

requirements

and

the

direction

of

the

flow:

v

The

connector

invokes

the

data

handler

for

a

business-object-to-string

conversion

when

it

handles

business

object

request

processing.

v

The

connector

invoke

the

data

handler

for

a

string-to-business-object

conversion

when

it

handles

event

notification.

Integration broker

Connector

Application

Data handler
instance

Connector process

Figure

1.

Data

handler

in

the

context

of

a

connector

Chapter

1.

Data

handler

overview

7

Connector

business-object-to-string

conversion:

For

a

business-object-to-string

conversion,

the

connector

calls

the

data

handler,

passing

it

a

business

object.

The

data

handler

uses

the

information

in

the

business

object

and

the

business

object

definition

to

create

a

stream

or

string

of

data.

This

stream

or

string

of

data

is

in

the

format

associated

with

the

data

handler,

usually

of

a

particular

MIME

type.

Business-object-to-string

conversion

is

useful

when

the

connector

receives

information

from

an

integration

broker

in

the

form

of

a

business

object.

The

connector

must

then

send

the

information

in

the

business

object

to

its

application

(or

technology)

as

serialized

data.

Figure

2

illustrates

the

data

handler

in

the

context

of

a

connector

when

the

data

handler

performs

a

business-object-to-string

conversion.

1.

The

connector

receives

a

business

object

from

an

integration

broker.

2.

The

connector

creates

an

instance

of

a

data

handler

to

handle

the

business

object

(using

the

createHandler()

static

method

in

the

DataHandler

base

class).

For

more

information

about

how

a

connector

instantiates

the

data

handler,

see

“Instantiation

in

the

context

of

a

connector”

on

page

16.

3.

The

connector

requests

a

business-object-to-string

conversion

by

calling

one

of

the

following

data-handler

methods:

v

getStreamFromBO()

v

getStringFromBO()

v

getByteArrayFromBO()

Into

this

method,

the

connector

sends

the

business

object

as

an

argument.

The

data

handler

serializes

the

business

object

into

the

requested

data

format.

4.

The

data

handler

returns

the

serialized

data

to

the

connector.

5.

The

connector

writes

the

serialized

data

to

the

destination,

which

could

be

an

email,

a

file,

or

an

HTTP

connection.

Connector

string-to-business-object

conversion:

For

a

string-to-business-object

conversion,

the

connector

calls

the

data

handler,

passing

it

the

serialized

data

and

its

associated

MIME

type

object.

The

data

handler

receives

a

stream

or

string

of

data.

The

data

handler

uses

the

information

in

the

data

stream

to

create,

name,

and

populate

a

business

object

instance

of

the

specified

type.

String-to-business-object

Connector

Application

Business object

5

2

4

Serialized data

Integration broker

1

Serialized data

3

Data handler
instance

Business object

Figure

2.

Business-object-to-string

conversion

in

the

connector

context

8

Data

Handler

Guide

conversion

is

useful

when

the

connector

needs

to

send

an

event

to

an

integration

broker.

The

application

sends

this

event

as

serialized

data

having

a

particular

MIME

type,

to

the

connector.

Figure

3

illustrates

the

data

handler

in

the

context

of

a

connector

when

the

data

handler

performs

a

string-to-business-object

conversion.

1.

The

connector

detects

an

application

event.

The

event

may

be

in

the

form

of

an

email,

a

text

file,

an

XML

document,

or

any

other

common

format

for

which

a

data

handler

exists.

2.

The

connector

creates

an

instance

of

a

data

handler

to

handle

the

event

(using

the

createHandler()

static

method

in

the

DataHandler

base

class).

For

more

information

about

how

a

connector

instantiates

the

data

handler,

see

“Instantiation

in

the

context

of

a

connector”

on

page

16.

3.

The

connector

sends

in

the

serialized

data

as

an

argument

to

the

getBO()

method

of

the

data-handler

instance.

The

data

handler

builds

an

instance

of

a

business

object.

The

connector

might

also

specify

the

business

object

to

which

the

getBO()

method

converts

the

data.

Some

connectors

specify

the

business

object

type;

others

assume

that

the

data

handler

can

extract

the

business

object

type

from

the

serialized

text.

The

data

handler

parses

the

data

and

populates

the

attribute

values

for

the

business

object

based

on

the

serialized

data.

4.

The

data

handler

returns

the

business

object

to

the

connector.

5.

The

connector

sends

the

business

object

to

the

integration

broker.

Data

handlers

in

the

context

of

the

Server

Access

Interface

In

a

call-triggered

flow,

an

access

client

interacts

with

a

data

handler

to

convert

data.

An

access

client

is

an

external

process

that

uses

the

Server

Access

Interface

to

interact

with

InterChange

Server.

When

an

access

client

calls

either

the

ItoExternalForm()

or

IcreateBusinessObjectFrom()

method

of

the

Server

Access

Interface

API,

it

initiates

a

call

to

a

data

handler.

The

Server

Access

Interface,

which

runs

as

part

of

the

InterChange

Server

process,

actually

invokes

the

data

handler.

Connector

Application event

Data handler
instance

Business object

1

4

2

Serialized data

Integration broker

5

Business object

3

Serialized data

Figure

3.

String-to-business-object

conversion

in

the

connector

context

Chapter

1.

Data

handler

overview

9

InterChange

Server

The

Server

Access

Interface

is

an

API

that

allows

an

access

client

to

execute

a

collaboration

inside

InterChange

Server.

This

interface

is

available

for

use

only

when

InterChange

Server

is

the

integration

broker.

For

more

information

on

this

interface

and

on

access

clients,

see

the

Access

Development

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

An

access

client

might

be

a

servlet

that

handles

a

request

from

a

client

browser.

The

request

might

be

a

request

for

data,

an

order

request,

or

another

type

of

business-to-business

transaction.

As

another

example,

an

access

client

might

be

a

C++

or

Java

program

that

uses

the

Server

Access

Interface

to

access

InterChange

Server

and

exchange

data

with

another

application.

When

an

access

client

initiates

a

call

that

requires

a

data

handler,

the

data

handler

runs

as

part

of

InterChange

Server

the

process.

Figure

4

illustrates

the

data

handler

in

the

context

of

the

Server

Access

Interface.

In

this

example,

the

access

client

is

a

Web

server

and

servlet.

The

data

conversion

reflects

the

business

object

requirements

and

the

direction

of

the

flow:

v

Receiving

a

business

object

from

InterChange

Server

requires

that

the

access

client

ask

the

data

handler

for

a

business-object-to-string

conversion.

v

Sending

data

to

InterChange

Server

requires

that

the

access

client

ask

the

data

handler

for

a

string-to-business-object

conversion.

Server

Access

Interface

business-object-to-string

conversion:

For

a

business-object-to-string

conversion,

the

data

handler

receives

a

business

object

as

the

result

of

the

execution

of

a

collaboration.

The

data

handler

uses

the

information

in

the

business

object

to

create

a

stream

or

string

of

data.

This

data

is

in

the

format

associated

with

the

data

handler,

usually

of

a

particular

MIME

type.

The

access

client

often

sends

the

resulting

business

object

to

the

application

as

serialized

data.

Servlet

Data
handler
instance

Web server

Client
browser

InterChange Server

IIOP

Server Access
Interface

A
pp

lic
at

io
n

InterChange Server process

Collaboration

Figure

4.

Data

handler

in

the

context

of

the

Server

Access

Interface

10

Data

Handler

Guide

Figure

5

illustrates

the

data

handler

in

the

context

of

the

Server

Access

Interface

when

the

data

handler

performs

a

business-object-to-string

conversion

for

an

access

client.

1.

The

collaboration

returns

the

requested

data

or

the

results

of

requested

actions

to

the

access

client.

2.

To

convert

the

business

object

to

the

required

format,

the

access

client

sends

the

business

object

as

an

argument

to

the

ItoExternalForm()

method

of

the

Server

Access

Interface.

3.

The

Server

Access

Interface

takes

the

following

actions:

v

Create

an

instance

of

a

data

handler

to

handle

the

conversion

(using

the

createHandler()

static

method

in

the

DataHandler

base

class).

v

Send

in

the

serialized

data

as

an

argument

to

one

of

the

following

data-handler

methods:

–

getStreamFromBO()

–

getStringFromBO()

–

getByteArrayFromBO()

4.

The

data

handler

parses

the

business

object

to

create

the

serialized

data.

5.

The

data

handler

returns

the

serialized

data

to

the

Server

Access

Interface.

6.

The

Server

Access

Interface

returns

the

serialized

data

to

the

access

client.

Server

Access

Interface

string-to-business-object

conversion:

For

a

string-to-business-object

conversion,

the

data

handler

receives

a

stream

or

string

of

data.

The

data

handler

uses

the

information

in

the

data

stream

to

create,

name,

and

populate

a

business

object

instance

of

the

specified

type.

String-to-business-object

conversion

is

useful

when

the

access

client

needs

to

send

a

business

object

to

a

collaboration

in

InterChange

Server.

The

access

client

sends

the

serialized

data,

usually

having

a

particular

MIME

type,

to

the

data

handler.

Figure

6

illustrates

the

data

handler

in

the

context

of

the

Server

Access

Interface

when

the

data

handler

performs

a

string-to-business-object

conversion

for

an

access

client.

Servlet

Data handler instance

Web server

Client
browser

InterChange Server

2

53

Server Access
Interface

A
pp

lic
at

io
n

Business object

Business object Serialized data

4

1

Serialized data

6
Collaboration

Figure

5.

Business-object-to-string

conversion

in

the

Server

Access

Interface

context

Chapter

1.

Data

handler

overview

11

1.

To

convert

serialized

data

to

a

business

object,

the

access

client

sends

the

serialized

data

as

an

argument

to

the

IcreateBusinessObjectFrom()

method

of

the

Server

Access

Interface.

2.

The

Server

Access

Interface

takes

the

following

actions:

v

Create

an

instance

of

a

data

handler

to

handle

the

conversion

(using

the

createHandler()

static

method

in

the

DataHandler

base

class).

v

Send

in

the

serialized

data

as

an

argument

to

the

getBO()

method

of

the

data

handler

instance.
3.

The

data

handler

builds

an

instance

of

a

business

object.

The

data

handler

parses

the

data

and

populates

the

attribute

values

for

the

business

object

based

on

the

serialized

data.

4.

The

data

handler

returns

the

business

object

to

the

Server

Access

Interface.

5.

The

Server

Access

Interface

returns

the

business

object

to

the

access

client.

6.

The

access

client

calls

a

collaboration

that

uses

the

business

object

data

in

a

business

process.

Data

handler

instantiation

Data

handlers

are

implemented

as

a

library

of

classes

that

a

connector

or

the

Server

Access

Interface

(for

an

access

client

communicating

with

the

InterChange

Server

integration

broker)

can

use.

The

DataHandler

base

class

is

an

abstract

class.

Therefore,

to

instantiate

a

data

handler,

you

must

instantiate

one

of

the

DataHandler

subclasses.

Each

data

handler,

either

an

IBM-delivered

data

handler

or

a

custom

data

handler,

is

a

subclass

of

the

DataHandler

base

class.

The

method

to

instantiate

an

instance

of

a

data

handler

is

createHandler().

The

createHandler()

method

uses

information

in

the

data-handler

meta-objects

to

determine

which

data

handler

to

instantiate

and

how

to

initialize

this

data

handler.

A

data-handler

meta-object

is

a

hierarchical

business

object

that

can

contain

any

number

of

child

objects.

The

data-handler

configuration

information

is

arranged

in

the

following

hierarchy:

v

The

top-level

meta-object

contains

information

about

the

MIME

types

that

the

different

data

handlers

can

support.

Each

top-level

attribute

is

a

cardinality

1

attribute

that

references

the

child

meta-object

for

a

data

handler

instance.

Each

Servlet

Data handler instance

Web server

Client
browser

InterChange Server

1

42

Server Access
Interface

A
pp

lic
at

io
n

Serialized data

Serialized data Business object

3

6

Business object

5
Collaboration

Figure

6.

String-to-business-object

conversion

in

the

Server

Access

Interface

context

12

Data

Handler

Guide

attribute

represents

one

MIME

type

and

its

attribute

type

indicates

the

child

meta-object

for

the

data

handler

that

can

manipulate

this

MIME

type.

v

The

child

meta-object

contains

the

actual

configuration

information

for

a

particular

data

handler.

Each

attribute

represents

a

configuration

property

and

provides

information

such

as

its

default

value

and

type.

Note:

A

data

handler

is

not

required

to

use

meta-objects

to

hold

configuration

information.

However,

all

IBM-delivered

data

handlers

are

designed

to

use

meta-objects

for

their

configuration

information.

The

createHandler()

method

takes

the

following

steps

to

instantiate

a

data

handler:

v

“Identifying

the

data-handler

class”

v

“Setting

data-handler

configuration

properties”

on

page

15

v

“Setting

the

business-object

prefix”

on

page

15

Identifying

the

data-handler

class

For

a

data

handler

to

be

created,

an

implementation

of

the

DataHandler

base

class

must

be

instantiated.

The

data-handler

instantiation

method

derives

the

name

of

this

data-handler

class

from

one

of

two

values,

which

is

passed

in

as

an

argument

to

the

createHandler()

method:

v

The

class

name

of

the

data

handler

to

instantiate

v

The

MIME

type

of

the

data

to

convert

Using

a

class

name

If

the

data-handler

caller

passes

in

a

class

name

as

an

argument,

createHandler()

instantiates

a

data

handler

of

that

class

name.

It

looks

for

the

specified

class

in

the

following

places:

1.

CwDataHandler.jar

file

2.

CwXMLDataHandler.jar

file

3.

CwEDIDataHandler.jar

file

4.

CustDataHandler.jar

file

5.

Elsewhere

in

the

CLASSPATH

If

the

caller

provides

only

the

class

name

for

the

data

handler,

createHandler()

neither

looks

for

data-handler

meta-objects

nor

sets

configuration

properties

from

these

objects.

Therefore,

a

data

handler

instantiated

in

this

way

does

not

require

meta-objects.

For

more

information

on

whether

a

custom

data

handler

should

use

meta-objects,

see

“Using

data-handler

meta-objects”

on

page

171.

Using

a

MIME

type

If

the

data-handler

caller

does

not

pass

in

the

class

name

as

an

argument,

the

createHandler()

method

requires

a

value

for

a

MIME

type.

When

a

calling

component

(connector

or

access

client)

passes

a

MIME

type,

createHandler()

uses

the

child

data-handler

meta-object

associated

with

that

MIME

type

to

derive

the

class

name

and

other

configuration

information

for

the

data

handler

instance.

Note:

For

more

information

on

meta-objects,

see

“Configuring

data

handlers”

on

page

24.

For

more

information

on

whether

a

custom

data

handler

should

use

meta-objects,

see

“Using

data-handler

meta-objects”

on

page

171.

To

derive

a

class

name

from

a

specified

MIME

type,

the

createHandler()

method

takes

the

following

steps:

Chapter

1.

Data

handler

overview

13

1.

Convert

the

MIME

type

to

a

MIME-type

string

When

the

createHandler()

method

searches

the

top-level

data-handler

meta-object,

it

converts

any

non-alphanumeric

characters,

such

as

a

hyphen

(-),

period

(.)

or

slash

(/),

to

an

underscore

(_).

For

example,

if

the

MIME

type

is

text/html,

createHandler()

parses

the

type

to

the

string

text_html.

The

createHandler()

method

performs

this

conversion

of

non-alphanumeric

characters

in

stages,

so

that

matches

of

MIME

type

names

that

contain

periods

can

occur.

However,

Business

Object

Designer

does

not

allow

the

period

character

in

attribute

names.

Therefore,

IBM

recommends

that

you

do

not

include

them

in

the

MIME

type

names.

You

can

create

unique

MIME

type/subtype

combinations

to

indicate

variations

on

a

particular

MIME

type.

In

the

MIME-type

name,

you

separate

the

MIME

type

and

subtype

with

a

non-alphanumeric

character

(such

as

a

hyphen

or

underscore).

However,

because

createHandler()

replaces

any

non-alphanumeric

character

with

an

underscore,

IBM

recommends

that

you

use

only

an

underscore

to

separate

the

MIME

type

and

subtype.

If

the

MIME

type

is

text/xml-sgml,

the

method

converts

the

type

to

the

string

text_xml_sgml.

2.

Obtain

the

name

of

the

top-level

data-handler

meta-object

from

a

static

property

in

the

DataHandler

base

class.

In

this

top-level

meta-object,

createHandler()

looks

for

an

attribute

that

matches

the

MIME-type

string

of

the

data

to

convert.

3.

If

createHandler()

locates

a

matching

MIME-type

string

in

the

top-level

meta-object,

createHandler()

takes

the

following

steps:

a.

If

the

caller

supplied

a

value

for

the

business-object

prefix

(an

optional

third

argument)

to

createHandler(),

interpret

this

value

as

a

MIME

subtype

and

append

it

to

the

MIME

type

to

create

a

MIME-type

string

of

the

form:

MIMETypeString_BOPrefix

If

no

attribute

of

this

name

exists,

createHandler()

looks

for

an

attribute

that

matches

only

the

MIME

type.

For

example,

if

the

caller

passes

in

a

MIME

type

of

edi

and

a

business-object

prefix

of

x12,

createHandler()

looks

for

an

attribute

in

the

top-level

meta-object

named

“edi_x12”.

If

no

attribute

by

this

name

exists,

createHandler()

looks

for

an

attribute

named

“edi”.

b.

Obtain

the

associated

child

data-handler

meta-object,

which

contains

the

configuration

properties

for

the

data

handler

instance

to

use

(for

example,

a

possible

configuration

property

might

identify

which

character

to

use

for

the

data

handler

delimiter).

c.

Retrieve

the

value

of

the

ClassName

attribute

from

the

child

meta-object.

v

If

the

ClassName

attribute

contains

a

value,

createHandler()

instantiates

a

data

handler

of

this

class

name.

Part

of

the

process

of

implementing

a

data

handler

is

the

creation

of

the

associated

child

data-handler

meta-object.

At

this

time,

the

developer

who

implements

the

data

handler

can

add

the

class

name

to

the

ClassName

attribute

of

the

child

meta-object.

This

ClassName

value

is

required

if

the

class

name

is

different

from

the

default

class

name,

as

described

in

4a.

v

If

this

ClassName

attribute

does

not

contain

a

value,

createHandler()

builds

a

class

name

for

the

data

handler

it

instantiates,

as

described

in

4a.
4.

If

the

createHandler()

method

does

not

find

a

matching

MIME-type

string

in

the

top-level

meta-object,

it

builds

a

class

name

of

the

data

handler

that

it

will

instantiate,

as

follows:

a.

Append

the

MIME-type

string

to

the

name

of

the

base

data

handler

package:

14

Data

Handler

Guide

com.crossworlds.DataHandlers

For

example,

if

the

MIME-type

string

is

text_html,

the

resulting

string

is:

com.crossworlds.DataHandlers.text.html

b.

If

the

method

can

locate

the

generated

class

name

on

the

CLASSPATH,

it

instantiates

this

class.

It

looks

for

this

class

in

the

following

places:

v

CwDataHandler.jar

file

v

CustDataHandler.jar

file
v

Elsewhere

in

the

CLASSPATH

Using

a

class

name

and

MIME

type

If

the

caller

provides

both

the

class

name

and

the

MIME

type,

createHandler()

takes

the

following

actions:

v

Create

a

data

handler

of

the

specified

class.

To

locate

this

class,

the

data

handler

looks

in

the

directories

listed

in

“Using

a

class

name”

on

page

13.

v

Use

the

child

meta-object

associated

with

the

MIME

type

to

initialize

the

configuration

options

of

this

data

handler.

For

information

on

how

createHandler()

determines

the

child

meta-object

from

the

MIME

type,

see

“Using

a

MIME

type”

on

page

13

In

other

words,

when

the

caller

provides

a

class

name,

this

class

name

overrides

the

class

name

specified

in

the

ClassName

attribute

of

the

child

meta-object.

Setting

data-handler

configuration

properties

All

IBM-delivered

data

handlers

(see

Table

3

and

Table

4)

are

designed

to

use

data-handler

meta-objects

for

their

configuration

information.

A

data-handler

meta-object

is

a

hierarchical

business

object:

v

In

the

top-level

data-handler

meta-object,

each

attribute

is

identified

with

a

MIME

type

and

represents

a

child

data-handler

meta-object.

v

The

child

data-handler

meta-object

contains

configuration

information

for

the

data

handler

associated

with

the

MIME

type.

The

IBM-delivered

data

handlers

use

the

configuration

information

in

its

associated

a

child

data-handler

meta-object

to

initialize

its

properties.

Therefore,

IBM

delivers

a

child

meta-object

for

each

of

its

delivered

data

handlers

(see

Table

10).

Note:

For

a

description

of

data-handler

meta-objects,

see

“Configuring

data

handlers”

on

page

24.

After

the

createHandler()

method

instantiates

the

data

handler

instance,

it

calls

a

special

protected

method,

setupOptions(),

to

initialize

the

data

handler’s

configuration

with

the

values

in

the

appropriate

child

data-handler

meta-object.

Note:

A

custom

data

handler

is

not

required

to

use

meta-objects

to

initialize

its

configuration.

If

the

data

handler

has

an

associated

child

meta-object,

the

createHandler()

method

does

not

call

setupOptions()

for

the

data

handler.

For

more

information,

see

“Setting

up

other

business

objects”

on

page

189.

For

more

information

on

meta-objects,

see

“Configuring

data

handlers”

on

page

24.

Setting

the

business-object

prefix

The

createHandler()

method

can

accept

an

optional

business-object

prefix

as

its

third

argument.

It

uses

this

argument

to

determine

the

MIME

type

name

(see

Chapter

1.

Data

handler

overview

15

“Using

a

MIME

type”

on

page

13).

After

createHandler()

has

instantiated

the

data

handler

instance

and

set

its

configuration

properties,

its

final

task

is

to

set

the

value

of

the

BOPrefix

configuration

option

(if

one

exists)

in

the

data

handler

to

the

value

of

this

third

argument.

Note:

Any

data

handler

that

uses

a

BOPrefix

configuration

option

(such

as

the

XML

data

handler)

prepends

this

prefix

to

business-object

names.

The

data

handler

can

prepend

this

prefix

to

the

names

of

any

business

objects

that

it

creates

(during

string-to-business-object

conversion).

It

puts

an

underscore

(_)

between

the

prefix

and

the

business-object

name.

For

example,

a

connector

might

invoke

the

XML

data

handler

with

the

following

createHandler()

call:

createHandler(null,

"text/xml",

"UserApp");

The

createHandler()

method

instantiates

the

XML

data

handler

and

set

its

BOPrefix

attribute

to

“UserApp”.

When

the

XML

data

handler

creates

a

Customer

business

object,

it:

v

Obtains

the

business

object

name

from

the

serialized

data

v

Prepends

the

“UserApp”

prefix

to

the

business

object

name

The

resulting

business-object

name

is

“UserApp_Customer”.

Calling

the

data

handler

Regardless

of

the

context

in

which

a

data

handler

is

called,

the

data

handler

is

instantiated

by

the

createHandler()

method.

How

that

method

is

called

in

each

context

is

as

follows:

v

A

connector

explicitly

calls

createHandler()

to

instantiate

a

data

handler.

v

An

access

client

calls

createHandler()

implicitly;

the

Server

Access

Interface

actually

calls

createHandler()

when

the

access

client

initiates

a

data-handler

call

through

one

of

the

following

Server

Access

Interface

methods:

ItoExternalForm()

or

IcreateBusinessObjectFrom().

Instantiation

in

the

context

of

a

connector

Figure

7

shows

an

example

of

data

handler

instantiation

when

the

data

handler

is

called

in

the

context

of

a

connector.

Integration broker

Connector

Data handler
instance

DataHandler
base class

Repository

Meta-object
definitions

[Meta-object definitions]
[Business object definitions]Loaded at

startup

Business object
definitions

5

2

4

3

1

Figure

7.

Data

handler

instantiation

in

the

connector

context

16

Data

Handler

Guide

To

instantiate

a

data

handler

called

in

the

context

of

a

connector,

the

connector

takes

the

following

steps:

1.

Meta-objects

are

read

into

memory

when

the

connector

starts

up,

as

long

as

the

meta-objects

are

included

on

the

list

of

supported

objects

for

the

connector.

Meta-objects

are

stored

in

the

repository

along

with

business

objects.

The

meta-object

definitions,

like

business

object

definitions,

must

exist

in

memory

for

the

data

handler

to

be

able

to

access

them.

When

these

meta-objects

are

in

memory

as

part

of

the

connector

process,

the

meta-objects

are

accessible

by

a

data

handler

called

in

the

context

of

a

connector.

2.

The

connector

calls

the

setConfigMOName()

static

method

in

the

DataHandler

base

class

to

set

a

static

property

in

the

data

handler

base

class

to

the

name

of

the

top-level

meta-object

for

the

data

handler.

This

top-level

meta-object

is

the

connector

meta-object

(MO_DataHandler_Default

by

default).

The

top-level

meta-object

must

be

part

of

the

connector’s

supported

objects

list.

Note:

How

the

connector

obtains

the

name

of

the

data

handler

top-level

meta-object

is

determined

as

part

of

the

connector

design.

For

more

information,

see

“Configuring

a

connector”

on

page

189.

3.

The

connector

calls

the

createHandler()

static

method

in

the

DataHandler

base

class

to

create

an

instance

of

the

DataHandler

base

class

that

performs

the

required

data

conversion.

The

name

of

the

class

to

be

created

is

determined

in

one

of

two

ways:

v

If

the

connector

passes

in

a

class

name

as

an

argument,

the

createHandler()

method

instantiates

a

data

handler

of

that

class

name.

A

connector

can

explicitly

specify

a

class

name

when

it

calls

createHandler().

v

If

the

MIME

type

is

passed

in

instead

of

the

class

name,

createHandler()

derives

the

class

name

from

the

MIME

type.

The

createHandler()

method

converts

the

MIME

type

to

a

MIME-type

string

and

obtains

the

name

of

the

data

handler’s

top-level

meta-object

from

a

static

property

in

the

DataHandler

base

class.

From

this

top-level

meta-object,

createHandler()

obtains

the

name

of

the

child

meta-object

for

the

data

handler.

This

child

meta-object

contains

configuration

information,

including

the

name

of

the

class

to

instantiate.

For

information

on

how

this

derivation

occurs,

see

“Identifying

the

data-handler

class”

on

page

13.
4.

The

data

handler

performs

the

required

data

conversion.

The

connector

agent

calls

the

appropriate

DataHandler

method

to

perform

the

required

conversion:

v

The

getBO()

method

for

a

string-to-business-object

conversion.

v

The

getStringFromBO()

method

for

a

business-object-to-string

conversion

or

the

getStreamFromBO()

method

for

a

business-object-to-stream

conversion.
5.

The

data

handler

returns

the

appropriate

format

to

the

connector

agent.

Instantiation

in

the

context

of

the

Server

Access

Interface

Figure

8

shows

an

example

of

data

handler

instantiation

when

the

data

handler

is

called

in

the

context

of

the

Server

Access

Interface.

Chapter

1.

Data

handler

overview

17

To

instantiate

a

data

handler

called

in

the

context

of

the

Server

Access

Interface,

the

Server

Access

Interface

takes

the

following

steps:

1.

Meta-objects

are

read

into

memory

when

the

server

starts

up,

along

with

all

other

business

object

definitions

in

the

repository.

Meta-objects

are

stored

in

the

repository

along

with

business

objects.

The

meta-object

definitions,

like

business

object

definitions,

must

exist

in

memory

for

the

data

handler

to

be

able

to

access

them.

Once

these

meta-objects

are

in

memory

as

part

of

the

InterChange

Server

(and

Server

Access

Interface)

process,

the

meta-objects

are

accessible

by

a

data

handler

called

in

the

context

of

the

Server

Access

Interface.

2.

An

access

client

initiates

creation

of

an

instance

of

a

data

handler

with

one

of

the

Server

Access

Interface

methods:

IcreateBusinessObjectFrom()

or

ItoExternalForm().

These

methods

pass

the

MIME

type

of

the

data

to

be

converted.

Note:

Access

clients

must

use

Server

Access

Interface

methods

to

call

a

data

handler.

Although

these

methods

indirectly

call

data

handler

interface

methods,

the

methods

provide

only

a

subset

of

the

data

handler

interface.

For

information

on

the

Server

Access

Interface

methods,

see

the

Access

Development

Guide.

For

information

on

the

methods

provided

in

the

data

handler

interface,

see

Chapter

11,

“Data

Handler

base

class

methods,”

on

page

195.

3.

The

Server

Access

Interface

sets

the

name

of

the

top-level

meta-object

for

the

data

handler

to

MO_Server_DataHandler.

4.

The

Server

Access

Interface

creates

an

instance

of

a

DataHandler

subclass

to

perform

the

required

data

conversion

(using

the

createHandler()

method

of

the

DataHandler

base

class).

When

called

in

the

context

of

the

Server

Access

Interface,

the

createHandler()

method

does

not

specify

a

class

name.

Instead,

createHandler()

converts

the

MIME

type

to

a

MIME-type

string

and

obtains

the

name

of

the

data

handler’s

top-level

meta-object.

From

this

top-level

meta-object,

createHandler()

obtains

the

name

of

the

child

meta-object

for

the

data

handler.

This

child

meta-object

InterChange Server

Data handler
instance

DataHandler
base class

Repository Meta-object
definitions

[Meta-object definitions]
[Business object definitions]

Loaded at
startup

Business object
definitions

6

3

5

4

1

Servlet

Web server

Client
browser

A
pp

lic
at

io
n

Server Access
Interface2

7

Figure

8.

Data

handler

instantiation

in

the

Server

Access

Interface

context

18

Data

Handler

Guide

contains

configuration

information,

including

the

name

of

the

class

to

instantiate.

For

information

on

how

this

derivation

occurs,

see

“Identifying

the

data-handler

class”

on

page

13.

5.

The

data

handler

performs

the

required

data

conversion.

The

Server

Access

Interface

calls

the

appropriate

DataHandler

method

to

perform

the

required

conversion:

v

The

getBO()

method

for

a

string-to-business-object

conversion

v

The

getStringFromBO()

method

for

a

business-object-to-string

conversion

or

the

getStreamFromBO()

method

for

a

business-object-to-stream

conversion.
6.

The

data

handler

returns

the

requested

format

to

the

Server

Access

Interface.

7.

The

Server

Access

Interface

returns

the

requested

format

to

the

access

client.

Metadata-driven

data

handler

design

IBM-delivered

data

handlers

are

metadata-driven.

Metadata

is

data

about

the

business

object

that

is

stored

in

business

object

definitions.

Metadata

in

a

business

object

definition

provides

information

describing

the

data

in

an

instance

of

the

business

object.

In

general,

business

object

metadata

includes

the

structure

of

the

business

object,

the

settings

of

its

attribute

properties,

and

the

content

of

its

application-specific

information.

It

also

provides

instructions

on

how

to

process

the

data.

Connectors

are

typically

designed

to

use

business

object

metadata

when

processing

business

objects.

Similarly,

data

handlers

are

designed

to

use

business

object

metadata.

For

example:

v

The

XML

data

handler

requires

that

each

business

object

definition

contain

application-specific

information

describing

each

attribute.

This

text

enables

the

data

handler

to

identify

XML

elements,

XML

attributes,

processing

instructions,

and

other

types

of

XML

markup.

v

The

FixedWidth

data

handler

uses

the

value

of

the

business

object

attribute

property

MaxLength

to

parse

fixed-width

strings.

v

The

NameValue

data

handler

uses

the

name

and

value

of

business

object

attributes.

A

metadata-driven

data

handler

handles

each

business

object

that

it

supports

based

on

metadata

encoded

in

the

business

object

definition

rather

than

on

information

hard-coded

in

the

data

handler.

Therefore,

a

data

handler

can

handle

new

or

modified

business

objects

without

requiring

modifications

to

the

data

handler

code.

Chapter

1.

Data

handler

overview

19

20

Data

Handler

Guide

Chapter

2.

Installing

and

configuring

data

handlers

This

chapter

describes

how

to

install

and

configure

data

handlers.

It

also

discusses

how

to

configure

a

connector

to

support

data

handlers.

This

chapter

contains

the

following

sections:

v

“Installing

data

handlers”

v

“Configuring

data

handlers”

on

page

24

v

“Configuring

a

connector

to

use

data

handlers”

on

page

28

Installing

data

handlers

You

can

install

data

handlers

as

part

of

either

the

IBM

WebSphere

InterChange

Server

or

the

WebSphere

Business

Integration

Adapters

product.

The

following

sections

describe

the

installation

environment

and

the

steps

to

install

data

handlers:

v

“Data

handlers

in

IBM

WebSphere

InterChange

Server”

v

“Data

handlers

in

IBM

WebSphere

Business

Integration

Adapters”

on

page

22

v

“Installing

data

handlers

using

the

graphical

installer”

on

page

22

v

“Installing

data

handlers

silently”

on

page

23

Data

handlers

in

IBM

WebSphere

InterChange

Server

The

IBM

WebSphere

InterChange

Server

product

includes

the

base

data-handler

file,

CwDataHandlers.jar.

Therefore,

this

product

includes

the

data

handlers

that

Table

3

on

page

5

lists.

The

Server

Access

Interface

process

(within

InterChange

Server)

can

access

any

of

the

data

handlers

in

the

CwDataHandlers.jar

file.

The

InterChange

Server

Installer

automatically

installs

this

data-handler

file.

For

the

use

of

the

InterChange

Server

Installer,

follow

the

instructions

in

the

System

Installation

Guide

for

UNIX

or

for

Windows.

Note:

To

use

additional

IBM-delivered

data

handlers

with

InterChange

Server,

you

must

purchase

the

IBM

WebSphere

Business

Integration

Adapters

product.

This

product

includes

all

IBM-delivered

data

handlers

as

well

as

the

sample

data-handler

code

to

assist

in

the

development

of

custom

data

handlers.

When

the

installation

is

complete,

the

files

in

Table

6

are

installed

in

the

product

directory

on

your

system.

Table

6.

Installed

file

structure

for

data

handlers

in

WebSphere

InterChange

Server

Directory

Description

DataHandlers

Contains

the

file

CwDataHandler.jar

for

compiled

versions

of

the

IBM-delivered

data

handlers.

repository\edk

Contains

text

files

with

meta-object

definitions

for

data

handlers

called

in

the

context

of

the

Server

Access

Interface

(used

with

the

InterChange

Server

integration

broker).

Note:

In

this

chapter,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

pathnames

are

relative

to

the

product

directory,

which

is

the

directory

where

the

WebSphere

business

integration

system

is

installed.

©

Copyright

IBM

Corp.

2000,

2004

21

Data

handlers

in

IBM

WebSphere

Business

Integration

Adapters

The

IBM

WebSphere

Business

Integration

Adapters

product

includes

all

IBM-delivered

data

handlers

(see

“IBM-delivered

data

handlers”

on

page

4).

To

install

the

data

handlers,

use

the

WebSphere

Business

Integration

Adapters

Installer,

which

installs

them

automatically.

To

install

the

separate

XML

or

EDI

data

handlers,

you

must

follow

the

instructions

in

“Installing

data

handlers

using

the

graphical

installer”

or

“Installing

data

handlers

silently”

on

page

23.

When

the

installation

is

complete,

the

files

in

Table

7

are

installed

in

the

product

directory

on

your

system.

Table

7.

Installed

file

structure

for

data

handlers

in

WebSphere

Business

Integration

Adapters

Directory

Description

DataHandlers

Contains

the

file

CwDataHandler.jar

for

compiled

versions

of

the

IBM-delivered

base

data

handlers.

Also

contains

an

empty

jar

file,

CustDataHandler.jar,

which

is

intended

to

hold

any

custom

data

handlers

you

might

develop.

DevelopmentKits\edk\DataHandler

Contains

a

template

file

(StubDataHandler.java)

for

a

custom

data

handler

and

a

batch

file

(make_datahandler.bat)to

compile

a

custom

data

handler.

DevelopmentKits\edk\DataHandler\Samples

Contains

source

code

for

the

sample

FixedWidth,

NameValue,

and

Delimited

data

handlers.

repository\DataHandlers

Contains

text

files

with

meta-object

definitions

for

data

handlers

called

in

the

context

of

a

connector.

Note:

In

this

chapter,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

pathnames

are

relative

to

the

product

directory,

which

is

the

directory

where

the

WebSphere

business

integration

system

is

installed.

Installing

data

handlers

using

the

graphical

installer

You

must

do

the

following

to

install

the

separate

XML

and

EDI

data

handlers

using

the

graphical

installer:

1.

Invoke

Installer

as

described

in

for

your

data

handler.

2.

At

the

language

selection

prompt,

choose

the

desired

language

from

the

drop-down

menu

and

click

OK.

3.

At

the

Welcome

screen

click

Next.

4.

At

the

IBM

license

acceptance

screen,

click

I

accept

the

terms

in

the

license

agreement

and

then

click

OK.

5.

The

product

directory

screen

allows

you

to

specify

where

to

install

the

data

handlers.

The

product

directory

must

contain

an

installation

of

a

compatible

version

of

the

adapter

framework.

You

may

specify

another

directory,

but

it

must

contain

an

installation

of

a

compatible

version

of

the

adapter

framework.

On

the

Windows

platform,

the

field

defaults

to

the

value

contained

in

the

CROSSWORLDS

environment

variable,

which

is

set

by

the

either

the

WebSphere

InterChange

Server

Installer

or

the

WebSphere

Business

Integration

Adapters

Installer

for

adapter

framework.

On

the

UNIX

platform,

the

installer

queries

an

entry

in

a

file

created

by

either

the

adapter

framework

installer

or

the

WebSphere

InterChange

Server

installer.

22

Data

Handler

Guide

At

the

product

directory

screen,

perform

one

of

the

following

tasks:

v

Type

the

full

path

of

the

directory

into

which

you

want

to

install

the

adapter

framework

in

the

Directory

Name

field

and

click

Next.

v

Click

Browse

to

select

a

directory

and

click

Next.

v

Accept

the

default

path

and

click

Next.
6.

The

summary

screen

lists

the

features

you

selected

for

installation,

the

specified

product

directory,

and

the

amount

of

disk

space

required.

Read

the

information

to

verify

it

and

then

click

Next.

7.

If

you

are

installing

on

a

Windows

computer

then

Installer

presents

the

program

folder

selection

screen

for

some

data

handlers.

In

the

Program

Group

field,

type

the

name

of

the

program

group

in

which

you

want

to

create

shortcuts

for

the

adapters

or

accept

the

default

program

group

and

then

click

Next.

8.

After

Installer

finishes

successfully,

click

Finish.

Installing

data

handlers

silently

You

must

do

the

following

to

perform

a

silent

installation

of

the

separate

XML

and

EDI

data

handlers:

1.

Prepare

a

response

file

to

install

the

data

handler

using

the

desired

options

listed

in

Table

8.

Table

8.

Silent

installation

options

for

data

handlers

Option

name

Option

values

-W

installLocation.active

-W

installLocation.value

Set

to

the

directory

path

in

which

InterChange

Server

is

installed.

If

you

leave

this

option

commented,

the

product

installs

to

the

default

directory

listed

in

.

This

option

is

only

relevant

for

the

WICS

broker

when

installed

on

Windows.

Make

sure

it

is

commented

out

when

installing

for

the

WMQI

or

WAS

brokers,

or

when

installing

on

a

UNIX

computer.

-G

replaceExistingResponse

Set

to

yesToAll

or

yes

to

replace

all

files

found

on

the

system

that

have

the

same

name

as

those

being

copied

by

the

installer.

Set

to

noToAll

or

no

to

not

replace

any

files

found

on

the

system

that

have

the

same

name

as

those

being

copied

by

the

installer.

-G

replaceNewerResponses

Set

to

yesToAll

or

yes

to

replace

all

files

found

on

the

system

that

are

newer

than

those

being

copied

by

the

installer.

Set

to

noToAll

or

no

to

not

replace

any

files

found

on

the

system

that

are

newer

than

those

being

copied

by

the

installer.

-G

createDirectoryResponse

Set

to

yes

to

create

the

product

directory

specified

by

the

option

if

it

does

not

already

exist.

Set

to

no

to

not

have

the

product

directory

created

if

it

does

not

exist.

You

must

set

this

option

to

yes

if

the

specified

directory

does

not

exist

for

the

installation

to

succeed.

Chapter

2.

Installing

and

configuring

data

handlers

23

Table

8.

Silent

installation

options

for

data

handlers

(continued)

Option

name

Option

values

-G

removeExistingResponse

This

option

is

not

relevant

for

any

broker

on

any

platform.

Comment

out

this

option.

-G

removeModifiedResponse

This

option

is

not

relevant

for

any

broker

on

any

platform.

Comment

out

this

option.

2.

Perform

the

silent

installation

as

described

in

using

the

response

file

prepared

in

step

1

on

page

23.

Configuring

data

handlers

Data-handler

meta-objects

allow

a

connector

or

Server

Access

Interface

process

(if

InterChange

Server

if

your

integration

broker)

to

instantiate

a

data

handler

based

on

the

MIME

type

of

an

input

file

or

the

MIME

type

specified

in

a

business

object

request.

To

configure

a

data

handler,

you

must

ensure

that

its

meta-objects

are

correctly

initialized

and

available

to

the

calling

components

(a

connector

or

an

access

client).

Note:

Each

IBM-delivered

data

handler

uses

configuration

properties

that

are

defined

in

data-handler

meta-objects.

However,

a

custom

data

handler

might

or

might

not

use

meta-objects

for

its

configuration

properties.

For

more

information,

see

“Using

data-handler

meta-objects”

on

page

171.

In

support

of

the

IBM-delivered

data

handlers,

IBM

delivers

the

data-handler

meta-objects

listed

in

Table

9.

Table

9.

IBM-delivered

data-handler

meta-objects

Meta-object

level

Quantity

Location

Top-Level

For

InterChange

Server

One

repository\edk

For

connector

One

repository\DataHandlers

Child

One

for

each

data

handler

repository\DataHandlers

To

configure

the

use

of

one

or

more

data

handlers

for

use

by

a

caller,

you

must:

v

In

a

top-level

meta-object,

provide

the

caller

with

the

supported

MIME

types

and

their

associated

data

handlers.

v

In

a

child

meta-object,

provide

the

caller

with

the

appropriate

configuration

information

for

the

desired

behavior

of

the

data

handler.

Top-level

meta-objects

A

top-level

data-handler

meta-object

associates

a

MIME

type

with

a

child

data-handler

meta-object.

The

child

meta-object

provides

configuration

information,

which

always

includes

the

name

of

the

data

handler

class

to

instantiate.

Therefore,

a

top-level

meta-object

associates

a

MIME

type

with

a

data

handler.

All

calling

components

with

access

to

a

particular

top-level

meta-object

can

invoke

any

of

the

data

handlers

whose

MIME

type

appears

in

this

meta-object.

You

can

control

which

data

handlers

a

calling

component

can

support

by

grouping

the

appropriate

MIME-type

attributes

in

a

particular

top-level

meta-object

and

24

Data

Handler

Guide

having

the

calling

component

provide

the

name

of

the

meta-object

that

contains

the

data

handlers

it

needs

to

use.

IBM

delivers

the

following

top-level

data-handler

meta-objects:

v

MO_Server_DataHandler

to

identify

data

handlers

that

are

available

to

access

clients

that

invoke

data

handlers.

v

MO_DataHandler_Default

to

identify

data

handlers

that

are

available

to

connectors

that

invoke

data

handlers.

MO_Server_DataHandler

meta-object

The

Server

Access

Interface

process

uses

the

MO_Server_DataHandler

meta-object

to

identify

the

data

handlers

it

can

use.

The

delivered

version

of

MO_Server_DataHandler

is

not

configured

to

support

any

MIME

types.

It

includes

only

a

single

dummy

attribute.

You

can

customize

this

meta-object

to

support

any

data

handler

installed

with

your

InterChange

Server.

If

you

want

your

access

clients

to

support

a

MIME

type,

rename

the

dummy

attribute

in

the

top-level

MO_Server_DataHandler

meta-object

to

the

name

of

the

supported

MIME

type

and

provide

the

associated

child

meta-object

for

that

MIME

type.

For

example,

to

provide

access

clients

with

support

for

the

text_xml

MIME

type,

rename

the

dummy

attribute

to

text_xml

and

provide

the

name

of

the

MIME

type’s

associated

child

meta-object

as

the

attribute’s

type.

This

child

meta-object

configures

the

XML

data

handler.

Figure

9

illustrates

a

MO_Server_DataHandler

meta-object

that

contains

one

attribute,

text_xml,

which

represents

the

MO_DataHandler_DefaultXMLConfig

child

meta-object.

If

you

want

your

access

clients

to

support

additional

MIME

types,

define

a

new

attribute

in

the

top-level

MO_Server_DataHandler

meta-object

for

each

MIME

type

and

provide

the

associated

child

meta-object

for

that

MIME

type.

If

you

are

invoking

more

than

one

data

handler,

you

must

define

a

child

meta-object

for

each

data

handler

instance.

To

provide

support

for

an

additional

MIME

type,

you

can

either:

Name = text_xml
Type = MO_DataHandler_DefaultXMLConfig

Name = BOPrefix

Name = ClassName
Value = com.crossworlds.DataHandlers.text.xml

Value = XMLCustomer1

Name = EntityResolver
Value =

Name = DTDPath
Value =

Name = NameHandlerClass
Value =

Name = Parser
Value =

MO_DataHandler_DefaultXMLConfig

MO_Server_DataHandler

Figure

9.

MO_Server_DataHandler

meta-object

Chapter

2.

Installing

and

configuring

data

handlers

25

v

Add

any

of

the

MIME

types

supported

by

the

IBM-delivered

data

handlers

(see

Table

3

on

page

5

and

Table

4

on

page

5)

to

the

top-level

data-handler

meta-object.

v

Define

your

own

custom

MIME

type

and

child

meta-object,

as

long

as

you

have

a

data

handler

that

supports

it.

For

more

information,

see

“Modifying

the

top-level

meta-object”

on

page

188.

Note:

The

name

of

the

top-level

server

meta-object

for

data

handlers

must

be

the

default

name

of

MO_Server_DataHandler,

but

you

can

configure

the

top-level

meta-object

to

contain

any

number

of

child

meta-objects.

MO_DataHandler_Default

meta-object

By

default,

a

connector

uses

the

MO_DataHandler_Default

meta-object

to

identify

the

data

handlers

it

can

use.

The

delivered

version

of

MO_DataHandler_Default

is

configured

to

support

the

MIME

types

of

all

IBM-delivered

data

handlers

(including

some

adapter-specific

data

handlers

that

are

not

covered

in

this

document).

If

you

want

your

connector

to

support

different

MIME

types,

you

must

ensure

that

an

attribute

exists

in

the

MO_DataHandler_Default

meta-object

for

each

MIME

type

that

you

want

the

connector

to

support.

This

attribute

must

specify

the

appropriate

MIME

type

and

represent

the

associated

child

meta-object

for

that

MIME

type.

To

provide

support

for

an

additional

MIME

type,

you

can

define

your

own

custom

MIME

type

and

child

meta-object,

as

long

as

you

have

a

data

handler

that

supports

it.

For

more

information,

see

“Modifying

the

top-level

meta-object”

on

page

188.

Note:

You

can

change

the

name

of

the

top-level

meta-object

for

connectors

to

correspond

to

a

particular

connector,

or

even

a

particular

business

object

or

a

particular

type

of

file

that

the

connector

needs

to

process.

Whatever

object

you

use,

however,

must

be

supported

by

the

connector

definition,

so

if

you

use

a

different

top-level

object

you

must

configure

the

connector

definition

to

support

it.

For

more

information,

see

“Configuring

a

connector

to

use

data

handlers”

on

page

28.

Figure

10

shows

a

top-level

data-handler

meta-object

for

connectors

that

defines

two

data

handlers:

XML

and

NameValue.

26

Data

Handler

Guide

Note:

For

a

connector

to

be

able

to

access

a

data

handler,

the

top-level

data-handler

meta-object

must

be

on

the

list

of

supported

objects

for

the

connector.

Otherwise,

the

connector

cannot

load

the

meta-object

at

startup.

Child

meta-objects

A

child

data-handler

meta-object

is

a

flat

business

object

that

contains

configuration

information

to

initialize

a

data

handler.

Different

types

of

data

handlers

have

different

configuration

requirements,

so

child

meta-objects

have

different

attributes.

This

configuration

information

customizes

the

behavior

of

the

data

handler

instance.

Therefore,

a

set

of

attribute

values

in

a

child

meta-object

defines

a

specific

configuration,

which

in

turn

is

associated

with

a

particular

data

handler

behavior.

All

callers

that

access

a

particular

child

meta-object

invoke

the

behavior

of

the

associated

data

handler

that

the

configuration

information

defines.

v

If

all

callers

that

access

a

given

top-level

meta-object

require

only

one

behavior

of

a

particular

data

handler,

provide

appropriate

configuration

information

in

a

child

meta-object

and

associate

this

child

meta-object

with

data

handler’s

MIME

type

in

the

top-level

meta-object.

For

example:

–

For

all

connectors

to

access

the

particular

data-handler

behavior,

make

sure

that

the

child

meta-object

is

associated

with

the

data

handler’s

MIME

type

in

the

top-level

meta-object

for

connectors

(MO_DataHandler_Default

by

default).

–

InterChange

Server

integration

broker

only

—

For

all

access

clients

to

access

the

particular

data

handler

behavior,

make

sure

that

the

child

meta-object

is

associated

with

the

data

handler’s

MIME

type

in

the

top-level

meta-object

for

the

server,

MO_Server_DataHandler.
v

If

callers

that

access

a

given

top-level

meta-object

require

more

than

one

behavior

of

a

particular

data

handler,

create

a

child

meta-object

with

the

appropriate

configuration

information

for

each

data-handler

behavior

and

associate

each

child

meta-object

with

a

unique

MIME-type

name

(in

the

top-level

data-handler

meta-object).

IBM

recommends

that

you

name

the

child

meta-objects

with

a

unique

MIME

type/subtype

combination:

MO_DataHandler_Default

Name = text_xml
Type = MO_DataHandler_DefaultXMLConfig

Name = text_namevalue
Type = MO_DataHandler_DefaultNameValueConfig

MO_DataHandler_DefaultXMLConfig

Name = BOPrefix
Value = Customer1

Name = ClassName
Value = com.crossworlds.DataHandlers.text.xml

MO_DataHandler_DefaultNameValueConfig

Name = ValidateAttrCount
Value = true

Name = CxIgnore
Value = CxIgnore

Name = ClassName
Value = com.crossworlds.DataHandlers.text.namevalue

....

....

Figure

10.

Example

meta-object

for

two

different

data

handlers

Chapter

2.

Installing

and

configuring

data

handlers

27

text_MIMEtype_subtype

where:

–

The

MIME

type

(MIMEtype)

represents

the

MIME

type

that

the

data

handler

supports.

–

The

MIME

subtype

(subtype)

represents

the

particular

behavior

of

the

data

handler.

For

example,

if

all

connectors

can

support

both

the

default

XML

data

handler

and

an

SGML

version,

you

can

create

the

following

MIME

types:

text_xml

and

text_xml_sgml.

Keep

in

mind

that

MIME-type

names

can

only

contain

alphanumeric

characters

and

the

special

characters

of

period

(.)

and

underscore

(_).

IBM

delivers

a

child

data-handler

meta-object

for

each

of

the

data

handlers

it

delivers,

as

Table

10

shows.

Table

10.

Child

data-handler

meta-objects

Child

meta-object

For

more

information

MO_DataHandler_DefaultXMLConfig

“Configuring

the

XML

data

handler”

on

page

39

MO_DataHandler_DefaultEDIConfig

“Configuring

the

EDI

data

handler”

on

page

90

MO_DataHandler_DefaultFixedWidthConfig

“Configuring

the

FixedWidth

data

handler”

on

page

134

MO_DataHandler_DefaultDelimitedConfig

“Configuring

the

Delimited

data

handler”

on

page

142

MO_DataHandler_DefaultNameValueConfig

“Configuring

the

NameValue

data

handler”

on

page

150

MO_DataHandler_DefaultRequestResponseConfig

“Configuring

the

Request-Response

data

handler”

on

page

125

MO_DataHandler_Complex

“Configuring

the

Complex

Data

data

handler”

on

page

158

Configuring

a

connector

to

use

data

handlers

If

a

data

handler

is

to

run

in

the

context

of

a

connector,

you

must

configure

the

connector

to

use

a

data

handler:

v

A

connector

must

have

access

to

the

data-handler

meta-object

in

order

to

instantiate

a

data

handler.

Before

invoking

a

data

handler

for

the

first

time,

a

connector

sets

a

static

property

in

the

data

handler

base

class

to

the

name

of

a

top-level

data-handler

meta-object.

From

this

top-level

meta-object,

the

data

handler

obtains

its

configuration

information.

Each

time

the

data

handler

is

subsequently

instantiated,

the

configuration

properties

for

that

data

handler

instance

are

obtained.

The

data

handler

must

have

access

to

this

configuration

information

to

do

its

work.

v

To

instantiate

the

data

handler,

the

connector

must

know

either

the

name

for

the

data

handler

class

or

the

MIME

type

of

the

data.

When

a

connector

calls

createHandler()

to

invoke

a

data

handler,

it

passes

in

either

the

class

name

or

the

MIME

type

for

the

data.

–

If

the

connector

passes

in

the

MIME

type,

the

createHandler()

method

checks

the

top-level

data-handler

meta-object

for

an

attribute

whose

name

matches

the

MIME

type.

If

a

matching

attribute

is

found,

the

createHandler()

method

checks

for

the

value

of

the

ClassName

attribute

in

the

child

meta-object

that

is

associated

with

the

MIME

type.

28

Data

Handler

Guide

–

If

the

connector

passes

in

a

class

name,

the

createHandler()

method

instantiates

a

data

handler

of

that

class

name.

If

the

connector

does

not

pass

in

the

correct

class

name

or

MIME

type,

the

instantiation

process

fails.

For

more

information,

see

“Identifying

the

data-handler

class”

on

page

13.

Connectors

are

configured

to

obtain

this

configuration

information

in

different

ways.

For

example:

v

The

WebSphere

Business

Integration

Adapter

for

XML

has

a

configuration

property,

DataHandlerConfigMO,

that

specifies

the

name

of

the

top-level

meta-object.

If

this

property

is

not

filled

in,

the

connector

cannot

find

the

meta-object.

In

addition,

any

top-level

business

object

for

the

XML

connector

must

have

a

MimeType

attribute

that

specifies

the

MIME

type

of

the

data

in

the

business

object.

The

connector

uses

the

MimeType

attribute

value

to

invoke

the

appropriate

data

handler.

v

The

WebSphere

Business

Integration

Adapter

for

JText

has

its

own

configuration

meta-object,

which

has

ClassName,

DataHandlerConfigMO

and

MimeType

attributes

to

specify

the

name

of

the

class,

data-handler

meta-object,

and

the

MIME

type

for

a

file,

respectively.

Other

connectors

may

have

different

ways

of

configuring

the

use

of

a

data

handler.

See

the

adapter

guide

for

the

connector

for

more

information.

If

the

connector

cannot

find

the

data

handler

top-level

meta-object,

or

it

cannot

determine

the

class

name

or

MIME

type,

then

it

cannot

create

the

data

handler.

Therefore,

when

you

are

configuring

a

connector

to

use

a

data

handler,

be

sure

to:

1.

Determine

how

to

configure

the

name

of

the

top-level

data-handler

meta-object

for

the

connector.

Make

sure

that

the

spelling

of

the

meta-object

name

is

correct.

2.

Determine

how

to

configure

the

MIME

type.

Make

sure

that

the

MIME

type

is

spelled

correctly.

3.

Make

sure

that

the

top-level

data-handler

meta-object

is

in

the

supported

objects

list

for

the

connector.

4.

Make

sure

that

the

child

meta-object

for

the

data

handler

has

the

value

of

the

data

handler

class

name

(in

the

ClassName

attribute)

specified

correctly.

Chapter

2.

Installing

and

configuring

data

handlers

29

30

Data

Handler

Guide

Chapter

3.

XML

data

handler

The

IBM

WebSphere

Business

Integration

Data

Handler

for

XML,

called

the

XML

data

handler,

converts

business

objects

into

XML

documents

and

XML

documents

into

business

objects.

For

instructions

on

installing

the

XML

data

handler,

see

“Installing

data

handlers”

on

page

21.

Note:

The

XML

data

handler

supports

XML

version

1.0.

This

chapter

describes

how

the

XML

data

handler

processes

XML

documents

and

how

to

define

business

objects

to

be

processed

by

the

XML

data

handler.

It

also

discusses

how

to

configure

the

XML

data

handler.

This

chapter

contains

the

following

sections:

v

“Overview”

v

“Requirements

for

business

object

definitions”

on

page

34

v

“Configuring

the

XML

data

handler”

on

page

39

v

“XML

documents

that

use

DTDs”

on

page

42

v

“XML

documents

that

use

schema

documents”

on

page

55

v

“Creating

business

object

definitions”

on

page

80

v

“Converting

business

objects

to

XML

documents”

on

page

82

v

“Converting

XML

documents

to

business

objects”

on

page

85

v

“Customizing

the

XML

data

handler”

on

page

86

Overview

The

XML

data

handler

is

a

data-conversion

module

whose

primary

role

is

to

convert

business

objects

to

and

from

XML

documents.

An

XML

document

is

serialized

data

with

the

text/xml

MIME

type.

The

XML

data

handler

can

be

used

by

connectors

and

by

access

clients.

This

overview

provides

the

following

information

about

the

XML

data

handler:

v

“Processing

XML

documents

and

business

objects”

v

“XML

data

handler

components”

on

page

32

Processing

XML

documents

and

business

objects

XML

documents

use

a

template,

called

a

schema,

to

define

their

structure.

Table

11

shows

the

most

common

data

models

for

defining

this

schema.

Table

11.

XML

data

models

XML

data

model

For

more

information

Document

type

definitions

(DTDs)

“XML

documents

that

use

DTDs”

on

page

42

Schema

documents

“XML

documents

that

use

schema

documents”

on

page

55

Just

as

a

DTD

or

a

schema

document

describes

the

structure

of

the

XML

document,

the

business

object

definition

describes

the

structure

of

the

business

object.

The

XML

data

handler

uses

business

object

definitions

when

it

converts

between

business

objects

and

XML

documents.

It

determines

how

to

perform

the

conversion

©

Copyright

IBM

Corp.

2000,

2004

31

using

the

structure

of

the

business

object

definition

and

its

application-specific

information.

A

properly-constructed

business

object

definition

ensures

that

the

data

handler

can

correctly

convert

a

business

object

to

an

XML

document

and

an

XML

document

to

a

business

object.

Before

the

XML

data

handler

can

perform

a

conversion

between

XML

document

and

business

object,

it

must

be

able

to

locate

the

associated

business

object

definition.

Use

of

the

XML

data

handler

to

convert

an

XML

document

to

a

business

object

or

a

business

object

to

an

XML

document

requires

that

the

following

steps

occur.

Table

12.

Using

the

XML

data

handler

Step

For

more

information

1.

Business

object

definitions

that

describe

the

XML

and

business-object

structure

must

exist

and

be

available

to

the

XML

data

handler

when

it

executes.

“Requirements

for

business

object

definitions”

on

page

34

“Creating

business

object

definitions

from

DTDs”

on

page

53

2.

The

XML

data

handler

must

be

configured

for

your

environment.

“Configuring

the

XML

data

handler”

on

page

39

3.

The

XML

data

handler

must

be

called

from

a

connector

(or

access

client)

to

perform

the

appropriate

data

operation:

a)

Data

operation:

receive

a

business

object

from

the

caller,

convert

the

business

object

to

an

XML

document,

and

pass

the

XML

document

to

the

caller.

“Converting

business

objects

to

XML

documents”

on

page

82

b)

Data

operation:

Receive

an

XML

document

from

the

caller

and

use

the

name

handler

and

SAX

parser

to

build

a

business

object.

Then

return

the

business

object

to

the

caller.

“Converting

XML

documents

to

business

objects”

on

page

85

XML

data

handler

components

The

XML

data

handler

uses

following

components

to

convert

XML

data

to

a

business

object:

v

Name

handler

v

Simple

API

for

XML

(SAX)

parser

v

(Optional)

If

the

XML

document

has

a

DTD

and

it

includes

entity

references,

the

XML

data

handler

uses

an

additional

component—the

entity

resolver—to

resolve

the

references.

Figure

11

illustrates

the

XML

data

handler

components

and

their

relationship

to

one

another.

These

components

are

described

in

the

sections

that

follow.

WebSphere Business Integration
Data Handler

for XML

Name Handler

Entity Resolver

SAX Parser

Figure

11.

XML

data

handler

components

32

Data

Handler

Guide

Name

handler

The

XML

data

handler

uses

the

name

handler

to

extract

the

name

of

the

business

object

from

an

XML

message.

The

data

handler

invokes

an

instance

of

the

name

handler

based

on

the

value

of

the

NameHandlerClass

attribute

in

the

XML

data

handler

child

meta-object:

v

If

a

class

name

is

provided

in

the

NameHandlerClass

attribute,

the

XML

data

handler

uses

that

name

handler

to

determine

the

business

object

name.

v

If

no

class

name

is

provided,

the

data

handler

uses

the

default

name

handler

to

determine

the

business

object

name.

The

default

name

handler

uses

the

name

of

the

root

element

in

the

XML

document

and

BOPrefix

property

to

form

the

business

object

name:

BOPrefix_rootElement

For

information

on

how

to

create

a

custom

name

handler,

see

“Building

a

custom

XML

name

handler”

on

page

86.

SAX

parser

If

a

parser

is

not

specified

in

the

Default

Value

property

of

the

Parser

attribute

in

the

XML

child

meta-object,

the

data

handler

uses

the

default

SAX

Parser:

org.apache.xerces.parsers.SAXParser

To

use

a

validating

parser,

you

can

take

either

of

the

following

steps:

v

Set

the

Default

Value

property

of

the

Validation

attribute

in

the

XML

child

meta-object

to

true.

The

Default

Value

that

IBM

provides

for

this

attribute

is

false.

v

To

use

a

validating

SAX

parser

from

IBM,

change

the

class

name

in

the

Default

Value

property

of

the

Parser

attribute

to:

com.ibm.xml.parsers.ValidatingSaxParser

If

your

business

object

definitions

are

based

on

DTDs,

use

the

local

entity

resolver,

and

provide

a

Default

Value

for

the

document

type

definition

(DTD)

or

schema

path

in

the

DTDPath

attribute.

Make

sure

you

place

all

the

DTD’s

or

Schema

files

in

the

location

specified

in

the

DTDPath

attribute.

Note:

When

using

a

validating

parser,

make

sure

that

you

are

using

the

correct

EntityResolver

and

that

the

DTDPath

is

set

correctly.

For

instruction

on

how

to

do

this,

see

“Configuring

the

XML

data

handler”

on

page

39.

Alternatively,

you

may

use

the

non-validating

SAX

Parser

from

IBM.

To

use

this

parser,

set

the

Default

Value

property

of

the

Parser

attribute

of

the

XML

child

meta-object

to

the

value

com.ibm.xml.parsers.SAXParser.

Entity

resolver

The

entity

resolver

specifies

how

the

SAX

parser

resolves

external

references

(such

as

references

to

DTDs

and

schema

documents)

in

XML

data.

If

the

XML

document

contains

entity

references,

the

SAX

parser

invokes

an

instance

of

the

entity

resolver

using

the

EntityResolver

attribute

in

the

XML

data

handler

configuration

meta-object.

External

references

are

handled

differently

depending

on

the

entity-resolver

class

that

EntityResolver

specifies.

Table

13

shows

the

entity-resolver

classes

that

the

XML

data

handler

provides.

Chapter

3.

XML

data

handler

33

Table

13.

Entity-resolver

classes

for

the

XML

data

handler

Entity-resolver

class

Description

DefaultEntityResolver

This

class

is

the

default

entity

resolver.

If

this

entity

resolver

is

invoked,

all

external

references

are

ignored.

LocalEntityResolver

The

local

entity

resolver

processes

external

references

as

local

file

names.

Its

behavior

depends

on

the

data

model

used

for

validation:

v

If

DTDs

are

used

for

validation,

the

local

entity

resolver

substitutes

the

path

in

the

systemID

with

the

value

of

the

DTDPath

meta-object

attribute,

if

the

systemID

starts

with

file://

or

http://

and

the

DTDPath

attribute

is

set.

The

external

reference

is

ignored

if

the

systemID

is

not

a

path

name

or

the

DTDPath

attribute

is

not

set.

v

If

schema

documents

are

used

for

validation,

the

local

entity

resolver

substitutes

the

path

that

the

schemaLocation

or

noNamespaceSchemaLocation

attribute

specifies

with

the

value

of

the

DTDPath

meta-object

attribute,

if

path

starts

with

file://

or

http://,

or

it

contains

a

DOS

filename

(for

example,

"D:\xmlschemas\test").

URIEntityResolver

This

entity

resolver

processes

external

references

as

local

file

names

or

downloadable

URLs.

It

dynamically

resolves

the

external

reference

in

either

of

the

following

cases:

v

If

DTDs

are

used

for

validation:

if

the

DOCTYPE

contains

a

SYSTEM

value

that

begins

with

http://

or

file://

v

If

schema

documents

are

used

for

validation:

if

the

schemaLocation

or

noNamespaceSchemaLocation

attribute

begins

with

http://

or

file://

The

entity

resolver

then

opens

an

HTTP

connection

and

downloads

the

DTD

or

schema

document

from

the

specified

web

site.

Attention:

The

XML

data

handler

does

not

cache

the

DTDs

or

schema

documents.

When

the

data

handler

uses

the

URIEntityResolver

class

as

its

entity

resolver,

it

opens

an

HTTP

connection

each

time

it

parses

the

XML

document.

Therefore,

network

traffic

can

impact

the

performance

of

the

XML

data

handler.

Note:

All

entity-resolver

classes

in

Table

13

must

have

the

following

class

prefix:

com.crossworlds.DataHandlers.xml

If

your

XML

documents

use

schema

documents,

any

external

schemas

that

the

schema

document

includes

are

also

treated

as

external

entities.

Therefore,

the

SAX

parser

invokes

an

entity

resolver

to

resolve

these

included

schema

documents.

If

the

XML

document

uses

the

schemaLocation

or

noNamespaceSchemaLocation

to

specify

schema

locations,

you

can

set

the

EntityResolver

attribute

to

either

LocalEntityResolver

or

URIEntityResolver

for

validation

of

external

schema

documents

(either

included

or

imported).

If

you

need

to

specify

another

way

to

find

external

entities,

you

must

create

a

custom

entity

resolver.

For

information

on

creating

a

custom

entity

resolver,

see

“Building

a

custom

entity

resolver”

on

page

88.

Requirements

for

business

object

definitions

To

ensure

that

business

object

definitions

conform

to

the

requirements

of

the

XML

data

handler,

use

the

guidelines

in

this

section,

which

involve:

v

“Business

object

structure”

on

page

35

v

“Business

object

attribute

properties”

on

page

36

34

Data

Handler

Guide

v

“Application-specific

information”

on

page

38

v

“Business

object

verbs”

on

page

39

A

properly-constructed

business

object

definition

ensures

that

the

data

handler

can

correctly

convert

a

business

object

to

an

XML

document

and

an

XML

document

to

a

business

object.

For

information

on

how

to

create

business

objects

for

the

XML

data

handler,

see

“Creating

business

object

definitions

from

DTDs”

on

page

53.

Business

object

structure

To

represent

a

DTD

or

schema

document

requires

at

least

two

business

object

definitions:

v

The

top-level

business

object

represents

the

information

that

defines

the

DTD

or

schema

document

and

must

contain

the

following:

–

An

attribute

named

XMLDeclaration

to

represent

the

XML

version

This

attribute

must

have

the

type=pi

tag

in

its

application-specific

information.

–

An

attribute

to

represent

the

root

element

in

the

DTD

or

schema

document

This

attribute

must

have

as

its

type

a

single-cardinality

business

object,

whose

type

is

the

business

object

definition

for

the

root

element

of

the

DTD

or

schema

document.

The

XML

ODA

obtains

the

name

of

this

root

element

from

the

Root

ODA

configuration

property.

The

application-specific

information

must

list

the

name

of

this

element

with

the

elem_name

tag.

Note:

The

elem_name

tag

replaces

previous

syntax,

which

required

only

the

name

of

the

XML

element

in

the

business-object

attribute’s

application-specific

information.

The

XML

data

handler

still

supports

the

old

syntax

for

backward

compatibility

with

existing

business

object

definitions.

However,

the

XML

ODA

uses

the

new

syntax

when

it

generates

business

object

definitions.
v

A

root-element

business

object

definition

represents

the

XML-definition

document’s

root

element.

You

can

tell

the

XML

ODA

which

element

to

consider

the

root

element

through

its

Root

configuration

property.

It

contains

an

attribute

for

each

of

the

XML

components

in

the

root

element.

A

business

object

that

is

processed

by

the

XML

data

handler

using

business

object

definitions

from

DTDs

or

schema

documents

must

follow

these

additional

rules:

v

Every

tag

in

the

XML

document

must

have

an

associated

attribute

in

the

business

object.

The

business

object

definition

provides

the

type

of

the

business

object

attribute

and

the

application-specific

information

for

that

attribute

are

stored.

This

information

is

determined

by

the

structure

and

content

of

the

XML

element.

v

In

the

business

object

definition

for

an

XML

element,

all

attributes

that

represent

XML

attributes

must

occur

before

other

attributes.

The

XML

data

handler

assumes

that

attributes

for

a

given

XML

element

are

the

first

attributes

in

the

business

object

definition.

Note:

A

business

object

must

contain

enough

data

so

that

the

XML

data

handler

can

create

a

valid

XML

document.

Avoid

sending

the

data

handler

business

objects

without

data.

This

document

provides

the

following

information

about

the

structure

of

business

object

definitions

for

DTDs

and

schema

documents:

Chapter

3.

XML

data

handler

35

Data

model

For

more

information

Document

type

definition

(DTD)

“Business

object

structure

for

DTDs”

on

page

43

Schema

document

“Business

object

structure

for

schema

documents”

on

page

55

Business

object

attribute

properties

Business

object

definitions

define

attributes.

Each

attribute

has

various

properties

that

provide

information

about

the

attribute.

This

section

describes

how

the

XML

data

handler

interprets

several

of

these

properties

and

describes

how

to

set

them

when

modifying

a

business

object

definition.

Name

attribute

property

Each

business

object

attribute

must

have

a

unique

name.

The

XML

Element

or

XML

Attribtue

name

is

always

specified

in

the

elem_name

or

attr_name

tag.

In

this

case,

the

name

of

the

XML

element

(or

attribute)

specified

in

the

elem_name

(or

attr_name)

tag

of

the

attribute

application-specific

information

contains

the

special

characters.

However,

the

name

of

the

business

object

attribute

(which

does

not

allow

these

special

characters)

omits

them.

Type

attribute

property

Each

business

object

attribute

must

have

a

type,

such

as

Integer,

String,

or

the

type

of

a

contained

child

business

object,

as

follows:

v

For

a

DTD:

XML

elements

that

contain

either

child

elements

or

one

or

more

non-FIXED

attributes

are

treated

as

business

objects.

XML

elements

with

only

a

PCDATA

value

are

treated

as

attributes

if

the

XML

element

is

included

in

its

parent

through

single

cardinality.

If

it

is

included

through

multiple

cardinality,

it

is

represented

as

a

business

object

because

business

object

definitions

do

not

support

multiple-cardinality

scalar

values

(for

example,

an

array

of

String

values).

v

For

a

schema

document:

Each

business

object

attribute

must

have

a

type

of

either

String

or

the

type

of

a

contained

child

business

object.

XML

elements

that

contain

either

child

elements

or

complex

types

are

treated

as

business

objects.

XML

elements

with

only

a

simple-type

value

are

treated

as

business

object

attributes

if

the

XML

element

is

included

in

its

parent

through

single

cardinality.

If

it

is

included

through

multiple

cardinality,

it

is

represented

as

a

business

object

because

business

object

definitions

do

not

support

multiple-cardinality

scalar

values

(for

example,

an

array

of

String

values).

Note:

All

simple

attributes

should

be

of

type

String

Key

and

Foreign

Key

attribute

properties

Each

business

object

must

have

at

least

one

primary

key

attribute,

which

is

specified

by

setting

the

Key

property

to

true

for

an

attribute.

The

setting

of

the

Foreign

Key

property

is

optional

and

depends

on

the

structure

of

the

XML

document.

This

section

provides

the

following

information

about

the

Key

and

Foreign

Key

attribute

properties:

v

“Designating

the

key

in

the

business

object

definition”

v

“Handling

keys

and

″required-ness″”

on

page

37

Designating

the

key

in

the

business

object

definition:

In

earlier

versions

of

XML-business-object-definition-generation

tools

(such

as

XMLBorgen,

Edifecs

SpecBuilder,

and

the

XML

ODA),

the

generation

tool

designated

the

ObjectEventId

36

Data

Handler

Guide

attribute

as

the

key

of

a

parent

XML

business

object.

However,

as

of

this

release,

Business

Object

Designer

no

longer

allows

you

to

save

a

business

object

definition

that

has

the

ObjectEventId

attribute

specified

as

a

key.

Because

of

this

restriction,

the

current

version

of

XML

ODA

now

takes

the

following

actions:

v

In

each

child

business

object,

it

sets

the

first

attribute

as

the

key.

v

In

the

parent

business

object,

it

does

not

set

a

key

attribute.

To

provide

a

key

to

a

parent

business

object

definition

that

the

XML

ODA

generates,

you

must

bring

up

the

business

object

definition

in

Business

Object

Designer

and

analyze

your

business

object

definition

to

determine

the

appropriate

attribute

to

designate

as

the

key.

You

must

change

the

business

object

definition’s

key

attribute

before

you

can

save

the

business

object

definition

in

Business

Object

Designer

.

Note:

The

XML

ODA

replaces

earlier

XML-business-object-definition-generation

tools

(such

as

XMLBorgen

and

Edifecs

SpecBuilder).

Therefore,

only

the

XML

ODA

takes

these

special

steps

to

avoid

assignment

of

the

ObjectEventId

as

the

parent

business

object’s

key

attribute.

If

you

have

existing

XML

business

object

definitions

that

you

have

generated

with

any

earlier

XML-business-object-definition-generation

tools

(including

an

earlier

version

of

the

XML

ODA),

these

business

object

definitions

might

still

use

ObjectEventId

as

a

key.

You

should

analyze

these

business

object

definitions

if

you

are

migrating

their

business

objects

to

the

current

release.

Failure

to

set

an

appropriate

key

attribute

in

your

business

object

definition

can

have

a

negative

impact

on

the

performance

of

the

event

sequencing

feature.

Handling

keys

and

″required-ness″:

This

document

provides

the

following

information

about

the

relationship

between

keys

and

″required-ness″:

Data

model

For

more

information

Document

type

definition

(DTD)

“Business

object

attribute

properties

for

DTDs”

on

page

44

Schema

document

“Business

object

attribute

properties

for

schema

documents”

on

page

63

Required

attribute

property

If

this

property

is

specified

for

an

attribute

that

contains

a

single-cardinality

child

business

object,

the

XML

data

handler

requires

that

the

parent

business

object

contain

a

child

business

object

for

this

attribute.

The

settings

of

the

Cardinality,

Key,

and

Foreign

Key

attribute

properties

can

affect

the

setting

an

attribute’s

Required

property.

This

document

provides

the

following

information

about

″required-ness″:

Data

model

For

more

information

Document

type

definition

(DTD)

“Business

object

attribute

properties

for

DTDs”

on

page

44

Schema

document

“Business

object

attribute

properties

for

schema

documents”

on

page

63

Chapter

3.

XML

data

handler

37

Cardinality

attribute

property

The

Cardinality

property

indicates

the

number

of

child

business

objects

allowed

in

an

attribute

that

has

a

business

object

definition

as

its

type.

The

setting

of

this

property

depends

on

the

structure

of

the

XML

document

and

its

elements.

Its

setting

also

affects

whether

the

attribute

must

be

required

(its

Required

property

set

to

true).

This

document

provides

the

following

information

about

the

relationship

between

cardinality

and

″required-ness″:

Data

model

For

more

information

Document

type

definition

(DTD)

“Business

object

attribute

properties

for

DTDs”

on

page

44

Schema

document

Special

attribute

values

A

business

object

attribute

has

a

value

whose

type

matches

the

attribute’s

Type

property.

In

addition,

an

attribute

can

have

either

of

two

special

values:

v

CxIgnore

When

the

XML

data

handler

receives

a

business

object

from

an

integration

broker,

it

ignores

all

attributes

with

a

value

of

CxIgnore.

It

is

as

if

those

attributes

are

invisible

to

the

data

handler.

Therefore,

the

data

handler

does

not

generate

a

corresponding

XML

element;

that

is,

it

does

not

create

an

XML

tag

for

this

attribute

(not

even

an

empty

tag).

When

the

XML

data

handler

receives

XML

input

that

has

no

XML

tag

that

corresponds

to

a

business

object

attribute,

the

data

handler

assigns

the

attribute

a

value

of

CxIgnore.

v

CxBlank

When

the

XML

data

handler

receives

a

business

object

from

an

integration

broker,

it

processes

the

CxBlank

attribute

value

based

on

the

attribute’s

Type

property:

–

For

a

complex

attribute

(one

whose

Type

property

is

set

to

the

name

of

another

business

object

definition),

the

data

handler

assumes

that

no

complex

attributes

have

the

CxBlank

value.

–

For

a

simple

attribute

(one

whose

Type

property

is

set

to

a

String

data

type),

the

data

handler

creates

an

empty

tag

in

the

XML

document.

For

XML

documents

based

on

DTDs,

empty

double

quotation

marks

(″

″)

are

used

as

the

PCDATA

equivalent

of

CxBlank.

When

the

XML

data

handler

receives

XML

input

that

has

an

empty

tag,

the

data

handler

assigns

a

value

of

CxBlank

to

its

corresponding

business

object

attribute.

Application-specific

information

Application-specific

information

in

business

object

definitions

provides

the

data

handler

with

instructions

on

how

to

convert

business

objects

to

XML

documents.

The

application-specific

information

enables

the

data

handler

to

process

the

business

object

correctly.

Therefore,

if

you

create

new

business

objects

or

modify

existing

business

objects

for

the

XML

data

handler,

make

sure

that

the

application-specific

information

in

the

business

object

definition

matches

the

syntax

that

the

data

handler

expects.

The

XML

data

handler

can

use

the

following

kinds

of

application-specific

information:

v

Business-object-level

application-specific

information

provides

information

about

the

business

object

definition

as

a

whole.

38

Data

Handler

Guide

v

Attribute-level

application-specific

information

provides

information

about

a

particular

attribute.

Note:

The

XML

data

handler

uses

application-specific

information

to

match

components

of

an

XML

document

with

attributes

in

a

business

object.

The

maximum

length

for

application-specific

information

is

255

characters.

If

the

value

of

the

application-specific

information

is

more

than

255

characters,

you

must

reconstruct

your

DTD

or

schema

document,

and

then

regenerate

the

business

object.

This

document

provides

the

following

information

about

application-specific

information:

Data

model

For

more

information

Document

type

definition

(DTD)

“Application-specific

information

for

XML

components

in

DTDs”

on

page

45

Schema

document

“Application-specific

information

for

XML

components

in

schema

documents”

on

page

64

Business

object

verbs

When

converting

business

objects

to

XML

documents,

the

XML

data

handler

does

not

generate

XML

for

the

verb,

nor

does

it

set

a

verb

when

converting

an

XML

document

to

a

business

object.

However,

verb

information

can

be

preserved

in

one

of

these

ways:

v

You

can

create

an

element

in

the

DTD

or

schema

document

for

the

verb

and

create

a

business

object

attribute

for

the

verb.

You

can

then

design

the

content

of

your

business

integration

system

to

copy

the

verb

into

the

business

object

attribute.

The

data

handler

then

converts

the

verb

to

the

XML

element,

thereby

preserving

the

verb

in

the

XML

document.

When

the

XML

document

is

returned,

the

business

integration

system

can

set

the

verb

according

to

the

value

of

the

business

object

attribute.

v

You

can

create

DTDs

or

schema

documents

for

specific

business

object

and

verb

combinations,

and

associate

each

business

object

request

with

the

DTD

or

schema

document

for

that

business

object

and

verb.

When

an

XML

document

is

converted

to

a

business

object

and

returned

to

the

caller,

the

connector

can

set

the

verb

that

corresponds

to

the

DTD

or

schema

document.

v

If

the

calling

connector

can

be

provided

with

information

about

the

verb,

it

can

set

the

verb

in

the

business

object

before

sending

it

to

integration

broker.

Configuring

the

XML

data

handler

To

configure

an

XML

data

handler,

you

must

ensure

that

its

configuration

information

is

provided

in

the

XML

data

handler’s

child

meta-object.

Note:

To

configure

an

XML

data

handler,

you

must

also

create

or

modify

business

object

definitions

so

that

they

support

the

data

handler.

For

more

information,

see

“Requirements

for

business

object

definitions”

on

page

34.

For

the

XML

data

handler,

IBM

delivers

the

default

child

meta-object

MO_DataHandler_DefaultXMLConfig.

Each

attribute

in

this

meta-object

defines

a

configuration

property

for

the

XML

data

handler.

Table

14

describes

the

attributes

in

this

child

meta-object.

Chapter

3.

XML

data

handler

39

Table

14.

Child

meta-object

attributes

for

the

XML

data

handler

Attribute

name

Description

Delivered

default

value

BOPrefix

Prefix

used

by

the

default

NameHandler

class

to

build

the

names

of

business

object

names.

The

default

value

must

be

changed

to

match

the

name

of

the

associated

the

business

object

definition.

The

attribute

value

is

case-sensitive.

XMLTEST

ClassName

Name

of

the

data-handler

class

to

load

for

use

with

the

specified

MIME

type.

The

top-level

data-handler

meta-object

has

an

attribute

whose

name

matches

the

specified

MIME

type

and

whose

type

is

the

XML

child

meta-object

(described

by

Table

14).

com.crossworlds.

DataHandlers.

text.xml

DefaultEscapeBehavior

If

an

attribute

value

contains

special

characters,

it

requires

the

XML

data

handler

to

perform

escape

processing.

If

the

attribute’s

application-specific

information

does

not

include

the

escape

tag,

the

XML

data

handler

checks

the

value

of

the

DefaultEscapeBehavior

property

to

determine

whether

to

perform

escape

processing.

For

more

information,

see

“For

an

XML

element

or

attribute

that

contains

special

characters”

on

page

51.

true

DTDPath

Used

by

the

data

handler

to

configure

the

path

to

the

document

type

definitions

(DTDs)

or

schemas

(XSDs).

None

DummyKey

Key

attribute;

not

used

by

the

data

handler

but

required

by

the

business

integration

system.

1

EntityResolver

Name

of

the

class

to

use

to

handle

references

to

external

entities

such

as

a

DTD

or

schema.

For

more

information

on

values

for

this

attribute,

see

“Entity

resolver”

on

page

33.

None

IgnoreUndefinedAttributes

When

this

attribute

is

set

to

false,

the

XML

data

handler

validates

all

XML

attributes

against

the

business

object

definition;

it

throws

an

exception

when

it

encounters

an

undefined

attribute.

When

this

attribute

is

set

to

true,

the

XML

data

handler

ignores

all

undefined

XML

attributes,

generating

a

warning.

true

IgnoreUndefinedElements

When

this

attribute

is

set

to

false,

the

XML

data

handler

validates

all

XML

elements

against

the

business

object

definition;

it

throws

an

exception

when

it

encounters

an

element

not

defined

in

the

application-specific

information.

When

this

attribute

is

set

to

true,

the

XML

data

handler

ignores

all

undefined

XML

elements

(and

any

attributes

within

these

undefined

elements),

generating

a

warning.

false

InitialBufferSize

Defines

the

initial

size

of

the

buffer

that

is

used

when

converting

business

objects

to

XML.

Set

this

value

to

the

size,

in

bytes,

of

your

XML

business

objects.

Setting

this

value

to

a

high

number

will

speed

the

conversion

of

business

objects

to

serialized

XML.

2

MB

(2,097,152

KB)

NameHandlerClass

Name

of

the

class

to

use

to

determine

the

name

of

a

business

object

from

the

content

of

an

XML

document.

Change

the

default

value

of

this

attribute

if

you

create

your

own

custom

name

handler.

For

more

information,

see

“Building

a

custom

XML

name

handler”

on

page

86.

com.

crossworlds.

DataHandlers.xml.

TopElementNameHandler

Parser

Package

name

of

a

SAX-compliant

parser

for

the

XML

document.

None

40

Data

Handler

Guide

Table

14.

Child

meta-object

attributes

for

the

XML

data

handler

(continued)

Attribute

name

Description

Delivered

default

value

UseNewLine

Set

to

true

if

you

want

each

tag

in

the

output

XML

to

be

on

a

new

line.

(The

XML

data

handler

adds

extra

content

in

the

form

of

line

feeds

and

carriage

returns

to

the

XML

document.)

Set

to

false

if

you

do

not

want

to

alter

the

XML

output.

false

Validation

This

value

is

used

by

the

data

handler

to

specify

that

the

validating

parser

is

used.

The

data

handler

does

this

by

setting

the

feature

http://xml.org/sax/features/validation

of

the

XML4J

parser

to

true.

To

use

a

validating

parser,

the

default

value

must

be

changed

to

true.

When

Validation

is

set

to

true,

the

XML

parser

will

validate

the

XML

document

against:

v

A

DTD,

if

a

DTD

is

present

v

A

schema

document,

if

one

is

specified.

In

this

case,

the

XML

parser

does

full

schema

checking.

v

Both

DTDs

and

schema

documents,

if

both

are

specified

false

ObjectEventId

Placeholder

not

used

by

the

data

handler

but

required

by

the

business

integration

system.

None

The

“Delivered

default

value”

column

in

Table

14

lists

the

value

in

the

Default

Value

property

for

the

corresponding

attribute

in

the

delivered

business

object.

You

must

examine

your

environment

and

set

the

Default

Value

properties

of

those

attributes

to

the

appropriate

values.

You

must

make

sure

that

at

least

the

ClassName

and

BOPrefix

attributes

have

default

values.

Note:

Use

Business

Object

Designer

to

modify

business

object

definitions.

A

single

child

meta-object

can

be

used

by

different

MIME

type/subtype

combinations

if

each

of

the

combinations

uses

the

same

XML

data

handler

configuration.

If

your

connector

requires

different

XML

data

handler

configurations

for

different

MIME

types,

then

you

must

create

a

separate

child

meta-object

for

each

data

handler

instance.

To

prepare

multiple

configurations

of

the

XML

data

handler,

take

the

following

steps:

v

Copy

and

rename

the

default

XML

child

meta-object.

A

recommended

approach

to

naming

a

new

child

meta-object

is

to

provide

subtypes

to

the

MIME

type.

For

example,

to

support

both

the

default

XML

data

handler

and

an

SGML

version,

you

can

copy

the

default

XML

child

meta-object

and

name

this

copy

MO_DataHandler_DefaultSGMLConfig.

v

Set

the

default

values

of

the

attributes

in

each

XML

child

meta-object

to

configure

the

data

handler

instance.

Create

attributes

in

the

top-level

data-handler

meta-object

for

each

MIME

type/subtype

combination.

For

example,

in

support

of

the

XML

and

SGML,

you

can

create

the

following

MIME

types:

text_xml

and

text_xml_sgml.

Each

of

these

attributes

would

represent

its

associated

child

meta-object.

You

can

also

configure

the

XML

data

handler

to

support

multiple

instances

of

the

same

data

handler.

In

this

case,

you

can

create

another

top-level

attribute

named

text_xml_subtype,

where

subtype

can

be

an

application

name,

as

in

text_xml_AppA,

an

application

entity

name,

or

another

appropriate

name.

Chapter

3.

XML

data

handler

41

For

more

information

about

how

to

configure

a

data

handler,

see

“Configuring

data

handlers”

on

page

24.

Figure

12

shows

an

example

of

a

top-level

data-handler

meta-object

and

its

corresponding

child

meta-objects.

Notice

that

there

are

four

attributes

in

the

top-level

meta-object

MO_DataHandler_XMLSample,

but

only

three

child

meta-objects.

This

is

because

the

attribute

Application_xml_AppC

uses

the

same

child

meta-object

as

the

attribute

text_xml_AppB

to

invoke

the

appropriate

data

handler.

XML

documents

that

use

DTDs

A

document

type

document

(DTD)

is

a

data

model

for

XML

documents

that

provides

a

special

syntax

to

describe

the

XML

document’s

template,

called

a

schema.

This

DTD

is

a

file

with

the

.dtd

extension.

The

business

object

definitions

that

represent

the

schema

of

an

XML

document

use

information

in

the

DTD

to

preserve

and

record

the

document’s

structure.

This

section

provides

the

following

information

about

deriving

structure

information

for

a

business

object

definition

from

a

DTD:

v

“Requirements

for

business

object

definitions

based

on

DTDs”

v

“Creating

business

object

definitions

from

DTDs”

on

page

53

Requirements

for

business

object

definitions

based

on

DTDs

To

ensure

that

business

object

definitions

that

correspond

to

DTDs

conform

to

the

requirements

of

the

XML

data

handler,

use

the

guidelines

in

this

section,

which

involve:

v

“Business

object

structure

for

DTDs”

on

page

43

v

“Business

object

attribute

properties

for

DTDs”

on

page

44

v

“Application-specific

information

for

XML

components

in

DTDs”

on

page

45

MO_DataHandler_XMLSample

Name = text_xml_AppA
Type = MO_DataHandler_XMLConfig_AppA

Name = text_xml_AppB
Type = MO_DataHandler_XMLConfig_AppB

MO_DataHandler_XMLConfig_AppA

Name = BOPrefix
Value = cwCustomer

Name = ClassName
Value = com.crossworlds.DataHandlers.text.xml

MO_DataHandler_XMLConfig_AppB

Name = BOPrefix
Value = cwOrder

Name = ClassName
Value = com.crossworlds.DataHandlers.text.xml

MO_DataHandler_DefaultXMLConfig

Name = BOPrefix
Value = cwXML

Name = ClassName
Value = com.crossworlds.DataHandlers.text.xml

Name = text_xml
Type = MO_DataHandler_DefaultXMLConfig

Name = Application_xml_AppC
Type = MO_DataHandler_XMLConfig_AppB

....

....

....

Figure

12.

Example

meta-object

for

multiple

XML

data

handlers

42

Data

Handler

Guide

A

properly-constructed

business

object

definition

ensures

that

the

data

handler

can

correctly

convert

a

business

object

to

an

XML

document

and

an

XML

document

to

a

business

object.

For

information

on

how

to

create

business

objects

for

the

XML

data

handler,

see

“XML

documents

that

use

schema

documents”

on

page

55.

Business

object

structure

for

DTDs

To

represent

a

DTD

requires

at

least

the

two

business

object

definitions

described

in

“Business

object

structure”

on

page

35.

For

a

DTD,

these

business

object

definitions

have

the

following

additional

requirements:

v

The

top-level

business

object

represents

an

XML

DTD

and

can

contain

the

following:

–

An

attribute

named

DocType

to

represent

the

DOCTYPE

declaration

Whether

the

XML

ODA

generates

a

DocType

attribute

in

the

top-level

business

object

definition

depends

on

the

setting

of

its

DocTypeOrSchemaLocation

configuration

property.

For

more

information,

see

“For

an

XML

DOCTYPE

declaration”

on

page

52

and

“Supported

DTD

structures”

on

page

54.

–

An

attribute

named

XMLDeclaration

to

represent

the

XML

version

This

attribute

must

has

the

type=pi

tag

in

its

application-specific

information.

For

more

information,

see

“For

XML

processing

instructions”

on

page

76.

–

An

attribute

to

represent

the

root

element

in

the

DTD

As

described

in

“Business

object

structure”

on

page

35,

this

attribute

must

have

as

its

type

a

single-cardinality

business

object,

whose

type

is

the

business

object

definition

for

the

root

element.

The

application-specific

information

must

list

the

name

of

this

element

with

the

elem_name

tag.

For

more

information,

see

“For

XML

elements”

on

page

72.
v

A

root-element

business

object

definition

represents

the

DTD’s

root

element.

A

business

object

that

is

processed

by

the

XML

data

handler

using

business

object

definitions

based

on

DTDs

must

also

follow

these

rules:

v

Every

tag

in

the

XML

document

has

an

associated

attribute

in

the

business

object

definition.

The

exception

to

this

rule

is

for

FIXED

attributes.

By

default,

FIXED

attributes

are

not

included

in

a

business

object

definition

because

these

attributes

contain

static

data.

However,

if

you

want

your

FIXED

attributes

to

be

included

in

the

business

object

definition,

you

can

manually

add

attributes

for

them

to

the

business

object

definition.

Note:

For

a

list

of

general

business

object

requirements,

see

“Requirements

for

business

object

definitions”

on

page

34.

An

example

DTD

for

an

XML

document

is

shown

below.

The

DTD

is

named

Order,

and

it

contains

elements

that

correspond

to

an

application

Order

entity.

<!--Order

-->

<!--

Element

Declarations

-->

<!ELEMENT

Order

(Unit+)>

<!ELEMENT

Unit

(PartNumber?,

Quantity,

Price,

Accessory*)>

<!ELEMENT

PartNumber

(#PCDATA)>

<!ELEMENT

Quantity

(#PCDATA)>

<!ELEMENT

Price

(#PCDATA)>

<!ELEMENT

Accessory

(Quantity,

Type)>

<!ATTLIST

Accessory

Name

CDATA

>

<!ELEMENT

Type

(#PCDATA)>

Figure

13

shows

the

structure

of

a

business

object

that

might

be

created

to

correspond

to

an

XML

document

associated

with

the

Order

DTD.

Note

that

each

Chapter

3.

XML

data

handler

43

XML

element

and

element

attribute

in

the

Order

DTD

has

a

corresponding

business

object

attribute.

The

top-level

business

object

contains

attributes

for

the

XML

declaration,

the

DOCTYPE,

and

the

top-level

Order

element.

Note

also

that

the

element

attribute

Name

is

the

first

attribute

in

the

Accessory

business

object.

Business

object

attribute

properties

for

DTDs

When

the

business

object

definitions

for

an

XML

document

are

based

on

DTDs,

the

business

object

attribute

properties

have

the

restrictions

discussed

in

“Business

object

attribute

properties”

on

page

36.

In

addition,

the

DTD

syntax

can

determine

the

″required-ness″

of

a

business

object

attribute.

The

″required-ness″

is

a

combination

of

factors,

including

cardinality

and

whether

the

attribute

is

a

key,

that

determines

whether

the

XML

data

handler

requires

the

attribute.

If

an

attribute

is

required,

its

Required

attribute

property

must

be

set

to

true.

The

setting

of

the

Required

attribute

property

depends

on

the

XML

element

and

attribute

specifications,

as

well

as

the

settings

of

the

Cardinality,

Key,

and

Foreign

Key

attribute

properties,

as

follows:

v

The

cardinality

of

a

business

object

attribute

is

determined

by

the

ELEMENT

fragment

in

the

DTD.

This

cardinality

affects

whether

the

attribute

is

required.

Table

15

outlines

the

cardinality

and

″required-ness″

for

possible

combinations

of

element

declarations

in

a

DTD.

Table

15.

Cardinality

and

“Required-ness”

for

a

DTD

DTD

ELEMENT

fragment

Cardinality

Required

None

specified

1

Yes

?

1

No

+

N

Yes

*

N

No

v

Whether

a

business

object

attribute

is

a

primary

or

foreign

key

is

determined

by

the

ATTLIST

fragment

in

the

DTD.

The

presence

of

a

key

affects

whether

the

attribute

is

required.

Table

16

outlines

how

syntax

in

the

ATTLIST

fragment

Top-level
business object

Order

Unit (n) Unit

PartNumber

XMLDeclaration

DocType

Order (1)

Quantity

Price
Accessory (n)

Accessory

Name

Quantity

Type

Accessory

Name

Quantity

Type

Figure

13.

Example

business

object

for

XML

document

using

the

Order

DTD

44

Data

Handler

Guide

affects

the

business

object

attribute’s

″required-ness″

for

possible

combinations

of

attribute

declarations

in

a

DTD.

Table

16.

Keys

and

″Required-ness″

for

a

DTD

DTD

ATTLIST

fragment

Key

Required

Comment

#IMPLIED

No

No

#REQUIRED

No

Yes

ID

{#IMPLIED

|

#REQUIRED}

Yes

No

#IMPLIED,

#REQUIRED

ignored

IDREF

{#IMPLIED,

#REQUIRED}

Foreign

key

Depends

on

whether

#IMPLIED

or

#REQUIRED

is

specified

NMTOKEN

{#IMPLIED

|

#REQUIRED}

Yes

No

#IMPLIED,

#REQUIRED

ignored

Application-specific

information

for

XML

components

in

DTDs

This

section

provides

the

following

information

on

the

application-specific

information

format

for

business

object

definitions

based

on

DTDs:

v

“Business-object-level

application-specific

information”

v

“Array

attribute

application-specific

information”

on

page

48

v

“Attribute

application-specific

information”

on

page

48

Business-object-level

application-specific

information:

The

XML

data

handler

uses

the

following

types

of

business

objects

to

represent

different

kinds

of

XML

elements

generated

from

a

DTD:

v

“Regular

business

object

definitions

based

on

DTDs”

v

“Mixed

business

object

definitions

based

on

DTDs”

v

“Wrapper

business

object

definitions

based

on

DTDs”

on

page

46

These

types

of

business

objects

are

distinguished

by

the

application-specific

information

at

the

business

object

level.

Regular

business

object

definitions

based

on

DTDs:

A

regular

business

object

represents

an

XML

element.

In

this

type

of

business

object,

the

application-specific

information

at

the

business

object

level

identifies

the

name

of

the

XML

element

that

the

business

object

represents.

For

example,

suppose

the

XML

element

is

defined

as:

<!ELEMENT

Unit(...)>

The

application-specific

information

at

the

business

object

level

for

the

associated

business

object

definition

is:

[BusinessObjectDefinition]

Name

=

MyApp_Unit

AppSpecificInfo

=

elem_name=Unit

[Attribute]

...

Mixed

business

object

definitions

based

on

DTDs:

A

mixed

business

object

represents

a

mixed

XML

element,

one

that

contains

mixed

content

of

character

data

(#PCDATA)

and

other

subelements.

The

DTD

representation

of

a

mixed-type

XML

element

looks

like

the

following:

<!ELEMENT

(#PCDATA

|

CONTAINED_ELEMENT1

|

CONTAINED_ELEMENTN)*>

Chapter

3.

XML

data

handler

45

For

example,

suppose

the

Cust

XML

element

is

defined

in

the

DTD

as

follows:

<!ELEMENT

Cust(#PCDATA

|

Address

|

Phone)*>

To

represent

a

mixed-type

XML

element,

use

a

mixed-type

business

object

definition.

For

a

mixed

business

object

definition,

its

business-object-level

application-specific

information

consists

of

the

following

components:

v

The

name

of

the

mixed

XML

element

v

The

tag

type=MIXED

For

the

business

object

definition,

MyApp_Cust,

which

represents

the

Cust

element,

the

application-specific

information

at

the

business

object

level

is

as

follows:

[BusinessObjectDefinition]

Name

=

MyApp_Cust

AppSpecificInfo

=

Cust;type=MIXED;

Wrapper

business

object

definitions

based

on

DTDs:

A

wrapper

business

object

represents

a

repeating

choice

list.

This

type

of

business

object

definition

is

needed

when

an

XML

element

has

children

that

can

appear

in

any

order

and

be

of

any

cardinality.

A

wrapper

business

object

preserves

the

order

and

cardinality

of

the

child

elements

in

the

XML

document.

For

a

choice-list

XML

element,

the

DTD

definition

looks

like

this:

(CONTAINEDELEMENT1

|

...

|

CONTAINEDELEMENTN)*

As

an

example,

the

choice-list

XML

element

definition

in

a

DTD

might

be:

<!ELEMENT

CUST(

U

|

I

|

B

)*

)>

This

element

contains

three

subelements

that

are

optional

and

that

can

appear

in

any

order.

Each

subelement

is

a

simple

element.

Figure

14

shows

an

XML

document

of

this

type.

To

represent

a

choice-list

XML

element

defined

in

a

DTD,

the

business

object

definition

is

hierarchical.

It

includes

the

following

business

object

definitions:

v

The

parent

business

object

definition

This

parent

business

object

definition

contains

a

single

attribute

that

represents

a

multiple-cardinality

business

object

array.

This

attribute

has

as

its

type

the

business

object

definition

for

the

associated

wrapper

business

object.

The

parent

business

object

definition

contains

the

following

application-specific

information:

–

At

the

business-object-level,

the

parent

business

object

definition

contains

the

name

of

the

choice-list

element

in

its

application-specific

information

<CUST>

<U>.....

</U>

.....

<I>.....

</I>

.....

<U>.....

</U>

...

Figure

14.

XML

document

content

for

a

repeating

choice

list

46

Data

Handler

Guide

–

At

the

attribute

level,

the

multiple-cardinality

attribute

(in

the

parent

business

object

definition)

specifies

the

optional

choice

elements

in

the

following

format:

(choiceElement1|...|choiceElementN)

where

choiceElement1...choiceElementN

correspond

to

each

of

the

choice

elements

defined.

The

pipe

(|)

character

must

separate

each

of

the

choice

elements

and

the

entire

tag

must

be

enclosed

in

parentheses.
v

A

wrapper

business

object

definition

The

wrapper

business

object

definition

contains

one

attribute

for

each

of

the

choice

elements

defined

in

the

choice-list

element.

It

does

not

require

any

application-specific

information

at

the

business-object

level.

Figure

15

shows

an

illustration

of

the

hierarchy

of

the

business

object

definitions

for

a

choice-list

XML

element.

At

runtime,

each

child

business

object

is

an

instance

of

a

wrapper

business

object

and

has

only

one

attribute

populated

with

data.

As

an

example,

a

business

object

for

the

XML

content

in

Figure

14

on

page

46

would

have

five

children,

each

with

the

appropriate

attribute

populated.

Figure

16

shows

the

parent

business

object

definition,

MyApp_Cust,

with

its

application-specific

information.

The

wrapper

business

object

definition,

MyApp_CustWrapper,

has

three

attributes,

one

for

each

choice

element.

Because

each

choice

element

contains

character

data,

the

application-specific

information

for

each

attribute

specifies:

v

The

name

of

the

element

MyApp_Cust

MyApp_CustWrapper
Cardinality = N
AppSpecificInfo = (U|I|B)

MyApp_CustWrapper

AppSpecificInfo = U;type=pcdata;
...

Name = DataU
...

...
AppSpecificInfo = I;type=pcdata;
...

Name = DataI

AppSpecificInfo = B;type=pcdata;
...

Name = DataB

Figure

15.

Hierarchical

business

object

definition

for

choice-list

XML

element

[BusinessObjectDefinition]

Name

=

MyApp_Cust

AppSpecificInfo

=

[Attribute]

Name

=

CustWrapper

Type

=

MyApp_CustWrapper

Cardinality

=

N

AppSpecificInfo

=

attr_name=CustWrapper;(U|I|B)

[End]

Figure

16.

Parent

business

object

definition

for

a

choice-list

element

Chapter

3.

XML

data

handler

47

v

The

tag

type=pcdata

Note:

For

more

information

on

attributes

for

character

data,

see

“For

an

XML

element

with

only

PCDATA”

on

page

50.

Figure

17

shows

the

wrapper

business

object

definition

for

this

XML

document.

Array

attribute

application-specific

information:

If

a

business

object

attribute

represents

an

XML

element

that

contains

other

elements,

the

application-specific

information

must

contain

the

name

of

the

element.

For

example,

if

an

attribute

named

DeliveryDate

has

a

business

object

type

and

represents

an

element

named

DATETIME,

the

application-specific

information

contains

the

name

of

the

element:

Name

=

DeliveryDate

Relationship

=

Containment

Cardinality

=

n

AppSpecificInfo

=

DATETIME

Attribute

application-specific

information:

The

attribute

of

a

business

object

definition

can

represent

the

following

XML

components:

v

“For

XML

elements”

on

page

49

v

“For

an

XML

element

with

only

PCDATA”

on

page

50

v

“For

an

XML

attribute”

on

page

50

v

“For

an

XML

element

with

character

data

and

attributes”

on

page

51

v

“For

an

XML

element

or

attribute

that

contains

special

characters”

on

page

51

v

“For

an

XML

DOCTYPE

declaration”

on

page

52

v

“For

a

CDATA

section”

on

page

52

v

“For

an

XML

comment”

on

page

53

v

“For

XML

processing

instructions”

on

page

53

Table

27

shows

the

tags

for

attribute-level

application-specific

information

for

these

different

XML

components

along

with

the

sections

in

this

manual

that

describe

these

tags

in

more

detail.

[BusinessObjectDefinition]

Name

=

MyApp_CustWrapper

AppSpecificInfo

=

[Attribute]

Name

=

DataU

Type

=

String

AppSpecificInfo

=

attr_name=U;type=pcdata;

[End]

[Attribute]

Name

=

DataI

Type

=

String

AppSpecificInfo

=

attr_name=I;type=pcdata;

[End]

[Attribute]

Name

=

DataB

Type

=

String

AppSpecificInfo

=

attr_name=B;type=pcdata;

[End]

Figure

17.

Wrapper

business

object

definition

for

a

choice-list

element

48

Data

Handler

Guide

Table

17.

Tags

for

attribute

application-specific

information

Representation

of

business

object

attribute

Application-specific

information

For

more

information

An

XML

element

elem_name=name

of

XML

element

“For

XML

elements”

An

XML

element

with

only

PCDATA

elem_name=name

of

XML

element;type=pcdata

“For

an

XML

element

with

only

PCDATA”

on

page

50

An

attribute

for

an

XML

element

attr_name=name

of

XML

attribute

type=attribute

“For

an

XML

attribute”

on

page

50

An

XML

element

that

contains

character

data

and

attributes

type=pcdata;notag

“For

an

XML

element

with

character

data

and

attributes”

on

page

51

An

XML

element

or

attribute

whose

content

includes

special

characters

escape=true

“For

an

XML

element

or

attribute

that

contains

special

characters”

on

page

76

For

a

DOCTYPE

declaration

type=doctype

“For

an

XML

DOCTYPE

declaration”

on

page

52

For

a

CDATA

section

type=cdata

“For

a

CDATA

section”

on

page

52

A

comment

to

be

added

to

the

XML

document

type=comment

“For

an

XML

comment”

on

page

76

A

processing

instruction

type=pi

“For

XML

processing

instructions”

on

page

76

Note:

Attribute

application-specific

information

can

also

include

a

tag

of

the

form

(

a

|

b

|

c

)

to

specify

a

multiple-cardinality

attribute

that

represents

a

repeating

choice.

For

more

information,

see

“Wrapper

business

object

definitions

based

on

DTDs”

on

page

46.

For

XML

elements:

Every

simple

(String)

business

object

attribute

that

represents

an

XML

element

must

include

the

elem_name

tag

in

its

application-specific

information

to

identify

the

associated

element:

elem_name=name

of

XML

element

For

example,

if

a

business

object

attribute

CustLName

represents

a

simple

XML

attribute,

its

application-specific

information

is:

Name

=

CustLName

AppSpecificInfo

=

elem_name=CustLName;

XML

element

names

can

contain

special

characters

(such

as

periods

and

hyphens).

However,

the

names

of

business

object

attributes

cannot

contain

these

special

characters.

Therefore,

the

name

of

the

XML

element

must

be

specified

in

the

elem_name

tag.

To

name

the

business

object

attribute,

the

XML

ODA

removes

any

special

characters

in

the

XML

element’s

name,

replacing

them

with

an

underscore

(_)

character.

In

the

following

example,

the

application-specific

information

for

the

XML

element

specifies

a

different

from

the

actual

XML

element’s

name

because

the

attribute

contains

a

special

character:

Name

=

Phone_Tag

AppSpecificInfo

=

elem_name=Phone#Tag;

The

actual

name

of

the

XML

element

contains

a

pound

sign

(#),

which

is

invalid

in

the

names

of

business-object

attributes.

Therefore,

the

elem_name

tag

in

the

Chapter

3.

XML

data

handler

49

application-specific

information

specifies

the

actual

XML

element

name.

In

the

name

of

the

associated

business-object

attribute,

the

pound

sign

is

replaced

with

an

underscore.

For

an

XML

element

with

only

PCDATA:

XML

elements

that

contain

only

character

data

are

mixed

elements,

which

contain

only

the

PCDATA

element

content

specifier.

A

business

object

attribute

that

represents

an

XML

element

with

only

PCDATA

must

have

the

following

type

tag

in

the

application-specific

information:

type=pcdata

In

this

case,

the

element

name

is

the

first

field

in

the

application-specific

information,

and

the

type

parameter

is

the

second

field.

For

example,

an

element

named

PartNumber

that

contains

only

PCDATA

would

have

the

following

definition

in

the

DTD:

<!ELEMENT

PartNumber

(#PCDATA)>

The

corresponding

attribute

in

the

business

object

definition

would

have

the

following

application-specific

information:

Name

=

PartNumber

AppSpecificInfo

=

elem_name=PartNumber;type=pcdata;

If

the

application-specific

information

also

contains

the

text

notag,

the

XML

data

handler

does

not

generate

XML

markup.

It

adds

only

the

value

of

the

attribute

itself

to

the

XML

document.

For

more

information,

see

“For

an

XML

element

with

character

data

and

attributes”

on

page

51.

For

an

XML

attribute:

If

a

business

object

attribute

represents

an

attribute

of

an

XML

element,

its

application-specific

information

must

include

the

following

tags:

v

The

attr_name

tag:

attr_name=attrName

XML

attribute

names

can

contain

special

characters

(such

as

periods

and

hyphens).

However,

the

names

of

business

object

attributes

cannot

contain

these

special

characters.

Therefore,

the

name

of

the

XML

attribute

must

be

specified

in

the

attr_name

tag.

To

name

the

business

object

attribute,

the

XML

ODA

removes

any

special

characters

in

the

XML

attribute’s

name.

v

The

type

tag:

type=attribute

This

type

tag

identifies

the

purpose

of

the

associated

business

object

attribute

as

an

XML

attribute.

Note:

As

described

in

“Business

object

structure”

on

page

35,

all

business

object

attributes

that

represent

XML

attributes

must

occur

within

the

business

object

definition

before

any

business

object

attributes

that

represent

XML

elements.

For

example,

if

a

business

object

attribute

named

ID

represents

an

XML

attribute

named

ID,

its

application-specific

information

is:

Name

=

ID

AppSpecificInfo

=

attr_name=ID;type=attribute;

For

another

example

that

uses

the

type=attribute

tag,

see

“For

an

XML

element

with

character

data

and

attributes”

on

page

51.

50

Data

Handler

Guide

For

an

XML

element

with

character

data

and

attributes:

If

an

XML

element

contains

only

PCDATA

or

CDATA

and

has

one

or

more

XML

attributes,

its

business

object

definition

must

include

the

following

attributes:

v

A

business-object

attribute

for

each

XML

attribute.

The

attribute

name

must

match

the

name

of

the

XML

attribute.

Its

attribute-level

application-specific

information

must

include

the

attr_name

and

type=attribute

tags.

For

more

information,

see

“For

an

XML

attribute”

on

page

50.

v

A

business-object

attribute

for

the

character

data

associated

with

the

PCDATA

or

CDATA

element-content

specifier.

This

attribute

contains

the

data

that

is

associated

with

the

parent

XML

element.

Its

application-specific

information

must

contain:

–

The

appropriate

type=typename

tag,

(where

typename

is

either

pcdata

or

cdata)

followed

by

a

semicolon

(;)

–

The

notag

keyword,

which

prevents

the

XML

data

handler

from

generating

duplicate

start

tags

(one

for

the

business

object

and

one

for

the

attribute).

The

XML

data

handler

creates

an

XML

start

and

end

tag

for

every

business

object

attribute

unless

notag

appears

in

the

application-specific

information

for

that

attribute.

For

example,

suppose

an

XML

element

named

Price

has

an

attribute

named

Currency

and

requires

data

for

Price:

<!ELEMENT

Price

(#PCDATA)>

<!ATTLIST

Price

Currency

NMTOKEN

#IMPLIED>

Because

the

Price

element

has

an

XML

attribute,

in

its

business

object

definition

a

business-object

attribute

must

created

for

Currency.

In

addition,

another

attribute

must

exist

to

hold

the

Price

data.

The

attribute

for

the

Price

data

must

specify

notag

in

its

application-specific

information

to

prevent

the

data

handler

from

creating

a

start

and

end

tag

for

this

attribute.

The

Price

child

business

object

might

look

like

this:

[BusinessObjectDefinition]

Name

=

Price

AppSpecificInfo

=

Price

[Attribute]

Name

=

Currency

Type

=

String

AppSpecificInfo

=

attr_name=Currency;type=attribute;

...

[End]

[Attribute]

Name

=

Price

Type

=

String

AppSpecificInfo

=

Price;type=pcdata;notag

...

[End]

In

this

case,

the

data

handler

does

not

generate

a

new

XML

element

for

the

Price

data

but

simply

adds

the

data

to

the

parent

element.

For

an

XML

element

or

attribute

that

contains

special

characters:

Business

object

attributes

representing

XML

elements

or

XML

attributes

with

content

that

require

escape

processing

must

include

the

following

tag

in

their

application-specific

information:

escape=true

Chapter

3.

XML

data

handler

51

An

attribute

requires

escape

processing

if

the

attribute

represents

an

XML

element

whose

value

contains

any

of

the

following

special

characters:

v

single

quotes

(’)

v

double

quotes

(″)

v

ampersand

(&)

v

less-than

sign

(<)

v

greater-than

sign

(>)

An

attribute

will

not

be

escape-processed

unless

it

contains

the

escape=true

tag

in

its

application-specific

information.

This

tag

must

be

placed

at

the

end

of

any

existing

application-specific

information.

For

example:

[Attribute]

Name=Data

Type=String

AppSpecificInfo=Price;type=pcdata;escape=true

[End]

If

the

attribute’s

application-specific

information

does

not

include

the

escape

tag,

the

XML

data

handler

checks

the

value

of

the

DefaultEscapeBehavior

property

to

determine

whether

to

perform

escape

processing:

v

If

DefaultEscapeBehavior

is

true,

the

XML

data

handler

performs

escape

processing

on

all

attribute

values.

v

If

DefaultEscapeBehavior

is

false,

the

XML

data

handler

will

only

perform

escape

processing

on

attributes

whose

application-specific

information

contains

the

escape

tag.

For

an

XML

DOCTYPE

declaration:

If

a

business

object

attribute

represents

a

document

type

declaration

in

the

prolog,

the

application-specific

information

must

include

the

following

type

tag:

type=doctype

For

example,

if

a

business

object

attribute

named

DocType

represents

a

DOCTYPE

element,

its

application-specific

information

is:

Name

=

DocType

AppSpecificInfo

=

type=doctype;

If

the

DocType

attribute

has

the

value:

DOCTYPE

CUSTOMER

"customer.dtd"

then

the

data

handler

generates

the

following

XML:

<!DOCTYPE

CUSTOMER

"customer.dtd">

This

application-specific

information

may

also

be

used

to

include

general

entity

declarations

in

the

XML

document.

However,

there

is

no

explicit

support

for

the

inclusion

of

an

internal

DTD

or

parameter

entity

declarations.

These

can

be

included

in

the

document

by

putting

the

entire

text

into

the

value

of

an

attribute

that

has

type=doctype

in

the

application-specific

information.

For

a

CDATA

section:

When

converting

an

XML

document

to

a

business

object,

the

XML

data

handler

parses

content

inside

the

CDATA

section.

The

data

handler

assumes

the

content

to

be

an

XML

instance.

If

a

business

object

attribute

represents

a

CDATA

section

within

an

XML

document,

the

application-specific

information

must

include

the

following

type

tag:

52

Data

Handler

Guide

type=cdata

For

example,

if

a

business

object

attribute

UserArea

represents

a

CDATA

section,

its

application-specific

information

is:

Name

=

UserArea

AppSpecificInfo

=

type=cdata;

For

an

XML

comment:

When

the

XML

data

handler

converts

a

business

object

to

an

XML

document,

you

can

specify

that

it

add

comments

to

the

XML

document.

To

enable

the

data

handler

to

add

comments,

take

the

following

steps:

v

Create

in

the

business

object

definition

the

business

object

attribute

(or

attributes)

that

represents

the

comments.

Note:

The

XML

ODA

does

not

automatically

generate

business

object

attributes

for

XML

comments.

You

must

manually

add

these

attributes

as

described

in

“Manually

creating

business

object

definitions”

on

page

81.

v

Include

the

following

type

tag

in

the

attribute-level

application-specific

information:

type=comment

v

In

the

actual

business

object,

specify

the

comment

text

as

the

value

for

this

attribute.

For

example,

if

a

business

object

attribute

named

Comment

represents

an

XML

comment

that

the

data

handler

should

add

to

an

XML

document,

the

Comment

attribute

would

appear

as

follows:

Name

=

Comment

AppSpecificInfo

=

type=comment;

If

this

attribute

has

the

value

″Customer

information

update

from

application

A″,

the

following

XML

is

generated:

<!--Customer

information

update

from

application

A-->

For

XML

processing

instructions:

If

a

business

object

attribute

represents

a

processing

instruction,

the

application-specific

information

must

include

the

following

type

tag:

type=pi

For

example,

if

a

business

object

attribute

named

XMLDeclaration

represents

the

XML

declaration

in

the

prolog,

the

application-specific

information

is:

Name

=

XMLDeclaration

AppSpecificInfo

=

type=pi;

If

the

attribute

has

the

value:

xml

version

=

"1.0"

then

the

XML

data

handler

generates

the

following

XML:

<?xml

version="1.0"?>

Creating

business

object

definitions

from

DTDs

A

DTD

describes

the

format

of

an

XML

document.

Therefore,

the

DTD

is

very

useful

for

obtaining

information

needed

for

the

business

object

definition.

To

translate

the

structure

information

in

the

DTD

to

a

business

object

definition,

you

can

use

the

XML

Object

Discovery

Agent

(ODA).

For

information

on

XML

ODA,

see

“Using

an

XML

ODA

to

create

business

object

definitions”

on

page

80.

Chapter

3.

XML

data

handler

53

Note:

Previous

versions

of

the

XML

data

handler

included

two

tools

to

create

business

object

definitions

from

DTDs:

Edifecs

SpecBuilder

and

the

deprecated

XMLBorgen

utility.

The

XML

ODA

replaces

both

these

tools

have

been

replaced

in

functionality.

Supported

DTD

structures

The

XML

ODA

supports

structures

of

a

DTD

including:

v

Entities

—

User-defined

entities

of

the

following

form

are

recognized

and

substituted

wherever

referenced:

<!ENTITY

%

name

value>

Note:

The

XML

ODA

removes

newline

characters

(\n),

carriage

returns

(\r),

or

tab

characters

(\t)

if

the

characters

occur

between

the

ENTITY

tag

and

its

content,

or

between

an

element

or

attribute

tag

and

the

content

of

the

tag.

v

External

DTDs

—

The

XML

ODA

supports

references

to

external

DTDs

(where

one

DTD

refers

to

one

or

more

other

DTDs).

They

can

resolve

external

DTDs

only

if

they

are

on

the

local

file

system;

they

cannot

access

a

URL

to

find

them.

Both

these

tools

always

try

to

find

references

to

the

external

DTDs

on

the

local

file

system;

they

do

not

ignore

them.

v

ANY

directive

—

The

XML

ODA

creates

a

String

attribute

for

an

element

with

ANY

as

its

content.

For

example,

if

the

DTD

has

the

following

construct:

<!ELEMENT

SCENE

(ANY)

>

The

corresponding

business

object

definition

is:

[Attribute]

Name

=

SCENE

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

AppSpecificInfo

=

SCENE;type=pcdata;

[End]

v

Prolog

—

The

XML

data

handler

populates

prolog

information

such

as

the

DOCTYPE

and

XML

declaration,

as

long

as

the

business

object

definition

contains

attributes

that

correspond

to

those

elements.

However,

the

data

handler

populates

only

the

name

of

the

DOCTYPE;

it

does

not

populate

other

possible

meta

information.

Unsupported

DTD

structures

The

XML

ODA

is

capable

of

processing

most

DTDs.

However,

it

does

not

support

the

following

DTD

structures:

v

Conditional

sections

—

These

sections

have

the

following

structure:

<![INCLUDE[

information

to

be

included

]]>

<![IGNORE[

information

to

be

ignored

]]>

v

Namespaces

—

A

tag

of

the

form

xxx:yyy

is

treated

simply

as

a

tag

xxx:yyy,

and

not

as

a

tag

yyy

belonging

to

a

namespace

xxx.

v

The

EMPTY

keyword

—

The

XML

ODA

will

generate

a

business

object

with

no

attributes

if

it

encounters

an

element

using

this

keyword.

Users

can

work

around

this

by

adding

a

dummy

attribute

to

the

business

object

definition

and

checking

its

″key″

flag.

For

more

information

about

key

attributes,

see

“Key

and

Foreign

Key

attribute

properties”

on

page

36.

54

Data

Handler

Guide

XML

documents

that

use

schema

documents

An

XML

Schema

is

a

data

model

for

XML

documents

that

uses

a

schema

document

(.xsd

extension)

to

define

the

template

(schema)

of

an

XML

document.

Unlike

a

DTD,

a

schema

document

uses

the

same

syntax

as

an

XML

document

to

describe

the

schema.

The

business

object

definitions

that

represent

the

schema

of

an

XML

document

use

information

in

the

schema

document

to

preserve

and

record

the

document’s

structure.

This

section

provides

the

following

information

about

deriving

structure

information

for

a

business

object

definition

from

a

schema

document:

v

“Requirements

for

business

object

definitions

based

on

schema

documents”

v

“Creating

business

object

definitions

from

schema

documents”

on

page

78

Requirements

for

business

object

definitions

based

on

schema

documents

To

ensure

that

business

object

definitions

that

represent

schema

documents

conform

to

the

requirements

of

the

XML

data

handler,

use

the

guidelines

in

this

section,

which

involve:

v

“Business

object

structure

for

schema

documents”

v

“Business

object

attribute

properties

for

schema

documents”

on

page

63

v

“Application-specific

information

for

XML

components

in

schema

documents”

on

page

64

Business

object

structure

for

schema

documents

A

business

object

that

is

processed

by

the

XML

data

handler

using

business

object

definitions

based

on

schema

documents

must

follow

these

rules:

v

The

schema

document

must

have

the

following

required

business

object

definitions:

–

A

top-level

business

object

definition

represents

the

schema

element.

–

A

root-element

business

object

definition

represents

the

schema

document’s

root

element.

A

regular,

mixed,

or

wrapper

business

object

definition

represents

the

root

element

in

the

schema

document.

For

more

information,

see

“Required

business

object

definitions

for

schema

documents”

on

page

56.

v

A

regular,

mixed,

or

wrapper

business

object

definition

can

represent

contained

XML

components

as

well.

An

example

schema

document

for

an

XML

document

is

shown

in

Figure

18.

The

schema

document

is

named

Order,

and

it

contains

elements

that

correspond

to

an

application

Order

entity.

This

sample

schema

document

describes

the

same

business

object

structure

as

the

one

that

the

sample

DTD

document

described.

Figure

13

on

page

44

shows

the

structure

of

a

business

object

definition

that

might

be

created

to

correspond

to

an

XML

document

associated

with

the

Order

schema

document.

Chapter

3.

XML

data

handler

55

Required

business

object

definitions

for

schema

documents:

To

represent

a

schema

document

requires

at

least

the

two

business

object

definitions

described

in

“Business

object

structure”

on

page

35.

For

a

schema

document,

these

business

object

definitions

have

the

following

additional

requirements:

v

The

top-level

business

object

represents

the

schema

element

and

must

contain

the

following:

–

An

attribute

named

XMLDeclaration

to

represent

the

XML

version

This

attribute

must

has

the

type=pi

tag

in

its

application-specific

information.

For

more

information,

see

“For

XML

processing

instructions”

on

page

76.

–

An

attribute

to

represent

the

root

element

in

the

schema

document

As

described

in

“Business

object

structure”

on

page

35,

this

attribute

must

have

as

its

type

a

single-cardinality

business

object,

whose

type

is

the

business

object

definition

for

the

root

element.

The

application-specific

information

must

list

the

name

of

this

element

with

the

elem_name

tag.

For

more

information,

see

“For

XML

elements”

on

page

72.
v

A

root-element

business

object

definition

represents

the

schema

document’s

root

element.

Because

a

schema

document

can

have

several

XML

components

defined

at

the

global

level,

you

can

tell

the

XML

ODA

which

element

to

consider

the

root

element

through

its

Root

configuration

property.

The

root-element

business

object

definition

can

contain

the

following

attributes:

–

A

schemaLocation

attribute

(optional)

to

represent

where

the

schema

document

(or

documents)

resides

<?xml

version="1.0"

encoding="UTF-8"?>

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:complexType

name="AccessoryType">

<xs:sequence>

<xs:element

ref="Quantity"/>

<xs:element

ref="Type"/>

</xs:sequence>

<xs:attribute

name="Name"

type="xs:string"

use="required"/>

</xs:complexType>

<xs:element

name="Order">

<xs:complexType>

<xs:sequence>

<xs:element

name="Unit"

type="UnitType"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element

name="PartNumber"

type="xs:string"/>

<xs:element

name="Price"

type="xs:string"/>

<xs:element

name="Quantity"

type="xs:string"/>

<xs:element

name="Type"

type="xs:string"/>

<xs:complexType

name="UnitType">

<xs:sequence>

<xs:element

ref="PartNumber"

minOccurs="0"/>

<xs:element

ref="Quantity"/>

<xs:element

ref="Price"/>

<xs:element

name="Accessory"

type="AccessoryType"

minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Figure

18.

Sample

XML

schema

document

56

Data

Handler

Guide

Whether

the

XML

ODA

generates

a

schemaLocation

attribute

in

the

top-level

business

object

definition

depends

on

the

setting

of

its

DocTypeOrSchemaLocation

configuration

property.

For

more

information,

see

“For

XML

schema

locations”

on

page

76.

–

An

attribute

for

each

of

the

XML

components

in

the

root

element

Note:

For

a

list

of

general

business

object

requirements,

see

“Requirements

for

business

object

definitions”

on

page

34.

Both

these

required

business

object

definitions

require

business-object-level

application-specific

information

that

defines

the

target

namespace

and

any

component-name

qualifications.

For

more

information,

see

“Business-object-level

application-specific

information”

on

page

64.

The

XML

schema

element

in

Figure

18

on

page

56

is

as

follows:

<?xml

version="1.0"

encoding="UTF-8"?>

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

Figure

19

shows

the

top-level

business

object

definition,

TopLevel,

which

represents

this

schema

element.

If

the

XML

ODA

generated

the

top-level

business

object

definition

in

Figure

19,

the

following

ODA

configuration

properties

would

have

been

set:

ODA

configuration

property

Value

of

property

BOPrefix

Not

set

TopLevel

"TopLevel"

Root

"Order"

DoctypeorSchemaLocation

true

For

an

example

of

a

root-element

business

object

definition,

see

Figure

26

on

page

69.

[BusinessObjectDefinition]

Name=TopLevel

AppSpecificInfo=elem_fd=qualified;attr_fd=unqualified

...

[Attribute]

Name=XMLDeclaration

Type=String

AppSpecificInfo=type=pi;

...

[End]

[Attribute]

Name=Order

Type=TopLevel_Order

AppSpecificInfo=elem_name=Order;

...

[End]

...

[End]

Figure

19.

Sample

top-level

business

object

definition

Chapter

3.

XML

data

handler

57

Regular

business

object

definitions

based

on

schema

documents:

A

regular

business

object

definition

represents

any

of

the

following

XML

constructs:

v

An

XML

element

that

contains

a

complex

type

(either

named

or

anonymous)

that

contains

a

sequence

group

of

child

elements.

Each

child

element

in

the

sequence

group

is

represented

as

an

attribute

in

the

business

object

definition.

For

more

information,

see

“For

XML

elements

within

a

complex

type”

on

page

73.

Note:

If

the

complex

type

contains

a

choice

or

an

all

group,

it

must

be

represented

by

a

wrapper

business

object

definition.

For

more

information,

see

“Wrapper

business

object

definitions

based

on

schema

documents”

on

page

60.

v

An

XML

element

that

contains

attributes

In

these

types

of

business

object

definition,

the

business-object-level

application-specific

information

does

not

require

any

special

information.

The

attributes

of

a

regular

business

object

definition

represent

the

elements

defined

within

the

XML

complex

type.

Note:

For

complex

types

that

contain

a

sequence

group

of

child

elements,

each

child

element

in

the

sequence

group

is

represented

as

an

attribute

in

the

business

object

definition.

For

example,

suppose

an

XML

element

named

Unit

is

defined

as:

<xsd:element

name="Unit">

<xsd:complexType>

...

</xsd:complexType>

</element>

The

following

business

object

definition

represents

the

Unit

element:

[BusinessObjectDefinition]

Name

=

MyApp_Unit

AppSpecificInfo

=

[Attribute]

...

Mixed

business

object

definitions

based

on

schema

documents:

A

mixed

business

object

definition

represents

a

mixed

XML

element,

one

that

contains

mixed

content

of

character

data

and

other

subelements.

A

schema

document

describes

a

mixed-type

XML

element

as

a

complex

type

with

the

mixed

attribute

set

to

true,

as

follows:

<xsd:complexType

mixed="true">

<xsd:sequence>

<xsd:element

name="subElement1"

type="subElementType"/>

...

</xsd:sequence>

</xsd:complexType>

Note:

Mixed

business

objects,

as

described

in

this

section,

are

used

for

a

repeating

list

of

elements

and

character

data.

If

your

choice

list

does

not

contain

any

character

data,

use

a

wrapper

business

object

as

described

in

“Qualified

component

names”

on

page

69.

Because

this

complex

type

sets

the

mixed

attribute

to

true,

it

can

contain

character

data

in

addition

to

the

one

or

more

subelements

it

defines.

If

the

mixed

attribute

is

set

to

false,

no

character

data

is

permitted

in

the

complex

type.

58

Data

Handler

Guide

For

example,

Figure

20

shows

a

mixed-type

XML

element

defined

in

a

schema

document.

To

represent

a

mixed-type

XML

element

requires

the

following

two

business

object

definitions:

v

The

parent

business

object

definition

This

parent

business

object

definition

contains

a

single

attribute

that

represents

a

multiple-cardinality

business

object

array.

This

attribute

has

as

its

type

the

business

object

definition

for

the

associated

wrapper

business

object.

The

parent

business

object

definition

includes

the

following

application-specific

information:

–

The

business-object-level

application-specific

information

consists

of

the

following

components:

-

The

name

of

the

associated

mixed-type

XML

element

followed

by

a

semicolon

(;)

-

The

tag

type=MIXED

–

The

multiple-cardinality

attribute

has

the

following

tag

in

its

application-specific

information:

(mixedTypeElement|subElement1|...|subElementN)

where:

-

mixedTypeElement

is

the

name

of

the

associated

mixed-type

XML

element

-

subelement1...subElementN

correspond

to

each

of

the

subelements

defined

in

the

complex

type

The

pipe

(|)

character

must

separate

each

of

the

subelements

and

the

entire

tag

must

be

enclosed

in

parentheses.
v

A

wrapper

business

object

definition

The

wrapper

business

object

definition

contains

attributes

for

the

mixed

data:

–

One

attribute

for

the

character

data,

which

requires

the

type=pcdata

tag

(to

indicate

character

data)

as

well

as

the

notag

tag

(to

indicate

that

the

data

is

associated

with

the

current

element,

not

a

separate

element).

–

One

attribute

for

each

of

the

subelements

defined

in

the

mixed-type

element.

Each

attribute

requires

the

type=pcdata

tag

(to

indicate

that

it

represents

a

simple

type).

For

more

information

on

the

type=pcdata

tag,

see

“For

XML

elements

within

a

complex

type”

on

page

73.

Note:

This

wrapper

business

object

definition

does

not

require

any

application-specific

information

at

the

business-object

level.

If

the

business

object

definition,

MyApp_Cust,

represents

the

Cust

mixed-type

element

in

Figure

20,

its

application-specific

information

is

as

follows:

<xsd:complexType

name="Cust"

mixed="true">

<xsd:sequence>

<xsd:element

name="Name"/>

<xsd:element

name="Address"/>

<xsd:element

name="Phone"/>

</xsd:sequence>

</xsd:complexType>

Figure

20.

Sample

schema

document

for

a

mixed-type

XML

element

Chapter

3.

XML

data

handler

59

[BusinessObjectDefinition]

Name

=

MyApp_Cust

AppSpecificInfo

=

type=MIXED;

[Attribute]

Name=Cust_wrapper1

Type=MyApp_CustWrapper1

Cardinality=n

AppSpecificInfo=(Cust|Address|Phone)

...

[End]

Wrapper

business

object

definitions

based

on

schema

documents:

A

wrapper

business

object

definition

represents

a

repeating

choice

list.

This

type

of

business

object

definition

is

needed

when

an

XML

element

has

children

that

can

appear

in

any

order

and

be

of

any

cardinality.

A

wrapper

business

object

preserves

the

order

and

cardinality

of

the

child

elements

in

a

particular

XML

document.

Note:

Wrapper

business

objects,

as

described

in

this

section,

are

used

for

a

repeating

choice

list

that

contains

elements,

not

for

character

data.

If

your

choice

list

contains

any

character

data,

use

a

mixed

business

object.

For

more

information,

see

“Mixed

business

object

definitions

based

on

schema

documents”

on

page

58.

A

schema

document

can

describe

a

choice-list

XML

element

as

a

complex

type

that

contains

either

of

the

following

model

groups:

v

A

choice

group,

which

defines

an

unordered

list

of

elements

in

which

only

one

element

must

appear:

<xsd:complexType>

<xsd:choice>

...

</choice>

</complexType>

To

represent

an

XML

element

with

a

complex

type

that

contains

a

choice

group,

the

XML

data

handler

expects

the

same

hierarchical

business

object

definition

that

it

does

for

a

choice-list

XML

element

defined

in

a

DTD:

–

A

parent

business

object

definition

that

contains

a

single

attribute

with

multiple

cardinality

whose

type

is

the

wrapper

business

object

–

A

wrapper

business

object

definition

that

contains

an

attribute

for

each

subelement

in

the

choice

group.

These

business

object

definitions

contain

business-object-level

application-specific

information

in

the

same

format

as

the

choice-list

XML

element

for

a

DTD.

For

more

information,

see

“Wrapper

business

object

definitions

based

on

DTDs”

on

page

46.

v

An

all

group,

which

defines

an

unordered

list

of

elements

in

which

elements

can

appear

no

more

than

once

each:

<xsd:complexType>

<xsd:all>

...

</xsd:all>

</xsd:complexType>

To

represent

an

XML

element

with

a

complex

type

that

contains

an

all

group,

the

XML

data

handler

expects

a

hierarchical

business

object

definition

with

the

following

business

object

definitions:

–

A

parent

business

object

definition

that

contains

a

single

attribute

with

multiple

cardinality

whose

type

is

the

wrapper

business

object

60

Data

Handler

Guide

–

A

wrapper

business

object

definition

that

contains

an

attribute

for

each

subelement

in

the

all

group

These

business

object

definitions

contain

business-object-level

application-specific

information

in

the

same

format

as

the

choice-list

XML

element

for

a

DTD.

For

more

information,

see

“Wrapper

business

object

definitions

based

on

DTDs”

on

page

46.

To

indicate

cardinality,

these

model

groups

support

occurrence

constraints

with

the

minOccurs

and

maxOccurs

attributes.

For

more

information,

see

Table

20

on

page

63.

As

an

example,

the

XML

element

definition

in

a

schema

document

might

be:

<xsd:element

name="CUST">

<xsd:complexType>

<xsd:choice

minOccurs="0"

maxOccurs="unbounded">

<xsd:element

ref="U"/>

<xsd:element

ref="I"/>

<xsd:element

ref="B"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

This

element

contains

three

subelements

that

are

optional

(although

one

subelement

out

of

the

list

must

occur)

and

that

can

appear

in

any

order.

Figure

14

on

page

46

shows

an

XML

document

of

this

type.

Figure

16

on

page

47

shows

the

parent

business

object

definition

for

this

XML

document.

Figure

17

on

page

48

shows

the

wrapper

business

object

definition.

Type

substitution

in

business

object

definitions

based

on

schema

documents:

Type

substitution

enables

derived

types

to

appear

in

place

of

their

base

types

in

individual

XML

document

instances.

When

type

substitution

occurs,

an

element

conforming

to

a

declaration

with

one

data

type

can

have

any

data

type

that

either

extends

or

restricts

it.

In

the

following

schema

definition,

ShirtType

and

HatType

are

derived

types

of

the

basic

ProductType:

Chapter

3.

XML

data

handler

61

Based

on

the

schema

above,

the

following

XML

document

is

valid:

Wherever

ProductType

occurs,

its

derived

types,

ShirtType

and

HatType,

indicated

by

the

xsi:type

attribute,

can

appear

instead.

To

represent

XML

documents

in

which

type

substitution

occurs,

the

XML

data

handler

creates

a

wrapper

business

object

as

a

child

attribute

of

the

XML

document.

This

wrapper

business

object

has

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element

name="items"

type="ItemsType"/>

<xsd:complexType

name="ItemsType">

<xsd:sequence>

<xsd:element

ref="product"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element

name="product"

type="ProductType"/>

<xsd:complexType

name="ProductType">

<xsd:sequence>

<xsd:element

name="number"

type="xsd:string"/>

<xsd:element

name="name"

type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType

name="ShirtType">

<xsd:complexContent>

<xsd:extension

base="ProductType">

<xsd:sequence>

<xsd:element

name="size"

type="xsd:string"/>

<xsd:element

name="color"

type="xsd:string"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType

name="HatType">

<xsd:complexContent>

<xsd:extension

base="ProductType">

<xsd:sequence>

<xsd:element

name="size"

type="xsd:string"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

Figure

21.

Sample

schema

with

type

substitution

<items

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<product>

<number>999</number>

<name>Special

Seasonal</name>

</product>

<product

xsi:type="ShirtType">

<number>557</number>

<name>Short-Sleeved

Linen

Blouse</name>

<size>M</size>

<color>blue</color>

</product>

<product

xsi:type="HatType">

<number>443</number>

<name>Four-Gallon

Hat</name>

<size>L</size>

</product>

</items>

Figure

22.

Derived

types

in

an

XML

document

62

Data

Handler

Guide

child

attributes

corresponding

to

the

compex

type

(ProductType

in

Figure

21

on

page

62)

and

its

derived

types

(ShirtType

and

HatType).

Table

18

and

Table

19

show

the

business

object

definitions

that

would

be

generated

from

the

XML

schema

above.

Table

18.

Business

object

definitions

for

ItemsType

Attribute

Name

Type

Cardinality

ASI

Product

ProductTypeWrapper

N

(product);typeSub=true

Table

19.

Business

object

definitions

for

ProductTypeWrapper

Attribute

Type

Cardinality

ASI

ProductType

ProductType

1

Elem_name=product;

xsiType=ProductType

ShirtType

ShirtType

1

Elem_name=product;

xsiType=ShirtType;

HatType

HatType

1

Elem_name=product;

xsiType=HatType;

Business

object

attribute

properties

for

schema

documents

When

the

business

object

definitions

for

an

XML

document

are

based

on

schema

documents,

the

business

object

attribute

properties

have

the

restrictions

discussed

in

“Business

object

attribute

properties”

on

page

36.

In

addition,

the

schema-document

syntax

can

determine

the

″required-ness″

of

a

business

object

attribute.

The

″required-ness″

is

a

combination

of

factors,

including

cardinality

and

whether

the

attribute

is

a

key,

that

determines

whether

the

XML

data

handler

requires

the

attribute.

If

an

attribute

is

required,

its

Required

attribute

property

must

be

set

to

true.

The

setting

of

the

Required

attribute

property

depends

on

the

XML

element

and

attribute

specifications,

as

well

as

the

settings

of

the

Cardinality,

Key,

and

Foreign

Key

attribute

properties,

as

follows:

v

The

cardinality

of

a

business

object

attribute

is

determined

by

the

Occurrence

indicator

in

the

schema

document.

This

cardinality

affects

whether

the

attribute

is

required.

Table

20

outlines

the

cardinality

and

″required-ness″

for

possible

combinations

of

element

declarations

in

a

schema

document.

Table

20.

Cardinality

and

“Required-ness”

for

a

schema

document

Schema

fragment

occurrence

indicator

Cardinality

Required

None

specified

1

Yes

maxOccurs

>

1

N

Yes

maxOccurs

=

″unbounded″

N

Yes

minOccurs=0

No

effect

No

minOccurs>1

N

Yes

v

Whether

a

business

object

attribute

is

required

is

also

determined

by

the

use

attribute

in

the

schema

document.

Table

21

outlines

the

″required-ness″

for

possible

values

of

the

use

attribute.

Chapter

3.

XML

data

handler

63

Table

21.

“Required-ness”

for

a

schema

document

Schema

fragment

occurrence

attribute:

use

Cardinality

Required

None

specified

No

effect

No

use=required

No

effect

Yes

v

Whether

a

business

object

attribute

is

a

primary

or

foreign

key

is

determined

by

the

id

attribute

in

the

schema

document.

The

presence

of

a

key

affects

whether

the

attribute

is

required.

Table

22

outlines

how

value

of

the

id

attribute

affects

the

business

object

attribute’s

″required-ness″.

Table

22.

Keys

and

″Required-ness″

for

a

schema

document

Schema

fragment

attribute:

id

Key

Required

Comment

id=ID

Yes

No

Application-specific

information

for

XML

components

in

schema

documents

This

section

provides

the

following

information

on

the

application-specific

information

format

for

business

object

definitions

based

on

schema

documents:

v

“Business-object-level

application-specific

information”

v

“Attribute

application-specific

information”

on

page

71

Business-object-level

application-specific

information:

The

XML

data

handler

uses

the

following

types

of

business

object

definitions

to

represent

the

different

kinds

of

root

XML

elements

defined

in

a

schema

document.

These

types

of

business

object

definitions

are

distinguished

by

the

application-specific

information

at

the

business

object

level.

Table

23.

Tags

for

business-object-level

application-specific

information

Tag

in

application-specific

information

Description

For

more

information

target_ns

Specifies

the

target

namespace

of

the

schema

document

“Schema

namespaces”

attr_fd

Specifies

whether

attribute

names

are

qualified

or

unqualified.

“Qualified

component

names”

on

page

69

elem_fd

Specifies

whether

the

names

of

locally

declared

elements

are

qualified

or

unqualified.

“Qualified

component

names”

on

page

69

Note:

Business-level

application-specific

information

can

also

include

the

type=MIXED

tag.

For

more

information,

see

“Mixed

business

object

definitions

based

on

schema

documents”

on

page

58.

Schema

namespaces:

Unlike

DTDs,

schema

documents

require

definition

of

at

least

one

namespace.

A

namespace

provides

a

context

for

the

names

of

elements,

element

types,

and

attributes

within

an

XML

document.

A

namespace

is

a

Uniform

Resource

Identifier

(URI),

which

includes

HTTP,

FTP,

as

well

as

other

kinds

of

paths.

Table

24

shows

the

namespaces

that

a

schema

document

can

declare

to

be

able

to

resolve

the

references

between

schema

components.

64

Data

Handler

Guide

Table

24.

XML

namespaces

Namespace

Description

Name

Common

prefix

XML

Schema

Namespace

Defines

every

component

used

in

the

XML

Schema

Definition

Language

(XSDL),

such

as

element,

schema,

and

simpleType.

http://www.w3.org/2001/

XMLSchema

xsd,

xs

XML

Schema

Instance

Namespace

Defines

four

attributes

associated

with

the

schema

instance:

type,

nil,

schemaLocation,

noNamespaceSchemaLocation

http://www.w3.org/2001/

XMLSchema-instance

xsi

User-defined

namespace

Defines

every

component

declared

or

defined

by

a

global

declaration

(such

as

element,

attribute,

type,

or

group).

Note:

Locally

declared

elements

may

or

may

not

use

the

target

namespace.

For

more

information,

see

“Qualified

component

names”

on

page

69.

User-defined

User-defined

Note:

The

XML

ODA

supports

schema

documents

with

multiple

target

namespaces.

Every

schema

document

can

declare

one

target

namespace,

which

identifies

the

namespace

to

which

global

components

(elements,

attributes,

types,

or

groups)

belong,

with

the

targetNamespace

tag.

If

the

schema

element

includes

the

targetNamespace

tag,

each

business

object

definition

generated

for

that

schema

document

must

contain

the

target_ns

tag

in

its

application-specific

information

to

specify

the

target

namespace

declared

for

the

XML

document:

target_ns=URI

address

for

target

namespace

The

target_ns

tag

must

exist

in

the

business-object-level

application-specific

information

for

all

business

object

definitions,

as

follows:

v

For

the

top-level

business

object

definition,

the

value

of

the

target_ns

tag

specifies

the

value

that

the

targetNamespace

attribute

of

the

XML

schema

element

specifies.

v

Each

business

object

definition

that

represents

an

XML

element

must

also

include

the

target_ns

tag

in

its

application-specific

information.

Because

every

global

component

(such

as

element,

attribute,

or

type)

belongs

to

its

schema

document’s

target

namespace,

the

business

object

definitions

that

represent

these

components

also

specify

the

schema

document’s

target

namespace.

Note:

Previous

versions

of

the

XML

data

handler

expected

the

top-level

business

object

definition

to

have

attributes

for

the

namespace

prefixes

and

to

use

the

appropriate

type=defaultNS

and

type=xmlns

tags

in

the

attribute-level

application-specific

information.

This

mechanism

for

defining

namespace

prefixes

has

been

replaced,

although

the

XML

data

handler

continues

to

support

it

for

backward

compatibility

with

existing

business

object

definitions.

New

business

object

definitions

should

use

the

target_ns

tag

as

described

in

this

section.

The

XML

ODA

has

been

modified

to

use

the

target_ns

tag.

Chapter

3.

XML

data

handler

65

For

example,

the

schema

document

in

Figure

23

defines

the

XML

Schema

Namespace

(with

the

xsd

prefix)

and

a

target

namespace

(which

is

the

default

namespace).

The

XML

ODA

generates

three

business

object

definitions

for

this

schema

document:

BOPrefix_TopLevel,

BOPrefix_TopLevel_Customer,

and

BOPrefix_TopLevel_TaxInfoType

(where

BOPrefix

and

TopLevel

are

the

values

of

these

ODA

configuration

properties).

All

three

of

these

business

object

definitions

have

the

following

in

their

business-object-level

application-specific

information:

target_ns=http://www.ibm.com/ns1;elem_fd=unqualified;attr_fd=unqualified

Note:

Because

of

the

schema

element

in

Figure

23

includes

neither

the

elementFormDefault

nor

the

attributeFormDefault

attribute,

this

application-specific

information

includes

the

elem_fd

and

attr_fd

tags

set

to

unqualified.

For

more

information,

see

“Qualified

component

names”

on

page

69.

One

schema

document

can

only

define

one

target

namespace.

However,

it

can

include

elements

and

attributes

defined

in

another

schema

document’s

target

namespace

by

using

the

import

element.

Figure

24

shows

a

schema

document

that

is

based

on

the

Schema1.xsd

document

defined

in

Figure

23.

This

schema

document

imports

the

ns2

namespace,

which

declares

the

TaxInfoType

complex

type,

the

BillTo

element,

and

the

Name

attribute.

<?xml

version="1.0"

encoding="UTF-8"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.ibm.com/ns1"

xmlns="http://www.ibm.com/ns1">

<xsd:complexType

name="TaxInfoType">

<xsd:sequence>

<xsd:element

name="SSN"

type="string">

</xsd:element>

<xsd:element

name="State"

type="string">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:element

name="Customer">

<xsd:complexType>

<xsd:sequence>

<xsd:element

name="TaxInfo"

type="TaxInfoType">

</xsd:element>

<xsd:element

name="BillTo"

type="xsd:string">

</xsd:element>

</xsd:sequence>

<xsd:attribute

name="Name"

type="xsd:string">

</xsd:attribute>

<xsd:attribute

name="ID"

type="xsd:string">

</xsd:attribute>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Figure

23.

The

Schema1.xsd

sample

schema

document

66

Data

Handler

Guide

The

business

object

definition

for

the

root

element,

Customer2,

must

specify

this

alternate

namespace

for

its

attributes

that

represent

the

TaxInfo,

BillTo,

and

Name

XML

components,

as

follows:

v

The

TaxInfo

attribute

has

as

its

type

a

business

object

definition

that

represents

the

TaxInfoType,

which

is

defined

in

the

ns2

(http://www.example.com/ns2)

namespace

(see

Figure

25

on

page

68).

v

The

BillTo

attribute

has

the

elem_ns

tag

in

its

application-specific

information

to

specify

the

ns2

namespace

as

the

source

of

the

associated

BillTo

element.

v

The

Name

attribute

has

the

attr_ns

tag

in

its

application-specific

information

to

specify

the

ns2

namespace

as

the

source

of

its

associated

XML

attribute,

Name.

Figure

25

shows

the

schema

document

that

defines

the

TaxInfoType,

BillTo,

and

Name

XML

components

in

the

ns2

namespace.

<?xml

version="1.0"

encoding="UTF-8"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.com/ns2"

xmlns:ns2="http://www.example.com/ns2">

<xsd:complexType

name="TaxInfoType">

<xsd:sequence>

<xsd:element

name="SSN"

type="xsd:string"/>

<xsd:element

name="State"

type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:attribute

name="Name"

type="xsd:string"></xsd:attribute>

<xsd:complexType

name="AddressType">

<xsd:sequence>

<xsd:element

name="Zip"

type="xsd:string">

</xsd:element>

<xsd:element

name="Street"

type="xsd:string">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:element

name="BillTo"

type="ns2:AddressType">

</xsd:element>

</xsd:schema>

Figure

24.

Importing

a

target

namespace

Chapter

3.

XML

data

handler

67

Figure

25

shows

the

business

object

definition

for

the

Customer2

root

element.

<?xml

version

"1.0"

encoding="UTF-8"?>

<schema

smlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.com/ns2"

attributeFormDefault="qualified"

elementFormDefault="qualified"

xmlns:ns2="http://www.example.com/ns2">

<complexType

name="TaxInfoType">

<sequence>

<element

name="SSN"

type="string">

</element>

<element

name="State"

type="string">

</element>

</sequence>

</complexType>

<attribute

name="Name"

type="string"

</attribute>

<complexType

name="AddressType">

<sequence>

<element

name="Zip"

type="string">

</element>

<element

name="Street"

type="string">

</element>

</sequence>

</complexType>

<element

name="BillTo"

type="ns2:AddressType">

</element>

</schema>

Figure

25.

Defining

the

second

namespace

68

Data

Handler

Guide

Qualified

component

names:

Within

the

XML

document,

names

of

components

associated

with

a

namespace

are

either

qualified

or

unqualified,

as

follows:

v

Unqualified

names

do

not

contain

a

prefix

and

are

not

part

of

any

namespace.

v

Qualified

names

are

one

of

the

following:

–

The

component

name

contains

a

prefix

associated

with

a

namespace.

You

can

assign

a

prefix

to

one

or

more

namespaces.

You

declare

a

namespace’s

prefix

with

the

xmlns:prefix

tag,

where

prefix

is

the

declared

prefix.

In

the

component

definition

within

the

schema

document,

these

component

names

are

qualified

because

they

have

a

prefix

prepended

to

the

component

name

(prefix:componentName).

–

The

names

do

not

contain

a

prefix

but

are

part

of

the

default

namespace

(elements

only).

The

default

namespace

specifies

the

namespace

to

associate

with

components

that

do

not

include

a

prefix

in

their

component

names.

You

declare

the

default

namespace

with

the

xmlns

tag.

For

the

XML

data

handler

to

correctly

handle

XML-to-business-object

conversion,

the

namespaces

for

the

XML

document

and

the

schema

document

must

match,

as

follows:

[BusinessObjectDefinition]

Name=TopLevel_Customer2

AppSpecificInfo=target_ns=http://www.example.com/ns1;elem_fd=qualified;

attr_fd=qualified

...

[Attribute]

Name=Name

Type=String

AppSpecificInfo=attr_name=Name;type=attribute;attr_ns=http://www.example.com/ns2

...

[End]

[Attribute]

Name=ID

Type=String

AppSpecificInfo=attr_name=ID;type=attribute

...

[End]

[Attribute]

Name=schemaLocation

Type=String

AppSpecificInfo=attr_name=schemaLocation;type=xsischemalocation

...

[End]

[Attribute]

Name=TaxInfo

Type=TopLevel_TaxInfoType

AppSpecificInfo=elem_name=TaxInfo

...

[End]

[Attribute]

Name=BillTo

Type=TopLevel_AddressType

AppSpecificInfo=elem_name=BillTo;elem_ns=http://www.example.com/ns2

...

[End]

...

[End]

Figure

26.

Sample

root-element

business

object

definition

Chapter

3.

XML

data

handler

69

-

If

a

schema

document

specifies

a

default

namespace,

the

XML

document

must

also

specify

default

namespace.

-

If

a

schema

document

does

not

have

a

default

namespace,

the

XML

document

cannot

have

a

default

namespace.

The

elementFormDefault

attribute

of

the

schema

element

specifies

whether

the

names

of

locally

declared

elements

are

qualified.

By

default,

locally

declared

elements

are

unqualified

and

belong

to

the

default

namespace.

The

value

of

the

elementFormDefault

attribute

determines

the

value

of

the

elem_fd

tag

in

the

business-object-level

application-specific

information,

as

Table

25

shows.

Table

25.

Setting

the

elem_fd

tag

Value

of

elementFormDefault

Value

of

elem_fd

tag

"unqualified"(or

attribute

is

not

specified

at

all)

elem_fd=unqualified

"qualified"

elem_fd=qualified

For

example,

the

schema

document

in

Figure

23

on

page

66

does

not

contain

the

elementFormDefault

attribute

in

its

schema

element.

Therefore,

the

business-object-level

application-specific

information

in

all

the

business

object

definitions

for

this

schema

document

(BOPrefix_TopLevel,

BOPrefix_TopLevel_Customer,

and

BOPrefix_TopLevel_TaxInfoType,

where

BOPrefix

and

TopLevel

are

the

values

of

these

ODA

configuration

properties)

contains

the

tag:

elem_fd=unqualified

Note:

The

business-object-level

application-specific

information

for

these

three

business

object

definitions

would

contain

this

same

tag

if

the

schema

document’s

schema

element

included

the

attribute:

elementFormDefault="unqualified"

If

an

individual

XML

element

includes

the

form

attribute,

this

value

of

the

form

attribute

overrides

any

setting

of

the

elementFormDefault

attribute.

The

attributeFormDefault

attribute

of

the

schema

element

specifies

whether

the

names

of

elements

are

qualified.

By

default,

attribute

names

are

unqualified

and

do

not

belong

to

any

namespace.

The

value

of

the

attributeFormDefault

attribute

determines

the

value

of

the

attr_fd

tag

in

the

business-object

level

application-specific

information

in

the

same

way

as

the

value

of

the

elementFormDefault

attribute

determines

the

value

of

the

elem_fd

tag,

as

Table

26

shows.

Table

26.

Setting

the

attr_fd

tag

Value

of

attributeFormDefault

Value

of

elem_fd

tag

"unqualified"(or

attribute

is

not

specified

at

all)

attr_fd=unqualified

"qualified"

attr_fd=qualified

For

example,

the

schema

document

in

Figure

23

on

page

66

does

not

contain

the

attributeFormDefault

attribute

in

its

schema

element.

Therefore,

the

business-object-level

application-specific

information

in

all

the

business

object

definitions

for

this

schema

document

(BOPrefix_TopLevel,

70

Data

Handler

Guide

BOPrefix_TopLevel_Customer,

and

BOPrefix_TopLevel_TaxInfoType,

where

BOPrefix

and

TopLevel

are

the

values

of

these

ODA

configuration

properties)

contains

the

tag:

attr_fd=unqualified

Note:

The

business-object-level

application-specific

information

for

these

three

business

object

definitions

would

contain

this

same

tag

if

the

schema

document’s

schema

element

included

the

attribute:

attributeFormDefault="unqualified"

Attribute

application-specific

information:

The

attribute

of

a

business

object

definition

can

represent

the

following

XML

components:

v

“For

XML

elements”

on

page

72

v

“For

XML

elements

within

a

complex

type”

on

page

73

v

“For

an

XML

attribute”

on

page

75

v

“For

XML

processing

instructions”

on

page

76

v

“For

an

XML

comment”

on

page

76

v

“For

an

XML

element

or

attribute

that

contains

special

characters”

on

page

76

v

“For

XML

schema

locations”

on

page

76

Table

27

shows

the

tags

for

attribute-level

application-specific

information

for

these

different

XML

components

along

with

the

sections

in

this

manual

that

describe

these

tags

in

more

detail.

Table

27.

Tags

for

attribute

application-specific

information

Representation

of

business

object

attribute

Application-specific

information

For

more

information

An

XML

element

elem_name=name

of

XML

element

elem_ns=namespace

for

element’s

definition

elem_fd=value

of

form

attribute

“For

XML

elements”

on

page

72

An

XML

element

within

a

complex

type

type=pcdata

“For

XML

elements

within

a

complex

type”

on

page

73

An

attribute

for

an

XML

element

attr_name=name

of

XML

attribute

type=attribute

attr_ns=namespace

for

attribute’s

definition

attr_fd=value

of

form

attribute

“For

an

XML

attribute”

on

page

75

An

XML

element

or

attribute

whose

content

includes

special

characters

escape=true

“For

an

XML

element

or

attribute

that

contains

special

characters”

on

page

76

A

comment

to

be

added

to

the

XML

document

type=comment

“For

an

XML

comment”

on

page

76

A

processing

instruction

type=pi

“For

XML

processing

instructions”

on

page

76

The

schemaLocation

or

noNamespaceSchemaLocationattribute

for

an

XML

instance.

type=xsischemalocation

type=xsinoNSlocation

“For

XML

schema

locations”

on

page

76

Chapter

3.

XML

data

handler

71

Note:

Attribute

application-specific

information

can

also

include

a

tag

of

the

form

(

a

|

b

|

c

)

to

specify

a

multiple-cardinality

attribute

that

represents

a

repeating

choice.

For

more

information,

see

“Wrapper

business

object

definitions

based

on

schema

documents”

on

page

60.

For

XML

elements:

If

a

business

object

attribute

represents

an

XML

element,

its

application-specific

information

must

include

the

elem_name

tag

to

identify

the

associated

element:

elem_name=name

of

XML

element

XML

element

names

can

contain

special

characters

(such

as

periods

and

hyphens).

However,

the

names

of

business

object

attributes

cannot

contain

these

special

characters.

Therefore,

the

name

of

the

XML

element

must

be

specified

in

the

elem_name

tag.

To

name

the

business

object

attribute,

the

XML

ODA

removes

any

special

characters

in

the

XML

element’s

name.

A

business

object

attribute

can

represent

an

XML

element

in

the

following

cases:

v

If

the

XML

element

is

(or

contains)

an

XML

complex

type

In

this

case,

the

business

object

attribute

is

a

complex

attribute

whose

data

type

is

the

business

object

definition

that

represents

the

XML

complex

type.

Its

elem_name

tag

(in

the

attribute’s

application-specific

information)

contains

the

name

of

the

XML

element

(or

complex

type).

v

If

the

XML

element

is

part

of

an

XML

complex

type

In

this

case,

the

business

object

attribute

is

a

simple

attribute

of

type

String.

Its

application-specific

information

includes

the

elem_tag

(which

contains

the

name

of

the

XML

element

within

the

complex

type)

and

the

type=pcdata

tag.

For

more

information,

see

“For

XML

elements

within

a

complex

type”

on

page

73.

A

business

object

attribute

that

represents

an

XML

element

can

also

include

the

following

tags

in

its

application-specific

information:

v

The

elem_fd

tag

specifies

the

setting

of

the

XML

element’s

form

attribute,

which

indicates

whether

the

names

of

locally

declared

element

are

qualified

or

unqualified.

If

an

XML

element

has

specified

the

attribute

form="qualified",

the

value

of

elem_fd

is

set

to

the

value

of

the

form

attribute.

For

example,

suppose

a

locally

declared

XML

element

has

the

following

definition:

<xsd:element

ref="Name"

form="qualified"></xsd:element>

Its

associated

business

object

attribute

would

have

the

following

format:

[Attribute]

Name=Name

Type=String

AppSpecificInfo=elem_name=Name;elem_fd=qualified;

...

If

an

XML

element

does

not

specify

the

form

attribute,

the

value

of

the

elementFormDefault

attribute

(on

the

schema

element)

determines

whether

element

names

are

qualified.

For

more

information,

see

“Qualified

component

names”

on

page

69.

v

The

elem_ns

tag

specifies

the

target

namespace

for

the

XML

element,

if

this

namespace

is

different

from

the

schema

document’s

target

namespace.

This

tag

is

required

when

a

schema

document

uses

multiple

namespaces.

If

the

XML

element

referenced

in

one

schema

document

is

defined

in

the

target

namespace

of

some

other

schema

document,

this

tag

lists

the

name

of

that

namespace.

For

example,

suppose

an

XML

element

within

a

complex

type

has

the

following

definition:

72

Data

Handler

Guide

<xsd:element

ref="ns2:BillTo"></xsd:element>

Its

associated

business

object

attribute

would

have

the

following

format:

[Attribute]

Name=BillTo

Type=String

AppSpecificInfo=elem_name=BillTo;elem_ns=http:/www.imb.com/ns2;

...

For

a

complete

example

of

a

schema

document

that

includes

XML

elements

defined

in

a

second

namespace,

see

“Schema

namespaces”

on

page

64.

For

XML

elements

within

a

complex

type:

If

a

business

object

definition

represents

an

XML

complex

type

(complexType),

the

contents

of

this

complex

type

are

represented

by

simple

(String)

attributes

within

this

business

object

definition.

These

business

object

attributes’

application-specific

information

must

include

the

elem_name

tag

to

identify

the

name

of

the

element.

Note:

For

more

information

on

this

tag,

see

“For

XML

elements”

on

page

72.

Within

an

XML

complex

type,

a

business

object

attribute

can

represent

the

kinds

of

complex-type

content

shown

in

Table

28.

Table

28.

Contents

of

an

XML

complex

type

Type

of

complex-type

element

Description

Attribute

application-specific

information

Simple

XML

element

An

element

that

contains

only

character

content.

It

cannot

contain

any

other

elements

or

XML

attributes.

It

can

occur

only

within

a

complex

type

type=pcdata

Simple

content

Only

character

data

(no

element)

type=pcdata;notag

XML

element

with

attributes

An

element

that

contains

both

character

data

and

some

combination

of

subelements

and

attributes

None.

This

type

of

XML

element

must

be

represented

with

a

business

object

definition,

not

as

a

single

business

object

attribute.

For

more

information,

see

“Regular

business

object

definitions

based

on

schema

documents”

on

page

58.

As

an

example

of

the

use

of

the

type=pcdata

tag,

the

schema

document

in

Figure

23

on

page

66

contains

a

definition

for

the

TaxInfoType

complex

type,

which

contains

only

simple

XML

elements.

The

business

object

definition

for

the

TaxInfoType

XML

complex

type

(BOPrefix_TopLevel_TaxInfoType,

where

BOPrefix

and

TopLevel

are

the

values

of

the

respectively

named

ODA

configuration

properties)

would

contain

two

attributes.

Each

attribute

would

have

the

name

of

the

associated

XML

element

in

its

application-specific

information,

as

Figure

27

shows.

Because

this

complex

type

contains

only

simple

XML

elements

(no

subelements

or

attributes),

the

corresponding

business

object

attributes

must

also

contain

the

type=pcdata

tag

in

their

application-specific

information.

Chapter

3.

XML

data

handler

73

As

an

example

of

the

notag

keyword

used

in

conjunction

with

the

type=pcdata

tag,

suppose

an

XML

element

named

Price

is

the

PriceType

complex

type,

which

has

only

simple

content;

that

is,

it

contains

only

character

data.

In

this

case,

the

simpleContent

element

defined

an

attribute

named

Currency

and

requires

data

for

Price:

<xsd:element

name="Price"

type="PriceType">

<xsd:complexType

name="PriceType">

<xsd:simpleContent>

<xsd:extension

base="xsd:decimal">

<xsd:attribute

name="Currency"

type="xsd:NMTOKEN"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</element>

The

business

object

definition

for

the

PriceType

complex

type

contains

an

attribute

to

hold

the

character

data

associated

with

simple

content.

The

application-specific

information

for

this

attribute

must

contain

the

following:

type=pcdata;notag

The

notag

keyword

prevents

the

XML

data

handler

from

generating

duplicate

start

tags

(one

for

the

business

object

definition

and

one

for

the

attribute).

The

XML

data

handler

creates

an

XML

start

and

end

tag

for

every

business

object

attribute

unless

notag

appears

in

the

application-specific

information

for

that

attribute.

The

Price

child

business

object

definition

might

look

like

this:

[BusinessObjectDefinition]

Name

=

Price

AppSpecificInfo

=

[Attribute]

Name

=

Currency

Type

=

String

AppSpecificInfo

=

attr_name=Currency;type=attribute;

...

[End]

[Attribute]

Name

=

Price

[BusinessObjectDefinition]

Name=BOPrefix_TopLevel_TaxInfoType

AppSpecificInfo=target_ns=;elem_fd=unqualified;attr_fd=unqualified

...

[End]

[Attribute]

Name=SSN

Type=String

AppSpecificInfo=elem_name=SSN;type=pcdata

...

[End]

[Attribute]

Name=State

Type=String

AppSpecificInfo=elem_name=SSN;type=pcdata

...

[End]

Figure

27.

Sample

business

object

definition

for

XML

complex

type

with

simple

elements

74

Data

Handler

Guide

Type

=

String

AppSpecificInfo

=

elem_name=Price;type=pcdata;notag

...

[End]

A

business

object

attribute

must

exist

to

hold

the

Price

data.

The

attribute

for

the

Price

data

must

specify

notag

in

its

application-specific

information

to

prevent

the

data

handler

from

creating

a

start

and

end

tag

for

this

attribute.

In

this

case,

the

data

handler

does

not

generate

a

new

XML

element

for

the

Price

data

but

simply

adds

the

data

to

the

parent

element.

In

addition,

the

business

object

definition

must

contain

another

attribute

must

exist

to

hold

the

value

of

the

Currency

attribute.

If

the

simple

content

contains

attributes,

the

business

object

definition

must

also

contain

an

attribute

for

each

XML

attribute.

The

attribute’s

application-specific

information

must

include

the

type=attribute

tag.

For

more

information,

see

“For

an

XML

attribute.”

For

an

XML

attribute:

When

a

business

object

definition

represents

an

XML

element

or

complex

type,

any

attributes

that

the

schema

document

declares

for

this

element

are

represented

as

attributes

within

the

business

object

definition.

When

a

business

object

attribute

represents

an

attribute

of

an

XML

element,

its

application-specific

information

must

include

the

following

tags:

v

The

attr_name

tag:

attr_name=name

of

XML

attribute

v

The

type

tag:

type=attribute

Note:

For

more

information

on

these

tags,

see

“For

an

XML

attribute”

on

page

50.

For

an

example

of

the

use

of

the

type=attribute

tag,

see

“For

XML

elements

within

a

complex

type”

on

page

73.

A

business

object

attribute

that

represents

an

XML

attribute

can

also

include

the

following

tags

in

its

application-specific

information:

v

The

attr_fd

tag

specifies

the

setting

of

the

XML

attribute’s

form

attribute,

which

indicates

whether

the

attribute

names

are

qualified

or

unqualified.

If

an

XML

attribute

has

the

attribute

form="qualified"

for

form="unqualified"

specified,

the

attr_fd

has

a

value

specified

in

the

″form″

attribute.

For

example,

suppose

an

XML

attribute

has

the

following

definition:

<xsd:attribute

ref="Name"

form="qualified"></xsd:attribute>

Its

associated

business

object

attribute

would

have

the

following

format:

[Attribute]

Name=Name

Type=String

AppSpecificInfo=attr_name=Name;type=attribute;attr_fd=qualified

...

If

an

XML

attribute

does

not

specify

the

form

attribute,

the

value

of

the

attributeFormDefault

attribute

(on

the

schema

element)

determines

whether

attribute

names

are

qualified.

For

more

information,

see

“Qualified

component

names”

on

page

69.

v

The

attr_ns

tag

specifies

the

target

namespace

for

the

XML

attribute,

if

this

namespace

is

different

from

the

schema

document’s

target

namespace.

This

tag

is

required

when

a

schema

document

uses

multiple

namespaces.

If

the

XML

attribute

referenced

in

one

schema

document

is

defined

in

the

target

namespace

of

some

other

schema

document,

this

tag

lists

the

name

of

that

namespace.

For

example,

suppose

an

XML

attribute

has

the

following

definition:

Chapter

3.

XML

data

handler

75

<xsd:attribute

ref="ns2:Name"></xsd:attribute>

Its

associated

business

object

attribute

would

have

the

following

format:

[Attribute]

Name=Name

Type=String

AppSpecificInfo=attr_name=Name;attr_ns=http://www.example.com/ns2;

type=attribute

...

For

a

complete

example

of

a

schema

document

that

includes

XML

attributes

defined

in

a

second

namespace,

see

“Schema

namespaces”

on

page

64.

For

an

XML

element

or

attribute

that

contains

special

characters:

Business

object

attributes

representing

XML

elements

or

XML

attributes

that

include

special

characters

in

their

content

require

escape

processing

by

the

XML

data

handler.

To

notify

the

data

handler

of

the

need

to

perform

escape

processing,

the

business

object

attribute’s

application-specific

information

must

contain

the

following

tag:

escape=true

The

steps

to

specify

escape

processing

for

an

XML

document

that

uses

a

schema

document

to

describe

its

schema

are

the

same

as

to

specify

escape

processing

for

an

XML

document

that

uses

a

DTD

to

describe

its

schema.

For

more

information,

see

“For

an

XML

element

or

attribute

that

contains

special

characters”

on

page

51.

For

an

XML

comment:

When

the

XML

data

handler

converts

a

business

object

to

an

XML

document,

you

can

specify

that

it

add

the

XML

comments

to

the

XML

document

by

including

the

following

tag

in

an

attribute’s

application-specific

information:

type=comment

The

XML

ODA

does

not

automatically

generate

business

object

attributes

for

XML

comments.

You

must

manually

add

these

attributes.

The

steps

to

add

comments

to

an

XML

document

described

by

a

schema

document

are

the

same

as

to

define

a

comment

for

an

XML

document

that

is

described

by

a

DTD.

For

more

information,

see

“For

an

XML

comment”

on

page

53.

For

XML

processing

instructions:

If

the

XML

document

contains

XML

processing

instructions,

some

business

object

definition

associated

with

the

schema

document

must

contain

an

attribute

to

hold

the

processing

value.

The

application-specific

information

of

this

attribute

must

contain

the

following

type

tag:

type=pi

For

example,

when

the

XML

data

handler

converts

an

XML

document

to

a

business

object,

it

puts

the

XML

version

in

a

special

attribute

of

the

top-level

business

object

definition

called

XMLDeclaration.

The

top-level

business

object

in

Figure

19

on

page

57

shows

the

XMLDeclaration

attribute

within

the

TopLevel_Customer

business

object

definition.

For

more

information

about

the

type=pi

tag,

see

“For

XML

processing

instructions”

on

page

53.

For

XML

schema

locations:

XML

documents

that

refer

to

schema

locations

for

their

schema

documents

must

include

the

following

information:

v

Declaration

of

the

XML

Schema

Instance

Namespace

and

a

mapping

of

the

xsi

prefix

to

this

namespace

v

Inclusion

of

one

of

the

following

XML-Schema-instance

attributes:

–

xsi:schemaLocation

76

Data

Handler

Guide

This

attribute

associates

the

name

of

a

namespace

with

a

schema

location.

If

the

schema

document

uses

a

target

namespace,

the

name

of

this

target

namespace

must

match

the

namespace

that

the

xsi:schemaLocation

attribute

(in

the

XML

document)

specifies.

–

xsi:noNamespaceSchemaLocation

This

attribute

identifies

a

schema

location.

If

the

schema

document

does

not

use

a

target

namespace,

the

XML

document

includes

the

noNamespaceSchemaLocation

attribute

to

identify

a

single

schema

location.

For

example,

suppose

the

XML

document

has

the

namespace

declaration

in

Figure

28.

The

schema

document

might

have

the

following

namespace

declaration,

which

defines

a

target

namespace:

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.example.com/order"

targetNamespace="http://www.example.com/order">

For

the

business

object

that

represents

this

XML

document

to

be

able

to

hold

the

information

in

the

schemaLocation

attribute,

its

business

object

definition

must

provide

an

attribute

for

this

schema-location

information.

In

the

root-element

business

object

definition,

this

schema-location

information

is

represented

as

follows:

v

For

an

XML

document

that

uses

the

schemaLocation

attribute,

the

top-level

business

object

definition

must

contain

an

attribute

with

the

following

properties:

–

The

attribute

name

is

schemaLocation

and

this

attribute

is

of

type

String.

–

The

attribute

must

have

the

following

type

tag

in

its

application-specific

information:

type=xsischemalocation

–

The

value

of

this

business

object

attribute

is

the

value

of

the

schemaLocation

attribute.
v

For

an

XML

document

that

uses

the

noNamespaceSchemaLocation

attribute,

the

root-element

business

object

definition

must

contain

an

attribute

with

the

following

properties:

–

The

attribute

name

is

noNamespaceSchemaLocation

and

this

attribute

is

of

type

String.

–

The

attribute

must

have

the

following

type

tag

in

its

application-specific

information:

type=xsinoNSlocation

The

root-element

business

object

definition

for

the

schema

document

that

represents

this

XML

document

includes

the

following

attributes

for

the

schema

location:

<order

xmlns="http://sampleDoc.org.ord"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.com/order

order.xsd">

...

/<order>

Figure

28.

Sample

schema-location

definition

in

an

XML

document

Chapter

3.

XML

data

handler

77

[Attribute]

Name=schemaLocation

Type=String

AppSpecificInfo=type=xsischemalocation;

Note:

When

an

attribute

represents

the

schemaLocation

or

noNamespaceSchemaLocation

XML

attribute,

it

does

not

require

the

type=attribute

tag

in

its

application-specific

information.

The

XML

ODA

determines

whether

to

generate

a

schemaLocation

or

noNamespaceSchemaLocation

attribute

in

the

top-level

business

object

based

on

the

value

of

its

DoctypeorSchemaLocation

ODA

configuration

property.

Creating

business

object

definitions

from

schema

documents

A

schema

document

describes

and

constrains

the

content

of

an

XML

document.

Therefore,

the

schema

document

is

very

useful

for

obtaining

information

needed

for

the

business

object

definition.

To

translate

the

structure

information

in

the

schema

document

to

a

business

object

definition,

you

can

use

the

XML

Object

Discovery

Agent

(ODA).

For

information

on

XML

ODA,

see

“Using

an

XML

ODA

to

create

business

object

definitions”

on

page

80.

Supported

schema-document

structures

The

XML

ODA

maps

element

declaration

in

a

schema

to

an

attribute

in

the

business

object

definition.

The

type

of

the

business-object

attribute

depends

on

the

type

specified

in

the

XML

element

declaration.

A

simple

type

maps

to

a

String

Java

type.

Complex

types

map

to

a

business

object

definition.

The

XML

ODA

supports

structures

of

a

schema

document

including:

v

Simple

types

—

Simple

types

can

be

either

atomic

(built-in

or

derived

using

restriction),

list,

or

union

types.

The

XML

ODA

maps

all

these

types

to

a

business-object

attribute

type

of

string.

For

more

information,

see

“For

XML

elements

within

a

complex

type”

on

page

73.

v

Element

wildcardany

—

The

XML

ODA

maps

the

any

wildcard

to

a

simple

attribute

in

the

business

object

definition.

At

runtime,

users

must

configure

this

attribute

(by

adding

the

appropriate

application-specific

information)

based

on

the

knowledge

of

the

data.

v

anyAttribute

element

—

This

element

enables

the

user

to

extend

the

XML

document

with

attributes

that

are

not

specified

in

the

schema.

The

XML

ODA

prompts

the

user

for

a

name

for

such

an

attribute

and

then

maps

the

attribute

to

a

simple

attribute

in

a

business

object

definition

(see

Figure

50

on

page

220).

The

ODA

ignores

any

namespace

and

processContents

attributes

for

the

anyAttribute

wildcard.

v

sequence

groups

—

This

model

group

requires

child

elements

to

appear

in

a

specific

order.

The

XML

ODA

maps

the

child

elements

in

a

sequence

group

to

attributes

within

the

business

object

definition.

It

determines

the

type

of

these

attributes

from

the

XML

type

attribute.

v

choice

groups

—

This

model

group

indicates

that

only

one

of

the

corresponding

conforming

element

declarations

must

appear

in

an

instance.

The

XML

ODA

maps

the

child

elements

in

a

choice

group

to

attributes

within

a

wrapper

business

object

definition.

A

parent

business

object

definition

contains

a

single

attribute

with

multiple

cardinality

whose

type

is

the

wrapper

business

object

definition.

For

more

information,

see

“Wrapper

business

object

definitions

based

on

schema

documents”

on

page

60.

v

all

groups

—

The

XML

ODA

maps

the

child

elements

in

an

all

group

to

attributes

within

a

wrapper

business

object

definition.

A

parent

business

object

78

Data

Handler

Guide

definition

contains

a

single

attribute

with

multiple

cardinality

whose

type

is

the

wrapper

business

object

definition.

For

more

information,

see

“Wrapper

business

object

definitions

based

on

schema

documents”

on

page

60.

v

include

element

—

The

effect

of

the

include

is

to

bring

into

a

schema

document

all

the

definitions

and

declarations

contained

in

the

included

schema

document.

The

XML

ODA

requires

that

you

provide

the

full

path

to

the

schema

document

to

be

included.

This

full

path

is

the

actual

location

of

the

included

schema

document

in

the

file

system,

not

its

URI.

If

you

specify

the

location

of

the

schema

document

with

the

XML

ODA

property

FileName,

all

included

schema

documents

must

exist

in

this

same

location.

Note:

When

you

include

a

schema

document,

make

sure

that

the

included

schema

document

does

not

declare

global

elements

that

have

the

same

names

as

the

schema

document

that

does

the

include.

v

restriction

element

—

This

element

allows

you

to

derive

complex

types

by

restriction;

that

is,

to

restrict

a

complex

type

by

removing

or

restricting

its

attributes

or

content.

The

XML

ODA

supports

the

restriction

element

in

the

following

contexts:

–

For

simple-content

restrictions,

the

XML

ODA

does

not

perform

any

mapping

for

the

restrictions

that

are

defined

for

simple

content

and

that

involve

facets

of

the

derived

type.

It

does

process

restrictions

on

any

attributes

defined

in

the

derived

type.

–

For

complex-content

restrictions,

the

XML

ODA

supports

the

elimination

or

restriction

of

attributes

and

the

content

model

of

the

base

complex

type,

as

follows:

-

For

a

restricted

content

model,

the

ODA

creates

a

business

object

definition

for

both

the

base

complex

type

and

the

derived

type.

However,

the

XML

ODA

assumes

that

the

schema

syntax

is

valid

and

follows

the

W3C

Schema

specification

guidelines

for

restrictions;

it

does

not

validate

if

the

derived

types

are

valid

restrictions

of

the

base

type.

-

For

attribute

restrictions,

the

XML

ODA

assumes

that

all

attributes

of

the

base

type

are

passed

down

to

the

derived

type.

Therefore,

the

business

object

definition

has

attributes

for

all

XML

attributes

defined

in

the

restriction

as

well

as

any

other

attributes

defined

in

the

base

type

(that

are

not

included

in

the

restriction).
v

import

element

—

This

element

allows

an

XML

document

to

refer

to

components

from

other

namespace.

By

specifying

the

elem_ns

or

attr_ns

tags

in

the

attribute

application-specific

information,

the

business

object

definition

can

identify

an

imported

namespace.

For

more

information,

see

“Schema

namespaces”

on

page

64.

v

Complex-type

derivation

—

The

XML

ODA

supports

derived

complex

types

using

restriction

and

extension.

For

these

constructs,

it

creates

a

business

object

definition

for

the

derived

complex

type

based

on

its

derived

content

model.

v

Type

substitution

—

The

XML

ODA

property

TypeSubstitution

provides

support

for

type

substitution

based

on

the

xsi:type

attribute

in

the

schema.

When

the

user

sets

TypeSubstitution

to

True

in

a

drop

down

in

the

ODA,

the

XML

ODA

generates

an

additional

wrapper

object

with

the

ASI

″typeSub=true″

and

business

objects

representing

the

base

type

and

its

derived

types

as

children

of

this

wrapper

object.

For

more

information,

see

“Type

substitution

in

business

object

definitions

based

on

schema

documents”

on

page

61.

Unsupported

schema-document

structures

The

XML

ODA

is

capable

of

processing

most

schema

documents.

However,

it

does

not

support

the

following

schema-document

structures:

Chapter

3.

XML

data

handler

79

v

Element

substitution

using

substitutionGroups—

The

XML

data

handler

does

not

support

element

substitution

at

runtime

because

the

XML

ODA

does

not

support

substitution

groups

in

XML

schemas.

v

Redefinition

of

types

and

groups

—

The

redefine

element

allows

you

to

redefine

a

type

(simple

or

complex)

or

a

group

(element

or

attribute)

so

that

only

certain

behavior

is

supported.

v

Types

or

elements

with

no

content.

In

this

case,

the

XML

ODA

will

generate

a

business

object

with

no

attributes.

Users

can

work

around

this

by

adding

a

dummy

attribute

to

the

business

object

definition

and

checking

its

″key″

flag.

For

more

information

about

key

attributes,

see

“Key

and

Foreign

Key

attribute

properties”

on

page

36.

Creating

business

object

definitions

An

XML

document

can

have

either

a

DTD

or

a

schema

document

to

define

its

structure.

The

business

object

definitions

that

represent

the

elements

in

an

XML

document

must

contain

information

about

the

document’s

structure.

To

create

business

objects

to

be

processed

by

the

XML

data

handler,

the

XML

data

handler

must

be

able

to

locate

business

object

definitions

that

contain

the

structural

information

for

each

XML

document

to

be

processed.

You

can

generate

business

object

definitions

for

XML

documents

in

one

of

the

following

ways:

v

“Using

an

XML

ODA

to

create

business

object

definitions”

v

“Manually

creating

business

object

definitions”

on

page

81

Both

these

techniques

involve

use

of

the

Business

Object

Designer

tool.

This

section

provides

an

overview

on

how

to

use

Business

Object

Designer

to

generate

business

object

definitions

for

XML

documents.

For

a

complete

description

of

Business

Object

Designer

,

refer

to

the

Business

Object

Development

Guide.

Note:

Some

connectors

that

use

the

XML

data

handler

require

a

top-level

wrapper

business

object

that

contains

the

content

business

objects

as

children.

Depending

on

the

business

object

structure

required

by

the

connector

you

are

using,

therefore,

you

may

need

to

add

generated

business

objects

as

children

to

another

business

object.

See

the

documentation

for

each

connector

for

information

on

the

structure

of

its

business

objects.

Using

an

XML

ODA

to

create

business

object

definitions

The

XML

Object

Discovery

Agent

(ODA)

creates

business

object

definitions

for

an

XML

document

based

on

either

its

DTD

or

schema

document.

The

ODA

examines

the

DTD

or

schema

document

to

obtain

information

about

the

XML

document

structure.

It

then

writes

the

business

object

definitions

to

a

file

that

can

be

loaded

into

the

business

integration

system.

Note:

If

an

XML

document

does

not

have

a

DTD

or

schema

document,

you

can

manually

create

a

business

object

definition

for

the

document.

For

more

information,

see

“Manually

creating

business

object

definitions”

on

page

81.

The

XML

ODA

builds

business

object

definitions

that

conform

to

the

requirements

of

the

XML

data

handler.

The

ODA

adds

the

required

ObjectEventId

attribute

to

all

business

object

definitions.

It

also

adds

the

repository

version

number

to

the

top

of

the

business

object

file

if

you

specify

this,

which

is

required

to

import

a

business

object

definition

into

the

InterChange

Server

business

integration

system.

These

80

Data

Handler

Guide

business

object

definitions

do

not

usually

need

additional

editing.

However,

if

you

need

to

perform

edits,

see

“Modifying

information

in

the

business

object

definition”

on

page

221.

For

information

on

how

to

use

XML

ODA,

see

“Using

the

XML

ODA,”

on

page

209.

This

appendix

describes

how

to

install

and

configure

the

XML

ODA.

It

also

describes

how

to

use

the

XML

ODA

in

Business

Object

Designer

to

generate

business

object

definition.

For

information

on

launching

Business

Object

Designer

,

see

the

Business

Object

Development

Guide.

Manually

creating

business

object

definitions

This

section

describes

how

to

manually

create

business

object

definitions

to

represent

XML

documents.

You

must

ensure

that

you

correctly

define

the

business

object

definition,

including

its

attributes,

and

the

application-specific

information.

Note:

If

an

XML

document

does

not

have

a

DTD

or

schema

document,

you

must

manually

create

a

business

object

definition

for

the

document.

If

a

DTD

or

schema

document

exists,

IBM

recommends

use

of

the

XML

ODA

to

create

a

business

object

definition.

The

description

of

XML-document

format

for

a

DTD

or

schema

document

describes

business

object

definitions

that

the

XML

ODA

builds.

Table

11

on

page

31

shows

the

sections

of

this

manual

that

describe

the

format

of

XML

documents

that

have

a

corresponding

data

model

to

describe

their

schema.

As

described

in

these

sections,

the

business

object

definitions

conform

to

the

requirements

of

the

XML

data

handler.

Therefore,

you

can

follow

these

descriptions

when

you

need

to

create

business

object

definitions

manually.

In

the

following

steps,

ElementTypeName

is

the

type

of

the

XML

element

represented

by

the

business

object

construct

(either

attribute

or

business

object).

To

define

a

business

object

based

on

an

XML

document:

1.

Create

the

top-level

business

object

definition.

The

name

of

this

business

object

definition

should

be

the

highest

level

element

in

the

XML

document

(name

of

DTD

or

schema

document,

for

example)

in

the

format:

BOPrefix_TopLevelName.

Note:

Some

connectors

require

a

wrapper

business

object

that

contains

the

content

business

object

as

children.

Refer

to

“Wrapper

business

object

definitions

based

on

DTDs”

on

page

46

for

more

information.

2.

In

the

top-level

business

object

definition,

create

attributes

for

the

XML

elements.

For

a

top-level

business

object

definition

based

on

either

a

DTD

or

a

schema

document,

the

following

attributes

are

required:

v

XMLDeclaration

–

The

attribute’s

application-specific

information

is

type=pi.

v

An

attribute

to

represent

the

root

element

in

the

DTD

or

schema

document

–

The

attribute

contains

a

single-cardinality

child

business

object

and

its

application-specific

information

specifies

the

name

of

the

element

with

the

elem_name

tag.

For

general

information

about

these

required

attributes,

see

“Business

object

structure”

on

page

35.

In

addition,

this

document

provides

the

following

information

about

the

structure

of

the

top-level

business

object

definition

based

on

DTDs

and

schema

documents:

Chapter

3.

XML

data

handler

81

Data

model

For

more

information

Document

type

definition

(DTD)

“Business

object

structure

for

DTDs”

on

page

43

Schema

document

“Required

business

object

definitions

for

schema

documents”

on

page

56

3.

Create

the

root-element

business

object

definition,

which

is

a

child

object

of

the

top-level

business

object

definition.

It

contains

attributes

for

the

root

XML

element.

The

name

of

this

business

object

definition

should

be

the

root

element

in

the

XML

document

in

the

format:

BOPrefix_RootElementName_TopLevelName

4.

In

the

root-element

business

object

definition,

create

a

business

object

attribute

for

each

contained

element.

Keep

the

following

in

mind:

v

The

business

object

attribute

name

need

not

be

the

same

as

the

XML

element

(or

attribute)

name.

The

application-specific

information

is

used

to

specify

the

element

(or

attribute)

name.

v

XML

attributes

must

be

the

first

attributes

in

the

business

object

definition.

v

Type

determination:

–

A

String

type

is

a

cardinality-1

element

with

no

element

content

or

associated

attribute-list

declaration.

–

A

business-object

type

is

a

cardinality-n

contained

element,

or

contained

element

with

element

content

or

associated

attribute

specification

(or

specifications).
v

Application-specific

information

is

required

for

a

String

type

attribute,

mixed-typed

element,

or

choice

list

element

with

cardinality

n.

For

general

information

about

this

application-specific

information,

see

“Application-specific

information”

on

page

38.

In

addition,

this

document

provides

the

following

information

about

the

application-specific

of

the

business-object

attributes

based

on

DTDs

and

schema

documents:

Data

model

For

more

information

Document

type

definition

(DTD)

“Application-specific

information

for

XML

components

in

DTDs”

on

page

45

Schema

document

“Application-specific

information

for

XML

components

in

schema

documents”

on

page

64

Note:

For

an

XML

document

with

a

schema

definition,

the

root-element

business

object

definition

can

also

require

an

attribute

for

the

schema

location.

For

more

information,

see

“Required

business

object

definitions

for

schema

documents”

on

page

56.

5.

Create

child

business

object

definitions

for

all

contained

elements.

Follow

the

rules

listed

above.

Converting

business

objects

to

XML

documents

To

convert

a

business

object

to

an

XML

document,

the

XML

data

handler

loops

through

the

attributes

in

the

business

object

definition

in

sequential

order.

It

generates

XML

recursively

based

on

the

order

in

which

attributes

appear

in

the

business

object

and

its

children.

82

Data

Handler

Guide

The

XML

data

handler

processes

business

objects

into

an

XML

document

as

follows:

1.

The

data

handler

creates

a

document

to

contain

the

XML

data.

2.

The

data

handler

examines

the

application-specific

information

in

the

top-level

business

object

definition

to

determine

if

there

are

any

child

meta-objects

(those

whose

names

are

listed

in

the

cw_mo_label

tag

of

the

business-object-level

application-specific

information).

The

data

handler

does

not

include

these

attributes

in

the

XML

document.

3.

The

data

handler

loops

through

the

remaining

attributes

of

the

business

object

definition.

The

data

handler

generates

XML

for

each

attribute

using

the

following

rules:

v

It

creates

a

start

and

end

tag

for

every

simple

String

type

attribute

unless

the

notag

string

appears

in

the

application-specific

information

for

that

attribute.

If

the

start

tag

is

open

and

the

business

object

attribute

being

processed

does

not

represent

an

XML

attribute,

the

XML

data

handler

closes

the

start

tag

(that

is,

it

adds

the

character

“>”

to

the

XML

document).

v

If

the

attribute

represents

a

business

object,

the

XML

data

handler

opens

a

start

tag,

makes

a

recursive

call

to

retrieve

the

attributes

in

the

child

business

object,

generates

XML

for

the

attributes

of

the

child

business

object,

and

then

generates

an

end

tag

for

the

element.

The

XML

data

handler

uses

the

attribute-level

application-specific

information

elem_name

as

the

name

of

the

element.

For

multiple-cardinality

attributes,

this

process

is

repeated

for

each

instance

of

the

business

object

in

the

array.

v

If

the

attribute

contains

the

application-specific

information

xsiType,

the

XML

data

handler

writes

out

an

attribute

for

the

current

element

of

the

form

xsi:type=ValueofXsiType.

For

example,

if

the

business

object

attribute

specifies

xsiType=ShirtType

then

the

corresponding

XML

attribute

is

xsi:type="ShirtType".

For

more

information

about

type

substitution,

see

“Type

substitution

in

business

object

definitions

based

on

schema

documents”

on

page

61.

v

For

attributes

that

represent

XML

markup,

the

data

handler

uses

the

attribute

application-specific

information

and

generates

XML

as

shown

in

Table

29..

Table

29.

XML

output

for

attributes

that

represent

XML

markup

XML

entity

business

object

attribute

represents

XML

output

Example

Application-specific

information

Processing

instruction

<?AttrValue?>

<?xml

version="1.0"?>

type=pi

DTD

<!AttrValue>

<!DOCTYPE

CUSTOMER

"customer.dtd">

type=doctype

Element

<ElementName>...

</ElementName>

For

XML

document

based

on

a

DTD:

<CUSTOMER>...

</CUSTOMER>

For

XML

document

based

on

a

schema

document:

<element

name=CUSTOMER...>

</element>

type=pcdata

XML

attribute

AttrName=

"AttrValue"

For

XML

document

based

on

a

DTD:

Seqno="1"

For

XML

document

based

on

a

schema

document:

<element

name=CUSTOMER...

Seqno="1"...>

</element>

type=attribute

CDATA

section

<![CDATA[AttrValue]]>

<![CDATA

[<HTML>Text</HTML>]]>

type=cdata

Chapter

3.

XML

data

handler

83

Table

29.

XML

output

for

attributes

that

represent

XML

markup

(continued)

XML

entity

business

object

attribute

represents

XML

output

Example

Application-specific

information

Comment

<!--CommentText

-->

<!--Customer

information

from

source

application

A-->

type=comment

Schema

location

(with

target

namespace)

<elementName

xmlns="URI_path"

xmlns:xsi=

"http://www.w3.org/

2001/XMLSchema-

instance"

xsi:schemaLocation=

"URI_for_schema

schema_location″

...

See

Figure

28

on

page

77

type=

xsischemalocation

Schema

location

(no

target

namespace)

<elementName

xmlns="URI_path"

xmlns:xsi=

"http://www.w3.org/

2001/XMLSchema-

instance"

xsi:noNamespace

SchemaLocation=

"schema_location″

...

<order

xmlns=″http://sampleDoc.org.ord″

xmlns:xsi=″http://www.w3.org/2001/

XMLSchema-instance″

xsi:noNamespaceSchemaLocation=

″order.xsd″>

...

/<order>

type=xsinoNSlocation

v

For

attributes

that

contain

the

character

data

(PCDATA

in

a

DTDs)

associated

with

a

given

element,

no

markup

is

generated,

and

only

the

value

of

the

attribute

itself

is

added

to

the

document

(assuming

the

notag

tag

exists

in

the

application-specific

information).

v

For

attributes

that

contain

character

data

for

an

element,

or

for

an

attribute,

the

data

handler

replaces

any

special

characters

with

appropriate

escape

sequences

(assuming

the

escape=true

tag

exists

in

the

application-specific

information),

as

Table

30

shows.

Table

30.

Special

characters

and

the

XML

representations

Special

character

XML

escape

sequences

ampersand

(&)

&

less

than

(<)

<

greater

than

(>)

>

single

quote

(‘)

&apos

double

quote

(“)

"

Note:

If

an

attribute

represents

an

XML

element

whose

value

contains

single

quotes,

double

quotes

or

the

&,

<,

or

>

characters,

then

the

attribute

requires

escape

processing.

An

attribute

is

not

escape-processed

unless

it

contains

the

value

escape=true

in

its

application-specific

information.This

application-specific

information

must

be

placed

at

the

end

of

any

other

text.

Note:

The

XML

ODA

ignores

default

and

fixed

attributes

on

element

and

attribute

declarations.

If

an

element

or

attribute

declaration

specifies

one

of

these

attributes

and

the

instance

does

not

contain

the

element

or

attribute,

it

is

not

populated

by

the

XML

data

handler.

v

An

attribute

is

skipped

if

either

of

the

following

conditions

exist:

84

Data

Handler

Guide

–

The

attribute

has

the

value

of

CxIgnore.

–

The

attribute

name

is

listed

in

the

cw_mo_

tag,

in

the

application-specific

information

of

the

business

object

definition.

No

XML

is

generated

for

these

attributes.
v

Simple

String

attributes

with

a

value

of

CxBlank

are

included

in

the

XML

document

as

empty

tags.

For

XML

documents

based

on

DTDs,

double

quotation

marks

(″

″)

are

used

as

the

PCDATA

equivalent

of

CxBlank.

However,

the

data

handler

assumes

that

no

complex

attribute

(one

whose

type

is

a

business

object)

has

a

value

of

CxBlank.
4.

When

the

data

handler

completes

the

conversion,

it

returns

the

XML

document

to

the

caller.

Note:

The

verb

information

in

a

business

object

is

lost

in

the

conversion

to

an

XML

document.

For

information

on

preserving

the

verb,

see

“Business

object

verbs”

on

page

39.

Converting

XML

documents

to

business

objects

This

section

provides

the

following

information

on

how

the

XML

data

handler

converts

XML

documents

to

business

objects:

v

“XML

document

requirements”

v

“Serialized-data

processing”

XML

document

requirements

The

XML

data

handler

makes

the

following

assumptions

about

an

XML

document:

v

The

XML

document

is

well

formed.

v

The

XML

document

is

compliant

with

SAX

parser

requirements.

Note

that

the

default

parser

used

by

the

XML

data

handler

requires

that

an

XML

document

include

an

XML

declaration.

v

The

structure

of

an

XML

document

must

match

the

structure

of

its

corresponding

business

object.

In

addition,

the

order

of

the

elements

in

the

document

must

match

the

order

of

the

attributes

in

the

business

object.

Serialized-data

processing

When

converting

an

XML

document

into

a

business

object,

the

XML

data

handler

assumes

that

the

business

object

follows

the

structure

of

the

XML

document

and

conforms

to

the

business

object

definition

requirements

described

in

“Requirements

for

business

object

definitions”

on

page

34.

If

there

is

no

attribute

in

the

business

object

for

a

given

element

name,

the

XML

data

handler

returns

an

error.

To

convert

an

XML

document

to

a

business

object,

the

XML

data

handler

does

the

following:

1.

If

the

calling

connector

passes

in

a

business

object

to

the

conversion

method,

the

data

handler

uses

this

business

object

and

continues.

If

the

caller

does

not

pass

in

a

business

object,

the

data

handler

determines

the

business

object

name

and

creates

a

business

object

to

contain

the

data

in

the

XML

document.

To

determine

the

business

object

name,

the

data

handler

invokes

the

name

handler.

The

default

name

handler

forms

the

top-level

business

object

name

by

combining

the

BOPrefix

meta-object

attribute,

an

underscore,

and

the

value

of

the

root

element.

For

example,

if

the

XML

document

contains

<!DOCTYPE

Chapter

3.

XML

data

handler

85

Customer

>

and

the

BOPrefix

attribute

is

MyApp,

the

resulting

name

is

MyApp_Customer.

You

can

provide

a

custom

name

handler

to

configure

different

behavior.

2.

The

data

handler

retrieves

the

value

of

the

Parser

meta-object

attribute

to

determine

which

SAX

parser

to

use

to

parse

the

XML

document.

For

information

on

which

SAX

parser

the

XML

data

handler

uses,

see

“SAX

parser”

on

page

33.

When

the

data

handler

determines

the

name

of

the

parser,

it

instantiates

the

parser.

3.

The

data

handler

registers

the

event

handler

(for

a

DTD-based

XML

document,

it

also

registers

the

entity

resolver)

with

the

parser.

The

event

handler

is

a

callback

method

that

processes

each

XML

element

and

attribute.

Note:

The

entity

resolver

handles

external

entity

references

in

DTD

documents.

If

the

data

handler

does

not

find

an

EntityResolver

option

with

a

valid

class

name,

it

uses

com.crossworlds.DataHandlers.xml.DefaultEntityResolver.

This

entity

resolver

ignores

all

external

references.

4.

The

data

handler

invokes

the

parser

to

parse

the

XML

document.

v

The

data

handler

determines

if

there

are

any

child

meta-objects

(those

whose

names

are

listed

in

the

cw_mo_label

tag

of

the

business

object

application-specific

information).

The

data

handler

does

not

perform

the

processing

to

populate

these

attributes

of

the

business

object.

v

Depending

on

the

type

of

element,

the

parser’s

event

handler

queries

the

business

object

definition

for

the

attribute

properties

and

processes

element

data

accordingly.

Execution

is

stopped

only

on

fatal

errors

from

the

parser

or

when

an

element

in

the

XML

data

cannot

be

found

in

the

business

object

definition.
5.

When

the

business

object

is

complete,

the

data

handler

returns

it

to

the

caller.

Note:

For

every

element

and

attribute

found

in

an

XML

document,

the

data

handler

expects

to

find

an

attribute

in

the

business

object.

If

there

is

no

attribute

in

the

business

object

definition

for

a

given

element

or

attribute

name,

the

data

handler

returns

an

error.

The

exception

to

this

rule

is

for

attributes

of

type

FIXED,

which

are

not

required

in

a

business

object

definition.

If

FIXED

attributes

are

not

present

in

the

business

object

definition,

execution

does

not

stop

if

a

FIXED

attribute

is

found

in

the

XML

document.

Customizing

the

XML

data

handler

You

can

customize

the

XML

data

handler

by:

v

“Building

a

custom

XML

name

handler”

v

“Building

a

custom

entity

resolver”

on

page

88

Building

a

custom

XML

name

handler

The

XML

data

handler

calls

the

name

handler

to

extract

the

name

of

the

business

object

from

an

XML

message.

The

default

name

handler

included

with

the

XML

data

handler

looks

for

the

tag:

<!DOCTYPE

Name>

From

this

tag

and

the

BOPrefix

meta-object

attribute,

the

data

handler

generates

the

name

of

the

business

object.

The

XML

data

handler

determines

which

name

86

Data

Handler

Guide

handler

to

invoke

by

using

the

value

of

the

NameHandlerClass

attribute

stored

in

the

data-handler

meta-object.

If

you

need

the

name

handler

to

function

in

a

different

way,

you

must:

1.

Create

a

custom

name

handler

by

extending

the

NameHandler

class.

2.

Configure

the

XML

data

handler

to

use

the

custom

class

by

updating

the

default

value

of

the

NameHandlerClass

attribute

in

the

meta-object

for

the

XML

data

handler.

The

following

sample

code

extends

the

DataHandler

class

to

create

a

custom

data

handler,

CustomDataHandler,

for

the

XML

data

handler:

package

com.crossworlds.DataHandlers.xml;

//

DataHandler

Dependencies

import

com.crossworlds.DataHandlers.

Exceptions.MalformedDataException;

import

com.crossworlds.DataHandlers.NameHandler;

import

com.crossworlds.DataHandlers.DataHandler;

//

Java

classes

import

java.io.*;

import

java.lang.Exception;

/***

*

CustomNameHandler

class.

This

class

extends

the

Namehandler

*

class

and

implements

method:

*

getBOName(

Reader

serializedData,

String

subType

)

*

The

method

getBOName

contains

the

logic

to

extract

the

BOName

***/

public

class

CustomNameHandler

extends

NameHandler

{

/**

*

This

method

generates

the

business

object

name

from

*

the

data

extracted

from

the

’serializedData’

arg.

*

In

this

case,

it

is

up

to

the

caller

to

create

*

the

BOName.

*/

public

String

getBOName(

Reader

serializedData,

String

subType

)

throws

MalformedDataException

{

//

The

NameHandler

uses

DataHandler

tracing.

If

the

//

DataHandler

is

not

set,

the

NameHandler

won’t

run.

if

(dh

==

null)

return

null;

//

Log

a

message

dh.traceWrite(

"Entering

CustomNameHandler.getBOName

for

subtype

’"

+

subType

+

"’.",

4);

//

This

method

parses

the

XML

document

and

extracts

the

//

business

object

name

from

the

following

tag

in

//

the

XML

doc:

//

<cml

title=

//

For

example,

in:

//

<cml

title="cholestrol"

id="cml_cholesterol">

//

the

business

object

name

is

’cholestrol’.

//

Log

a

message

dh.traceWrite(

"Name

resolution

will

be

done

using

<cml

title=

",4);

String

name

=

null;

Chapter

3.

XML

data

handler

87

try

{

//

Read

line

of

data

from

the

Reader

object

LineNumberReader

lineReader

=

new

LineNumberReader(

serializedData

);

serializedData.mark(

1000

);

String

line

=

lineReader.readLine();

while

(

line

!=

null

)

{

//

search

for

<cml

title=

in

the

line

int

start

=

line.indexOf("<cml

title=");

if

(

start

!=

-1

)

{

start

+=

12;

//

search

for

the

ending

quotes

for

the

tile

tag

int

end

=

line.indexOf(’\"’,

start);

//

extract

name

from

line

name

=

line.substring(start,

end);

break;

}

line

=

lineReader.readLine();

}

if

(

name

==

null

||

name.length()

==

0

)

throw

new

MalformedDataException(

"Error:

can’t

determine

the

BusinessObject

Name.");

}

catch(Exception

e)

{

throw

new

MalformedDataException(

e.getMessage()

);

}

serializedData.reset();

return

name;

}

}

Building

a

custom

entity

resolver

The

SAX

parser

used

by

the

XML

data

handler

calls

the

entity

resolver

to

find

external

entities

(referenced

DTDs)

within

an

XML

document.

The

entity

resolver

included

with

the

XML

data

handler

can

ignore

external

references

or

search

for

them

on

a

local

file

system.

If

you

need

to

specify

another

way

for

external

entities

to

be

found,

you

must

create

a

custom

entity

resolver

class.

The

XML

data

handler

determines

which

entity

resolver

to

invoke

by

using

the

value

of

the

EntityResolver

attribute

stored

in

the

XML

data-handler

meta-object.

88

Data

Handler

Guide

Chapter

4.

EDI

data

handler

The

IBM

WebSphere

Business

Integration

Data

Handler

for

EDI

(Electronic

Data

Interchange),

called

the

EDI

data

handler,

converts

business

objects

to

EDI

documents

and

from

EDI

documents

to

business

objects.

For

instructions

on

installing

the

EDI

data

handler,

see

“Installing

data

handlers”

on

page

21.

This

chapter

describes

how

the

EDI

data

handler

processes

EDI

documents

and

how

to

define

business

objects

to

be

processed

by

the

data

handler.

You

can

use

this

information

as

a

guide

to

implementing

business

objects

that

conform

to

the

requirements

of

the

EDI

data

handler.

The

chapter

also

discusses

how

to

configure

the

XML

data

handler.

This

chapter

contains

the

following

sections:

v

“Overview”

v

“Configuring

the

EDI

data

handler”

on

page

90

v

“Business

object

definitions

for

EDI

documents”

on

page

94

v

“Converting

business

objects

to

EDI

documents”

on

page

102

v

“Converting

EDI

documents

to

business

objects”

on

page

105

v

“Customizing

the

EDI

data

handler”

on

page

112

Overview

The

EDI

data

handler

is

a

data-conversion

module

whose

primary

role

is

to

convert

business

objects

to

and

from

EDI

documents.

An

EDI

document

is

a

standardized

format

for

conveying

business

information.

The

EDI

data

handler

supports

two

message

standards:

X.12

and

EDIFACT.

The

EDI

document

is

serialized

data

with

the

edi

MIME

type.

The

default

top-level

connector

meta-object

(MO_DataHandler_Default)

supports

the

edi

MIME

type.

Therefore,

a

connector

that

is

configured

to

use

the

MO_DataHandler_Default

data-handler

meta-object

can

call

the

EDI

data

handler.

Attention

The

EDI

data

handler

is

only

capable

of

processing

an

EDI

document

containing

a

single

group

that

contains

only

a

single

transaction

type

(the

document

may

contain

multiple

transactions

of

the

same

type).

Most

EDI

environments

handle

documents

with

multiple

groups

and

transaction

types.

The

IBM

WebSphere

Business

Integration

Adapter

for

TPI

contains

splitting

logic

that

enables

it

to

process

EDI

documents

with

multiple

groups

and

transaction

types.

No

other

adapters

contain

this

splitting

logic

so

although

they

can

technically

use

the

EDI

data

handler,

only

the

IBM

WebSphere

Business

Integration

Adapter

for

TPI

is

able

to

handle

situations

where

the

EDI

document

contains

multiple

groups.

The

data

handler

parses

document

data

using

document

separators

that

it

identifies

in

the

EDI

document.

If

the

data

handler

cannot

identify

the

separators

from

the

document,

it

uses

separator

values

specified

by

attributes

in

the

child

meta-object

associated

with

the

EDI

data

handler.

For

more

information

on

the

EDI

child

meta-object,

see

“Configuring

the

EDI

data

handler

child

meta-object”

on

page

92.

©

Copyright

IBM

Corp.

2000,

2004

89

EDI

data-handler

components

The

EDI

data

handler

uses

a

name

handler

to

extract

the

name

of

the

business

object

from

an

EDI

message.

Figure

29

illustrates

the

EDI

data

handler

components

and

their

relationship

to

one

another.

The

data

handler

invokes

an

instance

of

the

name

handler

based

on

the

value

of

the

NameHandlerClass

attribute

in

the

EDI

data

handler

child

meta-object:

v

If

a

class

name

is

provided

in

the

NameHandlerClass

attribute,

the

EDI

data

handler

uses

this

name

handler

to

determine

the

business

object

name.

The

NameHandlerClass

attribute

in

the

version

of

the

meta-object

delivered

with

the

product

references

the

default

EDI

name

handler,

which

obtains

the

name

of

the

business

object

to

create

from

the

name-handler

lookup

file

that

the

NameHandlerFile

attribute

specifies.

v

If

no

class

name

is

provided,

the

data

handler

logs

an

error

and

generates

an

exception.

For

information

on

how

to

create

a

custom

name

handler,

see

“Customizing

the

EDI

data

handler”

on

page

112.

Business

object

and

EDI

document

processing

The

EDI

data

handler

performs

the

operations

listed

in

Table

31.

Table

31.

Data

operations

for

the

EDI

data

handler

Data-handler

operation

For

more

information

Receives

a

business

object

from

the

caller,

converts

the

business

object

into

an

EDI

document,

and

passes

the

EDI

document

to

the

caller.

“Converting

business

objects

to

EDI

documents”

on

page

102

Receives

an

EDI

document

from

the

caller,

builds

a

business

object,

and

returns

the

business

object

to

the

caller.

“Converting

EDI

documents

to

business

objects”

on

page

105

Configuring

the

EDI

data

handler

To

configure

the

EDI

data

handler

for

use

with

a

connector,

take

the

following

steps:

v

Create

an

EDI

name-handler

lookup

file

for

transaction

identifiers,

DUNS

numbers,

and

business

object

names.

v

Enter

the

appropriate

values

for

the

attributes

of

the

EDI

child

meta-object.

Each

of

these

steps

is

described

in

more

detail

in

the

following

sections.

Note:

To

use

the

EDI

data

handler,

you

must

also

create

or

modify

business

object

definitions

so

that

they

support

the

data

handler.

For

more

information,

see

“Business

object

definitions

for

EDI

documents”

on

page

94.

WebSphere Business Integration
Data Handler

for EDI

Name Handler

Figure

29.

EDI

data-handler

components

90

Data

Handler

Guide

Creating

the

name-handler

lookup

file

The

EDI

data

handler

relies

on

a

EDI

name-handler

lookup

file

to

determine

which

business

object

to

create

based

on

the

EDI

message.

This

name-handler

lookup

file

contains

the

following

tab-separated

columns:

v

The

transaction

identifier

(ID):

this

value

identifies

the

EDI

document

type

(for

example,

850).

It

does

not

uniquely

identify

the

contents

of

the

EDI

document.

However,

it

does

indicate

the

kind

of

information

that

the

document

contains.

v

(Optional)

The

version

number:

this

is

the

Version/Release/Industry

Identifier

Code

that

the

EDI

data

handler

uses

to

manage

multiple

versions

of

EDI

documents

v

The

DUNS

number:

the

EDI

data

handler

uses

this

number

to

uniquely

identify

a

trading

partner.

v

The

name

of

the

associated

business

object:

the

EDI

data

handler

uses

this

business

object

name

to

identify

the

top-level

EDI

business

object

that

it

must

create.

Note:

Separate

the

fields

of

the

name-handler

lookup

file

with

tab

characters.

A

sample

of

a

name-handler

lookup

file

without

the

optional

version

number

follows:

850

123465

X12_850A_Order

850

122227

X12_850B_Order

855

122227

X12_855A_Response

855

123465

X12_855A_Response

A

sample

of

a

name-handler

lookup

file

with

the

version

number

follows

(the

version

numbers

appear

in

the

second

column;

in

this

example

the

version

number

is

004010):

850

004010

111111

X12_850A_Order

855

004010

122227

X12_855A_Response

Note:

In

this

example,

“X12_“

is

used

as

a

common

prefix

for

the

top-level

business

object

names.

This

prefix

is

not

required.

You

choose

an

identifying

prefix

when

you

create

your

top-level

business

objects.

For

more

information,

see

“Top-level

EDI

business

object”

on

page

95.

To

provide

the

EDI

data

handler

with

information

about

the

business

objects

it

creates,

you

must:

v

Ensure

that

there

is

an

entry

in

the

name-handler

lookup

file

for

each

combination

of

DUNS

number

and

transaction

ID

(and

optionally

the

version

number)

for

which

the

data

handler

is

to

create

a

business

object.

Make

sure

column

values

are

separated

by

tab

characters.

v

Set

the

NameHandlerFile

meta-object

attribute

to

the

fully

qualified

pathname

for

this

name-handler

lookup

file.

Note:

The

Default

Value

property

of

the

NameHandlerFile

attribute

in

the

delivered

version

of

the

child

meta-object

contains

a

value.

You

must

ensure,

however,

that

the

pathname

in

the

NameHandlerFile

attribute

specifies

the

name

of

your

EDI

name-handler

lookup

file.

When

you

specify

the

path

on

a

Windows

system,

you

must

escape

all

backslash

(\)

characters

by

including

a

second

backslash.

For

example:

c:\\home\\DataHandlers\\edi\\edi_xref

Chapter

4.

EDI

data

handler

91

UNIX

pathnames

do

not

use

a

backslash

and

therefore

do

not

need

to

be

escaped:

/home/DataHandlers/edi/edi_xref

The

EDI

data

handler

refreshes

the

information

from

this

file

each

time

the

file

is

updated.

Therefore,

it

picks

up

new

or

changed

values

immediately,

so

you

do

not

have

to

restart

any

components.

Configuring

the

EDI

data

handler

child

meta-object

To

configure

an

EDI

data

handler,

you

must

ensure

that

its

configuration

information

is

provided

in

the

EDI

data

handler’s

child

meta-object.

For

the

EDI

data

handler,

IBM

delivers

the

default

child

meta-object

MO_DataHandler_DefaultEDIConfig.

Each

attribute

in

this

meta-object

defines

a

configuration

property

for

the

EDI

data

handler.

Table

32

describes

the

attributes

in

this

child

meta-object.

Table

32.

Child

meta-object

attributes

for

the

EDI

data

handler

Attribute

name

Description

Delivered

default

value

ClassName

Name

of

the

data

handler

class

to

load

for

use

with

the

specified

MIME

type.

The

top-level

data-handler

meta-object

has

an

attribute

whose

name

matches

the

specified

MIME

type

and

whose

type

is

the

EDI

child

meta-object

(described

by

Table

32).

com.crossworlds.

DataHandlers.edi.

edi

DefaultVerb

Name

of

the

verb

to

set

in

the

business

object

when

converting

from

an

EDI

document

to

a

business

object.

If

no

value

exists

for

this

attribute,

the

EDI

data

handler

does

not

include

a

verb

in

the

business

object.

Create

DummyKey

Key

attribute;

not

used

by

the

data

handler

but

required

by

the

business

integration

system.

1

ISA

(X.12

standard)
UNA

and

UNB

(EDIFACT

standard)

Provides

positional

information

for

separators

so

that

the

EDI

data

handler

can

obtain

the

values

of

separators

from

the

EDI

document

itself.

The

name

of

this

attribute

must

correspond

with

the

name

of

the

first

segment

in

your

EDI

document,

as

follows:

v

If

your

EDI

messages

follow

the

X.12

standard,

the

EDI

document

starts

with

a

segment

named

ISA;

this

positional-information

attribute

is

named

ISA.

v

If

your

EDI

messages

follow

the

EDIFACT

standard,

the

EDI

document

starts

with

a

UNA

service

string

advice

(optional)

and

an

initial

segment

named

UNB.

Therefore,

you

must

create

two

positional-information

attributes

in

this

meta-object:

UNA

and

UNB.

For

information

about

the

values

in

this

meta-object

attribute,

see

106.

None

NameHandlerClass

Name

of

the

class

to

use

to

determine

the

name

of

a

business

object

from

the

content

of

an

EDI

document.

Change

the

Default

Value

property

of

this

attribute

if

you

create

your

own

custom

name

handler.

For

more

information,

see

“Customizing

the

EDI

data

handler”

on

page

112.

com.crossworlds.

DataHandlers.edi.

EdiNameHandler

92

Data

Handler

Guide

Table

32.

Child

meta-object

attributes

for

the

EDI

data

handler

(continued)

Attribute

name

Description

Delivered

default

value

NameHandlerFile

Fully

qualified

name

of

the

EDI

name-handler

lookup

file,

which

contains

a

name-handler

lookup

table

for

transaction

IDs,

an

optional

version

number,

DUNS

numbers,

and

business

object

names.

For

more

information,

see

“Creating

the

name-handler

lookup

file”

on

page

91.

Windows

systems:

C:\\crossworlds\

edi\dbfile.txtUNIX

systems:

/home/crossworlds/

edi/dbfile.txt

RELEASE_CHAR

The

character

to

use

as

an

escape

character

in

the

attribute

value.

This

escape

character

is

necessary

if

any

of

the

EDI

document

separators

is

part

of

the

actual

value

of

an

attribute.

You

must

precede

the

character

in

the

actual

value

with

this

escape

character.

For

example,

if

an

attribute

value

is

“*dog?”

and

the

element

separator

is

the

asterisk,

you

must

escape

the

asterisk

in

the

attribute

value,

as

follows:

“?*dog??”.

?

(question

mark)

SEPARATOR_ELEMENT

The

character

or

characters

used

as

the

element

separator

in

the

EDI

document.

*

(asterisk)

SEPARATOR_COMPOSIT

The

character

used

as

the

composite

separator

in

the

EDI

document.

,

(comma)

SEPARATOR_REPEAT

The

character

used

as

the

repeat

separator

in

the

EDI

document.

It

is

used

to

separate

repeating

composites.

^

(caret)

SEPARATOR_SEGMENT

The

character

used

as

the

segment

separator

in

the

EDI

document.

If

you

want

to

set

the

segment

separator

to

a

newline

character,

you

must

escape

the

character,

as

follows:

v

On

Windows

systems

–

X12

documents:

\r\n

–

EDIFACT

documents:

\n

v

On

UNIX

systems:

\n

~

(tilde)

ObjectEventId

Not

used

by

the

data

handler

but

required

by

the

business

integration

system.

None

The

“Delivered

default

value”

column

in

Table

32

lists

the

value

in

the

Default

Value

property

for

the

corresponding

attribute

in

the

delivered

business

object.

You

must

examine

your

environment

and

set

the

Default

Value

properties

of

all

the

attributes

to

the

appropriate

values.

Note:

Use

Business

Object

Designer

to

modify

business

object

definitions.

To

invoke

multiple

configurations

of

the

EDI

data

handler,

take

the

following

steps:

v

Copy

and

rename

the

default

EDI

child

meta-object

(which

configures

the

EDI

data

handler

for

EDI

documents

in

the

X.12

standard).

A

recommended

approach

to

naming

a

new

child

meta-object

is

to

provide

subtypes

to

the

MIME

type.

For

example,

you

can

rename

the

default

EDI

child

meta-object

to

MO_DataHandler_DefaultEDI_X12Config

and

name

its

copy

MO_DataHandler_DefaultEDI_EDIFACTConfig.

v

Set

the

default

values

of

the

attributes

in

each

EDI

child

meta-object

to

configure

the

data

handler

instance.

v

Create

attributes

in

the

top-level

data-handler

meta-object

named

edi_subtype,

where

subtype

can

be

one

of

the

EDI

standards.

To

handle

EDI

documents

in

Chapter

4.

EDI

data

handler

93

either

X.12

or

EDIFACT

standard,

you

can

create

two

attributes

in

the

top-level

meta-object:

edi_x12,

and

edi_edifact.

Each

of

these

attributes

would

represent

its

associated

child

meta-object.

For

more

information

about

how

to

configure

a

data

handler,

see

“Configuring

data

handlers”

on

page

24.

Business

object

definitions

for

EDI

documents

To

use

the

EDI

data

handler,

you

must

create

or

modify

business

object

definitions

so

that

they

contain

the

metadata

that

the

data

handler

requires

and

so

that

they

include

the

fields

that

correspond

to

those

in

the

EDI

message.

This

section

provides

the

information

you

need

to

create

business

object

definitions

to

work

with

the

EDI

data

handler.

In

particular,

it

provides

the

following

information:

v

“Understanding

EDI

business

object

structure”

v

“Creating

business

object

definitions

for

EDI

documents”

on

page

101

Understanding

EDI

business

object

structure

The

EDI

data

handler

uses

business

object

definitions

when

it

converts

business

objects

or

EDI

documents.

It

performs

the

conversion

using

the

structure

of

the

business

objects

and

their

application-specific

information.

Figure

30

shows

the

structure

of

the

business

objects

that

represent

an

EDI

message.

Top-level
business object

Header

Segments (n)

Loop/Group
wrappers (n)

Trailer

Segment
business object

Element/Attributes

Composite
Composite
business object

Header
business object

Trailer
business object

Header-segment
business object

Attributes

Trailer segment
business object

Attributes
Trailer segments (n)

Header Segments (n)

Segment-loop
business object

Composite

Attributes
(simple attributes only)

Element/Attributes

Figure

30.

Business

object

structure

for

an

EDI

message

94

Data

Handler

Guide

To

ensure

that

business

object

definitions

conform

to

the

requirements

of

the

EDI

data

handler,

use

the

guidelines

provided

for

each

of

the

following

business

objects:

v

“Top-level

EDI

business

object”

v

“Header

business

object”

on

page

97

v

“Segment

business

object”

on

page

98

v

“Composite

business

object”

on

page

99

v

“Segment-loop

business

object”

on

page

100

v

“Trailer

business

object”

on

page

100

Top-level

EDI

business

object

The

EDI

data

handler

expects

a

top-level

business

object

to

hold

the

information

for

the

EDI

message.

Table

33

describes

how

the

EDI

data

handler

interprets

the

properties

of

a

business

object

and

describes

how

to

set

the

properties

when

modifying

a

business

object

for

use

with

the

EDI

data

handler.

Table

33.

Properties

for

the

EDI

top-level

business

object

definition

Property

name

Description

Name

Each

business

object

definition

must

have

a

unique

name.

It

is

recommended

that

these

business

object

definitions

begin

with

a

standard

prefix.

The

name

of

the

top-level

business

object

depends

on

the

message

standard,

as

follows:

v

For

an

EDI

message

that

follows

the

EDIFACT

standard,

the

business

object

name

has

the

form:

BusObj

Prefix

+

Message

Type

v

For

an

EDI

message

that

follows

the

X.12

standard,

the

business

object

name

has

the

form:

BusObj

Prefix

+

Transaction

Set

Identifier

Code

Version

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Application-specific

information

No

metadata

that

includes

a

type

tag.

Might

have

metadata

with

cw_mo

tags

to

indicate

attributes

that

are

to

be

ignored

during

the

conversion

process.

Note:

When

the

data

handler

converts

an

EDI

document

to

a

business

object,

it

identifies

the

top-level

business

object

for

the

EDI

document

through

the

name-handler

lookup

table.

For

more

information,

see

“Creating

the

name-handler

lookup

file”

on

page

91.

As

Figure

30

shows,

the

top-level

business

object

definition

contains

the

following

attributes:

v

An

attribute

to

represent

the

EDI

document

header

v

As

many

attributes

as

needed

to

represent

any

segments

v

As

many

attributes

as

needed

to

represent

any

segment

loops

or

groups

v

An

attribute

to

represent

the

EDI

document

trailer

Header

attribute:

The

header

attribute

of

the

top-level

EDI

business

object

represents

a

single-cardinality

array

that

contains

the

header

information.

The

application-specific

information

for

this

attribute

must

include

the

following

tag:

type=header

Chapter

4.

EDI

data

handler

95

The

Type

property

for

this

attribute

contains

the

name

of

the

header

business

object.

For

information

on

the

attributes

of

the

header

business

object,

see

“Header

business

object”

on

page

97.

Segment

attributes:

Each

segment

attribute

of

the

top-level

EDI

business

object

represents

a

single-cardinality

array

that

contains

the

segment

information.

Table

34

shows

the

attribute

properties

for

a

segment

attribute

in

the

top-level

business

object

definition.

Table

34.

Attribute

properties

for

a

segment

attribute

in

the

EDI

top-level

business

object

definition

Property

name

Description

Name

The

name

of

a

segment

attribute

takes

the

form:

Tag

+

Position

(if

duplicated)

Type

The

type

of

a

segment

attribute

takes

a

name

of

the

form:

TopLevelBusObj

+

Tag

This

attribute

property

contains

the

name

of

the

appropriate

segment

business

object.

ContainedObjectVersion

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Relationship

Set

to

″containment″.

Cardinality

If

Max

Use

or

Repetition

is

set

to

″1″

in

the

EDI

documentation

specification,

set

the

value

of

this

attribute

property

to

″1″.

Otherwise,

set

this

attribute

property

to

″N″.

MaxLength

Always

set

to

″1″.

Key

Always

set

to

″false″.

Foreign

key

Always

set

to

″false″.

Required

If

Status

or

Option

is

set

to

″M″

in

the

EDI

documentation

specification,

set

this

attribute

property

to

″true″.

Otherwise,

set

this

attribute

property

to

″false″.

Default

value

Not

used

by

the

EDI

data

handler.

Application-specific

information

Set

to:

name=name

of

segment

Note:

The

Max

Use,

Repetition,

Status,

and

Option

fields

are

part

of

the

EDI

document

specification.

For

more

information,

refer

to

your

EDI

documentation.

For

information

on

the

attributes

of

the

segment

business

object,

see

“Segment

business

object”

on

page

98.

Segment-loop

attributes:

Each

segment-loop

attribute

represents

a

multiple

cardinality

array

that

contains

the

segment

information.

Table

35

shows

the

attribute

properties

for

a

segment-loop

attribute

in

the

top-level

business

object

definition.

Table

35.

Attribute

properties

for

a

segment-loop

attribute

in

the

EDI

top-level

business

object

definition

Property

name

Description

Name

The

name

of

a

segment-loop

attribute

takes

the

form:

Tag

+

Position

(if

duplicated)

96

Data

Handler

Guide

Table

35.

Attribute

properties

for

a

segment-loop

attribute

in

the

EDI

top-level

business

object

definition

(continued)

Property

name

Description

Type

The

type

of

a

segment

loop

attribute

takes

a

name

of

the

form:

TopLevelBusObj

+

Loop/Group

keyword

+

Tag

This

attribute

property

contains

the

name

of

the

appropriate

segment-loop

business

object.

This

name

can

include

a

keyword

(such

as

Loop)

to

indicate

the

purpose

of

the

segment.

ContainedObjectVersion

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Relationship

Set

to

″containment″.

Cardinality

Always

set

to

″N″.

MaxLength

Always

set

to

″1″.

Key

Always

set

to

″false″.

Foreign

key

Always

set

to

″false″.

Required

If

Status

or

Option

is

set

to

″M″

in

the

EDI

documentation

specification,

set

this

attribute

property

to

″true″.

Otherwise,

set

this

attribute

property

to

″false″.

Only

set

this

attribute

property

to

″true″

on

the

first

segment

in

the

Loop/Group.

Default

value

Not

used

by

the

EDI

data

handler.

Application-specific

information

Includes:

v

name=name

of

first

segment

in

loop

v

type=loop

For

example,

the

following

application-specific

information

identifies

a

segment

loop

whose

first

segment

name

is

AMT:

AppSpecificInfo=name=AMT;type=loop

Note:

The

Status

and

Option

fields

are

part

of

the

EDI

document

specification.

For

more

information,

refer

to

your

EDI

documentation.

For

information

on

the

attributes

of

the

segment-loop

business

object,

see

“Segment-loop

business

object”

on

page

100.

Trailer

attribute:

The

trailer

attribute

of

the

top-level

EDI

business

object

represents

a

single-cardinality

array

that

contains

the

trailer

information.

The

application-specific

information

for

this

attribute

must

include

the

following

tag:

type=trailer

The

Type

property

of

this

attribute

contains

the

name

of

the

trailer

business

object.

For

information

on

the

attributes

of

the

trailer

business

object,

see

“Trailer

business

object”

on

page

100.

Header

business

object

To

hold

header

information

for

the

EDI

message,

the

EDI

data

handler

expects

a

header

business

object

as

the

first

attribute

of

the

top-level

business

object.

Table

36

describes

how

the

EDI

data

handler

interprets

the

properties

of

this

business

object

definition

and

describes

how

to

set

these

properties

when

modifying

the

business

object

for

use

with

the

EDI

data

handler.

Chapter

4.

EDI

data

handler

97

Table

36.

Properties

for

the

EDI

header

business

object

definition

Property

name

Description

Name

Each

business

object

definition

must

have

a

unique

name.

It

is

recommended

that

the

name

of

the

header

business

object

include

the

business

object

prefix.

It

can

also

include

identifying

information

such

as

the

keyword

″header″.

Version

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Application-specific

information

No

metadata

that

includes

a

type

tag.

Might

have

metadata

with

cw_mo

tags

to

indicate

attributes

that

are

to

be

ignored

during

the

conversion

process.

This

business

object

definition

contains

an

attribute

to

represent

each

header

segment

of

the

header.

The

application-specific

information

for

each

attribute

identifies

the

name

of

the

header

segment.

Each

header

segments

can

contain

attributes

that

are

simple,

single-cardinality,

or

multiple

cardinality.

Segment

business

object

To

hold

segment

information

for

the

EDI

message,

the

EDI

data

handler

expects

a

segment

business

object.

Table

37

describes

how

the

EDI

data

handler

interprets

the

properties

of

this

business

object

definition

and

describes

how

to

set

these

properties

when

modifying

the

business

object

for

use

with

the

EDI

data

handler.

Table

37.

Properties

for

the

EDI

segment

business

object

definition

Property

name

Description

Name

Each

business

object

definition

must

have

a

unique

name.

It

is

recommended

that

the

name

of

the

segment

business

object

definition

have

the

form:

BusObj

Prefix

+

Tag

Version

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Application-specific

information

No

metadata

that

includes

a

type

tag.

Might

have

metadata

with

cw_mo

tags

to

indicate

attributes

that

are

to

be

ignored

during

the

conversion

process.

As

Figure

30

shows,

the

segment

business

object

can

contain

the

following

attributes:

v

A

simple

(String)

attribute

to

represent

an

EDI

element

v

An

array

attribute

to

represent

a

composite

Simple

attribute:

Each

simple

attribute

of

a

segment

business

object

must

have

the

attribute

properties

shown

in

Table

38.

Table

38.

Attribute

properties

for

simple

attributes

Property

name

Description

Name

Each

business

object

attribute

must

have

a

unique

name.

Type

Each

simple

business

object

attribute

must

have

a

String

type.

Cardinality

Always

set

to

″1″.

Key

Used

for

simple

attributes

only:

must

be

set

for

the

first

string

attribute

of

the

business

object.

MaxLength

Set

to

the

maximum

size

of

this

String

attribute.

Within

an

EDI

document,

when

you

embed

a

separator

character

as

part

of

actual

data

98

Data

Handler

Guide

Table

38.

Attribute

properties

for

simple

attributes

(continued)

Property

name

Description

Foreign

key

Always

set

to

″false″.

Required

If

Status

or

Option

is

set

to

″M″

in

the

EDI

documentation

specification,

set

this

attribute

property

to

″true″.

Otherwise,

set

this

attribute

property

to

″false″.

Default

value

Not

used

by

the

EDI

data

handler.

Note:

The

Repetition,

Status,

and

Option

fields

are

part

of

the

EDI

document

specification.

For

more

information,

refer

to

your

EDI

documentation.

Composite

attribute:

Each

composite

business

object

is

an

array

that

contains

the

elements

of

an

EDI

composite.

Table

39

shows

the

attribute

properties

for

a

composite

attribute.

Table

39.

Attribute

properties

for

a

composite

attribute

in

an

EDI

segment

business

object

definition

Property

name

Description

Name

The

name

of

a

composite

attribute

takes

the

form:Tag

+

Position

(if

duplicated)

Type

The

type

of

a

segment

attribute

takes

a

name

of

the

form:

BusObj

Prefix

+

Tag

This

attribute

property

contains

the

name

of

the

appropriate

composite

business

object.

ContainedObjectVersion

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Relationship

Set

to

″containment″.

Cardinality

If

Repetition

is

set

to

1,

set

the

value

of

this

attribute

property

to

″1″.

Otherwise,

set

this

attribute

property

to

″N″.

MaxLength

Always

set

to

″1″.

Key

Always

set

to

″false″.

Foreign

key

Always

set

to

″false″.

Required

If

Status

or

Option

is

set

to

″M″,

set

this

attribute

property

to

″true″.

Otherwise,

set

this

attribute

property

to

″false″.

Default

value

Not

used

by

the

EDI

data

handler.

Application-specific

information

None

Required

Server

Bound

Always

set

to

″false″.

Note:

The

Repetition,

Status,

and

Option

fields

are

part

of

the

EDI

document

specification.

For

more

information,

refer

to

your

EDI

documentation.

For

more

information,

see

“Composite

business

object.”

Composite

business

object

To

hold

composite

information

for

an

element

in

the

EDI

message,

the

EDI

data

handler

expects

a

composite

business

object.

Note:

Composites

are

usually

found

in

EDI

documents

that

follow

the

EDIFACT

standard.

However,

they

can

exist

in

documents

that

follow

the

X.12

standard

as

well.

Chapter

4.

EDI

data

handler

99

Table

40

describes

how

the

EDI

data

handler

interprets

the

properties

of

this

business

object

definition

and

describes

how

to

set

these

properties

when

modifying

the

business

object

for

use

with

the

EDI

data

handler.

Table

40.

Properties

for

the

EDI

composite

business

object

definition

Property

name

Description

Name

Each

business

object

definition

must

have

a

unique

name.

It

is

recommended

that

the

name

of

the

composite

business

object

definition

have

the

form:

BusObj

Prefix

+

Tag

Version

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Application-specific

information

No

metadata

that

includes

a

type

tag.

Might

have

metadata

with

cw_mo

tags

to

indicate

attributes

that

are

to

be

ignored

during

the

conversion

process.

The

composite

business

object

can

contain

simple

(String)

attributes

or

arrays.

Segment-loop

business

object

To

hold

information

for

a

segment

loop

or

group

in

the

EDI

message,

the

EDI

data

handler

expects

a

segment-loop

business

object.

Table

41

describes

how

the

EDI

data

handler

interprets

the

properties

of

this

business

object

definition

and

describes

how

to

set

these

properties

when

modifying

the

business

object

for

use

with

the

EDI

data

handler.

Table

41.

Properties

for

the

EDI

segment-loop

business

object

definition

Property

name

Description

Name

Each

business

object

definition

must

have

a

unique

name.

It

is

recommended

that

the

name

of

the

segment-loop

business

object

definition

have

the

form:

BusObj

Prefix

+

Tag

Version

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Application-specific

information

No

metadata

that

includes

a

type

tag.

Might

have

metadata

with

cw_mo

tags

to

indicate

attributes

that

are

to

be

ignored

during

the

conversion

process.

Trailer

business

object

To

hold

trailer

information

for

the

EDI

message,

the

EDI

data

handler

expects

a

trailer

business

object.

Table

42

describes

how

the

EDI

data

handler

interprets

the

properties

of

this

business

object

definition

and

describes

how

to

set

these

properties

when

modifying

the

business

object

for

use

with

the

EDI

data

handler.

Table

42.

Properties

for

the

EDI

trailer

business

object

definition

Property

Name

Description

Name

Each

business

object

definition

must

have

a

unique

name.

It

is

recommended

that

the

name

of

the

trailer

business

object

include

the

business

object

prefix.

It

can

also

include

identifying

information

such

as

the

keyword

“trailer”.

Version

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Application-specific

information

No

metadata

that

includes

a

type

tag.

Might

have

metadata

with

cw_mo

tags

to

indicate

attributes

that

are

to

be

ignored

during

the

conversion

process.

100

Data

Handler

Guide

This

business

object

definition

contains

an

attribute

to

represent

each

trailer

segment

of

the

trailer.

The

application-specific

information

for

each

attribute

identifies

the

name

of

the

trailer

segment.

The

trailer

segments

can

contain

simple,

single-cardinality,

or

multiple

cardinality

attributes.

Creating

business

object

definitions

for

EDI

documents

There

are

two

ways

to

create

business

object

definitions

for

an

EDI

document:

v

You

can

use

Edifec

SpecBuilder

to

export

the

definition

EDI

document

as

a

business

object

definition.

v

You

can

manually

create

a

business

object

definition

for

the

document.

Using

SpecBuilder

to

create

business

object

definitions

SpecBuilder

can

function

as

an

object

discovery

utility,

creating

business

object

definitions

based

on

an

EDI

document.

It

writes

them

to

a

business

object

definition

file

that

can

then

be

loaded

into

the

business

integration

system.

SpecBuilder

is

a

third-party

application

released

and

supported

by

Edifecs

Inc.

Please

consult

the

SpecBuilder

documentation

or

the

Edifecs

web

site

for

assistance.

Note:

IBM

does

not

include

the

SpecBuilder

tool

as

part

of

its

release.

The

tool

is,

however,

available

on

an

Edifecs

CD.

To

obtain

a

copy

of

the

Edifecs

CD,

please

contact

your

IBM

account

executive

or

technical

support.

Manually

creating

business

object

definitions

This

section

describes

how

to

manually

create

business

object

definitions

to

represent

EDI

documents.

Use

Business

Object

Designer

to

add

or

delete

attributes

from

the

business

object

definition

as

well

as

edit

attribute

properties,

as

needed.

Note:

The

structure

of

an

EDI

document

can

be

quite

complex.

It

is

recommended

that

you

use

SpecBuilder

to

build

as

much

of

a

business

object

definition

as

possible.

To

define

a

business

object

based

on

an

EDI

document:

1.

Create

the

top-level

business

object

definition.

For

information

on

the

structure

of

this

top-level

business

object,

see

“Top-level

EDI

business

object”

on

page

95.

2.

Create

the

child

business

objects

for

the

top-level

business

object.

In

the

top-level

business

object,

create

a

child

object

attribute

for

the

business

objects

shown

in

Table

43.

Table

43.

Business

objects

for

the

EDI

data

handler

Part

of

EDI

document

Notes

Business

object

Header

This

header

might

also

contain

header

segments.

“Header

business

object”

on

page

97

Segments

A

segment

might

also

contain

composites

“Segment

business

object”

on

page

98,

“Composite

business

object”

on

page

99

Segment

Loops

and

Groups

A

segment

loop

consists

of

repeated

segments.

“Segment-loop

business

object”

on

page

100

Trailer

This

trailer

might

also

contain

trailer

segments.

“Trailer

business

object”

on

page

100

Keep

the

following

in

mind:

v

The

business

object

attribute

name

need

not

be

the

same

as

the

EDI

element

name.

The

application-specific

information

is

used

to

specify

the

element

name.

Chapter

4.

EDI

data

handler

101

v

Type

determination:

String

is

a

cardinality

1

contained

element

with

no

element

content

or

associated

attribute-list

declaration.

BusinessObject

is

a

cardinality

n

contained

element,

or

contained

element

with

element

content

or

associated

attribute

specification(s).

v

Application-specific

information

is

required

for

many

of

the

attributes.

See

the

information

in

“Top-level

EDI

business

object”

on

page

95

for

more

information.
3.

Create

a

business

object

attribute

for

each

simple

element.

For

more

information,

see

“Simple

attribute”

on

page

98.

4.

Create

child

business

objects

for

any

nested

business

objects,

such

as

header

segments,

trailer

segments,

and

composites.

Follow

the

rules

listed

above.

Converting

business

objects

to

EDI

documents

To

convert

a

business

object

to

an

EDI

document,

the

EDI

data

handler

loops

through

the

attributes

of

the

top-level

business

object

definition.

It

processes

the

attributes

recursively,

in

the

order

in

which

they

appear

in

the

top-level

business

object,

writing

attribute

values

as

the

elements

of

the

EDI

document.

The

EDI

data

handler

processes

business

objects

into

an

EDI

document

as

follows:

1.

The

data

handler

initializes

itself

by

setting

the

composite,

element,

segment,

and

repeat

separators

based

on

the

configuration

information

in

the

child

meta-object.

If

no

value

is

provided

for

one

of

these

configuration

options,

the

data

handler

uses

hard-coded

defaults,

as

Table

44

and

Table

47

show.

Table

44.

Default

values

for

element

and

segment

separators

Precedence

step

Element

separator

Segment

separator

1

Obtain

the

value

of

the

corresponding

meta-object

attribute.

SEPARATOR_ELEMENT

SEPARATOR_SEGMENT

2

If

the

associated

meta-object

attribute

is

not

set,

use

a

hard-coded

default.

plus

sign

(+)

single

quote

(‘)

2.

The

data

handler

examines

the

application-specific

information

in

the

top-level

business

object

definition

to

determine

if

there

are

any

child

meta-objects

(those

whose

names

are

listed

in

the

cw_mo_

tag

of

the

business

object

application-specific

information).

The

data

handler

does

not

include

these

attributes

in

the

EDI

document.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

3.

The

data

handler

loops

through

the

remaining

attributes

in

the

top-level

business

object

definition.

Based

on

the

cardinality

of

each

attribute,

the

data

handler

determines

what

part

of

the

EDI

document

the

attribute

represents.

For

more

information,

see

“Determining

the

EDI

data

associated

with

the

attribute”

on

page

103.

4.

Once

the

data

handler

identifies

the

associated

EDI

data,

it

can

take

the

appropriate

steps

to

write

the

attribute

data

to

the

EDI

document:

v

If

an

attribute

represents

a

segment,

the

data

handler

checks

whether

it

is

null.

If

the

business

object

is

null,

the

data

handler

skips

the

attribute.

If

the

business

object

is

not

null,

the

data

handler

performs

the

segment-processing

steps.

For

more

information,

see

“Processing

a

segment”

on

page

104.

v

For

each

child

business

object

in

a

segment

that

represents

a

composite,

the

data

handler

loops

through

the

attributes

(all

of

which

should

be

String),

and

takes

the

composite-processing

steps

For

more

information,

see

“Processing

a

composite”

on

page

104.

102

Data

Handler

Guide

5.

The

data

handler

writes

the

total

number

of

segments

that

it

has

written

to

this

document

into

the

“number

of

segments”

field

of

the

document.

The

data

handler

determines

the

position

of

this

field

from

the

seg_count

tag

in

the

ISA

attribute

of

the

child

meta-object.

This

field

is

often

located

in

the

SE

segment.

For

information

on

setting

the

seg_count

tag,

see

“Obtaining

positional

information”

on

page

106.

6.

When

the

data

handler

completes

the

conversion,

it

returns

the

serialized

data

to

the

caller.

The

data

handler

returns

the

data

as

a

string

that

contains

the

EDI

document.

Determining

document

separators

to

insert

To

convert

a

business

object

to

an

EDI

document,

the

EDI

data

handler

must

correctly

insert

separators

into

the

EDI

document.

The

data

handler

uses

the

attributes

in

the

child

meta-object

to

determine

the

values

to

assign

these

separators.

If

no

value

is

provided

for

one

of

these

attributes,

the

data

handler

uses

hard-coded

defaults

for

the

separator.

Table

45

shows

the

EDI

separators

with

their

corresponding

meta-object

attributes

and

hard-coded

default

values.

Table

45.

Default

values

for

EDI

separators

EDI

separator

Separator

attribute

in

child

meta-object

Hard-coded

default

Element

separator

SEPARATOR_ELEMENT

plus

sign

(+)

Segment

separator

SEPARATOR_SEGMENT

single

quote

(‘)

Composite

separator

SEPARATOR_COMPOSIT

colon

(:)

Repeat

separator

(EDIFACT

documents

only)

SEPARATOR_REPEAT

caret

(^)

Attention:

EDI

documents

that

follow

the

X.12

standard:

For

the

data

handler

to

properly

convert

business

objects

to

an

EDI

document,

the

values

of

the

separator

attributes

in

the

child

meta-object

must

match

those

in

the

ISA

segment

of

the

EDI

document.

The

EDI

data

handler

does

not

read

data

in

the

ISA

segment

to

determine

document

separators.

EDI

documents

that

follow

the

EDIFACT

standard:

For

the

data

handler

to

properly

convert

business

objects

to

an

EDI

document,

the

values

of

the

separator

attributes

in

the

child

meta-object

must

be

set

to

the

default

values,

as

defined

in

Table

45.

The

separator

attributes

in

the

default

child

meta-object

(MO_DataHandler_DefaultEDIConfig)

contain

values

valid

for

the

X.12

standard.

Make

sure

you

reset

these

attribute

default

values

to

the

values

defined

in

Table

45.

Determining

the

EDI

data

associated

with

the

attribute

The

structure

of

the

business

objects

that

hold

EDI

is

determined

by

the

EDI

document

specification.

(For

information

on

how

to

create

this

business

object

structure,

see

“Creating

business

object

definitions

for

EDI

documents”

on

page

101.)

The

EDI

data

handler

uses

the

cardinality

of

the

attribute

to

determine

what

part

of

the

EDI

document

this

attribute

represents.

Based

on

this

cardinality,

the

data

handler

takes

the

following

actions:

v

If

the

attribute

represents

a

single-cardinality

array,

the

data

handler

examines

the

application-specific

information

of

the

attribute

to

determine

the

part

of

the

EDI

document

associated

with

this

attribute.

Chapter

4.

EDI

data

handler

103

The

data

handler

checks

the

application-specific

information

of

the

attribute

for

a

type

tag

(such

as

type=header

or

type=trailer)

that

identifies

its

purpose

in

the

EDI

structure.

–

If

the

data

handler

finds

a

type

tag,

it

recursively

processes

the

child

business

object.

–

If

the

data

handler

does

not

find

such

a

tag,

the

data

handler

assumes

that

the

child

business

object

represents

a

segment

in

the

EDI

document

and

processes

as

described

in

“Processing

a

segment.”
v

If

the

attribute

represents

a

multiple

cardinality

array,

it

represents

a

segment

loop.

The

data

handler

recursively

processes

each

child

business

object

as

if

it

were

a

single-cardinality

array.

It

writes

a

new

segment

in

the

EDI

document

for

each

instance

of

a

business

object

in

the

array.

v

If

the

attribute

is

of

type

String,

the

data

handler

generates

an

exception

because

the

EDI

structure

dictates

that

all

attributes

of

the

top-level

business

object

are

either

single-cardinality

or

multiple

cardinality

arrays.

Processing

a

segment

If

an

attribute

represents

a

segment,

the

actions

that

the

data

handler

takes

depend

on

whether

the

attribute

is

null:

v

If

the

attribute

value

is

null,

the

data

handler

skips

the

attribute;

it

does

not

include

it

in

the

EDI

document.

v

If

the

attribute

value

is

not

null,

the

data

handler

performs

the

following

processing

steps:

–

Parse

the

business

object

application-specific

information

for

the

segment

name,

a

tag

of

the

form:

name=segment_name

–

Append

the

segment

separator

to

the

EDI

document.

–

Append

the

segment

name

to

the

EDI

document,

insert

any

escape

characters

needed.

–

For

each

child

business

object

(either

single-cardinality

or

multiple

cardinality),

the

data

handler

appends

the

element

separator

to

the

EDI

document

and

processes

the

child

business

object

as

a

composite

(see

“Processing

a

composite”).

For

a

multiple

cardinality

attribute,

the

data

handler

processes

each

child

business

object

in

the

order

it

occurs.

–

For

each

String

attribute

that

is

not

null,

the

data

handler

appends

the

element

separator

and

the

value

of

the

attribute,

inserting

any

escape

characters

as

needed.

Processing

a

composite

For

each

child

business

object

that

represents

a

composite,

the

data

handler

loops

through

the

attributes

(all

of

which

should

be

String),

and

takes

the

following

processing

steps:

v

Parse

the

attribute

data,

adding

any

necessary

escape

characters.

v

Append

the

attribute

value

with

any

escape

characters

to

the

EDI

document.

v

Append

the

composite

separator

to

the

document.

104

Data

Handler

Guide

Converting

EDI

documents

to

business

objects

To

convert

an

EDI

document

to

a

business

object,

the

EDI

data

handler

loops

through

the

attributes

of

the

top-level

business

object

definition.

It

obtains

the

name

of

the

business

object

to

create,

then

processes

the

attributes

recursively,

in

the

order

in

which

attributes

appear

in

the

top-level

business

object

and

its

children,

assigning

element

values

from

the

EDI

document

to

the

business

object.

The

EDI

data

handler

processes

an

EDI

document

into

a

business

object

as

follows:

1.

The

data

handler

sets

any

properties

that

were

passed

in

through

the

optional

configuration

object.

This

information

would

be

passed

in

through

the

config

argument

of

the

getBO()

method.

2.

The

data

handler

initializes

itself

to

prepare

for

reading

the

EDI

document.

For

more

information,

see

“Initializing

the

data

handler.”

3.

If

the

data

handler

does

not

receive

a

business

object

from

the

caller,

it

must

create

one

based

on

the

business

object

name

it

finds

in

the

name-handler

lookup

file.

For

more

information,

see

“Determining

the

name

of

the

business

object”

on

page

110.

4.

Once

the

data

handler

has

access

to

an

instance

of

the

top-level

business

object,

the

data

handler

populates

this

business

object

and

its

children

with

data

from

the

EDI

document.

For

more

information,

see

“Populating

the

business

object”

on

page

111.

5.

When

the

data

handler

completes

the

conversion,

it

returns

the

top-level

business

object

to

the

caller.

The

data

handler

returns

the

entire

hierarchy,

the

top-level

business

object

and

all

its

child

objects.

Initializing

the

data

handler

To

initialize

itself

to

convert

an

EDI

document

to

a

business

object,

the

EDI

data

handler

takes

the

following

steps:

1.

Check

that

the

Reader

object

that

contains

the

serialized

data

supports

the

mark()

operation.

2.

Begin

parsing

the

EDI

document

to

obtain

the

first

segment

name,

the

separators,

the

transaction

ID,

and

DUNS

number.

Each

of

these

steps

is

described

in

more

detail

in

the

subsections

that

follow.

Checking

the

Reader

object

The

EDI

data

handler

must

be

able

to

mark

a

particular

position

within

the

EDI

document

and

then

subsequently

return

to

that

position.

Because

the

EDI

document

is

passed

to

the

EDI

data

handler

as

a

Reader

object,

this

Reader

object

must

be

able

to

support

the

mark()

operation.

As

its

first

initialization

step,

therefore,

the

EDI

data

handler

checks

that

the

Reader

object

that

it

receives

supports

the

mark()

operation.

If

not,

the

data

handler

logs

an

error

and

generates

an

exception.

It

is

recommended

that

all

serialized

data

be

passed

into

the

EDI

data

handler

in

a

StringReader

object.

Note:

For

more

information

about

a

Reader

object

and

the

mark()

operation,

see

the

Notes

section

in

the

description

of

“getBO()

-

public”

on

page

198.

Determining

the

document

separators

to

read

To

convert

an

EDI

document

to

a

business

object,

the

EDI

data

handler

must

correctly

read

separators

in

the

EDI

document.

The

data

handler

parses

the

document

to

obtain

these

separators.

Because

the

first

three

characters

of

the

EDI

Chapter

4.

EDI

data

handler

105

document

are

known,

the

data

handler

parses

these

characters

first.

It

reads

the

first

three

characters

to

determine

if

they

represent:

v

The

UNA

service

string

advice

(EDIFACT

documents

only)

The

UNA

service

string

advice

contains

the

document

separators

to

use.

v

The

initial

segment

name

The

data

handler

must

parse

the

document

to

obtain

the

document

separators

and

other

positional

information.

Checking

for

the

UNA

service

string

advice:

The

UNA

service

string

advice

is

the

optional

first

element

in

EDI

documents

that

follow

the

EDIFACT

standard.

This

service

string

consists

of

six

alphanumeric

characters

in

the

following

order:

Component

separator

Element

separator

Decimal

mark

Release

character

Repeat

separator

(syntax

version

4

only)

Segment

separator

If

the

first

3

characters

of

the

EDI

document

are

“UNA”,

the

data

handler

uses

the

values

that

the

UNA

service

string

specifies

to

interpret

the

EDI

document.

These

separator

values

take

precedence

over

any

other

separator

settings

in

the

EDI

document,

including

any

in

the

UNA

or

UNB

positional-information

attributes

of

the

child

meta-object.

Note:

For

an

EDI

document

with

a

UNA

service

string

advice,

the

data

handler

obtains

the

transaction

ID

and

the

DUNS

number

from

the

UNA

positional-information

attribute

of

the

child

meta-object.

For

more

information,

see

the

next

section.

Obtaining

positional

information:

If

the

first

3

characters

of

the

EDI

document

are

not

“UNA”,

the

data

handler

assumes

that

they

represent

the

name

of

the

initial

segment.

The

data

handler

assumes

that

the

initial

segments

are

part

of

the

header

and

have

names

that

are

exactly

three

characters

in

length.

If

no

UNA

service

string

advice

exists,

the

data

handler

must

obtain

document

separators

from

the

EDI

document

itself.

The

data

handler

continues

parsing

the

EDI

document,

performing

the

following

tasks:

v

Read

the

fourth

character

of

the

EDI

document

to

determine

the

element

separator.

If

the

data

handler

is

unable

to

determine

the

element

separator,

it

uses

the

value

of

the

SEPARATOR_ELEMENT

attribute

from

the

child

meta-object.

The

delivered

value

for

SEPARATOR_ELEMENT

is

an

asterisk

(*).

If,

for

any

reason,

the

data

handler

is

unable

to

obtain

the

element

separator

from

the

child

meta-object,

it

uses

its

hard-coded

default

of

a

plus

sign

(+).

v

Obtain

the

positional

information

from

the

attribute

in

the

child

meta-object

Positional

information

includes

the

separators

(segment,

composite,

and

repeat

separators),

transaction

ID,

and

DUNS

number.

The

data

handler

can

usually

determine

this

positional

information

by

scanning

the

EDI

document.

To

help

the

data

handler

locate

the

positional

information

within

the

EDI

document,

the

child

meta-object

associated

with

the

EDI

data

handler

(MO_DataHandler_DefaultEDIConfig

by

default)

contains

an

attribute

that

holds

this

positional

information.

The

name

of

this

positional-information

attribute

corresponds

to

the

name

of

the

first

element

in

the

EDI

document,

as

follows:

106

Data

Handler

Guide

–

For

the

X.12

standard,

the

EDI

document

starts

with

a

segment

named

“ISA”.

Therefore,

the

data

handler

looks

for

an

ISA

attribute

in

the

child

meta-object.

–

For

the

EDIFACT

standard,

most

EDI

document

start

with

a

segment

named

“UNB”.

However,

an

optional

UNA

service

string

advice

might

occur

first.

Therefore,

the

data

handler

looks

for

an

attribute

in

the

child

meta-object

that

matches

the

initial

element

(UNA,

UNB,

or

whatever

the

name

of

the

first

element

is).

The

data

handler

has

no

way

of

knowing

whether

a

UNA

service

string

advice

exists

until

it

begins

parsing

the

EDI

document.

Therefore,

both

the

UNA

and

UNB

attributes

must

exist

in

the

child

meta-object.

Note:

By

default,

the

MO_DataHandler_DefaultEDIConfig

meta-object

configures

the

EDI

data

handler

for

the

X.12

standard.

Therefore,

it

provides

an

ISA

attribute.

If

your

EDI

messages

follow

the

EDIFACT

standard,

you

must

either

add

the

UNA

and

UNB

attributes

to

the

default

child

meta

object,

or

create

a

separate

child

meta-object

for

the

EDIFACT

standard,

one

that

contains

the

UNA

and

UNB

attributes

instead

of

an

ISA

attribute.

The

positional-information

attribute

specifies

the

information

with

the

series

of

tags

that

Table

46

shows.

Table

46.

EDI

document

information

in

the

positional-information

attribute

EDI

document

information

Attribute

tag

Description

Required?

Segment

separator

length

Specifies

the

length

of

the

first

segment

(in

number

of

characters),

including

the

segment

name

but

excluding

the

segment

separator.

Note:

If

the

segment

separator

is

followed

by

a

newline

character

(\n),

that

newline

character

is

included

as

part

of

the

segment

separator.

For

example,

if

the

separator

is

given

as

’\n

(single

quote

and

newline

together),

then

both

characters

are

specified

as

the

separator.

Yes

Segment

count

seg_count

Specifies

the

relative

position

of

the

field

that

contains

the

number

of

segments

written

to

the

EDI

document

(during

business-object-to-EDI

conversion).

For

information

about

the

use

of

this

tag,

see

“Converting

business

objects

to

EDI

documents”

on

page

102.

Yes

Composite

separator

cs

Provides

the

relative

position

of

the

composite

separator.

No

Repeat

separator

rs

Provides

the

relative

position

of

the

repeat

separator.

No

Transaction

identifier

tid

Provides

the

relative

position

of

the

transaction

ID.

Yes

DUNS

number

duns

Provides

the

relative

position

of

the

DUNS

number.

Yes

Version/release

number

version

Provides

the

relative

position

of

the

functional

group/message

version

number.

No

As

Table

46

indicates,

the

positional-information

attribute

must

provide

values

for

the

seg_count,

length,

tid,

and

duns

tags

and

optionally

the

version

tag.

Specifying

values

for

the

cs

and

rs

tags

is

not

required.

However,

if

either

of

these

tags

are

omitted

and

the

data

handler

parses

EDI

documents

that

contain

composites,

the

data

handler

uses

the

precedence

shown

in

Table

47

to

obtain

a

value.

Chapter

4.

EDI

data

handler

107

Table

47.

Default

values

for

composite

and

repeat

separators

Precedence

step

Composite

separator

Repeat

separator

1

Obtain

the

value

of

the

corresponding

meta-object

attribute.

SEPARATOR_COMPOSIT

SEPARATOR_REPEAT

2

If

the

associated

meta-object

attribute

is

not

set,

use

a

hard-coded

default.

colon

(:)

caret

(^)

The

cs,

rs,

tid,

and

duns

tags

use

the

following

format

to

indicate

relative

position

within

an

EDI

document:

tagname=seg_name+elem_pos+compos_pos

where:

v

seg_name

is

the

name

of

the

segment

in

which

the

information

is

located.

v

elem_pos

is

the

position

of

the

element

within

the

seg_name

segment.

The

numbering

for

element

positions

starts

with

“1”

(not

zero).

v

compos_pos

is

optional;

it

specifies

the

position

of

the

element

within

the

elem_pos

composite

(assuming

that

elem_pos

refers

to

a

composite).

The

numbering

for

composite

positions

starts

with

“1”

(not

zero).

The

seg_count

tag

uses

the

following

format

to

indicate

its

relative

position

within

an

EDI

document:

seg_count=seg_name+elem_pos

where

seg_name

and

elem_pos

are

as

described

above;

that

is,

the

seg_count

specification

never

includes

a

compos_pos

value.

Note:

Do

not

include

spaces

between

the

seg_name,

elem_pos,

and

compos_pos

values

and

the

plus

signs.

Figure

31

lists

a

sample

EDI

document

that

uses

the

X.12

standard.

To

improve

readability

of

this

EDI

document,

the

example

inserts

newline

characters

at

the

end

of

each

segment.

To

obtain

the

positional

information

from

an

EDI

document

that

follows

the

X.12

standard,

the

EDI

data

handler

takes

the

following

steps:

1.

Locate

an

attribute

in

the

data

handler’s

child

meta-object

that

matches

the

name

of

the

first

segment.

For

the

sample

EDI

document

in

Figure

31,

the

child

meta-object

needs

to

contain

an

ISA

attribute

(because

the

name

of

the

first

segment

is

ISA).

2.

From

this

meta-object

attribute,

obtain

the

positional

information.

In

the

current

example,

the

ISA

attribute

contains

the

following

positional

information:

length=77;tid=ST+1;duns=ISA+6;seg_count=SE+1

or

(If

version

is

included

in

the

dbfile.txt)

then

ISA*00*0000000000*02*XXXX*cw*ldtp3*cw*ld*970106*1525*U*00200*0000000100*0*P*<

GS*AA*ldtp3*ld*20010424*1525*142*X*004010

ST*846*001420001

SE*2*001420001

GE*1*142

IEA*1*0000000100

Figure

31.

Sample

EDI

document

in

X.12

standard

108

Data

Handler

Guide

length=77;tid=ST+1;version=GS+8;duns=ISA+6;seg_count=SE+1

3.

Continue

parsing

the

first

segment

of

the

document

to

determine

the

segment

separator.

The

data

handler

assumes

that

the

segment

separator

is

at

the

end

of

the

first

segment

so

it

takes

the

following

steps:

v

Move

to

the

end

of

this

segment,

based

on

the

length

of

the

first

segment,

provided

by

the

length

tag

in

the

positional-information

attribute

of

the

child

meta-object.

v

Obtain

the

character

at

this

position

as

the

segment

separator.

Note:

Due

to

the

algorithm

that

the

data

handler

uses

to

locate

the

segment

separator,

this

separator

cannot

be

set

to

an

alphanumeric

character.

In

the

example

in

step

2,

above,

the

length

tag

specifies

a

segment

length

of

77

characters,

which

indicates

that

the

segment

separator

in

the

Figure

31

document

is

the

newline

(carriage

return)

character.

Therefore,

the

data

handler

interprets

each

newline

character

as

a

segment

separator.

4.

Continue

parsing

the

first

segment

to

determine

the

transaction

ID,

based

on

the

tid=

tag

in

the

positional-information

attribute

of

the

child

meta-object.

The

Figure

31

document

follows

the

X.12

standard.

This

example

does

not

include

any

composites.

Therefore,

its

ISA

attribute

(in

2)

does

not

include

the

composite

(cs)

or

repeat

(rs)

separators.

This

attribute

does

include

the

tid

tag,

which

specifies

that

the

transaction

ID

occurs

as

the

first

element

in

the

segment

named

ST;

therefore,

the

transaction

ID

for

the

Figure

31

document

is

846.

5.

Continue

parsing

the

first

segment

to

find

the

version

(if

the

optional

version

tag

is

specified

in

the

dbfile.txt).

In

Figure

31

the

version

is

the

8th

element

of

the

GS

segment:

004010.

6.

Parse

the

document

to

find

the

DUNS

number.

If

the

data

handler

cannot

find

the

DUNS

number,

it

logs

an

error

and

generates

an

exception.

In

2,

the

duns

tag

specifies

that

the

DUNS

number

occurs

as

the

sixth

element

in

the

segment

named

ISA;

therefore,

the

DUNS

number

for

the

Figure

31

document

is

ldtp3.

To

obtain

the

positional

information

from

an

EDI

document

that

follows

the

EDIFACT

standard,

the

data

handler

takes

the

same

steps

as

described

for

parsing

an

EDI

document

that

follows

the

X.12

standard.

The

only

major

differences

are:

v

The

data

handler

must

locate

a

UNB

attribute

in

the

data

handler’s

child

meta-object

(because

the

name

of

the

first

segment

is

UNB,

not

ISA).

v

The

data

handler

is

more

likely

to

find

composites

in

parse

an

EDIFACT

EDI

document

(composites

rarely

occur

in

X.12

documents).

When

composites

occur,

the

data

handler

must

parse

the

document

for

composite

and

repeat

separators:

–

If

the

EDI

document

contains

composites,

the

positional-information

attribute

of

the

child

meta-object

must

contain

at

least

the

cs

tag.

It

can

also

contain

the

rs

tag,

if

the

document

uses

a

non-default

repeat

separator.

The

data

handler

determines

the

composite

and

repeat

separator

based

on

the

positional

information

provided

by

the

cs

and

rs

tags.

If

the

data

handler

cannot

determine

the

separators,

it

uses

one

of

the

default

values

listed

in

Table

47.

–

If

the

EDI

document

does

not

contain

composites,

the

positional-information

attribute

does

not

need

to

contain

the

cs

or

rs

tag.

The

following

line

is

a

fragment

of

an

EDI

document

that

follows

the

EDIFACT

standard:

Chapter

4.

EDI

data

handler

109

If

its

first

segment

was

named

“UNB“,

then

the

child

meta-object

contains

a

UNB

attribute

that

includes

the

following

cs

tag:

cs=ST+2;

This

cs

tag

specifies

that

the

composite

separator

occurs

as

the

second

element

in

the

segment

named

ST;

therefore,

the

data

handler

interprets

the

comma

(,)

as

the

composite

separator.

Suppose

that

the

EDI

document

in

which

this

fragment

occurs

did

not

specify

a

repeat

separator;

it

uses

the

default

value

of

the

caret

(^).

Therefore,

the

UNB

attribute

in

the

child

meta-object

that

this

document

uses

does

not

need

to

contain

an

rs

tag

to

specify

the

repeat

separator.

With

no

rs

tag,

the

data

handler

assumes

that

the

repeat

separator

has

its

default

value.

When

the

data

handler

encounters

a

caret

(^),

it

interprets

this

character

as

the

repeat

separator.

To

define

a

non-default

repeat

separator,

the

EDI

document

must

include

the

non-default

character

in

a

field

(usually

in

the

header)

and

the

positional-information

attribute

in

the

associated

child

meta-object

must

include

the

rs

tag

to

indicate

the

location

of

this

field.

Determining

the

name

of

the

business

object

A

data

handler

can

receive

serialized

data

in

one

of

two

ways:

v

Receive

the

serialized

data

and

an

empty

business

object:

the

data

handler

populates

this

business

object

with

the

serialized

data.

v

Receive

only

the

serialized

data:

the

data

handler

must

create

the

business

object

before

it

can

populate

it

with

the

serialized

data.

Note:

If

the

data

handler

receives

a

business

object,

it

skips

to

the

steps

described

in

“Populating

the

business

object”

on

page

111.

If

the

data

handler

does

not

receive

a

business

object,

the

data

handler

must

determine

the

type

of

the

business

object

to

create.

The

data

handler

calls

the

name

handler,

which

takes

the

following

steps:

1.

Open

the

EDI

name-handler

lookup

file

based

on

the

name

given

in

the

NameHandlerFile

attribute

of

the

child

meta-object.

This

name-handler

lookup

file

must

already

exist.

If

this

open

fails,

the

name

handler

generates

an

exception.

For

more

information,

see

“Creating

the

name-handler

lookup

file”

on

page

91.

2.

Check

if

the

name-handler

lookup

file

has

been

modified

since

the

last

time

it

was

read.

If

it

has,

read

the

contents

into

the

in-memory

name-handler

lookup

table

again.

3.

Based

on

the

transaction

ID

and

the

DUNS

number

(which

were

determined

in

the

initialization

phase),

look

up

the

name

of

the

top-level

EDI

business

object

that

is

associated

with

this

EDI

document

in

the

name-handler

lookup

table.

If

the

lookup

of

the

business

object

name

fails,

the

data

handler

logs

an

error

and

generates

an

exception.

If

the

lookup

is

successful,

the

data

handler

creates

a

business

object

of

the

specified

type

to

contain

the

data.

ST*st_child_value_1*,*st_grand_child_val_11,st_grand_child_val_12^

st_grand_child_val_13,st_grand_child_val_14*st_child_value_4*

st_grand_child_val_21,st_grand_child_val_22

Figure

32.

Sample

EDI

document

fragment

with

composite

separator

110

Data

Handler

Guide

Note:

These

steps

describe

the

behavior

of

the

default

name

handler

that

is

delivered

with

the

EDI

data

handler.

For

information

on

how

to

create

a

custom

name

handler,

see

“Customizing

the

EDI

data

handler”

on

page

112.

Populating

the

business

object

Once

the

EDI

separators

have

been

determined

and

the

top-level

business

object

has

been

created,

the

data

handler

takes

the

following

steps

to

populate

it

with

the

serialized

data:

1.

If

the

DefaultVerb

meta-object

attribute

is

set,

the

data

handler

sets

the

verb

in

the

business

object

to

the

value

that

DefaultVerb

specifies.

The

delivered

value

for

DefaultVerb

is

Create.

Otherwise,

the

data

handler

assumes

that

no

verb

needs

to

be

set.

2.

The

data

handler

determines

if

there

are

any

child

meta-objects

(those

whose

names

are

listed

in

the

cw_mo_

tag

of

the

business

object

application-specific

information).

The

data

handler

does

not

perform

the

processing

to

populate

these

attributes

of

the

business

object.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

3.

The

data

handler

loops

through

the

remaining

attributes

in

the

top-level

business

object

definition.

Based

on

the

cardinality

of

each

attribute,

the

data

handler

determines

what

part

of

the

EDI

document

the

attribute

represents.

For

more

information,

see

“Determining

the

attribute

associated

with

the

EDI

data.”

4.

Once

the

data

handler

identifies

the

attribute

associated

with

the

current

EDI

data,

it

can

take

the

appropriate

steps

to

write

the

EDI

data

to

this

attribute.

The

data

handler

parses

the

EDI

data

based

on

the

separators

(which

were

determined

in

the

initialization

phase).

For

more

information,

see

“Parsing

the

EDI

document”

on

page

112.

Once

the

data

handler

has

populated

all

attributes

of

the

top-level

business

object,

it

can

perform

an

optional

check

to

ensure

that

all

the

EDI

data

has

been

parsed.

Determining

the

attribute

associated

with

the

EDI

data

The

structure

of

the

business

objects

that

hold

EDI

is

determined

by

the

EDI

document

specification.

(For

information

on

how

to

create

this

business

object

structure,

see

“Creating

business

object

definitions

for

EDI

documents”

on

page

101.)

The

EDI

data

handler

uses

the

cardinality

of

the

attribute

to

determine

whether

each

attribute

represents

the

current

EDI

part

of

the

EDI

document.

Based

on

cardinality,

the

data

handler

takes

the

following

actions:

v

If

the

attribute

represents

a

single-cardinality

array,

the

data

handler

examines

the

application-specific

information

of

the

attribute

to

determine

the

part

of

the

EDI

document

associated

with

this

attribute,

as

follows:

–

Examine

metadata

in

the

application-specific

information

of

the

attribute

to

determine

the

type

of

business

object

to

create.

–

Create

the

business

object

indicated

by

the

application-specific

information

of

the

attribute,

as

Table

48

shows.

Table

48.

Application-specific

information

and

the

associated

EDI

business

objects

Application-specific

information

Child

business

object

type=header

Header

business

object

name=segment

name

Segment

business

object

name=name

of

first

segment

in

loop;type=loop

Segment-loop

business

object

type=trailer

Trailer

business

object

Chapter

4.

EDI

data

handler

111

–

Recursively

process

this

new

child

business

object

by

looping

through

its

attributes

in

the

order

they

occur

in

the

business

object

definition.
v

If

the

attribute

represents

a

multiple

cardinality

array,

it

represents

a

segment

loop.

The

data

handler

recursively

processes

each

child

business

object

as

if

it

were

a

single-cardinality

array.

It

creates

a

new

business

object

in

the

array

for

each

instance

of

the

loop

that

occurs

in

the

EDI

document.

v

If

the

attribute

is

of

type

String,

the

data

handler

generates

an

exception

because

the

EDI

structure

dictates

that

all

attributes

of

the

top-level

business

object

are

either

single-cardinality

or

multiple

cardinality

arrays.

v

If

the

data

handler

cannot

determine

which

attribute

to

associate

with

the

segment,

it

displays

an

error

message

about

an

unknown

segment

name.

If

you

add

the

configuration

property

doStrictCheck

to

the

EDI

data

handler

child

meta-object

and

set

its

value

to

true,

the

data

handler

will

throw

the

following

exception:

Segment

name

<name

of

the

segment>

has

no

corresponding

Business

Object

attribute!

For

more

information

about

the

EDI

data

handler

child

meta-object,

see

“Configuring

the

EDI

data

handler

child

meta-object”

on

page

92.

Parsing

the

EDI

document

The

EDI

data

handler

parses

information

in

the

EDI

document

based

on

the

separators

it

has

identified

in

the

initialization

phase.

These

separators

determine

each

of

the

different

pieces

of

data,

which

the

data

handler

then

matches

to

the

appropriate

attribute.

Table

49

shows

the

parsing

tasks

that

the

data

handler

takes

for

the

different

EDI

business

objects.

Table

49.

Parsing

tasks

for

EDI

business

objects

Application-specific

information

Parsing

task

type=header,

type=trailer

The

data

handler

finds

the

position

in

the

business

object

that

corresponds

to

the

next

segment

that

appears

in

the

document,

and

parses

that

segment

to

populate

the

child

business

object.

name=

segment_name

(no

type

tag)

The

data

handler

assumes

that

the

business

object

represents

a

segment

and

parses

the

current

segment

to

populate

the

business

object.

type=loop

The

name

of

the

first

segment

contained

in

the

loop

should

be

specified

in

the

application-specific

information.

The

data

handler

parses

the

EDI

document

for

these

loop

segments

and

adds

the

data

to

the

business

object.

Customizing

the

EDI

data

handler

You

can

customize

the

EDI

data

handler

by

creating

a

special

name

handler.

The

EDI

data

handler

calls

the

name

handler

to

obtain

the

name

of

the

business

object

to

create.

The

data

handler

determines

which

name

handler

to

invoke

by

using

the

value

of

the

NameHandlerClass

attribute

stored

in

the

data-handler

meta-object.

The

default

name

handler

included

with

the

EDI

data

handler

looks

for

the

business

object

name

in

the

name-handler

lookup

file

(indicated

by

the

NameHandlerFile

meta-object

attribute).

If

you

need

the

name

handler

to

function

in

a

different

way,

you:

1.

Create

a

custom

name

handler

by

extending

the

NameHandler

class.

112

Data

Handler

Guide

2.

Configure

the

EDI

data

handler

to

use

the

custom

name-handler

class

by

updating

the

default

value

of

the

NameHandlerClass

attribute

in

the

meta-object

for

the

EDI

data

handler.

For

information

on

how

to

create

a

custom

data

handler,

see

“Building

a

custom

name

handler”

on

page

185.

Chapter

4.

EDI

data

handler

113

114

Data

Handler

Guide

Chapter

5.

Request-Response

data

handler

The

Request-Response

data

handler

handles

scenarios

that

require

different

data

formats

for

their

request

and

response

business

objects.

The

Request-Response

data

handler

allows

these

two

formats

to

be

different.

This

chapter

describes

how

the

Request-Response

data

handler

processes

information

and

how

to

define

business

object

definitions

to

be

processed

by

the

Request-Response

data

handler.

It

also

discusses

how

to

configure

the

Request-Response

data

handler.

This

chapter

contains

the

following

sections:

v

“Overview”

v

“Requirements

for

business

object

definitions”

on

page

122

v

“Configuring

the

Request-Response

data

handler”

on

page

125

v

“Converting

business

objects

with

the

request

data

handler”

on

page

129

v

“Converting

business

objects

with

the

response

data

handler”

on

page

129

v

“Error

handling”

on

page

130

v

“Customizing

the

Request-Response

data

handler”

on

page

130

Note:

The

Request-Response

data

handler

is

one

of

the

base

data

handlers

contained

in

the

CwDataHandler.jar

file.

For

information

on

how

to

install

this

data

handler

and

where

to

store

its

source

code,

see

Chapter

2,

“Installing

and

configuring

data

handlers,”

on

page

21.

Overview

The

Request-Response

data

handler

is

a

data-conversion

module

whose

primary

role

is

to

provide

support

for

request

and

response

data

that

is

in

different

formats;

that

is,

it

enables

a

calling

context

(such

as

an

adapter

or

the

Server

Access

Interface)

to

call

two

different

data

handlers:

v

A

request

data

handler

handles

data

conversion

for

the

WebSphere

business

integration

system

component

that

initiates

a

request.

v

A

response

data

handler

handles

data

conversion

for

the

WebSphere

business

integration

system

component

that

responds

to

a

request.

With

other

data

handlers,

the

calling

contexts

assumes

that

the

data

has

the

same

format

when

sent

to

and

received

from

the

application

or

access

client;

therefore,

the

calling

context

is

configured

to

call

a

single

data

handler

to

handle

the

conversion

of

both

request

and

response

business

objects.

However,

you

might

have

a

legacy

application

that

accepts

XML

as

an

input

and

returns

some

custom-formatted

document

as

output.

Existing

data

handlers

cannot

easily

handle

this

situation.

However,

you

can

configure

the

adapter

that

communicates

with

this

legacy

application

to

call

the

Request-Response

data

handler.

This

data

handler

can

be

configured

to

call

separate

data

handlers

for

input

and

output:

v

The

IBM

WebSphere

Business

Integration

Data

Handler

for

XML

(XML

data

handler)

to

handle

request

business

objects

v

A

custom

data

handler

to

handle

response

business

objects

©

Copyright

IBM

Corp.

2000,

2004

115

In

request

processing

when

the

integration

broker

sends

a

request

to

this

adapter,

the

adapter

calls

the

Request-Response

data

handler,

sending

it

the

request

business

object.

The

Request-Response

data

handler

checks

its

configuration

to

determine

that

it

needs

to

invoke

the

XML

data

handler

to

convert

this

business

object

to

an

XML

document.

Once

this

business

object

has

been

converted,

the

Request-Response

data

handler

returns

XML

document

to

the

adapter,

which

in

turn

routes

it

to

the

legacy

application.

Figure

33

shows

an

example

of

the

business-object-to-string

conversion

as

performed

by

the

Request-Response

data

handler.

The

adapter

might

later

receive

a

response

from

the

legacy

application.

This

response

would

be

in

the

legacy

application’s

custom

format.

The

adapter

again

calls

the

Request-Response

data

handler,

sending

it

the

response

data.

The

Request-Response

data

handler

checks

its

configuration

to

determine

that

it

needs

to

invoke

the

custom

data

handler

to

convert

this

response

data

into

a

business

object.

Once

this

data

has

been

converted,

the

Request-Response

data

handler

returns

business

object

to

the

adapter,

which

in

turn

routes

it

to

the

integration

broker.

The

Request-Response

data

handler

is

also

to

enable

the

ICS

integration

broker

to

post

one

business

object

type

to

a

collaboration

port

and

receive

one

or

more

different

business

objects

in

return.

For

example,

an

access

client

can

send

a

customer

object

to

a

collaboration

and

receive

an

array

of

pending

order

objects

for

that

customer

in

return.

The

Request-Response

data

handler

supports

serialized

data

with

the

text/requestresponse

MIME

type.

That

serialized

data

may

be

either

text

or

binary

data.

However,

the

default

top-level

meta-objects

(MO_DataHandler_Default

or

MO_Server_DataHandler)

do

not

support

the

text/requestresponse

MIME

type.

Therefore,

for

an

access

client

or

connector

to

be

able

to

call

the

Request-Response

data

handler,

you

must

modify

the

appropriate

top-level

meta-object

to

support

the

text/requestresponse

MIME

type.

For

more

information,

see

“Configuring

the

top-level

meta-object”

on

page

125.

7

Connector

Application

Business object

2

6

Serialized data

Integration broker

1

Serialized data

Request-Response
data-handler

instance

Business object

Serialized data

4

Request
data-handler

instance

Business object

3

5

Figure

33.

Business-object-to-string

conversion

with

the

Request-Response

data

handler

116

Data

Handler

Guide

This

overview

provides

the

following

information

about

the

Request-Response

data

handler:

v

“Request-Response

data-handler

components”

v

“Features

of

the

Request-Response

data

handler”

v

“Processing

request

and

response

business

objects”

on

page

121

Request-Response

data-handler

components

A

data

handler

can

receive

serialized

data

in

one

of

two

ways:

v

Receive

the

serialized

data

and

an

empty

business

object:

the

data

handler

populates

this

business

object

with

the

serialized

data.

v

Receive

only

the

serialized

data:

the

data

handler

must

create

the

business

object

before

it

can

populate

it

with

the

serialized

data.

The

Request-Response

data

handler

uses

a

name

handler

to

create

the

name

of

the

top-level

business

object

it

creates.

Figure

34

illustrates

the

Request-Response

data

handler

components

and

their

relationship

to

one

another.

The

data

handler

invokes

an

instance

of

the

name

handler

based

on

the

value

of

the

NameHandlerClass

attribute

in

the

Request-Response

data

handler

child

meta-object:

v

If

no

class

name

is

provided

(the

NameHandlerClass

attribute

is

empty),

the

data

handler

uses

its

default

name

handler,

which

prepends

the

value

of

BOPrefix

attribute

to

the

name

of

the

top-level

business

object

generated

by

the

data

handler

that

is

configured

for

requests.

an

error

and

generates

an

exception.

For

example,

if

the

user

specifies

the

default

BOPrefix

of

REQUESTTEST

and

the

request

data

handler

generates

the

business

object

Customer,

the

Request-Response

data

handler

creates

a

top-level

object

named

REQUESTTEST_Customer

and

attempts

to

populate

one

of

its

child

objects

with

the

Customer

object.

v

If

a

class

name

is

provided

in

the

NameHandlerClass

attribute,

the

Request-Response

data

handler

uses

this

name

handler

to

determine

the

business

object

name.

To

specify

a

custom

name

handler,

set

the

NameHandlerClass

to

the

name

of

the

custom

name-handler

class.

For

information

on

how

to

create

a

custom

name

handler,

see

“Customizing

the

Request-Response

data

handler”

on

page

130.

The

NameHandlerClass

attribute

in

the

version

of

the

meta-object

delivered

with

the

product

is

blank.

Therefore,

the

Request-Response

name

handler

uses

its

default

name

handler.

Features

of

the

Request-Response

data

handler

The

Request-Response

data

handler

is

useful

in

both

of

the

following

cases:

v

“Support

for

event

processing”

on

page

118

Request-Response
data handler

Name Handler

Figure

34.

Request-Response

data-handler

components

Chapter

5.

Request-Response

data

handler

117

v

“Support

for

request

processing”

on

page

120

Support

for

event

processing

Event

processing

involves

the

notification

of

the

integration

broker

that

some

event,

which

indicates

a

change

to

application

business

entities,

has

occurred.

In

event

notification,

the

calling

context

of

a

data

handler

calls

a

data

handler:

the

data

handler

to

convert

the

serialized

data

to

a

business

object

(which

is

then

routed

to

the

integration

broker).

This

string-to-business-object

conversion

is

performed

by

the

request

data

handler,

because

this

data

handler

handles

conversion

from

the

request

(input)

format

to

a

business

object.

Event

processing

can

be

either

synchronous

or

asynchronous.

However,

because

in

asynchronous

event

processing

the

adapter

((in

particular,

the

connector

component

of

the

adapter)

does

not

wait

for

a

response

from

the

integration

broker

,

as

follows:

v

Synchronous

event

processing

occurs

when

an

access

client

notifies

the

IBM

WebSphere

InterChange

Server

(in

particular,

some

collaboration

within

this

server)

that

some

event

has

occurred.

The

access

client

does

not

wait

for

a

response

from

ICS,

nor

does

it

wait

for

a

response.

In

this

case,

the

Server

Access

Interface

(within

ICS)

invokes

the

necessary

data

handlers.

v

Asynchronous

event

processing

occurs

when

an

adapter

(in

particular,

the

connector

component

of

the

adapter)

receives

an

event

from

its

application

or

technology

and

sends

this

event

(in

the

form

of

a

business

object)

to

an

integration

broker

to

notify

it

that

something

has

occurred.

However,

the

connector

does

not

wait

for

a

response

from

the

integration

broker.

Therefore,

the

Request-Response

data

handler

is

not

useful

in

the

case

of

asynchronous

event

processing.

Note:

For

more

information

on

the

calling

contexts

of

data

handlers,

see

“Contexts

for

calling

data

handlers”

on

page

6.

For

example,

the

following

steps

describe

synchronous

event

processing.

They

describe

how

the

Request-Response

data

handler

allows

the

Server

Access

Interface

(within

ICS)

to

send

data

in

one

format

(its

request

format)

to

the

ICS

and

to

receive

a

different

form

of

data

(its

response

format)

in

return.

This

allows

an

access

client

to

complete

a

scenario

such

as

sending

a

customer

XML

document

and

receiving

an

XML

document

containing

pending

orders

for

that

customer

in

return.

1.

An

access

client

sends

an

event

(as

data

in

the

request

format)

to

be

executed

by

a

collaboration

within

ICS.

2.

ICS

creates

a

new

instance

of

the

Request-Response

data

handler

and

passes

it

request-format

data.

3.

The

Request-Response

data

handler

calls

its

configured

request

data

handler,

which

converts

the

request-format

data

to

a

business

object.

The

Request-Response

data

handler

uses

its

getBO()

method

to

handle

the

serialized

data

it

receives.

It

invokes

the

request

data

handler

on

this

serialized

data

if

either

of

the

following

conditions

are

true:

v

If

the

getBO()

method

receives

only

the

serialized

data

as

an

argument,

it

considers

this

data

as

a

new

request.

v

If

the

getBO()

method

receives

top-level

business

object

and

the

serialized

data

as

an

argument,

it

checks

the

child

business

objects

of

the

top-level

business

object

to

determine

its

next

action.

118

Data

Handler

Guide

If

all

child

business

objects

contain

a

value

of

CxIgnore

(indicating

that

they

are

empty),

the

data

handler

assumes

that

the

serialized

data

represents

a

new

request.

Note:

If

a

child

business

object

within

the

top-level

business

object

is

populated,

the

data

handler

assumes

that

this

child

object

represents

the

original

request

and

consequently

that

the

serialized

data

represents

the

response.

Therefore,

it

creates

an

instance

of

the

response

data

handler

to

process

the

data.

For

more

information,

see

“Support

for

request

processing”

on

page

120.
In

either

of

these

cases,

the

Request-Response

data

handler

creates

an

instance

of

the

request

data

handler

and

uses

this

data

handler

to

convert

the

request-format

data

to

a

request

business

object.

To

the

request

data

handler,

the

Request-Response

data

handler

passes

the

request-format

data.

The

request

data

handler

returns

the

corresponding

request

business

object.

4.

The

Request-Response

data

handler

adds

the

request

business

object

as

a

child

of

the

top-level

business

object,

as

follows:

v

If

the

data

handler’s

getBO()

method

did

not

receive

a

top-level

business

object,

it

must

creates

a

new

one

and

then

add

the

request

business

object

to

it.

To

name

this

new

business

object,

the

data

handler

calls

its

name

handler.

For

more

information,

see

“Request-Response

data-handler

components”

on

page

117.

v

If

the

data

handler’s

getBO()

method

did

receive

a

top-level

business

object,

it

just

adds

the

request

business

object

to

it.

5.

The

Request-Response

data

handler

returns

the

top-level

business

object

synchronously

to

the

collaboration

(which

the

access

client

has

specified).

6.

The

collaboration

receives

the

top-level

business

object,

extracts

the

child

object

(which

contains

the

request

business

object)

and

executes

some

business

process.

7.

The

collaboration

creates

a

new

response

business

object

and

adds

it

to

the

top-level

business

object,

then

returns

successfully.

This

top-level

business

object

is

the

one

that

the

collaboration

has

received

from

the

Request-Response

data

handler.

Once

the

collaboration

has

updated

this

business

object,

the

business

object

contains

both

the

original

request

business

object

and

the

newly

created

response

business

object.

8.

ICS

passes

the

modified

top-level

business

object

to

the

Request-Response

data

handler.

9.

The

Request-Response

data

handler

calls

its

configured

response

data

handler

to

convert

the

response

business

object

to

response-format

data.

The

Request-Response

data

handler

uses

its

getStringFromBO()

method

to

handle

the

top-level

business

object

it

receives.

If

more

than

one

child

business

object

in

the

top-level

business

object

is

populated,

the

data

handler

assumes

that

the

top-level

business

object

contains

both

the

original

request

business

object

and

its

response

business

object

and

consequently

that

the

response

business

object

must

be

converted.

Therefore,

it

creates

an

instance

of

the

response

data

handler

to

process

the

last

defined

child

business

object

within

the

top-level

business

object

as

the

response

business

object.

Note:

If

only

one

child

business

object

within

the

top-level

business

object

that

getStringFromBO()

received

is

populated,

the

data

handler

assumes

that

the

child

object

represents

a

new

request.

Therefore,

it

creates

an

instance

of

the

request

data

handler

to

convert

the

request

business

Chapter

5.

Request-Response

data

handler

119

object

to

serialized

data

(in

the

request

format).

For

more

information,

see

“Support

for

request

processing.”

10.

The

Request-Response

data

handler

returns

the

response-format

data

to

its

caller

(Server

Access

Framework

in

ICS).

11.

ICS

returns

the

response-format

data

(which

is

based

on

the

response

business

object)

to

the

access

client.

A

connector

can

also

perform

synchronous

event

processing

with

the

executeCollaboration()

method.

Generally,

however,

it

performs

asynchronous

event

processing

using

an

event

detection

mechanism

such

as

polling.

Support

for

request

processing

Request

processing

involves

the

receipt

of

requests

from

the

integration

broker

and

to

initiate

the

appropriate

changes

in

the

application

business

entities.

Unlike

event

processing,

which

can

be

initiated

by

either

an

access

client

(synchronously)

or

a

connector

(asynchronously),

request

processing

is

initiated

by

an

integration

broker

and

involves

communication

with

connectors

only

(not

access

clients).

In

request

processing,

the

calling

context

of

a

data

handler

calls

a

data

handler

to

convert

the

serialized

data

to

a

business

object

(which

is

then

routed

to

the

integration

broker).

This

string-to-business-object

conversion

For

example,

the

following

steps

describe

request

processing

that

involves

a

IBM

WebSphere

InterChange

Server

integration

broker

and

a

technology

adapter.

This

technology

adapter

is

configured

to

use

the

Request-Response

data

handler

to

handle

request

and

response

data.

In

this

case,

the

request

data

is

in

one

format

and

the

response

data

in

another.

1.

The

collaboration

creates

a

new

instance

of

the

top-level

business

object

and

adds

the

request

business

object

as

a

child.

2.

The

collaboration

sends

a

request

(in

the

form

of

the

top-level

business

object)

to

the

technology

connector,

which

in

turn

passes

the

top-level

business

object

to

the

Request-Response

data

handler.

3.

The

Request-Response

data

handler

calls

its

configured

request

data

handler

to

convert

the

request

business

object

to

request-format

data.

The

Request-Response

data

handler

uses

its

getStringFromBO()

method

to

handle

the

top-level

business

object

it

receives.

If

only

one

child

business

object

within

the

top-level

business

object

is

populated,

the

Request-Response

data

handler

assumes

that

the

child

object

represents

a

new

request.

Therefore,

it

creates

an

instance

of

the

request

data

handler

to

convert

the

request

business

object

to

serialized

data

(in

the

request

format).

Note:

If

more

than

one

child

business

object

in

the

top-level

business

object

that

getStringFromBO()

received

is

populated,

the

data

handler

assumes

that

the

top-level

business

object

contains

both

the

original

request

business

object

and

its

response

business

object

and

consequently

that

the

response

business

object

must

be

converted.

Therefore,

it

creates

an

instance

of

the

response

data

handler

to

process

the

last

defined

child

business

object

within

the

top-level

business

object

as

the

response

business

object.

For

more

information,

see

“Support

for

event

processing”

on

page

118.

4.

The

technology

connector

sends

the

request-format

data

to

the

application.

5.

The

application

performs

some

tasks

and

returns

response-format

data

to

the

technology

connector.

120

Data

Handler

Guide

6.

The

technology

connector

passes

both

the

original

top-level

business

object

and

the

response-format

data

to

the

Request-Response

data

handler.

7.

The

Request-Response

data

handler

calls

its

configured

response

data

handler

to

convert

the

response-format

data

to

a

business

object.

The

Request-Response

data

handler

uses

its

getBO()

method

to

handle

the

top-level

business

object

and

the

serialized

data

it

receives.

If

any

of

the

child

business

objects

within

the

top-level

business

object

are

populated,

the

Request-Response

data

handler

assumes

that

the

child

object

represents

the

original

request

and

consequently

that

the

serialized

data

it

received

is

in

the

response

format.

Therefore,

it

creates

an

instance

of

the

response

data

handler

to

convert

the

serialized

data

to

a

response

business

object.

Note:

If

all

child

business

objects

in

the

top-level

business

object

that

getBO()

receives

contain

a

value

of

CxIgnore

(indicating

that

they

are

empty),

the

data

handler

assumes

that

the

serialized

data

represents

is

a

new

request

and

creates

an

instance

of

the

request

data

handler

to

process

the

data.

For

more

information,

see

“Support

for

event

processing”

on

page

118.

8.

The

Request-Response

data

handler

adds

this

response

business

object

as

a

child

of

the

top-level

business

object

and

then

returns

this

top-level

business

object

to

its

caller

(the

technology

connector).

9.

The

technology

connector

returns

the

updated

top-level

business

object

to

the

collaboration.

10.

The

collaboration

receives

the

top-level

business

object

and

incorporates

the

content

of

its

response

business

object

into

the

business

process.

Processing

request

and

response

business

objects

Use

of

the

Request-Response

data

handler

to

convert

a

request

business

object

to

its

appropriate

request

format,

or

to

convert

data

in

a

response

format

to

a

response

business

object

requires

that

the

steps

outlined

in

Table

50

occur.

Table

50.

Using

the

Request-Response

data

handler

Step

For

more

information

1.

Business

object

definitions

that

describe

the

business-object

structure

must

exist

and

be

available

to

the

Request-Response

data

handler

(and

its

component

data

handlers)

when

it

executes.

“Requirements

for

business

object

definitions”

on

page

122

2.

The

Request-Response

data

handler

must

be

configured

for

your

environment.

“Configuring

the

Request-Response

data

handler”

on

page

125

3.

The

Request-Response

data

handler

must

be

called

from

a

calling

context

(connector

or

access

client)

to

perform

the

appropriate

data

operation:

a)

Data

operation:

Receive

the

request

from

the

component

that

initiates

this

request

and

convert

it

to

the

appropriate

format.

“Converting

business

objects

with

the

request

data

handler”

on

page

129

b)

Data

operation:

Receive

the

response

from

the

component

that

responds

to

the

request

and

convert

it

to

the

appropriate

format.

“Converting

business

objects

with

the

response

data

handler”

on

page

129

Chapter

5.

Request-Response

data

handler

121

Requirements

for

business

object

definitions

To

use

the

Request-Response

data

handler,

you

must

create

or

modify

business

object

definitions

so

that

they

provide

the

structure

that

the

data

handler

requires.

However,

unlike

other

data

handlers,

you

do

not

need

to

modify

business

object

definitions

so

that

they

contain

metadata.

This

section

provides

the

information

you

need

to

create

business

object

definitions

to

work

with

the

Request-Response

data

handler.

In

particular,

it

provides

the

following

information:

v

“Understanding

Request-Response

business

object

structure”

v

“Creating

business

object

definitions

for

the

Request-Response

data

handler”

on

page

124

Understanding

Request-Response

business

object

structure

The

Request-Response

data

handler

uses

business

object

definitions

when

it

receives

business

object

from

or

sends

business

objects

to

its

request

or

response

data

handler.

The

Request-Response

data

handler

places

specific

requirements

on

the

structure

of

business

objects

it

can

process.

Business

objects

passed

to

the

data

handler

must

contain

one

request

child

object

and

one

or

more

response

child

objects.

These

child

objects

must

conform

to

the

requirements

of

the

data

handler

that

will

process

them.

Note:

The

Request-Response

data

handler

does

not

require

application-specific

information

in

the

business

object

definitions

or

their

attributes.

Figure

35

shows

the

structure

of

the

business

objects

that

represent

a

Request-Response

business

object.

To

ensure

that

business

object

definitions

conform

to

the

requirements

of

the

Request-Response

data

handler,

use

the

guidelines

provided

for

each

of

the

following

business

objects:

v

“Top-level

business

object”

on

page

123

v

“Request

business

object”

on

page

123

v

“Response

business

object”

on

page

124

Top-level
business object

Request
business object

Response
business object (n)

Response
business object

Request
business object

Figure

35.

Business

object

structure

for

a

request-response

business

object

122

Data

Handler

Guide

Top-level

business

object

The

Request-Response

data

handler

expects

a

top-level

business

object

to

hold

the

information

it

receives

from

or

sends

to

its

calling

context.

Table

51

describes

how

the

Request-Response

data

handler

interprets

the

properties

of

a

business

object

and

describes

how

to

set

the

properties

when

modifying

a

business

object

for

use

with

the

Request-Response

data

handler.

Table

51.

Properties

for

the

top-level

business

object

definition

Property

name

Description

Name

Each

business

object

definition

must

have

a

unique

name.

It

is

recommended

that

these

business

object

definitions

begin

with

a

standard

prefix.

The

name

of

the

top-level

business

object

depends

on

the

message

standard,

as

follows:

BusObj

Prefix

+

Response

Business

Object

Version

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Application-specific

Information

No

application-specific

information

is

required.

This

top-level

business

object

must

contain

the

following

attributes:

v

A

single-cardinality

attribute

to

hold

a

single

request

business

object

This

request

business

object

must

conform

to

any

business-object

requirements

that

the

request

data

handler

requires.

v

An

single-cardinality

attribute

to

hold

the

response

business

objects

The

response

business

object

must

conform

to

any

business-object

requirements

that

the

response

data

handler

requires.

Notes:

1.

If

the

target

application

could

return

more

than

one

kind

of

response

business

object,

the

top-level

business

object

must

contain

one

child

business

object

for

each

type

of

response

business

object.

For

example,

if

the

target

application

could

return

either

a

Customer

XML

document

or

an

OrderUpdate

XML

document,

the

top-level

business

object

definition

must

include

two

attributes,

one

to

hold

the

business

object

definition

that

represents

the

Customer

XML

document,

and

the

second

to

hold

the

businesss

object

definition

that

holds

the

OrderUpdate

XML

document.

When

it

received

the

response

business

object,

the

data

handler

would

populate

the

appropriate

attribute.

2.

The

data

handler

fails

if

it

receives

a

top-level

business

object

that

does

not

conform

to

expectations

or

if

other

data

handlers

involved

fail

to

convert

the

business

objects

or

documents

passed

to

them.

Request

business

object

To

hold

the

request

information

for

the

request

data

handler,

the

Request-Response

data

handler

expects

a

request

business

object

as

the

first

attribute

of

the

top-level

business

object.

This

attribute

should

be

of

single

cardinality.

Table

52

describes

how

the

Request-Response

data

handler

interprets

the

properties

of

this

business

object

definition

and

describes

how

to

set

these

properties

when

modifying

the

business

object

for

use

with

the

Request-Response

data

handler.

Chapter

5.

Request-Response

data

handler

123

Table

52.

Properties

for

the

request

business

object

definition

Property

name

Description

Name

Each

business

object

definition

must

have

a

unique

name.

This

name

must

match

the

name

of

the

business

object

definition

that

the

request

data

handler

handles.

Version

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Application-specific

information

Depends

on

the

particular

request

data

handler

being

used.

Note:

For

information

on

the

format

of

the

request

business

object,

see

the

documentation

for

the

data

handler

that

acts

as

the

request

data

handler.

For

example,

if

you

specified

RequestDataHandlerMimeType

as

text/xml,

the

child

object

you

define

as

your

request

business

object

must

be

compatible

with

the

XML

data

handler.

Response

business

object

To

hold

the

response

information

for

the

response

data

handler,

the

Request-Response

data

handler

expects

a

response

business

object

in

the

attributes

starting

with

the

second

attribute

of

the

top-level

business

object.

This

attribute

should

be

of

single

cardinality.

If

the

response

data

handler

might

return

more

than

one

type

of

business

object,

the

top-level

business

object

has

an

attribute

for

each

possible

type.

Table

53

describes

how

the

Request-Response

data

handler

interprets

the

properties

of

this

business

object

definition

and

describes

how

to

set

these

properties

when

modifying

the

business

object

for

use

with

the

Request-Response

data

handler.

Table

53.

Properties

for

the

response

business

object

definition

Property

name

Description

Name

Each

business

object

definition

must

have

a

unique

name.

This

name

must

match

the

name

of

the

business

object

definition

that

the

response

data

handler

handles.

Version

A

constant

representing

the

current

version

of

the

business

object

definition.

Current

value

is

1.0.0.

Application-specific

information

Depends

on

the

particular

request

data

handler

being

used.

Note:

For

information

on

the

format

of

the

request

business

object,

see

the

documentation

for

the

data

handler

that

acts

as

the

request

data

handler.

For

example,

if

you

specified

ResponseDataHandlerMimeType

as

text/abc,

the

child

object

you

define

as

your

request

business

object

must

be

compatible

with

a

custom

data

handler

that

can

handle

the

abc

MIME

type.

Creating

business

object

definitions

for

the

Request-Response

data

handler

This

section

describes

how

to

create

business

object

definitions

to

represent

the

structure

that

the

Request-Response

data

handler

expects.

Use

Business

Object

Designer

to

add

or

delete

attributes

from

the

business

object

definition

as

well

as

edit

attribute

properties,

as

needed.

124

Data

Handler

Guide

As

described

in

“Understanding

Request-Response

business

object

structure”

on

page

122,

the

Request-Response

data

handler

requires

that

you

create

the

following

business

object

definitions:

v

“Creating

the

top-level

business

object

definition”

v

“Creating

other

business

object

definitions”

Creating

the

top-level

business

object

definition

To

create

the

top-level

business

object

definition

for

the

Request-Response

data

handler,

you

must

manually

create

a

business

object

definition

using

Business

Object

Designer:

1.

Create

the

top-level

business

object

definition.

For

information

on

the

structure

of

this

top-level

business

object,

see

“Top-level

business

object”

on

page

123.

2.

Create

the

child

business

objects

for

the

top-level

business

object.

In

the

top-level

business

object,

create

a

child

object

attribute

for

the

business

objects

shown

in

Table

54.

Table

54.

Business

objects

for

the

Request-Response

data

handler

Attribute

Notes

Business

object

Request

business

object

Contains

the

information

about

the

request.

“Request

business

object”

on

page

123

Response

business

object

Contains

the

information

about

the

request’s

response

“Response

business

object”

on

page

124

Creating

other

business

object

definitions

To

create

the

request

and

response

business

object

definitions,

you

can

use

either

of

the

following

ways:

v

You

can

use

an

Object

Discovery

Agent

(ODA)

to

export

the

serialized

data

as

a

business

object

definition.

ODAs

exist

for

several

data

formats,

including

XML

documents.

For

information

on

the

XML

ODA,

see

“Using

the

XML

ODA,”

on

page

209.

For

information

on

other

ODAs,

refer

to

the

corresponding

adapter

guide.

v

You

can

manually

create

a

business

object

definition

for

the

data

using

Business

Object

Designer.

For

more

information,

see

“Creating

the

top-level

business

object

definition”

Configuring

the

Request-Response

data

handler

The

Request-Response

data

handler

retrieves

its

configuration

properties

from

a

hierarchy

of

meta-objects,

as

follows:

v

The

parent

meta-object

allows

a

connector

or

Server

Access

Interface

to

instantiate

a

data

handler

based

on

the

MIME-type

of

the

document.

v

The

child

meta-object

contains

all

the

information

needed

to

process

the

data

in

the

document,

including

the

class

name

of

the

data

handler,

the

prefix

of

the

business

object

to

create,

and

more.

Configuring

the

top-level

meta-object

The

MIME

type

contained

in

the

parent

meta-object

indicates

which

MIME

types

are

supported

and

which

data

handlers

provide

this

support.

Neither

of

the

provided

top-level

meta-object

include

an

entry

for

the

Request-Response

data

handler.

To

enable

your

connector

or

an

access

client

to

use

the

Request-Response

data

handler,

you

must

add

an

attribute

for

the

text/requestresponse

MIME

type

Chapter

5.

Request-Response

data

handler

125

to

the

MO_Server_DataHandler

or

MO_DataHandler_Default

top-level

meta-object.

This

attribute

must

be

of

type

MO_DataHandler_DefaultRequestResponseConfig.

The

following

fragment

of

a

business

object

definition

shows

the

definition

for

the

text/requestresponse

attribute:

[Attribute]

Name

=

text.requestresponse

Type

=

MO_DataHandler_DefaultRequestResponseConfig

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

Note:

For

more

information

on

top-level

meta-objects

and

how

to

modify

them,

see

“Top-level

meta-objects”

on

page

24.

Configuring

the

child

meta-object

To

configure

a

Request-Response

data

handler,

you

must

ensure

that

its

configuration

information

is

provided

in

the

Request-Response’s

child

meta-object.

Note:

To

configure

a

Request-Response

data

handler,

you

must

also

create

or

modify

business

object

definitions

so

that

they

support

the

data

handler.

For

more

information,

see

“Requirements

for

business

object

definitions”

on

page

122.

For

the

Request-Response

data

handler,

IBM

delivers

the

default

child

meta-object

MO_DataHandler_DefaultRequestResponseConfig.

Each

attribute

in

this

meta-object

defines

a

configuration

property

for

the

Request-Response

data

handler.

Table

55

describes

the

attributes

in

this

child

meta-object.

Table

55.

Child

meta-object

attributes

for

the

Request-Response

data

handler

Attribute

name

Description

Delivered

default

value

BOPrefix

Prefix

used

by

the

default

NameHandler

class

to

build

the

name

of

the

top-level

business

object.

The

default

value

must

be

changed

to

match

the

name

of

the

associated

the

business

object

definition.

The

attribute

value

is

case-sensitive.

REQUESTTEST

ClassName

Name

of

the

data-handler

class

to

load

for

use

with

the

specified

MIME

type.

The

top-level

data-handler

meta-object

must

has

an

attribute

whose

name

matches

the

specified

MIME

type

and

whose

type

is

the

Request-Response

child

meta-object

(described

by

this

table).

com.crossworlds.

DataHandlers.text.

requestresponse

DefaultVerb

Name

of

the

verb

to

set

in

the

business

object

when

converting

from

a

request

document

to

a

business

object.

If

no

value

exists

for

this

document,

the

Request-Response

data

handler

does

not

include

a

verb

in

the

business

object

Create

126

Data

Handler

Guide

Table

55.

Child

meta-object

attributes

for

the

Request-Response

data

handler

(continued)

Attribute

name

Description

Delivered

default

value

NameHandlerClass

Name

of

the

name-handler

class

to

use

to

determine

the

name

of

the

top-level

business

object

from

the

content

of

a

request

document.

Change

the

default

value

of

this

attribute

if

you

create

your

own

custom

name

handler.

For

more

information,

see

“Building

a

custom

XML

name

handler”

on

page

86.

com.

crossworlds.

DataHandlers.xml.

TopElementNameHandler

RequestDataHandlerMimeType

The

MIME

type

of

requests

processed

by

this

data

handler.

The

Request-Response

data

handler

uses

this

MIME

type

to

determine

the

data

handler

to

instantiate

for

processing

any

request

business

objects

or

documents.

text/xml

ResponseDataHandlerMimeType

The

MIME

type

of

responses

processed

by

this

data

handler.

The

Request-Response

data

handler

uses

this

MIME

type

to

determine

the

data

handler

to

instantiate

for

processing

any

response

business

objects

or

documents.

text/xml

ObjectEventId

Placeholder

not

used

by

the

data

handler

but

required

by

the

business

integration

system.

None

The

“Delivered

default

value”

column

in

Table

55

lists

the

value

in

the

Default

Value

property

for

the

corresponding

attribute

in

the

delivered

business

object.

You

must

examine

your

environment

and

set

the

Default

Value

properties

of

those

attributes

to

the

appropriate

values.

You

must

make

sure

that

at

least

the

ClassName

and

BOPrefix

attributes

have

default

values.

To

create

the

MO_DataHandler_DefaultRequestResponseConfig

child

meta-object,

use

Business

Object

Designer

to

create

a

business

object

definition

with

the

following

format:

[BusinessObjectDefinition]

Name

=

MO_DataHandler_DefaultRequestResponseConfig

Version

=

1.0.0

[Attribute]

Name

=

ClassName

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

com.crossworlds.DataHandlers.text.requestresponse

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

NameHandlerClass

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

RequestDataHandlerMimeType

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

Chapter

5.

Request-Response

data

handler

127

IsRequired

=

false

DefaultValue

=

text/xml

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ResponseDataHandlerMimeType

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

text/xml

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

BOPrefix

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

Wrapper

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

DummyKey

Type

=

String

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

1

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Delete

[End]

[Verb]

Name

=

Retrieve

[End]

[Verb]

Name

=

Update

[End]

[End]

Refer

to

“Configuring

data

handlers”

on

page

24

for

information

on

where

to

put

this

child

meta-object

file.

128

Data

Handler

Guide

Converting

business

objects

with

the

request

data

handler

The

request

data

handler

handles

data

conversion

for

the

WebSphere

business

integration

system

component

that

initiates

a

request:

v

In

request

processing,

the

integration

broker

initiates

the

request,

in

the

form

of

a

request

business

object

sent

to

a

connector.

WebSphere

InterChange

Server

When

the

integration

broker

is

InterChange

Server

(ICS),

the

collaboration

creates

the

request

business

object

and

sends

it

to

the

appropriate

connector

for

request

processing.

Therefore,

the

request

data

handler

performs

a

business-object-to-string

conversion

on

the

request,

converting

the

request

business

object

to

serialized

data.

This

serialized

data

is

in

the

request

format,

which

is

the

format

that

the

connector’s

application

(or

access

client)

accepts

as

input.

v

In

event

processing,

the

calling

context

(access

client

or

connector)

initiates

the

request,

in

the

form

of

serialized

data

sent

to

the

integration

broker.

WebSphere

InterChange

Server

When

the

integration

broker

is

ICS,

you

can

use

an

access

client

to

initiate

synchronous

event

processing.

For

more

information,

see

“Support

for

event

processing”

on

page

118.

Therefore,

the

request

data

handler

performs

a

string-to-business-object

conversion

on

the

request,

converting

the

serialized

data

to

a

request

business

object.

This

serialized

data

is

in

the

request

format,

which

is

the

format

that

the

access

client

or

the

connector’s

application

generates

as

output.

The

Request-Response

data

handler

determines

which

data

handler

to

invoke

as

its

request

data

handler

based

on

the

RequestDataHandlerMimeType

property

in

the

child

meta-object.

The

RequestDataHandlerMimeType

property

contains

the

MIME

type

that

the

request

data

handler

supports.

If

RequestDataHandlerMimeType

has

not

been

initialized,

the

Request-Response

data

handler

logs

an

error

and

generates

an

exception.

Therefore,

you

must

initiauses

the

RequestDataHandlerMimeType

property.

Converting

business

objects

with

the

response

data

handler

The

response

data

handler

handles

data

conversion

for

the

WebSphere

business

integration

system

component

that

responds

to

a

request:

v

In

request

processing,

the

connector’s

application

responds

to

the

request,

in

the

form

of

serialized

data

sent

to

connector,

which

in

turn

routes

it

to

the

integration

broker.

WebSphere

InterChange

Server

When

the

integration

broker

is

InterChange

Server

(ICS),

the

collaboration

receives

the

response

business

object

from

the

connector.

Therefore,

the

response

data

handler

performs

a

string-to-business-object

conversion

on

the

response,

converting

the

serialized

data

to

a

response

business

Chapter

5.

Request-Response

data

handler

129

object.

This

serialized

data

is

in

the

response

format,

which

is

the

format

that

the

connector’s

application

(or

access

client)

generates

as

output.

v

In

event

processing,

the

integration

broker

responds

to

the

request,

in

the

form

of

a

response

business

object

sent

to

the

calling

context

(access

client

or

connector).

WebSphere

InterChange

Server

When

the

integration

broker

is

ICS,

the

collaboration

within

ICS

generates

the

response

business

object.

ICS

then

routes

this

response

business

object

back

to

the

calling

context.

For

more

information,

see

“Support

for

event

processing”

on

page

118.

Therefore,

the

response

data

handler

performs

a

business-object-to-string

conversion

on

the

response,

converting

the

response

business

object

to

serialized

data.

This

serialized

data

is

in

the

response

format,

which

is

the

format

that

the

access

client

or

the

connector’s

application

accepts

as

input.

The

Request-Response

data

handler

determines

which

data

handler

to

invoke

as

its

response

data

handler

based

on

the

ResponseDataHandlerMimeType

property

in

the

child

meta-object.

The

ResponseDataHandlerMimeType

property

contains

the

MIME

type

that

the

response

data

handler

supports.

If

ResponseDataHandlerMimeType

has

not

been

initialized,

the

Request-Response

data

handler

logs

an

error

and

generates

an

exception.

Therefore,

you

must

initiauses

the

ResponseDataHandlerMimeType

property.

Error

handling

The

Request-Response

data

handler

throws

an

exception

if

it

cannot

process

a

request.

The

request-response

data

handler

provides

an

exception

message

that

describes

both

what

the

data

handler

was

attempting

to

do

when

the

error

occurred

and

any

message

returned

by

a

component

involved

in

the

transaction

(such

as

another

data

handler

or

the

JCDK).

These

exceptions

are

propagated

(perhaps

not

as

an

exception

but

another

data

structure)

to

the

component

that

invoked

the

data

handler

initially.

The

Request-Response

data

handler

logs

error

and

traces

messages

using

the

services

provided

by

the

data

handler

framework.

Error

messages

and

warnings

are

recorded

in

ICS

logs.

The

data-handler

does

not

log

any

messages

to

the

Java

console.

Customizing

the

Request-Response

data

handler

You

can

customize

the

Request-Response

data

handler

by

creating

a

special

name

handler.

The

Request-Response

data

handler

calls

the

name

handler

to

obtain

the

name

of

the

business

object

to

create.

The

data

handler

determines

which

name

handler

to

invoke

by

using

the

value

of

the

NameHandlerClass

attribute

stored

in

the

data-handler

meta-object.

The

default

name

handler

included

with

the

Request-Response

data

handler

prepends

the

value

of

the

BOPrefix

attribute

to

the

name

of

the

business

object

that

the

response

data

handler

returns.

If

you

need

the

name

handler

to

function

in

a

different

way,

you:

1.

Create

a

custom

name

handler

by

extending

the

NameHandler

class.

2.

Configure

the

Request-Response

data

handler

to

use

the

custom

name-handler

class

by

updating

the

default

value

of

the

NameHandlerClass

attribute

in

the

meta-object

for

the

Request-Response

data

handler.

130

Data

Handler

Guide

For

information

on

how

to

create

a

custom

data

handler,

see

“Building

a

custom

name

handler”

on

page

185.

Chapter

5.

Request-Response

data

handler

131

132

Data

Handler

Guide

Chapter

6.

FixedWidth

data

handler

The

FixedWidth

data

handler

converts

business

objects

to

fixed-width

strings

and

streams

and

from

fixed-width

strings

and

streams

to

business

objects.

This

chapter

describes

how

the

FixedWidth

data

handler

processes

fixed-width

documents

and

how

to

define

business

objects

to

be

processed

by

the

data

handler.

You

can

use

this

information

as

a

guide

to

implementing

business

objects

that

conform

to

the

requirements

of

the

FixedWidth

data

handler.

This

chapter

also

discusses

how

to

configure

the

FixedWidth

data

handler.

This

chapter

contains

the

following

sections:

v

“Overview”

v

“Configuring

the

FixedWidth

data

handler”

on

page

134

v

“Converting

business

objects

to

FixedWidth

documents”

on

page

137

v

“Converting

FixedWidth

documents

to

business

objects”

on

page

138

Note:

The

FixedWidth

data

handler

is

one

of

the

base

data

handlers

contained

in

the

CwDataHandler.jar

file.

For

information

on

how

to

install

this

data

handler

and

where

to

store

its

source

code,

see

Chapter

2,

“Installing

and

configuring

data

handlers,”

on

page

21.

Overview

The

FixedWidth

data

handler

is

a

data-conversion

module

whose

primary

role

is

to

convert

business

objects

to

and

from

strings

or

streams

that

have

a

format

of

fixed-width

fields.

A

fixed-width

string

or

stream

is

serialized

data

with

the

text/fixedwidth

MIME

type.

The

data

handler

parses

text

data

using

fixed-width

fields.

The

field

lengths

are

specified

by

the

MaxLength

property

of

each

business

object

attribute.

The

value

of

this

property

is

stored

in

the

business

object

definition.

The

FixedWidth

data

handler

also

supports

large

business

objects,

which

are

defined

as

business

objects

between

10

and

100

megabytes

in

size.

The

default

top-level

connector

meta-object

(MO_DataHandler_Default)

supports

the

text/fixedwidth

MIME

type.

Therefore,

a

connector

that

is

configured

to

support

the

MO_DataHandler_Default

data-handler

meta-object

can

call

the

FixedWidth

data

handler.

For

an

access

client

to

be

able

to

call

this

data

handler

when

using

the

InterChange

Server

integration

broker,

you

must

modify

the

MO_Server_DataHandler

meta-object

to

support

the

text/fixedwidth

MIME

type.

For

more

information,

see

“Modifying

the

top-level

meta-object”

on

page

188.

Features

of

the

FixedWidth

data

handler

The

FixedWidth

data

handler

uses

the

value

of

the

MaxLength

property

of

attributes

in

a

business

object

definition

to

determine

how

to

read

and

write

data.

MaxLength

is

defines

the

maximum

number

of

characters

of

the

attribute

value,

including

padding

to

allow

for

right-justified

or

left-justified

text.

You

can

configure

a

pad

character

that

represents

spaces

to

add

to

or

remove

from

the

data

for

alignment.

Pad

characters

are

added

when

converting

business

objects

to

strings

and

removed

when

converting

strings

to

business

objects.

You

can

also

configure

the

alignment

of

a

business

object

attribute

value

to

be

left-

or

©

Copyright

IBM

Corp.

2000,

2004

133

right-justified.

This

makes

it

possible

for

the

attribute

value

data

to

retain

meaningful

characters.

Table

56

describes

the

values

for

the

Alignment

meta-object

attribute.

Table

56.

Values

of

the

Alignment

meta-object

attribute

Value

Description

LEFT

Trims

left

side

and

pads

right

side.

RIGHT

Trims

right

side

and

pads

left

side.

BOTH

When

converting

strings

to

business

objects,

trims

both

right

and

left

sides.

When

converting

business

objects

to

strings,

pads

right

side

with

pad

characters.

In

addition,

with

the

Truncation

meta-object

attribute,

you

can

configure

the

FixedWidth

data

handler

to

truncate

business

object

values

to

their

MaxLength,

or

generate

an

error

if

an

attribute

value

is

a

string

longer

that

MaxLength.

You

can

also

set

the

size

of

the

length

to

be

used

for

the

business

object

name,

verb,

and

business

object

count

for

cardinality

1

or

n

child

objects.

Use

Business

Object

Designer

to

set

the

value

of

the

MaxLength

property

of

String

attributes.

To

change

the

value

of

the

MaxLength

property

of

other

types

(such

as

Integer,

Double,

and

so

forth),

you

must

save

the

business

object

definition

to

a

file,

edit

the

file

manually,

and

then

import

the

modified

definition

into

the

business

integration

system.

Business

object

and

FixedWidth

string

processing

The

FixedWidth

data

handler

performs

the

operations

listed

in

Table

57.

Table

57.

Data

operations

for

the

FixedWidth

data

handler

Data-handler

operation

For

more

information

Receives

a

business

object

from

the

caller,

converts

the

business

object

into

a

FixedWidth

string

or

stream,

and

passes

the

FixedWidth

data

to

the

caller.

“Converting

business

objects

to

FixedWidth

documents”

on

page

137

Receives

a

string

or

stream

from

the

caller,

builds

a

business

object,

and

returns

the

business

object

to

the

caller.

“Converting

FixedWidth

documents

to

business

objects”

on

page

138

Configuring

the

FixedWidth

data

handler

To

configure

the

FixedWidth

data

handler,

take

the

following

steps:

v

Enter

the

appropriate

values

for

the

attributes

of

the

FixedWidth

child

meta-object.

v

Create

or

modify

business

object

definitions

so

that

they

support

the

data

handler.

Each

of

these

steps

is

described

in

more

detail

in

the

following

sections.

Configuring

the

FixedWidth

child

meta-object

To

configure

a

FixedWidth

data

handler,

you

must

ensure

that

its

configuration

information

is

provided

in

the

FixedWidth

child

meta-object.

For

the

FixedWidth

data

handler,

IBM

delivers

the

MO_DataHandler_DefaultFixedWidthConfig

child

meta-object.

Each

attribute

in

this

meta-object

defines

a

configuration

property

for

the

FixedWidth

data

handler.

Table

58

describes

the

attributes

for

this

child

meta-object.

134

Data

Handler

Guide

Table

58.

Child

meta-object

attributes

for

the

FixedWidth

data

handler

Meta-object

attribute

name

Meaning

Delivered

default

value

ClassName

Name

of

the

data

handler

class

to

load

for

use

with

the

MIME

type

that

matches

the

name

of

the

attribute

in

the

top-level

data-handler

meta-object.

This

attribute

has

the

FixedWidth

child

meta-object

as

its

type.

com.crossworlds.

DataHandlers.

text.fixedwidth

Alignment

Adds

or

removes

the

PadCharacter

attribute.

For

event

processing,

pad

characters

are

trimmed.

For

request

processing,

pad

characters

are

added.

Possible

values

are

BOTH,

LEFT,

and

RIGHT.

For

example,

″LEFT″

alignment

means

the

value

of

the

business

object

attributes

moves

to

the

extreme

left

of

the

space

for

that

attribute

value.

″BOTH″

alignment

for

event

notification

means

that

pad

characters

are

trimmed

off

both

the

left

and

right

sides.

″RIGHT″

alignment

for

request

processing

means

that

the

right

side

is

padded

with

pad

characters.

BOTH

BOCountSize

Specifies

the

space

allocated

for

the

total

number

of

business

objects

being

processed.

3

BONameSize

Specifies

the

space

allocated

for

the

name

of

the

business

object.

50

BOVerbSize

Specifies

the

space

allocated

for

the

verb.

20

CxBlank

When

converting

from

a

business

object,

the

FixedWidth

data

handler

writes

the

value

configured

for

the

Default

Value

property

of

the

CxBlank

meta-object

attribute

to

the

fixed-width

document

whenever

it

encounters

a

business

object

attribute

whose

value

is

CxBlank.

When

converting

to

a

business

object,

the

FixedWidth

data

handler

assigns

the

value

configured

for

the

Default

Value

property

of

the

CxBlank

meta-object

attribute

to

the

business

object

attribute’s

value

whenever

it

encounters

the

value

of

this

CxBlank

meta-object

attribute

in

the

fixed-width

document.

Business

objects

must

have

at

least

one

primary

key

that

does

not

contain

the

value

CxBlank

at

runtime.

CxBlank

value

CxIgnore

When

converting

from

a

business

object,

the

FixedWidth

data

handler

writes

the

value

configured

for

the

Default

Value

property

of

the

CxIgnore

meta-object

attribute

to

the

fixed-width

document

whenever

it

encounters

a

business

object

attribute

whose

value

is

CxIgnore.

When

converting

to

a

business

object,

the

FixedWidth

data

handler

assigns

the

value

configured

for

the

Default

Value

property

of

the

CxIgnore

meta-object

attribute

to

the

business

object

attribute’s

value

whenever

it

encounters

the

value

of

this

CxIgnore

meta-object

attribute

in

the

fixed-width

document.

Business

objects

must

have

at

least

one

primary

key

that

does

not

contain

the

value

CxIgnore

at

runtime.

CxIgnore

value

DummyKey

Key

attribute

required

by

the

business

integration

system.

1

OmitObjectEventId

Boolean

value

to

determine

whether

or

not

to

include

ObjectEventId

data

in

business-object-to-string

and

string-to-business-object

conversions.

false

PadCharacter

Indicates

spaces

to

add

or

remove

for

alignment.

You

can

specify

any

character

as

the

pad

character.

#

Truncation

Sets

removal

of

characters.

If

true,

any

attribute

value

in

the

business

object

that

is

greater

than

MaxLength

is

truncated

to

MaxLength

during

request

processing.

If

false,

an

error

is

logged

and

formatting

stops.

false

ObjectEventId

Placeholder

not

used

by

the

data

handler

but

required

by

the

business

integration

system.

none

Chapter

6.

FixedWidth

data

handler

135

The

“Delivered

default

value”

column

in

Table

58

lists

the

value

in

the

Default

Value

property

for

the

corresponding

attribute

in

the

delivered

business

object.

You

must

examine

your

environment

and

set

the

Default

Value

properties

of

those

attributes

to

the

appropriate

values

for

your

system

and

your

FixedWidth

documents.

You

must

make

sure

that

at

least

the

ClassName

attribute

has

a

default

value.

Note:

Use

Business

Object

Designer

to

modify

business

object

definitions.

Business

objects

requirements

The

FixedWidth

data

handler

makes

assumptions

about

the

structure

of

the

business

objects

that

it

handles.

Therefore,

when

you

create

a

business

object

for

conversion

using

the

FixedWidth

data

handler,

follow

these

rules:

v

Make

sure

that

every

attribute

in

the

business

object

definition

has

an

appropriate

MaxLength

property

value.

This

ensures

that

the

FixedWidth

data

handler

can

properly

process

the

conversion

of

data

from

a

business

object

to

a

FixedWidth

format

and

from

a

FixedWidth

format

to

a

business

object.

v

Make

sure

that

the

ObjectEventId

attribute

is

included

in

every

business

object

at

all

levels

of

a

business

object

hierarchy.

Business

Object

Designer

does

this

automatically

when

it

saves

a

business

object

definition,

but

you

should

confirm

that

the

requirement

is

met.

Business

object

structure

There

are

no

requirements

regarding

the

structure

of

the

business

objects

for

the

FixedWidth

data

handler.

The

data

handler

can

process

any

business

object

as

long

as

the

MaxLength

attribute

property

has

a

value.

The

business

objects

that

the

data

handler

processes

can

have

any

name

allowed

by

the

business

integration

system.

Business

object

attribute

properties

Business

object

architecture

contains

various

properties

that

apply

to

attributes.

Table

59

describes

how

the

FixedWidth

data

handler

interprets

these

properties

and

describes

how

to

set

the

properties

when

modifying

a

business

object.

Table

59.

Attribute

properties

for

business

objects

converted

using

the

FixedWidth

data

handler

Property

name

Description

Name

Each

business

object

attribute

must

have

a

unique

name.

Type

Each

business

object

attribute

must

have

a

type,

such

as

Integer,

String,

or

the

type

of

a

contained

child

business

object.

Key

Not

used

by

the

FixedWidth

data

handler.

MaxLength

Determines

the

width

of

the

field

in

which

the

attribute

value

is

included.

Foreign

Key

Not

used

by

the

FixedWidth

data

handler.

Required

Not

used

by

the

FixedWidth

data

handler.

Default

Value

Not

used

by

the

FixedWidth

data

handler.

Cardinality

Supports

cardinality

1

and

cardinality

n

objects.

Business

object

application-specific

information

The

FixedWidth

data

handler

does

not

require

any

application-specific

information

in

business

objects

or

their

attributes.

The

data

handler

does,

however,

check

for

the

existence

of

the

cw_mo_

tag,

which

a

business

object

might

use

to

indicate

any

child

meta-object

that

the

connector

uses.

The

data

handler

ignores

any

attribute

136

Data

Handler

Guide

identified

by

the

cw_mo_

tag

in

the

application-specific

information

of

the

business

object.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

Using

existing

business

object

definitions

The

FixedWidth

data

handler

can

convert

any

business

object

to

a

FixedWidth

string

as

long

as

the

business

object

delivers

data

in

a

form

that

complies

with

the

requirements

of

the

data

handler.

The

single

requirement

of

the

FixedWidth

data

handler

is

that

each

business

object

attribute

have

a

MaxLength

value

specified.

Existing

business

objects

may

need

to

be

modified

to

specify

an

appropriate

value

for

MaxLength.

Although

existing

business

objects

that

meet

this

requirement

can

be

converted

by

the

FixedWidth

data

handler,

a

good

practice

is

to

create

your

own

business

objects

for

each

type

of

data

to

be

processed.

If

you

use

a

sample

business

object,

or

a

business

object

developed

to

support

the

same

application

in

another

implementation,

be

sure

to

modify

the

definition

as

necessary

to

include

only

the

attributes

required

for

the

implementation

for

which

you

are

developing.

Therefore,

to

convert

existing

business

objects

to

a

form

that

closely

corresponds

to

your

data,

modify

the

business

object

to

provide

only

the

data

required

by

the

application

and

the

information

required

by

the

data

handler.

To

adapt

existing

business

objects

for

use

with

the

FixedWidth

data

handler,

do

the

following:

1.

Perform

a

functional

analysis

of

the

target

application,

and

compare

the

results

to

existing

business

objects

to

determine

the

required

fields

of

a

business

object

definition.

2.

Use

Business

Object

Designer

to

add

or

delete

attributes

from

the

business

object

definition

as

needed.

Converting

business

objects

to

FixedWidth

documents

To

convert

a

business

object

to

a

FixedWidth

document,

the

FixedWidth

data

handler

loops

through

the

attributes

of

the

business

object

in

sequential

order.

It

generates

fields

in

a

fixed-width

string

recursively

in

the

order

in

which

attributes

appear

in

the

business

object

and

its

children.

The

FixedWidth

data

handler

processes

business

objects

into

a

FixedWidth

document

as

follows:

1.

The

data

handler

creates

a

fixed-width

string

to

contain

the

data

in

the

business

object.

2.

The

data

handler

adds

the

business

object

name

and

the

verb

to

the

fixed-width

string.

The

name

of

the

business

object

can

be

specified

as

an

argument

to

the

conversion

method.

3.

The

data

handler

examines

the

application-specific

information

in

the

business

object

definition

to

determine

if

there

are

any

child

meta-objects

(those

whose

names

are

listed

in

the

cw_mo_

tag

of

the

business

object

application-specific

information).

The

data

handler

does

not

include

these

attributes

in

the

FixedWidth

document.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

4.

The

data

handler

looks

for

the

meta-object

attribute

named

OmitObjectEventId.

If

this

is

set

to

true,

the

data

handler

does

not

include

the

ObjectEventId

data

of

the

business

object

in

the

FixedWidth

document.

Chapter

6.

FixedWidth

data

handler

137

5.

The

data

handler

loops

through

the

remaining

business

object

attributes

in

order,

adding

the

correct

padding

to

the

string

for

each

simple

attribute.

For

array

attributes,

the

data

handler

does

the

following:

v

If

the

attribute

represents

a

single-cardinality

attribute,

the

data

handler

adds

the

attribute

name

and

a

count

of

1

to

the

string,

and

then

recursively

processes

the

child

business

object

to

add

the

values

of

each

attribute

to

the

string.

v

If

the

attribute

represents

a

multiple

cardinality

array,

the

data

handler

adds

the

attribute

name

and

the

child

object

count

to

the

string,

and

then

recursively

processes

each

child

business

object,

adding

the

values

of

each

attribute

to

the

string.
6.

When

the

data

handler

completes

the

conversion,

it

returns

the

serialized

data

to

the

caller.

The

data

handler

returns

the

data

in

the

form

(String

or

InputStream)

requested

by

the

caller.

Note:

Any

attribute

value

in

the

business

object

that

has

a

length

greater

than

MaxLength

is

truncated

to

MaxLength

during

request

processing

if

the

value

of

the

Default

Value

property

of

the

Truncation

meta-object

attribute

is

set

to

true.

If

Truncation

is

set

to

false

and

an

attribute

value

has

a

length

greater

than

MaxLength,

formatting

terminates,

and

an

error

is

logged.

Converting

FixedWidth

documents

to

business

objects

This

section

provides

the

following

information

on

how

the

FixedWidth

data

handler

converts

FixedWidth

documents

to

business

objects:

v

“FixedWidth

string

requirements”

v

“Serialized-data

processing”

on

page

139

FixedWidth

string

requirements

When

converting

a

string

to

an

business

object,

the

FixedWidth

data

handler

makes

the

following

assumptions:

v

The

business

object

name

appears

as

the

first

field

in

the

data.

v

The

verb

appears

as

the

second

field

in

the

data.

v

All

attributes

are

given

in

the

order

that

they

appear

in

the

business

object

definition.

v

The

ObjectEventId

attribute

is

present

in

each

business

object.

An

entry

for

ObjectEventId

is

always

required

for

a

business

object,

even

when

it

has

the

value

CxIgnore,

because

the

data

handler

uses

it

to

distinguish

between

instances

of

a

business

object

at

runtime.

The

format

for

a

fixed-width

string

is

as

follows:

[Bus_Obj_Name<blank_space_padding_for_size>]

[Verb<blank_space_padding_for_size>]

[Attr1<blank_space_padding_for_size>]

[Attr2...<blank_space_padding_for_size>]

[Number-of-child-object_instances<blank_space_padding_for_size>]

[Child_Object_Name<blank_space_padding_for_size>]

[Child_Object_Verb<blank_space_padding_for_size>]

[Child_Object_Attr1<blank_space_padding_for_size>]

[Child_Object_Attr2...<blank_space_padding_for_size>]

<EndBO:Bus_Obj_Name>

In

this

format,

the

first

two

fields

(Bus_Obj_Name

and

Verb)

are

padded

to

create

fields

of

a

length

specified

by

the

BONameSize

and

BOVerbSize

attributes

in

the

138

Data

Handler

Guide

FixedWidth

child

meta-object.

The

subsequent

attributes

are

padded

to

create

fields

of

a

length

specified

in

the

MaxLength

property

for

each

business

object

attribute.

A

field

used

with

the

FixedWidth

data

handler

must

be

at

least

eight

characters

long

if

CxIgnore

is

a

possible

value

for

that

attribute.

If

an

attribute

is

guaranteed

not

to

have

a

CxIgnore

value,

MaxLength

can

be

less

than

eight

characters

long.

When

a

connector

reads

a

file

in

fixed-width

format,

the

CxIgnore

and

CxBlank

meta-object

attributes

must

be

configured

to

generate

the

desired

values.

These

strings

affect

the

minimum

MaxLength

attributes.

The

minimum

value

for

MaxLength

must

accommodate

both.

Serialized-data

processing

The

FixedWidth

data

handler

processes

a

FixedWidth

document

into

a

business

object

as

follows:

1.

The

data

handler

creates

a

business

object

to

contain

the

data.

The

type

of

business

object

is

either

passed

into

the

conversion

method

by

the

connector,

or

the

data

handler

extracts

the

name

of

the

business

object

from

the

first

field

of

the

string.

If

the

type

parameter

and

the

content

in

the

data

do

not

match,

the

data

handler

generates

an

error.

2.

The

data

handler

sets

the

verb

in

the

business

object.

The

data

handler

assumes

that

the

verb

for

the

top-level

business

object

is

in

the

second

field

in

the

data.

3.

The

data

handler

determines

if

there

are

any

child

meta-objects

(those

whose

names

are

listed

in

the

cw_mo_

tag

of

the

business

object

application-specific

information).

The

data

handler

does

not

perform

the

processing

to

populate

these

attributes

of

the

business

object.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

4.

The

data

handler

looks

for

the

meta-object

attribute

named

OmitObjectEventId.

If

this

is

set

to

true,

the

data

handler

does

not

perform

the

processing

to

populate

the

ObjectEventId

attribute.

5.

To

set

the

remaining

business

object

attributes,

the

data

handler

parses

the

data

based

on

the

MaxLength

of

each

attribute

as

specified

in

the

business

object

definition.

It

extracts

attribute

values

from

the

data

and

populates

the

values

of

the

simple

attributes

in

the

business

object.

The

data

handler

processes

array

attributes

as

follows:

v

If

the

attribute

is

a

single-cardinality

attribute,

the

data

handler

recursively

parses

the

attribute

list,

sets

the

attribute

values,

and

adds

the

child

business

object

to

the

parent

business

object.

v

If

the

attribute

is

a

multiple

cardinality

array,

the

data

handler

recursively

parses

the

attributes

in

each

child

attribute

list,

and

adds

the

child

business

object

to

the

parent

business

object.

Chapter

6.

FixedWidth

data

handler

139

140

Data

Handler

Guide

Chapter

7.

Delimited

data

handler

The

Delimited

data

handler

converts

business

objects

to

delimited-format

strings

and

streams,

and

from

delimited-formatted

strings

and

streams

to

business

objects.

This

chapter

describes

how

the

Delimited

data

handler

processes

delimited

data

and

how

to

define

business

objects

to

be

processed

by

the

data

handler.

You

can

use

this

information

as

a

guide

to

modifying

existing

business

objects

or

implementing

new

business

objects

that

conform

to

the

requirements

of

the

data

handler.

This

chapter

also

discusses

how

to

configure

the

Delimited

data

handler.

This

chapter

contains

the

following

sections:

v

“Overview”

v

“Configuring

the

Delimited

data

handler”

on

page

142

v

“Converting

business

objects

to

delimited

data”

on

page

145

v

“Converting

delimited

data

to

business

objects”

on

page

146

Note:

The

Delimited

data

handler

is

one

of

the

base

data

handlers

contained

in

the

CwDataHandler.jar

file.

For

information

on

how

to

install

this

data

handler

and

where

to

store

its

source

code,

see

Chapter

2,

“Installing

and

configuring

data

handlers,”

on

page

21.

Overview

The

Delimited

data

handler

is

a

data-conversion

module

whose

primary

role

is

to

convert

business

objects

to

and

from

delimited-formatted

strings

or

streams.

A

delimited-formatted

string

or

stream

is

serialized

data

with

the

text/delimited

MIME

type.

The

data

handler

parses

text

data

based

on

a

specified

delimiter

that

separates

the

individual

fields

of

a

business

object’s

data.

This

type

of

data

conversion

is

used

primarily

where

the

efficiency

of

machine

reading

is

most

important.

The

default

top-level

connector

meta-object

(MO_DataHandler_Default)

supports

the

text/delimited

MIME

type.

Therefore,

a

connector

that

is

configured

to

use

the

MO_DataHandler_Default

meta-object

can

call

the

Delimited

data

handler.

If

InterChange

Server

is

your

integration

broker

and

an

access

client

must

be

able

to

call

this

data

handler,

you

must

modify

the

top-level

server

meta-object

(MO_Server_DataHandler)

to

support

the

text/delimited

MIME

type.

For

more

information,

see

“Modifying

the

top-level

meta-object”

on

page

188.

Features

of

the

Delimited

data

handler

The

Delimited

data

handler

allows

you

to

set

the

following

strings:

v

The

delimiter—The

data

handler

uses

a

delimiter

to

separate

the

different

fields

in

the

delimited

data.

You

can

set

the

Delimiter

meta-object

attribute

to

the

desired

delimiter

for

your

data.

By

default,

the

data

handler

uses

a

tilde

(~)

as

the

delimiter

is

size

of

the

attribute

property

MaxLength

to

determine

how

to

read

and

write

data.

MaxLength

is

an

business

object

attribute

property

that

defines

the

maximum

number

of

characters

of

the

attribute

value,

including

padding

to

allow

for

right-justified

or

left-justified

text.

MaxLength

is

read

from

the

definition

of

the

business

object

in

the

repository.

Accordingly,

the

main

requirement

for

a

business

object

is

that

the

MaxLength

for

each

string

attribute

is

set

appropriately.

©

Copyright

IBM

Corp.

2000,

2004

141

v

The

escape

string—The

data

handler

uses

the

escape

string

to

configure

a

string

to

escape

the

delimiter

and

escape

strings.

The

escape

string

allows

the

attribute

value

data

to

contain

delimiter-like

and

escape-like

strings.

You

can

set

the

Escape

meta-object

attribute

to

configure

the

escape

string.

By

default,

the

data

handler

uses

the

backslash

character

(\)

as

the

escape

string.

Business

object

and

string

processing

The

Delimited

data

handler

performs

the

operations

listed

in

Table

60.

Table

60.

Data

operations

for

the

Delimited

data

handler

Data-handler

operation

For

more

information

Receives

a

business

object

from

the

caller,

converts

the

business

object

to

a

Delimited

string

or

stream,

and

passes

the

serialized

data

to

the

caller.

“Converting

business

objects

to

delimited

data”

on

page

145

Receives

a

string

or

stream

from

the

caller,

builds

a

business

object,

and

returns

the

business

object

to

the

caller.

Receives

a

Delimited

string

or

stream

from

the

caller,

builds

a

business

object,

and

passes

the

business

object

to

the

caller.

“Converting

delimited

data

to

business

objects”

on

page

146

Configuring

the

Delimited

data

handler

To

configure

the

Delimited

data

handler,

take

the

following

steps:

v

Enter

the

appropriate

values

for

the

attributes

of

the

Delimited

child

meta-object.

v

Create

or

modify

business

object

definitions

so

that

they

support

the

data

handler.

Each

of

these

steps

is

described

in

more

detail

in

the

following

sections.

Configuring

the

Delimited

child

meta-object

To

configure

a

Delimited

data

handler,

you

must

ensure

that

its

configuration

information

is

provided

in

the

Delimited

child

meta-object.

For

the

Delimited

data

handler,

IBM

delivers

the

MO_DataHandler_DefaultDelimitedConfig

child

meta-object.

Each

attribute

in

this

meta-object

defines

a

configuration

property

for

the

Delimited

data

handler.

Table

61

describes

the

attributes

in

this

child

meta-object.

Table

61.

Child

meta-object

attributes

for

the

Delimited

data

handler

Meta-object

attribute

name

Meaning

Delivered

default

value

ClassName

Name

of

the

data

handler

class

to

load

for

use

with

the

specified

MIME

type.

The

top-level

data-handler

meta-object

has

an

attribute

whose

name

matches

the

specified

MIME

type

and

whose

type

is

the

Delimited

child

meta-object

(described

by

Table

61).

com.crossworlds.

DataHandlers.

text.delimited

CxBlank

Establishes

the

equivalent

value

in

the

Delimited

data

for

the

special

business

object

attribute

value,

Blank

(the

CxBlank

constant).

For

more

information,

see

“CxBlank”

on

page

144.

CxBlank

constant

(blank

space)

CxIgnore

Establishes

the

equivalent

value

in

the

Delimited

data

for

the

special

business

object

attribute

value,

Ignore

(the

CxIgnore

constant).

For

more

information,

see

“CxIgnore”

on

page

144.

CxIgnore

constant

(empty

string)

142

Data

Handler

Guide

Table

61.

Child

meta-object

attributes

for

the

Delimited

data

handler

(continued)

Meta-object

attribute

name

Meaning

Delivered

default

value

Delimiter

String

used

to

separate

the

values

in

business

object

attributes

when

writing

business

object

data

to

files,

or

that

is

assumed

to

separate

fields

of

data

that

correspond

to

attributes

when

converting

a

file

to

a

business

object.

This

value

can

contain

multiple

characters.

~

(tilde)

DummyKey

Key

attribute

required

by

the

business

integration

system.

1

Escape

String

used

to

escape

the

delimiter

and

escape

characters

if

they

occur

in

a

business

object

attribute

value.

This

value

can

only

be

one

character

in

length.

\

(backslash)

OmitObjectEventId

Boolean

value

to

determine

whether

or

not

to

include

ObjectEventId

data

in

business

object-to-String

and

String-to-business

object

conversions.

false

ObjectEventId

Placeholder

attribute

required

by

the

business

integration

system.

none

The

“Delivered

default

value”

column

in

Table

61

lists

the

value

in

the

Default

Value

property

for

the

corresponding

attribute

in

the

delivered

business

object.

You

must

examine

your

environment

and

set

the

Default

Value

properties

of

those

attributes

to

the

appropriate

values

for

your

system

and

your

Delimited

documents.

You

must

make

sure

that

at

least

the

ClassName

attribute

has

a

default

value.

Note:

Use

Business

Object

Designer

to

modify

business

object

definitions.

Business

object

requirements

The

Delimited

data

handler

makes

assumptions

about

the

business

objects

that

it

handles.

Therefore,

when

you

create

a

business

object

for

conversion

using

the

Delimited

data

handler,

follow

these

rules:

v

Make

sure

that

every

business

object

attribute

has

a

name

to

ensure

that

the

Delimited

data

handler

can

properly

convert

the

data.

v

Make

sure

that

the

ObjectEventId

attribute

is

included

in

every

business

object

at

all

levels

of

a

business

object

hierarchy.

Business

Object

Designer

does

this

automatically

when

it

saves

a

business

object

definition,

but

you

should

confirm

that

the

requirement

is

met.

The

Delimiter

attribute

in

the

child

meta-object

configures

the

delimiter

used

to

separate

attribute

fields.

The

default

value

is

a

tilde

(~).

You

can

set

the

child

meta-object

attribute

Escape

to

configure

a

string

to

escape

the

delimiter

and

escape

strings.

The

escape

string

allows

the

attribute

value

data

to

contain

delimiter-like

and

escape-like

strings.

Business

object

structure

There

are

no

requirements

regarding

the

structure

of

the

business

objects

for

the

Delimited

data

handler.

The

data

handler

can

process

any

business

object.

The

business

objects

that

the

data

handler

processes

can

have

any

name

allowed

by

the

integration

broker.

Chapter

7.

Delimited

data

handler

143

Business

object

attribute

properties

Business

object

architecture

contains

various

properties

that

apply

to

attributes.

Table

62

describes

how

the

Delimited

data

handler

interprets

several

of

these

properties

and

describes

how

to

set

the

properties

when

modifying

a

business

object.

Table

62.

Attribute

properties

for

business

objects

converted

using

the

Delimited

data

handler

Property

name

Description

Name

Every

business

object

attribute

must

have

a

unique

name.

Type

Each

business

object

attribute

must

have

a

type,

such

as

Integer,

String,

or

the

type

of

a

contained

child

business

object.

Key

Not

used

by

the

Delimited

data

handler.

MaxLength

Not

used

by

the

Delimited

data

handler.

Foreign

Key

Not

used

by

the

Delimited

data

handler.

Required

Not

used

by

the

Delimited

data

handler.

Default

Value

Not

used

by

the

Delimited

data

handler.

Cardinality

Supports

cardinality

1

and

cardinality

n

objects.

Attributes

in

business

objects

can

have

the

special

values

of

CxIgnore

or

CxBlank.

The

Delimited

data

handler

takes

special

processing

steps

when

attributes

have

these

values,

as

described

in

the

following

sections.

CxIgnore:

The

CxIgnore

meta-object

attribute

establishes

the

equivalent

value

in

a

Delimited

data

for

the

Ignore

attribute

value

(the

CxIgnore

constant).

By

default,

the

CxIgnore

meta-object

attribute

is

set

to

the

value

of

the

CxIgnore

constant.

The

data

handler

uses

the

CxIgnore

meta-object

attribute

as

follows:

v

When

converting

from

a

business

object,

the

Delimited

data

handler

writes

the

value

of

the

CxIgnore

meta-object

attribute

(the

value

configured

for

its

Default

Value

property)

to

the

Delimited

data

whenever

it

encounters

a

business

object

attribute

with

the

CxIgnore

constant

as

its

attribute

value.

v

When

converting

to

a

business

object,

the

Delimited

data

handler

assigns

the

CxIgnore

constant

to

the

business

object

attribute’s

value

whenever

it

encounters

the

value

of

the

CxIgnore

meta-object

attribute

(the

value

configured

for

its

Default

Value

property)

in

the

Delimited

data.

Note:

Business

objects

must

have

at

least

one

primary

key

that

does

not

contain

the

value

CxIgnore

at

runtime.

CxBlank:

The

CxBlank

meta-object

attribute

establishes

the

equivalent

value

in

a

Delimited

data

for

the

Blank

attribute

value

(the

CxBlank

constant).

By

default,

the

CxBlank

meta-object

attribute

is

set

to

the

value

of

the

CxBlank

constant.

The

data

handler

uses

the

CxBlank

meta-object

attribute

as

follows:

v

When

converting

from

a

business

object,

the

Delimited

data

handler

writes

the

value

of

the

CxBlank

meta-object

attribute

(the

value

configured

for

the

Default

Value

property)

to

the

Delimited

data

whenever

it

encounters

a

business

object

attribute

with

the

CxBlank

constant

as

its

attribute

value.

v

When

converting

to

a

business

object,

the

Delimited

data

handler

assigns

the

CxBlank

constant

to

the

business

object

attribute’s

value

whenever

it

encounters

the

value

of

the

CxBlank

meta-object

attribute

(the

value

configured

for

its

Default

Value

property)

in

the

Delimited

data.

Note:

Business

objects

must

have

at

least

one

primary

key

that

does

not

contain

the

value

CxBlank

at

runtime.

144

Data

Handler

Guide

Business

object

application-specific

information

The

Delimited

data

handler

does

not

require

any

application-specific

information

in

business

objects

or

their

attributes.

The

data

handler

does,

however,

check

for

the

existence

of

the

cw_mo_

tag,

which

a

business

object

might

use

to

indicate

any

child

meta-object

that

the

connector

uses.

The

data

handler

ignores

any

attribute

identified

by

the

cw_mo_

tag

in

the

application-specific

information

of

the

business

object.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

Using

existing

business

object

definitions

The

Delimited

data

handler

can

convert

any

business

object

to

a

Delimited

string

as

long

as

the

business

object

delivers

data

in

a

form

that

complies

with

the

requirements

of

the

data

handler.

The

single

requirement

of

the

Delimited

data

handler

is

that

if

the

data

handler

must

read

in

a

delimited

file,

that

each

individual

field

is

separated

by

the

configured

delimiter.

Although

existing

business

objects

that

meet

this

requirement

can

be

converted

by

the

Delimited

data

handler,

a

good

practice

is

to

create

your

own

business

objects

for

each

type

of

data

to

be

processed.

If

you

use

a

sample

business

object,

or

a

business

object

developed

to

support

the

same

application

in

another

implementation,

be

sure

to

modify

the

definition

as

necessary

to

include

only

the

attributes

required

for

the

implementation

for

which

you

are

developing.

Therefore,

to

convert

existing

business

objects

to

a

form

that

closely

corresponds

to

your

data,

modify

the

business

object

to

provide

only

the

data

required

by

the

application

and

the

information

required

by

the

data

handler.

To

adapt

existing

business

objects

for

use

with

the

Delimited

data

handler,

do

the

following:

1.

Perform

a

functional

analysis

of

the

target

application,

and

compare

the

results

to

existing

business

objects

to

determine

the

required

fields

of

a

business

object

definition.

2.

Use

Business

Object

Designer

to

add

or

delete

attributes

from

the

business

object

definition

as

needed.

Converting

business

objects

to

delimited

data

To

convert

a

business

object

to

a

string,

the

Delimited

data

handler

loops

through

the

attributes

of

a

business

object

in

sequential

order.

It

generates

Delimited

formatting

recursively

in

the

order

in

which

attributes

appear

in

the

business

object

and

its

children.

The

name

of

the

business

object

is

passed

as

an

argument

to

the

conversion

method.

The

Delimited

data

handler

processes

business

objects

into

delimited

data

as

follows:

1.

The

data

handler

creates

a

string

to

contain

the

data

in

the

business

object.

2.

The

data

handler

adds

the

business

object

name

as

the

first

token

in

the

string

and

adds

the

verb

as

the

second

a

token

in

the

string.

3.

The

data

handler

examines

the

application-specific

information

in

the

business

object

definition

to

determine

if

there

are

any

child

meta-objects

(those

whose

names

are

listed

in

the

cw_mo_

tag

of

the

business

object

application-specific

information).

The

data

handler

does

not

include

these

attributes

in

the

delimited

data.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

Chapter

7.

Delimited

data

handler

145

4.

The

data

handler

looks

for

the

meta-object

attribute

named

OmitObjectEventId.

If

this

is

set

to

true,

the

data

handler

does

not

include

ObjectEventId

data

of

the

business

object

in

the

delimited

data.

5.

The

data

handler

loops

through

the

remaining

business

object

attributes

in

order,

adding

values

for

each

simple

attribute

to

the

string

and

adding

the

configured

delimiter

after

each

attribute.

For

container

attributes,

the

data

handler

does

the

following:

v

If

the

attribute

is

a

cardinality

1

container,

the

data

handler

adds

the

attribute

count

to

the

string,

and

then

recursively

processes

the

child

business

object

to

add

values

for

each

attribute.

v

If

the

attribute

is

a

cardinality

n

container,

the

data

handler

adds

the

count

of

the

child

objects

in

the

container

to

the

string,

and

then

recursively

processes

each

child

business

object,

adding

values

for

each

attribute

to

the

string.
6.

When

the

data

handler

completes

the

conversion,

it

returns

the

serialized

data

to

the

caller.

The

data

handler

returns

the

data

in

the

form

(String

or

InputStream)

requested

by

the

caller.

The

format

that

the

data

handler

generates

conforms

to

the

following

pattern:

Bus_Obj_Name<delimiter>Verb<delimiter>Attr1<delimiter>Attr2<delimiter>

Number_of_child_object_instances<delimiter>Child_Object_Name<delimiter>Verb

<delimiter>Attr1<delimiter>Attr2<EndBO:Bus_Obj_Name>

An

escape

string

is

appended

in

front

of

any

delimiter-like

string

in

an

attribute

value.

The

escape

string

is

configured

using

the

Escape

attribute

of

the

child

meta-object.

Converting

delimited

data

to

business

objects

This

section

provides

the

following

information

on

how

the

Delimited

data

handler

converts

Delimited

data

to

business

objects:

v

“Delimited

string

requirements”

v

“Serialized-data

processing”

on

page

147

Delimited

string

requirements

When

converting

a

string

or

stream,

the

Delimited

data

handler

makes

the

following

assumptions:

v

The

data

contains

the

delimiter

specified

in

the

Delimiter

meta-object

attribute.

v

The

business

object

name

appears

in

the

first

field

in

the

data.

v

The

verb

appears

as

the

second

field

in

the

data.

v

Attributes

are

in

the

order

that

they

appear

in

the

business

object

definition.

v

All

objects

in

a

child

container

are

of

the

same

type.

v

The

data

contains

a

token

that

represents

the

number

of

child

objects

in

each

cardinality

n

container.

v

The

ObjectEventId

attribute

is

present

in

each

business

object.

An

entry

for

ObjectEventId

is

always

required

for

a

business

object,

even

when

it

has

the

value

CxIgnore,

because

the

data

handler

uses

it

to

distinguish

between

instances

of

a

business

object

at

runtime.

If

you

have

more

than

one

business

object

in

the

data,

make

sure

you

do

not

introduce

any

new

characters

(such

as

a

space,

a

tab,

a

new

line,

or

a

carriage

return)

between

them.

146

Data

Handler

Guide

When

the

Delimited

data

handler

reads

a

file

in

Delimited

format,

it

takes

the

following

special

processing

steps

to

assign

to

a

business

object

attribute

the

CxIgnore

or

CxBlank

attribute

value:

v

It

assigns

the

CxIgnore

constant

(null)

as

the

corresponding

attribute

value

whenever

it

encounters

any

of

the

following

conditions

in

the

Delimited

data:

–

The

value

of

the

CxIgnore

meta-object

attribute

(the

value

configured

for

its

Default

Value

property)

–

The

value

of

an

empty

string

(″

″)
v

It

assigns

the

CxBlank

constant

as

the

attribute

value

only

when

the

CxBlank

meta-object

attribute

is

configured

and

it

encounters

this

configured

value

in

the

corresponding

Delimited

data.

Note:

Make

sure

the

escape

string

and

the

delimiter

have

different

values

as

configured

by

the

Escape

and

Delimiter

meta-object

attributes

in

the

Delimiter

data

handler

child

meta-object.

The

following

line

shows

an

example

of

a

string

in

Delimited

format.

The

syntax

is:

Bus_Obj_Name<delimiter>Verb<delimiter>Attr1<delimiter>Attr2<delimiter>

Number_of_child_object_instances<delimiter>Child_Object_Name<delimiter>

Verb<delimiter>Attr1<delimiter>Attr2<EndBO:Bus_Obj_Name>

The

following

sample

uses

a

tilde

(~)

delimiter:

Customer~Create~p1~p2~p3~1~CustomerAddress~Create~q1~q2~q3~q4~q5~q6~q7~q8~q9~q10~3~

PhoneInfo~Create~r1~r2~r3~r4~r5~r6~r7~PhoneInfo~Create~r1~r2~r3~r4~r5~r6~r7~

PhoneInfo~Create~r1~r2~r3~r4~r5~r6~r7

Serialized-data

processing

The

Delimited

data

handler

processes

delimited

data

into

a

business

object

as

follows:

1.

The

data

handler

gets

the

business

object

name

from

the

first

token

in

the

data

and

creates

a

business

object

to

contain

the

data.

2.

The

data

handler

sets

the

verb

in

the

business

object.

The

data

handler

assumes

that

the

verb

for

the

top-level

business

object

is

in

the

second

token

in

the

delimited

data.

Note

that

child

business

objects

may

not

have

verbs

set.

3.

The

data

handler

determines

if

there

are

any

child

meta-objects

(those

whose

names

are

listed

in

the

cw_mo_

tag

of

the

business

object

application-specific

information).

The

data

handler

does

not

perform

the

processing

to

populate

these

attributes

of

the

business

object.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

4.

The

data

handler

looks

for

meta-object

attribute

named

OmitObjectEventId.

If

this

is

set

to

true,

the

data

handler

does

not

perform

the

processing

to

populate

the

ObjectEventId

attribute.

5.

The

data

handler

parses

the

data

and

populates

the

values

of

the

remaining

simple

attributes

in

the

business

object

with

the

token

values

from

the

data.

The

data

handler

processes

container

attributes

as

follows:

v

If

the

attribute

is

single-cardinality,

the

data

handler

recursively

parses

the

attribute

tokens

in

the

string,

sets

the

attribute

values

in

the

business

object,

and

adds

the

child

business

object

container

to

the

parent

business

object.

v

If

the

attribute

is

multiple

cardinality,

the

data

handler

recursively

parses

the

attribute

tokens

for

each

child

object,

sets

the

attribute

values

in

the

child

business

object,

and

adds

the

child

business

object

container

to

the

parent

business

object.

Chapter

7.

Delimited

data

handler

147

148

Data

Handler

Guide

Chapter

8.

NameValue

data

handler

The

NameValue

data

handler

converts

a

business

object

to

string

or

stream

formatted

in

name-value

pairs,

and

converts

a

string

or

stream

formatted

in

name-value

pairs

to

a

business

object.

This

chapter

describes

how

the

NameValue

data

handler

processes

NameValue

data

and

describes

how

to

define

business

objects

to

be

processed

by

the

NameValue

data

handler.

You

can

use

this

information

as

a

guide

to

implementing

business

objects

that

conform

to

the

requirements

of

the

NameValue

data

handler.

This

chapter

also

discusses

how

to

configure

the

NameValue

data

handler.

This

chapter

contains

the

following

sections:

v

“Overview”

v

“Configuring

the

NameValue

data

handler”

on

page

150

v

“Converting

business

objects

to

NameValue

data”

on

page

153

v

“Converting

NameValue

data

to

business

objects”

on

page

154

Note:

The

NameValue

data

handler

is

one

of

the

base

data

handlers

contained

in

the

CwDataHandler.jar

file.

For

information

on

how

to

install

this

data

handler

and

where

to

store

its

source

code,

see

Chapter

2,

“Installing

and

configuring

data

handlers,”

on

page

21.

Overview

The

NameValue

data

handler

is

a

data-conversion

module

whose

primary

role

is

to

convert

a

business

object

to

and

from

a

string

or

stream

formatted

in

name-value

pairs.

A

NameValue-formatted

string

or

stream

is

serialized

data

with

the

text/namevalue

MIME

type.

The

NameValue

data

handler

can

be

used

to

generate

a

business

object

file

for

testing

purposes.

The

data

handler

parses

serialized

data

based

on

named

fields.

For

example,

a

text

file

for

this

data

handler

contains

fields

that

identify

the

business

object

type

(BusinessObject=BOname),

verb

(Verb=verbName),

number

of

attributes

(AttributeCount=numericValue),

and

attribute

values

(AttributeName=Value).

The

data

handler

uses

the

name-value

information

to

parse

the

data.

The

default

top-level

connector

meta-object

(MO_DataHandler_Default)

supports

the

text/namevalue

MIME

type.

Therefore,

a

connector

that

is

configured

to

use

the

MO_DataHandler_Default

meta-object

can

call

the

NameValue

data

handler.

For

an

access

client

to

be

able

to

call

this

data

handler

when

using

the

InterChange

Server

integration

broker,

you

must

modify

the

MO_Server_DataHandler

meta-object

to

support

the

text/namevalue

MIME

type.

For

more

information,

see

“Modifying

the

top-level

meta-object”

on

page

188.

The

NameValue

data

handler

performs

the

operations

listed

in

Table

63.

Table

63.

Data

operations

for

the

NameValue

data

handler

Data-handler

operation

For

more

information

Receives

a

business

object

from

the

caller,

converts

the

business

object

into

a

NameValue

string

or

stream,

and

passes

the

serialized

data

to

the

caller.

“Converting

business

objects

to

NameValue

data”

on

page

153

©

Copyright

IBM

Corp.

2000,

2004

149

Table

63.

Data

operations

for

the

NameValue

data

handler

(continued)

Data-handler

operation

For

more

information

Receives

a

string

or

stream

from

the

caller,

builds

a

business

object,

and

returns

the

business

object

to

the

caller.

“Converting

NameValue

data

to

business

objects”

on

page

154

Configuring

the

NameValue

data

handler

To

configure

the

NameValue

data

handler,

take

the

following

steps:

v

Enter

the

appropriate

values

for

the

attributes

of

the

NameValue

child

meta-object.

v

Create

or

modify

business

object

definitions

so

that

they

support

the

data

handler.

Each

of

these

steps

is

described

in

more

detail

in

the

following

sections.

Configuring

the

NameValue

child

meta-object

To

configure

a

NameValue

data

handler,

you

must

ensure

that

its

configuration

information

is

provided

in

the

NameValue

child

meta-object.

For

the

NameValue

data

handler,

IBM

delivers

the

MO_DataHandler_DefaultNameValueConfig

child

meta-object.

Each

attribute

in

this

meta-object

defines

a

configuration

property

for

the

NameValue

data

handler.Table

64

describes

the

attributes

for

this

child

meta-object.

Table

64.

Child

meta-object

attributes

for

the

NameValue

data

handler

Meta-object

attribute

name

Description

Delivered

default

value

ClassName

Name

of

the

data

handler

class

to

load

for

use

with

the

specified

MIME

type.

The

top-level

data-handler

meta-object

has

an

attribute

whose

name

matches

the

specified

MIME

type

and

whose

type

is

the

NameValue

child

meta-object

(described

by

Table

64).

com.crossworlds.

DataHandlers.

text.namevalue

CxBlank

Establishes

the

equivalent

value

in

the

NameValue

data

for

the

special

business

object

attribute

value,

Blank

(the

CxBlank

constant).

For

more

information,

see

“CxBlank”

on

page

152.

CxBlank

constant

CxBlankValue

This

attribute

is

deprecated.

Use

the

CxBlank

meta-object

attribute

(above)

to

tell

the

data

handler

how

the

NameValue

data

represents

the

CxBlank

attribute

value.

blank

space

CxIgnore

Establishes

the

equivalent

value

in

the

NameValue

data

for

the

special

business

object

attribute

value,

Ignore

(the

CxIgnore

constant).

For

more

information,

see

“CxIgnore”

on

page

151.

CxIgnore

constant

DefaultVerb

Business

object

verb

Create

DummyKey

Key

attribute

required

by

the

business

integration

system.

1

SkipCxIgnore

During

request

processing,

the

processing

of

the

special

attribute

value

CxIgnore

is

based

on

the

meta-object

attribute

SkipCxIgnore.

For

more

information,

see

“CxIgnore”

on

page

151.

false

ValidateAttrCount

Determines

whether

the

data

handler

looks

for

(or

adds

to

the

output

string)

a

token

that

contains

a

count

of

attributes

in

the

business

object

data.

true

ObjectEventId

Placeholder

not

used

by

the

data

handler

but

required

by

the

business

integration

system.

none

150

Data

Handler

Guide

The

“Delivered

default

value”

column

in

Table

64

lists

the

value

in

the

Default

Value

property

for

the

corresponding

attribute

in

the

delivered

business

object.

You

must

examine

your

environment

and

set

the

Default

Value

properties

of

those

attributes

to

the

appropriate

values

for

your

system

and

your

name-value

pair-formatted

documents.

Note:

Use

Business

Object

Designer

to

modify

business

object

definitions.

Business

object

requirements

The

NameValue

data

handler

makes

assumptions

about

the

business

objects

that

it

handles.

Therefore,

when

you

pass

a

business

object

for

conversion

with

the

NameValue

data

handler,

follow

these

rules:

v

Make

sure

that

every

business

object

attribute

has

a

Name

property.

This

ensures

that

the

NameValue

data

handler

can

properly

process

the

conversion

of

data

from

a

business

object

to

a

NameValue

format,

and

a

NameValue

format

to

a

business

object.

v

Make

sure

that

the

ObjectEventId

attribute

is

included

in

every

business

object

at

all

levels

of

a

business

object

hierarchy.

Business

Object

Designer

does

this

automatically

when

it

saves

a

business

object

definition,

but

you

should

confirm

that

the

requirement

is

met.

Business

object

structure

There

are

no

requirements

regarding

the

structure

of

the

business

objects

for

the

NameValue

data

handler.

The

data

handler

can

process

any

business

object.

The

business

objects

that

the

data

handler

processes

can

have

any

name

allowed

by

the

business

integration

system.

Business

object

attribute

properties

Business

object

architecture

contains

various

properties

that

apply

to

attributes.

Table

65

describes

how

the

NameValue

data

handler

interprets

several

of

these

properties

and

describes

how

to

set

the

properties

when

modifying

a

business

object

definition.

Table

65.

Attribute

properties

for

business

objects

converted

using

the

NameValue

data

handler

Property

name

Description

Name

Each

business

object

attribute

must

have

a

unique

name.

Type

Each

business

object

attribute

must

have

a

type,

such

as

integer,

String,

or

the

type

of

a

contained

child

business

object.

All

simple

attributes

must

be

of

type

String.

Key

Not

used

by

the

NameValue

data

handler.

MaxLength

Not

used

by

the

NameValue

data

handler.

Foreign

Key

Not

used

by

the

NameValue

data

handler.

Required

Not

used

by

the

NameValue

data

handler.

Default

Value

Not

used

by

the

NameValue

data

handler.

Cardinality

Supports

cardinality

1

and

cardinality

n

objects.

Attributes

in

business

objects

can

have

the

special

values

of

CxIgnore

or

CxBlank.

The

NameValue

data

handler

takes

special

processing

steps

when

attributes

have

these

values,

as

described

in

the

following

sections.

CxIgnore:

The

CxIgnore

meta-object

attribute

establishes

the

equivalent

value

in

a

NameValue

data

for

the

Ignore

attribute

value

(the

CxIgnore

constant).

By

default,

Chapter

8.

NameValue

data

handler

151

the

CxIgnore

meta-object

attribute

is

set

to

the

value

of

the

CxIgnore

constant.

The

data

handler

uses

the

CxIgnore

meta-object

attribute

as

follows:

v

When

converting

from

a

business

object,

the

NameValue

data

handler

writes

the

value

of

the

CxIgnore

meta-object

attribute

(the

value

configured

for

its

Default

Value

property)

to

the

NameValue

data

whenever

it

encounters

a

business

object

attribute

with

the

CxIgnore

constant

as

its

attribute

value.

v

When

converting

to

a

business

object,

the

NameValue

data

handler

assigns

the

CxIgnore

constant

to

the

business

object

attribute’s

value

whenever

it

encounters

any

of

the

following

conditions

in

the

NameValue

data:

–

The

value

of

the

CxIgnore

meta-object

attribute

(the

value

configured

for

its

Default

Value

property)

–

The

value

of

an

empty

string

–

No

corresponding

value

Note:

Business

objects

must

have

at

least

one

primary

key

that

does

not

contain

the

value

CxIgnore

at

runtime.

You

can

configure

how

the

NameValue

data

handler

processes

attributes

with

an

attribute

value

of

CxIgnore.

For

example:

v

You

can

configure

whether

you

want

the

data

handler

to

process

attributes

with

a

CxIgnore

value

during

request

processing

or

ignore

them.

v

You

can

decide

not

to

make

an

entry

for

attributes

with

a

CxIgnore

value

so

that

the

connector

can

process

the

business

object

data

correctly

during

event

notification.

This

is

helpful

when

creating

a

dummy

file

for

an

object

type.

During

request

processing,

the

data

handler

is

creating

a

serialized

version

of

the

business

object.

At

this

time,

the

processing

of

the

special

attribute

value

CxIgnore

is

based

on

the

child

meta-object

attribute

SkipCxIgnore,

as

follows:

v

When

SkipCxIgnore

is

set

to

false,

the

data

handler

writes

the

value

of

this

CxIgnore

meta-object

attribute

to

the

NameValue

data

whenever

it

encounters

a

business

object

attribute

with

the

CxIgnore

constant

as

the

attribute’s

value.

v

If

SkipCxIgnore

is

set

to

true,

the

data

handler

ignores

all

attributes

with

a

value

of

CxIgnore

and

does

not

generate

any

NameValue

data

for

them.

Note:

With

SkipCxIgnore

set

to

true,

the

NameValue

data

handler

is

not

bidirectional;

that

is,

it

cannot

perform

string-to-business-object

conversions

on

strings

that

it

has

generated

during

business-object-to-string

conversions.

CxBlank:

The

CxBlank

meta-object

attribute

establishes

the

equivalent

value

in

a

NameValue

data

for

the

Blank

attribute

value

(the

CxBlank

constant).

By

default,

the

CxBlank

meta-object

attribute

is

set

to

the

value

of

the

CxBlank

constant.

The

data

handler

uses

the

CxBlank

meta-object

attribute

as

follows:

v

When

converting

from

a

business

object,

the

NameValue

data

handler

writes

the

value

of

the

CxBlank

meta-object

attribute

(the

value

configured

for

the

Default

Value

property)

to

the

NameValue

data

whenever

it

encounters

a

business

object

attribute

with

the

CxBlank

constant

as

its

attribute

value.

v

When

converting

to

a

business

object,

the

NameValue

data

handler

assigns

the

CxBlank

constant

to

the

business

object

attribute’s

value

whenever

it

encounters

the

value

of

the

CxBlank

meta-object

attribute

(the

value

configured

for

its

Default

Value

property)

in

the

NameValue

data.

Note:

Business

objects

must

have

at

least

one

primary

key

that

does

not

contain

the

value

CxBlank

at

runtime.

152

Data

Handler

Guide

Business

object

application-specific

information

The

NameValue

data

handler

does

not

require

any

application-specific

information

in

business

objects

or

their

attributes.

The

data

handler

does,

however,

check

for

the

existence

of

the

cw_mo_

tag,

which

a

business

object

might

use

to

indicate

any

child

meta-object

that

the

connector

uses.

The

data

handler

ignores

any

attribute

identified

by

the

cw_mo_

tag

in

the

application-specific

information

of

the

business

object.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

Using

existing

business

object

definitions

The

NameValue

data

handler

can

convert

any

business

object

to

NameValue

serialized

data

as

long

as

the

business

object

delivers

data

in

a

form

that

complies

with

the

requirements

of

the

data

handler.

The

NameValue

data

handler

requires

each

piece

of

data

to

have

a

name

that

identifies

it,

such

as

BusinessObject=Customer,

Verb=Create,

and

CustomerName=JDoe.

Because

attributes

must

have

such

a

name,

they

can

be

used

with

the

NameValue

data

handler.

Although

existing

business

objects

that

meet

this

requirement

can

be

converted

by

the

NameValue

data

handler,

a

good

practice

is

to

create

your

own

business

objects

for

each

type

of

data

to

be

processed.

If

you

use

a

sample

business

object,

or

a

business

object

developed

to

support

the

same

application

in

another

implementation,

be

sure

to

modify

the

definition

as

necessary

to

include

only

the

attributes

required

for

the

implementation

for

which

you

are

developing.

Therefore,

to

convert

existing

business

objects

to

a

form

that

closely

corresponds

to

your

data,

modify

the

business

object

to

provide

only

the

data

required

by

the

application

and

the

information

required

by

the

data

handler.

To

adapt

existing

business

objects

for

use

with

the

NameValue

data

handler,

do

the

following:

1.

Perform

a

functional

analysis

of

the

target

application,

and

compare

the

results

to

existing

business

objects

to

determine

the

required

fields

of

a

business

object

definition.

2.

Use

Business

Object

Designer

to

add

or

delete

attributes

from

the

business

object

definition

as

needed.

Converting

business

objects

to

NameValue

data

To

convert

a

business

object

to

a

string

or

stream,

the

NameValue

data

handler

loops

through

the

attributes

of

a

business

object

in

sequential

order.

It

generates

name-value

pairs

recursively

in

the

order

in

which

attributes

appear

in

the

business

object

and

its

children.

The

name

of

the

business

object

is

passed

as

an

argument

to

the

conversion

method.

The

NameValue

data

handler

processes

business

objects

into

NameValue

data

as

follows:

1.

The

data

handler

creates

a

string

to

contain

the

data

in

the

business

object.

2.

To

specify

the

business

object

name,

the

data

handler

adds

BusinessObject=Name

to

the

string.

3.

To

specify

the

verb,

the

data

handler

adds

Verb=Verb

to

the

string.

4.

If

the

meta-object

attribute

ValidateAttrCount

is

set

to

true,

the

data

handler

adds

AttributeCount=Count

to

the

string.

This

name-value

pair

specifies

the

number

of

the

attributes

in

the

business

object

data.

5.

The

data

handler

examines

the

application-specific

information

in

the

business

object

definition

to

determine

if

there

are

any

child

meta-objects

(those

whose

names

are

listed

in

the

cw_mo_

tag

of

the

business

object

application-specific

Chapter

8.

NameValue

data

handler

153

information).

The

data

handler

does

not

include

these

attributes

in

the

NameValue

data.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

6.

The

data

handler

loops

through

the

remaining

business

object

attributes

in

order,

adding

name-value

pairs

for

each

simple

attribute

to

the

string.

For

container

attributes,

the

data

handler

does

the

following:

v

If

the

attribute

is

a

cardinality

1

container,

the

data

handler

adds

the

attribute

name

and

a

count

of

1

to

the

string,

and

then

recursively

processes

the

child

business

object

to

add

name-value

pairs

for

each

attribute

to

the

string.

v

If

the

attribute

is

a

cardinality

n

container,

the

data

handler

adds

the

attribute

name

and

the

number

of

child

objects

in

the

container

to

the

string,

and

then

recursively

processes

each

child

business

object,

adding

name-value

pairs

for

each

attribute

to

the

string.
7.

When

the

data

handler

completes

the

conversion,

it

returns

the

serialized

data

to

the

caller.

The

data

handler

returns

the

data

in

the

form

(String

or

InputStream)

requested

by

the

caller.

If

the

child

meta-object

attribute

ValidateAttrCount

is

true,

the

data

handler

adds

a

token

that

contains

a

count

of

the

attributes

in

the

business

object

to

the

output

data.

The

data

handler

adds

carriage

returns

to

output

data;

the

end

result

looks

like

Figure

36

on

155.

Converting

NameValue

data

to

business

objects

This

section

provides

the

following

information

on

how

the

NameValue

data

handler

converts

strings

or

streams

formatted

in

name-value

pairs

to

a

business

object:

v

“NameValue

string

requirements”

v

“Serialized-data

processing”

on

page

156

NameValue

string

requirements

The

NameValue

data

handler

makes

the

following

assumptions

about

serialized

data:

v

The

business

object

name

appears

in

the

first

name-value

pair.

v

The

verb

appears

in

the

second

name-value

pair.

v

The

data

contains

a

token

that

represents

the

number

of

instances

of

child

objects

for

each

child

that

is

contained

in

a

business

object.

v

The

ObjectEventId

attribute

is

present

in

each

business

object.

A

token

representing

the

attribute

count

is

optional.

If

the

child

meta-object

attribute

ValidateAttrCount

is

true,

the

data

handler

looks

for

a

token

that

contains

a

count

of

the

attributes

in

the

business

object.

If

the

attribute

count

is

specified,

it

must

accurately

reflect

the

number

of

attributes

in

the

business

object

definition.

When

the

NameValue

data

handler

reads

a

file

in

name-value

format,

it

takes

the

following

special

processing

steps

to

assign

to

a

business

object

attribute

the

CxIgnore

or

CxBlank

attribute

value:

v

The

data

handler

assigns

the

CxIgnore

constant

(null)

as

the

corresponding

attribute

value

whenever

it

encounters

any

of

the

following

conditions

in

the

NameValue

data:

154

Data

Handler

Guide

–

The

value

of

the

CxIgnore

meta-object

attribute

(the

value

configured

for

its

Default

Value

property)

–

The

value

of

an

empty

string

(″

″)

–

No

corresponding

value

in

the

NameValue

data

for

the

business

object

attribute.
v

The

data

handler

assigns

the

CxBlank

constant

as

the

attribute

value

only

when

the

CxBlank

meta-object

attribute

is

configured

and

it

encounters

this

configured

value

in

the

corresponding

NameValue

data.

Figure

36

shows

an

example

of

serialized

data

in

NameValue

format.

In

this

example,

entries

indicate

the

following:

v

BusinessObject

is

the

name

of

the

parent

or

child

business

object

being

processed.

v

Verb

is

the

type

of

request

(for

example,

Create

or

Update)

with

which

the

parent

or

child

business

object

is

being

sent.

v

AttributeCount

is

the

total

number

of

attributes

for

the

parent

or

child

business

object

at

that

level.

v

CustomerID,

CustomerName,

Cust_Phone_Number,

and

ProductName

are

the

names

of

the

attributes

for

the

parent

business

object.

Values

for

each

parent

business

object

attribute

follow

the

attribute

name.

v

Address

=

2

indicates

that

there

are

two

instances

of

the

Address

child

business

object.

Address

is

the

attribute

name

that

refers

to

the

Address

child

business

object

in

the

parent

object.

v

Item

=

1

indicates

that

the

Item

attribute

contains

a

single

instance

of

the

Item

business

object.

BusinessObject=Customer

Verb=Update

AttributeCount=7

CustomerID=103

CustomerName=Thai

Inc.

Cust_Phone_Number=CxIgnore

ProductName=GoodProduct

Address=2

BusinessObject=Address

Verb=Update

AttributeCount=3

AddressID=105

AddressLine=CxIgnore

ObjectEventID=12345

BusinessObject=Address

Verb=Delete

AttributeCount=3

AddressID=106

AddressLine=2758

Forest

Avenue

ObjectEventID=CxIgnore

Item=1

BusinessObject=Item

Verb=Update

ItemID=107

ItemName=CxIgnore

ObjectEventID=Obj_201

ObjectEventID=SampleConnector_894927711_2

Figure

36.

Example

of

NameValue

data

Chapter

8.

NameValue

data

handler

155

v

AddressID

and

AddressLine

are

the

names

of

the

attributes

for

the

Address

child

business

object.

Values

for

each

child

business

object

attribute

follow

the

attribute

name.

v

ObjectEventID=Obj_201

is

the

system-generated

ID

for

the

child

business

object,

Item.

v

ObjectEventID=SampleConnector_894927711_2

is

the

system-generated

ID

for

the

parent

business

object,

Customer.

Serialized-data

processing

The

NameValue

data

handler

converts

strings

or

streams

formatted

in

name-value

pairs

to

a

business

object

as

follows:

1.

The

data

handler

creates

a

business

object

to

contain

the

data

in

the

string

or

stream.

2.

The

data

handler

sets

the

verb

in

the

business

object.

The

data

handler

assumes

that

the

verb

for

the

top-level

business

object

is

in

the

second

name-value

pair

in

the

data.

Note

that

child

business

objects

may

not

have

verbs

set.

3.

If

the

ValidateAttrCount

child

meta-object

attribute

is

set

to

true,

the

data

handler

validates

that

the

number

of

attributes

in

the

file

matches

the

number

of

attributes

in

the

business

object

definition.

4.

The

data

handler

parses

the

serialized

data.

v

It

first

determines

if

there

are

any

child

meta-objects

(those

whose

names

are

listed

in

the

cw_mo_

tag

of

the

business

object

application-specific

information).

The

data

handler

does

not

perform

the

processing

to

populate

these

attributes

of

the

business

object.

For

more

information

about

the

cw_mo_

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

v

It

populates

the

values

of

the

remaining

simple

attributes

in

the

business

object.

The

data

handler

processes

container

attributes

as

follows:

If

the

attribute

is

single

cardinality,

the

data

handler

recursively

parses

the

attributes

in

the

attribute

list

and

adds

the

child

business

object

container

to

the

parent

business

object.

If

the

attribute

is

multiple

cardinality,

the

data

handler

recursively

parses

the

attributes

in

each

child

attribute

list,

and

adds

the

child

business

object

container

to

the

parent

business

object.

You

can

specify

the

attributes

in

the

serialized

data

in

any

order

for

the

string-to-business

object

conversion

because

the

data

handler

does

a

name

and

value

association.

156

Data

Handler

Guide

Chapter

9.

Complex

Data

data

hander

The

IBM

WebSphere

Business

Integration

Data

Handler

for

Complex

Data,

called

the

Complex

Data

data

handler,

converts

business

objects

into

binary

or

text

data

formats

and

converts

those

formats

back

into

business

objects.

The

Complex

Data

data

handler

is

capable

of

converting

an

almost

infinite

number

of

proprietary

and

legacy

formats

into

business

object

and

vice

versa.

The

supported

formats

include

MS

Office

documents,

PDF,

COBOL

Copybooks,

any

XML

based

format,

any

text

format

(delimited

or

fixed-width),

and

many

more.

This

chapter

describes

how

the

Complex

Data

data

handler

processes

data

formats

and

how

to

generate

business

object

definitions

for

use

with

the

data

handler.

You

can

use

this

information

as

a

guide

to

implementing

a

solution

which

leverages

the

data-conversion

capabilities

of

the

Complex

Data

data

handler.

This

chapter

also

discusses

how

to

configure

the

Complex

Data

data

handler.

Note:

For

instructions

on

installing

the

Complex

Data

data

handler,

see

“Installing

data

handlers”

on

page

21.

This

chapter

contains

the

following

sections:

v

“Overview”

v

“Configuring

the

Complex

Data

data

handler”

on

page

158

v

“Converting

business

objects

to

specified

data

formats”

on

page

161

v

“Converting

specified

data

formats

to

business

objects”

on

page

162

v

“Error

handling”

on

page

163

Overview

The

Complex

Data

data

handler

is

a

data-conversion

module

whose

primary

role

is

to

convert

business

objects

to

and

from

specific

data

formats.

The

Complex

Data

data

handler

utilizes

the

ContentMaster

product

from

Itemfield,

Inc.,

as

well

as

the

IBM

WebSphere

Business

Integration

XML

Data

Handler

to

perform

these

conversions.

The

ContentMaster

product

converts

a

specified

binary

or

text

data

format

into

XML

that

can

then

be

converted

into

business

objects

by

the

XML

data

handler.

See

“Run-time

components”

on

page

158

for

more

information

about

the

components

involved

in

this

conversion,

and

see

“Converting

business

objects

to

specified

data

formats”

on

page

161

and

“Converting

specified

data

formats

to

business

objects”

on

page

162

for

information

about

how

these

components

interact

at

runtime.

Complex

Data

data

handler

components

The

ContentMaster

product

provides

both

development

and

run-time

components.

The

development

components

are

used

to

configure

the

run-time

components

and

create

the

schemas

and

parsers

necessary

to

perform

conversions

at

run

time.

The

following

two

sections

illustrate

how

the

ContentMaster

development

and

run-time

environments

interoperate

with

existing

WBI

adapter

components

to

make

up

the

WBI

Data

Handler

for

Complex

Data.

For

more

information

specific

to

the

ContentMaster

development

and

run-time

components,

please

see

the

Itemfield

ContentMaster

documentation.

©

Copyright

IBM

Corp.

2000,

2004

157

Development

components

The

development

components

consist

of

the

following:

v

Itemfield

ContentMaster

Studio

(CMStudio)

v

IBM

WBI

Business

Object

Designer

v

IBM

WBI

XML

Object

Discovery

Agent

The

interaction

between

these

components

is

as

follows:

v

A

file

containing

the

input

data

is

loaded

into

the

CMStudio

application.

The

user

uses

CMStudio

to

create

a

Parser

and/or

Serializer

for

the

given

input

format,

as

well

as

an

XML

schema

definition

file

(.xsd).

v

The

user

publishes

the

Parser

and

Serializes

into

the

ContentMaster

runtime

environment

and

exports

the

XML

schema

definition

file

from

CMStudio.

v

The

XML

schema

definition

file

is

used

an

as

input

schema

definition

for

the

XML

ODA.

See

“Using

the

XML

ODA”

for

more

information

about

using

the

XML

ODA.

v

The

XML

ODA

generates

a

business

object

definition

that

can

be

stored

in

the

broker

repository

and

used

to

generate

business

objects.

Once

the

business

object

definition

has

been

created

and

the

ContentMaster

Engine

(CMEngine)

has

been

properly

configured

and

published,

the

adapter

can

dynamically

convert

data

input

from

the

adapter

to

business

objects

and

business

objects

back

into

data

that

the

adapter

can

process.

The

following

section

describes

how

this

process

works

at

runtime.

Run-time

components

The

runtime

components

consist

of

the

following:

v

Existing

WebSphere

Business

Integration

Adapter

v

Complex

Data

data

handler

v

ContentMaster

Engine

v

XML

data

handler

The

run-time

environment

comprises

event

notification,

in

which

input

data

originating

outside

the

WebSphere

Business

Integration

broker

is

converted

by

an

adapter

and

sent

to

the

broker,

and

request

processing,

in

which

the

integration

broker

uses

the

adapter

to

convert

business

objects

and

send

the

resulting

data

to

the

application,

file,

or

other

clients

of

that

data.

In

both

cases,

the

adapter

calls

the

Complex

Data

data

handler

to

perform

the

conversion

between

the

data

and

XML,

and

calls

the

XML

data

handler

to

convert

the

between

the

XML

the

business

objects.

See

“Converting

specified

data

formats

to

business

objects”

on

page

162

for

more

information

about

event

handling

at

run

time,

and

see

“Converting

business

objects

to

specified

data

formats”

on

page

161

for

more

information

about

the

request

processing

process.

Configuring

the

Complex

Data

data

handler

To

configure

the

Complex

Data

data

handler

for

use

with

a

connector,

take

the

following

steps:

v

Install,

register,

and

verify

the

ContentMaster

product

v

Configure

the

Complex

Data

data

handler

for

use

with

the

adapter

v

Configure

the

Complex

Data

data

handler

meta-object

158

Data

Handler

Guide

Each

of

these

steps

is

described

in

more

detail

in

the

following

sections.

Installing,

registering,

and

verifying

ContentMaster

To

install

ContentMaster,

follow

the

installation

instructions

provided

in

the

Itemfield

ContentMaster

documentation

for

your

particular

ContentMaster

version

and

operating

system.

This

documentation

provides

hardware

and

software

requirements

as

well

instructions

to

install,

register

and

verify

the

ContentMaster

product.

When

prompted

by

the

ContentMaster

installation

for

the

Java

Runtime

Environment

(JRE)

location,

be

sure

to

select

the

JRE

shipped

with

the

WBI

Adapters.

The

WBI

JRE

is

located

in

the

<WBI

install

dir>/jre/bin/classic

directory.

Note:

The

command-line

installation

of

ContentMaster

will

not

prompt

for

the

JRE

location.

If

this

is

the

case

you

will

have

to

change

the

JRE

location

manually

after

the

install.

Please

consult

the

version

and

platform

specific

ContentMaster

documentation

to

determine

which

files

or

environment

variables

need

to

be

modified

to

specify

a

different

JRE.

Finally,

register

and

test

the

ContentMaster

installation

following

the

directions

in

the

ContentMaster

documentation

before

proceeding

with

the

adapter

configuration.

Configuring

the

data

handler

for

use

with

the

adapter

In

order

use

the

Complex

Data

data

handler

with

a

WBIA

adapter,

you

must

modify

the

adapter

start-up

script

to

include

files

required

by

the

Complex

Data

data

handler.

The

modifications

required

to

the

connector

start

script

are

detailed

below.

v

Create

a

variable

named

CMDir,

set

its

vale

to

the

location

of

the

ContentMaster

installation.

Windows

example:

set

CMDIR

=

"C:\Program

Files\Itemfield\ContentMaster"

Unix

example:

CMDIR=/usr/local/Itemfield/ContentMaster

v

Create

a

variable

called

CDDHJars,

set

its

value

to

the

location

of

BIA_CwComplexDatahHandler.jar

and

CMJava_API.jar.

Windows

example:

set

CDDHJars

=

%CROSSWORLDS%\DataHandlers\BIA_CwComplexDataHandler.jar;

%CMDIR%\CMJava_API.jar

Unix

example:

CDDHJars=

${CROSSWORLDS}\DataHandlers\BIA_CwComplexDataHandler.jar:

${CMDIR}\CMJava_API.jar

v

Modify

the

existing

java

execution

line

to

include

the

CMDIR

variable

in

the

library

path

and

the

CDDHJars

variable

in

the

class

path.

Windows

example:

%CWJAVA%

...

-Djava.library.path="%CMDIR%";...

-cp

"%CDDHJars%";...

Unix

example:

Chapter

9.

Complex

Data

data

hander

159

exec

${CWJAVA}

...

-Djava.library.path=${CMDIR}:...

-cp

${CDDHJars}:...

Configuring

the

Complex

Data

data

handler

configuration

meta

object

To

configure

the

Complex

Data

data

handler,

you

must

ensure

that

its

configuration

information

is

provided

in

the

Complex

Data

data

handler’s

child

meta-object.

For

the

Complex

Data

data

handler,

IBM

delivers

the

default

child

meta-object

MO_DataHandler_Complex.

Each

attribute

in

this

meta-object

defines

a

configuration

property

for

the

Complex

Data

data

handler.

The

default

child

meta-object

for

the

Complex

Data

data

handler

contains

five

attributes,

one

of

which

is

a

reference

to

the

XML

data

handler

meta

object

definition.

These

attributes

are

defined

in

Table

66.

Table

66.

Child

meta-object

attributes

for

the

Complex

Data

data

handler

Attribute

name

Description

Delivered

default

value

ClassName

Name

of

the

data-handler

class

to

load

for

use

with

the

specified

MIME

type.

The

top-level

data-handler

meta-object

has

an

attribute

whose

name

matches

the

specified

MIME

type

and

whose

type

is

the

Complex

Data

child

meta-object.

com.ibm.adapters.

datahandlers.complex.

Complex

CMParser

Name

under

which

the

Content

Master

Parser

is

published.

None

CMSerializer

Name

under

which

the

ContentMaster

Serializer

is

published.

None

ObjectEventId

Placeholder

attribute

required

by

the

business

integration

system.

None

XMLDH_ConfigMO

The

child

meta

object

for

the

XML

Data

Handler

that

the

Complex

Data

data

handler

uses.

MO_DataHandler_XML

The

“Delivered

default

value”

column

in

Table

14

lists

the

value

in

the

Default

Value

property

for

the

corresponding

attribute

in

the

delivered

business

object.

You

must

examine

your

environment

and

set

the

Default

Value

properties

of

those

attributes

to

the

appropriate

values.

You

must

make

sure

that

all

attributes

have

default

values

except

where

the

conversion

will

be

unidirectional.

In

this

case

you

must

specify

either

a

CMParser

or

CMSerializer

value.

Note:

Use

Business

Object

Designer

to

modify

business

object

definitions.

A

single

child

meta-object

can

specify

only

one

Parser/Serializer

pair.

If

your

connector

requires

processing

of

multiple

data

formats,

you

must

create

separate

child

meta-objects

for

each

Parser/Serializer

pair.

To

prepare

multiple

configurations

of

the

Complex

Data

data

handler,

take

the

following

steps:

v

Copy

and

rename

the

default

Complex

Data

child

meta-object.

v

Set

the

default

values

of

the

attributes

in

each

Complex

Data

child

meta-object

to

configure

the

data

handler

instance.

v

Associate

the

child

meta-objects

with

the

input

data.

160

Data

Handler

Guide

Note:

Associating

these

child

meta-objects

with

the

input

data

is

adapter-specific.

Consult

the

appropriate

adapter

documentation

for

information

about

how

to

associate

each

of

the

child

meta-objects

with

the

appropriate

input

data

data

formats.

For

more

information

about

how

to

configure

a

data

handler,

see

“Configuring

data

handlers”

on

page

24.

Converting

business

objects

to

specified

data

formats

To

convert

a

business

object

to

a

specific

data

format,

the

Complex

Data

data

handler

invokes

the

XML

datahandler

to

conver

the

received

business

object

into

XML.

The

data

handler

then

invokes

the

ContentMaster

Serializer

specified

by

the

associated

data

handler

child

meta-object

to

convert

this

XML

into

the

specified

data

format.

Figure

37

illustrates

request

processing

with

the

Complex

Data

data

handler:

1.

The

adapter

receives

a

service

call

request.

2.

The

adapter

sends

the

business

object

to

the

Complex

Data

data

handler

using

the

getStringFromBO()

or

getStreamFromBO()

methods

from

the

data

handler

API.

3.

The

Complex

Data

data

handler

invokes

the

XML

data

handler,

passing

the

business

object.

The

result

of

the

execution

is

an

XML

string.

4.

The

Complex

Data

data

handler

receives

the

XML

string

from

the

XML

data

handler

and

initializes

a

session

with

the

ContentMaster

engine.

5.

The

ContentMaster

engine

is

invoked

with

the

XML

string

and

the

Serializer

name

determined

from

the

data

handler

configuration

meta-object.

The

output

from

the

Content

Master

engine

is

either

a

String

or

a

byte[].

6.

The

Complex

Data

data

handler

sends

either

a

String(if

text)

or

an

InputStream(if

byte[])

back

to

the

calling

adapter.

7.

The

native

data

is

sent

to

the

application,

file,

transport,

or

other

client

based

on

the

adapter

being

used

and

its

configuration.

Services
Engine

Adapter

CMDataHandler

CM Engine
XML

Data Handler

BrokerRequest Processing

Executes

1

2

3
4

5

6

7

Figure

37.

Request

processing

with

the

Complex

Data

data

handler

Chapter

9.

Complex

Data

data

hander

161

Converting

specified

data

formats

to

business

objects

To

convert

a

specific

data

format

to

a

business

object,

the

Complex

Data

data

handler

invokes

the

ContentMaster

Parser

specified

by

the

associated

data

handler

child

meta-object.

It

uses

the

associated

data

handler

to

convert

the

specified

data

format

into

XML.

The

data

handler

then

invokes

the

XML

data

handler

to

convert

this

XML

into

a

business

object.

Figure

38

illustrates

the

ContentMaster

event

handling

run-time

process.

1.

The

adapter

receives

an

event

notification.

2.

The

adapter

sends

the

data

to

the

Complex

Data

data

handler.

3.

The

Complex

Data

data

handler

invokes

the

ContentMaster

Engine,

passing

the

input

data

and

the

name

of

the

parser

to

execute.

The

parser

executes

and

returns

the

resulting

XML

string.

4.

The

Complex

Data

data

handler

determines

the

name

of

the

business

object

and

its

associated

verb.

Name

resolution

is

performed

by

the

NameHandler

specified

in

the

XML

data

handler

configuration

meta-object.

The

XML

datahander

configuration

meta-object

is

specified

by

the

Complex

Data

data

handler

meta-object’s

XMLDH_ConfigMO

attribute.

Verb

resolution

is

performed

based

on

the

process

specifed

in

the

Verb

Resolution

section

below.

5.

The

Complex

Data

data

handler

uses

the

XML

data

handler

to

process

the

XML

string

and

the

business

object

instance

from

Step

3.

6.

The

populated

business

object

created

from

the

XML

string

is

returned

to

the

calling

adapter.

7.

The

business

object

is

passed

on

to

the

broker.

Verb

Resolution

When

converting

from

a

specific

data

format

to

a

business

object,

the

business

object

can

be

assigned

a

verb.

This

process

is

refered

to

as

verb

resolution.

There

are

two

ways

a

verb

can

be

set

on

the

business

object

instance.

Verb

resolution

is

attempted

in

the

following

order:

1.

The

Complex

Data

data

handler

inspects

the

XML

received

from

ContentMaster

for

a

processing

instruction

in

the

format:

<?Verb

Create?>

Services
Engine

Adapter

CMDataHandler

CM Engine
XML

Data Handler

BrokerEvent Notification

Executes

1

2

3
4

5

6

7

Figure

38.

Event

notification

with

the

Complex

Data

data

handler

162

Data

Handler

Guide

2.

The

Complex

Data

data

handler

inspects

the

Business

Object

Level

Application-specific

information

field

for

the

string:

Verb=Create.

(

Note:

that

with

this

approach

the

BO

will

be

tied

to

one

specific

verb)

If

a

verb

can

not

be

determined

using

one

of

the

above

schemes,

the

verb

will

remain

unset

(CxBlank).

If

the

verb

is

unset,

it’s

assumed

that

the

calling

adapter

will

set

the

verb.

Error

handling

Table

67

describes

the

errors

that

are

raised

in

the

various

components

of

a

Complex

Data

data

handler

system

and

how

they

should

be

handled.

Table

67.

Error

handling

in

the

Complex

Data

data

handler

ContentMaster

Engine

If

an

error

occurs

during

the

execution

of

the

ContentMaster

Engine,

an

exception

is

logged

in

the

Complex

Data

data

handler.

The

exception

string

contains:

v

Details

about

the

processing

exception.

v

A

URL

pointing

to

a

file

that,

when

loaded

into

the

CMStudio,

describes

the

specific

parsing

or

serialization

error.

XML

data

handler

For

information

about

error

handling

in

the

XML

data

handler,

see

Chapter

3,

“XML

data

handler,”

on

page

31.

XML

ODA

For

information

about

error

handling

in

the

XML

ODA,

see

“Using

the

XML

ODA,”

on

page

209.

Complex

Data

data

handler

Whenever

an

error

occurs

in

any

of

the

components

above,

processing

stops

and

an

exception

is

thrown

to

the

calling

connector

agent.

Each

error

contains

descriptive

text

which

will

appear

in

the

Connector

Agent

log

file.

Chapter

9.

Complex

Data

data

hander

163

164

Data

Handler

Guide

Part

2.

Custom

data

handlers

©

Copyright

IBM

Corp.

2000,

2004

165

166

Data

Handler

Guide

Chapter

10.

Creating

a

custom

data

handler

This

chapter

presents

information

on

how

to

implement

a

custom

data

handler

to

use

with

a

WebSphere

business

integration

adapter

or,

if

your

integration

broker

is

InterChange

Server,

an

access

client.

As

with

IBM-delivered

data

handlers,

a

custom

data

handler

converts

a

business

object

to

a

specific

serialized

data

format,

and

converts

serialized

data

in

a

specific

format

to

a

business

object.

This

chapter

contains

the

following

sections:

v

“Overview

of

the

data-handler

development

process”

v

“Tools

for

data-handler

development”

on

page

169

v

“Designing

the

data

handler”

on

page

170

v

“Extending

the

data

handler

base

class”

on

page

171

v

“Implementing

the

methods”

on

page

172

v

“Building

a

custom

name

handler”

on

page

185

v

“Adding

a

data

handler

to

the

jar

file”

on

page

186

v

“Creating

data-handler

meta-objects”

on

page

187

v

“Setting

up

other

business

objects”

on

page

189

v

“Configuring

a

connector”

on

page

189

v

“An

internationalized

data

handler”

on

page

190

Overview

of

the

data-handler

development

process

To

develop

a

custom

data

handler,

you

code

the

data

handler

source

file

and

complete

other

tasks,

such

as

developing

a

meta-object

for

the

data

handler.

The

task

of

creating

a

custom

data

handler

includes

the

following

general

steps:

1.

Design

the

data

handler,

based

on

the

format

of

the

serialized

data

and

structure

of

the

business

objects

it

converts.

2.

Create

a

class

that

extends

the

class:

com.crossworlds.DataHandlers.DataHandler

3.

Implement

the

abstract

methods

that

convert

data

between

specific

data

format

and

business

objects.

4.

Compile

the

class

and

add

it

to

the

CustDataHandler.jar

file.

5.

Create

the

data-handler

meta-objects.

6.

Develop

business

object

definitions

that

conform

to

the

requirements

of

the

data

handler

as

well

as

to

the

requirements

of

the

caller.

Figure

39

provides

a

visual

overview

of

the

data-handler

development

process

and

provides

a

quick

reference

to

chapters

where

you

can

find

information

on

specific

topics.

Note

that

if

a

team

of

people

is

available

for

data-handler

development,

the

major

tasks

of

developing

a

data

handler

can

be

done

in

parallel

by

different

members

of

the

development

team.

©

Copyright

IBM

Corp.

2000,

2004

167

Task: Steps:

Design data-handler
architecture

* Identify data format to convert
* Investigate need for meta-objects

Refer to:

Extend the
DataHandler
base class

Implement the
methods

Set up other
business objects

* Design structure of business objects
* Implement business objects

* Implement the required abstract methods
* Override public methods (as needed)

* Create any other business objects that the
data handler requires

“Designing the
Data Handler”

“Extending the
Data Handler
Base Class”

“Implementing
the Methods”

“Adding a
Data Handler
to the jar File”

Test and debug
* Call the data handler from a connector or

access client

* Verify that serialized data is converted
correctly to business objects

* Verify that business objects are converted
correctly to serialized data

“Setting Up
Other
Business Objects”

* Modify the compilation script
* Compile the data-handler source files
* Add class files to jar file

Add source files
to the jar file

Create meta-objects * Edit top-level data-handler meta-object
* Create child data-handler meta-object

“Creating
Data Handler
Meta-Objects”

Configure the
connector

* Set name of top-level meta-object
* Add meta-object to list of supported

business objects

“Configuring
a Connector”

Build any custom
name handler

* Implement the required abstract method
* Set the meta-object attribute

“Building a
Custom Name
Handler”

Figure

39.

Overview

of

the

data-handler

development

process

168

Data

Handler

Guide

Tools

for

data-handler

development

Because

data

handlers

are

written

in

Java,

data

handlers

can

be

developed

on

either

a

Windows

or

UNIX

system.

Table

68

lists

the

tools

that

IBM

provides

for

data

handler

development.

Table

68.

Tools

for

data-handler

development

Development

Tool

Description

Adapter

Development

Kit

(ADK)

Includes

the

following:

v

Sample

data

handlers

v

Stub

file

for

extending

DataHandler

class

Data

Handler

API

Single

class,

DataHandler,

which

you

extend

to

create

a

custom

data

handler.

Java

Connector

Development

Kit

(JCDK)

Contains

Java

classes

to

work

with

business

objects.

The

Adapter

Development

Kit

The

Adapter

Development

Kit

(ADK)

provides

files

and

samples

to

assist

in

the

development

of

an

adapter.

It

provides

samples

for

many

of

the

adapter

components,

including

an

Object

Discovery

Agent

(ODA),

a

connector,

and

a

data

handler.

The

ADK

provides

these

samples

in

the

DevelopmentKits

subdirectory

of

the

product

directory.

Note:

The

ADK

is

part

of

the

WebSphere

Business

Integration

Adapters

product

and

requires

its

own

separate

Installer.

Therefore,

to

have

access

to

the

development

samples

in

the

ADK,

you

must

the

WebSphere

Business

Integration

Adapters

product

and

install

the

ADK.

Please

note

that

the

ADK

is

availableonly

for

Windows

systems.Table

69

lists

the

samples

that

the

ADK

provides

for

the

development

of

a

data

handler

as

well

as

the

subdirectory

of

the

DevelopmentKits

directory

in

which

they

reside.

Table

69.

ADK

samples

for

data

handler

development

Adapter

Development

Kit

component

DevelopmentKits

subdirectory

Data

handler

samples

edk\DataHandler

Sample

data

handlers

To

assist

with

the

development

of

a

data

handler,

ADK

includes

code

for

several

sample

data

handlers

in

the

following

product

directory:

DevelopmentKits\edk\DataHandler\Samples

Table

70

lists

the

sample

data

handlers

that

the

ADK

provides.

Table

70.

Sample

data

handlers

included

with

the

EDK

Name

Description

delimited.java

Converts

business

objects

to

Delimited

strings

and

Delimited

strings

to

business

objects.

fixedwidth.java

Converts

business

objects

to

FixedWidth

strings

and

from

FixedWidth

strings

to

business

objects.

namevalue.java

Converts

business

objects

to

NameValue

strings

and

NameValue

strings

to

business

objects.

Chapter

10.

Creating

a

custom

data

handler

169

Note:

While

these

samples

are

useful

to

examine,

they

do

not

provide

examples

of

all

the

functionality

supported

in

the

DataHandler

class.

Development

files

The

DevelopmentKits\edk\DataHandler

directory

provides

several

files

that

assist

in

the

development

of

a

custom

data

handler,

including

those

listed

in

Table

71.

Table

71.

Data-handler

development

files

Data-Handler

development

file

For

more

information

StubDataHandler.java

“Extending

the

data

handler

base

class”

on

page

171

makeDataHandler.bat

(Windows

systems)

“Adding

a

data

handler

to

the

jar

file”

on

page

186

Data

Handler

API

The

Data

Handler

API

provides

a

single

Java

class,

called

DataHandler.

The

abstract

DataHandler

base

class

facilitates

the

development

of

a

custom

data

handler.

This

class

contains

the

methods

that

populate

a

business

object

with

values

extracted

from

input

data,

and

methods

that

serialize

a

business

object

into

a

string

or

a

stream.

The

class

also

includes

utility

methods

that

a

custom

data

handler

can

use.

You

derive

a

custom

data

handler

from

the

DataHandler

class.

For

information

on

the

methods

in

the

DataHandler

class,

see

Chapter

11,

“Data

Handler

base

class

methods,”

on

page

195.

Java

Connector

Development

Kit

To

work

with

business

objects,

a

data

handler

must

use

methods

from

the

classes

in

the

Java

Connector

Development

Kit

(JCDK).

As

you

develop

your

data

handler,

you

may

need

to

import

additional

JCDK

classes,

such

as

CxCommon.CxObjectContainerInterface

or

CxCommon.CxObjectAttr.

For

reference

information

on

the

JCDK

methods,

see

the

Connector

Development

Guide

for

Java

in

the

WebSphere

Business

Integration

Adapters

documentation

set.

Note:

The

JCDK

is

the

low-level

Java

connector

library.

Documentation

of

its

methods

are

contained

in

a

separate

part

of

the

Connector

Development

Guide

for

Java.

Designing

the

data

handler

Before

you

begin

to

write

a

custom

data

handler,

it

is

recommended

that

you

clearly

understand:

v

The

data

format

of

the

files

that

the

data

handler

will

be

converting

v

The

business

object

model

In

particular,

you

need

to

know

how

to:

–

extract

values

from

a

business

object

instance

–

build

a

business

object

instance

and

populate

it

with

values

from

a

file

Creating

a

metadata-driven

data

handler

For

your

custom

data

handler

to

be

metadata-driven,

it

must

dynamically

specify

information

that

identifies

the

data

handler

to

use.

For

more

information

on

metadata-driven

data

handlers,

see

“Metadata-driven

data

handler

design”

on

page

19.

170

Data

Handler

Guide

Using

data-handler

meta-objects

One

of

the

design

decisions

you

need

to

make

is

whether

you

data

handler

will

use

meta-objects

to

initialize

its

configuration.

Note:

For

more

information

about

meta-objects,

see

“Configuring

data

handlers”

on

page

24.

Consider

the

following

when

deciding

whether

to

use

meta-objects:

v

Meta-objects

allow

a

data

handler

to

be

dynamically

configured.

This

design

strategy

creates

a

more

flexible

data

handler,

one

that

can

be

configured

based

on

the

context

in

which

it

is

called.

To

call

a

data

handler

that

uses

meta-objects,

the

caller

passes

the

data

handler’s

associated

MIME

type

into

the

createHandler()

method.

When

called

with

a

MIME

type,

createHandler()

initializes

a

newly

instantiated

data

handler

with

the

configuration

information

in

the

child

meta-object.

v

There

is

overhead

associated

with

the

accessing

and

searching

of

meta-objects.

Your

data

handler

might

want

to

avoid

meta-objects

if

its

configuration

information

does

not

change

(it

can

be

hard-coded)

or

if

it

converts

data

that

does

not

have

an

associated

MIME

type.

To

call

a

data

handler

that

does

not

use

meta-objects,

the

caller

passes

only

the

data

handler’s

class

name

into

the

createHandler()

method.

When

called

with

a

class

name,

createHandler()

instantiates

a

data

handler

of

that

class;

it

does

not

search

for

associated

meta-objects.

If

you

design

your

custom

data

handler

to

use

meta-objects,

you

need

to

create

these

meta-objects

as

part

of

your

data-handler

implementation.

For

more

information,

see

“Creating

data-handler

meta-objects”

on

page

187.

Extending

the

data

handler

base

class

To

create

a

custom

data

handler,

you

extend

the

data-handler

base

class

(DataHandler)

to

create

your

own

data-handler

class.

The

DataHandler

class

contains

methods

that

perform

the

conversions

(string-to-business-object

and

business-object-to-string),

as

well

as

utility

methods

to

assist

in

development.

The

EDK

contains

stub

code

and

makefiles

for

a

custom

data

handler.

The

stub

file

contains

Java

code

that

defines

an

empty

class

listing

all

the

methods

that

you

must

implement.

You

can

use

the

stub

file

as

a

template

to

generate

a

custom

data

handler.

To

create

a

data

handler

source

file

using

the

stub

file:

1.

Copy

the

StubDataHandler.java

file

and

rename

it

so

that

its

name

matches

the

name

of

the

data-handler

class

that

it

defines.

The

stub

file

resides

in

the

DevelopmentKits\edk\DataHandler

subdirectory

in

the

product

directory.

It

includes

import

statements

that

import

the

data

handler

package

com.crossworlds.DataHandlers.

It

also

imports

some

classes

from

the

Java

Connector

Development

Kit.

2.

Change

the

StubDataHandler

keyword

to

the

name

of

the

class

that

implements

your

custom

data

handler.

For

example,

the

following

line

extends

the

DataHandler

class

to

create

a

custom

data-handler

class

called

HtmlDataHandler:

public

class

HtmlDataHandler

extends

DataHandler

Chapter

10.

Creating

a

custom

data

handler

171

Implementing

the

methods

To

develop

a

data

handler,

you

implement

the

following

methods

of

the

DataHandler

class:

v

The

abstract

DataHandler

methods

(required)

v

The

public

DataHandler

methods

(optional)

The

methods

of

your

custom

data

handler

go

in

the

Java

source

file

of

the

DataHandler

class

that

you

created

in

“Extending

the

data

handler

base

class”

on

page

171.

Note:

If

the

caller

re-uses

a

cached

instance

of

the

DataHandler

class

over

multiple

threads,

you

might

need

to

make

the

class

thread-safe.

To

determine

whether

this

is

required,

see

the

Connector

Development

Guide

for

Java

for

more

details

on

the

threading

model.

Implementing

the

abstract

methods

The

data-handler

base

class,

DataHandler,

provides

the

abstract

methods

in

Table

72,

which

you

must

implement

in

the

DataHandler

class

for

your

custom

data

handler.

Table

72.

Abstract

methods

in

the

DataHandler

class

Data

conversion

Format

of

serialized

data

DataHandler

method

String-to-business-object

conversion

Converts

serialized

data,

accessed

through

a

Reader

object,

to

a

business

object

getBO()

-

abstract

Business-object-to-string

conversion

Converts

a

business

object

to

an

InputStream

object

getStreamFromBO()

Converts

a

business

object

to

a

String

object

getStringFromBO()

Converts

a

business

object

to

a

byte

array.

getByteArrayFromBO()

Note:

The

copy

of

the

StubDataHandler.java

file

that

extends

the

DataHandler

class

with

your

custom

data

handler

contains

declarations

for

the

abstract

methods

you

need

to

implement.

The

following

sections

provide

implementation

information

for

each

of

the

abstract

DataHandler

methods.

Implementing

conversion

to

a

business

object

The

abstract

getBO()

method

performs

the

string-to-business-object

conversion;

that

is,

it

populates

a

business

object

with

data

extracted

from

a

Java

Reader

object.

There

are

two

versions

of

the

getBO()

method:

v

getBO(Reader

serializedData,

BusinessObjectInterface

theObj,

Object

config)

Input

arguments

include

a

Reader

object

that

contains

the

serialized

data

and

a

reference

to

the

business

object.

The

method

populates

the

theBusObj

business

object

with

the

serializedData

data.

v

getBO(Reader

serializedData,

Object

config)

172

Data

Handler

Guide

Input

arguments

include

a

Reader

object

that

contains

the

serialized

data.

The

method

determines

the

name

of

the

business

object

type

(the

business

object

definition)

from

the

data,

then

creates

and

fills

a

business

object

instance

of

that

type.

Note:

To

support

the

data

handler

when

it

is

called

in

the

context

of

a

connector,

your

data-handler

class

(which

extends

DataHandler)

must

implement

both

versions

of

the

getBO()

method.

To

support

the

data

handler

when

it

is

called

only

from

an

access

client

(IBM

WebSphere

InterChange

Server

integration

broker

only),

you

must

implement

only

the

second

form

of

the

getBO()

method;

the

Server

Access

Interface

uses

only

this

second

form

of

getBO().

The

getBO()

method

allows

the

caller

to

pass

in

an

optional

object

containing

configuration

information

(the

config

parameter).

This

information

is

in

addition

to

the

configuration

information

specified

in

the

data-handler

meta-object.

As

an

example,

the

configuration

object

can

point

to

a

template

file

or

to

a

URL

that

the

data

handler

uses.

Note:

When

converting

to

a

business

object,

getBO()

must

ensure

that

any

attribute

identified

with

a

cw_mo_label

tag

in

the

application-specific

information

of

the

parent

business

object

does

not

get

a

value.

For

more

information

on

the

cw_mo_label

tag,

see

“Implementing

conversion

from

a

business

object”

on

page

177.

The

purpose

of

the

abstract

getBO()

method

is

to

populate

a

business

object

with

the

serialized

data

that

the

Reader

object

contains.

The

public

versions

of

getBO()

can

then

receive

the

serialized

data

in

one

of

several

supported

forms,

convert

the

data

to

a

Reader

object,

and

then

call

the

abstract

getBO()

method

to

perform

the

actual

string-to-business-object

conversion.

For

more

information

on

the

public

getBO()

method,

see

“getBO()

-

public”

on

page

198.

Figure

40

shows

a

basic

implementation

of

the

second

form

of

the

getBO()

method.

The

example

illustrates

the

steps

in

the

conversion

of

data

from

a

Reader

object

that

contains

fixed-width

data

to

a

business

object:

1.

The

getBO()

method

converts

the

data

in

the

Reader

object

to

a

String

object.

It

then

calls

the

user-defined

getBOFromString()

method

to

create

an

instance

of

the

business

object.

2.

The

getBOFromString()

method

determines

what

type

of

business

object

to

create

based

on

the

first

fixed-width

token

in

the

String,

and

then

it

creates

a

business

object

instance

of

that

type.

It

gets

the

verb

from

the

second

fixed-width

token

in

the

String

and

sets

the

verb

in

the

business

object.

This

method

then

calls

the

user-defined

parseAttributeList()

method

to

parse

the

remainder

of

the

String

and

populate

the

business

object

with

values.

3.

The

parseAttributeList()

method

parses

the

String

and

recursively

populates

the

business

object.

When

the

method

finds

an

attribute

of

an

object

type,

it

determines

whether

the

object

is

single

or

multiple

cardinality.

It

calls

getMultipleCard()

to

recursively

process

the

business

objects

in

the

array

and

getSingleCard()

to

process

a

single-cardinality

child

business

object.

Tip:

A

data

handler

extracts

data

from

business

objects

and

populates

business

objects

with

data

in

the

same

way

that

a

connector

does.

For

example,

in

the

following

code

sample,

the

getBOFromString()

method

calls

JavaConnectorUtil.createBusinessObject()

to

create

a

business

object

instance

and

BusinessObjectInterface.setVerb()to

set

the

verb.

For

Chapter

10.

Creating

a

custom

data

handler

173

information

on

how

to

process

business

objects,

see

the

Connector

Development

Guide

for

Java.

public

BusinessObjectInterface

getBO(Reader

serializedData,

Object

config)

throws

Exception

{

clear(config);

BusinessObjectInterface

resultObj

=

null;

//

Create

a

String

object

from

the

Reader,

then

use

the

string

//

method

int

conversionCheck;

char[]

temp

=

new

char[2000];

StringBuffer

tempStringBuffer

=

new

StringBuffer(1000);

while

(

(conversionCheck

=

serializedData.read(temp))

!=

-1

)

tempStringBuffer.append(new

String

(temp,

0,

conversionCheck));

mBOString

=

new

String(tempStringBuffer);

mBOStringLength

=

mBOString.length();

resultObj

=

getBOFromString(null);

return

resultObj;

}

//

Gets

business

object

name

and

verb

and

creates

a

bus

obj

instance

private

BusinessObjectInterface

getBOFromString(String

pvBOType)

throws

Exception

{

BusinessObjectInterface

returnObj

=

null;

String

lvBOName

=

null;

String

lvVerb

=

null;

lvBOName

=

this.getNextToken(mBONameSize,

true);

lvVerb

=

this.getNextToken(mBOVerbSize,

true);

if(

(pvBOType

!=

null)

&&

(lvBOName.compareTo(pvBOType)

!=

0)

)

{

throw

new

Exception(...);

}

else

{

returnObj

=

JavaConnectorUtil.createBusinessObject(lvBOName);

}

returnObj.setVerb(lvVerb);

parseAttributeList(returnObj);

return

returnObj;

}

Figure

40.

Example

getBO()

method

(Part

1

of

4)

174

Data

Handler

Guide

//

Parse

String

to

populate

the

attributes

in

the

business

object

protected

void

parseAttributeList(BusinessObjectInterface

pvBO)

throws

Exception

{

if

(

mEndOfBOString

)

throw

new

Exception(...);

else

if(

pvBO

==

null

)

throw

new

Exception(...);

int

lvAttrNum

=

pvBO.getAttrCount();

String

lvAttrName

=

null;

String

lvAttrValue

=

null;

int

lvAttrMaxLength

=

0;

try

{

for

(int

lvAttrIndex

=

0;

lvAttrIndex

<

lvAttrNum;

lvAttrIndex++)

{

CxObjectAttr

lvAttrSpec

=

pvBO.getAttrDesc(lvAttrIndex);

lvAttrName

=

lvAttrSpec.getName();

//

Determine

if

the

attribute

is

a

simple

attribute

or

a

//

business

object

container.

if

(lvAttrSpec.isObjectType())

{

//

Get

the

next

token

based

on

the

BOCountSize

lvAttrMaxLength

=

mBOCountSize;

lvAttrValue

=

this.getNextToken(mBOCountSize,

true);

String

lvBOType

=

lvAttrSpec.getTypeName();

Object

lvAttrBOValue

=

null;

if

(lvAttrSpec.isMultipleCard())

{

this.getMultipleCard(pvBO,lvAttrIndex,lvBOType,

lvAttrValue);

}

else

{

this.getSingleCard(pvBO,lvAttrIndex,lvBOType,

lvAttrValue);

}

}

else

{

//

Get

the

next

token

based

on

the

MaxLength

of

the

attribute

lvAttrMaxLength

=

lvAttrSpec.getMaxLength();

if

(lvAttrMaxLength

>

0)

lvAttrValue

=

this.getNextToken(lvAttrMaxLength,

false);

else

lvAttrValue

=

null;

Figure

40.

Example

getBO()

method

(Part

2

of

4)

Chapter

10.

Creating

a

custom

data

handler

175

//

For

simple

String

attribute,

set

to

null,

set

to

//

configured

CxIgnore

or

CxBlank

values,

or

set

to

the

//

attribute

value

if

(lvAttrValue

==

null

)

pvBO.setAttrValue(lvAttrIndex,

null);

else

if

(lvAttrValue.equals(mCxIgnore)||

lvAttrValue.equals(""))

pvBO.setAttrValue(lvAttrIndex,

null);

else

if

(lvAttrValue.equals(mCxBlank)||

lvAttrValue.equals("

"))

pvBO.setAttrValue(lvAttrIndex,

"");

else

pvBO.setAttrValue(lvAttrIndex,

lvAttrValue);

}

}

}

}

//

Populates

a

child

container

with

values

in

the

String

protected

void

getMultipleCard(BusinessObjectInterface

pvParentBO,

int

pvParentAttrIndex,

String

pvBOType,

String

pvObjectCountString)

throws

CW_BOFormatException,

Exception

{

try

{

if

(

pvObjectCountString.equals(mCxIgnore)

)

{

//

trace

message

}

else

{

int

lvObjectCount

=

Integer.parseInt(pvObjectCountString);

if

(

lvObjectCount

==

0)

{

//

trace

message

with

the

number

of

objects

in

container

}

else

if

(lvObjectCount

>

0)

{

//

There

is

at

least

one

instance

of

the

object

in

the

string

BusinessObjectInterface

lvChildBO

=

null;

//

For

each

instance

of

the

child

object,

parse

the

attribute

//

list,

and

then

add

the

object

container

to

the

parent.

for

(int

lvObjectIndex

=

0;

lvObjectIndex

<

lvObjectCount;

lvObjectIndex++)

{

lvChildBO

=

getBOFromString(pvBOType);

pvParentBO.setAttrValue(pvParentAttrIndex,lvChildBO);

}

}

}

}

}

Figure

40.

Example

getBO()

method

(Part

3

of

4)

176

Data

Handler

Guide

Implementing

conversion

from

a

business

object

The

abstract

methods

in

Table

73

perform

the

business-object-to-string

conversion;

that

is,

they

each

create

serialized

data

in

a

particular

format

from

a

business

object.

Table

73.

Abstract

methods

to

implement

business-object-to-string

conversion

Abstract

method

Description

getStringFromBO()

Converts

the

data

in

a

business

object

to

a

String

object.

getStreamFromBO()

Converts

the

data

in

a

business

object

to

an

InputStream

object.

getByteArrayFromBO()

Cconverts

the

data

in

a

business

object

to

a

byte

array.

The

goal

of

converting

from

a

business

object

is

to

create

a

serialized

form

of

all

data

in

the

business

object.

Sometimes,

however,

some

business-object

data

should

not

be

included

in

the

serialized

data.

For

example,

a

business

object

might

use

a

child

meta-object

to

hold

dynamic

configuration

information

for

a

connector.

IBM

reserves

all

application-specific

information

that

begins

with

the

prefix

cw_mo_label

for

configuration

and/or

dynamic

metadata.

To

indicate

any

attribute

that

a

data

handler

should

ignore

during

conversion

from

a

business

object,

the

business

object

definition

for

the

parent

business

object

specifies

the

following

tag

in

its

application-specific

information:

cw_mo_label=child_meta-object_attribute_name

//

Populates

a

single

cardinality

child

with

values

in

the

String

protected

void

getSingleCard(BusinessObjectInterface

pvParentBO,

int

pvParentAttrIndex,

String

pvBOType,

String

pvObjectCountString)

throws

CW_BOFormatException,

Exception

{

try

{

BusinessObjectInterface

lvChildBO

=

null;

//

Check

the

object

count

token

//

If

it

does

not

match

"1",

assume

that

the

child

object

should

//

be

null

if

(pvObjectCountString.equals("1"))

{

//

The

string

contains

a

single

instance

of

the

child

lvChildBO

=

getBOFromString(pvBOType);

pvParentBO.setAttrValue(pvParentAttrIndex,

lvChildBO);

}

else

if

(

pvObjectCountString.equals(mCxIgnore)

||

pvObjectCountString.equals("0"))

{

//

Validate

that

the

object

count

token

is

valid

}

else

throw

new

CW_BOFormatException(...);

}

}

Figure

40.

Example

getBO()

method

(Part

4

of

4)

Chapter

10.

Creating

a

custom

data

handler

177

where

label

is

a

string

you

define

to

further

identify

the

purpose

of

the

cw_mo_

tag

and

child_meta-object_attribute_name

identifies

the

name

of

the

attribute

to

ignore.

This

attribute

usually

contains

the

child

meta-object.

Multiple

cw_mo_label

tags

are

delimited

by

a

semicolon

(;).

When

you

implement

the

getStringFromBO(),

getStreamFromBO(),

and

getByteArrayFromBO()

methods

for

a

custom

data

handler,

these

methods

need

to

ensure

that

the

data

handler

skips

over

connector-specific

attributes,

as

follows:

1.

Check

for

the

existence

of

any

cw_mo_label

tag

(where

label

is

a

string

you

provide

to

identify

the

attribute

to

ignore)

in

the

application-specific

information

of

the

business

object

definition

for

the

business

object

being

converted.

2.

If

a

cw_mo_label

tag

exists,

locate

the

string

that

this

tag

provides

(child_meta-object_attribute_name).

Ignore

any

white

space

surrounding

the

equal

sign

(=).

3.

While

looping

through

the

attributes

of

the

business

object,

compare

each

attribute

name

against

the

child_meta-object_attribute_name

string.

Skip

over

any

attribute

with

this

name.

The

following

code

fragment

shows

how

to

skip

over

attributes:

List

configObjList

=

com.crossworlds.DataHandlers.text.namevalue.listMOAttrNames(BusObj);

//this

list

contains

attribute

names,

which

are

configuration

objects

for

(

attributes

in

BusObj

)

{

String

attrName

=

BusObj.getAttrDisc(i).getName();

if

(

configObjList.contains(attrName)

)

{

//skip

continue;

}

}

For

example,

suppose

a

business

object

called

MyCustomer

uses

a

child

meta-object

to

hold

connector-specific

routing

information.

If

this

meta-object

is

represented

by

an

attribute

named

CustConfig,

then

MyCustomer

could

have

the

following

tag

in

its

application-specific

information:

cw_mo_cfg=CustConfig

During

conversion

from

a

business

object,

a

custom

data

handler

checks

the

application-specific

information

for

the

business

object

definition

associated

with

MyCustomer,

locates

the

cw_mo_cfg

tag,

and

determines

that

the

CustConfig

attribute

needs

to

be

skipped

over.

The

resulting

serialized

data

from

the

data

handler

does

not

include

the

CustConfig

child

meta-object.

Note:

When

converting

from

a

business

object,

IBM-delivered

data

handlers

skip

over

any

attributes

that

the

cw_mo_label

tag

identifies.

You

need

to

develop

any

custom

data

handler

to

handle

cw_mo_label

tags

only

if

the

data

handler

works

with

connectors

that

use

child

meta-objects

or

other

dynamic

objects.

An

implementation

of

the

getStringFromBO()

method:

The

getStringFromBO()

method

performs

the

business-object-to-string

conversion;

that

is,

it

converts

the

data

in

a

business

object

to

a

String

object.

For

this

method,

the

caller

passes

in

178

Data

Handler

Guide

the

business

object

to

be

converted.

Figure

41

shows

the

getStringFromBO()

method

as

implemented

by

the

FixedWidth

data

handler.

The

method

creates

a

String

of

fixed-width

fields.

The

example

illustrates

the

steps

in

the

conversion

of

data

from

a

business

object

to

a

Reader

object:

1.

The

getStringFromBO()

method

calls

setAttrList()

to

recursively

loop

through

the

attributes

in

the

business

object.

When

the

setAttrList()

method

finds

a

simple

attribute,

it

calls

the

setSimpleToken()

method

to

set

the

value.

2.

The

setSimpleToken()

method

adds

the

attribute

value

to

a

StringBuffer

object,

converts

the

StringBuffer

to

a

String

object,

and

adds

the

string

to

the

StringBuffer

representing

the

entire

business

object.

When

setAttrList()

has

processed

the

business

object,

the

getStringFromBO()

method

converts

the

StringBuffer

to

a

String

object

and

returns

the

String

to

the

caller.

Chapter

10.

Creating

a

custom

data

handler

179

public

String

getStringFromBO(BusinessObjectInterface

theObj,

Object

config)

throws

Exception

{

traceWrite(

"Entering

getStringFromBO(BusinessObjectInterface,

Object)

"

+

"

for

object

type

"

+

theObj.getName(),

JavaConnectorUtil.LEVEL4);

clear(config);

String

lvBOString

=

null;

setAttrList(theObj);

lvBOString

=

mBOStringBuffer.toString();

traceWrite(

"Exiting

getStringFromBO(BusinessObjectInterface,

Object)

"

+

"

for

object

type

"

+

theObj.getName(),

JavaConnectorUtil.LEVEL4);

return

lvBOString;

}

protected

void

setAttrList(BusinessObjectInterface

pvBO)

throws

Exception

{

traceWrite(

"Entering

setAttrList(BusinessObjectInterface)

for

object

"

+

pvBO.getName(),

JavaConnectorUtil.LEVEL4);

int

lvAttrNum

=

pvBO.getAttrCount();

String

lvAttrName

=

null;

String

lvAttrValue

=

null;

int

lvAttrMaxLength

=

0;

//

Add

the

business

object

name

and

verb

to

the

fixed

width

format

//

String

this.setSimpleToken(

mBONameSize,

pvBO.getName());

this.setSimpleToken(

mBOVerbSize,

pvBO.getVerb());

try

{

List

moAttrNames

=

listMOAttrNames(

pvBO

);

int

lvAttrCount

=

pvBO.getAttrCount();

ATTRIBUTE_WALK:

for

(int

lvAttrIndex

=

0;

lvAttrIndex

<

lvAttrCount;

++lvAttrIndex)

{

CxObjectAttr

lvAttrSpec

=

pvBO.getAttrDesc(lvAttrIndex);

lvAttrName

=

lvAttrSpec.getName();

//

Check

if

the

current

attribute

is

a

simple

(String)

type

//

or

a

contained

object.

if

(lvAttrSpec.isObjectType())

{

//skip

child

objects

designated

as

meta

objects

if(

moAttrNames.contains(

lvAttrName

)

)

{

continue

ATTRIBUTE_WALK;

}

Figure

41.

Example

getStringFromBO()

method

(Part

1

of

5)

180

Data

Handler

Guide

if

(lvAttrSpec.isMultipleCard())

{

CxObjectContainerInterface

lvAttrMultiCardBOValue

=

(CxObjectContainerInterface)

pvBO.getAttrValue(lvAttrIndex);

if

(lvAttrMultiCardBOValue

==

null)

{

traceWrite(

"setAttrList

found

empty

multiple

cardinality

container

"

+

lvAttrSpec.getTypeName(),

JavaConnectorUtil.LEVEL5);

//

Add

the

count

to

the

fixed

width

String

this.setSimpleToken(

mBOCountSize,

"0");

}

else

{

int

lvObjectCount

=

lvAttrMultiCardBOValue.getObjectCount();

traceWrite(

"setAttrList

found

multiple

cardinality

container

"

+

lvAttrSpec.getTypeName()

+

"

with

"

+

lvObjectCount

+

"

instances",

JavaConnectorUtil.LEVEL5);

//

Add

the

count

to

the

fixed

width

String

this.setSimpleToken(

mBOCountSize,

Integer.toString(lvObjectCount));

//

Add

each

object

in

the

container

to

the

fixed

//

width

String.

for

(int

lvContObjectIndex

=

0;

lvContObjectIndex

<

lvObjectCount;

++lvContObjectIndex)

setAttrList(

lvAttrMultiCardBOValue.getBusinessObject(

lvContObjectIndex));

}

}

else

{

BusinessObjectInterface

lvAttrSingleCardBOValue

=

(BusinessObjectInterface)

pvBO.getAttrValue(lvAttrIndex);

if

(lvAttrSingleCardBOValue

==

null)

{

traceWrite(

"setAttrList

found

empty

single

cardinality

container

"

+

lvAttrSpec.getTypeName(),

JavaConnectorUtil.LEVEL5);

//

Add

the

count

to

the

fixed

width

String

this.setSimpleToken(

mBOCountSize,

"0");

}

Figure

41.

Example

getStringFromBO()

method

(Part

2

of

5)

Chapter

10.

Creating

a

custom

data

handler

181

else

{

traceWrite(

"setAttrList

found

single

cardinality

container

"

+

lvAttrSpec.getTypeName(),

JavaConnectorUtil.LEVEL5);

//

Add

the

count

to

the

fixed

width

String

this.setSimpleToken(

mBOCountSize,

"1");

setAttrList(lvAttrSingleCardBOValue);

}

}

}

else

{

lvAttrValue

=

(String)

pvBO.getAttrValue(lvAttrIndex);

lvAttrMaxLength

=

lvAttrSpec.getMaxLength();

if

(lvAttrMaxLength

>

0)

this.setSimpleToken(lvAttrMaxLength,

lvAttrValue);

}

}

}

catch

(CxObjectNoSuchAttributeException

e)

{

throw

new

Exception(e.getMessage());

}

traceWrite(

"Exiting

setAttrList(BusinessObjectInterface)

for

object

"

+

pvBO.getName(),

JavaConnectorUtil.LEVEL4);

}

protected

void

setSimpleToken(

int

pvCellSize,

String

pvTokenValue)

throws

Exception

{

traceWrite(

"Entering

setSimpleToken(int,

String)",

JavaConnectorUtil.LEVEL4);

StringBuffer

lvNewBuffer

=

new

StringBuffer(pvCellSize);

int

lvTokenLength

=

0;

int

lvCxIgnoreLength

=

mCxIgnore.length();

int

lvCxBlankLength

=

mCxBlank.length();

int

lvPadNumber

=

0;

//

Check

the

token

value

to

see

if

it

is

null

if

(pvTokenValue

==

null)

{

//

For

this

case,

we

add

the

configured

CxIgnore

value

to

the

//

fixed

width

String

if

it

fits

in

the

cell.

if

(!mTruncation

&&

lvCxIgnoreLength

>

pvCellSize)

throw

new

Exception(

"

Null

attribute

value

encountered

where

cell

size

is

"

+

pvCellSize

+

",

size

of

CxIgnore

value

is

"

+

lvCxIgnoreLength

+

"and

trucation

is

not

allowed.

"

+

"Please

check

your

MO

format

configuration.");

Figure

41.

Example

getStringFromBO()

method

(Part

3

of

5)

182

Data

Handler

Guide

else

{

lvPadNumber

=

pvCellSize

-

lvCxIgnoreLength;

lvNewBuffer.append(mCxIgnore);

}

}

else

if

(pvTokenValue.equals(""))

{

//

For

this

case,

the

configured

CxBlank

value

is

added

to

the

//

fixed

width

String

if

it

fits

in

the

cell.

if

(!

mTruncation

&&

lvCxBlankLength

>

pvCellSize)

throw

new

Exception(

"

Blank

attribute

value

encountered

where

cell

size

is

"

+

pvCellSize

+

",

size

of

CxBlank

value

is

"

+

lvCxBlankLength

+

"and

trucation

is

not

allowed.

"

+

"Please

check

your

MO

format

configuration.");

else

{

lvPadNumber

=

pvCellSize

-

lvCxBlankLength;

lvNewBuffer.append(mCxBlank);

}

}

else

{

//

For

this

case,

actually

add

the

token

value

to

the

fixed

//

width

String,

unless

the

data

is

too

long

for

the

cell.

lvTokenLength

=

pvTokenValue.length();

if

(!mTruncation

&&

lvTokenLength

>

pvCellSize

)

throw

new

Exception(

"

Attribute

value

encountered

where

cell

size

is

"

+

pvCellSize

+

",

size

of

token

value

is

"

+

lvTokenLength

+

"and

trucation

is

not

allowed.

"

+

"Please

check

your

MO

format

configuration.");

else

{

lvNewBuffer.append(pvTokenValue);

lvPadNumber

=

pvCellSize

-

lvTokenLength;

}

}

if

(lvPadNumber

<=

0

&&

mTruncation)

//

Token

is

longer

than

the

cell

and

truncation

is

allowed,

//

so

the

characters

up

to

pvCellSize

are

added

lvNewBuffer.setLength(pvCellSize);

else

if

(lvPadNumber

>

0)

{

//

Pad

the

cell

based

on

the

configuration

option

chosen

if

(

mAlignment.equals(fixedwidth.AlignmentLeft)

||

mAlignment.equals(fixedwidth.AlignmentBoth))

this.padRight(lvNewBuffer,

lvPadNumber);

else

if

(mAlignment.equals(fixedwidth.AlignmentRight))

this.padLeft(lvNewBuffer,

lvPadNumber);

}

Figure

41.

Example

getStringFromBO()

method

(Part

4

of

5)

Chapter

10.

Creating

a

custom

data

handler

183

An

implementation

of

the

getStreamFromBO()

method:

The

getStreamFromBO()

method

converts

the

data

in

a

business

object

to

an

InputStream

object.

Figure

42

shows

an

example

implementation

of

the

getStreamFromBO()

method.

In

this

implementation,

getStreamFromBO()

calls

getStringFromBO()

to

build

a

String

object

containing

the

business

object

data,

and

then

it

converts

the

String

to

an

InputStream.

The

method

returns

an

InputStream

object

representing

the

data

in

the

business

object.

Overriding

public

methods

In

addition

to

the

abstract

DataHandler

methods

(which

you

must

implement),

you

might

also

need

to

override

some

public

methods

of

the

DataHandler

class

(see

Table

74)

so

they

work

optimally

with

your

custom

data

handler.

Table

74.

Public

methods

of

the

DataHandler

class

Public

DataHandler

method

Description

getBO()

-

public

Converts

serialized

data(in

one

of

several

formats)

to

a

business

object.

getBOName()

Obtains

the

name

of

the

business

object

from

the

serialized

data.

getBooleanOption()

Gets

a

value

of

a

Boolean

configuration

option

from

the

data

handler.

getOption()

Gets

the

value

of

a

configuration

option

from

the

data

handler.

setOption()

Sets

a

configuration

option

in

the

data

handler.

String

lvNewBuffString

=

lvNewBuffer.toString();

//

Note

that

this

may

cause

a

performance

issue

when

the

tracing

//

level

is

low,

but

in

most

cases

it

should

not

as

any

one

token

//

is

usually

not

very

long.

traceWrite(

"Adding

the

following

token

to

the

fixed

width

String:

"

+

lvNewBuffString,

JavaConnectorUtil.LEVEL5);

//

After

the

cell

has

been

fully

formatted,

append

to

fixed

width

//

String

being

built

mBOStringBuffer.append(lvNewBuffString);

traceWrite(

"Exiting

setSimpleToken(int,

String)",

JavaConnectorUtil.LEVEL4);

}

Figure

41.

Example

getStringFromBO()

method

(Part

5

of

5)

public

InputStream

getStreamFromBO(BusinessObjectInterface

theObj,

Object

config)

throws

Exception

{

clear(config);

String

BOstring;

BOstring

=

getStringFromBO(theObj,

config);

return

new

ByteArrayInputStream(

BOstring.getBytes()

);

}

Figure

42.

Example

getStreamFromBO()

method

184

Data

Handler

Guide

Table

74.

Public

methods

of

the

DataHandler

class

(continued)

Public

DataHandler

method

Description

traceWrite()

Calls

a

trace-write

method

for

the

appropriate

context

of

the

data

handler:

connector

or

the

Server

Access

Interface

(if

your

integration

broker

is

InterChange

Server).

Building

a

custom

name

handler

A

data

handler

can

call

a

name

handler

to

extract

the

name

of

a

business

object

definition

from

the

serialized

data.

This

task

is

needed

during

string-to-business-object

conversion

when

the

caller

of

the

data

handler

does

not

pass

in

a

business

object

to

be

populated

with

the

serialized

data.

In

this

case,

the

data

handler

must

create

the

business

object

before

it

can

populate

it.

To

create

the

business

object,

the

data

handler

must

know

the

name

of

the

associated

business

object

definition.

It

is

the

name

handler

that

obtains

this

business

object

name.

Note:

Currently,

the

XML

and

EDI

data

handlers

use

name

handlers

to

obtain

the

name

of

the

business

object

to

create.

The

task

of

creating

and

implementing

a

custom

name

handler

includes

the

following

general

steps:

1.

Create

a

class

that

extends

the

NameHandler

class.

2.

Implement

the

abstract

getBOName()

method

that

reads

the

serialized

data

and

returns

the

business

object

name.

3.

Compile

the

class

and

add

it

to

the

DataHandlers\CustDataHandler.jar

file.

For

more

information,

see

“Adding

a

data

handler

to

the

jar

file”

on

page

186.

4.

Set

the

default

value

of

the

NameHandlerClass

attribute

in

the

meta-object

for

the

data

handler.

Extending

the

NameHandler

class

To

create

a

custom

name

handler,

you

extend

the

name-handler

base

class

(NameHandler)

to

create

your

own

name-handler

class.

The

NameHandler

class

contains

the

method

to

extract

the

name

of

a

business

object

from

serialized

data.

The

package

for

this

name-handler

base

class

is

com.crossworlds.DataHandlers.NameHandler.

To

dervide

a

name-handler

class,

follow

these

steps:

1.

Create

a

name-handler

class

that

extends

the

NameHandler

class.

2.

Ensure

that

the

name-handler

class

file

imports

the

classes

of

the

NameHandler

package:

import

3.

Implement

the

getBOName()

method,

which

is

the

abstract

method

in

the

NameHandler

class.

For

more

information,

see

“Implementing

the

getBOName()

method”

on

page

186.

The

definition

of

the

NameHandler

class

follows:

//

Imports

import

java.lang.String;

import

java.io.Reader;

import

com.crossworlds.DataHandlers.Exceptions.MalformedDataException;

public

abstract

class

NameHandler

{

Chapter

10.

Creating

a

custom

data

handler

185

//

Constructors

public

NameHandler()

{

}

//

Methods

public

abstract

String

getBOName(Reader

serializedData,

String

boPrefix)

throws

MalformedDataException;

}

/*

This

method

was

introduced

so

that

the

NameHandler

would

have

*

a

reference

to

the

DataHandler.

The

DataHandler

base

calls

this

*

method

after

it

instantiated

the

NameHandler:

*

eg.

nh

=

(NameHandler)Class.forName(className).newInstance();

*

nh.setDataHandler(this);

*/

public

final

void

setDataHandler(

DataHandler

dataHandler

)

{

dh

=

dataHandler;

}

To

create

your

own

name

handler,

extend

the

NameHandler

abstract

base

class.

Implementing

the

getBOName()

method

Extending

the

NameHandler

class

requires

implementing

the

getBOName()

method,

which

reads

serialized

data

and

returns

the

name

of

the

business

object

associated

with

the

data.

The

syntax

for

this

method

is:

public

abstract

String

getBOName(Reader

serializedData,

String

BOPrefix)

throws

MalformedDataException

where:

serializedData

Is

a

reference

to

an

object

that

contains

the

message.

BOPrefix

Is

a

String

value

that

contains

the

business

object

prefix

for

the

names

of

the

business

object

definitions;

this

argument

can

be

set

to

the

BOPrefix

attribute

in

the

meta-object

(if

one

exists).

Setting

the

meta-object

attribute

To

tell

the

data

handler

to

use

a

custom

name

handler,

you

must

set

the

Default

Value

property

of

a

meta-object

attribute

to

the

full

class

name.

The

data

handler

can

then

obtain

the

class

name

at

runtime

from

one

of

its

configuration

options.

By

default,

this

meta-object

attribute

is

called

NameHandlerClass.

The

child

meta-object

associated

with

both

the

XML

and

EDI

data

handlers

include

this

attribute.

The

IBM-delivered

default

value

for

this

attribute

specifies

the

name

of

the

default

name

handler

class.

To

have

a

data

handler

use

a

custom

name

handler,

make

sure

that

you

update

the

Default

Value

property

for

the

NameHandlerClass

attribute

in

the

child

meta-object

associated

with

the

data

handler

you

extend.

Adding

a

data

handler

to

the

jar

file

When

you

have

completed

the

code

for

the

new

data

handler,

you

must

compile

the

class

and

add

it

to

a

Java

archive

(jar)

file.

The

file

CustDataHandler.jar

is

provided

to

contain

custom

data

handlers.

This

jar

file

is

located

in

the

DataHandlers

subdirectory

of

the

product

directory.

To

locate

a

data-handler

class,

the

createHandler()

method

searches

this

jar

file

after

it

searches

the

CwDataHandler.jar

file

that

contains

delivered

data

handlers.

186

Data

Handler

Guide

Note:

To

be

able

to

compile

Java

code,

you

must

have

the

Java

Development

Kit

(JDK)

installed

on

your

machine.

For

the

required

version

of

the

JDK

and

how

to

install

it,

refer

to

your

product

installation

information.

To

add

a

custom

data

handler

to

CustDataHandler.jar:

1.

Edit

the

data-handler

compilation

script

to

add

the

names

of

the

Java

source

files.

This

data-handler

compilation

script

resides

in

the

following

subdirectory

of

the

product

directory:

DevelopmentKits\edk\DataHandler

Windows

On

a

Windows

system,

the

data-handler

compilation

script

is

called

make_datahandler.bat.

Add

the

names

of

the

Java

source

files

to

the

line:

set

SOURCE_FILES_DH=

UNIX

On

a

UNIX

system,

the

data-handler

compilation

script

is

called

make_datahandler.

Add

the

names

of

the

Java

source

files

to

the

line:

SOURCE_FILES_DH=

2.

Run

the

data

handler

compilation

script

to

compile

the

Java

files

into

a

.class

file.

3.

Add

the

new

class

to

the

CustDataHandler.jar

file

using

the

following

command:

jar

-vf

CustDataHandler.jar

input_files

where

input_files

is

a

list

of

the

class

files

to

add.

Creating

data-handler

meta-objects

If

you

write

a

custom

data

handler

that

uses

data-handler

meta-objects,

you

must:

v

Create

a

child

data-handler

meta-object

that

contains

attributes

for

the

configuration

information

of

the

custom

data

handler.

v

Modify

the

top-level

data-handler

meta-object

to

include

the

supported

MIME

type

so

that

your

data

handler

can

be

configured

when

it

is

instantiated.

v

Set

up

the

meta-objects

in

the

business

integration

system.

Note:

For

information

on

how

to

determine

whether

to

use

meta-objects

in

the

data-handler

design,

see

“Using

data-handler

meta-objects”

on

page

171.

Creating

the

child

meta-object

The

child

meta-object

contains

the

configuration

information

for

the

data

handler.

The

createHandler()

method

uses

this

information

to

initialize

the

newly

instantiated

data

handler.

For

more

detailed

information

on

this

process,

see

“Using

a

MIME

type”

on

page

13.

To

create

a

child

meta-object

for

a

custom

data

handler:

1.

Create

a

child

meta-object

to

represent

an

instance

of

the

data

handler.

Chapter

10.

Creating

a

custom

data

handler

187

You

can

use

the

Business

Object

Designer

tool

to

create

this

child

meta-object.

The

meta-object

must

contain

attributes

to

define

the

configuration

information

that

your

data

handler

requires.

At

a

minimum,

the

child

meta-object

must

have

a

ClassName

attribute.

2.

Determine

whether

you

need

to

specify

the

name

of

the

data

handler

class

in

the

ClassName

attribute.

v

For

a

data

handler

that

is

in

the

default

format,

you

do

not

need

to

specify

a

value

for

ClassName.

The

default

format

is:

com.crossworlds.DataHandlers.MimeTypeString

However,

you

can

specify

the

class

name

for

the

data

handler

in

the

ClassName

attribute’s

default

value.

v

For

a

data

handler

class

that

is

not

in

the

default

format,

you

must

specify

the

full

class

name

for

the

data

handler

instance.

Otherwise,

the

createHandler()

method

cannot

locate

your

data

handler

class

when

it

tries

to

instantiate

the

data

handler.
3.

Set

the

default

values

of

the

appropriate

attributes

in

the

child

meta-object

to

configure

how

the

data

handler

instance

will

process

data.

Modifying

the

top-level

meta-object

When

a

caller

supplies

a

MIME

type

to

the

createHandler()

method,

createHandler()

determines

which

data

handler

to

instantiate

with

these

steps:

1.

Locate

the

name

of

the

top-level

meta-object

that

is

associated

with

the

data

handler.

2.

Look

in

this

top-level

meta-object

for

a

MIME

type

that

matches

the

data

to

convert.

3.

If

this

MIME

type

exists,

find

the

name

of

the

associated

child

meta-object,

which

contains

the

configuration

information.

For

a

more

detailed

explanation

of

this

process,

see

“Using

a

MIME

type”

on

page

13.

For

this

process

to

be

successful,

createHandler()

must

be

able

to

locate

the

MIME

type

associated

with

data.

Therefore,

you

must

edit

the

top-level

data-handler

meta-object

to

include

an

attribute

for

the

MIME

type

of

the

data

that

your

data

handler

converts.

This

attribute

must

include:

v

A

name

that

matches

the

MIME-type

string

for

the

data

handler’s

associated

MIME

type

The

name

of

the

MIME

type

can

contain

only

alphanumeric

characters

and

the

underscore

(_).

No

other

special

characters

are

valid.

If

your

MIME

type

contains

a

period

(.),

replace

it

with

an

underscore.

v

A

single-cardinality

business

object

v

A

type

that

is

the

name

of

the

child

meta-object

representing

your

data

handler

As

an

example,

Figure

43

shows

a

top-level

connector

meta-object

that

is

configured

for

a

custom

HTML

data

handler.

188

Data

Handler

Guide

In

Figure

43,

the

default

top-level

meta-object

for

a

connector

(MO_DataHandler_Default)

has

been

modified

to

support

a

new

MIME

type:

HTML.

In

support

of

this

MIME

type,

the

MO_DataHandler_Default

meta-object

contains

the

following

attribute

properties:

Attribute

Name

=

text_html

Attribute

Type

=

MO_DataHandler_HTMLConfig

Important:

The

name

of

the

MIME

type

is

limited

to

alphanumeric

characters

and

underscores

(_).

No

other

special

characters

can

be

used

for

the

MIME

type.

Setting

up

meta-objects

in

the

business

integration

system

Once

you

have

created

the

data-handler

meta-objects,

you

must

set

up

these

meta-objects

in

the

WebSphere

business

integration

system,

as

follows:

1.

Load

the

new

meta-objects

into

the

repository.

2.

Modify

the

appropriate

meta-object

depending

on

the

context

in

which

the

data

handler

will

be

called:

v

If

the

data

handler

is

to

execute

in

the

context

of

a

connector,

add

the

data

handler

meta-object

as

a

child

to

the

top-level

data

handler

meta-object.

Then

add

support

for

the

top-level

data

handler

meta-object

to

the

connector

definition.

v

If

your

integration

broker

is

InterChange

Server

and

the

data

handler

is

to

execute

in

the

context

of

the

Server

Access

Interface,

add

the

data

handler

meta-object

as

a

child

to

the

top-level

server

meta-object

MO_Server_Datahandler.

Setting

up

other

business

objects

In

addition

to

coding

the

data

handler,

you

must

set

up

any

business

objects

for

the

data

handler.

Create

business

objects

that

conform

to

the

requirements

of

the

data

handler

as

well

as

to

the

requirements

of

the

caller.

Tip:

Make

sure

that

any

business

objects

the

data

handler

requires

are

on

the

supported

objects

list

for

any

connector

that

will

use

the

data

handler.

Configuring

a

connector

If

the

custom

data

handler

will

be

used

in

the

context

of

a

connector,

you

need

to

configure

each

connector

to

obtain

the

name

of

the

top-level

connector

meta-object.

Connectors

get

information

about

data-handler

meta-object

names

and

class

names

in

different

ways.

For

example:

Name = text_html
Type = MO_DataHandler_HTMLConfig

Name = ClassName
Value = com.crossworlds.DataHandlers.text.html

MO_DataHandler_HTMLConfig

MO_DataHandler_Default

....

Figure

43.

Example

top-level

connector

meta-object

for

a

custom

data

handler

Chapter

10.

Creating

a

custom

data

handler

189

v

To

configure

the

WebSphere

Business

Integration

Adapter

for

XML

to

use

a

data

handler,

you

set

the

DataHandlerConfigMO

connector

configuration

property

and

set

the

MimeType

attribute

in

the

XML

connector’s

business

object.

v

To

configure

the

WebSphere

Business

Integration

Adapter

for

JText

to

use

a

data

handler,

you

set

the

ClassName,

or

DataHandlerConfigMO

and

the

MimeType

attributes

in

the

JText

configuration

meta-object.

For

more

information,

see

“Configuring

a

connector

to

use

data

handlers”

on

page

28.

Tip:

When

you

configure

a

connector

to

use

a

data

handler,

make

sure

that

the

spelling

of

the

meta-object

name

is

correct

and

make

sure

that

the

MIME

type

is

spelled

correctly.

An

internationalized

data

handler

An

internationalized

data

handler

is

a

data

handler

that

has

been

written

in

such

as

way

that

it

can

be

customized

for

a

particular

locale.

A

locale

is

the

part

of

a

user’s

environment

that

brings

together

information

about

how

to

handle

data

that

is

specific

to

the

end

user’s

particular

country,

language,

or

territory.

The

locale

is

typically

installed

as

part

of

the

operating

system.

Creating

a

data

handler

that

handles

locale-sensitive

data

is

called

the

internationalization

(I18N)

of

the

data

handler.

Preparing

an

internationalized

data

handler

for

a

particular

locale

is

called

the

localization

(L10N)

of

the

data

handler.

This

section

provides

the

following

information

on

an

internationalized

data

handler:

v

What

is

a

locale?

v

Design

considerations

for

an

internationalized

data

handler

What

is

a

locale?

A

locale

provides

the

following

information

for

the

user

environment:

v

Cultural

conventions

according

to

the

language

and

country

(or

territory)

–

Data

formats:

-

Dates:

define

full

and

abbreviated

names

for

weekdays

and

months,

as

well

as

the

structure

of

the

date

(including

date

separator).

-

Numbers:

define

symbols

for

the

thousands

separator

and

decimal

point,

as

well

as

where

these

symbols

are

placed

within

the

number.

-

Times:

define

indicators

for

12-hour

time

(such

AM

and

PM

indicators)

as

well

as

the

structure

of

the

time.

-

Monetary

values:

define

numeric

and

currency

symbols,

as

well

as

where

these

symbols

are

placed

within

the

monetary

value.
–

Collation

order:

how

to

sort

data

for

the

particular

character

code

set

and

language.

–

String

handling

includes

tasks

such

as

letter

“case”

(upper

case

and

lower

case)

comparison,

substrings,

and

concatenation.
v

A

character

encoding

—

the

mapping

from

a

character

(a

letter

of

the

alphabet)

to

a

numeric

value

in

a

character

code

set.

For

example,

the

ASCII

character

code

set

encodes

the

letter

“A”

as

65,

while

the

EBCIDIC

character

set

encodes

this

letter

as

43.

The

character

code

set

contains

encodings

for

all

characters

in

one

or

more

language

alphabets.

190

Data

Handler

Guide

A

locale

name

has

the

following

format:

ll_TT.codeset

where

ll

is

a

two-character

language

code

(usually

in

lower

case),

TT

is

a

two-letter

country

and

territory

code

(usually

in

upper

case),

and

codeset

is

the

name

of

the

associated

character

code

set.

The

codeset

portion

of

the

name

is

often

optional.

The

locale

is

typically

installed

as

part

of

the

installation

of

the

operating

system.

Design

considerations

for

an

internationalized

data

handler

This

section

provides

the

following

categories

of

design

considerations

for

internationalizing

a

data

handler:

v

Locale-sensitive

design

principles

v

Character-encoding

design

principles

Locale-sensitive

design

principles

To

be

internationalized,

a

data

handler

must

be

coded

to

be

locale-sensitive;

that

is,

its

behavior

must

take

the

locale

setting

into

consideration

and

perform

the

task

appropriate

to

that

locale.

For

example,

for

locales

that

use

English,

the

data

handler

should

obtain

its

error

messages

from

an

English-language

message

file.

The

data

handler

framework

that

is

installed

with

the

product

is

internationalized.

To

complete

the

internationalization

(I18N)

of

a

data

handler

you

develop,

you

must

ensure

that

your

data-handler

implementation

is

internationalized.

An

internationalized

data

handler

must

follow

a

set

of

locale-sensitive

design

principles:

v

The

text

of

all

error,

status,

and

trace

messages

should

be

isolated

from

the

data-handler

implementation

in

a

message

file

and

translated

into

the

language

of

the

locale.

v

Sorting

or

collation

of

data

uses

a

collation

order

appropriate

for

the

language

and

country

of

the

locale.

v

String

processing

(such

as

comparison,

substrings,

and

letter

case)

is

appropriate

for

characters

in

the

locale’s

language.

v

Formats

of

dates,

numbers,

and

times

are

appropriate

for

the

locale.

The

data

handler

might

need

to

perform

locale-sensitive

processing

(such

as

data

format

conversions)

when

it

converts

between

the

serialized

data

application

and

a

business

object.

To

track

the

locale

associated

with

the

data

handler’s

environment,

the

DataHandler

class

has

a

private

locale

variable,

which

is

initialized

to

the

locale

of

the

operating

system

on

which

the

data

handler

runs.

You

can

access

the

data

handler

environment’s

locale

(the

value

of

this

private

locale

variable)

at

runtime

through

the

accessor

methods

in

Table

75.

Table

75.

Methods

to

access

the

data

handler

environment’s

locale

Data

Handler

class

Method

DataHandler

getLocale(),

setLocale()

When

a

business

object

is

created,

it

has

a

locale

associated

with

its

data.

This

locale

applies

to

the

data

in

the

business

object,

not

to

the

name

of

the

business

object

definition

or

its

attributes

(which

must

be

characters

in

the

code

set

associated

with

the

U.S.

English

locale,

en_US).

To

create

a

business

object,

your

data

handler

can

use

the

methods

shown

in

Table

76.

These

methods

have

access

to

Chapter

10.

Creating

a

custom

data

handler

191

the

private

locale

variable

in

the

DataHandler

class.

When

one

of

these

methods

creates

a

business

object,

it

associates

with

this

business

object

the

locale

that

the

private

DataHandler

locale

variable

specifies.

Note:

The

methods

in

Table

76

set

the

locale

only

in

the

top-level

business

object.

If

the

business

object

contains

child

business

objects,

these

children

might

not

have

a

valid

locale

value

because

they

have

their

locale

set

to

the

system

default.

Use

the

methods

in

Table

76

to

create

a

business

object

and

set

the

locale

for

its

data.

To

ensure

that

the

private

locale

variable

specifies

the

correct

locale

for

the

data

in

the

business

object,

you

can

use

the

setLocale()

method

before

you

call

either

of

the

methods

in

Table

76.

Table

76.

Methods

to

assign

a

locale

to

a

business

object

Data

Handler

class

Method

DataHandler

getBO()

-

public,

getBOName()

Character-encoding

design

principles

If

data

transfers

from

a

location

that

uses

one

code

set

to

a

location

that

uses

a

different

code

set,

some

form

of

character

conversion

needs

to

be

performed

for

the

data

to

retain

its

meaning.

The

Java

runtime

environment

within

the

Java

Virtual

Machine

(JVM)

represents

data

in

the

Unicode

character

set.

The

Unicode

character

set

is

a

universal

character

set

that

contains

encodings

for

characters

in

most

known

character

code

sets

(both

single-byte

and

multibyte).

There

are

several

encoding

formats

of

Unicode.

The

following

encodings

are

used

most

frequently

within

the

integration

business

system:

v

Universal

multiple

octet

Coded

Character

Set:

UCS-2

The

UCS-2

encoding

is

the

Unicode

character

set

encoded

in

2

bytes

(octets).

v

UCS

Transformation

Format,

8-bit

form:

UTF-8

The

UTF-8

encoding

is

designed

to

address

the

use

of

Unicode

character

data

in

UNIX

environments.

It

supports

all

ASCII

code

values

(0...127)

so

that

they

are

never

interpreted

as

anything

except

a

true

ASCII

code.

Each

code

value

is

usually

represented

as

a

1-,

2-,

or

3-

byte

value.

Most

components

in

the

IBM

WebSphere

business

integration

system

are

written

in

Java.

Therefore,

when

data

is

transferred

between

most

system

components,

it

is

encoded

in

the

Unicode

code

set

and

there

is

no

need

for

character

conversion.

Because

a

data

handler

is

a

component

written

in

Java,

it

handles

the

serialized

data

in

the

Unicode

code

set.

Usually,

the

source

of

the

data’s

input

stream

is

also

processing

in

Unicode.

Therefore,

a

data

handler

does

not

normally

need

to

perform

character

conversion

on

the

serialized

data.

However,

if

the

input

or

output

data

contains

a

byte

array

whose

character

encoding

is

not

the

same

as

the

system

default,

the

data

handler

must

provide

the

character

encoding.

To

track

the

character

encoding

associated

with

the

data

handler’s

environment,

the

DataHandler

class

has

a

private

character-encoding

variable,

which

is

initialized

to

the

character

encoding

associated

with

the

locale

of

the

operating

system

on

which

the

data

handler

runs.

You

can

access

the

data

handler

environment’s

character

encoding

(the

value

of

this

private

character-encoding

variable)

at

runtime

through

the

accessor

methods

in

Table

77.

192

Data

Handler

Guide

Table

77.

Methods

to

retrieve

the

data

handler’s

character

encoding

Data

Handler

Class

Method

DataHandler

getEncoding(),

setEncoding()

Chapter

10.

Creating

a

custom

data

handler

193

194

Data

Handler

Guide

Chapter

11.

Data

Handler

base

class

methods

The

DataHandler

class

is

the

base

class

for

the

data

handlers.

It

is

contained

in

the

com.crossworlds.DataHandlers

package.

All

data

handlers,

including

custom

data

handlers,

must

extend

this

abstract

class.

The

methods

documented

in

this

chapter

fall

into

three

categories:

v

Abstract

methods

that

must

be

implemented

v

Public

methods

that

have

a

provided

implementation

that

may

be

overridden

if

needed

v

Static

methods

that

are

called

by

connectors

or

access

clients

Table

78

lists

the

methods

of

the

DataHandler

class.

Table

78.

Member

methods

of

the

DataHandler

class

Member

methods

Type

Description

Page

createHandler()

Public

Static

Creates

an

instance

of

a

data

handler.

195

getBO()

-

abstract

Abstract

Populates

a

business

object

with

values

extracted

from

serialized

input

data.

196

getBO()

-

public

Public

Converts

serialized

data

to

a

business

object.

198

getBOName()

Public

Gets

the

name

of

a

business

object

based

on

the

content

of

the

serialized

data.

199

getBooleanOption()

Public

Gets

the

value

of

the

specified

data-handler

configuration

option

if

it

contains

Boolean

data.

200

getByteArrayFromBO()

Public

Serializes

a

business

object

into

a

byte

array.

201

getEncoding()

Public

Retrieves

the

character

encoding

that

the

data

handler

is

using.

202

getLocale()

Public

Retrieves

the

locale

of

the

data

handler.

202

getOption()

Public

Gets

the

value

of

the

specified

data-handler

configuration

option

(if

it

has

been

set).

203

getStreamFromBO()

Abstract

Serializes

a

business

object

into

an

InputStream

object.

203

getStringFromBO()

Abstract

Serializes

a

business

object

into

a

String

object.

204

setConfigMOName()

Static

Sets

the

name

of

the

top-level

data-handler

meta-object

in

a

static

property

of

the

DataHandler

base

class.

205

setEncoding()

Public

Sets

the

character

encoding

that

the

data

handler

is

using.

206

setLocale()

Public

Sets

the

locale

of

the

data

handler.

206

setOption()

Public

Sets

the

value

of

the

specified

data-handler

configuration

option.

207

traceWrite()

Public

Calls

the

appropriate

trace-write

function

to

write

a

trace

message

for

the

data

handler.

208

createHandler()

Creates

an

instance

of

a

data

handler.

Syntax

public

static

DataHandler

createHandler(String

className,

String

mimeType,

String

BOPrefix);

©

Copyright

IBM

Corp.

2000,

2004

195

Parameters

className

Is

the

class

name

of

the

data

handler

instance

to

create.

If

not

specified,

the

method

uses

the

mimeType

argument

to

determine

which

data-handler

class

to

instantiate.

mimeType

Specifies

the

MIME

type

of

the

data

handler

instance

to

create.

If

not

provided,

the

method

expects

a

className

value

to

be

provided.

Key

to

the

meta-object.

If

BOPrefix

is

provided,

mimeType

becomes

part

of

the

key.

BOPrefix

Is

an

optional

parameter.

If

present,

it

is

combined

with

mimeType

to

form

the

key

to

the

meta-object.

This

argument

can

be

used

to

specify

a

MIME

subtype.

It

can

also

be

used

to

set

the

data-handler

configuration

property

BOPrefix.

Return

values

An

instance

of

a

data

handler.

Exceptions

Exception

Thrown

if

the

method

is

unable

to

instantiate

the

data

handler.

Notes

This

method

creates

an

instance

of

a

data

handler

based

on

the

values

of

its

className,

mimeType,

and

BOPrefix

parameters:

v

If

the

createHandler()

method

is

called

by

a

connector,

the

connector

can

specify

a

className

value.

If

className

is

specified,

createHandler()

instantiates

a

data

handler

of

this

class

name.

v

If

mimeType

is

specified,

createHandler()

creates

a

data

handler

based

on

the

specified

MIME

type.

The

method

checks

the

top-level

data-handler

meta-object

for

an

attribute

whose

name

matches

the

content

type

of

either

the

mimeType

parameter

or

the

mimeType

and

BOPrefix

combination.

If

a

matching

attribute

is

found,

the

value

of

the

ClassName

attribute

in

the

child

meta-object

is

used

as

the

class

name.

If

the

method

succeeds

in

instantiating

a

class

for

the

data

handler,

it

calls

setupOptions()

to

set

up

the

configuration

properties

for

use

by

the

data

handler

instance.

For

a

complete

description

of

how

createHandler()

instantiates

a

data

handler,

see

“Data

handler

instantiation”

on

page

12.

For

example,

for

MIME

=

"text/xml-application-xxx",

the

method

loads

the

com.crossworlds.DataHandlers.text.xml_application_xxx

class.

getBO()

-

abstract

Populates

a

business

object

with

values

extracted

from

serialized

input

data.

Syntax

public

abstract

void

getBO(Reader

serializedData,

BusinessObjectInterface

theBusObj,

Object

config);

public

abstract

BusinessObjectInterface

getBO(Reader

serializedData,

Object

config);

196

Data

Handler

Guide

Parameters

serializedData

Is

a

Java

Reader

object

that

accesses

the

serialized

data.

theBusObj

Is

the

business

object

to

populate

with

data.

config

Is

an

optional

object

that

contains

additional

configuration

information

for

the

data

handler.

Return

values

The

first

form

of

this

method

has

no

return

value.

The

second

form

returns

a

business

object.

Notes

This

getBO()

method

is

the

abstract

method

that

performs

string-to-business-object

conversion

for

a

data

handler;

that

is,

it

defines

the

way

to

convert

generic

serialized

data

(accessed

with

a

Reader

object)

to

a

business

object.

This

method

has

two

forms:

v

The

first

form

populates

the

empty

business

object,

theBusObj,

passed

in

by

the

caller.

v

The

second

form

creates

a

business

object

instance

and

populates

it.

Note:

A

data

handler

that

is

called

in

the

context

of

the

Server

Access

Interface

needs

to

provide

functionality

only

for

the

second

form

of

the

getBO()

method.

Important:

The

getBO()

method

is

an

abstract

method

that

has

no

default

implementation.Therefore,

the

data

handler

class

must

implement

this

method.

You

pass

the

serialized

data

into

getBO()

as

a

Java

Reader

object.

However,

because

Reader

is

a

base

class,

you

actually

pass

an

instance

of

one

of

several

subclasses

of

the

Reader

class.

Some

of

the

Reader

subclasses

provide

an

implementation

for

the

mark()

operation

and

some

do

not.

The

mark()

operation

allows

the

caller

to

mark

a

particular

position

within

the

stream

and

then

subsequently

return

to

that

position.

Note:

To

pass

a

Reader

object

into

the

getBO()

method

of

the

XML

or

EDI

data

handlers,

you

must

ensure

that

the

Reader

subclass

implements

the

mark()

method.

You

can

call

the

isMarkSupported()

method

of

the

Reader

class

to

determine

whether

this

method

is

support

for

the

Reader

object

you

are

using.

It

is

recommended

that

you

pass

in

the

serialized

data

as

a

StringReader

object.

If

you

need

to

provide

your

data

handler

with

more

configuration

information

than

is

included

in

the

meta-object,

you

can

use

the

config

option

to

pass

in

an

object

that

contains

this

information.

For

example,

config

could

be

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

If

config

is

a

business

object

type,

you

can

implement

the

getBO()

method

to

call

setupOptions(config).

The

setupOptions()

method

is

defined

in

the

DataHandler

base

class.

This

method

uses

the

attribute

names

in

the

business

object

as

property

names

and

the

default

values

as

the

values

for

those

properties.

It

sets

the

values

of

the

configuration

properties

in

the

object

for

use

by

the

data

handler.

Chapter

11.

Data

Handler

base

class

methods

197

Once

you

have

implemented

the

abstract

getBO()

method,

the

component

that

calls

the

data

handler

can

call

one

of

the

public

string-to-business-object

conversion

methods,

shown

in

Table

79.

Table

79.

Public

string-to-business-object

conversion

methods

Public

string-to-business-object

conversion

method

Description

getBO(Object

serializedData,

Object

config)

Convert

serialized

data

in

a

generic

Object

to

a

business

object

getBO(String

serializedData,

Object

config)

Convert

serialized

data

in

a

Object

to

a

business

object

getBO(InputStream

serializedData,

Object

config)

Convert

serialized

data

in

an

InputStream

to

a

business

object

getBO(byte[]

serializedData,

Object

config)

Convert

serialized

data

in

a

byte

array

to

a

business

object

See

also

getBO()

-

public

getBO()

-

public

Converts

serialized

data

to

a

business

object.

Syntax

public

BusinessObjectInterface

getBO(Object

serializedData,

Object

config);

public

BusinessObjectInterface

getBO(String

serializedData,

Object

config);

public

BusinessObjectInterface

getBO(InputStream

serializedData,

Object

config);

public

BusinessObjectInterface

getBO(byte[]

serializedData,

Object

config);

public

void

getBO(Object

serializedData,

BusinessObjectInterface

theBusObj,

Object

config);

Parameters

serializedData

Is

a

reference

to

the

serialized

data.

theBusObj

Is

the

business

object

to

populate

with

data.

config

Is

an

optional

object

that

contains

additional

configuration

information

for

the

data

handler.

Return

values

The

first

four

forms

return

a

business

object

populated

with

the

data

from

the

input

Object,

String,

InputStream,

or

byte-array

object.

The

fifth

form

populates

the

specified

business

object

with

the

data

from

the

serialized

data.

Exceptions

Exception

Thrown

if

the

method

is

unable

to

convert

the

serialized

data

to

a

business

object.

198

Data

Handler

Guide

NotImplementedException

Thrown

if

the

public

version

of

the

getBO()

method

is

not

implemented.

Notes

This

getBO()

method

is

the

public

method

to

perform

string-to-business-object

conversion.

The

DataHandler

base

class

includes

the

abstract

forms

of

getBO()

(as

described

on

page

196),

which

must

be

implemented

as

part

of

the

data-handler

class.

This

public

version

of

getBO()

defines

a

set

of

utility

methods

that

allow

a

component

(such

as

a

connector

or

access

client)

to

specify

the

serializedData

as

an

Object,

String,

or

InputStream

objects,

or

as

a

byte

array.

The

method

converts

the

specified

serialized

data

to

a

Reader

object

and

then

calls

one

of

the

abstract

getBO()

methods

to

convert

the

Reader

object

to

a

business

object.

The

public

getBO()

method

has

the

following

forms:

v

The

first

form

calls

the

appropriate

getBO()

method

based

on

the

type

of

the

serializedData

object.

For

example,

if

the

type

of

the

data

is

String,

the

method

calls

getBO(String

serializedData,

Object

config).

v

The

second,

third

and

fourth

forms

create

a

Reader

object

from

a

String,

InputStream,

or

byte-array

object

and

call

the

abstract

getBO()

method

to

convert

the

Reader

object

to

a

business

object.

v

The

fifth

form

is

another

utility

that

handles

getBO()

calls

when

the

caller

passes

in

a

business

object.

It

performs

the

following

tasks:

–

determines

the

type

of

the

serializedData

object

passed

in

–

converts

the

object

to

a

String

or

InputStream

object,

if

appropriate

–

calls

the

abstract

version,

passing

the

business

object

as

well

as

the

data

For

information

on

the

config

argument,

see

its

description

under

the

abstract

form

of

getBO()

(as

described

on

page

196).

See

also

getBO()

-

abstract

getBOName()

Gets

the

name

of

a

business

object

based

on

the

content

of

the

serialized

data.

Syntax

public

String

getBOName(Reader

serializedData);

public

String

getBOName(String

serializedData);

public

String

getBOName(InputStream

serializedData);

Parameters

serializedData

A

reference

to

a

Reader

object

containing

the

message.

Return

values

Returns

a

String

object

containing

the

name

of

the

business

object.

If

no

value

exists

for

the

NameHandlerClass

attribute,

this

method

returns

null.

Exceptions

The

second

and

third

forms

of

getBOName()

can

throw

the

following

exceptions:

Chapter

11.

Data

Handler

base

class

methods

199

MalformedDataException

Thrown

if

the

serialized

data

(serializedData)

is

not

in

the

correct

format.

NotImplementedException

Thrown

if

the

name

handler

is

not

implemented.

Notes

The

getBOName()

method

creates

an

instance

of

a

name

handler

to

extract

the

name

of

the

business

object

definition

from

the

serialized

data.

It

instantiates

this

name-handler

object

based

on

the

value

of

the

NameHandlerClass

meta-object

attribute.

The

name

handler

builds

the

business

object

name

based

on

the

contents

of

a

message.

The

getBOName()

method

has

the

following

forms:

v

The

first

form

returns

the

business

object

name

based

on

the

BOPrefix

meta-object

attribute

(if

one

exists)

as

well

as

on

the

return

value

from

the

NameHandler

class.

v

The

second

form

creates

a

Reader

object

from

the

String

and

then

calls

the

first

form.

v

The

third

form

creates

a

Reader

object

from

the

InputStream

and

then

calls

first

form.

Currently,

only

the

following

IBM-delivered

data

handler

use

this

method:

v

XML

data

handler

The

default

name

handler

for

the

XML

data

handler

calls

the

base

class

getBOName(Reader

data).

If

the

data

handler

cannot

handle

the

request,

the

<!DOCTYPE

Name

is

used

to

extract

the

base

name

of

the

business

object.

The

final

name

is

formed

as:

BOPrefix

+

"_"

+

Name.getStreamFromBO()

v

EDI

data

handler

The

default

name

handler

for

the

EDI

data

handler

obtains

the

name

of

the

business

object

from

the

EDI

name-handler

lookup

table.

To

create

your

own

name

handler,

extend

the

NameHandler

abstract

base

class

and

override

the

getBOName()

method.

For

more

information,

see

“Building

a

custom

XML

name

handler”

on

page

86.

getBooleanOption()

Gets

the

value

of

the

specified

data-handler

configuration

option

if

it

contains

Boolean

data.

Syntax

public

boolean

getBooleanOption(String

name);

Parameters

name

Name

of

the

configuration

option.

Return

values

Returns

the

value

of

the

Boolean

type

option.

200

Data

Handler

Guide

Notes

The

createHandler()

method

uses

any

child

meta-object

associated

with

the

data

handler

to

initialize

its

configuration

options.

You

can

use

the

getBooleanOption()

method

to

obtain

the

value

of

one

of

these

options,

as

long

as

the

option

contains

a

Boolean

value.

getByteArrayFromBO()

Serializes

a

business

object

into

a

byte

array.

Syntax

abstract

byte[]

getByteArrayFromBO(BusinessObjectInterface

theBusObj,

Object

config);

Parameters

theBusObj

Business

object

to

be

converted

to

a

byte

array.

config

Optional

object

containing

additional

configuration

information

for

the

data

handler.

Return

values

A

byte

array

containing

serialized

data

that

represents

the

specified

business

object.

Exceptions

Exception

Thrown

if

the

method

cannot

convert

the

business

object

to

a

byte

array

of

serialized

data.

Notes

The

getByteArrayFromBO()

method

performs

business-object-to-byte

conversion

for

a

data

handler.

It

converts

the

data

in

the

theBusObj

business

object

into

a

byte

array

(a

Java

byte[]

object).

Important:

The

getByteArrayFromBO()

method

is

an

abstract

method

that

has

no

default

implementation.Therefore,

the

data

handler

class

must

implement

this

method.

If

you

need

to

provide

your

data

handler

with

more

configuration

information

than

is

included

in

the

meta-object,

you

can

use

the

config

option

to

pass

in

an

object

that

contains

this

information.

For

example,

config

could

be

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

If

config

is

a

business

object

type,

you

can

implement

the

getByteArrayFromBO()

method

to

call

setupOptions(config).

The

setupOptions()

method

is

defined

in

the

DataHandler

base

class.

This

method

uses

the

attribute

names

in

the

business

object

as

property

names

and

the

default

values

as

the

values

for

those

properties.

It

sets

the

values

of

the

configuration

properties

in

the

object

for

use

by

the

data

handler.

Chapter

11.

Data

Handler

base

class

methods

201

See

also

getBO()

-

public,

getStreamFromBO(),

getStringFromBO()

getEncoding()

Retrieves

the

character

encoding

that

the

data

handler

is

using.

Syntax

public

final

String

getEncoding();

Parameters

None.

Return

values

A

String

containing

the

data

handler’s

character

encoding.

Notes

The

getEncoding()

method

retrieves

the

data

handler’s

character

encoding.

The

character

encoding

is

part

of

the

locale,

which

defines

cultural

conventions

for

data

according

to

language,

country

(or

territory).This

method

is

the

accessor

method

that

retrieves

the

value

of

a

private

character-encoding

variable

in

the

DataHandler

class.

This

character

encoding

should

indicate

the

character

encoding

of

the

serialized

data

that

the

data

handler

is

processing.

This

method

is

useful

when

the

data

handler

needs

to

perform

character-encoding

processing,

such

as

character

conversion.

See

also

setEncoding()

getLocale()

Retrieves

the

locale

of

the

data

handler.

Syntax

public

final

Locale

getLocale();

Parameters

None.

Return

values

A

Java

Locale

object

that

describes

the

locale

for

the

data

handler’s

environment.

Notes

The

getLocale()

method

retrieves

the

data

handler’s

locale,

which

defines

cultural

conventions

for

data

according

to

language,

country

(or

territory),

and

a

character

encoding.

This

method

is

the

accessor

method

that

retrieves

the

value

of

a

private

locale

variable

in

the

DataHandler

class.

By

default,

the

data

handler’s

locale

is

the

locale

of

the

operating

system

on

which

the

data

handler

runs.

202

Data

Handler

Guide

This

method

is

useful

when

the

data

handler

needs

to

perform

locale-sensitive

processing.

See

also

setLocale()

getOption()

Gets

the

value

of

the

specified

data-handler

configuration

option

(if

it

has

been

set).

Syntax

public

String

getOption(String

name);

Parameters

name

Name

of

the

configuration

option.

Return

values

A

String

object

that

contains

the

value

of

the

option.

Notes

The

getOption()

method

obtains

the

value

of

a

configuration

option.

If

the

data

handler

has

an

associated

child

meta-object,

the

createHandler()

method

uses

the

default

values

of

these

meta-object

attributes

to

initialize

its

configuration

options.

You

can

use

the

getOption()

method

to

obtain

the

value

of

one

of

these

options.

See

also

setOption()

getStreamFromBO()

Serializes

a

business

object

into

an

InputStream

object.

Syntax

abstract

InputStream

getStreamFromBO(BusinessObjectInterface

theBusObj,

Object

config);

Parameters

theBusObj

Business

object

to

be

converted

to

a

stream.

config

Optional

object

containing

additional

configuration

information

for

the

data

handler.

Return

values

An

InputStream

object

containing

serialized

data

representing

a

business

object.

Chapter

11.

Data

Handler

base

class

methods

203

Exceptions

Exception

Thrown

if

the

method

cannot

convert

the

business

object

to

a

stream

of

serialized

data.

Notes

The

getStreamFromBO()

method

performs

business-object-to-stream

conversion

for

a

data

handler.

It

converts

the

data

in

the

theBusObj

business

object

into

a

stream

(a

Java

InputStream

object).

Important:

The

getStreamFromBO()

method

is

an

abstract

method

that

has

no

default

implementation.Therefore,

the

data

handler

class

must

implement

this

method.

If

you

need

to

provide

your

data

handler

with

more

configuration

information

than

is

included

in

the

meta-object,

you

can

use

the

config

option

to

pass

in

an

object

that

contains

this

information.

For

example,

config

could

be

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

If

config

is

a

business

object

type,

you

can

implement

the

getStreamFromBO()

method

to

call

setupOptions(config).

The

setupOptions()

method

is

defined

in

the

DataHandler

base

class.

This

method

uses

the

attribute

names

in

the

business

object

as

property

names

and

the

default

values

as

the

values

for

those

properties.

It

sets

the

values

of

the

configuration

properties

in

the

object

for

use

by

the

data

handler.

See

also

getBO()

-

public,

getByteArrayFromBO(),

getStringFromBO()

getStringFromBO()

Serializes

a

business

object

into

a

String

object.

Syntax

abstract

String

getStringFromBO(BusinessObjectInterface

theBusObj,

Object

config);

Parameters

theBusObj

Business

object

to

be

converted

to

a

String.

config

Optional

object

containing

additional

configuration

information

for

the

data

handler.

Return

values

A

String

object

containing

serialized

data

that

represents

the

data

in

the

business

object.

204

Data

Handler

Guide

Exceptions

Exception

Thrown

if

the

method

cannot

convert

the

business

object

to

a

string

of

serialized

data.

Notes

The

getStringFromBO()

method

performs

business-object-to-string

conversion

for

a

data

handler.

It

converts

the

data

in

the

theBusObj

business

object

into

a

Java

String

object.

Important:

The

getStringFromBO()

method

is

an

abstract

method

that

has

no

default

implementation.Therefore,

the

data

handler

class

must

implement

this

method.

If

you

need

to

provide

your

data

handler

with

more

configuration

information

than

is

included

in

the

meta-object,

you

can

use

the

config

option

to

pass

in

an

object

that

contains

this

information.

For

example,

config

could

be

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

If

config

is

a

business

object

type,

you

can

implement

the

getStreamFromBO()

method

to

call

setupOptions(config).

The

setupOptions()

method

is

defined

in

the

DataHandler

base

class.

This

method

uses

the

attribute

names

in

the

business

object

as

property

names

and

the

default

values

as

the

values

for

those

properties.

It

sets

the

values

of

the

configuration

properties

in

the

object

for

use

by

the

data

handler.

See

also

getBO()

-

public,

getByteArrayFromBO(),

getStreamFromBO()

setConfigMOName()

Sets

the

name

of

the

top-level

data-handler

meta-object

in

a

static

property

of

the

DataHandler

base

class.

Syntax

public

static

void

setConfigMOName(String

name);

Parameters

name

String

containing

the

name

of

the

data-handler

meta-object.

Return

values

None.

Exceptions

Exception

Thrown

if

the

method

set

the

specified

top-level

data-handler

meta-object.

Chapter

11.

Data

Handler

base

class

methods

205

Notes

The

top-level

data-handler

meta-object

holds

the

supported

MIME

types

and

the

names

of

their

associated

child

meta-objects.

For

information

on

data-handler

meta-objects,

see

“Configuring

data

handlers”

on

page

24.

setEncoding()

Sets

the

character

encoding

that

the

data

handler

is

using.

Syntax

public

final

void

setEncoding(String

encodingName);

Parameters

encodingName

A

String

object

containing

the

new

value

to

assign

as

the

data

handler’s

character

encoding.

Return

values

None.

Notes

The

setEncoding()

method

sets

the

data

handler’s

character

encoding.

The

character

encoding

is

part

of

the

locale,

which

defines

cultural

conventions

for

data

according

to

language,

country

(or

territory).

This

method

is

the

accessor

method

that

sets

a

private

character-encoding

variable

in

the

DataHandler

class.

This

character

encoding

should

indicate

the

character

encoding

of

the

serialized

data

that

the

data

handler

is

processing.

This

method

is

useful

when

the

data

handler

needs

to

perform

character-encoding

processing,

such

as

character

conversion.

See

also

getEncoding()

setLocale()

Sets

the

locale

of

the

data

handler.

Syntax

public

final

void

setLocale(Locale

localeObject);

Parameters

localeObject

A

Java

Locale

object

containing

the

new

locale

to

assign

to

the

data

handler’s

environment.

Return

values

None.

206

Data

Handler

Guide

Notes

The

setLocale()

method

sets

the

data

handler’s

locale,

which

defines

cultural

conventions

for

data

according

to

language,

country

(or

territory),

and

a

character

encoding.

This

method

is

the

accessor

method

that

sets

a

private

locale

variable

in

the

DataHandler

class.

This

locale

should

indicate

the

locale

of

the

serialized

data

that

the

data

handler

receives

and

creates.

This

method

is

useful

when

the

data

handler

needs

to

change

the

data

handler’s

locale.

A

possible

use

is

to

specify

a

different

locale

for

the

serialized

data

to

be

converted

to

a

business

object.

Calling

setLocale()

before

a

call

to

getBO()

changes

the

locale

that

getBO()

uses

when

it

associated

a

locale

with

the

business

object

it

creates.

See

also

getLocale()

setOption()

Sets

the

value

of

the

specified

data-handler

configuration

option.

Syntax

public

void

setOption(String

name,

String

value);

Parameters

name

Name

of

the

configuration

option.

value

Value

of

the

configuration

option.

Return

values

None.

Notes

The

setOption()

method

assigns

a

new

value

to

the

configuration

option.

If

the

data

handler

has

an

associated

child

meta-object,

the

createHandler()

method

uses

the

default

values

of

these

meta-object

attributes

to

initialize

its

configuration

options.

If

the

data

handler

is

called

in

the

context

of

a

connector,

this

child

meta-object

is

in

the

connector-process

memory.

If

your

integration

broker

is

InterChange

Server

and

the

data

handler

is

called

in

the

context

of

an

access

client,

this

meta-object

is

in

the

memory

of

the

InterChange

Server

process.

You

can

use

the

setOption()

method

to

override

the

value

of

one

of

these

options.

Note:

Changing

a

configuration

option

with

setOption()

sets

the

value

of

the

meta-object

attribute

in

memory.

It

does

not

affect

the

value

of

the

attribute

in

the

repository.

See

also

getOption()

Chapter

11.

Data

Handler

base

class

methods

207

traceWrite()

Calls

the

appropriate

trace-write

function

to

write

a

trace

message

for

the

data

handler.

Syntax

public

void

traceWrite(String

message,

int

level);

Parameters

message

The

message

text

to

use

for

the

trace

message.

level

An

integer

specifying

the

trace

level

for

the

message.

The

trace

level

is

from

0-5,

where

0

specifies

no

tracing

and

5

specifies

full

tracing.

Return

values

None.

Notes

The

traceWrite()

method

is

a

wrapper

method

that

calls

the

appropriate

trace

write

function

depending

on

the

context

in

which

the

data

handler

runs.

The

default

tracing

is

connector

tracing.

If

your

integration

broker

is

InterChange

Server

and

the

data

handler

is

run

in

the

context

of

the

Server

Access

Interface,

the

traceWrite()

method

sets

the

tracing

subsystem

before

calling

the

trace-write

method.

208

Data

Handler

Guide

Appendix.

Using

the

XML

ODA

This

chapter

describes

the

XML

ODA,

an

Object

Discovery

Agent

(ODA)

that

generates

business

object

definitions

for

XML

documents.

Because

an

XML

document

can

have

its

schema

defined

by

either

a

Document

type

definition

(DTD)

or

a

schema

document,

the

XML

ODA

can

use

either

of

these

data

models

to

discover

business

object

requirements

specific

to

the

XML

document.

This

chapter

contains

the

following

sections:

v

“Installation

and

usage”

v

“Using

an

XML

ODA

in

Business

Object

Designer”

on

page

212

v

“Contents

of

the

generated

business

object

definition”

on

page

221

v

“Modifying

information

in

the

business

object

definition”

on

page

221

Installation

and

usage

This

section

discusses

the

following:

v

“Installing

the

XML

ODA”

v

“Before

using

the

XML

ODA”

on

page

210

v

“Launching

the

XML

ODA”

on

page

210

v

“Running

multiple

instances

of

the

XML

ODA”

on

page

211

v

“Working

with

error

and

trace

message

files”

on

page

211

Installing

the

XML

ODA

To

install

the

XML

ODA,

use

an

IBM

WebSphere

Installer.

For

instructions

on

how

to

install

this

ODA

with

the

Installer

for

IBM

WebSphere

Business

Integration

Adapters,

see

the

Implementing

Adapters

with

WebSphere

MQ

Integrator

Broker

or

Implementing

Adapters

with

WebSphere

Application

Server.

For

instructions

on

how

to

install

this

ODA

with

the

InterChange

Server

Installer,

see

the

System

Installation

Guide

for

UNIX

or

for

Windows.

When

the

installation

is

complete,

the

following

files

are

installed

in

the

product

directory

on

your

system:

v

ODA\XML\XMLODA.jar

v

ODA\messages\XMLODAAgent.txt

v

ODA\messages\XMLODAAgent_ll_TT.txt

files

(message

files

specific

to

a

language

(ll)

and

a

country

or

territory

(TT))

v

ODA\XML\start_XMLODA.bat

(Windows

only)

v

ODA/XML/start_XMLODA.sh

(UNIX

only)

Note:

Except

as

otherwise

noted,

this

document

uses

backslashes

(\)

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

product

pathnames

are

relative

to

the

directory

where

product

is

installed

on

your

system.

©

Copyright

IBM

Corp.

2000,

2004

209

Before

using

the

XML

ODA

Before

you

run

the

XML

ODA,

verify

that

your

system

has

the

required

files

for

the

XML

ODA.

In

particular,

make

sure

that

the

ODA

environment

file

has

been

installed

in

the

bin

subdirectory

of

your

product

directory.

UNIX

Make

sure

that

the

ODA

environment

file,

CWODAEnv.sh,

is

installed

in

the

following

directory:

ProductDir/bin.

Windows

Make

sure

that

the

ODA

environment

file,

CWODAEnv.bat,

is

installed

in

the

following

directory:

ProductDir\bin.

You

must

also

make

sure

that

the

variables

are

correctly

set

in

the

startup

script

or

batch

file,

which

runs

the

ODA.

Open

for

editing

the

shell

(start_XMLODA.sh)

or

batch

(start_XMLODA.bat)

file

and

confirm

that

the

values

described

in

Table

80

are

correct.

Table

80.

Shell

and

batch

file

configuration

variables

Variable

Explanation

Example

set

AGENTNAME

Name

of

the

ODA

set

AGENTNAME=XMLODA

set

AGENT

Name

of

the

ODA’s

jar

file

UNIX:

set

AGENT

=

${ProductDir}/ODA/XML/XMLODA.jar

WINDOWS:

set

AGENT

=

%ProductDir%\ODA\XML\XMLODA.jar

set

AGENTCLASS

Name

of

the

ODA’s

Java

class

set

AGENTCLASS=com.crossworlds.oda.xml.XMLAgent

After

installing

the

XML

ODA

and

setting

configuration

variables

in

the

shell

or

batch

file

(see

Table

80),

you

must

do

the

following

to

generate

business

objects:

1.

Launch

the

XML

ODA.

2.

Launch

Business

Object

Designer.

3.

Follow

a

six-step

process

in

Business

Object

Wizard,

a

GUI

interface

that

Business

Object

Designer

provides

to

configure

and

run

an

ODA.

The

following

sections

describe

these

steps

in

detail.

Launching

the

XML

ODA

You

can

launch

the

XML

ODA

with

the

startup

script

appropriate

for

your

operating

system.

UNIX

start_XMLODA.sh

210

Data

Handler

Guide

Windows

start_XMLODA.bat

Note:

The

Windows

Installer

provides

shortcuts

to

startup

the

ODAs

it

installs.

If

you

have

used

this

Installer

to

install

the

XML

ODA,

you

will

find

a

shortcut

to

start

it

under

the

menu

Programs

>

IBM

WebSphere

Business

Integration

Adapters

>

Adapters

>

Object

Discovery

Agents.

You

configure

and

run

the

XML

ODA

using

Business

Object

Designer.

Business

Object

Wizard,

which

Business

Object

Designer

starts,

locates

each

ODA

by

the

name

specified

in

the

AGENTNAME

variable

of

each

script

or

batch

file.

The

default

ODA

name

for

this

connector

is

XMLODA.

Running

multiple

instances

of

the

XML

ODA

You

can

run

multiple

instances

of

an

XML

ODA

either

on

the

local

host

machine

or

a

remote

host

machine.

Each

instance

runs

on

a

unique

port.

You

can

specify

this

port

number

as

part

of

launching

the

ODA

from

within

Business

Object

Designer.

Figure

44

on

page

213

illustrates

the

window

in

Business

Object

Designer

from

which

you

select

the

ODA

to

run.

Working

with

error

and

trace

message

files

By

default,

error

and

trace

message

files

(the

default

is

XMLODAAgent.txt)

are

located

in

the

\ODA\messages,

subdirectory

under

the

product

directory.

These

files

use

the

following

naming

convention:

AgentNameAgent.txt

If

you

create

multiple

instances

of

the

ODA

script

or

batch

file

and

provide

a

unique

name

for

each

represented

ODA,

you

can

have

those

instances

use

the

same

message

file.

Alternatively,

you

can

specify

different

message

files

for

each

ODA

instance

by

specifying

file

names

in

odk.dd.xml,

which

is

the

ODA

deployment

descriptor

file

installed

with

the

XML

ODA.

To

specify

different

message

files

for

different

ODA

instances,

you

can

copy

the

master

ODA

deployment

descriptor,

installed

at

\ODA\odk.dd.xml,

and

edit

the

messagefile,

tracefile,

and

tracelevel

values

accordingly.

The

master

ODA

deployment

descriptor

has

the

following

format

and

default

values:

<odk>

<startup>

<messagefile

usestandard="true"></messagefile>

</startup>

<diagnostics>

<tracefile

usestandard="true"></tracefile>

<tracelevel

canoverride="true">1</tracelevel>

</diagnostics>

</odk>

Business

Object

Designer

assumes

you

name

each

file

according

to

the

naming

convention.

For

example,

if

the

AGENTNAME

variable

specifies

XMLODA1,

the

tool

assumes

that

the

name

of

the

associated

message

file

is

XMLODA1Agent.txt.

Therefore,

when

Business

Object

Designer

provides

the

file

name

for

verification

as

part

of

ODA

configuration,

the

file

name

is

based

on

the

ODA

name.

Verify

that

the

default

message

file

is

named

correctly,

and

correct

it

as

necessary.

Appendix.

Using

the

XML

ODA

211

Important:

Failing

to

correctly

specify

the

message

file’s

name

when

you

configure

the

ODA

causes

it

to

run

without

messages.

For

more

information

on

specifying

the

message

file

name,

see

Table

82

on

page

214.

During

the

configuration

process,

you

specify:

v

The

name

of

the

file

into

which

the

XML

ODA

writes

error

and

trace

information

v

The

level

of

tracing,

which

ranges

from

0

to

5.

Table

81

describes

these

values.

Table

81.

Tracing

levels

Trace

Level

Description

0

Logs

all

errors

1

Traces

all

entering

and

exiting

messages

for

method

2

Traces

the

ODA’s

properties

and

their

values

3

Traces

the

names

of

all

business

objects

4

Traces

details

of

all

spawned

threads

5

v

Indicates

the

ODA

initialization

values

for

all

of

its

properties

v

Traces

a

detailed

status

of

each

thread

that

the

XML

ODA

spawned

v

Traces

the

business

object

definition

dump

For

information

on

where

you

configure

these

values,

see

Table

82

on

page

214.

Using

an

XML

ODA

in

Business

Object

Designer

This

section

describes

how

to

use

Business

Object

Designer

to

generate

business

object

definitions

using

the

XML

ODA.

For

information

on

launching

Business

Object

Designer,

see

the

Business

Object

Development

Guide.

Business

Object

Designer

provides

a

wizard,

called

Business

Object

Wizard,

that

guides

you

through

each

of

these

steps.

After

you

launch

an

ODA,

you

must

launch

Business

Object

Designer

to

obtain

access

to

Business

Object

Wizard

(which

configures

and

runs

the

ODA).

There

are

six

steps

in

Business

Object

Wizard

to

generate

business

object

definitions

using

an

ODA.

After

starting

the

ODA,

do

the

following

to

start

the

wizard:

1.

Open

Business

Object

Designer.

2.

From

the

File

menu,

select

the

New

Using

ODA...

submenu.

Business

Object

Wizard

displays

the

first

window

in

the

wizard,

named

Select

Agent.

Figure

44

on

page

213

illustrates

this

window.

To

select,

configure,

and

run

the

ODA,

follow

these

steps:

1.

“Select

the

ODA”

on

page

213

2.

“Specify

configuration

properties”

on

page

213

3.

“Expand

nodes

and

select

XML

elements”

on

page

215

4.

“Confirm

selection

of

objects”

on

page

216

5.

“Generate

the

business

object

definition”

on

page

217

and,

optionally,

“Provide

additional

information”

on

page

218

6.

“Save

the

business

object

definition”

on

page

220

212

Data

Handler

Guide

Select

the

ODA

Figure

44

illustrates

the

first

dialog

box

in

Business

Object

Wizard’s

six-step

wizard.

From

this

window,

select

the

ODA

to

run.

To

select

the

ODA:

1.

Click

the

Find

Agents

button

to

display

all

registered

or

currently

running

ODAs

in

the

Located

agents

field.

Alternatively,

you

can

find

the

ODA

using

its

host

name

and

port

number.

Note:

If

Business

Object

Wizard

does

not

locate

your

desired

ODA,

check

the

setup

of

the

ODA.

2.

Select

the

desired

ODA

from

the

displayed

list.

Business

Object

Wizard

displays

your

selection

in

the

Agent’s

name

field.

Specify

configuration

properties

The

first

time

Business

Object

Wizard

communicates

with

XML

ODA,

it

prompts

you

to

enter

a

set

of

ODA

configuration

properties

as

shown

in

Figure

45

on

page

214.

Figure

44.

Selecting

the

ODA

Appendix.

Using

the

XML

ODA

213

Configure

the

XML

ODA

properties

described

in

Table

82.

Table

82.

XML

ODA

configuration

properties

Row

number

Property

name

Property

type

Description

1

FileName

String

Full

pathname

of

the

DTD

or

schema

document.

A

DTD

file

must

have

the

.dtd

extension;

a

schema-document

file

must

have

the

.xsd

extension.

2

Root

String

Name

of

the

XML

element

that

is

to

be

treated

as

the

root

element.

If

no

root

element

is

specified,

the

XML

ODA

makes

the

following

assumptions:

v

If

the

ODA

is

parsing

a

DTD,

it

treats

the

first

XML

element

as

the

root.

v

If

the

ODA

is

parsing

a

schema

document,

it

treats

the

first

global

element

as

the

root.

3

TopLevel

String

Name

to

be

used

for

the

top-level

business

object

that

the

ODA

generates.

The

ODA

prepends

the

top-level

business

object

with

the

business-object

prefix

(which

the

BOPrefix

property

specifies),

separated

by

an

underscore

(_).

If

you

do

not

specify

a

top-level

name,

the

ODA

assigns

the

name

BOPrefix_Root

(where

BOPrefix

and

Root

are

the

values

of

the

BOPrefix

and

Root

properties)

as

the

name

of

the

top-level

business

object.

4

BOSelection

String

A

boolean

value

(true

or

false)

to

indicate

whether

the

XML

ODA

will

allow

you

to

select

the

names

of

elements

for

which

business

object

definitions

are

to

be

used.

v

If

this

property

is

set

to

false,

the

XML

ODA

allows

the

user

to

select

only

the

root

as

the

element

and

will

generate

business

object

definitions

for

the

root

and

all

of

its

child

elements.

v

If

this

property

is

set

to

true,

the

XML

ODA

allows

the

user

to

select

any

element

and

will

generate

business

object

definitions

only

for

the

selected

elements.

The

default

is

false.

Figure

45.

Specifyng

ODA

configuration

properties

214

Data

Handler

Guide

Table

82.

XML

ODA

configuration

properties

(continued)

Row

number

Property

name

Property

type

Description

5

BOPrefix

String

Prefix

that

the

ODA

applies

to

the

name

of

each

business

object

definition

for

the

XML

document.

If

you

do

not

specify

a

business-object

prefix,

the

ODA

does

not

prepend

any

string

to

the

name

of

the

business

object

definition.

6

DoctypeorSchemaLocation

String

A

boolean

value

(true

or

false)

to

indicate

whether

the

XML

ODA

should

generate

attributes

for:

v

When

processing

DTDs:

the

DOCTYPE

tag

v

When

processing

schema

documents:

the

schemaLocation

and

xsi

attributes

(in

the

XML

Schema

Instance

namespace)

The

default

is

true.

7

TraceFileName

String

Full

pathname

of

the

file

into

which

XML

ODA

writes

trace

information.

If

the

file

does

not

exist,

XML

ODA

creates

it

in

the

specified

directory.

If

the

file

already

exists,

XML

ODA

appends

to

it.

By

default,

the

XML

ODA

creates

a

trace

file

named

XMLODAtrace.txt

in

the

ODA\XML

subdirectory

of

the

product

directory.

Use

this

property

to

specify

a

different

name

for

the

trace

file.

8

TraceLevel

Integer

Level

of

tracing

enabled

for

XML

ODA.

Valid

values

are

zero

through

five

(0-5).

Property

defaults

to

a

value

of

5

(full

tracing

enabled).

For

more

information,

see

“Working

with

error

and

trace

message

files”

on

page

211.

9

MessageFile

String

Full

pathname

of

the

error

and

message

file.

By

default,

the

XML

ODA

creates

a

message

and

error

file

named

XMLODAAgent.txt.

Important:

The

error

and

message

file

must

be

located

in

the

ODA\messages

subdirectory

of

the

product

directory.

Use

this

property

to

verify

or

specify

an

existing

file.

10

Bidi.Application

String

Defines

the

BiDi

format

of

the

DTD

of

the

external

application

according

to

the

specification

in

Table

83

on

page

222.

Important:

Correct

the

name

of

the

message

file

if

the

default

value

displayed

in

Business

Object

Designer

represents

a

non-existent

file.

If

the

name

is

not

correct

when

you

move

forward

from

this

dialog

box,

Business

Object

Designer

displays

an

error

message

in

the

window

from

which

the

ODA

was

launched.

This

message

does

not

pop

up

in

Business

Object

Designer.

Failing

to

specify

a

valid

message

file

causes

the

ODA

to

run

without

messages.

You

can

save

these

properties

in

a

named

profile

so

that

you

do

not

need

to

re-enter

them

each

time

you

use

XML

ODA.

For

information

on

specifying

an

ODA

profile,

see

the

Business

Object

Development

Guide.

Expand

nodes

and

select

XML

elements

Business

Object

Designer

uses

the

properties

configured

in

the

previous

step

to

connect

the

tool

to

the

specified

XML

schema

(DTD

or

schema

document).

After

Appendix.

Using

the

XML

ODA

215

connecting,

Business

Object

Designer

displays

a

tree

whose

nodes

represent

all

the

XML

elements

defined

in

the

XML

schema.

You

can

expand

the

top-level

XML

element

to

display

the

entire

hierarchical

representation.

For

each

XML

element,

XML

ODA

creates

a

child

business

object

definition.

Figure

46

illustrates

this

dialog

box

with

some

XML

elements

expanded.

Select

all

required

XML

elements

and

click

Next.

Confirm

selection

of

objects

After

you

identify

all

the

XML

elements

to

be

associated

with

the

generated

business

object

definitions,

Business

Object

Designer

displays

the

dialog

box

with

only

the

selected

objects.

Figure

47

on

page

217

illustrates

this

dialog

box.

Figure

46.

Tree

of

XML

elements

with

expanded

nodes

216

Data

Handler

Guide

This

window

provides

the

following

options:

v

To

confirm

the

selection,

click

Next.

v

If

the

selection

is

not

correct,

click

Back

to

return

to

the

previous

window

and

make

the

necessary

changes.

When

the

selection

is

correct,

click

Next.

Generate

the

business

object

definition

After

you

confirm

the

XML

elements,

the

next

dialog

box

informs

you

that

Business

Object

Designer

is

generating

the

business

object

definition.

If

a

large

number

of

Component

Interfaces

has

been

selected,

this

generation

step

can

take

time.

Figure

48

on

page

218

illustrates

this

dialog

box.

Figure

47.

Confirming

selection

of

objects

Appendix.

Using

the

XML

ODA

217

The

XML

ODA

generates

the

name

for

a

business

object

definition

from

the

following

information:

v

The

value

of

the

BOPrefix

ODA

configuration

property

v

The

value

of

the

TopLevel

ODA

configuration

property

v

The

name

of

the

XML

element

that

the

business

object

definition

represents

It

separates

each

of

these

values

with

an

underscore

(_)

character.

Therefore,

the

name

it

generates

has

the

following

format:

BOPrefix_TopLevel_XMLelement

Provide

additional

information

Because

the

XML

ODA

needs

additional

information

about

the

verbs,

Business

Object

Designer

displays

the

BO

Properties

window,

which

prompts

you

for

the

information.

Figure

49

on

page

219

illustrates

this

dialog

box.

Figure

48.

Generating

the

business

object

definitions

218

Data

Handler

Guide

In

the

BO

Properties

window,

enter

or

change

the

verb

information.

Click

in

the

Value

field

and

select

one

or

more

verbs

from

the

pop-up

menu.

These

are

the

verbs

supported

by

the

business

object.

Note:

If

a

field

in

the

BO

Properties

dialog

box

has

multiple

values,

the

field

appears

to

be

empty

when

the

dialog

box

first

displays.

Click

in

the

field

to

display

a

drop-down

list

of

its

values.

If

your

XML

document

has

a

schema

document

that

contains

an

anyAttribute

element,

the

XML

ODA

displays

an

additional

BO

Properties

window,

as

shown

in

Figure

50.

Figure

49.

Providing

additional

information

-

verbs

Appendix.

Using

the

XML

ODA

219

In

this

BO

Properties

window,

enter

the

names

of

the

business

object

attributes

you

want

the

XML

ODA

to

create.

Separate

each

attribute

with

a

semicolon

(;).

For

more

information

on

anyAttribute,

see

“Supported

schema-document

structures”

on

page

78.

Save

the

business

object

definition

After

you

provide

all

required

information

in

the

BO

Properties

dialog

box

and

click

OK,

Business

Object

Designer

displays

the

final

dialog

box

in

the

wizard.

In

this

dialog

box,

you

can

take

any

of

the

following

actions:

v

Save

the

business

object

definition

to

the

server

(if

InterChange

Server

is

the

integration

broker).

v

Save

the

business

object

definition

to

a

file

(for

any

integration

broker).

v

Open

the

business

object

definition

for

editing

in

Business

Object

Designer.

For

more

information,

and

to

make

further

modifications,

see

the

Business

Object

Development

Guide.

Figure

51

on

page

221

illustrates

this

dialog

box.

Figure

50.

Providing

additional

information

-

attribute

names

220

Data

Handler

Guide

Contents

of

the

generated

business

object

definition

The

business

object

definition

that

the

XML

ODA

generates

the

attributes,

verbs,

and

application-specific

information

as

described

in

the

following

sections:

Component

of

business

object

definition

For

more

information

Attributes

“Business

object

structure”

on

page

35

“Business

object

attribute

properties”

on

page

36

Application-specific

information

“Application-specific

information”

on

page

38

Verbs

“Business

object

verbs”

on

page

39

Note:

Earlier

versions

of

the

XML

ODA

generated

parent

business

object

definitions

that

designated

the

ObjectEventId

attribute

as

the

key.

Business

Object

Designer

no

longer

allows

business

object

definitions

to

specify

ObjectEventId

as

a

key

attribute.

Therefore,

XML

ODA

now

takes

special

steps

to

avoid

this

behavior.

This

new

behavior

requires

that

you

modify

the

generated

business

object

definition

to

designate

a

key

attribute.

For

more

information,

see

“Key

and

Foreign

Key

attribute

properties”

on

page

36.

Modifying

information

in

the

business

object

definition

It

may

be

necessary

to

modify

information

in

the

business

object

definition

that

the

XML

ODA

creates.

For

example,

you

must

manually

remove

unwanted

attributes

and

add

required

tags

for

attribute

application-specific

information.

To

examine

or

modify

the

business

object

definition,

you

can

use

Business

Object

Designer

or

a

text

editor.

To

reload

a

revised

definition

into

the

repository,

you

can

use

Business

Object

Designer.

Alternatively,

if

InterChange

Server

(ICS)

is

the

integration

broker,

you

can

use

the

repos_copy

command

to

load

the

definition

into

the

repository;

if

Figure

51.

Saving

the

business

object

definition

Appendix.

Using

the

XML

ODA

221

WebSphere

MQ

Integrator

Broker

is

the

integration

broker,

you

can

use

a

system

command

to

copy

the

file

into

the

repository

directory.

Enabling

bidirectional

support

in

the

XML

ODA

The

XML

ODA

has

been

globalized

to

handle

XML

schemas

and

DTDs

that

use

bidirectional

character

sets.

The

XML

data

handler

now

also

supports

bidirectional

character

encoding

formats.

To

display

text

from

different

languages,

the

XML

ODA

uses

resource

files

that

can

be

translated

into

various

languages.

To

enable

this

support,

the

XML

ODA

relies

on

the

BiDi.Application

property

to

specify

the

bidirectional

format

of

the

XML

schema

or

DTD.

The

value

of

BiDi.Application

is

a

sequence

of

letters

specifying

various

aspects

of

the

format

of

the

bidirectional

text.

Table

83

defines

these

letter

values.

Table

83.

BiDi

format

specification

Letter

position

Letter

meaning

Possible

value

Default

value

Meaning

1

Type

I

I

Implicit

V

Logical

2

Direction

L

L

Left

to

right

R

Right

to

left

3

Symmetric

swapping

Y

Y

Symmetric

swapping

on

N

Symmetric

swapping

off

4

Shaping

S

N

Text

is

shaped

N

Text

is

not

shaped

5

Numeric

shaping

H

N

Hindi

(national)

C

Contextual

N

Nominal

222

Data

Handler

Guide

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

2000,

2004

223

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

COPYRIGHT

LICENSE

This

information

may

contain

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

224

Data

Handler

Guide

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

IBM

the

IBM

logo

AIX

CICS

CrossWorlds

DB2

DB2

Universal

Database

Domino

IMS

Informix

iSeries

Lotus

Lotus

Notes

MQIntegrator

MQSeries

MVS

OS/400

Passport

Advantage

SupportPac

WebSphere

z/OS

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Linux

is

a

trademark

of

Linus

Torvalds

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

IBM

WebSphere

InterChange

Server

V4.2.2,

IBM

WebSphere

Business

Integration

Toolset

V4.2.2,

IBM

WebSphere

Business

Integration

Collaborations

V4.2,

IBM

WebSphere

Business

Integration

Adapter

Framework

V2.4.1

Notices

225

226

Data

Handler

Guide

Index

A
Access

client

4,

9

top-level

meta-object

24

Adapter

Development

Kit

(ADK)

169

Alignment

data-handler

configuration

property

135

Application-specific

information
Delimited

data

handler

and

145

EDI

data

handler

and

95

FixedWidth

data

handler

and

136

for

a

business

object

45,

64

for

an

attribute

48,

71,

83

NameValue

data

handler

and

153

Request-Response

data

handler

and

123

size

limitation

39

XML

data

handler

and

45

Attribute
complex

72

ignoring

177

simple

72,

73

Attribute

property
Cardinality

44,

63,

98,

136,

144,

151

Delimited

data

handler

and

144

FixedWidth

data

handler

and

136

Foreign

Key

36,

37,

44,

64,

99

Key

36,

37,

44,

64,

98

MaxLength

98,

136

Name

36,

95,

96,

98,

99,

100,

123,

124,

136,

144,

151

NameValue

data

handler

and

151

Required

37,

38,

44,

63,

99

Type

36,

98,

136,

144,

151

XML

data

handler

and

36,

44,

63

B
Bidi

Bidi.Application

XML

ODA

property

215

BiDi

ix

Enabling

bidirectional

support

in

the

XML

ODA

222

BiDi.Application

XML

ODA

property

215

Bidirectional

character

sets

and

the

XML

data

handler

ix

bidirectional

character

support
BiDi.Application

XML

ODA

property

215

Bidirectional

support
Enabling

bidirectional

support

in

the

XML

ODA

222

BOCountSize

data-handler

configuration

property

135

BONameSize

data-handler

configuration

property

135,

138

BOPrefix

data-handler

configuration

property

40,

126

createHandler()

and

16,

196

getBOName()

and

186,

200

Request-Response

name

handler

and

117

XML

name

handler

and

33,

85,

86

BOPrefix

XML

ODA

property

215,

218

BOSelection

XML

ODA

property

214

BOVerbSize

data-handler

configuration

property

135,

138

Business

object
converting

from

8,

10,

177,

201,

203,

204

delimited

data

146

EDI

document

105,

129

fixed-width

strings

138

name-value

pairs

154

Business

object

(continued)
converting

from

(continued)
XML

document

85

converting

to

8,

11,

172,

198

delimited

data

145

EDI

document

102

fixed-width

string

137

input

format

129

name-value

pairs

153

XML

document

82

creating

197

for

data

handler

189

getting

name

of

33,

90,

117,

199

ignoring

attribute

of

173,

177

locale

191

mixed

45,

58

name

86

populating

9,

12,

196

prefix

14,

196

regular

45,

58

requirements
Delimited

data

handler

143

EDI

data

handler

94

FixedWidth

data

handler

136

NameValue

data

handler

151

Request-Response

data

handler

122

XML

data

handler

42,

55

returning

197,

198

wrapper

46,

59,

60,

69

Business

object

definition

101

creating

80,

124,

212,

221

DTDs

and

42,

55

from

DTD

53

from

schema

document

78

mixed

45,

58

name

218

parent

46,

59,

60

regular

45,

58

requirements

for

schema

document

42,

55

root-element

35,

43,

56,

77,

82

schema

documents

and

55,

80

top-level
EDI

data

handler

95

Request-Response

data

handler

117,

123,

125

XML

data

handler

35,

43,

55,

56,

81,

83

wrapper

46,

59,

60,

69

C
Cardinality

attribute

property
Delimited

data

handler

and

144

EDI

data

handler

and

98

FixedWidth

data

handler

and

136

NameValue

data

handler

and

151

XML

data

handler

and

44,

63

Character

encoding

190,

202,

206

Child

meta-object

6,

13,

27,

187

Complex

Data

data

handler

160

Delimited

data

handler

142

EDI

data

handler

92

FixedWidth

data

handler

134

©

Copyright

IBM

Corp.

2000,

2004

227

Child

meta-object

(continued)
NameValue

data

handler

150

Request-Response

data

handler

126

XML

data

handler

39

ClassName

data-handler

configuration

property

14,

15,

28,

188

Delimited

data

handler

142

EDI

data

handler

92

FixedWidth

data

handler

135

NameValue

data

handler

150

Request-Response

data

handler

126

XML

data

handler

40

COBOL

Copybooks
Complex

Data

data

handler

formats

157

Complex

Data

data

handler

157

child

meta-object

160

setting

the

JRE

location

159

Complex

Data

data

handler

formats
COBOL

Copybooks

157

Connector

3

configuring

28,

189

instantiating

data

handler

16

top-level

meta-object

24,

26

use

of

data

handlers

7

ContentMaster

157

createHandler()

method

13,

17,

18,

28,

29,

195

called

by

connector

8,

9

called

by

Server

Access

Interface

11,

12

locating

a

class

13,

186

with

a

class

name

13,

15,

171

with

a

MIME

type

13,

15,

171

CustDataHandler.jar

file

6,

13,

15,

22,

186

Custom

data

handler

86,

167,

190

adding

to

jar

file

186

designing

170

development

process

167

example

of

getBO()

172

example

of

getStreamFromBO()

184

example

of

getStringFromBO()

178

implementing

the

methods

172

location

of

6

meta-objects

for

171,

187

name

handler

112,

130,

185

required

methods

172

setting

up

business

objects

for

189

using

a

stub

file

171

CwDataHandler.jar

file

5,

13,

15,

21,

22,

186

CwEDIDataHandler.jar

file

5,

13

CwXMLDataHandler.jar

file

5,

13

CxBlank

attribute

value
Delimited

data

handler

142,

144,

147

FixedWidth

data

handler

135

NameValue

data

handler

150,

152,

155

XML

data

handler

38,

85

CxBlank

data-handler

configuration

property
Delimited

data

handler

142,

144,

147,

155

FixedWidth

data

handler

135,

139

NameValue

data

handler

150,

152

CxBlankValue

data-handler

configuration

property

(deprecated)

150

CxIgnore

attribute

value
Delimited

data

handler

144,

147

FixedWidth

data

handler

135,

139

NameValue

data

handler

151,

154

XML

data

handler

38,

85

CxIgnore

data-handler

configuration

property
Delimited

data

handler

142,

144,

147

CxIgnore

data-handler

configuration

property

(continued)
FixedWidth

data

handler

135,

139

NameValue

data

handler

150,

151,

155

D
Data

conversion
from

business

object

8,

10,

177,

201,

204,

205

to

business

object

8,

11,

172,

197,

199

to

byte

array

201

to

stream

204

to

string

205

Data

handler

3

base

5

base

class

171,

195

character

encoding

202,

206

class

for

13,

171

compilation

script

187

configuration

options

200,

203,

207

configuring

15,

24,

29,

197,

201,

204,

205

contexts

for

6

customizing

6,

86,

112,

130,

167,

190

development

process

of

167

IBM-delivered

4,

15

identifying

class

for

13

ignoring

attributes

173,

177

in

a

call-triggered

flow

7

installing

21

instantiating

8,

9,

11,

12,

19,

195

internationalized

190,

195

locale

191,

202,

206

location

of

5

meta-data-driven

19

overview

19

package

for

14,

171

sample

6,

169

special

5

tracing

208

with

connectors

7

with

Server

Access

Interface

9

Data

Handler

API

170

DataHandler

class

170,

195,

208

abstract

methods

172

createHandler()

195

extending

171

getBO()

(abstract)

196

getBO()

(public)

198

getBOName()

199

getBooleanOption()

200

getByteArrayFromBO()

201

getEncoding()

202

getLocale()

202

getOption()

203

getStreamFromBO()

203

getStringFromBO()

204

package

for

195

setConfigMOName()

205

setEncoding()

206

setLocale()

206

setOption()

207

traceWrite()

208

DataHandler

package

195

DefaultEscapeBehavior

data-handler

configuration

property

40,

52

DefaultVerb

data-handler

configuration

property
EDI

data

handler

92,

111

NameValue

data

handler

150

228

Data

Handler

Guide

DefaultVerb

data-handler

configuration

property

(continued)
Request-Response

data

handler

126

Delimited

data

handler

141,

149

application-specific

information

145

business

object

attribute

properties

144

business

object

requirements

143

business

object

structure

143

child

meta-object

142

configuring

142

converting

business

objects

to

strings

145

converting

strings

to

business

objects

146

CxBlank

142

CxIgnore

142

Delimiter

143

delimiter

character

143

DummyKey

143

Escape

143

escape

string

143

example

string

147

features

141

OmitObjectEventId

143

overview

141

processing

of

142

sample

file

169

string

requirements

146

with

existing

business

objects

145

Delimited

datahandler
ClassName

142

Delimiter

data-handler

configuration

property

141,

143,

146,

147

deployment

descriptor,

XML

ODA,

odk.dd.xml

211

Development

process

167,

169

DoctypeorSchemaLocation

XML

ODA

property

43,

57,

78,

215

Document

type

definition

(DTD)

42,

55

ANY

directive

54

ATTLIST

fragment

44,

45,

64

attribute

properties

and

36,

44

attributes

50,

51,

83

business

object

definition

requirements

42

CDATA

section

51,

52,

83

comments

53,

84

conditional

section

54

creating

business

object

definitions

for

53,

80,

212,

221

DOCTYPE

declaration

43,

52,

54,

83,

86

ELEMENT

fragment

44

elements

49,

51,

83

entity

resolver

for

33,

40

external

54

FIXED

attributes

43,

86

location

of

214

mixed

business

object

45

namespaces

54

path

for

40

PCDATA

element

45,

50,

51,

84

preserving

verbs

39

processing

instructions

53,

83

regular

business

objects

45

required

business

object

definitions

35,

43

root

element

33,

35,

43,

81,

82,

214

sample

43

structure

of

business

objects

35,

43

supported

structures

54,

78

translating

into

business

object

definition

53

wrapper

business

object

46

doStrictCheck

112

DTDPath

data-handler

configuration

property

34,

40

DummyKey

data-handler

configuration

property
Delimited

data

handler

143

EDI

data

handler

92

FixedWidth

data

handler

135

NameValue

data

handler

150

XML

data

handler

40

E
E-Business

Development

Kit

(EDK)

171

EDI

business

object
composite

99,

104

header

97

segment

98,

104

segment

loop

100

top-level

91,

95,

111

trailer

100

EDI

data

handler

89,

113

business

object

requirements

94

business

object

structure

94

child

meta-object

92

ClassName

92

configuring

90

converting

business

objects

to

EDI

documents

102

converting

strings

to

business

objects

105,

129

customizing

112

DefaultVerb

92

doStrictCheck

configuration

property

112

DummyKey

92

ISA

92

location

of

5

name

handler

90,

110,

112

name-handler

lookup

file

90,

91,

110

NameHandlerClass

92

NameHandlerFile

93

overview

89

processing

of

90

Reader

object

restrictions

105,

197

RELEASE_CHAR

93

SEPARATOR_COMPOSIT

93

SEPARATOR_ELEMENT

93

SEPARATOR_REPEAT

93

SEPARATOR_SEGMENT

93

UNA

92

UNB

92

EDI

document
composite

separator

93,

102,

106,

107,

109

DUNS

number

91,

107,

109,

110

element

separator

93,

102,

106

escape

characters

93,

104

parsing

112

repeat

separator

93,

102,

106,

107

segment

separator

93,

102,

106

transaction

ID

91,

107,

109,

110

translating

into

business

object

101

EDI

name-handler

lookup

file

90,

91,

110

Entity

resolver

33,

86,

88

EntityResolver

data-handler

configuration

property

33,

40,

86,

88

Escape

character

143,

147

Escape

data-handler

configuration

property

142,

143,

147

Escape

string

143

Index

229

F
FileName

XML

ODA

property

79,

214

FixedWidth

data

handler

133,

141

Alignment

135

alignment

values

134

application-specific

information

136

BOCountSize

135

BONameSize

135

BOVerbSize

135

business

object

attribute

properties

136

business

object

requirements

136

business

object

structure

136

child

meta-object

134

ClassName

135

configuring

134

converting

business

objects

to

strings

137

converting

strings

to

business

objects

138

CxBlank

135

CxIgnore

135

DummyKey

135

features

133

Max

Length

attribute

property

133,

141

OmitObjectEventId

135

overview

133

pad

character

133

PadCharacter

135

processing

of

134

sample

file

169

string

requirements

138

truncation

138

Truncation

135

with

existing

business

objects

137

Foreign

Key

attribute

property
EDI

data

handler

and

99

XML

data

handler

and

36,

37,

44,

64

G
getBO()

method

9,

12,

105,

172

abstract

172,

196

public

184,

192,

198

getBOName()

method

184,

186,

192,

199

getBooleanOption()

method

184,

200

getByteArrayFromBO()

method

172,

177,

201

getEncoding()

method

193,

202

getLocale()

method

191,

202

getOption()

method

184,

203

getStreamFromBO()

method

172,

177,

184,

203

getStringFromBO()

method

172,

177,

178,

204

globalization
XML

data

handler

ix

XML

ODA

ix

I
IgnoreUndefinedAttributes

data-handler

configuration

property

40

IgnoreUndefinedElements

data-handler

configuration

property

40

InitialBufferSize

data-handler

configuration

property

40

ISA

data-handler

configuration

property

92,

107

ItemField

157

J
Java

Connector

Development

Kit

(JCDK)

170,

171

Java

Runtime

Environment
Settin

the

JRE

for

the

Complex

Data

data

handler

159

JRE

location

159

K
Key

attribute

property
EDI

data

handler

and

98

XML

data

handler

and

36,

37,

44,

64

L
Locale

190,

191,

202,

206

M
make_datahandler

compilation

script

187

makeDataHandler.bat

compilation

script

170,

187

MaxLength

attribute

property
Delimited

data

handler

and

141

EDI

data

handler

and

98

FixedWidth

data

handler

and

133,

136,

139

MessageFile

XML

ODA

property

215

Meta-object

12,

24,

28

child

6,

13,

14,

15,

27

connector

189

creating

187

custom

data

handler

171,

187

for

use

by

access

client

24

for

use

by

connectors

26

for

use

by

Server

Access

Interface

25

loading

189

MIME

type

attribute

6,

24

setting

name

of

17,

18,

205

setting

up

189

structure

6,

12

top-level

6,

12,

14,

15,

17,

24,

188,

205

whether

to

use

171

MIME

type

13,

17,

24,

196

edi

5,

89

naming

restrictions

28,

188

subtype

14,

27,

41,

93

text/delimited

5,

141

text/fixedwidth

5,

133

text/namevalue

5,

149

text/requestresponse

5,

116

text/xml

5,

31

MO_DataHandler_Default

meta-object

17,

26

MO_DataHandler_DefaultDelimitedConfig

meta-object

28,

142

MO_DataHandler_DefaultEDIConfig

meta-object

28,

92,

103

MO_DataHandler_DefaultFixedWidthConfig

meta-object

28,

134

MO_DataHandler_DefaultNameValueConfig

meta-object

28,

150

MO_DataHandler_DefaultRequestResponseConfig

meta-object

28,

126

MO_DataHandler_DefaultXMLConfig

meta-object

28,

39,

160

MO_Server_DataHandler

meta-object

18,

25

230

Data

Handler

Guide

N
Name

attribute

property
Delimited

data

handler

and

144

EDI

data

handler

and

95,

96,

98,

99,

100

FixedWidth

data

handler

and

136

NameValue

data

handler

and

151

Request-Response

data

handler

and

123,

124

XML

data

handler

and

36

Name

handler

185,

200

EDI

data

handler

and

90,

110,

112

Request-Response

data

handler

and

117,

130

XML

data

handler

and

33,

85,

86

NameHandler

class

185

NameHandlerClass

data-handler

configuration

property

186,

200

EDI

data

handler

90,

92,

112

Request-Response

data

handler

117,

127,

130

XML

data

handler

33,

40,

87

NameHandlerFile

data-handler

configuration

property

90,

91,

93,

110

NameValue

data

handler

149,

156

application-specific

information

153

business

object

attribute

properties

151

business

object

requirements

151

business

object

structure

151

child

meta-object

150

ClassName

150

configuring

150

converting

business

objects

to

strings

153

converting

strings

to

business

objects

154

CxBlank

150

CxIgnore

150

DefaultVerb

150

DummyKey

150

example

file

155

overview

149

processing

of

149

sample

file

169

SkipCxIgnore

150

string

requirements

154

ValidateAttrCount

150

with

existing

business

objects

153

O
ObjectEventId

attribute

80,

136,

143,

151,

160

ODA

deployment

descriptor

file

211

OmitObjectEventId

data-handler

configuration

property
Delimited

data

handler

143

FixedWidth

data

handler

135

P
PadCharacter

data-handler

configuration

property

135

Parser

data-handler

configuration

property

33,

40,

86

R
Reader

object

105,

197

RELEASE_CHAR

data-handler

configuration

property

93

Request

data

handler

115,

129

Request-Response

data

handler

115,

131

BOPrefix

126

business

object

requirements

122

business

object

structure

122

Request-Response

data

handler

(continued)
child

meta-object

126

ClassName

126

components

117

configuring

125

converting

business

objects

to

input

format

129

creating

business

object

definitions

for

124

customizing

130

DefaultVerb

126

name

handler

117,

130

NameHandlerClass

127

overview

115

processing

of

121

request

business

object

123,

125

RequestDataHandlerMimeType

127

response

business

object

124,

125

ResponseDataHandlerMimeType

127

top-level

business

object

117,

123,

125

RequestDataHandlerMimeType

data-handler

configuration

property

127,

129

Required

attribute

property
EDI

data

handler

and

99

XML

data

handler

and

37,

38,

44,

63

Response

data

handler

115,

129

ResponseDataHandlerMimeType

data-handler

configuration

property

127,

130

Root

XML

ODA

property

35,

214

S
SAX

parser

33,

40,

86

Schema

document

55,

80

all

group

60,

78

any

element

78

anyAttribute

element

78,

219

attribute

properties

and

63

attributeFormDefault

70,

75

attributes

75,

76,

83

business

object

definition

requirements

55

choice

group

60,

78

comments

76,

84

complex

types

58,

72,

73,

79

creating

business

object

definitions

for

78,

80,

212,

221

default

namespace

69,

70

elementFormDefault

70,

72

elements

45,

58,

72,

73,

76,

83

entity

resolver

for

33

form

attribute

72,

75

import

element

66,

79

include

element

79

mixed

business

object

58

namespaces

64

occurrence

indicator

63

processing

instructions

76,

83

regular

business

object

58

required

business

object

definitions

35,

56

required

element

79

root

element

33,

35,

55,

56,

81,

82,

214

sample

55

schema

element

56

schema

locations

34,

56,

76,

214,

215

sequence

group

58,

78

simple

elements

73

simple

types

73

structure

of

business

objects

55

target

namespace

65

targetNamespace

65

Index

231

Schema

document

(continued)
use

attribute

64

wrapper

business

object

60,

69

xmlns

attribute

69

SEPARATOR_COMPOSIT

data-handler

configuration

property

93,

103,

108

SEPARATOR_ELEMENT

data-handler

configuration

property

93,

102,

103,

106

SEPARATOR_REPEAT

data-handler

configuration

property

93,

103,

108

SEPARATOR_SEGMENT

data-handler

configuration

property

93,

102,

103

Server

Access

Interface
getBO()

and

197

IcreateBusinessObjectFrom()

12,

18

instantiating

data

handler

17

ItoExternalForm()

11,

18

top-level

meta-object

25

use

of

data

handlers

9

setConfigMOName()

method

17,

205

setEncoding()

method

193,

206

setLocale()

method

191,

206

setOption()

method

184,

207

setupOptions()

method

15,

196,

197,

201,

204,

205

SkipCxIgnore

data-handler

configuration

property

150,

152

StubDataHandler.java

file

170,

171,

172

T
Top-level

meta-object

6,

12,

17,

188,

205

TopLevel

XML

ODA

property

214,

218

Trace

message

208

TraceFileName

XML

ODA

property

215

TraceLevel

XML

ODA

property

215

traceWrite()

method

185,

208

Truncation

data-handler

configuration

property

134,

135,

138

Type

attribute

property
Delimited

data

handler

and

144

EDI

data

handler

and

98

FixedWidth

data

handler

and

136

NameValue

data

handler

and

151

XML

data

handler

and

36

TypeSubstitution

XML

ODA

property

79

U
UNA

data-handler

configuration

property

92,

107

UNB

data-handler

configuration

property

92,

107

UseNewLine

data-handler

configuration

property

41

V
ValidateAttrCount

data-handler

configuration

property

150,

153,

154,

156

Validation

data-handler

configuration

property

33,

41

Verb

(preserving

in

XML)

39,

85

X
XML

data

handler

31,

88

application-specific

information

45

attr_fd

71,

75

attr_name

49,

50,

71

attr_ns

71

cw_mo_label

83,

85,

86,

177

XML

data

handler

(continued)
application-specific

information

(continued)
elem_fd

71,

72

elem_name

49,

71,

72,

73

elem_ns

71

escape

40,

52

escape=true

49,

51,

71,

84

notag

49,

51,

73,

74,

83,

84

type=attr_name

75

type=attribute

49,

50,

51,

71,

75,

83

type=cdata

49,

51,

53,

83

type=comment

49,

53,

71,

76,

84

type=defaultNS

65

type=doctype

49,

52,

83

type=MIXED

46,

59

type=pcdata

48,

49,

50,

51,

71,

73,

83

type=pi

49,

53,

71,

76

type=xmlns

65

type=xsinoNSlocation

71,

77

type=xsischemalocation

71,

77

xsinoNSlocation

84

xsinoschemalocation

84

attribute-level

application-specific

information

48,

71

BOPrefix

40

business

object

attribute

properties

36,

44,

63

business

object

structure

35,

43,

55

business-object-level

application-specific

information

45,

64

child

meta-object

39

ClassName

40

components

32,

90

configuring

39

converting

business

objects

82

converting

XML

documents

85

customizing

86

DefaultEscapeBehavior

40

DTDPath

40

DummyKey

40

entity

resolver

33,

88

EntityResolver

40

escape

processing

40,

51,

84

IgnoreUndefinedAttributes

40

IgnoreUndefinedElements

40

InitialBufferSize

40

location

of

5

name

handler

33,

85,

86,

200

NameHandlerClass

40

overview

31

Parser

40

processing

of

31

Reader

object

restrictions

197

SAX

parser

33

UseNewLine

41

Validation

41

verb

conversion

39,

85

XML

document

31

attributes

35,

50,

75

CDATA

section

51,

52,

83

comments

53,

76,

84

converting

to

business

object

85

creating

business

object

definitions

for

101

escape

processing

51,

76

external

references

33,

86

noNamespaceSchemaLocation

77,

84

parsing

86

processing

instruction

53

prolog

52,

53,

54

232

Data

Handler

Guide

XML

document

(continued)
requirements

85

root

element

214

schemaLocation

56,

76,

84

XML

Object

Discovery

Agent

(ODA)

209,

223

BOPrefix

215

BOSelection

214

configuration

properties

213

DoctypeorSchemaLocation

78,

215

FileName

79,

214

installing

209

launching

210

MessageFile

215

multiple

instances

211

properties

214

Root

214

TopLevel

214

TraceFileName

215

TraceLevel

215

TypeSubstitution

79

XML

ODA
support

for

bidirectional

character

encoding

222

XML

Schema

Instance

Namespace

65,

76,

215

XML

Schema

Namespace

65

Index

233

234

Data

Handler

Guide

����

Printed

in

USA

	Contents
	About this document
	Audience
	Related documents
	Typographic conventions

	New in this release
	New in WebSphere Business Integration Adapter Framework v2.6.0
	New in WebSphere Business Integration Adapter Framework v2.4.1
	New in WebSphere InterChange Server v4.2.2 and WebSphere Business Integration Adapter Framework v2.4.0
	New in WebSphere InterChange Server v4.2.1 and WebSphere Business Integration Adapter v2.3.1
	New in WebSphere InterChange Server v4.2 and WebSphere Business Integration Adapter v2.2.0
	New in WebSphere Business Integration Adapter Framework v2.1
	New in WebSphere Business Integration Adapter Framework v2.0.1
	New in WebSphere Business Integration Adapter Framework v2.0
	New in release 4.1.0
	New in release 4.0.1
	New in release 4.0.0

	Part 1. Getting started
	Chapter 1. Data handler overview
	What is a data handler?
	IBM-delivered data handlers
	Data-handler meta-objects
	Contexts for calling data handlers

	Data handler instantiation
	Identifying the data-handler class
	Setting data-handler configuration properties
	Setting the business-object prefix

	Calling the data handler
	Instantiation in the context of a connector
	Instantiation in the context of the Server Access Interface

	Metadata-driven data handler design

	Chapter 2. Installing and configuring data handlers
	Installing data handlers
	Data handlers in IBM WebSphere InterChange Server
	Data handlers in IBM WebSphere Business Integration Adapters
	Installing data handlers using the graphical installer
	Installing data handlers silently

	Configuring data handlers
	Top-level meta-objects
	Child meta-objects

	Configuring a connector to use data handlers

	Chapter 3. XML data handler
	Overview
	Processing XML documents and business objects
	XML data handler components

	Requirements for business object definitions
	Business object structure
	Business object attribute properties
	Application-specific information
	Business object verbs

	Configuring the XML data handler
	XML documents that use DTDs
	Requirements for business object definitions based on DTDs
	Creating business object definitions from DTDs

	XML documents that use schema documents
	Requirements for business object definitions based on schema documents
	Creating business object definitions from schema documents

	Creating business object definitions
	Using an XML ODA to create business object definitions
	Manually creating business object definitions

	Converting business objects to XML documents
	Converting XML documents to business objects
	XML document requirements
	Serialized-data processing

	Customizing the XML data handler
	Building a custom XML name handler
	Building a custom entity resolver

	Chapter 4. EDI data handler
	Overview
	EDI data-handler components
	Business object and EDI document processing

	Configuring the EDI data handler
	Creating the name-handler lookup file
	Configuring the EDI data handler child meta-object

	Business object definitions for EDI documents
	Understanding EDI business object structure
	Creating business object definitions for EDI documents

	Converting business objects to EDI documents
	Determining document separators to insert
	Determining the EDI data associated with the attribute
	Processing a segment
	Processing a composite

	Converting EDI documents to business objects
	Initializing the data handler
	Determining the name of the business object
	Populating the business object

	Customizing the EDI data handler

	Chapter 5. Request-Response data handler
	Overview
	Request-Response data-handler components
	Features of the Request-Response data handler
	Processing request and response business objects

	Requirements for business object definitions
	Understanding Request-Response business object structure
	Creating business object definitions for the Request-Response data handler

	Configuring the Request-Response data handler
	Configuring the top-level meta-object
	Configuring the child meta-object

	Converting business objects with the request data handler
	Converting business objects with the response data handler
	Error handling
	Customizing the Request-Response data handler

	Chapter 6. FixedWidth data handler
	Overview
	Features of the FixedWidth data handler
	Business object and FixedWidth string processing

	Configuring the FixedWidth data handler
	Configuring the FixedWidth child meta-object
	Business objects requirements

	Converting business objects to FixedWidth documents
	Converting FixedWidth documents to business objects
	FixedWidth string requirements
	Serialized-data processing

	Chapter 7. Delimited data handler
	Overview
	Features of the Delimited data handler
	Business object and string processing

	Configuring the Delimited data handler
	Configuring the Delimited child meta-object
	Business object requirements

	Converting business objects to delimited data
	Converting delimited data to business objects
	Delimited string requirements
	Serialized-data processing

	Chapter 8. NameValue data handler
	Overview
	Configuring the NameValue data handler
	Configuring the NameValue child meta-object
	Business object requirements

	Converting business objects to NameValue data
	Converting NameValue data to business objects
	NameValue string requirements
	Serialized-data processing

	Chapter 9. Complex Data data hander
	Overview
	Complex Data data handler components

	Configuring the Complex Data data handler
	Installing, registering, and verifying ContentMaster
	Configuring the data handler for use with the adapter
	Configuring the Complex Data data handler configuration meta object

	Converting business objects to specified data formats
	Converting specified data formats to business objects
	Verb Resolution

	Error handling

	Part 2. Custom data handlers
	Chapter 10. Creating a custom data handler
	Overview of the data-handler development process
	Tools for data-handler development
	The Adapter Development Kit
	Data Handler API
	Java Connector Development Kit

	Designing the data handler
	Creating a metadata-driven data handler
	Using data-handler meta-objects

	Extending the data handler base class
	Implementing the methods
	Implementing the abstract methods
	Overriding public methods

	Building a custom name handler
	Extending the NameHandler class
	Implementing the getBOName() method
	Setting the meta-object attribute

	Adding a data handler to the jar file
	Creating data-handler meta-objects
	Creating the child meta-object
	Modifying the top-level meta-object
	Setting up meta-objects in the business integration system

	Setting up other business objects
	Configuring a connector
	An internationalized data handler
	What is a locale?
	Design considerations for an internationalized data handler
	Locale-sensitive design principles
	Character-encoding design principles

	Chapter 11. Data Handler base class methods
	createHandler()
	getBO() - abstract
	getBO() - public
	getBOName()
	getBooleanOption()
	getByteArrayFromBO()
	getEncoding()
	getLocale()
	getOption()
	getStreamFromBO()
	getStringFromBO()
	setConfigMOName()
	setEncoding()
	setLocale()
	setOption()
	traceWrite()

	Appendix. Using the XML ODA
	Installation and usage
	Installing the XML ODA
	Before using the XML ODA
	Launching the XML ODA
	Running multiple instances of the XML ODA
	Working with error and trace message files

	Using an XML ODA in Business Object Designer
	Select the ODA
	Specify configuration properties
	Expand nodes and select XML elements
	Confirm selection of objects
	Generate the business object definition
	Provide additional information
	Save the business object definition

	Contents of the generated business object definition
	Modifying information in the business object definition
	Enabling bidirectional support in the XML ODA

	Notices
	Programming interface information
	Trademarks and service marks

	Index

